GOVERNMENT COLLEGE OF ENGINEERING, Salem - 11 (An Autonomous Institution affiliated to Anna University, Chennai)

B.E. DEGREE IN CIVIL ENGINEERING

CURRICULUM FOR 2018A REGULATIONS

FIRST SEMESTER

Sl.	Subject		CAT	CA	End	Total		Cr	edits	
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	Р	С
			THEORY							
1	18MA101	Matrices and Calculus	BS	40	60	100	3	1	0	4
2	18PH101	Physics – Mechanics	BS	40	60	100	3	1	0	4
3	18EE101	Basic Electrical and Electronic Engineering	ES	40	60	100	3	1	0	4
4	18ME101	Engineering Graphics and Design	ES	40	60	100	1	0	4	3
		P	RACTICA	L			•			
5	18PH103	Physics Laboratory	BS	60	40	100	0	0	3	1.5
6	18CY102	Chemistry laboratory	BS	60	40	100	0	0	3	1.5
7	18EE102	Basic Electrical and Electronics Engineering Laboratory	ES	60	40	100	0	0	2	1
8	18EN103	Professional Communication Laboratory	HS	60	40	100	0	0	2	1
Mand	latory courses	s (non- credit)					•			
9	18MC101	Induction program	MC							
		TOTAL		320	480	800	10	3	14	20

SECOND SEMESTER

					End		Credits			
SI.	Subject	Course Title	CAT	CA	Sem.	Total				
No.	Code			Marks	Marks	Marks	L	Т	Р	С
		1	HEORY							
1	18EN101	Professional English	HS	40	60	100	2	0	0	2
2	18MA205	Differential Equations and Transforms	BS	40	60	100	3	1	0	4
3	18CY101	Chemistry	BS	40	60	100	3	1	0	4
4	18CS101	Fundamentals of Problem Solving and C Programming	ES	40	60	100	3	0	0	3
		PR	ACTICA	L						
5	18EN102	Professional English Laboratory	HS	60	40	100	0	0	2	1
6	18CS102	Computer Practice Laboratory	ES	60	40	100	0	0	4	2
7	18ME102	Workshop Manufacturing Practices	ES	60	40	100	1	0	4	3
		TOTAL		280	420	700	12	2	10	19

THIRD SEMESTER

SI.	Subject	Course Title	CAT CA	End Sem.	Total		Cr	edits		
No.	Code	Course Thie	CAI	Marks	Sem. Marks	Marks	L	Т	Р	С
		T	HEORY		-					
1	18MA302	Statistics and Numerical Methods	BS	40	60	100	3	1	0	4
2	18CY301	Biology for Engineers	BS	40	60	100	2	1	0	3
3	18ES205	Mechanics of Solids	ES	40	60	100	3	0	0	3
4	18CE301	Mechanics of Fluids	PC	40	60	100	3	0	0	3
5	18CE302	Surveying & Geomatics	PC	40	60	100	3	0	0	3
Theory	cum Practic	al			1					
6	18EN301	Effective Technical Communication	HS	50	50	100	2	0	2	3
		PR	ACTICA	L	I	Γ				
7	18CE303	Surveying Practical	PC	60	40	100	0	0	4	2
8	18CE304	Computer Aided Building Drawing	PC	60	40	100	0	0	4	2
		TOTAL		340	460	800	16	2	10	23
		FOURT	'H SEME	STER			1			
SI.	Subject Code	Course Title	САТ	CA	End Sem.	Total	Credits			
No.				Marks	Marks	Marks	L	Т	Р	С
		THEORY								
1	18CE401	Strength of Materials	PC	40	60	100	3	1	0	4
2	18CE402	Design of Steel Structural Elements	PC	40	60	100	3	0	0	3
3	18CE403	Engineering Geology	PC	40	60	100	2	0	0	2
4	18CE404	Water Supply Engineering	PC	40	60	100	3	0	0	3
5	18CE405	Applied Hydraulics and Fluid Machinery	PC	40	60	100	3	0	0	3
6	18CE406	Concrete Technology	PC	40	60	100	3	0	0	3
		PR	ACTICA	L						
7	18CE407	Material Testing & Evaluation Lab	PC	60	40	100	0	0	4	2
8	18CE408	Hydraulic EngineeringLaboratory	PC	60	40	100	0	0	4	2
Mand	latory courses	s (non-credit)								
9	18CEMC01	Disaster Preparedness & Planning	MC	-	-	-	2	-	-	-
		TOTAL		320	480	800	19	1	8	22

FIFTHSEMESTER

SI.	Subject Code	Subject Course Title	САТ	СА	End	Total		Cr	edits	dits	
No.	Code	course rule	CIT	Marks	Sem. Marks	Marks	L	Т	Р	С	
		ſ	THEORY			•					
1	18CE501	Basic Structural Analysis	PC	40	60	100	3	0	0	3	
2	18CE502	Mechanics of Soils	PC	40	60	100	3	0	0	3	
3	18CE503	Water Resources Engineering	PC	40	60	100	3	0	0	3	
4	18CE504	Design of Reinforced Concrete Elements	PC	40	60	100	3	0	0	3	
5	18CE505	Waste Water Engineering	PC	40	60	100	3	0	0	3	
6	18CE506	Transportation Engineering	PC	40	60	100	3	0	0	3	
7	18MCIN04	Idiation Sprits		100	-	100	2	0	2	1	
		PR	ACTICA	L		•					
8	18CE507	Geotechnical Laboratory	PC	60	40	100	0	0	4	2	
9	18CE508	Environmental Engineering laboratory	PC	60	40	100	0	0	4	2	
Manda	atory courses(non-credit)									
10	18CEMC02	India Constitution	MC	-	-	-	2	-	-	-	
		TOTAL		420	480	900	22	0	10	23	

SIXTH SEMESTER (REQULAR STREAM)

SI. No	Subject	ct Course Title	САТ	СА	End	Total	Credits				
No.	Code	Course Thie	CAI	Marks	Sem. Marks	Marks	L	Т	Р	С	
		T	HEORY								
1	18CEPExx	Professional Elective -I	PE	40	60	100	3	0	0	3	
2	18CEPExx	Professional Elective -II	PE	40	60	100	3	0	0	3	
3	18CEPExx	Professional Elective -III	PE	40	60	100	3	0	0	3	
4	18CEPExx	Professional Elective -IV	PE	40	60	100	3	0	0	3	
5	18CEPExx	Professional Elective -V	PE	40	60	100	3	0	0	3	
6	18CEOEXX	Open Elactive-I	OE	40	60	100	3	0	0	3	
7	18CEOEXX	Open Elactive-II	OE	40	60	100	3	0	0	3	
		TOTAL								21	

SI.	Subject	Course Title	САТ	СА	End	Total	otal C		Credits		
No.	Code	Course Thie	CAI	Marks	Sem. Marks	Marks	L	Т	Р	С	
		THEORY									
1	18MEPS11	Applied Design Thinking (Open Elective-I)	PE	100	-	100	3	0	0	3	
2	18MEPS12	Startup Fundamentals (Open Elective-II)	PE	100	-	100	3	0	0	3	
3	18MEPS13	Computational Hardware (Professional Elective-I)	PE	100	-	100	3	0	0	3	
4	18MEPS14	Coding for Innovators(Professional Elective-II)	OE	100	-	100	3	0	0	3	
5	18MEPS15	Industrial Design & Rapid Prototyping Techniques (Professional Elective-III)	OE	100	-	100	3	0	0	3	
6	18MEPS16	Industrial Automation/ Data Life Cycle Management (Professional Elective-IV)	OE	100	-	100	3	0	0	3	
7	18MEPS17	Robotics /ML& MLOps (Professional Elective-V)	EEC	100	-	100	3	0	0	3	
		TOTAL		700		700	21	0	0	21	
		SEVENTH	HSEME	ESTER							
					End		Credits				
SI. No.	Subject Code	Course Title	CAT	CA Marks	Sem.	Total Marks	т		D	C	
Sl. No.	Subject Code	Course Title	CAT	CA Marks	Sem. Marks	Total Marks	L	Т	P	С	
Sl. No.	Subject Code	Course Title T	CAT THEORY	CA Marks	Sem. Marks	Total Marks	L	Т	P	С	
Sl. No.	Subject Code 18CE601	Course Title T Advanced Structural Analysis	CAT HEORY PC	CA Marks 40	Sem. Marks	Total Marks	L 3	СГ Т 0	P 0	C 3	
Sl. No. 1 2	Subject Code 18CE601 18CE602	Course Title T Advanced Structural Analysis Foundation Engineering	CAT THEORY PC PC	CA Marks 40 40	Sem. Marks 60 60	Total Marks	L 3 3	СГ Т 0 0	P 0 0	C 3 3	
Sl. No.	Subject Code 18CE601 18CE602 18CE603	Course Title T Advanced Structural Analysis Foundation Engineering Engineering Economics, Estimation and Costing	CAT HEORY PC PC PC	CA Marks 40 40 40	Sem. Marks 60 60 60 60	Total Marks 100 100 100	L 3 3 3	T 0 0 0 0	P 0 0 0 0	C 3 3 3	
Sl. No.	Subject Code 18CE601 18CE602 18CE603 18CE604	Course Title T Advanced Structural Analysis Foundation Engineering Engineering Economics, Estimation and Costing Professional Practices, Ethics and Building by-laws	CAT PHEORY PC PC PC HS	CA Marks 40 40 40 40	Sem. Marks 60 60 60 60 60 60	Total Marks 100 100 100 100 100	L 3 3 3 2	T 0 0 0 0 0 0	P 0 0 0 0 0 0 0	C 3 3 3 2	
SI. No. 1 2 3 4	Subject Code 18CE601 18CE602 18CE603 18CE604	Course Title T Advanced Structural Analysis Foundation Engineering Engineering Economics, Estimation and Costing Professional Practices, Ethics and Building by-laws PR	CAT HEORY PC PC PC HS ACTICA	CA Marks 40 40 40 40 L	Sem. Marks 60 60 60 60 60 60	Total Marks 100 100 100 100 100	L 3 3 3 2	T 0 0 0 0 0	P 0 0 0 0 0 0	C 3 3 3 2	
SI. No.	Subject Code 18CE601 18CE602 18CE603 18CE604 18CE702	Course Title T Advanced Structural Analysis Foundation Engineering Engineering Economics, Estimation and Costing Professional Practices, Ethics and Building by-laws PR Design project	CAT PEORY PC PC HS ACTICA EE C	CA Marks 40 40 40 40 L 60	Sem. Marks 60 60 60 60 60 40	Total Marks 100 100 100 100 100 100	L 3 3 3 2 0	T 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 12	C 3 3 3 2 4	
Sl. No. 1 2 3 4 5 6	Subject Code 18CE601 18CE602 18CE603 18CE604 18CE702 18CE605	Course Title T Course Title Course Laboratory Course Title Course Cours	CAT PC PC PC HS ACTICA EE C PC	CA Marks 40 40 40 40 L 60 60	Sem. Marks 60 60 60 60 60 40 40	Total Marks 100 100 100 100 100 100 100	L 3 3 3 2 0 0	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 12 4	C 3 3 3 2 4 2	
SI. No. 1 2 3 4 5 6 7	Subject Code 18CE601 18CE602 18CE603 18CE604 18CE702 18CE605 18CE606	Course Title T Advanced Structural Analysis Foundation Engineering Engineering Economics, Estimation and Costing Professional Practices, Ethics and Building by-laws PR Design project Concrete Laboratory Computer Aided Design and Drawing (Concrete & Steel)	CAT HEORY PC PC PC HS ACTICA EE C PC PC	CA Marks 40 40 40 40 40 L 60 60 60	Sem. Marks 60 60 60 60 60 40 40 40	Total Marks 100 100 100 100 100 100 100 100 100 100	L 3 3 3 2 0 0 0 0	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 0 0 0 0 12 4 4	C 3 3 2 4 2 2	
SI. No. 1 2 3 4 5 6 7 8	Subject Code 18CE601 18CE602 18CE603 18CE604 18CE702 18CE605 18CE606 18CE701	Course Title Course Title Advanced Structural Analysis Foundation Engineering Engineering Economics, Estimation and Costing Professional Practices, Ethics and Building by-laws PR Design project Concrete Laboratory Computer Aided Design and Drawing (Concrete & Steel) Internship/Industrial training/Academic attachment	CAT PC PC PC PC HS ACTICA EE C PC PC	CA Marks 40 40 40 40 40 L 60 60 60 60	Sem. Marks 60 60 60 60 60 60 40 40 40 40 40 40	Total Marks 100 100 100 100 100 100 100 100 100 100 100 100	L 3 3 3 2 0 0 0 0 0	T 0	P 0 0 0 0 0 12 4 4 4	C 3 3 2 4 2 2 2 2	

SIXTH SEMESTER (PROTOSEM STREAM)

EIGHTH SEMESTER

SI. No	Subject	Course Title	САТ	СА	End Sem. Morks		Credits					
No.	Code	course mite		Marks	Sem. Marks	Marks	L	Т	Р	С		
		THEORY										
1	18CE801	Construction Management	PC	40	60	100	3	0	0	3		
2	18CEPExx	Professional Elective - VI	PE	40	60	100	3	0	0	3		
		PRACTICAL										
3	18CE802	Project Work	EEC	80	120	200	0	0	10	5		
		TOTAL		160	240	400	6	0	10	11		

Civil Engineering Scheme of Instruction

Course component	Credits	Curriculum Content (% of total number of credits of the programme)
Humanities and Social Sciences	9	5.63
Engineering Sciences	19	11.9
Basic Sciences	26	16.25
Professional Core	70	43.75
Professional Elective	18	11.25
Open Elective	06	3.75
Empl.Enhancement Courses	12	7.5
Mandatory Course (Zero Credit)	0	0
Total	160	100

HS = Humanities and Social Sciences

BS = Basic Sciences

ES = Engineering Sciences

PC = Professional Core

PE = Professional Elective

OE = Open Electives

EEC = Employability Enhancement Courses

LIST OF ELECTIVES FOR B.E. CIVIL ENGINEERING

SI.	Subject	oject Course Title	САТ	Г CA Marks	End	Total		Cr	edits	
No.	Code	course mile	UIII	Marks	Sem. Marks	Marks	L	Т	Р	С
Trans	sportation Eng	gineering								
1	18CEPE01	Traffic Engineering	PE	40	60	100	3	0	0	3
2	18CEPE02	Airports, Docks and Harbors Engineering	PE	40	60	100	3	0	0	3
3	18CEPE03	Integrated Traffic Planning and Management	PE	40	60	100	3	0	0	3
Construction Engineering and Management										
4	18CEPE04	Smart Materials and Smart Structures	PE	40	60	100	3	0	0	3
5	18CEPE05	Construction Techniques and Equipments	PE	40	60	100	3	0	0	3
6	18CEPE06	Project Safety Management	PE	40	60	100	3	0	0	3
7	18CEPE07	Repair and Rehabilitation of Structures	PE	40	60	100	3	0	0	3
Environmental Engineering										
8	18CEPE08	Industrial Waste Management	PE	40	60	100	3	0	0	3
9	18CEPE09	Hazardous WasteManagement	PE	40	60	100	3	0	0	3
10	18CEPE10	Air Pollution Monitoring and Control	PE	40	60	100	3	0	0	3
11	18CEPE11	Municipal Solid Waste Management	PE	40	60	100	3	0	0	3
12	18CEPE12	Marine Pollution Monitoring and Control	PE	40	60	100	3	0	0	3
13	18CEPE13	Environmental Impact Assessment	PE	40	60	100	3	0	0	3
Hydr	aulics									
14	18CEPE14	Open Channel Flow	PE	40	60	100	3	0	0	3
15	18CEPE15	River Engineering	PE	40	60	100	3	0	0	3
16	18CEPE16	Groundwater Engineering	PE	40	60	100	3	0	0	3
Hydr	ology & Wate	r Resources Engineering								
17	18CEPE17	Irrigation Engineering	PE	40	60	100	3	0	0	3

18	18CEPE18	Water Shed Management	PE	40	60	100	3	0	0	3
19	18CEPE19	Hydrology	PE	40	60	100	3	0	0	3
Struc	tural Enginee	ring						•		
20	18CEPE20	Design of Bridges	PE	40	60	100	3	0	0	3
21	18CEPE21	Modern Structural Analysis	PE	40	60	100	3	0	0	3
22	18CEPE22	Storage Structures	PE	40	60	100	3	0	0	3
23	18CEPE23	Pre stressed Concrete Structures	PE	40	60	100	3	0	0	3
24	18CEPE24	Advanced Steel Structures	PE	40	60	100	3	0	0	3
25	18CEPE25	Tall Buildings	PE	40	60	100	3	0	0	3
26	18CEPE26	Prefabricated Structures	PE	40	60	100	3	0	0	3
27	18CEPE27	Design of CompositeStructures	PE	40	60	100	3	0	0	3
28	18CEPE28	Coastal Structures	PE	40	60	100	3	0	0	3
29	18CEPE29	Dynamics and Earthquake Resistant Design of Structures	PE	40	60	100	3	0	0	3
30	18CEPE30	Industrial Structures	PE	40	60	100	3	0	0	3
31	18CEPE31	Ferrocement Technology	PE	40	60	100	3	0	0	3
32	18CEPE32	Finite Elements Analysis	PE	40	60	100	3	0	0	3
33	18CEPE33	Experimental Techniques and Instrumentation	PE	40	60	100	3	0	0	3
34	18CEPE34	Ground Improvement Techniques	PE	40	60	100	3	0	0	3
Geoteo	chnical Engine	eering								
35	18CEPE35	Introduction to Soil Dynamics and Machine Foundation	PE	40	60	100	3	0	0	3
36	18CEPE36	Soil Structure Interaction	PE	40	60	100	3	0	0	3
37	18CEPE37	Subsurface Investigation and Instrumentation	PE	40	60	100	3	0	0	3
38	18CEPE38	Fundamentals of Remote Sensing and GIS	PE	40	60	100	3	0	0	3
39	18CEPE39	Advanced Surveying Techniques	PE	40	60	100	3	0	0	3

Open Electives (OE)

SI.	Subject	Course Title	САТ	СА	End Sem.	End Sem.	End Sem. T	End Sem.	Total		Cr	edits	
No.	Code		CAL	Marks	Marks	Marks	L	Т	Р	С			
1	18CEOE01	Environmental Management	OE	40	60	100	3	0	0	3			
2	18CEOE02	Disaster Mitigation and Management	OE	40	60	100	3	0	0	3			
3	18CEOE03	Repair and Rehabilitation of Building Elements	OE	40	60	100	3	0	0	3			
4	18CEOE04	Mechanics of Deformable bodies	OE	40	60	100	3	0	0	3			

Mandatory Courses (MC)

SI.	Subject	Course Title	САТ	CAT CA	End	Total	Credits				
No.	Code			Marks	Marks	Marks	L	Т	Р	С	
1	18CEMC01	Induction Program	MC	-	-	-	0	0	0	0	
2	18CEMC02	Disaster Preparedness & Planning	MC	-	-	-	2	0	0	0	
3	18MC301	Indian Constitution	MC	_	_	_	2	0	0	0	

18M	18MA101 MATRICES AND CALCULUS L			Т	Р	С				
			3	1	0	4				
Cours	se Obje	ctives:								
1.	1. To know the use of matrix algebra needed by engineers for practical applications.									
2	To uno	derstand effectively the geometrical application of differential calculus and Beta,								
2.	Gamm	a functions								
3.	To fan	niliarize with partial differentiation concepts and its applications								
4.	To obt	ain the knowledge of multiple integration and their related applications								
5.	To acc	uire the knowledge of vector differentiation and integration and its applications								
UNII		ATRICES		9	+	3				
Symn	netric,	Skew Symmetric and Orthogonal Matrices – Characteristic equation of a Matrix –	Eiger	n val	lues	and				
Eigen	vector	s - Properties - Cayley-Hamilton theorem (excluding proof) - Diagonalization of Mat	rices	-Re	duct	ion				
of qua	adratic	form to canonical form by orthogonal transformation								
UNI	Г II С	ALCULUS		9	+	3				
Curva	ature , I	Radius of Curvature (Cartesian coordinates) — Centre and Circle of curvature - Evolut	es ar	ıdInv	olut	es-				
Defin	ite integ	trais and their properties – Beta and Gamma functions and their properties.								
UNIT		MULTIVARIABLE CALCULUS (DIFFERENTIATION)		9	+	3				
Dentia	1 4-1-1-1	time Euler's the same for home services for stings. Total Device time. Looking,	Mani		M::					
and S	addle p	oint- – Method of Lagrangian multipliers- Taylor's series.	viax	ima,	VIIII	ша				
	1									
UNIT		MULTIVARIABLE CALCULUS (INTEGRATION)		9	+	3				
Multi	nle inte	grals- Double integrals – Change of order of integration in double integrals – Change of y	varial	oles((Carte	esian				
to Pol	ar) - A	pplication to Areas – Evaluation of Triple integrals – Application to volumes	unu	105(curk	Jorun				
UNII		ECTOR CALCULUS		9	+	3				
Vecto	or diffe	rentiation- Gradient- Directional derivative - Divergence - Curl . Vector i	nteg	ratio	n- L	ine				
integr	ation-	work done — Surface and Volume integrals - Green's theorem, Gauss divergence and	d Sto	kes	theor	rem				
(with	out proc	of) – Simple applications involving cubes and rectangular parallelepipeds.								
		Total (I	.+T):	= 60	Peri	ods				
			.,							

Cou	rse O	utcomes:							
**									
Upor	Upon completion of this course, the students will be able to:								
CO1	:	Learn the fundamental knowledge of Matrix theory							
CO2	:	Familiar with the concept of the differentiation and integration and its applications							
CO3	:	Acquire skills in applications of Integral and Vector Calculus							
Text	Boo	ks:							
1.	Gre	wal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publications, Delhi, (2015).							
2.	2. Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Education Pvt. Ltd., New Delhi,2009								
Refe	renc	e Books:							
1.	Jam	es Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2 nd edition, 2013							
2.	P. K Edit	Candasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (For I year B.E., B.Tech)", Nineth ion, S. Chand & Co. Ltd. New Delhi, 2010							
3.	Srin 201	nanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford university publications, NewDelhi, 5							
4.	Ewi	nkreyzig, "Advanced Engineering Mathematics", 9 th edition, John Wiley & Sons, 2006							
5.	Siva 201	aramakrishnadas.P, Ruknmangadachari.E. "Engineering Mathematics", Pearson, Chennai & Delhi,2 nd edition, 3							

18EE101		BASIC ELECTRICAL AND ELECTRONICSENGINEERING	L	Т	Р	С
		(Common to Civil and Commuter Science and Engineering)	2	1	0	4
		(Common to Civil and Computer Science and Engineering)	3	1	U	4
Cours	e Obje	actives:				
1.	To un	derstand and analyze basic electric circuits				
2.	To stu	dy working principle of Electrical machines and transforms.				
3. 4	To stu To un	dy basics of Electronics System				
4.	10 un					
LINIT	ID			0		3
UNII				,	т	3
Electr series thever	ical cir and pa nin's ar	cuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff current a rallel circuits, analysis of simple electrical circuits with DC excitation, Simple problems d Norton's theorem, Star — Delta transformation.	nd v s. Su	oltag	ge la ositio	ws, on,
UNIT	TII A	C CIRCUITS		9	+	3
Introd repres relatio	uction entatio	to single phase AC circuits, Representation of sinusoidal waveforms, peak and RMS n, real power, reactive power, apparent power, power factor. Three phase AC circuits, vo ar and delta connections.	S va ltage	lues, and	pha curi	isor rent
UNIT	TTT	ELECTDICAL MACHINES AND TRANSFORMEDS	[0		3
UNII	111	ELECTRICAL MACHINES AND TRANSFORMERS		,	т	3
Constr a thre transfo	ruction e-phas ormer,	operation, types, Speed control of Shunt motor and applications of DC Motor, Construction e induction motors. Working of single-phase induction motor and its applications. Ide Construction and working, losses and efficiency in transformers, Introduction to Three phase	n and eal a e tra	d wo ind j nsfoi	rking pract rmer	g of ical s.
UNIT	IV	BASICS ELECTRONICS SYSTEM		9	+	3
Introd CE, C Applic	uction CB, CO cations	- Basic structure of semiconductors devices- PN junction diode, Zener diode and V-I chara C configuration and working principle .Operational Amplifier-principle of operation Inverting Amplifier, Non inverting Amplifier, summing amplifier and differential amplifier.	cteri ,Cha :.	stics racte	- BJ ristic	Γ— cs ,
Unit	E	LECTRICAL INSTALLATIONS		9	+	3
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthling, Basics of house wiring tools and components, types of house wiring. Batteries-Principle characteristics-Types and its applications- Introduction to UPS and SMPS.						
		Total (L	,+T):	= 60	Peri	ods

Cou	rse O	utcomes:				
Upon completion of this course, the students will be able to:						
CO1	:	Analyse the simple DC circuits.				
CO2	:	Analyse the single and three phase AC circuits.				
CO3	:	Understand the working principle of Electrical machines and transformers.				
CO4	:	Analyse the fundamentals and characteristics of Diode, BJT and OPAMP.				
CO5	:	Understand the concept of Electrical Installations.				
Text	Boo	ks:				
1.	R.M Edit	Iuthu Subramaniyam, R. Salivaganan and K. A Muralidharan , "Basic Electrical and ElectronicsSecond ion Engineering", Tata McGraw Hill, 2010.				
2.	D. I	P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.				
3.	D.C	Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2009.				
Refe	renc	e Books:				
1.	L. :	S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University Press, 2011.				
2.	E. 1	Hughes, "Electrical and Electronics Technology", Pearson, 2010.				

18N	IE101	ENGINEERING GRAPHICS & DESIGN	L	Т	Р	С			
			1	0	4	3			
Cours	Course Objectives:								
1.	1. To impart knowledge on concepts, ideas and design of engineering products and to provide anexposure to CAD Modelling.								
2.	2. Standards of Engineering Drawing: Size, layout and folding of drawing sheets, lettering - Use of drafting instruments								
UNIT I PROJECTION OF POINTS, LINES AND PLANE SURFACES 9					+	3			
Gener lines surfac	ral prin located ce and o	ciples of orthographic projection- Projection of points, located in all quadrants — Projection in first quadrant — Determination of true lengths and true inclinations — Projectic circular lamina inclined to both reference planes.	on o	n of f po	strai lygo	ght nal			
UNI	Г II Р	ROJECTION OF SOLIDS		9	+	3			
Projec plane	ction of and als	f simple solids like prisms, pyramids, cylinder and cone when the axis is perpendicular o inclined to one reference plane by change of position method.	to oi	neref	eren	ce			
				-					
UNIT		SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES		9	+	3			
Section to oth	oning of er — so	f above solids in simple vertical position by cutting planes inclined to one reference plane a blids inclined position with cutting planes parallel to one reference plane- Obtaining true sha	ind p ipe o	erpe f sec	ndict tion.	ılar			
Devel Devel	lopmen opmen	t of lateral surfaces of simple and truncated solids — Prisms, pyramids cylind t of lateral surfaces of solids with square and cylindrical cutouts, perpendicular to the axis.	lers	and	con	es-			
UNIT		ISOMETRIC PROJECTION		9	+	3			
Princi cylind	ples of lers and	isometric projection –isometric scale - isometric projections of simple solids, truncated l cones.	prisr	ns,py	/ram	ids,			
UNIT	V P	ERSPECTIVE PROJECTION		9	+	3			
Perspe	ective p	projection of prisms, pyramids and cylinders by visual ray and vanishing point methods.							
		Total (I	<u>,+</u> T)-	- 60	Pori	ode			
		T Otar (L	·· 1)·	- 00	1 (11	Jub			

Note: Study of drafting software – Auto CAD – Coordinate System (Absolute, relative and polar) Creation of simple figures like polygon, Drawing a plan of residential building, Creation of 3-D Models of simple objects and obtaining 2-D multi view drawing from 3-D model. (**Internal Assessment only**)

Cou	Course Outcomes:							
Upor	1 con	pletion of this course, the students will be able to:						
CO1	:	Understand the conventions and the methods of engineering drawing.						
CO2	:	Understand the fundamental concepts of theory of projection.						
CO3	:	Understand the development of different surfaces.						
CO4	:	Develop the relationships between 2D and 3D environments.						
CO5	:	Demonstrate computer aided drafting.						
Text	Boo	ks:						
1.	Bha	tt N.D, "Engineering Drawing", Charotar publishing House, 2003						
2.	Nata	arajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 2006.						
Refe	renc	e Books:						
1.	Gop	balakrishnana K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1999.						
2.	Dha Con	nanjay A. Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw HillPublishing npany Limited, 2008.						
3.	Ven	ugopal, K and Prabhu Raja, V., "Engineering Graphics", New Age International (P) Ltd, 2008.						
4.	Gill	, P.S, "Engineering Drawing-Geometrical Drawing", S.K Kataria and Sons, 2008.						
5.	CA	D Software Theory and User Manuals						

1	8PH103	PHYSICS LABORATORY	L	Т	Р	С				
		(Common to All Branches of Engineering)	0	0	3	1. 5				
Cour	Course Objectives:									
1.	To hand	le different measuring instruments.								
2.	To unde paramet	erstand the basic concepts of interference, diffraction, heat conduction and to measurers.	ire th	neim	porta	nt				
EXP	ERIMEN	TS								
(Any	EIGHT	Experiments)								
1.	Newton	's rings – Determination of radius of curvature of a Plano convex lens.								
2.	Carey F	oster's bridge – Determination of specific resistance of the material of the wire								
3.	Poiseuil	le's flow – Determination of Coefficient of viscosity of a liquid								
4.	Spectron	meter – Grating – Normal incidence – Determination of Wavelength of Mercury lines.								
5.	Lee's di	sc – Determination of thermal conductivity of a Bad conductor.								
6.	Ultrasor	nic interferometer – Determination of velocity of Ultrasonic Waves in Liquid								
7.	Non-uni	form bending – Determination of young's modulus of the material of the Bar								
8.	Determi	nation of Band gap of a given semi conductor								
9.	Determi	nation of Wavelength of laser using grating and determination of particle size using Laser								
10.	Determi	nation of Acceptance angle and Numerical Aperture of fiber								
		Tota	l (P):	= 45	Per	iods				
Cour	se Outcor	mes:								
After	the succe	ssful completion of the practical session, the students will be able to								
CO1	: Har	adle different measuring instruments and to measure different parameters								
CO2	Calor Calor	culate the important parameters and to arrive at the final result based on the experi- asurements	imen	tal						

18CY102		CHEMISTRY LABORATORY	L	Т	Р	С					
(Con	mon to all branches of Engineering For student admitted from 2018-2019 andonwards)	0	0	3	1.5					
Cours	Course Objectives:										
1.	1. To gain practical knowledge by applying theoretical principles and performing the following experiments										
EXPE	RI	MENTS									
1.	Est	imation of hardness of Water by EDTA									
2.	Est	imation of Copper in brass by EDTA									
3.	Est	imation of Alkalinity in water									
4.	Est	imation of Chloride in water sample (Iodimetry)									
5	Co	nductometric titration of Strong Acid and Strong Base									
6.	Co	nductometric titration of Mixture of acids and Strong base									
7.	Det	ermination of strength of Iron by Potentiometric method									
8.	Est	imation of Iron by Spectrophotometry									
9.	Det	ermination of molecular weight and degree of Polymerisation by Viscometry.									
	NO	TE: All the nine experiments shall be offered.									
I		Tot	al (P))= 4	5 Pe	riods					
Cours	se O	utcomes:									
After	the s	uccessful completion of the practical session, the students will be able to									
CO1	:	To know the applicability of the practical skill gained in various fields.									
CO2	:	To know the composition of brass quantitatively and the molecular weight of polymers.									
CO3	:	To understand the principle and applications of conductometric titrations, spectrome	ter a	and							
		potentiometric titrations.									

18EE102		2 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY	L	Т	Р	С			
	0 0 2								
Cours	Course Objectives:								
1.	То	impart hands on experience in use of measuring instruments, testing in transformers, and house	ewiri	ng p	racti	ces			
EXPI	ERI	MENTS							
1.	Ve	ification of Kirchhoff's laws.							
2.	Ve	ification of Superposition theorem.							
3.	Me	asurement of three-phase power in three-phase circuits							
4.	De	ermination losses in single phase Transformer							
5	Der pha	nonstration of cut-out sections of machines: induction machine (squirrel cage rotor), and single se induction motor	<u>}-</u>						
6.	Spe	ed control of DC shunt motor							
7.	Stu cor	dy of basic safety precautions, measuring instruments – voltmeter, ammeter, multi-meter, and nponents.	Elec	trica	1				
8.	VI	Characteristics of PN Junction diode.							
9.	Ho	use wiring							
10.	Wi	ing for Fluorescent lamp.							
		Total	(D) -	- 30	Dori	ode			
Com		10141	(1)-	. 50		ous			
Cours	se U	aucomes:							
After	the s	uccessful completion of the practical session, the students will be able to							
CO1	:	Get an exposure to DC and AC circuits.							
CO2	:	Understand the loading characteristics of transformers							
CO3	:	Know the parts of single-phase and three phase induction motors.							
CO4	:	Get an exposure Electron devices							
CO5	:	Make electrical connections by wires of appropriate ratings.							

18	BEN	103	PROFESSIONAL COMMUNICATION LABORATORY	L	Т	Р	С
			(Common to All Branches)	0	0	2	1
Cour	se O	bjective	s:				
1.	Im	prove the	eir reading skills.				
2	1						
2.	Ad	dress an	audience and present a topic.				
3.	Ace	quire spe	eaking competency in English.				
4.	Stre	engthen	their fluency in speaking				
EXPI	ERIN	MENTS					
	Me	thodolo	gy – Reading				
	1)]	Reading	a story aloud with exact pronunciation, with intonation, and with expressing sense.				
	2)]	Reading	poems for improving verbal skills, memory, and critical thinking.				
	3)]	Reading	newspaper articles for strengthening the vocabulary and writing skills.				
	4)]	Reading	homophones with exact pronunciation for expressing different meanings				
	Me	thodolo	gy – Speaking				
	1)]	Power po	point presentation – on general topics - for organising and structuring presentation.				
	2) (Oral pres	sentation -on basic technical ideas related to engineering.				
	3) :	Speaking	g on a given topic – current affairs, expressing opinion on social issues.				
	4)]	Describi	ng a process – booking Ticket online, survey for starting a new office, sending an e-m	ail, e	tc.		
	5) (Organisi	ng official events -compering, presenting welcome address, proposing vote of thanks				
			Total	(P)=	: 30	Peri	ods
Cour	se O	utcomes					
After	the s	successfu	al completion of the practical session, the students will be able to				
CO1	:	read sh pairs	ort passages fluently, avoiding mispronunciation, substitution, omission and transposi	tion	ofwo	ord-	
CO2	:	vocaliz	e words without the aid of pictures.				
CO3	:	develoj	p a well-paced, expressive style of reading.				
CO4	:	make e	ffective oral presentations on technical and general contexts				
CO5	:	describ	e a process with coherence and cohesion.				

Text	t Books:
1.	Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book, Cambridge University Press, 2014
Reco	ommended Reading and Reference Sources:
1.	Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija
2.	English Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh
3.	Discussions that Work. Penny Ur.CUP, 1981
4.	http://www.onestopenglish.com/skills/speaking/speaking-matters/
5.	Speak Better Write Better English Paperback – November 2012 Norman Lewis, Goyal Publishers andDistributors

100					a
186	PROFESSIONAL ENGLISH		T	P	C
		2	0	0	2
Course	Objectives:				
1.	Master basic reading skills such as phonics, word recognition and meaningful division of sente	ences.			
2.	Read fast, decode accurately and remove oral reading errors that affect text meaning				
3.	3. Acquire and develop writing skills for academic, social and professional purposes				
4.	Gain skills in academic and functional writing tasks.				
I					
WRITI	NG				
1.	Word Formation with Prefix and Suffix, Synonyms and Antonyms, Tenses, Parts of Speech, English (Subject –Verb Agreement, Noun-Pronoun Agreement, Prepositions, Articles, Con Redundancies, Clichés etc), Voices	Com dition	mon al sta	Erron	s in ents,
2.	Email — Training Programme and related details, paper submission for seminars and con appointment, Arranging and Cancelling a meeting with team members, conference details, ho Reminder mails, Raising queries with team members, Congratulatory mails at work, arran with a foreign client, personal emails.	ferenc tel acc nging	es, F comn for a	Fixing nodat mee	g an ion, ting
3.	Letter Writing – Business and need based communication – Formats of official, personal a official leave and request applications (Bonafide certificate, course completion, c permission to arrange industrial visits) complaints, replies to queries from business dignitaries, accepting and declining invitations, placing orders, cover letter for a job application	nd bu onduc custoi on wi	sines et ce ners, th res	s lett rtific invi sume	ers, ate, ting
4.	Technical Report Writing — status reports — Work Done in the Project, Feasibility Accommodation, Introduction of New Products, Sales Promotion, Customers Feedbac Company, Event Reports- Seminars, Conferences, Meeting, Recommendations and Checklists	Repor k, Sta s.	rts or arting	n Of gal	fice New
5.	Charts- interpreting pie charts, graphs etc.,				
READI	NG				
1.	Understanding notices, messages, timetables, adverts, graphs, etc understanding	ng me	aning	g and	l
2	purpose of short texts.				
Ζ.	Gapped sentences – Meanings, collocations and meanings of individual words.				

- 3. Reading passage with multiple choice questions reading for gist and reading for specific information skimming for general idea of and meaning and contents of the whole text.
- 4. Short reading passage; gap-filling Grammar, especially prepositions, articles, auxiliary verbs, modalverbs, pronouns, relative pronouns and adverbs.
- 5. Short reading passages; sentence matching Scanning ability to pick out specific information in ashort text.

180	CY101	CHEMISTRY	L	Т	Р	С
			3	1	0	4
Cour	se Obje	ctives:				
1.	Analy	ze microscopic chemistry in terms of atomic and molecular orbitals.				
2.	Ratior	alize periodic properties of elements and the knowledge of acids and bases.				
3.	3. Analyze the stereo chemical aspects of organic molecules and chemical reactions that are used in the synthesis of organic molecules					
4	Ratior	alize bulk properties and processes in thermodynamic aspects and its extension in				
т.	electro	ochemical processes				
5.	Distin levels	guish the ranges of the electromagnetic spectrum used for exciting different molecular energ in various spectroscopic techniques	,у			
UNIT	I M	DLECULAR STRUCTURE		9	+	3
Form moleo	ation of cular or	$^{\circ}$ molecular orbitals of diatomic molecules - energy level diagrams of $-$ H ₂ , He ₂ , N ₂ , O ₂ , bitals of butadiene and benzene;	CO a	undN	IO - j	pi-
Arom	aticity-	Huckel rule - concept of aromaticity - aromatic, non-aromatic and anti-aromatic molecules;				
Crysta prope	Crystal field theory - energy level diagrams for transition metal ions – octahedral and tetrahedral geometries -magnetic properties;					
Band	theory -	band structure of solids- Fermi level - role of doping on band structures.				
UNI	F II P	ERIODIC PROPERTIES AND ACID-BASE CONCEPTS		9	+	3
Effect Aufba energ relatio	tive nuc au prin y, elec onship;	lear charge – shielding effect, penetration of orbitals - variations of s, p, d and f orbital enciple - electronic configuration of elements — periodic properties - atomic and ionic tron affinity and electro negativity - anomalous properties of second period elements	ergie size nents	s of e, io s - c	aton nizat liago	ıs – tion onal
Acids soluti	s and b ons – ty	bases - Bronsted-Lowry concept - Lewis concept - pH and pKa – problems – pes- mechanism of buffer action- Henderson–Hasselbalch equation- derivation and problem	HSA ns.	АВ -	- bu	ffer
UNIT		STEREOCHEMISTRY AND ORGANIC REACTIONS		9	+	3
Stereo chira confo	oisome lity, o ormatio	rism – geometrical isomerism – cis-trans and E-Z nomenclature – optical isomeris ptical activity, enantiomer and diastereomers – absolute configuration - I nal analysis – Ethane, butane, cyclohexane;	sm – R-S	- syı not	mme atior	try, 1 -
Addi hydra	tion r ation,hy	eaction — hydrogenation, halogenations - Markovnikov rule — Khar /drohalogenation, hydroboration;	asch	i et	ffect	-
Aliph benze	atic nu ene– me	cleophilic substitution reaction $-SN_1$, SN_2 and SN_i mechanism – electrophilic substite chanism - nitration, halogenations, sulfonation, alkylation and acylation;	utior	n rea	action	n in
Elimi	nation r	eaction $-E_1$, E_2 and E_1CB - mechanism- Saytzeff rule – examples.				

UNIT IV	USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA	9	+	3

Thermodynamic functions- internal energy, enthalpy, entropy and free energy- first and second law of thermodynamics - partial molar properties - Gibbs Duhem equation — variation of chemical potential with temperature and pressure – Third and Zeroth law of thermodynamics – definition only;

Free energy and EMF relation - single electrode potential - electrochemical series and its significance.- cell potential and its measurement (Poggendorff method only) - Nernst equation-derivation and problems- Standard cell potential and equilibrium constant relation- problems.

UNIT V	SPECTROSCOPY TECHNIQUES AND APPLICATIONS	9	+	3
			.	

Vibrational spectroscopy — principle - selection rule - harmonic and unharmonic oscillators -number of vibrational modes of poly-atomic molecules – overtones - Fermi resonance - instrumentation (block diagramonly);

Rotational spectroscopy- rotational spectra of rigid and non rigid diatomic rotators, simple polyatomic molecules like CO₂, NH₃,CH₄ and H₂O;

NMR - origin of NMR signal - chemical shift - factors affecting chemical shift and spin-spin coupling — application to ethanol, acetone and ethyl methyl ether.

Total (L+P)= 60 Periods

Cours	urse Outcomes:				
Upon	cor	npletion of this course, the students will be able to:			
CO1	:	Understand in-depth knowledge of atomic and molecular orbitals based chemical aspects.			
CO2	:	Realize the nature of periodic properties of elements and the knowledge of acids and bases			
CO3	:	Grasp the knowledge of 3D structural aspects of organic molecules and chemical reactions that areused in the synthesis of organic molecules.			
CO4	:	Substantiate the various processes involved in thermodynamic considerations and its involvement in electrochemical aspects			
CO5	:	Aware of spectroscopic techniques in the field of molecular identification of materials			
Text l	300	ks:			
1.	P.R Jala	. Puri, L.R.Sharma and Madan S. Pathania, "Principle of physical chemistry" 47 th Vishal PublishingCo, ndhar-8			
2.	C. I Cor	N. Banwell and E. M. Mccash, "Fundamentals of Molecular Spectroscopy", Tata McGraw-HillPublishing npany Limited, New Delhi, 2009.			
3.	Raj Put	. K. Bansal – "A Text Book of Organic Chemistry" Revised 4th Ed.,(2005), New Age International lishers Ltd., New Delhi.			
4.	P.S Put	. Kalsi — "Stereochemistry conformation and Mechanism", 6th Ed., (2005), New Age International lishers Ltd., New Delhi.			

5.	J.D. Lee – "A New Concise Inorganic Chemistry", 5th Edn., Oxford University Press, 2011.
6.	Wahid Malik, G.D.Tuli and R.D.Madan, "Selected Topic in Inorganic Chemistry", S.Chand& Co., Ltd(2011).
Refe	rence Books:
1.	David.W.Ball, Physical Chemistry, Cengage Learning India Pvt. Ltd., New Delhi, 2009
2.	G.Aruldhas, Molecular structure and spectroscopy, second edition, PHI learning Pvt. Ltd., New Delhi,2008
3.	Cotton and Wilkinson – "Advanced Inorganic Chemistry", 6th Ed., John Wiley & Sons, New York- 2004
4.	James E. Huheey, Ellen A. Keiter and Richard L. Keiter – "Inorganic Chemistry-Principles of Structureand Reactivity", 4 thEdn., Pearson Education, 11 th Impression, 2011.
5.	F.A. Carey and R.J. Sund berg – "Advanced organic chemistry" Vol. I and II– 3rd Ed.,(1984), Plenum Publications
6.	Ernest. Eliel and Samuel H. Wilen — "Stereochemistry of Organic Compounds" — Wiley Student Ed.,(2006). John Wiley and Sons Pvt. Ltd., Singapore.

18CS1	.01	FUNDAMENTALS OF PROBLEM SOLVING AND C PROGRAMMING	L	Т	Р	С
			3	0	0	3
Course	Objectiv	ves:				
1.	To expr	ess problem solving through programming				
2.	To pract	tice the basic concepts of C programming language.				
3.	To prov	ide the basics knowledge about array and strings to solve simple applications.				
4.	To use p	pointers and functions in the simple applications.				
5.	To revie	ew the elementary knowledge of structures and unions.				
UNIT I	INT	RODUCTION TO COMPUTER AND PROBLEM SOLVING		9	+	0
Problem Flow Ch Compute	formula hart - Ne er.	ation, Problem Solving methods, Need for logical analysis and thinking – Algorithm eed for computer languages, Generation and Classification of Computers - Basic C	– Ps)rgar	eudo nizat	ion c	e — of a
UNIT	I C P	ROGRAMMING BASICS AND CONTROL STATEMENTS		9	+	0
C Chara Operato operator Looping	cter set- rs – A s – Co g statem	arithmetic Operators – Unary operators – Relational and Logical Operators nditional operators- Managing Input and Output operations- Decision Making-	Bra	c co Assi nchi	ignm igng a	nts- ient and
UNIT II	I Al	RRAYS AND STRINGS		9	+	0
Pre-proc dimensio	essor d onal arra	irectives-Storage classes-Arrays – Initialization – Declaration – one dimensional a ys. Strings - String operations – String handling functions-Simple programs-sorting-sear	nd ty chin	wo g.		
UNIT IV	/ FU	UNCTIONS AND POINTERS		9	+	0
Functior value – arrays.	n – Libr Call by	rary functions and user-defined functions – Function prototypes and function definereference – Recursion – Pointers - Definition – Initialization – Pointers arithmetic	nitio c –	ns – Poin	Cal ters a	l by and
UNIT V	ST	RUCTURES, UNIONS AND FILE		9	+	0
Introduc structure	tion – e – Passi	need for structure data type – structure definition – Structure declaration – Str ing structures to functions – Array of structures – Pointers to structures-Union-basic	ructu file	ire v opei	vithi ratio	n a n.
		Total (L+	- T)=	: 45	Peri	ods

Cou	irse Outcomes:				
Upor	Upon completion of this course, the students will be able to:				
CO1		:	Formulate and apply logic to solve basic problems.		
CO2		:	Write, compile and debug programs in C language.		
CO3		:	Apply the concepts such as arrays, decision making and looping statements to solve real time applications		
CO4		:	Solve simple scientific and statistical problems using functions and pointers		
CO5		:	Write programs related to structures and unions for simple applications.		
Text	Bo	oks	:		
1.	An Pea	ita arso	Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Dorling Kindersley (India)Pvt. Ltd., on Education in South Asia, 2011. (Unit-I).		
2.	E.I	Bala	agurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2008 (Unit II-V).		
Refe	ren	ce l	Books:		
1.	Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2006				
2.	Ke	rniş	ghan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006		
3.	Ya	sha	vant P. Kanetkar. "Let Us C", BPB Publications, 2011.		

18	EN102	PROFESSIONAL ENGLISH LABORATORY					
		0	0	2	1		
Cou	rse Objectives:						
1.	To acquire and develop list	ening skills for academic, social and professional purposes.					
2.	To understand short conver	rsations or monologues					
3.	To master basic reading sk	cills such as phonics, word recognition, and fluency					
4.	Acquire and develop pre-ivocabulary, pronunciation	intermediate level fluency in oral skills such as discourse management, a and interactive communication for academic, social and professional purpo	gram oses	mar	and		
5.	Address an audience and p	resent a topic.					
6. Express an opinion and justify it							
	Methodology - Listening						
	List of Audio files:						
	1. Job Responsi	bilities					
	2. Conversation	between two employees on company culture					
	3. Emails						
	4. Description o	f gadgets					
	5. Interview wit	h a leading industrialist					
	6. Office proceed	lures – applying for permission, placing an order for office equipment,					
	7. Enquiries abo	but orders and deliveries					
	8. Conversation	between two people on general topics					
	9. Telephone M	essages					
	10. Fixing and Ca	ancelling appointments					
	11 Asking for di	rections					
	12 Rescheduling	z a travel plan					
	13. Tones · Rude	and Polite					
	14 Conversation	: Statements, Discussions, Debating Accepting Negotiating					
	15. Conferences	: Announcements about changes in schedules and sessions					
	16 Motivational	Speech					
	17 TED Talk on	Team Work					
	18 Describing ch	narts and data					
	19 Presentation :	at an office					
	20. Short self-des	scriptions					
	METHODOLOGY: - S	peaking	tast	hol-1			
	 Sen-introduction — Pe strengths and weaknesses, features of home town, Per Situational Role Play and Organiser, Team Lead and Applicant, Car Driver Employee and Manager, 	projects and paper presentations if any, likes and dislikes in food, clo sonal role models in life, goals and dreams, favorite inspirational quote. between Examiner and Candidate — Customer and Sales Manager, Ho ler and Team member, Bank Manager and Candidate, Interviewer and Client, Industrialist and Candidate, Receptionist and Appointment Employee and Employee, P.A. and Manager Schedule for training,	thes, thes, otel M Seek	Mana Spe Mana er, N	nes cia ige		

	As Bu dre stu	king for directions, Seeking help with office equipment, Clarifying an error in the bill, Quality of Products, ying a Product, Selling a Product, cancelling and fixing appointments, hotel accommodation, training facilities, see so conference facilities, faculty advisors and student, student and student, college Office personnel and dent.
		Total (L)= 30 Periods
Cou	rse O	utcomes:
After	the	successful completion of the practical session, the students will be able to
CO1	:	Infer, interpret and correlate routine, classroom-related conversation
CO2	:	Use a range of common vocabulary and context based idioms.
CO3	:	Comprehend native speakers when they speak quickly to one another, although the student mightstill have trouble.
CO4	:	Identify the most important words in a story/article.
CO5	:	Summarize the main ideas, key details, and inferred meanings from listening passages of up to fiveminutes.
CO6	:	Vocalize words without the aid of pictures
CO7	:	Make effective self-introductions
CO8	:	Study options, compare and contrasts the options
CO9	:	Exercise a choice, justify it by giving examples and illustrations.
C010	:	Construct a situation and to participate in conversations.
Text	Boo	ks:
1.	Nor Pres	man Whitby. Business Benchmark –Pre - Intermediate to Intermediate, Students Book, CambridgeUniversity as, 2014
Reco	omm	ended Reading and Reference Sources:
1.	Spo	ken English: A Self-Learning Guide. V. Sasikumar and P V Dhamija.
2.	Eng	lish Conversation Practice: Grant Taylor Paperback 1976ely. Krishna Mohan, N P Singh
3.	Dise	cussions that Work. Penny Ur. CUP, 1981
4.	<u>http</u>	://www.onestopenglish.com/skills/speaking/speaking-matters/
5.	Spe	ak Better Write Better English Paperback - November 2012 Norman Lewis, Goyal Publishers and Distributors.

18CS102	COMPUTER PRACTICE LABORATORY	L	Т	Р	С
		0	0	4	2
Course Obje	ctives:	1			
1.	To provide basic knowledge of creating Word documents and also producing mail merge				
2.	To make use of basic functions, formulas and charts in Spread sheet				
3.	To implement problem solving techniques.				
4.	To promote the programming ability to develop applications for real world problems				
EXPERIME	NTS				
	 A. Word Processing 1. Document creation, Text manipulation with Scientific notations, Table creation, Table format 	ting	and		
	Conversion				
	2. Letter preparation using Mail merge and Draw flow Charts using tools				
	B. Spread Sheet3. Chart - Line, XY, Bar and Pie.				
	4. Formula - formula editor, Sorting and Import and Export features.				
	5. Spread sheet - inclusion of object, Picture and graphics, protecting the document and sheet.				
	C. Simple C Programming				
	6. Program using Control statements.				
	7. Program using Looping.				
	8. Program using Array.				
	9. Program using String.				
	10. Program using Function.				
	11. Program using Structures.				
	12. Program using Pointers.				
	13. Program using Files.				
	* For programming exercises Flow chart and pseudo code are essential				
	Tota	l (P)	= 60	Peri	ods
Correct On the					
After the suc	cessful completion of the practical session, the students will be able to				

CO1	÷	Demonstrate the basic mechanics of Word documents and working knowledge of mail merge.
CO2	:	Demonstrate the use of basic functions and formulas in Spread sheet.
CO3	:	Apply good programming methods for program development.
CO4	:	Implement C programs for simple applications.

18	BME	102	WORKSHOP MANUFACTURING PRACTICES	L	Т	Р	С
				1	0	4	3
Cour	se O	bject	ives:			1	
1.	То	provi	de an exposure of basic engineering practices to the student				
2.	To Me	provi echani	de exposure to the students with hands on experience on various basic engineering practi cal Engineering	ices i	nCiv	il and	d
EXP	ERI	MEN'	IS				
1.	Int	roduc	tion to Safety measures and First aid.				
2.	Stu Ca	ıdy of rpentr	Lathe -Welding methods and equipment's- Casting process and tools- Sheet metal and fi y tools and joints.	tting	tools	-	
3.	Fit	ting: V	V-fitting, Square fitting, Curve fitting.				
4.	La	the: Fa	acing, turning, taper turning and knurling.				
5.	We	elding	: BUTT, LAP and T- joints.				
6.	Fo	undry	: Green sand preparation- mould making practice.				
7.	She	eet me	etal: Cone, tray, cylinder.				
8.	Ca	rpentr	y: CROSS, T and DOVETAIL joints.				
9.	Dr	illing:	simple exercises.				
			Total	l (P)=	= 60	Peri	ods
Cour	se O	utcon	nes:				
After	the s	succes	ssful completion of the practical session, the students will be able to				
CO1	:	Prep	are fitting of metal and wooden pieces using simple fitting and carpentry tools manually.				
CO2	:	Prep	are simple lap, butt and tee joints using arc welding equipment.				
CO3	:	Prep	pare green sand moulding.				
CO4	:	Prep	pare sheet metal components.				
CO5	:	Prep	are simple components using lathe and drilling machine.				
Refe	ence	e Boo	ks:				
1.	Baw	/a, H.S	S, "Work shop Practice", Tata McGraw Hill Publishing Company Limited, 2007.				

2.	Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering PracticesLaboratory",
	Anuradha Publications, 2007.
3.	Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab Manual", VikasPuplishing House Pvt. Ltd, 2006.

	18EN301	Effective Technical Communication	L J	r P	С
			2 0) 2	3
Cou	ırse Objectives	:			
	To help stud	ents			
1.	to par	ticipate actively in technical writingactivities.			
2.	• to app	bly technical information and knowledge in practicaldocuments.			
3.	• to rev	ise and edit draftseffectively			
4.	• to dev	velop professional workhabits.			
Met	chodology			L	
	Technical W	Vriting - writing reports - project report and event report, newsletter, techni	cal		
	articles, dr	aft writing, official notes, business letters, progress reports, and minutes of	of		
	meetings.				
	• Basics of g	rammar – tenses, phrasal verbs, punctuations, prepositions, study of advar	nced		
	grammar –	- sentences cohesion and coherence, Idioms andphrases.			
	• Developing	Professional work habits, Self-development and Assessment, Personalgoa	ıl		
	setting, car	eer planning. E-mail etiquettes. Telephoneetiquettes.			
	 Interview n 	reparation nower-point presentation groupdiscussions			
	Speaking or	n advanced technical tonics, project raview, public speaking, defendingen	inior	20	
	• Speaking of	n advanced technical topics, project review, public speaking, derendingop	mioi	15,	
	review of 1	newspaperarticles.			
Cou	irse Outcomes:				
Upo	n completion of	f this course, the students will be able to:			
CO	<i>1 :</i> Prepare	error free technical document reports and drafts efficiently.			
CO	2 : Wirte te	echnical documents grammatically sound			
CO	$\frac{3}{2}$: Be crea	tive in setting targets in the work place.			
CO	$\frac{4}{5}$: Answer	questions posed by interiviewers confidentially			
<i>CO</i> .	5 : Form of	pinions, orgnaise ideas, illustrate points, explain and defend viewpoint.			
1 ex	t Books/ Refer			7 1	2004
1.	David F. Beer	and David McMurrey, Guide to writing as an Engineer, John Willey. No	ew Y	ork,	2004
2	Diane Hacker	Pocket Style Manual Bedford Publication New York 2003 (ISBN 031	2406	5843)
3	Shiv Khera Y	ou Can Win Macmillan Books New York 2003	2100	1010	
5.	Shiv Micra, I	ou can trin, muchillan Dooks, new Tork, 2005.			
4.	Evans, D, Dec	cision maker, Cambridge University Press, 2010.			
5.	Sanjay kumar	and Pushp Lata, Language and Communications skills for engineers, Ox	cford	1	
	University pre	ess, India, 2018			
6.	Muralikrishna	, C and Sunita Mishra, Communication Skills for engineers, Pearson Ed	ucati	ion	
	India ltd, 2011				
7.	Ronald Carter	, Michael Mc Carthy, Geraldine Mark and Anne O Keeffe, English Gran	nma	r	
	Today, Cambr	idge University Press, India, 2016.			

18MA302		STATISTICS AND NUMERICAL	L	Т	P	С			
		METHODS	2	1	Δ	4			
Com	na Ohiaa	tivaa	3	1	U	4			
Course Objectives:									
1.	. To understand the statistical averages and fitting of curves.								
2.	To gain	the knowledge of significance test for large and small samples.							
3.	To obtain	n the knowledge about numerical interpolation, differentiation and integration.							
4.	To acqui and mult	re knowledge of numerical solution to first order ordinary differential equations i step methods.	usin	gsi	ngle	step			
5.	5. To gain the knowledge of numerical solution to second order partial differential equations by using explicit and implicit methods.								
Unit	I BASI	IC STATISTICS	1	,	1	0			
Maar	- DASI	antrol tondonov. Moments, Skowness and Kurtesis, Curve fitting by the Metho	d of	<u> </u>	T	U			
Squa	res –Fittin	g of straight lines, second degree parabolas and curves reducible to linear form	s.	LC	ası				
Unit	II TES	T OF HYPOTHESIS	1	2	+	0			
Test of significance: Large Sample tests for Single proportion, difference of proportions, single mean and difference of means- Small Sample test for single mean, difference of means and correlation co-efficient, test for ratio of variances - Chi-square test for goodness of fit and independence of attributes.									
Unit	III INT	TERPOLATION, NUMERICAL DIFFERENTIATION AND	12	2	+	0			
Solution of Algebraic and Transcendental equations by Newton-Raphson method- Solution of system of equations by Gauss Elimination and Gauss Seidal iterative methods - Interpolation using Newton's ForwardandBackwardformulae.Interpolationwithunequalintervals:Newton'sdivideddifference and Lagrange's formulae Numerical Differentiation and Integration: Trapezoidal rule and Simpson's 1/3 rule, Simpson's 3/8 rule.									
Unit	IV NU EO	MERICAL SOLUTION FOR ORDINARY DIFFERENTIAL	12	2	+	0			
Ordinary differential equations: Taylor series method- Euler and modified Euler's method- Runge- Kutta method of fourth order for solving first and second order differential equations- Milne's and Adam's predictor - corrector methods.									
Unit	V NUN	AERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATIONS	1	2	+	0			
Partial differential equations: Finite difference solution of two dimensional Laplace and Poisson equations- Implicit and Explicit methods for one dimensional heat equation (Bender Schmidt and Crank-Nicholson methods) - Finite difference explicit method for wave equation.									
		Το	tal=	60	Peri	ods			
Cou	rse Outco	mes:			I				
Upor	n completi	on of this course, the students will be able to:							
CO1	: Lear	n about statistical averages and fitting the curves by Least Square Method							
CO2	: Acqu	ire the techniques of interpolation.							
CO3	: Fami	liar with the numerical differentiation and integration							
CO4	: Solve	e the initial value problems for ordinary differential equations.							
CO5	: Find	the numerical solution of partial differential equation by using Finite difference	e me	tho	d.				
Text	Books:								

1. Veerarajan T, "Probability and Random Process (With Queuing theory)", 4thEdition, Tata McGraw

	Hill Education Pvt. Ltd., New Delhi, 2016.					
2	Kandasamy.P, Thilagavathy.K, Gunavathi.K, "Numerical Methods" S.Chand& Co., New Delhi,					
2.	2005.					
r	Gupta, S.C. and Kapur, V.K., "Fundamentals of Mathematical Statistics", S.Chand and Sons,					
5.	New Delhi, 11 th Edition 2014					
Ref	Reference Books:					
1.	Fruend John, E. and Miller Irwin, "Probability and Statistics for Engineers", 8 th Edition, Prentice					
	Hall India (P) Ltd, 2010.					
2.	Gerald, C. F. and Wheatley, P.O., "Applied Numerical Analysis", Sixth Edition, PearsonEducation					
	Asia, New Delhi – 2002					
3.	M.K.Venkataraman, "Numerical Methods", National Publishing Company, 2000					
4.	Jain M.K.Iyengar, K & Jain R.K., "Numerical Methods for Scientific and Engineering Computation",					
	New Age International (P) Ltd, Publishers 2003					

180	CY30	1 BIOLOGY FOR ENGINEERS	LI	P	С
			2 1	0	3
Cour	se Ol	bjectives:			
1.	To i disci	ntroduce students to modern biology with an emphasis on evolution of biolo plinary field and to make them aware of biological principles. The course with parts to:	gy as Il faci	a m litate	ulti - the
	stude	Realize that all forms of life have the same buildingblocks			
		Convey that without catalysis life would not have existed onearth.			
	•	Know the analysis of biological processes at the reduction level			
	•	Comprehend the fundamental principles of energy transactions are the same in biologicalworld.	physic	aland	
	Und	erstand the fundamentals about the molecular basis of coding and decoding			
Unit	I B	IOMOLECULES	9	+	0
Carbo struct	ohydr ture o	ates- classification - Glucose properties and structural elucidation –fructose, sucro nly; Amino acids- classification- amphoteric nature of amino acids - zwitter ion -	se, sta	rch -	
defici	iency	diseases.	metioi	lanu	
Unit	TT	FNZVMES	0		0
Nom		enze structure of anzymes anzyme cofectors properties of anzymes(catalytic pr	9 oportic	+	U
reacti accur	ion(te nulati	emperature, pH, substrate concentration, enzyme concentration, water inhibitors, en ion)- enzyme kinetics –michaelis-menten equation.	nd pro	duct	
Unit	111	MACROMOLECULES	9	+	0
Protei protei xanth -Prote	ins- c ins- p oprote ein sy	lassification- structure of proteins- primary, secondary, tertiary and quaternary structure obysical and chemical properties- colour reaction of proteins (biuret reaction, mileic reaction, ninhydrin reaction, azo dye reaction Hopkins Cole reaction) on the sis- mechanism of protein synthesis.	re- pro llions	pertie reac	s of tion,
Unit	IV	METABOLISM	9	1	0
Thorr	nodur	naming as applied to biological systems and and and thermia yersus	andor	T	ond
exerg struct off pl types- extern	onic ure of hase- - strue nal ar	reactions- concept of equilibrium constant and its relation to standard free energy f ATP; Glycolysis- definition- flow chart- steps involved in glycolysis- preparator kinds of reactions in glycolysis; Photosynthesis- definition- significance photosynt cture of pigments factors affecting photosynthesis- ind internal factors.	y phas hetic-	ntane e and pigm	ty - pay ents
Unit	VI	NUCLEIC ACIDS	9	+	0
Type – nuc RNA genet	s-Stru cleotic - typ tic co	actural components of nucleic acids- acid, pentose sugar and nitrogenous base- nucle and its functions - single and double helical structure of DNA-comparison betwees of RNA- transcription -mRNA, tRNA and rRNA and their function - repliced decharacteristics	leosid ween I cation	e DNA ofD	and NA-
		То	tal= 45	5 Per	iods
Cour	se O	utcomes:			
Upon	com	pletion of this course, the students will be able to:			
CO	:	Appreciate that all types of life have the identical structural units			
------	------------	---			
CO2	2 :	Highlight the idea that without catalysis, living beings would not have existed on earth.			
CO	3 :	Be familiar with the investigation of biological processes at the reduction level.			
CO	+ :	Figureoutthat the primaryprinciplesofenergytransactionsarealikeinphysicaland			
		biological world.			
CO	5 :	Recognize the ground rules about the molecular basis of coding and decoding.			
Text	: Bo	oks:			
1.	FJ. cor	L.Jain, Sanjay jain and Nitin jain- "Fundamentals of Biochemistry" - Sixth edition, S.Chandand npany Ltd., Ram nagar, 2005.			
2.	Dr. Pul	A.V.S.S.Rama Rao-" Text book of Biochemistry"- Text book of Biochemistry- First edition- UBS blishers' Distributors Pvt. Ltd., 2008			
3.	U.	Satyanarayana –" Biochemistry"-5th edition – Sri Padmavathi Publications Ltd.,2017.			
Refe	eren	ce Books:			
1.	Ca	mpbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M,L.; Wasserman, S. A.; Minorsky, P. V.;			
	Jac	kson,			
	R.	B" Biology: A global approach"- Pearson Education Ltd			
2.	Co	nn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H-" Outlines of Biochemistry"- John Wiley and Sons			
3.	By	Nelson, D. L.; and Cox- "Principles of Biochemistry"- V Edition- M. M.W.H. Freeman and			
	Co	mpany			
4.	Ste Dis	nt, G. S.; and Calender-" Molecular Genetics"- Second edition - R. W.H. Freeman and company, stributed by Satish Kumar Jain for CBS Publisher			

181	ES2(5 MECHANICS OF SOLIDS	LT	P	C
			3 0	0	3
Cou	rse (Objectives:			
1.	Un	derstand the vectorial and scalar presentation of forces and momentum			
2.	Un	derstand the mechanical behaviour of materials.			
3.	Un cor	derstand the concept of stress and strain in different types of structures with different leaditions.	oading		
4.	Far	niliarize about in the determination of shear force and bending moment in various type	es of		
5	Sol	we practical problems related to springs and shafts			
5.	501	ve practical problems related to springs and sharts			
Unit	Ι	PROPERTIES OF SURFACE	9	+	0
Syste	em o	f forces - areas and volumes - centroid - centre of gravity - theorem of Pappus - Gui	ldinus	_	
First, – pol	sec lar m	ond and product moment of inertia of various sections – Parallel axis and perpendicul noment of inertia – principal moment of inertia of plane areas	ar axis	theo	orem
Unit	II	STRESS, STRAIN AND DEFORMATION OF SOLIDS	9	+	0
Stres Poiss relati to ter	s an son's onsh nper	a strain due to axial force – elastic limit – Hookes's law – factor of safety – latera ratio – volumetric strain – changes in dimensions and volumes- shear stress – shear ip between elastic constants. Stepped bars – uniformly varying sections – composite ba ature. Strain energy due to axial force- proof resilience and modulus of resilience	strain - strain - r –stres	n — — sses	due
Unit	III	SHEAR FORCE AND BENDING MOMENT DIAGRAMS	9	+	0
Relat canti unifc and p	tions leven ormly point	hip between load, shear force and bending moment – shear force and bending momenter, simply supported and overhanging beams under concentrated loads, y distributed loads, uniformly varying loads and concentrated moment – maximum ber at of contraflexure.	liagran ndingm	ns fo	or ent
Unit	IV	STRESSES DUE TO BENDING AND SHEAR	9	+	0
Theo	rv o	f simple bending and assumptions – analysis of beams for stresses – stresses distribution	ion at		
acros	ssec	tionduetobendingmomentandshearforceforcantilever, simply supported and			
overł	nang	ing beams with different loading conditions.			
	0	<u> </u>			
Unit	V	TORSION AND COMPLEX STRESSES (Two dimensions only)	9	+	0
Theo	ry o	f torsion and assumptions - derivation of torsion formula - polar modulus - stresses in	n solida	and	
hollo	w ci	rcular shafts – power transmitted by a shaft.	1.1 .		
State	of s	tress at a point – normal and tangential stresses and their planes – principal stresses a plane of maximum shear stress – analytical method	indthei	r	
plane	- 25	plane of maximum shear stress – anarytical method			
		Total (45+0	0)= 45	Peri	ods
Cou	rse (Dutcomes:			
Upon	n cor	npletion of this course, the students will be able to:			
		Determine the resultant forces and moment for the given system			
02		Analyse planar and spatial systems of forces and determine the centroid and moment	ofiner	tias.	
CO3	:	Thorough understanding of fundamental concepts of stress and strain in mechanics of solids and structures	of		
					-

CO	4 :	The ability to analyse the beams to determine shear force and bending moments
CO	5 :	Sufficient knowledge in design shafts to transmit required power and springs for itsmaximum
		energy
Tex	t Bo	oks:
1.	Bha	avikatti S S strength of materials, Vikas Publishing House Pvt ltd., New delhi, Second edition2013
2.	Raj	put RK, Strength of materials ,S.Chand& Company ltd, New Delhi, 2018
3.	Bar	asal R.K., Engineering Mechanics, Laxmi Publications (P) Ltd., 2015.
4.	Kot	tiswaran N, Engineering Mechaics, Sri Balaji Publications, 2010.
5.	Bar	asal R.K., Strength of materials, Laxmi Publications (P) Ltd., 20016.
Ref	eren	ce Books:
1.	Bee	er and Johnson, Vector Mechanics for Engineers: Statics and Dynamics Tata Mc Graw Hill,2017
2.	Kur 201	mar K.L., Engineering Mechanic, Tata McGraw-Hill Publishing Company Limited, New Delhi, 0.
3.	Pur Edi	imia B C Jain and Jain AK, Strength of materials and theory of structures, vols. I and II, XI tion, Laxmi Publications P Ltd, New Delhi 2017
4.	Rar Rep	namurtham S and Narayanan R, Strength of Materials, Dhanpat Rai Publishing Company PvtLtd, print 2014

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	1	3	2	1	2	2	2	2	3	
CO2	3	3	3	3	3	1	3	2	1	2	-	2	3	3	
CO3	3	3	3	3	1	2	3	2		3	-	3	2	2	
CO4	3	3	3	3	3	2	3	1	2	3	-	2	3	3	
CO5	3	3	3	3	2	1	2	2	2	2		3	3	3	

1 – Slightly 2 – Moderately 3 - Strongly

18C	E301	MECHANICS OF	L	Т	Р	С
-		FLUIDS	3	0	0	3
Cou	rse Object	ives.	U	v	v	0
1.	To unders	tand the basic property of fluid				
2.	To gain k	tend and solve the problem related to equations of motions				
<i>3</i> .	To unders	tand and solve the boundary layer problems				
4 . 5	To study	the application of similitude				
5.	10 study					
Unit	I FLUI	O PROPERTIES	9		+	0
Fluid	d and Fluid	properties - density, specific weight, specific volume, specific gravity, viscos	ity,			
com	pressibility,	vapour pressure, capillarity and surface tension. Pressure - Pascal's law -Rel	atio	nship)	
betw	een pressur	es – pressure measurements by manometers.				
TInit		D. CTATICS & KINEMATICS	0		.	0
		D STATICS & KINEMATICS	9		+	U
Fluic	i Statics: H	ydrostatic forces on plane and curved surfaces – fotal pressure and centre of	pres	sure		
- eq	1 Kinematic	s: Flow visualization – types of flow – lines of flow - velocity and acceleration - (Cont	inuit	v	
equa	tion (one t	wo and three dimensional forms) $-$ Stream function $-$ velocity notential function	n – f	low	.y	
nets	– Measurer	nent of Velocity		10 11		
		· · · · · · · · · · · · · · · · · · ·				
Unit	III FLU	ID DYNAMICS	9		+	0
Equa	ations of m	otion - Euler's equation of motion along a streamline - Bernoulli's equation -	- app	olica	tion	s –
Vent	turi meter, (Drifice meter, Pitot tube, Laminar flow – viscous flow through pipes andbetwe	en p	aral	lel	
plate	es – Hagen-	Poiseuille equation. Turbulent flow – Darcy-Weisbach formula – Moody diag	gram	1.		
Unit	IV FLO	W THROUGH PIPES AND BOUNDARY LAYER	9		+	0
Mai	or and mine	r losses of flow in pines Hydroulis Credient Line Total Energy Line Din	/ 	cori		u nd
in n	or and mine	war transmission through pipes	es m	seri	lesa	la
Defi	$p_{\text{minimizer}} = p_0$	undary layer – Thickness and classification – separation of boundary layer – 1	Meth	ods	of	
prev	enting the s	eparation.	vieti	ous	01	
-	0	1				
Unit	t V DIM	ENSIONAL AND MODEL ANALYSIS	9		+	0
Dim	ensional Ar	alysis – Rayleigh's method, Buckingham's Pi-Theorem. Model analysis – Ty	pes o	of		
Simi	litude – Di	mensionless numbers - Model Laws - classification of Models - Scale effect.	-			
Carr		<u>T</u>	otal	45]	Peri	ods
Upor	rse Oulcor	n of this course, the students will be able to:				
CO1	· Under	rstand the fundamentals of Fluid Mechanics				
CO^2	2 : Deter	nine the properties of fluid and pressure and their measurement				
CO3	B : Comp	ute forces on immersed plane and curved plates				
CO4	: Apply	continuity equation and energy equation in solving problems on flow through	con	duit	s	
CO5	5 : Com	pute the frictional loss in laminar and turbulent flows				
Text	Books:					
1.	Bansal R.I	C., Fluid Mechanics and Hydraulic Machines, 9 th Edition, Laxmi Publication	s(P)	Ltd	,Ne	W
2	Modi P.N.	15 , Seth S.M., Hydraulics and Fluid Mechanics Including Hydraulic Machine	s, 14	4th _E	ditio	on,
<i>2</i> .	Standard	Book House, 2002.	D 1	h: (2000	,)
з.	Kajput K.I	K., A lexi book of Fluia Mechanics in SI Units, S.Chand and Company, New	Del	m, 2	2008	>

Ref	erence Books:
1.	Streeter, Victor L. and Wylie, Benjamin E., Fluid Mechanics, McGraw-Hill Ltd., 2010
2.	Jain AK, Fluid mechanics including hydraulic machines, Khanna Publication, 2015
3.	White FM, Fluid mechanics, Tata Mc Graw Hill, New Delhi, 2017
4.	Fox, Robert W. and Macdonald, Alan, T., Introduction to Fluid Mechanics, John Wiley & Sons, 1995
5.	Subramanya K, Flid mechanics and hydraulic machines, Tata Mc Graw Hill, New Delhi 2010

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1
CO2	2	2	2	2	2	2	2	1	1	1	1	1	1		1
CO3	1	1	1	2	1	2	1	1	1	1	1	1	1		1
CO4	2	1	2	2	2	1	2	1	1	1	1	1	1		2
CO5	1	1	1	2	1	2	1	1	1	1	1	1	1		1

E302 SURVEYING AND GEOMATICS	L	Т	Р	С
	3	0	0	3
se Objectives:				
To understand the importance of surveying in the field of civil engineering				
To study the basics of linear/angular measurement methods like chain surveying, co	mpa	sssu	rvey	ving
To know the basics of levelling and theodolite survey in elevation and angular measured	ireme	ents		
To understand tacheometric surveying in distance and height measurements				
To get introduced to modern advanced surveying techniques involved such as Total and GPS	statio	n		
Operate a total station to measure distance, angles, and to calculate differences inele Reduce data for application in a geographic information system.	evatio	on.		
I INTRODUCTION TO CHAIN AND COMPASS SURVEYING	9		+	0
hods of ranging a line – Maps-Scale, adjustment in wrong observations- uses of ch optical square - sources and limits of error and their correction. Magnetic and true nation and its variation - Bearings - Prismatic compass - Surveyor's compass - co attraction and its elimination - Traversing.	ain, o nortl ompa	cross n, m ss si	agno	taff etic y -
				0
line - Horizontal line - Datum - Bench marks -Levels and staves - temporary and perturbative temporary temporary and perturbative	ermar g - B tracte	nent ooki risti	ing cs	
III THEODOLITE SURVEYING	9		+	0
JolitesurveyingStudyoftheodoliteTemporary and permanent adjusturementofhorizontalangelsbyreiterationandrepetitionMeasurementofverticalangles-nometrical surveyingTraversingCo-ordinate system-Closing error and distributionitions for closureOmitted measurements-Triangulation of survey	ment	s –		
IV TACHEOMETRIC SURVEYING AND CURVES	9		+	0
cometric surveying – Principles – Methods – Stadia system –Fixed and Movable hair ods with staff held vertical and normal – Analytic lens – Subtense bar – Tangential n ents of simple, compound, Reverse and Transition curve – length of curve – Vertical cation.	meth netho curve	ods - d. C es wi	– urve ith	es -
V CONSTRUCTION AND MODERN FIELD SURVEY SYSTEMS	9		+	0
dures for setting out a building - pipelines - sewers – Principle of Electronic Dista urement, Modulation, Types of EDM instruments, Distomat, Total Station – Parts on – Accessories –Advantages and Applications, Field Procedure for total station surv Station Survey; Global Positioning Systems- Segments, GPS measurements, errors eying with GPS, Co-ordinate transformation, accuracy considerations	nce s of a vey, l and	a To Erroi biase	tal rsin es,	0
T	otel	45 P	Perio	de
Tise Outcomes:	otal	45 P	erio	ods
Se Outcomes: completion of this course, the students will be able to:	otal	45 P	erio	ods
Te Outcomes: completion of this course, the students will be able to: : Use conventional surveying tools such as chain/tape, compass, level in the field engineering applications such as structural plotting and highway profiling	otal of ci	45 P vil	Perio	ods
	SURVETING AND GEOMATICS se Objectives: To understand the importance of surveying in the field of civil engineering To study the basics of linear/angular measurement methods like chain surveying, colspan="2">To know the basics of levelling and theodolite survey in elevation and angular measure To understand tacheometric surveying in distance and height measurements To get introduced to modern advanced surveying techniques involved such as Total and GPS Operate a total station to measure distance, angles, and to calculate differences inele Reduce data for application in a geographic information system, I INTRODUCTION TO CHAIN AND COMPASS SURVEYING nition- Classification - Field work and office work hods of ranging a line – Maps-Scale, adjustment in wrong observations- uses of ch ptical square - sources and limits of error and their correction. Magnetic and true nation and its variation - Bacings - Prismatic compass - Surveyor's compass - cc attraction and its variation - Beartogs - Prismatic compass - Surveyor's compass - cc attraction and its variation - Bactum - Bench marks -Levels and staves - temporary and pet ments - Methods of levelling - Fly levelling - Check levelling - Procedure in levellin uction - Curvature and refraction - Reciprocal levelling – Contouring - Methods -Cha uses of contours III THEODOLITE SURVEYING Mutodite surveying - Study oftheodolite – Temporary and permanent adjust urementofhorizontalangelsbyreiterationandrepetition-Measurementoriverticalangles- nometrical surveying - Study oftheodolite – Temporary and distribution itions fo	Story Prince ARD GEOMATICS Image of the story of the sto	SORVETING AND GEOMATICS I 3 0 se Objectives: 3 To understand the importance of surveying in the field of civil engineering 3 To study the basics of levelling and theodolite survey in elevation and angular measurements 5 To understand tacheometric surveying in distance and height measurements 5 To understand tacheometric surveying in distance and height measurements 7 To get introduced to modern advanced surveying techniques involved such as Total station and GPS 9 Operate a total station to measure distance, angles, and to calculate differences inelevation. Reduce data for application in a geographic information system, 9 I INTRODUCTION TO CHAIN AND COMPASS SURVEYING 9 itition-Classifications - Basic principles-Classification - Field work and office work - Types of chods of ranging a line - Maps-Scale, adjustment in wrong observations- uses of chain, cross optical square - sources and limits of error and their correction. Magnetic and true north, m nation and its variation - Beatings - Prismatic compass - Surveyor's compass - compass stattraction and its variation - Baturn - Bench marks -Levels and staves - temporary and permanent tments - Methods of levelling - Fly levelling - Check levelling - Procedure in levelling - Book uction - Curvature and refraction - Reciprocal levelling - Contouring - Methods -Characteristi ises of contours 9 III THEODOLITE SURVEYING 9 9 9	SOLVETING AND GEOMATICS L I <thi< th=""> I <thi< th=""> <thi< th=""> I <thi< th=""></thi<></thi<></thi<></thi<>

CO ₂	1 :	Take accurate measurements, field booking, plotting and adjustment of errors can beunderstood
CO	5 :	Invoke advanced surveying techniques over conventional methods in the field of civil engineering
Text	t Bo	oks:
1.	Dug	ggal, S.K. Surveying Vol. I and II, Tata McGraw Hill, 2004.
2.	Pur	mia B.C., Surveying, Vols. I, II and III, Laxmi Publications, 1989.
Refe	ereno	ce Books:
1.	Cla	rk D., Plane and Geodetic Surveying, Vols. I and II, C.B.S. Publisher and Distributors,
	Del	hi, Sixth Edition,1971.
2.	Jan 198	nes M.Anderson and Edward M.Mikhail, <i>Introduction to Surveying</i> , McGraw-Hill BookCompany, 5.
3.	Wo	If P.R., Elements of Photogrammetry, McGraw-Hill Book Company, Second Edition, 1986.
4.	Rol Wi	binson A.H., Sale R.D. Morrison J.L. and Muehrche P.C., <i>Elements of Cartography</i> , John ley and Sons, New York, Fifth Edition, 1984.
5.	Her	ibertKahmen and Wolfgang Faig, Surveying, Walter de Gruyter, 1995.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	2	2	2	1	2	2	2	2	1	2	2	2
CO2	2	3	3	1	2	2	1	3	2	1	1	1	2	3	1
CO3	3	1	2	3	2	3	1	3	2	3	1	2	1	3	3
CO4	2	1	3	2	1	3	2	1	1	1	1	2	3	2	1
CO5	3	2	3	2	3	1	2	1	2	3	3	2	1	1	2

18CE3	303	SURVEYING PRACTICAL	L	Т	Р	С
			0	0	4	2
Cours	e Objectives	:				
1	To know the	importance of basic surveying equipment				
2	To able to n	easure the linear and angular measurements with help of various equipm	ent			
3	To identify p	points in both vertical and horizontal plane by using Dumpy level				
4	To estimate	the stadia constants in stadia diaphragm				
5	To able to h	andle the modern equipment such as EDM,GPS and Total station				
List of	f Experimen	ts:				
 Pla Pla Ma Ma Ro Co Co Th He He He He Sa Sa Sa Sa Sa Sa Sa Sa 	the table sur- fferential Level and project – ontouring eodolitetrave sights and dis- sights and dis- cadiaTacheor angentialTacheor abtenseBar etting out wo cudy of EDN etting out wo	/eying: Radiation andIntersection 'elling using Dumpy level – Reduction by Rise and Fall & Height of Co _ongitudinal Sectioning and Cross Sectioning trances – Inaccessible stations – Single planemethod trances – Inaccessible stations – Double planemethod netry neometry. rks - Simple curve (right/left-handed). I & GPS rks – Buildings, Area Calculation using TotalStation	llim	natic)n Per	iod
Cours	e Outcomes					
At the	end of the c	urse the student will be able to				
<u>CO1</u>	handli	ng the equipment Theodolite to find out the horizontal and vertical angle	s			
$\frac{CO2}{CO2}$	find o	t the elevation of the required points with respect to reference plane	-			
$\frac{002}{CO3}$	use th	modern equipment like FDM GPS and Total station with its application	one			
005	use th	- modern equipment like EDW, OF 5 and Total station with its application	0115			

learn to set out the foundation of a building in the field **CO-PO-PSO MAPPING**

CO5

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1	2	2	1	3	1	2	1	2
CO2	2	1	2	1	2	2	1	3	2	1	1	3	2	3	1
CO3	3	1	2	3	2	3	1	3	2	3	1	2	1	3	3
CO4	1	1	2	2	1	3	2	1	3	1	1	2	3	2	1
CO5	3	2	2	2	3	1	2	1	2	3	3	3	1	1	2

1	18C1	CE304 COMPUTER AIDED BUILDING L T P C DRAWING													
				DRAWING	0	0	4	2							
Co	urco	Ob	iootivos		U	U	4	2							
1.	To	imp	art knov	wledge on development and control rules satisfying orientation and	funct	ional									
2	At	tho	and of t	this course the student should be able to draft the building drawing	a mor	<u></u>	7								
2.	At	the		his course the student should be able to draft the building drawing	s mai		C								
э.	At	tne		his course the student should be able to draft the building drawings	s by t	Ising	Comp	uter							
EX	PEF	RIM	IENTS												
1.		Par Bui fun (20	t-A ilding di ctional i hours)	rawing in accordance with development and control rules satisfying requirements for the following:	orie	ntatio	nand								
		1. 2.	Resider RCC fr	ntial buildings with load bearing walls (RCCroof)											
		3.	Office	buildings (RCCroof)											
		4.	Industr	ial Buildings-North light roof truss											
		5.	Perspec	ctive view for smallbuildings											
2.		Par Fur	rt-B ndament	tal Commands of Drafting Software to Draft the building Drawings	s(10										
		Ho	urs)	aving in accordance with development and control mlas esticiting or	ianto		.d								
		Бu fun	ctional i	requirements using computer aided software for the following :	ienta	lonar	la								
		(20	Hours)	and a string compared about solutions for the long thing t											
		1.	Resider	ntial buildings with load bearing walls (RCCroof)											
		2.	RCC fi	ramedstructures											
	Dar	3.	Office	buildings (RCC roof)											
	rei	spec	suve vie	w for smandundings											
<u> </u>					т	stal 6	1 Dor	rioda							
Co	urse	Ou	tcomes	•	10	Jial 0	o rei	Tous							
Aft	er th	ie si	iccessful	l completion of the practical session, the students will be able to											
СО	1	:	The stu	dents will be able to draft the plan, elevation and sectional views o	f the	build	ings								
CO	2	:	The stu comput	dents will be able to draft the plan, elevation and sectional views of er softwares.	of the	build	lingsu	sing							
CO	3	:	The stu building	dents will be able to draft the plan, elevation and sectional views or using computer softwares.	f the	fram	ed								
CO	94	:	The stu	dents will be able to draft the plan, elevation and sectional views o	f thei	ndust	trial								
			structur	es using computer softwares.											
Ref	feren	ice	Books:												
1.			Verma	B.P., Building Drawing- Khanna publishers.											
2.			IS: 962	-1967 Code of Practice for Architectural and Building Drawing.											
E-F	kefe	ren	ces:	netal as in/sources/110102101/ Commuter Attail Destruction (NDEDI)											
1.			https://l	<u>inplei.ac.in/courses/112102101/</u> - Computer Aided Design (NPTEL)											
2. 3			https://	www.autouesk.m/campaigns/autocau-tutomas-											
э.			<u>mups.//</u>	knownedge.autodesk.com/support/crvn-5d/getting-stattedi-											

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	1	2	2	3	3	2	3	3	3	2
CO2	3	3	2	1	2	1	2	2	3	3	2	3	3	3	2
CO3	3	3	2	2	3	1	2	2	3	3	2	3	3	3	2
CO4	3	3	2	2	3	1	2	2	3	3	2	3	3	3	3
CO5															

18CE40	1 STRENGTH OF MATERIALS	L	Т	Р	С
		3	1	0	4
Course	Objectives:	t			
	study the different methods of determining deflection of determinate and indeterm	inata	boon		
1. 10	study the different methods of determining deflection of determinate and indetermin	mate	Dean	1.	
2. To	anlayse the column with different end conditions				
3. To	impart knowledge on analysis of simple and special structures to find internal for	ces /			
str	esses using various theorems / theories				
Unit I	DEFLECTION OF DETERMINATE BEAMS	9		+	3
Governin	g differential equation -Double integration method- Macaulay's method Moment A	Area			
method -	Strain energy and Dummy unit load approaches – Castigliano's first and second the	heor	ems.		
Unit II	STATICALLY INDETERMINATE BEAMS	9		+	3
Propped	cantilever beams - Fixed beams - Continuous beams - Theorem of three moments	_			
Calculat	on of reactions – Bending Moment and Shear Force diagrams				
Unit III	THEORY OF COLUMNS	9		+	3
Member	s subjected to axial Load – Slenderness ratio – End conditions – Buckling loa	d fo	r col	lum	ins-
Euler's	heory – Assumptions and limitations – Rankin-Gordon formula – Empirical for	mula	1 - S	trai	ight
line form	ula – Columns subjected to eccentric loading				
					1
Unit IV	UNSYMMETRICAL BENDING AND SHEAR CENTRE	9		+	3
Stresses	due to unsymmetrical bending of beams for symmetrical sections – Shear Centr	e - I	Defin	itic	n –
Shear ce	tre for sections symmetrical about one axis - Moment of Inertia - Product of Inertia	– Pri	incip	al a	ıxes
and Prine	ipal moment of Inertia – Deflection of beams due to unsymmetrical bending				
TI	THIN THEY OVENDERS AND ELASTIC FAILURES	<u> </u>	—		
Unit v	THIN , THICK CYLINDERS AND ELASTIC FAILURES	9		+	3
Lame's e	quation - Hoop stress and radial stress distribution - Compound cylinders - Wire wor	inde	ylind	ers	•
THEOR	ES OF ELASTIC FAILURE: Maximum principal stress theory – Maximum principal stress theory	ncipa	ıl str	ain	
theory –	Maximum shear stress theory - Maximum strain energy theory – Maximum	shea	r str	aın	
Complex	strasses Strass at point normal and tangential strasses and their planes princ	inal	etroe	C	
and plan	es – analytical method	ipai	sucs	5	
	Total (45+	15)=	60 P	eri	ods
Course	Outcomes:				
Upon co	mpletion of this course, the students will be able to:				
CO1 :	Apply the principle of various theorems in measurement of slope and deflection				
CO2 :	Different stress developed in thin, thick cylinders and spherical shells				
CO3 :	Visualize the behavior of column for combined bending and axial loading				
CO4 :	Demonstrate the different theories of failure for brittle and ductile materials				
CO5 :	Apply the different methods in unsymmetrical bending analysis				
Text Bo	oks:				
1. Raj	put.R.K. "Strength of Materials", S.Chand and Co, New Delhi, 2007				
2. Bha	wikatti. S., "Solid Mechanics", Vikas publishing house Pvt. Ltd, New Delhi, 201	0.			

Ref	erence Books:
1.	Timoshenko.S.B. and Gere.J.M, "Mechanics of Materials", Van Nos Reinbhold, New Delhi 1995.
2.	Junnarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol I, Charotar Publishing House, New Delhi 1997.
3.	Gambhir. M.L., "Fundamentals of Solid Mechanics", PHI Learning Private Limited., New Delhi, 2009.
4.	Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 2003
5.	William A .Nash, "Theory and Problems of Strength of Materials", Schaum's Outline Series, Tata McGraw Hill Publishing company,2007

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	-	-	2	2	2	3	2	3	3	3	1
CO2	3	3	3	2	1	1	2	2	3	3	2	3	3	3	
CO3	3	3	3	2	1	1	2	2	2	3	2	3	3	3	
CO4	3	3	3	3	2	2	1	2	2	3	2	3	3	3	
CO5	3	3	3	3	1	1	2	2	3	2	3	3	3	3	

1 – Slightly 2 – Moderately 3 - Strongl

18CE40	DESIGN OF STEEL STRUCTURAL ELEMENTS	T	т	р	C
10CE40	(Use of IS 800 – 2007 & Steel tables are permitted)		1	1	
		3	0	0	3
Course	bjectives:				
1. To	earn IS 800-2007 code of practice for the design of Compression, Tension and H	lexu	ral		
me	nbers using various cross-sections				
2. To	study the behaviour and design of compression and tension members using simp	le an	dbu	ilt-	
up	sections				
3. To	understand behaviour of flexural members and the design laterally restrained bea	ms			
4. To	study the design of bolted and welded connections and arranging field visit to ind	lustri	es		
Tin:4 T	NTDODUCTION				Δ
	NIKODUCTION TO OF OTDUCTURE, Start of from Classification of start and have law 1	<u> </u>		+	<u>U</u>
and shap STRUCT settlemen Working resistanc structura	Is of STRUCTORE. Structural form. Classification of structures based on the - different structural systems - basic structural requirements - stability, streng URAL LOADS: Dead load - live load - wind load - dynamic and seismic load t load - buoyant load - snow load. DESIGN CONCEPTS: Design Process: Co Stress Method - Limit State Method of Design - Probabilistic approach to de factor design. STEEL STRUCTURES: Introduction: Material - properties of steel sections - Limit State Design	th and the steel	nd s erma of pr - le - be	tiffno il loa ractio oad ehav	ess. d – ce - and ior-
Concepts Other pro	Loads on Structures – load combinations – partial safety for materials – loa perties: durability – fatigue – fire protection.	.d sa	fety	fact	ors.
TI	CONNECTIONS				0
	CONNECTIONS	9	1 .	+	U
strength	f fillet and butt welds - Efficiency of joints – High Tension bolts	synn			
Unit III	TENSION MEMBERS	9		+	0
Types of connectio	sections – Net area – Net effective sections for angles and Tee in tension – Desig as in tension members – Use of lug angles – Design of tension splice – Concept	n of of s!	hear	lag	
Unit IV	COMPRESSION MEMBERS	9		+	0
Types of design – – Design	compression members – Theory of columns – Current codal provision for compressi Slenderness ratio – Design of compression members – Design of lacing and batter of column bases – Gusseted base	on m n	emb	er	
Unit V	BEAMS	9		+	0
Laterally plastic m shear che crippling	supported beams: classification of sections – simple and compound sections dulus of section – flexural strength of beams- design considerations – behavior of v k – deflection check- bearing strength of web – buckling strength of web- we	– c veb u b bu	alcu ndei cklir	lation shear ng –v	n of ar – web
	т	'otal	45 1	Perio	ha
Course	Putcomes:	Jui	10 1		
Upon con	pletion of this course, the students will be able to:				
CO1 :	Apply the IS code of practice for the design of steel structural elements				
CO2 :	Analyze the behavior of bolted connections and design them to tension, compres	sion	and	bend	ing
CO3 :	Design compression and tension members using simple and built-up sections				
1					

-	
CO	4 : Design of steel beams with end conditions.
Tex	t Books:
1.	Duggal S.K., Limit State Design of Steel Structures, Tata McGraw-Hill Publishing Company , New Delhi, 2010.
2.	Subramanian N., Design of Steel Structures, First edition, OXFORD university press, 2008
3.	Jayagopal L S, 'Structural Steel Design", Vikas Publications, 2012
Ref	erence Books:
1.	Bhavikatti S. S., <i>Design of Steel Structures by Limit Method</i> , I.K. International Pvt Ltd, New Delhi, 2009.
2.	Ramchandra S., & Virendra Gehlot ., Limit State Design of Steel Structures, Standard
	Publication, New Delhi, 2009.
3.	Teaching Resources for Structural Steel Design – Vol. I & II, INSDAG, Kolkatta.
4.	IS 800:2007 Code of practice for general construction steel
5.	SP 6 IS Structural steel Design Illustrated Hand book

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	2	1	1	1	1	1	1	2	3	3	2
CO2	3	3	1	1	2	1	1	1	1	1	1	1	2	2	1
CO3	3	1	2	2	1	1	2	1	1	1	2	1	2	1	1
CO4	1	2	3	1	1	2	1	1	1	2	2	1	1	1	2
CO5															

18	18CE403 ENGINEERING GEOLOGY L T P C 2 0 0 2												
				2	0	0	2						
Cou	rse O	bject	tives:										
1.	To	under	stand the importance of geological knowledge such as earth, earthquake, vol	canis	sm.								
2.	То	apply	this knowledge in projects such as construction of dams, tunnels, bridges, r	oads	,air	port	and						
	hart	oor as	s well as to choose types of foundations										
UNI	ТΙ	PHY	SICAL GEOLOGY		9	+	0						
Intro	ductio	on to	role of geology in civil engineering – Various core and applied branches of	geo	logy	/	~						
Inter	ior st	ructu	re of earth and composition – Introduction to Continental drifting & Plate T	ecto	nics	3,							
Eartl	hquak	es and	d Volcanoes - Weathering and types - Geological work of river, wind, and g	roun	dwa	ter.							
UNI	тп	MIN	NEDALOCY		0		0						
Elon			VERALOGI	ci.oo	9	+	U tion						
of co	ommo	ry Kilo	when the systems of the properties and Engineering significance of the follows	ving	n pro mir	oper ieral	s –						
Oua	rtz fa	milv.	Feldspar family. Augite. Hornblende. Biotite. Muscovite. Calcite.	mg	11111	ici ai	5 -						
Garr	net an	d Cla	y minerals — Elementary knowledge on Ore minerals, Coal and Petroleum.										
UNI	ТШ	PE	TROLOGY		9	+	0						
Clas	sifica	tion	of rocks - Description, Occurrence, Distribution and Engineering propert	ies o	of th	he							
follo	wing	rock	s: Igneous rocks – Granite, Syenite, Diorite, Gabbro, Pegmatite, Dolerite,	Bas	alt	and							
Rhy	olite;	Sedir	nentary rocks – Sandstone, Limestone, Shale, Conglomerate and Breccia; N	letar	nor	phic							
госк	s - Q	uartzi	te, Marble, State, Phyline, Gneiss and Schist.										
UNI	T IV	ST	RUCTURAL GEOLOGY		9	+	0						
	udes	of be	eds - Introduction to Geological maps and their importance in civil e	ngin	- eeri	<u>'</u> ησ	U						
proje	ects -	Use	s of Clinometer and Brunton compass in geological mapping - Genesis	and	cerr	ng							
Clas	sifica	tion of	of the following geological structures; Folds, faults and joints.										
Unit	t V	GE	OLOGICAL INVESTIGATIONS FOR CIVIL ENGINEERING		9	+	0						
Intro	duction	on to	Aerial and Satellite Remote sensing - Role of Geophysical investigations in	civil	eng	inee	ring						
proje	ects –	Elect	rical resistivity and Seismic methods - Geological conditions necessary			c							
for t	he co Islide	nstruc	ction of Dams, Tunnels, Bridges and Road cuttings – Types, Causes and pre	vent	ion	01							
Lan	isilue	3 – C	oastal closion and coastal protection.										
			Т	otal	45	Peri	ods						
Cou	rse C	outco	mes:		-	-							
Upo	n con	pletio	on of this course, the students will be able to:										
COI	:	Iden	tify the problems associated with underground excavations										
CO2	2 :	Clas	ssify the rock mass using the reference data										
COS	3 :	Und	erstand the failure criteria of rocks										
CO	1 :	Und	erstand various natural hazards, their causes and effects.										
Text	Boo	ks:											
	Parb	in Sir	ngh. A Text Book of Engineering and General Geology, S.K.Kataria and So	ons,	Del	hi, S	ixth						
1.	Editi	on, 1	998		0.00								
2.	Garg	g S.K.	Physical and Engineering Geology, Khanna Publishers, Delhi, Third Edition	on, l	999)							
Dofe	roper	Roo	ke.										
	Mab	opotr	NJ. A C. P. A. Tayt Book of Goology CPS Duklishors & Distributors Now Dalk	; TL	ind	Edit	ion						
1.	2000	apatra)	a G.D. A Text book of Geology, CDS Publishers & Distributers, New Dein	1, 1ľ	ma	Ealt	ion,						
	2000	<i>.</i>											

2. Bell F.G. Fundamentals of Engineering Geology, BS Publications, Hyderabad, 2005.

3. Gokhale K.V.G.K. Principles of Engineering Geology, BS Publications, Hyderabad, 2005

4. Mahapatra G.B. A Text Book of Physical Geology, CBS Publishers & Distributers, Delhi, 1999

5. P.C. Varghese Engineering Geology for Civil Engineers, PHI Leaarning Pvt. Ltd., New Delhi

CO-PO-PSO MAPPING

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	3	3	2		3	2					1	3		
CO2	1	1	2	3			2						3		
CO3	2	2	3	2		3	2					1	3		
CO4	2	2	3	2		3	2					1	3		

- 1 Slightly
- 2 Moderately

3 - Strongly

18	CE4)4	WATER SUPPLY ENGINEERING	L	Т	P	С
				3	0	0	3
Cou	irse ()bje	ctives:				
То е	equip	the s	tudents with the principles and design of water treatment and distribution.				
Uni	t I	SO	URCES OF WATER	9		+	0
Pub	lic wa	ter si	upply system - Planning, Objectives, Design period, Population forecasting; Wa	terde	mano	1 –	
Sou	rces o	of wat	er and their characteristics, Surface and Groundwater – Impounding Reservoir -	_			
Dev	elopn	nent a	and selection of source – Source Water quality – Characterization –				
Bigi	mica	nee	Diffiking water quarty standards.				
Uni	t II	CO	NVEYANCE FROM THE SOURCE	9		+	0
Wat	er su	pply	- intake structures - Functions; Pipes and conduits for water - Pipe materials	s —			
Hyd	raulic	es of	flow in pipes - Transmission main design - Laying, jointing and testing of p	ipes -	_		
appu	urtena	ances	– Types and capacity of pumps – Selection of pumps and pipe materials.				
Uni	t III	v	VATER TREATMENT	0		-	0
Ohie	ective	<u>s – I</u>	Init operations and processes – Principles functions and design of water tree	atmen	t pla	nt	U
unit	s, aer	ators	of flash mixers, Coagulation and flocculation –Clarifloccuator-Plate and tub	e e	it pit		
settl	ers -	Pulsa	ator clarifier - sand filters - Disinfection - Residue Management - Construction	on,Op	oerat	ion	
and	Mair	itena	nce aspects.				
TT *	4 137						_
Uni	ιιν	AD	VANCED WATER TREATMENT	9		+	0
Wat	er sof	tenin	g – Desalination- R.O. Plant – demineralization – Adsorption - Ion exchange– N	/lemb	rane	.1	
Ope	ems - ratior	- KU 1 & N	Agintenance aspects – Recent advances	ructio	n an	a	
Ope	Tation		Hantenance aspects Recent advances.				
Uni	t V	WA	TER DISTRIBUTION AND SUPPLY	9		+	0
Req	uirem	ents	of water distribution - Components - Selection of pipe material - Service res	ervoi	rs		
– Fi	inctio	ns –	Network design - Economics - Analysis of distribution networks -Computer	applic	catio	ns	
$-A_{j}$	ppurte	enanc	es – Leak detection.	dfittin	a c		
svste	ems c	of plu	mbing and types of plumbing.		igs,		
		1		Total	45	Pei	iods
Cou	ırse (Dutco	omes:				
Upo	n cor	nplet	ion of this course, the students will be able to:				
CO	1	: a tı	n insight into the structure of drinking water supply systems, including water reatment and distribution	trans	port	,	
CO	2	: a	n understanding of water quality criteria and standards, and their relation to p	oublic	heal	th	
CO	3	: tł	he ability to design and evaluate water supply project alternatives on basis of	chose	ense	lect	ion
Toy	t Boo		riteria				
1	Gar	r S I	K Environmental Engineering Vol IKhanna Publishers New Delhi 2010				
2.	Mod	<u>, p.</u> li, P.	N., Water Supply Engineering, Vol.I Standard Book House, New Delhi, 2010.	10.			
3.	Pun (P)	mia,	B.C., Ashok Jain and Arun Jain, Water Supply Engineering, Laxmi Public	ations	8		
Refe	erenc	e Bo	oks:				
1.	Man	ual c	on Water Supply and Treatment, CPHEEO, Ministry of Urban Development	,Gov	ernn	nen	t
2.	Sve	1 R	Oasim and Edward M. Motley Guang Zhu. Water Works Engineering Plant				
_ <u>-</u> .	2900						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2		2	3	3	3		1	2	1	3	1	1
CO2	1	1	2			3	3	3			2	1	3		1
CO3	3	3	3	2	1	3	3	3		1	2	1	3	1	1

18CI	I8CE405 APPLIED HYDRAULICS AND FLUID L T P C MACHINERY 3 0 0 3													
		MACHINERI	3	0	0	3								
Cou	rse Ol	jectives:	-	-	-	-								
1.	To st	udy open channel flow characteristics including hydraulic jump and surges.												
2.	To st	udy the performance characteristics of hydraulic machines												
3.	To in	npart knowledge on basic concepts of open channel flow and types of flow.												
4.	To ir	npart knowledge about Classification of pumps and Air vessels, indicator diagra	ams.											
5.	To d mach	evelop the abilities to analyse flow characteristics in open channel and design hy ines.	drau	ılic										
Unit		DEN CHANNEL ELOW	0		+	0								
Oper	r chan	nel flow – Types and regimes of flow – Wide open channel – Specific energy – (Pritic	al f		und								
its co Deter sectio	omputa rminat	ation. Uniform flow – Velocity measurement – Manning's and Chezy's formula on of roughness coefficients – Determination of normal depth and velocity – M	a – osteo	conc	omica	al								
Unit	П	VARIED FLOW	9		+	0								
Dyna	mic e	ulations of gradually varied flow – Assumptions – Draw down and back water (- e	'	U								
Chara meth	acteris od - F	tics of flow profiles — Profile determination – Graphical integration, direct step an lydraulic jump – Types – Energy dissipation – Flow through transitions.	d sta	nda	rd ste	ep								
Unit	III	MOMENTUM PRINCIPLE	9		+	0								
Impu	lse Mo	omentum equation – Application of linear momentum principle – Impact of jet – for	rceex	certe	ed by	/								
a jet	on no	rmal, inclined and curved surfaces for stationary and moving cases - angularmo	men	tum										
princ	iple –	construction of velocity vector diagrams – jet propulsion of ships.												
1	r ·	Je Fe Ference												
Unit	IV	HYDRAULIC TURBINES	9		+	0								
Unit Class	IV sification	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbine	9 es –		+	0								
Unit Class Velo	IV sification	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating	9 es – g		+	0								
Unit Class Velo chara	IV sificati city tr acteris	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines.	9 es – g		+	0								
Unit Class Velo chara	IV sificaticity tr	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines.	9 es – g		+	0								
Unit Class Velo chara Unit	IV sificati city tr acteris V	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines.	9 es – g 9		+	0								
Unit Class Velo chara Unit Class	IV sificati city tr acteris V sificati	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed	9 es – g 9 to s	tart	+ + the	0								
Unit Class Velo chara Unit Class pump comp	IV sification \mathbf{V} sification \mathbf{V} sification \mathbf{V} solution \mathbf{V}	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working pumps mersible pump and Gear pump.	9 g to s princ	tart	+ + the eof Ja	0 0 et								
Unit Class Velo chara Unit Class pump comp pump	IV sificati city tr acteris V sificati o – m oonent o, Sub	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working pumpmersible pump and Gear pump.	9 es – g to s princ	tarti	+ + the eof J	0 0 et								
Unit Class Velo chara Unit Class pump comp pump	IV sificati city tr acteris V sificati 0 – mu ponent p, Sub	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump–s and working – slip - indicator diagram and its variation - air vessel – working mersible pump and Gear pump.	9 es – g to s princ	tarti iiple 45	+ + the eof Jo	0 et ods								
Unit Class Velo chara Unit Class pump comp pump	IV sificati city tr acteris V sificati o – mu ponent o, Sub	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working mersible pump and Gear pump.	9 g to s princ	tartt iple	+ the eof Jo	0 et ods								
Unit Class Velo chara Unit Class pump comp pump Dump	IV sificati city tr acteris V sificati o – m oonent o, Sub rse Ou	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working pumpresible pump and Gear pump. Iteration of this course, the students will be able to:	9 g to s princ	tartt iple 45	+ the Perio	0 et ods								
Unit Class Velo chara Unit Class pump comp pump Dump Coun Upor CO1	IV sificati city tr acteris V sificati o – mu ponent p, Sub rse Ou a comp :	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working principle pump and Gear pump. Interest Interest Visualize fluid flow phenomena observed in Civil Engineering systems such a pipe, flow measurement through orifices, mouth pieces, notches and weirs	9 g fo s princ Cotal	tarti iple 45 w ir	+ the eof Jo Perio	0 et ods								
Unit Class Velo chara Unit Class pump comp pump Dump Coun Upor CO1	IV sificati city tr acteris V sificati o – mu conent o, Sub rse Ou comp i comp i comp i comp	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working principle pump and Gear pump. Iteration of this course, the students will be able to: Visualize fluid flow phenomena observed in Civil Engineering systems such a pipe, flow measurement through orifices, mouth pieces, notches and weirs Analyze fluid flows in open channel hydraulics and devices such as weirs and	9 es – g to s princ otal flum	tarti iple 45 w ir	+ + the eof Jo Perio	0 et ods								
Unit Class Velo chara Unit Class pump comp pump comp pump Cou Upor CO1 CO2 CO2	IV sificati city tr acteris V sificati o – mu conent o, Sub rse Ou i comp : : : :	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working principle pump and Gear pump. Iterest Idetion of this course, the students will be able to: Visualize fluid flow phenomena observed in Civil Engineering systems such a pipe, flow measurement through orifices, mouth pieces, notches and weirs Analyze fluid flows in open channel hydraulics and devices such as weirs and Apply dimensional analysis	9 g fto s princ 'otal flum	tarti iple 45 w ir	+ the eof Jo Perio	0 et ods								
Unit Class Velo chara Unit Class pump comp pump comp pump Com Upor CO1 CO2 CO3 CO4	IV sificati city tr acteris V bificati 0 - mu bonent 0, Sub rse Ou 1 comp 1 : 1 : 1 :	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operating tics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working performence curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working performence curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working performence curves – Reciprocating pump- s and working – slip - indicator diagram and its variation - air vessel – working performence of this course, the students will be able to: Visualize fluid flow phenomena observed in Civil Engineering systems such a pipe, flow measurement through orifices, mouth pieces, notches and weirs Analyze fluid flows in open channel hydraulics and devices such as weirs and Apply dimensional analysis To study types of centrifugal Pumps, work done and efficiency of the different centrifugal pumps and also study about performance of pumps & characteristic	9 es – g to s princ iotal flum	tarti iple 45 w ir nes es	+ the eof Jo	0 et ods								
Unit Class Velo chara Unit Class pump comp pump comp pump Com Upor CO1 CO2 CO3 CO4	IV sificati city tr acteris V sificati 0 - mu conent 0, Sub rse Ou 1 comp 1	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operatin ics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working mersible pump and Gear pump. Interest	9 9 to s princ Cotal flum flum t type c cur s oft	tarti tarti 45 w ir nes es ves urbi	+ + the eof Jo	0 et								
Unit Class Velo chara Unit Class pump comp pump comp pump Com CO1 CO2 CO3 CO4 CO5 Text	IV sificati city tr acteris V sificati 0 – mu bonent 0, Sub rse Ou 1 comp 1 : 1 : 1 : 1 : Book	HYDRAULIC TURBINES on – working principles and design of Pelton wheel, Francis and Kaplan turbing angles – efficiencies – draft tube - theory and types – Specific speed – operatin ics – Governing of turbines. PUMPS on - Centrifugal pump – working principle –velocity triangle - minimum speed litistage pumps – Specific speed - performance curves – Reciprocating pump– s and working – slip - indicator diagram and its variation - air vessel – working j mersible pump and Gear pump. Tatcomes: Idetion of this course, the students will be able to: Visualize fluid flow phenomena observed in Civil Engineering systems such a pipe, flow measurement through orifices, mouth pieces, notches and weirs Analyze fluid flows in open channel hydraulics and devices such as weirs and Apply dimensional analysis To study types of centrifugal Pumps, work done and efficiency of the different centrifugal pumps and also study about performance of pumps & characteristis To study about specific speed and performance characteristics of different type	9 es – g to s princ iotal flum c cun s oft	tarti iple 45 w ir nes es ves	+ the eof Jo Perio	0 et ods								

	Delhi, 2014.
2.	Bansal R.K., <i>Fluid Mechanics and Hydraulic Machines</i> , 9 th Edition, Laxmi Publications(P) Ltd, New Delhi, 2018.
Ref	erence Books:
1.	Subramanya K., Flow in Open channels, Tata McGraw-Hill Publishing Company, 1994.
2.	Rama Durgaiah D., Fluid Mechanics and Machinery, New Age International Publishers, New Delhi, 2002.
3.	Rajput R.K., A text book of Fluid Mechanics in SI Units, S.Chand and Company, New Delhi, 2016.

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	1	2	1	2	1	2	1	1	1	1	1	2		1
CO2	1	1	2	1	2	1	2	1	1	1	1	1	2	1	1
CO3	1	1	1	1	1	1	2	1	1	1	1	1	2		1
CO4	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1
CO5	2	1	2	1	2	1	2	1	1	1	1	1	1		2

18C	E406	CONCRETE TECHNOLOGY	L	Т	Р	С
			3	0	0	3
Cou	rse Ob	jectives:				
	At th	e end of this course ,				
1.	The s	student shall have a good knowledge about constituent materials. To				
2.	get a	wareness about the properties of fresh and hardened concrete.				
3.	To u	nderstand the concept and procedure for concrete mix design as per IS code star	idarc	ls.To)	
4. 5	know	the types of special concretes.				
5.	10 a	equite awareness about quanty control in concrete.				
Unit	t I M	ATERIALS AND THEIR PROPERTIES	9		+	0
Cem	ient – c	constituents - tests on cement - types of cement - aggregates - M-Sand - proper	rties	and	uses	3 —
class	sificatio	n of aggregates - properties and tests on aggregates - gradation - quality of wat	er			
— ad	mixture	es – accelerators – retarders.				
Unit	+ TT	DODEDTIES OF EDESH AND HADDENED CONCRETE	0			Δ
Dron	l II	PROPERTIES OF FRESH AND HARDENED CONCRETE	9	rata	+	U
- str	enoth -	- stress-strain characteristics – modulus of elasticity – shrinkage – creen – thern	volici	nduc	rtivi	tv –
pern	neabilit	y – test for tension, compression and flexure – non-destructivetests.	lareo	maac		<i>ty</i>
1						
Unit	t III	CONCRETE MIX DESIGN	9		+	0
Non	ninal m	ixes - design mixes - factors influencing the design - Theory and problems - A	CI n	netho	od,	
DOI	E meth	od and IS method.				
Unit	+ TV	SPECIAL CONCRETES AND CONCRETING METHODS				0
C III		STECIAL CONCRETES AND CONCRETING METHODS	<u> </u>		+	U
Spec	cial con	cretes and mortar, concrete chemicals, special elements for accelerated strength	i gan	n,vao	cuui	n
Met	hods of	corrosion protection, corrosion inhibitors, corrosion resistant steels	rpim	iiiig.		
coati	ings an	d cathodic protection. Light weight concrete – ready mix concrete – fibre reinfor	cedc	concr	ete.	
	C					
T T •						0
Unit	ŧν	QUALITY CONTROL	9		+	0
Freq	uency	of sampling $-$ statistical analysis of test results $-$ standard deviation $-$ coefficien	t of v	ariat	10n	_
cnar	acterist	ic strength – acceptance and rejection criteria.				
		Т	otal	45 H	Peri	ods
Cou	rse Ou	itcomes:				
Upo	n comp	eletion of this course, the students will be able to:				
CO	1 :	Test all the concrete materials as per IS code				
CO2	2 :	Design the concrete mix using ACI and IS code methods				
CO	3 :	Determine the properties of fresh and hardened of concrete				
$\frac{CO^2}{CO^4}$	+ :	Design special concretes for specific applications				
Tevi	, I Booka	Ensure quarty control while testing/ sampling and acceptance criteria				
1	Nevill	e A.M <i>Properties Of Concrete</i> , Pearson publication, 2012				
2	Shetty	M SConcrete technology Volume L& II S Chand and Company I to Deibi 2	003			
2. 2	Santh	akumar A R Concrete Technology Oxford university Press NewDelhi 2007				
Э. ⊿	Mehte	K P Concrete Technology Chand & Co New Delhi 2006				
4. Def	nomes	Pooko				
Kere 1	India	DUUKS; 9 Standard Recommended Guide lines for Concrete Mir Design 18:10262 20	00	Bur	2911	
1.	manan	i Standard Recommended Guide tines for Concrete Mild Design, 15.10202 – 20	$\overline{\mathbf{y}}$,	Dur	cau	

	of Indian Standards, NewDelhi.
2.	Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete
	IS:383-1970 R2011, Bureau of Indian Standards, NewDelhi.
3.	Gambhir.M.L, Concrete technology, Volume I & II, Tata McGraw-HillBookCompany, Third print,
	2003
4.	Krishnaraju N. Design of Concrete Mixes, CBS publishers. NewDelhi, 2002.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				1	2	1	1	1	1	2	1	1	1		1
CO2			2	2	1	1			1	1			2		1
CO3					1	1	1			1			1		1
CO4				1		1									1
CO5						1		1	1				3		1

18CE407 MATERIAL TESTING & EVALUATION L T P LABORATORY 0 0 4													
G			•	0	0	4	2						
Cou	rse		jectives:										
1.	At	th	e end of this course the student should be able to evaluate the elastic cons	tants	of th	emate	rials						
2.	At oth	th ner	e end of this course the student should be able to determine the strength of properties.	con	crete	and							
EXP	PER	IN	IENTS										
1.	Te	ens	on test on mild steel specimen										
2.	De	efle	ction test on simply supported beam										
3.	De	efle	ction test on double cantilever beam										
4.	Do	out	le shear test on mild steel rod										
5.	Τc	orsi	on test										
6.	Te i) (ii)	est Co Te	of springs mpression Spring nsion spring										
7.	Co	om	pression test on concrete cube										
8.	Cr	us	ning test on bricks										
9.	Ha	ard	ness test on metals like mild steel, brass and aluminum										
10.	Sp	olit	tensile test on concrete										
11.	Cł	nar	py Impact test										
			Т	otal (P)=	60 Per	iods						
Cou	rse	Οι	tcomes:										
After	r the	e s	accessful completion of the practical session, the students will be able to										
CO1		:	Evaluate Young Modulus, torsional strength, hardness and tensile strengt	h of g	given	speci	nens						
CO2	2	:	Determine the strength of concrete										
CO3	;	:	Find the compressive strength of concrete cubes and bricks										
CO4	Ļ	:	Find stiffness of open coiled and closed coiled springs										

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	1	2	1	2	-	1	1	2	1	-	-	2	1	1
CO2	2	1	1	2	1	2	1	2	2	1	-	1	2	1	1
CO3	2	1	1	2	1	2	1	2	2	1	-	1	2	1	1
CO4	2	1	1	1	1	1	1	1	2	1	-	1	1	1	1
CO5															

18CI	2408	3	HYDRAULIC ENGINEERING LAI	BORATORY	L	Т	Р	С
Cour	se (Objectives:			0	0	4	2
1	At sec	the end of t tions	s course the student should be able to e	evaluate co-efficient of disch	arge	ofv	variou	us
2	At tur	the end of t bines	s course the student should be able to e	evaluate the characteristics of	of pu	mps	and	
List	of E	xperiments						
1		Determinat	n of co-efficient of discharge of flow th	rough orifice				
2		Determinat	n of co-efficient of discharge of flow th	norough mouth piece				
3		Determinat	n of co-efficient of discharge of flow ov	ver notches				
4		Determinat	n of co-efficient of discharge for ventur	rimeter				
5		Determinat	n of co-efficient of discharge for orifice	emeter				
6		Determinat	n of friction factor of pipes					
7		Determinat	n of minor losses in pipes					
8		Study on p	formance characteristics of Pelton whee	el turbine				
9		Study on p	formance characteristics of Kaplan turl	bine				
10		Study on p	formance characteristics of Centrifugal	l pump				
11		Study on p	formance characteristics of reciprocatir	ng pump				
12		Study on p	formance characteristics of jet pump					
13		Study on p	formance characteristics of self-primin	g pump				
14		Study on p	formance characteristics of gear oil pur	mp				
				То	tal =	: 60	Peri	iods
Cour	se (Dutcomes:						
At th	e en	d of the cou	e the student will be able to					
CO1	:	To measur	flow in pipes and determine frictional le	osses.				
CO2	:	Apply dim	sional analysis for design of experimer	ntal procedures				
CO3	:	Calibrate f	w measuring devices used in pipes, ch	annels and tanks				
CO4	:	Determine	uid and flow properties					
CO5	:	Characteri	laminar and turbulent flow					
CO6	:	To develop	characteristics of pumps and turbines.					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	2	1	1	1	1	1	1	2	3	3	2
CO2	3	3	1	1	2	1	1	1	1	1	1	1	2	2	1
CO3	3	1	2	2	1	1	2	1	1	1	2	1	2	1	1
CO4	1	2	3	1	1	2	1	1	1	2	2	1	1	1	2
CO5	1	1	2	2	1	1	1	3	1	2	1	2	1	2	1

1 – Slightly 2 – Moderately 3 - Strongly

	18CEM	C01 DISASTER PREPAREDNESS AND PLANNING	L	ΤP	С
		· · · ·	2	0 0	0
Cou	rse Obje	ctives:	•		
1.	Learn t humani	o demonstrate a critical understanding of key concepts in disaster risk reduction tarian response.	on an	đ	
2.	Critical	ly evaluate disaster risk reduction and humanitarian response policy and pract	cicefr	om	
3.	Develo	p an understanding of standards of humanitarian response and practical releva	nce in	l	
4.	Critical plannin they we	ly understand the strengths and weaknesses of disaster management approach g and programming in different countries, particularly their home country or the prk in.	es, hecou	intries	
Unit	I REF	PERCUSSIONS OF DISASTERS AND HAZARDS		9 +	0
Natu Hum Cycl Aval Outb	ral and Man and Man and Sones, Ts anches, Is preaks of	Manmade Disasters: Difference, Nature, Types and Magnitude. Economic Da Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes unamis, Floods, Droughts, And Famines, Landslides and Man-made disaster: Nuclear Reactor, Meltdown, Industrial Accidents, Oil Sli Disease, Epidemics, War and Conflicts.	amage s, Vc cks a	nd Sp	s of ms, ills,
Tinit	TT	DISASTED DOME ADEAS IN INDIA		0	
	II	DISASTER PRONE AREAS IN INDIA		9 +	U
Cycl	y of Seis onic and	Coastal Hazards with Special Reference to Tsunami.	, Area	asPror	ie to
Unit	III DI	SASTER PREPAREDNESS AND MANAGEMENT		9 +	0
Prepa Appl Gove	aredness ication o ernmenta	Monitoring of Phenomena Triggering a Disaster or Hazard, Evaluation f Remote Sensing, Data from Meteorological and Other Agencies, Media Re l and Community Preparedness.	of I ports	Risk:	
Init		SASTED MITICATION		0	Δ
		SASTER MITIGATION		<u>y +</u>	U
Mitig	gation an	d Non-Structural Mitigation, Programs of Disaster Mitigation in India.	struct	urai	
Unit	V	REHABILITATION OF ENVIRONMENT		9 +	0
Disas proje urbai meth	sters, Env octs and enization enization	vironment and Development - Factors affecting vulnerability such as impact of de environmental modifications (including of dams, land use changes, etc.), sustainable and environmental friendly recovery; reconstruction and deve	eveloj lopmo	omenta	1 1
		Te	otal 4	5 Peri	ods
Cou	rse Outc	omes:			
Upor	ı complet	tion of this course, the students will be able to:			
CO1	' :	To identify the different disasters and its causes.			
<i>CO2</i>	2 :	To identify the vulnerable areas of disasters in India.			
CO3		To get knowledge about preparedness during disasters.			
CO4		To analyse the risk in disasters.			
<i>CO5</i>		10 know the corrective measures to mitigate disasters.			
Text	Books:	ardoon "Digastar Mitigation Experiences and Definition." Denting Holl (H	dia	Norr	
1.	Delhi. 4	th Edition, 2011.	iuia,	INEW	
2.	Goel S.I	L, "Disaster Administration and Management Text and Case Studies", Deep	& De	ер	

Publication Pvt. Ltd., New Delhi, 2007.

Reference Books:

1. Nishith, R and Singh, A.K, "Disaster Management in India: Perspectives, issues and strategies", New Royal book Company,2007.

CO-PO-PSO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1	1	3	3	3	3	2	2	2
CO2	3	1	2	1	2	13	1	3	1	2	1	1	1	3	1
CO3	1	3	2	1	2	1	3	1	2	1	3	2	3	1	1
CO4	1	1	1	2	2	2	2	2	2	1	3	1	3	3	1
CO5	1	2	1	2	3	2	1	3	3	2	3	1	2	1	1

1 – Slightly

2 – Moderately3 - Strongly

18CE50	1 BASIC STRUCTURAL ANALYSIS	L	Т	Р	С
		3	0	0	3
Course	Objectives:				
1. To	impart knowledge on force responses on beams, trusses, arches, suspension bridg	es			
an	alytically and using influence lines. To impart knowledge on Plastic analysis of st	ruct	ures	•	
Unit I	INDETERMINANCIES AND INFLUENCE LINES FOR	a			0
	STATICALLY	9		Ŧ	U
	DETERMINATE BEAMS ROLLING LOADS				
Concept	of Determinancy and Indeterminancy-static and Kinematic indeterminancies-ex	amp	oles	- sii	ngle
concentr	ated load moving on the span – UDL longer than the span – UDL shorter than	the	spa	n –	two
concentr	ated loads at a fixed distance apart - several concentrated loads(CONCEPT ONL	Y) -	– eq	uiva	lent
UDL. Ir	fluence lines for reactions, shear force and bending moment – Calculation of	shea	ar fo	rce	and
bending	moment at a point – Calculation of position of load for maximum shear for	ce a	ind	benc	ling
moment	- Uniformly distributed load shorter than the span on simply supported beam	– C	onc	entra	ated
loads - A	Absolute maximum shear force and bending				
moment					
					·
Unit II	INFLUENCE LINES FOR STATICALLY INDETERMINATE BEAMS	9)	+	0
Clark M	axwell's theorem of reciprocal deflection – Betti's theorem- Muller's Breslau's Pri	ncip	le ai	nd	
its applie	cations to determine the influence lines for continuous beams(two span only) Ana	ysis	of		
plane tru	sses with maximum two redundant members by displacement and forcemethods-7	russ	ses		
with lac	c of fit-Thermal stresses.				
Unit III	THREE HINGED, TWO HINGED ARCHES	9)	+	0
Symmet	rical arches – Analysis of three hinged and two hinged arches – shear force Norma	l thr	rust		
and bend	ling moment – Effect of rib – shortening – Parabolic arch subjected to UDL.				
Unit IV	CABLES AND SUSPENSION BRIDGES	9)	+	0
Analysis	of cable under concentrated loads - Analysis of cable under UDL – Shape of cable u	nder	r sel	f-we	ight
– Ancho	rage of suspension cables – shear force and bending moment in three hinged still	fene	ed g	irdei	:s –
Maximu	n bending moment due to single concentrated load – UDL - Two hinged		0		
stiffenin	g girders.				
Unit V	PLASTIC ANALYSIS OF STRUCTURES	9)	+	0
Plastic n	noment capacity of sections – Plastic section modulus – Shape factor for rectan	gular	r. tri	angi	ılar.
circular	and hollow circular sections – Plastic hinge concept – Load factor – Plastic	anal	ysis	- B	asic
theorems	- Principle of virtual work - Determination of collapse load for simply supported	bea	im,	prop	ped
cantileve	r beam, fixed beam, continuous beam subjected to concentrated		,		
load and	UDL – Collapse load for single storey single bay portal frames.				
	Γ	otal	45	Peri	ods
Course	Outcomes:		-		
Upon co	mpletion of this course, the students will be able to:				
CO1	: Use various classical methods for analysis of indeterminate structures				
CO2	: Determine the effect of support settlements for indeterminate structures				
CO3	: Apply the concepts of ILD and moving loads on determinate structures				
205	· · · · · · · · · · · · · · · · · · ·				

CO	4	:	Know the performance of cables and suspension bridges under external loads								
CO	5		Analysis the various structures in plastic behavior								
Tex	t Bo	ok	S:								
1.	1. Devdas Menon "Structural Analysis", Narosa Publishers, 2010.										
2.	2. Thandavamoorthy T.S., "Structural Analysis", Oxford Publishers, 2011.										
3.	. Punmia B.C., Theory of structures - Vol. II, Laxmi Publications (P) Ltd, 2004.										
4	Negi L.S. and Jangid R.S., <i>Structural Analysis</i> , Tata McGraw - Hill Publishing										
4.	Co	mp	any,New Delhi, 2007								
Ref	eren	ce	Books:								
1.	Ra	ma	murtham S "Theory of structures", Dhanpat Raj Publications								
2.	Tin	nos	henko S.P. and Young D.H., Theory of Structures, McGraw – Hill Book Company, New								
	De	lhi	, 1965.								
3.	Gu	pta	S.P., Pandit G.S and Rajesh Gupta, Theory of structures-Vol I & II, Tata McGraw-Hill								
	Pu	olis	hing Company Limited, New Delhi, 1999								
4.	Re	ddy	C.S., Basic Structural Analysis, Tata McGraw-Hill Publishing Company Limited, New								
	De	lhi,	1999								

0010															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	3	1	2	3	2	3	1	3	1	2	1	1	1	3	1
CO3	1	3	2	3	2	1	3	1	2	1	3	2	3	1	1
CO4	3	3	3	2	1	2	2	2	2	1	3	1	1	1	1
CO5	1	1	3	3	3	2	1	1	1	2	1	1	1	1	1

18CE502 MECHANICS OF SOILS													
			SOILS	3	0	Δ	3						
~				3	U	U	3						
Cou	rse	Object	ives:										
1.	Fi	nd inde	x properties of soil, identify and classify the soil based on index properties.										
2.	Ac	quire k	nowledge on the effect of ground water table on soil and to estimate stress dist	ribut	ionin	soi	il.						
3.	Le	arn the	concept of permeability and seepage in soil including flow net.										
4.	Ga	ain kno	wledge on compaction and consolidation in soil and to find strength of soil.										
TIn:4	T	DACI	C DDODEDTIES OF SOIL S	0		.	0						
Soil	for	DASI	Soil problems in Engineering Physical properties of soil Phase re-	9 Intio	ne	+ In	day						
prop	ertie	es of so	il – Grain size distribution – Atterberg's limits – Classification of soils – BIS	clas	ns – sifica	atio	n –						
Field	Field identification.												
Unit	Π	ST	RESSES IN SOILS	9		+	0						
Soil	wat	er –Sta	tic pressure in water-Effective stress concepts in soils - Capillary phenom	enon	$-\mathbf{V}$	ert	ical						
stres	s di	stributi	on in soils – Boussinesq equation – Vertical stress distribution diagrams	- I	Line	loa	d –						
Unif	orm	ly load	ed areas – Newmark's Influence Chart – Construction and Use – Approxim	nate	met	hod	s –						
18002	ars -	- west	ergaard's Analysis-ContactPlessure.										
Unit	III	PE	RMEABILITY AND SEEPAGE	9		+	0						
One	dim	ensiona	l flow through soil - Permeability - Darcy's Law - field and laboratory test- f	lowt	hroug	gh							
strati	fied	soil –	Factors affecting permeability of soil.										
Seep	age	pressur	e – Quick sand condition – Two dimensional flow – Laplace equation – Elect	rical									
analo	ogy	– Flow	net – Methods of construction, properties and applications – application of she	eet p	ilecu	t of	t t						
and	eart		- Pilleatic IIIle.										
Unit	IV	CO	MPACTION AND CONSOLIDATION	9		+	0						
Com	pact	ion –	laboratory tests - Standard Proctor's Compaction test - Modified Proctor's	Co	mpac	ction	n –						
Mois	ture	density	relation - factors affecting compaction - Field compaction methods - Compact	ion c	ontro	ol.							
Cons	olid	ation –	Components of settlement - Laboratory test - Terzaghi's One Dimensional	Con	solid	atio)n –						
Defin	nitio	n - Nc	ormally consolidated clay – Over Consolidated clay – Under Consolidated of	elay	– e	-lo	gρ						
log t	ons	nıp – B thods-F	oundary condition -1 ime factor -1 ime face of consolidation $-\sqrt{t}$ and factors influencing compression behavior of soils										
log t	me	inous-i	actors influencing compression behavior of sons.										
Unit	V	SH	EAR STRENGTH	9		+	0						
Shear	r str	ength o	f soil - importance and use - Mohr - Coulomb's theory - Laboratory test	- 1	Direc	et sł	near						
test -	- Ti	riaxial	Compression test - Types of Triaxial test based on drainage conditions	_	Unco	onfi	ned						
Com	pres	sion Te	est – Vane Shear test – Factors affecting the ShearStrength.										
			т	otol	45 D	oni	oda						
Сош	rse	Outcor	nes•	otai	45 P	eri	ous						
Upor		mpletio	n of this course, the students will be able to:										
CO1		: Un	derstand the importance of soil mechanics in civil engineering and to classify	the s	oilba	ised	l on						
		the	tests conducted.										
CO2		: Do	proper stress estimation for various types of foundation loads.										
CO3		: Sol	ve any practical problems related to soil stresses estimation, permeability and	seep	age		_						
		incl	uding flow net diagram										
CO4		: Sol	ve practical problems related to consolidation settlement and time rate of settle	men	t								
005		: Est	imate shear strength of soil using the parameters obtained from different lab to	ests.									

Tex	t Books:
1.	Punmia B.C Soil Mechanics and Foundations, Laxmi Publications Pvt. Ltd., New Delhi, 2017.
2.	Gopal Ranjan and Rao A.S.R., <i>Basic and Applied Soil Mechanics</i> , New Age International Publishers (P) Ltd., New Delhi, 2016.
3.	Venkataramaiah, C., Geotechnical Engineering, New Age International Publishers, New Delhi, 2017.
Ref	erence Books:
1.	Arora K.R., Soil Mechanics and Foundation Engineering, Standard Publishersand
	Distributors, New Delhi, 2009.
2.	BrajaM.Das, Fundamentals of Geotechnical Engineering, Thomson Asia Pst.Ltd, Singapore, 2005.
3.	BrajaM.Das , Principles of Geotechnical Engineering, Thomson Asia Pst.Ltd, Singapore, 2008.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	2	1	3	0	0	0	1	0	3	0	0
CO2	3	2	3	3	2	1	3	0	0	0	1	0	3	0	0
CO3	3	3	2	3	2	1	3	0	0	0	1	0	3	0	0
CO4	3	3	3	2	1	1	3	0	0	0	1	0	3	0	0
CO5	3	3	2	2	1	1	3	0	0	0	1	0	3	0	0

18CE	E 50 3	WATER RESOURCES ENGINEERING	L	Т	Р	С								
			3	0	0	3								
Cour	se ()bjectives:												
1.	То	know the importance of hydraulic cycle, as water is the main source for the natur	e.Sta	orag	e of									
	wat	er by means of reservoir and wells are taught.		-										
2.	То	impart the knowledge of hydrology that deals with the occurrence, distribution, mo	vem	nent	and									
	pro	perties of water on the earth												
3.	То	impart the knowledge of various irrigation techniques.												
4.	То	undertstand the designs of various distribution system												
5.	То	deveop the abilities to know the distribution system.												
Unit	I	SURFACE WATER HYDROLOGY	9		+	0								
Hvdre	0109	ic cycle – Surface Water potential in India -Rain gauges – Types of rain gauges -	Aver	age										
rainfa	all o	ver a basin by arithmetic mean. Thiessen polygon and Isohyetal method – Run off	. – R	uno	ff									
proce	ss –	abstractions- Infiltration, evaporation, transpiration, interception and depression	stora	ge -	_									
Estim	natic	n of Run off by empirical formula and infiltration indices. Storm Hydrograph and	Uni	it										
Hydro	Hydrograph – Flood estimation by Dicken's formula.													
TT 1 /	**													
Unit	11	RESERVOIR PLANNING	9		+	0								
Impoi	rtand	ce of Reservoirs - Purpose of storage work – Large Reservoirs in India and Tamil Na	du - '	Тур	es o	f								
reserv	oirs.	- Investigation for reservoir planning – Selection of site for a reservoir – Zones of s	torag	ge 1r	1									
reserv	/01rs	- Single and multipurpose reservoir – Determination of capacity of reservoir - Res	servo	Dir										
seaim	sedimentation and their control – Reservoir losses – Basics of flood routing.													
Unit	Unit III CROUND WATER HYDROLOGY													
Listo		f Groundwater Davalonment in the world and India — Occurrence of ground water	two	05.0	f	U								
aquife	iy U	storage coefficient – coefficient of transmissibility – Steady radial flow into a we	1 loc	es o ested	lin									
uncon	ofine	storage element \sim element of datasinssionity \sim steady radiation with a weight of and confined aquifers – description of various types of open and tube wells – V	ield	accu										
from	an c	open well by constant level pumping test and recuperation test – Estimation of Yie	ld											
(stead	ly st	ate condition) - Site selection for a tube well.												
	-													
Unit	IV	DISTRIBUTION SYSTEM	9		+	0								
Class	ifia	bion of canala canal alignment. Kannady's theory Wood table I acay's theo		Dec	ian	of								
canal	cro	s sections – Comparisons of two theories – Use of Garret's diagram in channel d	ry –	Des	sign	01								
Balan	cin	a depth of cutting – Design procedure for an irrigation channel – I ongitudinal sec	vtion	$\int df d$	rana	1								
and so	che	tule of area statistics – types of canal cross sections – component parts of a cross	sect	tion		.1								
Const	truc	tion and maintenance of canals – Canal lining – GIS application in distribution s	vster	n.										
			,											
Unit	V	WATER LOGGING, DRAINAGE AND RIVER CONTROL	9		+	0								
Wate	r los	gging – importance, Causes and effects of water logging– Remedial measures – D	raina	age -	_									
Adva	ntag	es – Types of drainage system – Rivers and their behavior – Objectives – Classific	catio	n an	nd									
metho	od c	f river training works - GIS application.												
		Tot	al =	45]	Peri	ods								
Cour	se (Dutcomes:												
Upon	cor	npletion of this course, the students will be able to:												
CO1		: Design various channel systems												
CO2		: Design head and cross regulator structures												
CO3		: Identify various types of reservoir and their design aspects												
CO4		By the Establishes the understanding of cross drainage works and its design												
CO5		: Design different types of dams												

Tex	t Books:
1.	Linsley R.K. and Franzini J.B, Water Resources Engineering, McGraw-Hill Inc, 2002.
2.	Sharma R.K. and Sharma T.K., <i>Hydrology and Water Resources Engineering</i> , Dhanpat Rai and Sons, 2017.
3.	Punmia B.C. and Pande B.B.Lal, <i>Irrigation and water Power Engineering</i> , Laxmi PublicationsPvt Ltd., New Delhi,2016.
4.	Santhosh Kumar Garg, Hydrology and Water Resources Engineering, Khanna Publications Pvt.Ltd., New Delhi, 2002.
Ref	erence Books:
1.	Chow V.T. and Maidment, Hydrology for Engineers, McGraw-Hill Inc., Ltd., 2000.
2.	Raghunath H.M., Hydrology, Wiley Eastern Limited, New Delhi, 1990.
3.	Subramanya K., Engineering Hydrology, Tata-McGraw Hill , 1993.
4.	Sahasrabudhe S.D., Irrigation Engineering and Hydraulics Structures, Katson Publications, 1990.
5.	Das M.M., Saikia M.D., Hydrology, Prentice Hall of India, 2008.

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	1	2	2	2	2	2	1	1	1	1	1	2	3	1
CO2	2	2	1	2	2	2	2	1	1	1	1	1	2	3	1
CO3	2	2	1	1	1	2	2	1	1	1	1	1	2	3	2
CO4	2	2	1	1	1	1	2	1	1	1	1	1	1	3	1
CO5	2	1	2	2	2	1	2	1	1	1	1	1	1	3	2

1	8CE	2504	Design of Reinforced Concrete Elements	L	Т	Р	С
				3	0	0	3
Cou	rse (Objective	s:				
1.	To	understan	id the concepts of different design philosophies related to Reinforced conc	reteo	lesi	ign a	ind
2.	To	gain the l	knowledge of limit state design for flexure shear torsion and bond.				
3.	То	study the	behaviour of columns subjected to axial load, eccentric load and use of in	tera	ctio	on	
	dia	grams.					
4.	То	design th	e isolated foundation and staircases.				
TINIT'	гт	DESI	TN DHILOSODHIES		0		0
Stand	ll	DESIC	JN PHILOSOPHIES		9 7.01	+	U ts of
Work Partia Adva	cing al Sa antag	Stress Me afety Factor ges – Cod	ethod, Ultimate Load Method and Limit State Method – Characteristic Stren or – Stress-Strain behaviour of concrete and steel – al specifications.	gth	and	d loa	ıd –
LINI	тп		STATE DESIGN FOR ELEVURE	<u> </u>	0	1	0
Anal	vsis	design ar	ad detailing of singly and doubly reinforced rectangular and flanged beau	ms	, _ /	T Anal	vsis
desig vario	n ar us b	d detailin oundary c	g of one way and two way rectangular slabs subjected to uniformly distr conditions and corner effects.	ibut	ed	load	for
UNI	F II		Γ STATE DESIGN FOR,SHEAR,TORSION,BOND & IORAGE		9	+	0
Desig	gn re	equiremen	ts as per IS code – Behaviour of RC beams in shear and torsion – Design	ı an	d		
detai	ling	of RC me	embers for combined bending, shear and torsion- Behaviour of RC members	ers i	nbo	ond	and
anch	orag	e					
TINIT			E STATE DESIGN OF COLUMNS	<u> </u>	0		0
Type	s of	columns	- Braced and Unbraced columns - Design of short column for axial up	niav	9 ial	+ and	U
biaxi detai	al be ling	ending – I RC colu	nteraction diagrams – Design concepts of long columns – Standard method	of	lui	und	
Unit	V	т іміт	STATE DESIGN OF EQOTINGS & STAIDCASES	<u> </u>	0	1	Δ
Desig	v m o	f wall for	ting - Design of isolated footing - Square Rectangular and Circular shan	e fo	9 r 9	+ vial	U load
- Eco	centi	rically loa	ded isolated footing – Design of staircase(ordinary & dog-legged).	C 10	1 a		load
				0)	47	D	
(Use	ofI	S 156 200	Total (454	-0)=	45	Per	lods
Com	rse (S 430-200	se and tables and charts from SF10 are permitted)				
Upor		npletion of	of this course, the students will be able to:				
CO1	:	Apply the design the	e fundamental concepts of different design philosophies. Use IS code of p ne basic reinforced concrete elements	ract	ice	to	
CO2	:	Analysis	, design and to present detailing of reinforcement for flexure members.				
CO3	:	Analysis and torsi	, design and to present detailing of Slab and beam elements for bond, and on.	hora	age	,she	ar
CO4	:	Analysi	s ,design and detailing of Columns				
CO5		Analysis	, design and detailing of Footings and staircases.				
Text	Boo	oks:					
1.	"Re (Ind	inforced (lia) Privat	Concrete Design" Unnikrishnan Pillai S &Devdas Menon, McGraw Hill e Ltd,Chennai 2018.	Eduo	cati	on	
2.	Lin	nit state D	Design of Reinforced Concrete Varghese P.C, 2013 PH1 Learning P.Ltd.	Dell	ni.		
Refe	renc	e Books:					

1.	Sinha S.N. Reinforced Concrete Design, Tata McGraw Hill Publishing Company Ltd., NewDelhi ,2017.
2	Punmia B.C., Ashok Kumar Jain & Arun Kumar Jain ., Limit State Design of ReinforcedConcrete, Laxmi Publications Pvt. Ltd., New Delhi, 2016.
3.	Karve S.R and Shah V.L. Limit State Theory and Design of Reinforced Concrete, Structures Publications, Pune 2017.
4.	Krishna Raju N., Design of Reinforced Concrete Structures, CBS Publishers & Distributors, NewDelhi,2017.
5.	IS 456:2000 Plain and Reinforced concrete Code of practice (Third Revision).
6.	SP :16 Design aids for Reinforced Concrete to IS 456-1978.
7.	SP: 34 – 1987 Hand book on Concrete Reinforcement and Detailing.
8.	IS 875(Part 1)-1987: Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures. Part 1: Dead LoadsUnit Weights of Building Materials and Stored Materials (Second Revision)
9.	IS 875(Part 2)-1987: Code of Practice for Design Loads (Other Than Earthquake) For Buildings and Structures. Part 2: Imposed Loads (Second Revision)
10.	IS 875(Part3)-2015: Wind Loads on Buildings and Structures
11.	IS 875(Part4)-1984:snowloads
12.	IS 875(Part5)-1987:special loads and combinations

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	3	2	1	1	1	1	1	1	2	2	3	1
CO2	3	3	1	1	2	2	1	1	1	1	1	1	3	2	2
CO3	3	1	2	2	1	1	2	1	1	2	2	1	2	1	1
CO4	1	2	3	1	2	1	1	1	1	2	2	1	1	1	2
CO5	1	1	2	1	1	1	1	3	1	2	1	2	1	2	1

18CE505		WASTE WATER	L	Т	Р	С						
		ENGINEERING	3	0	0	3						
Course Objectives:												
1.	1. The subject aims to give the students, the knowledge about the sewage water and waste water treatment											
2.	Students are introduced to the new world of waste water treatment technologies which prevails in the current scenario											
 Students, at the end of the semester will have complete ability to analysis the type of sewageand the treatment to be carried out to reuse the water. 												
Unit I SEWERAGE SYSTEM 9 + 0												
Definition – classification – systems of sewerage – quantity of sewage – Fluctuation in flow pattern – estimation and storm runoff – design flow for separate and combined system – hydraulics of sewers – self cleansing velocities – full flow / partial flow conditions – sewer sections – material for sewers - sewerjoints–jointingmaterials–sewerlayingunder variousconditions–testonsewers–sewer maintenance – sewer appurtenances –sewage pumping – types of pumps.												
IL. 4 H WASTE WATED OHADA OTEDISTICS & DUMADA DV TOEATS												
Char	11 acteri	wASTE WATER CHARACTERISTICS & PRIMART TREATMENT stics and composition of sewage $-$ physical and chemical analysis $-$ DO and B		and	+	U						
their significances – cycles of decomposition – fundamentals of microbiology of wastewater – preliminary and primary treatment – screens – skimming tank – grit chamber – design of proportional flow weir– principle, types of sedimentation – design of sedimentation tanks.												
Unit III RIOLOCICAL TREATMENT OF WASTEWATER												
Basic principles of biological treatment – Activated sludge process – recirculation – diffuser – mechanical aeration – Process modifications – oxidation ditch – Trickling filter – Principles anddesign –NRC equation – RBC Principle – Principles and design of waste stabilization ponds – Principle and design of a lagoon - septic tanks and effluent disposal system.												
Unit IV SLUDGE MANAGEMENT & HOUSE DRAINAGE 9 +												
Objectives of sludge treatment – properties and characteristics of sludge – sludge thickening – sludge digestion – drying beds – conditioning and dewatering – sludge disposal – Sanitary fixtures and fitting – Pipe system – general layout of house drainage – street connections.												
Unit	V	SEWAGE DISPOSAL	9		+	0						
Methods – dilution – self purification of streams – oxygen sag curve – Streeter Phelp's model -wastewater reclamation techniques – land disposal – sewage farming – deep well injection – Eutrophication – recycles and reuse of wastewater.												
Total 45 Periods												
Course Outcomes:												
CO1	CO1 : Network of pipes, pumps, and force mains for the collection of wastewater, or sewage, from											
CO2	:	Water Negatively affected in quality by humans by changing its physical and chemical properties like colour odor										
CO3	:	Harnesses the action of bacteria and other microorganisms to clean water										
CO4	:	It is an integral part of any modern municipal waste water treatment										
CO5	O5 : Biological processes are used to remove contaminants and produce treated wastewaterthat is safe enough for release into the environment.											

Text Books:								
1.	Garg S.K., Waste Water Engineering, Khanna publishing Co., New Delhi - 2007.							
2.	Punmia B.C., Ashok Jain, <i>Environmental Engineering(VolII), Wastewater Engineering</i> , Laxmi Publications, New Delhi , 2008.							
Ref	Reference Books:							
1.	Duggal K.N., <i>Elements of Public Health Engineering</i> , S.Chand and Co., 2007.							
2.	Manual on Sewerage and Sewage Treatment, CPHEEO, Government of India, New Delhi, 1983.							
3.	Hand Book on Water Supply and Drainage, SP 35, B.I.S., New Delhi, 1987.							
4.	Metcalf and Eddy, M.C., Wastewater Engineering – Treatment & Reuse, TataMcGraw-Hill							
	Publications, New Delhi,2003.							
5.	Birdie G.S., Water Supply and Sanitary Engineering, DhanpatRai and sons, 2007.							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2	1	1	2	3	2			3		3	2	2
CO2		1	3		1	3	3	2			3		3		
CO3			2		1	3	3	2			3		3		1
CO4			2		1	3	3	2			3		3		2
CO5			3		1	3	3	2	1		3		3		3
180	CE506	TRANSPORTATION ENGINEERING	L	Т	Р	С									
--	--	---	--	--------------------------------------	-----------------------------	--------------------------	--	--	--	--	--				
			3	0	0	3									
Cou	rse Obje	ctives:													
1.	The obj	ective of the course is to educate the students on various components of highw	vaye	engii	neer	ing									
2.	To educ	cate the design concepts of components of railway engineering.													
3.	The cou	urse enables the students to develop skill on evaluation and maintenance.													
UNI	ГІ	HIGHWAY PLANNING AND ALIGNMENT		9	+	0									
Highway Development in India - Jayakar Committee Recommendations and Realisations- Requirements of Ideal Alignment- Factors Controlling Highway Alignment-Engineering Surveys for Alignment - Conventional Methods and Modern Methods (Remote Sensing, GIS and GPS techniques)-Classification and Cross Section of Urban and Rural Roads (IRC), Highway Cross Sectional Elements – Right of Way, Carriage Way, Camber, Kerbs, Shoulders and Footpaths [IRC Standards], Cross sections of different Class of Roads.															
UN	ITH	GEOMETRIC DESIGN OF HIGHWAYS		9	+	0									
Design of Horizontal Alignments – Superelevation, Widening of Pavements on Horizontal Curves and Transition Curves [Derivation of Formulae and Problems] Design of Vertical Alignments – Rolling, Limiting, Exceptional and Minimum Gradients, Summit and Valley Curves-SightDistances - Factors affecting Sight Distances, Stopping Sight Distance (SSD), Overtaking Sight Distance (OSD), Sight Distance at Intersections, Intermediate Sight Distance and Illumination Sight Distance [Derivations and Problems in SSD and OSD]-Geometric Design of Hill Roads [IRC Standards Only]															
UNI	ГШ	HIGHWAY MATERIALS, CONSTRUCTION, MAINTENANCEAND OPERATION		9	+	0									
Desir and S Cem Reco Crac Failu Mud	rable Pro Softening ent Cor ommenda ks,Defor rres in Ri Pumpin	pperties of Highway Materials-Bitumen - Penetration, Ductility, Viscosity, g point Tests.Construction Practice - Water Bound Macadam Road, Bitumin ncrete Road [as per IRC and MORTH specifications]Highway D tions]Types of defects in Flexible pavements –Surfa mation,Disintegration – Symptoms, Causes and Treatments.Types of Pavement gid Pavements – Scaling, Shrinkage, Warping, Structural Cracks Spalling of g – and Special Repairs.	Binc nous rain .ce nt, Joii	ler of s Ro age of nts a	cont oad a [I lefe	ent and RC cts,									
UNI	ΓΙν	RAILWAY PLANNING AND DESIGN		9	+	0									
Role of Indian Railways in National Development -Engineering Surveys for Track Alignment – Obligatory points - Conventional and Modern methods (Remote Sensing, GIS & GPS, EDM and other equipments)Permanent Way, its Components and Functions of each Component:Rails - Types of Rails, Rail Fastenings, Concept of Gauges, Coning of Wheels, Creeps -Sleepers – Functions, Materials, Density. Ballasts – Functions, Materials, Ballastless Tracks Geometric Design of Railway Tracks – Gradients and Grade Compensation, Super-Elevation, Widening of Gauges in Curves, Transition Curves, Horizontal and Vertical Curves (Derivations of Formulae and Problems)															
Unit	V	RAILWAY TRACK CONSTRUCTION MAINTENANCE AND OPERATION		9	+	0									
Point Conv main Yard	ts and Creational tenance s, Rollin	rossings - Design of Turnouts, Signalling, Interlocking, Construction & Main , Modern methods and Materials, Track Drainage Track Modernisation– A and upgrading, Technologies, Re-laying of Track, Lay outs of Railway St g Stock, Tractive Power, Track Resistance, Level Crossings.	nten utor atio	ance nate ns a	e – d nd										

L

	Total 45 Periods											
Cou	irse	Outcomes:										
Upo	n co	mpletion of this course, the students will be able to:										
CO	1 :	Carry out surveys involved in planning and highway alignment										
CO	2 :	Design cross section elements, sight distance, horizontal and vertical alignment										
CO	3 :	Determine the characteristics of pavement materials										
CO	4 :	On completing the course, the students will have the ability to Plan and Design variouscivil										
		Engineering aspects of Railways.										
Tex	t Bo	oks:										
1.	Kha Roo	anna K., Justo C.E.G., <i>Highway Engineering</i> revised 10 th edition Khanna Publishers, orkee, 2014.										
2.	Kadiyali L. R, <i>Traffic Engineering and Transport Planning</i> , Khanna Publishers, New Delhi, 2019.											
3.	Cha	ndolaS.P.Transportation Engineering-2019										
Ref	ereno	e Books:										
1.	Sha Del	rma S.K., <i>Principles Practice and Design of Highway Engineering</i> , S.Chand& Co Ltd. New hi, 2006.										
2.	Gui	delines of Ministry of Road Transport and Highways, Government of India.										
3.	Aga	rwal M.M., Indian Railway Track, 14 th Edition, Prabha and Co., New Delhi, 2002.										
4.	Sax	ena S.C. Highway & Traffic Engineering, 2014.										
E-R	lefer	ences:										
1.	<u>https</u>	://nptel.ac.in/downloads/105101087/- Transportation Engineering (Highways)										
2.	https	://nptel.ac.in/courses/105107123/- Transportation Engineering (Railways)										
3.	http	s://nptel.ac.in/courses/105101087/19- Pavement design										

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	2	3	1			1				1	1	3		1
CO2	2	2	2		2		1				1	1	3		
CO3	1	1		1									1		
CO4	3	2	1	1			1	1			1		3		1
CO5															

18CE507 GEOTECHNICAL LABORATORY L T P 0 0 4												
			0	0	4	2						
Cou	rse Ol	ojectives:										
1.	To lea	arn the methods of finding index properties of soil by conducting various te	sts in	thel	aborat	tory.						
2.	To Cl	assify the type of soil based on the index properties of soil.										
3.	To St	udy the methods to stabilize or improve the properties of soil by adding add	nixtu	res.								
4.	To fi	d the shear parameters and shear strength of soil from laboratory and field	tests									
EXI	PERIN	IENTS										
1.	Dete	mination of Moisture Content by Oven drying method										
2.	Dete	mination of Moisture Content by Pycnometer method										
3.	Dete	mination of Grain Size Distribution by Sieve Analysis										
4.	Dete	mination of Specific Gravity of Soil grains										
5.	Dete	mination of Relative Density of Sand										
6.	Dete	mination of Atterberg's Limits of Soil										
7.	Dete	mination of OMC and Maximum Dry Density by Standard Proctor Comp	actio	n Tes	t							
8.	Dete	mination of Field Density by Core Cutter Method										
9.	Dete	mination of Field Density by Sand Replacement Method										
10.	Dete	Determination of Permeability of soil by Constant Head Method										
11.	Determination of Permeability of soil by Variable Head Method											
12.	Determination of Shear Parameters of non-cohesive soil by Direct Shear Test											
13.	Dete	mination of Shear Parameters of Cohesion less soil by Vane Shear Test										
14.	Dete	mination of Shear Parameters of Cohesive soil by Unconfined Compressio	n Te	st								
15.	Dete	mination of CBR Value by California Bearing Ratio Test										
16.	Dete	mination of Grain Size Distribution by Hydrometer Analysis (Demonstration	on)									
17.	Deter Test	rmination of Settlement in soil due to primary consolidation by One Dimer (Demonstration)	nsiona	alCor	solida	ation						
18.	Dete (Den	rmination of Shear Parameters of Cohesive soil by Tri axial Compression T nonstration)	lest									
19.	Dete	rmination of Safe Bearing Capacity of soil by Standard Penetration Test (D)emoi	nstrat	ion)							
20.	Dete (Den	rmination of Ultimate Bearing Capacity and Probable Settlement by Plate I nonstration)	Load	Test								
	•		Тс	otal 6	0 Per	iods						
Cou	rse O	itcomes:										
Afte	r the s	uccessful completion of the practical session, the students will be able to										
CO	1 :	Learn to find the index properties properties of soil by conducting laborate	ory te	sts.								
CO2	2 :	To Identify and to classify the type of soil.										
CO	3 :	To stabilize soil by adding admixtures										
CO	1 :	To find the shear parameters and shear strength of soil from laboratory an	d fie	ld tes	ts.							
Refe	erence	Books:										
1.	IS	2720 Part I to Part XXVIII - Code of Practices for testing the soil,2005.										
2.	A U	pparao K.V.S and Rao V.C.S., "Soil Testing Laboratory Manual & Ques niversity Science Press, New Delhi, 2017.	tion	Bank	",							

CO / P O	PO 1	PO 2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	0	1	0	1	1	1	2	3	3	1
CO2	3	3	3	3	3	1	1	2	1	0	1	1	3	3	2
CO3	3	3	3	3	3	3	3	1	0	0	0	2	3	3	1
CO4	3	3	3	3	3	2	3	1	1	0	1	1	3	2	1

18	BCE	E 508	ENVIRONMENTAL ENGINEERING LABORATORY	L	Т	Р	С
				0	0	4	2
Cou	rse	Ob	ectives: The objectives of this course is to				
1.	Int wa	rodu stew	ce the students about how the common environmental experiments relating ater quality are performed.	g to v	water	and	
2.	Qu	anti	y the dosage requirement for coagulation process				
3.	De	etern	ine the physical, chemical and biological characteristics of water and was	tewa	ter		
4.	Be stu	awa dent	re of the procedure for determining ph and turbidity values for water and s.	sewaş	ge by	the	
5.	Ma	ake t	he students to get know which tests are appropriate for given environment	al pr	oblen	ns.	
EXI	PEF	RIM	ENTS				
1.		Dete	rmination of pH value for the given water sample				
2.		Dete	rmination of Turbidity value for the given water sample				
3.		Dete	rmination of Alkalinity present in the given sample of water				
4.		Dete	rmination of Hardness(Total, temporary and permanent) present in the give	en wa	atersa	mple	
5.		Dete	rmination of Chlorides present in the given sample of water				
6.		Dete	rmination of Sulphates present in the given sample of water				
7.		Dete	rmination of Total, Dissolved, Suspended, Volatile and Fixed Solids				
8.		Dete	rmination of Optimum coagulant dose using jar test apparatus				
9.		Dete	rmination of Residual Chlorine present in the given water sample				
10.		Dete	rmination of Dissolved Oxygen present in the given water sample				
11.		Dete	rmination of B.O.D for the given sample				
12.		Dete	rmination of C.O.D for the given sample				
				Т	otal 6	60 Per	riods
Cou	rse	Out	comes:				
Afte	r th	e su	ccessful completion of the practical session, the students will be able to				
CO	1	:	Perform common environmental experiments relating to water and wastewate which tests are appropriate for given environmental problems.	er qua	ality,	and ki	now
CO	2	:	Obtain the necessary background for subsequent courses engineering.	in e	envir	onmer	ntal
CO	3	:	Quantify the concentration of salts in water andwastewater				
CO	4		Recommend the degree of treatment required for the water and wastewater				
CO	5		Examine the conditions for the growth of micro-organisms				
Refe	eren	ice I	Books:				
1.		En	vironmental Engineering Laboratory Manual, B Kotaiah, N Kumara Swar	my, 1	994,	Charo	tar
		Bo	oks Distributors				
2.		NE Res	ERI. 1988. <i>Manual o f Water and Waste Analysis</i> , National Environmen search Institute, Nagpur, Maharastra (India)	talEn	igine	ering	
3.		Ch Per	emistry for Environmental Engineering and Science ,Sawyer, C. N., Mckin, G.F., , 5th edition McGraw-Hill Inc., 2002	Carty	, P.]	L., an	d
E-R	efer	ence					
1.		http	os://studylib.net/doc/18517687/lab-manualcivil-and-environmental-eng	ineer	ing		

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				2	1	2				1			2		1
CO2				2	1	1	1		1	1		1	1		
CO3					1	1	1						1		1
CO4					1	1	1						1		
CO5						1							1		

18MC301	Indian Constitution	L	Т	P C
		2	0	0 0
Course Objec	tives:			
1. Learn the s	salient features of the Indian Constitution.			
2. List the Fu	indamental Rights and Fundamental Duties.			
3. Present a s	ystematic analysis of all dimensions of Indian Political System.			
4. Understand	the power and functions of the Parliament, the Legislature and the Judiciar	у.		
UNITI				
Union and Fundamen	d its Territory – Citizenship–Fundamental Rights–Directive Principles of St ntal Dutie	ate P	olicy	<i>γ</i> —
UNITII				
The Unio	n-The States-The Union Territories-The Panchavats-The Municipalitie			
UNITIII				
The Co-or	perative Societies-The scheduled and Tribal Areas-Relations between the	Uni	on a	and the
States–Fir	hance, Property, Contracts and Suits-Trade and Commerce within the territory	of Inc	lia.	
UNITIV				
Services u Classes.	inder the Union, the States - Tribunals - Elections- Special Provisions -Relati	ng to	o cert	ain
Unit V				
Language	s-Emergency Provisions - Miscellaneous-Amendment of the Constitution.			
Course Outcon	nes:			
On completion	of the course, students will			
understand the e	emergence and evolution of the Indian Constitution			
Explain the key	concepts of Indian Political System.			
Describe the ro	le of constitution in a democratic society.			
Present the strue	cture and functions of the Central and State Governments, the Legislature an	d the	Judi	ciary
Reference Bool	XS:			
1) SubhashC.Ka	ashyap, Our Constitution, National Book Trust, 2017.			
2) Durga Das B	asu, Introduction to the Constitution of India, Lexis Nexis, 2015.			
3) M.V.Pylee, 0	Constitutional History of India, S.Chand publishing, 2010			
4) Granville Au	stin, The Indian Constitution: Cornerstone of a Nation, Oxford Univer-	sity		Press,

 Granville Austin, *The Indian Constitution: Cornerstone of a Nation*, Oxford University 1 1999.

18C	E60	ADVANCED STRUCTURAL ANALYSIS	LT	P		С
			3 0	0)	3
Cou	rse	Objectives: The objectives of this course is to				
1.	im	part Knowledge on students about advanced methods of analysis of structures				
2.	im dis	part Knowledge on students about the analysis of structures using slope deflection tribution methods	andm	ome	nt	
3.	Un	derstand about the matrix method and its applications for computer-based analysis	of			
1	Kn	ow about the basics of Finite Element Method and its application				
- 1 . 5	M	ke the students to analyse the indeterminate structures by using various methods.				
5.	IVIC	the students to analyse the indeterminate structures by using various incurous				
Unit	Ι	SLOPE DEFLECTION METHOD	9	+	-	0
Slop porta	e de 1 fra	flection equations-Analysis of continuous beams-Analysis of single storey single b mes with and without side sway.	ayrect	ang	ula	r
					-	0
Unit	Π	MOMENT DISTRIBUTION METHOD	9	+		0
Anal singl	ysis e ba	of continuous beams - Carry over factor – Distribution factor – Analysis of single y – Symmetry and anti-symmetry structures.	storey	1		
Unit	ш	MATRIX FLEXIBILITY METHOD	9	+		0
Anal	vsis	of continuous beams. Indeterminate frames and trusses with maximum two degree	es ofst	atic		-
indet	erm	inacv.	0100	atie		
	•••••					
Unit	IV	MATRIX STIFFNESS METHOD	9	+		0
Anal	ysis	of continuous beams, Indeterminate frames and trusses with maximum two degree	es ofki	inem	ati	с
indet	ermi	nacy.				
		·				
Unit	V	FINITE ELEMENT METHOD	9	+		0
Intro	duct	ion – Discretisation of a structure – Displacement functions – Truss element – Be	ameler	ment	t —	
Plane	e stro	ess and plane strain - Triangular elements.				
			T) 44			-
a		Total (L+	Γ)= 45	> Pei	rio	ds
Cou	rse	Jutcomes:				
Upor		npletion of this course, The students will	<u> </u>			
COI	:	Have the knowledge on classical methods (SDM & MDM) of analysis of indeterr	nınate	struc	ctu	res.
CO2	:	:understand the concepts of FEM				
CO3	:	understand the procedures to be followed for various methods of analysis of indete structures	rminat	te		
CO4	:	Be able to Analyse indeterminate structures using force and displacement matrix met	hods			
CO5	:	Be able to analyse the indeterminate structures and frames by using classical and modern method of analysis	1			
Text	Boo	oks:				
1.	Pun	mia B C., Theory of Structures Vol. II, Laxmi Publications (P) Ltd., New Delhi. 2	2004.			
2.	Dev	ados Menon, Structural Analysis, Narosa Publishing House, NewDelhi, 2009.				
3.	Raj	asekaran S., Sankara Subramanian G., Computational Structural Mechanics, PH	II, Ind	ia,2	01	0.
4.	Vai Del	dyanathan, R. and Perumal, P., "structural Analysis – Vol. II", Laxmi Publication hi, 2016	ıs, Ne	W		
Refe	rend	e Books:				
1.	Neg	i L.S and JangidR.S., Structura Analysis, Tata McGraw-Hill Publishing Compan	y			

	Limited, New Delhi, 1997								
2.	Manickaselvam V.K., Elements of Matrix and Stability Analysis of structures, Khanna Publishers, 1999, New Delhi								
	Fublishers, 1999, New Deini.								
3.	Pandit G.S and Gupta S.P., Structural Analysis-A matrix approach, TataMcGraw-HillPublishing								
	Company Limited, New Delhi, 2006.								
4.	DevadosMenon, Advanced Structural Analysis, Narosa Publishing House, NewDelhi, 2009.								
E-R	E-References:								
1.	https://nptel.ac.in/downloads/105105109/								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	3										2	
CO2	1	2		2										2	
CO3	1	2		1										3	
CO4	1			3										2	
CO5	1			3										3	

18CE	E602	FOUNDATION	L	Т	P	С					
		ENGINEERING	2	0	0	2					
			3	0	0	3					
Cours	se Ob	jectives:									
1	At th	e end of the course student will acquire the knowledge in soil exploration .	0								
2.	At th	e end of the course student will know about the bearing capacity, shallow and deep	ofou	ndati	ons						
3.	At th	e end of the course student will know about the earth pressure and stability of slop	es3.								
Unit I	[S (DIL EXPLORATION AND SELECTION OF FOUNDATION	9		+	0					
Soil ex and Sp Penetra Requir founda	and Spacing of boreholes – Sounding tests – Standard Penetration Test, Static Cone and Dynamic Cone Penetration Tests – Bore log. Requirements of good foundation – factors governing location and depth- Types of foundation – Choice of foundation – Floating Foundation – Foundation on Expansive soil.										
Unit I	T	BEARING CAPACITY OF SOIL AND SETTLEMENT	9		+	0					
Bearin Skemp of soil Improv Settlen provisi	ig Ca oton's I – B ving I nent ions -	 pacity – Terzhaghi's Bearing Capacity Equation – Types of Failure – Effect of Formula – Bearing Capacity based on IS method- Effect of eccentricity of load on learing Capacity based on 'N' value - Allowable bearing pressure – Plate Load tes Bearing Capacity of soil. – immediate and time dependent settlement – Differential settlement – Causes - Proportioning of Footing. 	Wa beari t –	ter T ng c Meth BIS	Table apac nods Cod	e – city of le					
I Init I	TT	BILE FOUNDATION	0			0					
Classi – Pile Formu Reame	ficati load 1la – ed Pi	on of Piles – Functions – Merits – Load Carrying Capacity – Static Analysis – Dy test – Pile group – Spacing and Group action – Efficiency of Pile group – Eng Hammers – Settlement – Negative Skin Friction – uplift capacity - Construc- le Foundation.	nam gine ctior	ic A ering of	naly 5 Ne Un	/sis ws der					
Unit I	V	STABILITY OF SLOPES	9		+	0					
Stabili Circle measur	ty of Meth res.	Slopes – Infinite and Finite Slopes – Types of Failure – Culmann's methods od – Friction Circle method – Bishop's method – Taylor's Stability Number –	–Sv Slop	vedis e pro	sh S otect	Slip tive					
Unit V	V	EARTH PRESSURE ON RETAINING WALLS	9		+	0					
Plastic Coulou retaini	equi umb's ng w	librium in soils – Active and Passive states – Rankine's theory – Cohesionless and s wedge theory – Earth pressure on retaining walls of simple configurations alls.	cohe	sive Stab	soil ility	s – of					
		Tot	al =	45 F	Perio	ods					
Cours	se Ou	tcomes:									
Upon	comp	letion of this course, the students will be able to:									
CO1	:	Characterise soil investigation for any civil engineering construction									
C02	:	Analyse earth retaining structures for any kind of soil medium Estimate bearing capacity using IS code methods									
CO3	· ·	Design proper foundations for any kind of shallow foundation system									
CO5	:	Estimate pile and pile group capacity for any kind of soil including group efficien	псу а	ndne	egat	ive					
Tevt I	Book	19									
1. Pu	inmi	B.C Soil Mechanics and Foundations, Laxmi Publications Pvt. Ltd., New Delhi	, 20	17.							
2. P	urusl	nothama Raj P, Soil Mechanics and Foundation Engineering, Perason Education,	200	8							
3. P	Gopal Publis	Ranjan and Rao A.S.R., <i>Basic and Applied Soil Mechanics</i> , New AgeInternation hers (P) Ltd., New Delhi, 2016.	nal								

4.	Venkataramaiah, C., Geotechnical Engineering, New Age International Publishers, New Delhi, 1995.
5.	Punmia B.C Soil Mechanics and Foundations, Laxmi Publications Pvt. Ltd., New Delhi, 1995.
Ref	erence Books:
1.	Swamisaran, Analysis and Design of Structures – Limit State Design, OxfordIBH Publishing Co-Pvt. Ltd., New Delhi, 1998.
2.	Som N.N and Das S.C., <i>Theory and Practice of Foundation Design</i> , Prentice Hall Pvt. Ltd., New Delhi, 2003.
3.	Arora K.R., <i>Soil Mechanics and Foundation Engineering</i> , Standard Publishers and Distributors, New Delhi, 1997.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	1	1	3	1	2	0	0	0	3	0	0
CO2	3	3	3	2	2	2	3	1	2	0	0	0	3	0	0
CO3	3	3	3	3	2	2	3	1	2	0	0	0	3	0	0
CO4	3	3	3	2	1	2	3	1	2	0	0	0	3	0	0
CO5	3	3	2	3	1	1	3	1	2	0	0	0	3	0	0

	18CE603	ENGINEERING ECONOMICS, ESTIMATION& COSTING	L	Т	Р	С
			3	0	0	3
Coι	ırse Objectiv	es:				
1.	An idea of h	ow structures are built and projects are developed on the field.				
2.	An understa	nding of modern construction practices.				
3.	A good idea	of basic construction dynamics- various stakeholders, project objectives,				
	processes, re	esources required and project economics.				
4.	A basic abili and cost.	ty to plan, control and monitor construction projects with respect to time				
5.	An idea of h	ow to optimise construction projects based on costs.				
6.	An idea how issues.	construction projects are administered with respect to contract structures	and			
7.	An ability to processes.	put forward ideas and understandings to others with effectivecommunication	tion			
UN	IT I BASIC	CECONOMICS		9	+	0
App GD dem	blication. Theo P/GNP/NI/Dis and and Supp	ory of the Firm and Market Structure. Basic Macro-economic Concepts sposable Income) and Identities for both closed and open economies. A oly (IS/LM). Price Indices (WPI/CPI), Interest rates, Direct and Indirect T	s (inc sggre Saxes	ludi gate	ng	liu
				0		-
UN	IT II FINA	INCING		9	+	0
Sys Mar Cur	tem, Central l rkets. Monetar ve.	Bank –Monetary Aggregates; Commercial Banks & their functions;Cap ry and Fiscal Policy Tools & their impact on the economy – Inflation an	ital a d Ph	and illip	Deb s	t
UN		Γ AND BREAK EVEN ANALYSIS		9	+	0
Elei	ments of Bus	siness/Managerial Economics and forms of organizations. Cost & ([¬] ost	Co	' atrol	-
Tec App Dep Elei	hniques, Typ blication of preciation, Tin mentary techn	bes of Costs, Lifecycle costs, Budgets, Break even Analysis, Cap Linear Programming. Investment Analysis – NPV, ROI, IRR, Pa ne value of money (present and future worth of cash flows). Business For iques. Statements – Cash flow, Financial. Case Study Method.	ital ayba ecast	Bud ck ting	geti Peri	ng, od,
UN	IT IV INDI	AN ECONOMY		9	+	0
Brie Issu Org Exte	ef overview of es of Inclusion anized, Unorg ernal sectors.	⁷ post-independence period – plans. Post reform Growth, Structure of pro n – Sectors, States/Regions, Groups of people (M/F), Urbanization. Employ ganized, Public, Private. Challenges and Policy Debates in Monetary,	ducti ymen Fiso	ve a t–In cal,	forn Soc	ity. nal, ial,
Uni	t V ESTIM	IATION AND COST ANALYSIS OF STRUCTURES		9	+	0
Esti Indi wor Eart qua com mat	mation / Mea an Standard & k, comparison thwork and For ntity take-offs uputation of m erials for bui erials. Use of	surements for various items- Introduction to the process of Estimation; Specifications for the same, taking out quantities from the given requ n of different alternatives, Bar bending schedules, Mass haul Diagra bundations, Estimating Concrete and Masonry, Finishes, Interiors, MEP v s; adding equipment costs; labour costs; rate analysis; Material survey-T haterial requirement for different ldings, percentage breakup of the cost, cost sensitive index, market s Computers in quantity surveying.	Use irem ms, vork Thum urve	of r ents Esti s; B ıb rı y o	elev of mat IM a iles f ba	ant the ing and for sic

Total (L+T)= 45 Periods

Соц	rse	Outcomes:
Upo	n co	mpletion of this course, the students will be able to:
CO	1 :	Have an idea of Economics in general, Economics of India particularly for public sectoragencies and private sector businesses
CO2	2 :	Be able to perform and evaluate present worth, future worth and annual worth analyses on one of more economic alternatives.
CO:	3 :	Be able to carry out and evaluate benefit/cost, life cycle and breakeven analyses on oneor more economic alternatives.
CO	4 :	Be able to understand the technical specifications for various works to be performed for aproject and how they impact the cost of a structure.
CO	5	Be able to quantify the worth of a structure by evaluating quantities of constituents, derive their cost rates and build up the overall cost of the structure.
CO	5	Be able to understand how competitive bidding works and how to submit a competitive bid proposal.
Tex	t Bo	oks:
1.	De	wett K.K. & Varma J.D., Elementary Economic Theory, S Chand
2.	Pra	sad L.M., Principles and Practice of Management, S Chand & Sons, 2010
3.	Du Ltd	tta, B.N., Estimating and Costing in Civil Engineering, UBS Publishers & Distributors Pvt.
4.	Kol Coi	hli, D.D and Kohli, R.C., A Text Book of Estimating and Costing (Civil), S.Chand& mpany Ltd., 2007
Refe	eren	ce Books:
1.	Bar	thwal R.R., Industrial Economics - An Introductory Text Book, New Age
2.	Kh	an M.Y. and Jain P.K., Financial Management, McGraw-Hill Publishing Co., Ltd
3.	Va	rshney R.L. and Maheshwary K.L., Managerial Economics, S Chand and Co
4.	Ha	rold Koontz & Heinz Weihrich, Essentials of Management, T.M.H. Publications, 2007
5	PW	D Data Book.
6.	Tar	nilnadu Transparencies in Tender Act, 1998.
7.	Sta	ndard Bid Evaluation Form, Procurement of Goods or Works, The World Bank, April 1996.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	-	2	-	1	-	-	-	-	1	3	2	-
CO2	-	-	2	-	-	2	-	-	-	-	-	-	2	-	-
CO3	3	-	2	-	2	3	-	-	2	-	-	-	-	-	3
CO4	-	-	-	-	2	3	-	-	2	-	3	-	-	-	2
CO5	1	-	1	-	-	-	-	-	-	-	-	-	1	-	3

18CE604 PROFESSIONAL PRACTICE, ETHICS & BUILDING BY- L T P LAWS L L T P													
	LAWS	2	0	0	2								
Course	niectives:	-	U	v									
	be the students understand the tunes of releas they are expected to play in the sea	inte	1.00										
practit	oners of the civil engineering profession.	lety	as										
2 To de	relop some ideas of the legal and practical aspects of their profession.												
TT 84 T													
Unit I	TAKEHOLDERS :		9	+	0								
Governme safety of t profession Bodies/ Pl owners (ro (role gove Standards) Standards) Ethics, En Responsib Negligenc	ht (constituting regulatory bodies and standardization organizations, prescribing n the citizens); Standardization Bodies (ex. BIS, IRC)(formulating standards ofprace al bodies (ex. Institution of Engineers(India), Indian Roads Congress,IIA/ COA,E anning Authorities) (certifying professionals and offering platforms for interaction e governed by contracts); Developers (role governed by regulations such as RERA) med by bodies such as CEAI); Contractors (role governed by contracts and regul ;Manufacturers/ Vendors/ Service agencies (role governed by contracts and regul ;Professional Ethics – Definition of Ethics,Professional Ethics, Business Ethics, gineering Ethics, Personal Ethics; Code of Ethics ; Profession, Professionalism, lity, Professional Ethics; Conflict of Interest, Gift Vs Bribery, Environmental br e, Deficiencies in state-of-the-art; Vigil Mechanism, Whistleblowing, protected of	orr ctic CI on); C o; C ato late Con Pre- ceae dise	ns to e); , Lc Cli Cons ry 2 ory rpoi ofes ches clos	ocal ents sulta Acts Acts ate sior 5, ures	sure / nts and s and s and nal								
Unit II	GENERAL PRINCIPLES OF CONTRACTS MANAGEMENT:		9	+	0								
Indian Co. Formation Contracts; Tenders,R Specificati Changes i Time exter Taxation; Wrong pra Own-Oper	<i>Atract Act, 1972 andamendments</i> covering General principles of contracting; Cont & Law; Privacy of contract; Various types of contract and their features; Valid & Prime and sub-contracts; Joint Ventures & Consortium; Complex contract term equest For Proposals, Bids & Proposals; Bid Evaluation; Contract Conditions & ons; Critical /"Red Flag" conditions; Contract award & Notice To Proceed; Varia a Contracts; Differing site conditions; Cost escalation; Delays, Suspensions& Te asions & Force Majeure; Delay Analysis; Liquidated damages & Penalties; Insur Performance and Excusable Non-performance;Contract documentation; Contract ctices in contracting (Bid shopping,Bid fixing, Cartels); Reverse auction;Case St ate & variations; Public-Private Partnerships; International Commercial Terms.	atra & V ino atio erm anc t No udi	ct Void log ons& inat ce & otic les;	able y; ions c es; Bui	; ;; ld-								
Unit III	ARBITRATION, CONCILIATION AND ADR (Alternative Dispute		9	+	0								
Arbitration – meaning, scope and types – distinction between laws of 1940 and 1996; UNCITRAL model law – Arbitration and expert determination; Extent of judicial intervention; International commercial arbitration; Arbitration agreements – essential and kinds, validity, reference and interimmeasures by court; Arbitration tribunal – appointment, challenge, jurisdiction of arbitral tribunal, powers, grounds of challenge, procedure and courtassistance; Award including Form and content, Grounds for setting aside an award, Enforcement, Appeal and Revision; Enforcement of foreign awards – New York and Geneva Convention Awards; Distinction between conciliation, negotiation, mediation and arbitration, confidentiality, resort to judicial proceedings, costs; Dispute ResolutionBoards; Lok Adalats.													
Unit IV	ENGAGEMENT OF LABOUR & OTHER CONSTRUCTION- RELATEDLAWS		9	+	0								
Role of La	bour in Civil Engineering; Methods of engaging labour- on rolls, labour sub-con	tra	ct, p	oiece	e –								

rate work; Industrial Disputes Act, 1947; Collective bargaining; Industrial Employment (Standing Orders) Act, 1946; Workmen's Compensation Act, 1923; Building & Other Construction Workers (regulation of employment and conditions of service) Act (1996) and Rules (1998); RERA Act 2017,NBC 2017

Unit VLAW RELATING TO INTELLECTUAL PROPERTY:9+0Introduction – meaning of intellectual property, main forms of IP, Copyright, Trademarks, Patents and
Designs, Secrets; Law relating to Copyright in India including Historical evolution of Copy Rights Act,
1957,Meaning of copyright – computer programs, Ownership of copyrights and assignment,Criteria of
infringement, Piracy in Internet – Remedies and procedures in India; Law relating to Patents under Patents
Act, 1970 including Concept and historical perspective of patents law in India, Patentable inventions with
special reference to biotechnology products, Patent protection for computer programs, Process of
obtaining patent – application, examination, opposition and sealing of patents, Patent cooperation treaty
and grounds for opposition,Rights and obligations of patentee, Duration of patents – law and policy
considerations,Infringementand
related remedies.9+0

			Total (45+0)= 45 Periods
Cou	irs	e C	Outcomes:
Upo	n c	con	pletion of this course, the students will be able to:
CO	1		To familiarise the students to what constitutes professional practice, introduction of
			various stakeholders and their respective roles; understanding the fundamental ethicsgoverning
			the profession.
CO	2	:	To give a good insight into contracts and contracts management in civil engineering, dispute
			resolution mechanisms; laws governing engagement of labour
CO	3		To give an understanding of Intellectual Property Rights, Patents
CO	4	•••	To make the students understand the types of roles they are expected to play in thesociety as
			practitioners of the civil engineering profession.
Tex	t B	600	ks:
1	D	utt	(1994), Indian Contract Act, Eastern Law House
2	K	wa	tra G.K. (2005), The Arbitration & Conciliation of Law in India with case law on
	U	NC	CITRAL Model Law on Arbitration, Indian Council of Arbitration
Ref	ere	nce	e books
1	Μ	[ee	na Rao (2006), Fundamental concepts in Law of Contract, 3rd Edn. ProfessionalOffset
2	A	vta	rsingh (2002), Law of Contract, Eastern Book Co.

CO-PO-PSO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		3			3	3	3	1	1	3	3	1		2
CO2	1				2	1	3	3	2	1	2	3	3		3
CO3			1		2	1		3	3	1	3	3	2		3
CO4	2			1	2	2	1	3	2	2	2	3	2		3

1 - Slightly

2 – Moderately

3 - Strongly

		05	CONCRETE LABORATORY	L	Т	Р	C					
				0	0	4	2					
Cou	irse	O	ojectives:									
1.	Th	is o	course will help students to know about the properties of different buil	ding	mater	rials.						
2.	To var	in riou	plement the idea of material properties in order to make mix design an us building members.	d for	desi	gnof						
3.	To dei	pr mo	epare the students to effectively link theory with practice and applicationstrate background of the theoretical aspects in concrete technology	on an	d to							
4.	To ma	pr achi	epare the students to have hands on experiments and to have exposure nes	toeq	uipm	ent an	d					
5.	То	m	otivate the students to take up higher studies and innovative research I	orojec	ets							
EXI	PEF	RIN	IENTS									
1.	D	ete	rmination of Normal consistency and setting time tests on cement									
2.	D	ete	rmination of Fineness test on cement									
3.	D	ete	rmination of Soundness test on cement									
4.	D	ete	rmination of Aggregate Crushing and Impact Value									
5.	D	ete	rmination of Aggregate Abrasion Test									
6.	D	ete	rmination of Specific gravity of Cement									
7.	C	on	crete mix Design using IS method									
8.	D	ete	rmination of Compressive strength of cement									
9.	D	ete	rmination of Slump test on fresh concrete									
10.	D	ete	rmination of Compaction factor test on fresh concrete									
11.	D	ete	rmination of quality of Hardened concrete using Ultrasonic concrete ter	ster (NDT)						
12.	D	ete	rmination of compressive strength of concrete cubes by Rebound Ham	mer	tester	(NDT)					
				Tota	ıl = 6	0 Per	ioc					
Cou	irse	0	itcomes:									
Afte	er th	e s	uccessful completion of the practical session, the students will be able	to								
CO	1	:	Know the techniques to characterize various construction materials the	roug	hrelev	vant te	ests					
CO2	2	:	test all the concrete materials as per IS code									
COS	3	:	design the concrete mix using IS code									
CO	4	:	Determine the properties of fresh and hardened concrete									
CO	5	:	Conduct tests on concrete using NDT methods									
Refe	erer	ice	Books:									
1.	B C	uilo ont	ling and Construction Materials: Testing and Quality Control- Testing rol, M. L. Gambhir, Dhanpat Rai & sons New – Delhi, 2014	g and	Qua	lity						
2.	Laboratory manual on concrete technology; Hemant Sood, CBS Publishers, First edition ,2016											
2	C	onc	rete Technology (Theory & Practice) S.ChandPublications,Eighth edit	ion,2	018							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1				2	2				2				2		2
CO2				2			1						2		2
CO3				2			1						2		2
CO4					2		2						1		1
CO5					2		2						1		1

18	BCE	260	6 COMPUTER AIDED DESIGN AND DRAWING (Concrete and Steel)	L	Т	Р	С						
			· · · ·	0	0	4	2						
Cou	rse	Ol	ojectives:										
1.	Th and	is c 1 tł	ourse will help students to perform structural design for different elements brough drafting process.	impla	antin	gman	ually						
EXI	PER	RIN	IENTS										
1.	D	esi	gn and drawing of RCC cantilever retaining wall with reinforcement details										
2.	D	esi	gn and drawing of Counterfort retaining wall with reinforcement details										
3.	D	esig	gn and drawing of RCC slab with reinforcement details										
4.	Design and drawing of RCC Tee beam bridges for IRC Loading with reinforcement details												
5.	Design and drawing of RCC Circular overhead water tank with reinforcement details												
6.	D	esig	gn and drawing of RCC rectangular underground water tank with reinforce	ment	deta	ils							
7.	D	esig	gn and drawing of Plate girder bridge with detailed drawings on connections	5									
8.	D	esig	gn and drawing of Truss girder bridge with detailed drawing on connection										
				Tota	ul = 6	50 Per	riods						
Cou	rse	Oı	itcomes:										
Afte	r th	e s	uccessful completion of the practical session, the students will be able to										
COI	L	:	Acquire hands on experience on designing the concrete structures										
CO	2	:	Acquire hands on experience on designing the steel structures										
CO.	3	:	Preparation of structural drawings of concrete structures technically										
CO_{-}	4	:	Preparation of structural drawings of steel structures technically										
CO:	5	:	Analyse the RCC and Steel structures with safe limits and checking the o	lesig	n.								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	3	2	1	1	2	1	1	1	2	3	3	2
CO2	2	2	1	1	2	1	1	1	1	1	1	1	2	2	1
CO3	3	1	2	2	1	1	1	1	1	1	2	1	2	1	1
CO4	1	2	3	1	1	2	1	1	1	2	2	1	1	1	2
CO5	1	1	2	2	3	1	1	2	1	2	1	2	1	2	1

180	CE801	Construction Management	L	Т	P	С								
			3	0	0	3								
Cou	rse Ol	jectives: The objectives of this course is to												
1.	Lear	1 basic concepts about planning												
2.	Study	y about the legal implications of contract, common, and regulatory law to managerization project	ge a											
3.	Unde	erstand construction accounting and cost control												
4.	Unde	erstand construction risk management and quality assurance and control												
5	Trair	the students with the latest and the best in the rapidly changing fields of Const	ructi	on										
	Engi	neering, Technology and Management												
UNI	ΤI	CONSTRUCTION PLANNING		9	+	0								
Basic	c conc	epts in the development of construction plans-choice of Technology and Constru	ictio	n										
meth	iod-De	fining Work Tasks- Definition- Precedence relationships among activities-Estin	natin	g										
Activ	vity Di	irations-Estimating Resource Requirements for work activities-coding systems												
T 7 8 7 8		COMEDIA INC DROCEDIARS AND RECENTORES	<u> </u>		<u> </u>	•								
		SCHEDULING PROCEDUKES AND TECHNIQUES		9	+	<u>U</u>								
Rele	vance	of construction schedules-Bar charts - The critical path method-Calculations for	or cri	tical	pat	h								
schee	Activity-on-node and with leads, Lags and Windows-Calculations for scheduling with leads, lags and windows Pasource oriented scheduling. Scheduling with resource constraints and precedence. Use of													
Activ	lowe P	-houe and with leads, Lags and withdows-Calculations for scheduling with lead	18, 1a	gsan Uso (u sf									
	anced	Scheduling Techniques-Scheduling with uncertain durations-Crashing and time		J SC C	л Ie o	ffs								
-Imp	Advanced Scheduling Techniques-Scheduling with uncertain durations-Crashing and time/cost trade offs -Improving the Scheduling process – Introduction to application software													
mp	-Improving the Scheduling process – Introduction to application software													
UNIT III COST CONTROL MONITORING AND ACCOUNTING														
The	cost co	ntrol problem-The project Budget-Forecasting for Activity cost control - financia	 a1	-	<u> </u>									
	unting	systems and cost accounts-Control of project cash flows-Schedule control-Schedule	an Aule	and										
Budg	get upo	lates-Relating cost and schedule information	Jaare	una										
		6												
UNI	T IV	QUALITY CONTROL AND SAFETY DURING CONSTRUCTION		9	+	0								
Qual	ity an	d safety Concerns in Construction-Organizing for Quality and Safety-Worl	c an	d M	ater	rial								
Spec	ificatio	ons-Total Quality control-Quality control by statistical methods -Statistical (Qual	ity c	ont	rol								
with	Samp	ling by Attributes-Statistical Quality control by Sampling and Variables-Safety.		•										
Unit	V	DRGANIZATION AND USE OF PROJECT INFORMATION		9	+	0								
Туре	s of pr	oject information-Accuracy and Use of Information-Computerized organization	and	used	of									
Infor	mation	-Organizing information in databases-relational model of Data bases-Othercon	ncept	ual										
Mode	els of I	Databases-Centralized database Management systems-Databases and application	prog	rams	-									
Infor	mation	transfer and Flow.												
L		- · · ·		4										
C		Total (L+	1)=	45 P	eric	oas								
Cou	rse Ot	itcomes:												
Upor	1 comp	bietion of this course, the students will be able to:												
		perioristrate the nuances of management functions												
C02		Analyze the framework of a business organization												
CO3		Adopt an empirical approach toward business situations												
C04		apply various Project Management techniques												
		inplement roles of team players												
rext	Chief	Den VV Construction Devices Management Diancing Color Advice and Color	Tet											
1.	McGr	aw-Hill Publishing Co., New Delhi, 1998.	1 ata	1										
2.	Punm	ia B.C. and Khandelwal, Project planning and Control with PERT and CPM, L	axm	i										

	Publications, New Delhi, 2002.	
Ref	erence Books:	
1.	Ghalot P.S., Dhir D.M., Construction Planning and Management, Wileyeastern	Limited,
	1992.	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2	1	1	1	3	1	2	1	3	3		1	3
CO2	1	3	2	1			3		2		3	3	3	3	3
CO3		3	2	1	2	1	3	1	2	2	3	3	1	3	3
CO4	1	1	2	2	2		3		2	2	3	3	3	3	3
CO5	1		3				3	1	2		3	3	1	3	3

1 – Slightly 2 – Moderately 3 - Strongly

LIST OF ELECTIVES FOR B.E CIVIL ENGINEERINGPROFESSIONAL ELECTIVES

TRANSPORTATION ENGINEERING

18C	EPE01	TRAFFIC	L	Т	Р	С
		ENGINEERING	3	0	0	3
Соп	rse Obie	ctives:	-	-	-	
1	The stu	dente acquire comprehencive knowledge of traffic guryaus and studies suches "	Jur			
1.	Count',	'Speed and delay', 'Origin and destination', 'Parking', 'Pedestrian' and 'Ad	ccide	ent		
2	surveys	hieve knowledge on design of 'at grade' and 'grade separated' intersections				
2.	They at They al	so become familiar with various traffic control and traffic management measu	res			
5.	They a	so become fumiliar with various traffic control and traffic management measu	105.			
UNI	T I IN	TRODUCTION		9	+	0
Sign Effic	ificance ciency (P	and scope, Characteristics of Vehicles and Road Users, Skid Resistance and roblems), Components of Traffic Engineering- Road, Traffic and Land Use C	Bral Chara	king acter	risti	cs
TINIT	ти	A FEIC SUDVEVS AND ANALVSIS		0		Δ
Curr		AFFIC SURVEIS AND ANALISIS	ml r i m	9	+	U
Pede	eys and strian St	adies, Accident Studies and Safety Level of Services- Problems	rkin	g,		
TINIT	тпгт	PAEEIC CONTROL		0		0
UNI		RAFFIC CONTROL	<u>.)</u> т.	9 ff:	+	U
conti	rol aids a	nd Street furniture, Street Lighting, Computer applications in Signal design	5), 1	am	C	·
UNI	T IV G	EOMETRIC DESIGN OF INTERSECTIONS		9	+	0
Conf	flicts at I	ntersections, Classification of Intersections at Grade, - Channelized and Unc	hanr	neliz	ed	
Inter Elen	section - nents of I	Grade Separators (Concepts only), Principles of Intersection Design, ntersection Design, Channelization and Rotary design (Problems), Grade Sepa	arato	rs		
T				0		•
Unit		AFFIC MANAGEMENT	(TT	<u>9</u>	+	U
Traff Traff Traff Syste	fic Manag fic Foreca fic Calmin em (ITS)	sting techniques, Restrictions on turning movements, One-way Streets, Traffic S ng, Tidal flow operations, Exclusive Bus Lanes - Introduction to Intelligence Tra	egre anspo	gatio ort	on,	
		Tot	al =	<u>45 T</u>	Peri	ods
Cou	rse Outc	omes:		10 1		545
Upor	n comple	ion of this course, the students will be able to:				
CO1	: App	ly the principles of the transportation planning process and demand estimatio	n			
CO2	: Ana	lyse the trip production and trip attraction models				
CO3	: Ana	lyse the growth factor, gravity and opportunity models				
CO4	: App	ly the mode choice behaviour and mode split models				
Text	Books:					
1.	Khanna Roorkee	K., Justo C.E.G., <i>Highway Engineering</i> revised 10 th edition Khanna Publis 2014.	hers	,		
2.	Kadiyali	L. R, Traffic Engineering and Transport Planning, Khanna Publishers, New	Del	hi,2	019	
Refe	rence Bo	oks:				
1.	Subhash	C.Saxena, A Course in Traffic Planning andDesign,Dhanpat Rai				

	Publications, New Delhi, 1989.
2.	Saltar S.A., Highway Traffic Analysis and Design, Prentice Hall, New Jersey, 2002.
3.	Guidelines of Ministry of Road Transport and Highways, Government of India.
4.	Indian Roads Congress (IRC) specifications: Guidelines and special publications on Traffic Planning
	and Management
E-F	References:
1.	https://nptel.ac.in/courses/105101008/1 - Fundamentals of Traffic flow
2.	https://nptel.ac.in/courses/105101008/27- Intersection control
3.	https://nptel.ac.in/courses/105101008/50- Traffic engineering and management

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	3	2		1		1				1	1	3		1
CO2		1	2	2			1				1		3		
CO3	1	1		1	1				1				1		
CO4			1	1	1		1	1	1		1		1		1
CO5															

18C	EPE02	AIRPORTS, DOCKS AND HARBOUR	L	Т	Р	С
		ENGINEERING	2	•	0	2
~			3	U	0	3
Cou	rse Objec	tives:				
1.	The cour	rse imparts the knowledge of planning and design of airports, docks and harb	ours	struc	ture	e
2.	The cour	rse imparts the knowledge of construction of airports, docks and harbour stru	ctur	e		
3.	The cour	rse imparts the knowledge of maintenance of airports, docks and harbour stru	ctur	e		
LINI	TT AT	DOOT DI ANNINC AND DESICN		0		0
	antages an	d Limitations of Air Transport, Components of Airports, Airport Planning – A	ir tr	• affi	<u>т</u>	U
note	ential Site	Selection Design of Components Cost Estimates Evaluation and Institution	onal	ann	-	
arra	ngements-	Runway Design- Orientation. Cross wind Component. Wind rose Diagram (Prol	blem	18).	
Geo	metric De	sign and Corrections for Gradients (Problems), Drainage.			,	
UNI	TII TA	XIWAY DESIGN AND AIRPORT LAYOUTS		9	+	0
Drai Higl Area Plan	nage -Airp nways and a and Circu ning Conce	ort Zoning - Clear Zone, Approach Zone, Buffer Zone, Turning Zone, Clearance Railways-Airport Layouts – Apron, Terminal Building, Hangars, Motor Vehicle lation Pattern, Case studies of Airport Layouts-Airport Buildings – Primary fun- ept, Principles of Passenger Flow, Passenger Facilities.	e ove Parl ction	er king 18,		
UNI	T III VI	SUAL AIDS AND AIR TRAFFIC CONTROL		9	+	0
Visu Ligh Equ	ial Aids – ntings-Air ' ipments.	Runway and Taxiway Markings, Wind Direction Indicators, Runway and Ta Traffic Control – Basic Actions, Air Traffic Control Network Helipads, Hang	xiwa gars,	ay Ser	vice	•
UNI		ARBOUR ENGINEERING		9	+	0
Defi Dep Site Curi Cha Line	inition of 7 th, Satellit Selection & rents, Litto racteristics es	Terms - Harbours, Ports, Docks, Tides and Waves, Littoral Drift, Sounding, e Ports Requirements and Classification ofHarbours & Selection Investigation – Speed of water, Dredging, Range of Tides, Waves a ral Transport with Erosion and Deposition, Anchoring Grounds, Geological , Winds & Storms- Proximity to Towns/Cities, Utilities, Construction Mater	Area nd T rials	a, Iidal ,Coa	ast	
Uni	t V DOC	CKS AND OTHER STRUCTURES		9	+	0
Dry Faci Coa Wat	and Wet I lities – Po stal Struct er Transpo	Docks,, Planning and Layouts- Entrance, Position of Light Houses, Navigati rt Buildings, Warehouse, Transit Sheds, Inter-modal Transfer Facilities, Nav ures- Piers, Breakwaters, Wharves, Jetties, Quays, Spring FendersCoastal S ort and Container Transportation. Pipe Ways, Rope Ways.	ng 'igat hipp	iona iona ing,	iina il A Inl	ids and
		Tota	al =	45 I	Peri	ods
Cou	rse Outco	omes:				
Upo	n completi	on of this course, the students will be able to:				
CO	1 : Plan	for airport, harbour, docks and coastal structures				
CO	2 : Desi	gn for airport and its components				
CO.	3 : Cons	struct airport, docks and harbour				
CO ₄	4 : Prote	ect the harbour, docks and coastal structures				
Tex	t Books:	V Aron M.C. Aimout Dlanning and Design Nemshand And Desthere De	orles	<u>, , , , , , , , , , , , , , , , , , , </u>	007	
1.	Knanna S	K, Alora M.G, Airport Flanning and Design, NemchandAnd Brothers, Ro	OFKE	;e,2(JU / .	•
2.	Bindra S 1992.	P., A Course in Docks and Harbour Engineering, Dhanpat Rai and Sons, I	New	De	lhi,	

	3	Hasmukh PranshankerOza, Gautam H. Oza., Dock and Harbour Engineering CharotarPublishing
	5.	House, 1999
	Ref	erence Books:
	1.	RangwalaS.C ,Rangwala P.C , Airport Engineering, Charotar Publishing House Pvt. Limited,
		2008
	2.	Shahani P.B., Airport Techniques, 2nd edition, Oxford Publications, New Delhi
	3.	Srinivasan R., Harbour, Dock and Tunnel Engineering, Charotar Publishing House, Anand,
		India, 1995.
	4.	Norman J. Ashford, Paul H. Wright, Airport Engineering, John Wiley & Sons Inc; 1st edition
	E-R	References:
	1.	https://nptel.ac.in/courses/114106025/ - Ocean Engineering (Harbour and Docks)
	2.	https://nptel.ac.in/courses/105104098/7- Advanced Transportation Engineering (Runway design)
	3.	https://nptel.ac.in/courses/105107123/- Transportation Engineering II (Air Transports)
CO-PO-	PSO	MAPPING

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	3		2	2		2	3		1		1	3	3		1
CO2	3		2	3		3	3		1		1	3	3		1
CO3	3		2	2		3	3		1		1	3	3		1
CO4	3		3	2		3	3		1		1	3	3		1

180	CEPE03	INTEGRATED TRAFFIC PLANNING AND MANAGEMENT	L	Т	Р	С
			3	0	0	3
Coι	ırse Objec	tives:				
1.	To give	an overview of Traffic engineering and traffic regulation				
2.	To impa	rt knowledge on traffic management and traffic safety				
3.	To devel	op knowledge in the integrated approach in traffic planning				
UN	IT I TI	RAFFIC PLANNING AND CHARACTERISTICS		9	+	0
Roa Fun ,reg	d Character damentals of ional and a	ristics – Road user characteristics – PIEV theory – Vehicle – Performance ch of Traffic Flow – Urban Traffic problems in India – Integrated planning of te all urban infrastructure – Towards Sustainable approach. –	arac ⁻ own	terist ,cou	tics ntry	 ,
Tanc		isport and modal integration.				
TINT	(T II TI	DAFFIC SUDVEVS		0		Λ
		MATTIC SURVEIS	1:	7	+	U
mot Park Stat and	orized trans ting Survey istical appl significance	sports – Methods and interpretation – Origin Destination Survey – Methods and y – Accident analyses -Methods, interpretation and presentation – ications in traffic studies and traffic forecasting – Level of service – Concepte.	pres	enta plica	tion tion	- 1 S
UN		RAFFIC DESIGN AND VISUAL AIDS		9	+	0
Inte — (pers	rsection De Grade sepa sonnel - Ne	esign - channelization, Rotary intersection design – Signal design – Coordina ration - Traffic signs including VMS and road markings – Significant roles etworking pedestrian facilities & cycle tracks.	ation oftra	of s	ign: con	als trol
UN	IT IV TH	RAFFIC SAFETY AND ENVIRONMENT		9	+	0
Roa	d accidents	s – Causes, effect, prevention, and cost – Street lighting – Traffic and enviro	nme	nt		
haza	ards – Air	and Noise Pollution, causes, abatement measures – Promotion and integration	n of	 oubli	ic	
tran	sportation -	- Promotion of non-motorized transport.	. 0.1			
	1	1				
Uni	t V TRA	AFFIC MANAGEMENT		9	+	0
Area Reg and Inte	a Traffic M ulatory Me parking pr lligent Trai	Management System - Traffic System Management (TSM) with IRC standards asures-Travel Demand Management (TDM) – Direct and indirect methods – icing – All segregation methods- Coordination among different agencies – nsport System for traffic management, enforcement and education.	; — Con	Traf gesti	fic ion	
			tal_	45 T	Domin	da
Cor	man Outon	10	$a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a$	45 P	erio	Jus
Una		on of this course, the students will be able to				
	1 completi	on of this course, the students will be able to:				
	1 . Anal	yse traffic problems and plan for traffic systems various uses				
		on Changele. Interesting, single and parling arrangements				
CO	$\frac{5}{1}$: Desi	gn Channels, Intersections, signals and parking arrangements				
	$4 \mid : \mid Deve$	elop Traffic management Systems				
1	L DOOKS:	L. D. "Traffic Engineering and Transment Diaming" Khanna Dahlishara Dal	<u>1.: C</u>	012		
1.		L.K. Traine Engineering and Transport Planning, Knanna Publishers, Del	$\frac{111}{7}$	015		
2.	Indian Ro Planning	and Management.	Traf	fic		
3.	Salter. R.	I and Hounsell N.B, "Highway Traffic Analysis and design", Macmillan Pre-	essL	td.19	996.	
Ref	erence Boo	oks:				
1	Erad I N	Approxing Spott S. Washburn and Walter D. Kilaraski, Dringinlas of Highwa	τŪm			

1. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, Principles of HighwayEngineering and Traffic Analysis, Wiley India Pvt. Ltd., New Delhi, 2011

2.	Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New
	Delhi, 2010
3.	SP:43-1994, IRC Specification, "Guidelines on Low-cost Traffic Management Techniques" for Urban Areas, 1994
4.	John E Tyworth, "Traffic Management Planning, Operations and control", Addison WeslyPublishing
	Company, 1996
E-R	References:
1.	https://nptel.ac.in/courses/105101008/5- Traffic measurement procedures
2.	https://nptel.ac.in/courses/105101008/17- Traffic flow modelling
3.	https://nptel.ac.in/courses/105101008/48- Intelligent transportation system

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	0	1	1	1	1	1	3	3	3	1
CO2	2	3	1	2	1	0	3	3	2	2	1	0	3	0	1
CO3	3	3	3	3	3	0	3	2	2	2	1	1	3	3	3
CO4	3	2	1	3	3	0	3	2	2	3	3	3	1	2	1

CONSTRUCTION ENGINEERING AND MANAGEMENT

ISCEPE04 SMART MATERIALS AND SMART STRUCTURES L T P C 3 0 0 3 0 0 3 Course Objectives: The objectives of this course is to 1. Learn about different types of smart materials 3 0 0 3 2. Study about advance measuring instrument 3 0 0 3 3. Understand about sensors and its functions 4 5tudy about various actuator materials and their role 5 1 Farm about Data acquisition system Unit I INTRODUCTION 9 + 0 Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – The LVOT – Elber optic Techniques. Unit II MEASURING TECHNIQUES 9 + 0 Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductance – Inductance – Inductance – Inductance – Inductance J anduging Sensors – Phys							
Incluin Intervention STRUCTURES Image: Structure is the structur	100	EDE04	SMART MATERIALS AND SMART	L	Т	Р	С
3 0 0 3 Course Objectives: The objectives of this course is to 1. Learn about different types of smart materials	100.	CPEV4	STRUCTURES				
Course Objectives: The objectives of this course is to 1. Learn about different types of smart materials 2. Study about advanced measuring instrument 3. Understand about sensors and its functions 4. Study about various actuator materials and their role 5. Learn about Data acquisition system Unit I INTRODUCTION Introduction to smart materials and structures – Instrumented structures functions and response –Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 Strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piczo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys				3	0	0	3
Course Objectives: The objectives of this course is to 1 Learn about different types of smart materials 2: Study about advanced measuring instrument 3: Understand about sensors and its functions 4: Study about various actuator materials and their role 5: Learn about Data acquisition system Unit 1 INTRODUCTION 9 + 0 Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit 1 INTRODUCTION 9 + 0 struth measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Inductance – Unductance – Eactancans and Bio-Chemical sensing in structural Assessment							
1. Learn about different types of smart materials 2. Study about advanced measuring instrument 3. Understand about sensors and its functions 4. Study about dynamic edimeasuring instrument 5. Learn about Data acquisition system Unit I INTRODUCTION 9 + 0 Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Chemical and Bio-Chemical Sensing in structural Assessment – Absorptive chemical sensors-Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticacuation – Role of actuators and actuator materials. 9 + 0 Data acquisition and processing – Signal processing and control for smart structure	Cou	rse Ob	ectives: The objectives of this course is to				
2. Study about advanced measuring instrument 3. Understand about sensors and its functions 4. Study about various actuator materials and their role 5. Learn about Data acquisition system 9 + 0 Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shage memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. <td colspan="</td> <td>1.</td> <td>Learn</td> <td>about different types of smart materials</td> <td></td> <td></td> <td></td> <td></td>	1.	Learn	about different types of smart materials				
3. Understand about sensors and its functions 4. Study about various actuator materials and their role 5. Learn about Data acquisition system Unit I INTRODUCTION 9 + 0 Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 other intervention of the self diagnosis – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III MEASURING TECHNIQUES 9 + 0 Sensing techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material. Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0	2.	Study	about advanced measuring instrument				
4. Study about Various actuator materials and their role 5. Learn about Data acquisition system 9 + 0 INTRODUCTION 1 INTRODUCTION 9 + 0 systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. vinit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piczo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical sensing in structural Assessment – Absorptive chemical sensors–Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linea. 0	3.	Under	stand about sensors and its functions				
S. Learn about Data acquisition system Unit I INTRODUCTION 9 + 0 Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical sensing in structural Assessment – Absorptive chemical sensors–Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material. Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control s	4.	Study	about various actuator materials and their role				
Unit I INTRODUCTION 9 + 0 Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors-Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. 9 + 0 Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Con	5.	Learn	about Data acquisition system				
Cinit 1 Definition Introduction to smart materials and structures – Instrumented structures functions and response – Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. 9 + 0 Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors–Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods CO1 : Apply the knowledge on the self diagnos	Unit	TT	NTRODUCTION	0		+	Ω
Initial matchings and structures – Instrumented structures runction systems and response – Scinsing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical sensing in structural Assessment – Absorptive chemical sensors-Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Course Outcomes: Upon completion of this course, the students will be able to: CO2 : Acquire thorough knowledge on instrumentation fo	Intro	duction	to smart materials and structures. Instrumented structures functions and response		sino	• •	U
Systems – Sch ungnösis – Signal processing consideration – Actuation systems and circetors. Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors–Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods CO1 : Acpuire thorough knowledge on instrumentation for measuring strains, load and deflection CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3	svete	me Se	If diagnosis Signal processing consideration Actuation systems and effect	tors	ising		
Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors–Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and char	syste	.ms – 50	in diagnosis – Signar processing consideration – Actuation systems and ence	1015.			
Unit II MEASURING TECHNIQUES 9 + 0 strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors–Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. 9 + 0 Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the c							
Strain measuring techniques using electrical strain gauges, types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber Optic Techniques. 9 + 0 Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 : Apply the concepts of sensors parameters and characteristics	Unit	II N	IFASURING TECHNIQUES	9		+	0
Mini Including Communication Sum Particles (1993) Tremance (1993) Tremance (1993) Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes. Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 <td>strai</td> <td>n measu</td> <td>ring techniques using electrical strain gauges types – Resistance – Canacitanc</td> <td></td> <td>ndua</td> <td>rtanc</td> <td>`е —</td>	strai	n measu	ring techniques using electrical strain gauges types – Resistance – Canacitanc		ndua	rtanc	`е —
Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 CO1 i Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 i Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 i Demonstrate the concepts of signal processing and control system CO3 i. L. S. Srinath – Experim	Whe	atstone	bridges – Pressure transducers – Load cells – Temperature Compensation – Strain	Rose	ttes.	June	
Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. 9 + 0 Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 CO4 Have an insight into actuator techniques, SMA CO5 CO5 : Demonstrat				10000			
Unit III SENSORS 9 + 0 Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 CO1 : Acquire thorough knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system CO3 Apply the concepts of signal process							
Sensing Technology – Types of Sensors – Physical Measurement using Piezo Electric Strainmeasurement – Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 CO1 : Acquire thorough knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Total (4510) Stress Analysis – Tata McGraw-Hill, 1998	Unit	III	SENSORS	9		+	0
 Inductively Read Transducers – The LVOT – Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system L S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998 	Sens	ing Tec	nnology – Types of Sensors – Physical Measurement using Piezo Electric Strain	nmeas	uren	nent	
Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors– Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on instrumentation for measuring strains, load and deflection 4 CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection 5 CO3 Apply the concepts of sensors parameters and characteristics 5 5 CO4 Have an insight into actuator techniques, SMA 5 5 CO5 : Demonstrate the concepts of signal processing and control system 5 I <td></td> <td>U</td> <td>– Inductively Read Transducers – The LVOT – Fiber opt</td> <td>ic T</td> <td>'echr</td> <td>nique</td> <td>es.</td>		U	– Inductively Read Transducers – The LVOT – Fiber opt	ic T	'echr	nique	es.
Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement. Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. 9 + 0 Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection 2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system 1 L. S. Srinath – <i>Experimental Stress Analysis</i> – Tata McGraw-Hill, 1998	Cher	nical ar	d Bio-Chemical sensing in structural Assessment – Absorptive chemical sens	ors–		-	
Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. Imit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection 4 CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection 4 CO3 Apply the concepts of sensors parameters and characteristics 5 5 CO4 Have an insight into actuator techniques, SMA 5 5 CO5 : Demonstrate the concepts of signal processing and control system 5 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998 5	Spec	troscop	es – Fibre Optic Chemical Sensing Systems and Distributed measurement.				
Unit IV ACTUATORS 9 + 0 Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. - - - Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: -							
Actuator techniques – Actuator and actuator materials – Piezoelectric and electrostrictive material – Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagnetic actuation – Role of actuators and actuator materials. Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Unit	IV .	ACTUATORS	9		+	0
Magnetostructure material – Shape memory alloys – Electro orheological fluids– Electromagneticactuation – Role of actuators and actuator materials. Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 CO4 Have an insight into actuator techniques, SMA CO5 CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1 L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Actu	ator tec	hniques – Actuator and actuator materials – Piezoelectric and electrostrictive m	ateria	1 –		
Role of actuators and actuator materials. Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. 9 + 0 Total acquisition and processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Mag	netostru	cture material – Shape memory alloys – Electro orheological fluids– Electroma	igneti	cacti	Jatio	n –
Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Sensors as Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Role	of actu	ators and actuator materials.	U			
Unit V SIGNAL PROCESSING AND CONTROL SYSTEMS 9 + 0 Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – <i>Experimental Stress Analysis</i> – Tata McGraw-Hill, 1998							
Data acquisition and processing – Signal processing and control for smart structures – Sensors as geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Unit	V	SIGNAL PROCESSING AND CONTROL SYSTEMS	9		+	0
geometrical processors – Signal processing – Control system – Linear and Non-linear. Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Data	acquisi	tion and processing - Signal processing and control for smart structures - Ser	isors	as		
Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	geon	netrical	processors – Signal processing – Control system – Linear and Non-linear.				
Total (45+0)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998							
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	-		Total (4	5+0)=	: 45]	Peri	ods
Upon completion of this course, the students will be able to: CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Cou	rse Out	comes:				
CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	Upoi	ı compl	etion of this course, the students will be able to:				
CO1 : Apply the knowledge on the self diagnosis, functions and response of various smartmaterials CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	~ F ~ .	r					
CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	COI	:	Apply the knowledge on the self diagnosis, functions and response of various	smart	mat	erial	S
CO2 : Acquire thorough knowledge on instrumentation for measuring strains, load and deflection CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	~~~						
CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	CO2		Acquire thorough knowledge on instrumentation for measuring strains, load as	nd			
CO3 Apply the concepts of sensors parameters and characteristics CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998			deflection				
CO4 Have an insight into actuator techniques, SMA CO5 : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	CO3		Apply the concepts of sensors parameters and characteristics				
COS : Demonstrate the concepts of signal processing and control system Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	CO4	-	Have an insight into actuator techniques, SMA				
Text Books: 1. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998	- 005		Demonstrate the concepts of signal processing and control system				
1. L. S. Srinath – <i>Experimental Stress Analysis</i> – Tata McGraw-Hill, 1998	Text	Books					
	1.	L. S. S	rinath – Experimental Stress Analysis – Tata McGraw-Hill, 1998				
2. Brain Culshaw – Smart Structure and Materials Artech House – Borton. London-1996	2.	Brain (Culshaw – Smart Structure and Materials Artech House – Borton. London-199	6			
Reference Books.	Refe	rence I	ooks:				

1.	J.	W.	Dally	&	W.	F.	Riley	_	Experimental	Stress	Analysis	_	Tata	McGraw-
	Hill	,1998												

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	2	3	2	2	2	2	0	2
CO2	3	2	3	2	3	2	2	2	3	2	2	2	2	0	2
CO3	2	3	1	3	2	3	3	3	2	3	1	3	3	1	3
CO4	3	2	3	3	2	3	2	2	2	3	0	1	1	1	2
CO5	2	3	3	2	3	1	3	2	3	2	3	1	2	1	3

1 – Slightly 2 – Moderately 3 - Strongly

18CEPE05 CONSTRUCTION TECHNIQUES AND EQUIPMENTS	Р	
---	---	--

3 0 0 3

9

9

9

9

С

+ 0

+ 0

+ 0

0

+ 0

Course Objectives:

1. The main objective of this course is to impart basic knowledge in Construction methods, equipments, machineries and fire safety principles.

Unit I MODERN CONSTRUCTION METHODS

Open excavation, shafts and tunnels, pier and caisson foundation. Basement construction -construction Methods – supporting the excavations- control of ground water- requirements of form work – economy in form work – materials for forms – arrangements forms for slabs, beams, columns, walls,

culverts, stairs etc – removal of forms - shoring and underpinning- basement waterproofing.

Unit II CONSTRUCTION TECHNIQUES

Construction Methods for Bridges, roads, railways, dams, harbours, river works and pipelines - Construction techniques for Earth moving, excavating , drilling, blasting, tunneling and hoisting and erection

Unit IIICONSTRUCTION EQUIPMENTS

Equipment for: Earth moving, excavating, drilling and blasting.

Equipment for: Dredging, tunneling, hoisting, erection and dewatering - Equipment for Flooring – dewatering and floors finishing.

Equipment for production of concrete – Crushers- feeders- screening equipment – batching and mixing equipment – Conveyors – Vibrators – Concrete mixers - hauling, pouring and pumping equipment – transporters.

Unit IV MACHINERIES AND ELECTRICAL SYSTEMS IN BUILDINGS

Lifts and Escalators – Special features required for physically handicapped and elderly. Basics of electricity-Single/Three phase supply-Protective devices in electrical installations – Earthing for safety–Typesofearthing– ISspecifications-Planningelectricalwiringforbuilding-Mainand distribution boards.

Unit V ILLUMINATION & FIRE SAFETY

Luminous flux-Candela-Solid angle illumination-Utilisationfactor-Depreciation factor-MSCP-MHCP- Lans of illumination-Classification of lighting- Artificial light sources-Spectral energy distribution- Luminous efficiency-Color temperature-Color rendering.

Design of modern lighting-Lighting for stores, offices, schools, hospital and house lighting. Elementary idea of special features required and minimum level of illumination required for physically handicapped and elderly in building types.

Causes of fire in buildings – Safety regulations – NBC – Planning considerations in buildings like noncombustible materials, construction, staircases and lift lobbies, fire escapes and A.C. systems.

Special features required for physically handicapped and elderly in building types – Heat and smoke detectors – Fire alarm system, snorkel ladder.

Total = 45 Periods

Course (Outcomes:
----------	-----------

Upon	pon completion of this course, the students will be able to:									
CO1	:	Know the different construction techniques and methods.								
CO2	:	Select, maintain and operate hand and power tools and equipments used in the								
		bridges,roads,railways and dams.								
CO3	:	Know the methods and techniques involved in the construction of various sub structures.								
CO4	:	Understand the importance of electric safety in buildings								
CO5	:	Know the principles on illumination and fire safety.								

Tex	t Books:
1.	Antil J M., Civil Engineering Construction, McGraw Hill Book Co., 1982
2.	Peurifoy, R.L.,Ledbette. W.B Construction Planning, Equipment and Methods McGraw Hill Co, 2000
3.	Ratay., R.T Hand Book of <i>Temporary Structures in Construction</i> , McGraw Hill, 1984 Ambrose E.R., <i>Heat Pumps and Electric Heating</i> , John Wiley and Sons, Inc., New York 1968
4.	Hopkinson and Kay J.D., The lighting of buildings, Faber and Faber, London
Ref	erence Books:
1.	Koerner ,R.M,Construction& Geotechnical Methods in Foundations Engineering, McGraw Hill, 1984
2.	Varma M., Construction Equipment and its Planning & Application, Metropolitain Books Co., 1979
3.	Smith R.C, Andres, C.K Principles and Prentice of Heavy Construction, Prentice Hall, 1986
4.	Francis D.K.Ching – Architecture, Form, Space and Order-V.N.R NY., 1999
5.	William Severns H. and Julian Fellows R. Air-Conditioning and Refrigeration,
	John Wiley and Sons,London,1988
6.	Taylor MAP and Young W, "Traffic Analysis – New Technology and New Solutions", Hargreen Publishing Company, 1998.
7	National Building Code

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	2	2	2	2	2	2	3	3	3	2
CO2	2	2	3	2	2	2	2	2	2	2	2	2	2	-	-
CO3	2	2	2	2	2	1	1	1	2	2	2	2	3	3	-
CO4	3	3	2	2	3	2	2	1	2	3	2	3	3	2	2
CO5	3	2	3	3	3	3	3	2	2	2	2	3	3	2	1

1 – Slightly 2 – Moderately 3 - Strongly

18CEPE0	6	PROJECT SAFETY MANAGEMENT	L	Т	ł
			3	0	0
Course O	bjectiv	ves:			
1 To s	tudv tł	he various safety concepts and requirements applied to construction projects			
$\frac{1}{2}$ To b	earn th	e details about safety programmes			
3. To 1	inderst	and the contractual obligations			
$\frac{1}{4}$ To s	tudv tł	he various methods of designing for safety			
5. To a	cauire	a knowledge about owners and designers outlook			
	1				
Unit I C	ONST	TRUCTION ACCIDENTS	9		H
Accidents	and th	eir Causes –Human Factors in Construction Safety – Costs of Construction	Inju	ries	_
Occupational and Safety Hazard Assessment – Legal Implications.					
Unit II	SAF	ETY PROGRAMMES	9		-
Problem A	reas ir	n Construction Safety – Elements of an Effective Safety Programme – Job-Si	te S	afet	y
Assessmen	nt – Sa	afety Meetings – Safety Incentives			
Unit III	CON	NTRACTUAL OBLIGATIONS	9		-
Safety in C	Constru	uction Contracts – Substance Abuse – Safety Record Keeping.			
Unit IV Safety Cul Manageme Project Co	DES ture – ent Pra ordinat	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractua tion and Safety Procedures – Workers Compensation.	9 al O	s — T bliga	Го ati
Unit IV Safety Cul Manageme Project Co Unit V	DES ture – ent Pra ordinat	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractua tion and Safety Procedures – Workers Compensation.	9 agers al O	s — J bliga	- Fo ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re	DES ture – ent Pra ordinat	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractua- tion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety –	9 agers al O 9 - Sat	s – 7 bliga	Fo ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc	DES ture – nt Pra ordinat OW esponsi ument.	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractua tion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ability for safely – Owner preparedness – Role of designer in ensuring safety –	9 agers al O 9 - Sat	s — T bliga fetyc	- Fc at
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc	DES ture – ent Pra ordinat OW esponsi ument.	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractua- tion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ability for safely – Owner preparedness – Role of designer in ensuring safety –	9 agers al O 9 - Sat	s – T bliga fetyo	- Fo ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc	DES ture – nt Pra ordinat OW esponsi ument.	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractua- tion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+	9 agers al O 9 - Sat +0)=	s – T bliga fetyc	- Fo ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc Course O	DES ture – nt Pra ordinat OW esponsi ument.	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ability for safely – Owner preparedness – Role of designer in ensuring safety – . Total (45+ tes:	9 algerss al O 9 - Saf +0)=	s – T bliga fetyc	- Fc ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc Course O Upon com	DES ture – nt Pra ordinat esponsi ument. utcom	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuat ion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – . Total (45+ res: a of this course, the students will be able to:	9 angerss al O 9 - Sat +0)=	s – T bliga fetyc	- Tc at
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc Course O Upon com CO1 :	DES ture – nt Pra ordinat esponsi ument. utcom	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – . Total (45+ mes: a of this course, the students will be able to: w various constructions safety concepts.	9 agers al O 9 - Sat	s – T blig: fetyo	- Fc ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc design doc Upon com CO1 : CO2 :	DES ture – nt Pra ordinat esponsi ument. utcom pletion know	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ability for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ tes: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes	9 agers al O 9 - Sat +0)=	3 – 7 bliga fetyco	- Tc ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc Course O Upon com CO1 : CO2 : CO3 :	DES ture – nt Pra ordinat esponsi ument. utcom pletion know Carry Chal	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ability for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ mes: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task	9 ngerss al O 9 - Sat	3 – 7 bliga	- Tc ati - cla Pe
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc Course O Upon com CO1 : CO2 : CO3 : Text Book	DES ture – nt Pra ordinat Sponsi ument. utcom pletion know Carry Chal	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuat ion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ability for safely – Owner preparedness – Role of designer in ensuring safety – . Total (45+ nes: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task	9 agers al O 9 - Sat	s = 1 bliga fetyc	- Fc ati
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc design doc Course O Upon com CO1 : CO2 : CO3 : Text Book 1. Jimm	DES ture – nt Pra ordinat esponsi ument. utcom pletion knov Carry Chal s: y W.	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuat ion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – . Total (45+ res: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task Hinze, Construction Safety, Prentice Hall Inc., 1997.	9 agers al O 9 - Saf +0)=	5 – 1 bliga fetyc	- Tc ati - - - - - - - - - - - - -
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc design doc Upon com CO1 : CO2 : CO3 : Text Book 1. Jimm	DES ture – nt Pra ordinat esponsi ument. vector pletion know Carry Chal cs: y W. 1 ard J.	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ res: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task Hinze, Construction Safety, Prentice Hall Inc., 1997. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and Health	9 agers al O 9 - Sat +0)=	s = 7 bligs fetyc	
Unit IVSafety CulManagemeProject CoUnit VOwner's redesign docdesign docUpon comCO1CO2CO31Jimm2.Prent	DES ture – nt Pra ordinat esponsi ument. vector pletion know Carry Chal s: y W. 1 ard J. tice H	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ nes: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task Hinze, Construction Safety, Prentice Hall Inc., 1997. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and HealthN all Inc., 2001.	9 argers al O 9 - Sat +0)=	s = 7 bliga fetyc	
Unit IVSafety CulManagemeProject CoUnit VOwner's redesign docCourse OUpon comCO1CO2CO3:Text Book1.Jimm2.Reference	DES ture – nt Pra ordinat Seponsi ument. utcom pletion know Carry Chal as: y W. J ard J. tice Ha Books	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ res: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task Hinze, Construction Safety, Prentice Hall Inc., 1997. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and HealthN all Inc., 2001. s:	9 argerss al O 9 - Sat +0)=	s = 1 bliga fetyc	
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc design doc Course O Upon com CO1 : CO2 : CO3 : Text Book 1. Jimm 2. Prent Reference 1. Tami Mana	DES ture – nt Pra ordinat esponsi ument. utcom pletion know Carry Chal as: y W. 1 ard J. tice Ha Books Inadu	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ res: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task Hinze, Construction Safety, Prentice Hall Inc., 1997. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and HealthM all Inc., 2001. s: Factory Act, Department of Inspectorate of factories, Tamil Inc., Prentice Hall Inc., 2001.	9 agers al O 9 - Sat +0)=	s = 1 bliga fetyc 45]	
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc design doc Course O Upon com CO1 : CO2 : CO3 : Text Book 1. Jimm 2Rich Prem Reference 1. Tami Mana 2. Chris	DES ture – nt Pra ordinat esponsi ument. utcom pletion knov Carry Carry y W. 1 ard J. tice Ha Books lnadu gemer Hend	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractuation and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ test colspan="2">test colspan="2">Total (45+ test colspan="2">test colspan="2">test colspan="2">Total (45+ test colspan="2">test colspan="2">Total (45+ test colspan="2">Total (45+ test colspan="2">Total colspan="2">Total (45+ test colspan="2">Total colspan="2"	9 agers al O 9 - Saf +0)=	s = 1 bliga fetyc 451	Pro-
Unit IV Safety Cul Manageme Project Co Unit V Owner's re design doc design doc Course O Upon com CO1 : CO2 : CO3 : Text Book 1. Jimm 2Rich Prent Reference 1. Tami Mana 2. Chris <i>Conc</i>	DES ture – nt Pra ordinat esponsi ument. otrom pletion know Carry Chal chal ard J. tice Hi Books Inadu gemer Hence epts fo	SIGNING FOR SAFETY Safe Workers – Safety and First Line Supervisors – Safety and Middle Mana actices, Company Activities and Safety – Safety Personnel – Sub contractua- tion and Safety Procedures – Workers Compensation. NERS' AND DESIGNERS' OUTLOOK ibility for safely – Owner preparedness – Role of designer in ensuring safety – Total (45+ res: a of this course, the students will be able to: w various constructions safety concepts. yout various safety programmes llenge contractual obligations task Hinze, Construction Safety, Prentice Hall Inc., 1997. Coble, Jimmie Hinze and Theo C. Haupt, Construction Safety and HealthN all Inc., 2001. s: Factory Act, Department of Inspectorate of factories, Tamil Int, t, Prentice Hall Inc., 2001. drickson and Tung Au, Project Management forConstruction – or Owners, Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000	9 agers al O 9 - Saf +0)= Man Nadu	s = 7 bligs fetyco a 45 1 nage u.	Polone

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	2	1	1	1	1	1	1	1	-	1	1	1
CO2	2	1	2	1	1	1	1	3	1	2	1	1	1	1	1
CO3	1	1	1	1	-	1	3	1	3	3	3	2	1	1	1

1	8CE	PE07 REPAIR AND REHABILITATION OF STRUCTURES	L	Т	P C
			3	0	0 3
Cou	irse	Objectives: The objectives of this course is to			
1.	stu	dy the various types and properties of repair materials			
2.	lea	arn various distress and damages to concrete structures			
3.	un	derstand the importance of maintenance of structures			
4. 7	ass	sess the damage to structures using various tests			
5.	lea	arn various repair techniques of damaged structures, corroded structures			
Uni	t I	MAINTENANCE AND REPAIR STRATEGIES		9	+ 0
Mai	nten	ance, repair and rehabilitation, Facts of Maintenance, importance of Maintenance	vario	ousas	spects
of in	nspea	ction, assessment procedure for evaluating a damaged structure, causes of deterio	ratic	on.	-
Uni	t II	SERVICEABILITY AND DURABILITY OF CONCRETE		9	+ 0
Oua	lity a	assurance for concrete construction, concrete properties- strength, permeability, the	erma	l pro	perties
and	cracl	king- effects due to climate, temperature, chemical, corrosion- Design and construction	ı err	ors-e	ffects
of c	over	thickness and cracking.			
T .				•	
Um		MATERIALS AND TECHNIQUES FOR REPAIR		9	+ 0
Spe	cial c	concretes and mortar, concrete chemical, special elements for accelerated strength gain	, exp	ansi	ve
elim	inate	ors and polymers coating for rebars during repair foamed concrete mortar and dry	nacl	c va	ccum
cond	crete.	gunite and shotcrete, epoxy injection, mortar repair for cracks.	paci	x, va	ceum
sho	ring a	and underpinning. Methods of corrosion protection, corrosion inhibitors, corrosionr	esist	ant s	steels.
coat	ings	and cathodic protection.			,
T T •			70	0	
Uni		REPAIRS, REHABILITATION AND RETROFTTING OF STRUCTURE	28	9	+ 0
Stre	ngtn r fir	e leakage and marine exposure	çcori	0510	n,
weu	.1, 111				
Uni	t V	DEMOLITION TECHNIQUES		9	+ 0
Den	noliti	ion methods by machines, explosives, Advanced techniques-Demolition			•
sequ	ience	es, dismantling techniques, safety precautions in dismantling and demolition, Engine	ered		
dem	oliti	on techniques for dilapidated structures- case studies			
			T)	45 D	
Cor	irco	10tal (L+	1)=	45 P	erioas
Uno		mpletion of this course, the students will be able to:			
CO	$\frac{1}{1}$:	demonstrate the condition of structures			
CO	2 :	Inspect and evaluate the damaged structure			
CO	3 :	Implement the repairing techniques of a structure			
CO	4	Identify and Use different materials for repairing works			
CO	5 :	Demonstrate the dismantling and demolishing structures			
Tex	t Bo	oks:			
1.	She	etty, M.S., Concrete Technology- Theory and Practice, S. Chand and company, Ne	ewD	elhi,	2019
2.	Rep	pair and protection of concrete structures by Noel P.Mailvaganam, CRC Press, 199	1.		
3	CP	WD: Handbook on Repair & Rehabilitation of R.C.C. Buildings, CPWD, Govt. of	of In	dia ,	
<i>J</i> .	200	2, updated reprint 2011			
Ref	eren	ce Books:		La	aast
1.	San	unakumatA.K, 1 raining Coursenoieson DamageAssessmentanakepair	in	LOW	COST

	housing, "RHDC.NBO" Anna University, july 1992.	
2.	RaikarR.N., Learning from failures - deficiencies indesign, construction and services – R	
	&Dcentre (SDCPL), raikar bhavan, Bombay,1987	
3.	Palaniyappan, N., Estate management, Anna Institute of Management, Chennai, 1992.	
4.	Lakshmipathy, M. etal., Lecture notes of workshop on Repairs and Rehabilitation of structures,	
	29-30 th october 1999.	
E-R	References:	
1.	https://nptel.ac.in/courses/114106035/38	

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	1	1	1	1	3	2	2	1	1	1	1	1	2
CO2	3	1	3	2	2	3	2	3	1	2	1	1	1	3	1
CO3	1	3	2	1	3	1	3	1	2	1	3	2	3	1	1
CO4	3	3	2	2	1	2	2	2	2	1	3	1	1	1	2
CO5	1	1	2	3	3	2	1	1	1	2	1	1	2	1	2

1 – Slightly 2 – Moderately 3 - Strongly

ENVIRONMENTAL ENGINEERING

180	CEPE08	INDUSTRIAL WASTE MANAGEMENT	L	Т	Р	С
			3	0	0	3
Cou	rse Ob	jectives:				
1.	This s	ubject deals with the pollution from major industries and methods of controlling	thesa	me.	The	
	studen	ts are expected to know about the polluting potential of major industries in				
	the co	untry and the methods of controlling the same.				
					1	-
Uni		NTRODUCTION	9		+	0
Type	es of inc	lustries and industrial pollution – Characteristics of industrial wastes – Popula	tition e	equiv	vale	nt –
hum	an healt	h = Environmental legislations related to prevention and control of	tinent	pia	ms	anu
indu	strial ef	fluents and hazardous wastes				
Uni	t II C	LEANER PRODUCTION ORGANISATION	9		+	0
Was	te mana	gement Approach - Waste Audit - Volume and strength reduction - Material a	ind pi	roces	SS	L
mod	lification	s – Recycle, reuse and byproduct recovery – Applications				
Uni	t III	POLLUTION FROM MAJOR INDUSTRIES	9		+	0
Sou	rces, Ch	aracteristics, waste treatment flow sheets for selected industries such as Textil	les, T	anne	eries	',
Pha	rmaceut	icals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steelplants,				
Refi	neries, f	ertilizer, thermal power plants – Wastewater reclamation concepts				
TTest	4 137 7					
		REATMENT TECHNOLOGIES	9		+	0
Equa	alization	- Neutralization - Removal of suspended and dissolved organic solids - Chemica	l oxid	ation	1 —	
Ads	orption	- Removal of dissolved inorganics – Combined treatment of industrial and				
mun	licipai w	astes – Residue management – Dewatering - Disposar				
Uni	t V H	AZARDOUS WASTE MANAGEMENT	9		+	0
Haz	ardous v	vastes - Physico chemical treatment – solidification – incineration – Secured la	nd fil	ls.		
		•				
		Total (45+0)= 45 Periods				
Cou	irse Ou	tcomes:				
Upo	n comp	etion of this course, the students will be able to:				
CO	1 :	Demonstrate the polluting potential of major industries				
CO2	2 :	Carry out various methods to control the pollutants				
Tex	t Books					
1.	M.N.R	ao&A.K.Dutta, <i>Wastewater Treatment</i> , Oxford - IBH Publication, 1995.		0		
2.	W .W	Eckenfelder Jr., Industrial Water Pollution Control, McGraw-HillBook		Co	mpa	ny,
Pofe	newDe	Books:				
1	T Shen	Industrial Pollution Prevention Springer 1999				
1.	R L St	enhenson and I B Blackburn Ir Industrial Wastewater Systems Hand				
	book. I	Lewis Publisher, New Yark, 1998				
3.	H.M.F	reeman, Industrial Pollution Prevention Hand Book, McGraw-Hill Inc New I	Delhi.	199:	5.	
4.	Bishop	, P.L., Pollution Prevention: Fundamental & Practice, McGraw-Hill, 2000.	,			
L	r					

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2		3		1	3				2			2		
CO2	3	2	3			3					2		2		2

18CEPE09		E09	HAZARDOUS WASTE MANAGEMENT	L	Т	Р	С		
				3	0	0	3		
Cou	rse	Obj	ectives:						
1.	To rec des	im ycl sign	part knowledge and skills in the collection, storage, transport, treatment, dispo- ng options for hazardous wastes including the related engineeringprinciples, criteria, methods and equipments	salan	d				
TT • 4	-		OUDODG OF AGGIDIGATION AND DEGULATODY DEALEDINODY						
Unit	: 1	8	OURCES, CLASSIFICATION AND REGULATORY FRAMEWORK	9	6	+	0		
I ype India acid roles wast	an leg batt of s e ma	gisl erie stak anag	ations on management and handling of hazardous waster management – Sa s, electronic wastes, plastics and fly ash – Elements of integrated waste eholders - Financing and Public Private Participationfor gement.	anent ear wa mana	gem	ent	lead and		
Unit	П	W	ASTE CHARACTERIZATION AND SOURCE REDUCTION	9		+	0		
Wast	te ge	ene	ation rates and variation - Composition, physical, chemical and biolog	rical r	prope	ertie	s of		
haza Sour respo	rdou ce re onsil	s w eduo bilit	astes – Hazardous Characteristics – TCLP tests – waste sampling and characteristics – TCLP tests – waste sampling and characteristic of wastes – Waste exchange - Extendedproducer y - Recycling and reuse	teriza	tion	pla	ın -		
Linit	TTT		STODACE COLLECTION AND TRANSPORT OF WASTES	0			0		
Unit	. 111		STORAGE, COLLECTION AND TRANSPORT OF WASTES	9	A	+	0		
Colle comj wast	ectic patil e ma	on s oilit anif	ystems -Need for transfer and transport – Transfer stations Optimizing way, storage, labeling and handling of hazardous wastes –hazardous ests and transport.	iste a	lloc	atio	n –		
Unif	IV	v	VASTE PROCESSING TECHNOLOGIES	9		<u>т</u>	0		
Ohio	. <u>.</u> .		f waste processing metanial concretion and processing technologies	hi		- 	ond.		
chen techi treati	nical nolog ment ation	gies t of	onversion technologies – methods and controls of Composting - the and energy recovery – incineration - solidification and stabilization of haz biomedical wastes - Health considerations in the contextof facilities, handling of materials and impact of outputs on the environment	ermal	con	vers	sion es -		
Unit	t V	W	ASTE DISPOSAL	9		+	0		
Wasi desig mana dumj	te di gn ar agen ps —	spor nd nent lanc	al options –Disposal in landfills -Landfill Classification, types and methods operation of sanitary landfills, secure landfills andlandfill bioreactors –leachate –landfill closure and environmental monitoring –Rehabilitation of open fill remediation	-site and	e sel land	ecti fill	on - gas		
Tota	il = 4	45 I	Periods						
Cou	rse (Out	comes:						
Upor	n co	mpl	etion of this course, the students will be able to:						
CO1		:	Understand the characteristics of different types of solid and hazardous wastes factors affecting variation	and	the				
CO2	2	:	Define and explain important concepts in the field of solid waste management						
			and suggest suitable technical solutions for treatment of municipal and industr	rialwa	iste				
CO3 : Understand the role legislation and policy drivers play in stakeholders' response to the									
--	-------	------	--	--	--	--	--	--	--
			waste and apply the basic scientific principles for solving practical waste management						
			challenges						
Tex	t Bo	oks							
1	Geo	orge	e Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid						
1.	Was	ste	Management, Mc-Graw Hill International edition, New York, 1993.						
	Mic	ha	el D. LaGrega, Philip L Buckingham, Jeffrey C. E vansandEnvironmental Resources						
2.	Maı	nag	ement, Hazardous waste Management, Mc-Graw Hill International edition, NewYork,						
	200)1.							
Ref	erend	ce 1	Books:						
1.	1. C	CPF	IEEO, "Manual on Municipal Solid waste management, Central Public Health and						
		En	vironmental Engineering Organisation, Government of India, New Delhi, 2000.						
2.	2. V	/es	ilind P.A., Worrell W and Reinhart, Solid waste Engineering, Thomson Learning						
		Inc	c., Singapore,2002.						
3.	3. P	aul	TWilliams, Waste Treatment and Disposal, Wiley, 2005						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		1	1	2		3	2		1		1	2	2		2
CO2		2	1	2		2	2	1	1		1	2	2		1
CO3		1	1	1		2	2	2	1		1	2	3		2

180	CEPE10	AIR POLLUTION MONITORING AND	L	T]	P	С
		CONTROL			•	
Con	man Ohi	anti-man	3	0	0	3
	This of	clives:	00 00	d tha		
1.	method	s of controlling the same. The student is expected to know about source inv	on and	and c	on	trol
	mechai	ism	Jintory	anuc	.011	uoi
2.	In gene	ral, the project brings: Contribution to the overall sustainability of the area. In	prove	ement	of	2
	overall	waste management in the area.	-r			
3.	Increas	ed recycling levels and reduction of organic waste in landfills.				
Uni	t I S	DURCES AND EFFECTS OF AIR POLLUTANTS	9	-	ł	0
Clas	sificatior	of air pollutants - Particulates and gaseous pollutants - Sources of air pollutants	ollutio	n - s	Sou	rce
inve	ntory – l	Effects of air pollution on human beings, materials, vegetation, animals – globa	ıl war	ming-	oz	one
laye	r depleti	on, Sampling and Analysis – Basic Principles of Sampling – Source and am	oient	sampl	ling	3 –
Ana	lysis of p	ollutants – Principles.				
Uni		SDEDSION OF DOLLUTANTS	0	<u> </u>	.	0
Flor	nonte of	structure Material factors Wind rosas Lance rate Atmospheria	y stabili	ituand	T	U
turb	ulence _	Plume rise – Dispersion of pollutants – Dispersion models – Applications	stabili	tyand	L	
turo		Tune fise – Dispersion of polititants – Dispersion models – Applications				
Uni	t III	AIR POLI UTION CONTROL	0	<u> </u>	г	0
Con	conts of	control Principles and design of control measures Particulates control	by a	rovito	tio	<u>v</u>
cont	rifugal f	ltration scrubbing electrostatic precipitation. Selection criteria for equipment	by g	lavita	1111	lai,
cont	rol by	adsorption absorption condensation combustion Pollution control for	gaseo	us po	m	ant
indu	ioi Uy	adsorption, absorption, condensation, combustion – ronution control to	л spe	CIIIC	1116	ŋor
mau	isuics.					
Uni	t IV A	IR OUALITY MANAGEMENT	0	<u> </u>		0
• · ·	11		9		+	U
Air	quality si	andards – Air quality monitoring – Preventive measures - Air pollution control	effort	S - Z	oni	ng
	essment a	nd Air quality	tannn	Jact		
1100						
Uni	t V NO	DISE POLLUTION	9		+	0
Sou	rces of n	pise pollution – Effects – Assessment - Standards – Control methods - Preven	tion		-	
		T. T				
		Т	'otal =	: 45 P	eri	ods
Cou	irse Out	comes:				
Upo	n comple	tion of this course, the students will be able to:				
CO	1 :	Causes of air pollution				
CO	2	Efforts of air and noise pollution				
0.	2 :	Effects of all and holse pollution				
CO	3 :	Effective air pollution management				
Tex	t Books:					
1.	Anjaney	rulu, D., Air Pollution and Control Technologies, AlliedPublishers, Mumbai,	2	.002.		
2.	Rao, C.	S., Environmental Pollution Control Engineering, Wiley Eastern Ltd., New D	elhi, i	1996.		
Ref	erence B	ooks:				
1.	RaoM.N	I., and Rao H. V. N., Air Pollution Control, Tata-McGraw-Hill, New Delhi,	1996.			
2.	W.L.He	umann, Industrial Air Pollution Control Systems, McGraw-Hill, New York, 1	997			
3.	Mahaja	n S.P., <i>Pollution Control in Process Industries</i> , Tata McGraw-Hill Publishing New Delhi, 1991.	g Com	ipany	,	
4	Peavy S	W., Rowe D.R. and Tchobanoglous G Environmental Engineering McGray	v Hill	New	,	
-.	1 cuvy L	Delhi, 1985.	· · · · · · · · · · · · · · · · · · ·	, 1 10 W		
5.	Garg, S	K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		1	2	2		1	1	1	1	1	2	2	1		2
CO2	1	2	2	2	2	2	2		1	2	3	3	3		2
CO3	2	3	3	2	2	2	2	1	1	2	3	3	3		2

18CEP	E11	MUNICIPAL SOLID WASTE MANAGEMENT	L	Т	Р	С
			3	0	0	3
Course	Objec	ctives:				
1. Th sit	is sub e/off-s	ject covers the various sources and characterisation of municipal solid waste site processing of the same and the disposal methods.	s and	theo	n-	
2. The solution	e stud lidwas	lent is expected to know about the various effects and disposal options for the ste.	e mun	icip		
3. Pr	ovide	efficient and economical refuse collection, recycling, and disposal services.				
Unit I	SO	URCES AND TYPES OF MUNICIPAL SOLID WASTES	9		+	0
Sources methods effects. I NGOs- I	and ty of sa Princip Legisla	pes of solid wastes - Quantity – factors affecting generation of solid wastes; ch mpling and characterization-Effects of improper disposal of solidwastes – pub ele of solid waste management – social & economic aspects- Public awarene ation.	aracte olic he ess- R	eristic ealth ole o	rs –	-
Unit II	ON-	SITE STORAGE & PROCESSING	9		+	0
On-site	torage	e methods - materials used for containers - on-site segregation of solid waste	<u> </u>	ublic	1	U
health &	econ	omic aspects of storage – options under Indian conditions – Critical Evaluation	on of	Optio	ons	•
Unit III	C	COLLECTION AND TRANSFER	9		+	0
Methods selection	of Co of lo	ollection – types of vehicles – Manpower requirement – collection routes- tran cation, operation & maintenance; options under Indian conditions.	sferst	ation	s –	-
Unit IV	OF	F-SITE PROCESSING	9		+	0
Processi Pyrolysi	ng tec s - op	hniques and Equipment; Resource recovery from solid wastes – composting, i tions under Indian conditions.	ncine	ratio	n,	1
T I *4 T 7	DIC	DOGAT		—		•
Unit v		POSAL	9	dfille	+	U
– Leacha	ate col	llection & treatment.			,	
		Т	'otal =	= 45]	Peri	iods
Course	Outco	omes:				
Upon co	mpleti	ion of this course, the students will be able to:				
CO1	: S	ources and characterization of municipal solid wastes				
CO2	: O	n-site/off-site processing of municipal solid wastes and disposal methods.				
CO3	: E	ffective municipal solid waste management				
Text Bo	oks:					
1. Geo	orge T	chobanoglousetc.al., Integrated Solid Waste Management, McGraw-Hill, Pub	lisher	:s,199	93.	
Referen	ce Bo	oks:				
1. B.E	Bilitew 1	vski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, WasteManager 994.	nent,S	Sprin	ige	r,
2. Ma Gov	<i>nual d</i> vernm	on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Develorent of India, NewDelhi, 2000	opme	nt,		
3. R.E	Land 1	reth and P.A.Rebers, <i>Municipal Solid Wastes – problems and Solutions</i> , Lev 997	visPu	blish	ers	,
4. Pea	vy S.V D	W., Rowe D.R. and Tchobanoglous G. <i>Environmental Engineering</i> , McGraw Delhi, 1985.	v Hill	, Nev	N	
5. Gai	g, S.F	K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	3	2	1	2	2			1	2	1	3		2
CO2		2	3	3	1	3	2	1	2	2	3	2	2		3
CO3	2	3	3	3	1	3	3	1	3	2	3	2	3		3

18C	EPI	E12	MARINE POLLUTION MONITORING AND	L	Т	Р	С
			CONTROL	3	0	0	3
Cou	rse (Obi	ectives:	-	÷		-
1.	Th of	is sı mar	bject educated the students about Coastal and Marine environment, ocean dy ine pollution and methods for monitoring, modeling and control.	nami	ics,s	ourc	ces
2.	The	e su	bject deals with the method for monitoring the marine pollution.				
3.	The	e su	bject cover modelling and controlling methods of marine pollution.				
TT • 4	T						0
Unit	I	M	ARINE ENVIRONMENT	9		+	0
Geol	ogy	, coa	astal features –Beaches, Estuaries, Lagoons– The oceans andclimate	arme			
Unit		00	CEAN HYDRODYNAMICS	9		+	0
II	- T1-		Ware in shallow meters. Definetion Diffusction and Charling American		C	1	U
deep Gene Onsł	and and eral ore	sha circ offs	llow water conditions –Tidal Classification- llation of ocean waters-Ocean currents -Coastal sediment transport - hore sediment transport -Beach formation and coastal processes -Tsunamis, s	torm	surg	e, E	1
Nino	eff	ect.					
Unit	III		MARINE POLLUTION SOURCES AND EFFECTS	9		+	0
Sour Expl quali	ces orat ity a	of N ion, nd c	Marine Pollution –Point and non-point sources, Pollution caused by Oil Dredging, Offshore Structures, Agriculture Impacts of pollution onwater coastal ecosystems –Marine discharges and effluent standards		I		
Unit	IV	Μ	ONITORING OF MARINE POLILITION	9		+	0
Basi	c me	easu	rements -Sounding boat, lead lines, echo sounders –current meters -tide gaug	e -us	e of	GPS	5 –
Meas –Moo Appl	sure delir icat	men 1g o ions	t of coastal water characteristics –sea bed sampling f Pollutant transport and dispersion -Oil Spill Models -Ocean Monitoring sate of Remote Sensing and GIS in monitoring marine pollution	llites			
T T •4	X 7					.	0
Desi	V Th O		ARINE POLLUTION CONTROL AND ICZM	9 ation	al an	+	0
Inter Mari	nation ne P	onal Pollu	Treaties, Coastal Zone Regulation–Total Maximum Daily Load applications tion – ICZM and Sustainable Development	–Prot		sin	
			Т	otal =	45	Peri	ods
Cou	rse	Out	comes:				
Upor	n coi	mple	etion of this course, the students will be able to:				
CO1		:	Abilitytoknowaboutmarineenvironmentandwouldhavelearntthephysicalconcepts oceanic curents and natural processes of various activities happening overthe marineenvironment.	lying	behi	nd t	he
CO2		:	Acquired knowledge on the marine pollution and the effect of the same on the	ecolo	ogy		
CO3		:	Should have gained knowledge on remote sensing and various other technique measuring and monitoring oceanic environmentparameters	esfor			
CO	4	:	Should have acquired knowledge on control of marine pollution and sustainab	oledev	velop	mer	nt
Text	Boo	oks:					
1.	Mar	rine	Pollution (5thEdition) R.B. Clark, C. Frid and M Atttrill Oxford Science Pul	olicati	ons,	,	

	2001
2.	Marine pollution Dr.P.C.Sinha ,Anmol Publications Pvt. Ltd, 1998
Ref	erence Books:
1.	Problems of Marine Pollution : India and Canada, Raghavan, Sudha , Eastern Book
	Corporation, Delhi, India,
2.	Laws, E.A., Aquatic pollution, an introductory text. John Wiley and Sons, Inc., New York, 2000

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			1	2	2	2	1				1	1	1		2
CO2	1		2	2	2	3	1			1	1	2	1		2
CO3	1	2	2	2	2	3	2		2		1	2	1		2
CO4	1	1	2	2	2	3	1	1		2	1	3	1		2

1 – Slightly 2 – Moderately 3 - Strongly

			3	Ω	0
			•	U	v
Cour	se Objec	ctives:			
1.	This sub	ject deals with the various impacts of infrastructure projects on the component	ents of		
	environr	nent and method of assessing the impact and mitigating the same.			
2.	The stud	ent is expected to know about the various impacts of development projects of	onenvi	ronn	nen
	and the 1	mitigating measures.			
3.	The subj	ect deals with to identify, predict and evaluate the economic, environmental	andso	ocial	
	impact o	f development activities.			
Unit	I IN'	FRODUCTION	9		+
Impac	rt of deve	elonment projects under Civil Engineering on environment - Environmental 1	Impact		
Asses provis	ssment (E sions on l	(EIA) - Environmental Impact Statement (EIS) – EIA capability and limitation EIA.	is – Le	egal	
T T •4 1					
Unit		THODOLOGIES	9		+
Metho Case	ods of El studies	A –Check lists – Matrices – Networks – Cost-benefit analysis – Analysis of	altern	ative	es -
Tim:+ 1	TII D	DEDICTION AND ASSESSMENT	0		
Unit	III P	REDICTION AND ASSESSMENT	9	1	+
1	a ma a mate of		a a ma a ta		
Asses mode	ssment of els- public	c participation – Rapid EIA.	nemati	cal	
Asses model	IV EN	vironmental management plan	9	cai	+
Asses model Unit I	IV EN	viron of adverse impact on environment – options for mitigation of impact on	9 water	cai	+
Asses model Unit I Plan f land,	IV EN	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on fauna; Addressing the issues related to the Project Affected People – ISO 1	9 water 14000	cai	+ and
Asses model Unit I Plan f land, :	IV EN for mitiga	VIRONMENTAL MANAGEMENT PLAN tion of adverse impact on environment – options for mitigation of impact on fauna; Addressing the issues related to the Project Affected People – ISO 1	9 water 14000	cai	+ and
Asses model Unit I Plan f land, 1 Unit	IV EN for mitiga flora and Encare	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES	9 water 4000	cai	+ and +
Asses mode Unit I Plan f land, I EIA f Water	IV EN for mitiga flora and V CAS for infrast r Supply	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects	9 water 4000 9 uilding	;, air	+ and +
Asses model Unit I Plan f land, :: Unit ` EIA f Water	ssment of els- public for mitiga flora and V CAS for infrast r Supply	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on l fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects	9 water 4000 9 uilding	cai ;, air ;; a	+ and +
Asses model Unit I Plan f land, : Unit I EIA f Water	ssment of els- public for mitiga flora and V CAS for infrast r Supply se Outco	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (4)	9 water 4000 9 uilding 45+0)=	cai ;, air ;s – = 45	+ and + Pe
Asses model Unit I Plan f land, : EIA f Water Unit Cours Upon	ssment of els- public for mitiga flora and V CAS for infrast r Supply rse Outco completi	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (4 mes: on of this course, the students will be able to:	9 water 4000 9 uilding 45+0)=	;, air ;s – = 45	+ and + Pe
Asses model Unit I Plan f land, : EIA f Water Unit Upon CO1	ssment of els- public for mitiga flora and V CAS for infrast r Supply rse Outco completi	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (4 omes: ion of this course, the students will be able to: npacts of development projects on environment	9 water 4000 9 uilding		+ and + Pe
Asses model Unit I Plan f land, I EIA f Water Upon CO1 CO2	ssment of els- public for mitiga flora and V CAS for infrast r Supply rse Outco completi : Ir	Impact on rand, water and an, noise, social, cultural flora and rauna- Mail c participation – Rapid EIA. VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on l fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (2 om of this course, the students will be able to: npacts of development projects on environment litigating measures on environmental impact accessment	9 water 4000 9 uilding 45+0)=	;, air (5 – 45	+ and + Pe
Asses model Unit I Plan f land, I EIA f Water Upon CO1 CO2 CO3	ssment of els- public for mitiga flora and V CAS for infrast r Supply se Outco completi : Ir : N : S	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (4 mes: ion of this course, the students will be able to: npacts of development projects on environment Iitigating measures on environmental impact accessment afe environmental plan to avoid Impacts on water, air, land, flora and fauna	9 water 4000 9 uilding 45+0)=	-, air -, sir 	+ and +
Asses model Unit I Plan f land, : Unit I EIA f Water Upon CO1 CO2 CO3 Text	ssment of els- public for mitiga flora and V CAS for infrast r Supply se Outco completi : Ir : M : S Books:	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (2 Omes: ion of this course, the students will be able to: npacts of development projects on environment Itigating measures on environmental impact accessment afe environmental plan to avoid Impacts on water, air, land, flora and fauna	9 water 4000 9 uilding 45+0)=	cai ;, air ;, air = 45	+ and +
Asses mode Unit Plan f land, EIA f Water Upon CO1 CO2 CO3 Text 1 1, C	ssment of els- public for mitiga flora and V CAS for infrast r Supply rse Outco completi : Ir : N : S Books: Canter, R	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (4 Descent for the students will be able to: npacts of development projects on environment fitigating measures on environmental impact accessment afe environmental plan to avoid Impacts on water, air, land, flora and fauna L. Environmental Impact Assessment, McGraw-Hill Inc., New Delhi, 199	9 water 4000 9 uilding 45+0)=	;, air	+ and + Pe
Asses model Unit I Plan f land, : EIA f Water Upon CO1 CO2 CO3 Text I 1. C Refere	ssment of els- public for mitiga flora and V CAS for infrast r Supply rse Outco completi : Ir : N : S Books: Canter, R ence Boo	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (4 omes: ion of this course, the students will be able to: npacts of development projects on environment fitigating measures on environmental impact accessment afe environmental plan to avoid Impacts on water, air, land, flora and fauna L.L., Environmental Impact Assessment, McGraw-Hill Inc., New Delhi, 199 ks:	9 water 4000 9 uilding 45+0)=	;, air ;, air ;; = 45	+ and + Pe
Asses model Unit I Plan f land, : EIA f Water Upon CO1 CO2 CO3 Text I 1. C Reference 1. S	ssment of els- public for mitiga flora and V CAS for infrast r Supply rse Outco completi : Ir : N : S Books: Canter, R ence Boo Shukla, S	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on I fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (2 mes: ion of this course, the students will be able to: npacts of development projects on environment fitigating measures on environmental impact accessment afe environmental plan to avoid Impacts on water, air, land, flora and fauna L., Environmental Impact Assessment, McGraw-Hill Inc., New Delhi, 199 ks: K. and Srivastava, P.R., Concepts in Environmental Impact Analysis, Co	9 water 4000 9 uilding 45+0)=	;, air ;, air ;; = 45	+ + Pe
Asses model Unit I Plan f land, I EIA f Water Upon CO1 CO2 CO3 Text I 1. C Referent 1. S F 2. J	ssment of els- public for mitiga flora and V CAS for infrast r Supply se Outco completi : Ir : N : S Books: Canter, R ence Boo Shukla, S Publisher John G. I	This This VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on 1 fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (mess: ion of this course, the students will be able to: npacts of development projects on environment fitigating measures on environmental impact accessment afe environmental Impact Assessment, McGraw-Hill Inc., New Delhi, 199 ks: .K. and Srivastava, P.R., Concepts in Environmental Impact Analysis, Co s, New Delhi, 1992. Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook,	9 water 4000 9 uilding 45+0)= 96.	;, air ;, air;, air;;,	+ + Pe
Asses model Unit I Plan f land, I EIA f Water Upon CO1 CO2 CO3 Text I 1. C Referent 1. S Plan f Upon CO1 CO2 CO3 Text I 1. C Referent 1. S F 2. J F	ssment of els- public for mitiga flora and V CAS for infrast r Supply se Outco completi : Ir : M : Si Books: Canter, R ence Boo Shukla, S Publisher John G. I Book Co Iudith Pe	VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on a fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (4 omes: Total (4 omes: Total development projects on environment Itigating measures on environmental impact accessment afe environmental plan to avoid Impacts on water, air, land, flora and fauna R.L., Environmental Impact Assessment, McGraw-Hill Inc., New Delhi, 199 ks: Ks. and Srivastava, P.R., Concepts in Environmental Impact Analysis, Co s, New Delhi, 1992. Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook, mpany, 1990 tts Handbook of Environmental Impact Assessment Vol. L & IL Blockwell	9 water 4000 9 uilding 45+0)= 96. 96.		+ and + Pe
Asses model Unit I Plan f land, EIA f Water Upon CO1 CO2 CO3 Text I 1. C Refere 1. S F 2. J F 3. J	ssment of els- public for mitiga flora and V CAS for infrast r Supply rse Outco completi : Ir : N : S Books: Canter, R ence Boo Shukla, S Publisher John G. I Book Co Judith Pe	Wire and and, water and and, noise, social, cultural flora and fauna- Mather contribution – Rapid EIA. VIRONMENTAL MANAGEMENT PLAN ation of adverse impact on environment – options for mitigation of impact on a fauna; Addressing the issues related to the Project Affected People – ISO 1 SE STUDIES tructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Bu and Drainage Projects Total (context) Total (context) mass ion of this course, the students will be able to: npacts of development projects on environment Itigating measures on environmental impact accessment afe environmental Impact Assessment, McGraw-Hill Inc., New Delhi, 199 ks: SK. and Srivastava, P.R., Concepts in Environmental Impact Analysis, Co s, New Delhi, 1992. Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook, mpany, 1990 tts, Handbook of Environmental Impact Assessment Vol. I & II, Blackwells	9 water 4000 9 uilding 45+0)= 96. 96. Science	cai ;, air ;, air ;, air ; = 45	+ + Pe an -H

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	2	3	3	2	1	1	3	1	1	1	3	1	2
CO2	1	3	2	3	3	2	1		1	1	1	1	3		2
CO3	1	3	2	3	3	2	1		1	1	1	1	3		2

HYDRAULICS

18C	EPE14	OPEN CHANNEL	L	Т	Р	С
		FLOW			•	
			3	0	0	3
Cou	rse Ob	jectives:				
1.	To intr behavi	oduce Open Channel Flow to students, explaining the types of open channel arours, the causes and principles of such behaviours, and applications open chan	nd th	eir		
2.	To im	part knowledge about Hydraulic Slope and Hydraulic Curve.				
3.	To im	part knowledge about Critical depth and velocity, Hydraulic jumps.				
4	To app	ly fundamental concepts and techniques of hydraulics and hydrology in the an	alysi	san	d	
5	To ana	lyse flow characteristics in open channel and design hydraulic machines				
5.	10 un	lyse now enaluciensites in open enamer and design nyaradite indennies.				
Uni	t I I	TRODUCTION	9		+	0
Basi prin hydi Ener expo	ic conce ciple fo raulical rgy-dep onents,	pts of free surface flows, velocity and pressure distribution, Mass, energy and r prismatic and non-prismatic channels, Review of Uniform flow: Standardequa y efficient channel sections, compound sections. th relations: Concept of specific energy, specific force, critical flow, critical dep and channel transitions.	mon itions oth,h	nen s, ydra	tum aulic	:
Uni	t II	GRADUALLY VARIED FLOW (GVF)	9		+	0
Equa Con grap curv	ationofg putation phical and redchan	radually varied flow and its limitations, flow classification and surface profiles, Control s n methods and analysis: Integration of varied flow equation by analytical, nd advanced numerical methods, Transitions of subcritical and supercritical flow nels.	ectio	ns. owi	n	
T I and	4 TTT	Denidle Variad Flow (DVF)				Δ
Cha	t III	Kapluly varied flow (KVF)	9	ata	+	U
recta and ener Rap and	angular sudden gy diss idly va shallow	and non-rectangular channels on horizontal and sloping beds, Hydraulic jump y expanding channels, submerged hydraulic jump, rolling and sky jump, used pater ried unsteady flow: Equation of motion for unsteady flow, "Celerity" of the gra water waves, open channel positive and negative surge.	in g f jun wity	radu np a wav	ually as an ve,de	ep
TIni	4 117	Spotially Varied Flow (SVF)				•
UIII	ιıν	Spatiany varied Flow (SVF)	9		+	0
Basi solu	ic princ tions, N	ples, Differential SVF equations for increasing and decreasing discharge, Clas umerical methods for profile computation, Flow over side-weir and Bottom-ra-	sific ck.	atio	nsan	ıd
Uni	t V	Flow measurement:	9		+	0
Flov	v meas	irement by sharp crested and broad crested weirs, critical depth flumes, sluice	gate.	Fre	e	-
over	fall Flu	mes – Parshall flume, Venturiflume, Cut throat flume		,		
		Τα	tal=	45	Perio	ods
Cou	rse Ou	tcomes:				
Upo	n comp	letion of this course, the students will be able to:				
CO	1 :	Demonstrate the causes of soil erosion				
CO2	2 :	Carry out conservation measures in a watershed				
CO	3 :	Know about water harvesting and groundwater recharging structures				
Text	t Books					
1.	Chatte	rjee, S. N., Water Resources Conservation and Management, Atlantic Publish	$ers, \overline{2}$	2008	3.	

2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009.

Reference Books:

1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998.

2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.

CO-PO-PSO MAPPING

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	1	2	1	2	1	2	2	1	1	1	1	1	2	1	1
CO2	1	2	2	2	2	2	2	1	1	1	1	1	2	1	2
CO3	1	2	2	1	2	2	2	2	1	1	1	1	2	1	2

1 – Slightly

2 – Moderately

3 - Strongly

180	FPF1	5 RIVER ENCINEEDING	Т	Т	р	C
100			3		0	2
Cou	rse O	bjectives:	5	U	U	5
1.	To a base	acquire a wide knowledge on rivers required to make an integrated river basic man ed on natural & social sciences and engineering& technology.	agen	nent	pla	n
2.	To	know the relation to river systems, long term environmental changes of rivers and	thei	r		
	fact	ors, river flows and river channel processes, river and lake ecological systems.				
3.	То	study the recent characteristics of flood disasters, integrated river basinplanning				
	incl	uding flood control,				
4.	То	understand the sustainable reservoir management, nature restoration, and sedimer	t			
	tran	sport management				
5.	То	develop the abilities to design the protection works.				
Unit	Ι	NTRODUCTION	9		+	0
Intro featu	ducti ires, S	on, classification of Rivers, Mechanics of alluvial rivers including channel and fl Sediment transport and budgets, River morphology and various classification sch	ood eme:	plai s.	n	
Unit	TI	BEHAVIOUR OF RIVER	0		+	0
Dah	. 11	DELIAVIOUR OF RIVER			+ toric	U
and geon	shape netry,	s of meanders and control, cutoff, Braided Rivers, Bed forms, Instability of rivers Delta formation and control	, ena , Hy	/dra	ulic	lies
Unit	III	MECHANICS OF RIVER	9		+	0
Mec	hanic	s of Alluvial Rivers Rivers and restoration structures. Socio-cultural influences	and a	ethic		Ů
of st	ream	restoration.	ina (otine		
Unit	IV	ANALYSES AND DESIGN OF RIVER	9		+	0
Bio-	engin	eering Techniques, Classification review, Natural Channel Design Analysis, Tim	e Se	ries	,	-
Ana	lysis	of flow, Sediment and channel geometry data.				
Unif	V	River Training and Protection Works	9		+	0
Dive	r Tra	ining and Protection Works: Introduction Classification of River Training Types		Rive	, '	Ū
train	ing u	orks Protection for Bridges with reduced waterway Design of Guide Band emb	ankr	nent	and	
spur	s/dam	property and other river/ flood protection works.		none	unu	
		Tot	al =	45]	Peri	ods
Cou	rse O	outcomes:				
Upor	n con	pletion of this course, the students will be able to:				
CO1	:	Design various channel systems				
CO2	2 :	Design head and cross regulator structures				
CO3	3 :	Identify various types of reservoir and their design aspects				
Text	Boo	ks:				
1.	Chat	terjee, S. N., Water Resources Conservation and Management, Atlantic Publishe	rs, 2	2008	3.	
2.	Mur	hy, V.V.N., Land and Water Management, Khalyani Publishers, 2009.				
Refe	rence	e Books:				
1.	Mutl	y, J. V. S., Watershed Management, New Age International Publishers, 1998.				
2.	Sure	sh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.				

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	1	2	2	2	2	2	2	1	1	1	1	1	2	1	1
CO2	1	2	2	2	2	2	2	1	1	1	1	1	2	1	2
CO3	1	2	2	2	2	2	2	2	1	1	1	1	2	1	2

18C	EPE16	GROUND WATER ENGINEERING	L	ТР	C
100			3	$\frac{1}{0}$	3
Cou	rse Ob	jectives:		0 0	1-
1.	Тор	repare the students for a successful career as hydrologist and water resources eng	gineer	s.	
2.	To de	evelop the ability among students to synthesis data and technical concepts for	-		
	applie	cation in ground water resources engineering			
3	Tost	udy the quality of groundwater. Well solutions in confined leaky and unconfin	adaar	ifore	
5.	10 st	udy the quanty of groundwater. Wen solutions in commed, leaky, and uncomme	Ju aqu	mers.	
4.	To st	udy the nature, hydrology, mechanics, technology of ground water engineering			
5.	have	the abilities to manage and develop groundwater resources			
Unit	IFU	UNDAMENTALS OF GROUNDWATER	9	+	0
Intro types Sprir	duction s – Perings and	n – Groundwater in Hydrological cycle - Vertical distribution of groundwater – meability - Laboratory tests - Aquifers and types – Confined; Uncofined and Sem I types.	Poros i- cor	sity an fined	d
Unit	II	GROUNDWATER FLOW AND WELL HYDRAULICS	9	+	0
Darc floe – Ste in co	y's Lav equatic eady ra onfined	w – Specific yield – Specific retention - Storage coefficient – Transmissivity – Gene ons – Steady and unsteady flow – Steady unidirectional flow in confined and unco dial flow in confined and unconfined aquifers – Unsteady radial flow aquifer – Theis Method – DupuitForchheimer assumptions- Jacob method- Rec	eral gr onfine overy	roundv ed aqu /test	vater lifers
Unit	III	GROUNDWATER EXPLORATION	9	+	0
Intro groun techr	duction ndwate niques	n to geophysical methods – Electrical resistivity methods – Wenner and Schlumberg r exploration – Seismic Reflection and Refraction Methods – Remote sensing for groundwater exploration – Well logging and types - Collector wells and Infilt	er me ratior	ethods ngaller	of ies.
Unit	IV	GROUNDWATER QUALITY	9	+	0
Cher – BI wate – Wa	nistry o S and ` r quali ater qu	of groundwater – Major ions and Trace elements in groundwater – Drinking wate WHO Standards - Classification of groundwater based on Hardness and TDS – ty – Salinity and alkalinity hazard – SAR, Percent Sodium and Residual Sodiu ality representation diagrams - Sea water intrusion-causes and control	r qua Irriga m Ca	lity ation rbonat	e
Unit	V	GROUNDWATER DEVELOPMENT	9	+	0
Wate Larg	ershed e scale	management - Conjunctive use - Artificial recharge of groundwater – Small sca rain water harvesting techniques – Case studies.	le and	1	<u> </u>
		То	tal= 4	5 Per	iods
Cou	rse Ou	itcomes:			
Upor	n comp	letion of this course, the students will be able to:			
CO1	:	Demonstrate the causes of soil erosion			
CO2	2 :	Carry out conservation measures in a watershed			
CO3	3 :	Know about water harvesting and groundwater recharging structures			
Text	Books	5:	·		·
1.	Chatte	rjee, S. N., Water Resources Conservation and Management, Atlantic Publishe	rs, 20	008.	
2.	Murth	y, V.V.N., Land and Water Management, Khalyani Publishers, 2009.			
Refe	rence	Books:			
1.	Muthy	v, J. V. S., Watershed Management, New Age International Publishers, 1998.			_
2.	Sures	h Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.			

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	2	2	2	2	2	2	1	1	1	1	1	2	1	2
CO2	2	2	2	2	2	2	2	1	1	1	1	1	2	1	2
CO3	2	2	2	2	2	2	2	2	1	1	1	1	2	1	2
CO4															
CO5															

HYDROLOGY & WATER RESOURCE ENGINEERING

100		111		T	T	n	C
180	EP	'EI'	IKRIGATION ENGINEERING		1	<u>P</u>	C
				3	0	0	3
Cou	rse	e Ob	jectives:				
1.	Т	The r	nain objective of this course is to impart basic knowledge in Irrigation Engineer	ng a	ndV	Vate	er
	Ν	Aana	gement.	U			
2.	Т	lo ta	ke up the basic concepts of irrigation and construction of various hydraulic stru	cture	es.		
3.	Т	To in	troduce students to basic concepts of water, plants, their interactions, as well as	irrig	atio	n a	nd
	d	lrain	age systems design, planning and management.	C	,		
4.	Т	lo st	udy the elementary hydraulic design of different structures and the concepts of				
	n	nain	tenance shall also form part.				
5.	Τ	To de	evelop the abilities to know the land development and irrigation management.				
Unit	t I	IN	TRODUCTION	9		+	0
Nee	d, a	adva	ntages and disadvantages of Irrigation - Environmental effects - Types of Irriga	tion	syst	em	s -
Grav	vity	/ irri	gation, canals, Tanks, Wells and Irrigation galleries - Water lifts. Soil -water -	əlan	t		
relat	ion	nship	: Soil and its function - Physical properties of soil and their importance in relati	onte	o irri	gat	ion -
Clas	ses	s and	availability of soil water - Movement of water in soils - Measurement of			-	
soil	mo	oistu	re - Crop growth and moisture relationship - Salt problems in soil and effect of	salts	onp	olan	t
grow	vth.						
Unit	t II	[IRRIGATION REQUIREMENT	9		+	0
Eva	por	atio	n, Evapo transpiration, Consumptive use and its estimation - Crop factor - Lysin	nete	rs -		
Effe	ctiv	ve ra	in fall and irrigation requirements - Water requirements of various crops - Duty	of w	ater		
- Qu	ali	ty of	firrigation water.				
Unit	t TT	T	METHODS OF IRRIGATION	0		+	0
Surf			hsurface and overhead methods. Check besin border & furrow. Drip and sprin	1 lor	irric	roti	on
Irria	ace	-, su	fficiency Depth Rate and frequency of irrigation. Irrigation schedule	KICI	11115	gath	- 110
nng	ain		metency, Depth, Rate and frequency of migation - migation schedule.				
Unit	+ T	V	DESIGN OF CHANNELS		T		•
Om		•	DESIGN OF CHARMEES	9		+	U
Desi	ign	ofu	inlined and lined channels for irrigation - Location and design of canal regulation	nstr	uctu	ires	-
Cros	ss c	lrain	age structures - Measuring devices.				
.							
Unit	tν		LAND DEVELOPMENT AND IRRIGATION MANAGEMENT	9		+	0
Recl	lam	natio	n and management of saline and alkaline soils, water logging, Causes and reme	dial			
mea	sur	es -	Design, construction and maintenance of drainage systems. Management of irri	gatio	onsy	vste	m -
wate	er c	charg	ge assessment and water use management.	<u> </u>	45 1	<u> </u>	
			Total (45-	-0)=	45 1	Per	lods
Cou	rse	e Ou	tcomes:				
Upo	n c	omp	letion of this course, the students will be able to:				
CO	L	:	Assess the irrigation needs of crops				
CO	2	:	Design weirs on pervious foundation				
CO	3	:	Design gravity dam and earthen dam				
CO ₂	1	:	Design the canal systems				
COS	5	:	Select and design canal fall				
Text	t B	ooks	X				
	Ρι	ınmi	aB.C.andLal ,B.B., Irrigation and Water Power Engineering, Standard Publish	iers	&		
1.	Di	istril	putors, New Delhi, 2016.				
2	Sh	narm	a R.K., and Sharma. T.K., Irrigation Engineering ,S.Chand& Company Ltd, 1	New	De	lhi,	
2.	20)02.					
3.	Sa	ahası	aBudhe, Irrigation Engineering and Hydraulic Structures, S.K.Kataria& Sons,				

	NewDelhi-110002;2012
Ref	erence Books:
1.	A.M.Michael, Irrigation Theory and Practice, Vikas Publishing House Pvt. Ltd., 2004.
2.	Hansen V.E., et.al., Irrigation Principles and Practices, John Wiley & Sons, 2001.
3.	Sharma R.K., Text Book of Irrigation Engineering and Hydraulic Structures, Oxford & IBH Publishing Co., 2007.
4.	Michael A.M., Irrigation Theory and Practice, Vikas Publishing House, New Delhi, 2004.
5.	Das M.M, Saikia, M.S <i>Irrigation and water power Engineering</i> , PHI, Learning, (P) Ltd, New Delhi, 2009.

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	2	2	2	2	2	2	1	1	1	1	1	2	3	1
CO2	2	2	2	2	2	2	2	1	1	1	1	1	2	3	1
CO3	2	2	1	2	1	2	2	1	1	1	1	1	2	3	1
CO4	2	2	1	2	1	1	2	1	1	1	1	1	1	3	1
CO5	2	1	2	2	2	1	2	1	1	1	1	1	1	3	2

Image: Course Objectives: Image: Course Objectives: 1. To impart basic knowledge in Water shed Management. 2. To Identify the causes of soil erosion 3. To know the conservation measures in a watershed 4. To design the water harvesting and groundwater recharging structures 5. To learn the methods and design of water shed structures. Unit I INTRODUCTION 9 Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developed the watersheds. Unit II WATER SHED CONCEPTS 9 Imit II WATER SHED CONCEPTS Imit II WATER SHED CONCEPTS Imit III METHODS OF IRRIGATION Imit III METHODS OF IRRIGATION Imit IV DESIGN OF CHANNELS Imit IV DESIGN OF CHANNELS Imit V DESIGN OF CHANNELS Imit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT Imit V LAND DEVELOPMENT AND IR	18CEF	PE18	WATER SHED MANAGEMENT	L	T	P	ļ	
In To impart basic knowledge in Water shed Management. 2. To Identify the causes of soil erosion 3. To know the conservation measures in a watershed 4. To design the water harvesting and groundwater recharging structures 5. To learn the methods and design of water shed structures. Unit I INTRODUCTION 9 + Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developm Unit II WATER SHED CONCEPTS 9 Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. 9 Unit III METHODS OF IRRIGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromst watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of salie soils, Micro farming, Biomass management on the farm. Total (45+0)= 45 Per<	Course	ohia	ativaa	3	U	U	1	
1. To Identify the causes of soil erosion 2. To Identify the causes of soil erosion 3. To know the conservation measures in a watershed 4. To design the water harvesting and groundwater recharging structures 5. To learn the methods and design of water shed structures. Unit I INTRODUCTION 9 + + Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developm Unit II WATER SHED CONCEPTS 9 + + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. Unit II METHODS OF IRRIGATION 9 + + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromst watersheds – prevention of soil erosion. Unit IV DESIGN OF CHANNELS 9 + + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamationof saline soils, Micro farming, Biomass management on the farm. Courecontol tof this course, the students will be able to:								
2. To Identify the causes of soil erosion 3. To know the conservation measures in a watershed 4. To design the water harvesting and groundwater recharging structures 5. To learn the methods and design of water shed structures. Unit I INTRODUCTION 9 + Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developm Unit II WATER SHED CONCEPTS 9 + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. Unit III METHODS OF IRRIGATION 9 + P + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromsi watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Principles of water harvesting, methods of soil conservation – structural and non-structuralmeasures. 9 + Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Principles of soil erosion, methods of soil erosion 9 + Course Outcomes: Total (45+0)= 45 Per Course Outcomes: Course Outconservation measures in a wate	1. 1	l o imp	art basic knowledge in water sned Management.					
3. To know the conservation measures in a watershed 4. To design the water harvesting and groundwater recharging structures 5. To learn the methods and design of water shed structures. Unit I INTRODUCTION 9 + + Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developm Unit II WATER SHED CONCEPTS 9 + + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. Unit III METHODS OF IRRIGATION 9 + + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromsi watersheds – prevention of soil erosion. Unit IV DESIGN OF CHANNELS 9 + + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to:	2. 1	l'o Ider	tity the causes of soil erosion					
4. To design the water harvesting and groundwater recharging structures 5. To learn the methods and design of water shed structures. Unit I INTRODUCTION 9 + + Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developn Unit II WATER SHED CONCEPTS 9 + + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. Unit III METHODS OF IRRIGATION 9 + + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion froms watersheds – prevention of soil crosion, types of soil erosion, estimation of soil erosion froms Unit II DESIGN OF CHANNELS 9 + + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + + Control of soil erosion, methods of rainwater harvesting, design of rainwater harvesting structures. Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saile cosion. Course Outcomes: Upon completion of this course, the students will be able to: <td col<="" td=""><td>3. 1</td><td>l'o kno</td><td>w the conservation measures in a watershed</td><td></td><td></td><td></td><td></td></td>	<td>3. 1</td> <td>l'o kno</td> <td>w the conservation measures in a watershed</td> <td></td> <td></td> <td></td> <td></td>	3. 1	l'o kno	w the conservation measures in a watershed				
5. To learn the methods and design of water shed structures. Unit I INTRODUCTION 9 + Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developm 9 + Unit II WATER SHED CONCEPTS 9 + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. 9 + Unit II METHODS OF IRRIGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromsi watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. 9 + Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 <td>4. T</td> <td>Γo desi</td> <td>gn the water harvesting and groundwater recharging structures</td> <td></td> <td></td> <td></td> <td></td>	4. T	Γo desi	gn the water harvesting and groundwater recharging structures					
Unit I INTRODUCTION 9 + Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developm Unit II WATER SHED CONCEPTS 9 + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. 9 + Unit II METHODS OF IRRIGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromsi watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. 9 + Vinit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. Total (45+0)= 45 Per Corrse Outcomes: Upon completion of this course, the students will be able to: CO1 : OI : Demonstrate the causes of soil erosion Extendeds: CO2 : (Corry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging	5. T	To lear	n the methods and design of water shed structures.					
Introduction, concept of Watershed, need for Watershed Management, concept of sustainable developm Unit II WATER SHED CONCEPTS 9 + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. 9 + Unit II METHODS OF IRRIGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromst watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. 9 + Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamationof saline soils, Micro farming, Biomass management on the farm. Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Upon completion of this course, the students will be able to: CO2 : Carry out conservation measures in a watershed CO2 CO3 : Know	Unit I	INT	RODUCTION	9		+	-	
Unit II WATER SHED CONCEPTS 9 + Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. 9 + Unit III METHODS OF IRRIGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromst watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. 9 + Control of soil erosion, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. 9 + Upon completion of this course, the students will be able to: CO3 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2009. Reference Books: 1 1. Muthy, J.	Introdu	ction,	concept of Watershed, need for Watershed Management, concept of sustainal	ole de	evelo	opm	ŀ	
Hydrology of small Watersheds – Determination of Runoff – Emperical formulae – Flood estimation by Dicken's formula – Watershed Management. Image: Constraint of Constraints and Constrating Consteconstraints and Constraints and Constraints a	Unit I		WATER SHED CONCEPTS	9		+	_	
by Dicken's formula – Watershed Management. Unit III METHODS OF IRRIGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromst watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. 9 + Control of soil erosion, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamationof saline soils, Micro farming, Biomass management on the farm. 9 + Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2 Questry out conservation Management, Khalyani Publishers, 1998. 2 Suresh Rao, Soil and Water Conservatio	Hydrol	ogy of	small Watersheds – Determination of Runoff – Emperical formulae – Flood e	stim	atior	1		
Unit III METHODS OF IRRIGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion froms watersheds – prevention of soil erosion. + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. 9 + Control of soil erosion, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. 9 + Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1 Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2 2. Murthy, V. V. N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1	by Dic	ken's t	formula – Watershed Management.					
Omit III METHODS OF TRACGATION 9 + Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromsi watersheds – prevention of soil erosion. 9 + Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. 9 + Control of soil erosion, methods of rainwater harvesting, design of rainwater harvesting structures. 9 + Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. 9 + Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. Muthy, J. V. S., Watershed Management, Ne	TI-st4 TI	TT N	AFTHODS OF IDDICATION				-	
Principles of soil erosion, causes of soil erosion, types of soil erosion, estimation of soil erosion fromsi watersheds – prevention of soil erosion. Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. 9 + Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. 2. Suresh Rao, Soil and Water			METHODS OF IRRIGATION	. 9		+	-	
Unit IV DESIGN OF CHANNELS 9 + Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. 9 + Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1 Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. 2008. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998. 2 3. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	watersh	neds –	prevention of soil erosion.			IISI	-	
Control of soil erosion, methods of soil conservation – structural and non-structuralmeasures. Principles of water harvesting, methods of rainwater harvesting, design of rainwater harvesting structures. Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. 9 Course Outcomes: Total (45+0)= 45 Per Upon completion of this course, the students will be able to: 7 CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1 Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	Unit I	V I	DESIGN OF CHANNELS	9		+		
Unit V LAND DEVELOPMENT AND IRRIGATION MANAGEMENT 9 + Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. Total (45+0)= 45 Per Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. Reference Books: 1. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. Sure Standard Publishers, 1998. 2. Sure Rao, Soil and Water Conservation Practices, Standard Publishers, 1998. Standard Publishers, 1998.	Princip structu	oles of res.	water harvesting, methods of rainwater harvesting, design of rainwater	harv	estir	ıg		
Artificial recharge of groundwater in small watersheds, methods of artificial recharge. Reclamation of saline soils, Micro farming, Biomass management on the farm. Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	Unit V	7 I	LAND DEVELOPMENT AND IRRIGATION MANAGEMENT	9		+	-	
Total (45+0)= 45 Per Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	Artifici	ial recl	narge of groundwater in small watersheds, methods of artificial recharge. Recl Micro farming, Biomass management on the farm.	amat	tion	of		
Total (45+0)= 45 Per Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.		, -		- 0)	45 1		•	
Upon completion of this course, the students will be able to: CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: . 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: . 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	Course	e Outo	comes:	+0)=	: 45]	Per	1	
CO1 : Demonstrate the causes of soil erosion CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: . 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: . 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	Upon c	comple	tion of this course, the students will be able to:				-	
CO2 : Carry out conservation measures in a watershed CO3 : Know about water harvesting and groundwater recharging structures Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	CO1	: I	Demonstrate the causes of soil erosion				-	
CO3 : Know about water harvesting and groundwater recharging structures Text Books: . 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: . 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	CO2	: (Carry out conservation measures in a watershed					
Text Books: 1. Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. 2. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: 1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	CO3	: 1	Know about water harvesting and groundwater recharging structures					
 Chatterjee, S. N., Water Resources Conservation and Management, Atlantic Publishers, 2008. Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998. 	Text B	ooks:						
 Murthy, V.V.N., Land and Water Management, Khalyani Publishers, 2009. Reference Books: Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998. 	1. C	hatterj	ee, S. N., Water Resources Conservation and Management, Atlantic Publish	ers,	2008	3.	-	
1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998.	2. M	lurthy,	V.V.N., Land and Water Management, Khalyani Publishers, 2009.					
1. Muthy, J. V. S., Watershed Management, New Age International Publishers, 1998. 2. Suresh Rao, Soil and Water Conservation Practices, Standard Publishers, 1998. SO MARDING	Refere	nce Bo	DOKS:				-	
2. Suresh Kao, sou and water Conservation Fractices, Standard Fublishers, 1998.	$\frac{1}{2}$ $\frac{1}{2}$	utny,	J. V. S., watersned Management, New Age International Publishers, 1998.				-	
	2.51	A DDIN	Auo, son and water Conservation Fractices, Standard Fublishers, 1998.				-	
)1 PO	2 PC	03 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01	PSC	$\mathbf{)}^2$	PS	-	

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	3	2	2	2	2	2	2	1	1	1	1	1	2	1	2
CO2	2	2	2	2	2	2	2	1	1	1	1	1	2	1	2
CO3	1	2	2	2	2	2	2	2	1	1	1	1	2	1	2
CO4															

CO5								

Course Objectives: 1. To understand the components of the hydrological cycle. 2. To know the mechanics of rainfall, its spatial and temporal measurement and theirap will be understood. 3. To analyse and study the applications of probability distribution of rainfall and run or also be understood. 4. To develop the ability among students to synthesis data and technical concepts forap hydrology and water resources engineering 5. To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION	3 off s	0 cational hall	0 ons	3
Course Objectives: 1. To understand the components of the hydrological cycle. 2. To know the mechanics of rainfall, its spatial and temporal measurement and theirap will be understood. 3. To analyse and study the applications of probability distribution of rainfall and run or also be understood. 4. To develop the ability among students to synthesis data and technical concepts forap hydrology and water resources engineering 5. To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION	off s	catio hall atic	ons l on in	·
 To understand the components of the hydrological cycle. To know the mechanics of rainfall, its spatial and temporal measurement and theirap will be understood. To analyse and study the applications of probability distribution of rainfall and run or also be understood. To develop the ability among students to synthesis data and technical concepts forap hydrology and water resources engineering To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION 	off s	catio hall atic	ons l on in	
 To know the mechanics of rainfall, its spatial and temporal measurement and theirap will be understood. To analyse and study the applications of probability distribution of rainfall and run or also be understood. To develop the ability among students to synthesis data and technical concepts forap hydrology and water resources engineering To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION 	off s	hall atic	ons I on in	
 3. To analyse and study the applications of probability distribution of rainfall and run c also be understood. 4. To develop the ability among students to synthesis data and technical concepts forap hydrology and water resources engineering 5. To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION 	off s	hall atic	n in	
 also be understood. 4. To develop the ability among students to synthesis data and technical concepts forap hydrology and water resources engineering 5. To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION 	oplic	atic	on in	
 4. To develop the ability among students to synthesis data and technical concepts forap hydrology and water resources engineering 5. To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION 	oplic	atic	on in	
5. To learn simple methods of flood routing and basics of ground water hydrology. Unit I PRECIPITATION				
Unit I PRECIPITATION				
		9	+	0
Hydrologic cycle – Types of precipitation – Forms of precipitation – Measurement of Rainfa Spatial measurement methods – Temporal measurement methods – Frequency analysis of p Intensity, duration, frequency relationship – Probable maximum precipitation.	fall – poin	- trai	nfall	_
Unit II ABSTRACTION FROM PRECIPITATION		9	+	0
Losses from precipitation – Evaporation process – Reservoir evaporation – Infiltration proce Infiltration capacity – Measurement of Infiltration – Infiltration Indices – Effective rainfall.	ess –			
Unit III HVDROGRAPHS		9	+	0
Factors affecting Hydrograph – Base flow separation – Unit hydrograph – Derivation of un hydrograph – S curve hydrograph – Unit hydrograph of different durations - Synthetic Unit	iit it Hy	/dro	ograp	h
Unit IV FLOODS AND FLOOD ROUTING		9	+	0
Flood frequency studies – Recurrence interval – Gumbel's method – Flood routing – Reserv – Muskingum's Channel Routing – Flood control	voir	flo	odro	utin
Unit V : GROUND WATER HYDROLOGY		9	+	0
Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow anal	l Aq lysis	uife on	er – ly.	
Tot	tal =	= 45	5 Pe	riod
Course Outcomes:				
Upon completion of this course, the students will be able to:				
CO1 : Demonstrate the concepts of hydrograph, S-hydrograph, Unit hydrograph and IU	JH			
CO2 : Estimate the hydrological parameters				
CO4 : Demonstrate the concents of hydrological systems				
CO5 Develop regression models for the analysis of hydrological data				
Text Books:				
1 Chow V.T. and Maidment, Hydrology for Engineers, McGraw-Hill Inc., Ltd., 2000				
2 Subramanya K., Engineering Hydrology, Tata McGraw-Hill Publishing Co., Ltd., 20	017			
3 Raghunath H.M., Hydrology, Wiley Eastern Ltd., 2011				
Reference books				
1 Singh V.P., Hydrology, McGraw-Hill Inc., Ltd., 2000				
2 Jaya Rami Reddy P., A text book of Hydrology, Laxmi Publications Pvt Ltd.,2008				
3 Patra K.C.Hydrology and Water resources Engineering, Narosa publishing house, New 2006	vdel	hi-		

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	3	2	2	2	2	2	2	1	1	1	1	1	2		1
CO2	2	2	2	2	2	2	2	1	1	1	1	1	2		1
CO3	1	2	1	2	1	2	2	1	1	1	1	1	2		1
CO4	1	2	1	2	1	1	2	1	1	1	1	1	1		1
CO5	2	1	2	2	2	1	2	1	1	1	1	1	1		2

	STRUCTURAL ENGINEERING				
18CEPE20	DESIGN OF BDIDGES	L	Т	P	С
	BRIDGES	3	0	0	3
Course Object	ives.	5	U	U	5
1. To study	various types of bridges and its loading conditions.				
2. To analyz	e and design of several types of bridges and their sub structures.				
5. To design	t of various types of bearings.				
Unit I GE	NERAL INTRODUCTION AND SHORT SPAN RC BRIDGES	9		+	0
Types of bridg	es and loading standards - Choice of type - I.R.C. specifications for road bri	dges	_		
Design of RCC	solid slab bridges - analysis and design of slab culverts, Tee beam and sla	b bri	dges	3.	
Unit II LON	NG SPAN RC BRIDGES	9		+	0
Design principl	es of continuous girder bridges, box girder bridges, balanced cantilever bridge	es –	Arc	hbrid	ges
– Box culverts	– Segmental bridges.	•••			800
Unit III P	RESTRESSED CONCRETE BRIDGES	9		+	0
Flexural and to	rsional parameters - Courbon's theory - Distribution co-efficient by exact an	alysi	s – I	Desig	;n
of girder sectio	n – maximum and minimum prestressing forces – Eccentricity – Live load ar	ıddea	id lo	ad sl	near
forces – Cable	Zone in girder – check for stresses at various sections – check for				
diagonal tensio	n – Diaphragms – End block – short term and long term deflections.				
Unit IV ST	EEL BRIDGES	9		+	0
General – Raily	vay loadings - dynamic effect - Railway culvert with steel beams - Plate gird	er br	idge	s –	
Box girder brid	ges – Truss bridges – Vertical and Horizontal stiffeners.				
					
Unit V BEA	ARINGS AND SUBSTRUCTURES	9		+	0
Different types	of bearings - Design of bearings - Design of piers and abutments of differen	t typ	es –		
Types of bridge	e foundations – Design of foundations				
C O (T	otal=	: 45	Peri	ods
Course Outco	mes:				
CO1 : Ana	bit of this course, the students will be able to:				
CO1 : Ana CO2 : Have	a thorough knowledge on the design principles of Long span RC bridges				
CO3 : Ana	vze and design of Prestressed Concrete bridges				
CO4 : Ana	vze and design of Steel bridges				
CO5 : Desi	gn Bearings and sub structures of bridges.				
Text Books:					
1. Jagadeesh	T.R. and Jayaram.M.A., "Design of Bridge Structures", Prentice Hall of In	ndia	Pvt.	Ltd.	
Johnson V	victor, D. "Essentials of Bridge Engineering", Oxford and IBH Publishing C	lo. N	ew	Delh	i,
^{2.} 2001.					
3. Ponnuswa	my, S., "Bridge Engineering", Tata McGraw Hill, 2008				
4. Raina V.k	Concrete Bridge Practice" Tata McGraw Hill Publishing Company, New	Dell	ni, 1	991.	
Keterence Boo	KS: D. "Dridge Engineering" Setus Drekeshen New Delhi 1000				
1. Pnatak D 2 Raiagona	.K., Druge Engineering, Salya Prakasnan, New Deini, 1990				
∟∠. I rrajagopa	ian. iv. Bridge Superstructure, Alpha Science International, 2000				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	3	2	1	1	1	1	1	1	2	2	3	1
CO2	3	3	1	1	2	2	1	1	1	1	1	1	3	2	2
CO3	3	1	3	3	1	1	2	1	1	2	2	1	2	1	1
CO4	1	2	3	3	2	1	1	1	1	2	2	1	1	1	2
CO5	1	1	2	1	1	1	1	3	1	2	1	2	1	2	1

18C	EPE21	MODERN STRUCTURAL ANALYSIS	LT	P C
			3 0	0 3
			<u> </u>	
Cou	rse Objectiv	Yes:		
1.	To Study t	he Energy Concepts in Structures.		
2.	To acquire flexibility 1	knowledge in model analysis of structures, analysis of structures by stiffn nethods	ness and	
3.	To have a	basic knowledge about the finite element analysis ofstructures.		
4.	To make s	tudents to analyse the frames and grids through matrix methods approach.	•	
5.	To enable	the students to have basic knowledge in analysis of structures through ene	rgytheore	ms.
Unit	I ENERG	GY CONCEPTS IN STRUCTURES	9	+ 0
Intro of St Addi Betti Elem	duction – Str iffness And tional proper 'slaw–Applic tents.	rain Energy – Symmetry of the Stiffness And Flexibility Matrices – Strain F Flexibility Matrices – Stiffness And Flexibility Coefficients in Terms of S rties of [a] and [k] – another Interpretation of coefficients aijand kij– cationsofBetti'slaw:Forcesnotatthecoordinates–Strainenergyinsystems and in	Energy in Strain Ene	Terms ergy –
TT 94				
Static Well Ther Pin-J	cally Determ Conditioned mal Expansi fointed Plan	ninate Structures –Indeterminate Structures-Choice of Redundant Leading d Matrices-Transformation to One Set of Redundant to Another-Internal F on and Lack of Fit-Reducing the Size of Flexibility Matrix-Application to e Truss-Continuous Beams-Frames-Grids.	to Ill an orces due	d to
Unit		STIFFNESS METHOD	9	+ 0
Intro Coor Moti Fram	duction-Dev dinates-Anal ons-Applica nes-Grids-Sp	elopment of Stiffness Method- Stiffness Matrix for Structures with zero Force logy between Flexibility and Stiffness-Lack of Fit-Stiffness Matrix with R ation of Stiffness Approach to Pin Jointed Plane Trusses-Continuous Bear pace Trusses and Frames.	e atsome igid ns-	
Unit		FL ANALVSIS	9	+ 0
Struc dime analy and i	tural similit nsional analy vsis, use of ndirect analy	ude, Model material and model making., use of models, model analysis, ysis, Buckingham Pi theorem, applications, Muller Breslau principle for Begg'sEney's and R.P.I. deformeters and moment indicator, design of m ysis.	structural indirect m odels for	and and odel direct
Unit	V INTR	ODUCTION TO FINITE ELEMENT METHOD	9	+ 0
Disc: vecto meth	retisation of ors-numberin od. Applicat	a structure-element functions-selection of element fields-development of ng systems. Computation of nodal displacements-advantages of finite elem- tion of finite element method to one and two- dimensional plane stress stra	nodal load ient ainelemen	d ts.
		Total (L	(+T)=45 P	eriods
Cou	rse Outcom	es:		
Upor	completion	of this course, the students will be able to:		
CO1	: To app determ	ly the knowledge of mathematics, science, and engineering to understand inate-indeterminate structures.	about the	
CO2	: To ide	ntify, formulate and solve engineering problems using matrix methods.		
CO3	: To use	the model analysis for engineering practice.		
CO4	: To use	the finite element method for engineering practice.		
CO5	: To app	ly various theorems and their applications in analyzing structures.		

Text Books:

1.	Dr. Devadas Menon., "Advanced Structural Analysis", Narosa Publishing House, New Delhi, 2009
2.	Pandit G.S. and Gupta S.P., "Structural Analysis-A Matrix Approach", Tata McGraw-Hill PublishingCompany Limited, New Delhi, 1997
3.	Dr. T.P. Ganesan, "Model analysis of Structures', Universities Press Hyderabad, 2000.
4.	Rajasekaran.S., "Finite Element Analysis in Engineering Design", Wheeler Publishing, 2000.
Ref	erence Books:
1.	K. Rubinstein.F.M., "Matrix Computer Methods of Structural Analysis", Prentice Hall, Inc.
	N.J., 1966
2.	Reddy C.S., "Basic Structural Analysis", Tata McGraw-Hill Publishing Company Limited, New Delhi, 1997
3.	Krishnamoorthy C.S., "Finite Element Analysis- Theory and Programming", Second Edition,
	Tata McGraw Hill Publishing Co.,2004.
E-R	leferences:
1.	https://nptel.ac.in/courses/105106050/

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2			1	1	1					3	1
CO2	3	3	1	1	2									3	
CO3				2			1							2	
CO4	1		1	1	1		1							2	1
CO5	1	1		2	2		1							2	

180	EPE	22 STORAGE	L	Т	Р	C
		STRUCTURES	3	0	0	3
Con		hingtings	5	U	U	5
Cou		ojectives:	1.1	. 1	1	1
1.	lo 1 conc	ntroduce the student to basic theory and concepts of design of storage structures brete tanks, bunkers and silos.	like	steel	an	d
2.	Desi	gn of Steel, Concrete and Prestressed Concrete Water Tanks				
3.	Dest	gn of Steel and Concrete Bunkers and Silos.				
LINI	тт	STEEL WATED TANKS		0		Δ
Desi	n of	rectangular riveted steel water tank - Tee covers - Plates - Stave - Longitudina	l and	9 I tra	+ nev	erse
bean	18 - D	esign of staging – Base plates – Foundation and anchor bolts – Design of Pres	sed	stee	l w	ater
tank	– De	esign of stays – Joints – Design of hemispherical bottom water tank – side	olates	5 —	Bot	tom
plate	s – jo	ints – Ring girder – Design of staging and foundation.				
				0		
UNI		CONCRETE WATER TANKS		9	+	U
- Ho	gn or	Circular tanks – Hinged and fixed at the base – IS method of calculating snear forces of the staging – Design of Intre tank – Dome – Ring girders – Conical dome – Staging –	es ar Brac	ia m	om 	ents Raft
foun	dation	- Design of rectangular tanks - Approximate methods and IS methods - Design	of u	ndei	gro	und
tanks	s - De	esign of base slab and side wall – Check for uplift.			0	
UNI	T III	STEEL BUNKERS AND SILOS		9	+	0
Desi	gn of	square bunker - Jansen's and Airy's theories - IS Codal provisions - Desig	ı of	side	e pl	ates
-St	iffene	rs – Hooper – Longitudinal beams – Design of cylindrical silo – Side plates	– R	ingg	gird	er –
stiffe	eners.					
UNI	T IV	CONCRETE BUNKERS AND SILOS		9	+	0
Desi	gn of	square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – D	esig	ı of		1
cylin	drical	silo - Wall portion - Design of conical hopper - Ring beam at junction				
T T •/	T 7	DECERECCED CONCERTE MAREE TANKS		0		
Unit	v V	PRESTRESSED CONCRETE WATER TANKS		9	+	0
FIIIQ	ipies	of circular prestressing – Design of Prestressed concrete circular water tanks.				
		Total (L-	-T)=	45 I	Peri	ods
Cou	rse O	utcomes:	/			
Upor	n com	pletion of this course, the students will be able to:				
CO1	:	Learn the basic theory and concepts of designing the steel and concrete storage				
000		structures like Water tank, Bunkers and silos				
CO_2		Design of Steel and Reinforced Concrete Water tanks				
CO_{2}		Design of Prestressed Concrete Water tank				
Text	Bool					
1.	Raja	gopalan K., "Storage Structures", Tata McGraw Hill, New Delhi, 1998.				
2	Kris	hna Raju N., "Advanced Reinforced Concrete Design", CBS Publishers and Di	strib	utor	s,N	ew
2.	Dell	ii, 1998.				
Refe	rence	Books:				
1.	Pun	nia B.C, Ashok Kumar Jain, Arun K.Jain, "R.C.C. Designs Reinforced Conc	rete			
2	Stru	cures, Laxim Publications PVI. Ltd., New Delni, 2006.	Driv	ate		
۷.	Lim	ited, 2012.	r IIVa	ue		
E-R	eferei	ices:				
1.	You t	ube - Technical Civil - Design of Water Tanks(different types) - Part 1 to Part 9)			

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	3		2	1			3		1	1		2	3		
CO2	3		2	1			3		1	1		2	3		
CO3	3		2	1			3		1	1		2	3		
CO4	3		2	1			3		1	1		2	3		

18CF	PRESTRESSED CONCRETE STRUCTURES	L	Т	Р	С	
			3	0	0	3
Course	e Object	tives:	_	_	_	
1.	To un	derstand the importance of prestressing technique in concrete structures				
2.	To est	imate the losses and defelction in prestressed member due to effect of prestress				
3.	To abl	e to design the prestressing members subjected flexure, shear and bond				
4.	To abl	e to design the end blocks of prestressing members by different method				
5.	То арр	bly the prestressing technique in different application				
Unit I	INTR	ODUCTION	9		+	0
Principl prestres	les – Pre sed con	tensioning – Post tensioning – Types of prestressing – Systems of prestressing – C crete with reinforced concrete Materials characteristics of concrete –Characteris	compa tics o	risor f hig	ı of h	ſ
Theory	steel.	aviour of prostrassed concrete beams in banding coloulating fibre strasses for				
Various	and ber	haviour of prestressed concrete beams in bending – calculating fibre stresses for $(P_{\text{restrangle}}, I, T)$ of simply supported beam due to prestressing force, deed low	d on	lovto	rno	1
live loa	d – Stre	s (Rectangle, 1, 1) of simply supported beam due to prestressing force, dead to a set the set of th	iu and	lexte	па	.1
	-					
Unit II	LOSS	SES AND DEFLECTIONS	9		+	0
Various losses - shrinkaş	s losses - losses ge of co	in prestressed concrete members – causes for losses in prestressed concrete due to elastic shortening of pretensioned and post tensioned members – loss ncrete – relaxation losses – friction and anchorage losses.	– c es du	alcul e to	atio cre	o of ep,
Deflecti	ion of p ons – Ef	restressed concrete flexural members due to prestressing force, dead load, live frect of tendon Profile on deflection – Calculation of elastic short term deflection	load -	- BIS	SCo Iv	ode
support	d beam	a = deflections due to creep effect – calculation of long term deflection.	1 101	smp	L y	
~~FF ~~·						
Unit II	DESI	GN OF PRESTRESSED CONCRETE BEAMS	9		+	0
Pre Ter	isioned	and Post Tensioned simply supported rectangle, I and T sections - Stress metho	d – D	esig	nfo	r
flexure,	, bond a	and shear- IS Codeprovisions.				
Unit IV	V 1	DESIGN OF END BLOCKS	9		+	0
Introdu	ction –	Stress distribution in end block – Anchorage zone stresses – Guyon and Magne	ellmet	hod.		1
Unit V	CIRC BEAN	ULAR PRESTRESSING, TENSION MEMBERS & CONTINUOUS IS ,COMPOSITE AND PARTIAL PRESTRESSING	9		+	0
Design	of prest	ressed concrete pipes and tanks - Tension members - Poles and sleepers - Con-	ntinuc	ousbe	eam	s –
Concore	dant Cal	ble Profile.				
Types of	of comp	osite construction – Transformation of composite sections – flexural analysis of	comp	osite		
simply	supporte	ed beams – calculation of stresses – Partial prestressing.				
		Total (4	5+0)=	= 45]	Per	iod
Course	e Outco	mes:				
Upon c	ompletio	on of this course, the students will be able to:				
CO1	:	Differentiate pre-tesioned and post – tensioned prestressed concrete				
CO2	:	Design a prestressed concrete beam accounting for losses and deflection				
CO3	:	Design the prestressing members subjected to stress function				
CO4	:	Design the anchorage zone for post tensioned members				
CO5		Know the partial and circular prestressing technique in various structures.				
1. Sin	ha, N.C	and Roy. S.K., <i>Fundamentals of prestressed concrete</i> S.Chand and				
	Co. Ltd	11998. N. Duastussad Consulta Tota McCraw Hill Dublishing Company.				
$\left 2. \right ^{\mathbf{K}\mathbf{f}\mathbf{i}}$	Ltd., No	ew Delhi, 2002				

3	Raja Gopalan N. "Prestressed Concrete", Narosa Publishing House, New Delhi, 2002.											
Re	Reference Books:											
1.	Lin, T.Y., and Ned .Burns, <i>Design of prestressed concrete structures</i> , John Wiley & Sons, International Edition, New York, 1995.											
2.	Dayaratnam.P., Prestressed Concrete Structures, Oxford and IBH Publishing Company Pvt. Ltd., New Delhi, 1982											
3.	Mallic S.K. and Gupta A.P., <i>Prestressed concrete</i> , Oxford and IBH publishing Co. Pvt. Ltd. 1997.											
4.	Ramaswamy G.S., Modern prestressed concrete design, Arnold Heinimen, New Delhi, 1990											

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	1	1	2	2	1	1	1	1	1	2
CO2	3	1	3	3	2	1	2	1	1	2	1	1	3	2	1
CO3	1	1	3	3	2	1	3	2	2	1	1	1	3	1	3
CO4	1	1	3	3	1	2	2	1	1	1	2	1	3	1	2
CO5	3	1	2	1	1	2	1	-	1	1	2	2	2	1	1

180	CEPE24	ADVANCED STEEL STRUCTURES	L	Т	Р	С
(Use	of IS 8	00 – 2007, IS 6533-1971, IS 801 & IS 811 & Steel tables are permitted)	3	0	0	3
Cou	rse Ob	ectives:	. <u> </u>			•
1.	To int and li	roduce the student to basic theory and concepts of beam to column connection on ght gauge structures.	ıs, bui	lt-up	ogir	ders,
2.	Behav	iour and design of beam-columns.				
3.	Differ	ent configuration of roof truss, and its components behaviour and design of me	mbers	s oft	russ	••
Unit	I	CONNECTIONS	9		+	0
Desi Con	gn of b nection	olts and weld connections (Stiffened and Seated connections) – Beam to Beam s-Beam to Column Connections				
Unit	II F	SUILT-UP GIRDER	9		+	0
Desi	gn of P	ate girders bolted and welded -Design of stiffeners and splices-Gantry girder				1
Unit	TII	BEAM-COLUMNS	9		+	0
Intro	duction	-Behaviour of Beam-columns-Elastic-Torsional buckling-nominal strength-ins	stabilit	tv in	the	v
plan	e of ber	ding- beam-column under biaxial loading-interaction equations for local cape	ity che	eck-	cod	e
desi	gn proc	edure-problems.				
Unit	t IV	: ROOF TRUSS	9		+	0
Roof truss	f Trusse : end be	s – different configuration of truss-Roof and Side coverings – Design of purlin earing	ande	leme	ents	of
	,	~ 0				
Unit	t V	LIGHT GAUGE STEEL STRUCTURES	9		+	0
Type com	es of cro pression	and tension members, beams, deflection of beams and design of beam webs.	design	of		
		Total (<u>45+0)</u> :	= 45	Pe	riods
Cou	rse Ou	comes:				
Upor	n comp	etion of this course, the students will be able to:				
COI	:	design welded plate girder and other components and Gantry girder				
CO_2	2 :	Connections between beam and columns				
<u>CO</u>	5 : 1	carry out wind load calculations for tall structures and design of steel chimner	ys			
Tevt	· Books	design the cold-formed steer beams and columns.				
1.	Dugga	l S.K., <i>Limit State Design of Steel Structures</i> , Tata McGraw-HillPublishing				
2.	Subran	nanian N., <i>Design of Steel Structures</i> , First edition, OXFORD university				
3.	Bhavik	atti S S., Design of Steel Structures by Limit Method, I.K. InternationalPvt New Delhi, 2009				
Refe	rence I	Books:				
1.	Chanc Ne	ra R., <i>Limit State Design of Steel Structure Vol – I & II</i> , ScientificPublisher, w Delhi,2009.				
2.	Rama St	chandra S., & Virendra Gehlot D., <i>Limit State Design of Steel Structures</i> –, andard Publication, New Delhi, 2009				
3.	Dayaı	ratnam P., Design of Steel Structures, Second Edition, S. Chand & Company	,2003	3		

4.	Teaching Resources for Structural Steel Design – Vol.I& II, INSDAG, Kolkatta
5.	IS 800:2007 Code of practice for general construction steel
6.	SP 6 IS Structural steel Design Illustrated Hand book
7.	IS 875:1987 Code of practice for Design loads (other than earthquake) forbuildings and structures (Part – I) Dead loads (Part – II) Live loads (Part – III) Wind loads(2015)
8.	IS: 801-1967, Code of practice for use of cold-formed light gauge steelstructural members in general building construction
9.	IS: 811-1987, Cold Formed Light Gauge Structural Steel Sections.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	2	1	1	1	2	1	1	2	3	3	2
CO2	3	3	1	1	2	1	1	1	1	1	1	1	2	2	1
CO3	2	1	3	2	1	1	2	1	1	1	2	1	2	1	1
CO4	1	2	3	1	1	2	1	1	1	2	2	1	1	1	2
CO5															

18C	EPE25	TALL BUILDINGS	L	Т	P	С
			3	0	0	3
Cou	rse Obj	ectives:				
1.	The de tall bu	esign aspects and analysis methodologies of tall buildings is introduced. The stildings is another imperative in this course.	ability	yanal	lysis	s of
I Init		ESIGN CRITERIA AND MATERIALS	9	<u> </u>	+	0
Deve	elopmer	t of High Rise Structures - General Planning Considerations - Design philoso	phies	-Ma	teria	als
used - Gla	l for Col ass - Hi	nstruction - High Strength Concrete - High Performance Concrete - Self Comp gh Strength Steel.	bactin	g Co	oncr	ete
Unit	t II L	OADING	9	<u> </u>	+	0
Grav Load	vity Loa d - Sequ	ding - Dead Load - Live Load - Live load reduction technique - Impact Load - ential Loading. Lateral Loading - Wind load - Earthquake Load.Combination	Cons of Lo	struct	tion	
Unit	t III	BEHAVIOUR OF VARIOUS STRUCTURAL SYSTEMS	9		+	0
Factor Rigio struc	ors affe d frame ctures, c	cting growth, Height and Structural form. High rise behaviour of Various stru s, braced frames, Infilled frames, shear walls, coupled shear walls, wall-frames ores, outrigger - braced and hybrid mega systems.	ctural s,tubu	syste ilar	ems	3 -
Unit	t IV	ANALYSIS AND DESIGN	9		+	0
Unit	t V	stand system considering overall integrity and major subsystem interaction, Anary es, drift and twist, computerised general three dimensional analysis. STABILITY OF TALL BUILDINGS	9 9		+	0
of lo Tors	bading, I	P-Delta analysis of frames, wall-frames, Approximate methods, second order effects. P-Delta analysis, simultaneous first-order and P-Delta analysis, Translational, stability, out of plumb effects, stiffness of member in stability, effect of foundation.	ationre	otatic	on.	
		Te	otal =	45 I	Peri	ods
Cou	rse Out	comes:				
Upor	n compl	etion of this course, the students will be able to:				
$\frac{COI}{COI}$		behaviour of tall buildings subjected to lateral building.				
$\frac{CO2}{CO3}$	2 . 3 .	Stability evaluation of tall buildings with respect to various factors				
Text	Books:					
1.	Bryan So and So	Stafford Smith, Alex coull, "Tall Building Structures, Analysis and Design", ns, Inc., 1991.	John	Wile	y	
2.	Tarana	th B.S., "Structural Analysis and Design of Tall Buildings", McGraw Hill, 2	011			
1 Refe	I in T X	00KS: / Stotas Burry D. "Structural Concents and systems for Architects and Engin	oors"	Ioh	n	
1.	Wiley,	1988.		JOIL	11	
2.	Lynn S	B.Beedle, "Advances in Tall Buildings", CBS Publishers and Distributors, De	elhi, 1	986.		
3.	Wolfga York	ng Schueller "High Rise Building Structures", John Wiley and Sons,New 1977				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	1	1	1	1	1	1	-	-	-	1	1	2	2
CO2	3	3	3	3	1	1	2	-	-	1	1	1	1	1	1
CO3	1	1	3	3	2	1	3	1	-	1	1	1	1	1	1

18	CE	PE26	PREFABRICATED STRUCTURES	L	Т	Р	С
				3	0	0	3
Cou	rse	Object	ives:				
At t	he e	end of th	is course the student shall be able to appreciate modular construction, ind	dust	riali	sed	
cons	stru	ction and	d shall be able to design some of the prefabricated elements and also				
have	e the	e knowle	edge of the construction methods using these elements				
Uni	t I	INTR	ODUCTION		9	+	0
Nee	d fo	r prefab	rication - Principles - Materials - Modular coordination - Standarization -	- Sy	sten	ıs –	
Prod	luct	ion – Tr	ansportation – Erection.				
Uni	t II	PRE	FABRICATED COMPONENTS		9	+	0
Beha	avio	or of stru	ctural components - Large panel constructions - Construction of roof and	flo	or		
slab	s –	Wall pa	nels – Columns – Shear walls				
Uni	t II	I DES	SIGN PRINCIPLES		9	+	0
Disu	niti	ng of st	ructures- Design of cross section based on efficiency of material used - Pr	robl	ems	ind	esign
beca	use	of joint	flexibility – Allowance for joint deformation.				
-							
Uni	t IV	JOI	NTS IN STRUCTURAL MEMBERS		9	+	0
Join	ts fo	or differ	ent structural connections – Dimensions and detailing – Design of expansion	ion	join	ts	
Uni	t V	DES	IGN FOR ABNORMAL LOADS		9	+	0
Prog	res	sive coll	apse - Code provisions - Equivalent design loads for considering abnorma	l eff	ects		
such	as	earthqu	akes, cyclones, etc., - Importance of avoidance of progressive collapse.				
			T	otal	= 4	5 Pe	eriods
Cou	rse	Outcor	nes:				
Upo	n co	ompletio	n of this course, the students will be able to:				
CO	L	: Unde	rstand the principles of prefabrication behavior and construction of structu	ıral			
		comp	oonents				
CO2	2	: Desig	gn the joints in structural connections and have a knowledge of codal prov	isio	ns to)	
		desig	n the structure for abnormal loads				
CO	3	: Desig	gn the joints in structural connections and have a knowledge of codal prov	isio	ns to)	
		desig	n the structure for abnormal loads				
Text	t Bo	ooks:					
1	CE	BRI, <i>Bui</i>	lding materials and components, India, 1990				
2	Ge	erostiza	C.Z., Hendrikson C. and Rehat D.R., Knowledge based process plannin	ng fa	r		
	co	nstructio	on and manufacturing, Academic Press Inc., 1994				
Refe	eren	ice book	S				
1	Ko	ncz T.,	Manual of precast concrete construction, Vols. I, IIandIII, Bauverlag	,GN	IBH	[,19	71.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	1	1	1	-	-	-	1	3	1	1
CO2	2	1	3	3	1	1	1	-	-	1	1	1	3	2	1
CO3	1	1	3	3	2	1	3	1	-	1	1	1	3	2	1

18C	EPE27	DESIGN OF COMPOSITE STRUCTURES	L	Т	P	С									
			3	0	0	3									
Cou	rse Obje	ctives:													
1.	To stud	y the behaviour and design of Steel concrete composite elements and structu	ires.												
2.	To inve	stigate the failure and fracture characteristics													
					т т										
Uni	t I INT	RODUCTION		9	+	0									
Intro Cons	duction to struction i	o steel - concrete composite construction – Composite action – Serviceability ssues.	an	d -											
Unit	t II DE	SIGN OF CONNECTIONS		9	+	0									
Shea Parti	ar connect	ors – Types – Design of connections in composite structures – Degree of sh nteraction.	earc	conn	ectio	on –									
Unit	t III DI	SIGN OF COMPOSITE MEMBERS		9	+	0									
Desi	gn of cor	nposite beams, slabs, columns, - design of composite trusses.													
															
Unit	t IV CO	OMPOSITE BOX GIRDER BRIDGES		9	+	0									
Intr	oduction ·	behaviour of box girder bridges - design concepts.													
Unit	t V CA	SE STUDIES		9	+	0									
Case struc	e studies o ctures.	on steel - concrete composite construction in buildings - seismic behaviour o	fco	mpo	site										
		Г	'ota	l= 4	5 Pe	eriods									
Cou	rse Outc	omes:													
CO	l On th compo	e completion of this course students will be in a position to gain knowledge osite structures	abo	ut th	le										
CO2	2 They	will be able to design connections in composite structures													
CO3	3 At the trusse	e end of this course students will be in a position to design composite beams	s, co	olum	nsai	nd									
CO4	4 studer	ts will be in a position to design box-girder bridges including the related co	nne	ction	S										
CO	5 They	will get exposure on case studies related to steel-concrete constructions of b	uild	ings.											
Text	t Books:														
1.	Johnson for Build	R.P., "Composite Structures of Steel and Concrete Beams, Slabs, Column lings", Vol.I, Blackwell Scientific Publications, 2004.	is ai	ndFr	ame	es									
2.	Oehlers Fundam	D.J. and Bradford M.A., "Composite Steel and Concrete Structural Memberntal behaviour", Pergamon press, Oxford, 1995.	ers,												
Refe	erence Bo	oks:													
1	Owens.C Blackwe	W and Knowles.P, "Steel Designers Manual", Steel Concrete Institute(UK II Scientific Publications, 1992.	.), C	Dxfo	rd										
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
-------	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	------	------	------	------
CO1	2	2	3	2	2	2	2	2	3	2	2	2	2	0	2
CO2	2	2	2	2	3	2	1	2	3	2	2	2	2	0	2
CO3	3	3	3	3	3	3	3	1	2	3	1	3	3	1	3
CO4	3	2	1	3	2	2	2	2	2	3	0	1	1	1	2
CO5	2	2	3	2	3	2	3	2	3	2	3	1	2	1	3

18CEPE28	COASTAL	L	Т	Р	С
	STRUCTURES	2	0	•	2
		3	U	U	3
Course Objectiv	es:				
1. Study the c	oncept of wave theories, forces and analysis of offshore structures.				
2. Develop an	understanding of basic concepts in coastal engineering such as the line	ar a	ndno	on	
linear wave	theory, energy propagation in waves.				
3. Design sim	ple coastal structures such as henpads, jacket tower etc.				
4. Make the st	udents to design platforms, moorning caples and pipe miles.	etc			
5. Make the st	udents to know about the moderning of roundation, fixed jacket platform		•		
UNIT I WAV	TE THEORIES		9	+	0
Wave generation	process, small, finite amplitude and nonlinear wave theories.				
UNIT II FOR	CES OF OFFSHORE STRUCTURES		9	+	0
Wind forces, way	e forces on small bodies and large bodies - current forces and use of Me	oriso	neq	uati	on.
			0		•
UNIT III OFFS	SHORE SOIL AND STRUCTURE MODELLING	1	9	+	0
Different types of	offshore structures, foundation modeling, fixed jacket platform structuraln	lode	ling		
UNIT IV ANA	LYSIS OF OFFSHORE STRUCTURES		9	+	0
Static method of	analysis, foundation analysis and dynamics of offshore structures.				
Unit V DES	IGN OF OFFSHORE STRUCTURES		9	+	0
Design of platfor	ms, helipads, Jacket tower, analysis and design of mooring cables and j	pipe	lines	5.	
	Total (L.+	<u>T)–</u>	45 P	Perio	ods
Course Outcome	25:	1)-		UIN	Jus
Upon completion	of this course, the students will be able to:				
CO 1 : Deter	mine the forces due to ocean waves				
CO 2 : Analy	ze and design offshore structures				
CO 3 : Const	truct platform, helipads, jackets, towers etc.,				
CO 4 · Desig	n offshore structures				
CO 5 : Differ	rentiate different offshore structures and todo foundation and structure n	node	lling	5	
Text Books:					
1. API RP 2A-	WSD, Planning, Designing and Constructing Fixed Offshore Platforms	- W	orki	ng	
2 Chakrabarti	n - API Publishing Services, 2005				
2. Chakrabarti	S.K., Hudrodynamics of Offshore Structures WIT press 2001				
Reference Books	:				
1. Jawson.T.H	Offshore Structural Engineering, Prentice Hall Inc Englewood Cliffs.	N.J.	. 198	83.	
2. James F. Wi	ilson, Dynamics of Offshore Structures, John Wiley & Sons, Inc, 200	3.			
3 Roddy DV	and Arockiasamy M. Offshore Structures Vol 1 and Vol 2 Vrieger	Dut	lich	ina	
	. and Anochiasanny, IVI., Onshole Subclutes, VOLI and VOLZ, MICRE	I UL	711311	шg	

4. Turgut Sarpkaya, Wave Forces on Offshore Structures, Cambridge University Press, 2010.

E-References:

1. https://nptel.ac.in/courses/114106035/

CO-PO-PSO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2		1	2	2	2	2				2		1
CO2		2	1	2			1		2			1	1	2	
CO3				1	1			1	1	1	2		2	2	1
CO4			2				1							2	1
CO5				1	2		1		1	1	1	1			21

1 – Slightly

2 – Moderately

3 – Strongly

180	CEPE29	DYNAMICS AND EARTHQUAKE RESISTANT DESIGN OFSTRUCTURES	L	Т	Р	С
			3	0	0	3
Cou	rse Objec	tives:				
1.	To study	the theory of vibrations				
2.	To learn	about the multiple degree of freedom system				
3.	To unde	stand the knowledge about seismic effect on building				
4.	To acqui	re a knowledge about peak acceleration and liquefaction				
5.	To study	about the design methodology				
Unit	і ТН	EORY OF VIBRATIONS		9	+	0
Diffe	erence bet	ween static forces and dynamic excitation – Concept of inertia and damp	ing	- T	vnes	of
Dam	ping – De	egrees of freedom – SDOF Idealisation – Equations of motion of SDOF	' sy	stem	for	01
mass	as well a	as base excitation - Free vibration of SDOF system - Response to harr	non	icex	citat	ion –
Impu	alse and re	sponse to unit impulse – Duhamel integral				
Unit II		JLTIPLE DEGREE OF FREEDOM SYSTEM		9	+	0
Two	degree of	freedom system - Normal modes of vibration - Natural frequencies - Mo	ode	shap	bes	
- Int	roduction	to MDOF systems – Decoupling of equations of motion – Concept of m	ode	supe	rpos	ition
(No	derivation	S). EMENTS OF SEISMOLOCY		0		0
Caus	es of Ear	thouse – Geological faults – Tectonic plate theory – Elastic rebound –	- F1	9 Nicer	T tre	0
Нуро – Ма	ocentre – agnitude a	Primary, shear and Raleigh waves – Seismogram – Magnitude and intensing Intensity scales – Spectral Acceleration - Information on some disastrous	ity ea	ofea thqu	rthq 1ake	uakes s
Unit	IV RE	SPONSE OF STRUCTURES TO EARTHQUAKE		9	+	0
Resp respo ducti	onse and onse spect ility – Me	design spectra – Design earthquake – Concept of peak acceleration – Sir rum – Effect of soil properties and damping – Liquefaction of soils – Imp hods of introducing ductility into RC structures.	te sj port	pecif	fic of	
Unit	V DE	SIGN METHODOLOGY		9	+	0
IS 1 techi struc	893, IS (niques – ctures.	13920 and IS 4326 – Codal provisions – Design as per the codes Vibration control measures – Important points in mitigating effects of	– E of e	ase arth	iso qual	lation ke on
		T	otal	= 4	5 Pe	eriods
	rse Outco	omes:				
1	Apply t	he basics of Earthquake Engineering				
2	Demon	strate the dynamics of structural system under earthquake load				
3	Anaryzo	e the influence of the structural / geometrical design in building characte		.cs		
4	Demons	trate the cyclic loading behaviour of RC steel and pre-stressed concrete	elei	nent	S	
5	Apply c	odal provisions on different types of structures				
Text	Books:					
1.	Damodar learning j	asamy S.R. and Kavitha S. Basics of Structural Dynamics and Aseism private Ltd, New Delhi-1, 2009	ic I	Desig	gn,P	HI
Refe	rence Bo	oks:				

D Paz, M., Structural Dynamics – Theory & Computation, CSB Publishers & Distributors, Darga Ganj, New Delhi-2, 2004. 1.

CO-PO-PSO MAPPING

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	2	3	3	2	3	3	3	2	2	2	3	3	3	1
CO2	3	3	3	3	3	3	3	3	2	2	2	3	3	3	1
CO3	3	3	3	3	3	3	3	3	2	2	2	3	3	3	1
CO4	3	3	3	3	3	2	3	2	2	2	2	3	3	3	1
CO5															

1 – Slightly

2 – Moderately3 - Strongly

	18CEPE30	INDUSTRIAL STRUCTURES	L	Т	Р	С
			3	0	0	3
Cou	rse Objectiv	es:				
1.	At the end	of this course the student shall be able to design the important indust	rials	truc	ture	3
2.	At the end	of course functional requirements of the building				
3.	At the end and prefabr	course the student should be able to understand the design of steel an ication.	d R	Cstı	ructu	ires
Uni	t I PLANN	ING		9	+	0
Class cher Plan	sification of nical and steel ning and layo	Industries and Industrial structures – General requirements for industrial plants – types of frames – bracings – crane girders and columns workshout of buildings and components.	ries op s	likc shed	eme s	nt,
Uni	t II FUNC	TIONAL REOUIREMENTS		9	+	0
Ligl	nting – Ventil	ation – Accounts – Fire safety – Guidelines from factories act.			1	
Uni	t III DESI	GN OF STEEL STRUCTURES		9	+	0
Indu	strial roofs –	Crane girders – Mill buildings – Design of bunkers and silos				
Uni	t IV DESI	GN OF R.C. STRUCTURES		9	+	0
Con	crete Silos an	d bunkers - Chimneys - Principles of folded plates and shell roofs(Th	eory	on on	ly) -	
Mac	hin foundatio	ns (Theory only).				
Uni	t V PREFA	BRICATION		9	+	0
Prin conc	ciples of prefacted	abrication - Prestressed precast roof trusses- Functional requirements	for 1	Prec	as	
	То	tal (45+0)= 45 Periods				. <u></u>
Cou	irse Outcome	es:				
1	Students y	will gain the knowledge about lighting, fire safety and ventilation				
2	Students	will gain the knowledge on the advanced structures namely bunkers,	silos	5		
3	Students y	will gain the knowledge in the need of prefabrication with current tren	ıd.			
Tex	t Books:					
1.	Duggal S.K. Delhi, 2010.	, Limit State Design of Steel Structures, Tata McGraw-Hill Publishing	g C	omp	anN	lew
2	Subramania	n N., Design of Steel Structures, First edition, OXFORD universityp	ress	, 20	08.	
3	Reinforced (Concrete Structural elements – P. Purushothaman.				
Ref	erence Books	:				
1.	Henn W. Bu	ildings for Industry, vols. I and II, London Hill Books, 1995				
2.	Handbook o Standards, N	n Functional Requirements of Industrial buildings, SP32 – 1986, Bui Iew Delhi 1990	eau	of	India	an
3.	Course Note Structures, S	s on Modern Developments in the Design and Construction of Indust structural Engineering Research Centre, Madras, 1982	rial			

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	2	1	1	1	2	1	1	2	3	3	2
CO2	3	3	1	1	2	2	1	1	1	2	1	1	2	2	1
CO3	2	1	3	2	1	1	2	1	1	1	2	1	2	1	1
CO4															
CO5															

18C	EPE	31	FERROCEMENT TECHNOLOGY	L	Т	Р	С
				3	0	0	3
Сон	rse (Dhiecti	ves:				
1		import	knowledge on the meterial properties of forrecomment construction method	da			
1.	10	mpart	knowledge on the material properties of refrocement, construction metho	us			
2.	То	implen	nent design of ferrocement technology in building construction, hydraulic	;			
	stru	ctures	and soil retaining structures.				
T 1	T	INTED	οριοτιον	— T	0	<u>. </u>	0
Defi	nitior	IN I K	oboc non rical background. Constituent materials coment mortar, skeletal steel, mesh		9	+	U
reinf	orcer	nent-T	vpes of meshes distinct characteristics of ferrocement versus reinforced	L			
conc	rete.	Simila	rities between ferrocement and reinforced concrete applications.				
	,		11				
Unit	t II	MEC	CHANICALPROPERTIES:		9	+	0
Beha	aviou	r of fe	rrocement in tension, cracking and multiple cracking behavior, maximu	m e	long	atic	on at
failu	re, st	tress at	first cracking, elastic modulus in tension, behaviour of ferrocement in	ben	ding-	loa	d
vers	us de	flection	n response, impact strength, leakage, fireresistance,				
dura	bility	·.					
TInit	• TTT		CTICAL DESIGN CLIDELINES.	—	0	Τ.Τ	0
		PKA	actical desirent Guidelines:	robi	9	+	U
Corr	osion	defle	ction limitation. Practical design parameters for ferrocement - cover this	rabi ckn	ess a	ind nd	
mes	h ope	ening. s	skeletal reinforcement depth, minimum volume fraction of reinforcement	it. n	ninim	num	n
volu	me fi	raction	in water retaining structures, fibers, number of meshlayers, bending me	mbe	ers –	hył	orid
fiber	rein	forcem	ent, wire diameter, fineness of matrix.			2	
Guid	leline	s for g	good construction.				
Unit	t IV	FE	RROCEMENT IN BUILDING CONSTRUCTION:		9	+	0
Cor	nstruc	ction m	ethods-Skeletal Armature method, Closed mould method, Integral Moul	.d			
meth	10d, (Open m	nould method- ferrocement precast walls, hollow floors, hollow beams, ro	ofii	ngun	its,	
earth	nquak	ce resis	stant structures, cost comparision with conventional construction.				
Unit	t V	нур	RAILIC AND SOIL RETAINING STRUCTURES IN	<u> </u>		П	
Om	. •	FER	ROCEMENT:		9	+	0
Wa	ter re	taining	structures- Design and method of fabrication and casting, storage tanks	of			
vario	ous ty	pes, fo	oot bridges-canal lining. Soil retaining structure - Ferrocement counterfo	rt			
retai	ning	wall, F	Ferrocement containers for storing granular materials, Method of precasti	ng.			
			Total (4	45+0	0)=4	5 P	eriods
Cou	rse (Outcon	nes:				
Upo	n con	npletio	n of this course, the students will be able to:				
COI	l :	To gi	ve a good insight about the ferrocement technology				
CO2	2	To ga	in the knowledge about the mechanical properties of ferrocement				
CO3	3 :	To gi	ve an understanding of construction methods				

4	The students will be able to design the ferrocement structures
5	To make the students understand the hydraulic structures and soil retaining structures
t Be	oks:
B	R Paul and R P Pama. Published by International Ferrocement Information Centre.
Α.	.T.Bangkok, Thailand
Sta	te-of-the-art report and guide for Design, Construction and Repairs of Ferrocement; ACI
co	nmittee Report. No ACI549R- 88 and ACI 549.1R.88. Published by American Concrete
Ins	titute, Detroit, USA
erer	ce books
Fe	rocement and laminated cementitious composites A E Naaman.
	Publisher: Techno-press, Ann Arbor, Michigan, U S A
Fe	rocement- Materials and applications;
	Publication SP 61, A C I Detroit. U S A
	4 : 5 b F A.I Sta con Insu Fer Fer

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	2	2	2	2	3	2	2	2	2	0	2
CO2	2	2	2	2	3	2	1	2	1	2	2	2	2	0	2
CO3	3	3	2	3	3	3	3	3	2	3	1	3	3	1	3
CO4	3	3	3	3	2	3	2	2	2	3	2	1	1	1	2
CO5	2	3	1	2	3	2	3	3	3	2	3	1	2	1	3

1 – Slightly 2 – Moderately 3 - Strongly

	18CEPE32	FINITE ELEMENT ANALYSIS	L	Т	Р	С
			3	0	0	3
Coi	irse Objectives:					
1.	At the end of th and shall be able finite element m	his course the student shall have a basic knowledge of finite elem to analyse linear elastic structures that he has studied about in contected.	ent orec	met	hod ses,	using
Uni	t I ELEMENTS	S OF ELASTICITY		9	+	0
Bas –Str pote	ic principles of str ressstrainrelations–I ential energy.	uctural mechanics – Equations of equilibrium – Strain displacemen Planestressandplanestraincases–PrinciplesofVirtualworkand minimum	trel	atio	ns	
Uni	t II DIRECT S	TIFFNESS METHOD		9	+	0
Step – Pi	os in direct method oblems on simple	of FEA – Element stiffness matrix – Global stiffness matrix – Bob beams and Trusses.	und	aryc	ondi	tions
Uni	t III FINITE E	LEMENTS		9	+	0
Dis Con line	vergence requirem ar & quadratic mod	element shapes - Element properties – Node numbering procedure ents – Generalised co-ordinates – Natural co-ordinates – Shape fun- dels – Stiffness matrix – Nodal load vector – Static condensation –	– ctio Sin	ns fe	or prob	lems.
Uni	t IV INTRODU	CTION TO ISOPARAMETRIC ELEMENTS		9	+	0
Cor dim	cept of sub, iso, su ensional elements	aper parametric elements – Gauss quadrature – Examples in one an	ıd t	wo		
Uni	+ V SOLUTION	I TECHNIQUES	<u> </u>	0	+	0
Diff Sub	Gerent solvers – Var domain method, G	iational approach – Weighted mean residual methods like Collocatio alerkin method and Least square method – Simple problems only.	n m	netho	od,	•
		Te	otal	= 4	5 Pe	eriods
Cou	irse Outcomes:					
1	Students who succ element formulatio	essfully complete this course will have demonstrated an ability toP ons for simple engineering problems.	erfo	ormf	inite	
2	Analyze linear 1D analyse the axi-sy	problems like bars and trusses; 2D structural problems using CST mmetric problems with triangular elements.	ele	men	itano	1
3	write shape function integration to solve	ons for 4 and 8 node quadrilateral, 6 node triangle elements and apple; 1D and 2D; stiffness integrations	olyr	nume	erica	1
4	Solve linear 2D st transfer problems.	ructural beams and frames problems; 1Dheat conduction and conve	ectio	on h	eat	
5	Evaluate the Eiger material non linear	values and Eigenvectors for stepped bar and beam, explain nonlin- ity.	earg	geon	netri	c and
Tex	t Books:					
1.	Tirupathi R. Cha Engineering", Th	ndrupatla and Ashok D. Belugundu, "Introduction to Finite Eleminite Eleminite Eleminite Edition, Prentice Hall India Pvt Ltd, 2011	ents	s in		
2	P.Seshu, "Textbo	ok of Finite Element Analysis", Prentice Hall India Pvt Ltd, 2008.				
Ref	erence Books:			0.000	0	
1. 2.	Rajasekaran.S., " S.S.Rao, "The Fi	Finite Element Analysis in Engineering Design", Wheeler Publish nite Element Method in Engineering", Buttersworth-Heinemann p	ing, ubli	,200 .shin	0. g,20)00

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	1	3	1	1	0	1	0	2	3	1
CO2	3	3	2	3	2	1	3	1	1	0	1	0	2	3	1
CO3	3	3	2	3	3	1	2	1	1	0	1	0	2	3	1
CO4	3	3	2	3	3	1	3	1	1	0	1	0	2	3	1
CO5	3	3	2	3	2	1	2	1	1	0	1	0	2	3	1

		L	I.	Р	C
		3	0	0	3
Course Ob	jectives:	-	•	÷	-
To m	ake students aware of various measurement techniques and experimental plan	ning	g an	proc	edures
1 adopte	ed in laboratory.			L	
Unit I ST	RAIN GAUGES		9	+	0
Definition of	of Gauge length, sensitivity and range – Characteristics of an ideal strain g	aug	e –	Dif	ferent
types of me Acoustic str	chanical strain gauges for use in metal and concrete specimens – Optication of the strain gauge – Pneumatic strain gauge – Merits and demerits.	al s	trair	ı ga	uge –
Unit II E	LECTRICAL STRAIN GAUGES		9	+	0
Inductance,	capacitance and piezo-electric gauges - Bonded and unbounded resistance g	aug	es a	nd t	heir
application	in stress analysis – Fixing technique and measurement of strains – Rosettes –	- De	etern	nina	tion of
circle – An	allytical solution.	1S —	Mo	nr s	stress
IInit III 1	PHOTOFLASTICITY	<u> </u>	9	+	0
Principles –	Maxwell'sstress optic law – Plane and circularly polarised light and their use in	pho	ر to el	_⊤ lastio	city –
Polariscopes	- Diffusion type, lense type and reflection type polariscopes –Isochromatics	pno		astr	uly
and Isoclini	es - Model materials - Calibration methods for finding material fringe value -	- Mo	odel	frin	ge
value – Exa	mples of beam flexure and <i>diametrically loaded circularplates</i> .				
Unit IV	MODEL ANALVSIS		0		0
Direct and i Buckingham model analy	<i>idirect models – Laws of</i> structural similitude – Choice of scales – Limitation of piktheorem – Dimensional analysis – Model materials – Begg ^{es} deformeter a sis – Simple design of models for direct <i>and indirect model analysis</i> .	f m andi	odel ts us	stuc se in	dies -
Unit V B					
	RITTLE COATINGS		9	+	0
Historical re	RITTLE COATINGS eview – Stress Coat – Ceramic coatings – Application – Moire fringe method o	of st	9 resa	+ naly	0 /sis.
Historical re	RITTLE COATINGS view – Stress Coat – Ceramic coatings – Application – Moire fringe method of Tecomes:	of st otal	9 aresa = 4	+ naly 5 Pe	0 /sis. eriods
Historical re Course Ou	RITTLE COATINGS view – Stress Coat – Ceramic coatings – Application – Moire fringe method o toomes: lents will be able toSelect the appropriate strain gauges for strain measurement	of st otal	9 resa = 4	+ naly 5 Pe	0 /sis. eriods
Historical re Course Ou 1 Stud 2 Prir	RITTLE COATINGS view – Stress Coat – Ceramic coatings – Application – Moire fringe method of tomes: lents will be able toSelect the appropriate strain gauges for strain measurement ciples behind the photo elasticity	of st otal	9 resa = 4	+ naly 5 Pe	0 /sis. eriods
Historical re Course Ou 1 Stud 2 Prir 3 Kno	RITTLE COATINGS Eview – Stress Coat – Ceramic coatings – Application – Moire fringe method of Tecomes: lents will be able toSelect the appropriate strain gauges for strain measurement ciples behind the photo elasticity wledge in model analysis and predict the behavior of prototypes.	of st otal	9 resa = 4	+ naly 5 Pe	0 //sis. eriods
Historical re Course Ou 1 Stud 2 Print 3 Kno Text Books	RITTLE COATINGS Eview – Stress Coat – Ceramic coatings – Application – Moire fringe method of Tecomes: lents will be able toSelect the appropriate strain gauges for strain measurement ciples behind the photo elasticity wledge in model analysis and predict the behavior of prototypes. :	otal	9 resa = 4	+ naly 5 Pc	0 /sis. eriods
Historical re Course Ou 1 Stud 2 Prir 3 Kno Text Books Sadhu Sing	RITTLE COATINGS Eview – Stress Coat – Ceramic coatings – Application – Moire fringe method of Termes: Ients will be able toSelect the appropriate strain gauges for strain measurement ciples behind the photo elasticity Weldge in model analysis and predict the behavior of prototypes.	otal	9 resa = 4	+ naly 5 Pe	0 vsis.
Historical re Course Ou 1 Stud 2 Prin 3 Kno Text Books Sadhu Sing 1. T.K.F Del	RITTLE COATINGS eview – Stress Coat – Ceramic coatings – Application – Moire fringe method o Tetomes: lents will be able toSelect the appropriate strain gauges for strain measuremen ciples behind the photo elasticity owledge in model analysis and predict the behavior of prototypes.	otal	9 resa = 4	+] naly 5 Pc	0 /sis. eriods
Historical re Course Ou 1 Stud 2 Prir 3 Kno Text Books Sadhu Sing 1. T.K.F Del 2. Heteny 1966.	RITTLE COATINGS eview – Stress Coat – Ceramic coatings – Application – Moire fringe method of teomes: dents will be able toSelect the appropriate strain gauges for strain measurement ciples behind the photo elasticity owledge in model analysis and predict the behavior of prototypes. : h, "Experimental Stress Analysis", Khanna Publishers, New Delhi,2004. oy, "Experimental Analysis of Stress and Strains", S.Chand and Company I hi, 2000. i. M., Hand Book of Experimental Stress Analysis, John Wiley and Sons In	of st otal nts	9 rresa = 4 ,Ne	+ naly 5 Pc w w	0 /sis. eriods
Historical re Course Ou 1 Stud 2 Prin 3 Kno Text Books Sadhu Sing 1. T.K.F Del 2. Heteny 1966. Reference I	RITTLE COATINGS eview – Stress Coat – Ceramic coatings – Application – Moire fringe method of Termes: dents will be able toSelect the appropriate strain gauges for strain measurement ciples behind the photo elasticity owledge in model analysis and predict the behavior of prototypes. : h, "Experimental Stress Analysis", Khanna Publishers, New Delhi,2004. .oy, "Experimental Analysis of Stress and Strains", S.Chand and Company I hi, 2000. i. M., Hand Book of Experimental Stress Analysis, John Wiley and Sons In Books:	otal nts	9 resa = 4	+ naly 5 Pc	0 /sis. eriods
Historical re Course Ou 1 Stue 2 Prin 3 Kno Text Books Sadhu Sing 1. T.K.F Del 2. Heteny 1966. Reference I 1. J.W.Da Delhi,	RITTLE COATINGS eview – Stress Coat – Ceramic coatings – Application – Moire fringe method of Termes: dents will be able toSelect the appropriate strain gauges for strain measurement ciples behind the photo elasticity owledge in model analysis and predict the behavior of prototypes. : h, "Experimental Stress Analysis", Khanna Publishers, New Delhi,2004. oy, "Experimental Analysis of Stress and Strains", S.Chand and Company I hi, 2000. 'i. M., Hand Book of Experimental Stress Analysis, John Wiley and Sons In Books: Ily and W.F.Riley, "Experimental Stress Analysis", McGraw Hill Book, New 2001.	otal nts Ltd.	9 resa = 4 ,Ne New	+ naly 5 Pc w w	0 /sis. eriods

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	-	1	1	1	2	1	1	1	1	1	1	1	1	-	1
CO2	1	1	1	1	2	1	1	1	1	1	1	1	1	-	1
CO3	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1
CO4															
CO5															

GEOTECHNICAL ENGINEERING

18C	EPF	E34	GROUND IMPROVEMENT TECHNIQUES	L	Т	Р	С
				3	0	0	3
Cou	rse	Objecti	ves:				
1.	T	he stude	nt is expected to identify basic deficiencies of various soil deposits				
2.	To	learn th	ne various techniques of drainage and dewatering				
3.	To	know a	bout various in-situ treatment of soil samples				
4.	To	study t	he details about earth reinforcement				
э.	10	unders	and about the grouting techniques				
Uni	t I	: INTI	RODUCTION		9	+	0
Role	of	ground i	mprovement in foundation engineering - methods of ground improvement –				
Geo	techi	nicalprot	on soil condition	men	C		
teen	inqu		on son condition.				
Uni	t II	: DR /	AINAGE AND DEWATERING		9	+	0
Drai	nage	technic	ues - Well points - Vacuum and electro-osmotic methods - Seepage analys	is fo	or tw	/0	•
dime	ensio	nal flow	-fully and partially penetrating slots in homogeneous deposits (Simple case	s on	ly).		
					J /		
Uni	t III	: IN	SITU TREATMENT OF COHESIONLESS AND COHESIVE SOII	LS	9	+	0
In-si	tu d	ensificat	ion of cohesionless and consolidation of cohesive soils -Dynamic compact	ion a	and		
cons	olida	ation –	Vibro-flotation - Sand pile compaction - Preloading with sand drains and fa	bric	1	1.	
aran	ns — thai	Stone co	blumns – Lime piles - installation techniques only - relative merits of vario	usm	etno	as	
anu	then	mmai	10115.				
					0		
Uni	t IV	EAF	CTH REINFORCEMENT		9	+	0
Con	cept	of reinfo	preement - Types of reinforcement material - Applications of reinforced early	h –	used	of	
Geo	texti	les for fi	iltration, drainage and separation in road and otherworks.				
Uni	t V	GRO	UT TECHNIOUES		9	+	0
Type	es of	grouts	- Grouting equipment and machinery - Injection methods - Grout monitorir	1g —			-
Stab	ilisa	tion wit	h cement, lime and chemicals - Stabilisation of expansive soils.	0			
			То	tal=	45]	Peri	ods
Cou	rse	Outcom	nes:				
At the	ne er	nd of the	e course the student will be able to				
CO	. :	Demo	onstrate the various ground improvement techniques				
CO2	2 :	Carry	out insitu treatment of cohesionless and cohesive soils				
CO3	3 :	Apply	the geotextile material in practice				
CO ²	1 :	Know	the grouting equipment and monitoring				
Text	t Bo	oks:					
1	Pu Nev	rushotha w Delhi	ama Raj P., Ground Improvement Techniques, Tata McGraw- Hill Publish , 1995	ingC	Com	pany	,
2	Ko	erner R	.M., Construction and Geotechnical Methods in FoundationEngineering,				
	M	Selev N	A P. Ground Improvement Blackie Academic and Professional Chapman	1 and	1 Ho	11	
3	Gla	usgow, 1	1993		. 116	,	
RF	FE	RENCI	E:				
1	Jon	es J.E.F	P., Earth Reinforcement and Soil Structure, Butterworths, 1995				

Koerner R.M., Design with Geosynthetics, (3rdEdition) Prentice Hall, New Jersey 2

CO-PO-PSO MAPPING

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	2	3	3	1	3	2	3	2	2	2	2	2	2	-	1
CO2	2	1	2	1	2	2	3	2	1	2	2	1	3	-	1
CO3	2	1	2	1	2	2	3	2	1	1	2	2	2	-	1
CO4	2	1	2	1	2	2	3	2	1	1	2	2	2	-	1
CO5															

1 – Slightly 2 – Moderately

3 - Strongly

	18CF	EPE35	INTRODUCTION TO SOIL DYNAMICS AND MACHINEFOUNDATION	L	Т	Р	С
				3	0	0	3
Cou	rse O	bjectiv	es:				
1.	Ass	ess dyna	amic properties of soil.				
2.	Den	nonstrat	e various vibration isolation techniques.				
3.	Des	ign of N	Machine foundation.				
					~		
UNI	TI	INTR	ODUCTION		9	+	0
Vibr free	ation and f	of e orced v	lementary systems - vibratory motion - single degree free ibration with and withoutdamping.	dom	sy	/ster	n-
UNI	TI	WAVI	ES AND WAVE PROPAGATION		9	+	0
Wav wave	e proj es-wa	pagatior ves in el	in an elastic homogeneous isotropic medium - Raleigh, shear and complastic half space.	ressi	on		
TINI	тш	DVN	AMIC PROPERTIES OF SOILS		9	+	0
Flas	tic pro	DIN	of soils coefficient of electic uniform and non uniform compression	hoar	• •	T	t of
vibra	ation c	lissipati	ve properties of soils - determination of dynamic properties of soil - codal pro	ovisi	ons.		
UNI	T IV	DES	IGN PROCEDURES		9	+	0
macl	gn cri nines	producii	ng impact loads - rotary type machines.	ingn	nach	ines	-
Unit	t V	VIBF	RATION ISOLATION		9	+	0
Vibr	ation	isolatior	technique-mechanical isolation-foundation isolation-isolation by location-	isola	tion	by	
barri	ers- a	ctive pa	ssive isolation tests			2	
			Tot	al=	45 I	Perio	ods
Cou	rse O	outcome	28:				
Upor	n com	pletion	of this course, the students will be able to:				
CO	1 :	Assess	dynamic properties of soil.				
CO2	2 :	Demon	strate various vibration isolation techniques.				
CO3	3 :	Design	of machine foundation.				
	5 B00	KS:	"Soil Dynamics and Machine Foundations" Calgotia Dublications But	I td	100	00	
$\frac{1}{2}$	Swa S Dri	unisarai	V K Puri Foundation for machines McGraw Hill 1999	.Liu	.,193	,,	
2.	Srini	vasulu	P & Vaidyanathan Hand book of Machine Foundations McGraw-Hill	199	6		
D.	rence	Books		177	0.		
1.	Kam Delh	eswara	Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishin	g, N	ew		
2.	IS co	ode of P	ractice for Design and Construction of Machine Foundations, McGraw-H	Hill,	199	6.	
3.	Moo	re P.J.,	"Analysis and Design of Foundation for Vibration", Oxford and IBH, 19	. 995.			
4.	Kam 2003	eswara	Rao, "Dynamics Soil Tests and Applications", Wheeler Publishing, New	Dell	hi,		

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	1	0	0	0	2	2	3	3	0
CO2	3	3	3	3	3	3	2	1	0	1	1	1	3	2	0
CO3	3	3	3	3	3	3	1	0	0	0	1	1	3	3	1

1	8CEP	E36	SOIL STRUCTURE INTERACTION	LT	P	С
				3 0	0	3
Cou	ırse Ol	ojectiv	es:			
1.	To u desig	ndersta 31 para	and the mechanism of soils, their interactive behaviour, analysis, its influe meters through design charts and software packages.	nces i	nthe	
Uni	t T	SOIL	-FOUNDATION INTERACTION	9	+	0
Intro	oductic	n to se	bil - Foundation interaction problems Soil behaviour Foundation behav	viour '	[nterf	ace
beha cont	aviour,	Scop	e of soil-foundation interaction analysis, soil response models, W parameter elastic models, Elastic plastic behaviour, Time dependent beha	inkler viour.	, El:	astic
Uni	t II	PLA	TE ON ELASTIC MEDIUM	9	+	0
Infin Clas	nite bea	am, Tw ion of	yo parameters, Isotropic elastic half space, Analysis of beams of finite leng finite beams in relation to their stiffness.	gth,		
Uni	+ TTT	PI A	FE ON ELASTIC MEDIUM	0	1	0
Infii plate	nite pla es, rect	ite, Win angula	nkler, Two parameters, Isotropic elastic medium, Thin and thick plates, A r and circular plates, Numerical analysis of finite plates, simple solutions	nalysi	s offi	nite
Uni	t IV	ELAS	TIC ANALYSIS OF PILE	9	+	0
Elas	tic ana p, Inte	lysis o craction	f single pile, Theoretical solutions for settlement and load distribution, Ar analysis, Load distribution in groups with rigid cap.	alysis	ofpi	le
Uni	t V I	ATE	PALLY LOADED PILE	0		0
Load anal	d defle ysis, a	ction p nd pile	rediction for laterally loaded piles, subgrade reaction and elastic analysis, raft system, solutions through influence charts	Interac	tion	
Tota	al (45+	(0) = 45	Periods			
Cou	irse Oi	utcome	25:			
Upo	n com	oletion	of this course, the students will be able to:			
CO	1 :	Know	about soil response models			
CO	2 :	Analyz	e beams of finite length			
CO	3 :	Know	about numerical analysis of finite plate and elastic analysis of pile			
Tex	t Book	s:				
1.	Saran	, S, An	alysis and desaign of substructures, Taylor & Francis Publishers, 2006.			
2.	Hems	ley, J.	A, Elastic Analysis of Raft Foundations, Thomas Telford, 199			
3	McCa Prenti	rthy, I ce Hal	D.F. Essentials of Soil Mechanics and Foundations, basic geotechnics (6t 1, 2002.	h Edit	ion),	
4	Selva	durai, 4	A.P.S., Elastic Analysis of Soil Foundation Interaction, Elsevier, 1979.			
5	Poul	os, H.C	G., and Davis, E.H., Pile Foundation Analysis and Design, John Wiley,	1980		
6	Bowe York.	els J.E.	, "Analytical and Computer Methods in Foundation", McGraw Hill Boo	k Co.	New	
Refe	erence	Books	•			
1.	Scott,	R.F. F	Foundation Analysis, Prentice Hall, 1981.			

2.	Structure Soil Interaction - State of Art Report, Institution of structural Engineers, 1978.
3.	ACI 336, Suggested Analysis and Design Procedures for CombinedFootingsand Mats,
	American Concrete Institute, Dehit,1988.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	1	0	1	2	3	1	1
CO2	3	3	3	3	3	3	3	2	1	0	1	2	3	1	1
CO3	3	3	3	3	3	3	2	2	1	0	1	2	3	1	1

18C	EPE37	SUBSURFACE INVESTIGATION AND INSTRUMENTATION	L	T	P	C
Cor	rea Object	voct	3	0	U	3
1	To unders	stand the importance of site investigation				
2	To know	the techniques of soil exploration				
3	To collect	t and preserve soil samples and the field tests to be conducted				
<u> </u>	To introd	uce the instrumentation in soil engineering				
+	10 muou	dee the instrumentation in son engineering.				
Unit	I SCOP	E AND OBJECTIVES OF EXPLORATION		9	+	0
Scop and inter	be and object detailed des pretation, s	ctives, planning and exploration program, methods of exploration, exploration sign, spacing and depth of bores, data presentation. Geophysical exploration eismic and electrical methods.	on fo n an	orpre id	elim	inary
Unit	II FYP	ORATION TECHNIQUES		0	1	0
Met	hods of bori	ing and drilling non-displacement and displacement methods drilling in dif	fici	9 1lt	т	U
subs	oil conditio	ons, stabilization of boreholes, bore logs.				
TIme				0		0
Uni	<u>nling</u> distu	L SAMPLING		9 mali	+	U
shall	low penetra	tion samplers, preservation and handling of samples.	esar	npin	ng,	
Unit	IV FIE	LD TESTING IN SOIL EXPLORATION		9	+	0
Field	tests nene	erration tests procedures and methods data interpretation Field vane shear	· In	situ	she	ar and
bore and	hole shear cyclic; field	test, pressuremeter test, utility, correction and data interpretation, plate load permeability test.	id te	est-r	non	otonic
Unit	t V INST	RUMENTATION		9	+	0
Inst	umentation	in soil engineering, strain gauges, resistance and inductance type, load cel	lls.	earth	ı pr	essure
cells	, settlement	t and heave gauges, piezometers and slope indicators, inclinometer, case stu	dies	5.	r	
~	-	Т	ota	l = 4	5 P	eriods
Cou	rse Outcon	nes:				
CO	Know t	he scope and objectives of soil exploration.				
CO2	2 Aware	of different exploration techniques available to explore soil.				
CO3	Know n	nethods of sampling and to preserve them.				
CO	Choose	suitable methods to do subsurface investigation and to interpret the data co	ollec	ted.		
COS	5 Aware	of the instruments to be used for sub surface investigation.				
Text	Books:					
1.	Hunt, R.E.	, Geotechnical Engineering Investigation Manual, McGraw Hill, 2005.				
2.	Winterkor	n, H.F. and Fang, H.Y., Foundation Engineering Hand Book, a NostrandR	einł	nold	201	0
3.	Alam Sing testing and	th and Chowdhary, G.R., Soil Engineering in Theory and Practice, Volume instrumentation, CBS Publishers and Distributors.NewDelhi, 2015.	e-2,	Geo	otech	nnical
Refe	rence Bool	KS:				
1.	Mair, R.J. Butter-wor	and Wood, P.M., Pressuremeter Testing Methods and Interpretation, rths, 2013				
2.	Dunnicliff Wiley, 20	, J., and Green, G.E., Geotechnical Instrumentation for Monitoring Field I	Perf	orm	ance	,John
3.	Day, R.N. HiLLS,20	, Geotechnical and Foundation Engineering, Design and Construction, Mc 15.	Gra	ıw-		
		156				

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	1	2	0	0	1	1	2	3	2	1
CO2	3	3	3	3	1	0	1	0	0	0	0	1	3	3	2
CO3	3	3	3	3	3	1	2	0	0	0	0	0	3	2	0
CO4	3	3	3	3	3	0	1	0	0	3	3	3	3	2	1
CO5	3	3	3	3	3	1	1	1	1	1	0	1	3	1	1

18CI	EPE38	FUNDAMENTALS OF REMOTE SENSING AND	L	Т	Р	С
		GIS	-			
			3	0	0	3
Cour	rse Ob	ectives:				
1.	To po proje	ssess knowledge on Remote Sensing Techniques and their applications in civil o ts.	engin	eerir	ıg	
2.	To K	ow about main Remote Sensing Systems and programs (sensors, platforms, etc.	c.) and	1		
3		now and use GIS and its geo processes and functions				
3.		a diverse techniques and instruments adequately to measure leasts and find he				
4.	and i	afield.	aring	son a	t ma	ιp
5.	To U	derstand main concepts that define Geographic Information Systems				
Unit	Ι	NTRODUCTION	9		+	0
Defir	ition a	nd types of remote sensing – Wave and Quantum theories – Radiation principle	- Co	npoi	nent	s of
Elect system absor Vege	romag m – E ption tation,	etic Spectrum – Energy balance equations – Components of ideal and reatergy interaction with Atmosphere – Different types of scattering and Atmospheric windows – Energy interaction with surface features – Spectsoil andwater.	al rem tral s	igna	sens	sing s of
TT 1						
Unit	II P	LATFORMS AND SENSORS	9		+	0
Class Type Orbit and I	sificati s - Mu tal and IKON	on of Satellites based on orbits and purposes - Synoptivity and Repetivity - ltistage, Multisensor, Multispectral, Multitemporal and Multipurposeconcepts. sensor characteristics of the following remote sensing satellites; LANDSAT OS.	- Res [, SP(oluti DT,	ion IRS	and
Unit	ш	IMAGE INTERPRETATION	9	T	+	0
Visua proce – Filt	al Inter essing tering	- Image Rectification and Restoration - Image Enhancement - Image Classification and Restoration - Image Enhancement - Image Classification - Image Rectification - Image Classification - Image Rectification - Image Recti	Digita tion	alim	age	
TT • 4	TTT			1		
Unit	IV	GEOGRAPHICAL INFORMATION SYSTEM	9		+	0
Comj – Ma – Ras	ponent ps – T ster and	of GIS – Hardware, Software and Organizational set up – Data – Spatial and pes of Maps – Types of Georeferencing - Data input – Digitization – Scannin Vector data analysis – Overlaying, Buffering – Generation of DEM - Data prese	Non g – I ntatio	spat Data n	ial Edi	ting
Unit	VA	PPI ICATIONS OF REMOTE SENSING AND GIS	9		+	0
Marit	v A	initiations of Remote Sensing Applications of Remote Sensing and CIS in	the fo	1101	T ina	0
fields engir Engir	s; Surv eering neering	eying, Water resources, Geological mapping, Route location, Site selection for projects, Disaster and mitigation studies, Coastal zone management and Envir	majo majo	or cintal	vil	
Corr		To	otal =	45]	Peri	ods
Upon		etion of this course, the students will be able to:				
		Demonstrate the concents of Electro Magnetic energy spectrum and spectral s	ignat	11170		
		curves 117	agnat	ure		
CO2	:	Apply the concepts of satellite and sensor parameters and characteristics of dif platforms	feren	t		

CO3 : Apply the concepts of DBMS in GIS CO4 : Analyze raster and vector data and modelling in GIS CO5 : Apply GIS in land use, disaster management, ITS and resource information system Text Books: 1. Thomas M. Lillesand, RaiphW.Kiefer, Remote Sensing and Image Interpretation, John 1. Thomas M. Lillesand, RaiphW.Kiefer, Remote Sensing and Image Interpretation, John 2. Peter A. Burrough, Rachael A. McDonnell. Principles of Geographical Information Systems, Oxford University Press, Third Edition, 2015. Reter A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, AcademicPro-An Imprint of Elsevier, California, Second Edition, 2006. 2. Pau J. Curran, Principles of Remote Sensing, English Language Book Society/Longman, 1988. 3. Anji Redy M., Text Book of Remote Sensing and Geographical Information System, BS Publications, Hyderabad, Third Edition, 2006. 4. Anand P.A, Rajesh Kumar V., Principles of Remote Sensing & GIS, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-tertert 1. https://ptel.ac.in/courses/105102015/											
CO 4 : Analyze raster and vector data and modelling in GIS CO 5 : Apply GIS in land use, disaster management, ITS and resource information system Text Books: 1. Thomas M. Lillesand, RaiphW.Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, New York, Seventh Edition, 2015. 2. Peter A. Burrough, Rachael A. McDonnell. Principles of Geographical Information Systems, Oxford University Press, Third Edition, 2015. Reference Books: 1. Robert A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, AcademicPro-Ant Imprint of Elsevier, California, Second Edition, 2006. 2. Paul J. Curran, Principles of Remote Sensing and Geographical Information System, BS Publications, Hyderabad, Third Edition, 2006. 3. Anji Reddy M., Text Book of Remote Sensing and Geographical Information System, BS Publications, Hyderabad, Third Edition, 2006. 4. Anand P.A, Rajesh Kumar V., Principles of Remote Sensing & GIS, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-Reterevereverevereverevereverevereverever	CO3	3	:	Apply the concepts of DBMS in GIS							
CO 5 : Apply GIS in land use, disaster management, ITS and resource information system Text Books: . 1. Thomas M. Lillesand, RaiphW.Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, New York, Seventh Edition, 2015. 2. Peter A. Burrough, Rachael A. McDonnell. Principles of Geographical Information Systems, Oxford University Press, Third Edition, 2015. Reference Books: . 1. Robert A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, AcademicPri-An Imprint of Elsevier, California, Second Edition, 2006. 2. Paul J. Curran, Principles of Remote Sensing, English Language Book Society/Longman, 1988. 3. Anji Reddy M., Text Book of Remote Sensing and Geographical Information System, BS Publications, Hyderabad, Third Edition, 2006. 4. Anand P.A, Rajesh Kumar V., Principles of Remote Sensing & GIS, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-References: 1. 1. https://nptel.ac.in/courses/105102015/	CO	4	:	Analyze raster and vector data and modelling in GIS							
Text Books:1.Thomas M. Lillesand, RaiphW.Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, New York, Seventh Edition, 2015.2.Peter A. Burrough, Rachael A. McDonnell. Principles of Geographical Information Systems, Oxford University Press, Third Edition, 2015.Reference Books:1.Robert A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, AcademicPri – An Imprint of Elsevier, California, Second Edition, 2006.2.Paul J. Curran, Principles of Remote Sensing, English Language Book Society/Longman, 1988.3.Anji Reddy M., Text Book of Remote Sensing and Geographical Information System, BS Publications, Hyderabad, Third Edition, 2006.4.Anand P.A, Rajesh Kumar V., Principles of Remote Sensing & GIS, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003.E-terences:1.https://nptel.ac.in/courses/105102015/	CO	5	:	Apply GIS in land use, disaster management, ITS and resource information system							
1. Thomas M. Lillesand, RaiphW.Kiefer, Remote Sensing and Image Interpretation, John Wiley and Sons, New York, Seventh Edition, 2015. 2. Peter A. Burrough, Rachael A. McDonnell. Principles of Geographical Information Systems, Oxford University Press, Third Edition, 2015. Reference Books: 1. Robert A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, AcademicPri – An Imprint of Elsevier, California, Second Edition, 2006. 2. Paul J. Curran, Principles of Remote Sensing, English Language Book Society/Longman, 1988. 3. Anji Reddy M., Text Book of Remote Sensing and Geographical Information System, BS Publications, Hyderabad, Third Edition, 2006. 4. Anand P.A, Rajesh Kumar V., Principles of Remote Sensing & GIS, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-References: 1 1. https://nptel.ac.in/courses/105102015/	Text	t Bo	oks								
 Peter A. Burrough, Rachael A. McDonnell. Principles of Geographical Information Systems, Oxford University Press, Third Edition, 2015. Reference Books: Robert A. Schowengerdt, <i>Remote Sensing-Models and Methods for Image Processing</i>, AcademicPre-An Imprint of Elsevier, California, Second Edition, 2006. Paul J. Curran, <i>Principles of Remote Sensing</i>, English Language Book Society/Longman, 1988. Anji Reddy M., <i>Text Book of Remote Sensing and Geographical Information System</i>, BS Publications, Hyderabad, Third Edition, 2006. Anand P.A, Rajesh Kumar V., <i>Principles of Remote Sensing & GIS</i>, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-References: <u>https://nptel.ac.in/courses/105102015/</u> 	1.	The	oma Wi	as M. Lillesand, RaiphW.Kiefer, <i>Remote Sensing and Image Interpretation</i> , John ley and Sons, New York, Seventh Edition, 2015.							
Reference Books: 1. Robert A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, Academic Procesex, Academic Processing, Academic Processing, Academis	2.	Peter A. Burrough, Rachael A. McDonnell. Principles of Geographical Information Systems, Oxford University Press, Third Edition, 2015.									
 Robert A. Schowengerdt, <i>Remote Sensing-Models and Methods for Image Processing</i>, Academic Pro-An Imprint of Elsevier, California, Second Edition, 2006. Paul J. Curran, <i>Principles of Remote Sensing</i>, English Language Book Society/Longman, 1988. Anji Reddy M., <i>Text Book of Remote Sensing and Geographical Information System</i>, BS Publications, Hyderabad, Third Edition, 2006. Anand P.A, Rajesh Kumar V., <i>Principles of Remote Sensing & GIS</i>, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-References: https://nptel.ac.in/courses/105102015/ 	Refe	eren	ce 1	Books:							
 Paul J. Curran, <i>Principles of Remote Sensing</i>, English Language Book Society/Longman, 1988. Anji Reddy M., <i>Text Book of Remote Sensing and Geographical Information System</i>, BS Publications, Hyderabad, Third Edition, 2006. Anand P.A, Rajesh Kumar V., <i>Principles of Remote Sensing & GIS</i>, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-Eferences: https://nptel.ac.in/courses/105102015/ 	1.	Rot – A	oert n I	A. Schowengerdt, <i>Remote Sensing-Models and Methods for Image Processing</i> , AcademicPress Imprint of Elsevier, California, Second Edition, 2006.							
 Anji Reddy M., <i>Text Book of Remote Sensing and Geographical Information System</i>, BS Publications, Hyderabad, Third Edition, 2006. Anand P.A, Rajesh Kumar V., <i>Principles of Remote Sensing & GIS</i>, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-References: https://nptel.ac.in/courses/105102015/ 	2.	Pau	ıl J So	. Curran, <i>Principles of Remote Sensing</i> , English Language Book ciety/Longman, 1988.							
 4. Anand P.A, Rajesh Kumar V., <i>Principles of Remote Sensing & GIS</i>, Sri VengateswaraPublishers, Kumbakonam, First Edition, 2003. E-References: https://nptel.ac.in/courses/105102015/ 	3.	Anj	ji R BS	eddy M., Text Book of Remote Sensing and Geographical Information System, Publications, Hyderabad, Third Edition, 2006.							
E-References: 1. https://nptel.ac.in/courses/105102015/	4.	Ana	and Ku	P.A, Rajesh Kumar V., <i>Principles of Remote Sensing & GIS</i> , Sri VengateswaraPublishers, mbakonam, First Edition, 2003.							
1. <u>https://nptel.ac.in/courses/105102015/</u>	E-R	efer	ene	ces:							
	1.	<u>htt</u>	ps:	//nptel.ac.in/courses/105102015/							

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	-	-	2	-	1	-	-	1	-	-	3	2	1
CO2	2	-	1	2	-	-	-	-	-	-	-	-	1	3	1
CO3	-	-	-	-	-	-2	-	-	1	2	-	-	-	-	1
CO4	-	1	-	-	-	-	-	-	-	3	3	1	1	3	1
CO5	1	-	1	-	-	-	1	-	-	1	2	-	1	1	3

180	CEPE39	ADVANCED SURVEYING TECHNIQUES	L	T	P	С
			3	0	0	3
Cou	ırse Obje	ctives:		·····		
1.	At the e surveying	nd of the course the student will possess knowledge about advanced techniqung.	es in			
2.	The stud	dents will understand the basic principle behind the surveying techniques.				
Uni	t I BA	SICS OF SURVEYING	9	<u> </u>	+	0
com	hods of m parison w	easuring distance, historical development, basic principles, classifications, ap ith conventional surveying.	oplicat	ionsa	and	
Uni	t II FUI	NDAMENTALS OF ELECTRONICS	9		+	0
Fun tube mea	damentals e, transdu surement	of electronics, resonant circuits, semiconductors, Lasers, Cathode ray tube, cers, oscillators, frequency mixing, modulation and demodulation, Ker of phase difference, reflectors and power sources.	, photo rcell	omul modu	tip] ulat	ier or,
Uni	+ TTT E	PROPAGATION OF ELECTROMAGNETIC WAVES	0		+	0
Def	inition cl	assification applications propagation properties wave propagation at 10	wer (and 1	+ 11σ1	her
frea	uencies F	Refractive index factors affecting computation of group refractive index for	or ligh	nt and	ngi 1 n	ear
infra	ared wave	s at standard conditions and ambient conditions, reference refractive index.	<i>n</i> 1191	it unit	* 11	cui
Uni	t IV EL	ECTROMAGNETIC DISTANCE MEASURING SYSTEM	9		+	0
Lase of e	er EDM ins rror, micro	struments and total station. Microwave system, measuring principle, working wave EDM instruments, comparison withElectro-optical system.	princiț	ple, so	our	ces
Uni	t V MO	DERN EOUIPMENTS	9		+	0
Tota Geo	al Station-	Applications In various fields-Basics of Geographical information system (G Positioning system (GPS), Principles, Applications.	(S) and	d		
		Т	otol –	15 D	ori	ode
Cor	urso Auto	10 10	<u>Mai –</u>	43 1	ern	Jus
Uno	n complet	ion of this course, the students will be able to:				
CO	$\frac{1}{1}$	non of this course, the students will be able to.				
CO'	$\frac{1}{2} \cdot \frac{Ap}{Sal}$	ect the advanced surveying techniques in different fields of civil engineering				
	$\frac{2}{3} \cdot \frac{3}{4}$	nly total station and EDM in distance measurement and traversing				
CO	4 : De	monstrate the principles of the earth surface, its projections and different coordinate	dinate	esinv	olv	ed
	in	map making				
C05	5 : Ap	ply GPS in transportation engineering, structural engineering and land use p	lannin	g		
Tex	t Books:					
1.	Burnside	e, C.D. Electromagnetic distance measurement Crosby Lock wood staples,	U.K. 1	.971.		
Ref	erence Bo	oks:				_
1.	Rueger, .	J.M. Electronic Distance Measurement, Springer-Verlag, Berlin, 1990.				
2.	Laurila,	S.H. Electronic Surveying in Practice, John Wiley and Sons Inc, 1983.				
3.	Soastamo 1967.	binen, J.J. Surveyor's guide to electro-magnetic Distance Measurement, Ada	ım Hi	lgerL	.td.	,

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	2	2	2	1	3	2	2	3	1	3	2	3
CO2	2	3	3	1	3	2	1	3	2	1	1	1	2	3	1
CO3	3	1	2	3	2	3	1	3	2	3	1	2	1	3	3
CO4	2	1	3	2	1	3	2	1	1	1	1	2	3	2	1
CO5	3	1	3	2	2	1	2	3	2	3	3	2	3	1	2

OPEN ELECTIVES

ISCE	COE01	Environmental Management L	Т	Р	С					
		3	0	0	3					
rse C	bjectives:									
To ISO prev	impart an 14001 and vention and	understanding of systems approach to Environmental Manag skills for environmental performance in terms of legal compli continual improvement.	ance,	nt pol	as per lution					
I	ENVIRON	MENTAL MANAGEMENT STANDARDS	9	+	0					
Unique Characteristics of Environmental Problems - Systems approach to Corporate environmental management - Classification of Environmental Impact Reduction Efforts - Business Charter for Sustainable Production and Consumption –Tools, Business strategy drivers and Barriers -Evolution of Environmental Stewardship –Environmental Management Principles - National policies on environment, abatement of pollution and conservation of resources.										
II	PREVENT	TVE ENVIRONMENTAL MANAGEMENT	9	+	0					
Fourtion control vs Pollution Prevention - Opportunities and Barriers –Cleaner production and Clean technology, closing the loops, zero discharge technologies Four Stages and nine approaches of Pollution Prevention -Getting management commitment – Analysis of Process Steps-source reduction, raw material substitution, toxic use reduction and elimination, process modification – material balance – Technical, economical and environmental feasibility evaluation of Pollution Prevention options in selected industries –Preventive Environmental Management over Product cycle.										
III	ENVIRO	NMENTAL MANAGEMENT SYSTEM	9	+	0					
EMS, ISO 14000 - EMS as per ISO 14001–benefits and barriers of EMS – Concept of continual improvement and pollution prevention - environmental policy – initial environmental review – environmental aspect and impact analysis – legal and other requirements-objectives and targets – environmental management programs –structure and responsibility –training awareness and competence-communication –documentation and document control – operational control –monitoring and measurement –management review.										
IV	ENVIRON	IMENTAL AUDIT	9	+	0					
ronm ts – a	ental audit – udit reports	role of auditing – history – definitions audit methodology – evaluationau – case studies.	dit							
V	APPLICA	TIONS	9	+	0					
lication lems er qua non o quality ective l was	ons of EMS ality manage offluent treat y manageme measures – tte manager	, Waste Audits and Pollution Prevention- cost benefit analysis in environment – concepts – riparian rights – monitoring programmes – technolog ment concept. ent – emission inventory – ambient air quality in the region – spotting of technology transfer. ment – land pollution from solid and liquid wastes - spotting of v	onm gytra fviol	enta nsfer ation	1 r — ns —					
	8CE rse C To ISO prev I I ue Cagema ainab Barrie ies o II ue Cagema ainab Barrie ies o II onno onno onno icatio ronm icatio icatio	SECEOE01 rse Objectives: To impart an ISO 14001 and prevention and impart an ISO 14001 and prevention and impart an I ENVIRON ue Characteristic agement - Classid inable Production Barriers -Evolution Barriers -Evolution ianable Production Barriers -Evolution Barriers -Evolution Evolution ianable Production Stages and nine ess Steps-source fication - mater fication - mater tion Prevention of conmental Manage improveme conmental manage nunication -doc andit reports IV ENVIRON ronmental audit - ts - audit reports V APPLICAT ications of EMS non effluent treat uality management ctive measures - waste managen	BCEODE01 Environmental Management L 3 Image: Set Objectives: 3 To impart an understanding of systems approach to Environmental Manage ISO 14001 and skills for environmental performance in terms of legal complipervention and continual improvement. 1 I ENVIRONMENTAL MANAGEMENT STANDARDS 1 uc Characteristics of Environmental Problems - Systems approach to Corporate gement - Classification of Environmental Impact Reduction Efforts - Business inable Production and Consumption –Tools, Business strategy drivers Barriers -Evolution of Environmental Stewardship –Environmental Management Principies on environment, abatement of pollution and conservation of resources. II PREVENTIVE ENVIRONMENTAL MANAGEMENT toology, closing the loops, zero discharge technologies Stages and nine approaches of Pollution Prevention -Getting management commitment sets Steps-source reduction, raw material substitution, toxic use reduction and elimit fication – material balance – Technical, economical and environmental feasibility toon Prevention options in selected industries –Preventive commental management over Product cycle. III ENVIRONMENTAL MANAGEMENT SYSTEM	Image: Note: Note	BCEOE01 Environmental Management L T P 3 0 0 rse Objectives: To inpart an understanding of systems approach to Environmental Management ISO 14001 and skills for environmental performance in terms of legal compliance, pol prevention and continual improvement. 1 ENVIRONMENTAL MANAGEMENT STANDARDS 9 + ue Characteristics of Environmental Problems - Systems approach to Corporate environm gement - Classification of Environmental Impact Reduction Efforts - Business Charte inable Production and Consumption -Tools, Business strategy drivers 9 + Barriers - Evolution of Environmental Stewardship - Environmental Management Principles - Na ies on environment, abatement of pollution and conservation of resources. 9 + 11 PREVENTIVE ENVIRONMENTAL MANAGEMENT 9 + 12 PREVENTIVE ENVIRONMENTAL MANAGEMENT 9 + 13 Barriers - Stoverce reduction, raw material substitution, toxic use reduction and elimination, prication - material balance - Technical, economical and environmental feasibility evaluation prevention options in selected industries -Preventive rommental Management over Product cycle. 9 + 11 ENVIRONMENTAL MANAGEMENT SYSTEM 9 + 14 ENVIRONMENTAL MANAGEMENT System and barriers of EMS - Concept commental management programs					

Total (45+0)= 45 Periods

Cou	rse Outcomes:
On c	completion of the course, the student is expected to be able to
1	Understand the necessity of environmental management that will be caused by projects or
	industries.
2	Gain the Knowledge about the legal requirements of Environmental management and auditing.
3	Lead pollution prevention assessment team and implement waste minimization options.
4	Develop, Implement, maintain and Audit Environmental Management systems for
	Organisations.
Text	t Books:
1.	1. Christopher Sheldon and Mark Yoxon, "Installing Environmental management Systems – astep by step guide" Earthscan Publications Ltd, London, 1999.
2.	ISO 14001/14004: Environmental management systems –Requirements and Guidelines – International Organisation for Standardisation, 2004.
Refe	erence Books:
1.	1.ISO 19011: 2002, "Guidelines for quality and/or Environmental Management System auditing, Bureau of Indian Standards, New Delhi, 2002.
2.	Paul LBishop "Pollution Prevention: Fundamentals and Practice", McGraw -Hill International, Boston,2000.
3.	Environmental Management Systems: An Implementation Guide for Small and Medium-Sized Organizations, Second Edition, NSF International, Ann Arbor, Michigan, January 2001

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		1				3	3					1	1	1	2
CO2						3	3	2		1		1		1	2
CO3		2	1			3	3		3	1	1	1			2
CO4		1	1		2	3	3			1	1	1	1	1	2

18CEOE02	DISASTER MITIGATION AND MANAGEMENT	L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To provide students an exposure to disasters, their significance and types.
- 2. To ensure that students begin to understand the relationship between vulnerability disasters, disaster prevention and risk reduction
- 3. To gain a preliminary understanding of approaches of Disaster Risk Reduction (DRR)

Unit I INTRODUCTION TO DISASTERS

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability- Global trends in disasters: urban disasters, pandemics,

complex emergencies, Climate change- Dos and Don"ts during various types of Disasters.

Unit II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), States, Centre, and other stake-holders- Institutional Processess and Framework at State and Central Level- State Disaster Management Authority(SDMA) – Early Warning System – Advisories from Appropriate Agencies.

Unit III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT

+ 0

9

9

9

9

+ 0

+ 0

+ 0

Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.- Climate Change Adaptation- IPCC Scenario and Scenarios in the context of India - Relevance of indigenous knowledge, appropriate technology and local resources.

Unit IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, Disaster Management Act and Policy - Other related policies, plans, programmes and legislation – Role of GIS and Information Technology Components in Preparedness, Risk Assessment,

Response and Recovery Phases of Disaster – Disaster Damage Assessment.

Unit V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES 9 + 0 AND FIELD WORKS + 0

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management

Course Outcomes:

Total = 45 Periods

Upo	n c	om	pletion of this course, the students will be able to:						
CO	1	:	Differentiate the types of disasters, causes and their impact on environment and society						
CO	2	:	Assess vulnerability and various methods of risk reduction measures as well as mitigation						
CO	3	:	Draw the hazard and vulnerability profile of India, Scenarious in the Indian context,						
	Disaster damage assessment and management.								
Tex	t B	00	ks:						
1	Si	Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13:							
1.			978-9380386423						
2	Τι	ısh	ar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt.						
2.			Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361]						
Ref	erei	nce	e Books:						
1.	I. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005								
2.	G	ove	ernment of India, National Disaster Management Policy,2009.						

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1		2	3	1		3	2	1	1	1	1	1	2	1	1
CO2	1	2	3	1	1	3	3	1	1	1	1	1	3	1	2
CO3	1	2	3	1	2	3	2	1	1	1	1	1	2	1	2

18CEOE03	REPAIR AND REHABILITATION OF BUILDING	L	Т	Р	С
	ELEMENTS				
		3	0	0	3

Course Objectives:

1. To get the knowledge on causes of deterioration of structure2. To know about the assessment of distressed structures3. To get the knowledge on maintenance of building systems, 4. To know about the repairing of structures and 5. To gain knowledge about the techniques involved in the demolition procedure

				-
Unit I	MAINTENANCE AND REPAIR STRATEGIES	9	+	

Maintenance, repair and rehabilitation, Facts of Maintenance, importance of Maintenance various aspects of inspection, assessment procedure for evaluating a damaged structure, causes of deterioration.

Unit II MAINTENANCE OF ELECTRICITY AND DOMESTIC WATER PUMPSYSTEMS

Load rating of lighting devices and usual house hold appliances, electric supply from street line to building, devices for alternate supply during power failure, importance of earth leakage circuit breaker (ELCB), Maintenance of electric system inbuildings.

General specifications of water pumps, centrifugal pumps, jet pumps and submersible pumps, general rules in operation of water pumps. Maintenance of the sump.

Unit III MATERIALS AND TECHNIQUES FOR REPAIR

Materials for Repair: Special concretes and mortar concrete chemicals construction chemicalsExpansive cement polymer concrete sulphur infiltrated concrete Ferro cement Fibre reinforced

concrete Rust eliminators and polymers coating for rebars foamed concrete dry packvacuum concrete asphalt sheeting Techniques for Repairs Gunniting, grouting and Shotcrete Epoxyinjection

Unit IV	REPAIRS, REHABILITATIONAND RETROFITTING OF	0		0
	BUILDINGSYSTEMS			U

Repairs of RC beams and columns damaged by steel corrosion, repair of rising dampness in walls, repair of efflorescence effect, repair of cracks in concrete structures, repair of rain water, ground water leakage in buildings.

Unit V DEMOLITION TECHNIQUES

Engineered demolition techniques for dilapidated structures- case studies

9

0

0

+ 0

+

+ 0

9

0

Total= 45 Periods

Course Outcomes:							
Upon completion of this course, the students will be able to:							
CO1	:	Carry out the damage assessment and Rapid Visual inspection of a building showing					
		signs of deterioration and thus should be able to detect the possible cause /source of					
		deterioration.					
CO2	:	Know how to Maintain and repair the building systems like electricity, plumbing etc.					

CO3	:	Know how of the Concrete repair industry equipped with variety of repair materials and
-----	---	--

		techniques.							
CO	4		know what to do the various repair works in building systems.						
CO	5	:	Demonstrate the dismantling and demolishing structures						
Tex	t Bo	oks	:						
1	Var	ghe	ese P.C., Maintenance Repair Rehabilitation and Minor Works of Buildings						
1.	, Pł	HI I	Learning pvt.ltd.,New Delhi,2014						
Ref	eren	ce]	Books:						
1.	San	tha	kumar A.R, Training Course notes on Damage Assessment and Repair in Low						
	cos	st h	ousing, "RHDC.NBO" Anna University, july 1992.						
2.	She	etty	, M.S., Concrete Technology-Theory and Practice, S. Chandand company,	New					
	Del	hi,	1992						
2.	Rai	kar	R.N., Learning from failures - deficiencies indesign, construction and services-	R &D					
	cen	tre	(SDCPL), raikar bhavan, Bombay,1987						
3.	Pala	ani	yappan, N., Estate management, Anna Institute of Management, Chennai, 1992.						
4.	La	ksh	mipathy, M. etal., Lecture notes of workshop on Repairs and Rehabilitation of structur	es,					
	29-	30ť	h _{october} 1999.						

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	2	1	1		1
CO2					2	1	1	1	1	1	2	1	1		1
CO3					2	1	1	1	1	1	1	1	2		1
CO4					2	1	1	1	1				1		1
CO5					1	2	1	2	2	2	1	1	1		1

18CEOE (4 MECHANICS OF DEFORMABLE BODIES	I		P	C
		3	, 0	U	3
Course O	bjectives:				
To g	et the knowledge on simple stresses, Hooke's Law, Bending and Shear, E	Bending s	stress,		
Tors	ion and Springs, Mechanical behaviour of materials under static and dyna	imic load	ling		
	SIMDLE STRESSES DELLAVIOUR OF COMPOSITE SECTIO	NG		T	1
Unit I	THERMAL STRESSES	ND ,	9	+	0
Mechanica constants ,strain	al properties of solids –Hooke's law ,principle of super position ,Bars of va – composite sections – determination of stress , strain , deformation – Te	rying sea mperatur	ctions - re stres	–Ela s	istic
Unit II	BENDING AND SHEAR		9	+	0
Types of t carrying ca	beams – shear force and bending moment. Theory of simple bending- Analapacity. Shear stress distribution of simple beams of different cross section	lysis of s Is	tress-lo	ad	
Unit III	TORSION AND SPRINGS	T	9	+	0
Torsion of torsional spring	F circular shaft - Hollow and solid circular section, torsional rigidity-step stiffness-compound shaft-shafts springs-Stiffness and deflection of hel	ped shaft lical spri	t-Twist	and leaf	
Unit IV	MECHANICAL BEHAVIOUR OF MATERIALS UNDER STATIC	2	9	+	0
Tension te tension – f Residnal s	sts – stress – strain diagram, Elastic and plastic regions – True stress – s Fracture under tensile loads – compression and Torsion tests – stress conce tresses	train proj ntration -	perties: -	n	
Unit V	MECHANICAL BEHAVIOUR OF MATERIALS UNDER DYNAM	IC	9	+	0
Fatigue loa mean stres notched - 1 temperatur	ading and Fatigue fracture – Fatigue tests – Empirical relations between va s – Fatigue stress concentration Factors – Cumulative Damage – Endurar Bar Impact tests , Charpy Impact tests – Izod Impact tests – Elevated e – Creep tests – Isochronous curves – stress Relaxation – Parametric met	ariable st ice limit thods	ress an –Impa	d ct –	
		Tota	l= 45 I	Perio	ods
Course O	utcomes:				
CO1 :	Analyse the mechanical behavior of static & dynamic loads				
CO2 :	Know how to analyse bending and shear of various beams, stress strain deformation of structures	and			
Text Book	s:				
1. James	s M.Gere, Mechanics of Materials, Brooke/Cole Thomson Learning, 5 I	Ed., 2001	l.		
2. Dr.R. Volu	Vaithiyanathan, Dr.P.Perumal&Lingeswari ", Mechanics of Solids and ne-I" Sci- tech publications, India(Pvt) Chennai-17.	Structure	es		

3.	Srinath L.S; - Strength of materials – Macmillan India Limited – New Delhi,2017							
Ref	Reference Books:							
1.	Popov.E.P., "Engineering Mechanics of solids", Prentice- Hall of India, New Delhi							
2.	Beer F.P and Johnston R, "Mechanics of Materials", McGraw- Hill book Co, Third Edition							
2.	Timoshenko S.P., "Elements of Strength of Materials", Tata McGraw- Hill, New Delhi							
3.	Nash W.A., "Theory and Problems in Strength of Materials", Schuam outline Series, McGraw- Hill BookCo.,							
	New York.							
4.	Rajput. R.K., "Strength of Materials", S. Chand &Co,Delhi, Third Edition, 2003.							

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
PO															
CO1	3	3		2					2	1	2	2			3
CO2	3	3		2					2	1	2	2			3

1 – Slightly 2 – Moderately 3 - Strongly

PROTOSEM COURSES SYLLABUS

18M	EPS11		S	er	VI						
PRER	REQUIS	ITES	Category	PE	Cre	edit	3				
				L	Т	Р	TH				
			Hours/Week	3	0	0	3				
Cours	e Learn	ing Objectives									
1	The cor	rese angles product inposetors and early stage startup found	ors to loarn the quet	mor do	valonm	ont proc	0.55				
2	To form	lierize with the tools & toohniques & volidate the inherent right	a by linking their pr				ivotion				
2	custome	er-commitment & customer-acceptance.	s by mixing then pr	ogressi	o custor		ivation,				
3	To learn	n the system thinking concepts by reverse engineering techniq	ue.								
Ur	nit I	DESIGN THINKING PRINCIPLES		9	0	0	9				
Explor	ing Huma	an – Centered Design – Understanding the innovation proces	ss, discovering area	is of op	portunit	y, interv	viewing				
&empa	athy –buil	ding techniques, Mitigate validate risk with FIR(Forge Innova	ation Rubric) – Cas	e Studio	es.						
Un	it II	CUSTOMER-CENTRIC INNOVATION		9	0	0	9				
Import	ance of cu	Istomer-centric innovation – Problem Validation and Custome	r Discovery – Unde	rstandi	ng probl	em sign	ificance				
and pro	oblem inc	idence- Customer Validation. Target user, User persona & use	r stories. Activity :	Custom	er devel	opment	process				
- Custo	omer inte										
Uni	it III	APPLIED DESIGN THINKING TOOLS		9	0	0	9				
Concep	ot of Mini	imum Usable Prototype(MUP) – MUP challenge brief – Designation value proposition: Design a compelling value proposition.	gning & Crafting th	e value	proposi	tion – of Valu	٥				
Propos	ition Des	ign.	1011. 1 100035, 10013		linques	or varu	C				
Uni	it IV	CONCEPT GENERATION		9	0	0	9				
Solutio	on Explora	ation, Concepts Generation and MUP design – Conceptualize	the solution concep	ot: explo	ore, itera	ite and l	earn;				
build th	he right p	rototype: Assess capability, usability and feasibility. Systemat	tic concept generati	on; eva	luation t	echnolo	gy				
alterna	tives and	the solution concepts.									
Un	it V	SYSTEM THINKING & REVERSE ENGINEERIN	NG	9	0	0	9				
System Mathor	n Thinkin dology Ia	ng, Understanding Systems, Examples and Understandi	ngs, Complex Sy	vstems,	Revers	e Engi	neering				
Menodology, Identity building blocks/components – Re-Engineering a complex system.											
10tai – 43 i chous											
Tex	t Books	:									
1	Steve Bl	ank (2013) The four steps to epinhany: Successful strategies	for products that w	vin Wil	ev						
2	Alexand	er Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith	, Trish Papadakos.	(2014).	Value						
3	Proposit	ion Design: How to Create Products and Services Customers	Want, Wiley	. //							
1 2	Steve Bl Alexand	ank, (2013), The four steps to epiphany: Successful strategies er Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith	for products that w	vin, Wil (2014),	ey. Value						
3	3 Proposition Design: How to Create Products and Services Customers Want, Wiley										

4 Donella H. Meadows, (2015), "Thinking in Systems -A Primer", Sustainability Institute.

5 Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.
Refer	ence Books:
1	https://www.ideou.com/pages/design-thinking#process
2	https://blog.forgeforward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253c a8624
3	https://blog.forgeforward.in/product-innovation-rubric-adf5ebdfd356
4	https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e
5	https://blog.forgeforward.in/user-guide-for-product-innovation-rubric-857181b253dd 6
6	https://blog.forgeforward.in/startup-failure-is-like-true-lie-7812cdfe9b85

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Define & treat various hypotheses to mitigate the inherent risks in product innovations	L1: Remembering						
CO2	Design the solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit.	L6: Creating						
CO3	Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching.	L3: Applying						
CO4	Apply system thinking to reverse engineer a product/prototype and understand its internal correlations.	L3: Applying						

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	3	2	3	2	1	1	1	1	1	1	1	2	2	3
C02	2	2	3	2	2	1	1	1	1	1	1	1	3	3	2
C03	1	2	2	1	1	3	1	1	3	3	1	1	1	1	1
C04	2	3	3	3	3	2	2	1	2	2	1	1	3	3	3
AVG	1.75	2.5	2.5	2.25	2	1.75	1.25	1	1.75	1.75	1	1	2.25	2.25	2.25

18MF	EPS12	STARTUP FUNDAMENTALS		5	VI								
PRER	EQUIS	ITES	Category		Cre	edit	3						
				L	Т	Р	ТН						
			Hours/Week	3	0	0	3						
Cours	e Learn	ing Objectives											
1	Learn t	he science of to transforming an innovative idea into high-gro	wth enterprises.										
2	To und	To understand the basic concepts of IPR, and develop a patent draft for a potential IP											
Un	it I	ENTREPRENEURIAL MINDSET & METHOD		9	0	0	9						
Introdu entrepro	ction to eneur - E	Innovation-led, tech-powered entrepreneurship - Underst Effectuation principles - Dealing with the unknowns - Case stu	and from research dies of startup failu	n the a res.	ttributes	s of an	expert						
Uni	it II	IDEA TO ENTERPRISE		9	0	0	9						
Design Target 1	and Plan Market a	nning of Product Concept - Business Model - Business Plannin nd Revenue Planning	g - Building Proof	of Prod	uct and	Value 7	esting -						
Uni	t III	MINIMUM VIABLE BUSINESS		9	0	0	9						
Framew proof o	vork for I f viable l	Minimum Viable Business - Disruptive Innovation - Theory o pusiness model - Demystifying Scalability - Funding Opportu	f Disruption - Com nities	petitive	advanta	age - Bu	ilding						
Uni	t IV	INTELLECTUAL PROPERTY		9	0	0	9						
Introd Secret trends	uction and - Geogr - Patent	nd the need for Intellectual Property Rights - IPR Genesis an aphical Indicators - Industrial Designs - Types of Patent – Sa fees	d Development - C Imple Patent Applie	Copyrig	ht - Tra IPR in	demark INDIA;	- Trade Global						
Uni	it V	PRIOR ART SEARCH AND PATENT DRAFTING	r J	9	0	0	9						
Prior A basmati provisio	art Search i rice. Th onal spec	n - IP Licensing – IP Commercialization - IP Infringement- (e invention as a concept - Keywords formation - Structure of p rifications - Drafting complete specifications - Draft claims - (Case Study on App patent - Key attribu Case studies on pate	le vs S tes in pa ent draf	amsung atent dra ting	, Case s Ifting - I	tudy on Drafting						
					Total	= 45 I	Periods						

Tey	at Books:
1	Steven Blank and Bob Dorf, (2012), The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company, K&S Ranch
2	Dr Saras Sarasvathy, (2008), Effectuation: Elements of Entrepreneurial Expertise, New Horizons in Entrepreneurship series.
3	Elizabeth Verkey, (2005), Law of Patents, Eastern Book Company
4	Prabuddha Ganguli, (2017), Intellectual Property Rights: Unleashing the Knowledge Economy, McGraw Hill Educatio 1st edition

Ref	erence Books:
1	WIPO Intellectual Property Handbook https://www.wipo.int/edocs/pubdocs/en/intproperty/489/wipo_pub_489.pdf
2	https://assets.entrepreneur.com/static/20220301113822-Marketing.pdf
3	https://www.deluxe.com/blog/startup-fundamentals-guide/
4	https://www.forbes.com/sites/allbusiness/2018/07/15/35-step-guide-entrepreneurs-starting-a-business/?sh=69a6031e184b

Cours	Course Outcomes:								
Upon	Tuxonomy Lever								
CO1	Develop an entrepreneurial mindset to identify, assess, shape & act on opportunities.	L3: Applying							
CO2	Demonstrate the potential of an innovative idea to create economic value, as a startup	L2: Understanding							
CO3	Understand the scientific process to explore a viable business model	L2: Understanding							
CO4	Demonstrate knowledge on the fundamental concepts of Intellectual Property	L2: Understanding							

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	2	2	1	1	2	1	2	2	2	3	3	1	1	2
C02	2	2	3	1	1	1	1	2	2	1	3	2	2	2	2
C03	1	2	2	2	1	1	1	1	1	1	3	2	1	1	1
C04	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1
AVG	1.25	1.75	2	1.25	1	1.25	1	2	1.5	1.25	2.5	2	1.25	1.25	1.5

18MI	EPS13	COMPUTATIONAL HARDWAR	E	S	Semeste	er	VI				
PRER	REQUIS	ITES	Category	PE	Cre	edit	3				
				L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Cours	se Learn	ing Objectives	I								
1	1 To learn basic concepts of Embedded Systems by familiarizing the functionalities of embedded platforms with development boards.										
2	To understand the core concepts of GPIO Pins, Functionality of peripherals, Selection of I/O devices , Usage										
2	of Inter	nal functions, and Communication protocols.									
3	To fam service	iliarize the current technologies and protocols used in the Intes.	rnet of Things (IoT) and to	learn th	e Cloud	l				
Ur	nit I	BASICS OF EMBEDDED SYSTEM		9	0	0	9				
Embed schema Analog	lded Platf atics – To g I/O - Ti	form: Architecture and working - Factors for Microcontroller ool chain - Setup and Configuration - Input/Output Configuration mers, Interrupts - Pulse Width Modulation - Display: 7-segme	r/Microprocessor set tions and Access - ent , LCD , OLED.	election Librarie	. Arduin es - Digi	o - Boa tal I/O -	rds and ADC -				
Un	it II	BASICS OF RASPBERRY PI		9	0	0	9				
Raspbe Genera APIs -	erry Pi: R al Purpose Twitter I	aspberry pi Board - Processor - Setup and Configuration - In e I/O Pins - Protocol Pins - GPIO Access - Pulse Width Modul Bot - Interfacing pi with camera modules.	stalling Python IDI ation - Network Lil	LE using praries -	g Comm · Web se	and Terrices -	rminal - Twitter				
Uni	it III	SENSORS AND ACTUATORS		9	0	0	9				
Interfac Soil M Introdu	cing of S oisture S action, Ch	ensors and Actuators - Sensors: Introduction, Characteristics: ensor, LDR - Digital - PIR Sensor, Smoke Sensor, Infrared - S naracteristics and working with relay, DC motors, Servo motor	Analog - Potention Sensor, Ultra- Sonic r, Stepper motor an	neter, To Senson d its dri	emperati r. Actuat vers.	are Sens ors -	sor,				
Uni	it IV	COMMUNICATION PROTOCOLS		9	0	0	9				
Protoco Comm wireles	ols - Wire unication ss Serial (ed: RS232 Standard - UART, SPI, I2C - Comparative study of protocols Wireless: Standards - Bluetooth, RF - Comparative Communication protocols.	f wired protocols - 1 e study of wireless p	[mplem protocol	entation s - Impl	of wire ementat	d Serial ion of				
Un	it V	INTERNET OF THINGS		9	0	0	9				
Definit embed I/O per Cloud	tion and ded targe ripherals platforms	Architecture of IoT, Building blocks of IoT, Programming v t board to Web, Basics networking in IoT: creating a web pag from the webpage, Embedded Application Development, Cr s for IoT, Cloud data logging and monitoring, Interfacing with	with IoT protocols ge - Creating a server reating communica web services.	- MQT er on tai tion bet	T, CoA rget boat tween di	P - Con rd - Con ifferent	necting trolling nodes -				
					Total	= 45 ł	reriods				
Tex	t Books	:									
1	Raj Kan	nal, "Embedded Systems - SoC, IoT, AI and Real-Time Syste	ems", 4th Edition, N	/lcGraw	Hill, 20	020.					
2	Mohit A	rora, "Embedded System Design", 1st Edition, Learning Byte	es Publishing, 2016								
3	Elecia V	Vhite, "Making Embedded Systems", 1st Edition, Shroff/ O' F	Reilly, 2012.								
4	Jack Ga	nssle, "The Firmware Handbook", 1st Edition, Newnes, 2004									

Refe	rence Books:
1	https://juniorfall.files.wordpress.com/2011/11/arduino-cookbook.pdf
2	https://drive.google.com/file/d/13s0m3lHPEFP2f2aCuVNRWeBZNKXWKTW5/view?ts=6231cab 3
3	https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSeshia_DigitalV2_2.pdf 4.
4	https://www.riverpublishers.com/pdf/ebook/RP9788793519046.pdf

Cours Upon o	Bloom's Taxonomy Level	
CO1	Understand and implement the functions & Capabilities of embedded platforms for easy prototyping.	L2: Understanding
CO2	Identify the type of sensors and actuators for required applications.	L3: Applying
CO3	Develop communication between devices using different protocols.	L3: Applying
CO4	Develop IoT based systems with wireless network connections and accessing devices over cloud.	L3: Applying

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	3	2	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	2	2	2	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
AVG	3	2.25	2.75	2	2.75	0	0	0	0	0	0	0	3	2.5	2.5

18M	EPS14	CODING FOR INNOVATORS		S	VI		
PRER	REQUIS	ITES	Category		3		
				L	Т	Р	TH
			Hours/ week	3	0	0	3
Cours	se Learn	ing Objectives		I		I	
1	To lear	n and express creativity using coding skills.					
2	To gain	knowledge of Python programming with hands-on experienc	e.				
3	To dem	onstrate a problem solving using OOPs concepts.					
4	To lear	n basics of Linux by familiarizing the concepts of managemen	t and file structure.				
5	To prac	tise full stack development using cloud platform.					
Ur	nit I	PROGRAMMING PARADIGMS		9	0	0	9
Un Introdu operati Operat	it II action to l ions, trave ions: File	BASIC OF PROGRAMMING Python: statements, variables, functions, operators, modules, e ersing a list, slicing a list - Text Handling: Strings, string fu	conditional stateme nctions, conversion grams from text file	9 ents, loo n functi	0 op staten ons, Dic	0 nents, L ctionarie	9 ists: list es - File
Uni	it III	OOPS 5		9	0	0	9
OOPS Inheri	S- Why O itance, Po	OPS- verticals- implementation in python - Classes and Objectly olymorphism, Abstraction, Encapsulation.	cts, Methods, Const	tructors	and De	structors	5,
Uni	it IV	SOFTWARE DEVELOPMENT TO DELIVERY		9	0	0	9
Softw Based - Sour servic	vare Engin l) - Data S rce code ce - Herok	neering - Life Cycle (Tools), Agile Methodologies - Framew Structures - Database Management System - A case study to ex management and version control - GitHub - GitHub Actions cu - Build Packs AWS- Anaconda	ork - Why Framev periment from Deve - GitBash - Contir	works - elopmen nuous Ir	Softwar nt to Dep ntegratio	re Testin ploymer n - Plat	ng(Tool nt(D2D) form as
Un	nit V	OPERATING SYSTEMS		9	0	0	9
Introdu - File S Docker	uction to I System St rs - Kube	Linux - Process Management - Process Scheduling - Memory Programming - Deadloc metes	Management - Stora k Handling - Disk S	age Mar Structur	nagemer re - Disk	it - Syste Manag	em calls ement -
					Total	= 45 I	Periods

Text	t Books:
1	Zed A. Shaw, "Learn Python 3 the Hard Way", 3rd edition, Addison-Wesley Professional, 2013.
2	Silberschatz Abraham, "Operating System Concepts", 9th edition, John Wiley & Sons Inc (Sea) Pte Ltd, 2016.
3	Paul Barry, "Head-First Python", 2nd edition, O'Reilly Media, Inc, 2016.
4	Anton Spraul, "Think Like a Programmer", 1st edition, No Starch Press, 2012.

E-Re	ferences :
1	https://www.geeksforgeeks.org/python-programming-language/
2	https://www.guru99.com/python-tutorials.html
3	https://www.tutorialspoint.com/python/python_tutorial.pdf

Cours Upon o	Bloom's Taxonomy Level	
CO1	Understand the aspects of programming protocols	L2: Understanding
CO2	Develop optimized code for real-world problems	L3: Applying
CO3	Build full-stack development to deployment	L3: Applying
CO4	Demonstrate problem solving and continuous development	L2: Understanding

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	2	2	1	3	0	0	0	0	0	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	1	3	0	0	0	0	0	0	0	3	2	2
C04	2	3	2	1	2	0	0	0	0	0	0	3	2	1	1
AVG	2.5	2.5	2.5	1.25	2.75	0	0	0	0	0	0	3	2.5	1.5	1.5

PREREQUISITES Category OE Credit 3 Interval Control of the second	18MI	EPS15	INDUSTRIAL DESIGN AND RAPID PROTO TECHNIQUES	TYPING	S	VI		
Hours/Week I T P TH 3 0 0 3 Course Learning Objectives	PRER	REQUIS	ITES	Category	OE	3		
Hours/Week 3 0 0 3 Course Learning Objectives 1 Learn to design a UI/UX design and develop an android application. - <th></th> <th></th> <th></th> <th></th> <th>L</th> <th>Т</th> <th>Р</th> <th>ТН</th>					L	Т	Р	ТН
Course Learning Objectives 1 Learn to design a U/UX design and develop an android application. 2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit 1 UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 0 0 9				Hours/Week	3	0	0	3
1 Learn to design a UI/UX design and develop an android application. 2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Vinit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between	Cours	e Learn	ing Objectives					
2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives VInit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and writing basics - Dimensioning & Tolerancing 9 0 0 9 Vent III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Read	1	Learn t	o design a UI/UX design and develop an android application.					
3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different dom	2	Provide	e working CAD model for prototype development.					
4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0	3	Knowle	edge in hardware, 3D Printers and Laser cutters.					
Unit I UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Init III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping engraving - RD Works - Additive manufacturing 9 0 0 9 Unit IV ELECTRICAL RAPID PROTOTYPING 9 0 </td <td>4</td> <td>Acquir</td> <td>e basic knowledge in designing electrical circuits and fabrication</td> <td>on of electronic de</td> <td>vices.</td> <td></td> <td></td> <td></td>	4	Acquir	e basic knowledge in designing electrical circuits and fabrication	on of electronic de	vices.			
Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 9 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V	Un	nit I	UI / UX		9	0	0	9
Ont II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. Unit III INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Init V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods <td>Interfac - Desig</td> <td>ce Design n proces</td> <td>a - Layout and composition for Web, Mobile and Devices - Types s flow, wireframes, best practices in the industry -User engage</td> <td>ography - Informat ment ethics - Desig</td> <td>ion arch gn alterr</td> <td>nitecture natives</td> <td>- Colou</td> <td>r theory</td>	Interfac - Desig	ce Design n proces	a - Layout and composition for Web, Mobile and Devices - Types s flow, wireframes, best practices in the industry -User engage	ography - Informat ment ethics - Desig	ion arch gn alterr	nitecture natives	- Colou	r theory
Unit IIIINDUSTRIAL DESIGN9009Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & TolerancingUnit IVMECHANICAL RAPID PROTOTYPING9009Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping engraving - RD Works - Additive manufacturing9009Unit VELECTRICAL RAPID PROTOTYPING9009Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDATotal = 45 Periods	SDLC Workir data to	- Introdung with D cloud - H	ction to App Development - Types of Apps - web Developm Databases - Introduction to API - Introduction to Cloud services Embedding ML models to Apps - Deploying application.	ent - understandin s - Cloud environm	g Stack ent Setu	- Front 1p- Read	end - ba ling and	ckend - writing
Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Uni	t III	INDUSTRIAL DESIGN		9	0	0	9
Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books: - - - -	Introdu to CAE basics -	oction to 1 D tools - 7 - Dimens	Industrial Design - Points, lines, and planes - Sketching and co Γypes of 3D modeling - Basic 3D Modeling Tools - Part creati ioning & Tolerancing	ncept generation - on - Assembly - Pr	Sketch coduct d	to CAD lesign ai	- Introc nd rende	luction ring
Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Uni	it IV	MECHANICAL RAPID PROTOTYPING		9	0	0	9
Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA - - Total = 45 Periods Text Books:	Need for method engravi	or prototy ls - Tools ing - RD	yping - Domains in prototyping - Difference between actual mass used in different domains - Mechanical Prototyping: 3DPrin Works - Additive manufacturing	anufacturing and p nting and classifica	rototypi tion - L	ing - Ra aser Cu	pid prot tting and	otyping 1
Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Un	it V	ELECTRICAL RAPID PROTOTYPING		9	0	0	9
Total = 45 Periods Text Books:	Electron simula	ronic Pro ation tool	btotyping: Basics of electronic circuit design - lumped circuits - simple PCB design with EDA	s - Electronic Proto	typing -	Worki	ng with	
Text Books:						Tota	l = 45 H	Periods
	Теч	t Books	•					
		_	-					

2 Samar Malik, Autodesk Fusion 360 - The Master Guide.
 3 Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, Pearson, 3rd edition (2014)

E - R	E - References:						
1	https://www.adobe.com/products/xd/learn/get-started.html						
2	https://developer.android.com/guide						
3	https://help.autodesk.com/view/fusion360/ENU/courses/						
4	https://help.prusa3d.com/en/category/prusaslicer_204						

Cours Upon c	Bloom's Taxonomy Level	
CO1	Create quick UI/UX prototypes for customer needs	L6: Creating
CO2	Develop web application to test product traction / product feature	L3: Applying
CO3	Develop 3D models for prototyping various product ideas	L3: Applying
CO4	Built prototypes using Tools and Techniques in a quick iterative methodology	L3: Applying

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	2	3	2	3	0	0	0	1	1	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	1	1	0	0	3	2	2
C03	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
C04	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
AVG	2.75	2.25	3	2	3	0	0	0	1	1	0	0	2.75	1.75	1.75

INDUSTRIAL AUTOMA 18MEPS16 DATA LIFE CYCLE MANA(TION GEMENT	S	VI					
PREREQUISITES	Category	OE	edit	3				
	Hours/Week	3	0	0	3			
Course Learning Objectives								
1Acquire conceptual knowledge in Industrial Controllers by s interfacing with various I/O peripherals.	scaling of on-board devices a	and emb	edded b	oard				
2 Learn PLC by working on internal features and also interface SCADA and standard communication protocols.	ing with Sensors and actuate	ors alon	g HMI o	concept	using			
3 To work with FPGA boards and RT controllers for reprogra	mmable embedded applicati	ons usir	ıg LabV	IEW				
4 Understand the concepts and design electronics circuits								
Unit I INDUSTRIAL CONTROLLERS - I		9	0	0	9			
devices - Module SOM - Interfacing with Input and Output devices Acquiring and Data Logging from sensors - Interfacing Actuator applications.	s - Interfacing protocol base s: Relay, DC Motor, Serve	d Analo Motor	g and E - Crea	Digital so ting star	ensors - ndalone			
Unit II INDUSTRIAL CONTROLLERS - II		9	0	0	9			
Industrial Controllers - II - PLC - Introduction - Mode of Operation - & sequence control - Instruction set - Scan Time - Timers - Counter Sensors - Interfacing with Actuators - Interfacing with Human Mac PLC - SCADA.	IEC 61131 Programming lan rs - Interfacing with Input/Ou chine Interface - Commissio	guages: utput de oning ar	for PLC vices - 1 id opera	- Progra interfaci tional s	amming ng with afety of			
Unit III INDUSTRIAL COMMUNICATION PROT	TOCOLS	9	0	0	9			
Serial Communication Protocols - I2C, SPI - Serial Field bus protocols - Cloud data logging. Multi-sensor communication, Data parsing betw communication protocols - Implementation of Industrial Communication	cols CAN, PROFIBUS - Etl veen Embedded platforms. C ication protocols.	nernet, I Compara	HTTP, 7 tive stu	CCP/UD dy of In	I, WiF, dustrial			
Unit IV FPGA AND RT CONTROLLER PROGRA	MMING	9	0	0	9			
Introduction to FPGA - Architecture - Operations in FPGA p implementation in myRIO - Introduction to RT controllers - Archite applications.	programming - FPGA Pro ecture - Programming RT Co	grammi ontroller	ng in s - Crea	LabVIE ting stat	W and ndalone			
Unit V INDUSTRIAL CIRCUIT BOARD DESIGN	1	9	0	0	9			
Designing basics circuits and to simulate in environment setup - Con- Design rules, supply & communication track rules - Component and - Test point creation for measurement - PCB Layout, placement rules	mponent selection - Creating footprint editor - Understan	g librari ding co	es - Sch mponen	ematic of the package				
output documentation.	s - Poolprint, 3D models, Bo	Ms - Ge	enerating	g GERB	lesign - ge types ER and			

Text	t Books:
1	Ed Doering, NI myRIO Project Essential Guide, National Instruments, 2016.
2	Willian Bolton, Programmable Logic Controllers, 6th edition, Newnes Publications, 2015
3	Richard Zurawski, Industrial Communication Technology Handbook, Second edition, CRC Press, 2014
4	Simon Monk, Make Your Own PCBs with EAGLE, McGraw Hill Education, 2014.
Refere	nces Books:
1	Jeffrey Travis, Jim Kring, LabVIEW for Everyone: Graphical Programming Made Easy and Fun, 3rd edition, Prentice Hall
2	Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing, Fourth edition, Pearson Education, 2016
3	Michael J. Hamill, Industrial Communications and Control Protocols, PDH centre, 2016
4	Ema Design Automation, The Hitchhiker's Guide to PCB Design, First edition, Blurb Publishers, December 2021

Cours Upon c	Bloom's Taxonomy Level	
CO1	Understand the usage of controllers in an industrial environment	L2: Understanding
CO2	Build Real-Time systems for Industrial embedded monitoring and controlling deterministic applications	L3: Applying
CO3	Communicate between devices at different levels using industrial protocols	L3: Applying
CO4	Understand the process involved in PCB design using EDA tools and fabricate it	L2: Understanding

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	2	1	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.25	2.75	1.75	3	0	0	0	0	0	0	0	3	2.75	2.5

18MEPS17 ROBOTICS/ML&MLOps					Semester			
PRER	REQUIS	ITES	Category	EE	Cre	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	se Learn	ing Objectives						
1	1 Learn the fundamentals of ROS							
2	Unders	tand the requirements and choose the right sensors and actuate	ors for the application	on deve	lopment	-		
3	Create	Bot in the virtual environment and simulate it to know the fun	ctionalities of the s	ystem d	evelope	d		
4	4 Learn the basics of Robotics Vision System							
5	Integra	te ROS and Computer Vision to build systems for various use	cases					
Ur	nit I	INTRODUCTION TO ROBOT KINEMATICS		9	0	0	9	
Introc Kiner	luction to natics - K	Robotics - Transformations - Forward Kinematics - Kinematic analysis - Numerical Inverse Kinematic Solutions -	natics equations - 1 Analytical Inverse	Link tra Kinema	nsforma tic Solu	tions - tions	Inverse	
Un	it II	SELECTION OF SENSORS AND ACTUATORS		9	0	0	9	
Introdu on torq	ction - S ue and sp	ensors & Actuators - Types - Selection criteria - Design consid peed characteristics - Hardware Interface & Assembly	lerations: Motor siz	ing - Se	lection	of motor	rs based	
Uni	it III	INTRODUCTION TO ROBOT OPERATING SYS	TEM	9	0	0	9	
Introdu ROS p Gazebo	iction to l rogramm o - ROS I	ROS framework and prerequisites - Understanding communic ing - ROS nodes, topics, messages - ROS services - ROS Too Motion	ations in ROS - RC ls and Utilities - UF	S Ecos RDF , R	ystem - viz - Siı	Introduc nulatior	ction to 1 -	
Uni	it IV	INTRODUCTION TO ROBOTICS VISION SYST	EM	9	0	0	9	
Image Gauss - Con	e basics - sian, Med tours - C	Image Processing - Histograms - Gray scale, Color, Equalizati lian, Bilateral - Thresholding - Simple, Adaptive, Otsu - Gradi amera calibration	on - Smoothing and ents and Edge detec	l blurrin ction - L	g/filteri aplacia	ng - Ave 1, Sobel	eraging, , Canny	
Un	it V	9	0	0	9			
Introdu real wo	Introduction - Installation - CV Bridge - Image publisher node - Image subscriber node - Nodes building and launching - Building real world applications							
	Total = 45 Periods							

Text	Text Books:							
1	Introduction to Robotics: Mechanics and Control by John J Craig, Pearson Publishers.							
2	Robot Operating System (ROS) for Absolute Beginners by Lentin Joseph, A press; Publishers (2018).							
3	Learning OpenCV by Gary Bradski, Adrian Kaehler, O'Reilly Media, Inc.							

Refei	Reference Books:						
1	https://www.intechopen.com/chapters/379						
2	https://www.plantengineering.com/articles/eight-selection-criteria-for-actuation-components/						
3	https://www.controleng.com/articles/tips-on-sensor-selection/						
4	https://www.toptal.com/robotics/introduction-to-robot-operating-system						
5	https://www.thomasnet.com/articles/automation-electronics/machine-vision-systems/						
6	https://automaticaddison.com/working-with-ros-and-opencv-in-ros-noetic/						

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand kinematics considerations of robot	L2: Understanding					
CO2	Selection of sensors and actuators according to application	L3: Applying					
CO3	Utilize the ROS environment to simulate and communicate between robot	L3: Applying					
CO4	Develop algorithms to extract features and data from image	L3: Applying					
CO5	Utilize the open CV for robotic applications	L3: Applying					

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	3	1	2	0	0	0	0	0	0	0	3	3	2
C02	3	3	2	1	2	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	3	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.5	2.75	1.5	2.5	0	0	0	0	0	0	0	3	3	2.5

DEPARTMENT OF CIVIL ENGINEERING PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I	VERTICAL II	VERTICAL III
Structural Engineering	Environmental Engineering	Construction Engineering and Management
18CEH101 Bridge Engineering	18CEH201 Industrial Wastewater Treatment	18CEH301 Smart Materials and Smart Structures
18CEH102 Repair & Rehabilitation of Structures	18CEH202 Environmental Impact and Risk Assessment	18CEH302 Construction Techniques and Equipment
18CEH103 Industrial Structures	18CEH203EnvironmentalManagement& Sustainabledevelopment	18CEH303 Project Safety Management
18CEH104 Prefabricated Structures	18CEH204 Environmental Legislations in India	18CEH304 Sustainable and Green Building Technology
18CEH105 Finite Elements Analysis	18CEH205 Environmental Microbiology	18CEH305 Functional Planning in Building Services
18CEH106 Experimental Techniques and Instrumentation	18CEH206 Waste Management Techniques	18CEH306 Building Valuation
18CEH107 Advanced Concrete Technology	18CEH207 Unit Operations and Processes in Water and WasteWater Treatment	18CEH307 Quality Control and Assurance in Construction

		VERTICAL I -	STRUC	TURAL E	NGINEEI	RING					
SL.	Subject			СА	End	Total		Crea	lits	-	
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	Р	С	
1.	18CEH101	Bridge Engineering	PE	40	60	100	3	0	0	3	
2.	18CEH102	Repair & Rehabilitation of Structures	PE	40	60	100	3	0	0	3	
3.	18CEH103	Industrial Structures	PE	40	60	100	3	0	0	3	
4.	18CEH104	Prefabricated Structures	PE	40	60	100	3	0	0	3	
5.	18CEH105	Finite Elements Analysis	PE	40	60	100	3	0	0	3	
6.	18CEH106	Experimental Techniques and Instrumentation	PE	40	60	100	3	0	0	3	
7.	18CEH107	Advanced Concrete Technology	PE	40	60	100	3	0	0	3	
	VERTICAL II - ENVIRONMENTAL ENGINEERING										
SI	Subject				End	Total		Cred	lits		
51. No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	Р	С	
8.	18CEH201	Industrial Wastewater Treatment	PE	40	60	100	3	0	0	3	
9.	18CEH202	Environmental Impact and Risk Assessment	PE	40	60	100	3	0	0	3	
10.	18CEH203	Environmental Management & Sustainable development	PE	40	60	100	3	0	0	3	
11.	18CEH204	Environmental Legislations in India	PE	40	60	100	3	0	0	3	
12.	18CEH205	Environmental Microbiology	PE	40	60	100	3	0	0	3	
13.	18CEH206	Waste Management Techniques	PE	40	60	100	3	0	0	3	
14.	18CEH207	Unit Operations and Processes in Water and Waste Water Treatment	PE	40	60	100	3	0	0	3	
	VEF	RTICAL III - CONSTRUCTI	ON ENG	GINEERIN	IG AND N	IANAGE	MEN'	Г			
SI	Subject			CA	End	Total		Cree	dits		
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	Р	С	
15.	18CEH301	Smart Materials and Smart Structures	PE	40	60	100	3	0	0	3	
16.	18CEH302	Construction Techniques and Equipment	PE	40	60	100	3	0	0	3	
17.	18CEH303	Project Safety Management	PE	40	60	100	3	0	0	3	
18.	18CEH304	Sustainable and Green Building Technology	PE	40	60	100	3	0	0	3	

19.	18CEH305	Functional Planning in Building Services	PE	40	60	100	3	0	0	3
20.	18CEH306	Building Valuation	PE	40	60	100	3	0	0	3
21.	18CEH307	Quality Control and Assurance in Construction	PE	40	60	100	3	0	0	3

VERTICAL I – STRUCTURAL ENGINEERING

18CEH101		BRIDGE ENGINEERING		S	emeste	er		
PREREQU	JISI	TES	Category	РЕ	Cre	edit	3	
Basic Stru	ctur	al Analysis, Foundation Engineering	Hours/Week	L	Т	Р	ТН	
Transporta	atio	n Engineering	liouis, week	3	0	0	3	
Course Lea	arni	ng Objectives						
1 To	imp	art knowledge about loads on bridges and selection of type o	f bridge for the site	e conditi	on.			
2 To	imp	art knowledge about the super structure by various methods.						
3 To	imp	art knowledge about the trussed bridge and plate girder bridg	ges.					
4 To	imp	art knowledge about reinforced concrete slab and T beam bri	idges and prestress	ed conci	rete bric	lges.		
5 To	imp	art knowledge about the appropriate sub structural systems, b	pearings and expan	sion joi	nts for t	he bridg	ges.	
Unit I		INTRODUCTION		9	0	0	9	
Survey and a Collection of - Influence li longitudinal Bridges; Rai	History of bridges - Components of a bridge - Classification of road bridges - Selection of site and initial decision process - Survey and alignment; Geotechnical investigations and interpretations. River Bridge: Selection of Bridge site and planning - Collection of bridge design data - Hydrological calculation Road Bridges - IRC codes - Standard Loading for Bridge Design - Influence lines for statically determinate and indeterminate structures - Transverse distribution of Live loads among deck longitudinal - Load combinations for different working state and limit state designs Railway Bridges: Loadings for Railway Bridges: Railroad data_Pre-design considerations - Railroad versus Highway bridges							
Unit II		SUPERSTRUCTURES		9	0	0	9	
Bridge decks Simple beam PSC); Longi Effects of Di	s – S n moo tudir iffere	tructural forms and behavior – Choices of superstructure type del – Plate model – Grillage method – Finite Element method al Analysis of Bridge Transverse Analysis of Bridge - Ten ential settlement of supports - Reinforced earth structures	es – Behavior and 1 d - Different types nperature Analysis	modelin of super - Disto	g of bri structur	dge dec res (RC Analysi	ks – C and s -	
Unit III	-	DESIGN OF STEEL BRIDGES		9	0	0	9	
Design of Tr	uss l	Bridges – Design of Plate girder bridges.						
Unit IV		DESIGN OF RC AND PSC BRIDGE	ÈS	9	0	0	9	
Design of sla	ab br	idges – T beam bridges – PSC bridges.			1	1		
Unit V		SUBSTRUCTURE, BEARINGS AND EXPANSI PARAPETS AND RAILINGS	ON JOINTS,	9	0	0	9	
Substructure - Pier; Abutment - Wing walls- Importance of Soil-Structure Interaction - Types of foundations - Open foundation- Pile foundation- Well foundation- Simply supported bridge- Continuous Bridge - Bearings and Expansion Joints - Different types of bridge bearings and expansion joints - Parapets and Railings for Highway Bridges								
	Total= 45 Periods							

Те	Text Books:							
1	Ponnuswamy, S., Bridge Engineering, Tata McGraw – Hill, New Delhi, 1997.							
2	Victor, D. J., Essentials of Bridge Engineering, Oxford and IBH Publishers Co., New Delhi, 1980.							
3	Jagadeesh. T. R. And Jayaram. M. A., Design of Bridge Structures, Prentice Hall of India Pvt. Ltd., 2004							
4	Raina. V. K., Concrete Bridge Practice, Tata McGraw Hill Publishing Company, New Delhi, 1991.							

Ref	Reference Books:						
1	N. Rajagopalan, Bridge Superstructure, Narosa Publishing House, New Delhi, 2006.						
2	Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 1990.						
3	IRC:6-2000 Standard specifications and code of practice for road bridges.						

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Identify loads on bridges and selection of type of bridge for the site condition.	Remember						
CO2	Analyze the super structure by various methods.	Understand						
CO3	Design the trussed bridge and plate girder bridges.	Create						
CO4	Design reinforced concrete slab and T beam bridges and prestressed concrete bridges.	Create						
CO5	Decide the appropriate sub structural systems, bearings and expansion joints for the bridges.	Evaluate						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	-	2	2	3	-	-	-	-	-	3	-	-
CO2	1	1	3	-	2	2	1	-	-	-	-	-	1	-	-
CO3	3	1	3	-	2	2	2	-	-	-	-	-	3	-	-
CO4	3	1	3	-	2	2	2	-	-	-	-	-	3	-	-
CO5	3	1	3	-	2	2	3	-	-	-	-	-	2	-	-
Avg	2.6	1	3	-	2	2	2.2	-	-	-	-	-	2.4	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CEH102	2	REPAIR AND REHABILITATION OF STI	RUCTURES	Semester						
PREREQU	JISI	ГЕS	Category	PE	Cro	edit	3			
Constructi	ion N	Aterials and Technology,	Hours/Week	L	Т	Р	TH			
Concrete T	ech	nology	Hours week	3	0	0	3			
Course Lea	arniı	ng Objectives			1	1	1			
1 Stu	ıdy tł	ne various types and properties of repair materials								
2 Lea	2 Learn various distress and damages to concrete structures									
3 Une	nderst	and the importance of maintenance of structures								
4 Ass	sess t	he damage to structures using various tests								
5 Lea	5 Learn various repair techniques of damaged structures, corroded structures									
Unit I		TEGIES	9	0	0	9				
Maintenance, repair and rehabilitation, Facts of Maintenance, importance of Maintenance various aspects of inspection, assessment procedure for evaluating a damaged structure, causes of deterioration- NDTtest – Introduction to nonlinear NDT										
test				0	0	0	0			
	rono	SERVICEABILITY AND DURABILITY OF	CONCRETE	9	U	U and are	9 olting			
effects due t cracking.	to cl	imate, temperature, chemical, corrosion- Design and co	onstruction errors-eff	fects of	cover	thickne	ss and			
Unit III		MATERIALS AND TECHNIQUES FOR	REPAIR	9	0	0	9			
Special concr concrete, Sul rebars during repair for cra coatings and	cretes Ilphui g repa acks, cathe	and mortar, concrete chemical, special elements for acce r infiltrated concrete, ferro cement, fibre reinforced concrete, air, foamed concrete, mortar and dry pack, vacuum concret shoring and underpinning. Methods of corrosion protection odic protection.	lerated strength gain crete, rust eliminator ete, Gunite and shotc on, corrosion inhibito	, expans rs and j prete, ep ors, corr	sive cer polyme oxy inj osion re	nent, po rs coati ection, r esistant	olymer ng for mortar steels,			
Unit IV		REPAIRS, REHABILITATION AND RETRO STRUCTURES	FITTING OF	9	0	0	9			
Strengthening marine expos	ng of sure.	Structural elements, deflection, cracking, chemical disrupt	ion, weathering corro	osion, w	vear, fire	e, leaka	ge and			
Unit V		DEMOLITION TECHNIQUES		9	0	0	9			
Demolition n precautions in	metho in dis	ods by machines, explosives, Advanced Techniques-Dem mantling and demolition, Engineered demolition technique	olition sequences, di es for dilapidated stru	ismantli uctures-	ng tech case st	niques, udies	safety			
					Total	= 45 Pe	eriods			

Те	ext Books:
1	Shetty, M.S., Concrete Technology- Theory and Practice, S. Chand and company, New Delhi, 2019
2	Repair and protection of concrete structures by Noel P.Mailvaganam, CRC Press, 1991.
3	CPWD: Handbook on Repair & Rehabilitation of R.C.C. Buildings, CPWD, Govt. of India, 2002, updated reprint 2011
Ref	erence Books:
1	Santhakumar A.R,Training Course notes on Damage Assessment and Repair in Low-Cost Housing, "RHDC.NBO" Anna University, July 1992.

	Raikar R.N., Learning from failures- deficiencies in design, construction and services - R &D Centre (SDCPL), Raikar
2	Bhavan, Bombay,1987
3	Palaniyappan, N., Estate management, Anna Institute of Management, Chennai, 1992.
4	Lakshmipathy, M. etal., Lecture notes of workshop on Repairs and Rehabilitation of structures, 29-30th October 1999.
5	https://nptel.ac.in/courses/114106035/38

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Demonstrate the condition of structures	Understand					
CO2	Inspect and evaluate the damaged structure	Analyze					
CO3	Implement the repairing techniques of a structure	Analyze					
CO4	Identify and use different materials for repairing works	Apply					
CO5	Demonstrate the dismantling and demolishing structures	Apply					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO2	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO3	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO4	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO5	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
Avg	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
		•	3/2/1	– indica	ates str	ength o	of corre	lation (3- Higł	n, 2- Me	dium, 1-	Low)			

180	CEH103	INDUSTRIAL STRUCTURES	INDUSTRIAL STRUCTURES								
PRE	REQUISI	TES	Category	PE	Cre	edit	3				
Desi	gn of Steel	Structural Elements		L	Т	Р	ТН				
Adv	anced Steel	Structures	Hours/Week	2			2				
Prest	tressed Cor	acrete Structures		3	U	U	3				
Cou	rse Learni	ng Objectives									
1	¹ To understand the requirements and planning of industrial structures										
2	To unders	tand functional requirements of structures									
3	³ To analyze and design the steel industrial structures										
4	⁴ To analyze and design R.C industrial structures										
5	⁵ To know the concepts of prefabrication										
1	Unit I	PLANNING		9	0	0	9				
Class plant comp	sification of s – types of ponents	Industries and Industrial structures – General requirements frames – bracings – crane girders and columns – works	ents for industries lil hop shedsPlannir	ke ceme ng and l	ent, che layout o	emical a	ind steel				
τ	U nit II	FUNCTIONAL REQUIREMENT	ſS	9	0	0	9				
Light	ting – Ventil	ation – Accounts – Fire safety – Guidelines from factories	act.								
U	nit III	DESIGN OF STEEL STRUCTUR	ES	9	0	0	9				
Indus	strial roofs –	Crane girders – Mill buildings – Design of bunkers and si	los			I					
U	Init IV	DESIGN OF R.C. STRUCTURE	S	9	0	0	9				
Conc	crete Silos ar	d bunkers – Chimneys – Principles of folded plates and sh	ell roofs – Machine f	oundati	ons	1					
τ	U nit V	PREFABRICATION		9	0	0	9				
Princ	ciples of pref	abrication – Prestressed precast roof trusses- Functional re	quirements for Preca	st concr	ete unit	.s					
					Tota	al= 45	Periods				

Те	ext Books:										
1	Duggal S.K., Limit State Design of Steel Structures, Tata McGraw-Hill Publishing Company, New Delhi, 2019.										
2	Subramanian N., Design of Steel Structures, First edition, OXFORD university press, 2022										
3	Purushothaman.P, Reinforced Concrete Structural Elements: Behaviour, Analysis and Design, Tata McGraw-Hill Publishing Company, 1984.										
Ref	Reference Books:										
1	Henn W. Buildings for Industry, VolI and II, London Hill Books, 1995										
2	Handbook on Functional Requirements of Industrial buildings, SP32 – 1986, Bureau of Indian Standards, New Delhi 1990										
3	Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982										

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Acquire knowledge on planning of industrial structures.	Remember					
CO2	Describe the functional requirements of structures	Understand					
CO3	Analyze and Design steel industrial structures	Analyze					
CO4	Analyze and Design R.C. industrial structures	Create					
CO5	Explain the concepts of Prefabrication	Understand					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	-	-	-	-	-	-	-	-	-	2	2	-	-
CO2	-	3	2	-	-	-	-	-	-	-	-	1	2	-	-
CO3	3	2	3	2	-	-	-	-	-	-	-	2	2	-	-
CO4	3	2	3	2	-	-	-	-	-	-	-	2	2	-	-
CO5	-	1	1	-	-	-	-	-	-	-	-	1	2	-	-
Avg	3	2	2.25	2	-	-	-	-	-	-	-	1.6	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CI	EH104	PREFABRICATED STRUCTURI	ES	S	emeste	er					
PRE	REQUISI	res	Category	РЕ	Cre	edit	3				
Cons	struction N	Iaterials, Design of Reinforced Concrete	Hours/Wook	L	Т	Р	TH				
Elen	nents	, 0	Hours/ Week	3	0	0	3				
Cou	rse Learni	ng Objectives									
1	To impart	knowledge to students on modular construction,									
2	2 To know about construction of different prefabricated elements										
3	To acquire	knowledge in different manufacturing methods.									
4	To know a	bout techniques for erection of prefabricated elements									
5	To learn al	bout various applications of prefabricated structures									
τ	U nit I	GENERAL PRINCIPLES OF FABRIC	ATION	9	0	0	9				
prefat of str	Comparison with monolithic construction – Types of prefabrication – site and plant prefabrication – Economy of prefabrication – Modular coordination – Standardization – Planning for Components of prefabricated structures – Disuniting of structures – Design of simple rectangular beams and I beams – Handling and erection stresses – Elimination of erection stresses – Beams, columns - Symmetrical frames.										
U	Init II	PREFABRICATED ELEMENTS	8	9	0	0	9				
Roof Footi struct	and floor pa ngs – Joints ural fastenir	nels – Ribbed floor panel, Hollow core, concrete roof, ma for different structural connections – Effective sealing o ngs – Expansion joints in pre-cast construction.	ssive slab floors – Pr f joints for water pro	os and oofing -	Cons – – Provis	Wall pa sions fo	anels – or non-				
U	nit III	PRODUCTION TECHNOLOG	Y	9	0	0	9				
Choic Fabri setup	ce of production proce Cation proce – Storage of	ction setup – Manufacturing methods – Support syste ss – Main, Secondary and Subsidiary process – Stationary precast elements – Dimensional tolerances – Acceleration	em – Conveyor sys and mobile product of concrete hardenir	tem – ion – Pl 1g.	Aggreg anning	ate sys of prod	tem – luction				
U	nit IV	HOISTING TECHNOLOGY		9	0	0	9				
Equip and Adva	oment for ho Columns – ntages and I	isting and erection – Techniques for erection of different Vacuum lifting pads – Design consideration – Risk ic Disadvantages of using hoisting technology.	types of members lik dentification and co	e Beam ntrol –	s, Slabs Contro	s, Wall ol meth	panels iods –				
U	J nit V		9	0	0	9					
Desig frame frame	gning and de es – Single e, wall and f	etailing of precast unit for factory structures – Purlins, Pr span single storeyed frames – Single storeyed buildings loor construction process and benefits.	incipal rafters, roof – slabs, beams and	trusses, columr	lattice 1s – Pre	girders, ecast co	gable				
					Total	= 45 Pe	eriods				
L											
Text	t Books:										

10	At DUCKS.							
1	Hubert Bachmann, Alfred Steinle, Precast Concrete Structures, 2 nd Edition,2019							
2	S.Elliott Kim.Precast Concrete Structures, 2 nd Edition,2017							
3	L.Mokk, "Prefabricated Concrete for Industrial and Public Structures", Publishing House of the Hungarian Academy of Sciences, Budapest, 1st Edition, 1964.							
4	I. T. Koncz, "Manual of Precast Concrete Construction", Vol. I, II, III & IV, Berlin, 1st Edition, 1971							
Ref	Reference Books:							
1	CBRI, "Building materials and components", India, 1990.							

	C.Z. Gerostiza, C Hendriksonand D.R.Rehat., Knowledge based process planning for construction And manufacturing,	
	2	Academic Press Inc., 2012.
		Structural Design Manual, "Precast Concrete Connection Details", Society for the Studies in the use of Precast Concrete,
3	Netherland Betor Verlag, 2009.	

Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Discuss the knowledge on the basics of prefabricated structure design principles.	Understand					
CO2	Analyse the behaviour of various prefabricated structural members, floors, stairs, roofs and walls	Analyse					
CO3	Summarize the Production and Storage of Precast elements	Understand					
CO4	Summarize the hoisting methods of different structural elements	Understand					
CO5	Explain the applications of various prefabricated units	Understand					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	-	1	-	-	-	-	-	1	-	-
CO2	3	1	1	1	1	-	1	-	-	-	2	-	1	1	-
CO3	3	1	1	-	1	-	1	-	2	-	2	-	-	-	1
CO4	3	1	1	-	1	-	1	-	2	-	2	-	-	-	1
CO5	3	1	3	2	1	-	1	-	-	-	-	1	-	2	-
Avg	3	1	1.4	1.3	1	-	1	-	2	-	2	1	1	1.5	1
	•		3/2/1	– indica	ates str	ength o	of corre	lation (3- Higl	n, 2- Me	dium, 1-	Low)			

18C	EH105	FINITE ELEMENT ANALYSIS	5	S								
PRE	REQUISI	TES	Category	PE	Cre	edit	3					
Stre	ngth of Ma	nterials, Advanced Structural Analysis	Hours/Week	L	Т	Р	ТН					
				3	0	0	3					
Cou	rse Learni	ng Objectives										
1	1 To acquire knowledge about the basis of Finite Element theory, computer implementation of this theory and its											
	practical applications.											
2	To underst	tand various basic energy and weighted residual methods										
3	To Familia	arize with principles of structural mechanics										
4	To impart	knowledge on isoparametric and axisymmetric elements										
5	To study a	bout the shape functions for linear and quadric models										
I	Unit I	ELEMENTS OF ELASTICITY		9	0	0	9					
Basic	principles of	of structural mechanics – Equations of equilibrium – Stra	in displacement relat	ions –S	tress str	ain rela	tions-					
Plane	stress and p	plane strain cases–Principles of Virtual work and minimum	n potential energy.	1			1					
U	J nit II	DIRECT STIFFNESS METHOI	D	9	0	0	9					
Steps	in direct m	ethod of FEA - Element stiffness matrix - Global stiffne	ess matrix – Bounda	ry cond	itions –	Proble	ems on					
simpl	e beams and	1 Trusses.		1			1					
U	nit III	ANALYSIS OF 2D/3D ELEMEN	ГS	9	0	0	9					
Discr	etization - 1	Basic element shapes - Element properties - Node num	bering procedure – (Converg	ence re	equirem	ents –					
Gene	ralised co-or	rdinates - Natural co-ordinates - Shape functions for lines	ar & quadratic model	ls – Stif	fness m	natrix –	Nodal					
load	vector 2D or	3 D– Static condensation – Simple problems.										
U	nit IV	INTRODUCTION TO ISOPARAMETRIC	ELEMENTS	9	0	0	9					
Conc	ept of sub, is	so, super parametric elements – Gauss quadrature – Examp	ples in one- and two-	dimensi	onal ele	ments						
τ	J nit V	SOLUTION TECHNIQUES		9	0	0	9					
Diffe	rent solvers	- Variational approach - Weighted mean residual metho	ds like Collocation n	nethod,	Sub do	main m	ethod,					
Galer	kin method	and Least square method – Simple problems only.			<u> </u>							
					Total=	= 45 Pe	eriods					

Te	xt Books:								
1	Tirupathi R. Chandrupatla and Ashok D. Belugundu, "Introduction to Finite Elements in Engineering", Third Edition,								
-	Prentice Hall India Pvt Ltd, 2011								
2	P.Seshu, "Textbook of Finite Element Analysis", Prentice Hall India Pvt Ltd, 2008.								
Ref	Reference Books:								
1	Rajasekaran.S., "Finite Element Analysis in Engineering Design", Wheeler Publishing,2000.								
2	S.S.Rao, "The Finite Element Method in Engineering", Buttersworth-Heinemann publishing, 2000								
3	Desai C S								

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand the basic concepts involved in FEM theory	Understand						
CO2	Apply the concepts on simple structural elements	Apply						
CO3	Determine linear, quadratic and cubic shape functions for interpolation (for 1D, 2D and 3D Problems).	Analyze						
CO4	Familiarise the formation of isoparametric elements	Analyze						
CO5	Analyse elements subjected to axisymmetric	Analyze						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	1	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	-	-
CO3	3	3	1	1	1	-	-	-	-	-	-	-	3	-	-
CO4	3	3	1	1	1	-	-	-	-	-	-	-	3	-	-
CO5	3	2	2	1	1	-	-	-	-	-	-	-	3	-	-
Avg	3	2.4	1.4	1	1	-	-	-	-	-	-	-	3	-	-
			3/2/1	– indica	ates str	ength o	f corre	lation (3- Higł	n, 2- Me	dium, 1-	Low)			

18CE	H106	EXPERIMENTAL TECHNIQUES AND INSTR	S									
PREI	REQUISI	TES	Category	PE	Cre	edit	3					
NIL			Hours/Week	L	Т	Р	ТН					
~				3	0	0	3					
Cour	Course Learning Objectives											
1	1 To learn analytical experimental methods using sophisticated instruments and interpretation of experimental data											
2	2 To impart knowledge about the fundamental concepts of vibration measurement and signal acquisition.											
3	To learn	about the fundamental theory and use a device to measure	a physical phenomen	on.								
4	To impar	t knowledge about the distress measurements										
5	Understa	nd the advanced non-destructive testing instruments used i	n construction indust	ry								
U	nit I	FORCE AND STRAIN MEASUREM	ENTS	9	0	0	9					
Strain	gauges, Pri	nciple, Types, Performance and Uses-Photo elasticity, Prin	nciple and application	ns – Hy	draulic	jack an	d					
pressu	re gauges –	- Electronic load cell - Proving rings - Calibration of testin	ng machines	1								
U	nit II	VIBRATION MEASUREMENT	S	9	0	0	9					
accele record Princip	ration measing of signals and Apples and App	surements – Vibrations – Linear Variable Differential Ira surements – Vibration meter – Seismographs – Vibration a nals – Cathode Ray Oscilloscope – XY plotters – Cha oplications.	nsducer (LVDI) – I analyzer – Electro dy art plotters – Digital	namic e and A	cers foi xciters cquisiti	– Displ	ay and tems -					
Ur	it III	ACOUSTICS AND WIND FLOW MEASU	REMENTS	9	0	0	9					
Princi	ples of pres	sure and flow measurements – Pressure transducer – Sour	nd level meter - Vent	uri Met	er and l	Flow m	eters –					
Wind	tunnel and	its use in structural analysis – structural modeling - Direct	and indirect model as	nalysis			1					
Ur	nit IV	DISTRESS MEASUREMENTS	5	9	0	0	9					
Diagn	osis of dist	Corrosion of reinforce	ement i	n concre	ete– Ha	lf cell,						
construction and use – damage assessment – Controlled blasting for demolition												
U	nit V	NON-DESTRUCTIVE TESTING MET	THODS	9	0	0	9					
Load t – Moir	esting of st ré fringes –	tructures, buildings, bridges and towers – Rebound hamm brittle coatings – Holography – Use of lasers for structura	er – Ultrasonic testin l testing.	ig, princ	ciple an	d applie	cations					
	0				Total	= 45 Po	eriods					

Te	ext Books:
1	Sadhu Singh, "Experimental Stress Analysis" Khanna Publishers, New Delhi, 2009.
2	Karthick and Balaji S, "Applications and Techniques for Experimental Stress Analysis", 2019.
3	Srinath L.S., et al, Experimental Stress Analysis, Tata McGraw Hill Co., New Delhi, 1984.
Ref	erence Books:
1	Dalley.J.WandRiley.W.F., "Experimental Stress Analysis", Tata McGraw Hill Book Co.
2	Sironi R.S and Radha Krishna H.C., Mechanical Measurements, New Age International (P) Ltd.

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Familiarize with various types of force and strain measuring devices	Understand						
CO2	Select a measuring device for a vibration measurement	Remember						
CO3	Conduct experiments to measure acoustics and wind flow	Apply						
CO4	Measure the distress on structures.	Apply						
CO5	Apply non destructive testing techniques on structures.	Apply						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	2	3	-	-	-	-	1	-	-	-	3	-
CO2	1	1	-	2	3	-	-	-	-	1	-	-	-	3	-
CO3	1	1	-	2	3	-	-	-	-	1	-	-	-	3	-
CO4	1	1	-	2	3	-	-	-	-	1	-	-	-	3	-
CO5	1	1	-	2	3	-	-	-	-	1	-	-	-	3	-
Avg	1	1	-	2	3	-	-	-	-	1	-	-	-	3	-
	•		3/2/1	– indica	ates str	ength o	f corre	lation (3- Higł	n, 2- Me	dium, 1-	Low)			

18C	EH107	ADVANCED CONCRETE TECHNO	S				
PRE	REQUISI	TES	Category	PE	Cre	edit	3
Cons	struction n	naterials and Construction Technology	L	Т	Р	ТН	
			Hours/ week	3	0	0	3
Cou	rse Learni	ng Objectives					
1	Have a go	od knowledge about constituent materials in concrete.					
2	Understan	d the concept and procedure for concrete mix design as pe	r IS code standards.				
3	Get aware	ness about the properties of fresh and hardened concrete.					
4	Understan	d about the durability properties and NDT on concrete.					
5	Know abo	ut the types of special concrete.					
τ	Unit I	CONCRETE MATERIALS		9	0	0	9
Ceme hydra mech chara	ent -Review ation-Aggreg anism of ac cteristics - e	of manufacturing process- chemical composition, Bogu gate-Review of types, sampling and testing, artificial a ction - effects on properties of concrete - Mineral adm effects on properties of concrete - Rheology – basic concep	e's compounds, mec nggregates - Chemic ixtures- types, chem ots – Bingham model.	hanism al Adm ical con	of hyd iixtures mpositio	ration-ł - types, on – pł	neat of , uses, nysical
ι	J nit II	MIX PROPORTIONING		9	0	0	9
consi Statis accep	dered in the stical quality stance criter	e design of concrete mix- various methods of mix design v control of concrete – mean strength – standard deviatio	- design of concrete n – coefficient of var	mix as riation -	per IS - sampl	10262- ing - te	2019 - sting -
U	nit III	PROPERTIES OF CONCRETE	E	9	0	0	9
Prope consi flexu factor	erties of fre stometer tes ral strength- rs affecting	esh concrete- workability-factors affecting workability st- Properties of hardened concrete -modulus of elastic effect of water cement ratio – maturity concept- Creep - f shrinkage - plastic shrinkage, drying shrinkage, autogenou	- slump test compa vity, compressive stra factors affecting creep s shrinkage, carbonat	ength, s o - effec ion shri	actor te split ter t of crea nkage.	est- Ve nsile str ep-Shrin	e Bee ength, nkage-
U	nit IV	DURABILITY & NDT OF CONCR	ЕТЕ	9	0	0	9
Dura	bility of cor	crete- Factors affecting durability - permeability- cracking	ng-reinforcement cor	rosion;	carbona	tion, cl	nloride
penet	ration, sulpl	nate attack, acid attack, fire resistance; frost damage, alkali	i silica reaction, conci	rete in s	ea wate	r	
Non- test c	destructive to ore cutting -	testing of concrete surface hardness test- ultrasonic pulse measuring reinforcement cover.	velocity method - pe	netratio	n resist	ance- p	ull-out
τ	J nit V	HNOLOGY	9	0	0	9	
Speci comp concr form concr agric	Special concretes - lightweight concrete-heavy weight concrete - high strength concrete - high performance concrete - self compacting concrete - roller compacted concrete - fibre reinforced concrete - polymer concrete-pumped concrete - ready mix concrete - green concrete. Special processes and technology - sprayed concrete; underwater concrete, mass concrete; slip form construction, prefabrication technology- 3D concrete printing. Light Emitting concrete, ,Glasscrete, Hempcrete, Bio concrete, Self-healing concrete smart concrete, coconut shell aggregate concrete, geopolymer concrete, concrete with agricultural waste, ferrocement						
	Total= 45 Periods						
L							

Те	xt Books:
1	Neville A.M., "Properties of Concrete", Trans-Atlantic Publications, Inc.; 5e, 2016.

2	Shetty M.S Concrete Technology, S.Chand and Company Ltd, New Delhi 2022.
3	Santha Kumar A.R Concrete Technology, Oxford university Press, NewDelhi, 2022.
4	Mehta K.P Concrete Technology, Chand & Co, NewDelhi, 2006.
Ref	erence Books:
1	Indian Standard Recommended Guide lines for Concrete Mix Design, IS:10262 – 2019, Bureau of Indian Standards, New Delhi.
2	Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete IS:383-1970 R2011, Bureau of Indian Standards, New Delhi.
3	Gambhir. M.LConcrete technology, Volume I &II, Tata McGraw-Hill Book Company, Third print, 2003.
4	Krishna Raju N. Design of Concrete Mixes, CBS publishers. New Delhi, 2002.

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	To recall the properties and testing procedure of concrete materials as per IS code	Remember			
CO2	To design concrete mix using IS Code Methods.	Apply			
CO3	To describe the procedure of determining the properties of fresh and hardened concrete	Remember			
CO4	To explain nondestructive testing of concrete	Remember			
CO5	To describe the various special types of concretes	Remember			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	1	-	1	1	-	-	1	-	-	-	2	-	2
CO2	-	-	2	3	3	1	2	-	2	2	-	2	2	-	2
CO3	-	-	-	-	2	1	-	-	-	-	-	-	2	-	2
CO4	-	-	2	-	3	-	-	2	2	-	-	-	2	-	2
CO5	-	-	1	-	1	-	-	2	1	-	-	-	2	-	2
Avg	-	-	1.5	3	2	1	2	2	1.5	2	-	2	2	-	2
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

VERTICAL II – ENVIRONMENTAL ENGINEERING

18CF	EH201	INDUSTRIAL WASTEWATER TREAT	ſMENT	S	emest	er		
PRER	EQUISI	TES	Category	PE	Cr	edit	3	
NII	NII Hours/Wook						TH	
			Hours/ week	3	0	0	3	
Course	e Learni	ng Objectives						
1 7	¹ To identify the sources and types of industrial wastewater							
2	To assess	the waste minimization techniques						
3 7	To evaluat	e and design industrial wastewater treatment technologies						
4 7	To plan co	mmon effluent treatment plants for treatment of industrial	wastewater and disp	osal of s	sludge			
5	To determ	ine the appropriate treatment methods for wastewater of va	rious industries.					
Un	nit I	INTRODUCTION		9	0	0	9	
wastew for trea generat	wastewater – Nature and Origin of Pollutants – Industrial wastewater and environmental impacts – Regulatory requirements for treatment of industrial wastewater – Industrial waste survey – Industrial wastewater monitoring and sampling - generation rates, characterization and variables –Toxicity of industrial effluents and Bioassay tests – Major issues on water							
quality		INDUSTRIAL POLLUTION PREVENTION	N& WASTE					
Un	11 11	MINIMISATION		9	0	0	9	
Prevent	tion & Co	ntrol of Industrial Pollution – Benefits and Barriers – W	Vaste management H	Hierarch	y - Sou	urce rec	luction	
echniq – Pav-h	ues – Perio	odic Waste Minimisation Assessments – Evaluation of Pol 1 – Implementing & Promoting Pollution Prevention Progra	lution Prevention Op	ptions –	Cost b	enefit a	nalysis	
Uni	it III	INDUCTDIAL WASTEWATED TOFA	rment	0	0	0	0	
		INDUSTRIAL WASTEWATER TREAT		9	U		9	
Flow an Constitu Filtratic Oxidati	nd Load E uents – Pro on, Electro on Process	equalisation – Solids Separation – Removal of Fats, Oil & ecipitation, Heavy metal removal, Nitrogen & Phosphorou odialysis & Evaporation – Removal of Organic Constitu- ses, Advanced Oxidation processes – Treatability Studies.	z Grease- Neutralisa is removal, Ion excha ents – Biological tre	tion – F ange, Ad eatment	Remova dsorptic Proces	ll of Inc on, Mer ses, Ch	rganic nbrane emical	
Uni	it IV	WASTEWATER REUSE AND RESIDUAL MA	ANAGEMENT	9	0	0	9	
Individu dischar water a	Individual and Common Effluent Treatment Plants – Joint treatment of industrial and domestic wastewater - Zero effluent discharge systems - Quality requirements for Wastewater reuse – Industrial reuse , Present status and issues - Disposal on water and land – Residuals of industrial wastewater treatment – Quantification and characteristics of Sludge – Thickening,							
digestic	digestion, conditioning, dewatering and disposal of sludge – Management of RO rejects.							
Industri	ial manufa	icturing process description, wastewater characteristics, so	ource reduction optic	bns and	waste t	reatmer	nt flow	
sheet for	sheet for Textiles – Tanneries – Pulp and paper – metal finishing – Oil Refining–Pharmaceuticals–Sugar and Distilleries-							
sugai al	Total= 45 Periods							

Te	ext Books:
1	Eckenfelder, W.W., "Industrial Water Pollution Control", Mc-Graw Hill Publishers, 2000.

2	LawranceK.Wang, Yung Tse Hung, Howard H.Lo and Constantine Yapijakis "Handbook of Industrial and Hazardous
_	waste Treatment", Second Edition, 2004.
Ref	erence Books:
1	Metcalf & Eddy/ AECOM, "Water reuse Issues, Technologies and Applications", The Mc Graw- Hill companies, 2007
2	Nelson Leonard Nemerow, "Industrial waste Treatment", Elsevier, 2007.
3	Waste water Treatment for pollution control and reuse by Soli. J. Arceivala, Shyam. R. Asolekar, Tata Mcgraw Hill, 2007

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Identify the sources and types of wastewaters and its nature	Identify				
CO2	Gain knowledge of Prevention & Control of Industrial Pollution	Remember				
CO3	Suggest the suitable treatment technologies for the treatment of wastewater.	Evaluate				
CO4	Know about CETP and reuse of treated wastewater.	Analyze				
CO5	Assess the characteristics and treatment systems for wastewater from various industries	Evaluate				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	1	-	-	-	-	-	-	-	-	1	1	1	2
CO2	-	-	2	1	-	2	1	1	1	1	-	-	2	1	1
CO3	-	-	3	1	-	1	-	-	-	-	-	-	1	-	1
CO4	-	1	3	2	2	3	2	1	2	2	2	1	3	1	2
CO5	2	-	2	3	1	1	3	1	2	2	3	2	1	1	3
Avg	1.5	1	2.2	1.8	1.5	1.8	2	1	1.7	1.7	2.5	1.3	1.6	1.0	1.8
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

18Cl	E H202	ENVIRONMENTAL IMPACT AND RISK A	S	emeste	Semester			
PRE	REQUISI	TES	Category	PE	Cre	edit	3	
Env	Environmental Law and Legislations in India						ТН	
			Hours/ week	3	0	0	3	
Cou	rse Learni	ng Objectives						
1	To expose skill to pre	the students to the need and usefulness of EIA and ERA is pare environmental management plan.	in environmental ma	nageme	nt and t	o devel	op the	
2	To illustra on environ	te the methodology, documentation of EIA and to know a ament.	bout the various imp	acts of	develop	ment p	rojects	
3	To identif	y, predict and evaluate the economic, environmental and at the various impacts of development projects on environm	l social impact of de nent and the mitigation	evelopn ng meas	nent act sures.	ivities	and to	
4	To develop	p the skills to prepare environmental management plan usin	ng modern tools					
5	To provid predicting	e knowledge related to the broad field of environmenta and managing human health risks	l risk assessment an	d tools	that ca	an be u	sed in	
τ	U nit I	INTRODUCTION		9	0	0	9	
Envir	onmental In	npact Assessment (EIA): Objectives, Principles of Process	, Screening of projec	ts- Leg	al provi	sions o	n EIA.	
Envir	onmental ris	sk assessment framework-Hazard identification.						
U	Init II	METHODOLOGIES		9	0	0	9	
Meth	ods of EIA -	-Check lists and Documentation – Matrices – Networks –	Cost-benefit analysis	s – Ana	lysis of	alterna	tives –	
Case	studies- Mu	lti-storey Buildings, Bridges, Highways, Dam and Water s	upply projects	-			-	
U	nit III	PREDICTION AND ASSESSMEN	9	0	0	9		
Predi	ction Metho	dologies-Assessment of Impact on land, water and air, noi	se, social, cultural fl	ora and	fauna-	Mather	natical	
mode	ls- public pa	articipation - Limitation of EIA- Case studies Multi-store	y Buildings, Bridges	, Highw	vays, Da	am and	Water	
suppl	y projects							
U	nit IV	ENVIRONMENTAL MANAGEMENT	PLAN	9	0	0	9	
Envir	onment Pro	tection Acts in India: Air, Water, Lake and River action p	rogrammes; Coastal	zone m	anagem	ent; po	llution	
contr	ol boards, M	lanagement plans using GIS and RS tools						
τ	J nit V	ENVIRONMENTAL RISK ASSESSMENT AND M	IANAGEMENT	9	0	0	9	
Envir	Environmental hazards and risks- Tools for Environmental Risk Assessment-Risk Perception and Communication-Risk							
asses	assessment methodologies- Exposure Assessment and Dose Response Analysis-Emergency Preparedness Plans -Case							
studies-practical applications								
	Total= 45 Periods							

Те	ext Books:
1	Canter, R.L., Environmental Impact Assessment, McGraw-Hill Inc., New Delhi, 1996.
2	Lawrence, D.P., Environmental Impact Assessment – Practical solutions to recurrent problems, Wiley-Interscience, New Jersey. 2003
3	"ENVIRONMENTAL IMPACT ASSESSMENT" for Department of Technical education, Govt of Uttarakhand
Ref	erence Books:

1	Shukla, S.K. and Srivastava, P.R., Concepts in Environmental Impact Analysis, Common Wealth Publishers, New Delhi, 1992.
2	John G. Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook, McGraw-Hill Book Company, 1990
3	Judith Petts, Handbook of Environmental Impact Assessment Vol. I & II, Blackwell Science, 1999.

Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	CO1 Understand the importance of EIA and ERA in project development							
CO2	Apply the mathematical modeling for EIA	Apply						
CO3	Analyze different environmental attributes and selecting the environmental parameters affecting project	Analyze						
CO4	Prepare the environmental management plan including the preparation, implementation and mitigation aspects	Create						
CO5	Evaluate and predict the human health risks	Evaluate						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	3	2	1	1	1	1	1	1	-	2
CO2	3	2	1	2	3	3	2	-	1	1	2	2	2	-	2
CO3	3	2	1	3	3	3	2	-	1	1	2	2	2	-	2
CO4	-	2	1	-	1	2	2	1	3	1	2	2	3	-	3
CO5	-	1	-	1	-	1	2	1	2	1	1	1	1	-	2
Avg	1.2	1.4	0.6	1.2	1.4	2.4	2	0.6	1.6	1	1.6	1.6	1.8	-	2.2
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

18CI	EH203	ENVIRONMENTAL MANAGEMENT AND S DEVELOPMENT	s	er										
PRE	REQUISI	TES	Category	РЕ	Cr	edit	3							
Envi	ronmental	Impact and Risk Assessment	TT /TT / 1-	L	Т	Р	ТН							
Envi	ronmental	Law and Legislations in India	Hours/ week	3	0	0	3							
Cou	rse Learni	ng Objectives												
1	1 To study the variable natures of our environmental resources and to understand their importance associated with our societal life.													
2	To study	To study the variable categories of pollutants and their controlling measures												
3	3 To impart an understanding of systems approach to Environmental Management as per ISO 14000 and to evaluate the management plan using GIS tools													
4	4 To impart skills for environmental performance in terms of legal compliance, pollution prevention and continual improvement.													
5	5 To impart skills for the managing the usage of our natural resources without disrupting balance and stability of the natural system.													
τ	U nit I	ENVIRONMENTAL RESOURCE	ES	9	0	0	9							
Fores	t resources- renewable re	Timber, Medicinal plants, fuel-wood, deforestation, fore sources; Sustainable use	est management- Ma	anageme	ent of r	renewab	ole and							
τ	J nit II	ENVIRONMENTAL POLLUTIO	N	9	0	0	9							
Defin of po flyasl	ition of poll llution and h, thermal st	ution and pollutants; types of pollution-Air, Water,Soil, N control measures; Liquid and Solid waste management, n ations, nuclear power plants	oise, thermal, nuclear uclear holocausts. C	r; cause ase stuc	s of pol dies: lea	llution, ather ind	effects dustry,							
U	nit III	ENVIRONMENTAL MANAGEMENT S	SYSTEM	9	0	0	9							
Envir cycle	onmental N assessment;	Ianagement Systems; ISO14000 series; Environmental at Human health risk assessment. Management plans using (diting: Environmen GIS and RS tools	tal Imp	act Ass	essmen	t; Life							
U	nit IV	ENVIRONMENTAL LAW AND PO	LICY	9	0	0	9							
Envir amen Polic	conmental La dments; The y; Principles	aw and Policy – Objectives; Polluter pays principle, Preca e Environment (Protection) Act (EPA) 1986; National G of International Law and International treaties.	utionary principle; T reen Tribunal Act, 2	The Wat 2010; N	ter and Vational	Air Act Enviro	ts with onment							
τ	J nit V	ENERGY-ENVIRONMENT AND SUSTA DEVELOPMENT	AINABLE	9	0	0	9							
Energ sourc Susta	gy and Envi es; Energy- inable devel	ronment: Energy sources – overview of resources and Environment nexus Sustainable Development: Definition opment goals; Hurdles to sustainability; Environment and	reserves; Renewable ion and concepts o economics.	e and n of susta	on-rene inable	ewable develoj	energy pment;							
					Total	= 45 Pe	eriods							

Те	Text Books:								
1	"Natural Resources Conservation & Management", K.K.SINGH -MD PUBLICATIONS PVT LTD								
2	"Environmental Pollution " by N.MANIVASAKAM,2021								

3	ISO 14001/14004: Environmental management systems –Requirements and Guidelines – International Organisation for Standardisation, 2004.
4	Fundamental Concepts in Environmental Studies by Dr.D.D Mishra
Ref	erence Books:
1	ISO 19011: 2002, "Guidelines for quality and/or Environmental Management System auditing, Bureau of Indian Standards, New Delhi, 2002.
2	Paul LBishop "Pollution Prevention: Fundamentals and Practice", McGraw -Hill International, Boston,2000.
3	Environmental Management Systems: An Implementation Guide for Small and Medium-Sized Organizations, Second Edition, NSF International, Ann Arbor, Michigan, January 2001
4	Christopher Sheldon and Mark Yoxon, "Installing Environmental management Systems –a step by step guide" Earthscan Publications Ltd, London, 1999.

Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Understand the importance of variable natural resources	Understand		
CO2	Understand the necessity of environmental management that will be caused by projects or industries.	Understand		
CO3	Develop, Implement, maintain and Audit Environmental Management systems for Organizations.	Understand/ Evaluate		
CO4	Gain the Knowledge about the legal requirements of Environmental management and auditing	Remembering		
CO5	Understand eco-friendly business in order to achieve sustainable development	Understand		

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	1	2	-	-	3	1	1	1	-	1	3	3	-	-
CO2	-	1	3	-	-	3	1	1	1	-	1	3	3	-	-
CO3	1	1	1	2	2	3	1	-	2	2	3	2	3	-	-
CO4	-	1	1	-	-	3	1	1	2	2	1	2	1	-	-
CO5	1	1	3	2	1	3	3	-	2	-	3	3	3	-	-
Avg	0.4	1	2	0.8	0.6	3	1.4	0.6	2	0.8	1.8	2.6	2.6	-	-
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															
18CEH204 ENVIRONMENTAL LEGISLATIONS IN INDIA Seme															
---	--	---	---	--------------------------------	----------------------------------	--------------------------------	------------------------------	--	--						
PREF	REQUI	SITES	Category	PE	Cre	edit	3								
Water	Supply	/ Engineering, Waste Water Engineering		L	Т	Р	TH								
	Hours/Week						3								
Cours	se Lear	ning Objectives		1			ı								
1	1 To know the pollution control acts for water pollution.														
2	2 To know the pollution control acts forair pollution														
3	3 To impart knowledge of National and international Environmental Policies and gain knowledge about decision making on environmental policies														
4	To in	npart knowledge of the management and handling of Industri	al solid waste.												
5	To in	npart knowledge of the management and handling of E- wast	e.												
Un	it I	THE WATER (PREVENTION & CONTROL OF PO 1974	LLUTION) ACT,	9	0	0	9								
preven Water(invento	tion & o (P&CP) orisation	control-procedures to obtain consent-Monitoring and compl Act-Case studies on water polluting industries-Textile dye a of new water polluting industry and its management-field v	iance mechanisms-leş ing, Paper Mills-Elec isits.	gal prov troplatii	ision fo 1g, Star	or viola ch indu	tion of Istries-								
Uni	it II	THE AIR (PREVENTION & CONTROL OF POLLU	TION) ACT, 1981	9	0	0	9								
standar obtain pollutir	rds for consent ng indu	industries specific- Responsibilities of occupier, provision Monitoring and compliance mechanisms- legal provision for stries-Foundries, Cement, Thermal power plants- invento field visits	s relating to prevent r violation of Air(P& prisation of new Air	ion & c CP)Act pollut	control-j - Case : ing ind	procedu studies lustry a	on Air and its								
Unit	t III	THE ENVIRONMENT (PROTECTION) A	АСТ. 1986	9	0	0	9								
Genesi genetic substar regulat Public	Unit III THE ENVIRONMENT (PROTECTION) ACT, 1986 9 0 0 9 Genesis of the Act-Salient features-Role of Central Government-various notifications and rules – prohibition on import of genetically modified organisms-chemicals-hazardous wastes- Batteries management-Restriction on Ozone depleting substances-EIA notification-Sitting of industries-State level EIA Authorities-eco-mark-Control on noise pollution-coastal regulations- Monitoring and compliance mechanisms-Role of National Green Tribunals(NGT),Environmental courts & Public interest litigation -Case studies														
Unit	t IV	REGULATIONS ON INDUSTRIAL SOLI MANAGEMENT	D WASTE	9	0	0	9								
Restric feature clearar lead re	ction on es-Respo nce, Aut efining, e	Hazardous waste-Bio-medical wastes-Recycled plastic working of occupier/generator/local bodies/PCBs- Methorization, Registration procedures for industry specific-Issengineering units, hospitals, plastic units, Municipal landfills	wastes - Municipal sonitoring and comp sues & Challenges-Bo -field visits	solid wa liance est prac	astes e- mechar tices-Ca	waste-s nisms-c ase stud	Salient onsent lies on								
Uni	it V ELECTRONIC WASTE (MANAGEMENT AND HANDLING) 9 0						9								
Definit respon manag	Definition-Environmental & Occupational Health hazards of e-waste-Salient features of E-waste Rules-Extended producers' responsibility-issues and challenges –Compliance and Consent Clearance mechanisms-Best practices of E-waste management-Case studies on E-waste recycling units, Bulk consumers, Collection Centers-field visits.														
					Total=	= 45 Pe	eriods								

Te	ext Books:
1	P.Leelakrishnan., "Environmental Law in India", Lexis Nexis 4th edition 2016.

2	Stuart Bell and Donald., "Environmental Law", McGillinary sixth edition 2005
3	Shyam Divan and Armin Roseneranz, "Environmental law and policy in India", Oxford University Press, New Delhi, 2017.
4	K.R.Gupta. "Environmental legislation in India", Atlantic 2006.
5	E WASTE MANAGEMENT IN INDIA (2009), Electronics for you, www. efymag.com
Ref	erence Books:
1	Hilary Theisen and Samuel A, Vigil, George Tchobanoglous, "Integrated Solid Waste Management", McGraw- Hill, New York, 1993
2	CPHEEO, Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organization, Government of India, New Delhi, 2000
3	Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans, "Environmental Resources Management, Hazardous waste Management", Mc-Graw Hill International edition, New York, 2001.
4	Vesilind P.A., Worrell W and Reinhart, "Solid waste Engineering", Thomson Learning Inc., Singapore, 2002
5	David ong., "Source book on environmental Law", 2001
6	www.envfor.nic.in

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Summarize the pollution control acts for water pollution	Understand			
CO2	Summarize the pollution control acts for air pollution	Understand			
CO3	Understand the National and international Environmental Policies and Apply the knowledge in Planning and decision making of Environmental policies	Apply			
CO4	Understand the management and handling of Industrial solid waste and E- waste	Understand			
CO5	Understand the management and handling of E- waste	Understand			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	2	-	-	-	1	1	-	-	-
CO2	1	1	2	-	-	1	3	1	-	-	-	1	1	-	-
CO3	-	1	-	-	-	2	3	2	-	-	1	1	-	-	-
CO4	2	3	-	2	-	-	2	1	-	1	2	1	2	-	1
CO5	-	2	1	3	-	1	1	1	-	1	-	1	-	-	-
Avg	0.6	1.4	0.6	1	-	0.8	2.2	1	-	0.4	0.8	1	0.6	-	0.2
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

18	CEH205	ENVIRONMENTAL MICROBIOLO	S	emeste	er			
PRI	EREQUISI	Category	PE	Cre	edit	3		
NIL			TT (TT)	L	Т	Р	ТН	
		Hours/Week		3	0	0	3	
Cou	Course Learning Objectives							
1	1 To understand the basics of microbiology relevant to environmental engineering for students with little prior knowledge of the subject							
2	To study th nutrient cy	ne morphology, behavior and biochemistry of bacteria, fung cle.	gi, protozoa, viruses,	and alg	ae and t	heir rol	e in	
3	To unders	stood the role microbial metabolism in a waste water treatm	nent plant.					
4	To know th	ne role of microorganisms in contaminated water and the di	seases caused.					
5	To gain kr	nowledge to conduct and test the toxicity due to various nat	ural and synthetic pr	oducts i	n the er	vironm	nent	
	Unit I	CLASSIFICATION AND CHARACTERI	STICS	9	0	0	9	
Clas	sification of	microorganisms - prokaryotic, eukaryotic, cell structure,	characteristics, Pres	ervation	n of mie	croorga	nisms,	
DNA	A, RNA, repl	ication, Recombinant DNA technology						
I	Unit II	MICROBES AND NUTRIENT CYCL	ES	9	0	0	9	
Dist	ribution of n	icroorganisms - Distribution / diversity of Microorganism	ms – fresh and mari	ine, terr	estrial -	– micro	bes in	
surfa	ace soil, Air	- outdoor and Indoor, aerosols, bio safety in Laborator	ry – Extreme Envir	onment	– arch	ae bac	teria –	
Nitro	ogen, Carbon	, Phosphorus, Sulphur, Cycle – Role of Microorganism in	nutrient cycle.	inical c	ycies-11	lyulolo	gicai -	
τ	Unit III	METABOLISM OF MICRO ORGANIS	SMS	9	0	0	9	
Nutr	ition and me	tabolism in microorganisms, growth phases, carbohydrate	, protein, lipid metal	bolism ·	– respir	ation, a	erobic	
and phos	anaerobic-fea sphorylation,	mentation, glycolysis, Kreb's cycle, hexose monophospha environmental factors, enzymes, Bioenergetics	ate pathway, electron	n transp	ort syst	em, oxi	idative	
τ	Unit IV	PATHOGENS IN WASTEWATER		9	0	0	9	
Intro path Strep treat Nutr	Introduction to Water Borne pathogens and Parasites and their effects on Human, Animal and Plant health, Transmission of pathogens – Bacterial, Viral, Protozoan, and Helminths, Indicator organisms of water – Coli forms - total coli forms, E-coli, Streptococcus, Clostridium, Concentration and detection of virus. Control of microorganisms; Microbiology of biological treatment processes – aerobic and anaerobic, \Box -oxidation, β -oxidation, nitrification and denitrification, eutrophication. Nutrients Removal – BOD, Nitrogen, Phosphate, Microbiology of Sewage Sludge							
1	Unit V	TOXICOLOGY		9	0	0	9	
Ecot	oxicology –	toxicants and toxicity, Factors influencing toxicity. Effe	ects – acute, chronic	c, Test	organis	ms – te	oxicity	
testi	testing, Bioconcentration – Bioaccumulation, biomagnification, bioassay, biomonitoring, bioleaching							
					Total=	= 45 Pe	eriods	

Te	Text Books:					
1	Hurst, C.J. Manual of "Environmental Microbiology". 3rd Edition. ASM PRESS, Washington, D.C. ISBN 1-55581 - 199- X.2007					
2	Grerard J. Tortora, Berdell R. Funke, Christine and L. Case. Microbiology: An Introduction. Benjamin Cummings, U.S.A. 2004					
3	StanleyE. Manahan, "Environmental Science and Technology", Lewis Publishers.2000					

Ref	Reference Books:					
1	Frank C. Lu and Sam Kacew, LU"s Basic Toxicology, Taylor & Francis, London 5th Ed, 2003					
2	Prescott, L.M., Harley, J.P. and Klein, D.A. Microbiology. McGraw Hill, New York 2006					
3	SVS. Rana, "Essentials of Ecology and Environmental Science", 3rd revised Edition, Prentice Hall of India Private Limited, 2007					
4	Bajwa, G.S. "Practical Handbook on Public Health Engineering", Deep Publishers, Shimla, 2003					

Cour Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understood the basics of microbiology and their diversity and on the genetic material in the living cell.	Understand
CO2	Understood and Describe the type of microorganisms in the environment and the role of microorganisms in the cycling of nutrients in an ecosystem	Understand
CO3	Understood the role of microbial metabolism in a wastewater treatment plant.	Understand
CO4	Understood the role of microorganisms in a contaminated water and the diseases caused.	Understand
CO5	Evaluate test on toxicity due to various natural and synthetic products in the environment	Evaluate

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	1	1	-	-	3	3	-	-	1	-	1	1	-	-
CO2	-	-	-	-	-	3	3	-	-	1	-	1	1	-	-
CO3	-	2	1	-	-	3	3	-	-	1	1	1	1	-	-
CO4	-	1	1	-	-	3	3	-	1	1	1	1	-	-	-
CO5	2	1	1	2	-	3	3	-	3	2	-	2	2	-	-
Avg	0.4	1.2	0.8	0.4	-	3	3	-	0.8	1.2	0.4	1.2	1.0	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18C	EH206	WASTE MANAGEMENT TECHNIC	QUES	S	emeste	er				
PRF	EREQUISI	TES	Category	PE Credit						
NIL	1			L	Т	Р	ТН			
		3	0	0	3					
Cou	Course Learning Objectives									
1	1 To understand the characteristics, types and sources of solid wastes and the present scenario of solid waste management									
2	To evaluate	e on-site processing, recycling and reuse of waste								
3	To evaluate collection s	e the need for economics in collection and transportation of systems	of solid waste and cle	arly dis	cuss va	rious ty	pes of			
4	To gain kn	owledge about off-site processing of solid wastes and its re-	ecovery							
5	To concise	idea on various disposal options for solid waste								
	Unit I	SOURCES AND TYPES OF SOLID W	ASTES	9	0	0	9			
Sour samp mana	ces and type ling and cha gement – soc	es of solid wastes - Quantity – factors affecting generati racterization-Effects of improper disposal of solid wastes cial & economic aspects- Public awareness- Role of NGOs	on of solid wastes; o – public health effe - Legislation.	characte cts. Pri	eristics nciple o	– methor of solid	ods of waste			
J	U nit II	ON-SITE STORAGE & PROCESS	ING	9	0	0	9			
On-s aspec	ite storage n cts of storage	nethods – materials used for containers – on-site segrega e – options under Indian conditions – Critical Evaluation of	tion of solid wastes f Options.	– publi	c health	& eco	nomic			
τ	J nit III	COLLECTION AND TRANSFE	R	9	0	0	9			
Meth	nods of Colle	ction – types of vehicles – collection equipment – collection	on routes- transfer sta	ations –	selectio	on of loo	cation,			
oper	ation & main	tenance; options under Indian conditions.								
U	J nit IV	OFF-SITE PROCESSING		9	0	0	9			
Proc unde	essing techni r Indian cond	ques and Equipment; Resource recovery from solid wasted	es – composting, inci	ineratio	n, Pyrol	ysis - o	ptions			
L I	U nit V	DISPOSAL		9	0	0	9			
Impa Leac	Impacts of open dumping, site investigation and selection, sanitary land filling - Types, design criteria and design, Liners – Leachate collection & treatment.									
	Total= 45 Periods									

Te	Text Books:						
_	Tchobanoglous G., Theissen H., and Eliassen R., "Solid Waste Engineering Principles and Management Issues",						
1	McGraw Hill, New York.						
2	Peavy, Rowe and Tchobanoglous, "Environmental Engineering", McGraw Hill.						
Ref	erence Books:						
	Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government ofIndia,						
1	NewDelhi, 2014.						
2	Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, New Delhi, 1985.						
3	Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi						

Cour Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Identify the characteristics, types and sources of solid wastes and the present scenario of solid waste management	Remember
CO2	Analyze On-site processing of municipal solid wastes and apply knowledge for recycling and reuse of waste	Understand
CO3	Learn the collection methods of solid waste and to transfer it to the disposal site	Apply
CO4	Know about off-site processing of solid wastes and its recovery	Remember
CO5	Apply the effective solid waste disposal methods	Apply

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	1	2	-	-	2	-	-	-	-	-	-	2	2	1
CO2	-	3	-	-	-	2	1	-	-	-	1	-	3	2	2
CO3	1	-	2	-	-	3	-	-	-	-	1	-	2	2	-
CO4	1	2	1	-	1	2	1	1	1	1	1	-	3	1	2
CO5	2	1	1	1	1	1	2	-	2	-	1	1	3	1	1
Avg	1.3	1.8	1.5	1.0	1.0	2.0	1.3	1.0	1.5	1.0	1.0	1.0	2.6	1.6	1.5
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CEI	H207	UNIT OPERATIONS AND PROCESSES IN V WASTE WATER TREATMENT	WATER AND	S								
PRER	REQUISI	ГЕS	Category	PE	Cre	edit	3					
Waste	e Water E	ngineering		L	Т	Р	TH					
			Hours/Week	3	0	0	3					
Cours	e Learnii	ng Objectives		l		I	I					
1 7	Fo understa	and the various general unit operations in waste water treat	ment.									
2 7	2 To examine the physical unit operations and chemical unit processes.											
3 7	Го gain the	knowledge about chemical unit processes and to examine	the biological unit p	rocesses	5							
4 7	Го apply th	e unit operations and processes in waste water treatment m	nethods									
5 7	Го apply th	e unit operations and processes in Sludge disposal method	S									
Ur	nit I	GENERAL UNIT OPERATIONS	5	9	0	0	9					
Importa	Important Unit Operation- Gas Transfer, Ion transfer, Solute stabilization, Solids Transfer, Nutrient transfer- Miscellaneous											
operatio	operations- Solid concentration and stabilization											
Un	nit II	PHYSICOCHEMICAL TREATMENT PR	OCESSES	9	0	0	9					
Role of	f Physical	Unit operations - Preliminary Treatments-Screening, Prin	ciples of screening-	differe	nt type	s of scr	eens –					
Flow ed	qualization	and Aeration-Types - Skimming tank – grit chamber- Stu	dies on filtration –ch	aracteri	stics of	filter m	nedia –					
Coagul	lation and I	Flocculation -Sedimentation and Chemical Clarification-Ty	pes of settling- Batc	h studie	es on se	ttling.	1					
Uni	it III	CHEMICAL AND BIOLOGICAL UNIT PH	ROCESSES	9	0	0	9					
Chemic	cal Unit pro	ocesses-Chemical precipitation, Adsorption, Water softenin	ng -Disinfection, Ion	exchan	ige, Ele	ctro dia	lysis –					
Photoca	atalysis											
Biologi	ical Unit I	Processes-SVI-Aerobic process-Trickling filter, Activated	d sludge process, la	goons-	An-aer	obic p	rocess-					
sludge	digestion,	lagoons or ponds		[[1					
Uni	it IV	METHODS OF TREATMENT OF WAST	EWATER	9	0	0	9					
Conver	ntional Tr	eatment Methods-Preliminary processes-Primary treatm	nent-Biological treat	tment,	their f	unction	is and					
efficien	ncies - Adv	anced waste water treatment- tertiary treatment- Application	on of unit operations	and pro	ocesses	in wast	ewater					
treatme	ent method	S.					1					
Un	nit V	METHODS OF SLUDGE PROCESSING AN	D DISPOSAL	9	0	0	9					
Sludge	treatmen	t processes-sludge thickening or concentration- An	aerobic digestion-A	Aerobic	Diges	tion-	Sludge					
Conditi	10n1ng-Slue	dge Dewatering-Final disposal of sludge-Application of ur	nit operations and pro	ocesses	in Slud	ge proc	essing					
and disposal methods. Total- 45 Periods												
	.											
1 ext	BOOKS:			****		7 1 2	000 51					

1	METCALF & EDDY, "Wastewater Engineering Treatment Disposal Reuse", Tata McGraw-Hill, New York, 2003 5th edition,2013
2	"WASTE WATER ENGINEERING", Dr. B.C. Punmia, Er. Ashok K. Jain, Dr. Arun K. Jain, LAXMI PUBLICATIONS(P)LTD
3	S.K.GARG, "Water supply engineering" and "Sewage waste disposal and air pollution engineering" (VOL 1 & 2), Khanna Publishers, 2017.
Ref	erence Books:

1 KARIA.G.L, "Wastewater treatment- Concepts and design approach", PHI learning private ltd, 2013.

2	WEBER, W.J. Physicochemical processes for water quality control, John Wiley and sons, New York, 1983. 5.
	S.K.GARG, "Water supply
	WATER SUPPLY ENGINEERING", Dr.B.C.Punmia, Er. Ashok K.Jain, Dr.ArunK.Jain, LAXMI PUBLICATIONS (P)
3	LTD

Cour Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understood the various general unit operations in waste water treatment.	Understand
CO2	Examine the physical unit operations and chemical unit processes.	Analyse
CO3	Develop the knowledge about chemical unit processes and to examine the biological unit processes	Apply
CO4	Categorize the unit operations and processes in waste water treatment methods	Analyse
CO5	Categorize the unit operations and processes in Sludge disposal methods	Analyse

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	-	1	-	-	2	-	1	1	2	2	2	-	2
CO2	3	3	1	1	-	-	2	-	1	1	2	2	2	-	2
CO3	3	3	1	1	-	-	2	-	1	1	2	2	2	-	2
CO4	2	2	1	1	-	1	2	-	1	2	2	2	3	-	2
CO5	2	2	1	1	-	1	2	-	1	2	2	2	3	-	2
Avg	2.2	2.0	0.8	1	-	0.4	2	-	1	1.4	2	2	2.4	-	2
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

VERTICAL III – CONSTRUCTION ENGINEERING AND MANAGEMENT

18CI	EH301	SMART MATERIALS AND SMART STR	UCTURES	S	er						
PRE	REQUISI	TES	Category	РЕ	Cre	edit	3				
G			TT (XX) 1	L	Т	Р	ТН				
Cons	truction Ma	ateriais and Technology	Hours/ week	3	0	0	3				
Cou	rse Learni	ng Objectives									
1 To Learn about different types of smart materials											
2	To Study	about advanced measuring instrument									
3	To Under	stand about sensors and its functions									
4	To Study	about various actuator materials and their role									
5	To Learn	about Data acquisition system									
τ	J nit I		9	0	0	9					
Intro	Introduction to smart materials and structures - Instrumented structures functions and response - Sensing systems - Self-										
diagn	diagnosis – Signal processing consideration – Actuation systems and effectors.										
U	Init II	MEASURING TECHNIQUES		9	0	0	9				
Strair	n measuring	techniques using electrical strain gauges, types - Resist	tance - Capacitance	– Indu	ctance	– Whea	atstone				
bridg	es – Pressur	e transducers – Load cells – Temperature Compensation –	Strain Rosettes.								
U	nit III	SENSORS	9	0	0	9					
Sensi	ng Technol	ogy - Types of Sensors - Physical Measurement using H	Piezo Electric Strain	measu	rement	– Indu	ctively				
Read	Transducer	s - The LVOT - Fibre optic Techniques. Chemical and E	Bio-Chemical sensin	g in str	uctural	Assessi	nent –				
Abso	rptive chem	ical sensors –Spectroscopes – Fibre Optic Chemical Sensin	ng Systems and Distri	ibuted n	neasure	ment.					
U	nit IV	ACTUATORS		9	0	0	9				
Actua	ator techniq	ues - Actuator and actuator materials - Piezoelectric an	d electro strictive m	naterial	– Mag	neto sti	ructure				
mater	rial – Shape	e memory alloys - Electrorheological fluids- Electromagn	netic actuation – Ro	ole of a	ctuators	and a	ctuator				
materials.											
I	Unit VSIGNAL PROCESSING AND CONTROL SYSTEMS9009										
Data	acquisition	and processing - Signal processing and control for smart	structures - Sensors	as geo	metrica	l proces	ssors –				
Signa	Signal processing – Control system – Linear and Non-linear.										
					Total	= 45 Pe	eriods				

Te	Text Books:								
1	U. C. Jindal – Experimental Stress Analysis – Pearson Education India, 1st Edition,2012								
2	Brain Culshaw – Smart Structure and Materials – Artech House – Borton. London, 7th Edition, 2004								
Ref	ference Books:								

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Describe the knowledge on the self-diagnosis, functions and response of various smart materials	Understand					
CO2	Explain the knowledge on instrumentation for measuring strains, load and deflection	Understand					
CO3	Discuss the concepts of sensors parameters and characteristics	Understand					
CO4	Explain about actuator techniques and Materials	Understand					
CO5	Discuss the concepts of signal processing and control system	Understand					

1

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	3	-	2	-	-	-	-	1	2	-	-
CO2	1	-	-	-	3	-	2	-	-	-	-	1	2	-	-
CO3	1	-	-	-	3	-	2	-	-	-	-	1	2	-	-
CO4	1	-	-	-	3	-	2	-	-	-	-	1	2	-	-
CO5	1	-	-	-	3	-	2	-	-	-	-	1	2	-	-
Avg	1	-	-	-	3	-	2	-	-	-	-	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CEF	H302	CONSTRUCTION TECHNIQUES AND EQ	QUIPMENT	S	emeste	er					
PRER	EQUISI	TES	Category	PE	Cre	edit	3				
Constr	ruction P	ractice	11 / 1	L	Т	Р	TH				
			Hours/ week	3	0	0	3				
Course	e Learni	ng Objectives									
1	To impa	art knowledge about the various construction techniques, pa	ractices and equipme	ents							
2	To impa	art knowledge about the various construction procedures for	or sub to super struct	ure							
3	To study equipment needed for construction of various types of structures from foundation to super structure.										
4	4 To attain adequate knowledge in various tunneling techniques and piling techniques.										
5	To intro	duce the students to advanced earthwork equipments.									
Un	Unit I EARTHWORK AND MATERIAL HANDLING EQUIPMENTS 9 0 0										
Fundam	Fundamentals of earth work operations-Selection of equipment for earth work- Types of earth work equipment-Tractors,										
Motor g	graders, Sc	crapers, Front end waders, Earth movers. Material handling	g equipment-Forklifts	and rel	lated eq	uipmen	t-				
Portable	e material	bins-conveyors-hauling equipment									
Uni	it II	EQUIPMEMTS FOR AGGREGATE PRODU CONCRETING	UCTION AND	9	0	0	9				
Crusher	s-Feeders	-screening equipment-handling equipment-batchingand mi	xing equipment, hau	ling, po	uring a	nd pum	ping				
equipme	ent, RMC	equipment									
Uni	t III	OTHER CONSTRUCTION EQUIPM	ENTS	9	0	0	9				
Equipm	ent for C	oncreting Equipment for Foundation, Pile driving equipment	ment, micro piling-l	Equipm	ent for	compa	ction -				
Equipm	ent for de	watering and grouting Rehabilitation techniques.									
Uni	t IV	SUBSTRUCTURE CONSTRUCTION	ON	9	0	0	9				
Techniq	ues for bo	ox jacking, pipe jacking, diaphragm wall construction-pilin	g techniques-driving	well ar	nd caiss	on-coff	erdam				
-sheet p	-sheet piles-dewatering and stand by plant equipment for underground open excavation										
Uni	it V	SUPERSTRUCTURE CONSTRUCT	ION	9	0	0	9				
Vacuum	n dewater	ing for concrete flooring-Techniques for continuous conc	ereting operations - (Concrete	e pavin	g techn	ology-				
Erection	Erection techniques of fall structures-pre stressing in high rise structures- aerial transporting										
	Total= 45 Periods										

Те	ext Books:
1	Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., "Construction Planning, Equipment and Methods", 5th Edition, McGraw Hill, Singapore, 1995.
2	Arora S.P. and Bindra S.P., "Building Construction, Planning Techniques and Method of Construction", Dhanpat Rai and Sons, 1997."Concrete Technology, Theory and Practice", S. Chand and Company Ltd, New Delhi, 2008.
3	Varghese, P.C. " Building construction", Prentice Hall of India Pvt. Ltd, New Delhi, 2007. 4. Shetty, M.S,
4	Hopkinson and Kay J.D. The lighting of buildings, Faber and Faber, London
Ref	erence Books:

-	
1	Jha J and Sinha S.K., "Construction and Foundation Engineering", Khanna Publishers, 1999.
2	Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 2002.
3	Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers, New Delhi, 2012.
4	Dr. Mahesh Varma, "Construction Equipment and its Planning and Application",Metropolitan Book Company, New Delhi, 1983.
5	Gambhir, M.L, " Concrete Technology", Tata McGraw Hill Publishing Company Ltd,New Delhi,2004

Course Outcomes: Upon completion of this course, the students will be able to:					
C01	Apply engineering fundamentals and analysis to the planning, selection utilization of earthwork and material handling equipment	Apply			
CO2	Describe Concreting and aggregate production equipment its application and utilization	Apply			
CO3	Demonstrate various Equipment for Construction and Rehabilitation works.	Understand			
CO4	Identify Sub-structure construction techniques and explain their utilization in Construction Industry	Understand			
CO5	Apply appropriate techniques for the construction of Super-structures	Apply			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	2	3	-	3	1	-	-	-	-	2	-	1
CO2	-	-	-	2	2	2	1	1	-	-	-	-	2	-	1
CO3	-	-	-	2	2	2	1	2	-	-	-	-	2	-	1
CO4	-	-	-	2	2	3	2	3	-	3	-	-	2	-	1
CO5	-	-	-	2	2	3	2	3	-	3	-	-	2	-	1
Avg	-	-	-	5	5.5	5	4.5	5	-	3	-	-	5	-	2.5
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CI	EH303	PROJECT SAFETY MANAGEME	NT	Semester					
PRE	REQUISI	TES	Category	PE Credit					
				L	Т	Р	TH		
NIL			Hours/Week	3	0	0	3		
Cour	rse Learni	ng Objectives		1					
1	To know	the basics of project & construction management & safety s	standards.						
2	To unders	tand the concepts of construction planning and scheduling	in terms of safety in	the con	structio	n.			
3	To know	the basis safety in material handling, storage and staking of	construction materi	als.					
4	To unders	tand the safety concepts of machinery and equipment mana	agement.						
5	To unders	tand the various rules and regulations involved in safety in	construction.						
J	J nit I	SAFETY ISSUES IN CONSTRUCT	ION	9	0	0	9		
Introd	luction to C	Construction Industry- Safety issues in construction- Hur	nan factors in cons	truction	safety	manag	ement.		
Roles	of various	groups in ensuring safety in construction industry. Fran	ning Contract cond	itions of	n safety	, and	related		
matte	rs. Relevano	ce of ergonomics in construction safety.							
U	nit II	SAFETY IN CONSTRUCTION OPERATION PROVISIONS	IS & CODAL	9	0	0	9		
Safety	y in various	construction operations- Excavation- under- water works-	under- pinning & sh	oring La	adders &	k Scaff	olds-		
Tunne	eling- Blasti	ng- Demolition- Pneumatic caissons- confined Space Temp	porary Structures. In	dian Sta	indards	on			
constr	ruction safe	ty- National Building Code Provisions on construction safe	ty.						
U	nit III	MATERIAL HANDLING		9	0	0	9		
Safety	y in materia	handling and equipments-Safety in storage & stacking of	construction materia	lls.					
U	nit IV	CONSTRUCTION EQUIPMENTS & ITS	SAFETY	9	0	0	9		
Safety	y in these c	f construction equipments- Vehicles, Cranes, Tower Cra	nes, Lifting gears,	Hoists &	& Lifts,	Wire	Ropes,		
Pulley	y blocks, M	ixers, Conveyors, Pneumatic and hydraulic tools in constru-	ction. Temporary po	wer sup	ply.				
U	Unit VCONTRACT LABOR (R&A) ACT AND CENTRAL RULES9009								
Definitions, Registration of Establishments, Licensing of Contractors, Welfare and Health provisions in the Act and the							nd the		
Rules, Penalties, Rules regarding wages. Building & Other Construction Workers (RE&CS) Act,1996 and Central Rules,									
1998: Applicability, Administration, Registration, Welfare Board & Welfare Fund, Training of Building workers, General									
Safety	y, Health &	Well fare provisions, Penalties.							
	Total= 45 Periods								

Te	ext Books:
1	Kumar Neeraj Jha, "Construction Project Management, Theory and Practices" Pearson Education India, 2nd Edition, 2015.
2	Srinath L S, "PERT/CPM Principles and Applications", Affiliated East West Press (P) ltd, 3 rd Edition 2002.
3	Chitkara, K.K. "Construction Project Management Planning, Scheduling and Control", Tata McGraw-Hill Publishing Co., New Delhi, 3rd Edition 2014.

4	Punmia B C and Khandelwal K K, "Project Planning and Control with PERT and CPM", Laxmi Publications, 4thEdition 2016.						
5	Chris Hendrickson and Tung Au, "Project Management for Construction – Fundamentals Concepts for Owners, Engineers, Architects and Builders", Prentice Hall, Pitsburgh, 3rd Reprint 2012.						
Ref	Reference Books:						
1	Civil Engineering Project Management 4Th Edition by Twort; Gordon Rees, Taylor & Francis						
2	Handbook of Civil Engineering (Ready Reference for Practicing Engineers) By Prof. V. N. Vazirani & Prof. S.P. Chandola.						

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Carry out the resource planning, pre-contract planning and prepare safety measurements for projects.	Remember				
CO2	Identify and smoothen the level of safety demand during project execution.	Understand				
CO3	Handling the resources and safety management simultaneously.	Create				
CO4	Managing safety in equipment and machinery requirements.	Analyze				
CO5	Knowing and satisfies the Codal requirements and Laws	Apply				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	1	3	1	2	-	1	2	3	-	1
CO2	-	-	-	-	3	1	3	1	2	-	1	2	3	-	1
CO3	-	-	-	-	3	1	3	1	2	-	1	2	3	-	1
CO4	-	-	-	-	3	1	3	1	2	-	1	2	3	-	1
CO5	-	-	-	-	3	1	3	1	2	-	1	2	3	-	1
Avg	-	-	-	-	3	1	3	1	2	-	1	2	3	-	1
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

18CF	EH304	SUSTAINABLE AND GREEN BUILDING TI	ECHNOLOGY	Semester				
PRE	REQUISI	TES	Category	PE	3			
Const	truction Ma	aterials and Technology, Environmental Science and		L	Т	Р	ТН	
Engin	Engineering Hours/Week						3	
Cour	se Learni	ng Objectives			_	-	_	
1	To Know	various aspects of green buildings						
2	To Use di	fferent steps involved in measuring environmental impact	assessment.					
3	To Relate	the construction of green building with prevailing energy	conservation policy a	and regu	ulations.			
4	To Know	and identify different green building construction material	s.					
5	To Learn	different rating systems and their criteria						
τ	J nit I	INTRODUCTION TO GREEN BUILDING A FEATURES	AND DESIGN	9	0	0	9	
Defin	ition of Gre	een Building, Benefits of Green Building, Components/ fo	eatures of Green Bui	lding, S	Site sele	ction, I	Energy	
Effici	ency, Water	r efficiency, Material Efficiency, Indoor Air Quality.						
Site s	selection st	trategies, Landscaping, building form, orientation, bui	lding envelope and	fenest	ration,	materia	al and	
constr	uction tech	iniques, roofs, walls, fenestration and shaded finishes, ac	dvanced passive heat	ting and	1 coolin	g techi	niques,	
waste	reduction c	luring construction.		1	1		1	
U	nit II	ENERGY AUDIT AND ENVIKONMENTA ASSESSMENT	L IMPACT	9	0	0	9	
Mean	ing. Necess	ity. Procedures. Types. Energy Management Programs.						
Introd	luction, EIA	A regulations, Steps in environmental impact assessment	t process, Benefits of	of EIA,	Limita	tions of	f EIA,	
Envir	onmental cl	earance for civil engineering projects.	1 /	,			,	
U	nit III	ENERGY AND ENERGY CONSERVA	ATION	9	0	0	9	
Renew	vable Energ	y Resources:Solar Energy, Wind Energy, Ocean Energy, H	Hydro Energy, Bioma	ass Ener	gy.			
Non-r	enewable E	Energy Resources: Coal, Petroleum, Natural Gas, Nuclear	Energy, Chemical So	ources o	of Energ	y, Fuel	Cells,	
Hydro	ogen, Biofu	els. Introduction, Specific objectives, present scenario, N	leed of energy conse	rvation	, LEED	India	Rating	
System	m and Ener	gy Efficiency. Energy-saving houses, Green House, Passiv	ve house, Passive hou	ise cons	truction	, Low-	energy	
house	, Zero-energ	gy house, Energy consulting, Energy efficiency:			1		1	
U	nit IV	PRINCIPLES AND PLANNING OF GREEN	N BUILDING	9	0	0	9	
Featur	res: Salient	features of Green Building, Environmental design (ED) stu	rategies for building	construc	ction.			
Proce	ss: Improve	ment in environmental quality in civil structure Materials:	Green building mate	erials an	id produ	icts- Ba	mboo,	
Rice 1	husk ash co	oncrete, plastic bricks, Bagasse particle board, Insulated	concrete forms. reu	se of w	aste ma	aterial-I	Plastic,	
rubbe	r, Newspap	er wood, Nontoxic paint, green roofing.						
Housi	Housing modernization and management (building and construction safety, energy efficiency in housing, Property							
Refur	bishment /)	Upgrade / Modernization / Renovation - Modular kitchens,	, bathrooms		1		1	
U	nit V	RATING SYSTEM		9	0	0	9	
Introd	luction to (LEED) criteria, Indian Green Building council (IGBC) G	Breen rating, Green H	Rating f	or Integ	grated H	Habitat	
Asses	Assessment. (GRIHA) criteria Heating Ventilation Air Conditioning (HVAC) unit in green Building Functions of							
Government organization working for Energy conservation and Audit(ECA) - National Productivity council (NPC) Ministry								
of Ne	of New and Renewable Energy (MNRE) Bureau of Energy efficiency (BEE) -BER (Building Energy Rating) - Certificates –							
Plumb	Plumbing and Electrical to heating efficiency							
					I otal:	= 45 P(eriods	

Те	ext Books:
1	Kibert, C.J., Sustainable construction: Green Building design and Delivery, John Wiley Hobouken, NewJersey, 3rd
1	Edition, 2012.
•	Chauhan, D S Sreevasthava, S K., Non-conventional Energy Resources, New Age International Publishers, NewDelhi, 4 th
2	Edition, 2021
Ref	erence Books:
1	O.P. Gupta, Energy Technology, Khanna Publishing House, NewDelhi
	Jagadeesh, K S, Reddy Venkatta Rama &Nanjunda Rao, K S., Alternative Building Materials and Technologies, New
2	Age International Publishers, New Delhi.
3	Sam Kubba., Handbook of Green Building Design and Construction, Butterworth- Heinemann.
4	Means R S, Green Building - Project Planning and Cost Estimating, John Wiley &Sons
5	Sharma K V, Venkataseshaiah P., Energy Management and Conservation, IK International.

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the concepts of Green Building and its Design Features.	Understand				
CO2	Assess Environmental Impacts.	Evaluate				
CO3	Explain the concept of Energy and Energy Conservation.	Understand				
CO4	Discuss the Principles and Planning of Green Building.	Understand				
CO5	Summarize the green Building Functions in various organizations.	Understand				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	1	1	2	3	-	-	1	2	1	2	-	-
CO2	-	1	1	2	-	-	-	1	-	2	-	-	1	3	-
CO3	-	-	3	-	3	-	-	-	-	2	-	-	-	-	-
CO4	1	-	-	-	3	-	-	-	-	2	2	-	-	-	-
CO5	1	1	2	3	3	-	-	-	-	3	2	-	-	3	-
Avg	1	1	2	2	2.5	2	3	1	-	2	2	1	1.5	3	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CEH305 FUNCTIONAL PLANNING IN BUILDING SERVICES Semester							
PRE	REOUISI	TES		DE	Cre	edit	3
Con	struction N	Actorials	Cutegory	ГЕ	т	D	ти
Cons	sti uction N		Hours/Week	3	1	1	3
Сош	rse Learni	ng Objectives		5	U	U	5
1	To study o	reneral planning considerations and development cont	rol rules for different tyr	es of bui	Idings		
2	To underst	tand the relevant code and manuals for designing of h	uilding services	05 01 0 01	laingo		
3	To apply t	he principles of electrical and lighting and plumbing s	ervices for different use	s in build	lings		
4	To Plan ar building	nd design the requirements for HVAC systems, fire-fig	ghting and other necessa	ry servic	es for a	variou	s types
5	To incorpo	prate the integrated planning and designing of necessar	ry building services for t	oetter usa	ige of b	uilding	8
τ	U nit I	GENERAL PLANNING	r	9	0	0	9
classi	fications of	buildings, Planning permissions, permitted activity,	Area and height limitati	ons, Cor	nmunity	y open	spaces
and a	menities – C	Green Buildings-Intelligent buildings					
U	J nit II	ELECTRICAL SYSTEMS AND INST	TALLATIONS	9	0	0	9
Basic	s of electric	ity – Single and three phase supply- Protective device	s in electrical installation	n – types	of earth	ning, Pl	anning
electr	rical wiring f	for building-Electrical layout for residential buildings					
U	nit III	LIGHTING AND PLUMBING SI	ERVICES	9	0	0	9
Class	ification of	Lighting, -Energy conservation in lighting-Minimun	n level of illumination r	equired	for diff	erent ty	pes of
build	ings.						
Princ	iples of Wa	ter supply and distribution, Sanitation in buildings,	Water Conservation me	easures -	– Plan	and de	sign of
storm	n water drain	age and rain water harvesting systemDecentralized	wastewater treatment sy	stem.			
U	nit IV	HEATING VENTILATION AND AIR C	CONDITIONING	9	0	0	9
Beha	vior of He	at Propagation, General methods of Thermal Insu	lation- Basic principle	s of Ve	entilatio	n-Syste	ems of
venti	lation, Basic	principles and essentials of Air Conditioning			-	-	
τ	J nit V	FIRE FIGHTING AND MISCELLANE	OUS SERVICES	9	0	0	9
Class	ification of	buildings based on occupancy- fire fighting protection	n and fire resistance ration	ng, planr	ning cor	nsiderat	ions in
build	ing for Fire	protection-fire detection and fire fighting installation i	n buildings.				
Misco	ellaneous: B	uilding safety and security systems - Elevators and E	scalators their standards	and uses	- Acou	istic sei	vices -
Nece	ssity of integ	grated planning and designing of different services in l	buildings				
					Total	= 45 P	eriods
Ter							
	AL DOOKS:						
	National Bui	laing Code of India -2005					
Kefe	erence Boo	KS:					

1 Development Control Rules by Chennai Metropolitan Development Agency - 2006

2	Energy Conservation Building Code – 2007
3	CPHEEO Manual on Sewerage and sewage treatment systems – 2013
4	Manual for environmental clearance for large construction projects – by Ministry of environment, forest and climate change.

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:					
C01	Apply the general planning considerations and development control rules for different types of buildings	Apply				
CO2	Understand the Relevant code and manuals for designing of building services	Understand				
CO3	Apply the principles of electrical and lighting and plumbing services for different uses in buildings	Apply				
CO4	Plan and design the requirements for HVAC systems, fire fighting and other necessary services for a various types building	Apply				
CO5	Incorporate the integrated planning and designing of necessary building services for better usage of buildings	Apply				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	2	-	2	2	2	3	-	-	3	1	3	-	-
CO2	-	-	2	-	3	2	2	3	-	-	3	2	3	-	-
CO3	-	-	2	-	3	3	3	3	-	-	3	2	3	-	-
CO4	-	-	3	-	3	3	3	3	-	-	3	2	3	-	-
CO5	-	-	3	-	3	3	3	3	-	-	3	2	3	-	-
Avg	-	-	2.4	-	2.8	2.6	2.6	3	-	-	3	1.8	3	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CEH	1306	BUILDING VALUATION		Semester				
PRERI	EQUISI	ГЕS	Category	PE	Cre	edit	3	
0				L	Т	Р	ТН	
Constr	uction N	laterials, Concrete Technology	Hours/Week	3	0	0	3	
Course	Course Learning Objectives							
1 To	o study th	e different methods of valuation						
2 To	o understa	and procedure of depreciation for all building.						
3 To	o study re	ntal Process, Calculations of Rent and Lease for Building						
4 To	o Underst	and the Valuation of land						
5 To	o Study th	e Environmental issues in valuation						
Uni	it I	ON	9	0	0	9		
Definitio	ons -Nece	essity of valuation -Valuation of building- Methods of V	aluation-factors affe	cting th	e valua	tion bu	ilding-	
Various	types of v	valuation-Cost from record-Cost by detailed Measurement	-Cost by plinth area 1	nethods				
Uni	t II	VALUATION ON DEPRECIATIO	N	9	0	0	9	
Age of l	building-	Effective age- Economic life and Remaining life- Depre	ciated replacement c	ost- De	preciati	on met	hod of	
valuation	n Capitali	zed value – sinking fund – Escalation		1				
Unit	t III	RENTAL FIXATION OF BUILDIN	9	0	0	9		
Fixation and Calc	of Rent- culation o	Gross rent-Net rent- Calculation of Standard rent-Metho f Rent of government building- Mortgage-lease-building l	ods of rental Calcula ease-Occupational lea	tion-rer ase-Eas	it Statei ement.	ment-Fi	xation	
Unit	t IV	VALUATION OF LAND		9	0	0	9	
Land Ch	naracterist	ics- Cost approach to values - Market approach to values	s– Income approach t	o value	s – limi	tation-F	Factors	
to be co	onsider for	r land valuation-Valuation of Properties-valuation of spe	ecial type of properti	es-Valu	ation of	f Agric	ultural	
lands.				1			1	
Uni	it V	ENVIRONMENTAL ISSUES IN VALU	JATION	9	0	0	9	
Environ	ment and	Valuation - Difference between the market price and	the negative value co	onseque	ent on e	environi	mental	
impact –	impact – Environmental issues of air pollution, water pollution, environmental factors and their effects, measures to restore							
the dama	the damage cost to cure –Outlines of environmental legislation-Laws related to environmental protection acts-Case studies.							
inecessit	Necessity — Valuation of land – Buildings – Lease. Total – 45 Periods							

Те	ext Books:
1	Dutta BN, Estimating & costing in Civil Engineering, UBS Publishers & Distributors Pvt. Ltd, 28th Edition 2020
2	Theory and practice of Valuation, Roshan H, Namavati, Lakshmi Book Deport Pvt Ltd, 1 ST January 2016
3	Rangwala SC Estimating & Costing, CCharotar Publishing House Pvt Ltd, 1 ST January 2017
4	Valuation of Immovable Properties, K.Dhivakar, Star Color Park India Pvt Ltd, 1 ST January 2021
Ref	erence Books:
1	M. Chakraborty, Estimation, costing, Specification & Valuation in Civil Engineering, Charotar Publishing House Pvt Ltd1 st January 2006

2	Valuation of Relating of standard Rent, Roshan H,Namavati, Lakshmi Book Deport Pvt Ltd, 1 ST January 2016
3	Valuation of Real Property, Shymles Datta, Syamales Datta Pvt Ltd, 1 st Edition 2016
4	Law of Land Acquisition and Compensation, V.G.Ramachandran Eastern Book Co 8 th Edition 2020.
5	Environmental Protection Act 1986.Universal/LexisNexis, 31 December 2020

Cour Upon	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Understand knowledge in valuation of building.	Understand				
CO2	Analyze the Depreciation values of building.	Analyze				
CO3	Evaluate the Rental Fixation of Building.	Evaluate				
CO4	Understand knowledge in valuation of land.	Understand				
CO5	Remember the Environmental issues in Valuation	Remember				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	2	-	-	-	-	-	-	1	-	3	-
CO2	2	3	2	-	-	-	-	-	-	-	-	1	-	3	-
CO3	2	2	1	-	1	-	-	1	-	-	-	1	-	2	-
CO4	2	2	1	-	1	-	-	-	-	-	-	1	-	2	-
CO5	2	2	3	-	1	2	3	-	-	-	-	1	1	2	-
Avg	2	2.2	1.8	-	1.2	2	3	1	-	-	-	1	1	2.4	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

		QUALITY CONTROL AND ASSURAN	NCE IN					
18CI	E H307	CONSTRUCTION		S	emeste	er		
PRE	REQUISI	TES	Category	PE	Cre	edit	3	
Cons	truction M	anagement		L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cour	Course Learning Objectives							
1	To impart	basic knowledge about the basics of quality management a	and quality plan.					
2	To introdu	ace the students about the preparation of quality system doe	cumentation.					
3	To make	the students acquire a wide knowledge in the key drivers or	n methods about the	quality	policies			
4	To learn t	he methods of techniques and their needs for quality assura	nce and quality cont	rol				
5	To make	the students understand the quality construction techniques						
τ	J nit I	QUALITY MANAGEMENT		9	0	0	9	
Introc	luction – De	finitions and objectives – Factor influencing construction of	quality - Responsibil	ities and	1 author	ity - Qı	ality	
plan -	Quality Ma	anagement Guidelines – Quality circles.						
U	nit II	QUALITY SYSTEMS		9	0	0	9	
Introc	luction - Q	uality system standard – ISO 9000 family of standard	ds – Requirements	–Prepa	ring Qu	uality S	System	
Docu	ments – Qua	ality related training – Implementing a Quality system – Th	ird party Certificatio	on.				
U	nit III	QUALITY PLANNING	9	0	0	9		
Quali Comp constr implio	ty Policy, pletion - Sta ruction pro- cation.	Objectives and methods in Construction industry - C atistical tolerance – Taguchi's concept of quality – Cod gramming – Inspection procedures - Processes and pro	onsumers satisfactiones and Standards – oducts – Total QA	on, Erg Docum / QC]	onomic nents – program	s - Ti Contra ume an	me of ct and d cost	
U	nit IV	QUALITY ASSURANCE AND CONT	rol	9	0	0	9	
Object of QA and f reliab	tives - Reg A/QC - Diffe ailure mode ility predict	ularity agent, owner, design, contract and construction-orie erent aspects of quality - Appraisals, Factors influencing co e analysis, -Stability methods and tools, optimum design ion.	ented objectives, met onstruction quality - (a - Reliability testing	hods - 7 Critical, g, relia	Fechniq major f bility co	ues and failure a pefficie	needs aspects nt and	
U	nit V	QUALITY IMPROVEMENT TECHNI	IQUES	9	0	0	9	
Select activi costin	Selection of new materials - Influence of drawings, detailing, specification, standardization - Bill preparation - Construction activity, environmental safety, social and environmental factors - Natural causes and speed of construction - Life cycle costing - Value engineering and value analysis. Total= 45 Periods							

Те	ext Books:
1	James, J.O' Brian, Construction Inspection Handbook – Quality Assurance and Quality Control, Van Nostrand, New York, 1989.
2	Kwaku, A., Tena, Jose, M. Guevara, Fundamentals of Construction Management and Organisation, Reston Publishing Co., Inc., Virginia, 1985.
3	Juran Frank, J.M. and Gryna, F.M. Quality Planning and Analysis, Tata McGraw Hill, 1993

Ref	Reference Books:								
1	Hutchins.G, ISO 9000, Viva Books, New Delhi, 2000								
2	Clarkson H. Oglesby, Productivity Improvement in Construction, McGraw-Hill, 1989.								
3	John L. Ashford, The Management of Quality in Construction, E & F.N.Spon, New York, 1989.								
4	Steven McCabe, Quality Improvement Techniques in Construction, Addison Wesley Longman Ltd, England. 1998.								

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand basic knowledge about the basics of quality management and quality plan.	Understand				
CO2	To know the preparation of quality system documentation and their Standards.	Remember				
CO3	Understanding the methods about the quality policies.	Understand				
CO4	Apply the methods of techniques and their needs for quality assurance/ quality control and failure modes	Apply				
CO5	To create the bill preparation for quality construction techniques	Create				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	1	-	1	-	1	-	-	1	1	-	-	2	-	-
CO2	2	-	-	-	-	-	-	-	-	3	2	2	1	-	-
CO3	-	-	-	-	-	-	-	-	-	-	1	1	1	-	-
CO4	-	-	-	1	3	-	-	-	-	-	1	1	1	-	-
CO5	1	1	-	1	3	-	-	-	-	-	1	1	1	-	-
Avg	1.5	1	-	1	3	1	-	-	1	2	1.2	1.2	1.2	-	-
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

GOVERNMENT COLLEGE OF ENGINEERING, SALEM

REGULATION 2018 A - VERTICALS FOR MINOR DEGREE

VERTICAL - I	VERTICAL - II	VERTICAL - III	VERTICAL - IV	VERTICAL - V	VERTICAL - VI
Civil Engineering	Computer Science and Engineering	Electronics and Communication Engineering	Electrical and Electronics Engineering	Mechanical Engineering	Metallurgical Engineering
18CEM01 Construction Materials	18CSM01 Programming in C++	18ECM01 Electron Devices	18EEM01 – Network Analysis and Synthesis	18MEM01 Engineering Thermodynamics	18MTM01 Advanced Physical Metallurgy
18CEM02 Building Construction & Equipment	18CSM02 Advanced Data Structures and Algorithms	18ECM02 Digital Electronics	18EEM02 – Signals and Systems	18MEM02 Fluid Mechanics and Machinery	18MTM02 Metallurgical Thermodynamics and kinetics
18CEM03 Concrete Technology	18CSM03 Computer Organization and Design	18ECM03 Electronic Circuits (EC-I & EC- II, LIC)	18EEM03 – Linear and Digital Electronics Circuits	18MEM03 Manufacturing Processes	18MTM03 Mechanical Behaviour of Materials
18CEM04 Environmental Engineering	18CSM04 Advanced Operating Systems	18ECM04 Signal Processing	18EEM04 – Microprocessor and Microcontrollers	18MEM04 Materials Engineering	18MTM04 Rate Processing in Metallurgy
18CEM05 Basics of Transportation Engineering	18CSM05 Data Communication and Computer Networks	18ECM05 Microprocessors and Microcontrollers	18EEM05 – Control Systems	18MEM05 Kinematics of Machinery	18MTM05 Corrosion and Surface Engineering
18CEM06 Repair and Rehabilitation Structures	18CSM06 Programming Essentials in Python	18ECM06 Analog and Digital Communication	18EEM06 – Measurement and Instrumentation	18MEM06 Hydraulics and Pneumatics	18MTM06 Characterization of Materials
18CEM07 Green Building Technology	18CSM07 Advanced Database System Concepts	18ECM07 Communication Networks (CN)	18EEM07 – Electrical Machines	18MEM07 Design of Machine Elements	18MTM07 Automotive, Aerospace and Defense Materials
	18CSM08 Virtualization and Cloud Computing	18ECM08 Fundamentals of IoT	18EEM08 – Electric Drives and Control	18MEM08 Heat and Mass Transfer	
		18ECM09 Wireless Sensors and Networking (WSN)	18EEM09 – Electric Vehicle and Control	18MEM09 Metrology and Quality Control	
		18ECM10 Basics of Embedded Systems	18EEM10 –Electric Energy Conservation and Auditing	18MEM10 Dynamics of Machinery	

LIST OF MINOR DEGREE - VERTICALS

	Course			Но	urs/W	eek	dits	Maximum Marks			
S.No.	Code	Course	Cat	L	Т	Р	Cree	CA	FE	Total	
		CIVIL ENGIN	EERIN	G							
1	18CEM01	Construction Materials	OE	3	0	0	3	40	60	100	
2	18CEM02	Building Construction & Equipment's	OE	3	0	0	3	40	60	100	
3	18CEM03	Concrete Technology	OE	3	0	0	3	40	60	100	
4	18CEM04	Environmental Engineering	OE	3	0	0	3	40	60	100	
5	18CEM05	Basics of Transportation Engineering	OE	3	0	0	3	40	60	100	
6	18CEM06	Repair and Rehabilitation of Structures	OE	3	0	0	3	40	60	100	
7	18CEM07	Green Building Technology	OE	3	0	0	3	40	60	100	
COMPUTER SCIENCE AND ENGINEERING											
1	18CSM01	Programming in C++	OE	3	0	0	3	40	60	100	
2	18CSM02	Advanced Data Structures and Algorithms	OE	3	0	0	3	40	60	100	
3	18CSM03	Computer Organization and Design	OE	3	0	0	3	40	60	100	
4	18CSM04	Advanced Operating Systems	OE	3	0	0	3	40	60	100	
5	18CSM05	Data Communication and Computer Networks	OE	3	0	0	3	40	60	100	
6	18CSM06	Programming Essentials in Python	OE	3	0	0	3	40	60	100	
7	18CSM07	Advanced Database System Concepts	OE	3	0	0	3	40	60	100	
8	18CSM08	Virtualization and Cloud Computing	OE	3	0	0	3	40	60	100	
	I	ELECTRONICS AND COMMUN	ICATIO	ON EN	IGINE	ERIN	G				
1	18ECM01	Electron Devices	OE	3	0	0	3	40	60	100	
2	18ECM02	Digital Electronics	OE	3	0	0	3	40	60	100	
3	18ECM03	Electronic Circuits	OE	3	0	0	3	40	60	100	
4	18ECM04	Signal Processing	OE	3	0	0	3	40	60	100	
5	18ECM05	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100	

6	18ECM06	Analog and Digital Communication	OE	3	0	0	3	40	60	100
7	18ECM07	Communication Networks	OE	3	0	0	3	40	60	100
8	18ECM08	Fundamentals of IoT	OE	3	0	0	3	40	60	100
9	18ECM09	Wireless sensors and networking	OE	3	0	0	3	40	60	100
10	18ECM10	Basics of Embedded systems	OE	3	0	0	3	40	60	100
	I	ELECTRICAL AND ELECTR	ONICS	ENG	NEEF	RING	1			
1	18EEM01	Linear and Digital Electronics Circuits	OE	3	0	0	3	40	60	100
2	18EEM02	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100
3	18EEM03	Control Systems	OE	3	0	0	3	40	60	100
4	18EEM04	Measurements and Instrumentation	OE	3	0	0	3	40	60	100
5	18EEM05	Electrical Machines	OE	3	0	0	3	40	60	100
6	18EEM06	Electric Drives and Control	OE	3	0	0	3	40	60	100
7	18EEM07	Electric Vehicles and Control	OE	3	0	0	3	40	60	100
8	18EEM08	Electrical Energy Conservation and Auditing	OE	3	0	0	3	40	60	100
9	18EEM09	SMPS and UPS	OE	3	0	0	3	40	60	100
10	18EEM10	Utilization of Electrical Energy	OE	3	0	0	3	40	60	100
		MECHANICAL EN	IGINEE	RING						
1	18MEM01	Engineering Thermodynamics	OE	3	0	0	3	40	60	100
2	18MEM02	Fluid Mechanics and Machinery	OE	3	0	0	3	40	60	100
3	18MEM03	Manufacturing Processes	OE	3	0	0	3	40	60	100
4	18MEM04	Materials Engineering	OE	3	0	0	3	40	60	100
5	18MEM05	Kinematics of Machinery	OE	3	0	0	3	40	60	100
6	18MEM06	Hydraulics and Pneumatics	OE	3	0	0	3	40	60	100
7	18MEM07	Design of Machine Elements	OE	3	0	0	3	40	60	100
8	18MEM08	Heat and Mass Transfer	OE	3	0	0	3	40	60	100
9	18MEM09	Metrology and Quality Control	OE	3	0	0	3	40	60	100

10.	18MEM10	Dynamics of Machinery	OE	3	0	0	3	40	60	100				
	METALLURGICAL ENGINEEING													
1	18MTM101	Advanced Physical Metallurgy	OE	3	0	0	3	40	60	100				
2	18MTM102	Thermodynamics and Kinetics in Metallurgy	OE	3	0	0	3	40	60	100				
3	18MTM103	Mechanical Behaviour of Materials	OE	3	0	0	3	40	60	100				
4	18MTM104	Rate Processes in Metallurgy	OE	3	0	0	3	40	60	100				
5	18MTM105	Corrosion and Surface Engineering	OE	3	0	0	3	40	60	100				
6	18MTM106	Materials Characterization	OE	3	0	0	3	40	60	100				
7	18MTM107	Automotive, Aerospace and Defence Materials	OE	3	0	0	3	40	60	100				

B.E. – CIVIL ENGINEERING - MINOR DEGREE

18CF	EM01	CONSTRUCTION MATERIAI	CONSTRUCTION MATERIALS						
PRE	REQUISI	TES	Category	OE	Cro	edit	3		
NIL			Hours/Week	L	Т	Р	ТН		
				3	0	0	3		
Cour	rse Learni	ng Objectives		-			I		
1	To study	the characteristics and Properties of Stones and Brick							
2	To impart	knowledge on Cement, Aggregate and Mortar							
3	To unders	stand the behaviour of concrete and seasoning timber							
4	To study	the Parts and types of flooring and roofing							
5	To study	carpentry, arches, lintels and finishing works.							
U	J nit I	STONES, BRICKS		9	0	0	9		
Buildi work bricks	ing Stone – – tests on st s.	classification of rocks-characteristics of good building s ones - Bricks- manufacture of clay bricks -classification -	tone – deterioration tests on bricks- bricks	and pres for spec	ervatio ial use-	n of sto refracto	one ory		
U	nit II	CEMENT, AGGREGATES, MOR	RTAR	9	0	0	9		
Ceme charao constr	nt- compo cteristics an ruction.	sition- manufacturing process-wet and dry processes d function. Mortar- properties- uses- types of mortars- sel	Aggregates –coar ection of mortars for	se and various (fine ag Civil Er	ggregat 1gineeri	es- ng		
U	nit III	CONCRETE, TIMBER AND OTHER M	IATERIALS	9	0	0	9		
Concr	ete- ingredi	ents - principles of hardened concrete- Special concrete-	types.	G. 1 I	T	1.	с		
Alum	er- characte	ristics- seasoning-preservation- Panels of laminates. Glassical structure in the season of the seaso	ass- properties- uses.	Steel- (Jses - 1	market	forms.		
Paints	. Varnishes	and Distempers-types-properties.							
U	nit IV	FLOORING AND ROOFING	3	9	0	0	9		
Comp of dar pitche	oonents of fl npness- effe ed roof - lea	loor- selection of flooring materials- suitability of floors f ect of dampness - requirements of good stairs - classificat n to roof-gable roof-hip roof-flat roof-RCC roof.	for various application ion of stairs -Roofs -	l ns. damp types of	proof o roofs- 1	course, equirer	causes nents -		
U	nit V	9	0	0	9				
Locat: classif metho	ion of door fication - st ods of plaste	loors and - compoi	l windo nent pa	ows - a rts - sho	rches - oring -				
					Total	= 45 Po	eriods		

Те	ext Books:
1	B.C. Punmia, Building Construction, Laxmi Publications; Eleventh edition -2021
2	S.C.Rangwala, Building Construction, Charotar Publishing House Pvt. Ltd, 34th Edition - 2022
3	P. Purushothama Raj., Building Construction Materials and Techniques, Pearson Education India, First Edition - 2017
Ref	erence Books:
1	Shetty M.S., Concrete Technology (Theory and Practice), S.Chand& Company Ltd., 2021.
2	Rangwala S.C., Engineering Materials (Material Science) revised and enlarged by Rangwala K.S. and Rangwala P.S., Charotar Publishing House, 2010.

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Identify and characterize and properties of Stone and brick	Remember				
CO2	Understand the manufacturing process of cement and functions of mortar	Understand				
CO3	Identify the age of timber and preservation methods of timber	Remember				
CO4	Differentiate the types of roofing and flooring	Understand				
CO5	Understand the miscellaneous works such as carpentry, lintels, Arch, etc.	Understand				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO2	-	2	-	-	-	2	3	-	-	-	-	-	-	-	-
CO3	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-
CO4	1	-	2	-	2	3	2	-	-	-	-	-	-	-	-
CO5	1	-	-	-	3	-	2	-	-	-	-	-	-	-	-
Avg	1	2	2	-	2	3	2	-	-	-	-	-	-	-	-
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

18C	EM02	BUILDING CONSTRUCTION & EQUI	S	emesto	er		
PRF	EREQUISI	TES	Category	OE	Cr	edit	3
NIL	,		Hours/Week	L	Т	Р	ТН
				3	0	0	3
Cou	rse Learni	ng Objectives				1	
1	Able to ga	in basic knowledge in construction methods.					
2	Able to ga	in basic knowledge in equipment.					
3	Able to ga	in basic knowledge in machineries.					
4	Able to ga	in basic knowledge in fire safety principles.					
5	Able to ga	in basic knowledge in green technology.					
		CLASSIFICATION OF BUILDINGS, FOUND	ATIONS AND	0	0	0	0
1	Unit I	TYPES OF MASONRY		,	U	U	,
Site level	investigatio ,Classificatio	n for foundation as per N.B.C, Types of foundation on of stone masonry DOORS, WINDOWS, LINTELS, SCAFFOL	n and prevention	of dan	npness	at bas	sement
τ	J nit II	STAIRCASES		9	0	0	9
Door	rs and windo ered. Lintels	ows – parts of door and window – Types of Door and w – Functions, Scaffolding – Purpose and types –Location of	vindows–Ventilators stairs.Types of stain	s – fixeo rs	l, swin	ging ty	pe and
τ	Init III	ROOFS, FLOORINGS, PROTECTIVE AND E FINISHES	DECORATIVE	9	0	0	9
Roof Type	Beams and es of floors-	Roof Slabs – Types of Roofing Systems – Methods of Terr Plastering (Interior and Exterior) – Pointing for Walls ar	nite Proofing – Metl 1d Floors using Gro	hods of 1 outs – W	Damp p hite W	proofing ashing,	g. Color
Wasl appli	ning with di cation.	fferent Color Shades available in the Markets – Painting	g – Types of Painti	ing for	Interior	and E	xterior
τ	J nit IV	CONSTRUCTION EQUIPMENT	S	9	0	0	9
Selec	ction of equ	d dewa	tering	and pu	mping,		
l	U nit V	GREEN BUILDING TECHNOLO	GY	9	0	0	9
Intro and l	duction to gr imitations),	reen technology – types and importance; zero waste and r co green buildings, green engineering.	oncept, green materi	als – gre	en con	crete (p	ourpose
					Total	= 45 Po	eriods

r	
Те	ext Books:
1	Building Construction by S.C.Rangawala
2	Construction Technology by Sarkar Oxford University Press
3	Building Material & Construction by S.P. Arora& S. P. Bindra
Ref	erence Books:
1	Hopkinson And Kay J.D., The Lighting of Building, Faber and Faber, London.
2	Koerner, R.M, Construction & Geotechnical Methods in Foundations Engineering, McGraw Hill, 1984
3	Varna M., Construction Equipment and Its Planning & Applications, Metropolitan Books Co, 1979

Course Outcomes:						
Upon completion of this course, the students will be able to:						
CO1	Organize the construction technique to be followed in brick and stone masonry, concreting, flooring, roofing and plastering etc.	Create				
CO2	Select safe practices in building construction activities	Evaluate				
CO3	Clarify the different types of roofs, floor and productive materials of buildings	understand				
CO4	Select the relevant equipment for building construction	Evaluate				
CO5	Apply the Principles of green building technology.	Apply				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	2	2	2	1	1	-	-	-	-	1
CO2	-	-	-	-	3	2	2	2	2	2	-	-	-	-	1
CO3	-	-	-	-	2	3	2	2	2	1	-	-	-	-	1
CO4	-	-	-	-	2	2	3	1	1	2	-	-	-	-	1
CO5	-	-	-	-	2	3	2	2	2	2	-	-	-	-	1
Avg	-	-	-	-	2.4	2.4	2.2	1.8	1.6	1.6	-	-	-	-	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18C	EM03	CONCRETE TECHNOLOG	Y	Semester						
PRF	EREQUISI	TES	Category	OE Credit						
NIL	1									
			Hours/ week	3	0	0	3			
Cou	rse Learni	ng Objectives	I		1		1			
1	To unders	tand the properties of ingredients of concrete.								
2	To study t	he behavior of concrete at its fresh and hardened state.								
3	To study a	bout the concrete design mix.								
4	To know a	about the procedures in concrete at different stage.								
5	To unders	tand special concrete and their uses.								
1	Unit I	INTRODUCTION		9	0	0	9			
Conc	crete materia	ls, Cement: Field and laboratory tests on cement, Types o	f cement and their use	s, differer	it tests f	for aggr	egates.			
Meth	nods for man	ufacturing of cement- Wet and dry process. Hydration o	f cement, Bogue's co	mpound.						
τ	U nit II	ADMIXTURES		9	0	0	9			
Acce	elerating adu	nixtures, Retarding admixtures, water reducing admix	xtures, Air entraining	g admixtı	ures, co	oloring	agent,			
Plast	icizers. Batc	hing, Mixing, Transportation, placing of concrete, curing	g of Concrete							
τ	J nit III	MIX DESIGN		9	0	0	9			
Facto	ors influenci	ng mix proportion, Mix design by ACI method and I.S.	code method, Design	of high st	rength o	concrete	<u>.</u> 2.			
τ	J nit IV	BEHAVIOUR OF CONCRE	ТЕ	9	0	0	9			
Strer	igth of conc	rete, Shrinkage and temperature effects, creep of concre	ete, permeability of co	oncrete, d	urabilit	ty of co	ncrete,			
Corr	osion, Cause	s and effects, remedial measures, Thermal properties of	concrete, Micro crack	ting of co	ncrete.					
I	U nit V	SPECIAL CONCRETE		9	0	0	9			
Ligh	t-weight con	ncrete, Fibre reinforced concrete, Polymer modified c	oncrete, Ferro cemer	nt, Mass	concret	te, Rea	dy-mix			
conc	rete, Self-co	mpacting concrete, Quality control, Sampling and testing	g, Acceptance criteria							
					Total	= 45 P	eriods			

Те	Text Books:				
1	Neville A.M Properties of Concrete, Pearson publication, 2012.				
2	Shetty M.S Concrete technology, S.Chand and Company Ltd, New Delhi 2022.				
3	Santha Kumar A.R Concrete Technology, Oxford university Press, NewDelhi, 2022.				
4	Mehta K.P Concrete Technology, Chand & Co, NewDelhi, 2006.				
5	Robert RatayForensic Structural Engineering Handbook, McGraw Hill LLC, 2009				

Ref	erence Books:									
1	Indian Standard Recommended Guide lines for Concrete Mix Design, IS:10262 – 2019, Bureau of Indian Standards, NewDelhi.									
2	Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete IS:383-1970 R2011, Bureau of Indian Standards, NewDelhi.									
3	Gambhir.M.L,Concrete Technology, Volume I & II, Tata McGraw-HillBookCompany,Third print, 2003									
4	Krishna Raju N. Design of Concrete Mixes, CBS publishers. NewDelhi, 2002.									
5	Stephen E. Petty,Forensic Engineering: Damage Assessments for Residential and Commercial Structures,CRCpress,Taylor& Francis,2013.									

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	To identify suitable materials to be used in the cement concrete by conducting various tests as per BIS code.	Evaluate			
CO2	To know about the specific applications and uses of admixtures.	Understand			
CO3	Design the concrete mix using ACI and BIS code methods.	Create			
CO4	Determine the properties of fresh and hardened of concrete.	Evaluate			
CO5	Design special concretes and to Ensure quality control while testing/ sampling and acceptance criteria for pre and post construction work.	Apply			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	-	1	1	1	2	1	1	1	-	1
CO2	-	-	-	-	3	-	3	-	1	1	-	-	2	-	1
CO3	-	-	-	-	3	-	3	-	-	1	-	-	1	-	1
CO4	-	-	-	-	3	2	1	-	-	-	-	-	-	-	1
CO5	-	-	-	-	3	3	3	1	1	3	1		3	-	1
Avg	-	-	-	-	3	2.5	2.2	1	1	1.75	1	1	1.75	-	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

180	CEM04	ENVIRONMENTAL ENGINEER	ING	Semester						
PR	EREQUISI	TES	Category	OE Credit 3						
NII	⊿			L	Т	Р	TH			
			Hours/ week	3	0	0	3			
Сог	urse Learni	ng Objectives								
1	¹ To evaluate the sources of water and analyse its characteristics and processes in water treatment, express the analysis of distribution network									
2	To design s disposal	ewer system, basic design of the biological treatment proc	esses, gain knowled	ge on slu	dge tre	atment	and its			
3	To predict t	he sources, effects, dispersion of air pollutants air quality	management and its	control r	neasure	s				
4	To identify municipal s	the characteristics and sources of municipal solid wast olid wastes and its recovery, disposal methods	es, its collection me	ethods, c	off-site	process	sing of			
5	To assess th	ne sources, effects and control measures of noise pollution								
	Unit I	WATER TREATMENT		9	0	0	9			
Wat	er Quality an	d its Treatment: Basics of water quality standards - Phy	vsical, chemical and	biologic	al para	meters;	Water			
qual	lity index; Un	it processes and operations; Water requirement; Water dis	tribution system; Dr	inking w	ater tre	atment.				
	Unit II	WASTEWATER TREATMEN	Г	9	0	0	9			
Sew	verage system	design, quantity and quality of domestic wastewater, prin	mary and secondary	treatmen	nt. Efflu	ent dis	charge			
stan	dards; Sludge	e disposal; Reuse of treated sewage for different applicatio	ns.							
I	Unit III	AIR POLLUTION		9	0	0	9			
Air	Pollution: Ty	pes of pollutants, their sources and impacts, air pollution c	ontrol, air quality sta	andards,	Air qua	lity Ind	ex and			
limi	ts.									
1	Unit IV	SOLID WASTE MANAGEMEN	Τ	9	0	0	9			
Mur	nicipal Solid V	Wastes: Characteristics, generation, collection and transpor	tation of solid wastes	s, engine	ered sys	stems fo	or solid			
wast	te manageme	nt (reuse/ recycle, energy recovery, treatment and disposal).							
	Unit V	NOISE POLLUTION		9	0	0	9			
Nois	se pollution: S	Sources; Health effects; Standards; Measurement and cont	rol methods	1		1	1			
					Total	= 45 Pe	eriods			

Те	Text Books:					
1	Garg, S.K. Water supply Engineering, Khanna Publishers, New Delhi, 2010.					
2	Garg, S.K. Sewage water disposal and Air pollution, Khanna Publishers, New Delhi, 2010.					
3	George Tchobanoglous et.al., Integrated Solid Waste Management, McGraw-Hill, Publishers, 1993.					
4	Rao, C.S., Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.					

Ref	erence Books:
1	Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi,
1	2013.
2	Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, NewDelhi, 1985.
3	Metcalf and Eddy, M.C., Wastewater Engineering – Treatment & Reuse, TataMcGraw-Hill Publications, New
	Delhi,2003.

Cour	rsa Autoomos;	Bloom's			
Unor completion of this course, the students will be ship to:					
Opon	Upon completion of this course, the students will be able to:				
CO1	Identify the sources of water supply, analyze the characteristics of water with its standards and	Remember			
COI	various unit operations and processes in water treatment, express the analysis of distribution network	Remember			
000	Expertise design sewer system, basic design of the biological treatment processes, gain knowledge	Analyze			
02	on sludge treatment and disposal and justify the methods for disposal of sewage	1 1111 / 20			
CON	Predict the sources, effects, dispersion of air pollutants air quality management and its control	Apply			
COS	measures	· · pp· y			
	Aware about the characteristics, types and sources of municipal solid wastes, Learn the collection				
CO4	methods, Know about off-site processing of municipal solid wastes and its recovery, disposal	Remember			
	methods				
CO5	Understand the sources, effects and control methods of noise pollution	Understand			
200					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	1	3	2	1	3	2	1	1	2	1	1	3	-	2
CO2	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO3	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO4	2	1	3	1	1	3	1	-	-	2	2	1	3	-	2
CO5	2	-	3	-	-	3	-	-	-	2	1	1	3	-	2
Avg	2	1	3	1.3	1	3	1.3	1	1	2	1.6	1	3	-	2
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

18CF	EM05	BASICS OF TRANSPORTATION ENGIN	S								
PRE	REQUISI	TES	Category	OE	Cre	edit	3				
NIL											
		3	0	0	3						
Cour	se Learni	ng Objectives			I						
1 The objective of the course is to educate the students on various components of highway engineering.											
2 To educate the geometric design concepts of highway engineering											
3	To develo	p skills on construction and maintenance of highway.									
4 Ability to plan various civil engineering aspects of railways and educate various components of railways											
5 The course enables the students to develop skill on evaluation and maintenance of railway track.											
U	J nit I	CROSS SECTIONAL ELEMENTS OF HI	GHWAYS	9	0	0	9				
Elements- Right of Way, Carriage Way, Camber, Kerbs, Shoulders and Footpaths (IRC Standards), Sight Distances - Stopping Sight Distance (SSD), Overtaking Sight Distance (OSD), Sight Distance at Intersections, Intermediate Sight Distance and Illumination Sight Distance - Cross Sections of Different Class of Roads -											
U	nit II	GEOMETRIC DESIGN OF HIGHW	AYS	9	0	0	9				
Horizo Limiti Only)	ontal Align ing, Excepti	ments – Superelevation, Widening of Pavements on Ho onal and Minimum Gradients, Summit and Valley Curves	rizontal Curves, V -Geometric Design	ertical A of Hill F	lignme Roads (I	nts - R RC Sta	olling. ndards				
Unit III CONSTRUCTION AND MAINTENANCE OF HIGHWAY 9 0 0											
Const and M	ruction of F Iaintenance	Flexible and Rigid Pavements – Defects in Flexible and R of Pavements.	igid Pavements -Hi	ghway D	rainage	e – Eval	luation				
U	nit IV	RAILWAY PLANNING AND DESI	IGN	9	0	0	9				
Perma Gauge Geom Trans	Permanent Way, its Components and Functions of Each Component: Rails - Types of Rails, Rail Fastenings, Concept of Gauges, Coning of Wheels, Creeps Sleepers - Functions, Materials, Density. Ballasts - Functions, Materials, Ballast less Tracks Geometric Design of Railway Tracks Gradients and Grade Compensation, Super-Elevation, Widening of Gauges in Curves, Transition Curves, Horizontal and Vertical Curves.										
T	nit V	RAILWAY TRACK CONSTRUCTION MAINT	0	0	0	0					
	mt v	OPERATION		9	U	U	9				
Points Stock	and Crossi , Tractive P	ngs – Turnouts, Track circuiting, Signaling, Interlocking, ower, Track Resistance, Level Crossings.	Lay Outs of Railwa	y Statior	ns and Y	ards, F	Rolling				
	Total= 45 Periods										

Te	ext Books:
1	Khanna K., Justo C.E.G., Highway Engineering Revised 10th Edition Khanna Publishers, Roorkee, 2014
2	Kadiyalil. R, Engineering Traffic and Transport Planning, Khanna Publishers, New Delhi, 2019.
3	Chandola S.P. Transportation Engineering-2019

Ref	Reference Books:									
1	Sharma S.K., Principles Practice and Design of Highway Engineering, S. Chand & Co Ltd. New Delhi, 2006									
2	Guidelines Of Ministry of Road Transport and Highways, Government of India.									
3	Agarwal M.M., Indian Railway Track, 14th Edition, Prabha and Co., New Delhi, 2002.									
4	Saxena S.C. Highway & Traffic Engineering, 2014.									

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Classify roads as per Indian Road Congress and describe the principles of highway alignment					
CO2	Determine the highway geometric elements	Analyse				
CO3	Differentiate between types of pavements, their construction and design principles	Analyse				
CO4	Explain the functions of components of Railways	Understand				
CO5	Carry out the various methods for track alignment & procedure for construction of railway & maintenance of track	Apply				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
CO2	2	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	2	2	3	1	3	-	-	-	1	-	-
CO4	-	-	-	-	2	2	3	1	2	-	-	-	-	-	-
CO5	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
Avg	2	3	2	2	2	2	3	1	2.25	-	-	-	1	-	-
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															
18CI	18CEM06 REPAIR AND REHABILITATION OF STRUCTURES Semester														
--	--	---	---------------------------	-----------	----------	-----------	----------	--	--	--	--				
PRE	REQUISI	TES	Category	OE	Cr	edit	3								
NIL		L	Т	Р	TH										
	3 0 0 3														
Cour	se Learni	ng Objectives		1			1								
1	Study the various types and properties of repair materials														
2	Learn var	ious distress and damages to concrete structures													
3	Understar	d the importance of maintenance of structures													
4	Assess the	e damage to structures using various tests													
5	Learn var	ious repair techniques of damaged structures, corroded	structures												
τ	J nit I	MAINTENANCE AND REPAIR ST	RATEGIES	9	0	0	9								
Maint	enance, rep	pair and rehabilitation, Facts of Maintenance, import	ance of Maintenance v	arious a	spects	of insp	ection,								
assess	sment proce	dure for evaluating a damaged structure, causes of dete	rioration.												
U	nit II	SERVICEABILITY AND DURABILITY	OF CONCRETE	9	0	0	9								
Quali	ty assuranc	e for concrete construction, concrete properties- stren	ngth, permeability, the	mal pro	perties	and cra	icking-								
effect	s due to cl	imate, temperature, chemical, corrosion- Design and	l construction errors-et	fects of	cover	thickne	ss and								
crack	ing.														
U	nit III	MATERIALS AND TECHNIQUES F	OR REPAIR	9	0	0	9								
Speci	al concretes	and mortar, concrete chemical, special elements for a	ccelerated strength gai	n, expan	sive cei	nent, p	olymer								
concr	ete, Sulphu	infiltrated concrete, ferro cement, fibre reinforced con-	crete, rust eliminators a	nd polym	ers coa	ting for	rebars								
during	g repair, foa	med concrete, mortar and dry pack, vacuum concrete, g	unite and shotcrete, epo	oxy injec	tion, m	ortar rej	pair for								
crack	s, shoring a	nd underpinning. Methods of corrosion protection, co	rrosion inhibitors, corre	osion res	istant s	teels, co	oatings								
and ca	athodic prot	ection.		T		1	T								
U	Unit IV REPAIRS, REHABILITATION AND RETROFITTING OF STRUCTURES 9 0 0														
Streng	gthening of	Structural elements, deflection, cracking, chemical dist	ruption, weathering cor	rosion, w	ear, fir	e, leaka	ge and								
marin	e exposure.														
U	nit V	DEMOLITION TECHNIQU	JES	9	0	0	9								
Demo	Demolition methods by machines, explosives, Advanced techniques-Demolition sequences, dismantling techniques, safety						safety								
precautions in dismantling and demolition, Engineered demolition techniques for dilapidated structures- case studies															
					1 otal	= 45 P	eriods								

Те	ext Books:
1	Shetty, M.S, Concrete Technology- Theory and Practice, S. Chand and company, New Delhi,2019
2	Repair and protection of concrete structures by Noel P. Mailvaganam, CRC Press, 1991.
3	CPWD: Handbook on Repair & Rehabilitation of R.C.C. Buildings, CPWD, Govt. of India, 2002, updated reprint 2011

Ref	erence Books:
1	Santhakumar A.R, Training Course notes on Damage Assessment and Repair in Low-cost housing, "RHDC.NBO" Anna University, July 1992.
2	Raikar R.N.,Learning from failures- deficiencies in design, construction and services – R&D Centre (SDCPL), Raikar bhavan, Bombay,1987
3	Palaniyappan, N., Estate management, Anna Institute of Management, Chennai, 1992.
4	Lakshmipathy, M. etal., Lecture notes of workshop on Repairs and Rehabilitation of structures, 29-30 th October 1999.
5	https://nptel.ac.in/courses/114106035/38

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Demonstrate the condition of structures					
CO2	Inspect and evaluate the damaged structure					
CO3	Implement the repairing techniques of a structure					
CO4	Identify and Use different materials for repairing works	Apply				
CO5	Demonstrate the dismantling and demolishing structures	Apply				

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO2	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO3	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO4	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO5	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
Avg	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CE	YEM07 GREEN BUILDING TECHNOLOGY Semester								
PRE	REQUISI	TES	Category	OE Credit					
NIII			L	Т	Р	ТН			
INIL	Hours/ week					0	3		
Cour	Course Learning Objectives								
1	¹ To Know various aspects of green buildings								
2	To Learn	the principles of planning and orientation of buildings.							
3	To Relate	the construction of green building with prevailing energy	conservation policy a	ind regu	lations.				
4	To Know	and identify different green building construction material	s.						
5	To Learn	different rating systems and their criteria							
U	J nit I	INTRODUCTION TO GREEN BUI	LDING	9	0	0	9		
Introd	uction, Neo	cessity, Definition & concept of Green Building, Issues a	and strategies of Gre	en Bui	lding, F	Principl	es and		
Efficie	its of Gree ency. Indoo	en Building, Components/ features of Green Building, or Air Ouality.	Energy Efficiency,	water	efficiei	ncy, M	aterial		
U	nit II	SITE SELECTION AND PLANNI	NG	9	0	0	9		
Site se	election Sit	e selection strategies. Landscaping building form orienta	tion building envelo	ne and	fenestra	tion m	aterial		
and co	onstruction	techniques, roofs, walls, fenestration and shaded finishes, I	Environmental design	n (ED) s	trategie	es for bu	uilding		
constr	uction, Rai	nwater harvesting methods for roof & non-roof, reducir	ng landscape water o	lemand	by pro	per irri	gation		
systen	ns, recycle a	and reuse systems, Waste Management.				-			
Uı	nit III	ENERGY AND ENERGY CONSERV	VATION	9	0	0	9		
Introd	uction, Env	vironmental impact of building constructions, present scen	nario, Need of energ	y conse	rvation	, Conce	epts of		
emboo	died energy	,							
operat	tional energ	y and life cycle energy, Methods to reduce operational energy	gy, Energy efficient b	uilding,	zero oz	zone dej	pleting		
potent	tial (ODP) r	naterials, wind and solar energy harvesting, energy meterin	ng and monitoring, co	oncept o	f net ze	ro buile	lings.		
Uı	nit IV	BUILDING MATERIALS		9	0	0	9		
Green	building n	naterials and products- Bamboo, Rice husk ash concrete,	plastic bricks, Baga	sse part	icle bo	ard, Ins	sulated		
concre	ete forms. u	use of materials with recycled content such as blended cer	nents, pozzolana cen	nents, fl	yash br	icks, vi	trified		
tiles, r	naterials fro	om agro and industrial waste, reuse of waste material-Plastic	c, rubber, Newspaper	wood,	Nontox	ic paint	, green		
U	Unit VRATING SYSTEM9009								
Introd	uction to Le	eadership in Energy and Environmental Design (LEED) crit	eria, Indian Green Bu	ilding c	ouncil ((IGBC)	Green		
rating	rating, Green Rating for Integrated Habitat Assessment. (GRIHA) criteria, National Productivity council (NPC) Ministry of								
New a	New and Renewable Energy (MNRE) Bureau of Energy efficiency (BEE) -BER (Building Energy Rating) – Certificates.								
					Total=	= 45 Pe	eriods		

Te	xt Books:
4	Kibert, C.J., Sustainable construction: Green Building design and Delivery, John Wiley Hobouken, NewJersey, 3rd
1	Edition, 2012.
2	Chauhan, D S Sreevasthava, S K., Non-conventional Energy Resources, New Age International Publishers, NewDelhi,
2	4 th Edition, 2021

Ref	erence Books:
1	O.P. Gupta, Energy Technology, Khanna Publishing House, NewDelhi
2	Jagadeesh, K S, Reddy Venkatta Rama &Nanjunda Rao, K S., Alternative Building Materials and Technologies, New Age International Publishers, Delhi.
3	Sam Kubba., Handbook of Green Building Design and Construction, Butterworth- Heinemann.
4	Means R S, Green Building - Project Planning and Cost Estimating, John Wiley &Sons
5	Sharma K V, Venkataseshaiah P., Energy Management and Conservation, IK International.

Cour	Course Outcomes:						
Upon	Upon completion of this course, the students will be able to:						
CO1	Understand the concepts of Green Building						
CO2	Discuss the Planning of Green Building.	Understand					
CO3	Explain the concept of Energy and Energy Conservation.	Understand					
CO4	Select appropriate green building material and technique.	Understand					
CO5	Summarize the Green Building Functions in various organizations.	Understand					

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	1	-	2	3	-	-	-	2	1	2	-	-
CO2	1	1	1	2	1	-	-	-	-	-	-	-	2	-	-
CO3	-	1	3	-	2	-	-	-	-	-	-	-	2	-	-
CO4	-	1	2	-	3	-	-	-	-	-	2	-	2	-	-
CO5	1	1	2	3	2	-	-	-	-	-	2	-	2	-	-
Avg	1	1	2	2	2	2	3	-	-	-	2	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

B.E. – COMPUTER SCIENCE ENGINEERING - MINOR DEGREE

18CS	SM01									
PRER	EQUIS	ITES	Category	OE (edit	3			
			L	Т	Р	ТН				
	Hours/Week						3			
Cours	Course Learning Objectives									
1	1 To understand and develop the object oriented programming concepts.									
2	To fam	iliarize and design the template functions and classes								
3	To diss	eminate and apply exception handling mechanisms.								
4	To lear	n and exploit stream classes.								
Un	it I	INTRODUCTION		9	0	0	9			
Proced program Operate	Procedure oriented programming paradigm - Object oriented programming paradigm - Basic concepts of object oriented programming, benefits of OOP, application of OOP - C++ fundamentals –structure of C++ program, tokens, data types - Operators and expressions - Control structures - Functions.									
Un	it II	INHERITANCE AND VIRTUAL FUNCT	TIONS	9	0	0	9			
Classes overloa	s and ob ding usir	jects - friend functions- constructors and destructors- Open ng member function and friend function - Type conversions.	erator overloading	– bina	ry and	unary o	operator			
Uni	t III	INHERITANCE AND VIRTUAL FUNCT	TIONS	9	0	0	9			
Inherita pointer	ance – de s to objec	fining derived classes, types, virtual base classes, abstract clas cts, this pointer, pointer to derived classes - Virtual functions.	sses, constructor in	derived	classes	- Pointe	ers-			
Uni	t IV	TEMPLATES AND EXCEPTION HAND	LING	9	0	0	9			
Generic templat rethrow uncaug	Generic Classes – class template, class templates with multiple parameters - Generic Functions - function templates, function templates with multiple parameters, member function templates - Exception handling – basics, exception handling mechanism, rethrowing an exception – Exception handling options – understanding terminate() and unexpected() – the uncaught_exception() function – bad_exception()									
Un	it V	CONSOLE I/O AND FILE HANDLING		9	0	0	9			
C++ S operati	C++ Stream Classes – unformatted I/O operations, formatted console I/O operations, manipulators - Files-classes for file operation, opening and closing a file, detecting end of file, files modes, sequential file operations, random file operations.									
	Total (45 L) =45 Periods									

Text	Text Books:							
1	E. Balagurusamy "Object - Oriented Programming with C++" Sixth Edition Tata McGraw-Hill							
Refei	rence Books:							
1	Herbert Schildt, "The Complete Reference C++", Fifth Edition, Tata McGraw Hill							
2	Bjarne Stroustrup, "The C++ programming language", Fourth Edition Addison Wesley							
3	K.R.Venugopal, Rajkumar Buyya, T.Ravishankar, Mastering in C++, Second Edition, Tata McGraw Hill							

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:	
CO1	Build the object oriented programming concepts.	Apply
CO2	Familiarize and build the template functions and classes	Understand
CO3	Disseminate and apply exception handling mechanisms.	Apply
CO4	Depict and exploit steam classes.	Understand

180	CSM02	ADVANCED DATA STRUCTURES AND AL	GORITHMS				
PRE	REQUIS	ITES	Category	OE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cou	rse Learn	ing Objectives					
1	To und	erstand the concepts of ADTs					
2	To Lea	rn linear data structures – lists, stacks, and queues					
3	To have	e knowledge about non-linear data structures like trees and gra	aphs				
4	To und	erstand concepts about searching and sorting and hashing tech	iniques				
U	Init I	LINEAR DATA STRUCTURES – LIS	ST	9	0	0	9
Abstr Circu Delet	act Data T larly Linke ion, Merge	ypes (ADTs) – List ADT - Array based Implementation - Lined Lists - Doubly-Linked Lists - Applications of Lists – Polye, Traversal).	nked List Implemer nomial Manipulati	ntation - on – A	– Singly ll opera	Linked Linked	l Lists - isertion,
U	nit II	LINEAR DATA STRUCTURES –STACKS AN	D QUEUES	9	0	0	9
Stack - Que	ADT - Op ue ADT -	verations - Applications of Stacks - Evaluating Arithmetic Exp Operations - Circular Queue - DeQueue - Applications of Que	ression - Conversio eue	n of inf	ix to po	stfix Exp	pression
U	nit III	NON LINEAR DATA STRUCTURES – T	REES	9	0	0	9
Threa Min I	ADI – Tre ided Binary Heap - App	y Trees - AVL Trees – B-Tree – Heaps - Operations of Heaps - plications of Heap.	- Priority Queues -	nary Se Binary	arch Tr Heap - I	ee ADT Max Hea	 ap -
U	nit IV	NON LINEAR DATA STRUCTURES – GI	RAPHS	9	0	0	9
Defin Appli Krusł	ition – Rep cation of C cal's Algor	presentation of Graphs –Types of Graphs - Graph Traversals - Graph Structures: Shortest Path Problem: Dijkstra's Algorithm ithms	Breadth First Searc - Minimum Spann	ch - Dej ing Tre	pth Firs es: Prin	t Search n's Algo	- rithm -
U	nit V	SEARCHING, SORTING AND HASHING TE	CHNIQUES	9	0	0	9
Searc Sort - Hashi	hing: Line · Merge So ing.	ar Search - Binary Search - Sorting Algorithms - Insertion Sort ort - Radix Sort - Hashing: Hash Functions – Separate Chain	t - Selection Sort - S ing – Open Addres	Shell So sing – I	rt - Bub Rehashi	ble Sort ng – Ex	- Quick tendible
				Tota	al (45 L	L) =45 I	Periods
	(D 1						
Te	ext Books	White "Dete Structures and Alexanthing Anglesis in C." 4/	Далина Б. ф ф ф	- 2012			
	Mark Allei	n Weiss, "Data Structures and Algorithm Analysis in C", 4/E	Pearson Education	n, 2013.			
Ref	erence B	ooks:					
1	Seymour I Pvt. Ltd., 2	Lipschutz, "Data Structures With C ",(Schaum's Outline Ser 2015	ries) Published by	Tata N	IcGraw	-Hill Ed	ucation
2	Ellis Horo	witz, Sartaj Sahni, Dinesh Mehta, "Fundamentals of Data Stru	ctures In C", Secor	nd Editi	on, Silio	con Pres	s, 2008.
3	Richard F. Learning F	Gilberg & Behrouz A.Forouzan, "Data Structures: A Pseudo c Publishers,2005.	code Approach With	h C", So	econd E	dition, C	Cengage
4	Classic Da	ta Structures", Second Edition by Debasis Samanta, PHI Lear	ning, 2009.				

Cours Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Implement various abstract data types to solve real time problems by using Linear Data Structures	Apply
CO2	Apply the different Non-Linear Data Structures to solve problems	Apply
CO3	Analyze and implement graph data structures to solve various computing problems.	Analyze
CO4	Critically analyze the various sorting and searching algorithms	Analyze

18CSM03	COMPUTER ORGANIZATION AND D	ESIGN				
PREREQUIS	ITES	Category	OE	Cre	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course Learn	ing Objectives				1	1
1 To und	erstand the basic structure and operations of digital computer					
2 To lear	n the working of different arithmetic operations					
3 To und	erstand the different types of control and the concept of pipelin	ing				
4 To stud	y the hierarchical memory system including cache memory and	d virtual memory				
5 To und	erstand the different ways of communication with I/O devices a	and standard I/O ir	nterface	8		
UNIT I INTRODUCTION		9	0	0	9	
Functional units and Instruction	,Basic Operational Concepts, Bus Structure ,Memory Locatior Sequencing, Addressing modes.	ns and Addresses, I	Memory	Operati	ons, Ins	truction
UNIT II	ARITHMETIC UNIT		9	0	0	9
Addition and Su Multiplication, 1	btraction of Signed Numbers, Design of Fast Adders, Multiplic Integer Division, Floating point number operations.	ation of Positive N	lumbers	, Booth	Algorith	nm, Fast
UNIT III	PROCESSOR UNIT AND PIPELININ	IG	9	0	0	9
Fundamental Co Basic Concepts	oncepts, Execution of Instruction, Multi Bus Organization, Har of pipelining, Data Hazards, Instruction Hazards, Data path &	dwired control, M Control Considera	licro pro tions.	ogramm	ed cont	rol,
UNIT IV	MEMORY SYSTEMS		9	0	0	9
Basic Concepts, Management rec	Semiconductor RAM, ROM, Cache memory, Improving Cac quirements, Secondary Storage Device.	he Performance, V	/irtual r	nemory	,Memor	У
UNIT V INPUT AND OUTPUT ORGANIZATION		9	0	0	9	
Accessing I/O of SCSI, USB).	levices, Programmed I/O, Interrupts, Direct Memory Access,	Interface circuits,	Standa	rd I/O 1	Interface	es (PCI,
			Tota	l (45 L) =45 I	Periods

Text	t Books:
1	Carl Hamacher V., Zvonko G. Vranesic, Safwat G. Zaky, " Computer organization ", Tata McGraw Hill, 5th Edition, 200
Refer	rence Books:
1	Patterson and Hennessey, "Computer Organization and Design ". The Hardware/Software interface, Harcourt Asia Morgan Kaufmann, 3rd Edition, 2007
2	Hayes, "Computer Architecture and Organization ", 3rd edition, Tata McGraw Hill, 2006
3	Heuring V.P., Jordan H.F., " Computer System Design and Architecture ", 6th edition ,Addison Wesley,2008

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:	
CO1	Understand the working principles of computer componets	Understand
CO2	Design the arithmetic and processing units	Create
CO3	Analyze the various computer components	Analyze

\

18CS	SM04	ADVANCED OPERATING SYSTE	MS	Semester			
PRER	EQUIS	ITES	Category	OE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives			l		
1	To un	derstand the structure and functions of Operating systems					
2	To un	derstand the process concepts and scheduling algorithms					
3	To un	derstand the concept of process synchronization and deadlock	S				
4	To lea	rn various memory management schemes					
5	To illu	istrate various file systems and disk management strategies					
UNIT	ГΙ	INTRODUCTION AND OPERATING SYSTEM S	STRUCTURES	9	0	0	9
Main fr Hand h Prograr	rame Sys neld Syste ms, Syste	tems, Desktop Systems, Multiprocessor Systems, Distributed ems; Operating Systems Structures - System Components, C m Design and Implementation.	Systems, Clustered Operating System S	l Syster Services	ns, Real s, Syster	l Time s n calls,	ystems, System
UNIT	ΓII	PROCESS MANAGEMENT		9	0	0	9
Process Commu Schedu	ses-Proce unication ling Algo	ss Concepts, Process Scheduling, Operation on Pro- ; Threads- Multithreading Models, Threading Issues; CPU prithms.	cesses, Co-Opera Scheduling-Basic	ting P. Concept	rocesses ts, Sche	s, Inter duling (Process Criteria,
UNI	ΓIII	PROCESS SYNCHRONIZATION AND DEA	DLOCKS	9	0	0	0
						U	9
Process Synchro Deadlo	s Synchr onization ck Avoid	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock.	Hardware, Sema s for handling De	phores, adlocks	Classic , Deadle	cal Prot	blem of vention,
Process Synchro Deadlo UNIT	s Synchr onization ck Avoid F IV	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL	Hardware, Sema s for handling Dea MEMORY	phores, adlocks	Classic , Deadlo 0	cal Protock Prev	y blem of vention, 9
Process Synchro Deadlo UNIT Memor paging;	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing.	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg	phores, adlocks 9 mentati	Classic , Deadlo 0 on, Seg	cal Protock Prev	9 olem of vention, 9 on with
Process Synchro Deadlo UNIT Memor paging; UNIT	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE	phores, adlocks. 9 mentati 9	Classic , Deadlo 0 on, Seg 0	al Prob ock Prev 0 mentation	9 olem of vention, 9 on with 9
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manago system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization a, Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc	Classic , Deadlo on, Seg on, Seg rotectio Metho ture; Ca	al Prob ock Prev 0 mentation 0 n; File ds, Free sse study	9 olem of vention, 9 on with 9 System e Space v: Linux
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization a, Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STF terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo on, Seg on, Seg o rotectio Metho ture; Ca al (45 L	val Probasility cal Probasility cal Probasility mentation 0 min; File ds, Free isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space v: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid Γ IV ry Manag ; Virtual 1 Γ V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg 0 rotectio Metho ture; Ca al (45 L	val Probasility cal Probasility cal Probasility mentation 0 n; File ds, Free isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M t Books	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg on, Seg rotectio Metho ture; Ca al (45 L	val Prob cal Prob cock Prev o mentation n; File ds, Free ise study .) =45 I	y olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system. Tex	s Synchr onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Inthentation- ement; M t Books Abrah	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk : ham Silberschatz, P.B.Galvin, G.Gagne —Operating System C	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE cure, File Sharing, nplementation, All Management, RAI	phores, adlocks. 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg on, Seg rotectio Metho ture; Ca hl (45 L	val Prob cal Prob pock Prev n 0 n; File ds, Free isse study 0) =45 H	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system. Tex 1 Refer	s Synchr onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Int nentation- ement; M t Books Abrah	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory Im lass-Storage Structure - Disk Structure, Disk scheduling, Disk : ham Silberschatz, P.B.Galvin, G.Gagne —Operating System C poks:	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE cure, File Sharing, nplementation, All Management, RAI	phores, adlocks. 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo on, Seg on, Seg rotectio Metho ture; Ca hl (45 L	val Prob cal Prob pock Prev n 0 n; File ds, Freed isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods

 1
 Andrew S. Tanenbaum, —Modern Operating Systems, PHI , 2nd edition, 2001

 2
 D.M.Dhamdhere, "Systems Programming and Operating Systems ", 2nd edition, Tata McGraw Hill Company, 1999.

3 Maurice J. Bach, —The Design of the Unix Operating System, 1st edition, PHI, 2004.

Cours Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify the components and their functionalities in the operating system	Apply
CO2	Apply various CPU scheduling algorithms to solve problems	Apply
CO3	Analyze the needs and applications of process synchronization and deadlocks	Analyze
CO4	Apply the concepts of memory management including virtual memory and page replacement to the issues that occur in real time applications	Apply
CO5	Solve issues related to file system implementation and disk management	Apply

1805	SM05	DATA COMMUNICATION AND COM NETWORKS	PUTER	Semester			
PRER	REQUIS	ITES	Category	OE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To stud	y the concepts of data communications and functions of differ	ent ISO/OSI refere	ence arc	hitectur	e	
2	2 To understand the error detection and correction methods and also the types of LAN						
3	To stud	y the concepts of subnetting and routing mechanisms					
4	To unde	erstand the different types of protocols and congestion control					
5	To stud	y the application protocols and network security					
UNI	ГΙ	DATA COMMUNICATIONS AND PHYSICA	AL LAYER	9	0	0	9
Data Interc Mode	Commun connection el, Addres	ication; Networks- Physical Structures (Types of Connection n of Networks: Internetwork; Protocols and Standards; Networks: sing; Transmission media-Guided Media, Unguided Media.	ons, Physical Topo vork Models-The (logy),C OSI Mo	ategorie del, La	es of Ne yers in	etworks, the OSI
UNIT	ΓII	DATA LINK LAYER		9	0	0	9
Introdu Correct Windo Etherne	tion-Ty tion (VR w),Error et, Token	pes of errors, Redundancy, Detection versus Correction, Modu C,LRC,CRC, Checksum, Hamming Code);Data link Co Control (Automatic Repeat Request, Stop-and-wait ARQ, Slid Bus, Token Ring, FDDI.	Ilar Arithmetic; Blo ntrol- Flow Cont ing Window ARQ)	ck Cod rol (St , HDLC	ing-Erro op- and ; Local	or Detec l-Wait, Area Ne	tion and Sliding etworks-
UNI	ГШ	NETWORK LAYER		9	0	0	9
Netwo Gatev	ork Layer vays- Rou	r services-Packet Switching-Network Layer Performance-IPvaters-Routing Algorithm-Distance Vector Routing, Link State	4 addresses-IPv6 a Routing.	ddressir	ıg- Subi	netting-l	Bridges-
UNI	ГІ	TRANSPORT LAYER		9	0	0	9
Duties Service	of the T e-Congest	ransport layer-User Datagram Protocol-Transmission Contr tion, Congestion Control, Quality of Service, Techniques to in	ol Protocol- Cong nprove QoS, Integr	estion (ated Se	Control rvices.	and Qu	ality of
UNI	ΓV	PRESENTATION LAYER AND APPLICATION I	LAYER	9	0	0	9
Doma	ain Name	System - Domain Name Space, DNS in the Internet; Electron	ic Mail-FTP- HTT	P- Wor	ld Wide	Web.	1
				Tota	al (45 L	.) = 45 I	Periods
Tev	t Books	•					
		-					
1	Behrouz	A.Ferouzan, "Data Communications and Networking", 4th E	dition, Tata McGra	w-Hill,	2007.		
Refe	rence B	ooks:					
1	Andrey	v S. Tanenbaum, "Computer networks "PHI, 4 th edition 2008					

2	William Stallings," Data and computer communications", 10th edition, PHI, 2012

3 Douglas E. comer," Internetworking with TCP/IP-Volume-I", 6th edition,PHI, 2008

Cours	se Outcomes:	Bloom's Taxonomy Level
Upon	completion of this course, the students will be able to:	
CO1	Classify the fundamentals of data communications and functions of layered architecture	Understand
CO2	Apply the error detection and correction methods and also identify the different network technologies	Apply
CO3	Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and routing technologies	Analyze
CO4	Illustrate the transport layer principles and reliable data transfer using protocols	Apply
CO5	Analyze the application layer protocols and also the use of network security	Analyze

18CSM06	PROGRAMMING ESSENTIALS IN PY	THON	Semester			
PREREQUIS	ITES	Category	OE	Cr	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course Learn	ing Objectives					
1 To lear	n Python data structures, conditional and control structures and	d files				
2 To stud	y Python Modules, packages, Functions and Exceptions.					
3 To des	cribe Object oriented programming features and Regular Expre	essions.				
4 To lear	n about Web programming, GUI Programming and Database	programming				
UNIT I	UNIT I INTRODUCTION			0	0	9
Python: Feature else statement-e	s - The Basics-Python Objects-Numbers-Sequences-Mapping a lif-Conditional Expressions-while statement-for statement-bre	and set types- Cond eak-continue.	itionals	and loc	ps-if sta	itement-
UNIT II	FUNCTIONS, MODULES AND PACKA	GES	9	0	0	9
Functions-Calli scope-Recursion	ng functions-Creating functions-Passing Functions-Formal n, Modules-Packages.	Arguments-Variab	ole leng	gth arg	uments-	variable
UNIT III	FILES AND EXCEPTIONS	ILES AND EXCEPTIONS		0	0	9
Files and Input/ Exceptions-Ass	Output –Errors and Exceptions-Introduction-Detecting and herrions-Standard Exceptions.	andling Exceptions	-Conte	t Mana	gement-	Raising
UNIT IV	OBJECT ORIENTED PROGRAMMING AND EXPRESSIONS	REGULAR	9	0	0	9
Object Oriente	ed Programming Introduction-Classes-class Attributes-Insta	inces-Instances att	ributes-	Buildin	g and	Method
Invocation-Stat	c methods and class Methods-Inheritance-Operator overloadir	ig - Regular Expres	sions-N	etwork	Program	nmıng –
			9	0	0	9
			,	v	Ŭ	,
GUI Programm	ing- Web Programming-Database Programming					
			Tota	al (45 L) =45 I	Periods

Text	Text Books:		
1	Wesley J.Chun-"Core Python Programming" – Prentice Hall, Second Edition, 2006.		
Refer	Reference Books:		
1	Swaroop C N, "A Byte of Python ", ebshelf Inc., 1st Edition, 2013		
2	"A Practical Introduction to python programming", Brian Heinold, Mount St. Mary's University, 2012		
3	Learning to Program with Python," Richard L. Halterman"., Southern Adventist University		

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:		
CO1	Develop programs using control structures and files.	Create	
CO2	Create own Python Modules, packages, functions and Exceptions.	Create	
CO3	Illustrate Object oriented Programming features and Regular Expressions.	Apply	
CO4	Create own Web programs, GUI and database programs.	Create	

22CS	SM07	ADVANCED DATABASE SYSTEM CO	NCEPTS	Semester		er	
PRER	EQUIS	ITES	Category	OE Credit			3
				L	Т	Р	ТН
	Hours/Week					0	3
Cours	e Learn	ing Objectives					
1	To unde	erstand the fundamentals of data models, SQL queries and rela	ational databases				
2	To mak	e a study of database design using ER Diagram and normalize	9				
3	To impa	art knowledge in transaction processing.					
4	To mak	e the students to understand the file operations and indexing					
5	To fami	liarize the students with advanced databases					
UNI	ГІ	RELATIONAL DATABASES		9	0	0	9
Purpose – Relat SOL.	e of Datal ional Mo	pase System – Views of data – Data Models – Database System del – Keys – Relational Algebra – SQL fundamentals – Adv	Architecture – Intr anced SQL feature	oductions – Emi	n to rela bedded	tional da SQL– D	tabases ynamic
ÙNI	ΓII	DATABASE DESIGN		9	0	0	9
Entity-	Relations	hip model – E-R Diagrams – Enhanced-ER Model – ER-to-	Relational Mapping	g – Fun	ctional]	Depende	encies – Multi
valued	Depender	ncies and Fourth Normal Form – Join Dependencies and Fifth	n Normal Form.		noma		- Wulu-
UNI	r III	TRANSACTION		9	0	0	9
Transac Protoco	ction Con ols – Two rency and	cepts – ACID Properties – Schedules – Serializability – Concu Phase Locking – Deadlock – Transaction Recovery – Sav	rrency Control – N ve Points – Isolatio	eed for on Leve	Concurr ls – SQ	rency – I L Facili	Locking ities for
UNI	ΓΙ	IMPLEMENTATION TECHNIQUE	S	9	0	0	9
RAID - B tree operation	RAID – File Organization – Organization of Records in Files – Indexing and Hashing –Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing – Query Processing Overview – Algorithms for SELECT and JOIN operations – Query optimization using Heuristics and Cost Estimation.						
UNIT V ADVANCED TOPICS				9	0	0	9
Distributed Databases: Architecture, Data Storage, Transaction Processing – Object-based Databases: Object Database Concepts, Object-Relational features, ODMG Object Model, ODL, OQL – XML Databases: XML Hierarchical Model, DTD, XML Schema, XQuery – Data Warehousing and Data Mining - information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.							
				Tota	al (45 L	.) =45 I	Periods

Text	t Books:
1	Abraham Silberschatz, Henry F.Korth and S.Sundarshan "Database System Concepts", Sixth Edition, Tata McGraw Hi 2011.
Refer	rence Books:
1	Ramez Elamassri and Shankant B-Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education, 2011.
2	C.J. Date, "An Introduction to Database Systems", Eighth Edition, Pearson Education Delhi, 2008.
3	Raghu Ramakrishnan, —Database Management Systems, Fourth Edition, McGraw-Hill CollegePublications, 2015.
4	G.K.Gupta,"Database Management Systems", Tata McGraw Hill, 2011.
E-Ref	erences:
1.	Lecture Series on Database Management System by Dr.S.Srinath, IIIT Bangalore, nptl

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:		
CO1	Understand the basic concepts of the database and data models.	Understand	
CO2	Design a database using ER diagrams and map ER into Relations and normalize the relations.	Create	
CO3	Develop a simple database for applications	Create	

18CS	SM08	VIRTUALIZATION AND CLOUD COM	PUTING	Semester		er	
PRER	EQUIS	ITES	Category	OE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To int	roduce the broad perceptive of Parallel Computing, Distributed	l Computing and C	Cloud C	omputii	ng.	
2	To un	derstand the concept of Virtualization					
3	To ide	entify the approaches of SLA and programming model in Cloud	d				
4	To un	derstand the Cloud Platforms in Industry and Software Enviror	nments.				
5	To lea	rn to design the trusted Cloud Computing system					
UNI	ΓI	INTRODUCTION		9	0	0	9
Princip Compu Model,	les of Par tting; Vis Types of	rallel and Distributed Computing – Elements of Parallel and Dis ion of Cloud, Defining a Cloud, characteristics and benefits; G f Clouds, Open Challenges.	tributed Computin	g, Tech Archite	nologie cture- (s for Dis Cloud Re	tributed eference
UNI	TII	VIRTUALIZATION		9	0	0	9
Virtual Virtual Full Vi	ization, l ization a rtualizati	Programming Language-Level Virtualization, Application-Level Cloud computing, Pros and cons of Virtualization, Technologon.	vel Virtualization ogy examples-Xen	,Other	types of virtualiz	f Virtua ation, V	lization, Mware:
UNI	[11]	SLA MANAGEMENT IN CLOUD COMPUT PROGRAMMING MODEL	ING AND	9	0	0	9
Traditio Compu	onal App ting - Te	roaches to SLA Management, Types of SLA, Life Cycle of S chnologies for Data Intensive Computing, MapReduce Program	LA, SLA Manage nming Model.	ment ir	Cloud	; Data Iı	ntensive
UNI	ΓIV	CLOUD INDUSTRIAL PLATFORMS AND SO ENVIRONMENTS	OFTWARE	9	0	0	9
Cloud OpenN	Platform ebula; A	s in Industry - Amazon Web Service, Google App Engin neka Cloud Application Platform-Aneka Framework Overview	e; Cloud Softwar , Anatomy of Ane	e Envi ka Con	ronmen tainer.	ts –Euc	alyptus,
UNI	ΓV	CLOUD SECURITY AND APPLICATION	ONS	9	0	0	9
An Intr Securit Cons; (roduction y Risk, C Cloud Sci	to the Idea of Data Security, The Current State of Data Sec Cloud Computing and Identity; The Cloud, Digital Identity, and tentific Applications.	curity in the Cloud I Data Security, Co	d, Clou ontent L	d Comp .evel Se	outing an ecurity, F	nd Data Pros and
				Tota	al (45L) = 45 I	Periods
	t Books Raikum	: ar Buyya, Christian Vecchiola, S.Tamarai Selvi, 'Mastering	Cloud Computing	z-Found	lations	and Ap	olications
1	Program	ming", TMGH,2013.(Unit- I,II & IV)	companie			· · · PI	

2	RajKumar Buyya, James Broberg, Andrezei M.Goscinski, "Cloud Computing: Principles and paradigms",2011(Unit-III & V)
Refer	rence Books:
1	Kai Hwang.GeoffreyC.Fox.JackJ.Dongarra, "Distributed and Cloud Computing ,From Parallel Processing to The Internet of Things", 2012 Elsevier
2	Barrie Sosinsky, "Cloud Computing Bible", Wiley Publisher, 2011

Cours	Bloom's	
Upon	Taxonomy Level	
CO1	Explain the main concepts and architecture of Parallel computing, Distributed Computing and Cloud Computing.	Understand
CO2	Analyze the concept of Virtualization	Analyze
CO3	Identify the approaches of SLA and programming model in Cloud	Apply
CO4	Analyze the Cloud Platforms in Industry and Software Environments.	Analyze
CO5	Identify the security issues in scientific and real time applications.	Apply

B.E. - ELECTRONICS AND COMMUNICATION ENGINEERING - MINOR DEGREE

18ECM01		ELECTRON DEVICES						
PREREQ	UISITES		CATEGORY	CATEGORY OE Cr		dit		3
			Hours/Week	L	Т	P	Т	H
	3 0				0	0		3
Course Ol	ojectives:		1	I	-1		1	
1. To int	roduce con	ponents such as diodes, BJTs and FETs, their charac	cteristics and applic	cations				
2. To uno	derstand, a	nalyse and design of simple diode and transistor circu	uits.					
3. To kno	ow the swit	ching characteristics of components and the conce	pt of rectifiers and	power suj	pplies			
Unit I	EXTRIN	SIC SEMICONDUCTOR AND PN JUCTIONS			9	0	0	9
N and P typ	be semicon	ductor and their energy band structures- Law of electr	rical neutrality-calc	ulation of	locatio	on of	Fer	mi
level and f	ree electron ntinuity equ	and hole densities in extrinsic semiconductors-Mo ation- Hall effect and its applications. Band structur	bility, drift current e of PN junction –	and cond	uctivity	y-dif ent ir	tusı 1 a I	on PN
junction- d	erivation o	f diode equation-temperature dependence of diode c	haracteristics and e	quivalent	model	s.		
Unit II	SWITCI	HING CHARACTERISTICS OF PN JUNTION A	AND SPECIAL D	IODES	9	0	0	9
Calculation	n of transi	tion and diffusion capacitance- varactor diode-ch	arge control descr	ription of	diode	-swi	tchi	ng
characteris	tics of diod	e- mechanism of avalanche and Zener breakdown-ten	mperature depende	nce of bre	akdow	n vol	tag	es-
Dackwalu		ening effect in thin barriers - tunner diode-photo diod		Jues.				
Unit III	BIPOLA	R JUNCTION TRANSISTORS			9	0	0	9
Construction	on of PNP	and NPN transistors- BJT current components-emi	tter to collector an	d base to	collec	tor c	urre	ent
switching t	imes- Phot	o translator.	characteristics- ED	ers-Moll	model	- trai	1515	tor
Unit IV	FIELD I	EFFECT TRANSISTORS			9	0	0	9
Construction	on and cha	racteristics of JFET-relation between pinch off volta letion types. CMOS circuits. MOS capacitance, BIC	age and drain curre MOS, SOI CMOS.	ent derivat	ion. M	OSF	ETS	S -
Unit V	RECTIF	IERS AND POWER SUPPLIES			9	0	0	9
Half-wave	, full-wave	and bridge rectifiers with resistive load. Analysis for	or Vdc and ripple v	oltage wit	h C, C	L, L-	C a	nd
C-L-C filters. Voltage multipliers Zener diode regulator. Electronically regulated d.c power supplies. Line regulation, output resistance and temperature coefficient.								
Total (45L)= 45 Periods								
Text Book	s:							

1.	JaconMillman& Christos C. Halkias, "Electronic Devices and Circuits"	Tata McGraw-Hill, 1991.

2.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory 8 th edition.", PHI, 2002
Refer	ence Books:
1.	Donald A. Neaman. "Semiconductor Physics and Devices" 3rd Ed., Tata McGraw-Hill 2002
2.	S. Salivahanan, N. Suresh kumar and A. Vallavaraj, Electronic Devices and Circuits, TMH, 1998.
3.	Ben, G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, Pearson Education 2000
4.	Floyd, "Electronic Devices", Sixth edition, Pearson Education, 2003.
E-Re	ferences:
1.	https://archive.nptel.ac.in/courses/108/108/108108122/
2.	https://www.youtube.com/watch?v=qqQ8wO-lNmI
3.	https://slideplayer.com/slide/12438044/

Course Outcomes:		
Upon completion of this course, the students will be able to:		
CO1	Interpret various applications of diode.	Applying
CO2	Classify various configurations and biasing technique of BJT	Applying
CO3	Apply the knowledge of using special devices for various applications	Understanding
CO4	Discuss operation, biasing and applications of JFET.	Analysing
CO5	Design power supplies and rectifiers	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	РО	PO	PSO1	PSO2	PSO3						
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	2	1	-	I	-	-	-	I	-	-	-	2	-	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	-	2	2	1
CO5	2	2	1	-	-	-	-	-	-	-	-	-	3	2	2
Avg	2	2	1	-	-	-	-	-	-	-	-	-	2.2	2	1.5
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E0	CM02	DIGITAL ELECTRONICS							
PRE	REQU	JISITES	CATEGORY	OE	Crec	lit	3		
			Hours/Week	L	Т	Р	ТН		
			Hours/ Week	3	0	0	3		
Cour	rse Ob	jectives		•			•		
1	To in	troduce basic postulates of boolean algebra and show the con	relation between	expressio	ons				
2	2 To Introduce the methods for Simplifying Boolean expressions								
3	To O	utline the formal procedures for the analysis and design of co	ombinational circu	uits and s	equenti	ial circ	uits		
4	To in	troduce the Concept of Memories and programmable logic d	evices						
5	To ill	ustrate the concept of synchronous and Asynchronous seque	ntial circuits						
Unit	Unit INUMBER SYSTEMS AND LOGIC GATES9009								
Num - Bo Simp using	Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Boolean Algebra and Minimization Techniques - Canonical forms – Conversion between canonical forms – Simplifications of Boolean expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates.								
Unit	Unit II COMBINATIONAL CIRCUITS 9 0 0 9								
Desig Dem	gn proo ultiple	cedure – Adders/Subtractor – Serial adder/ Subtractor - Paralle xer - encoder / decoder – code converters.	el adder/ Subtracto	or-BCD a	adder- l	Multip	lexer/		
Unit	III	SEQUENTIAL CIRCUITS			9	0 0	9		
Desig and M regis	gn Pro Mealy ters- U	cedure - Flip flops: SR, JK, T, D and JKMS – Triggering of – Counters: Asynchronous / Ripple counters – Synchronous Iniversal shift register.	Flip-flop - Reali counters – Modu	zation of Ilo n cour	flip flo nter. Re	ops – N egister	Aoore : shift		
Unit	IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS			9	0 0	9		
Desig assig Dyna	gn of t nment amic H	fundamental mode circuits – primitive state / flow table – . Problems in Asynchronous Circuits: Cycles – Races – Haz azards elimination	Minimization of ards. Design of H	primitive Iazard Fi	e state ree Circ	table cuits: S	–state Static,		
Unit	V	PLD AND MEMORY DEVICES			9	0 0	9		
Class Logic PAL	Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Array (PLA) - Programmable Array Logic (PAL). Implementation of combinational logic using MUX, ROM, PAL and PLA								
				Total (45 L) =	= 45 Pe	eriods		
Tex	t Bool	xs:							
1		M. Morris Mano, Digital Design, 4.ed., Pearson Education (Singapore) Pvt. L	td., New	Delhi,	2008			

2	R.P.Jain, Modern Digital Electronics, 4th edition, TMH, 2010.
Referen	ce Books:
1	S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 2 nd ed., Vikas Publishing House Pvt. Ltd, New Delhi, 2004
2	Charles H.Roth. "Fundamentals of Logic Design", Thomson Publication Company, 2003.
3	Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
4	John F.Wakerly, Digital Design: Principles and practices, PHI, 2006
E-Refer	rence:
1	http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01

2	https://nptel.ac.in/courses/117105080/6
3	https://nptel.ac.in/courses/117105080/12

Course	Outcomos	D1						
Course	Outcomes:	Bloom's						
Upon co	npletion of this course, the students will be able to:	Taxonomy						
-								
CO1	Minimize Boolean expressions and implement using logic gates	Applying						
CO2	Design and analyse combinational logic circuits.	Analysing						
CO3	Design and analyse synchronous and asynchronous sequential logic circuits	Analysing						
CO4	Understand the concepts of memories and PLDs	Understanding						
CO5	Implement circuits using memory and PLDs.	Applying						

				С	OURSI	E ART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	РО	PO	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	2	3	2	-	-	-	-	2	1	-
CO2	3	3	2	2	3	3	2	1	1	-	-	-	3	2	-
CO3	2	2	3	3	2	1	2	1	1	-	-	-	2	2	-
CO4	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
CO5	2	1	2	1	3	2	1	2	-	-	-	-	3	2	-
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	1	-	-	-	2.4	1.6	-
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	Low)			

18EC	M03	ELECTRONIC CIRCUITS							
PREI	REQU	ISITES	CATEGORY	OE		Crec	lit	3	
Elect	ron De	vices	Hours/Week	L		Т	Р	ТН	
Elect			Hours/ Week	3		0	0	3	
Cours	se Obj	ectives					•		
1	To pe	erform analysis on Small signal amplifiers and large sign	nal amplifiers.						
2	2 To give a comprehensive exposure to all types of discrete amplifiers and oscillators.								
3	3 To understand the various linear and non-linear applications of op-amp								
Un	it I	MIDBAND ANALYSIS OF SMALL SIGNAL AM	IPLIFIERS		9	0	0	9	
BJT – bias c Mid-t Miller imped emitte	BJT – Need for biasing - Fixed bias circuit - Load line and quiescent point. Different types of biasing circuits. Use of Self bias circuit as a constant current circuit. CE, CB and CC amplifiers. Method of drawing small-signal equivalent circuit. Mid-band analysis of various types of single stage amplifiers to obtain gain - input impedance and output impedance. Miller's theorem. Darlington connection using similar and Complementary transistors. Methods of increasing input impedance using Darlington connection and bootstrapping. CS, CG and CD (FET) amplifiers. Multistage amplifiers-Basic constitution and big the provide the provided differential equivalence of the provided difference of the provided difference of the provided								
Uni	t II	LARGE SIGNAL AMPLIFIERS			9	0	0	9	
Low I circui Calcu their r and tr power	Low frequency & High frequency analysis of amplifiers -Hybrid – pi equivalent circuit of BJ1sHigh frequency equivalent circuit of FETs. Gain-bandwidth product of FETs. General expression for frequency response of multistage amplifiers. Calculation of overall upper and lower cut off frequencies of multistage amplifiers. Amplifier rise time and sag time and their relation to cut off frequencies. Classification of amplifiers (Class A, B, AB, C&D), Efficiency of class A, RC coupled and transformer-coupled power amplifiers. Class B complementary-symmetry, push-pull power amplifiers. Calculation of actual power output, efficiency and power dissipation. Crossover distortion and methods of eliminating it. Calculation of actual power head ding consists of transitors with and without heat sink. Last sink design								
Unit	t III	OSCILLATORS			9	0	0	9	
Feed stabi Osci Mille	back A lization llator - er and l	Amplifier: Block diagram - Gain with feedback - Barkhan n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators -	usen Criterion - Mecha e connection of RC an lysis of LC Oscillator Electrical equivalent of	nism fond LC s: Colp circuit	or star filters oitts – of Cry	t of c s - R Hart vstal.	oscilla C ph ley -	ation and ase shift - Clapp -	
Unit	t IV	TUNED AMPLIFIERS AND MULTIVIBRATOR	RS		9	0	0	9	
Analy of Cla Bistat	vsis of s uss C tu ble Mu	single tuned and synchronously tuned amplifiers - Class and Amplifier- Collector coupled and Emitter coupled the vibrator - Triggering methods – Mono stable and A	C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci	d their – Mon Illators	applic o stab using	ation ole M g Em	is - E ulti v itter a	fficiency ibrator – and base	
Uni	t V	OPERATIONAL AMPLIFIERS AND ITS APPL	ICATIONS		9	0	0	9	
Basic design Differ high p	Basic structure and principle of operation - Calculation of differential gain - Common Mode gain, CMRR - OP-AMP design - DC and AC characteristics of OP-AMP. Applications: Inverting and non-inverting amplifiers - Integrator and Differentiator - Summing amplifier - Precision rectifier - Schmitt trigger and its applications - Active filters: Low pass, high pass, band pass and band stop filters - Sine wave oscillators – Comparator – Multi vibrator. Total (45 L) = 45 Periods								
Т	ext Bo	oks:							
		B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju	Pantulu, K.Bhaskara	Rama	Murt	hy, "	Elect	tronic	
	2 I	D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits	s", New Age Internatio	onal Pv	t. Ltd.	, 201	1.		
R	eferen	ce Books:							
	1 I	Millman J. and Taub H., "Pulse Digital and Switching w	aveform", 3rd Edition,	, McGr	aw-H	ill In	terna	tional	

1 Millma , 2011.

2	Sedera& Smith, "Micro Electronic Circuits", 4 th Edition, Oxford University Press, Chennai.
3	Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall of India, 1996.
4	K.R.Botkar, 'Integrated Circuits', 10th edition, Khanna Publishers, 2010.
e-Ref	ference:
1	http://nptel.ac.in/courses/117105080/40
2	http://nptel.ac.in/courses/117108038/1
3	https://freevideolectures.com/course/2915/linear-integrated-circuits

Cour Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To analyze small signal amplifiers and Large signal Amplifiers.	Applying
CO2	Analyze the frequency response characteristics of amplifiers	Applying
CO3	Develop insight of on oscillator design.	Applying
CO4	Construct and analyse tuned amplifiers and multivibrators.	Applying
CO5	Develop competence in linear and nonlinear Op amp circuit analysis.	Applying

					COU	RSE A	ARTIC	ULA	ΓΙΟΝ	MATRI	X				
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO2	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO5	1	2	1	2	-	-	-	-	-	-	-	-	1	2	1
Avg	2.4	2	1	2	-	-	-	-	-	-	-	-	1	2	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

DEDEC							
. NEKE(QUISI	ΓΕS	CATEGORY	OE	Cre	dit	
			Hours/Week	L	Т	P	T
				3	0	0	
Course C	bjecti	ves:			1		
I. To u	ndersta	nd and perform Fourier and Laplace analysis on signal	s and systems respec	ctively.			
2. To ar	alyse	the Discrete Fourier Transform, Fast Fourier Transform	n algorithms.				
3. To de	esign a	nd realize IIR, FIR filters.					
J nit I	INT	TRODUCTION TO SIGNALS AND SYSTEMS			9	0	0
Classifica	tion of	f Signals: Even and Odd Signal - Energy and power sig	gnals - Continuous ti	me (CT)	and Dis	scret	e tii
DT) sigr	als - (e – Ca	Continuous and Discrete amplitude signal System p usality – Stability - Realizability, - Linear Time-Invar	properties and represion in the second secon	sentation: Impulse	: lineari	ity - e an	Trr d st
esponse	– Conv	volution – Correlation - System representation through	differential equation	s and diff	ference	equa	tio
Unit II	AN	ALYSIS OF SIGNAL AND SYSTEMS			9	0	0
ntroducti	on to l	Fourier Transform, Fourier Series, Relating the Laplac	the Transform to Four	rier Tran	sform, 1	Freq	uen
esponse	of con	inuous time systems. Introduction to z- Transform.					
J nit III	DIS	CRETE FOURIER TRANSFORM			9	0	0
ntroduct	on to	DFT – Properties of DFT - Circular convolution -	FFT algorithms – F	Radix-2 I	FFT alg	orith	nms
Decimati	on in T	Time and Decimation in Frequency algorithms.				,01101	
T	INIT	ENTRE IMPLITOE DEGRANGE EN TER DEGLAN					0
Jnit IV	INF	INITE IMPULSE RESPONSE FILTER DESIGN			9	U	0 2
Character	istics of	of Analog Butterworth filter - Chebyshev filter - Low p	bass filter, High pass	filter, Ba	and pass	s filt	er a
3and stop	o filter	- Transformation of analog filters in to equivalent digi	tal filters using bilin	ear trans	formati	on m	leth
Realizat	ion str	ucture for IIR filters-Direct form - Cascade form - Para	allel form.				
J nit V	FIN	IITE IMPULSE RESPONSE FILTER DESIGN			9	0	0
Linear pl Blackmar Direct for	nase re nn Win m stru	esponse of FIR filter - FIR design using window m dows - Park-McClellan's method - Realization structur cture - Comparison of FIR and IIR filters.	nethod: Rectangular, res for FIR filters - I	, Hammi Linear ph	ng, Ha ase stru	nnin cture	g a es a
				Total (4	45L)= 4	5 Pe	erio

Text	Books:
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.
2.	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", 4th Edition, Pearson Education, 2009.

Refer	rence Books:
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010.
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.
3.	Emmanuel C. Ifeacher, Barry W. Jervis, "Digital Signal Processing: A Practical Approach", 2nd Edition, Pearson Education, 2004.
4.	S.K. Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.
E-Re	ferences:
1.	http://nptel.ac.in/courses/117104074/
2.	https://www.coursera.org/learn/dsp
3.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/

Course	e Outcomes:	Bloom's
Upon c	completion of this course, the students will be able to:	Taxonomy
		Mapped
CO1	Analyse and understands different types of signals.	Analysing
CO2	Represent continuous signals and systems in time and frequency domain using different transforms.	Analysing
CO3	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.	Analysing
CO4	Design and realize IIR filters.	Applying
CO5	Design and realize FIR filters.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	3	3	-	-	-	-	-	-	-	2	2	2
CO2	3	2	2	3	3	2	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	1	I	1	-	-	-	-	-	1	1	1
CO4	3	2	2	2	1	I	1	-	-	-	-	-	1	1	1
CO5	1	1	1	1	1	I	-	-	I	-	-	-	2	2	1
Avg	2.6	1.8	2	2.2	1.8	2	1						1.6	1.6	1.4
			3/2/1 -	indica	ates sti	ength	of cor	relatio	on (3-H	ligh,2- N	Mediun	n,1- Lo	ow)		

18ECM0	5 MICROPROCESSORS AND MICROCON											
PREREQ	UISITES	CATEGORY	OE	Crec	lit	3						
		Hound/Wook	L	Т	Р	TH						
		Hours/ week	3	0	0	3						
Course O	bjectives:	·										
1.	To familiarise with 8086 and 8051 architectures.											
2.	To interface 8086 microprocessor and 8051 microcontrolle	ers with peripherals by p	program	ming.								
3.	To gain basic knowledge of PIC microcontrollers.											
Unit I	8086 MICROPROCESSOR ARCHITECTURE			9	0	9						
Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Addressing modes-												
Instruction Formats- Directives and Operators-Assembly process.												
Unit II	PROGRAMMING AND INTERFACING OF 8086			9	0	9						
Fundamen	tal I/O considerations- Programmed I/O- Interrupt I/O- Basic	e 8086 Configurations- N	Minimu	n Mode	e-Ma	ximum						
Mode-Sys	tem Bus timing- I/O Interfaces-Peripheral Interfacing usin	g 8255 PPI - 8279 Key	/board/I	Display	cont	roller -						
8251 USA	RT.											
Unit III	8051 ARCHITECTURE			9	0	9						
8051 archi	tecture - Registers in 8051 - Pin description - 8051 parallel	I/O ports - memory or	ganizati	on - Ins	struct	ion set						
— Addres	sing modes											
Unit IV	PROGRAMMING AND INTERFACING OF 8051			9	0	9						
Assembly	language programming.8051Timers - Serial Port Programm	ing - Interrupts Program	iming - l	LCD an	d Ke	yboard						
Interfacing	g - ADC, DAC and Sensor Interfacing - Motor Control.											
Unit V	PIC MICROCONTROLLERS			9	0	9						
Main char	acteristics of PIC microcontrollers - PIC microcontroller	families-Memory-Progr	am Mei	nory –	RAN	/I Data						
Memory -	Instruction set and timers in PIC			-								
Total $(L+T) = 45$ periods												
L												
r												
Text Rool	· · ·											

Text D	UOKS.									
1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.									
2	Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.McKinlay, "The 8051 Microcontroller and Embedded									
۷.	Systems using Assembly and C", 2e, 2022.									
Refere	nce Books:									
1	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded									
1.	Systems: Using Assembly and C", 2nd Edition, Pearson education, 2011.									
2.	Martin Bates,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier, 2011.									
3.	Mathur Sunil,"Microprocessor 8086: Architecture, Programming and Interfacing" PHI Learning Pvt. Ltd. 2011.									
4	Salvador PinillosGimenez," 8051 Microcontrollers Fundamental Concepts, Hardware, Software and									
4.	Applications in Electronics", Springer 2019.									
E-Refe	prences:									
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon 2020.									
2.	https://nptel.ac.in/courses/108105102									
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html									

Cour	rse Outcomes:	Bloom's Taxonomy				
Upor	a completion of this course, the students will be able to:	Mapped				
CO1	Describe and analyse the architecture of 8086 microprocessor and 8051 architectures.	Remembering				
CO2	Develop assembly language programs and Interface peripherals with 8086.	Applying				
CO3	Develop assembly language programs and Interface peripherals with 8051.	Applying				
CO4	Determine application specific circuit for real-time applications.	Understanding				
CO5	Associate appropriate PIC microcontroller for a given application.	Understanding				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	-	-	-	-	-	-	-	-	2	-	1	-	-
CO2	2	2	2	2	-	-	-	I	1	-	-	-	2	2	-
CO3	2	2	2	2	-	-	-	1	1	-	-	-	2	2	-
CO4	2	2	2	2	-	-	-	-	-	-	-	-	2	2	2
CO5	2	2	-	2	-	-	-	-	-	-	-	-	2	2	-
Avg	2	2	2	2	-	-	-	-	-	-	2	-	1.8	2	2

18ECN	18ECM06 ANALOG AND DIGITAL COMMUNICATION													
PRER	EQUISITE	S	CATEGORY	OE	Cre	dit	3							
			Hours/Week	L	Т	Р	TH							
				3	0	0	3							
Course	e Objective				1	11								
1.	1. Understand analog and digital communication techniques.													
2.	Learn data and pulse communication techniques.													
3.	Be familiarized with source and Error control coding.													
Unit I	Unit I INFORMATION THEORY 9 0 9													
Uncertainty, information and entropy – Source coding theorem – Shannon Fano coding – Huffman coding – Discrete														
memoryless channels – Mutual information – Channel capacity – Channel coding theorem.														
Unit II ANALOG COMMUNICATION 9 0 0														
Noise:	Noise: Source of Noise – External Noise- Internal Noise- Noise Calculation. Introduction to Communication Systems:													
Modul	ation – Typ	es – Need for Modulation. Theory of Amplitude Mod	ulation – Evoluti	on and D	escript	ion o	f SSB							
Techni	ques – The	ory of Frequency and Phase Modulation – Comparisor	n of various Anal	og Comm	unicat	ion S	ystem							
(AM –	FM - PM).													
Unit I	I DI	GITAL COMMUNICATION			9	9 0	09							
Amplit	ude Shift K	eying (ASK) – Frequency Shift Keying (FSK) Minimu	ım Shift Keying (MSK) –P	hase S	hift K	Keying							
(PSK)	– BPSK –	QPSK – 8 PSK – 16 PSK – Quadrature Amplitude M	Modulation (QAN	$(1) - 8 Q_{1}$	АM –	16 Q	AM –							
Bandw	idth Efficie	ncy- Comparison of various Digital Communication Sy	vstem (ASK – FSI	K – PSK –	QAM).								
Unit I	V PL	LSE COMMUNICATION AND MULTIPLE ACC	ESS TECHNIQU	JES	9	9 0	09							
Pulse C	Communicat	ion: Pulse Amplitude Modulation (PAM) – Pulse Time	Modulation (PTN	M) – Pulse	code	Modu	ilation							
(PCM)	– Compari	son of various Pulse Communication System (PAM -	- PTM - PCM).	Multiple a	iccess	techn	iques:							
FDMA, CDMA, TDMA, SDMA.														
Unit V	ER	ROR CONTROL CODING			9	9 0	09							
Linear	block code	s - Cyclic codes - Convolution codes - Maximum lik	kelihood decodin	g of conv	olution	nal co	odes –							
Sequer	ntial decodir	g of convolutional codes – Trellis codes – Applications	S.											
				Total (45L)=	45 P	eriods							

Text	Books:
1.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2014.
2.	J.G.Proakis, M.Salehi, -Fundamentals of Communication Systems, Pearson Education 2014.
Refer	rence Books:
1.	B.P.Lathi, —Modern Digital and Analog Communication Systems ^I , 4th Edition, Oxford University Press, 2013.
2.	D.Roody, J.Coolen, —Electronic Communications, 4th edition PHI 2015.
3.	B.Sklar, —Digital Communications Fundamentals and Applications, 5th Edition Pearson Education 2017
4.	H P Hsu, Schaum Outline Series - —Analog and Digital Communications TMH, 5th edition 2006
E-Re	ferences:
1.	https://onlinecourses.nptel.ac.in/noc21_ee74/preview
2.	https://nptel.ac.in/courses/117101051
3.	https://www.digimat.in/nptel/courses/video/117105143/L51.html

Cours	se C	Dutcomes:	Bloom's Taxonomy
Upon	co	mpletion of this course, the students will be able to:	Mapped
CO	:	Apply the concepts of Random Process to the design of Communication	Applying
CO	:	Apply analog and digital communication techniques.	Applying
CO	:	Understand the use of data and pulse communication techniques.	Understanding
CO	:	Analyze Source and Error control coding.	Analysing
CO	:	Design AM communication systems and Angle modulated communication	Applying

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO1	PSO	PSO	PSO
POs										10	11	2	1	2	3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18ECM07													
PREREQUISI	TES	CATEGORY	OE	Crea	lit	3							
		Hours/Week	L	Т	P	TH							
			3	0	0	3							
Course Object	ives:			1	1 1								
1. Understand	the division of network functionalities into layers.												
2. Be familiar with the components required to build different types of networks													
3. Be exposed to the required functionality at each layer													
4. Learn the flow control and congestion control algorithms													
Unit I FUNDAMENTALS & LINK LAYER													
Overview of Data Communications- Networks – Building Network and its types– Overview of Internet - Protocol Layering - OSI Mode – Physical Layer – Overview of Data and Signals - introduction to Data Link Layer - Link layer Addressing- Error Detection and Correction													
Unit II MI	EDIA ACCESS & INTERNETWORKING			9	0	09							
Overview of Da Bluetooth – Blu Address – Netw	ata link Control and Media access control - Ethern netooth Low Energy – WiFi – 6LowPAN–Zigbee - rork layer protocols (IP, ICMP, Mobile IP)	et (802.3) - Wireless LAN - Network layer services –	s – Avai Packet S	lable P Switchi	roto ng –	- IPV4							
Unit III RC	UTING			9	0	0 9							
Routing - Unica interdomain pro	st Routing – Algorithms – Protocols – Multicast R stocols – Overview of IPv6 Addressing – Transition	outing and its basics – Ove a from IPv4 to IPv6	erview of	Intrad	oma	in and							
Unit IV TR	ANSPORT LAYER			9	0	09							
Introduction to –Services – Fea avoidance (DEC	Transport layer –Protocols- User Datagram Protoco tures – TCP Connection – State Transition Diagram Cbit, RED) – QoS – Application requirements	bls (UDP) and Transmiision n – Flow, Error and Conges	n Control tion Con	Protoc	cols Cong	(TCP) gestion							
Unit V AP	PLICATION LAYER			9	0	0 9							
Application La (SMTP, POP3, – Firewalls.	Application Layer Paradigms – Client Server Programming – World Wide Web and HTTP - DNS- Electronic Mail (SMTP, POP3, IMAP, MIME) – Introduction to Peer to Peer Networks – Need forCryptography and Network Security – Firewalls.												
			Total (45L)= ·	45 P	eriods							

Text Books: 1.

Behrouz A Forouzan, Data Communications and Networking, 4th Edition, 2020

2	James F. Kurose, Keith W. Ross, Computer Networking - A Top-Down Approach Featuring the Intern	et,										
۷.	Seventh Edition, Pearson Education, 2016.											

Refer	ence Books:									
1.	Nader. F. Mir," Computer and Communication Networks", Pearson Prentice Hall Publishers, 2nd Edition, 2014.									
2.	Alberto Leon-Garcia, IndraWidjajaCommunication Networks 2nd Edition McGraw-Hill Education, 2003									
3.	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill									
	Publisher, 2011.									
4.	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan									
	Kaufmann Publishers, 2011.									
E-Ref	ferences:									
1.	https://onlinecourses.nptel.ac.in/noc22_ee61/preview									
2.	https://www.ee.iitb.ac.in/~sarva/courses/EE706/2012/EE706LecNotes.pdf									
3.	http://www.cs.kent.edu/~farrell/net01/lectures/									

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Explain the basic concept in modern data communication and different level of layers in the protocol	Understanding				
CO2	Analyse the functions and services of data link layer	Analysing				
CO3	Categorize the functions and services of network layer	Understanding				
CO4	Examine the basic functions of transport layer and congestion in networks	Understanding				
CO5	Analyse the concepts of various network applications and data security	Analysing				

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	PO5	PO	PSO1	PSO2	PSO3						
	1	2	3	4		6	7	8	9	10	11	12			
CO1	2	1	1	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	1	2	-	1	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	-	-	-	-	-	-	-	-	-	3	1	2
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	-	2
CO5	2	1	1	-	1	-	-	-	-	-	-	-	1	1	1
Avg	2.2	1.2	1.2	-	1.25	-	-	-	-	-	-	-	2	1	1.4
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															

18E	CM08	INTERNET OF THINGS											
PRI	EREQUIS	ITES	CATEGORY	OE	C	redit		3					
			Houng/Wook	L		Т	Р	TH					
			Hours/ week	3		0	0	3					
Cou	Course Objectives												
1	1 To understand Smart Objects and IoT Architectures												
2	2 To learn about various IOT-related protocols												
3	To build	simple IoT Systems using Arduino and Raspberry I	Pi										
4	To under	stand data analytics and cloud in the context of IoT											
5	To develo	op IoT infrastructure for popular applications											
Ī	Unit I	FUNDAMENTALS OF IOT			9	0	0	9					
Evo	lution of 1	nternet of Things - Enabling Technologies - Io	Γ Architectures: o	neM2N	И, ІоТ	C Wo	orld I	Forum					
(IoT	WF) and A	Alternative IoT models – Simplified IoT Architectu	re and Core IoT F	unction	al Sta	ck	Fog	Edge					
and Sma	Cloud in I art Objects	of – Functional blocks of an Io1 ecosystem – Sen	sors, Actuators, Sr	nart Ot	ojects	and (Conn	ecting					
I	Jnit II	IOT PROTOCOLS			9	0	0	9					
IoT	Access T	echnologies: Physical and MAC layers, topology	y and Security of	IEEE	802.1	5.4,	802.	15.4g,					
802	.15.4e, 190	1.2a, 802.11ah and LoRaWAN – Network Layer: I	P versions, Constra	ained N	lodes a	and C	Const	rained					
Net	works – O	ptimizing IP for IoT: From 6LoWPAN to 6Lo, Ro	outing over Low P	ower a	nd Lo	ssy N	Vetwo	orks –					
App and	MOTT	ansport Methods: Supervisory Control and Data Ac	equisition – Applic	ation L	ayer F	roto	cols:	COAP					
U	nit III	DESIGN AND DEVELOPMENT			9	0	0	9					
De	sign Meth	odology - Embedded computing logic - Microcont	roller, System on	Chips -	- IoT	syste	m bu	ilding					
blo	ocks - Ardu	ino - Board details, IDE programming - Raspberry	y Pi - Interfaces an	nd Rasp	oberry	Pi w	vith F	ython					
Pro	ogramming	ŗ.											
U	nit IV	DATA ANALYTICS AND SUPPORTING SE	ERVICES		9	0	0	9					
Stru	ctured Vs	Unstructured Data and Data in Motion Vs Data ir	n Rest – Role of M	Iachine	e Lear	ning	- No	SQL					
Data	abases – H	Iadoop Ecosystem – Apache Kafka, Apache Spa	rk – Edge Stream	ning Ai	nalytic	s an	d Ne	twork					
Analytics – Alvely Cloud for 101, Python web Application Framework – Django – AWS for 10T – System Management with NETCONE VANG													
J	Jnit V		9	0	0	9							
Cisc	co IoT syst	em - IBM Watson IoT platform – Manufacturing -	Converged Plantw	vide Etl	hernet	Mod	lel (C	(PwE)					
- Po	ower Utilit	y Industry – Grid Blocks Reference Model - Sma	rt and Connected	Cities:	Layer	red a	rchite	ecture,					
Sma	art Lighting	g, Smart Parking Architecture and Smart Traffic Co	ontrol	-	1 / /	r \	17 5						
				Tota	1 (45]	L) =	45 P	eriods					

Text	Books:							
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017							
2	ArshdeepBahga, Vijay Madisetti, —Internet of Things – A hands-on approachl, Universities Press, 2015							
Refe	Reference Books:							
1	Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things – Key applications and Protocols, Wiley, 2012 (for Unit 2).							

2	Jan Ho ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.							
3	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Thingsl, Springer, 2011.							
4	Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011.							
E-Re	E-References:							
1	https://online.stanford.edu/courses/xee100-introduction-internet-things							
2	https://www.udemy.com/topic/internet-of-things/							
3	https://www.netacad.com/courses/iot							

Course (Upon con	Bloom's Taxonomy Mapped	
CO1	Explain the concept of IoT.	Understanding
CO2	Analyze various protocols for IoT.	Applying
CO3	Design a PoC of an IoT system using Rasperry Pi/Arduino	Applying
CO4	Apply data analytics and use cloud offerings related to IoT.	Applying
CO5	Analyze applications of IoT in real time scenario	Analysing

COURSE ARTICULATION MATRIX															
COs/PO	РО	РО	PO	РО	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E0	CM09	WIRELESS SENSORS AND NETWORK												
PRER	EQUIS	ITE:	CATEGORY	OE	Cre	dit	3							
			Hours/Wook	L	Т	Р	ТН							
			Hours/ Week	3	0	0	3							
Course Objectives:														
Course	Learn fundamental of Ad hoc network and architecture													
1.	Learn fundamental of Ad noc network and architecture													
2.	Understand the MAC and routing protocols.													
3.	3. Have an in-depth knowledge on QoS, security and sensor network platforms													
Unit I		ROUTING PROTOCOLS			9	0	0 9							
Elemer	nts of A	d hoc Wireless Networks, Issues in Ad hoc wireless networks	, Example commer	cial applica	tions	of A	d hoc							
networ Classif	king, A	Ad hoc wireless Internet, Issues in Designing a Routing	Protocol for Ad	Hoc Wire	less]	Netw	orks,							
On–De	mand I	Routing protocols – Ad hoc On–Demand Distance Vector Rou	ting (AODV).	Distance			D V),							
Unit II	[ARCHITECTURES OF WSN			9	0	0 9							
WSN a	pplicat	on examples, Types of applications, Challenges for Wireless	Sensor Networks,	Enabling T	echno	ologi	es for							
Wirele Operat	ss Sens ing sys	or Networks, Single-Node Architecture: Hardware Compor ems and execution environments	ients, Energy Cons	umption of	Sens	or N	odes,							
Netwo	rk Arch	itecture: Sensor Network Scenarios Ontimization goals and	figures of merit T	Design prin	ciples	of V	VSN							
Service	e interfa	ces of WSNs, gateway concepts.	ingules of mont, L	esign prin	erpies	01	, DI (,							
Unit II	I	MAC PROTOCOLS AND ROUTING PROTOCOLS			9	0	0 9							
Image	compre	ssion: Predictive techniques – PCM – DPCM - DM - Transfor	m coding - Introduc	ction to JPH	EG - JI	PEG-	2000							
- JBIG Model	standa	rds - Study of EZW. Video compression: Video signal repre	sentation – ITU-T	Recommen	ndatio	n H.í	261 –							
H.263.	based	Journg The Will LO-1 Video Standard - The Will LO-2 Vide	o Standard: 11.202	- 110-1 K	cconn	nene	ation							
Unit I	V	QUALITY OF SERVICE AND ADVANCED APPLICA	TION SUPPORT		9	0	0 9							
Quality	of Ser	vice: Coverage and deployment, Reliable data transport, Singl	le packet delivery, I	Block deliv	ery, C	longe	estion							
control	and ra	te control - Advanced application support: Advanced in-ne	etwork processing,	Security a	nd Ap	plica	ation-							
specific	c suppo	II.			-									
Unit V		SENSOR NETWORK PLATFORMS AND TOOLS			9	0	0 9							
Sensor	Node	Hardware – Berkeley Motes, Programming Challenges, Nor	de-level software p	latforms –	Tiny	OS, 1	nesC,							
beyond	i indivi	lual nodes – State centric programming.	networks, COOJA	., 1055IM	, Pro	gram	ining							
				Total (45	L) = 4	45 Pe	riods							
Text	Books:													
-------	---													
1.	C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education – 2008													
2.	Holger Karl and Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2007.													
Refer	ence Books:													
1.	Feng Zhao and LeonidesGuibas, "Wireless sensor networks ", Elsevier publication - 2004.													
2.	Charles E. Perkins, —Ad Hoc Networkingl, Addison Wesley, 2000.													
3.	William Stallings, "Wireless Communications and Networks ", Pearson Education – 2004													
4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks, Elsevier, 2002, 394 - 422.													
E-Ref	ferences:													
1.	https://nptel.ac.in/courses/106105183													
2.	https://nptel.ac.in/courses/106105183													
3.	https://archive.nptel.ac.in/courses/106/105/106105160/													

Course C Upon con	Dutcomes : npletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Know the basics of Ad hoc networks and Wireless Sensor Networks	Understanding
CO2	Have a knowledge on architecture of Wireless Sensor Networks	Applying
CO3	Apply the knowledge to identify MAC and routing protocols	Applying
CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	Understanding
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	Remembering

					С	OURS	SE AR	TICU	LATI	ON M	ATRIX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
			3/2/	1 - ind	licates	stren	gth of	correl	ation	(3-Higl	h,2- Me	edium, I	- Low)		

18E0	CM10												B	\$A	S	510	C	S	C)F	FJ	E	M	B	E	D)I	D)]	Þ	E	Ľ)	S	Y	Y:	S	T	'F	EI	M	IS	,																				
PRE	REQU	JISITES																																								C	A	.7	[]	EC	36)F	27	7			OF	£		(Cr	e	di	t			3
Mior	oproce	acore and l	м	<u>М</u>	٢.	Л.	mi	or		201	ntr	-01	10	rc	,																											Г	[/			•c/	٦X)	0	.l.				L			'	Г]	2		T	H
WIICI	oproce		111	VI		11			0	.0.				15	•																											1		л	11	5/	••	C	- 1				3				0)			3
Cou	rse Ob	jectives																																																													
1	To in	npart know	wle	/le	e	le	dg	ge	0	n e	em	be	ed	de	ed	l s	;ys	ste	er	m	a	ırc	chi	ite	ect	tu	ır	re	e	2	a	ın	nd	le	er	m	ıb	e	d	ld	le	d	d	e	V	elo	эp	m	er	It	St	ra	eg	ie	3								
2	To u	nderstand t	the	he	e	ne	b	us	; (Co	mr	nι	ın	ic	cat	tic	on	ı i	n	p	rc	oc	es	sso	ors	S	a	an	n	ld	d	p	be	r	ip	pł	ne	er	a	1	iı	nt	eı	ſ	a	cir	ıg																
3	To u	nderstand b	ba	oas	1S	as	sic	s	of	F R	lea	17	Гi	m	le	0)pe	er	ra	.ti	ng	g S	Sy	/st	ter	m	1																														_						
UNI	ΤI	BASICS	50	0)]	C	F	E	Μ	B	EI)D)E	E) (SY	YS	57	ΓΙ	EI	M	IS	;																																9			0		0)		9
Intro Prog Desig	ductio rammi gn Life	n - Fundar ng Langua e Cycle - So	ame Iage Sel	ne ige ele	je je	e ge	ent es ect	al - ic	R R	Co ec Pi	mp en roc	t t	ne Tr SS	en er	nts nd H	s c 1s Iar	of ir rd ⁻	E n w	Er E /a	n In In	be ab 2 S	ed seo So	lde dd oft	ed lec wa	d ar	Sy S re	ys Sy e I	st ys P	ste st Pa	te ste ai	er te ar	m er rti	ns n iti	s io	- - 01	ni	Cł A na	ha Aro g	al c	1e :h -]	ei it D	ng teo Per	ge et ve	s u el	f re	for e c pn	· E of ne	En E nt	nb m E	ec be	ld ed vii	ed de roi	Sy d S um	yst Sys en	ei ste t.	ns en	; - 15	- H	Ex E	an mł	np be	le dd	s - led
UNI	T II	MEMOR	RY	RY	Y	Y	N	1	11	NA	G	E	M	Ē	CN	JT	ΓΑ	AI	N	D) I	IN	JT	E.	R	R	RI	U	U]	J	P	רי	2	5																					9			0		()		9
Men Vs I Inter	ory Ao nterrup rupt So	ccess Proce ots - Types ervice Rout	ced es utir	edu s c tin	lu c n	dı c in	are of es	e - Ir	T nte	УI err	pes up	ts	of] -	M I	lei Int	m ter	or rrı	ry ur	pt	N : I	Ле La	en ate	no en@	ory cy	y N y -	М -	la I	ar In	n nt	na	aş te	er	rı	m up	ne pt	er t	nt P	N Pri	M ic		ri	hc ty	od -	ls –	- F	D Pro) Ogi	A ra	m	m	/le at	m le	ory In	ı Iı ite:	nte	eri up	fac /t (cir Co	ng on	- l tro	Po 511	lli er	ng s -
UNI	T III	COMMU	UN	JN	N	N	10	CA	1	ΓΙ	10	1	IN	IJ	ſF	ER	۲F	7A	1(CI	E	S																																	9			0		()		9
Inter IRD/	facing A - Eth	Buses - Se hernet - IEE	Ser EEE	eri EE	ri E	ri E	al 8	І 02	nte 2. 1	erf	fac —]	es B1	: - ue	F eto	R.S 00	52 otł	:32 h	2/	′U	JA	₹£	RT	ſ -	- F	RS	S∠	42	2	22	2,	2/]	/R	85	54	48	8:	5	-]	12	20		Iı	nt	e	rfa	ice	e .		SF	ľ	In	er	fac	:e	-	U	SI	3	_ (C	41	Л -
UNI	T IV	REAL T	ΓIN	IN	M	N	ſF	C (D	PE	R	A'	ГІ	IN	10	3 6	SY	Y	S	T	E	Μ	IS	;																															9			0		()		9
Real- Sche Inter	-Time duling Task (Concepts - - Event D Communic	- 7 Driv cat	- T riv ati	T iv ti	T iv ti	'as vei loi	sk n (1 -	N Sc · N	Ia che Mu	nag edu itez	ge ıli x -	m ng - S	ei g Se	nt -] em	- Re naj	T es ph	'as soi ho	sk ui or(s (rc es	Sc :e 3 -	ch S - N	ieć ha Me	du ari ess	ilii inį sa	ng g	g ge		- F Ç	P Q	C Pr Qu	C ri u	la o e	as ri ue	si ity es	if y s	fic Iı -	ca nl T	at h `i	tio ne	oi ri	n ita ers	o in s	f ic	S e C	ch P oi	ro ro m	lu to ne	lii cc ere	ng ol cia	 - 1 1	lg Pri R]	ori ori TO	ith ity S.	m C	s 'e	- (ilir	Cle ng	oc ; F	k 1 Pro	D1 oto	riv cc	ven ol -
UNI	ΤV	VALIDA	AT	Т	[]	Γ	IC)N	1 4	AN	ND	D)E	EB	BL	JC	30	GI	IN	N	G																																		9			0		()		9
Host - Ren Emu	and T note E lator C	arget Mach Debuggers a CASE STUI	hir an JD	nin an DY	n na N	in n O	es d 1 Y:	De R	V eb Fl	′al ug ID	ida g K S	ati Kei ys	oı rn te	n ' el m	T ls is	ур -	es R G	s a .O P	ar)N 'S	nd A N	IN E Na	M Em avi	etl 1ul ig	ho lat ati	od to: io	ls or on	- - 1 \$	- - S	F L Sy	H L y	Ho Lo ys	o og st	st gi	t ' ic m	To a 1 -	'e 1	st A	tiı Ar Do	ng na e ^v	g al	ly e	lo	ło en p	n	st. ne	-B B nt	as ac	ec kg f]	l ' gro Pr	Ге ou	st no	ing 1 I ol To	; S Deb <u>C</u> (eti oug on	лр 3 <u>ve</u> 45	M ert L	Ta od er.	ar le	ge - 4:	t T In 5 I	Ге Ci Pe	sti rc ric	ng uit ods

1 Sriram V Iyer and Pankaj Gupta, —Embedded Real-time Systems Programmingl, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006. 2 Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011. Pafarence Backet	
2 Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011. Performence Receiver	
Deference Deele	
Reference doors.	
1Prasad K V K K, —Embedded/Real-Time Systems: Concepts, Design and Programming – The Ultimate Reference, Himal Impressions, New Delhi, 2003	
2 Heath, "Embedded Systems Design", Newnes an Imprint of Elsevier, Massachusetts, 2003.	
3 Tammy Noergaard, "Embedded Systems Architecturel, Newnes an Imprint of Elsevier, Massachusetts, 2006.	
4 Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013	
E-References:	
1 https://lecturenotes.in/subject/225/embedded-system-es	
2 https://nptel.ac.in/courses/108102045/19	

.

Course O Upon con	putcomes: apletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Outline the concepts of embedded systems	Understanding
CO2	Understand the concept of memory management system and interrupts.	Understanding
CO3	Know the importance of interfaces.	Understanding
CO4	Understand real time operating system concepts.	Understanding
CO5	To realize the applications of validation and debugging.	Applying

					COUI	RSE A	RTIC	ULAT	ION N	MATRI	Х				
COs/POs	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	-	-	-	-	-	-	3	3	3	-	2
CO2	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
CO3	3	3	3	3	-	-	-	-	-	-	3	3	3	-	2
CO4	3	3	2	3	-	-	-	-	-	-	2	3	3	-	2
CO5	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
Avg	3	3	2	3	-	-	-	-	-	-	2.8	3	3	-	2
		3/	2/1 - i	ndicat	es stre	ength o	of corr	elatior	n (3-H	igh,2- N	Medium	n,1- Lo	w)		

B.E. - ELECTRICAL AND ELECTRONICS ENGINEERING - MINOR DEGREE

181	EEM01	LINEAR AND DIGITAL ELECTRONICS CI	IRCUITS	SEM	IESTI	ER	
PR	EREQ	UISITES	CATEGORY	PE	Cre	edit	3
F1 -	atura D		Harry/Wash	L	Т	Р	TH
Ele	ctron D	evices and Circuits	Hours/ week	3	0	0	3
Co	urse O	bjectives:					
1.	To im	part knowledge on the characteristics& applications of Operation A	Amplifier, functiona	l diagram	and a	oplicat	ions
	of line	ar ICs.					
2.	To sin	plify the switching functions					
3.	To des	ign the combinational logic circuits and sequential logic circuits					
Un	it I	OPERATIONAL AMPLIFIERS		9	0	0	9
Ope	erationa	amplifiers - Equivalent circuit, voltage transfer curve - Open loop	Op-amp configurati	ons-Volt	age ser	ries, V	oltage
shu	nt feedt	ack amplifiers configurations, closed loop differential amplifiers f	or single and differe	ential outp	outs.		
Out	tput offs	et voltage, minimizing output offset voltage due to input bias curre	ent and input offset	current, f	actors	affectii	ng off
set	paramet	ers, CMRR - Open loop and closed loop frequency response of op	o-amps, circuit stabi	lity, slew	rate ar	nd its e	ffects
in a	pplicati	ons.		Γ.		_	
Un	it II	APPLICATION OF OPERATIONAL AMPLIFIER AN	D LINEAR ICS	9	0	0	9
DC	& AC	amplifiers- Summing, Scaling and Averaging amplifiers-Instrume	entation amplifier-	Voltage to	Curre	nt con	verter
for	floating	and grounded loads - Current to voltage converter - Integrator, Diff	ferentiator. Voltage	comparat	ors - Zo	ero Cro	ossing
Det	tector -	Schmitt trigger with voltage limiter- Precision Rectifier Circuits-	Peak Detector-Sam	ple and H	lold Cli	cuit, A	Active
FIIL filte	ers - rie	quency response characteristics of major active inters, inst and my	glief ofder fow pass		pass m	ters, ar	i pass
Fur	nctional	block diagram and Applications of Linear ICs: IC 555 Timer -IC 4	566 Voltage control	led oscill:	ator- IC	7 565 F	hase-
loci	ked loor	s - IC LM317 voltage regulators.	oo voluge control	ieu oseini			nuse
Un	it III	COMBINATIONAL LOGIC CIRCUITS		9	0	0	9
Rep	oresenta	tion of logic functions: SOP and POS forms - Simplification	of switching func	tions: K-	maps	metho	d and
Qui	ineMcC	luskey (Tabulation) method.	C		1		
Des	sign:Ad	lers -Subtractors- 2 bit Magnitude Comparator-Multiplexer- Demu	ultiplexer- Encoder	- Priority	Encod	er - De	coder
- C	ode Co	overters. Implementation of combinational logic circuits using mul	tiplexers and Decod	ler.			
Un	it IV	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS		9	0	0	9
Flip	p-flops:	SR, D, JK and T- Conversion of flip-flops; Classification of sequen	tial circuits: Moore a	and Mealy	y mode	ls - An	alysis
and	l design	of synchronous sequential circuits - Design of synchronous counter	ers- Universal shift 1	egister.			
Un	it V	ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS	5	9	0	0	9
Fur	ndament	al mode and pulse mode circuits, Analysis procedure of asynchro	nous circuits with /	without u	sing of	SR la	tches-
prir	nitive st	ate / flow table - Reduction of state and flow table - state assignm	ent –Design Proced	ure of asy	nchro	10us ci	rcuits
wit	h /witho	ut using of SR latches-Problems in asynchronous sequential circui	ts: cycles -Races -H	Hazards.			
			Tota	al (45L+0	= (T0	45 Pe	riods

Text	Books:
1.	Ramakant A Gayakward, "Op-Amps and Linear Integrated Circuits", Fourth Edition, Pearson Education, 2003.
2	Donald.E.Neaman, "Electronic Circuit, Analysis and Design", Tata McGraw Hill Publishing Company Limited, Second
۷.	Edition, 2002.
3	D.Roy Chowdhury and Shail B. Jain, "Linear Integrated Circuits", Fourth Edition, New Age International (P) Ltd
5.	Publishers, 2014.
4	M. Morris Mano, "Digital Design", Third Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2003 / Pearson
4.	Education (Singapore) Pvt. Ltd., New Delhi, 2010.
5	S. Salivahanan and S. Arivazhagan, "Digital Circuits and Design", Third Edition, Vikas Publishing House Pvt. Ltd,
5.	New Delhi, 201
Refe	rence Books:

1	Jacob Millman, Christos C.Halkias, "Integrated Electronics - Analog and Digital circuits system", Tata McGraw Hill
1.	2003.
c	R.P.Jain, "Modern Digital Electronics", Third Edition, Tata McGraw-Hill Publishing company limited, New Delhi,
۷.	2011.
3.	Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2015
4	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", Fifth Edition, Tata McGraw Hill
4.	Publishing Company Limited, New Delhi, 2012.

Cours	e O	utcomes:	Bloom's Taxonomy
Upon c	omj	pletion of this course, the students will be able to:	Mapped
CO1	:	Understand the Op-amp characteristics	L2: Understanding
CO2	:	Understand the applications of Op-amp and other linear ICs.	L2: Understanding
CO3	:	Apply K-map and Tadulation methods to simplify the switching functions	L3: Applying
CO4	:	Design and implement of combinational logic circuits	L6: Creating
CO5	:	Analyse and design of synchronous & asynchronous sequential logic circuits	L4: Analyzing

COUR	RSE AR	RTICU	LATIO	ON MA	TRIX										
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1											2		
CO2	3	2	1	1									3		
CO3	3	2		2	2								3	3	
CO4	3	2	3	1	2							2	3	3	1
CO5	3	2	3	1	2							2	3	3	1
Avg.	2.8	1.8	2.3	1.25	2	-	-	-	-	-	-	2	2.8	3	1
			3/	2/1-indi	icates st	rength o	of correl	lation (3	8- High,	2-Medi	um, 1-1	Low)			

18EEM02 MICROPROCESSOR AND MICROCONTROLLER	SEI	MEST	ER								
PREREQUISTIES CATEGORY	PE	Cr	edit	3							
C Programming	L	Т	Р	TH							
Hours/ week	3	0	0	3							
Course Objectives:											
1. To study the architecture of μP8085 and μC 8051.											
2. To study the Interrupt structure of 8085 and 8051.											
3. To do simple applications development with programming 8085 and 8051.											
UNIT I 8085 8 BIT MICROPROCESSOR	9	0	0	9							
Fundamentals of microprocessors – Architecture of 8085 – Groups of Instructions - Addressing modes – Basic timing diagram											
- Organization and addressing of Memory and I/O systems -Interrupt structure - Stack and sub	-routines	- Simpl	e 8085	based							
system design and programming.											
UNIT II 8051 8 BIT MICROCONTROLLER	9	0	0	9							
Fundamentals of microcontrollers - Architecture of 8051 - Groups of Instructions - Address	ing mode	es – Or	ganizat	ion of							
Memory systems - I/O Ports - Timers/Counters - Serial Port - Interrupt structure - Simple	program	ming co	oncepts	using							
Assemblers and Compliers.											
UNIT III INTERFACING WITH 8051 MICROCONTROLLER	9	0	0	9							
Need and requirements of interfacing - Interfacing - LED, 7 segment and LCD Displays - Tactil	e switche	s, Matr	ix keyb	oard –							
Parallel ADC – DAC – Interfacing of Current, Voltage, RTD and Hall Sensors.											
UNIT IV EXTERNAL COMMUNICATION INTERFACE	9	0	0	9							
Synchronous and Asynchronous Communication. RS232, RS 485, SPI, I2C. Introduction and inte	erfacing to	protoc	ols like	Blue-							
tooth and Zig-bee.											
UNIT V APPLICATIONS OF MICROCONTROLLERS	9	0	0	9							
Simple programming exercises- key board and display interface -Control of servo motor stepper	motor co	ntrol- A	Applicat	tion to							
automation systems.											
Te	otal (45I	2+0T)=	= 45 Pe	eriods							

Text H	Books:							
1.	R.S. Gaonkar, 'Microprocessor Architecture Programming and Application', with 8085, Wiley Eastern Ltd., New							
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.							
3	Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely 'The 8051 Micro Controller and Embedded Systems', PHI							
5.	Pearson Education, 5th Indian reprint, 2003.							
Refere	Reference Books:							
1.	R. Kamal, "Embedded System", McGraw Hill Education, 2009.							
2.	D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 1991.							
E-Ref	erences;							
1.	www.onlinecourses.nptel.ac.in/noc18_ee41							
2.	www.class-central.com							
3.	www.mooc-list.com							

Course	e O	utcomes:	Bloom's Taxonomy
Upon co	omp	Mapped	
CO1	:	Understand basics of microprocessor and microcontroller	L2: Understanding
CO2	:	Understand the architecture of Microprocessor and Microcontroller	L1: Remembering
CO3	:	Apply the digital concepts to measure and control simple electrical systems	L3: Applying
CO4	:	Design and interface communications between digital systems	L2: Understanding
CO5	:	Design a microcontroller based electrical control system.	L5: Evaluating

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	2	1	1	1								1	1	1	
CO2	2	1	1	1								1	1	1	
CO3	2	3	2	3	2							1	1	1	2
CO4	2	3	3	3	2							2	2	2	2
CO5	2	3	3	3	2							2	2	2	2
Avg.	2	2.2	2	2.2	2	-	-	-	-	-	-	1.4	1.4	1.4	2
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18 F	EEM03		SEI	MEST	ER							
PR	EREQUI	STIES	CATEGORY	PE	Cre	edit	3					
Flag	etrical Ma	chines and Electric circuit analysis	Hours/Week	L	Т	Р	TH					
Lice		ennies and Electric circuit analysis	Hours/ Week	1	1	0	3					
Co	urse Obje	ectives:										
1.	1. To understand the methods of representation of physical systems and getting their transfer function models.											
2.	2. To provide adequate knowledge in the time response of systems and steady state error analysis.											
3.	To give b	basic knowledge in obtaining the open loop and closed loop f	requency response of	of system	ms.							
4.	To under	stand the concept of stability of control system and methods	of stability analysis.									
5.	5. To study the designing compensators for a feedback control system.											
UN	IT I	MODELLING OF LINEAR TIME INVARIANT S	SYSTEMS	6	9	0	9					
Bas	ic elements	s in control systems – Open and closed loop systems – Feedba	ick control system ch	aracter	ristics -	Mathe	ematical					
mod	del and Ele	ectrical analogy of mechanical systems - Transfer function	Representation- Sy	nchro -	– AC a	and DO	C servo-					
mot	ors – Bloc	k diagram reduction techniques – Signal flow graphs.										
UN	IT II	TIME RESPONSE ANALYSIS		6	3	0	9					
Star	ndard test	signals - Time response of first order and second order syst	ems –time domain	specific	cations	- Stea	dy-state					
erro	ors and erro	or constants - Type and order of control systems - Effect of	f adding poles and a	zeros to	o transf	fer fun	ctions -					
Res	ponse with	P, PI, PD and PID controllers.										
UN	IT III	FREQUENCY RESPONSE ANALYSIS		6	3	0	9					
Cor	relation be	tween time and frequency response: Second order systems -	Frequency domain	specific	cations	- Pola	r plots –					
Bod	le plots – C	Computation of Gain Margin and Phase Margin — Constant I	M and N-circles – N	ichols o	chart.							
UN	IT IV	STABILITY OF CONTROL SYSTEM		6	3	0	9					
BIB	BO stability	- Necessary conditions for stability – Routh-Hurwitz stabilit	ty criterion – Root lo	cus co	ncepts	-Rules	s for the					
con	struction o	f Root loci – Nyquist stability criterion – Assessment of relat	tive stability using N	lyquist	criterio	on.						
UN	IT V	COMPENSATOR AND CONTROLLER DESIGN	1	6	3	0	9					
Nee	ed for com	pensation - Types of compensators - Electric network rea	alization and freque	ncy ch	aracter	istics of	of basic					
com	pensators:	Lag, lead and lag-lead compensators - Design of compensat	ators using root locu	s and E	Bode pl	ot tech	iniques-					
PID	controller	: Design using reaction curve and Ziegler - Nichols techniqu	ıe.									
			Total	(30L+	-15T)	= 45 F	Periods					

Tey	Text Books:											
1.	A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, 2017.											
2.	I.J. Nagrath, and M. Gopal, "Control Systems Engineering", New Age International Publishers, Delhi, 7th Edition, 2021.											
Ref	ference Books:											
1.	K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 5th Edition, 2021.											
2.	M. Gopal, "Control Systems: Principles and Design", TMH, New Delhi, 4th Edition, 2018.											
E-F	Reference											
1.	https://nptel.ac.in/courses/107106081											
2.	https://nptel.ac.in/courses/108106098											

Course Ou	itco	mes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1		Develop the transfer function models of any electrical and electro-mechanical	L2: Understanding
	•	systems.	
CO2	:	Obtain the time responses of the systems and construct root locus plot.	L3: Applying
CO3	:	Analyze the frequency response of the system	L3: Applying
CO4	:	Analyze the absolute / relative stability of a control system.	L4: Analyzing
CO5	:	Design the compensators and PID controller of a feedback control system.	L3: Applying

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	2	2	2							1	3	2	1
CO2	3	3	3	2	2							1	3	2	1
CO3	3	3	3	2	2							1	3	2	1
CO4	3	3	3	2	2							1	3	2	1
CO5	3	3	3	2	2							1	3	2	1
Avg	3	3	2.8	2	2	-	-	-	-	-	-	1	3	2	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18E	EM04	MEASUREMENTS AND INSTRUMENTA	TION	SEN	1EST1	ER						
PRE	REQUI	ISTIES	CATEGORY	PE	Cre	edit	3					
Floot	ria Circu	it Analysis	Hours/Wook	L	Т	Р	TH					
Elecu			Hours/ week	3	0	0	3					
Cour	se Obj	ectives:										
1.	To edu	cate the fundamental concepts and characteristics of measureme	ent System									
2. To introduce the fundamentals of electrical and electronic instruments for measurement of Electrical and Non-electrical quantities												
3. To familiarize Oscilloscope and the bridge circuits for electrical parameters measurement												
UNI	ГΙ	INTRODUCTION		9	0	0	9					
Eleme	ents of a	generalized measurement system - Static and dynamic character	eristics - Errors in m	neasurem	ent. Me	easurer	nent of					
voltag	ge and cu	irrent - permanent magnet moving coil and moving iron type mo	eters									
UNI	UNIT IIMEASUREMENT OF POWER, ENERGY AND FREQUENCY9009											
Measu	Measurement of power - single and three phase- electrodynamometer type watt meters - Construction, operation - torque											
equati	ion for d	eflection - errors. Measurement of energy-Single phase inducti	on type energy meter	ers, Instru	iment t	ransfo	mers –					
Curre	nt and P	otential transformers, Power factor meters- Single phase electro	dynamometer type p	power fac	tor me	ter, fre	quency					
meter	-Electric	al resonance type frequency meter				-						
UNI	ГШ	DC AND AC BRIDGES		9	0	0	9					
Balan	ce equat	ions - Wheatstone bridge - Kelvin double Bridge - Maxwell's	inductance capacitation	ance brid	ge – H	lay's b	ridge –					
Ander	rson's br	idge – Schering bridge and De Sauty's bridge				-						
TINIT	ги	POTENTIOMETERS, OSCILLOSCOPES AND DIC	GITAL	0	0	0	0					
UNI	1 1 1	INSTRUMENTS		,	U	U	,					
DC P	otentiom	eter- Crompton's Potentiometer, AC potentiometer- Drysdale p	olar potentiometer-	Gall Tin	sley co	-ordina	ite type					
poten	tiometer	, Cathode Ray Oscilloscope and Digital storage Oscilloscope-G	Construction, operat	ion and A	Applica	tions,	Digital					
multi-	-meters,	Digital voltmeters.										
UNI	ΓV	MEASUREMENT OF NON-ELECTRICAL QUANT	TITIES	9	0	0	9					
Classi	ification	of transducers -Position transducers, Piezo-electric transducer	rs and Hall effect tr	ansducer	s. Me	asuren	ent of					
pressu	ure, temp	perature and displacement- Introduction to Smart Sensors										
			То	tal (45L	(+ 0 T)=	= 45 P	eriods					

Text B	Books:								
1.	A.K. Sawhney, 'A Course in Electrical & Electronics Measurement & Instrumentation', Dhanpat Rai and Co, 2015								
2.	E.O. Doebelin, 'Measurements Systems- Application and Design', Tata McGraw Hill publishing company, 2015.								
Refere	Reference Books:								
1.	D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt. Ltd, 2010.								
2.	H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 2015.								
3.	Martin Reissland, ' Electrical Measurements', New Age International(P) Ltd., Delhi, 2011.								
E-Ref	E-Reference:								
1	https://archive.nptel.ac.in/courses/108/105/108105153/								

Course O	outo	comes:	Bloom's Taxonomy					
Upon com	Mapped							
CO1	:	Recall the fundamentals of measurement system in electrical engineering.	. L1: Remembering					
CO2	:	Describe the working principle of different measuring instruments	L2: Understanding					
CO3	:	Choose appropriate instrument for measuring the electrical parameters	L3: Applying					
CO4	:	Employ the digital instruments in real time measurements.	L3: Applying					
CO5	:	Select an appropriate transducer for measurement of non-electrical quantities	L4: Analysing					

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	3				1		2		2	2	1	1
CO2	1	3			3					2		1	2	1	
CO3	1	1		2	1	1	2		1				1	2	1
CO4	1	1		1	1		2	2	1		2	2	1	3	1
CO5	2	2	3	1	2	2	1			1	3		1	2	
Avg	1.4	1.8	2.5	1.75	1.75	1.5	1.67	1.5	1	1.67	2.5	1.67	1.4	1.8	1
	•	•	3/2/1-ir	ndicates	strengtl	n of cor	relation	(3- Hig	h, 2-Me	dium, 1	- Low)	•	•	•	•

18E	EMO	5 ELECTRICAL MACHINES		SEMESTER				
PRE	REQ	UISTIES	CATEGORY	PE	Cre	edit	3	
			II /II / -	L	Т	P	TH	
			Hours/ week	3	0	0	3	
Cour	rse O	bjectives:						
1.	To in	npart knowledge on construction, working and performance of D	C generators and mo	otors.				
2.	To d	eliberate the construction, working and performance of single pha	ase and three phase t	ransform	ers.			
3.	To in	npart knowledge on construction, working and performance of sy	nchronous generato	rs and mo	otors.			
4.	To ir	npart knowledge on construction, principle of operation and perform	rmance of single and	three-pha	ase indu	action 1	notors.	
UNI	ТІ	DC GENERATORS		9	0	0	9	
Princ	iple of	operation, constructional details, types - EMF equation, armatu	re reaction, demagn	etizing ar	nd cross	s magn	etizing	
Ampe	ere tur	ns, compensating winding, commutation, methods of improving	g commutation, inter	rpoles, O	pen cir	cuit ar	nd load	
chara		ics of different types of DC Generators. Parallel operation of DC	Generators, applicat	ions of D	C Gene	erators.		
UNI		DC MOTORS	1 11 .	9	0	0	9	
Princi	iple of	operation, significance of back emf, torque equation and power de	eveloped by armature	e, load cha	aracteri	stics of	ion for	
maxi	mum e	officiency Testing of DC Machines: Brake test Swinburne's test	Honkinson's test	etardatio	n test	Separa	tion of	
core 1	losses	- applications of DC motors.	, mopkinson's test, r	Cetardatio	in test,	Separa	1011 01	
UNI	Т Ш	TRANSFORMER		9	0	0	9	
Singl	e pha	se transformer: Construction and principle of operation, work	ting of practical trai	nsformer	- equiv	valent	circuit,	
voltag	ge regi	ulation, losses and efficiency- testing : polarity test, open circuit	t and short circuit te	sts, back-	to back	c test,	all day	
effici	ency, j	parallel operation, applications.					-	
Auto	transf	former: Construction and working, saving of copper - application	ns, Three phase tra	nsformer	: const	ructior	, types	
of con	nnectio	ons and their comparative features.						
UNI	T IV	SYNCHRONOUS GENERATOR AND MOTOR		9	0	0	9	
Syncl	hrono	us Generator: Constructional and working details – Types of re-	otors – EMF equation	on – Phas	sor diag	grams o	of non-	
salien	nt pole	synchronous generator connected to infinite bus - Synchronizin	g and parallel opera	tion – Sy	nchron	izing t	orque -	
Volta	ige reg	ulation – EMF, MMF and ZPF method – steady state power angle	e characteristics – T	wo reacti	on theo	ory – sl	ip test.	
G1		Materia Divide Constitution (Constitution Constitution)		¥7 1	т	1 1 7 .		
Dowo	nrono r input	us Motor: Principle of operation – Forque equation – Operation	i on infinite dus dars	input co	Inverte nstant (ed v ci	irves –	
const	ant no	wer Developed Hunting natural frequency of oscillations dar	mor windings sync	hronous (onstant (excitati	ion and	
LINI	ан ро т v	THREE PHASE AND SINCLE PHASE INDUCTION	I MOTOR				0	
Three	r v e nhas	e induction motor: Constructional details – Types of rotors – Pr	inciple of operation	– Equival	ent ciro	uit – T	orque-	
Slip	c plius charact	eristics - Condition for maximum torque – Losses and efficiency –	- load test - No load a	and block	ed roto	r tests -	Circle	
diagra	am – \$	Separation of losses – Starters: DOL, Autotransformer and Star	r delta starters – Sp	eed contr	ol meth	hods: V	/oltage	
contro	ol, Fre	quency control and pole changing - V/f control - Slip power reco	overy Scheme.				e	
Singl	e phas	se induction motor: Constructional details – Double field revolve	ing theory and opera	tion – Eq	uivalen	nt circu	it – No	
load a	and blo	ocked rotor test - Performance analysis - Starting methods of single	le-phase induction m	otors – sp	olit pha	se, Cap	acitor-	
start,	capaci	tor start and capacitor run Induction motor.						
			To	otal (45L	/+0T)=	= 45 P	eriods	
Text	Book	IS:						
1.	I.	J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill	Education, 5th Editi	on, 2017				
2.	Р.	S. Bimbhra, "Electric Machinery", Khanna Publishers, 2nd Editi	on, 2021.					
2	B	L.Theraja and A.K.Theraja," A text book of Electrical Technolo	gy - Volume-II", S.	Chand &	Compa	ny Ltd	l., New	
5.	D	elhi, 23 rd Edition, 2009.						

 Reference Books:

 1.
 B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers,3rd Edition, Reprint 2015.

2.	Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, First edition, 2010.
3.	A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc Graw Hill publishing Company Ltd, 6th Education, 2017.
4.	Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Education Pvt. Ltd, 4th Edition 2017.

Course O	outo	comes:	Bloom's Taxonomy
Upon com	pleti	ion of this course, the students will be able to:	Mapped
CO1	:	Explain the construction and working principle of DC machines, and Interpret various characteristics of DC machines.	L2: Understanding
CO2	:	Compute various performance parameters of the machine, by conducting suitable tests.	L5: Evaluating
CO3	:	Describe the working principle of transformer, auto transformer, three phase transformer connection, and determine the efficiency and regulation.	L3: Applying
CO4	:	Understand the construction and working principle of Synchronous Machines.	L3: Applying
CO5	:	Understand the construction and working principle, speed control of three phase and single phase induction motor.	L5: Evaluating

COURS	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	3	3	1	1	1			1				1	3	2	1
CO2	3	3	1	1	1			1				1	3	2	1
CO3	3	3	1	1	1			1				1	3	2	1
CO4	3	3	1	1	1			1				1	3	2	1
CO5	3	3	1	1	1			1				1	3	2	1
Avg.	3	3	1	1	1	-	-	1	-	-	-	1	3	2	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18F	EEM06	ELECTRICAL DRIVES AND CONTI	ROL	SEN	ER								
PRE	EREQU	UISTIES	CATEGORY	PE	Cr	edit	3						
DC N	Machine	es and Transformers, Synchronous and Induction Machines, and	HoundWoolr	L	Т	Р	ТН						
Pow	er Elect	ronics	nours/ week	3	0	0	3						
Cou	rse Ob	ojectives:											
1.	To kr	now about the operation analyse of chopper fed DC drive, both qu	alitatively and quar	ititatively	/.								
2.	2. To understand the operation and performance of AC motor drives.												
UNI	IT I	DC MOTOR CHARACTERISTICS & CHOPPER FE	D DC DRIVES	9	0	0	9						
Revi	Review of torque-speed characteristics of separately excited dc motor, change in torque-speed curve with armature voltage,												
exan	nple loa	d torque-speed characteristics, operating point, armature voltage	e control for varying	g motor	speed.	Review	w of dc						
chop	per and	duty ratio control, chopper fed dc motor for speed control, stead	y state operation of	a choppe	r fed d	rive, ar	rmatu re						
curre	ent wave	eform and ripple, calculation of losses in dc motor and chopper.											
UNIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9													
Revi	Review of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structure												
of D	C drive	, inner current loop and outer speed loop, dynamic model of dc n	notor – dynamic equ	ations a	nd trans	sfer fur	nctions,						
mod	eling of	chopper as gain with switching delay, plant transfer function, c	current controller sp	ecificatio	on and	design	, speed						
contr	roller sp	becification and design.											
UNI	III TI	INDUCTION MOTOR CHARACTERISTICS		9	0	0	9						
Revi	ew of in	nduction motor equivalent circuit and torque-speed characteristic	, variation of torque	e-speed c	urve w	ith (i)	applied						
volta	age, (ii)	applied frequency and (iii) applied voltage and frequency. Review	of three-phase volta	ige sourc	e inver	ter, gen	neration						
of th	ree-pha	se PWM signals, constant V/f control of induction motor											
UNI	IT IV	CONTROL OF SLIP RING INDUCTION MOTOR		9	0	0	9						
Impa	act of ro	tor resistance of the induction motor torque-speed curve, operation	on of slip-ring induc	tion mot	or with	extern	al rotor						
resis	tance, s	tarting torque, power electronic based rotor side control of slip rin	ng motor, slip power	recover	у								
UNI	IT V	CONTROL OF SRM AND BLDC MOTOR DRIVES.		9	0	0	9						
SRM	l constru	uction - Principle of operation - SRM drive design factors-Torque	controlled SRM-Bl	ock diag	am of l	Instanta	aneous						
Torq	ue cont	rol using current controllers and flux controllers. Construction	and Principle of op	eration of	of BLD	C Mac	chine -						
Sens	ing and	l logic switching scheme,-Sinusoidal and trapezoidal type of B	rushless dc motors	- Block	diagra	m of o	current						
contr	rolledd	Brushless dc motor drive											
			To	tal (45I	L+0T)=	= 45 P	eriods						
·													
Tex	t Book	s:											

1.	G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989.								
2.	R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall,2010								
3.	Bose B K, "Modern Power Electronics and AC Drives", Pearson Education New Delhi, 2010.								
Reference Books:									
1.	G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2012.								
2.	W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001.								
E-Refe	E-Reference								
1	https://www.iith.ac.in/~ketan/drives.htmL								

Course O	outo	comes:	Bloom's Taxonomy				
Upon comp	Upon completion of this course, the students will be able to:						
CO1	:	Understand the characteristics of dc motors and induction motors.	L2: Understanding				
CO2	:	Summarize the operation of chopper fed DC drives.	L4: Analyzing				
CO3	:	Understand the principles of speed-control of dc motors and induction motors.	L2: Understanding				
CO4	:	Identify suitable power electronic converters used for dc motor and induction motor speed control.	L3: Applying				

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1	3			1	1					1	3	2	
CO2	3	3	1	3		1	1					1	3	2	
CO3	3	3	3	3	1	1	1					1	3	2	
CO4	1	3	3	2	1	1	1					1	3	2	
CO5	3	3	3	3	1	1	1					1	3	2	
Avg.	2.6	2.6	2.6	2.75	1	1	1	-	-	-	-	1	3	2	-
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18E	EM07	ELECTRIC VEHICLES AND CONTRO	L	SEM	ESTI	ER						
PRE	REQU	ISTIES	CATEGORY	PE	Cre	dit	3					
El a ata		and control	Houng/Wools	L	Т	Р	TH					
Electr	ical driv	es and control	Hours/ week	3	0	0	3					
Cour	se Obj	ectives:										
1.	To pro	vide knowledge on electric vehicle architecture and its configuration	IS									
2. To impart knowledge on vehicle control, use of energy storage systems and energy management in Electric Vehicle												
UNI	ГΙ		9	0	0	9						
Confi	Configurations of Electric Vehicles (EV), Performance of Electric Vehicles, Tractive Effort in Normal Driving and Energy											
Consumption, Hybrid Electric Vehicles (HEV): Classification, Series Hybrid Electric Drive Trains, Parallel Hybrid Electric												
Drive Trains												
TINIT	0	0	•	0								
UNI	9	U	U	9								
Funct	Functions and Benefits of PHEV, Components of PHEVs, Operating Principles of Plug-in Hybrid Vehicle, Control Strategy of											
PHEV	/, Fuel C	Cell: Operation and Types, Fuel Cell Electric Vehicle: Configuration	and Control Strategy	7								
UNI	ГШ	ELECTRIC PROPULSION SYSTEMS		9	0	0	9					
Typic	al electr	ic propulsion system, Classification of electric motor drives for EV a	and HEV, Multiquadr	ant Co	ntrol o	of Cho	pper-					
Fed D	C Moto	r Drives, Vector Control of Induction Motor drives, Permanent Mag	netic Brush-Less DC	Motor	Drive	s, Sw	itched					
Reluc	tance M	otor Drives for Electric Vehicles										
UNI	ΓIV	ENERGY STORAGE SYSTEM		9	0	0	9					
Status	of Bat	tery Systems for Automotive Applications, Battery Technologies	s: Nickel–Metal Hyd	dride (1	Ni-M	H) Ba	attery,					
Lithiu	m–Poly	mer (Li-P) Battery, Lithium-Ion (Li-Ion) Battery, Ultracapacit	ors: Features, opera	ation a	nd pe	erforn	nance,					
Ultrah	nigh-Spe	ed Flywheels, Hybridization of Energy Storages										
UNI	ГV		9	0	0	9						
Energ	y Mana	gement System(EMS) in Electric Vehicle, Rule-based control strat	egy: Deterministic ru	ile-base	ed cor	ntrol,	Fuzzy					
logic-	based c	control, and Neural network-based control. Optimization based	control strategy: I	Dynami	c Pro	ogram	ming,					
Metał	neuristic	optimization methods and Model predictive control, Semi-active typ	e Hybrid Energy Stor	age Sys	stem-	based	EMS,					
Fully-	active ty	ype Hybrid Energy Storage System-based EMS										
			Total (4	45L+0	T)= 4	15 Pe	riods					

Text B	Books:
1.	Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, Taylor & Francis Group, Second
	Edition ,2011.
2.	Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, AliEmadi,, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles"
	CRC Press, 2016
Refere	ence Books:
Refere	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John
Refere 1.	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010
Refere 1. E-Refe	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010 erence:

Course	0ι	itcomes:	Bloom's Taxonomy
Upon co	mpl	etion of this course, the students will be able to:	Mapped
CO1	:	Recall the fundamentals of electric vehicle and its mechanics	L1: Remembering
CO2	:	Explain the architecture of different forms of hybrid electric vehicles.	L2: Understanding
CO3	:	Illustrate the four-quadrant operation of DC drive, induction motor drive and SRM drive for Electric Vehicles.	L4: Analyzing
CO4	:	Select an appropriate energy storage system for Electric vehicle	L4: Analyzing
CO5	:	Use the suitable energy management control strategy for hybrid electric vehicle	L3: Applying

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1		1	3	1		1					1	1	2	1
CO2	1	2	3	1			2					2	1	2	
CO3	1	1			2		3						1	1	1
CO4	3	1	2	1	2		1					2	1	2	1
CO5	1	2	1	2	1							1	1	2	1
Avg	1.4	1.5	1.75	1.75	1.5	-	1.75	-	-	-	-	1.5	1	1.8	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EI	E M08	SEM	IESTI	ER								
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3					
Down	Conor	ation Transmission and Distribution System	HoundWoolr	L	Т	Р	TH					
Powe	er Gener	ation, Transmission and Distribution System	Hours/ week	3	0	0	3					
Cou	rse Obje	ectives:										
1.	1. To get knowledge about basics of energy and energy scenario of India.											
2.	2. To familiarise the energy conservation methods.											
3.	To acqu	ire knowledge on energy auditing, energy efficiency and mode	rn energy efficient o	levices.								
UNI	ГΙ	ENERGY SCENARIO		9	0	0	9					
Com	nercial a	and non-commercial energy -Primary energy resources - C	commercial energy	productio	on - F	Final e	nergy					
consu	mption -	Energy needs of growing economy - Long term energy scen	ario - Energy pricin	g - Energ	gy sect	or refo	rms -					
Energ	gy and en	vironment - Energy security - Energy conservation and its impor	tance - Restructurin	g of the er	nergy s	upply s	sector					
- Ene	rgy strate	egy for the future, air pollution, climate change. Energy Conser-	vation Act-2001 and	l its featur	res.							
UNI	ГП		9	0	0	9						
Electr	ricity tari	ff - Load management and maximum demand control - Therma	l Basics-fuels - The	mal ener	gy con	tents of	fuel,					
tempe	erature ar	nd pressure, heat capacity, sensible and latent heat, evaporation	, condensation, steam	m, moist a	air and	humid	ity &					
heat t	ransfer, u	units and conversion.										
UNI	ГШ	ENERGY MANAGEMENT AND AUDIT		9	0	0	9					
Defin	ition - E	nergy audit – Need and types of energy audit. Energy managem	ent (audit) approach	understa	inding	energy	costs					
- Ben	ch marki	ng - Energy performance - Matching energy use to requiremen	t - Maximizing syste	em efficie	encies -	- Optin	nizing					
the in	put energ	gy requirements, fuel and energy substitution - Energy audit ins	struments. Material	and energ	gy bala	nce: Fa	cility					
as an	energy s	ystem - Methods for preparing process flow, material and energ	y balance diagrams									
UNI	ГIV	ENERGY EFFICIENCY		9	0	0	9					
Electr	rical syst	em: Electricity billing - Electrical load management and maxim	um demand control	-Power f	actor i	mprove	ement					
and it	s benefit	- Selection and location of capacitors - Performance assessment	nt of PF capacitors,	distributi	on and	transfo	ormer					
losses	s. Electri	c motors: Types - Losses in induction motors - Motor effic	iency - Factors affe	ecting mo	otor pe	rforma	nce -					
Rewi	nding an	d motor replacement issues - Energy saving opportunities with	energy efficient mot	ors.								
UNI	ΓV	ENERGY EFFICIENT TECHNOLOGIES		9	0	0	9					
Maxi	mum der	nand controllers - Automatic power factor controllers - Energy	efficient motors –So	oft starter	s with o	energy	saver					
- Var	iable spe	ed drives - Energy efficient transformers - Electronic ballast -	- Occupancy sensor	s - Energ	y effic	ient lig	hting					
contro	controls - Energy saving potential of each technology.											
			Total	(45 L+ 0	T) =	45 Pe	riods					

Text	Books:
1.	Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015.
2,	Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991.
3.	Hossam A Gabbar, "Energy Conservation in Infrastructure Systems", Wiley-IEEE Press, New Jersey, 2018
Refe	rence Books:
1.	General Aspects of Energy Management and Energy Audit, Bureau of Energy Efficiency, New Delhi, 2015.
2,	Energy Efficiency in Electrical Utilities, Bureau of Energy Efficiency, New Delhi, 2015.

Course	Outcomes:	Bloom's Taxonomy
Upon co	mpletion of this course, the students will be able to:	Mapped
CO1	Identify the present energy scenario and future energy strategy.	L1: Understanding
CO2	Recognize the various forms of energy.	L1: Understanding
CO3	Interpret energy management methods and energy auditing.	L3: Applying
CO4	Familiar in energy efficiency of electrical systems.	L4: Analysing
CO5	Familiar with the advanced energy efficient technologies.	L4: Analysing

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	2	3	2	2		3					1	2	2	1
CO2	1	2	2	2	2		3					1	2	2	1
CO3	2	2	2	3	2		3					1	1	3	1
CO4	2	3	2	2	3		3					1	3	3	1
CO5	2	2	3	1	2		3					1	3	2	1
Avg	1.6	2.2	2.4	2	2.2	-	3	-	-	-	-	1	2.2	2.4	1
			3/2/	1-indica	ates stre	ngth of	correlat	ion (3-]	High, 2-	Mediur	n, 1- Lo	ow)			

18EEM0	SMPS AND UPS		SEN	AEST	ER					
PREREQ	JISITES	CATEGORY	PE	Cr	edit	3				
Dames Elas		Herry (Weels	L	Т	Р	TH				
Power Elect	onics	Hours/ week	3	0	0	3				
Course Ol										
1. To in	npart knowledge about modern power electronic converters and t	heir applications in J	power uti	lity.						
2. To in	part knowledge about Resonant converters and UPS.									
UNIT I	DC-DC CONVERTERS		9	0	0	9				
Introduction	to SMPS - Non-isolated DC-DC converters: Cuk, SEPIC to	pologies, Z-source	converter	- Zet	a conv	erter -				
Analysis an	l state space modeling Concept of volt-second and charge bal	ance – High gain inj	put-parall	el outp	ut-serie	es DC-				
DC converte	r.									
UNIT II	0	0	9							
Isolated DC	Isolated DC-DC converters: Analysis and state space modelling of fly back, Forward, Push pull, Luo, Half bridge and full bridge									
converters-	control circuits and PWM techniques - Bidirectional DC-DC cor	overters.								
UNIT III	RESONANT CONVERTERS		9	0	0	9				
Introduction	- classification- basic concepts- Resonant switch- Load Resonar	nt converters- ZVS,	Clamped	l voltag	ge topol	logies-				
DC link inv	erters with Zero Voltage Switching- Series and parallel Resonant	inverters- Voltage c	ontrol.							
UNIT IV	DC-AC CONVERTERS		9	0	0	9				
Introduction	- Multilevel concept - Types of multilevel inverters - Diode-c	lamped MLI – Flyin	g capacit	ors MI	I – Ca	scaded				
MLI – Case	aded MLI – Applications – Switching device currents – DC link	capacitor voltage b	alancing	– Featu	ires of	MLI –				
Comparison	s of MLI.									
UNIT V	POWER CONDITIONERS, UPS, AND FILTERS9009									
Introduction	- Power line disturbances- Power conditioners -UPS: offline U	PS, Online UPS, A	pplication	ns – Fi	lters: V	'oltage				
filters, Serie	s-parallel resonant filters, filter without series capacitors, filter for	or PWM VSI, curren	t filter, D	C filter	s – De	sign of				
inductor and	transformer for power electronic applications - Selection of cap	acitors.								
		To	tal (45L	(+ 0 T)=	= 45 Pe	eriods				

ooks:
Simon Ang, Alejandro Oliva," Power-Switching Converters", Third Edition, CRC Press, 2010.
M.H. Rashid – Power Electronics handbook, Elsevier Publication, 2001.
nce Books:
Ned Mohan, Tore.M.Undeland, William.P.Robbins, "Power Electronics Converters, Applications and Design", 3rd
Edition, John Wiley and Sons, 2006.
M.H. Rashid, "Power Electronics circuits, devices and applications", 3 rd Edition, PHI, New Delhi, 2007.
erences:
NPTEL Course: Power Electronics, IIT-B.
www.cdeep.iitb.ac.in. (Electrical Engineering)

Course O	uto	comes:	Bloom's Taxonomy
Upon com	plet	Mapped	
CO1	:	Analyze the state space model for DC – DC converters.	L4: Analyzing
CO2	:	Acquire knowledge on switched mode power converters.	L2: Understanding
CO3	:	Outline the PWM techniques for DC-AC converters.	L1: Remembering
CO4	:	Discuss about modern power electronic converters and its applications in electric power utility.	L2: Understanding
CO5	:	Identify the filters and UPS.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	1	2	2			1					2	2	2	1
CO2	1	1	3	2			1					2	3	3	2
CO3	2	2	2	3			1					1	2	2	1
CO4	2	1	1	2			1					2	2	3	2
CO5	1	1	2	1			1					1	2	2	1
Avg.	1.6	1.2	2	2	-	-	1	-	-	-	-	1.6	2.2	2.4	1.4
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18F	EEM10	SEMF	ł									
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3					
El a at	ani a al Mara	him a Darman Seletana and Darman Electronian	Harry/Wash	L	Т	Р	ТН					
Elect	incal Mac	nines, Power System, and Power Electronics	Hours/ week	3	0	0	3					
Cour	rse Obje	ctives:			•							
1.	1. To understand the economics of power generation, tariff and energy conservation methods.											
2.	2. To impart knowledge on principle and design of illumination systems.											
3.	To anal	yze the performance and different methods of electric heating a	and electric welding									
4.	To impa	rt knowledge on electric traction systems and their performance	ce.									
5.	To unde	rstand electric drives for various industrial applications.					-					
UNI	ГΙ	INTRODUCTION		9	0	0	9					
Econo	omics of g	generation – definitions – load duration curve – number and size	ze of generator units	s – Cost o	of elect	rical er	nergy –					
tariff	— availa	bility based Tariff- (ABT) - Battery Energy storage system ((BESS)- Frequency	based en	lergy n	neasure	ement -					
need	need for electrical energy conservation – methods Introduction to energy audit											
UNI	ГΠ	9	0	0	9							
Introd	Introduction-nature of radiation – definition – laws of illumination – luminous efficacy-photometry – lighting calculations –											
design	n of illun	nination systems for residential, commercial, street lighting a	nd sports ground-	types of l	lamps -	-incano	lescent					
lamp-	- mercury	vapour fluorescent lamp-energy efficiency lamps types of l	lighting schemes – r	equireme	nts of g	good li	ghting					
UNI	ГШ	HEATING AND WELDING		9	0	0	9					
Introd	luction- c	lassification of methods of heating - requirements of a good	l heating material -	design of	of heati	ing eler	ment –					
tempe	erature co	ntrol of resistance furnace - electric arc furnace -induction	heating - dielectric	heating	 elect 	ric wel	lding –					
resista	ance weld	ing - electric arc welding-electrical properties of arc-application	ons of electric arc w	elding.								
UNI	ΓIV	ELECTRIC TRACTION		9	0	0	9					
Introd	luction –	requirements of an ideal traction system - supply systems - t	rain movement -me	chanism	of train	move	ment –					
tractio	on motors	and control -speed control of three phase induction motor-	multiple unit contro	l – braki	ng – re	cent tre	ends in					
electr	ic traction	1.										
UNI	UNIT VDRIVES AND THEIR INDUSTRIAL APPLICATIONS9009											
Electi	ric drive -	-advantages of electric drive-individual drive and group drive	e -factors affecting	selection	of mo	tor – ty	pes of					
loads	- steady	state -transient characteristics -size of motor- load equalization	on – industrial appli	ications -	- moder	rn metł	nods of					
speed	control c	f D.C drives-dynamic braking using thyristors-regenerative br	aking using thyristo	rs.								
Total (45L+0T)= 45 Periods												

Text B	Books:								
1.	C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Pvt.Ltd, 2003.								
2.	Eric Openshaw Taylor, "Utilisation of Electric Energy", English Universities Press Limited, 1937								
3.	J.B. Gupta, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, 2002.								
Refere	Reference Books:								
1.	G.C.Garg, S.K.Gridhar&S.M.Dhir, "A Course in Utilization of Electrical Energy", Khanna Publishers, Delhi, 2003.								
2.	H. Partab, "Art and Science of Utilization of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2004.								
E-Ref	erences:								
1.	www.onlinecourses.nptel.ac.in								
2.	www.class-central.com								
3.	www.mooc-list.com								

Course O	uto	comes:	Bloom's Taxonomy
Upon com	olet	ion of this course, the students will be able to:	Mapped
CO1	:	Understand the economics of power generation, tariff and energy conservation methods.	L2: Understanding
CO2	:	Interpret the concept behind illumination and design a suitable illumination system for a specific application.	L3: Applying
CO3	:	Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system.	L4: Analyzing
CO4		Explain the concepts and recent trends of traction system.	L4: Analyzing
CO5	:	Discuss the concepts of electric drives and their characteristics.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1	1	1	1	2	1	2	2	1	1	1	2	2	3
CO2	2	3	2	3	1	1	2	1	1			1	3	3	2
CO3	3	3	1	3	1	1	2	1					2	2	3
CO4	1	2	2	3	3	1	2	1					2	3	2
CO5	3	1	1	2	1	1	2	1		1		1	2	2	3
CO6	1	3	3	3	3	1	2	2				1	3	3	2
Avg	2.17	2.17	1.67	2.5	1.67	1.17	1.83	1.33	1.5	1	1	1	2.33	2.5	2.5
			3/2/1-i	ndicates	strengt	h of cor	relation	(3- Hig	h, 2-Me	dium, 1	- Low)				

MECHANICAL ENGINEEDING MINOD DECREE

ENGINEERING THERMODYNAMICS										
18ME	8MEM01 (Use of standard thermodynamic tables, Mollier diagram are permitted)									
PRE-I	PRE-REQUISITE: CATEGORY PE									
	Hours/Week 3									
Course Objectives:										
1.	1. To impart the knowledge on concepts of zeroth and first law of thermodynamics.									
2.	To ma interac	ke the learners to understand the third law of thermodynamics and tions in closed and open systems.	analyze the	e variou	is wo	ork and	d heat			
3.	To tea	ch properties of pure substance.								
4.	To imp	part knowledge on the concepts of steam power cycle.								
5.	To der	ive thermodynamic relations for ideal and real gases.								
UNIT	I	BASIC CONCEPT AND FIRST LAW			9	0 0	9			
and heat various	at. First	aw of thermodynamics – application to closed and open systems, ste equipment.	ady flow pro	ocesses	with	refere	nce to			
UNIT	Ш	SECOND LAW AND ENTROPY			9	0 0	9			
Heat er of thes inequal	ngine – F se staten lity, Con	terrigerator – Heat Pump, Second law of thermodynamics – Kelvin's a nents their corollaries. Reversibility and irreversibility. Carnot cyc cept of entropy, principle of increase of entropy, T-s diagram, T-ds equ	and Clausius le, reversed uations, Entro	stateme Carnot opy.	ents-	Equiva le. Cla	alence ausius			
UNIT	Ш	PROPERTIES OF PURE SUBSTANCES			9	0 0	9			
Steam dryness Chart.	Steam - formation and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagrams. PVT surface. Determination of dryness fraction. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart.									
UNIT	IV		9	0 0	9					
Basic 1 combin	Rankine nation cy	cycle, T-s & h-s diagrams - Performance Improvement - Reheat cles.	cycle, reger	nerative	cyc	le and	their			
UNIT	f VIDEAL AND REAL GASES AND THERMO DYNAMIC RELATIONS9009									
Properties of ideal and real gases, equation of state of ideal and real gases, Avogadro's law, Vander Waal's equation of states, Principle of corresponding states, reduced properties and compressibility chart. Exact differentials, Maxwell relations, Specific heat equations, Tds, relations, Clausius Clapeyron equations and Joule Thomson Coefficient.										
Total (45L)= 45 Periods										

Text Books:						
1.	Nag. P.K, "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2017.					
2.	Sonntag, R.E., Borgnakke, C., and Van Wylen, G.J., Fundamentals of Thermodynamics, 6th ed., John Wiley, 2003.					
3.	Arora C.P, "Thermodynamics", Tata McGraw Hill, New Delhi, 2003.					
4.	Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.					

Reference Books:						
1.	Cengel, "Thermodynamics- An Engineering Approach", 3rd Edition, Tata McGraw Hill, 2015.					
2.	Merala C, Pother, Craig W and Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGrawHill, New Delhi, 2004.					

COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Understand the concepts of zeroth, first and second law of thermodynamics.	Remember				
<i>CO2</i>	Analyze the various work and heat interactions for different types of processes for closed and open systems	Evaluate				
СО3	Evaluate the different properties of pure substances using steam tables and Mollier chart	Evaluate				
<i>CO4</i>	Analyze the performance of steam power cycle.	Analyze				
<i>C05</i>	Derive thermodynamic relations for ideal and real gases.	Analyze				

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2			1					1	3	1	1
CO2	3	3	2	2			1					1	3	1	1
CO3	3	3	3	2		1	1					1	3	1	1
CO4	2	3	2	2		1	1					1	3	1	1
CO5	3	3	2	2		1						1	3	1	1
Avg	2.8	3	2.2	2		1	1					1	3	1	1
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

licates strength of correlation (3 – High, 2- Medium, 1- Low) 3/2/1

PRE-RE								
1	PRE-REQUISITE: CATEGORY PE							
1.Engineering Physics L								
2.Enginee	ering C	hemistry	Hours/Week	3	0	0	3	
3.Enginee	ering M	athematics						
Course (Object	ives:						
1. 7	To und	erstand the basic concepts and properties of fluids.						
2. 7	To anal	yze the kinematic and dynamic concepts of fluid flow.						
3. Т	To und	erstand the various incompressible fluid flow through pipes ar	nd between parallel p	lates.				
4. Т	To appl	y the principles of fluid mechanics to design and operation of	hydraulic turbines.					
5. T	Го appl	y the principles of fluid mechanics to design and operation of	hydraulic pumps.					
UNIT I		INTRODUCTION AND FLUID STATICS			9	0	0 9	
Basic con relative de Archimed	ncepts a ensity, les' prin	and units of measurement of physical quantities- Classificati vapour pressure, surface tension, Capillarity and viscosity. Flu nciple.	on of fluids - Prope id statics- hydrostati	erties of c pressu	fluid re, bu	s – d ioyai	lensity ncy and	
UNIT II		FLUID KINEMATICS AND DYNAMICS			9	0	0 9	
streamline application dimension	e, pathl ons. Flonation	ine, streakline and timeline. Velocity potential function and uid dynamics - Bernoulli's equation and its applications. Dir nogeneity, similarity-laws and models.	rian description for f Stream function - co nensional analysis –	ontinuity Buckir	w - fio / equa ighan	ow p ation 1's th	atterns and its eorem	
UNIT II	Ι	FLOW THROUGH PIPES AND PLATES			9	0	0 9	
Incompressible fluid flow-Laminar flow- Hagen-Poiseuille equation, shear stress, pressure gradient relationship - flow through pipes and flow between parallel plates. Turbulent flow – flow through pipes, friction factors in turbulent flow - total energy line, hydraulic gradient line, flow through pipes in series and parallel- Moody's friction factor chart. Power transmission-Boundary layer flows - Boundary layer thickness, momentum thickness, energy thickness-boundary layer separation.								
UNIT IV	V	HYDRAULIC TURBINES			9	0	0 9	
Hydraulic curves for specific sp	e turbin r Pelto peed de	es classification-impulse and reaction turbines-Working Prin n, Francis and Kaplan turbines (Only descriptive) - Compar- gree of reaction -draft tubes.	ciple, work done-eff rison between impu	ïciency lse and	and preact	perfo ion t	rmance urbine	
UNIT V	NIT V HYDRAULIC PUMPS							
Classification of hydraulic pumps- Centrifugal pumps - working principle, specific speed, performance curves and priming(Only descriptive) - Reciprocating pumps - classification, working principle, indicator diagram, air vessels and performance curves. Cavitation in pumps (Only descriptive) - Working principles of gear and vane pumps.								
Total (45L)= 45 Periods								

Text B	ooks:
1.	Bansal, R.K., "A Textbook of Fluid Mechanics and Hydraulic Machines, 9th Ed", Laxmi Publication Pvt Ltd, 2010.
2.	Rajput, R.K., "A Textbook of Fluid Mechanics and Hydraulic Mechanics", S.Chand and Company Ltd, 2011.
3.	Subramanya. K., "Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Publishing Company Ltd, 2011.

Refere	Reference Books:						
1.	White, "Fluid Mechanics, 8 Ed", McGraw Hill India, 2017.						
2.	Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics 8 th Edition", Wiley, 2016.						
3.	Yunuscengel, John. M.cimbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill, 2017.						
4.	Som, S.K, Biswas.G and SumanChakraborty, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill India, 2011.						
5.	Dr.P.N.Modi, Dr.S.M.Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard book house, 2018.						
E-Refe	E-References:						
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on fluid mechanics.						

COURS Upon co	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Understand the basic concepts and properties of fluids.	Remember					
<i>CO2</i>	Analyze the kinematic and dynamic concepts of fluid flow.	Analyze					
СО3	Understand the various incompressible fluid flow through pipes and between parallel plates.	Understand					
<i>CO4</i>	Apply the principles of fluid mechanics to design and operation of hydraulic turbines.	Apply					
<i>C05</i>	Apply the principles of fluid mechanics to design and operation of hydraulic pumps.	Apply					

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1				2				1		2	2	1
CO2	3	3	1		2								2	2	1
CO3	2	3	2	2	1								2	2	1
CO4	3	3	3	2	1	2	1						2	2	1
CO5	3	3	3	2	1	2	1						2	2	1
Avg	2.8	2.6	2	2	1.25	2	1.3				1		2	2	1
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

18MI	MEM03 MANUFACTURING PROCESSES							
PRE	PRE-REQUISITE: CATEGORY PE							
1. 2.	Basic science, Engineering mathematics, Engineering Physics Engineering Materials							
				3	0	0	3	
Cour	se Objec	tives:						
1.	1. To make the students familiarize with various manufacturing processes and fabrication techniques of metals and design of casting.							
2.	To deve	op design concepts of various manufacturing processes.						
3.	Gain kno	owledge to select appropriate manufacturing processes for variou	us parts.					
4.	To deve	op an entrepreneur skill among the students.						
5.	To evalu	ate and select plastic deformation processes for various parts.						
UNI	ΓI	CASTING			9	0	09	
Conce solidif mould	epts of Ma fication til ling, inves	nufacturing Process -Sand casting -Patterns – Design of Pattern, ne calculation - Moulding machines - Core making. Special n tment moulding, pressure die casting, centrifugal casting, casting	mould and cores- ga noulding processes g defects.	ating ar – CO2	nd rise 2 mor	ering ulding	design, g; shell	
UNI	T II	WELDING			9	0	09	
Classi subme beam	fication or erged arc v welding, l	f welding processes. Principles of Oxy-acetylene gas weldin welding, tungsten inert gas welding, metal inert gas welding, pla aser beam welding, defects in welding, Soldering and Brazing, A	g. Metal arc weld asma arc welding, t Adhesive Bonding.	ing, re hermit	sistan weldi	ce w ng, e	elding, lectron	
UNIT	T III	METAL FORMING			10	0	0 10	
Metal proces operat Princi	lurgical as sses, Hot v ions. Roll ple of rod	pects of metal forming, slip, twinning mechanics of plastic defor vorking and cold working of metals, Forging processes – open, ing of metals– Types of Rolling mill – Flat strip rolling – shape and wire drawing – Tube drawing – Principles of Extrusion – T	mation, load estima closed and impress rolling operations ypes.	ition of ion die – Defe	bulk forgi cts in	defor ng – 1 rolleo	mation forging d parts.	
UNI	T IV	SHAPING OF PLASTICS			8	0	0 8	
Types and ty Film princi	of plastic pical appl blowing - ples and ty	s - Characteristics of the forming and shaping processes – Mould ications of - Injection moulding – Plunger and screw machines - Extrusion - Typical industrial applications – Thermoformin /pical applications - Compression moulding – Transfer moulding	ling of Thermoplast – Blow moulding g – Processing of g.	ics – W – Rota Therm	Vorkin tional losets	ng pri mou – W	nciples lding – ⁷ orking	
UNI	NIT V SHEET METAL FORMING AND POWDER METALLURGY						09	
Forma of pre compa	Formability of Sheet Metal, load estimation of sheet metal processes - Shearing, Deep drawing, Bending operations- types of presses used, Super Plastic forming; Introduction to Powder Metallurgy– Principal steps involved – sintering and compacting techniques, Advantages, limitations and applications of powder metallurgy.							
	Total (45L) = 45 Periods							
Text	Books:							
1.	1. HajraChoudhury, "Elements of Workshop Technology", Vol. I and II, Media Promoters and Publishers Pvt., Ltd., Mumbai, 2005.							

2. NagendraParashar B.S. and Mittal R.K., "Elements of Manufacturing Processes", Prentice-Hall of India Private Limited, 2007.

Reference Books:

1.	Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.						
2.	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001.						
3.	"H.M.T. "Production Technology – Handbook", Tata McGraw-Hill, 2000.						
4.	Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000.						
5.	Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.						
E-Refe	E-References:						
1.	https://fdocuments.in/document/production-technology-55844cac00bfc.html?page=40						

COUR Upon co	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Describe the operational features of various casting processes, design gate and riser and discover various defects in casting.	Understand
<i>CO2</i>	Explain various metal joining processes and compare them.	Understand
СОЗ	Summarize several types of metal forming processes and select suitable method for different applications.	Analyze
<i>CO4</i>	Analyze various manufacturing methods for plastics and their needs in industry.	Analyze
<i>C05</i>	Describe various sheet metal forming processes, load estimation calculation and principles of powder metallurgy	Understand

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1						1			1	2	1
CO2	2	1	2	1		1			1	1			1	2	1
CO3	1	1	1	1						1			1	1	1
CO4	1	1	1		1					1			1	1	1
CO5		1							1	1			1		1
Avg	1.5	1	1.5	1	1	1			1	1			1	1.5	1
	•	3/2/	′1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	, 2- Mee	dium, 1	- Low)		

18ME	M04	MATERIALS ENGINEERING					
PRE-F	REQU	SITE:	CATEGORY	PE	Cre	dit	3
1.	Engin	eering Physics		L	Т	Р	ТН
2.	Engin	eering Chemistry	Hours/Week	3	0	0	3
Course	e Obje	ctives:			1		1
1.	To im tempe	part concept on reactions, treatment, microstructure and mechanical be rature.	havior of engineer	ing ma	terials	at dif	ferent
2.	To lea	rn basic principles in metallurgy and materials engineering.					
3.	To ide	entity and select suitable engineering materials based on their application	ons.				
UNIT	I	PHASE DIAGRAMS		9	0	0	9
Crystal systems diagram	structu s – Eut n - effec	res, Phases, solid solution types, compounds, Hume- Rothery rules; Gi ectic, Eutectoid, Peritectic systems. Lever rule, Equilibrium and no ts of alloying elements – Ferrite and Austenite Stabilizers, TTT and CO	bb's phase rule; B n-equilibrium coo CT diagrams.	inary i oling, 1	somorp Fe-C E	ohous Equilil	alloy orium
UNIT	II	HEAT TREATMENT		9	0	0	9
Isotherr test – A hardeni	nal trar nal trar sustemp ng. Hea	sformation diagrams – cooling curves superimposed on I.T. diagram ering, martempering – case hardening, carburising, nitriding, cyanidi t treatment of non-ferrous alloys - precipitation hardening. Heat treatment	CCR - Hardening ng, carbo-nitriding ent of HSS tools, g	and Te lity, Jo g – Fla ears, sp	miny e me and prings a	ng of end qu l Indu und ga	steel. uench uction uges.
UNIT	III	FERROUS AND NON FERROUS METALS		9	0	0	9
Plain ca precipit alloys –	arbon st ation ha - Brass,	eels – Tool steels - maraging steels – HSLA steels .Stainless steels- ferr ardened stainless steels. Types of Cast Irons- Gray cast iron, white cast Bronze and Cupronickel, Aluminium alloys, Bearing alloys.	itic and Austenitic iron, malleable ca	, marte st iron,	ensitic, S.G.Ir	duple on. C	x and opper
UNIT	IV	MECHANICAL PROPERTIES AND TESTING		9	0	0	9
Mechan Fracture its effec	nical pro e - Type ets – tes	operties of engineering materials - Mechanisms of plastic deformation as of fracture – Testing of materials - tension, compression and shear lo ting for hardness (Brinell, Vickers and Rockwell) - Impact test - Izod a	n, slip and twinnin ads - fatigue and c nd Charpy.	ng – C reep te	reep, F sts – ha	Fatigu urdnes	e and ss and
UNIT	V	NON DESTRUCTIVE TESTING AND SURFACE ENGIN	IEERING	9	0	0	9
Non De Inspecti method	estructi ion and s, high	ve Testing: Basic principles - Testing method - Radiographic testi Liquid Penetrant Inspections. Introduction to surface engineering - D and low energy beam methods, surface engineering charts, elastic conta	ng, Ultrasonic tes Definition, diffusio act mechanics.	sting, 1 n techr	Magnet niques,	ic Pa depo	article sition
			Tot	al (45	L) = 4	5 Pe	riods
Text B	ooks:						
1.	Ke	nneth G. Budinski and Michael K. Buinski, "Engineering Materials", P	rentice Hall of Ind	lia Ltd,	2002.		
2.	Ra	ghavan, V, "Materials Science and Engineering", Prentice Hall of India	a (P) Ltd., 1999.				
3.	As	vani.K.G, "A Text Book of Material Science", S.Chand and Co. Ltd., 1	New Delhi, 2001.				

4. Khanna O.P., "A Text Book of Materials Science and Metallurgy", DhanpatRai Sons, 2004. **Reference Books:**

Reference	
1.	William. D.Callsber, "Material Science and Engineering", John Wiley and Sons, 1997.
2.	Sydney.H.Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994.

COUR Upon co	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the formation of materials and their classification based on atomic structure.	Understand
<i>CO2</i>	Understand the principles of various heat treatment processes in fabrication industry.	Understand
СОЗ	Describe properties, applications and types of various ferrous and non-ferrous metals used in fabrication industry	Understand
<i>CO4</i>	Describe various types of failure and select methods for destructive testing	Understand
<i>C05</i>	Select methods for non destructive testing	Evaluate

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	1	1	1						2	3	1
CO2	1		2	1	1	2	1						2	3	1
CO3		1	1	1	1		1						3	2	1
CO4		2	2	1	1	1	1						2	3	1
CO5		2	2	2	1		1						2	2	1
Avg	1	1.5	1.8	1.4	1.0	1.3	1						2.2	2.6	1.0
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

18MEM05 KINEMATICS OF MACHINERY									
PRE-F	REQUIS	SITE:	CATEGORY	PE	Cr	edit		3	
1. Engi	neering g	raphics. 2.Engineering Mechanics	Harry (Weals	L	Т	Р	r	ГН	
			Hours/ week	3	0	0		3	
Course	e Objec	tives:			•				
1.	To und	erstand the basic components and layout of linkages in the assem	bly of a system/ ma	chine.					
2.	To und at any j	erstand the principles in analyzing the assembly with respect to t point in a link of a mechanism.	he displacement, ve	elocity,	and	accel	era	tion	
3.	To und	erstand basics of cam profile and its displacement.							
4.	To und	erstand the basic concepts of toothed gearing and kinematics of g	ear trains.						
5.	Illustra	te the effects of friction drives in transmission system.							
UNIT	I	BASICS OF MECHANISMS			9	0	0	9	
Classifi Kinema Descrip	cation of tic inver tion of se	f mechanisms- Basic kinematic concepts and definitions- Degressions of four bar chain and slider-crank chains Limit positions- Mome common mechanisms- Quick return mechanism, straight-lin	ree of freedom, m fechanical advantag e generators.	iobility ge - Tra	- Gr insm	ashof ission	's l an	law, gle-	
UNIT	II	KINEMATIC ANALYSIS			9	0	0	9	
Displac centres of accel	ement, v - kinema leration i	elocity and acceleration analysis of simple mechanisms, graph tic analysis of simple mechanisms- slider-crank mechanism dynam ntroduction to linkage synthesis three Position graphical synthesis	ical velocity analy nics Coincident poi s for motion and pa	sis usi nts- Cc th gene	ng in prioli eratio	nstant s com on.	ane poi	ous nent	
UNIT	III	KINEMATICS OF CAM			9	0	0	9	
Classifi simple l pressure	cation of harmonic e angle a	cams and followers- Terminology and definitions- Displaceme and cycloidal motions- derivatives of follower motions- specifie and undercutting, sizing of cams, graphical method for cam profile	ent diagrams- Unifo ed contour cams cir e design.	orm ve cular a	locit nd ta	y, par ngent	abo ca	olic, .ms-	
UNIT	IV	GEARS AND GEAR TRAINS			9	0	0	9	
Involute ratio an	e and cyo d interfe	cloidal gear profiles, gear parameters, fundamental law of gearir rence / undercutting- helical, bevel, worm, rack & pinion gears, e	ng and conjugate a	ction, s r gear t	spur rain	gear o kinen	con nati	tact cs.	
UNIT	V	FRICTION IN MACHINE ELEMENTS			9	0	0	9	
Surface Clutche	contacts s- belt ar	- sliding and rolling friction- friction drives- friction in screw t ad rope drives.	hreads – bearings a	and lub	oricat	ion- f	fric	tion	
			Tota	al (451	L) =	45 P	eri	ods	
Text B	ooks:								
1.	Rattan	S.S, "Theory of Machines", Tata McGraw Hill Publishing Compa	any Ltd., New Delh	i, 1998					

2.	Ghosh, A and Mallick, A.K, "Theory of Mechanisms and Machines", East-West Pvt. Ltd., New Delhi, 1988.
Refere	nce Books:
1.	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.
2.	Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.

3.	Erdman AG and Sandor G N, "Mechanism Design, Analysis and Synthesis", Vol.I, PHI Inc., 1997.					
4.	Ambekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.					
5.	John Hannah and Stephens R C, "Mechanisms of Machines", Viva Low Price Student Edition, New Delhi, 1999.					
E-References:						
1.	https://archive.nptel.ac.in/courses/112/104/112104121/					
2.	https://nptel.ac.in/courses/112106270					
3.	http://velhightech.com/Documents/ME8492 Kinematics of Machinery.pdf					

COURS Upon co	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Demonstrate and understand the concepts of various mechanisms and pairs.	Apply
<i>CO2</i>	Analyze the velocity and acceleration of simple mechanisms.	Analyze
СОЗ	Construct the cam profile for various motion.	Create
<i>CO4</i>	Solve problems on gears and gear trains.	Evaluate
<i>C05</i>	Evaluate the friction in transmission system	Evaluate

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1									3	1	
CO2	3	2	2	1									3	1	
CO3	3	2	2	1									3	1	
CO4	3	2	2	1									3	1	
CO5	3	2	2	1									3	1	
Avg	3	2	2	1									3	1	
		3/2	/1 – ir	ndicat	es str	ength	of co	rrelati	on (3	– High,	2- Med	lium, 1-	Low)		

PRE-REQUISITE: CATEGORY PE Credit 3 Iburs/Week L T P TH Hours/Week L T P TH 3 0 0 3 3 Course Objectives:	18MI	E M06	HYDRAULICS AND PNEUMATICS										
Hours/Week L T P TH 3 0 0 3 Course Objectives:	PRE-	REQUIS	SITE:	CATEGORY	PE	Cre	edit	3					
Hours/ week 3 0 0 3 Course Objectives: 1. To enable the students understand the basics of hydraulic and pneumatics . 2. Applying the working principles of hydraulic actuators and control components. . 3. Designing and develop hydraulic circuits and systems. . 4. Applying the working principles of pneumatic power system and its components. . 5. Solving problems and troubles in fluid power systems. . UNIT I FUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications – Fluid power systems – Types of fluids - Properties of Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Clinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems.				TT /XX / 1 -	L	Т	Р	ТН					
Course Objectives: 1. To enable the students understand the basics of hydraulics and pneumatics 2. Applying the working principles of hydraulic circuits and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems. Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 10 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic oncortol, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0				Hours/ week	3	0	0	3					
1. To enable the students understand the basics of hydraulics and pneumatics 2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems. Problems. Disdvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic notors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 9 0 9 9 0 <	Cour	se Objec	tives:		1								
2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pncumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic solver, Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 4 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0	1.	To enabl	e the students understand the basics of hydraulics and pneumatic	CS									
3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Operation – Accessorics; Reservoirs, Pressure Switches – Filters – types and selection - Application, E-Pluid Power ANSI Symbols – Problems. 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 Accumulators, Intensifier, Andustrial hydraulic circuits – Regenerative, Pump Unloading, D	2.	Applying	g the working principles of hydraulic actuators and control comp	oonents.									
4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic power, Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Ait-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0	3.	Designir	g and develop hydraulic circuits and systems.										
5. Solving problems and troubles in fluid power systems. 9 0 0 9 INTO I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of Hydraulic power; Pumping Theory - Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps - Fixed and Variable displacement pumps - Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic cushioning - Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Accessories; Reservoirs, Pressure Switches - Filters - types and selection - Applications - Fluid Power ANSI Symbols - Problems. 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits - Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits - Servo and Proportional valves - Applications - Mechanical, hydraulic servo systems. 9 0 0 9 0 0	4.	Applyin	g the working principles of pneumatic power system and its com	ponents.									
UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 0 0 9 0	5.	5. Solving problems and troubles in fluid power systems.											
Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power: Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Sthaust Valves, Pneumatic a	UNIT	ΓI	FLUID POWER PRINICIPLES AND HYDRAULIC	PUMPS		9	0	09					
UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits roblems, Introduction to fluidies and pneumatic logic circuits. 9 <th>Proble Advar Proble</th> <th>ems, Sour ntages, D ems.</th> <th>ces of Hydraulic power; Pumping Theory – Pump Classifi isadvantages, Performance, Selection criteria of pumps – Fi</th> <th>ication – Construct xed and Variable</th> <th>ction, V displac</th> <th>Vorki emen</th> <th>ng, I t pu</th> <th>Design, mps –</th>	Proble Advar Proble	ems, Sour ntages, D ems.	ces of Hydraulic power; Pumping Theory – Pump Classifi isadvantages, Performance, Selection criteria of pumps – Fi	ication – Construct xed and Variable	ction, V displac	Vorki emen	ng, I t pu	Design, mps –					
Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification – single cylinder and multi cylinder circuits roblems, Introduction to fluidics and pneumatic logic circuits. 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 <	UNIT	T II	HYDRAULIC ACTUATORS AND CONTROL COM	IPONENTS		9	0	09					
UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9<	motor Opera Symbo	s - Contro tion – Acc ols – Prob	l Components : Direction Control, Flow control and pressure essories; Reservoirs, Pressure Switches – Filters – types and se lems.	control valves – '	Types, ons – F	Cons luid I	tructi Powe	on and ANSI					
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, Iadder diagram, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatics components. - Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	T III	HYDRAULIC CIRCUITS AND SYSTEMS			9	0	09					
UNIT IVPNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS9009Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits.9009UNIT VDESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatics components.9009Total (45L) = 45 Periods	Accur Intens of hyd Mecha	nulators, ifier, Air-o Iraulic sys anical, hyc	Intensifiers, Industrial hydraulic circuits – Regenerative, Pun over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, tems, Hydrostatic transmission, Electro hydraulic circuits – Ser raulic servo systems.	np Unloading, De Speed Control, Dec vo and Proportiona	ouble - celeration l valve	Pun on cir s – Aj	np, P cuits, pplica	ressure Sizing ations -					
Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	T IV	PNEUMATIC AND ELECTRO PNEUMATIC SYST	EMS		9	0	09					
UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components. Total (45L) = 45 Periods	Proper Exhau - Casc proble	Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Qu Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circu - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circu problems, Introduction to fluidics and pneumatic logic circuits.											
Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components. Total (45L) = 45 Periods	UNIT	T V	DESIGN OF FLUID POWER CIRCUITS AND TRO	UBLESHOOTI	NG	9	0	09					
Total (45L) = 45 Periods	Servo electro failure – Low using	systems, b hydraulic c and troub c cost Aut hydraulic	Hydro mechanical servo systems, electro hydraulic servo system c pneumatic logic circuits, ladder diagrams, PLC applications in eleshooting. Design of Pneumatic circuits for metal working, has comation – Hydraulic and Pneumatic power packs. Case studie and pneumatics components.	ns and proportiona n fluid power contr ndling, clamping co s: A simple sequer	l Valve ol. Flu ounter a	s, Int id pov and tin achro	roduc wer c mer c nize (tion to ircuits, ircuits. circuits					
Total (45L) = 45 Periods													
				Tot	al (45)	L) =	45 P	eriods					

Text Books:				
1.	Manjumdar S.R, "Oil Hydraulics", Tata McGraw-Hill, December 2002.			

2.	Anthony Esposito, "Fluid Power with Applications", Pearson Education 2013.					
Refere	Reference Books:					
1.	Andrew Parr, "Hydraulic and Pneumatics", Jaico Publications House, 2005.					
2.	Bolton W. "Pneumatic and hydraulic system", Butterworth-Heinemann 1997					
3.	Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 2010					
4.	Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006					
5.	Srinivasan.R. "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008.					
E-References:						
1.	http://www.fluidpowerjournal.com					
2.	http://14.139.160.15/courses/112102011/2					
3.	https://www.nfpa.com/home.htm					

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Select the components as per the application				
<i>CO2</i>	Apply the working principles of hydraulic actuators and control components.				
СО3	Design and develop hydraulic circuits and systems.	Create			
<i>CO4</i>	Apply the working principles of pneumatic power system and its components.	Apply			
<i>C05</i>	Solve problems and troubles in fluid power systems.	Evaluate			

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1										1	1	1
CO2		2	2	1									1	1	1
CO3	1	2	3			1							1	2	1
CO4	1	1	3	2	2								2	1	1
CO5	1	1	2										1	1	1
Avg	1.25	1.4	2.2	1.5	2	1							1.2	1.2	1
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

18M	18MEM07 DESIGN OF MACHINE ELEMENTS						
PRE	REQUIS	SITE:	PE	E Cred		3	
1.	Student	should study engineering mechanics.	L	Т	Р	ТН	
2.	Studen	should study kinematic of machinery.	Hours/ week	3	0	0	3
Cour	se Objec	tives:					
1.	Understa	nding of background in mechanics of materials and design of	of machine componen	nts.			
2.	An unde consider	erstanding of the origins, nature and applicability of eations	empirical design pri	inciples,	based	l on	safety
3.	An unde	rstanding the design of shafts and couplings.					
4.	Familiar	ze the design of energy storing elements and engine compo	nents.				
5.	5. An appreciation of the relationships between component level design and overall machine system design and performance					gn and	
UNI	ſI	STEADY STRESSES AND VARIABLE STR MEMBERS	RESSES IN MA	CHINE	9	0	0 9
Introd based Calcu stress	Introduction to the design process – Product development cycle- factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers– Direct, Bending and Torsional stress – Impact and shock loading – Calculation of principle stresses for various load combinations, eccentric loading – Factor of safety -theories of failure – stress concentration – design for variable loading – Soderberg, Goodman and Gerber relations .						
UNI	ΓII	DESIGN OF SHAFTS AND COUPLINGS			9	0	09
Desig rigid a	n of solid and flexible	and hollow shafts based on strength, rigidity and critical spe e couplings.	eed – Design of keys	and key	ways	- De	sign of
UNI	r III	DESIGN OF THREADED FASTENERS, RIV JOINTS	YETED AND WI	ELDED	9	0	0 9
Threaded fasteners - Design of bolted joints including eccentric loading – Design of riveted and welded joints for pressure vessels and structures- theory of bonded joints.							
UNI	JNIT IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS				9	0	09
Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting rods and crank shafts.							
UNI	UNIT V DESIGN OF BEARINGS				9	0	09
Slidin Conta	Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number - Selection of Rolling Contact bearings.					Rolling	
			Т	otal (45	L) =	45 P	eriods

Text Books:													
1.	Bhandari V.B, "Design of Machine Elements", Tata McGraw Hill Book Co, 2020												
2.	Md.Jalaludeen.S, "A text book of Machine Design", Anuradha Publications, 2006												
Refere	ence Books:												
1.	Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.												
2.	Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.												
3.	Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.												
---------------	---	--	--	--	--	--	--	--	--	--	--	--	--
4.	PSG Tech, "Design Data Handbook", M/s.DPV Printers, Coimbatore, 2009												
E-References:													
1.	https://nptel.ac.in/courses/112105124												
2.	Design of Machine Elements - V. B. Bhandari - Google Books												
3.	A Textbook of Machine Design by R.S.Khurmi And J.K.Gupta [tortuka] 1490186411865.pdf DocDroid												

COURSE OUTCOMES: On completion of the course the student will be able to						
C01	Understand the influence of steady and variable stresses in machine component design.	Understand				
<i>CO2</i>	Apply the concepts of design to shafts, keys and couplings.	Apply				
СОЗ	Familiarize the design of temporary and permanent joints.	Understand				
<i>CO4</i>	Design the various energy storing elements and engine components.	Analyse				
<i>C05</i>	Familiarize the design of various types of bearings.	Understand				

COURSE .	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2		1	1				1		3	2	1
CO2	2	2	1	2		1	1				1		3	2	1
CO3	2	2	1	2		1	1				1		3	2	1
CO4	2	2	1	2		1	1				1		3	2	1
CO5	2	2	1	2		1	1				1		3	2	1
Avg	2.0	2.0	1.0	2.0		1.0	1.0				1.0		3.0	2.0	1.0
		3/2/	/1 – in	ndicat	es str	ength	of con	relati	on (3 -	– High,	2- Med	lium, 1-	Low)		

PREREQ 1.The laws 2. The conc COURSE 1. Un	and l cept c	ITES basic concepts of thermodynamics	CATEGORY	PE	Cre	edit	3					
1. The laws2. The concCOURSE1.Un	and l cept c	basic concepts of thermodynamics			Cred		- -					
2. The concCOURSE1.	cept o	f an anna fam an 14 air an ann air air 1 a	The laws and basic concepts of thermodynamics									
COURSE	OB	2. The concept of energy transfers and their conversion principles										
1. Un		JECTIVES		11								
	Understanding the science behind conduction heat transfer and its applications.											
2. Di	fferei	ntiating the concepts of forced and natural convection heat transfer	ſ.									
3. De	escrib	ing the laws and concepts of radiation heat transfer.										
4. Ur	nderst	anding phase change processes and analyzing heat exchangers.										
5. Stu	udyin	g the concept of mass transfer process and its modes.										
UNIT-J	[CONDUCTION HEAT TRANSFER		9	0	0	9					
charts.	I	CONVECTION HEAT TRANSFER		9	0	0	9					
Conservation	on eq	uations, boundary layer concept – Forced convection: external flux	ow – flow over pl	ates, cy	linde	ers, sp	heres					
Free conve	ction	-flow over vertical plate, horizontal plate, inclined plate, cylinder	s and spheres.									
UNIT-II	Π	BOILING, CONDENSATION AND HEAT EXCHANG	FERS	9	0	0	9					
Regimes of Exchanger	f Pool types	boiling and Flow boiling, Nusselt's theory of condensation- corr - Overall Heat Transfer Co-efficient – Fouling Factors. LMTD a	elations in boiling nd NTU methods.	and con	dens	ation.	Heat					
UNIT-I	V	RADIATION HEAT TRANSFER		9	0	0	9					
Radiation la	aws -	Black Body and Gray body Radiation - Shape Factor - Electrical	Analogy -Radiatio	n Shield	ls.							
UNIT-V	V	MASS TRANSFER		9	0	0	9					
Basic Conc diffusion. F	epts - Basic	- Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Convective Mass Transfer Problems.	e Molecular Diffus	ion - Eq	uimo	olal co	unter					
			Tot	al(45L)) = 4	5 Pe	riods					

ТЕХТ	BOOKS:							
1	R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2017							
2	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, 2014.							
REFE	REFERENCE BOOKS:							
1	Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5 th Edition - 2013							
2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2017							
3	Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012							
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.							

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Analyze the mechanism of heat conduction under steady and transient conditions.	Apply
<i>CO2</i>	Develop solutions to problems involving convective heat transfer.	Create
СО3	Design a heat exchanger for any specific application.	Understand
<i>CO4</i>	Adopt the concept of radiation heat transfer in real time systems.	Understand
<i>C05</i>	Develop solutions to problems involving combined heat and mass transfer.	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2		1						3	3	1
CO2	3	3	3	3	2		1						3	3	1
CO3	3	3	3	3	2		1						3	3	1
CO4	3	3	3	3	2		1						3	2	1
CO5	2	2	2	2	1		1						3	1	
Avg	2.8	2.8	2.8	2.8	1.8		1						3	2.4	1
	•	3/2/	/1 – in	dicat	es str	ength	of con	rrelati	on (3	– High,	2- Med	lium, 1-	Low)	•	

18MEM09	METROLOGY AND QUALITY CONTR	OL									
PREREQUIS	ITES	CATEGORY	PE	Cr	edit		3				
			L	Т	Р	,	ГН				
		Horus/Week	3	0	0		3				
COURSE OF	JECTIVES										
1.	Explaining the importance of measurements in engineering and compute measurement uncertainty	the factors affecting	g measu	Irem	ents a	and	to				
2.	Applying the applications of linear and angular measuring instr	uments									
3.	3. Interpretation of various tolerance symbols.										
4.	4. Applying the SQC methods in manufacturing.										
5.	Applying the advances in measurements for quality control.										
UNIT-I	BASICS OF MEASUREMENT SYSTEM AND DEVIC	CES		9	0	0	9				
system - mechai used terms, erro	nical loading – static characteristics of instruments – factors consider analysis and classification - sources of error. Measurement unce	rtainty.	instrum	ed n ents	- con	nmo	only				
UNIT-II	CALIBRATION OF INSTRUMENTS AND QUALITY	Y STANDARDS		9	0	0	9				
Calibration of r feeler gauges, d 9000 quality sta	neasuring instruments - principles of calibration, Calibration of lial indicator, surface plates, slip gauges, care of gauge blocks. Ge indards. Comparators- mechanical, electrical, optical and pneumat	Instruments - Verni eneral cares and rule ic.	er calij es in m	per, l easu	Micro reme	ome nt, 1	eter, ISO				
UNIT-III	GEOMETRICAL MEASUREMENT AND MACHINE	E ELEMENTS		9	0	0	9				
Angular measur principle, three measurement o errors, base pito Inspection of st	rement - optical protractors, sine bar, roundness measurement, li basic types of limit gauges, Tomlinson surface meter, compu f major, minor and effective diameters. Gear terminology; spur ch measurement. Principle of interferometry, laser interferometer raightness, flatness, roundness deviations.	mit gauge, design o tter controlled CM gear measurement, , Machine vision, I	of plug M. IS(checki Fundam	gau D me ng o enta	ge, T etric of con 1 of (`ayl thro npc GD	or's ead, osite &T.				
UNIT-IV	STATISTICAL QUALITY CONTROL			9	0	0	9				
Surface finish - Quality Control	 terminology and measurements – Optical measuring instruments Control charts - Sampling plans. 	Acceptance test f	for mac	hine	s. Sta	atist	ical				
UNIT-V	SIX SIGMA			9	0	0	9				
Six sigma: Defi Control chart, S Analysis, Hypo	ne measure, analyse, improve and control phases. Analyze phase t Scatter chart, Cause and effect diagram, Pareto analysis, interrel thesis Testing, ANOVA Multi variate analysis.	ools: CommonTool ations diagram. Sp	s: Histo ecial To	ograi pols:	m, Bo Reg	ox F ress	Plot, sion				
		Tot	al(45L	.) =	45 P	eri	ods				

TEXT	TEXT BOOKS:										
1	Gupta.I.C, —A text book of Engineering Metrology, Dhanpat Rai publications, New Delhi, 2018										
2	Beckwith.T.G, Roy D. Marangoni, John H. Lienhard, - Mechanical Measurements, Prentice Hall, 2006										
REFERENCE BOOKS:											
1	Jain.R.K, —Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1999.										
2	Holmen.J.P, -Experimental Methods for Engineersl, Tata McGraw Hill Publications Co Limited, 2017.										

3	Grant, E.L., Statistical Quality Control, Mc Graw-Hill, 2004. 3. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004.								
4	Alan S Morris,Measurement and Instrumentation Principles, Butterworth, 2006.								
5	De Feo J A and Barnard W W, -Six Sigma: Break trough and BeyondG, Tata McGraw-Hill, New Delhi, 2005.								
E-REF	E-REFERENCES:								
1	https://nitsri.ac.in/Department/Mechanical%20Engineering/MEC_405_Book_2,_for_Unit_2B.pdf								
2	https://www.nist.gov/system/files/documents/srm/NIST-SRM-RM-Articlefinal.pdf								
3	https://www.researchgate.net/publication/319587859_Computer-Aided_Metrology-CAM								

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Explain the importance of measurements in engineering and the factors affecting measurements and to compute measurement uncertainty.	Understand
<i>CO2</i>	Apply the working principle and the applications of linear and angular measuring instruments.	Apply
СОЗ	Interpret of various tolerance symbols.	Apply
<i>CO4</i>	Apply the SQC methods in manufacturing.	Apply
<i>C05</i>	Apply the advances in measurements for quality control in manufacturing industries.	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1							2	1	2				2	1	
CO2							3	1	2				1	2	
CO3							2	1					2	1	
CO4				3			2		1				1	2	
CO5				2				3	1				2	1	
Avg				2.5			2.25	1.5	1.5				1.6	1.4	
		3/2/	/1 – in	dicat	es stro	ength	of co	rrelati	on (3 -	– High,	2- Med	lium, 1-	Low)		

18	BMEMI	10	DYNAMICS OF MACHINERY					
PR	EREQ	UISI	res	CATEGORY	PE	Cre	edit	3
Engineering Machanics, Kinematics of Machinery, Strength of Materials								ТН
Eng	gineering	Meci	fames, Kinematics of Machinery, Strength of Materials	Hours week	3	0	0	3
CO	URSE	OBJ	ECTIVES:					
1.	To imp	art sti	udents with the knowledge about motion, masses and forces in	machines and the F	Principl	e of V	irtual	Work.
2.	To faci	litate	the students, to understand the concept of balancing of rotating	g and reciprocating	masse	s.		
3.	To teac	ch con	cepts of free vibration analyses of one and two degree-of-free	dom rigid body sys	tems			
4.	To tea phenor	ch co nenor	ncepts of forced vibrations analyses of rigid body systems a of vibration and its effects.	and to give awar	eness to	o stuc	lents	on the
5.	To lear	n abo	ut the concept of various types of governors.		-			
UI	NIT I	FO	RCE ANALYSIS		9	0	0	9
Moi Spe UN	ment Dia ed, Weig NIT II	agram ght of BA l	s and Fluctuation of Energy of reciprocating engine mechanis Flywheel Required. LANCING	ns, Coefficient of I	Fluctuat 9	ion of 0	Ener	gy and
Stat Eng	tic and dy gines - Pa	ynami artial l	c balancing - Balancing of rotating masses - Balancing a single balancing in locomotive Engines - Balancing linkages - balanc	e cylinder Engine - ing machines	Balanc	ing M	ulti-c	ylinder
UN		FR	EE VIBRATION	0	9	0	0	9
Bas Free Sys Tor	ic Featur quency b tem -Typ sional Sy	res of by En- pes of stem	Vibratory Systems – Types – Single Degree of Freedom System ergy Method, Dunkerly's Method - Critical Speed - Damped Damping – Free Vibration with Viscous Damping, Critically s: Natural Frequency of Two and Three Rotor Systems.	n – Transverse Vib l Free Vibration of y Damped System,	ration o Single Under	f Bea Degr Dam	ms – I ee Fr ped S	Vatural eedom ystem.
UN	IT IV	FO	RCED VIBRATION		9	0	0	9
Res Mag	ponse to gnificatio	Perio on Fac	odic Force – Harmonic Force – Force caused by Unbalance – ctor – Vibration Isolation and Transmissibility.	Support Motion -	Logari	thmic	Decr	ement-
UN	NIT V	GC	VERNORS		9	0	0	9
Gov - Ef	vernors - ffect of fi	Type riction	s - Centrifugal governors - Gravity controlled and spring contro a - Controlling Force - other governor mechanisms.	olled centrifugal go	overnor	s – Cł	aract	eristics
				То	tal (45	L) =	45 Po	eriods
_		_				_	_	_

TE	XT BOOKS:
1.	Design of Machinery, Fourth Edition, by R.L. Norton, McGraw Hill, 2007
2.	Mechanical Vibration, V.P.Singh, Dhanpatrai, Delhi
RE	FERENCE BOOKS:
1.	Ballaney, P.L., "Theory of Machines and Mechanisms", Khanna Publishers, New Delhi, 2002.
2.	Shigley, J.E. and Uicker, J.J., "Theory of Machines and Mechanisms", TMH ND, 1998.
3.	Amithabha Ghosh, and Ashok Kumar Malik., "Theory of Mechanisms and Machines", 2nd Ed., Affiliated East and West Press Limited, 1998.
4.	Prof.Nakara, IIT-Delhi Reference Books

E-R	E-REFERENCES:								
1.	www.university.youth4work.com/IIT_Kharagpur_Indian-Institute-of-Technology/study/1653-dynamics-of- Machinery-ebook								
2.	http://nptel.ac.in/courses/112104114/								

COU! On cor	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Apply basic principles of mechanisms in mechanical system.	Apply
<i>CO2</i>	Familiarize the static and dynamic analysis of simple mechanisms.	Understand
СО3	Analyze the mechanical systems subjected to free vibration.	Analyze
<i>CO4</i>	Analyze mechanical systems subjected to forced vibration.	Analyze
<i>C05</i>	Analyze the various types of governors and its speed control mechanism.	Analyze

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1					1		3	2	1	2
CO2	2	2	3	2	1					1		3	2	1	2
CO3	2	2	3	2						1		3	2	1	2
CO4	2	2	3	2	1					1		3	2	1	2
CO5	1	2	3	2						1		3	2	1	1
Avg	1.8	2.0	3.0	2.2	1					1.0		3.0	2.0	1.0	1.8
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

MINOR DEGREE: METALLURGICAL ENGINEEING

18MTM01 ADVANCED PHYSICAL METALLURGY Semester										
PREI	REQUISIT	ES	Category	OE	Cre	dit	3			
. .		L	Т	Р	ТН					
Engir	ieering phy	3	0	0	3					
Cour	se Learning	g Objectives								
1	To impar	t knowledge on the crystal structure, diffusion, phase	diagrams for varie	ous eng	gineerin	g mate	rials.			
τ	Unit I	CRYSTAL STRUCTURES		9	0	0	9			
Revie	w of atomic	c bonds, Lattice, unit cell, crystal systems and Bravai	s lattices; Princip	al crys	tal struc	ctures -	- BCC,			
FCC,	HCP and i	ts characteristics; Miller indices for crystallographic	c planes and dire	ctions,	interpl	anar sj	bacing;			
Volur	ne, planar a	and linear atomic density; Polymorphism and allotro	py; CsCl, NaCl,	Diamo	ond stru	ctures;	single			
crysta	and polyce	rystalline and amorphous materials; isotropy and anise	otropy; Simple pr	oblems	s in the	above t	opics			
U	J nit II	CRYSTALLINE IMPERFECTIONS		9	0	0	9			
Types	s of point de	efects, effect of temperature on vacancy concentratio	on, interstitial site	s-octah	edral a	nd tetra	ahedral			
sites;	Line defect	s - dislocations - Edge, screw and mixed dislocation	ns, Burger's vecto	r, slip	and twi	nning;	Planar			
defect	ts – grain ł	ooundaries, tilt boundaries, small angle grain bound	laries; ASTM gra	ain size	e numb	er, gra	in size			
deterr	ninations; V	Volume defects; Simple problems in the above topics.								
U	nit III	ATOMIC DIFFUSION IN SOLIDS AND SOLII OF METAL	DIFICATION	9	0	0	9			
Diffu	sion mecha	nisms, steady state diffusion and non-steady state	diffusion-Fick's	first 1	aw and	secon	d law;			
Kirke	ndall effect	and Darken's equation; Factors affecting diffusion; I	Industrial applicat	ions of	f diffusi	on pro	cesses;			
Simpl	le problems	in the above topics; Basic principles of solidification	on of metals and	alloys;	Growt	h of cr	ystals–			
Plana	r growth, o	dendritic growth, Solidification time, dendrite size	; Cooling curves	s; Cast	t or In	got str	ucture,			
Solidi	ification de	fects - Control of casting structure; Directional so	lidification - sin	gle cry	ystal gr	owth;	Simple			
proble	ems in the a	bove topics.								
U	nit IV	PHASE DIAGRAMS		9	0	0	9			
Phase	s, solid solu	ution types, compounds, Hume- Rothery rules; Gibb	o's phase rule; Ph	ase dia	agram d	letermi	nation;			
Binar	y isomorpho	ous alloy systems - composition and amount of phases	, development of 1	nicrost	ructure	-equil	ibrium			
and n	on-equilibri	ium cooling- Coring and its effects, homogenization	n; Binary eutectic	system	m - cor	npositi	on and			
amou	nt of phases	, development of microstructure; Eutectoid, Peritectic	and monotectic re	action	Phase of	liagran	ns with			
intern	nediate phas	ses and compounds; Ternary phase diagrams. Simple	problems in the al	pove to	pics.					
τ	J nit V	IRON-CARBON PHASE DIAGRAM		9	0	0	9			
Iron-c	carbon diagr	am, Phases in Fe-C system, Invariant reactions, Micro	structure of slowl	y coole	ed steels	, comp	osition			
and a	mount of pl	nases, Effect of Alloying elements on Fe-C system, T	ype, structure, pr	opertie	es and a	pplicat	ions of			
Plain	Carbon Ste	els and different types of Cast iron; IS Specification f	for Steels and Cas	st Irons	, Simpl	e probl	ems in			
above	topics.									
				Tota	al (45+0) = 45	Hours			

Text	t Books:
1	Donald R. Askeland,"The Science and Engineering of Materials", Thomson Learning, India Edition, 2007.
2	William D.Callister, "Materials Science and Engineering – An Introduction", 4th edition, JohnWiley & Sons, New York, USA, 1997.
Refei	rence Books:
1	Avner S H."An Introduction to Physical Metallurgy", McGraw Hill Book Co, New York, USA, 1997.
2	Donald R Askeland," Essentials of Material Science and Engineering ", Thomson Learning, India Edition, 2007
3	Raghavan V., "Physical Metallurgy – Principles and Practice", Prentice Hall of India Ltd., New Delhi, 199.
4	William F.Smith, "Foundations of Materials Science and Engineering", Second Edition, McGraw-Hill Inc, New York, 1993.

Cours Upon	e O con	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Describe the basic crystal structure, orientation and their influence on macroscopic properties.	L2: Understanding
CO2	:	Discuss the role of imperfections in strengthening the materials.	L2: Understanding
CO3	:	Diagonise the diffusion mechanism in solidification of materials under different conditions.	L4:Analysing
CO4	:	Apply the concept of phase diagrams in equilibrium transformation of materials phases.	L3:Applying
CO5	:	Construct the Fe-Fe ₃ C phase diagram and discuss various properties of steel and cast iron.	L3:Applying

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1		1	
CO2	1	1				1	1						1			1
CO3	1	1	1	1		1							1	1		
CO4	1	1		1	1								1			
CO5	1	1		1									1			1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-ir	idicates	strengt	h of co	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18MTM02	METALLURGY	Semester						
PREREQUISIT	OE	Cr	edit	3				
D · · · 1	L	Т	Р	ТН				
Engineering ph	Engineering physics and Engineering chemistry Hours/Week							
Course Learnin	g Objectives							
1 To learn	the basic principles and concepts of thermodynamics	in the field of Meta	llurgy	and m	aterials	s; and		
to learn a	bout equations and their applications.		r	1	r			
Unit I	FUNDAMENTAL CONCEPT AND INTERNAL	LENERGY	9	0	0	9		
processes, Therm and work, Interna Hess's law, Kirch	nodynamic equilibrium, Reversible and Irreversible p al energy, Heat capacity of materials, Cp-Cv relations, noff's law, Maximum flame temperature.	rain and state pro- processes. First law Nernst Equation, E	of the nthalpy	rmody, The	ynamic: rmoche	s: Heat emistry		
Unit II	ENTROPY AND AUXILARY FUNCTIONS		9	0	0	9		
Second law of th statement of first and Zeroth laws	ermodynamics: Carnot cycle, Entropy - Statistical inte and second laws, Thermodynamic functions - Maxwel of thermodynamics : Definition, concept and applicati	erpretation of entrop Il's relations, Gibbs ons	oy, Free Helmh	e ener oltz e	gy, Con quation	nbined . Third		
Unit III	THERMODYNAMIC POTENTIALS AND PHA EQUILIBRIA	SE	9	0	0	9		
Thermodynamic rule. Le Chateli Thermodynamic diagrams to the s	potentials: Fugacity, Activity and Equilibrium consta er's principle, Vant Hoff's equation. Equilibria in p s of surfaces, interfaces and defects, P-G-T diagram tudy of alloy systems.	ant. Clausius - Clay bhase diagrams: Ph as, Application of f	yperon nase ru Tree en	equat le, Pl ergy	tion, Tr hase st - comp	outons ability, osition		
Unit IV	THERMODYNAMICS OF SOLUTIONS		9	0	0	9		
Gibbs - Duhem e solutions, Activi functions, Regul	quation, Partial and integral molar quantities, chemica ty coefficient, Henry's law, Alternative standard state ar solutions, Applications of Gibbs - Duhem equation.	l potential, Ideal sol s, Sievert's law, Mi	utions xing fu	- Rao inctio	ult's lav	w, Real excess		
Unit V	THERMODYNAMICS OF REACTIONS AND I	KINETICS	9	0	0	9		
Electro chemical quantities using equation - activa	process: Cells, Interconversion of free energy and electroversible cells, Solid electrolytic cells. Kinetics: First tion energy, Determination of order of the reaction.	etrical work, Determ t, Second and third	nination order r	n of th eactio	ermody ons, Ari	ynamic henius		
			Total	(45+() = 45	Hours		

Text	t Books:
1	Upadhyaya G S andDube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.
2	Ahindra Ghosh, Text book of Materials & MetallurgicalThermodynamics, Prentice Hall India, 2002
3	. David R Gaskell, "Introduction to the Thermodynamics of Materials", Fifth Edition, Taylor & Francis, 2008
Refer	rence Books:
1	David V Ragone, "Thermodynamics of Materials - Volume-1", John Wiley & Sons, Inc. 1995.
2	Dr S.K Dutta,Prof A.B.Lele – Metallurgical thermodynamics kinetics and numericals,S.Chand& co Ltd.,New Delhi 2011
3	Darken LS and Gurry R W,"Physical Chemistry of Metals", CBS publications and distributors, 2002.
4	Parker R H, "An introduction to chemical metallurgy", Pergamon press, New York, second edition, 1978.
5	Kapoor M.L., "Chemical and Metallurgical Thermodynamics Vol. I and II", Nem Chand, 1st Ed., 1981

Course Upon	e O con	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the fundamental concepts of thermodynamics and internal energy	L2: Understanding
CO2	:	State the thermodynamics entropy and auxilary functions.	L2: Understanding
CO3	:	Identify the basic laws, chemical potential and phase equilibria.	L4:Analysing
CO4	:	Describe the thermodynamics of the solution and various important equations.	L2: Understanding
CO5	:	Apply to solve problems related to electrochemical processes and kinetics.	L3:Applying

COURS	E ART	ICULA	TION	MATE	<u>RIX</u>											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1	1										1		1	
CO3	1	1		1	1								1			
CO4	1			1	1								1		1	1
CO5	1	1				1	1						1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

18M	1TM03	MECHANICAL BEHAVIOUR OF MATERIALS Semester									
PREF	REQUISI	TES		OE	Cre	edit	3				
F er e in	.			L	Т	Р	ТН				
Engin	ieering pn	ysics	Hours/Week	3	0	0	3				
Cours	se Learnir	ng Objectives									
1	To know	the fundamental concepts of deformation behaviour f	or structural engin	neering	applica	ations.					
U	nit I	DISLOCATIONS AND PLASTIC DEFORMATIC	ON	9	0	0	9				
disloc Climb disloc Disloc bands	Strength of perfect crystal and need for dislocations; Characteristics of dislocations – Edge dislocation, Screw dislocation, Burger's vector, mixed dislocation, dislocation loops; Movement of dislocation – Pierls stress, Cross slip, Climb; Dislocations in FCC, HCP and BCC lattice; Stress fields and energies of dislocations, forces on and between dislocations; Dislocation density; Intersections of dislocations – Jogs and kinks; Dislocation multiplication; Dislocation pile-ups; Deformation by slip and twinning; Critical resolved shear stress; Deformation bands and kink bands.										
Unit IISTRENGTHENING MECHANISMS9009											
ageing coarse streng effect	Strain hardening; Grain boundary strengthening; Solid solution strengthening - yield-point phenomenon, strain ageing; Precipitation hardening - Conditions for precipitation hardening, Ageing, Formation of precipitates, coarsening of precipitates, Mechanism of strengthening; Dispersion strengthening; Fiber strengthening; Martensite strengthening - examples for above strengthening mechanisms from ferrous and non-ferrous systems, Bauschinger effect: Preferred orientation: Sever plastic deformation										
Ur	nit III	FRACTURE AND FRACTURE MECHANICS		9	0	0	9				
Types factor cohest introd of KI0	s of fractures s affecting ive strenge uction, mo C, introduc	re – ductile and brittle fracture, Ductile to Brittle Tra g DBTT, determination of DBTT, Hydrogen embritt th of metals, Griffith's theory of brittle fracture, On des of fracture, stress intensity factor, strain energy rele- ction to COD, J integral.	ansition Tempera lement and other rowan's modifica ease rate, fracture	ture (E embri ation. H toughne	DBTT), ttlemen Fracture ess and	Metall t, Theo mech determ	urgical pretical anics - ination				
Uı	nit IV	FATIGUE BEHAVIOUR AND TESTS		9	0	0	9				
Fatigu fatigu crack	ie: Stress c e, cumulat propagatic	cycles, S-N curves, effect of mean stress, factors affect ive damage, HCF / LCF, thermo-mechanical fatigue, on, fatigue testing machines.	ing fatigue, struct application of fr	ural ch acture	anges a mechar	accomp nics to	anying fatigue				
U	nit V	VCREEP BEHAVIOUR AND TESTS9009									
Creep factor of ext	Creep curve, stages in creep curve and explanation, structural changes during creep, creep mechanisms, metallurgical factors affecting creep, high temperature alloys, stress rupture testing, creep testing machines, parametetric methods of extrapolation. Deformation Mechanism Maps										
				Tota	al (45+0)) = 45	Hours				

Text	t Books:
1	George. E. Dieter, "Mechanical Metallurgy", 3rd Edition, McGraw-Hill Publications, New York, SI Edition, 2004
2	Marc Andr'e Meyers, Krishan Kumar Chawla, "Mechanical Behavior of Materials", Cambridge University Press, UK, 2009.
Refer	rence Books:
1	Reed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.
2	Davis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-Hill, 1982.
3	Wulff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.
4	Honeycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	:	Discuss the mechanical behaviour of materials.	L2: Understanding			
CO2	:	Discuss the strengthening mechanisms of materials.	L2: Understanding			
CO3	:	List the various types of fractures and their mechanisms, fracture mechanics and various theories describing fracture mechanics.	L2: Understanding			
CO4	:	Discuss the fatigue behaviour and the mechanism of fatigue, SN curve and fatigue testing machines.	L2: Understanding			
CO5	:	Describe the creep behaviour and mechanism, factors affecting creep and creep testing machines.	L2: Understanding			

COURS	E ART	ICULA	TION	MATR	<u>RIX</u>											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1	1								1	1		
CO3	1	1	1		1										1	1
CO4	1	1				1	1								1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	TM04	RATE PROCESSES IN METALLURGY Semester									
PRER	EQUISIT	TES		OE	Cre	edit	3				
				L	Т	Р	TH				
Engin	eering ph	ysics	Hours/Week	3	0	0	3				
				5	U	U	5				
Cours	e Learnir	ng Objectives									
1 To learn the basic principles and concepts of kinetics in the domain of metallurgy and materials; to learn about equations and their applications; And to appreciate that metallurgical kinetics as a Knowledge base with abundant applications.							arn Dase				
U	nit I	INTRODUCTION		9	0	0	9				
Introdu	uction: R	ole of kinetics, heterogeneous and homogeneous ki	netics, Role of	heat a	nd ma	ss tran	sfer in				
metallu	urgical ki	netics, rate expression, Effect of Temperature and c	oncentration on	reactio	on kine	tics: ef	fect of				
temper	ature (Ar	rhenius Equation), Effect of concentration (order of a	reaction), signifi	cance	and det	ermina	tion of				
activat	ion energ	У.		1							
Un	nit II	KINETICS OF SOLID-FLUID REACTION		9	0	0	9				
Kinetic	Kinetics of solid-fluid reaction: kinetic steps, rate controlling step, definition of various resistances in series, shrinking										
core m	odel, chei	nical reaction as rate controlling step, Product layer di	ffusion as rate co	ntrollir	ng step,	Mass t	ransfer				
throug	h external	fluid film as rate controlling step, heat transfer as the n	ate controlling st	ep, Co	ncentra	tion bo	undary				
layer,	definition	and significance of heat and mass transfer coeffic	eient, Theoretical	mode	els for	mass t	ransfer				
coeffic	eients, Cor	relations for heat and mass transfer coefficients			[
Un	it III	LIQUID-SOLID PHASE TRANSFORMATION		9	0	0	9				
Princip	oles of So	lidification in metals and alloys: thermodynamics inv	olved, eutectic a	nd per	itectic	Solidifi	cation,				
Homog	geneous a	nd heterogeneous nucleation, Mechanisms of growth. F	Rapid Solidificati	on Pro	cessing.						
Un	it IV	SOLID STATE PHASE TRANSFORMATIONS		9	0	0	9				
Nuclea	ation and	growth Kinetics, homogeneous and heterogeneous tr	ansformation, Pr	ecipita	tion: C	oherenc	cy, age				
harden	ing, partio	cle Coarsening. Ostwald ripening, Order-disorder trans	formation, spino	dal deo	compos	ition, n	nassive				
transfo	ormations										
Un	Unit VSOLID STATE PHASE TRANSFORMATIONS IN STEEL900										
Recons	structive a	and displacive transformations; Pearlitic transformation	on: mechanism a	and kir	netics: .	Johnson	n-Mehl				
equation	on, morph	ology of pearlite; Bainitic transformation: mechanism a	nd kinetics; morp	pholog	y of upp	er bain	ite and				
lower	bainite; M	lartensitic transformation: Mechanism- diffusionless d	isplacive nature;	morph	ology c	of high	carbon				
and lov	w carbon	martensite.									
	Total (45+0) = 45 Hours										
				_		_					

Tex	t Books:					
1.	Ahindra Ghosh and Sudipto Ghosh, A Text book of Metallurgical Kinetics, PHI learning Pvt. Ltd., New					
	Delhi, 2014					
2.	H.S. Ray, Kinetics of Metallurgical Reactions, International Science publisher, 1993.					
3.	F. Habashi, Kinetics of Metallurgical Processes, Metallurgy Extractive Québec, 1999.					
4.	Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon,					
	1977.					
Ref	Reference Books:					

1.	Phase transformations in metals and alloys- D.A. Potter and K.E. Easterling, CRC Press,
	1992. 2. Transformations in Metals, P.G. Shewmon, Mc-Graw Hill, 1969.
2.	Introduction to Physical Metallurgy – S. N. Avner, Tata McGraw Hill, 1997.
3.	Physical Metallurgy Principles, R. E. Reed-Hill and R. Abbaschian, 3rd ed, PWS-Kent
	Publishing, 1992.
4.	Modern Physical Metallurgy, R. E. Smallman, Butterworths, 1963

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	:	Discuss the thermodynamic aspects of phase changes.	L2: Understanding			
CO2	:	Discuss the fundamentals of solid –fluid reactions.	L2: Understanding			
CO3	:	Explain the eutectic and peritectic solidifications and rapid solidification processes.	L2: Understanding			
CO4	:	Describe the fundamentals of solidification.	L1: Remembering			
CO5	:	Apply the solid state phase transformations in steel.	L3:Applying			

COURS	E ART	ICULA	TION	MATR	RIX											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1			1
CO2	1	1			1	1									1	1
CO3	1	1		1	1								1	1		
CO4	1	1		1	1									1		1
CO5	1		1			1	1								1	1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of cor	relation	(3- High,	, 2-Medi	um, 1- Lo	ow)		

PREREQUISITES OE Credit 3 Engineering chemistry Hours/Week I T P TH 1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion fatigue, hydrogen damage – Factors influencing corrosion 9 0 0 9 Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion – Modifications of corrosive environment –Inhibitors – Cathodic Protection – Special surfacing processes. Unit II CORROSION OF INDUSTRIAL COMPONENTS 9 0 9 Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes	18MTM05	CORROSION AND SURFACE ENGIN	EERING	S	emeste	er				
Engineering chemistry L T P TH 1 To understand the corrosion and surface engineering, with its application in engineering field. 1 1 To understand the corrosion and surface engineering, with its application in engineering field. 1 To understand the corrosion and surface engineering, with its application in engineering field. 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion fatigue, hydrogen damage –Factors influencing corrosion. 9 0 0 9 Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion-Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants. Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Init	PREREQUISI	TES		OE	Cre	edit	3			
Engineering Chemistry Hours/Week 3 0 0 3 Course Learning Objectives 1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 0 9 Diffusion coatings –Electro and Electrol	En sin sonin a sk			L	Т	Р	TH			
Course Learning Objectives 1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 0 9 0 0 9 0 9 0 9 0 9 0 9 0 9 <l< td=""><td>Engineering ch</td><td>lemistry</td><th>Hours/Week</th><td>3</td><td>0</td><td>0</td><td>3</td></l<>	Engineering ch	lemistry	Hours/Week	3	0	0	3			
1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. 9 0 0 9 Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance. 9 0 0 9 Linit IVSURFACE ENGINEERING PROCESSES900 </td <td>Course Learni</td> <td>ng Objectives</td> <th></th> <td></td> <td></td> <td></td> <td></td>	Course Learni	ng Objectives								
Unit IMECHANISMS AND TYPES OF CORROSION9009Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform. Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosionUnit IITESTING AND PREVENTION OF CORROSION9009Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes.9009Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components.9009Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance.9009Lunit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coating.4009Linit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening –Effect of process variabl	1 To und	erstand the corrosion and surface engineering, with it	ts application in e	enginee	gineering field.					
Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 0 0 9 0 9 0 9 Unit II TESTING AND PREVENTION OF CORROSION 9 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. 9 0 0 9 Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processe	Unit I	MECHANISMS AND TYPES OF CORROSION	J	9	0	0	9			
Unit IITESTING AND PREVENTION OF CORROSION9009Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes.9009Unit IIICORROSION OF INDUSTRIAL COMPONENTS9009Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components.9009Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance.9009Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.409	Principles of d – Galvanic co Cavitations, C influencing co	Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion								
Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion – Modifications of corrosive environment – Inhibitors – Cathodic Protection – Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance. 9 0 0 9 Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours	Unit IITESTING AND PREVENTION OF CORROSION90									
Contributing CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Image: Corrosion operation operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION P 9 0 0 9 Diffusion coatings -Electro and Electroless Plating -Hot dip coating -Hard facing-Metal spraying, Flame and Arc processes- Conversion coating -Selection of coating for wear and Corrosion resistance. 9 0 0 9 Laser and Electron Beam hardening -Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition - Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours	Hydrogen Indu against corrosi processes.	Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes.								
Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION RESISTANCE 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance. 9 0 0 9 Unit V THIN LAYER ENGINEERING PROCESSES 9 0 0 9 Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours		CORROSION OF INDUSTRIAL COMPONEN	15	9	U	U	9			
Unit IVSURFACE ENGINEERING FOR WEAR AND CORROSION RESISTANCE9009Diffusion coatings -Electro and Electroless Plating -Hot dip coating -Hard facing-Metal spraying, Flame and Arc processes- Conversion coating -Selection of coating for wear and Corrosion resistance.Hard facing-Metal spraying, Flame and O 0Unit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening -Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition - Coating of tools, TiC, TiN, Al2O3 and Diamond coating-Properties and applications of thin coatings.Total (45+0) = 45 Hours	Corrosion in petroleum produ	fossil fuel power plants, Automotive industry, Ch action operations and refining, Corrosion of pipelines	emical processir - wear of industr	ng indu ial com	ustries, ponent	corros ts.	ion in			
Diffusion coating -Electro and Electroless Plating -Hot dip coating -Hard facing-Metal spraying, Flame and Arc processes- Conversion coating -Selection of coating for wear and Corrosion resistance.Unit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening -Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition - Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.Total (45+0) = 45 Hours	Unit IV	SURFACE ENGINEERING FOR WEAR AND RESISTANCE	CORROSION	9	0	0	9			
Unit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening –Effect of process variables such as power and server and server deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition- Physical vaporCoating of tool, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thir coating- Total (45+0) = 45 Hours	Diffusion coat Arc processes-	ings –Electro and Electroless Plating –Hot dip coatin Conversion coating –Selection of coating for wear a	g –Hard facing-M nd Corrosion resi	Metal s istance	praying	g, Flam	e and			
Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours	Unit V	VTHIN LAYER ENGINEERING PROCESSES900								
Total (45+0) = 45 Hours	Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.									
		Total (45+0) = 45 Hours								

Rei	terence Books:
1.	Fontana. G., Corrosion Engineering, McGraw Hill, 1985.
2.	Kenneth G. Budinski, Surface Engineering for Wear Resistance, Prenticehall, 1992.
3.	ASM Metals Hand Book –Vol. 5, Surface Engineering, 1996.
4.	Denny A Jones, "Principles and prevention of corrosion", 2 nd edition, Prentice Hall, New Jersey,1995.
5.	ASM International, Surface Engineering for Corrosion and Wear Resistance, 2005.
6.	Schweitzer. P.A., Corrosion Engineering Hand Book, 3rd Edition, Marcel Decker, 1996.

Course Upon	Course Outcomes: Jpon completion of this course, the students will be able to:							
CO1	:	Name the different types of corrosion and their mechanism.	L2: Understanding					
CO2	:	Estimate corrosion resistance by different tests.	L4:Analysing					
CO3	:	Explain the corrosion behavior of different metals in different industries.	L2: Understanding					
CO4	:	Classify the different forms of processing techniques of surface engineering materials.	L1: Remembering					
CO5	:	Select the type of deposition and spraying technique.	L3:Applying					

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1		1							1	1		
CO3	1	1	1	1			1								1	1
CO4	1	1		1	1										1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18N	ATM06	MATERIALS CHARACTERIZAT	ΓΙΟΝ	Semester										
PRE	REQUISI	TES		OE	Cre	edit	3							
Engi	nooming n	ave los		L	Т	Р	ТН							
Engi	neering pi	nysics	Hours/Week	3	0	0	3							
Cour	se Learni	ng Objectives												
1	To acqu	ire knowledge on various characterizations, chemica ents using its analysis tools	l and thermal ana	ılysis o	f metal	llurgica	ıl							
τ	Jnit I	OPTICAL MICROSCOPY		9	0	0	9							
Meta const depth techn	Metallographic specimen preparation. Macro-examination -applications. Metallurgical microscope - principle, construction and working, , Optic properties - magnification, numerical aperture, resolving power, depth of focus, depth of field, different light sources, lens aberrations and their remedial measures, Various illumination techniques-bright field , dark field, phase-contrast, polarized light illuminations, interference microscopy, high temperature microscopy: Quantitative metallography.													
U	nit II	X-RAY DIFFRACTION	515.	9	0	0	9							
powd and c crysta	Characteristic X-ray spectrum, Bragg's Law, Diffraction methods - Laue method, rotating crystal method and powder method. Diffraction intensity – structure factor calculation. X-ray diffractometer -general features, filters and counters. Applications of X-ray diffraction in materials characterisation – Determination of crystallite size, crystal structure, precise lattice parameter, measurement of stress.													
U	nit III	ELECTRON MICROSCOPY		9	0	0	9							
Diffra prepa applie analy	Electron beam - specimen interactions. Construction and operation of Transmission Electron Microscopy – Diffraction effects and image formation, various imaging modes, selected area diffraction, applications, specimen preparation techniques. Scanning electron microscopy – principle, equipment, various operating modes and applications, Electron probe microanalyser (EPMA)- principle, instrumentation, qualitative and quantitative analysis. Introduction to URTEM. EESEM. ERSD.													
U	nit IV	SPECTROSCOPIC TECHNIQUES		9	0	0	9							
X-ray spect emiss const	y spectrosc roscopy, X sion spect ruction, w	copy – EDS and WDS. Principle, instrumentation, w X-ray photoelectron spectroscopy and Secondary ion r roscopy, Atomic Absorption spectroscopy and X-r orking and applications. UV-Vis, FTIR and Raman s	vorking and appl mass spectroscop ray fluorescence pectroscopy.	ication y / ion spect	s of A microp roscop	uger E probe. (y - pri	lectron Optical nciple,							
U	nit V	THERMAL ANALYSIS AND CHARACTERIZATION TECHNIQUES	ADVANCED	9	0	0	9							
Thern gravi micro probe	mal Analy ometric an oscopy - S' e - principl	sis: Principles of differential thermal analysis, diff alysis – Instrumentation and applications. Advanced IM and AFM - principle, instrumentation and applications.	Ferential scanning characterization t ations. Field ion	g calor technic micros Tota	imetry lues: So copy ir I (45+0	and the canning of th	nermo- g probe g atom Hours							
Text	Books:													
1.	Cullity, B 1978	.D., Elements of X Ray Diffraction, Addison-Wesley	Publishing Com	npany I	inc, Phi	ilippine	es,							
2.	Brandon, England,	D. and W.D. Kaplan, Microstructural Characterizatio 2013.	on of Materials, J	ohn W	iley &	Sons L	.td,							

3.	Leng, Y., Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, John
	Wiley & Sons (Asia) Pte Ltd, Singapore, 2008

Re	teference Books:								
1.	ASM Handbook, Volume 10, Materials Characterization, ASM international, USA, 1986.								
2.	Vander Voort, G.F., Metallography: Principle and practice, ASM International, 1999.								
3.	Phillips V A, Modern Metallographic Techniques and their Applications, Wiley Eastern, 1971.								
4.	Angelo, P. C., Materials Characterization, Reed Elsevier India Pvt Ltd, Haryana, 2013.								

Cours Upon	e O cor	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the principles of metallurgical microscope, optical properties and various illumination techniques.	L2: Understanding
CO2	:	Analyze the various diffraction methods, X-ray diffractometer and determination of crystal parameter.	L4:Analysing
CO3	:	Discuss the principles of TEM, SEM, EPMA.	L2: Understanding
CO4	:	Explain various spectroscopic techniques,	L2: Understanding
CO5	:	Discuss the chemical and thermal analysis using advanced methods.	L2: Understanding

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	`1		1	1								1		1	
CO2	1	1	1	1		1							1			1
CO3	1		1			1	1					1	1			1
CO4	1	1		1	1							1	1			1
CO5	1	1		1	1								1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0					1.0	1.0		1.0	1.0
		<u>. </u>				3/2/1-in	idicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	ITM07	AUTOMOTIVE, AEROSPACE AND DEFENC	CE MATERIAL	" Semester									
PRER	REQUISI	TES		OE	Cre	edit	3						
Engin	oo ning n k	vicios		L	Т	Р	TH						
Engin	leering pr	lysics	Hours/Week	3	0	0	3						
Cours	se Learni												
1	To unde	erstand the properties and applications various materials suitable for automobile, aircraft and											
	defnce in	defnce industries and its components.											
U	nit I	MATERIALS FOR ENGINES AND TRANSMIS SYSTEMS	SSION	9	0	0	9						
Materi	ials select	ion for IC engines: Piston, piston rings, cylinder, Eng	gine block, Conne	ecting	rod, Cra	ank sha	aft, Fly						
wheels	s, Gear bo	x, Gears, Splines, Clutches.											
Ur	nit II	MATERIALS FOR AUTOMOTIVE STRUCTU	RES	9	0	0	9						
Materi	Materials selection for bearings, leaf springs, chasis & frames. Bumper, shock absorbers, wind screens, panels.												
brake	shoes, Dis	sc, wheels, differentials, damping and antifriction flui	ids, Tyres and tuł	bes. Ma	aterials	for ele	ctronic						
device	es meant f	or engine control, ABS, Steering, Suspension, Sensor	s, anti-collision, A	Anti-fo	g, Hea	d lamp	s.						
Un	it III	AEROSPACE METALS AND ALLOYS		9	0	0	9						
Types	of corros	sion - Effect of corrosion on mechanical propertie	s – Stress corro	sion c	racking	– Co	rrosion						
resista	nce mater	ials used for space vehicles. Heat treatment of carbon	steels – aluminiu	m alloy	/s, mag	nesium	alloys						
and tit	tanium all	oys - Effect of alloying treatment, heat resistance a	lloys – tool and	die ste	els, ma	gnetic	alloys,						
powde	er metallu	rgy- application of materials in Thermal protection sy	stems of Aerospa	ice veh	icles –	super a	alloys						
Un	it IV	CERAMICS AND COMPOSITES		9	0	0	9						
Introd	uction – p	hysical metallurgy – modern ceramic materials – cerm	et - cutting tools -	– glass	cerami	c –proc	luction						
of sen	ni-fabricat	ed forms - Plastics and rubber - Carbon/Carbon co	mposites, Fabrica	ation p	rocesse	s invol	lved in						
metal	matrix co	mposites - shape memory alloys - applications in aero	ospace vehicle de	sign.									
Uı	nit V	NUCLEAR WASTE AND RADIATION PROTE IRRADIATION EFEFCTS	CCTION,	9	0	0	9						
Introd	uction-un	it of nuclear radiation-Types of waste –disposal –ICR	P recommendation	ons-rad	liation								
hazard	ls and pre	vention –radiation dose units - Irradiation Examinatio	on of Fuels, Irradi	ation b	oehavio	ur of n	netallic						
uraniu	m – irradi	iation growth, thermal cycling, swelling, adjusted ura	nium, blistering i	n uran	ium roo	ds. Irra	diation						
effects	s in ceram	ic oxide and mixed oxide fuels, definition and units of	burn up, main ca	uses o	f fuel el	lement	failure						
in pow	ver reactor	rs and remedies to avoid failures.											
				Tota	l (45+0) = 45	Hours						

Re	ference Books:
1.	ASM Handbook, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. USA, 1991.
2.	Materials Science and Engineering, Willium D. Callister, Jr. John Wiley & Sons publications Or Callister's Materials Science and Engineering Adapted By R. Balasubramaniam, Wiley India, Edition -2010.
3.	Material Science and Engineering, V. Raghavan, Prentice Hall of India, 4th Edition.
4.	Engineering Metallurgy Applied Physical Metallurgy, R. A. Higgins, 6th Edition

5.	Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.
6.	Charles J A and Crane. F A. A., "Selection and Use of Engineering Materials", 3rd Edition Butterworths London UK 1006
	Edition, Butter worthis, London OK, 1990
7.	ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park
	Ohio.USA, 1997
8.	Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials",
	Taylor & Francis Group, London, 2006

Cours Upon	e O con	Bloom's Taxonomy Mapped	
CO1	:	Describe the materials selection criteria for engine and transmission systems.	L2: Understanding
CO2	:	Analyze the different materials used for automotive structures and Different electronic materials for automotive applications.	L4:Analysing
CO3	:	Explain various topics such as elements of aerospace materials and mechanical behaviour of materials,	L2: Understanding
CO4	:	Compare the ceramics and composites of aerospace materials	L4:Analysing
CO5	:	Examine the fuels for nuclear materials.	L3:Applying

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1	1			1							1	1		
CO3	1			1	1								1		1	
CO4	1	1	1				1						1			1
CO5	1	1		1	1								1			1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		