GOVERNMENT COLLEGE OF ENGINEERING: : SALEM – 636011

Regulations 2018A

Course Code	Course Title	Category	Contact		Hou	rs/week		Ma	ximum N	Iarks
		category	periods	L	Т	Р	С	CA	FE	Total
		FI	RST SEME	STER						
			THEORY	Y						
18EN101	Professional English	HS	2	2	0	0	2	40	60	100
18MA102	Matrices, Calculus and Differential Equations	BS	4	3	1	0	4	40	60	100
18CY101	Chemistry	BS	4	3	1	0	4	40	60	100
18CS101	Fundamentals of Problem Solving and C Programming	ES	3	3	0	0	3	40	60	100
		1	PRACTIC	AL						
18EN102	Professional English Laboratory	HS	2	0	0	2	1	60	40	100
18CS102	Computer Practice Laboratory	ES	4	0	0	4	2	60	40	100
18ME102	Workshop/Manufacturing Practices	ES	5	1	0	4	3	60	40	100
18MC102	Induction Programme	MC					0	100	-	100
	Total						19			
		SEC	OND SEM	ESTEI	R					
			THEORY	Y		-				-
18MA204	Fourier Series and Transforms	BS	4	3	1	0	4	40	60	100
18PH202	Physics- Waves & Optics and Quantum Mechanics	BS	4	3	1	0	4	40	60	100
18ME101	Engineering Graphics and Design	ES	5	1	0	4	3	40	60	100
18CM201	Basic Civil and Mechanical Engineering	ES	4	4	0	0	4	40	60	100
			PRACTIC	AL		•		· .		
18PH103	Physics Laboratory	BS	3	0	0	3	1.5	60	40	100
18CY102	Chemistry Laboratory	BS	3	0	0	3	1.5	60	40	100
18EN103	Professional Communication Laboratory	HS	2	0	0	2	1	60	40	100
18CE201	Basic Civil Engineering Laboratory	ES	2	0	0	2	1	60	40	100
	Total						20			

B.E. Electrical and Electronics Engineering- Full Time

		THI	RD SEM	ESTER						
			THEOR	Y						
18MA302	Statistics and Numerical Methods	BS	4	3	1	0	4	40	60	100
18EE301	Electric Circuit Analysis	PC	4	3	1	0	4	40	60	100
18EE302	Electromagnetic Fields	PC	4	3	1	0	4	40	60	100
18EE303	DC Machines and Transformers	PC	3	3	0	0	3	40	60	100
18EE304	Electron Devices and Circuits	PC	4	3	1	0	4	40	60	100
		I	PRACTIC	AL						
18EE305	DC Machines and Transformers Laboratory	PC	3	0	0	3	1.5	60	40	100
18EE306	Electron Devices and Circuits Laboratory	PC	3	0	0	3	1.5	60	40	100
18CYMC01	Environmental Science	MC	1	0	0	1	0	100	-	100
	Total						22			
	·	FOU	RTH SEN	IESTEI	R					
			THEOR	Y						
18EE401	Signals and Systems	PC	3	2	1	0	3	40	60	100
18EE402	Synchronous and Induction Machines	PC	3	3	0	0	3	40	60	100
18EE403	Measurements and Instrumentation	PC	3	3	0	0	3	40	60	100
18EE404	Analog and Digital Integrated Circuits	PC	3	3	0	0	3	40	60	100
18ME408	Engineering Mechanics	ES	3	2	1	0	3	40	60	100
		I	PRACTIC	AL				1		
18EE405	Synchronous and Induction Machines Laboratory	PC	3	0	0	3	1.5	60	40	100
18EE406	Measurements and Instrumentation Laboratory	PC	3	0	0	3	1.5	60	40	100
18EE407	Analog and Digital Integrated Circuits Laboratory	PC	3	0	0	3	1.5	60	40	100
18MC301	Indian Constitution	MC	1	1	0	0	0	100	-	100
		1								

		FI	FTH SEM	IESTEI	R						
			THEO	RY		-					
18EE501	Power Generation, Transmission and Distribution System	PC	3	3	0	0	3	40	60		100
18EE502	Control Systems	PC	4	3	1	0	4	40	60		100
18EE503	Power Electronics	PC	3	3	0	0	3	40	60		100
18EE504	Microprocessor and Microcontroller		3	3	0	0	3	40	60		100
18EEPXX	Program Elective – 1 Pl		3	3	0	0	3	40	60		100
18EE0EXX	Open Elective-1	OE	3	3	0	0	3	40	60		100
18MCIN01	Ideation Sprits	EEC	3	2	2	0	1	100			100
			PRACTI	CAL							
18EE505	Control SystemLaboratory	PC	3	0	0	3	1.5	60	40		100
18EE506	Power Electronics Laboratory	PC	3	0	0	3	1.5	60	40		100
18EE507	Microprocessor and Microcontroller Laboratory	PC	3	0	0	3	1.5	60	40		100
	Total						24.5				
	S	EMEST	TER VI (R	legular	Stream))		•			
			THEO	RY							
18EEPXX	Program Elective- 1	PE	3	3	0		0	3	40	60	100
18EEPXX	Program Elective- 2	PE	3	3	0		0	3	40	60	100
18EEPXX	Program Elective- 3	PE	3	3	0		0	3	40	60	100
18EEPXX	Program Elective- 4	PE	3	3	0		0	3	40	60	100
18EEPXX	Program Elective- 5 (Dropped)	PE	3	3	0		0	3	40	60	100
18EE0EXX	Open Elective - 2	OE	3	3	0		0	3	40	60	100
18EE0EXX	Open Elective - 3	OE	3	3	0		0	3	40	60	100
	Naan Muthalvan							2			
	Total							21			1
	SEMI	ESTER	VI (pro	otosen	ı strea	m)	I		T		
	THEORY										
18MEPS11	Applied Design Thinking (Open Elective-I)	PE	3	3	0		0	3	100	-	100
18MEPS12	Startup Fundamentals (Open Elective-II)	PE	3	3	0		0	3	100	-	100
18MEPS13	Computational Hardware (Professional Elective-I)	PE	3	3	0		0	3	100	-	100
18MEPS14	Coding for Innovators(Profession Elective-II)	OE	3	3	0		0	3	100	-	100
18MEPS15	Industrial Design & Rapid Prototyping Techniques (Professional Elective-III)	OE	3	3	0		0	3	100	-	100
18MEPS16	Industrial Automation/ Data Life Cycle Management (Professional Elective-IV)		3	3	0		0	3	100	-	100
18MEPS17	Robotics /ML& MLOps (Professional Elective-V)	EEC	3	3	0		0	3	100	-	100
	Total					T	T	21			

		SEVE	NTH SEN		R					
			THEOR	Y						
18EE701	Power System Protection and SwitchGear	PC	3	3	0	0	3	40	60	100
18EE702	Industrial Management and Economics	HS	3	3	0	0	3	40	60	100
18EE601	Power System Analysis and Stability (6 th Sem Course)	PC	3	3	0	0	3	40	60	100
18EE602	Electrical Drives and Control (6 th Sem Course)	PC	3	3	0	0	3	40	60	100
18EE606	Professional Ethics and Human Values (6 th Sem Course)	HS	3	3	0	0	3	40	60	100
]	PRACTIC	AL						
18EE703	Power Systems Laboratory	PC	3	0	0	3	1.5	60	40	100
18EE704	Electrical Drives and Control Laboratory	PC	3	0	0	3	1.5	60	40	100
18EN504	Communication Skills Laboratory	HS	3	3	0	0	1	60	40	100
18EE604	Mini Project	EEC	4	0	0	4	2	60	40	100
	Total						21			
		EIG	HTH SEM	ESTEF	ł					
			THEOR	Y						
18EEPXX	Program Elective –6	PE	3	3	0	0	3	40	60	100
]	PRACTIC	AL						
18EE801	Project Work	EEC	16	0	0	16	8	80	120	200
	Total						11			
		Total N	umber of (Credits	158	I		1		

B.E. Electrical and Electronics Engineering - Full Time Programme Electives

S.N	Course	Course Title	Cat.	Hou	irs/wee	k & C	redits	Maxim	um Mark	S	Preferred
0	Code			L	Т	Р	C	CA	FE	Total	Semester
1	18EEP01	Electrical Machine Design	PE	3	0	0	3	40	60	100	V
2	18EEP02	Biology for Electrical Engineers	PE	3	0	0	3	40	60	100	V
3	18EEP03	Digital Signal Processing	PE	3	0	0	3	40	60	100	V
4	18EEP04	Discrete Control Systems	PE	3	0	0	3	40	60	100	V
5	18EEP05	High Voltage Engineering	PE	3	0	0	3	40	60	100	VI
б	18EEP06	HVDC Transmission Systems	PE	3	0	0	3	40	60	100	VI
7	18EEP07	EHVAC Transmission Systems	PE	3	0	0	3	40	60	100	VI
8	18EEP08	FACTS Controllers	PE	3	0	0	3	40	60	100	VI
9	18EEP09	Power Quality	PE	3	0	0	3	40	60	100	VI
10	18EEP10	Utilization of Electrical Energy	PE	3	0	0	3	40	60	100	VI
11	18EEP11	Electrical Energy Conservation and Auditing	PE	3	0	0	3	40	60	100	VI
12	18EEP12	Power System Operation and Control	PE	3	0	0	3	40	60	100	VI
13	18EEP13	Distributed Generation and Micro Grid	PE	3	0	0	3	40	60	100	VII
14	18EEP14	Wind and Solar Energy Systems	PE	3	0	0	3	40	60	100	VII
15	18EEP15	Electrical and Hybrid Vehicles	PE	3	0	0	3	40	60	100	VII
16	18EEP16	Soft Computing and Machine Learning	PE	3	0	0	3	40	60	100	VII
17	18EEP17	Advanced Electric Drives	PE	3	0	0	3	40	60	100	VIII
18	18EEP18	Computational Electromagnetics	PE	3	0	0	3	40	60	100	VIII

19	18EEP19	Special Electrical Machines	PE	3	0	0	3	40	60	100	VIII
20	18EEP20	Electrical Wiring Estimation and Costing	PE	3	0	0	3	40	60	100	VIII
21	18EEP21	Total Quality Management	PE	3	0	0	3	40	60	100	VIII
22	18EEP22	Restructured Power System	PE	3	0	0	3	40	60	100	VIII
23	18EEP23	Industrial Electrical Systems	PE	3	0	0	3	40	60	100	VIII
24	18EEP24	Smart Grid	PE	3	0	0	3	40	60	100	VIII

Open Electives

S.N 0	Course Code	Course Title	Category	Contact Hrs		ırs/we Credi	eek & ts		Maximum Marks			
			Cat	Con Hrs	L	Т	Р	С	CA	FE	Total	
1	18EEOE1	Renewable Energy Sources	PE	3	3	0	0	3	40	60	100	
2	18EEOE2	Smart Grid Technology	PE	3	3	0	0	3	40	60	100	
3	18EEOE3	Energy Conservation and Management	PE	3	3	0	0	3	40	60	100	
4	18EEOE4	Electric Vehicles	PE	3	3	0	0	3	40	60	100	

18EN10	PROFESSIONAL ENGLISH	L	Т	Ρ	С		
-		2	0	0	2		
Course	Objectives:						
	-	00.0	foor	tone			
<u>1.</u> 2.	Master basic reading skills such as phonics, word recognition and meaningful division Read fast, decode accurately and remove oral reading errors that affect text meaning		i sei	literit	,es.		
3.	Acquire and develop writing skills for academic, social and professional purposes.	ıy.					
<u> </u>	Gain skills in academic and functional writing tasks.						
-т.							
Writing							
1. \ E	Vord Formation with Prefix and Suffix, Synonyms and Antonyms, Tenses, Parts of Errors in English (Subject –Verb Agreement, Noun-Pronoun Agreement, Prep Conditional statements, Redundancies, Clichés etc), Voices.	ositi	ons,	Ar	ticles		
ć	Email – Training Programme and related details, paper submission for seminars and co an appointment, Arranging and Cancelling a meeting with team members, confere accommodation, Reminder mails, Raising queries with team members, Congratulato arranging for a meeting with a foreign client, personal emails.	ence	det	ails,	hote		
3. L 	Letter Writing – Business and need based communication – Formats of official, perso etters, official leave and request applications (Bonafide certificate, course completion, o permission to arrange industrial visits) complaints, replies to queries from business o dignitaries, accepting and declining invitations, placing orders, cover letter for a jo	conc custo	luct o omer	certif s, in	icate vitin		
4.	 resume. Technical Report Writing – status reports – Work Done in the Project, Feasibility Reports on Off Accommodation, Introduction of New Products, Sales Promotion, Customers Feedback, Starting a N Company, Event Reports- Seminars, Conferences, Meeting, Recommendations and Checklists. 						
	Charts- interpreting pie charts, graphs etc.,			-			
READIN							
C	Jnderstanding notices, messages, timetables, adverts, graphs, etc understanding mea of short texts	aning	g and	d pur	pose		
	Gapped sentences – Meanings, collocations and meanings of individual words.						
5	Reading passage with multiple choice questions – reading for gist and reading for spec skimming for general idea of and meaning and contents of the whole text.						
	Short reading passage; gap-filling – Grammar, especially prepositions, articles, auxiliar /erbs, pronouns, relative pronouns and adverbs.	y ve	erbs,	moc	lal		
	Short reading passages; sentence matching – Scanning – ability to pick out specific info ext.	orma	tion	in a	shor		
METHO	DOLOGY:						
(Dbjective Type:						
	ocabulary of business communication.						
	Collocations related to technical and business.						
	Coherence in paragraphs – use of sequence clues.						
	Conversations and appropriate responses.						
5. T	enses with time makers.						
	/erbal phrases						
	Description of objects in a sentence or two						
	Products and likely slogans						
	one, vocabulary, expressions in formal and informal letters. Email writing- tone, vocabulary, expressions, mail ID., creation, CC, BCC.						
	Descriptive Writing:						
	Skimming and scanning to look for specific information.						
	Spotting Errors.						
	mail writing in different work place/ profession based contexts with hints.						
	etter writing in different business based contexts with hints.						
5. F	Report writing: feasibility report, progress in project reports, accident reports and event r	еро	rts.				

- 6. Checklists in business, office and profession based context.
- 7. Recommendations in business, office and profession based context.
- 8. Resume and Cover letter.
- 9. Mind mapping visuals on social and environmental issues essay writing based on the given mind map visual.

	0+0)=30 Periods
Course	Outcomes:
Upon co	mpletion of this course, the students will be able to
CO1	: Read and summarize the main ideas, key details and inferred meanings from a passage.
CO2	: Internalize the grammar items such as prepositions, articles, tenses, verbs, pronouns, and adverbs adjectives through contexts and apply them to spot errors.
CO3	: Develop the ability to classify, check information and prepare reports.
CO4	: Apply the academic and functional writing skills in new contexts.
CO5	: Interpret pictorial representation of data and statistic.
Text Bo	oks: Norman Whitby. Business Benchmark –Pre - Intermediate to Intermediate, Students Book, Cambridge
1.	University Press, 2014.
Referen	ce Books: M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill.2017 ,2 nd edition
2	Farhathullah, T.M. Communication Skills for Technical Students.2002
3	Meenakshi Raman and Sangeetha Sharma, Technical Communication: Principles and Practice, Oxford University Press, New Delhi, 2015,3 rd edition.
4	David F. Beer and David McMurray, Guide to Writing as an Engineer, John Willey. New York, 2019.
5	Collins Cobuild- Student's Grammar: Self-Study Edition with Answers (Collins Cobuild Grammar) paperback- 6 May 1991.
6	. Essential English Grammar paperback Raymond Murphy CUP 2015,3rd edition.
7	Speak Better Write Better English paperback – Nov 2012, Norman Lewis, Goyal Publishers and Distributors. Essential English Grammar Paperback Raymond Murphy CUP 2019.
8	English Reading Comprehension RPH Editorial Board.2020
9	Proficiency in Reading Comprehension Simplifying the 'Passage' for you, 2020 Ajay Singh.6
E-Refere	
1	https://play.google.com/store/apps/details?id=com.zayaninfotech.english.grammar.
2	http://www.onestopenglish.com/grammar/

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1		3		1		1	2	3	1	2
CO2		2		2				1	1	3	2	3
CO3		1		1		1		1	2	3	1	2
CO4		1		2		1		1		3	1	2
CO5		2		3				1	1	3	1	3

18MA102	MATRICES, CALCULUS AND DIFFERENTIAL EQUATIONS	3	1	Г 0	C 4
Course C	Dbjectives:		<u> </u>	U	-
1.	To know the use of matrix algebra needed by engineers for practical applications				
2.	To understand effectively the geometrical application of differential calculus and		calc	iliis	
3.	To familiarize the solutions of ordinary differential equations of higher order.	integrai	calc	uius.	
4.	To obtain the knowledge of solving partial differential equations of higher order.	with con	etan	ł	
4.	coefficients.		Starr	L	
5.	To acquire the knowledge of vector differentiation and integration and its applica	tions			
Unit I	MATRICES		9	+	3
Eigen veo	c, Skew Symmetric and Orthogonal Matrices – Characteristic equation of a Matrix ctors – Properties – Cayley-Hamilton theorem (excluding proof) – Diagonalization of tic form to canonical form by orthogonal transformation.				
Unit II	MULTI VARIABLE CALCULUS		9	+	3
of order of	Minima and Saddle point- – Method of Lagrangian multipliers- Multiple integrals- Dou of integration in double integrals – Change of variables (Cartesian to Polar) – A n of Triple integrals – Application to volumes.				
Unit III	ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER		9	+	3
Cauchy- I	order linear differential equations with constant and variable coefficients –Cauch _egendre's linear equation - Method of variation of parameters –Simultaneous first tant coefficients				
Unit III	PARTIAL DIFFERENTIAL EQUATIONS		9	+	3
		unctions	-	+ olutio	-
standard	PARTIAL DIFFERENTIAL EQUATIONS n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linea of second and higher order with constant coefficients.		– S		on of
Formation standard	n of partial differential equations by elimination of arbitrary constants and arbitrary fu types of first order partial differential equations – Lagrange's linear equation – Linea		– S		on of
Formatior standard equations Unit V	n of partial differential equations by elimination of arbitrary constants and arbitrary fu types of first order partial differential equations – Lagrange's linear equation – Linea of second and higher order with constant coefficients.	ar partia	– S I diffe	eren [.]	on of tial
Formation standard equations Unit V Vector Line integ	n of partial differential equations by elimination of arbitrary constants and arbitrary futures of first order partial differential equations – Lagrange's linear equation – Lineated for second and higher order with constant coefficients.	ar partia Vecto ergence	– S I diffe 9 r ir	eren +	on of tial 3 ration
Formation standard equations Unit V Vector Line integ	n of partial differential equations by elimination of arbitrary constants and arbitrary fu types of first order partial differential equations – Lagrange's linear equation – Linea of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , pration- work done – Surface and Volume integrals - Green's theorem , Gauss dive without proof) – Simple applications involving cubes and rectangular parallelopiped	ar partia Vecto ergence	– S I diffe I 9 r ir and	eren + ntegr Stoł	on of tial 3 ration kes
Formation standard equations Unit V Vector Line integ theorem (Course C	for partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linea of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , irration- work done – Surface and Volume integrals - Green's theorem , Gauss diversed without proof) – Simple applications involving cubes and rectangular parallelopiped Tota Dutcomes:	vecto Vecto ergence ls.	– S I diffe I 9 r ir and	eren + ntegr Stoł	on of tial 3 ration- kes
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com	n of partial differential equations by elimination of arbitrary constants and arbitrary furtypes of first order partial differential equations – Lagrange's linear equation – Lineated of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , differentiation- Without proof) – Simple applications involving cubes and rectangular parallelopiped Dutcomes: Totage	vecto Vecto ergence ls.	– S I diffe I 9 r ir and	eren + ntegr Stoł	on of tial 3 ration- kes
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1	for partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients.	Vecto Vecto ergence ls. al (45+1	– S I diffe I 9 r ir and	eren + ntegr Stoł	on of tial 3 ration- kes
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1 CO2	for partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linea of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , pration- work done – Surface and Volume integrals - Green's theorem , Gauss diversed without proof) – Simple applications involving cubes and rectangular parallelopiped Tota Dutcomes:	Vecto Vecto ergence ls. al (45+1	– S I diffe I 9 r ir and	eren + ntegr Stoł	on of tial 3 ration kes
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1 CO2	for partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients.	Vecto Vecto ergence ls. al (45+1	– S I diffe I 9 r ir and	eren + ntegr Stoł	on of tial 3 ration kes
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1 CO2 CO3 Text Boo	A of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , iration- work done – Surface and Volume integrals - Green's theorem , Gauss diverses without proof) – Simple applications involving cubes and rectangular parallelopiped Tota Dutcomes: Learn the fundamental knowledge of Matrix theory. Familiar with the concept of the differentiation and integration and its applications : Acquire skills in applications of Vector Calculus. 	vecto ergence ls. al (45+1 ons.	- Si I diffi 9 r ir and 5)=6	eren + htegr Stok	ation cf ation ces
Formation standard equations Unit V Vector (Line integ theorem (Course C Upon com CO1 CO2 CO3	A of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linea of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , iration- work done – Surface and Volume integrals - Green's theorem , Gauss diverses without proof) – Simple applications involving cubes and rectangular parallelopiped Tota Dutcomes: Learn the fundamental knowledge of Matrix theory. Familiar with the concept of the differentiation and integration and its applications Acquire skills in applications of Vector Calculus. 	vecto ergence ls. al (45+1 ons.	- Si I diffi 9 r ir and 5)=6	eren + htegr Stok	ation cf ation ces
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1 CO2 CO3 Text Boo	A of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , iration- work done – Surface and Volume integrals - Green's theorem , Gauss diverses without proof) – Simple applications involving cubes and rectangular parallelopiped Tota Dutcomes: Learn the fundamental knowledge of Matrix theory. Familiar with the concept of the differentiation and integration and its applications : Acquire skills in applications of Vector Calculus. 	vecto ergence ls. al (45+1 ons.	- S I diffi 9 r ir and 5)=6	eren + ntegr Stok 0 Pe	an of tial
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1 CO2 CO3 Text Boo 1. 2.	A of partial differential equations by elimination of arbitrary constants and arbitrary further types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , ration- work done – Surface and Volume integrals - Green's theorem , Gauss diverses without proof) – Simple applications involving cubes and rectangular parallelopiped Tota Dutcomes: I Learn the fundamental knowledge of Matrix theory. I Familiar with the concept of the differentiation and integration and its application i Acquire skills in applications of Vector Calculus. ks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Education Delhi, 2009	vecto ergence ls. al (45+1 ons.	- S I diffi 9 r ir and 5)=6	eren + ntegr Stok 0 Pe	an of tial
Formation standard equations Unit V Vector of Line integ theorem (Course C Upon com CO1 CO2 CO3 Text Boo 1. 2. Referenc	A of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , rration- work done – Surface and Volume integrals - Green's theorem , Gauss dive without proof) – Simple applications involving cubes and rectangular parallelopiped Tota Dutcomes: npletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its application : Acquire skills in applications of Vector Calculus. ks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009 e Books:	vecto ergence ls. al (45+1 ons. ns, Delh ation Pvt	- S I diffi 9 r ir and 5)=6	eren + ntegr Stok 0 Pe	an of tial
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1 CO2 CO3 Text Boo 1.	A of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , rration- work done – Surface and Volume integrals - Green's theorem , Gauss diver- without proof) – Simple applications involving cubes and rectangular parallelopiped Tot: Dutcomes: npletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its application : Acquire skills in applications of Vector Calculus. ks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009 eBooks: James Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2 nd editior P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (I	vecto ergence ls. al (45+1 ons. ns, Delh ation Pvt	- S I diffi 9 r ir and 5)=6	eren 1 + 1 tegr Stok 60 Pe	an of tial
Formation standard equations Unit V Vector Line integ theorem (Course C Upon com CO1 CO2 CO3 Text Boo 1. 2. Referenc 1	A of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linea of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , ration- work done – Surface and Volume integrals - Green's theorem , Gauss dive without proof) – Simple applications involving cubes and rectangular parallelopiped Tot: Dutcomes: pletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its application : Acquire skills in applications of Vector Calculus. ks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009 e Books: James Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2 nd editior P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (I B.Tech)", Nineth Edition, S. Chand & Co. Ltd. New Delhi, 2010. Srimanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford univers	Ar partia Vecto ergence ls. al (45+1 ons. ons. ns, Delh ation Pvt	- S I diffi 9 r ir 3 5)=6 5)=6	eren + htegr Stok 0 Pe	an of tial
Formation standard equations Unit V Vector of Line integ theorem (Course C Upon com CO1 CO2 CO3 Text Boo 1. 2. Referenc 1 2	A of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Linear of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , ration- work done – Surface and Volume integrals - Green's theorem , Gauss divers without proof) – Simple applications involving cubes and rectangular parallelopiped Tot: Tot: Directional kerivative - Divergence - Curl , ration- work done – Surface and Volume integrals - Green's theorem , Gauss divers without proof) – Simple applications involving cubes and rectangular parallelopiped Tot: Tot: Tot: Tot: Curl , irration- work done – Surface and Volume integrals - Green's theorem , Gauss divers without proof) – Simple applications involving cubes and rectangular parallelopiped Tot: Tot: Tot: Tot: Tot: Suppletion of this course, the students will be able to : Grewal. B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publication <tr< td=""><td>Ar partia Vecto ergence ls. al (45+1 ons. al (45+1 ons. al (45+1 ons. ons. ons. for I yea sity publi</td><td>- S I diffi 9 r ir and 5)=6 5)=6 i, (20 . Ltd</td><td>eren + htegr Stok 0 Pe</td><td>an of tial</td></tr<>	Ar partia Vecto ergence ls. al (45+1 ons. al (45+1 ons. al (45+1 ons. ons. ons. for I yea sity publi	- S I diffi 9 r ir and 5)=6 5)=6 i , (20 . Ltd	eren + htegr Stok 0 Pe	an of tial

5	Sivaramakrishnadas.P, Ruknmangadachari.E. "Engineering Mathematics", Pearson, Chennai &
	Delhi, 2 nd edition, 2013

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	1	2	1	1	1	1	1
CO2	3	2	2	2	1	1	2	1	2	1	1	2
CO3	3	2	2	2	1	1	2	1	1	1	1	2

18CY101	CHEMISTRY	L	T	Ρ	С								
		3	1	0	4								
Course Ol	-												
1	Analyze microscopic chemistry in terms of atomic and molecular orbitals.												
2	Rationalize periodic properties of elements and the knowledge of acids and bases.												
3	Analyze the stereo chemical aspects of organic molecules and chemical reactions that are used in the synthesis of organic molecules												
4	Rationalize bulk properties and processes in thermodynamic aspects and its extension in electrochemical processes.												
5	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques												
Unit I	MOLECULAR STRUCTURE		9	+	3								
	of molecular orbitals of diatomic molecules - energy level diagrams of – H2, He2, N2	, 02	2, CO) an									
	r, bond length, bond energy, magnetic behavior and relative stability;	,	,										
Aromaticity	/- Huckel rule - concept of aromaticity - aromatic, non-aromatic and anti-arc	mat	ic r	nole	cules-								
	, non-benzenoid and annulenes only;												
field ligand	d theory – postulates-d-orbital splitting in octahedral and tetrahedral complexes-stro ls-spectrochemical series-high spin and low spin complexes-magnetic properties of zation energy(CFSE) and its calculations for octahedral and tetrahedral complexes												
			-										
Unit II	PERIODIC PROPERTIES & ACID-BASE CONCEPTS uclear charge – shielding effect, penetration of orbitals - variations of s, p, d and f		9	+	3								
– types- m	bases - Bronsted-Lowry concept - Lewis concept - pH and pKa – problems – HSAE echanism of buffer action- Henderson–Hasselbalch equation- derivation and proble												
Stereoison chirality, o analysis – Addition	STETEROCHEMISTRY & ORGANIC REACTIONS nerism – geometrical isomerism – cis-trans and E-Z nomenclature – optical isomer ptical activity, enantiomer and diastereomers – absolute configuration - R-S notation Ethane, butane, cyclohexane; reaction – hydrogenation, halogenations - Markovnikov rule – Kharasch ef genation, hydroboration;	า - ต	onfo	orma	tional								
Aliphatic n benzene-	ucleophilic substitution reaction $-SN_1$, SN_2 and SN_i mechanism $-$ electrophilic subs mechanism - nitration, halogenations, sulfonation, alkylation and acylation; neaction $-E_1$, E_2 and E_1CB - mechanism- Saytzeff rule $-$ examples.	titut	on I	eact	ion in								
Unit IV	USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA		9	+	3								
Thermodyn thermodyn temperatur Free energ potential a	namic functions- internal energy, enthalpy, entropy and free energy- first an amics - partial molar properties - Gibbs Duhem equation – variation of chemi re and pressure – Third and Zeroth law of thermodynamics – definition only; gy and EMF relation - single electrode potential - electrochemical series and its nd its measurement (Poggendorff method only) - Nernst equation-derivation and p ial and equilibrium constant relation- problems.	cal sigr	pote nifica	entia ance	aw of I with cell								
Unit V	SPECTROSCOPY TECHNIQUES & APPLICATIONS		9	+	3								
Beer-lamb transitions IR Spectro Flame pho	ert's law (problem)- UV visible spectroscopy: principle, chromophores, auxochro and instrumentation (no application); scopy: principles-instrumentation and applications of IR in H ₂ O,CO ₂ and NH ₃ ; tometry-principle-instrumentation-estimation of sodium by flame photometer; psorption spectroscopy-principles-instrumentation-estimation of nickel by ato		ele	ctro	nic								

	Total (45+15)=60 Periods
Course	Dutcomes:
Upon co	npletion of this course, the students will be able to
CO1	: Understand in-depth knowledge of atomic and molecular orbitals based chemical aspects.
CO2	: Realize the nature of periodic properties of elements and the knowledge of acids and bases.
CO3	: Grasp the knowledge of 3D structural aspects of organic molecules and chemical reactions that are used in the synthesis of organic molecules.
CO4	: Substantiate the various processes involved in thermodynamic considerations and its
004	involvement in electrochemical aspects.
CO5	: Aware of spectroscopic techniques in the field of molecular identification of materials.
000	
Text Bo	oks:
	P.R. Puri, L.R.Sharma and Madan S. Pathania, "Principle of physical chemistry" 47th Vishal
1.	Publishing Co, Jalandhar-8
0	C. N. Banwell and E. M. Mccash, "Fundamentals of Molecular Spectroscopy", Tata McGraw-Hill
2.	Publishing Company Limited, New Delhi, 2009.
3	Raj. K. Bansal – "A Text Book of Organic Chemistry" Revised 4th Ed.,(2005), New Age
	International Publishers Ltd., New Delhi.
4	P.S. Kalsi – "Stereochemistry conformation and Mechanism", 6th Ed., (2005), New Age
4	International Publishers Ltd., New Delhi.
5	J.D. Lee – "A New Concise Inorganic Chemistry", 5th Edn., Oxford University Press, 2011.
6	Wahid Malik, G.D.Tuli and R.D.Madan, "Selected Topic in Inorganic Chemistry", S.Chand& Co., Ltd (2011).
Referen	ce Books:
1	David.W.Ball, Physical Chemistry, Cengage Learning India Pvt. Ltd., New Delhi, 2009.
2	G.Aruldhas, Molecular structure and spectroscopy, second edition, PHI learning Pvt. Ltd., New
	Delhi, 2008.
3	Cotton and Wilkinson – "Advanced Inorganic Chemistry", 6th Ed., John Wiley & Sons, New York-
	2004.
4	James E. Huheey, Ellen A. Keiter and Richard L. Keiter – "Inorganic Chemistry-Principles of
	Structure and Reactivity", 4 thEdn., Pearson Education, 11th Impression, 2011.
5	F.A. Carey and R.J. Sund berg – "Advanced organic chemistry" Vol. I and II– 3rd Ed.,(1984),
-	Plenum Publications.
6	Ernest. Eliel and Samuel H. Wilen – "Stereochemistry of Organic Compounds" – Wiley Student Ed.
-	(2006). John Wiley and Sons Pvt. Ltd., Singapore.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3							2			
CO2	3	3							2			
CO3	3	3								2		
CO4	3	3										
CO5	3	3			2					2		

18CS101	FUNDAMENTALS OF PROBLEM SOLVING AND C PROGRAMMING	L 3		P	3
Course O	hiertives	3	0	0	3
1.	To express problem solving through programming.				
2.	To practice the basic concepts of C programming language.		_		
3.	To provide the basics knowledge about array and strings to solve simple applic	ation	s.		
4.	To use pointers and functions in the simple applications.				
5.	To review the elementary knowledge of structures and unions.		•	r	•
Unit I	Introduction to Computer and Problem Solving		9	+	0
code - Fl	ormulation, Problem Solving methods, Need for logical analysis and thinking – Al ow Chart- Need for computer languages, Generation and Classification of (on of a Computer.				
Unit II	C Programming Basics and Control Statements		9	+	0
	er set- Identifies and Keywords- Data Type- Declarations-Expressions-Statemer	nts ar	-		-
Assignmer	Operators – Arithmetic Operators – Unary operators – Relational and Log nt operators – Conditional operators- Managing Input and Output operations- De and Looping statements.				
Unit III	Arrays and Strings		9	+	0
Pre-proces	ssor directives-Storage classes-Arrays – Initialization – Declaration – one dim	ensio	onal		tw
	al arrays. Strings - String operations - String handling functions-Simple				
11	- Eurotiana and Daintara		•		0
Unit IV	Functions and Pointers		9	+	
Function -	Library functions and user-defined functions - Function prototypes and function	defir	-		0 Cal
	Library functions and user-defined functions – Function prototypes and function Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith		nitior	ns –	Cal
by value –(and arrays Unit V	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File	hmeti	nitior ic – F	ns – Point	Cal ters
by value –(and arrays Unit V Introductio	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith	hmeti	nitior ic – F 9 ure v	Point	Cal ters 0 n a
by value –(and arrays Unit V Introductio structure – operation.	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S - Passing structures to functions – Array of structures – Pointers to structures Total (4	hmeti Struct Struct	ition ic – F 9 ure v on-b	Point + withi	Cal ters 0 file
by value –(and arrays Unit V Introductio structure – operation. Course O	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S - Passing structures to functions – Array of structures – Pointers to structures Total (4 utcomes:	hmeti Struct Struct	ition ic – F 9 ure v on-b	Point + withi	Cal ters 0 file
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S - Passing structures to functions – Array of structures – Pointers to structures Total (4 utcomes: pletion of this course, the students will be able to:	hmeti Struct Struct	ition ic – F 9 ure v on-b	Point + withi	Cal ters 0 file
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com CO1	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith	hmeti Struct Struct	ition ic – F 9 ure v on-b	Point + withi	Cal ters 0 file
by value –(and arrays Unit V Introductio structure – operation. Upon com CO1 CO2	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith	hmeti Struct S-Unio	9 ure on-b	Point Point withi asic Per	Cal ters 0 n a file
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com CO1	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith	hmeti Struct S-Unio	9 ure on-b	Point Point withi asic Per	Cal ters 0 n a file
by value –(and arrays Unit V Introductio structure – operation. Course Or Upon com CO1 CO2 CO3	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 utcomes: pletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Write, concepts such as arrays, decision making and looping statements time applications.	Struct Struct 5+0):	9 ure on-b	Point Point withi asic Per	Cal ters 0 n a file
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com CO1 CO2 CO3 CO4	 Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 utcomes: pletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. 	Struct Struct 5+0):	9 ure on-b	Point Point withi asic Per	Callers
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com CO1 CO2 CO3 CO4	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 utcomes: pletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Write, concepts such as arrays, decision making and looping statements time applications.	Struct Struct 5+0):	9 ure on-b	Point Point withi asic Per	Callers
by value –(and arrays Unit V Introductio structure – operation. Upon com CO1 CO2	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 Utcomes: pletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications.	Struct Struct 5+0):	9 ure on-b	Point Point withi asic Per	Cal ters 0 n a file
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com CO1 CO2 CO3 CO4 CO5	 Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 utcomes: pletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", 	Struct Struct 5-Unic 5+0):	9 ure 9 on-b	Point Point withi asic Per	Cal ters 0 n a file
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Book	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 Utcomes: I Formulate and apply logic to solve basic problems. I Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications.	Struct S-Unic S-Unic S-Unic S to S	9 ure v on-b = 45	real	0 n a file
by value –(and arrays Unit V Introductio structure – operation. Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	 Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 It comes: pletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. Write programs related to structures and unions for simple applications. Mrita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011. (Unit-I).	Struct S-Unic S-Unic S-Unic S to S	9 ure v on-b = 45	real	0 n a file
by value – (and arrays Unit V Introductio structure – operation. Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1.	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 utcomes:) Pormulate and apply logic to solve basic problems. : Formulate and apply logic to solve basic problems. : Write, compile and debug programs in C language. : Apply the concepts such as arrays, decision making and looping statements time applications. : Solve simple scientific and statistical problems using functions and pointers. : Write programs related to structures and unions for simple applications. : Write programs related to structures and unions for simple applications. : Mrite programs related to structures and unions for simple applications. : Balagurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2 Books: Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition,	Struct Struct S-Unic S-S-Unic S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-	9 ure 9 ure 9 on-b = 45 olve	real	To a construction of the second secon
by value –(and arrays Unit V Introductio structure – operation. Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith Structures, Unions and File n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (4 Utcomes: I Formulate and apply logic to solve basic problems. Virte, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. Maita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011. (Unit-I). E.Balagurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2 Books:	Struct Struct S-Unic S-Unic S-Unic S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-OS S-S-S-OS S-S-S-S-	g ure y on-b = 45 olve	real	To Callers

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	1	1	3	3
CO2	3	3	3	3	3	2	2	1	1	1	3	3
CO3	3	3	3	3	3	2	2	1	1	1	3	3
CO4	3	3	3	3	3	2	2	1	1	1	3	3
CO5	3	3	3	3	3	2	2	1	1	1	3	3

18EN102	PROFESSIONAL ENGLISH LABORATORY	L	Т	Ρ	С
		0	0	2	1
Course O	ojectives:				
1.	To acquire and develop listening skills for academic, social and professional purpos	es.			
2.	To understand short conversations or monologues				
3.	To master basic reading skills such as phonics, word recognition, and fluency				
4.	Acquire and develop pre-intermediate level fluency in oral skills such as discourse	man	age	emei	nt,
	grammar and vocabulary, pronunciation and interactive communication for academ	າic, ຄ	SOC	ial ai	าd
	professional purposes				
5.	Address an audience and present a topic.				
6.	Express an opinion and justify it				
Exercises					
	ogy - Listening				
	b Responsibilities				
	nversation between two employees on company culture				
	nails				
	escription of gadgets erview with a leading industrialist				
	fice procedures – applying for permission, placing an order for office equipment,				
	equiries about orders and deliveries				
	nversation between two people on general topics				
	lephone Messages				
	king and Cancelling appointments				
	king for directions				
	escheduling a travel plan				
	nes : Rude and Polite				
	onversation : Statements, Discussions, Debating, Accepting, Negotiating				
	onferences ; Announcements about changes in schedules andsessions				
	ptivational Speech				
	D Talk on Team Work				
	escribing charts and data esentation at an office				
	ort self-descriptions				
	DLOGY: - Speaking				
	If-Introduction – Personal information –Name, Home background, study details, area	of ir	nter	est	
	bbies, strengths and weaknesses, projects and paper presentations if any, likes and c				od
	othes, Special features of home town, Personal role models in life, goals and dreams,				ou,
	pirational quote.				
	uational Role Play between Examiner and Candidate – Customer and Sales Manage	r, Ho	otel		
Ma	anager and Organiser, Team Leader and Team member, Bank Manager and Candida	ite, I	nte	rviev	ver
	d Applicant, Car Driver and Client, Industrialist and Candidate, Receptionist and Appo				eker,
	w Employee and Manager, Employee and Employee, P.A. and Manager Schedule for				
	king for directions, Seeking help with office equipment, Clarifying an error in the bill, C		ity (of	
	oducts, Buying a Product, Selling a Product, cancelling and fixing appointments, hote				
	commodation, training facilities, dress code, conference facilities, faculty advisors and	1 stu	der	nt,	
Su	Ident and student, college Office personnel and student.	20)	- 20		riodo
Course O	Total (0-	-30)	- 31		1005
	bletion of this course, the students will be able to:				
CO1	: Infer, interpret and correlate routine, classroom-related conversation.				
CO2	: Use a range of common vocabulary and context based idioms.				
CO3	: Comprehend native speakers when they speak quickly to one another, although th	e sti	ıde	nt m	iaht
555	still have trouble.	5 50	100		.a
CO4	: Identify the most important words in a story/article.				
CO5	: Summarize the main ideas, key details, and inferred meanings from listening pass	anes	s of	up t	0
	five minutes.	~90c	, 01	SP 0	-
CO6	: Vocalize words without the aid of pictures				

CO7	:	Make effective self-introductions.
CO8	:	Study options, compare and contrasts the options.
CO9	:	Exercise a choice, justify it by giving examples and illustrations.
CO10	:	Construct a situation and to participate in conversations

Text Book:

1.	Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book, Cambridge
	University Press, 2014.

Reference Books:

Reference	e Books:
1	Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija
2	English Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh
3	Discussions that Work. Penny Ur.CUP, 1981.
4	Speak Better Write Better English Paperback – November 2012 Norman Lewis, GoyalPublishers and Distributors.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		3		3		1		1	2	3	1	2
CO2		2		2				1	1	3	2	3
CO3		1		1		1		1	2	3	1	2
CO4		1		2		1		1		3	1	2
CO5		2		3				1	1	3	1	3
CO6		1		1		1		2		3	1	3
CO7		2		1						3	2	3
CO8		2		2		1			1	3		2
CO9		1		1		2		1	2	3		3
CO10		3		1					3	3	1	3

	0 0 4 2
Course	e Objectives:
1.	To provide basic knowledge of creating Word documents and also producing mail merge.
2.	To make use of basic functions, formulas and charts in Spread sheet.
3.	To implement problem solving techniques.
4.	To promote the programming ability to develop applications for real world problems.
List of	experiments
	Word Processing 1. Document creation, Text manipulation with Scientific notations, Table creation, Table formatting
A	and Conversion 2. Letter preparation using Mail merge and Draw flow Charts using tools
В	 Spread Sheet 3. Chart - Line, XY, Bar and Pie. 4. Formula - formula editor, Sorting and Import and Export features. 5. Spread sheet - inclusion of object, Picture and graphics, protecting the document and sheet.
	Simple C Programming 6. Program using Control statements. 7. Program using Looping.
	8. Program using Array.
•	9. Program using String.
С	10. Program using Function.
	11. Program using Structures.
	12. Program using Pointers.
	13. Program using Files. * For programming exercises Flow chart and pseudo code are essential
	Total (0+60)=60 Periods
	e Outcomes:
	ompletion of this course, the students will be able to:
CO1	: Demonstrate the basic mechanics of Word documents and working knowledge of mail merge.
CO2	: Demonstrate the use of basic functions and formulas in Spread sheet.
CO3	: Apply good programming methods for program development.
CO4	: Implement C programs for simple applications.

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	1	1	3	3
CO2	3	3	3	3	3	2	2	1	1	1	3	3
CO3	3	3	3	3	3	2	2	1	1	1	3	3
CO4	3	3	3	3	3	2	2	1	1	1	3	3

1 8ME10	2 WORKSHOP MANUFACTURING PRACTICES	L	Т	P	C
		1	0	4	3
Course	objectives:				
1.	To provide an exposure of basic engineering practices to the student				
2.	To provide exposure to the students with hands on experience on various basic en	ngine	ering	3	
	practices in Civil and Mechanical Engineering				
Experin	ents				
1.	Introduction to Safety measures and First aid.				
2.	Study of Lathe -Welding methods and equipment's- Casting process and tools- Sh	neet n	neta	l anc	ł
	fitting tools- Carpentry tools and joints.				
3.	Fitting: V-fitting, Square fitting, Curve fitting.				
4.	Lathe: Facing, turning, taper turning and knurling.				
5.	Welding: BUTT, LAP and T- joints.				
6.	Foundry: Green sand preparation- mould making practice.				
7.	Sheet metal: Cone, tray, cylinder.				
8.	Carpentry: CROSS, T and DOVETAIL joints.				
9.	Drilling: simple exercises.				
	Total (15	+60)=	:75 F	Perio	d
	putcomes:				
	npletion of this course, the students will be able to:				
CO1	: Prepare fitting of metal and wooden pieces using simple fitting and carpentry tools	manu	Jally		
CO2	: Prepare simple lap, butt and tee joints using arc welding equipment.				
CO3	: Prepare green sand moulding.				
CO4	: Prepare sheet metal components.				
CO5	: Prepare simple components using lathe and drilling machine.				
Referen	ce books:				
1.	Bawa, H.S, "Work shop Practice", Tata McGraw Hill Publishing Company Limited, 2	2007.			
2.	Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering	Prac	tices	5	
Ζ.	Laboratory", Anuradha Publications, 2007.				
3.	Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab VikasPuplishing House Pvt. Ltd, 2006.	Manu	al",		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2							1		2
CO2	1		2			2						2
CO3	2	1	2			2						1
CO4	1		1			2						1
CO5	1	1				1						1

	FOURIER SERIES AND TRANSFORMS	L 3	T 1	P 0	C 4
Course Ob	iectives:	U		v	-
1.	To obtain the knowledge with expansion of a function as a Fourier series.				
2.	To impact analytical skills in the areas of boundary value problems and transform	m toch	niau	00	
3.					
3.	To familiarize with the techniques of Laplace transform for solving second order equations.	amere	entia	I	
4.	To understand the concepts of Fourier transform and its applications				
5.	To obtain the solution of difference equation by Z-transform technique.				
Unit I	FOURIER SERIES		9	+	3
	onditions – General Fourier series – Odd and even functions – Half range sine ser cosine series – Parseval's Identity – Harmonic Analysis.	ries –			
Unit II	BOUNDARY VALUE PROBLEMS		9	+	3
equation -	on of second order quasi linear partial differential equations – Solutions of o One dimensional heat equation – Steady state solution of twodimensionalheat uded) – Fourier series solutions in Cartesian coordinates	nedim t equa	ension	onal (Ins	wave
Unit III	LAPLACE TRANSFORM		9	+	3
-	ansform- Conditions for existence – Transform of elementary functions – Basic Pr	opertia	-		-
	es and integrals – Initial and Final value theorems- Transform of periodic Function				
	solutions of linear ODE of second order with constant coefficients using Lar				
	- statement and application of convolution theorem		Turic		lation
coninques					
Unit IV	FOURIER TRANSFORM		9	+	3
Statement	of Fourier integral theorem – Fourier transform pair – Sine and Cosine transfo		D		line
Statement		orms -	- Pro	oper	ues -
	of simple functions – Convolution theorem - Parseval's Identity	orms -	- Pr(oper	ues -
Transforms	of simple functions – Convolution theorem - Parseval's Identity	orms -	1	oper	
Transforms Unit V	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS		9	•	3
Transforms Unit V Z-transform	 of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and find 	nal va	9 lue	+ theo	3 arems
Transforms Unit V Z-transform Convolutior	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS	nal va	9 lue	+ theo	3 arems
Transforms Unit V Z-transform	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior	 of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and find 	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total tcomes:	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total tcomes: letion of this course, the students will be able to:	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total toomes: letion of this course, the students will be able to: Acquire the knowledge about Fourier series.	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total tcomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total toomes: letion of this course, the students will be able to: Acquire the knowledge about Fourier series.	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolution technique. Course Ou Upon comp CO1 CO2	is of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS in of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total toomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques.	nal va using	9 lue Z –	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total tomes: letion of this course, the students will be able to: Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. s:	nal va using (45+1	9 lue Z 5)= 6	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total tomes: letion of this course, the students will be able to: Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. S: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata	nal va using (45+1	9 lue Z 5)= 6	+ theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total tcomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. s: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009.	nal va using (45+1)	9 lue Z 5)= 6	theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total tecomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. s: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Veename in the technique is the series is the ser	nal va using (45+1)	9 lue Z 5)= 6	theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total tcomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. s: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009.	nal va using (45+1)	9 lue Z 5)= 6	theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1. 2.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total tcomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. s: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Vo Chand & Company Itd., New Delhi, 1996.	nal va using (45+1)	9 lue Z 5)= 6	theo trar	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total tcomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. s: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Vo Chand & Company Itd., New Delhi, 1996.	nal va using (45+1) McGra	9 lue Z – 5)= 6	+ theo trar 0 Pe	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1. 2. Reference	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin in theorem -Formation of difference equations – Solution of difference equations Total toomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. S: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Vor Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishe Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth	nal va using (45+1) McGra olume	9 lue Z – 5)= 6 aw III, 3	+ theo trar 0 Pe	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1. 2. Reference 1. 2.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin in theorem -Formation of difference equations – Solution of difference equations Total tcomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. s: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Vo Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishe Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth McGraw-Hill, Inc., New York, 1995.	McGra	9 lue Z – 5)= 6 aw III, 3	+ theo trar 0 Pe	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1. 2. Reference 1.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total Total toomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. S: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Vo Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publisher Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth McGraw-Hill, Inc., New York, 1995. Srimanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford universe	McGra	9 lue Z – 5)= 6 aw III, 3	+ theo trar 0 Pe	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1. 2. Reference 1. 2. 3.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fin theorem -Formation of difference equations – Solution of difference equations Total toomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. S: Veerarajan T, "Engineering Mathematics (For Semester III)" , 3rd Edition, Tata Hill Education Pvt.Ltd. , New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Vo Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishe Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth McGraw-Hill, Inc., New York, 1995. Srimanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford univers publications, New Delhi, 2015	McGra	9 lue Z – 5)= 6	+ theo trar 0 Pe	3 orems
Transforms Unit V Z-transform Convolutior technique. Course Ou Upon comp CO1 CO2 CO3 Text Books 1. 2. Reference 1. 2.	of simple functions – Convolution theorem - Parseval's Identity Z-TRANSFORM AND DIFFERENCE EQUATIONS of simple functions and properties – Inverse Z – transform –initial and fine theorem -Formation of difference equations – Solution of difference equations Total Total toomes: letion of this course, the students will be able to: : Acquire the knowledge about Fourier series. : Learn the techniques of solving boundary value problems : Familiar with the transform techniques. S: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Vo Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publisher Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth McGraw-Hill, Inc., New York, 1995. Srimanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford universe	nal va using (45+1! McGra olume ers, De ditic	9 lue Z – 5)= 6 3 a w lhi,20 on, 0 06	• • • • • • • • • •	3 orems

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	1	1	2	1	2
CO2	3	3	2	2	2	1	1	1	1	2	1	1
CO3	3	3	2	2	2	1	1	1	1	2	1	2

18PH202	PHYSICS – WAVE & OPTICS AND QUANTUM MECHANICS	L	T	Р	C
Course	bjectives:	3	1	0	4
<u>1.</u>	To make the students to understand Simple harmonic motion and Waves				
2.	To understand the Propagation of light				
3.	To get clear idea of wave optics				
4.	To understand the Principle and working of laser with applications				
5.	To know the basic concepts of quantum Mechanics and Matter Waves				
J.					
Unit I	SIMPLE HARMONIC OSCILLATION AND WAVES		9	+	3
	rmonic motion ; Damped Simple harmonic motion ; Forced vibrations – resonance; \				
	acteristics - velocity of a transverse wave along a stretched string -frequency of a s and overtones - progressive waves & stationary waves – wave equation for progress				
Unit II	THE PROPAGATION OF LIGHT AND GEOMETRIC OPTICS		9	+	3
	Principle - laws of reflection and refraction ; Mirage effect ; Total internal reflection	• Ma	-		
imaging b	y a spherical refracting surface - imaging by a coaxial optical system; Optical Instru d microscope - astronomical telescope.				
Unit III	WAVE OPTICS		0		2
	Principle; Principle of superposition; Interference of Light – Youngs double slit exp		9		3
Fraunhofe	Aperimental arrangement to determine the wavelength of sodium light; Michelse er diffraction from a single slit; Diffraction grating –determination of wavelength of lig plarisation - Polarisation by reflection - Brewsters Law	on Inf ht and	d disp	omete persive	יר; פ
Unit IV	LASERS		9		3
radiation i	s of Laser beams - monochromacity , coherence , directionality and brightness ; Einstie nteraction and A&B coeffiecients - amplification of light by population inversion - p types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Applic engineering and medicine.	umpir	ng me	ethods	s;
Unit V	QUANTUM MECHANICS		9	+	3
Introduction independe	on - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thomso ent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; Sch e in a one dimensional box; Physical Significance of wavefunction. Total (4	roedi	nger	ent; Ti equat	me ion
Course O	utcomes:	5+15)= 00	Fenc	us
	upletion of this course, the students will be able to:				
CO1	: Understand Simple harmonic oscillation and propagation of waves.				
CO2	: Apply matrix method to analyse system of reflecting and refracting surfaces.				
CO3	: Know various experimental techniques in wave optics.				
CO4	: Understand the concept of laser and its applications.				
CO5	: Gain knowledge in the basics of quantum mechanics.				
Text Boo	ks: AjoyGhatak,'Optics', Tata Mc Graw Hill Publishing Co.Ltd, Fourth Edition,2009				
1.)E			
2. 3	Gupta Kumar Sharma, 'Quantum Mechanics', Jai Prakash Nath & co, 25th Edition, 200 Gaur R.K and Gupta S.L, 'Engineering Physics', Dhanpat Rai Publishers, 2009	5C			
Referenc					
1.	PalanisamyP.K, Engineering Physics', Scitech Publications, 2011				
2.	Rajendran V and Marikani A, Engineering Physics', PHI learning PVT, India, 2009				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	2			1		3	2
CO2	3	2	1	2	3	1	2		2		3	1
CO3	2	3	1	3	2	2	1		2		2	1
CO4	3	2	1	3	3	1	1		2		3	1
CO5	3	3	1	2	3	1	1		2		3	1

	ENGINEERING GRAPHICS AND DESIGN	L 1	Т 0	-	C 3
Course ob	jectives:		U	-	5
1.	To impart knowledge on concepts, ideas and design of engineering products and exposure to CAD Modelling.	to prov	vide a	an	
2.	Standards of Engineering Drawing: Size, layout and folding of drawing sheets, lett drafting instruments	ering -	Use	of	
	PROJECTION OF POINTS, LINES AND PLANE SURFACES		3	+	12
	nciples of orthographic projection- Projection of points, located in all quadrants - Pro	jectior	of st	trai	ghí
lines locate	ed in first quadrant – Determination of true lengths and true inclinations – Project d circular lamina inclined to both reference planes.				
	PROJECTION OF SOLIDS		3	+	12
Projection	of simple solids like prisms, pyramids, cylinder and cone when the axis is perp	endicu	lar to		ne
	lane and also inclined to one reference plane by change of position method.			_	
	SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES		3	+	12
Sectioning	of above solids in simple vertical position by cutting planes inclined to one reference lar to other – solids inclined position with cutting planes parallel to one reference		plan	e a	nd
true shape					
	ent of lateral surfaces of simple and truncated solids - Prisms, pyramids cylin			one	es
Developme	ent of lateral surfaces of solids with square and cylindrical cutouts, perpendicular to	the ax	is.		
UNIT IV	ISOMETRIC PROJECTION		3	+	12
Principles (of isometric projectionisometric scale - isometric projections of simple solids, trun	cated i	orism	ıs,	
•	cylinders and cones.				
	PERSPECTIVE PROJECTION		3	+	12
Perspective	e projection of prisms, pyramids and cylinders by visual ray and vanishing point met	hods.			
	Total (15-	+45)= €	60 Pe	erio	ds
Note:Study	of drafting software - Auto CAD - Coordinate System (Absolute, relative and polar	•)			
Creation of)			
	simple figures like polygon, Drawing a plan of residential building, Creation of 3-D I	Vodels			
	simple figures like polygon, Drawing a plan of residential building, Creation of 3-D I bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessmen	Vodels			
	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessmen	Vodels			
of simple o Course ou Upon comp	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessmen tcomes: Idetion of this course, the students will be able to:	Vodels			
of simple o Course ou Upon comp CO1 :	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment tcomes: bletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing.	Vodels			
of simple o Course ou Upon comp CO1 : CO2 :	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment tcomes: bletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection.	Vodels			
of simple oCourse ouUpon compCO1CO2CO3	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment tcomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces.	Vodels			
of simple oCourse ouUpon compCO1CO2CO3CO4	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment tcomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments.	Vodels			
of simple oCourse ouUpon compCO1CO2CO3	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment tcomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces.	Vodels			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 :	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment teomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting.	Vodels			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text books 1.	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment toomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. s: Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003	dodels t only)			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : Text books	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment toomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. S:	dodels t only)			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text books 1.	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment toomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. s: Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003	dodels t only)			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text books 1.	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment tcomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. S: Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003 Natarajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers,	dodels t only)			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text books 1. 2. .	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment tcomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. S: Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003 Natarajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers,	2006.			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text books 1. 2. Reference 1.	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessmen tcomes: bletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. S: Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003 Natarajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers, books: Gopalakrishnana K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1 Dhananjay A. Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata	2006. 9999.			
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text books 1. 2. . Reference 1. 2. .	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessmen tcomes: Deletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. S: Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003 Natarajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers, books: Gopalakrishnana K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1 Dhananjay A. Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata Publishing Company Limited, 2008.	2006. 9999.	aw H		
of simple o Course ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text books 1. 2. Reference 1.	bjects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessmen tcomes: bletion of this course, the students will be able to: Understand the conventions and the methods of engineering drawing. Understand the fundamental concepts of theory of projection. Understand the development of different surfaces. Develop the relationships between 2D and 3D environments. Demonstrate computer aided drafting. S: Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003 Natarajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers, books: Gopalakrishnana K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1 Dhananjay A. Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata	2006. 9999. McGr	aw H		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			2					1		
CO2	2	1			2							
CO3	3	2		2	2							1
CO4	2	2		1	1					2		1
CO5	2	2		1	1					1		2

18CM 201	BASIC CIVIL AND MECHANICAL ENGINEERING	L	Т	Ρ	С
		4	0	0	4
Course Ob	ectives:		_		
1.	The objective of the course is to impart knowledge on different fields of civil engir various materials used for construction	neerii	ng ai	nd	
Unit I	CIVIL ENGINEERING MATERIALS AND SURVEYING		12	+	0
Hooke's lav Civil Engine	: Mechanical properties of materials – Stress – Strain – Types of stresses and str / – stress strain curve of ductile material. ering Materials : Bricks – Stones – Sand - Cement – Concrete – Steel Surveying : C tion – Measurement of Distances				
Unit II	BUILDING COMPONENTS AND STRUCTURES		12	+	0
Foundations Columns –	s : Functions of foundation – Types Superstructure : Brick Masonry – Stone M Lintels – Roofing – Flooring – Plastering.Dams : Types of Dams – cross section uction to Green Building Concept	lasor	iry –		ams -
UNIT III	BOILERS, TURBINES AND PUMPS		2	+	0
Description boiler only)	ssification of boilers- Working Principle of various types of boilers – Horizontal bo of: Lancashire boiler, Locomotive boiler, Babcock andWilcox boiler, Cochran bo - Boiler Mountings and Accessories. Turbines- Classification- Working Princip bines, Pumps-working principle of reciprocating (single and double acting) and ce	oiler, ole o	simp f Im	ole vo pulse	ertica e anc
UNIT IV	INTERNAL COMBUSTION ENGINES	1	2	+	0
	, terminologies, classification and components – working principles of petrol and of four stroke and two stroke cycle engines – applications of IC engines.	d die	sel e	engir	ies –
UNIT V	REFRIGERATION AND AIR CONDITIONING SYSTEM	1	2	+	0
	f refrigeration and air conditioning – terminology; refrigerants – definition, clas vapour compression system and vapour absorption system – window and sp				
• •	Total	(60+	0)=6	0 Pe	eriods
Course Ou					
	etion of this course, the students will be able to				
CO1 CO2	Students will acquire the basic knowledge in different fields of civil engineering Materials used in construction.	•			
CO2 CO3	: Understand the different parts of the buildings				
CO4	: Gain the knowledge about the working of IC engine, its components and its ap	nlicat	ion		
CO5	 Gain the knowledge about the working of to engine, its components and its ap Gain the knowledge about various types of boilers, turbines and pumps a demonstrate the working of Refrigeration and Air conditioning. 			able	to
Text Books	:				
1.	Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engineering" Co., New Delhi, (1996).	', TM	ΗPι	ıblisł	ning
2.	Ramamrutham. S, "Basic Civil Engineering", Dhanpat Rai Publishing Co. (P)	td (1			
3.	Shanmugam G and Palanisamy M S, "Basic Civil and Mechanical Engineering", T New Delhi, 1996.	МΗр	ubli	shing	g Co,
4.	Ramamrutham.S,"Basic Civil Engineering", DhanpatRai publishing Co.(p) Ltd.199	99.			
	Rooke				
Reference					
1	SeetharamanS."BasicCivilEngineering", AnuradhaAgencies, (2005).	P . 1			
1 2	SeetharamanS."BasicCivilEngineering",AnuradhaAgencies,(2005). Venugopal K and Prahu Raja V, "Basic Mechanical Engineering", Anuradha Pub Kumbakonam, (2000).				
1	SeetharamanS."BasicCivilEngineering",AnuradhaAgencies,(2005). Venugopal K and Prahu Raja V, "Basic Mechanical Engineering", Anuradha Pub			urai,	
1 2	SeetharamanS."BasicCivilEngineering",AnuradhaAgencies,(2005). Venugopal K and Prahu Raja V, "Basic Mechanical Engineering", Anuradha Pub Kumbakonam, (2000). Shantha Kumar S R J., "Basic Mechanical Engineering", Hi-tech Publications, M			urai,	
1 2 3	SeetharamanS."BasicCivilEngineering",AnuradhaAgencies,(2005). Venugopal K and Prahu Raja V, "Basic Mechanical Engineering", Anuradha Pub Kumbakonam, (2000). Shantha Kumar S R J., "Basic Mechanical Engineering", Hi-tech Publications, M (2000).	ayilad	duth	-	2000.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2		2								
CO2			2	2								
CO3		2	2	2								
CO4												
CO5												

18PH103	PHYSICS LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course Ob	jectives:				
1.	To handle different measuring instruments.				
2.	To understand the basic concepts of interference, diffraction, heat conduction	and	to me	easu	ire
	the important parameters				
Experimen	ts				
1	Newton's rings – Determination of radius of curvature of a Plano convex lens.				
2	Carey Foster's bridge – Determination of specific resistance of the material of	the w	/ire.		
3	Poiseuille's flow – Determination of Coefficient of viscosity of a liquid.				
4	Spectrometer - Grating - Normal incidence - Determination of Wavelength of	Merc	cury I	ines	•
5	Lee's disc – Determination of thermal conductivity of a Bad conductor.				
6	Ultrasonic interferometer – Determination of velocity of Ultrasonic Waves in Lic	quid			
7	Non-uniform bending – Determination of young's modulus of the material of the	e Bai			
8	Determination of Band gap of a given semi conductor				
0	Determination of Wavelength of laser using grating and determination of partic	le siz	e us	ing	
9	Laser				
10	Determination of Acceptance angle and Numerical Aperture of fiber.				
	Total	(0 . 4)	5)_44	5 00	riode
Course Ou		(UT4)	5)-40	JFe	1005
	letion of this course, the students will be able to:				
CO1	: Handle different measuring instruments and to measure different parameters.				
CO2	: Calculate the important parameters and to arrive at the final result based on the measurements.	ie ex	perin	nent	al

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		2	3	1	1		3	2	3	3
CO2	3	3		2	3	1	1		3	2	3	3

18CY102	CHEMISTRY LABORATORY	L	Τ	Ρ	С
		0	0	3	1.5
Course C	bjectives:				
1.	To gain practical knowledge by applying theoretical principles and performing the followinexperiments				
Experime	nts				
1	Estimation of hardness of Water by EDTA				
2	Estimation of Copper in brass by EDTA				
3	Estimation of Alkalinity in water				
4	Estimation of Chloride in water sample (Iodimetry)				
5	Conductometric titration of Strong Acid and Strong Base				
6	Conductometric titration of Mixture of acids and Strong base				
7	Determination of strength of Iron by Potentiometric method				
8	Estimation of Iron by Spectrophotometry				
9	Determination of molecular weight and degree of Polymerisation by Viscometry				
	Total (0	+45)	=45	Per	iods
Course C	utcomes:				
Upon corr	pletion of this course, the students will be able to:				
CO1 :	To know the applicability of the practical skill gained in various fields.				
CO2 :	To know the composition of brass quantitatively and the molecular weight of polym	ers.			
CO3 :	To understand the principle and applications of conductometric titrations, spectron potentiometric titrations	nete	r an	d	

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1									
CO2	3	3	1									
CO3	3	3	1									

	PROFESSIONAL COMMUNICATION LABORATORY L T P C 0 0 2 1
Course O	-
1.	To improve their reading skills.
2	To address an audience and present a topic
3	To acquire speaking competency in English.
4	To strengthen their fluency in speaking.
List of exp	periments
	Methodology – Reading
	1) Reading a story aloud with exact pronunciation, with intonation, and with expressing sense.
1	2) Reading poems for improving verbal skills, memory, and critical thinking.
	3) Reading newspaper articles for strengthening the vocabulary and writing skills.
	4) Reading homophones with exact pronunciation for expressing different meaning
	Methodology – Speaking
	1) Power point presentation – on general topics - for organising and structuring presentation.
	2) Oral presentation -on basic technical ideas related to engineering.
2	3) Speaking on a given topic – current affairs, expressing opinion on social issues.
	4) Describing a process – booking Ticket online, survey for starting a new office, sending an e-
	mail, etc.
	5) Organising official events –compering, presenting welcome address, proposing vote of thanks.
	Total (0+30)=30 Periods
Course O	
Upon com	pletion of this course, the students will be able to:
CO1	
601	
CUT	Read short passages fluently, avoiding mispronunciation, substitution, omission and
	: Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs.
CO2	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures.
CO2 CO3	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading.
CO2	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures.
CO2 CO3 CO4 CO5	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion.
CO2 CO3 CO4 CO5 Text Book	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion.
CO2 CO3 CO4 CO5	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion.
CO2 CO3 CO4 CO5 Text Book 1.	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion.
CO2 CO3 CO4 CO5 Text Book 1. Reference	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion.
CO2 CO3 CO4 CO5 Text Book 1. Reference	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion. (s: Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book, Cambridge University Press, 2014. Books Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija
CO2 CO3 CO4 CO5 Text Book 1. Reference 1 2	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion. s: Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book, Cambridge University Press, 2014. Books Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija English Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh
CO2 CO3 CO4 CO5 Text Book 1. Reference 1 2 3	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion. Instrument of the state of the
CO2 CO3 CO4 CO5 Text Book 1. Reference 1 2 3 4	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion. is: Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book, Cambridge University Press, 2014. Books Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija English Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh Discussions that Work. Penny Ur.CUP, 1981. Speak Better Write Better English Paperback – November 2012 Norman Lewis, GoyalPublishers and Distributors.
CO2 CO3 CO4 CO5 Text Book 1. Reference 1 2 3	 Read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs. Vocalize words without the aid of pictures. Develop a well-paced, expressive style of reading. Make effective oral presentations on technical and general contexts. Describe a process with coherence and cohesion. is: Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book, Cambridge University Press, 2014. Books Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija English Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh Discussions that Work. Penny Ur.CUP, 1981. Speak Better Write Better English Paperback – November 2012 Norman Lewis, GoyalPublishers and Distributors.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2				1		2	2	3	2	2
CO2	1	1		2					1	3	1	3
CO3		3		2		1			2	3		2
CO4		2		1		1		1		3	2	3
CO5		2		2				1	1	3	1	3

18CE201	BASIC CIVIL ENGINEERING LABORATORY	L	Т	Ρ	С
		0	0	2	1
Course O	bjectives:				
1.	To understand the fundamental concept on visual inspection and standard param materials used in the field of civil engineering	eters	abo	ut the	Э
2.	To obtain basic knowledge in testing of the materials widely used for construction				
EXPERIM	ENTS				
1	Cement Tests a) Visual inspection b) Consistency c) Initial and final setting time				
2	Bricks Test a) Visual examination b) Crushing strength test				
3	Aggregate Test a) Specific gravity of fine aggregate b) Specific gravity of coarse aggregate				
4	Concrete – Compression strength Test				
5	Steel – Tension Test				
Course O	Total (0	+30):	=30	Perio	d
Upon com	pletion of this course, the students will be able to:				
CO1 :	Testing the basic materials used in the field of civil engineering				
CO2 :	n-depth knowledge about their standard specifications and applications				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2		2								
CO2		2		2								

Course	2 STATISTICS AND NUMERICAL METHODS	L	Т	Ρ	С
Course		3	1	0	4
	objectives:			•	
1	To understand the statistical averages and fitting of curves.				
2	To gain the knowledge of significance test for large and small samples				
3	To obtain the knowledge about numerical interpolation, differentiation and in	tegr	atior	n	
4	To acquire knowledge of numerical solution to first order ordinary different	ial e	equa	tion	S
	using single step and multi step methods.				
5	To gain the knowledge of numerical solution to second order partial different by using explicit and implicit methods	ntial	equ	atior	S
Unit I	BASIC STATISTICS		9	+	3
	s of Central tendency: Moments, Skewness and Kurtosis, Curve fitting by the M	/loth	-		
	-Fitting of straight lines, second degree parabolas and curves reducible to line				
Unit II	TEST OF HYPOTHESIS		9	+	3
and diffe	significance: Large Sample tests for Single proportion, difference of proportior prence of means- Small Sample test for single mean, difference of means ent, test for ratio of variances - Chi-square test for goodness of fit and in	and	l cor	relat	ion
attributes		dep	ena	ence	0
Unit III	INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEGRATION	1	9	+	3
Solution	of Algebraic and Transcendental equations by Newton-Raphson method- Solut		of sv	/sten	
	s by Gauss Elimination and Gauss Seidal iterative methods - Interpolation				
	and Backward formulae. Interpolation with unequal intervals: Newton's divided				
	e's formulae Numerical Differentiation and Integration: Trapezoidal rule and Sim	ipsc	on's ′	1/3 r	ule,
Simpsor	's 3/8 rule.				
Unit IV	NUMERICAL SOLUTION FOR ORDINARY DIFFERENTIAL EQUATIONS		•	r	
		1 D	9		•
	differential equations: Taylor series method- Euler and modified Euler's method of fourth order for solving first and second order differential equations- Milne - corrector methods.	יא -ג		+	3
		e's a			ta
	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION	e's a			ta
predictor Unit V Partial of equation		e a	and <i>J</i> 9 nd I	Adar + Pois:	ta n's 3 son
predictor Unit V Partial of equation	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Sch	e a midf	and <i>J</i> 9 nd I and	Adar + Poiss I Cra	ta n's 3 son nk-
predicto Unit V Partial o equation Nicholso	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Schu n methods) - Finite difference explicit method for wave equation. Total (45+	e a midf	and <i>J</i> 9 nd I and	Adar + Poiss I Cra	ta n's 3 son nk-
predicto Unit V Partial o equation Nicholso	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Schu n methods) - Finite difference explicit method for wave equation.	e a midf	and <i>J</i> 9 nd I and	Adar + Poiss I Cra	ta n's 3 son nk-
predicto Unit V Partial c equation Nicholsc Course Upon co	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Schr n methods) - Finite difference explicit method for wave equation. Total (45+ Outcomes: mpletion of this course, the students will be able to	e a midt 15)=	and <i>J</i> 9 nd I and	Adar + Poiss I Cra	ta n's 3 son nk-
Predicto Unit V Partial o equation Nicholso Course Upon co CO1	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Schunn methods) - Finite difference explicit method for wave equation. Total (45+ Outcomes: mpletion of this course, the students will be able to : Learn about statistical averages and fitting the curves by Least Square Meth	e a midt 15)=	and <i>J</i> 9 nd I and	Adar + Poiss I Cra	ta n's 3 son nk-
Predicto Unit V Partial o equation Nicholso Course Upon co CO1 CO2	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Schlunn methods) - Finite difference explicit method for wave equation. Total (45+ Outcomes: mpletion of this course, the students will be able to : Learn about statistical averages and fitting the curves by Least Square Meth : Acquire the techniques of interpolation.	e a midt 15)=	and <i>J</i> 9 nd I and	Adar + Poiss I Cra	ta n's 3 son nk-
Predicto Unit V Partial o equation Nicholsco Course Upon co CO1 CO2 CO3	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Schlern methods) - Finite difference explicit method for wave equation. Total (45+ Outcomes: mpletion of this course, the students will be able to : Learn about statistical averages and fitting the curves by Least Square Meth : Familiar with the numerical differentiation and integration	e a midt 15)=	and <i>J</i> 9 nd I and	Adar + Poiss I Cra	ta n's 3 son nk-
Predicto Unit V Partial o equation Nicholso Course Upon co CO1 CO2	NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION differential equations: Finite difference solution of two dimensional Laplace s- Implicit and Explicit methods for one dimensional heat equation (Bender Schlunn methods) - Finite difference explicit method for wave equation. Total (45+ Outcomes: mpletion of this course, the students will be able to : Learn about statistical averages and fitting the curves by Least Square Meth : Acquire the techniques of interpolation.	e a midt 15)=	and 7 9 nd 1 t anc	Adar Poiss I Cra	ta n's son nk-

Text Book	is:
1.	Veerarajan T, "Probability and Random Process (With Queuing theory)", 4 th Edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2016.
2.	Kandasamy.P, Thilagavathy.K, Gunavathi.K, "Numerical Methods" S.Chand& Co., New Delhi, 2005.
3	Gupta, S.C. and Kapur, V.K., "Fundamentals of Mathematical Statistics", S.Chand and Sons, New Delhi, 11 th Edition 2014
Reference	Books:
1.	Fruend John, E. and Miller Irwin, "Probability and Statistics for Engineers", 8 th Edition, Prentice Hall India (P) Ltd, 2010.
2	Gerald, C. F. and Wheatley, P.O., "Applied Numerical Analysis" , Sixth Edition , Pearson Education Asia , New Delhi – 2002
3	M.K.Venkataraman, "Numerical Methods", National Publishing Company, 2000
4	Jain M.K.Iyengar, K & Jain R.K., "Numerical Methods for Scientific and Engineering Computation", New Age International (P) Ltd, Publishers 2003
5	Manish Goyal, "Numerical Methods and Statistical techniques Using "C" ", 1 st Edition, Laxmi Publications (P) Ltd, 2009.
E-Referen	ce :
1.	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	2	1	1	2	2	1	2	2
CO2	3	3	1	1	1	1	1	1	1	1	1	1
CO3	3	3	1	2	1	1	1	2	2	1	2	2
CO4	3	3	2	2	1	1	1	2	2	1	1	1
CO5	3	3	2	2	2	1	1	1	1	1	1	1

18EE30 ⁻	1	ELECTRIC CIRCUIT ANALYSIS		T 1	P 0	(
•	<u>.</u>		3	1	U	4
	-	jectives:				
		pasic circuit concepts, circuit modelling and methods of circuit analysis in time domain a solving simple and multi dimensional circuits including coupled circuits	and f	rec	quen	IC ?
Unit I		BASIC CIRCUITS ANALYSIS	!	9	+	4
node vol average and capa power fa	tage anc aciti ctor	– Kirchoffs laws – DC and AC Circuits – Resistors in series and parallel circuits –Me e method of analysis for DC and AC Circuits – Sinusoidal voltage and current – instant d effective values – form factor and peak factor (derivations for sine wave) – pure resis ive circuits – RL, RC, RLC series circuits – impedance – phase angle – phasor diagram r – power triangle – apparent power, active and reactive power – parallel circuits (two lance, susceptance and admittance)	ane stive n – j	ous , in pov	s, pe duct ver a	al tiv
Unit II		NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC		9	+	
Superpo	sitic	CIRCUITS duction: voltage and current division, source transformation- star and delta t on Theorem - Thevenin's and Norton's Theorem — Maximum power transfer theorem substitution theorem-Millman's theorem.				
Series a Selectivi	ty -	RESONANCE AND COUPLED CIRCUITS parallel resonance – frequency response - Effects of varying inductance and – - 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits	capa If a	nd	mut	ua
Series a Selectivi inductan parallel -	ty - ce -	parallel resonance - frequency response - Effects of varying inductance and	capa If ai	icita nd	mut	e ua an
Series a Selectivi inductan parallel - Unit IV	ty - ce - - Tu	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits.	capa If ai in s	nd seri	mut es a	e an
Selectivi inductan parallel - Unit IV	ty - ce - - Tu	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits.	capa If ai in s	nd seri	mut es a	e an
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor	ty – ce – Tu – Tu nt re nt re	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC single	Lapa If and in s usoid	nd seri 9 Jal 9	mut es a + inpu + pha tar a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor	ty – ce – Tu – Tu nt re nt re	 parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS esponse of RL, RC and RLC Circuits using Laplace transform for DC input and AC sing THREE PHASE CIRCUITS e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced load nbalanced voltage sources – analysis of three phase three wire and four wire circuits circuits with balanced and unbalanced loads – phasor diagrams of voltages and current 	Lapa If an s in s usoid J-Th s wit	acita nd seri dal dal ree h s	mut es a + inpu + pha tar a ver a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor power fa	ty - ce - Tu - Tu nt re nce d/ ui nnec	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC sing THREE PHASE CIRCUITS e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced load nbalanced voltage sources – analysis of three phase three wire and four wire circuits cted with balanced and unbalanced loads – phasor diagrams of voltages and current r measurements in three phase circuits Total (45+15)	Lapa If an s in s usoid J-Th s wit	acita nd seri dal dal ree h s	mut es a + inpu + pha tar a ver a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor power fa	ty - ce - - Tu nt re nce d/ un ncctor	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC sing THREE PHASE CIRCUITS e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced load nbalanced voltage sources – analysis of three phase three wire and four wire circuits cted with balanced and unbalanced loads – phasor diagrams of voltages and current r measurements in three phase circuits Total (45+15)	Lapa If an s in s usoid J-Th s wit	acita nd seri dal dal ree h s	mut es a + inpu + pha tar a ver a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor power fa delta cor power fa	ty - ce - - Tu nt re nce d/ un ncctor	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC sing THREE PHASE CIRCUITS e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loads nbalanced voltage sources – analysis of three phase three wire and four wire circuits cted with balanced and unbalanced loads – phasor diagrams of voltages and current r measurements in three phase circuits tromes: tetion of this course, the students will be able to Understand the basic concept of circuit elements, circuit laws and network reduction	Lapa capa If an Jusoid J-Th s wit ts –µ	9 1 1 1 1 1 1 1 1 1 1 1 1 1	mut es a + inpu + pha tar a ver a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor power fa Course	ty - ce - - Tu nt re nce d/ un ncctor	parallel resonance – frequency response - Effects of varying inductance and or 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. See – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC sing THREE PHASE CIRCUITS e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced load nbalanced voltage sources – analysis of three phase three wire and four wire circuits cted with balanced and unbalanced loads – phasor diagrams of voltages and current r measurements in three phase circuits tcomes: tetion of this course, the students will be able to Understand the basic concept of circuit elements, circuit laws and network reduction Solve the electrical network using mesh, nodal analysis and applying network theore	Lapa capa If an Jusoid J-Th s wit ts –µ	9 1 1 1 1 1 1 1 1 1 1 1 1 1	mut es a + inpu + pha tar a ver a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor power fa Course	ty - ce - - Tu nt re nce d/ un ncctor	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC sing THREE PHASE CIRCUITS e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loads nbalanced voltage sources – analysis of three phase three wire and four wire circuits cted with balanced and unbalanced loads – phasor diagrams of voltages and current r measurements in three phase circuits tromes: tetion of this course, the students will be able to Understand the basic concept of circuit elements, circuit laws and network reduction	Lapa capa If an Jusoid J-Th s wit ts –µ	9 1 1 1 1 1 1 1 1 1 1 1 1 1	mut es a + inpu + pha tar a ver a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor power fa delta cor power fa Course Upon co CO1 CO2 CO3 CO3	ty - ce - - Tu nt re nce d/ un ncctor	parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. Se Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS esponse of RL, RC and RLC Circuits using Laplace transform for DC input and AC sing THREE PHASE CIRCUITS e of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced load nbalanced voltage sources – analysis of three phase three wire and four wire circuits cted with balanced and unbalanced loads – phasor diagrams of voltages and current r measurements in three phase circuits total (45+15) toomes: letion of this course, the students will be able to Understand the basic concept of circuit elements, circuit laws and network reduction Solve the electrical network using mesh, nodal analysis and applying network theore Understand the resonance in series and parallel circuits.	Lapa capa If an Jusoid J-Th s wit ts –µ	9 1 1 1 1 1 1 1 1 1 1 1 1 1	mut es a + inpu + pha tar a ver a	it.
Series a Selectivi inductan parallel - Unit IV Transier Unit V Significa balanced delta cor power fa Course Upon co CO1 CO2 CO3	ty - ce - - Tu nt re nce d/ un ncctor	parallel resonance – frequency response - Effects of varying inductance and one of the parallel resonance Frequency – Bandwidth – Half power frequencies. See – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuits uned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS sponse of RL, RC and RLC Circuits using Laplace transform for DC input and AC single and voltage sources – analysis of three phase three wire and four wire circuits circuits with balanced and unbalanced loads – phasor diagrams of voltages and curren r measurements in three phase circuits Total (45+15) tcomes: etion of this course, the students will be able to Understand the basic concept of circuit elements, circuit laws and network reduction Solve the electrical network using mesh, nodal analysis and applying network theore	Lapa capa If an Jusoid J-Th s wit ts –µ	9 1 1 1 1 1 1 1 1 1 1 1 1 1	mut es a + inpu + pha tar a ver a	it.

1.	William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", Seventh Edition, TMH publishers, New Delhi, 2013
2.	Sudhakar. A., and Shyammohan. S. Palli, 'Circuits & Networks Analysis and Synthesis', Fourth Edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2015.
Referer	nce Books:
1.	A. Chakrabarti, 'Circuit Theory Analysis and Synthesis', Seventh Revised Edition, Dhanpat Rai & Co., New Delhi, 2018
2	Dr. M. Arumugam & N. Premkumar, " Electric circuit theory", Khanna Publishers, New Delhi, 1991.
3	Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2013.
4	Mahmood Nahvi& Joseph Edminister, "Electric Circuits", Schaum's Outline Series, McGraw Hill Publications, Seventh Edition,2018
E-Refer	ence :
1.	NPTEL Courses on Basic Electrical Circuits, IIT Madras

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2			1					
CO2	2	3	1	2			1					
CO3	3	1	2				1					
CO4	3	1	2				1					
CO5	1	3	2		3		1					
CO6	1	2	1	1	3		1					

18EE302	ELECTROMAGNETIC FIELDS	L	Т	Ρ	С				
		3	1	0	4				
Course Ob	Diectives:	•	-	•	-				
1.	To introduce the basic mathematical concepts related to electromagnetic vector field	s							
	To impart knowledge on the concepts of Electrostatic fields, electrical potential, ener		lens	itv a	nd				
2.	their applications.			•					
3.	To impart knowledge on the concepts of Magneto static fields, magnetic flux density, v and its applications.								
4.	To impart knowledge on the concepts of Different methods of emf generation and Maxwell's equations.								
5.	To impart knowledge on the concepts of Electromagnetic waves and characterizing	para	met	ers.					
Unit I	ELECTROSTATICS – I		9	+	3				
Sources an	nd effects of electromagnetic fields – Coordinate Systems – Vector fields –Gradient, Div	/erg	ence	e, Cu	ırl				
	and applications - Coulomb's Law – Electric field intensity – Field due to discrete an								
	Gauss's law and applications.			0.00	-				
Unit II	ELECTROSTATICS – II		9	-	3				
			-	T	-				
	tential - Electric field and equipotential plots, Uniform and Non-Uniform field, Utili								
	d in free space, conductors, dielectrics - Dielectric polarization- Dielectric strength -								
	electrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, E	Ener	gy c	lens	ity,				
Application	S.								
Unit III	MAGNETOSTATICS		9	+	3				
Lorentz for	rce, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o	due	to s	traid	uht				
	be, magnete hera menerg (m) blet eararte Ean fimpere e encart Ean m								
conductors	circular loop infinite sheet of current Magnetic flux density (B) - B in free space								
	s, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space	ce,	cond	lucto	r,				
magnetic n	naterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca	ce, alar	cond	lucto	r,				
magnetic m		ce, alar	cond	lucto	r,				
magnetic n	naterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca	ce, alar	cond	lucto	r,				
magnetic n potential, F Unit IV	naterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications	ce, alar	cond and 9	lucto vect	or, or 3				
magnetic n potential, F Unit IV Magnetic (naterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications	ce, alar nt -	cond and 9 Max	lucto vect +	or, or 3				
magnetic n potential, F Unit IV Magnetic (equations (naterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App	ce, alar nt -	cond and 9 Max	lucto vect +	or, or <u>3</u> 's				
magnetic n potential, F Unit IV Magnetic (equations (Unit V	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES	ce, alar nt - olica	ond and 9 Max ation	+ well s. +	or, or <u>3</u> 's <u>3</u>				
magnetic n potential, F Unit IV Magnetic (equations (Unit V Electromag	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance	ce, c alar 	9 Max ation	+ wect + well s. + agat	ior 3 is 3 ion				
magnetic n potential, F Unit IV Magnetic (equations (Unit V Electromage constant –	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting	ce, c alar 	9 Max ation	+ wect + well s. + agat	ior 3 is 3 ion				
magnetic m potential, F Unit IV Magnetic (equations (Unit V Electromage constant –	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance	ce, c alar 	9 Max ation	+ wect + well s. + agat	ior 3 is 3 ion				
magnetic m potential, F Unit IV Magnetic (equations (Unit V Electromag constant – wave reflect	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting ction and refraction. Total (45+15)	ce, i alar 	9 Max Max ation: 9 Dropa	+ well s. + agat - Pla	r, or <u>3</u> 's <u>3</u> ion ine				
magnetic m potential, F Unit IV Magnetic C equations (Unit V Electromag constant – wave reflect Course Ou	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting cition and refraction. Total (45+15)	ce, i alar 	9 Max Max ation: 9 Dropa	+ well s. + agat - Pla	r, or <u>3</u> 's <u>3</u> ion ine				
magnetic n potential, F Unit IV Magnetic (equations (Unit V Electromag constant – wave reflect Course Ou Upon comp	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting ction and refraction. Total (45+15) Deletion of this course, the students will be able to:	ce, (alar 	9 Max Max ation: 9 Dropa	+ well s. + agat - Pla	or, or <u>3</u> 's <u>3</u> ion une				
magnetic m potential, F Unit IV Magnetic (equations (Unit V Electromag constant – wave reflect Course Ou	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting citon and refraction. Total (45+15) Itemes: Deletion of this course, the students will be able to: : Understand the basic mathematical concepts related to electromagnetic vector field	ce, (alar 	9 Max ation 9 Dropa ctor -	+ wwell s. + agat - Pla	r, or <u>3</u> 's <u>3</u> ion ine				
magnetic n potential, F Unit IV Magnetic (equations (Unit V Electromag constant – wave reflect Course Ou Upon comp	Anaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, scale oisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – Applications and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting ction and refraction. Total (45+15) Itemes: Oletion of this course, the students will be able to: I Understand the basic mathematical concepts related to electromagnetic vector fiele their applications.	ce, f alar 	9 Max attion 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ wwell s. + Peric Pittorial Peric	r, or <u>3</u> 's <u>3</u> ion ine ds				
magnetic m potential, F Unit IV Magnetic (equations (Unit V Electromag constant – wave reflect Upon comp CO1 CO2 CO3	Interials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications Image: Electropynamic Fields Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting ction and refraction. Total (45+15 Itcomes: Deletion of this course, the students will be able to: : Understand the basic concepts about electrostatic fields, electrical potential, energy : Understand the basic concepts about electrostatic fields, electrical potential, energy : Apply knowledge in magneto static fields, magnetic flux density, vector papelications.	ce, f alar 	9 Max attion 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ wwell s. + Peric Pittorial Peric	r, or <u>3</u> 's <u>3</u> ion ine ods				
magnetic m potential, F Magnetic C equations (Unit V Electromag constant – wave reflect Course OL Upon comp CO1 CO2 CO3 CO3	Determinaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, scale coisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications ELECTRODYNAMIC FIELDS Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – Apple (ELECTROMAGNETIC WAVES) gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting cition and refraction. Total (45+15) Itcomes: Oletion of this course, the students will be able to: : Understand the basic concepts about electrostatic fields, electrical potential, energy their applications. Apply knowledge in magneto static fields, magnetic flux density, vector papilications. : Understand the different methods of emf generation and Maxwell's equations	ce, f alar 	9 Max attion: 9 9 Drop: ctor - 60 F	+ wwell s. + Peric Pittorial Peric	r, or <u>3</u> 's <u>3</u> ion ine ods				
magnetic m potential, F Unit IV Magnetic (equations (Unit V Electromag constant – wave reflect Upon comp CO1 CO2 CO3	Interials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications Image: Electropynamic Fields Circuits - Faraday's law – Transformer and motional EMF – Displacement currer (differential and integral form) – Relation between field theory and circuit theory – App ELECTROMAGNETIC WAVES gnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting ction and refraction. Total (45+15 Itcomes: Deletion of this course, the students will be able to: : Understand the basic concepts about electrostatic fields, electrical potential, energy : Understand the basic concepts about electrostatic fields, electrical potential, energy : Apply knowledge in magneto static fields, magnetic flux density, vector papelications.	ce, f alar nt - plica ce, f vec 5) = Ids. rgy pote	9 Max ation 9 oropa ctor - 60 F dens ntial	+ well s. + agat - Pla Sity a an	r, or <u>3</u> 's <u>3</u> ion ine ods and d it:				

Text Bo	oks:
1.	Mathew N. O. Sadiku, 'Principles of Electromagnetics', 6th Edition, Oxford University Press Inc. Asian edition, 2015.
2.	William H. Hayt and John A. Buck, 'Engineering Electromagnetics', McGraw Hill Special Indian edition, 2014.
3.	Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 2010.
Referen	ce Books:
1.	V.V.Sarwate, 'Electromagnetic fields and waves', First Edition, Newage Publishers, 1993.
2.	J.P.Tewari, 'Engineering Electromagnetics - Theory, Problems and Applications', Second Edition, Khanna Publishers.2013
3.	Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline Series), McGraw Hill, 2013,4 th edition.
4.	S.P.Ghosh, Lipika Datta, 'Electromagnetic Field Theory', First Edition, McGraw Hill Education(India) Private Limited, 2012.
5.	K A Gangadhar, 'Electromagnetic Field Theory', Khanna Publishers; Eighth Reprint : 2015.
E-Refere	ence :
1.	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	1	1	1	1	1
CO2	1	3	2	2	2	1	1	1	1	1	1	1
CO3	1	3	2	2	2	1	1	1	1	1	1	1
CO4	1	1	3	3	2	2	1	1	1	1	1	1
CO5	1	1	1	3	3	2	2	1	1	1	1	1
CO6	1	1	3	2	2	2	1	1	1	1	1	1

	B DC MACHINES AND TRANSFORMERS L T P C
Course	Objectives:
1.	To understand the concepts of electromechanical energy conversion and to gain the knowledge on single and multiply-excited magnetic systems.
2.	To gain the knowledge on construction and principles of operation of DC machines and transformers.
3.	To analyze the performance characteristics of different types of DC machines and transformers.
4.	To appreciate the applications of DC machines and transformers.
5.	To analyze the performance of DC machines and transformers by conducting various tests.
Unit I	ELECTROMECHANICAL ENERGY CONVERSION 9 + 0
Magnetic	circuits – Magnetically induced EMF and force – AC operation of magnetic circuits – Energy in
magnetic	c systems – Field energy & mechanical force – Single and Multiply-excited magnetic field systems.
Unit II	DC GENERATORS 9 + 0
excitatio	ctional features of DC machine – Principle of operation of DC generator – EMF equation – Types of n – No load and load characteristics of DC generators – Commutation - Armature reaction – Parallel n of DC generators - Applications.
Unit III	DC MOTORS
	of operation of DC motors - Back EMF – Torque equation – Types of DC motors - Speed –
Torque o	haracteristics of DC motors – Starting of DC motors: 3- point starter, 4- point starter – Speed control: htrol, Armature voltage control – Applications.
Unit IV	TRANSFORMERS 9 + 0
Principle	of operation – Constructional features of single phase transformers – EMF equation – Transformer on
No- load	
	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections.
	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase
transform Unit V Losses a	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. Image: TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day
transform Unit V Losses a Hopkinso	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. Image: TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /.
transform Unit V Losses a Hopkinso efficiency	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. Image: TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. Total (45+0)= 45 Periods
transform Unit V Losses a Hopkinsa efficiency	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. Total (45+0)= 45 Periods Outcomes:
transform Unit V Losses a Hopkinse efficiency Course Upon co	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to:
transform Unit V Losses a Hopkinsa efficiency	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles.
transform Unit V Losses a Hopkinsa efficiency Course Upon co CO1	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to:
transform Unit V Losses a Hopkinsa efficiency Upon co CO1 CO2	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers.
transform Unit V Losses a Hopkinse efficiency Course Upon co CO1 CO2 CO3	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. 9 + 0 Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers.
transform Unit V Losses a Hopkinse efficiency Course Upon co CO1 CO2 CO3 CO4	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. Image: Testing of DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. 9 + 0 Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing.
transform Unit V Losses a Hopkinse efficiency Course Upon co CO1 CO2 CO3 CO4 CO5	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. ITESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day // Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing. obss: D.P. Kothari, I.J. Nagrath, "Electric Machines", 3rd edition, Tata McGraw-Hill Company Ltd., New Delhi, 2017,5 th edition.
transform Unit V Losses a Hopkinse efficiency Course Upon co CO1 CO2 CO3 CO4 CO5 Text Boo	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. 9 + 0 Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing. bks: D.P. Kothari, I.J. Nagrath, "Electric Machines", 3rd edition, Tata McGraw-Hill Company Ltd., New
transform Unit V Losses a Hopkinse efficiency Course Upon co CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2.	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. 0 + 0 Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: Understand the concepts of electromechanical energy conversion principles. Understand the basic concepts of DC machines and transformers. Evaluate the performance characteristics of DC machines and transformers. Conduct various tests on DC machines. Apply the concepts of transformers for testing. D.P. Kothari, I.J. Nagrath, "Electric Machines", 3rd edition, Tata McGraw-Hill Company Ltd., New Delhi, 2017,5 th edition. Dr. P.S. Bimbhra, "Electrical Machinery", Khanna Publishers, Delhi, 2021,2 nd edition.
transform Unit V Losses a Hopkinse efficiency Course Upon co CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2.	and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase ner connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + 0 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test and on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day /. 9 + 0 Total (45+0)= 45 Periods Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing. bks: D.P. Kothari, I.J. Nagrath, "Electric Machines", 3rd edition, Tata McGraw-Hill Company Ltd., New Delhi, 2017,5 th edition. Dr. P.S. Bimbhra, "Electrical Machinery", Khanna Publishers, Delhi, 2021,2 nd edition.

3.	Dr. K. Murugesh Kumar, "DC Machines & Transformers", Vikas Publishing House Pvt Ltd., 2nd edition, 2003.
E-Referen	ces:
1.	www.onlinecourses.nptel.ac.in
2.	www.class-central.com
3.	www.mooc-list.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	1	3	1	1	1	1	2
CO2	3	2	2	2	1	2	3	1	1	2	1	2
CO3	1	2	2	2	2	1	1	1	1	3	1	1
CO4	2	2	2	2	1	1	2	2	1	2	2	2
CO5	2	2	2	2	1	1	2	3	1	2	2	2

18EE304	ELECTRON DEVICES AND CIRCUITS	L 3	Т 1	P 0	2 4
Courso	Objectives:	3	1	U	4
1.	To understand the characteristics of diode. and transistors.				
2.	To understand the characteristics of transistors.				
3.	To design amplifier circuits				
4.	To design the oscillator circuits.				
Unit I	DIODES		9	+	
Junction diode, V	e – Equilibrium conditions – Energy Band Concepts – Zero bias – Forward Bias capacitances – one sided and Non- uniformly doped junctions – Ideal PN junction cu I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes ner diode, clamping and clipping circuits	irrent, F	Ρ-Ν ju	Inct	io
Unit II	TRANSISTORS		9	+	3
Bipolar and CC	unction Transistor-structure, V-I characteristics and Biasing, Input and output charac configurations – Transistor hybrid model - Junction field effect transistor – st ristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and c	ructure	s of C , JFE	ΞT	CI
Unit III	AMPLIFIER CIRCUITS		9	+	3
	Ill signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response -		-		
	odel– Analysis of CS and Source follower – Gain and frequency response- High freq				
0				,	
	MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER		9	+	
BIMOS	cascade amplifier, Differential amplifier – Common mode and Difference mode and		- FET		с рі
BIMOS stages -	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods,		- FET		; pi
BIMOS stages -	cascade amplifier, Differential amplifier – Common mode and Difference mode and		- FET		с рі
stages – Types (0	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis).		- FET		g s
BIMOS stages – Types (C Unit V	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS	power	- FET ampli	fiers	pı s
BIMOS stages – Types (0 Unit V Advanta	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis).	power	- FET ampli	fiers	pı s
BIMOS stages – Types (0 Unit V Advanta	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedbac ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.	power ack – C	- FET ampli 9 onditi	fiers +	τ pι s
BIMOS stages – Types (C Unit V Advanta oscillatic	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45)	power ack – C	- FET ampli 9 onditi	fiers +	τ pι s
BIMOS stages – Types (C Unit V Advanta oscillatic	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes:	power ack – C	- FET ampli 9 onditi	fiers +	ju s fo
BIMOS stages – Types (C Unit V Advanta oscillatic Course Upon co	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to:	power ack – C	- FET ampli 9 onditi	fiers +	τ pι s
BIMOS stages – Types (C Unit V Advanta oscillatic Course Upon co CO1	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45) Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches.	power ack – C	- FET ampli 9 onditi	fiers +	ju s fo
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis).	power ack – C	- FET ampli 9 onditi	fiers +	τ pι s
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS Ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45) Outcomes: mpletion of this course, the students will be able to: Understand overview of power semiconductor switches. Analyse the fundamentals and characteristics of BJT and UJT. Analyse the fundamentals and characteristics of FET andMOSFET.	power ack – C	- FET ampli 9 onditi	fiers +	τ pι s
BIMOS stages – Types (C Unit V Advanta oscillatic Course Upon co CO1 CO2 CO3 CO4	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45) Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the amplifiers	power ack – C	- FET ampli 9 onditi	fiers +	ju s fo
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the amplifiers : Design and analyze the differential amplifiers	power ack – C	- FET ampli 9 onditi	fiers +	τ pι s
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45) Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the amplifiers	power ack – C	- FET ampli 9 onditi	fiers +	pi s fo
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5 CO6	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, paualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the differential amplifiers : Design and analyze the oscillator circuits	power ack – C	- FET ampli 9 onditi	fiers +	pi s fo
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo	cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, paulitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Design and analyze the amplifiers : Design and analyze the oscillator circuits	power ack – C 5+15)=	- FET ampli 9 onditi	fiers +	τ pι s
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo 1.	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the amplifiers : Design and analyze the oscillator circuits * Outcomes * Design and analyze the oscillator circuits	power ack – C 5+15)=	- FET ampli 9 0nditi	+ ion 1	fo
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: Understand overview of power semiconductor switches. Analyse the fundamentals and characteristics of BJT and UJT. Design and analyze the amplifiers Design and analyze the differential amplifiers Design and analyze the oscillator circuits Oks: Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edid David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 2017,7 th edid	power ack – C 5+15)=	- FET ampli 9 0nditi	+ ion 1	fo
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo 1.	Cascade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the amplifiers : Design and analyze the oscillator circuits * Outcomes * Design and analyze the oscillator circuits	power ack – C 5+15)=	- FET ampli 9 0nditi	+ ion 1	fo
BIMOS stages – Types (C Unit V Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo 1. 2. 3.	Asscade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: Understand overview of power semiconductor switches. Analyse the fundamentals and characteristics of BJT and UJT. Analyse the fundamentals and characteristics of FET andMOSFET. Design and analyze the amplifiers Design and analyze the oscillator circuits Oks: Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edi David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Pr 2008. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition.	power ack – C 5+15)=	- FET ampli 9 0nditi	+ ion 1	fo
BIMOS stages – Types (C Advanta oscillatic Course Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo 1. 2. 3. Referen	Asscade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedbans, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the amplifiers : Design and analyze the oscillator circuits obs: Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edi David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 2017,7th edition. ce Books:	power ack – C 5+15)=	- FET ampli 9 0nditi	+ ion 1	fo
BIMOS stages – Types (C Advanta oscillatic Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo 1. 2. 3. Referen 1.	Asscade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedback ns, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: Understand overview of power semiconductor switches. Analyse the fundamentals and characteristics of BJT and UJT. Analyse the fundamentals and characteristics of FET andMOSFET. Design and analyze the amplifiers Design and analyze the differential amplifiers Design and analyze the oscillator circuits Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edi David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Pr 2008. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Ce Books: Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	tion ess, 5 ^{tt}	• FET ampli onditi 60 P	erio	fo
BIMOS stages – Types (C Advanta oscillatic Course Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo 1. 2. 3. Referen	Asscade amplifier, Differential amplifier – Common mode and Difference mode and Single tuned amplifiers – Gain and frequency response – Neutralization methods, Qualitative analysis). FEEDBACK AMPLIFIERS AND OSCILLATORS ges of negative feedback – voltage / current, series, Shunt feedback –positive feedbans, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand overview of power semiconductor switches. : Analyse the fundamentals and characteristics of BJT and UJT. : Analyse the fundamentals and characteristics of FET andMOSFET. : Design and analyze the amplifiers : Design and analyze the oscillator circuits obs: Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edi David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 2017,7th edition. ce Books:	tion ess, 5 ^t	- FET ampli onditi 60 P	erio	fo

E –References					
1.	https://electronicsforum.com/resources/electronic-devices-and-circuit-theory				
2.	https://nptel.ac.in/courses/117103063/				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	3	1	1	1	1	
CO2	2	3	3	3	2	1	2	1	1	1	1	
CO3	3	2	2	3	2	1	2	1	1	1	1	
CO4	2	3	2	3	3	1	2	1	1	1	1	
CO5	2	2	3	3	3	1	2	1	1	1	1	
CO6	2	3	3	3	2	1	2	1	1	1	1	

18EE30)5	DC MACHINES AND TRANSFORMERS LABORATORY	2							
			1.5							
Course	Ob	ojectives:								
1.		To understand the performance characteristics of DC machines and transformers								
2.		To gain knowledge on experimental skill of testing different types of DC machines and transforme	ers.							
3.		Rig up circuits for testing a given machine.								
Experir	nen									
1		Open circuit and load characteristics of separately excited DC generator.								
2		Open circuit and load characteristics of DC shunt generator.								
3		Load characteristics of DC long shunt and short shunt compound generator with cumulative a	and							
		differential connections.								
4		Load test on DC shunt motor.								
5		Load test on DC series motor.								
6		Swinburne's test on DC machines.								
7		Speed control of DC shunt motor.								
8		Hopkinson's test on two identical DC machines.								
9		Load test on single-phase transformer.								
10		Equivalent circuit of a single-phase transformer.								
11		Sumpner's test on transformers.								
12		Study of DC motor starters and 3-phase transformer connections.								
Course	0	Itcomes: Total (0+45)= 45 Peri	iods							
		bletion of this course, the students will be able to:								
CO1	1.1	Obtain the performance characteristics of DC generators.								
CO2	•	Obtain the load characteristics of DC compound generator.								
CO2 CO3	•	Acquire knowledge on performance characteristics of DC shunt and series motors.								
CO3 CO4	•	Acquire knowledge on performance characteristics of DC shaft and series motors.	-+							
	•	methods.								
CO5	:	Acquire knowledge on performance characteristics of transformers using direct and indirect metho	ds.							
Refere	nce	Books:								
1.		G.P. Chhalotra, 'Experiments in Electrical Engineering', 3 rd Ed., Khanna Publishers, Delhi, 2004.								
2.		C.S. Indulkar, 'Laboratory Experiments in Electrical Power', 3 rd Ed., Khanna Publishers, Delhi, 2010.								
3.		DC machines and transformers laboratory manual prepared by the department.								
E-Refe	on									
<u>E-Refe</u>	ene	www.onlinecourses.nptel.ac.in								
2.		www.class-central.com								
3.		www.mooc-list.com								
0.										

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	1	3	1	2	1	1	2
CO2	3	3	3	3	2	2	3	1	1	2	1	1
CO3	3	3	3	2	2	1	1	2	1	3	1	1
CO4	3	3	3	1	1	1	2	2	1	2	2	2
CO5	2	3	2	3	1	1	1	3	1	2	2	2

18EE306

ELECTRON DEVICES AND CIRCUITS LABORATORY

L	Т	Ρ	С
0	0	3	1.5

Course Objectives:

	To design analog electronic circuits using Diode, BJT and MOSFET
2.	To design amplifiers and oscillators.

Experiments:

Ехропппо	
1	Static characteristics of semiconductor diode, zener diode and study of simple voltage regulator
	circuits.
2	Single phase half wave and full wave rectifiers with inductive and capacitive filters.
2 3	Static Characteristics of BJT under CE, CB, CC and determination of hybrid parameters.
4	Static characteristics of JFET.
5	Static and Switching Characteristics of MOSFET
6	Static characteristics of UJT.
7	Frequency response of CB/CE/CC amplifiers.
8	Frequency response of CD/CS amplifiers.
9	Differential amplifiers using FET.
10	Design of RC Phase shift oscillators.
11	Design of Wien bridge oscillators.
12	Design of Hartley/Colpitts oscillators.
	Total (0: 45) - 45 Darieda

Total (0+45)= 45 Periods

Course Outcomes:						
Upon completion of this course, the students will be able to:						
CO1		To design analog electronic circuits using Diode				
CO2	:	To design analog electronic circuits using BJT				
CO3	:	To design analog electronic circuits using MOSFET				
CO4	:	To design analog electronic circuits using FET				
CO5	:	To design oscillator circuits				
CO6	:	To design Wave generating circuits				

Reference Books:

1	David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Edition, 2008.
2	Jacob Millman, Christos C.Halkias, 'Integrated Electronics - Analog and Digital circuits system', Tata McGraw Hill, 2003.
3	Robert L.Boylestad, "Electronic Devices and Circuit theory", 2002.
E Defera	

E –References

1	https://electronicsforu.com/resources/electronic-devices-and-circuit-theory
2	https://nptel.ac.in/courses/117103063/

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	1	1	1	3	1	1	1	1	
CO2	2	3	3	3	2	1	3	1	1	1	1	
CO3	3	2	2	3	2	1	3	1	1	1	1	
CO4	2	3	2	3	3	1	3	1	1	1	1	
CO5	2	2	3	3	3	1	3	1	1	1	1	
CO6	2	3	3	3	2	1	2	1	1	1	1	

18CYMC01	1	ENVIRONMENTAL SCIENCE	L	Т	Ρ	С
			0	0	1	0
Course ob	ject	ives:				
1		They are part of the environment				
2		To have an ancient wisdom drawn from Vedas				
3		Activities based knowledge to preserve environment, Conservation of w optimization.	ate	anc	1	its
Experimen	nts					
		Environmental Awareness		61	nours	5
1		Group activity on water management				
2		Group discussion on recycle of waste (4R's)				
3		Slogan making contest.				
4		Poster making event.				
5		Expert lecture on environmental awareness.				
6		Imparting knowledge on reduction of electricity usage				
		Environmental activities		8	nour	5
1		Identification and segregation of biodegradable and non biodegradable wa	aste			
2		Campus cleaning activity				
3		Plantation of trees in the college campus and local waste lands.				
4		Identification of varieties of plants and their usage				
5		Shutting down the fans and ACs of the campus for an hour				
6		Field work on growing of kitchen garden for mess.		<u></u>		
Course Ou	100	Total	14+	0)= ^	4 Pe	riods
		on of this course, the students will be able to:				
CO1		Use and save water effectively				
CO1	•	Reuse the waste effectively				
CO2	·	Save electricity for future generation				
CO3	·	Classify biodegradable and non biodegradable waste				
CO4	•	Plant trees in the college campus and local waste lands.				
005	•	Flant trees in the college campus and local waste lands.				
Reference	Boo	oks:				
1		D K Asthana "A Text book on Environmental studies", S.Chand Publications	5, 5 th	Edit	ion, 2	2010
2		Rajesh Gopinath," Environmental Science and Engineering", Cengage, 201	4			

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						2						
CO2						2						
CO3							2	3				
CO4					1							
CO5			3									

TestEarunt SignALS AND STSTEWS L I P C Course objectives: 1 Understand the concepts of continuous time and discrete time systems. 2 1 0 0 2 Analyze systems in complex frequency domain. 3 3 1 0 6 + 3 3 Understand sampling theorem and its implications. 6 + 3 3 5 6 + 3 3 Signals and systems. Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential. Classification of signals – Continuous time (CT) and Discrete Time (DT) signals. Periodic & Aperiodic Signals, Deterministic & Random signals. Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality and stability of LTI systems. System representation. 6 + 3 NIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Fourier series representation of a frequency response and step response, convolution, input-output behavior with aperiodic convergent inputs. 5 + 3 System, the notion of a frequency response and step representation 6 + 3 3 Fourier Fransform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response. <th>4055404</th> <th></th> <th></th> <th>-</th> <th></th> <th></th>	4055404			-		
Course objectives: 1 Understand the concepts of continuous time and discrete time systems. 2. Analyze systems in complex frequency domain. 3. 3. Understand sampling theorem and its implications. 6 + 3 Signals and systems- Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals or importance: the unit impulse, the sinusoid, the complex exponential, Classification of signals. Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic Signals, Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, acasade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of sustens. State-Space Analysis, Multi-Input, milt-input, milt-output representation. State Transitor Marix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. 6 + 3 Fourier Gomain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system respresent fore system system servers - stability analysis	18EE401	SIGNALS AND SYSTEMS		1	P	C
1. Understand the concepts of continuous time and discrete time systems. 2. Analyze systems in complex frequency domain. 3. Understand sampling theorem and its implications. UNIT I INTRODUCTION TO SIGNALS AND SYSTEMS 6 + 3 Signals and systems- Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential. Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals. Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability. Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State space Representation of systems. State-Space Analysis, Multi-input, multi-output representation to the impulse response. UNIT II FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, Corontinuous time signals and system functions, poles and zeros of system functions and signals. Laplace domain analysis, solution to differential equations and system behavior. UNIT III FOURIER A			2		U	3
2. Analyze systems in complex frequency domain. 3. Understand sampling theorem and its implications. UNIT I INTRODUCTION TO SIGNALS AND SYSTEMS 6 + 3 Signals and systems. Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic Signals, Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. State-Space Analysis, Multi-Input, multi-output prepresentation. State Transitom Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT II FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier ransform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, pourier domain duality. The Discrete-Time Fourier Transform for continuous time signals and system system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to discrete system set. VINT IV Z-TRANSFORMS 6 + 3 Z-transform and its propertites, inverse	Course ob	ojectives:				
3. Understand sampling theorem and its implications. UNIT I INTRODUCTION TO SIGNALS AND SYSTEMS 6 + 3 Signals and systems- Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, Classification of signals. Continuinsite & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of such Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficient Transform (DTF). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT VI Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transform; difference equation –	1.	Understand the concepts of continuous time and discrete time systems.				
UNT1 INTRODUCTION TO SIGNALS AND SYSTEMS 6 + 3 Signals and systems- Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential. (Lassification of signals – Continuous time (CT) and Discrete Time (DT) signals. Periodic & Aperiodic signals. Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT I CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response, can step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation forugh differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system. Ite notion of a frequency response and its relation to the impulse response. 6 + 3 Fourier streins the other of a frequency response and its relation to the impulse response. 6 + 3 Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, fourier Transform, application of periodic signals. Waveform Symmetries, Calculation of the Discrete Fourier Transform (DTFT) and the Discrete Fourier Transform (DTFT). 4 + 3 Transform (DF). Pares						
Signals and systems- Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system. In otion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier screins representation of periodic signals. Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain manalysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its implications. Spectra of sampled signals. Laplace domain analysis, solution to discrete systems. System theorem eaviers. 6 + 3 Turnsform QDFT. PARENOR	3.	Understand sampling theorem and its implications.				
Signals and systems- Signal properties: periodicity, absolute integrability, deterministic and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system. In otion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier screins representation of periodic signals. Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain manalysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its implications. Spectra of sampled signals. Laplace domain analysis, solution to discrete systems. System theorem eaviers. 6 + 3 Turnsform QDFT. PARENOR				1		
character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, Classification of signals. Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 1 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 1 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Capable of determining the frequency components present				-	+	-
exponential, Classification of signals. – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differenci equations. State-Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals. Waveform Symmetries, Calculation of Fourier Coefficients. 7 Fourier series representation of periodic signals. Waveform Symmetries, Calculation of Fourier Coefficients. 6 + 3 Fourier series representation of periodic signals. Waveform Transform (DTFT) and the Discrete Fourier Transform (DTFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and system functions and signals, Laplace domain analysis, solution to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT IV Z-TRANSFORMS 6 + 3 Transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution.						
Aperiodic signals, Deterministic & Random signals, Energy & Power signals. System properties: linearity, additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS [6] + [3] Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differencial equations and difference equations. State-space Representation of systems. State-Space Representation of systems. State-Space Representation of putticinputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS [6] + [3] Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform for Continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS [6] + [3] Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. [6] + [3] The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, for communication, filitering, feedback control systems.						
additivity and homogeneity, shift-invariance, causality, stability, realizability, Examples. 6 + 3 UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT II FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier Transform, Convolution, Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. 6 + 3 UNIT IV Z-TRANSFORMS 6 + 3 Z-transform dits properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT IV SAMPLING AND RECONSTRUCTION 6 + 3 3						
UNIT II CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS 6 + 3 Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation of through differential equations and difference equations. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. 6 + 3 Fourier stransform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform for continuous time signals and system. 6 + 3 Ystems, System functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. 6 + 3 UNIT V Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 The Sampling Theorem and its implications. Spectra of sampled s			entie	;5. I	inea	ity,
Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation for output inference equations. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and system theory: modulation for continuous and discrete time systems. Introduction to the applications of signal and system theory: modulat	additivity a	no nonogeneity, shint-invariance, causaiity, stability, realizability, Examples.				
Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation for output inference equations. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and system theory: modulation for continuous and discrete time systems. Introduction to the applications of signal and system theory: modulat		CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS		6	+	3
cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-space Rapresentation of systems. State-space Rapresentation of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS			nver	aen	t inp	
Analysis, Multi-input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. 6 + 3 Fourier ransform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform for continuous time signals and systems functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Total (30+15)= 45 Periods Course Outcomes: Course Outcomes: Course outcomes: Course outcomes: Upon completion of this course, the students will be able to: Co						
system, the notion of a frequency response and its relation to the impulse response. UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon ompletion of this course, the students will be able to: Total (30+15)= 45 Periods CO2 : Capable of determining the frequency components present in a deterministic signal CO3 CO3 : Capable of determinin						
UNIT III FOURIER AND LAPLACE TRANSFORMS 6 + 3 Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Ztransform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods CO1 I Determine if a given system is linear/causal/stable CO2 CO3 Capable of determining the frequency components present in a deterministic signal CO3 Capable of determining the frequency response			inpu	ts to	o an	LTI
Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Course Outcomes: Total (30+15)= 45 Periods Upon completion of this course, the students will be able to: CO1 : Determining the frequency components present in a deterministic signal CO3 : Capable of determining the frequency component present in a deterministic signal CO3 : Capable of determining the frequency response of discrete system using Z transform CO4	system, the	e notion of a frequency response and its relation to the impulse response.				
Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Course Outcomes: Total (30+15)= 45 Periods Upon completion of this course, the students will be able to: CO1 : Determining the frequency components present in a deterministic signal CO3 : Capable of determining the frequency component present in a deterministic signal CO3 : Capable of determining the frequency response of discrete system using Z transform CO4				^	.	2
Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and system system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using	-			-		
response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: <u>CO1</u> : Determine if a given system is linear/causal/stable <u>CO2</u> : Capable of determining the frequency components present in a deterministic signal <u>CO3</u> : Capable of characterizing LTI systems in the time domain and frequency domain <u>CO4</u> : Compute the output of an LTI system in the time and frequency domains <u>CO5</u> : Capable of determining the frequency response of discrete system using Z transform <u>CO6</u> : Understand the concepts and importance of sampling Text Books: <u>1</u> Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. <u>2</u> J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and						
Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Course Outcomes: Total (30+15)= 45 Periods CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI system in the time and frequency domains CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and system behavior. UNIT IV Z - TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Capable of determining the frequency components present in a deterministic signal CO2 : Capable of determining the frequency response of discrete system using Z transform CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
to differential equations and system behavior. UNIT IV Z-TRANSFORMS 6 + 3 Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of characterizing LTI systems in the time domain and frequency domain CO3 : Capable of determining the frequency response of discrete system using Z transform CO4 : Understand the concepts and importance of sampling Text Books: 1 Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 2 J. G. Proakis and D. G. Manolakis, "Digital Signal P						
Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of determining the frequency response of discrete system using Z transform CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling				,		
Z-transform and its properties, inverse z-transforms; difference equation – Solution by z transform, application to discrete systems - Stability analysis, frequency response – Convolution. 6 + 3 UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of determining the frequency response of discrete system using Z transform CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling						
to discrete systems - Stability analysis, frequency response – Convolution. UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 Capable of determining the frequency components present in a deterministic signal CO3 Capable of characterizing LTI systems in the time domain and frequency domain CO4 Compute the output of an LTI system in the time and frequency domains CO5 Constant the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and				-	+	
UNIT V SAMPLING AND RECONSTRUCTION 6 + 3 The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. 6 + 3 Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and			orm,	app	licat	on
The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: Col : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and	to discrete	systems - Stability analysis, frequency response – Convolution.				
The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: Col : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and				6		2
zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and				-		
systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems. Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and						
Total (30+15)= 45 Periods Total (30+15)= 45 Periods Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and				0010		me
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and						
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and						
Upon completion of this course, the students will be able to: CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and			15)=	45	Peri	ods
CO1 : Determine if a given system is linear/causal/stable CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and	Course O	utcomes:				
CO2 : Capable of determining the frequency components present in a deterministic signal CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and	Upon com	oletion of this course, the students will be able to:				
CO3 : Capable of characterizing LTI systems in the time domain and frequency domain CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and	CO1 :					
CO4 : Compute the output of an LTI system in the time and frequency domains CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and						
CO5 : Capable of determining the frequency response of discrete system using Z transform CO6 : Understand the concepts and importance of sampling Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and						
CO6 : Understand the concepts and importance of sampling Text Books:						
Text Books: 1. Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson, 2015. 2 J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and			m			
1.Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systemsll, Pearson, 2015.2J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and	CO6 :	Understand the concepts and importance of sampling				
1.Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and Systemsll, Pearson, 2015.2J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and	Text Book	s:				
J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and)15.			
				nd		
	Ζ.					

3.	B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.
4.	A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
Reference	e Books:
1.	H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
2.	S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.
3.	M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
4.	R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discretell,
	Pearson, 2007.
E -Referer	nces
1	https://nptel.ac.in/courses/117104074/

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	1	1	1	2	1	1	1	1	
CO2	2	3	1	1	2	1	2	1	1	1	1	
CO3	2	3	2	3	2	1	3	1	1	1	1	
CO4	2	3	2	3	3	1	3	1	1	1	1	
CO5	2	3	3	3	3	1	3	1	1	1	1	
CO6	2	3	3	3	2	1	2	1	1	1	1	

18EE40)2	SYNCHRONOUS AND INDUCTION MACHINES	L	Т	Ρ	С
			3	0	0	3
Course	Obj	ectives:				
This cou	rse	provides understanding of AC machinery fundamentals, machine parts and helps	s to d	evel	op t	he skills
for opera	ating	AC machines, and equips students to analyze the equivalent circuits of Inducti				
Machine	s.					
Unit I		ALTERNATOR		<u> </u>		0
	otion	n, types, practical rating of synchronous generators, winding factors, production) EM	+ 	0 rmature
		ynchronous reactance, phasor diagram, Methods of pre-determination of				
		s impedance, ampere turn, Potier triangle methods. Two reaction theory–Slip tes				
		xcitation and mechanical input				
Unit II		SYNCHRONOUS MOTOR		2	+	0
	of or	peration-phasor diagrams, Torque equation - Operation on infinite bus bars, va		-		-
		r with excitation. Hunting and its suppression, V and inverted V curves, Sync				
method						
Unit III		THREE PHASE INDUCTION MACHINES		-	+	0
		nal details, types, production of rotating magnetic field-principle of operation an				
		otors. Need for starting – Types of starters – DOL, Rotor resistance and Auto transferred to the construction operation, and applications.	ansi	onne	er st	arters.
General	01 a					
Unit IV		ANALYSIS AND TESTING OF THREE PHASE INDUCTION MOTORS	9)	+	0
Phasor	diac	gram, equivalent circuit, Torque equation-starting and maximum-torque, maxi	mum	-out	put,	
		utput, Torque-slip characteristics, losses and efficiency. Testing-no load and				
equivale	nt c	ircuit parameters, circle diagram.				
Unit V		SINGLE PHASE INDUCTION MOTOR		<u> </u>		0
	rtior	nal details of single-phase induction motor – Double field revolving theory and op		-	+ - Eo	-
		ting methods of single-phase induction motors – Capacitor-start capacitor run Ind				
		on motor.				Chado
•						
<u>Cauraa</u>	<u></u>		(45+	-0) =	45	Period
Course						
Upon co	mpl	etion of this course, the students will be able to:				
CO1	:	Familiarize with construction, working principle, synchronizing techniques an	d pe	rforr	nan	ce of
CO2		Synchronous Generator. Understand the working principle, torque equation, and excitation control for Syn	chro		Mo	tor
CO3	•	Operate three phase Induction machine as motor and as a generator.	CIIIOI	ious		.01.
CO4	:	Analyze the performance of three phase induction motor with testing.				
CO5	:	Know double field revolving theory and starting mechanisms for single-phase inc	luctio	n m	otors	6
CO6	:	Use synchronous and induction motors in practical domain with specified ratings				
	1 1	· · · · · ·				
Text Bo	oks					
1.		D.P. Kothari, I.J. Nagrath, "Electric Machines", 5th edition, Tata McGraw-Hill C Delhi, 2017.	omp	any I	Ltd.,	New
2.		Dr.P.S.Bimbhra, "Electrical Machinery", Khanna Publishers, Delhi, 2021,2 nd edition	on.			
0		A.E. Fitzgerald, Charles Kingsley, Stephen. D.Umans, 'Electric Machinery',		McC	Grav	/ Hill
3.		Publishing Company Ltd, 2017,5 th edition.				
Poforon	00 F	Poaks				
Referen 1.	cet	зоокs: B.L.Theraja& A.K. Theraja, "Electrical Technology", Vol.II, S.Chand& Company Lt	<u>4 N</u>)olh:	2015
1.		D.E. HIGIajaa A.R. HIGIaja, Electrical rectinology, Vol.11, S.Chanua Company El	u., N	UVV L		, 2010.

2.	Alexander S. Langsdorf, Theory of Alternating-Current Machinery, Tata McGraw Hill Publications, 2009.
E-Referenc	e
1	www.nptel.ac.in

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1					2					2
CO2		1			2							1
CO3	3						2				1	
CO4	2			3		1			2			
CO5					1					2		2
CO6			2	3							2	

18EE403	MEASUREMENTS AND INSTRUMENTATION L T P	C 3
Course Ob		
1.	To introduce the basic functional elements of instrumentation	
2.	To introduce the fundamentals of electrical and electronic instruments	
3.	To educate on the various magnetic measurement techniques	
4.		
	To be familiarized with the various bridge circuits for measurement of R, L, C	
5.	To introduce various transducers and the data acquisition systems.	
Unit I	ANALOG INSTRUMENTS 9 +	0
 Dynamic constructior 	f a Generalized Measurement System- Measurement System performance – Static Characteri Characteristics – Classification of Analog instruments – Principle of operation – operating force nal details – types of control systems – types of damping systems. Operation – torque equation errors – extension range of – PMMC – MI – Electrodynamometer – induction type instruments.	es –
Unit II	MEASUREMENT OF POWER AND ENERGY 9 +	0
induction ty of high pow	ent of power in DC circuits, power in AC circuit- single and three phase- electrodynamom pe watt meters – Construction, operation – torque equation for deflection – errors- measuremer using instrument power transformer – measurement of energy for AC circuits- induction type s – construction theory and operation – torque equation – adjustment in energy meter	ents
Unit III	MAGNETIC MEASUREMENTS 9 +	0
 testing of testing vary 	on of B-H curve –determination of hermistor loop by step by step method and method of reverse bar specimens – Hopkinson permeameters – Illiovici permeameters – alternating current magning with form factor and frequency – wattmeter method of iron loss measurements method.	etic
Unit IV	MEASUREMNT OF R, L, C AND POTENTIOMETERS 9 +	
inductance potentiomet	uations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance bridge – Maxwell capacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wien's bridge. ter – lab type hermist's potentiometer, Duo range potentiometer – precision type potentiomet ometer– Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – Larsen type.	DC
Unit V	MEASUREMENT OF NON-ELECTRICAL QUANTITIES 9 +	0
Classification Transducer change in A – Tachoger	on of transducers – factor influencing the choice of transducers. Resistive transducers, Indu s – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive transducers us area of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of angular vel nerator – Photoelectric tachometerMeasurement of temperature – hermistor – thermocoup - Measurement of flow – hot wire anemometers – turbine meters – electromagnetic flow meters	ctive using ocity ole –
	Total (45+0)= 45 Per	iods
Course Ou	tcomes:	
	letion of this course, the students will be able to:	
CO1 :	Measure current and voltage in AC and DC circuits	
CO2 :	: Measure Power and energy AC and DC circuits and magnetic measurements.	
CO3 :	: Calculate R,L,C using various bridges	
CO4 :	Measure non-electrical quantities	
CO5 :	Share knowledge on electrical instruments and measurements.	
CO6 :	: Teach the Instrumentation techniques and its applications.	

Text Books:	
1.	A.K. Sawhney, 'A Course in Electrical & Electronics Measurement & Instrumentation', Dhanpat Rai and Co, 2015
2.	E.O. Doebelin, 'Measurements Systems- Application and Design', Tata McGraw Hill publishing company, 2015.

Reference Books:

1.	D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt. Ltd, 2010.
2.	H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 2017,3rd edition.
3.	Martin Reissland, 'Electrical Measurements', New Age International(P) Ltd., Delhi, 2011.
4.	J.B. Gupta, 'A Course in Electronic and Electrical Measurements', S.K. Kataria& Sons, Delhi,2015
	·

E References:

1	https://nptel.ac.in/courses/108105064/
2	https://nptel.ac.in/courses/108106074/

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2		2	1		2	1	1		1	1
CO2	1	2		2	1		2	1	1		1	1
CO3	1	2		2	1		2	1	1		1	1
CO4	1	2		2	1		2	1	1		1	1
CO5	2	2	2	3	2	2	1	2	1	3	3	3
CO6	2	2	2	3	2	2	1	2	1	3	3	3

	ANALOG AND DIGITAL INTEGRATED CIRCUITS			Ρ	(
		3	0	0	
Course C	bjectives:				
1.	To study the characteristics and applications of Operation Amplifier.				
2.	To gain knowledge about functional diagram and applications of linear lcs				
3.	To simplify the switching functions.				
4.	To design combinational logic circuits.				
5.	To design of sequential logic circuits				
Unit I	CHARACTERISTICS OF OP-AMP		9	+	(
deal OP-	AMP: characteristics-Inverting and non-inverting amplifier- voltage follower - differe	ntial	am	plifie	r
	cteristics – AC characteristics. Basic applications: summer- multiplier- divider- di				
	instrumentation amplifier – V/I and I/V converters				
Jnit II	APPLICATIONS OP-AMP AND LINEAR Ics		9	+	(
	ns of OP-AMP: comparators – multivibrators – Peak detector- Sample and Hold circ	cuit -	– firs	st an	d
	der low pass and high pass active filters.				
	I block diagram and Applications of Linear Ics: IC 555 Timer – IC 566 Voltage control	led	osci	llato	• -
C 565 Pr	ase-locked loops – IC LM317 voltage regulators.				
Jnit III	COMBINATIONAL LOGIC CIRCUITS		9	+	
Represen	tation of logic functions: SOP and POS forms – Simplification of switching functions:	K-m	nap	meth	າດ
Decoder.			_		
lin flond	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS		9	+	
	SR, D, JK and T - Conversion of flip-flops; Classification of sequential circuits: Mo		and	d Me	а
nodels –	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun		and	d Me	а
nodels –	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun		and	d Me	а
models – shift regis	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Me Analysis and design of synchronous sequential circuits – Design of synchronous coun ter.		and	d Me	
models – shift regis Unit V	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS	ters	anc Ui 9	i Me nivei	a s
models – shift regis Unit V fundamer	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits, Analysis procedure of asynchronous circuits with /	ters with	and 	d Me niver + using	a
nodels – shift regis Jnit V undamer SR latche of asynch	 SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous sequences. 	ters with esigr	and – Ur 9 out on Pro	d Me niver + using	a s
nodels – shift regis Jnit V undamer SR latche of asynch	 SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – Design of synchronous circuits and the sequence of table and flow table – State assignment – Design of table – State assignment – Design of synchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – Design of synchronous circuits (sequence circuits) 	ters with esigr	and – Ur 9 out o	d Me niver + using	a s
nodels – shift regis Jnit V undamer SR latche of asynch	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Ital mode and pulse mode circuits, Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq Races – Hazards.	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
nodels – shift regis Jnit V undamer SR latche of asynch cycles – F	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits, Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq eaces – Hazards. Total (L+T	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a
models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq Races – Hazards. Total (L+T putcomes:	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq Races – Hazards. Total (L+T Putcomes: If of the course the student will be able to	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
nodels – shift regis Jnit V undamer SR latche of asynch cycles – F Course C At the end CO1	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mo Analysis and design of synchronous sequential circuits – Design of synchronous coun ter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq Races – Hazards. Total (L+T putcomes: I of the course the student will be able to Explain the OP-AMP characteristics	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
nodels – shift regis Jnit V undamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 :	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Me Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous sequences – Hazards. Total (L+T utcomes: I of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear lcs.	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
nodels – shift regis Jnit V undamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 :	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Me Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous sequences – Hazards. Total (L+T utcomes: I of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear lcs. Utilize K-map and Tabulation methods to simplify the switching functions	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
models – shift regis undamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 : CO3 :	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Me Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq Races – Hazards. Total (L+T utcomes: I of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear lcs. Utilize K-map and Tabulation methods to simplify the switching functions Design and implement of combinational logic circuits	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
models – shift regis Unit V undamer SR latche of asynch cycles – F Course C Course C At the end CO1 : CO2 : CO3 : CO4 : CO5 :	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Modeling Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous sequences – Hazards. Total (L+T Interview of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear lcs. Utilize K-map and Tabulation methods to simplify the switching functions Design and implement of combinational logic circuits	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a
nodels – shift regis Jnit V undamer SR latche of asynch cycles – F Course C Course C C Course C C Course C C Course C C C Course C C C Course C C C C C C C C C C C C C C C C C C C	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Me Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq Races – Hazards. Total (L+T utcomes: I of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear lcs. Utilize K-map and Tabulation methods to simplify the switching functions Design and implement of combinational logic circuits	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a s u
models – shift regis unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 : CO4 : CO5 :	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mc Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous sequences – Hazards. Total (L+T utcomes: I of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear lcs. Utilize K-map and Tabulation methods to simplify the switching functions Design and implement of combinational logic circuits Analysis and design of synchronous sequential logic circuits Analysis and design of asynchronous sequential logic circuits	with esigr	and – Ur 9 out o Pro ial o	4 Me niver using bced	a
nodels – shift regis Jnit V undamer SR latche of asynch cycles – F Course C At the end CO1 CO2 CO3 CO4 CO5 CO6 Image: Construction of the second se	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Me Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS tal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq acces – Hazards. Total (L+T tutcomes: I of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear lcs. Utilize K-map and Tabulation methods to simplify the switching functions Design and implement of combinational logic circuits Analysis and design of synchronous sequential logic circuits Analysis and design of asynchronous sequential logic circuits	ters with esigr uent	anc – Ui 9 00ut i Pro ial c	+ usinq bircu	
models – shift regis unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Boo	SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: Mc Analysis and design of synchronous sequential circuits – Design of synchronous counter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with / s- primitive state / flow table – Reduction of state and flow table – state assignment – De ronous circuits with /without using of SR latches – Problems in asynchronous seq Races – Hazards. Total (L+T Utilize K-map and Tabulation methods to simplify the switching functions Design and implement of combinational logic circuits Analysis and design of synchronous sequential logic circuits Analysis and design of asynchronous sequential logic circuits	ters with esigr uent ()=4	anc – Ui 9 out o Pro ial c 5/0 F	+ using poced bircu	

3.	S. Salivahanan and S. Arivazhagan, "Digital Circuits and Design", Third Edition, Vikas Publishing House Pvt. Ltd, New Delhi, 2011.
Referer	nce Books:
1.	Ramakant A Gayakward, "Op-Amps and Linear Integrated Circuits", Fourth Edition, Pearson Education, 2003.
2	Jacob Millman, Christos C.Halkias, "Integrated Electronics- Analog and Digital circuits system", Tata McGraw Hill 2003.
3	R.P.Jain, "Modern Digital Electronics", Third Edition, Tata McGraw–Hill Publishing company limited, New Delhi, 2011.
4.	Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2015
5.	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", Fifth Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2012.
E-Refer	ence
1	NPTEL courses on Analog Integrated Circuits, IIT Madras- web: http://nptel.ac.in/courses/108106068/
2	NPTEL courses on Analog Circuits, IIT Bombay https://nptel.ac.in/courses/108/101/108101094/
3	NPTEL courses on Digital Electronic Circuits, IIT Kharagpur. Web:https://nptel.ac.in/courses/108/105/108105132/
4	NPTEL courses on Digital Circuits, IIT Kharagpur. Web: https://nptel.ac.in/courses/108/105/108105113/
1	

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	3	2	1	1								
CO3	3	2			2							
CO4	3	2			2							
CO5	3	2			2							
CO6	3	2			2							

18ME408	ENGINEERING MECHANICS	L	Т	Ρ	С
		2	1	0	3
Course (Objectives:				
1.	To develop capacity to predict the effect of force and motion in the course of carryin functions of engineering.	ng ou	it the	des	ign
2.	To analyze the force systems, friction and to study the dynamics of particles, impul momentum.	se ar	nd		
UNIT I	STATICS OF PARTICLES		6	+	3
forces – product -	on – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram ar /ectorial representation of forces – Vector operations of forces -additions, subtraction Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in spa in space – Equivalent systems of forces – Principle of transmissibility.	dot	proc	luct,	cross
UNIT II	EQUILIBRIUM OF RIGID BODIES		6	+	3
Couples Scalar co	y diagram – Types of supports and their reactions – requirements of stable equilibriu - Moment of a force about a point and about an axis – Vectorial representation of mom mponents of a moment – Varignon's theorem – Equilibrium of Rigid bodies in two dimer odies in three dimensions – Examples	ents	and	coup	oles –
	PROPERTIES OF SURFACES AND SOLIDS		6	+	3
Area mo	of simple figures from first principle, centroid of composite sections; Centre of Gravity a nent of inertia- Definition, Moment of inertia of plane sections from first principles, The Moment of inertia of standard sections and composite sections.				
UNIT IV	FRICTION		6	+	3
	friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodie k & differential screw jack.	s, we	dge	fricti	on,
UNIT V	KINETICS OF PARTICLES AND RIGID BODIES		6		3
Equation equation	s of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Princi Conservative forces and principle of conservation of energy-Impulse- momentum- Imp d oblique central impact. Plane motion- Absolute motion- Relative motion- work and en	act-	/ork- Dire	ct ce	rgy ntral
	Total (3)+15) = 4	5 Pe	riods
Course (Outcomes:		<u>, </u>		
Upon cor	pletion of this course, the students will be able to:				
CO1	: Illustrate the vectorial and scalar representation of forces and moments				
CO2	: Analyze the rigid body in equilibrium				
CO3	: Evaluate the properties of surfaces and solids				
CO4	: Determine the friction and the effects by the laws of friction				
CO5	Apply fundamental concepts of kinematics and kinetics of particles to the analysis of problems	of sin	nple,	prac	tical
Text Bo	oks:				
1.	A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications, 2015,5t ec	lition.			
2.	Engineering Mechanics, R.S. Khurmi, S.Chand Publishing, 2018.				
Referer	ce Books:				
1.	Engineering Mechanics, D.S. Bedi, Khanna Book Publishing Co. (P) Ltd.				
	Rajasekaran S and Sankarasubramanian G., "Fundamentals of Engineering Mecha	anics	", Vi	kas	
2.	Publishing House Pvt. Ltd., 2017, 3 rd edition.				

4.	Engineering Mechanics, DP Sharma, Pearson, 2010.
5.	F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, Vol I – Statics, Vol II, –
0.	Dynamics, 12 th Ed, Tata McGraw Hill, 2019.
E-Referenc	ce
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1					2		
CO2	2	1	1	0	1					2		
CO3	2	1	1	0	0							
CO4	1	1	1	1	0							
CO5	2	2	1	1	0							

18EE40	5 SYNCHRONOUS AND INDUCTION MACHINES LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course	Objectives:				
1	To expose the students to operate of synchronous machines and induction r	notors	and	streng	yth thei
I	experimental skill.				
xperim	ents:				
1	Predetermination of Voltage Regulation of three-phase alternator by EMF and	d MMF	me	hods.	
2	Predetermination of Voltage Regulation of three-phase alternator by ZPF me				
3	Slip test on three-phase salient pole alternator.				
4	V and inverted V curves of synchronous motors				
5	Load test on three-phase induction motor.				
6	Circle diagram for three phase induction motor with No load and blocked roto	r test o	data.		
7	Three Phase Induction Generator action with self-excitation.				
8	Synchronization of three-phase alternator				
9	Separation of losses in three phase induction motor.				
10	Load test on single-phase induction motor.				
11	Equivalent circuit and pre-determination of performance characteristics of	f singl	e-ph	ase ir	ductio
	motor.	-	•		
12	Separation of losses in single phase transformer using alternator				
		Tota	(0+ 4	5)= 45	5Perio
ourse	Outcomes:				
	mpletion of this course, the students will be able to:				
CO1	: Analyze the voltage regulation of a given alternator using different methodolo	<u> </u>			
CO2	Analyze the performance of a given synchronous motor under various excita	tion			
	Conditions				
CO3	: Analyze the characteristics of a induction motor under various load conditions	6			
CO4	: Analyze the load sharing capability of given alternators				
CO5	: Develop the equivalent circuit and analyze the characteristics of single-phase	induc	tion	motor	
CO6	: Do loss analysis in AC machines.				

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2			1		2				2	
CO2		2			2							1
CO3	3			2							1	
CO4	2				3		2		2			
CO5				1	1					2		2
CO6		2	2	3							2	

18EE406	MEASUREMENTS AND INSTRUMENTATION LABORATORY	L	Τ	Ρ	С
		0	0	3	1.5
Course Ol	ojectives:				
1.	To study the use of Transducer.				
2.	To measure the resistance, capacitance and inductance using bridges.				
3.	To calibrate voltage and current using measuring equipment.				
4.	To calibrate the efficiency of PV modules.				
Experime	nts:				
1	Measurement of displacement using transducers.				
2	Measurement of pressure using transducers.				
3	Measurement of inductance by Maxwell's bridge.				
4	Measurement of inductance by Anderson's bridge				
5	Measurement of resistance by Wheatstone bridge.				
6	Measurement of capacitance, Inductance by schering bridge.				
7	Study of Instrumentation amplifiers.				
8	A/D converters.				
9	D/A converters.				
10	Study of transients.				
11	Calibration of single phase and three phase energy meter.				
12	Calibration of AC, DC voltmeter and Ammeter.				
13	Calibration of current transformer and potential transformer.				
14	Measurement of three phase power and power factor.				
15	Calibration and Voltage – Current Measurement of solar light.				
16	Study of PLC.				
17	Calibration of series and parallel connection of PV modules.				
18	Calculation of efficiency for PV system modules, Battery and Inverter.				
		2Total	0+4	5)= 4	5Period
Course O					
	pletion of this course, the students will be able to:				
CO1 :	Explain analog instruments.				
CO2 :	Measure power in AC and DC circuits				
CO3 :	Calculate R,L,C using various bridges.				
CO4 :	Know about basic of PLC.				
CO5 :	Measure the efficiency of PV modules				
CO6 :	Calibrate ammeter, voltmeter, energy meter and transformers.				

RO CO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	1	2		2	1		2	1	1		1	1
CO2	1	2		2	2		2	1	1		2	1
CO3	1	2		2	1		2	2	1		1	1
CO4	1	2		2	1		2	1	1		1	1
CO5	1	2		2	1		2	1	2		1	1
CO6	1	3		3	1		3	1	1		1	1

18EE407	ANALOG AND DIGITAL INTEGRATED CIRCUITS LABORA	TORY	L	Т	Ρ	С
			0	0	3	1.5
Course Obj	jectives:					
1.	To Expose the characteristics and applications of Linear Ics.					
2.	To study various digital electronics circuits used in simple system	configurati	on			
list of Exp	eriments: (Any 10 Experiments)					
<u>1</u>	Verification of IC 741 characteristics: inverting and non-inverting	amplifier _ '	volta	nde fo	llower	,
2	Verification of IC 741 Applications circuits: summer, differentiator			ige io	10000	•
3	Design of zero crossing detector and Schmitt trigger circuit using					
4	Design and testing of first order Low Pass and High Pass Active					
5	Design of Wien bridge oscillator and RC phase shift oscillator usi		5			
6	Design of astable and monostable multivibrator circuits using NE,					
7	Design of Voltage controlled oscillator using NE/SE 566.					
8	Design of Voltage regulator using IC723.					
9	Design of +5V, 1A regulated Power supply using IC 7805.					
10	Design of variable power supply using IC LM317.					
11	Design of dual power supply using LM 320 / LM340.					
12	Realize the switching functions using minimum number of NAND	NOR gate	s.			
13	Design of code converter circuits.	, i e i gale	•			
14	Study of different types of Flip-Flops.					
15	Design of 3-bit synchronous counters.					
16	Implementation of multipliexers and demultiplexers - encoders a	nd decoder:	s			
17	Design of 4-Bit shift registers using flip-flop.					
18	Testing of asynchronous counters using flip-flops.					
				_	-	
Course Out	romos:	T	otal	(0+45	5)= 45	Period
	letion of this course, the students will be able to:					
CO1	: Study the characteristics and mathematical applications of op)-amp				
CO2	: Design and verify waveform generator circuits and filter circuit		-ami	<u>)</u>		
CO3	: Design voltage regulator and power supply circuits using Line		ang			
CO4	 Realize the switching function using universal gates. 	ui 100.				
CO4 CO5	: Realize the various types of combinational logic circuits					
CO6	: Implement the various types of sequential logic circuits					
000						
Reference						
1.	Department Integrated Circuits Laboratory Manual					
2.	Roy Choudhury. D and Shail. B. Jain, "Linear Integrated Circuits" Edition, 2011.	, New Age	Inter	natio	nal 4 th	

3 Gayakwad. R.A, "Op-amps & Linear Integrated Circuits", Pearson education, 4th Edition, 2015

00/1 0 map	· · · · · · · · · · · · · · · · · · ·											
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			3	3	2		1		3			
CO2			3	3	2		1		3			
CO3			3	3	2		1		3			
CO4			3	3	2		1		3			
CO5			3	3	2		1		3			
CO6			3	3	2		1		3			

18MC301	INDIAN CONSTITUTION	L	Т	Ρ	С
		1	0	0	0
Course Ob	jectives:				
1.	Learn the salient features of the Indian Constitution				
2.	List the fundamental rights and fundamental duties				
3.	Present a systematic analysis of all dimensions of the Indian political Systems				
4.	Understand the power functions of Parliament, the legislature and Judiciary.				
Unit I			3	+	0
	ts Territory – Citizenship – Fundamental Rights – Directive Principles of State Policy	/ – Fi	Inda	mer	ta
Duties.					
Unit II			3	+	0
The Union -	The States – The Union Territories – The Panchayats – the Municipalities				
Unit III			3	+	0
	Perative Societies – The Scheduled and Tribal Areas – Relations between the Union a	and t		tate	'
				laie	
					5
	operty, Contracts and Suits – Trade and Commerce within the territory of India.				
			3	+	
Finance, Pr	operty, Contracts and Suits – Trade and Commerce within the territory of India.		3		
Finance, Pr			3		0
Finance, Pr	operty, Contracts and Suits – Trade and Commerce within the territory of India.		3		C
Finance, Pr Unit IV Service und Unit V	operty, Contracts and Suits – Trade and Commerce within the territory of India.		3 class	es.	C
Finance, Pr Unit IV Service und Unit V	operty, Contracts and Suits – Trade and Commerce within the territory of India.		3 class	es.	0
Finance, Pr Unit IV Service und Unit V Languages	operty, Contracts and Suits – Trade and Commerce within the territory of India.	tain c	3 class 2	es. +	(
Finance, Pr Unit IV Service und Unit V	operty, Contracts and Suits – Trade and Commerce within the territory of India.	tain c	3 class 2	es. +	0
Finance, Pr Unit IV Service und Unit V Languages Course Our	operty, Contracts and Suits – Trade and Commerce within the territory of India.	tain c	3 class 2	es. +	(
Finance, Pr Unit IV Service und Unit V Languages Course Our	toperty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to:	tain c	3 class 2	es. +	(
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp	Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to: Understand the emergence and evolution of the Indian Constitution.	tain c	3 class 2	es. +	(
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1	toperty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to:	tain c	3 class 2	es. +	(
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1 CO2	operty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Understand the students will be able to: • Understand the emergence and evolution of the Indian Constitution. • Explain the key concepts of Indian Political System • Describe the role of Constitution in a democratic society	tain (3 Class 2 14 F	es. + Peric	
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1 CO2 CO3	operty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Understand the emergence and evolution of the Indian Constitution. • Understand the emergence and evolution of the Indian Constitution. • Explain the key concepts of Indian Political System • Describe the role of Constitution in a democratic society • Present the structure and functions of the central and state Governments, the laboration of the central and state Governmentaneous detent of the central and state Governments, the	tain (3 Class 2 14 F	es. + Peric	(od
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1 CO2 CO3	operty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Understand the students will be able to: • Understand the emergence and evolution of the Indian Constitution. • Explain the key concepts of Indian Political System • Describe the role of Constitution in a democratic society	tain (3 Class 2 14 F	es. + Peric	(od
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1 CO2 CO3	operty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society : Present the structure and functions of the central and state Governments, the Indian Constitution.	tain (3 Class 2 14 F	es. + Peric	(od
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1 CO2 CO3 CO4	operty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society : Present the structure and functions of the central and state Governments, the Indian Constitution.	tain (3 Class 2 14 F	es. + Peric	(od
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1 CO2 CO3 CO4 Reference	operty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society : Present the structure and functions of the central and state Governments, the Indian Subject Su	tain (3 Class 2 14 F	es. + Peric	(od
Finance, Pr Unit IV Service und Unit V Languages Course Our Upon comp CO1 CO2 CO3 CO4 Reference 1.	operty, Contracts and Suits – Trade and Commerce within the territory of India. der the Union, the States – Tribunals –Elections –Special provisions –Relating to cer - Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions –Miscellaneous – Amendment of the Constitution. • Emergency provisions – Miscellaneous – Amendment of the Indian Constitution. • Understand the emergence and evolution of the Indian Constitution. • Explain the key concepts of Indian Political System • Describe the role of Constitution in a democratic society • Present the structure and functions of the central and state Governments, the Indian Judiciary. Books: Subhash C. Kashyap , Our Constitution , national Book trust, 2017	tain (3 Class 2 14 F	es. + Peric	

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									1	1		1
CO2									1	1		1
CO3									1	1		1
CO4									1	1		1

	01 POWER GENERATION, TRANSMISSION AND DISTRIBUTION SYSTEM	3	0	0	
0	Objectioner	3	0	U	с.)
Jourse	Objectives:				
1.	To study the characteristics of load curve, power tariff methods and the various po systems.		0		Ũ
2.	To become familiar with the different components used in Transmission and Distrit power systems and modeling of these components	outio	on le	vels	of
Unit I	POWER GENERATION SYSTEMS		9	+	(
load du	e of electric power system: Various levels such as generation, transmission and distrib ration curve - tariff- types of tariff- Power generating Station: layout- selection of site of Th ectric power plant and Nuclear power plants - major power stations in India.				
Unit II	TRANSMISSION LINE PARAMETERS		9	–	0
	sistance- Inductance and capacitance calculations of single phase and 3- phase trans	mic	<u> </u>	Tino	-
single a	and proximity effects-Inductive interference between power and communication lines.				
Unit III	MODELING AND PERFORMANCE OF TRANSMISSION LINES		9	+	0
	entation of Lines-Performance of Short line, medium line and long line; equivalent				
	ns, transmission efficiency and voltage regulation and ABCD constants-surge-impedanc	e lo	adin	g-pc	wer
transmi	ssion capability-Ferranti effect and corona loss.				
	OVERHEAD LINE INS ULATORS AND CABLES		9	+	0
Insulato Underg	OVERHEAD LINE INS	nd 3	ng e - coi	e ca	ncy. bles
Underg	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir	nd 3	ng e - coi	e ca	ncy. bles
Insulato Underg dielectri Unit V Substat Underg	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar	nd 3 ngle grou	ng e - cor core 9 ndee	re ca e cat + d sys	ncy bles ble. 0
Insulato Underg dielectri Unit V Substat Underg	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system:	nd 3 ngle grou Rac	ng e - cor core 9 ndee lial a	e cat e cat + d sys and r	ncy bles ble.
Insulato Underg dielectri Unit V Substat Underg main dis Course	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4	nd 3 ngle grou Rac	ng e - cor core 9 ndee lial a	e cat e cat + d sys and r	ncy bles ble.
Insulato Underg dielectri Unit V Substat Underg main dis Course	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to:	nd 3 ngle grou Rac 5+0	ng e - cor cord 9 nded ial a	re ca e cat + d sys and r i5 P	ncy bles ble. 0 sterr ing- erio
Insulato Underg dielectri Unit V Substat Underg main dis Course Upon co CO1	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively g round system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, H diesel and MHD.	nd 3 ngle grou Rac 5+0	ng e - cor cord 9 nded ial a	re ca e cat + d sys and r i5 P	ncy ble: ble. ble. 0 stem ing- erio
Insulato Underg dielectri Unit V Substat Underg main dis Course Upon co CO1 CO2	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively g round system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: . Design the layout of various types of power generating systems such as thermal, H diesel and MHD. . Develop expression for computation of fundamental parameters off lines.	nd 3 ngle grou Rac 5+0	ng e - cor cord 9 nded ial a	re ca e cat + d sys and r i5 P	ncy ble: ble. ble. 0 stem ing- erio
Insulato Underg dielectri Underg main dia Course Upon co CO1 CO2 CO3	OVERHEAD LINE INS ULATORS AND CABLES orrs: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: . . Design the layout of various types of power generating systems such as thermal, H diesel and MHD. <	nd 3 ngle grou Rac 5+0	ng e - cor 9 ndee lial a) = 4	te cal e cal t syse and r	ncy bles ole. 0 stem ing- erio
Insulato Underg dielectri Substat Underg main dia Course Upon co CO1 CO2 CO3 CO4	OVERHEAD LINE INS ULATORS AND CABLES orrs: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: . Design the layout of various types of power generating systems such as thermal, H diesel and MHD. . Develop expression for computation of fundamental parameters off lines. . Categorize the lines into different classes and develop equivalent circuits. . Analyze the voltage distribution in insulator strings and cables and methods to impro-	nd 3 ngle grou Rac 5+0	ng e - cor 9 ndee lial a) = 4	te cal e cal t syse and r	ncy bles ole. 0 stem ing- erio
Insulato Underg dielectri Substat Underg main dis Course Upon co CO1 CO2 CO3 CO4 CO5	OVERHEAD LINE INS ULATORS AND CABLES ors: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively g round system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: Design the layout of various types of power generating systems such as thermal, H diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to imprint	nd 3 ngle grou Rac 5+0	ng e - cor 9 ndee lial a) = 4	te cal e cal t syse and r	ncy bles ole. 0 stem ing- erio
Insulato Underg dielectri Substat Underg main dia Course Upon co CO1 CO2 CO3 CO4	OVERHEAD LINE INS ULATORS AND CABLES orrs: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: . Design the layout of various types of power generating systems such as thermal, H diesel and MHD. . Develop expression for computation of fundamental parameters off lines. . Categorize the lines into different classes and develop equivalent circuits. . Analyze the voltage distribution in insulator strings and cables and methods to impro-	nd 3 ngle grou Rac 5+0	ng e - cor 9 ndee lial a) = 4	te cal e cal t syse and r	ncy bles ole. 0 stem ing- erio
Insulato Underg dielectri Unit V Substat Underg main dis Course Upon co CO1 CO2 CO3 CO4 CO5 CO6	OVERHEAD LINE INS ULATORS AND CABLES rrs: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: . Design the layout of various types of power generating systems such as thermal, H diesel and MHD. : Develop expression for computation of fundamental parameters off lines. : Categorize the lines into different classes and develop equivalent circuits. : Analyze the voltage distribution in insulator strings and cables and methods to impression for components and grounding techniques. : Grasp the different distribution system	nd 3 ngle grou Rac 5+0	ng e - con core 9 ndee lial a) = 4	re cat e cat f + d sys and r is Pe	ncy bles ble. of stem ing- erio
Insulato Underg dielectri Substat Underg main dis Course Upon co CO1 CO2 CO3 CO4 CO5 CO6	OVERHEAD LINE INS ULATORS AND CABLES urs: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively g round system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: . Design the layout of various types of power generating systems such as thermal, H diesel and MHD. .	nd 3 ngle grou Rac 5+0	ng e - con core 9 ndee lial a) = 4	re cat e cat f + d sys and r is Pe	ncy bles bles ble. 0 stem ing- erio ar, e.
Insulato Underg dielectri Unit V Substat Underg main dis Course Upon co CO1 CO2 CO3 CO4 CO5 CO6 Text Bo	OVERHEAD LINE INS ULATORS AND CABLES rrs: Types, Potential distribution over a string of suspension insulators- improvement of round cables: Constructional features of LT and HT cables, capacitance of single core ar c stress in a single core cable- grading of cables, thermal resistance of dielectric of a sir SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM ion: Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively ground system –Resonant grounding- Methods of neutral grounding-Distribution system: stribution systems-Methods of solving AC distributed problems. Total (4 Outcomes: ompletion of this course, the students will be able to: . Design the layout of various types of power generating systems such as thermal, H diesel and MHD. : Develop expression for computation of fundamental parameters off lines. : Categorize the lines into different classes and develop equivalent circuits. : Analyze the voltage distribution in insulator strings and cables and methods to impression for components and grounding techniques. : Grasp the different distribution system	nd 3 ngle grou Rac 5+0	ng e - con core 9 ndee lial a) = 4	re cat e cat f + d sys and r is Pe	ncy bles bles ble. 0 stem ing- erio ar, e.

Reference	Books:
1.	Ray, "Electrical Power systems: Concepts, Theory and Practice", PHI Pvt.Ltd., New Delhi,2014,2 nd
1.	edition.
2.	V.K. Mehta, Rohit Mehta, "Principles of Power System", S.Chand& Company Ltd., New Delhi, 2012
3.	Dr. S.L.UPPAL, 'ELECTRICAL POWER', Khanna publishers, New Delhi, 1987.
E-Referenc	e
1	www.onlinecourses.nptel.ac.in/noc18_ee41
2	www.class-central.com
3	www.mooc-list.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	2	1	2	3	1	1	1	1	2
CO2	2	3	3	3	2	1	1	1	1	1	1	1
CO3	2	2	2	2	2	1	1	1	1	1	1	1
CO4	2	2	2	2	2	1	1	1	1	1	1	2
CO5	1	1	2	2	1	1	1	1	1	1	1	1
CO6	2	1	1	1	1	1	1	1	1	1	1	2

		CONTROL SYSTEMS	L	TI	2	С
			3	1 ()	4
Course Obj					1-1-	
<u> </u>		o understand the methods of representation of systems and getting their transfer fu				•
<u> </u>		o provide adequate knowledge in the time response of systems and steady state e o give basic knowledge in obtaining the open loop and closed loop frequency respo				
<u> </u>		o understand the concept of stability of control system and methods of stability an			:115	•
<u>4.</u> 5.		o study the three ways of designing compensators for a control system.	alysis) .		
5.						
Unit I	S	YSTEMS AND THEIR REPRESENTATION		9 -	F	3
Basic eleme	ents	in control systems – Open and closed loop systems – Mathematical model and E	lectri	cal an	alo	ју
		systems – Transfer function – Synchro – AC and DC servo-motors – Block dia	agran	n redu	icti	on
techniques -	– Si	gnal flow graphs.				
Unit II	T	ME RESPONSE ANALYSIS		9 -		3
		gnals – Time response of first order and second order systems – Steady-state er	roro	-		-
		es of control systems – Effect of adding poles and zeros to transfer functions – Re				
PI, PD and F			,5p01			,
Unit III	F	REQUENCY RESPONSE ANALYSIS	1	9 -	L T	3
		ween time and frequency response: Second order systems – Polar plots -	- Bo	-		-
		Gain Margin and Phase Margin – Frequency domain specifications – Constant M				
Nichols chai			rana			
Unit IV	S	TABILITY OF CONTROL SYSTEM		9 -	F	3
		Necessary conditions for stability – Routh-Hurwitz stability criterion – Root locus co				
	struc	ction of Root loci - Nyquist stability criterion - Assessment of relative stability	/ usir	ng Ny	qui	st
criterion.						
Unit V		OMPENSATOR DESIGN		9 -		3
	-	insation – Types of compensators – Electric network realization and frequency cl	araa	-		
		ators: Lag, lead and lag-lead compensators – Cascade compensation in frequency of			550	Л
	51100		<i>y</i> ao	main		
		Total (45+	15)=	60 Pe	rio	ls
Course Out	cor	les:				
Upon compl	etio	n of this course, the students will be able to:				
CO1	<u> </u>					
(.(.))						
	+	Derive the transfer function models of any electrical and mechanical systems.				
CO2	:	Develop the time response and steady state error analysis of the control systems	6.			
CO2 CO3	· : : :	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems.	3.			
CO2 CO3 CO4	:	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems.	6.			
CO2 CO3 CO4 CO5	:	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability.	5.			
CO2 CO3 CO4	:	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems.	6.			
CO2 CO3 CO4 CO5	:	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability.	5.			
CO2 CO3 CO4 CO5 CO6	: : :	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability.		5.		
CO2 CO3 CO4 CO5 CO6 Text Books	: : : A	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability. Design the compensators using conventional techniques. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Pu	, 201		əlhi	,
CO2 CO3 CO4 CO5 CO6 Text Books 1.	: : : A	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability. Design the compensators using conventional techniques. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition.	, 201		elhi	,
CO2 CO3 CO4 CO5 CO6 Text Books 1.	: : : A I 5 ^t	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability. Design the compensators using conventional techniques. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, Nagrath& M. Gopal, "Control Systems Engineering", New Age International Pu ^h Edition, 2015.	, 201		elhi	,
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. Reference B 1.	: : A I., 5 ^t Boo	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability. Design the compensators using conventional techniques. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, Nagrath& M. Gopal, "Control Systems Engineering", New Age International Pu ⁿ Edition, 2015. ks: Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010.	, 201: blishe		elhi	,
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. Reference B	: : A I., 5 ^t Boo	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability. Design the compensators using conventional techniques. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, Nagrath& M. Gopal, "Control Systems Engineering", New Age International Pu ^h Edition, 2015. ks:	, 201: blishe		elhi	,
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. Reference B 1. 2.	: A I 5 ^t Boo	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability. Design the compensators using conventional techniques. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, Nagrath& M. Gopal, "Control Systems Engineering", New Age International Pu ⁿ Edition, 2015. ks: Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010.	, 201: blishe		elhi	,
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. Reference B 1.	: A I 5 ^t Boo K M es:	Develop the time response and steady state error analysis of the control systems Analyze the frequency response of the systems. Analyze the stability of closed loop control systems. Construct the root locus plot and analyze system stability. Design the compensators using conventional techniques. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, Nagrath& M. Gopal, "Control Systems Engineering", New Age International Pu ⁿ Edition, 2015. ks: Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010.	, 201: blishe		elhi	,

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	2	1	1	1	1	1	2
CO2	3	3	2	2	1	2	1	1	1	2	1	2
CO3	3	3	1	1	2	1	1	1	1	2	1	1
CO4	3	3	2	1	1	1	2	2	1	2	2	2
CO5	3	1	2	2	1	1	2	3	1	2	2	2
CO6	3	1	2	2	1	1	2	3	1	2	2	2

18EE503	POWER ELECTRONICS	L A		P	C
		3	0	0	3
Course Ol	ojectives:				
1.	To study an overview of power semiconductor devices, principles of control	olled	recti	fiers,	DC-DC
Ι.	converters, inverters, AC voltage controller circuits and their analysis.				
Unit I	POWER SEMICONDUCTOR DEVICES	,	9	+	0
	f power electronics- Structure, Operation, Static and Switching characteristics of				
	ower Diode, SCR, MOSFET, IGBT, IGCT — Thyristor ratings and protection, and IGBT, Switching and Conduction losses in a generic power semiconductor de			ive c	ircuits to
	and IGBT, Switching and Conduction losses in a generic power semiconductor de	evice	5.		
Unit II	PHASE CONTROLLED RECTIFIERS		9	+	0
Single pha	ase and three phase fully controlled rectifiers – Power circuit, Operation, W	/avef	form	anal	vsis and
	ce parameters - Effect of source and load inductance -Single phase and Three				
	n to PWM rectifiers				
	-			-	
Unit III	DC TO DC CONVERTER		9	+	0
	y chopper with an active switch and diode, concepts of duty ratio and average vol				
Power Circ	cuit and steady state analysis of Buck converter, Boost converter, Buck - boos	t cor	nverte	er an	d SEPIC
converter-	Design of inductor and capacitors for DC-DC converters.				
Unit IV	INVERTERS	1	9		•
		4 a 1	-	+	0
	uit of single-phase voltage source inverter, square wave operation of the invert				
	modulation modulation index and output valtage. Dower singuit of a three phase	volt			
	modulation, modulation index and output voltage, Power circuit of a three-phase				
operation,	switch states, instantaneous output voltages, three-phase sinusoidal mod				
operation,	switch states, instantaneous output voltages, three-phase sinusoidal mod				
	switch states, instantaneous output voltages, three-phase sinusoidal mod				
operation, modulation Unit V	switch states, instantaneous output voltages, three-phase sinusoidal mod	dulat	ion ·	-Spa	ce vecto
operation, <u>modulation</u> Unit V Introductio	switch states, instantaneous output voltages, three-phase sinusoidal mod	dulat	ion ·	-Spa	ce vect
operation, <u>modulation</u> Unit V Introductio	switch states, instantaneous output voltages, three-phase sinusoidal modes of a converter sinu	dulat	9 9 ∙ Multi	-Spa + istag	ce vect 0 e seque
operation, modulation Unit V Introductio control –Aj	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters.	dulat	9 9 ∙ Multi	-Spa + istag	ce vect 0 e seque
operation, modulation Unit V Introductio control –Aj	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters.	dulat	9 9 ∙ Multi	-Spa + istag	ce vect 0 e seque
operation, modulation Unit V Introductio control –A Course Ou	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters.	dulat	9 9 ∙ Multi	-Spa + istag	ce vecto 0 e seque
operation, modulation Unit V Introductio control –A Course Ou	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters.	dulat	9 9 Multi	-Spa + istag	ce vect 0 e seque
operation, modulation Unit V Introductio control –A Course Ou Upon com	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters.	dulat	9 9 Multi	-Spa + istag	ce vecto
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controller oplications of AC Voltage Controllers—Introduction to Matrix converters. Templetion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics.	dulat	9 9 Multi	-Spa + istag	ce vecto 0 e sequei
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters. Telefonders: pletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier.	dulat	9 9 Multi	-Spa + istag	ce vecto 0 e seque
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters. Templetion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits	dulat ers – otal	9 Multi (45+(-Spa + istag	ce vect 0 e seque
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters. Toutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix converters.	dulat ers – otal	9 Multi (45+(-Spa + istag	ce vecto 0 e seque
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO3 CO4	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters. Toutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix converters.	dulat ers – otal	9 Multi (45+(-Spa + istag	ce vect 0 e seque
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters. Toutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix converters.	dulat	9 Multi (45+(-Spa	ce vect
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5	switch states, instantaneous output voltages, three-phase sinusoidal models and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters.	dulat	9 Multi (45+(-Spa	ce vecto 0 e sequer 5 Perioc
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book	switch states, instantaneous output voltages, three-phase sinusoidal models and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters.	dulat	9 Multi (45+(-Spa	ce vecto 0 e sequeo 5 Perioc
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO3 CO4 CO5 Text Book	switch states, instantaneous output voltages, three-phase sinusoidal mode AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters. Technology of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix converters. M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson E New Delhi, 2014.	dulat	9 Multi (45+(-Spa	ce vecto 0 e sequeo 5 Perioc
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	switch states, instantaneous output voltages, three-phase sinusoidal model AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters. Temperature futcomes: obletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix converters: multiple M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson E New Delhi, 2014. P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018.	dulat	9 Multi (45+(-Spa	ce vect
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference	switch states, instantaneous output voltages, three-phase sinusoidal model AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters. Television of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix converter. str M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson E New Delhi, 2014. P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018.	dulat	9 Multi (45+(-Spa	ce vecto 0 e sequel 5 Perioc
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	switch states, instantaneous output voltages, three-phase sinusoidal modes and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters. Temperature Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Know the operation and applications of AC voltage controller and matrix converters.	dulat	9 Multi (45+(-Spa	ce vecto 0 e sequel 5 Perioc
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference 1.	switch states, instantaneous output voltages, three-phase sinusoidal modes and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers—Introduction to Matrix converters. Temperature Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Know the operation and applications of AC voltage controller and matrix converters.	dulat	9 Multi (45+(-Spa	ce vecto 0 e sequel 5 Perioc
operation, modulation Unit V Introductio control –A Course Ou Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference	switch states, instantaneous output voltages, three-phase sinusoidal model AC TO AC CONVERTERS n and principle of operation of Single phase and Three phase AC voltage controlled oplications of AC Voltage Controllers–Introduction to Matrix converters. Temperature opletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix converters strest M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson E New Delhi, 2014. P .S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018. Books: Ned Mohan, Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Convertional convertions: Convertional convertint convertional convertional convertint conver	dulat ers – otal verte	9 Multi (45+(-Spa	ce vect

1	www.onlinecourses.nptel.ac.in/
2	www.class-central.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			1	3		2				1		1
CO2	2			1	2			1				
CO3	1	2					2					
CO4	1	2		3		1	2					
CO5			1		2				2		2	2

18EE504	MICROPROCESSOR AND MICROCONTROLLER		т	Р	С
		L 3	0	Г 0	3
Course Ob	instivas	•		•	•
Course Ob					
1.	A thorough understanding in establishing a digital control system				
2	Learn different digital communications and their applications				
3	Get ideas to apply digital controls for different electrical applications				
Unit I	8085 8 BIT MICROPROCESSOR		9	+	0
Fundament	als of microprocessors – Architecture of 8085 – Groups of Instructions - Address	ing m	nodes	– Ba	sic timin
diagram - C	Drganization and addressing of Memory and I/O systems –Interrupt structure –	Stac	k and	sub-	routines
Simple 808	5 based system design and programming.				
Unit II	8051 8 BIT MICROCONTROLLER		9	+	0
	als of microcontrollers – Architecture of 8051 – Groups of Instructions - Addressi	na m	-	-	-
	systems – I/O Ports – Timers/Counters – Serial Port - Interrupt structure – Simpl				
	nblers and Compliers		5	5	
Unit III	INTERFACING WITH 8051 MICROCONTROLLER		9	+	0
	equirements of interfacing – Interfacing – LED, 7 segment and LCD Displays –	Tacti	le sw	itches	s, Matrix
keyboard -	Parallel ADC – DAC – Interfacing of Current, Voltage, RTD and Hall Sensors.				
Unit IV	EXTERNAL COMMUNICATION INTERFACE		9	+	0
	is and Asynchronous Communication. RS232, RS 485, SPI, I2C. Introduction	on a	-		-
	e Blue-tooth and Zig-bee.			tonia	ing to
Unit V	APPLICATIONS OF MICROCONTROLLERS		9	+	0
Stepper mo	tor interfacing, DC Motor interfacing, Data Acquisition System, Measurement o	f Eleo	ctric F	ower	, Powe
factor. Solid	l State Relays				
			(AE . C		Deried
Course Out		otai	(45+0)= 43	Period
	letion of this course, the students will be able to:				
CO1	: Understand any other types of modern microprocessor and microcontroller,				
CO2	: Select appropriate digital system based on applications				
CO3	: Design simple controls using software programs				
CO4	: Design and interface communications between digital systems				
CO5	: Apply the digital concepts to measure and control simple electrical systems				
Text Books	S.				
	R. S. Gaonkar, ", Microprocessor Architecture: Programming and Applicat ic	ons v	vith t	ne	
1.	8085", Penram International Publishing, 2013, 6 th edition.				
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.				
<u>^</u>	M. A.Mazidi, J. G. Mazidi and R. D. McKinlay, "The8051Microcontroller a	nd E	mbed	ded	
3.	Systems: Using Assembly and C", Pearson Education, 2007.				
	Destre				
Reference	Books: R. Kamal, "Embedded System", McGraw Hill Education,2017				
<u>1.</u> 2.	D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Education, 2017	75			
۷.		55			
E-Referenc	e				
1	www.onlinecourses.nptel.ac.in/				
2	www.class-central.com				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1		1	1		1	1	1
CO2	1	1	1	1	1		1	1		1	1	1
CO3	1	1	1	1	1		1	1		1	1	1
CO4	1	1	1	1	1		1	1		1	1	1
CO5	1	1	1	1	1		1	1		1	1	1

	5	CONTROL SYSTEMS LABORATORY	L	Т	Ρ	С
			0	0	3	1.5
Course	Obi	ectives:				
1.		To provide a platform for understanding the basic concepts of linear control theory	and	its a	oilac	ation
		to practical systems.				
Experim	nent					
1		Transfer function of separately excited DC generator.				
2		Transfer function of self-excited DC generator.				
3		Transfer function of armature-controlled DCmotor.				
4		Transfer function of field-controlled DC motor.				
5		Transfer function of AC servo-motor.				
6		Frequency response of Lag, Lead and Lag-lead networks.				
7		Study of Synchros.				
8		Study of Stepper motor.				
9		Ward Leonard method of speed control of DC motor.				
10		Study of DC position control system.				
11		Study of P, PI and PID controllers (First-order).				
		Total (0+45)= 4	5 Pe	riods
			• • • •	<u> </u>		
Course	Out			, .		
				<u>, .</u>		
		comes:		, -		
Upon co		comes: etion of this course, the students will be able to:		<u>, </u>		
Upon co CO1	mpl :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines.		<u>, -</u>		
Upon co CO1 CO2	mpl : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system.		<u>, -</u>		
Upon co CO1 CO2 CO3	mpl :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros.				
Upon co CO1 CO2 CO3 CO4 CO5	mpl : : : : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros. Gain knowledge about Stepper motor. Design controllers for control systems.				
Upon co CO1 CO2 CO3 CO4 CO5 Referen	mpl : : : : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros. Gain knowledge about Stepper motor. Design controllers for control systems. Books:				
Upon co CO1 CO2 CO3 CO4 CO5 Referen 1.	mpl : : : : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros. Gain knowledge about Stepper motor. Design controllers for control systems. Books: A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition	on, 20)15.		
Upon co CO1 CO2 CO3 CO4 CO5 Referen	mpl : : : : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros. Gain knowledge about Stepper motor. Design controllers for control systems. Books: A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Put	on, 20)15.		
Upon co CO1 CO2 CO3 CO4 CO5 Referen 1.	mpl : : : : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros. Gain knowledge about Stepper motor. Design controllers for control systems. Books: A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition	on, 20)15.		
Upon co CO1 CO2 CO3 CO4 CO5 Referen 1. 2. 3.	mpl : : : : : : : : : : : : : : : : : : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros. Gain knowledge about Stepper motor. Design controllers for control systems. Books: A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Put Edition, 2015. K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010.	on, 20)15.		
Upon co CO1 CO2 CO3 CO4 CO5 Referen 1. 2.	mpl : : : : : : : : : : : : : : : : : : :	comes: etion of this course, the students will be able to: Design the transfer function of DC and AC machines. Design compensators for control system. Gain knowledge about Synchros. Gain knowledge about Stepper motor. Design controllers for control systems. Books: A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Put Edition, 2015. K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010.	on, 20)15.		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	1	3	1	2	1	1	2
CO2	3	3	3	3	2	2	3	1	2	2	1	1
CO3	3	3	3	2	2	1	1	2	1	3	1	1
CO4	3	3	3	1	1	1	2	2	1	2	2	2
CO5	2	3	2	3	1	2	1	3	1	2	2	2

18EE	506
------	-----

POWER ELECTRONICS LABORATORY

L	Т	Ρ	С
0	0	3	1.5

Course O	bjectives:
1	To simulate and analyze the performance of different power electronic converter circuits.
Experime	nts:
1	V-I Characteristics of power diode and SCR
2	Static and Switching Characteristics of Power MOSFET and IGBT
3	Single phase AC to DC fully controlled converter
4	Single phase PWM rectifiers
5	Buck and Boost Converters
6	MOSFET based single-phase PWM inverter
7	IGBT based three-phase PWM inverter
8	Single phase AC voltage controller
9	Simulation for Single phase and three phase dual converters
10	Simulation of Buck – boost converter and SEPIC converter
11	Simulation of three phase voltage source inverters with sinusoidal modulation
12	Simulation of Matrix converter
0	Total(0+45) = 45 Periods
Course O	utcomes:
Upon com	pletion of this course, the students will be able to:
CO1	: Analyze the characteristics of MOSFET, SCR and IGBT.
CO2	: Evaluate the performance of DC-DC Converters and inviters.
CO3	: Design and control of inverters with different modulations.
CO4	: Analyze the performance of power converters with simulation studies
CO5	: Demonstrate the operation of power converters
Text Bool	is:
1.	M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson Education, PHI Third Edition, New Delhi, 2009.
2.	P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2016.
Reference	Books:
4	Ned Mohan, Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Converters, Application
1.	and Design', John Wiley and sons, 2007.
<u>^</u>	R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics", Springer
2.	Science & Business Media, 2007.
3.	M.D. Singh and K.B. Khanchandani, "Power Electronics," McGraw Hill India, 2013.
E-Referen	
1.	www.onlinecourses.nptel.ac.in/
2.	www.class-central.com
00/20	/apping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2		3		2			1			1
CO2	2		3	1			2				1	
CO3		1	2		2		2			2		
CO4	1			3		1					2	
CO5					2			1	2			2

18EE507	MICROPROCESSOR AND MICROCONTROLLER LABORATORY
	0 0 3 1.5
Course Ob	bjectives:
1.	Able to write own programs for different applications
2.	Interface and program for interconnected digital systems
Experimer	nts:
1	Simple arithmetic operations: addition / subtraction / multiplication / division.
2	Programming with control instructions:
	a. Ascending / Descending order, Maximum / Minimum of numbers
	b. Programs using Rotate instructions
	c. Hex / ASCII / BCD code conversions.
3	Interface Experiments: with 8085
4	a. A/D Interfacing. & D/A Interfacing.
4 5	Traffic light controller. I/O Port / Serial communication
6	Programming Practices with Simulators/Emulators/open source
7	Keyboard interfacing
8	LCD interfacing 4bit/8bit mode
9	Demonstration of basic instructions with 8051 Micro controller execution, including:
	a. Conditional jumps, looping
	b. Calling subroutines.
10	Programming I/O Port 8051
	a. Interface with external A/D & D/A
	b. Interface with stepper motor
11	Interrupt programming with external sensors/ devices
12	Programming for communication using Zigbee protocol.
Course Ou	Total (0+45)= 45 Periods
	pletion of this course, the students will be able to:
CO1	: Write coding to implement different types of algorithms
CO2	: Design and implement simple controllers
CO3	: Use simulators and emulators for debugging and verifying codes
CO4	: Write efficient codes using interrupts for time critical applications
CO5	: Interface any application module to microprocessor/microcontroller.
Text Book	·c·
	R. S. Gaonkar, ", Microprocessor Architecture: Programming and Applicat ions with the
1.	8085", Penram International Publishing, 1996
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning,2004.
	M. A.Mazidi, J. G. Mazidi and R. D. McKinlay, "The8051Microcontroller and Embedded
3.	Systems: Using Assembly and C", Pearson Education, 2007.
Reference	
1.	R. Kamal, "Embedded System", McGraw Hill Education, 2009 D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 1991
2.	U. V. Hall, Wildroprocessors & Interfacing, Wilderaw Hill Higher Education, 1991
E-Referen	ces:
1.	www.onlinecourses.nptel.ac.in/
2.	www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	0	1	1	1	1	0	1
CO2	1	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	0	1	1	1	1	0	1
CO4	1	1	1	1	1	0	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

	POWER SYSTEM ANALYSIS AND STABILITY	LTPC
		3 0 0 3
Course Ob		
1	To model the power system under steady state operating condition	
2	To apply efficient numerical methods to solve the power flow problem	
3.	To model and analyze the power systems under abnormal (or) fault conditions	
4.	To model and analyse the transient behaviour of power system when it is subject	cted to a fault.
Unit I	POWER SYSTEM OVERVIEW AND MODELLING	9 + 0
- Three-pha	oonents of modern power system - Per-phase analysis: Generator model - Synchrono ase transformer model - Three-winding transformer model - Line model- per unit quan of per-unit quantities - representation of load impedance - Single line diagram - diagrams.	itities - Changing
11		
Unit II	POWER FLOW ANALYSIS	9 + 0
method -D	ication – Bus admittance matrix Formulation: Direct inspection method and Singul evelopment of power flow model - solution of load flow equations: Gauss Seidel r nethod- Fast decoupled method – flowcharts – Comparison of the three power flow s	method - Newtor
Unit III	FAULT ANALYSIS - BALANCED FAULT	9 + 0
Introduction	n – Balanced three phase fault – Short circuit capacity - Algorithm for formation of the	e Bus Impedance
matrix- Sys	tematic fault analysis using Bus Impedance matrix -Selection of circuit breakers.	
<u> </u>		
Unit IV	FAULT ANALYSIS - UNBALANCED FAULT	9 + 0
	tals of symmetrical components – Sequence impedances – Construction of seque	
	rical faults on power system: Single line-ground fault, line-line fault – Double lin	ne-ground fault-
Unbalance	d Fault analysis using bus impedance matrix.	
Unit V	STABILITY STUDIES	9 + 0
Importance		
	of stability studies – Classification of power system stability – Stability limits – Powe	er angle equation
	of stability studies – Classification of power system stability – Stability limits – Powe stant- Swing equation of single-machine connected to infinite bus – Solution of S	
Inertia con	of stability studies – Classification of power system stability – Stability limits – Power stant- Swing equation of single-machine connected to infinite bus – Solution of So p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion	wing equation by
Inertia con step-by-ste	stant- Swing equation of single-machine connected to infinite bus - Solution of S	wing equation by – Critical clearing
Inertia con step-by-ste	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve	wing equation by – Critical clearing ment.
Inertia con step-by-ste angle and t	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve Total (45)	wing equation by – Critical clearing
Inertia con step-by-ste	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve Total (45)	wing equation by – Critical clearing ment.
Inertia con step-by-ste angle and t	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve Total (45)	wing equation by – Critical clearing ment.
Inertia con step-by-ste angle and t	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve Total (45	wing equation by – Critical clearing ment.
Inertia con step-by-ste angle and t Course Ou Upon comp CO1 CO2	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improver Total (45 steepense): bletion of this course, the students will be able to: : Develop the single line diagram for the power system. : Perform and analyze load flow computations using bus admittance matrix	wing equation by – Critical clearing ment.
Inertia constep-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3	stant- Swing equation of single-machine connected to infinite bus – Solution of Sight provention and the student's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improves Total (45 tecomes: Deletion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix	wing equation by – Critical clearing ment. 5+0)= 45 Periods
Inertia con step-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO3 CO4	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve Total (45 stcomes: eletion of this course, the students will be able to: : Develop the single line diagram for the power system. : Perform and analyze load flow computations using bus admittance matrix : Perform and analyze balanced fault using bus impedance matrix : Develop computational models for unsymmetrical fault analysis in power system	wing equation by – Critical clearing ment. 5+0)= 45 Periods
Inertia constep-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3	stant- Swing equation of single-machine connected to infinite bus – Solution of Sight provention and the student's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improves Total (45 tecomes: Deletion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix	wing equation by – Critical clearing ment. 5+0)= 45 Periods
Inertia con step-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improves Total (48 tecomes: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies.	wing equation by – Critical clearing ment. 5+0)= 45 Periods
Inertia con step-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improves Total (45 tecomes: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies. s:	wing equation by – Critical clearing ment. 5+0)= 45 Periods ns
Inertia constep-by-step-angle and to angle	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improver Total (45 tcomes: eletion of this course, the students will be able to: : Develop the single line diagram for the power system. : Perform and analyze load flow computations using bus admittance matrix : Perform and analyze balanced fault using bus impedance matrix : Develop computational models for unsymmetrical fault analysis in power system : Understand the transient stability studies. s: Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi,	wing equation by – Critical clearing ment. 5+0)= 45 Periods IS 21 st reprint 2010
Inertia con step-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book	stant- Swing equation of single-machine connected to infinite bus – Solution of Sp p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improver Total (4 tcomes: eletion of this course, the students will be able to: : Develop the single line diagram for the power system. : Perform and analyze load flow computations using bus admittance matrix : Perform and analyze balanced fault using bus impedance matrix : Develop computational models for unsymmetrical fault analysis in power system : Understand the transient stability studies. s: Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi, D.P.Kothari, and I.J.Nagrath, "Modern Power System Analysis", Tata McGra	wing equation by – Critical clearing ment. 5+0)= 45 Periods IS 21 st reprint 2010
Inertia constep-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	stant- Swing equation of single-machine connected to infinite bus – Solution of Sip p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve Total (4 tcomes: eletion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies. s: Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi, D.P.Kothari, and I.J.Nagrath, "Modern Power System Analysis", Tata McGra Private limited, New Delhi, Fourth Edition, 2011.	wing equation by – Critical clearing ment. 5+0)= 45 Periods IS 21 st reprint 2010
Inertia con step-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference	stant- Swing equation of single-machine connected to infinite bus – Solution of Sip p method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improve Total (4 tecomes:	wing equation by – Critical clearing ment. 5+0)= 45 Periods 15 15 15 15 15 15 15 15 15 15
Inertia constep-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	stant- Swing equation of single-machine connected to infinite bus – Solution of Sip method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improves Total (45 tcomes: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies. s: Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi, D.P.Kothari, and I.J.Nagrath, "Modern Power System Analysis", Tata McGra Private limited, New Delhi, Fourth Edition, 2011. Books: John J. Grainger and W.D. Stevenson Jr., "Power System Analysis", McGraw Hil	wing equation by – Critical clearing ment. 5+0)= 45 Periods 15 15 15 15 15 15 15 15 15 15
Inertia constep-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference 1.	stant- Swing equation of single-machine connected to infinite bus – Solution of Sip method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improved Total (45 tecomes: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies. Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi, D.P.Kothari, and I.J.Nagrath, "Modern Power System Analysis", Tata McGra Private limited, New Delhi, Fourth Edition, 2011. Books: John J. Grainger and W.D. Stevenson Jr., "Power System Analysis", McGraw Hil 2017.	wing equation by – Critical clearing ment. 5+0)= 45 Periods 15 21 st reprint 2010 W Hill Education II Inc., New Delhi,
Inertia constep-by-ste angle and t Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference	stant- Swing equation of single-machine connected to infinite bus – Solution of Sip method-II – Modified Euler's method – Runge-Kutta method – Equal area criterion ime -Factors affecting transient stability – Techniques for transient stability improves Total (45 tcomes: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies. s: Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi, D.P.Kothari, and I.J.Nagrath, "Modern Power System Analysis", Tata McGra Private limited, New Delhi, Fourth Edition, 2011. Books: John J. Grainger and W.D. Stevenson Jr., "Power System Analysis", McGraw Hil	wing equation by – Critical clearing ment. 5+0)= 45 Periods 15 21 st reprint 2010 W Hill Education II Inc., New Delhi, hi, 2012

E-References	i
1.	https://onlinecourses.nptel.ac.in/, for power system analysis course, IIT Kharagpur
2.	NPTEL courses on Power System Generation, Transmission and Distribution, IIT Delhi.

PO CO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	2	1	3	1	3		1					
CO2	2	2	3	2	3		1					
CO3	2	2	3	2	3		1					
CO4	2	2	3	2	3		1					
CO5	2	2	3	2	3		1					

18EE602	ELECTRICAL DRIVES AND CONTROL	L	Т	Ρ	С			
		3	0	0	3			
Course Ob	ectives:							
1.	To know about the Analyze the operation of the chopper fed dc drive, both quali quantitatively.	tative	ely a	nd				
2.	To understand the Operation and performance of AC motor drives.							
			•		•			
	DC MOTOR CHARACTERISTICS & CHOPPER FED DC DRIVES		9	+	0			
armature v varying mot	corque-speed characteristics of separately excited dc motor, change in torque-spltage, exampleload torque-speed characteristics, operating point, armature volorspeed. Review of dc chopper and duty ratio control, chopper fed dc motor for speed on of a chopper fed drive, armature current waveform and ripple, calculation of los	tage d cor	con trol,	trol stea	for ady			
	MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE		9	+	0			
Control strue	our quadrant operation of dc machine; single-quadrant, two-quadrant and four-quacture of DC drive, inner current loop and outer speed loop, dynamic model of dc n nd transfer functions, modeling of chopper as gain with switching delay, plant tr roller specification and design, speed controller specification and design.	notor	– d	yna	mic			
	INDUCTION MOTOR CHARACTERISTICS		9	+	0			
-	iduction motor equivalent circuit and torque-speed characteristic, variation of torc	ue-s	-	-	rve			
with (i) appl	ed voltage, (ii) applied frequency and (iii) applied voltage and frequency, typical torquump loads, operating point, constant flux operation, flux weakening operation.							
UNIT IV	SCALAR CONTROL OR CONSTANT V/F CONTROL OF INDUCTION MOTOR	2	9	+	0			
	ree-phase voltage source inverter, generation of three-phase PWM signals, sinusoid							
	r theory, conventional space vector modulation; constant V/f control of induction mot analysis based on equivalent circuit, speed drop with loading, slip regulation.	or, si	ead	y-sta	ate			
UNIT V	CONTROL OF SLIP RING INDUCTION MOTOR		9	+	0			
	or resistance of the induction motor torque-speed curve, operation of slip-ring indu- r resistance, starting torque, power electronic based rotor side control of slip ring mo	otor,	slip	woc	er			
Course out	Total (45-	⊦0)=	45 F	Perio	bds			
Courseou	comes.							
	etion of this course, the students will be able to:							
CO1	: Understand the characteristics of dc motors and induction motors.							
CO2	: Understand the principles of speed-control of dc motors and induction motors.							
CO3	: Understand the power electronic converters used for dc motor and induction mc control.	tor s	peed	Ż				
CO4	: Gain knowledge on the Scalar control or constant V/f control of induction motor							
CO5	: Gain knowledge on chopper fed DC drives.							
Text Books								
1.	G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989.							
2.	R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice H	all,20)15					
Reference	Books:							
1.	G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2010.							
2.	W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001.							
E-reference								
1	https://www.iith.ac.in/~ketan/drives.htmL							
•								

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3			2	1	1			1	2
CO2	3	3	1	3		1	1	1				1
CO3	3	3	3	3	3	1	1	1				1
CO4	1	3	3	2	3	1	1	1				1
CO5	3	3	3	3	3	1	1	1			1	1

18EE603	PROFESSIONAL ETHICS AND HUMAN VALUES	L	ΤP	С
Course	Dbjectives:	3	0 0	3
	To create awareness on Engineering Ethics and providing basic knowledge about e	nginee	ring	
1.	Ethics, Variety of moral issues and Professional Ideals.	•	•	
2.	To provide basic familiarity about Engineers as responsible Experimenters, Codes Industrial Standards.	of Ethic	S,	
3.	To inculcate knowledge and exposure on Safety and Risk, Risk Benefit Analysis.			
UNIT I	HUMAN VALUES		9 +	0
Living Pe	'alues and Ethics – Integrity – Work Ethic – Service Learning – Civic Virtue – Respect acefully – caring – Sharing – Honesty – Courage – Valuing Time – Co-operation – Co – Self-Confidence – Character – Spirituality.			
	ENGINEERING ETHICS		9 +	0
Senses of Kohlberg	f 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - mo 's theory - Gilligan's theory - consensus and controversy – Models of Professional Rol ht action – Self-interest- customs and religion - uses of ethical theories.	oral auto	onomy	
	ENGINEERING AS SOCIAL EXPERIMENTATION		9 +	0
	ing as experimentation - engineers as responsible experimenters - codes of ethics - a	balance	-	-
	the challenger case study.	ouluito	a out	
		T	•	
	SAFETY, RESPONSIBILITIES AND RIGHTS and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the thr		9 +	0
	of interest – occupational crime - professional rights - employee rights - Intellectual Pi	g - conf operty		
(IPR) - di	scrimination.		Rights	
(IPR) - di UNIT V	Scrimination.	operty	Rights	
(IPR) - di UNIT V Multination manager Ethics lik	scrimination.	nginee	Rights 9 + 's as code	0
(IPR) - di UNIT V Multination manager Ethics lik	GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Man of electronics and telecommunication engineers (IETE),India.	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multination manager Ethics lik Institution	GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Man of electronics and telecommunication engineers (IETE),India. Total (45)	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multination manager Ethics lik Institution Course (Scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Man n of electronics and telecommunication engineers (IETE),India. Total (4 Dutcomes:	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multination manager Ethics lik Institution Course (Upon cor	Scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Man n of electronics and telecommunication engineers (IETE),India. Total (4: Dutcomes: n pletion of this course, the students will be able to:	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multination Ethics lik Institution Course (Upon cor CO1 CO2	Scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Man n of electronics and telecommunication engineers (IETE),India. Total (4 Dutcomes:	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multination Ethics lik Institution Course (Upon cor CO1 CO2 CO3	GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - etails of sconsulting engineers-engineers as expert witnesses and advisors -moral leadership-eta ASME, ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Manno of electronics and telecommunication engineers (IETE), India. Total (4: Outcomes: inpletion of this course, the students will be able to: : Understand the importance of ethics and values in life and society. : Understood the core values that shape the ethical behavior of an engineer. : Expose awareness on professional ethics and human values.	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multinatio manager Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO4	Scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Man n of electronics and telecommunication engineers (IETE),India. Total (4! Outcomes: n pletion of this course, the students will be able to: : Understand the importance of ethics and values in life and society. : Understood the core values that shape the ethical behavior of an engineer. : Expose awareness on professional ethics and human values. : Analyse a person based on human value concepts	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multination Ethics lik Institution Course O Upon cor CO1 CO2 CO3	GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - etails of sconsulting engineers-engineers as expert witnesses and advisors -moral leadership-eta ASME, ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Manno of electronics and telecommunication engineers (IETE), India. Total (4: Outcomes: inpletion of this course, the students will be able to: : Understand the importance of ethics and values in life and society. : Understood the core values that shape the ethical behavior of an engineer. : Expose awareness on professional ethics and human values.	operty nginee sample ageme	Rights 9 + 's as code nt,	0
(IPR) - di UNIT V Multination Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO4	Scrimination.	nginee sample ageme	Rights 9 + 's as code nt, 45 Per	0
(IPR) - di UNIT V Multination Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO4 CO5	GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mann of electronics and telecommunication engineers (IETE),India. Total (44 Dutcomes: npletion of this course, the students will be able to: : Understand the importance of ethics and values in life and society. : Understood the core values that shape the ethical behavior of an engineer. : Expose awareness on professional ethics and human values. : Analyse a person based on human value concepts : Analyse our responsibility and rights to social problems oks: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New Yor	operty nginee sample ageme 5+0) = 4	Rights 9 + 's as code nt, 45 Per .	0 of iod
(IPR) - di UNIT V Multination manager Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO3 CO3 CO4 CO5 Text Boo	Scrimination.	operty nginee sample ageme 5+0) = 4	Rights 9 + 's as code nt, 45 Per .	0 of iod
(IPR) - di UNIT V Multination manager Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2.	Scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Man of electronics and telecommunication engineers (IETE),India. Total (44 Dutcomes: mpletion of this course, the students will be able to: : Understand the importance of ethics and values in life and society. : Understood the core values that shape the ethical behavior of an engineer. : Expose awareness on professional ethics and human values. : Analyse a person based on human value concepts : Analyse our responsibility and rights to social problems oks: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New Yor Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice H Delhi, 2004. EBooks:	operty nginee sample ageme 5+0) = 4	Rights 9 + 's as code nt, 45 Per .	of iod
(IPR) - di UNIT V Multination manager Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2.	Scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mann of electronics and telecommunication engineers (IETE),India. Total (4! Dutcomes: mpletion of this course, the students will be able to: : Understand the importance of ethics and values in life and society. : Understood the core values that shape the ethical behavior of an engineer. : Expose awareness on professional ethics and human values. : Analyse a person based on human value concepts : Analyse our responsibility and rights to social problems oks: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New Yoi Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice H Delhi, 2004. ce Books: Tripathi A N, "Human values" , New Age international Pvt. Ltd., New Delhi, 2002.	operty nginee sample ageme 5+0) = -	Rights 9 + 's as code nt, 45 Per	of iod
(IPR) - di UNIT V Multination Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2. Reference	scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership-e e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mann of electronics and telecommunication engineers (IETE),India. Total (4! Dutcomes: mpletion of this course, the students will be able to: Understand the importance of ethics and values in life and society. Understand the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems oks: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New Yoi Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice H Delhi, 2004. Ce Books: Tripathi A N, "Human values", New Age international Pvt. Ltd., New Delhi, 2002. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, I	operty nginee sample ageme 5+0) = -	Rights 9 + 's as code nt, 45 Per	0 of iod
(IPR) - di UNIT V Multination Ethics lik Institution Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2. Reference 1.	Scrimination. GLOBAL ISSUES onal corporations - Environmental ethics - computer ethics - weapons development - e s consulting engineers-engineers as expert witnesses and advisors -moral leadership- e ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mann of electronics and telecommunication engineers (IETE),India. Total (4! Dutcomes: mpletion of this course, the students will be able to: : Understand the importance of ethics and values in life and society. : Understood the core values that shape the ethical behavior of an engineer. : Expose awareness on professional ethics and human values. : Analyse a person based on human value concepts : Analyse our responsibility and rights to social problems oks: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New Yoi Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice H Delhi, 2004. ce Books: Tripathi A N, "Human values" , New Age international Pvt. Ltd., New Delhi, 2002.	nginee sample ageme 5+0) = 4 5k 2005 all of In New Je	Rights 9 + 's as code nt, 45 Per	of iod:

CO PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1			2			3		3	2			3
CO2			2			3		3	1			2
CO3			2			2		3				2
CO4			2			3		3	1	1		2
CO5			2			2		2		1		2

18EN501	COMMUNICATION SKILLS LABORATORY	L	Т	Ρ
		0	0	2
Course Obj	ectives:			
1.	Communicate effectively with interviewers			
2.	Express opinions, illustrate with examples, elucidate and conclude in group di	scussior	าร	
3	Write error free letters and prepare reports			
4	Speak fluently and avoid pitfalls in pronunciation and grammatical errors			
WRITING S	KILLS	(1	5 ho	urs)
 Lett 	er seeking permission to go on industrial visit			
 Lett 	er of invitation			
 Res 	ume and Cover Letter			
• Rep	ort Writing – Progress in project work			
SPEAKING	SKILLS	(15	i hou	urs)
	come Address and Vote of Thanks	(,
	lysing and presenting business articles			
	ver Point Presentation			
	up Discussion			
2.0				
SOFT SKIL	LS	(1	5 ho	urs)
 Psy 	chometric profile	•		
•	-Introduction			
 Inte 	rview skills			
• Con	ducting a board meeting			
	BILITIES	(1	5 ho	urs)
• Erro	or Spotting	•		,
	ening Comprehension			
	Irranging Jumbled sentences			
	abulary			
_ab Record				
	roup Discussion - Literature survey			
	roup Discussion - Transcripts			
	roup Discussion - Assessment forms			
4. In	terview Skills – Psychometric profile			
5. In	terview Skills - Self-introduction			
	terview Skills – Resume and Cover Letter			
	terview Skills - Transcription of interview			
	terview Skills - Assessment sheet signed by interview panel			
-	ower Point Presentation			
	rror spotting worksheet			
	umbled sentences worksheet			
	elcome Address			
	ote of Thanks			
	etter seeking permission to go on industrial visit			
	eport Writing – Progress in project work resentation of business articles - Transcription			
IU. FI				
		(0.20)	20 5)! -
	Iotal	(0+30)=	30 F	eric

Course C	Duto	comes:
Upon com	nple	tion of this course, the students will be able to:
CO1	:	Write error free letters and prepare reports
CO2	:	Deliver welcome address and vote of thanks
CO3	:	Speak coherently with proper pronunciation and accent
CO4	:	Avoid common Indianisms and grammatical errors
CO5	:	Improve repertoire of passive vocabulary
CO6	:	Answer questions posed by interviewers confidently
CO7	:	Participate in group discussion effectively
CO8	:	Undertake online psychometric and IQ test to understand their strengths and weaknesses

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1				2		1	3	3	1	2
CO2	1	3		1				1	1	3	1	3
CO3		1		3		1		2	1	3	1	2
CO4		1		1		2			1	3		3
CO5				2				1		3	2	3
CO6		1		1		1		1	1	3	1	2
C07				1		1		2	2	3	1	2
CO8	1	2		2		1				3		2

Course Objectives: 1. To know about the power system protection and switchgear components. 2. To understand the concepts of various protection schemes. 3. To know about numerical protection schemes. Unit I PROTECTIVE RELAYS Functional characteristics of a protective relay – Operating principles of relays Instantaneous and time over current relays - Definite time and inverse time characteri relay – Directional overcurrent relay - Universal torque equation - Performance characteristics - Differential relays - Under frequency and over frequency relays - Translay relays. Unit II CIRCUIT BREAKERS Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit breakers - Vacuum circuit breakers - SF6 circuit breakers - Rating of circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main ci switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator win protection - Protection of stator windings by overvoltage relays - Protection against st synchronism, loss of excitation, rotor overheating - Protection of transformers - Type	9 + 0 - Over current relays – stics - Direct over current aracteristics of distance scheme - HRC fuses for 9 + 0 er – Air circuit breakers - Testing of breaking. HVDC system - rcuit breakers for HVDC 9 + 0 oreaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
1. To know about the power system protection and switchgear components. 2. To understand the concepts of various protection schemes. 3. To know about numerical protection schemes. Unit I PROTECTIVE RELAYS Functional characteristics of a protective relay – Operating principles of relays Instantaneous and time over current relays - Definite time and inverse time characteristic relay – Directional overcurrent relay - Universal torque equation - Performance characteristics - Differential relays - Under frequency and over frequency relays - Translay relays. Unit II CIRCUIT BREAKERS Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit break Air blast circuit breakers - Vacuum circuit breakers - SF6 circuit breakers - Rating of circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main ci switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator winprotection - Protection of stator windings by overvoltage relays - Protection against st	9 + 0 - Over current relays – stics - Direct over current aracteristics of distance scheme - HRC fuses for 9 + 0 er – Air circuit breakers - Testing of breaking. HVDC system - rcuit breakers for HVDC 9 + 0 oreaking. HVDC system - rcuit breakers for HVDC 9 + 0 oreaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
2. To understand the concepts of various protection schemes. 3. To know about numerical protection schemes. Unit I PROTECTIVE RELAYS Functional characteristics of a protective relay – Operating principles of relays Instantaneous and time over current relays - Definite time and inverse time characteri relay – Directional overcurrent relay - Universal torque equation - Performance characteristics - Differential relays - Under frequency and over frequency relays - Translay relays. Unit II CIRCUIT BREAKERS Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit breakers - Nature closure. HVDC circuit breakers - SF6 circuit breakers - Rating of circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main ci switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protection percentage differential relays - Protection against turn to turn faults in stator win protection - Protection of stator windings by overvoltage relays - Protection against st	9 + 0 - Over current relays – stics - Direct over current aracteristics of distance scheme - HRC fuses for 9 + 0 g + 0 xer – Air circuit breakers - Testing of preaking. HVDC system - rcuit breakers for HVDC 9 + 0 oreaking. HVDC system - rcuit breakers for HVDC yeakers for HVDC system - yeakers for HVDC
3. To know about numerical protection schemes. Unit I PROTECTIVE RELAYS Functional characteristics of a protective relay – Operating principles of relays Instantaneous and time over current relays - Definite time and inverse time characteri relay – Directional overcurrent relay - Universal torque equation - Performance characteristics. relays - Differential relays - Under frequency and over frequency relays - Translay relays. Unit II CIRCUIT BREAKERS Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit breakers - Nature closure. HVDC circuit breakers - SF6 circuit breakers - Rating of circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main ci switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator win protection - Protection of stator windings by overvoltage relays - Protection against st	Over current relays – stics - Direct over current aracteristics of distance scheme - HRC fuses for 9 + 0 er – Air circuit breakers - rcuit breakers - Testing of breaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
Unit I PROTECTIVE RELAYS Functional characteristics of a protective relay – Operating principles of relays Instantaneous and time over current relays - Definite time and inverse time characteri relay – Directional overcurrent relay - Universal torque equation - Performance characteri relays - Differential relays - Under frequency and over frequency relays - Translay relays. Unit II CIRCUIT BREAKERS Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit break Air blast circuit breakers - Vacuum circuit breakers- SF6 circuit breakers -Rating of cir circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in to Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main ci switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator win protection - Protection of stator windings by overvoltage relays - Protection against st	Over current relays – stics - Direct over current aracteristics of distance scheme - HRC fuses for 9 + 0 er – Air circuit breakers - rcuit breakers - Testing of breaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
Functionalcharacteristics of a protective relay – Operating principles of relays Instantaneous and time over current relays - Definite time and inverse time characteri relay – Directional overcurrent relay - Universal torque equation - Performance characteristics - Differential relays - Under frequency and over frequency relays - Translay relays.Unit IICIRCUIT BREAKERSArc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit break Air blast circuit breakers - Vacuum circuit breakers- SF6 circuit breakers - Rating of cir circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main ci switching.Unit IIIEQUIPMENT PROTECTION SCHEMESFeederprotection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator wind protection - Protection of stator windings by overvoltage relays - Protection against st	Over current relays – stics - Direct over current aracteristics of distance scheme - HRC fuses for 9 + 0 ser – Air circuit breakers - rcuit breakers - Testing of breaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
Instantaneous and time over current relays - Definite time and inverse time characteri relay – Directional overcurrent relay - Universal torque equation - Performance characteri relays - Differential relays - Under frequency and over frequency relays - Translay relays. Unit II CIRCUIT BREAKERS Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit break Air blast circuit breakers - Vacuum circuit breakers- SF6 circuit breakers - Rating of circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main circuit switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator wind protection - Protection of stator windings by overvoltage relays - Protection against st	stics - Direct over current aracteristics of distance scheme - HRC fuses for 9 + 0 er – Air circuit breakers - rcuit breakers - Testing of preaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit break Air blast circuit breakers - Vacuum circuit breakers- SF6 circuit breakers - Rating of circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main circuit switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator wind protection - Protection of stator windings by overvoltage relays - Protection against st	er – Air circuit breakers - cuit breakers - Testing of preaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
Arc in oil - Arc interruption – Current chopping - Bulk oil and minimum oil circuit break Air blast circuit breakers - Vacuum circuit breakers- SF6 circuit breakers - Rating of circuit breakers – Autoreclosure. HVDC circuit breakers - Energy consideration in the Commutating principle - Control of di/dt and dv/dt - Surge suppression - Main circuit switching. Unit III EQUIPMENT PROTECTION SCHEMES Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator wind protection - Protection of stator windings by overvoltage relays - Protection against st	er – Air circuit breakers - cuit breakers - Testing of preaking. HVDC system - rcuit breakers for HVDC 9 + 0 ion of stator windings by ding - Field ground fault
Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator win protection - Protection of stator windings by overvoltage relays - Protection against st	ion of stator windings by ding - Field ground fault
Feeder protection - Distance protection – Alternator protection - Short circuit protect percentage differential relays - Protection against turn to turn faults in stator win protection - Protection of stator windings by overvoltage relays - Protection against st	ion of stator windings by ding - Field ground fault
Unit IV STATIC RELAYS	9 + 0
Introduction - Advantages of static relays - Basic construction - Phase and amplitudirectional relay - Directional overcurrent relay - Static differential relays and differentiated and	
Unit V NUMERICAL PROTECTION	9 + 0
Introduction – Block diagram – Sampling theorem – Fourier analysis of analogue signatechnique – Digital filtering – Over current protection – Differential protection – Distant	
	Total (45+0)= 45 Periods
Course Outcomes:	
Upon completion of this course, the students will be able to:	
CO1 : Understand the concepts and applications of protective relays.	
CO2 : Acquire knowledge about different types of circuit breakers	
CO3 : Understand the protection schemes of various power components.	
CO4 : Understand numerical protection schemes.	
CO5 : Design protection scheme for any electrical system	
Text Books:	
1. Badri Ram and Vishwakarma, "Power System Protection and Switchg 2017,2 nd edition.	jear", Tata McGraw Hill,
2. Arun Ingole, "Switchgear and Protection", Pearson India, 2018.	
Reference Books:	
1. Rao, T. S. M, "Power System Protection Static Relays with Microprocess McGraw-Hill, 2017,2 nd edition.	••
 Paithankar, Y. G and Bhide, S. R, "Fundamentals of Power System Pro- 2013. 	tection", Prentice Hall,

3.	Uppal, S.L, "Electrical Power", Khanna Publishers, New Delhi, 2019.
4.	Ravindranath. B and Chander, N, "Power System Protection and Switchgear", New Age International, 2018, 2 nd edition.
E-Reference	ces:
1.	NPTEL Course: Power System Protection - Prof. S.A. Soman, IIT-B.
2.	
	NPTEL Course: Power System Protection – organized by IIT-B.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	1	2	3	2	1	2	3	2
CO2	1	1	3	2	2	1	3	2	2	2	2	2
CO3	2	2	2	3	1	2	3	3	1	2	3	1
CO4	2	1	1	2	3	1	3	2	3	2	2	2
CO5	1	1	2	1	2	2	3	3	2	3	2	1

18EE70	INDUSTRIAL MANAGEMENT AND ECONOMICS	L	т	Р	С
		3	0	0	3
Course	Dbjectives:	-		-	
1	To understand the concept of management, economics and Indian financial system				
Unit I	MODERN CONCEPT OF MANAGEMENT		9	+	0
Scientif	management-Functions of management-Planning-Organising- Staffing-Direct	ing	- N	/lotiv	ating-
	icating- Co-ordinating- Controlling-Organisational structures- Line, Line and staft hips- Span of control- Delegation- Management by Objectives.			Fund	tional
Unit II	PERSONNEL MANAGEMENT		9	+	0
	es and functions of personnel management- Recruitment-Selection and training of work			boui	•
	Industrial Fatigue- Industrial disputes-Trade Unions- Quality circles. Formation of comp ory-Partnership-Joint stock companies- Public sector- Joint sector and Co-operative sec				
Unit III	MARKETING MANAGEMENT		9	+	0
	Promotion- Channels of distribution- Market research-Advertising. Production Manage				
only).	oduction- Inventory control- EOQ-Project planning by PERT/CPM- Construction of Network	NOI	к (D	asic	lueas
0					
Unit IV	BASICS OF ECONOMICS		9	+	0
Theory of	f demand and supply- Price mechanism- Factors of production- Land, labour, capital	anc	oro	aniz	ation-
	income- Difficulties in estimation- Taxation- Direct and indirect taxes- Progressive and				
money-	nflation-Causes and consequences.				
			-	1	
Unit V			9	+	0
	bank of India: Functions- Commercial banking system-Development financial institut RBI- NABARD- Investment institutions-UTI- Insurance companies- Indian capital mark				
	s- Role of the public sector- Privatisation- Multinational corporations and their impa				
economy					nulan
	Total 4	5 . (<u>م_</u> ۱	5 Dc	riada
Course	Dutcomes:	0+C	J)=4	эге	nous
	npletion of this course, the students will be able to : Understand the conceptsof managment				
CO2	: Understand various types of managment.				
CO3	: Understand the Indian economics				
CO4	: Manage an organization efficiently for its upliftment				
CO5	Apply marketing concept to any organization to earn more profit.				
Text Bo	oks:				
1.	O P Khanna, "Industrial Management", Dhanpat Rai Publications,4 th edition, 1980.				
2.	Philip Kotler, Kevin Lane Keller, SweeHoon Ang, Chin Tiong Tan, Siew Meng Leong	, "N	/lark	eting	3
	Management: An Asian Perspective" Pearson Education Limited, 7th Edition, 2017				
3	A. N. Agrawal, "Indian Economy", Vikas Publishing House PVT, 4 th edition, 1978.				
Referen	ce Books:				
1	K. K. Ahuja, "Industrial management" Khanna Publishers, 1978.				
2	K.K Dewett, Shyam Lal, "Modern economic theory" S Chand and Company Limited	1, 2	800		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			1			2	1		3	2	3	2
CO2			1			2	1		3	2	3	2
CO3				1		1		2				1
CO4			1			2		1	3	2	3	2
CO5			1			2		1	3	2	3	2

18EE703	POWER SYSTEMS LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course Obje	ectives:				
1.	Hands - on and computational experiments related to various power system	m pr	oble	ms.	
2.	Programming of numerical methods for solution of various power syste control problems.	em o	oper	atior	n an
xperiments	3				
1.	Formation of bus admittance matrix.				
2.	Bus impedance matrix formulation.				
3.	Load flow analysis using Gauss Seidel method.				
4.	Power flow analysis using Newton Raphson method.				
5.	Transient stability analysis: Single machine infinite bus system.				
6.	Transient stability analysis of multi machine power systems.				
7.	Load frequency control of single area and two area power systems.				
8.	Economic dispatch by lambda iteration method.				
9.	Solution to combined economic emission dispatch problems.				
10.	Thermal unit commitment using priority list method.				

		I otal (0+45) = 45 Periods								
Course Outcomes:										
Upon com	plet	tion of this course, the students will be able to								
CO1	:	Formulate power system network matrices.								
CO2	:	Get knowledge about power flow analyses.								
CO3	:	Analyse power system stability problems.								
CO4	:	Formulate and solve power system operational problems.								
CO5	:	Allocate system load to various generators in the system economically								
Deference										

Reference Books:

1.	Hadi Saadat, "Power System Analysis", Tata McGraw Hill, 2010.
2.	Kothari D.P and Dhillon J.S, "Power System Optimization", Prentice Hall of India, New Delhi, 2004.
	2004.

E-References:

1.	NPTEL Course: Power Systems Engineering – Prof. Debapriya Das, IIT-K.
2.	NPTEL Course: Computer Aided Power System Analysis – Prof. Biswarup Das, IIT-R.
3.	www.cdeep.iitb.ac.in. (Electrical Engineering)

RO CO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	1	2	2	1	1	1	2	1	1	1	2	2
CO2	1	2	1	1	1	1	1	1	1	1	2	2
CO3	1	2	2	2	1	1	1	1	2	2	1	2
CO4	1	2	2	2	1	1	2	1	1	2	2	2
CO5	1	2	2	2	1	1	2	1	1	2	2	2

18EE704	ELECTRICAL DRIVES AND CONTROL LABORATORY	L	Τ	Ρ	С
		0	0	3	15

Course C	Dbjectives:
1.	To impart knowledge on Performance of the fundamental control practices associated with AC and DC machines (starting, reversing, braking, plugging, etc.) using power electronics
2.	To impart industry oriented learning
3.	To evaluate the use of computer-based analysis tools to review the major classes of machines and their physical basis for operation
Experime	ents:
1	Study of thysistor controlled DC Drive using PSPICE / MATLAB / PSIM Software
2	Study of Chopper fed DC Drive using PSPICE / MATLAB / PSIM Software
3	Study of AC Single phase motor-speed control using TRIAC.
4	PWM Inverter fed 3 phase Induction Motor control using PSPICE / MATLAB / PSIM Software
5	VSI / CSI fed Induction motor Drive analysis using MATLAB/DSPICE/PSIM Software
6	Study of V/f control operation of 3F induction motor drive using PSPICE / MATLAB / PSIM Software
7	Study of permanent magnet synchronous motor drive fed by PWM Inverter using Software
8	Regenerative / Dynamic braking operation for DC Motor - Study using software
9	Regenerative / Dynamic braking operation of AC motor - Study using software

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1	:	Set up control strategies to synthesize the voltages in dc and ac motor drives
CO2	:	Develop testing and experimental procedures applying basic knowledge in electronics, electrical circuit analysis, electrical machines, microprocessors, and programmable logic controllers
CO3	:	Use standard methods to determine accurate modeling/simulation parameters for various general-purpose electrical machines and power electronics devices required for designing a system and solve drives related problems
CO4	:	Combine the use of computer-based simulation tools relevant to electrical Drives with practical laboratory experimentation.
CO5	:	Design VSI/CSI for induction motor using any simulation software.

Text Books:

 ShaahinFilizadeh ,"Electric Machines and Drives,", CRC Press,2013. Haitham Abu-Rub, Atif Iqbal, JaroslawGuzinski, "High Performance Control of AC Drives with Matlab/Simulink Models" John Wiley & Sons, Ltd., 2012. 	1.	Seung-Ki Sul, "Control of Electric Machine Drive Systems", John Wiley & Sons, Ltd., 2011.
	2.	ShaahinFilizadeh, "Electric Machines and Drives,", CRC Press, 2013.
	3	Haitham Abu-Rub, Atif Iqbal, JaroslawGuzinski,"High Performance Control of AC Drives with Matlab/Simulink Models"John Wiley & Sons, Ltd., 2012.

Reference Books:

1 Werner Leonhard ,"Control of Electrical Drives", Springer, 2006.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	2	2	1	1				1	1
CO2	1	2	2	2	2	1	1				1	1
CO3	1	2	2	2	2	1	1				1	1
CO4		1	2	2	2	1	1				1	1
CO5		1	2	2	2	1	1				1	1

PROGRAMME ELECTIVES

18EEP0 ⁻	1	ELECTRICAL MACHINE DESIGN	L	Т	Ρ	С
			3	0	0	3
Course C	Dbj	ectives:				
1.		To Study mmf calculation and thermal rating of various types of electrical machines	;			
2.		To Design armature and field systems for D.C. machines.				
3.		To Design core, yoke, windings and cooling systems of transformers.				
4.		To Design stator and rotor of induction machines.				
5.		To Design stator and rotor of synchronous machines and study their thermal behav	/iour			
			-	_	1	
UNIT I		INTRODUCTION		9 ara	+	0
		derations – Limitations – Electrical Engineering Materials – Space factor – temperat two dimensions – thermal resistivity of winding – Temperature gradient in conductors				
		nachines – Eddy current losses in conductors – Standard specification	s pia	LEC	111 31	015
rtating	011					
UNIT II		DC MACHINES	9		+	0
Magnetic	cir	cuit calculations - Net length of Iron -Real & Apparent flux densities - Design of rot	tatin	a m	hachi	nes
		ines output equations – Main dimensions-Selection of number of poles – Armature of				
of commu	utat	tor and brushes-Design of slot, air gap, field coils.		-		-
UNIT III		TRANSFORMERS	9		+	0
		for single and three phase transformers – Window space factor – Overall dimension				
	dia ti	cs – Regulation – No load current – Temperature rise of Transformers– Design	ofT	an	k wit	h &
without c	ooli	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chol				
without c	ooli					
without c welding T	ooli	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chol nsformers – Design of CTs &PTs.	kes			n of
without c welding T UNIT IV	ooli Frar	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs.	<es -<="" td=""><td>– D</td><td>esigi</td><td>n of</td></es>	– D	esigi	n of
without c welding T UNIT IV Output ee	ooli Frar	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of choles nsformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting	<es -<br="">9 9 rote</es>	- D	esigi	n of 0 of
without c welding T UNIT IV Output ee squirrel c	ooli Frar qua	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholesformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting a machines– Design of rotor bars & slots – Design of end rings – Design of wound re	<pre></pre>	- D	esigi + slots erati	n of 0 of
without c welding T UNIT IV Output ee squirrel c	ooli Frar qua	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of choles nsformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting	<pre></pre>	- D	esigi + slots erati	n of 0 of
without c welding T UNIT IV Output ea squirrel c character	ooli Frar qua	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting a machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best po	y rote	- D	esign + slots perati ctor.	n of of ng
without c welding T UNIT IV Output ed squirrel c character UNIT V	ooli Frar qua age risti	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best po SYNCHRONOUS MACHINES	es - 9 roto otor- ower	- D or s -Op r fac	esign + slots perati ctor. +	n of of ng
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway	ooli Fran qua age risti v sp	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best po SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient p	y rote otor- ower 9 0 9	- D or s -Op r fac	esign + slots peratictor. + chine	n of of ng 0.
without c welding T UNIT IV Output ee squirrel c character UNIT V Runaway Short circ	ooli Trar qua age risti v sp	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting a machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best po SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of	es - 9 otor- otor- ower 9 ole i	- D or s -Op r fac mac	esign + slots peratictor. + chine	n of of ng 0 0 es - yth-
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o	ooli Trar qua age risti v sp cuit f ro	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions – Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting ation of Induction motor – Main dimensions – Length of air gap- Rules for selecting ation of Induction motor – Main dimensions – Length of ation of selecting ation of not posign of rotor bars & slots – Design of end rings – Design of salient p ation – Short circuit current –Dispersion co efficient – relation between D & L for best posign ation – Short circuit current –Dispersion – Choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of ation – Design of damper winding – Determination of full load field mmf – Design of	es - 9 otor- otor- ower 9 ole i	- D or s -Op r fac mac	esign + slots peratictor. + chine	n of of ng 0 0 es - yth-
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o	ooli Trar qua age risti v sp cuit f ro	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting a machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best po SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of	es - 9 otor- otor- ower 9 ole i	- D or s -Op r fac mac	esign + slots peratictor. + chine	n of of ng 0 0 es - yth-
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o Introducti	oolii Trar qua age ristii c sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES peed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+	9 9 1 0 1 0 1	- D or s -Op r fac gap d w	esign + slots berati ctor. + chine b leng	n of of ng g –
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o	oolii Trar qua age ristii c sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES peed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+	9 9 1 0 1 0 1	- D or s -Op r fac gap d w	esign + slots berati ctor. + chine b leng	n of of ng g -
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o Introducti	oolii Trar qua age ristid y sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES peed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+	9 9 1 0 1 0 1	- D or s -Op r fac gap d w	esign + slots berati ctor. + chine b leng	n of of ng g -
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o Introducti	oolii Trar qua age ristid y sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting be machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best po SYNCHRONOUS MACHINES Deeed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4 comes:	9 9 1 0 1 0 1	- D or s -Op r fac gap d w	esign + slots berati ctor. + chine b leng	n of of ng g -
without c welding T UNIT IV Output ea squirrel c character UNIT V Runaway Short circ Design o Introducti	oolii Trar qua age ristid y sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chole hsformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound ro- cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4) comes: etion of this course, the students will be able to:	<pre>< es -</pre>	- D or s -Op r fac gap d w 45	esign + slots berati ctor. + chine b leng	n of of ng g –
without c welding T UNIT IV Output ea squirrel c character UNIT V Runaway Short circ Design o Introducti Course C Upon con	oolii Trar qua age ristid y sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chole hsformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound ri- cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4) comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines.	<pre>< es -</pre>	- D or s -Op r fac gap d w 45	esign + slots peratictor. + chine pleng	n of of ng g –
without c welding T UNIT IV Output ea squirrel c character UNIT V Runaway Short circ Design o Introducti Course C Upon con CO1 CO2	oolii Trar qua age ristid y sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chokes histormers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting a machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4 comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma	<pre>< es -</pre>	- D or s -Op r fac gap d w 45	esign + slots peratictor. + chine pleng	n of of ng g –
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o Introducti Course C Upon con CO1 CO2 CO3	oolii Trar qua age ristid y sp cuit f ro ion	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chokes histormers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4 comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines.	<pre>< es -</pre>	- D or s -Op r fac gap d w 45	esign + slots peratictor. + chine pleng	n of of ng g -
without c welding T UNIT IV Output ed squirrel c character UNIT V Runaway Short circ Design o Introducti Cosign o Introducti Cosign o Con con CO1 CO2 CO3 CO4	ooli rar qua age ristic y sp cuit f ro ion Dut nple : :	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best po SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4 comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines. Design core, windings and cooling system of transformers.	<pre>< es -</pre>	- D or s -Op r fac gap d w 45	esign + slots peratictor. + chine pleng	n of of ng g –
without c welding T UNIT IV Output ea squirrel c character UNIT V Runaway Short circ Design o Introducti Design o Introducti Course C Upon con CO1 CO2 CO3 CO4 CO5 CO6	oolii rar qua age ristii y sp cuit f ro ion Dut mple : : : :	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4 Comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines. Design Core, windings and cooling system of transformers. Design Rotor of synchronous machines and understand their thermal behaviour.	<pre>< es -</pre>	- D or s -Op r fac gap d w 45	esign + slots peratictor. + chine pleng	n of of ng g -
without c welding T UNIT IV Output ec squirrel c character UNIT V Runaway Short circ Design o Introducti Cosign o Introducti Cosign o CO1 CO2 CO3 CO4 CO5	oolii rar qua age ristii y sp cuit f ro ion Dut mple : : : :	ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholosformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound r cs –Short circuit current –Dispersion co efficient – relation between D & L for best por SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient p ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+4 Comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines. Design Core, windings and cooling system of transformers. Design Rotor of synchronous machines and understand their thermal behaviour.	<pre>< es -</pre>	- D or s -Op r fac gap d w 45	esign + slots peratictor. + chine pleng	n of of ng g -

2.	Sen.,S.K., 'PrinciplesofElectricalMachineDesignswithComputerProgrammes', OxfordandIBHPublishingCo.Pvt.Ltd.NewDelhi,2014,3 rd edition.								
Reference	Books:								
1.	R.K.Agarwal, Principles of Electrical Machine design, S.K. Kataria and Sons, Delhi 2014 5 th edition.								
2.	V.N. Mittle, 'Design of Electrical Machines', Standard Publications and Distributors, Delhi, 2002.								
E- References 1 http://cusp.umn.edu/machine_design.php									

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	1	1				1
CO2	3	3	3	3	3	1	1	1				1
CO3	3	3	3	3	3	1	1	1				
CO4	3	3	3	3	3	1	1	1				1
CO5	3	3	3	3	3	1	1	1				1
CO6	3	3	3	3	3	1	1	1				1

18EEP02	BIOLOGY FOR ELECTRICAL ENGINEERS	L	TF	Р С
	·	3	0 0) 3
	Objectives:	_		
	ose of this course is to provide a basic and easy understanding of modern biology to			
	disciplinary field. It emphasis on the basic engineering principles of bimedicalequipn			
	e is expected to encourage the engineering students to think about solving biologica ing tools. These will be gained by the following:	i propi	ems w	lith
1.	An understanding of biological mechanisms of living organisms from the perspect	ive of e	naine	ers
2.	To Understand the principles of Biomedical Equipments.		Ingine	ci3.
3.	An understanding of the function and regulation of human system and acquire k	nowled	lae ah	out
0.	biological problems that requires engineering expertise to solve them.	1011100	ige ab	out
4.	An Understanding of the basics of molecular biology and genetics.			
5.	To know about the radiation safety instruments and X Ray examinations.			
6.	To evaluate the kinetics and thermodynamics of enzymatic process.			
Unit I	BIOMOLECULES AND METABOLISM		9 +	-
	drates- classification - Glycolysis- definition- flow chart- steps involved in glycolysis- p			
	off phase- kinds of reactions in glycolysis. Photosynthesis- definition- significanc			netic-
pigments	types- structure of pigments factors affecting photosynthesis- external and internal f	actors		
Unit II	BASICS OF ENZYMES, MACROMOLECULES AND NUCLEIC ACIDS		9 +	0
Introduct	ion - Enzymes – Proteases and amylases. Proteins- classification- structure of p	orotein	s- prir	nary.
	y, tertiary and quaternary structure- properties of proteins- physical and chemical p			
	s. Types-Structural components of nucleic acids- acid, pentose sugar and nitrogenous			
· .			and D	NA-
 nucleot 	ide and its functions - single and double helical structure of DNA-comparison betwee	n Dina	апи п	
	Ide and its functions - single and double helical structure of DNA-comparison betwee RNA -mRNA, tRNA and rRNA and their function.	n Dina	anur	
types of I	RNA -mRNA, tRNA and rRNA and their function.			
types of I Unit III	RNA -mRNA, tRNA and rRNA and their function.		9 +	0
types of I Unit III Blood ce	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and colo	rimete	9 + rs - c	0 ligital
Unit III Blood ce thermom	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS II counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy –	rimete	9 + rs - c	0 ligital
Unit III Blood ce thermom	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and colo	rimete	9 + rs - c	0 ligital
types of I Unit III Blood ce thermom – angiog	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS II counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination.	rimete	9 + rs – c intens	0 ligital
types of I Unit III Blood ce thermom – angioge Unit IV	X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY	rimete image	9 + rs – c intens 9 +	0 ligital ifiers
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY I their structure – Transport of ions through the cell membrane – resting and action	rimete image	9 + rs – c intens 9 + al – bi	0 ligital ifiers
types of I Unit III Blood ce thermom – angiogi Unit IV Cells and electric p	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter - Electron microscope - radiation detectors - photo meters and colo eter - audio meters - X-ray tube - X-ray machine - Radiography and fluoroscopy - raphy - applications of X-ray examination. HUMAN PHYSIOLOGY It their structure - Transport of ions through the cell membrane - resting and action otential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Re	rimete image potenti spirato	9 + rs – c intens 9 + al – bi ry sys	0 ligital ifiers 0 o- tem
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY I their structure – Transport of ions through the cell membrane – resting and action	rimete image potenti spirato	9 + rs – c intens 9 + al – bi ry sys	0 ligital ifiers 0 o- tem
types of I Unit III Blood ce thermom – angioge Unit IV Cells and electric p - nervous micro, ne	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS II counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY I their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Res system. Design of medical instruments components of biomedical instrument system edel, surface electrode - transducers.	rimete image potenti spirato	9 + rs - c intens 9 + al - bi ry sys	o- tem es –
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY I their structure – Transport of ions through the cell membrane – resting and action otential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Re a system. Design of medical instruments components of biomedical instrument system edele, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS	rimete image potenti spirato ns – el	9 + rs - c intens 9 + al - bi ry sys ectrod 9 +	0 ligital ifiers 0- tem es –
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY at their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Rest system. Design of medical instruments components of biomedical instrument system edele, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather	rimete image potenti spirato ns – el my – s	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short	o- tem es – wave
types of I Unit III Blood ce thermom – angiog Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Re a system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar	rimete image potenti spirato ns – el my – s	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short	o- tem es – wave
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemal diathermy of differe	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Rest system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar nt diathermy techniques – Ventilators – oxymeters.	rimete image potenti spirato ns – el my – a d area	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short of irrit	iligita ifiers 0- tem es – wave atior
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemal diathermy of differe Radiatior	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action of their structure – Transport of ions through the cell membrane – resting and action of their structure – Transport of ions through the cell membrane – resting and action of their structure – Transport of ions through the cell membrane – resting and action of their structure – Transport of ions through the cell membrane – resting and action of the system. Design of medical instruments components of biomedical instrument system - Rest System. Design of medical instruments components of biomedical instrument system - Rest System - Rest Design of medical instruments components of biomedical instrument system - Rest System - Design of medical instruments components of biomedical instrument system - Rest System - Design of medical instruments components of biomedical instrument system - Rest System - Design of medical instruments components of biomedical instrument system - Rest Syst	rimete image potenti spirato ns – el my – s id area shock	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short of irrit and m	iligita ifiers 0- tem es – 0 wave ation
types of I Unit III Blood ce thermom – angioge Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock –	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY I their structure – Transport of ions through the cell membrane – resting and action otential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Rest system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar nt diathermy techniques – Ventilators – oxymeters. n safety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards.	rimete image potenti spirato ns – el my – s id area shock Nucle	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima	O O
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock – technique	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Rege system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar nt diathermy techniques – Ventilators – oxymeters. n safety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards. es – computer tomography – thermography – ultrasonic imaging system – Magnetic restructure and the system – Magnetic restructure and sy	rimete image potenti spirato ns – el my – s id area shock Nucle	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima	O
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock – technique	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY I their structure – Transport of ions through the cell membrane – resting and action otential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Rest system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar nt diathermy techniques – Ventilators – oxymeters. n safety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards.	rimete image potenti spirato ns – el my – s id area shock Nucle	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima	O
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock – technique	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS ell counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action otential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Researched, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar nt diathermy techniques – Ventilators – oxymeters. n safety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards. es – computer tomography – thermography – ultrasonic imaging system – Magnetic reference in emission tomography – digital subs traction angiography.	rimete image potenti spirato ns – el my – d area shock Nucle esonan	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima ce ima	o- tem es – 0 wave ation
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemal diathermy of differe Radiatior shock – technique – Positro	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS Ill counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Rege system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar nt diathermy techniques – Ventilators – oxymeters. n safety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards. es – computer tomography – thermography – ultrasonic imaging system – Magnetic restructure and the system – Magnetic restructure and sy	rimete image potenti spirato ns – el my – d area shock Nucle esonan	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima ce ima	o- tem es – 0 wave ation
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock – technique – Positro	BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS ers Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar nt diathermy techniques – Ventilators – oxymeters. nafety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards. Total (4 Dutcomes:	rimete image potenti spirato ns – el my – d area shock Nucle esonan	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima ce ima	o- tem es – 0 wave ation
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock – technique – Positro	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and coloreter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Reis system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS Kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range are nt diathermy techniques – Ventilators – oxymeters. n safety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards. es – computer tomography – thermography – ultrasonic imaging system – Magnetic reference in emission tomography – digital subs traction angiography. Total (4 Dutcomes:	rimete image potenti spirato ns – el my – d area shock Nucle esonan	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima ce ima	o- tem es – 0 wave ation
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock – technique – Positro Upon cor CO1	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and colo eter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action otential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Rest system. Design of medical instruments components of biomedical instrument systemedle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range ar in diathermy techniques – Ventilators – oxymeters. In diathermy techniques – Ventilators – Devices to protect against electrical hazards. as – computer tomography – thermography – ultrasonic imaging system – Magnetic refinent of mography – digital subs traction angiography. Total (4 Dutcomes: mpletion of this course, the students will be able to: I Be aware that all types of life have the identical structural units.	rimete image potenti spirato ns – el my – : d area shock Nucle sonan	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima ce ima	0 iligital ifiers 0 tem es – ation aging aging aging
types of I Unit III Blood ce thermom – angiogu Unit IV Cells and electric p - nervous micro, ne Unit V Pacemak diathermy of differe Radiatior shock – technique – Positro	RNA -mRNA, tRNA and rRNA and their function. X RAY EXAMINATIONS III counter – Electron microscope – radiation detectors – photo meters and coloreter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – raphy – applications of X-ray examination. HUMAN PHYSIOLOGY It their structure – Transport of ions through the cell membrane – resting and action potential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Reis system. Design of medical instruments components of biomedical instrument system edle, surface electrode - transducers. BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS Kers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diather y – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range are nt diathermy techniques – Ventilators – oxymeters. n safety instrumentation – physiological effects due to 50 Hz current passage – Micro electrical accidents in hospitals – Devices to protect against electrical hazards. es – computer tomography – thermography – ultrasonic imaging system – Magnetic reference in emission tomography – digital subs traction angiography. Total (4 Dutcomes:	rimete image potenti spirato ns – el my – : d area shock Nucle sonan	9 + rs - c intens 9 + al - bi ry sys ectrod 9 + short v of irrit and m ar ima ce ima	o- tem es – ation aging aging

CO4	:	Explain human physiological systems.
CO5	:	Share knowledge in genetics and molecular biology.
CO6	:	Know about the applications and implementation of medical equipments as it is a challenging
		interdisciplinary process
Text Bo	ooks	<u>.</u>
1.		FJ.L.Jain, Sanjay jain and Nitin jain- "Fundamentals of Biochemistry" - Sixth edition, S.Chand and company Ltd., Ram nagar, 2005.
2.		Dr.A.V.S.S.Rama Rao-" Text book of Biochemistry"- Text book of Biochemistry- First edition- UBS Publishers' Distributors Pvt. Ltd., 2019
3.		U. Satyanarayana – "Biochemistry"-5th edition – Sri Padmavathi Publications Ltd., 2017.
4.		N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.
5.		Dr.M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2012.
6.		Leslie Cromwell, Fred J.Weibell, Erich A.Pfeiffer, 'Bio-Medical Instrumentation andMeasurements', II edition, Pearson Education, 2011 / PHI.
Referer	nce	Books:
1.		Stent, G. S.; and Calender-" Molecular Genetics"- Second edition - R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
2.		By Nelson, D. L.; and Cox- "Principles of Biochemistry"- V Edition- M. M.W.H. Freeman and Company
3.		Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H-" Outlines of Biochemistry"- John Wiley and Sons
4.		Quillin, Allison Scott Freeman, Kim Quillin and Lizabeth Allison, 'Biological Science', Pearson Education India, 2016.
5.		Reinhard Renneberg, Viola Berkling and Vanya Loroch, 'Biotechnology for Beginner's', Academic Press, 2017.
6.		S Balaji, S Lakshminarayanan, "Conceptual comparison of metabolic pathways with electronic circuits", Journal of Bionics Engineering, Vol 1, Issue 3, pg 175-182, 2004
6. 7.		
		circuits", Journal of Bionics Engineering, Vol 1, Issue 3, pg 175-182, 2004 R.S.Khandpur, 'Hand Book of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co
7.		circuits", Journal of Bionics Engineering, Vol 1, Issue 3, pg 175-182, 2004 R.S.Khandpur, 'Hand Book of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co Ltd.,2012. L.A. Geddes and L.E.Baker, 'Principles of Applied Bio-Medical Instrumentation', John Wiley
7. 8.		circuits", Journal of Bionics Engineering, Vol 1, Issue 3, pg 175-182, 2004 R.S.Khandpur, 'Hand Book of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co Ltd.,2012. L.A. Geddes and L.E.Baker, 'Principles of Applied Bio-Medical Instrumentation', John Wiley &Sons, 2011.
7. 8. 9. 10.		circuits", Journal of Bionics Engineering, Vol 1, Issue 3, pg 175-182, 2004 R.S.Khandpur, 'Hand Book of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co Ltd.,2012. L.A. Geddes and L.E.Baker, 'Principles of Applied Bio-Medical Instrumentation', John Wiley &Sons, 2011. C.Rajarao, 'Medical Instrumentation', John Wiley & Sons,2013. C.Rajarao and S.K. Guha, 'Principles of Medical Electronics and Bio-medical Instrumentation', Universities press (India) Ltd, Orient Longman Itd, 2012.
7. 8. 9.	ence	circuits", Journal of Bionics Engineering, Vol 1, Issue 3, pg 175-182, 2004 R.S.Khandpur, 'Hand Book of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co Ltd.,2012. L.A. Geddes and L.E.Baker, 'Principles of Applied Bio-Medical Instrumentation', John Wiley &Sons, 2011. C.Rajarao, 'Medical Instrumentation', John Wiley & Sons,2013. C.Rajarao and S.K. Guha, 'Principles of Medical Electronics and Bio-medical Instrumentation', Universities press (India) Ltd, Orient Longman Itd, 2012.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	1	1	1	1	1	1	1
CO2	3	1	1	3	1	1	1	1	1	1	1	1
CO3	1	2	2	1	1	1	1	1	1	1	1	1
CO4	3	1	1	3	2	1	1	1	1	1	1	1
CO5	2	1	1	2	1	1	2	1	1	1	1	1
CO6	2	2	1	1	1	1	1	1	1	1	1	1

18EEP03	DIGITAL SIGNAL PROCESSING	L	ТР	С
		3	0 0	3
Course Ob				
1.	To classify signals and systems & their mathematical representation.			
2.	To analyze the discrete time systems.			
<u>3.</u> 4	To study various transformation techniques & their computation. To study about filters and their design for digital implementation.			
4 5	To study about mers and mer design for digital implementation. To study about a programmable digital signal processor & quantization effects.			
5				
UNIT I	INTRODUCTION TO SIGNALS AND SYSTEMS		9 +	0
Classificatio	n of systems: Continuous, discrete, linear, causal, stable, dynamic, recursive,	time	variar	ice;
	n of signals: continuous and discrete, energy and power; mathematical represent		of sign	als;
spectral der	sity; sampling techniques, quantization, quantization error, Nyquist rate, aliasing e	ffect.		
			•	•
	DISCRETE TIME SYSTEM ANALYSIS		9 +	0
	and its properties, inverse z-transforms; difference equation – Solution by z transfo stems - Stability analysis, frequency response –Convolution – Discrete TimeFo			
	and phase representation.	unenn	ansion	11
magnitude				
Unit III	DISCRETE FOURIER TRANSFORM & COMPUTATION		9 +	0
	urier Transform- properties, magnitude and phase representation - Computation of	DFT	usina F	F
	DIT &DIF using radix 2 FFT – Butterfly structure.			
Unit IV	DESIGN OF DIGITAL FILTERS		9 +	0
	er realization – Parallel & cascade forms. FIR design: Windowing Techniques – Ne			
	inear phase characteristics. Analog filter design – Butterworth and Chebyshev app		ations;	II
Filters, digit	al design using impulse invariant and bilinear transformation - mWarping, pre warp	ing.		
Unit V	DIGITAL SIGNAL PROCESSORS		9 +	0
	 Architecture – Features – Addressing Formats – Functional modes - Introduction 		-	-
DSP Proces				Jai
201 11000				
	Total (45-	+0)= 4	5 Peri	ods
Course Ou	comes:			
CO1	etion of this course, the students will be able to:			
	Understand the types of systems and signals.			
CO2	Understand the types of systems and signals. Solve problems in digital system using Z transform.			
CO2 2 CO3 2	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals.			
CO2 CO3 CO4	Understand the types of systems and signals.Solve problems in digital system using Z transform.Apply Fourier transforms for processing of digital signals.Analyze digital systems using Fast Fourier transform.			
CO2 CO3 CO4 CO5	Understand the types of systems and signals.Solve problems in digital system using Z transform.Apply Fourier transforms for processing of digital signals.Analyze digital systems using Fast Fourier transform.Design digital filters algorithms in digital signal processor platforms			
CO2 CO3 CO4	Understand the types of systems and signals.Solve problems in digital system using Z transform.Apply Fourier transforms for processing of digital signals.Analyze digital systems using Fast Fourier transform.			
CO2 CO3 CO4 CO5 CO6	Understand the types of systems and signals.Solve problems in digital system using Z transform.Apply Fourier transforms for processing of digital signals.Analyze digital systems using Fast Fourier transform.Design digital filters algorithms in digital signal processor platformsGain knowledge about DSP processors.			
CO2 CO3 CO4 CO5 CO6 Text Books	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors.	ms and	4	
CO2 CO3 CO4 CO5 CO6	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr	ms and	3	
CO2 CO3 CO4 CO5 CO6 Text Books	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007.			3.
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2.	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007. S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw H	Hill Ed	u, 201	
CO2 CO3 CO4 CO5 CO6 Text Books	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007.	Hill Ed	u, 201	
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. 3.	 Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007. S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw I Robert Schilling & Sandra L.Harris, "Introduction to Digital Signal Processing Cengage Learning, 2014. 	Hill Ed	u, 201	
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2.	 Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007. S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw H Robert Schilling & Sandra L.Harris, "Introduction to Digital Signal Processing Cengage Learning, 2014. 	Hill Ed using	u, 201	
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. 3. Reference 1.	 Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007. S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw I Robert Schilling & Sandra L.Harris, "Introduction to Digital Signal Processing Cengage Learning, 2014. Books: Poorna Chandra S, Sasikala. B ,Digital Signal Processing, Vijay Nicole/TMH,201 	Hill Ed using 3.	u, 2013 9 Matla	ıb",
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. 3. Reference 1. 2.	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. : J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithm Applications', Pearson Education, New Delhi, 2007. S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw H Robert Schilling & Sandra L.Harris, "Introduction to Digital Signal Processing Cengage Learning, 2014. Books: Poorna Chandra S, Sasikala. B ,Digital Signal Processing, Vijay Nicole/TMH,201 B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford Universi	Hill Ed using 3. ty Pre	u, 2013 9 Matla ss, 201	b", 0.
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. 3. Reference 1.	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. : J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007. S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw H Robert Schilling & Sandra L.Harris, "Introduction to Digital Signal Processing Cengage Learning, 2014. Books: Poorna Chandra S, Sasikala. B ,Digital Signal Processing, Vijay Nicole/TMH,201 B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford Universi Taan S. EIAli, 'Discrete Systems and Digital Signal Processing with Mat Lab', CR	Hill Ed using 3. ty Pre	u, 2013 g Matla ss, 201 ss, 201	b", 0. 2.
CO2 CO3 CO4 CO5 CO6 Text Books 1. 2. 3. Reference 1. 2.	Understand the types of systems and signals. Solve problems in digital system using Z transform. Apply Fourier transforms for processing of digital signals. Analyze digital systems using Fast Fourier transform. Design digital filters algorithms in digital signal processor platforms Gain knowledge about DSP processors. : J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithm Applications', Pearson Education, New Delhi, 2007. S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw H Robert Schilling & Sandra L.Harris, "Introduction to Digital Signal Processing Cengage Learning, 2014. Books: Poorna Chandra S, Sasikala. B ,Digital Signal Processing, Vijay Nicole/TMH,201 B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford Universi	Hill Ed using 3. ty Pre	u, 2013 g Matla ss, 201 ss, 201	b", 0. 2.

E-References

https://nptel.ac.in/courses/108105055/34 https://books.google.co.in/books/isbn=8131710009 1 2

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	2	1	1	1	1	
CO2	3	3	2	1	2	1	2	1	1	1	1	
CO3	3	3	3	3	2	1	3	1	1	1	1	
CO4	3	3	3	3	3	1	3	1	1	1	1	
CO5	2	3	3	3	3	1	3	1	1	1	1	
CO6	1	1	1	3	2	1	3	1	1	1	1	

18EEP04	DISCRETE CONTROL SYSTEMS	Т	Ρ	С
	3	0	0	3
Course Ob				
1.	To understand the digital signal processing.			
2.	To study the design of sampled data control systems in state space.			
3.	To impart knowledge on digital control algorithms and stability study.			
Unit I	INTRODUCTION	9	+	0
controllers -	equency and time response analysis and specifications of continuous time systems - n continuous time compensations - continues time PI, PD, PID controllers, Realization on prs: Lag, Lead and Lag-Lead compensation schemes - problems.			
Unit II	SIGNAL PROCESSING IN DIGITAL CONTROL	9	+	0
discrete-tim	gital control – Configuration of basic digital control scheme – Principles of signal conve e signals – Time domain and frequency domain models for discrete-time systems tion of analog signals – Practical aspects of the choice of sampling rate – Discretizati sformation.	s - A	liasin	ng
Unit III	MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM	9	+	0
data contr concepts:	l equation description – Z-transform method of description– Z-transform analysis of sa ol systems –Jury's stability test – Routh stability criterion on the r-plane – State va First companion – Second companion – Jordan canonical models – Discrete state var Elementary principles.	riable		
Unit IV	DESIGN OF DIGITAL CONTROL ALGORITHMS			0
	 – z-plane specifications of control system design –Digital lead , lag and lag-lead comp 	9	+	0
using freque	ency response plots - Digital lead lag compensator design using Root locus plots - z- htrollers for deadbeat performance - Examples.			
Unit V	PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS	9	+	0
temperature position/spe	nt and implementation of digital PID control algorithms – Tunable PID controlle control system: Control algorithm – Digital position control system: Digital measuren eed, control algorithm – Stepping motors and their controls: Torque-speed curves, Inte cors to microprocessors	nent c	of sha	aft
	Total (45+0)	= 45	Peric	ds
Course Out	tcomes:			
Upon comp	letion of this course, the students will be able to:			
CO1 :	Get knowledge about digital control scheme.			
CO2 :	Get knowledge about sampling techniques.			
CO3 :	Design the various digital control algorithms.			
CO4 :	Design the various types of digital controllers.			
CO5 :	Design the various types of digital compensators.			
CO6 :	Get knowledge about applications of digital control.			
Text Books				
1.	M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New Delh edition.	i, 200	03,2 nd	Ł
2.	I.J.Nagrath&M.Gopal, "Control Systems Engineering", New Age International Pub Delhi, 2009,5 th edition.	isher	s, N	эw
Reference	Books			
1.	B.C.Kuo, Digital Control Systems, Oxford University Press, 2nd Edition, 2007.			
2.	K. Ogata, Modern Control Engineering, Pearson Education, 2010 5th edition.			
۷.	A cyala, would be control engineering, reason education, 2010 5 educol.			

3.	Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996.
E -Reference	ces
1	https://nptel.ac.in/courses/108103008/
2	https://www.sciencedirect.com/topics/engineering/digital-control-system

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	2	1	1	1	1	
CO2	3	3	2	1	2	1	2	1	1	1	1	
CO3	3	3	3	3	2	1	3	1	1	1	1	
CO4	3	3	3	3	3	1	3	1	1	1	1	
CO5	2	3	3	3	3	1	3	1	1	1	1	
CO6	1	1	1	3	2	1	3	1	1	1	1	

	HIGH VOLTAGE ENGINEERING	L	T	Ρ	C
		3	0	0	3
Course Ol	biostivos				
1.	To expose the various types of over voltage transients and their effect on power sys	tom			
2.	To introduce the concept of insulation co-ordination technique.	lem			
3.	To provide an overview of solid, liquid and gaseous dielectrics breakdown mechanis	m			
<u> </u>	To show how to generate over voltages in the HV testing laboratory				
<u>4.</u> 5.	To show how to generate over voltages in the HV testing laboratory	n /			
<u> </u>	To introduce testing procedure of HV power apparatus.	l y			
0.	To introduce testing procedure of HV power apparatus.				
Unit I	OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION		9	+	0
Causes of	over voltages and its effect on power system - Lightning, switching surges and t	emp	orar	y ov	er
voltages -	Bewley lattice diagram-protection against over voltages; Principle of Insulation Coord d Extra high voltage power systems.				
Unit II	ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS		9	+	0
	of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields – con	002	-	-	-
	breakdown - conduction and breakdown in pure and commercial liquids dielectric				
	ns in solid and composite dielectrics- Application of insulating materials in electrical e				, , , ,
meenamon		yuip	me	111.5.	
Unit III	GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS		9	+	0
	n of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Ger	erat	ion		ah
	es: cascaded transformer, resonant transformer and tesla coil- Generation of High im				
single and	multistage Marx circuits - Generation of switching voltages - Generation of impulse cu	rren	ts. T	ripp	inc
	multistage Marx circuits - Generation of switching voltages - Generation of impulse cu of impulse generators.	rren	ts. T	ripp	ing
	multistage Marx circuits - Generation of switching voltages - Generation of impulse cu I of impulse generators.	rren	ts. T	ripp	ing
		rren	ts. T 9	ripp	-
and contro	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS		9	+	0
and contro Unit IV Measurem	I of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS Internation of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat		9	+	0
and contro Unit IV Measurem	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS		9	+	0
and contro Unit IV Measurem	I of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS Internation of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat		9	+	0 Ise
and contro Unit IV Measurem – digital ter Unit V Overviews method - H	Of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements.	ng a	9 ind I 9 o an	+ mpu + d Do	0 Ise 0 wr
and contro Unit IV Measurem – digital ter Unit V Overviews method - H	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables.	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	0 Ise 0 wr rge
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters,	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS International and Indian standards- laboratory test procedure: multi-level method HIGH voltage and Current Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (45)	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	0 Ise 0 wr
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters,	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ient of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (45	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	0 Ise 0 wr
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (45 utcomes:	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	0 Ise 0 wr rge
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 :	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS International and Indian standards- laboratory test procedure: multi-level method HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (45 utcomes: International various types of over voltages and its effect on power system. 	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	0 Ise 0 wr rge
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 : CO2 :	Al of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (48 utcomes: pletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. 	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	lse owi
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 : CO2 : CO3 :	I of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (4: utcomes: Independent of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities.	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	lse owi
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 : CO2 :	Al of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (48 utcomes: pletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. 	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	lse owi
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 : CO2 : CO3 :	I of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (4: utcomes: Independent of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities.	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	0 Ise 0 wr
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	I of impulse generators. MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS ient of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternat chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power trans Power capacitors and Cables. Total (4 utcomes: Inderstand various types of over voltages and its effect on power system. Know measurement of high voltage DC, AC and impulse quantities. 	ng a I, Up form	9 ind I 9 an ners	+ mpu d Dc , Su	0 Ise 0 wr
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 :	In of impulse generators. Image: Market Stream St	ng a	9 9 9 an hers =451	+ mpu + d Dc , Su Perio	
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 :	In of impulse generators. Image: Market Methods Stress S	ng a	9 9 9 an hers =451	+ mpu + d Dc , Su Perio	
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book 1.	In of impulse generators. Image: Margin and State	ng a	9 9 9 an hers =451	+ mpu + d Dc , Su Perio	
and contro Unit IV Measurem – digital ter Unit V Overviews method - H Arresters, Course Ou Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book	In of impulse generators. Image: Margin and State	i, Up	9 nd I ners =45I	+ mpu + d Dc , Su Perio	

2.	C.L. Wadhwa, 'High Voltage Engineering', New Age International (P) Ltd Publishers, Third Edition, 2012
3.	Rakosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering', New Age International (P) Ltd Publishers, 4 th Edition, 2011.
E-referen	
1	www.onlinecourses.nptel.ac.in/noc18_ee41
2	NPTEL courses on High Voltage Engineering, IIT Kanpur.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2				1					
CO2	3	2	2	1		1						
CO3	3	2	3		1							
CO4	3	2	3		1							
CO5	3		2		1		1					
CO6	3	2	3	2	1	1	2		1		1	

18EEP06	HVDC TRANSMISSION SYSTEMS	L	Т	Ρ	С
• • •		3	0	0	3
Course Ol					
1.	To understand the concept, planning of DC power transmission and comparison wit	h AC	;	pow	/er
	transmission.				
2.	To analyze HVDC converters.				
3.	To study about the HVDC system control.				
4.	To analyze harmonics and design of filters.				
5.	To model and analysis the DC system under steady state.				
Unit I	INTRODUCTION		9	+	0
DC Power	transmission technology - Comparison of AC and DC transmission-Application of DC	C tra	nsm	nissio	on -
	n of DC transmission system– Planning for HVDC transmission–Modern trends in HV				
DC breake	ers – Operating problems– HVDC transmission based on VSC –Types and applica	tions	s of	MT	ЭС
systems.					
Unit II	ANALYSIS OF HVDC CONVERTERS		9	*	0
	nutated converter-Analysis of Graetz circuit with and without overlap-Pulse numb	or. (-		-
	configuration–Converter bridge characteristics–Analysis of 12 pulse converters –Analysis				
	and firing schemes	arysi	5 01	v 00	,
<u>topologico</u>					
Unit III	CONVERTER AND HVDC SYSTEM CONTROL		9	+	0
-	of DC link control–Converter control characteristics–System control hierarchy– Firin	a an	-	-	-
	id extinction angle control-Starting and stopping of DC link-Power control -Higher le				
		velo			\mathbf{IS}
		evel	Jon		18.
	VSC based HVDC link	evel	Jon		15 -
			9	+	0
Control of Unit IV	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL		9	+	0
Control of Unit IV Reactive p	VSC based HVDC link		9	+	0
Control of Unit IV Reactive p harmonics	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state—Sources of reactive power—SVC and STATCOM—Design of AC and DC filters —Active filters		9 nera	+ tion	0 of
Control of Unit IV Reactive p harmonics Unit V	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state—Sources of reactive power—SVC and STATCOM—Design of AC and DC filters —Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS	-Ger	9 nera 9	+ tion	0 of 0
Control of Unit IV Reactive p harmonics Unit V	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analyse	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit sys	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit sys Course Ou	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes:	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Ou Upon com	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state—Sources of reactive power—SVC and STATCOM—Design of AC and DC filters —Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities—DC system model —Inclusion of constraints —Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to:	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Ou Upon comp CO1 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state—Sources of reactive power—SVC and STATCOM—Design of AC and DC filters —Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities—DC system model —Inclusion of constraints —Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied.	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Ou Upon comp CO1 : CO2 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied.	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit sys Course Ou Upon comp CO1 : CO2 : CO3 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control.	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Out Upon comp CO1 : CO2 : CO3 : CO3 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management.	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics.	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management.	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Out Upon comp CO1 : CO2 : CO3 : CO3 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45- utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system.	-Ger sis-C	9 nera 9 Case	+ tion +	0 of 0 dy.
Control of Unit IV Reactive p harmonics Unit V Per unit syn Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOM– –Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system.	-Ger sis-(C •0) =	9 9 2ase 45	+ tion + e stua Perio	0 of dy.
Control of Unit IV Reactive p harmonics Unit V Per unit system Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO5 : CO6 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. s: Padiyar,K.R., "HVDCpower transmission system", NewAg eInternational(P) Ltd., New	-Ger sis-(C •0) =	9 9 2ase 45	+ tion + e stua Perio	0 of dy.
Control of Unit IV Reactive p harmonics Unit V Per unit sys Course Ou Upon com CO1 : CO2 : CO2 : CO3 : CO4 : CO5 : CO6 : Text Book 1.	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45- utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. cs: Padiyar,K.R., "HVDCpower transmission system", NewAg eInternational(P) Ltd., New Edition, 2015	-Ger sis-C -0) =	9 9 2ase 45	+ tion + e stua Perio	0 of dy.
Control of Unit IV Reactive p harmonics Unit V Per unit syn Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOM– Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. s: Padiyar,K.R., "HVDCpower transmission system", NewAg eInternational(P) Ltd., New	-Ger sis-C -0) =	9 9 2ase 45	+ tion + e stua Perio	0 of dy.
Control of Unit IV Reactive p harmonics Unit V Per unit syn Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book 1. 2.	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOM- -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45- utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. s: Padiyar,K.R., "HVDCpower transmission system", NewAg eInternational(P) Ltd., New Edition, 2015 Edward Wilson Kimbark, "DirectCurrent Transmission", Vol.I, Wiley Interscience, New London, Sydney, 1971	-Ger sis-C -0) =	9 9 2ase 45	+ tion + e stua Perio	0 of dy. od
Control of Unit IV Reactive p harmonics Unit V Per unit sys Course Ou Upon com CO1 : CO2 : CO2 : CO3 : CO4 : CO5 : CO6 : Text Book 1.	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOM– -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45- utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. s: Padiyar,K.R., "HVDCpower transmission system",NewAg eInternational(P) Ltd., New Edition, 2015 Edward Wilson Kimbark, "DirectCurrent Transmission",Vol.I, Wiley Interscience, New London, Sydney,1971	-Ger sis-C •0) =	9 9 2ase 45	+ tion + stuu Perio	0 of dy. ods
Control of Unit IV Reactive p harmonics Unit V Per unit syr Course Ou Upon com CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book 1. 2.	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL wower requirements in steady state—Sources of reactive power—SVC and STATCOM—Design of AC and DC filters —Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities—DC system model—Inclusion of constraints —Power flow analys Total (45- utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. ss: Padiyar,K.R., "HVDCpower transmission system",NewAg eInternational(P) Ltd., New Edition, 2015 Edward Wilson Kimbark, "DirectCurrent Transmission", Vol.I, Wiley Interscience, New London, Sydney, 1971 Books: Colin Adamson and HingoraniNG, "High Voltage Direct Current Power Transmission	-Ger sis-C •0) =	9 9 2ase 45	+ tion + stuu Perio	0 of dy. od:
Control of Unit IV Reactive p harmonics Unit V Per unit syn Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book 1. 2. Reference	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOM– -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analys Total (45- utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. s: Padiyar,K.R., "HVDCpower transmission system",NewAg eInternational(P) Ltd., New Edition, 2015 Edward Wilson Kimbark, "DirectCurrent Transmission",Vol.I, Wiley Interscience, New London, Sydney,1971	-Ger isis-C •0) =	9 9 2ase 45 9 	+ estuce Perio	of dy. od

E- Refere	nce:
1	www.onlinecourses.nptel.ac.in/noc18_ee41

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	1	1	1	1	1	1	2
CO2	1	2	3	2	2	1	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	2
CO4	2	2	2	2	2	1	1	1	1	1	1	1
CO5	2	3	3	2	2	1	1	1	1	1	1	1
CO6	2	2	1	1	1	1	1	1	1	1	1	1

18EEP07	EHVAC TRANSMISSION SYSTEMS	L	т	Ρ	С
		3	0	0	3
Course O	bjectives:				
1.	To understand the concept and planning of HVAC power transmission.				
2.	Evaluate EHVAC transmission system with all parameters				
3.	Understand electrostatic effects in EHVAC transmission				
4.	Understand effects of Corona in EHVAC transmission				
5.	Select a suitable voltage controller for an EHVAC transmission system				
Unit I	INTRODUCTION		9	+	0
Necessitv	of EHV AC transmission, advantages and problems, power handling capacity a	and l	ine	loss	es.
mechanica	al considerations, resistance of conductors, temperature rise of conductors and properties of bundled conductors – problems.				
Unit II	LINE AND GROUND REACTIVE PARAMETERS		9	+	0
Inductance	of EHV line configurations, line capacitance calculation, sequence inductances and	capa	cita	nces	,
line param	eters for modes of propagation, resistance and inductance of ground return.				
Unit III	VOLTAGE GRADIENTS OF CONDUCTORS	<u> </u>	9	+	0
	tics, field of sphere gap, field of line changes and properties, charge – potential relation	one f			-
	s lines, surface voltage gradient on conductors, distribution of voltage gradient on sub				
bundle, ef	ect of high electro static field on Humans, animals and plants.				
Unit IV	CORONA EFFECTS		9	. .	0
			-	+	-
	s and corona loss, corona-loss formulae, charge-voltage (q–V) diagram and corona l g waves due to corona loss, audible noise: generation and characteristics, limits for				
noise mea	surement and meters, formulae for audible noise and its use in design, relation betwee phase AN levels example.				
Unit V	POWER FREQUENCY VOLTAGE CONTROL		9	+	0
Power circ	le diagram and its use - voltage control using synchronous condensers - cascade con	nectio	on c	of shu	Int
	compensation - sub synchronous resonance in series capacitor - compensated line ting system.	es - s	stati	c VA	R
	Total (45+	·0) = ·	45 I	Peric	ods
Course O		•/			
Upon com	pletion of this course, the students will be able to:				
CO1 :	Learn about the trends in EHV AC Transmission and calculate Line inductance and	d cap	acit	ance	s
	of bundled conductors.				
CO2 :	Calculate voltage gradient of bundled conductors				
CO3 :	Understand the effects of corona like Audible noise				
CO4 :	Understand the effect of Radio Interference and analyze travelling waves				
CO5 :	Calculate electrostatic field of EHV AC lines				
CO6 :	Analyze compensated devices for voltage control.				
Text Bool	(S:				
1.	R. D. Begamudre, "EHVAC Transmission Engineering" New Age International (Edition, 2014.	P)Ltd	I., T	⁻ hird	
2.	S. Rao, "HVAC and DC Transmission 7 practice", Khanna Publishers, Delhi, Third E	ditior	n, 19	993.	
Reference	Books				
1.	Shobhit Gupta and Deepak Gupta," EHV AC/DC Transmission", Engineering Books	s Pub	lish	ers,	
	2014.				

E- Referen	ces:
1	www.onlinecourses.nptel.ac.in
2	www.electrical-engineering-portal.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	1	1	1	1	1	1	2
CO2	2	3	2	2	2	1	1	1	1	1	1	1
CO3	2	2	2	2	2	1	1	1	1	1	1	1
CO4	2	2	2	2	2	1	1	1	1	1	1	1
CO5	2	3	3	2	2	1	1	1	1	1	1	1
CO6	2	2	3	3	2	1	1	1	1	1	1	1

18EEP08	FACTS CONTROLLERS	L 2	1	P	C 3
		3	0	0	
Course O	bjectives:				
1.	To Introduce the Reactive Power Control Techniques.				
2.	To Educate on Static VAR Compensators and Their Applications				
3.	To Provide Knowledge on Thyristor Controlled Series Capacitors				
4.	To Educate on STATCOM Devices				
5.	To Provide Knowledge on FACTS Controllers				
Unit I	INTRODUCTION		9	+	0
Reactive Compense	Power Control in Electrical Power Transmission Lines -Uncompensated Transmission ation – Basic Concepts of Static Var Compensator (SVC) – Thyristor Controlled S Unified Power Flow Controller (UPFC).		ne –		ie
Unit II	STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS		9	+	0
Voltage -	Control by SVC – Advantages of Slope in Dynamic Characteristics – Influence of S Design of SVC Voltage Regulator –Modelling of SVC for Power Flow and Fast Trar ns: Enhancement of Transient Stability – Steady State Power Transfer – Enhance amping.	nsier	t Sta	bility	у-
Unit III	THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATION	S	9	+	C
Operation	of The TCSC – Different Modes of Operation – Modelling of TCSC – Variable Rea			lode) - I
	for Power Flow and Stability Studies. Applications: Improvement of the System nent of System Damping		ility	_11111	τ-
Enhancen Unit IV	Nent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS	Stab	9	+	0
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller	Nent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Trans CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I	Stab s. A stabil	9 pplica ity. S t Stat	+ atior SS(pility +	0 ns C- /
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller	Nent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Trans CO-ORDINATION OF FACTS CONTROLLERS	Stab s. A stabil	9 pplica ity. S t Stat	+ atior SS(pility +	0 ns: C- 7
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller	Nent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Trans CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I	Stab s. A stabil sien	9 pplica ity. S t Stat 9 ar Co	+ atior SS(pility + ntro	0 ns C- 1
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique	VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Machine the control of the control control control control of the control of the control of the control of the control control of the control of the control of the control of the control control of the c	Stab s. A stabil sien	9 pplica ity. S t Stat 9 ar Co	+ atior SS(pility + ntro	0 ns C- 1
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique	VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Trans CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (45+ utcomes:	Stab s. A stabil sien	9 pplica ity. S t Stat 9 ar Co	+ atior SS(pility + ntro	0 ns C- /
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique Course O Upon com	Image: Strain	Stab s. A stabil sien	9 pplica ity. S t Stat 9 ar Co	+ atior SS(pility + ntro	0 ns: C- 7
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique Course O Upon com CO1	Image: Strain	Stat	9 pplica ity. S t Stat 9 ar Co 45 P	+ atior SS(pility + ntro	0 ns: C- 7
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 :	Image: State of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tran CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: apletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applic	Stat	9 pplica ity. S t Stat 9 ar Co 45 P	+ atior SS(pility + ntro	0 ns: C- / 0
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 :	Nent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tran CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: appletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applic. Apply knowledge in load compensation techniques.	Stat	9 pplica ity. S t Stat 9 ar Co 45 P	+ atior SS(pility + ntro	0 ns: C- / 0
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique CO1 : CO2 : CO3 : CO3 : CO4 :	Voltrage Source Converter Based Facts ControlLers Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Trans CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: apletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applic. Apply knowledge in load compensation techniques. Analyze the performance of steady state and transients of facts controllers.	Stat	9 pplica ity. S t Stat 9 ar Co 45 P	+ atior SS(pility + ntro	0 ns: C- 7
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 :	Nent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tran CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: appletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applic. Apply knowledge in load compensation techniques.	Stat	9 pplica ity. S t Stat 9 ar Co 45 P	+ atior SS(pility + ntro	0 ns C- /
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique CO1 : CO2 : CO3 : CO4 : CO5 :	Internet of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Trans CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (454 utcomes: apletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applic Apply knowledge in load compensation techniques. Analyze the performance of steady state and transients of facts controllers. Apply knowledge in advanced FACTS controllers.	Stat	9 pplica ity. S t Stat 9 ar Co 45 P	+ atior SS(pility + ntro	0 ns: C- 7
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : Text Bool	Image: Strain	Stat	9 oplica ity. S t Stat 9 ar Co 45 P	+ ation SSC pility + ntro eric	
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique CO1 : CO2 : CO3 : CO4 : CO5 :	Inent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS Inchronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage Ins of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Transient SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Transient of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Transient of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Transient of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Transient of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Transient of SSSC and the Control of Power Sustem ControlLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (454 trotal (454 utcomes: Interactions - SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using I es – Control Coordination Using Genetic Algorithms. Total (454 Utcomes: Interaction of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applic Apply knowledge in load compensation techniques. Analyze the performance of steady state and transients of facts controllers. Apply knowledge in advanced FACTS controllers. Ks: R.Mohan Mathur, Rajiv K.Varma, "Thyristor – Based Facts Controllers For Electric	Stat	9 oplica ity. S t Stat 9 ar Co 45 P	+ ation SSC pility + ntro eric	
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Bool 1.	Image: Strain	Stab s. A tabil sien Linea 0) =	9 oplica ity. S t Stat 9 ar Co 45 P	+ atior SSC pility + ntro eric	
Enhancen Unit IV Static Syr Steady St Operation Studies. Unit V Controller Technique CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : Text Bool	Image: Section 2016 Image: Section 2017 Image: Section 20	Stab s. A tabil sien Linea 0) =	9 pplica ity. S t Stat 9 ar Co 45 P 	+ atior SSC pility + ntro eric	

Referen	ce Books:
1.	A.T.John, "Flexible A.C. Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 2019.
2.	V.K.Sood,"HVDC And FACTS Controllers – Applications of Static Converters in Power System", APRIL 2004, Kluwer Academic Publishers, 2004.
3.	Xiao – Ping Zang, Christian Rehtanz And Bikash Pal, "Flexible AC Transmission System: Modelling and Control" Springer, 2012.
E-Refere	nce:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	3	1	1	1	1	1	1	1
CO2	1	3	2	2	2	1	1	1	1	1	1	1
CO3	3	1	1	3	2	1	1	1	1	1	1	1
CO4	2	1	1	3	2	2	1	1	1	1	1	1
CO5	1	1	1	3	1	1	2	1	1	1	1	1

	POWER QUALITY	L	Γ	Ρ	C
		3 ()	0	3
Course Ol	bjectives:				
1.	Introduce the power quality terms and definitions				
2.	Understand the sources and issues of various power quality problems.				
3.	Gain in-depth knowledge of the mitigation/ suppression techniques of voltages sags	, inte	rrup	otio	ns
	and harmonics.	,			
4.	Introduce the computer tools for transient's analysis.				
5.	Expose the various methods of power quality monitoring.				
Unit I	INTRODUCTION TO POWER QUALITY	9		+	0
	d definitions of Power quality, General classes of power quality problems: transients- lo				-
voltage var	riations- short duration voltage variations, voltage Imbalance, waveform distortion, voltage quency variations-International standard of power quality-CBEMA and ITI curves.				
Unit II	VOLTAGE SAGS AND LONG DURATION VOLTAGE VARIATIONS	g)	+	0
Sources of	f sags and interruptions, estimating voltage sag performance, fundamental principles	of vo	Itag	qe s	ac
	-voltage sag mitigation solution at the End-User level- Evaluating the economics of				
	ternatives –Motor Starting sags.				
	ation voltage variations: Principles of regulating the voltage – devices for voltage re				
	gulator application- capacitor for voltage regulation- End user capacitor applicationF	licker	:: so	our	ces
and mitiga	tion techniques.				
Unit III	TRANSIENT OVERVOLTAGE	g		+	0
	f transientover voltage- Principles of overvoltage Protection- Devices for mitigation of o			-	-
	acitor-switching transients – Utility system lightning protection - Managing Ferro resona				
			0		
	problems with loads - computer tools for transients analysis: PSCAD and EMTP.				
	problems with loads - computer tools for transients analysis: PSCAD and EMTP.				
	problems with loads - computer tools for transients analysis: PSCAD and EMTP.	9)	+	0
Unit IV	· · · ·	-		+ vers	-
Unit IV Fundamen	HARMONICS	nonic	s١		SUS
Unit IV Fundamen transients- commercia	HARMONICS htals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character	nonic sour	s v ces – I	s fr Effe	on
Unit IV Fundamen transients- commercia of Harmon	HARMONICS htals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices	nonic sour	s v ces – I	s fr Effe	on
Unit IV Fundamen transients- commercia of Harmon	HARMONICS htals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character	nonic sour	s v ces – I	s fr Effe	om
Unit IV Fundamen transients- commercia of Harmon harmonic c	HARMONICS htals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics.	nonic sour istics for c	s ces – I ont	s fr Effe	sus on cts ng
Unit IV Fundamen transients- commercia of Harmon harmonic o Unit V	HARMONICS htals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION	nonic sour istics for c	s v ces – I ont	s fr Effe rolli +	om cts ng 0
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser,	nonic sour istics for c g spec	s v ces – I ont	s fr Effe rolli +	orr orr orts ng 0
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor	nonic sour istics for c g spec	s v ces – I ont	s fr Effe rolli +	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser,	nonic sour istics for c g spec	s v ces – I ont	s fr Effe rolli +	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor	nonic sour istics for c for c g spec	s v ces – I ont trur	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor n: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+0)	nonic sour istics for c for c g spec	s v ces – I ont trur	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION g considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor n: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+0	nonic sour istics for c for c g spec	s v ces – I ont trur	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior Course Ou Upon com	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harr harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor n: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+0 utcomes: pletion of this course, the students will be able to:	nonic sour istics for c for c g spec	s v ces – I ont trur	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior Course Ou Upon com CO1 : CO2 :	HARMONICS Intals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harre- harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor m: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+4 utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control me	spec spec 0)= 4	s v ces – I ont trur istr	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior Course Ou Upon com CO1 : CO2 : CO3 :	HARMONICS Intals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response characterized Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor in: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+4) utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control methods	nonic sour istics for c spec ing D 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	s v ces – I ont trur istr	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior Course Ou Upon com CO1 : CO2 : CO3 : CO3 :	HARMONICS Intals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response characterics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor in: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+4 utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution system	nonic sour istics for c spec ing D 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	s v ces – I ont trur istr	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior Course Ou Upon com CO1 : CO2 : CO3 : CO4 :	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harro- harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response character ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor n: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+4 utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution sy Understand the operation and application of power quality measuring equipment.	nonic sour istics for c spec ing D 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	s v ces – I ont trur istr	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior	HARMONICS Intals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response characterics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor in: perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45+4 utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution system	nonic sour istics for c spec ing D 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	s v ces – I ont trur istr	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior Course Ou Upon com CO1 : CO2 : CO3 : CO3 : CO3 : CO5 :	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response characterics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION I considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor in: perspectives - DG technologies - power quality issues by DG - operating conflicts I utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution sy Understand the operation and application of power quality measuring equipment. Know PQ issues by Distributed Generation integration with grid.	nonic sour istics for c spec ing D 9 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	s v ces – I ont trur istr	s fr Effe rolli + n a ribu	
Unit IV Fundamen transients- commercia of Harmon harmonic c Unit V Monitoring harmonics Generatior Course Ou Upon com CO1 : CO2 : CO3 : CO4 :	HARMONICS ntals of Harmonics: Harmonic Distortion, voltage versus current distortion, Harmonics phase sequences- triplen harmonics -harmonic indices, harmonic al and industrial loads. Locating harmonic sources - power system response characterics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devices distortion, IEEE and IEC standards on harmonics. POWER QUALITY MONITORING AND DISTRIBUTED GENERATION I considerations - power quality measurement equipment: disturbance analyser, analysers, flicker meters, applications of Intelligent system for power quality monitor in: perspectives - DG technologies - power quality issues by DG - operating conflicts I utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution sy Understand the operation and application of power quality measuring equipment. Know PQ issues by Distributed Generation integration with grid.	nonic sour sistics for c spec ing D 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1	s v cess – I ont trur istr	s fr. Effe rolli • m a ribu eric	

Reference	e Books:
1.	C. Sankaran ,"Power quality", CRC Press, First Indian Edition, 2019.
2.	G.T.Heydt, "Electric power quality", Stars in a Circle publishers, Second Edition, 1994.
3.	Arindam Ghosh and Gerald Led wich , "Power Quality Enhancement Using Custom Power Devices", Springer-Verlag Publishers, New York Inc., Second Edition.2009.
E-Referer	ice:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1		1			1				1	
CO2	3	2	1	1			1				1	
CO3	3	1	1	1			1				1	
CO4	3	1	2	1		2	2				1	
CO5	3	1	2	1		2	2				1	
CO6	3	1	2	1		1	3				1	

18EEP10	UTILIZATION OF ELECTRICAL ENERGY	L	т	Р	С
	1 -	3	0	0	3
Course O	piectives			1	
1.	To understand the generation of electrical power by conventional and non-convent	ional	met	hods	5.
2.	To impart knowledge on principle and design of illumination systems.				
3.	To analyze the performance and different methods of electric heating and electric	veldir	g.		
4.	To impart knowledge on electric traction systems and their performance.		0		
5.	To understand electric drives for various industrial applications.				
Unit I	INTRODUCTION		9	+	0
Generatio	o of electrical power by conventional & non-conventional methods – a brief review of	tidal	pow	/er,	
	r, geothermal power, solar energy, hydro station, steam and nuclearpower plants.		•		
	s of generation – definitions – load duration curve – number and size ofgenerator un	its – C	Cost	of	
electrical e	energy – tariff – need for electrical energy conservation –methods.				
					-
Unit II	ILLUMINATION		9	+	0
	n-nature of radiation – definition – laws of illumination – luminous efficacy-photome				
	s – design of illumination systems for residential, commercial, street lightingand spo				
	mps -incandescent lamp- mercury vapour -fluorescent lamp-energyefficiency lamp	s – ty	pes	s of	
lighting sc	nemes – requirements of good lighting				
11					•
Unit III	HEATING AND WELDING		9	+	0
Introductio	n- classification of methods of heating – requirements of a good heating material – (desig	n of		
	ement – temperature control of resistance furnace – electric arc furnace –induction h			_	
	leating – electric welding – resistance welding – electric arcwelding-electrical proper is of electric arc welding.	ties o	rar	C-	
application	s of electric arc weiging.				
Unit IV	ELECTRIC TRACTION		9	+	0
	n – requirements of an ideal traction system – supply systems – train movement -me	char	-		v
	ment – traction motors and control –speedcontrol of three phase induction motor- m				
	raking – recent trends in electric traction.	landpr	0 01		
Unit V	DRIVES AND THEIR INDUSTRIAL APPLICATIONS		9	+	0
Electric dr	ve –advantages of electric drive-individual drive and group drive –factors affecting s	electi	on	of mo	otor
	f loads - steady state -transient characteristics -size of motor- load equaliza				
	s - modern methods of speed control of D.C drives-dynamic braking using thyristor				
braking us	ing thyristors.				
-	Total (45	+0)=	45 I	Perio	ods
Course O	utcomes:				
Upon com	pletion of this course, the students will be able to:				
CO1 :	Understand the concept of generation of electrical power from conventional and no	on-co	nve	ntion	al
000	energy resources.				
CO2 :	Understand the economic aspects connected with power system.				
005	1. Constructions of the experimental tensional illuminations and shared and a sufficient of the illumination of the experimental second s second second s Second second s Second second seco	om fo			
CO3 :	Understand the concept behind illumination and design a suitable illumination syst	ennio	r a		
CO3 :	specific application.		ra		
CO3 : CO4 :	specific application. Design and choose an appropriate heating method for specific application and gain		or a		
CO4 :	specific application. Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system.		or a		
CO4 : CO5 :	specific application. Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system. Understand the concepts and recent trends of traction system.		or a		
	specific application. Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system. Understand the concepts and recent trends of traction system.		or a		
CO4 : CO5 : CO6 :	specific application. Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system. Understand the concepts and recent trends of traction system. Understand the concepts of electric drives and their characteristics.		or a		
CO4 : CO5 :	specific application. Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system. Understand the concepts and recent trends of traction system. Understand the concepts of electric drives and their characteristics.	ר 			
CO4 : CO5 : CO6 :	specific application. Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system. Understand the concepts and recent trends of traction system. Understand the concepts of electric drives and their characteristics.	ר 		Age	

2.	Eric Openshaw Taylor, "Utilisation of Electric Energy", English Universities Press Limited, 2009
3.	J.B. Gupta, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, 2013.
Reference	e Books:
1.	G.C.Garg, S.K.Gridhar&S.M.Dhir, "A Course in Utilization of Electrical Energy", Khanna Publishers, Delhi, 2003.
2.	H. Partab, "Art and Science of Utilization of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2004.
E-Referen	ice
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	2	1	2	2	1	1	1
CO2	2	3	2	3	1	1	2	1	1			1
CO3	3	3	1	3	1	1	2	1				
CO4	1	2	2	3	3	1	2	1				
CO5	3	1	1	2	1	1	2	1		1		1
CO6	1	3	3	3	3	1	2	2				1

Course Objectives: 1. To get knowledge about basics of energy and energy scenario on India. 2. To understand the energy conservation concepts. 3. To know about energy auditing. Unit I ENERGY SCENARIO Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Finerergy consumption - Energy needs of growing economy - Long term energy conservation and its importance - Restructuring of the energy supply sector - Energy security - Energy conservation, climate change. Energy Conservation Act-2001 and its features. Unit II ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. 9 + 1 Unit II ENERGY MANAGEMENT AND AUDIT 9 + 1 9 + 1 Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy balance: Facility as an energy system - Matching energy usbstitution - Energy audit instrument Material and energy subalance: Facility as an energy system - Methods for preparing process flow, material and energy system: Electricity billing - Electrical load management and maximum demand control -Power fact improvement and its benefit - Selection and tocas: Types - Losses in induction motors - Motor efficiency	Course Objectives: 1. To get knowledge about basics of energy and energy scenario on India. 2. To understand the energy conservation concepts. 3. To know about energy auditing. Jinit I ENERGY SCENARIO 9 + Commercial and Non-commercial energy -Primary energy resources - Commercial energy pricing - Energy encore regy pricing - Energy security - Energy security - Energy scenario - Energy pricing - Energy encore regy consumption - Energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its leatures. Jinit II ENERGY SOURCES 9 + Electricity tarif - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio team, moist air and humidity & heat transfer, units and conversion. 9 + Jinit II ENERGY MANAGEMENT AND AUDIT 9 + Setinciencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit Instrument Adterial and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance instrument losses. Electric motors: Types - Losses in induction motors - Motor efficience mores affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy selectric motors: Types - Losses in induction motors - Motor efficience actors affecting moto	18EEP11	ELECTRICAL ENERGY CONSERVATION AND AUDITING	L	Т	Р	C
1. To get knowledge about basics of energy and energy scenario on India. 2. To understand the energy conservation concepts. 3. To know about energy auditing. Unit I ENERGY SCENARIO 9 + Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Fineergy consumption - Energy supply sector - Energy security - Energy conservation and its importance - Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energe Conservation Act-2001 and its features. Unit II ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energe contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. Unit II ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy osits - Bench marking - Energy equirements, fuel and energy substitution - Energy audit instrument Material and energy balance diagrams. 9 + Unit II ENERGY EFFICIENCY 9 + 1 Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factr improvement and its benefit - Selectorion and location of capacitors - Performance assessment of PC capacitor distribution and transformer losses. Electricin transformer - Selectronic	1. To get knowledge about basics of energy and energy scenario on India. 2. To understand the energy conservation concepts. 3. To know about energy auditing. Jinit I ENERGY SCENARIO 9 + Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Fin energy conservation and the importance exector reforms - Energy and environment - Energy security - Energy conservation and its importance exector reforms - Energy sources - Energy strategy for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. 9 + Jinit I ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio team, moist air and humidity & heat transfer, units and conversion. 9 + Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandir inergy costs - Bench marking - Energy berformance - Matching energy use to requirement - Maximizing syste afficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument energy balance diagrams. 9 +) Jinit IV ENERGY EFFICIENCY 9 +) Linetro - Vainable speed drives - Energy efficient and maximum demand control - Power fact morowement and its benefit - Selectroin and location of capacitors - Performance assessment of PF capacitor isthergy saving porformance - Rewinding and mo		·	3	0	0	3
2. To understand the energy conservation concepts. 3. To know about energy auditing. Unit I ENERGY SCENARIO 9 + Commercial and Non-commercial energy -Primary energy resources - Commercial energy proticing - Energy sector reforms -Energy and environment - Energy security - Energy conservation and its importance - Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. 9 + 1 Unit II ENERGY SOURCES 9 + 1 1 2 + 1	2. To understand the energy conservation concepts. 3. To know about energy auditing. Janit I ENERGY SCENARIO On know about energy auditing. Janit I ENERGY SCENARIO On know about energy auditing. Janit I ENERGY SCENARIO Janit I ENERGY SCENARIO On the energy scenario - Energy security - Energy conservation and its importance Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. Jinit II ENERGY SOURCES Isotrative and management and maximum demand control - Thermal Basics-fuels - Thermal energ Conservation Act-2001 and its features. Jinit II ENERGY MANAGEMENT AND AUDIT Jeleinition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandir anergy balance diagrams. Jinit II ENERGY EFFICIENCY 9 +] Lectricity billing - Electrical load management and maximum demand control -Power fact Biotricity ENERGY EFFICIENCY 9 +] Lectricity billing - Electricinal load management and max	Course Ol	ojectives:				
3. To know about energy auditing. Unit I ENERGY SCENARIO 9 + Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Fine energy sources - Energy and environment - Energy strategy for the future, air pollution, climate change. Energy Conservation and its importance - Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy Conservation Act-2001 and its features. Unit II ENERGY SOURCES 9 + 1 Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy constents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. Unit II ENERGY MANAGEMENT AND AUDIT 9 + 1 Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandin energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing systemergificiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument: 9 + 1 Electrical system. Electricity billing - Electrical load management and maximum demand control -Power fact improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors. How FF capacitor	3. To know about energy auditing. Jnit I ENERGY SCENARIO 9 + Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Fin energy consumption - Energy and environment - Energy strategy for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. Dinit I ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio team, moist air and humidity & heat transfer, units and conversion. 9 + Jnit II ENERGY MANAGEMENT AND AUDIT 9 + + Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandir intergy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing syste fifciencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument daterial and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. 9 + Jnit IV ENERGY EFFICIENCY 9 + + Lectricit system: Electricity billing - Electrical load management and maximum demand control -Power fact moreovement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor istribution and transformer losses. Electric motors: Types - Losses in induct	1.	To get knowledge about basics of energy and energy scenario on India.				
Unit I ENERGY SCENARIO 9 + Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Finergy preduction - Finergy reads of growing economy - Long term energy conservation and its importance - Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. 9 + Importance - Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. 9 + Importance - Restructuring of the energy addit for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. Unit II ENERGY SOURCES 9 + I Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energ contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. 9 + 1 Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy subalance: Facility as an energy system - Matching energy usbstitution - Energy audit instrument Material and energy substitution - Energy audit instrument Material and energy system - Methods for preparing process flow, material and energy salance: facility as an energy system - Methods for preparing process flow, material and energy salance: Facility as an energy system - Suessen in induction motors - Motor efficiency factors affecting motors - Energy efficient motors - Softstrefficency	Jnit I ENERGY SCENARIO 9 + 1 Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Finergy reacts of growing economy - Long term energy scenario - Energy pricing - Energy sector reforms - Energy supply sector - Energy strategy for the future, air pollution, climate change. Energ Conservation Act-2001 and its features. Jnit II ENERGY SOURCES 9 + 1 Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energo sontents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio team, moist air and humidity & heat transfer, units and conversion. 9 + 1 Jnit III ENERGY MANAGEMENT AND AUDIT 9 + 1 Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandir nergy ostas - Bench marking - Energy performance - Matching energy uses to requirement - Maximizing syste fifciencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument vlaterial and energy balance: Eacility as an energy system - Methods for preparing process flow, material and nergy balance itagirams. Init IV ENERGY EFFICIENCY 9 + 1 Electricial system: Electricity billing - Electrical load management and maximum demand control -Power fact mprovement and transformer losses. Electric motors - Notor efficiency actors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors - Motor efficiency actors affecting motors - Motor efficiency actors - Softstarters with energy saver - Variable spe	2.	To understand the energy conservation concepts.				
Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Fini- energy consumption - Energy and environment - Energy security - Energy conservation and its importance Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy Conservation Act-2001 and its features. Unit II ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. 9 + 1 Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing syster efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instruments Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Unit IV ENERGY EFFICIENCY 9 + 1 Electricity biling - Electrical load management and maximum demand control - Power factor distribution and transformer losses. Electric motors. Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors. 9 + 1 Unit V ENERGY EFFICIENT TECHNOLOGIES 9 + 1 <td>Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Finanergy consumption - Energy and environment - Energy security - Energy conservation and its importance Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its features. Jnit II [ENERGY SOURCES] 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio iteam, moist air and humidity & heat transfer, units and conversion. Jnit II ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandi teargy freigrance - Matching energy use to requirement - Maximizing syste fifticiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument and energy balance ifagrams. Jnit IV ENERGY EFFICIENCY 9 + Electricity tarice: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. 9 + Jnit IV ENERGY EFFICIENCY 9 + + Improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor istribution and transformer losses. Electric motors. Types - Losses in induction motors - Motor efficiency actors affecting motor performance - Rewinding and motor replacement issues - Ene</td> <td>3.</td> <td>To know about energy auditing.</td> <td></td> <td></td> <td></td> <td></td>	Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Finanergy consumption - Energy and environment - Energy security - Energy conservation and its importance Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its features. Jnit II [ENERGY SOURCES] 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio iteam, moist air and humidity & heat transfer, units and conversion. Jnit II ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandi teargy freigrance - Matching energy use to requirement - Maximizing syste fifticiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument and energy balance ifagrams. Jnit IV ENERGY EFFICIENCY 9 + Electricity tarice: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. 9 + Jnit IV ENERGY EFFICIENCY 9 + + Improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor istribution and transformer losses. Electric motors. Types - Losses in induction motors - Motor efficiency actors affecting motor performance - Rewinding and motor replacement issues - Ene	3.	To know about energy auditing.				
Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Fini- energy consumption - Energy and environment - Energy security - Energy conservation and its importance Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy Conservation Act-2001 and its features. Unit II ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. 9 + 1 Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing syster efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instruments Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Unit IV ENERGY EFFICIENCY 9 + 1 Electricity biling - Electrical load management and maximum demand control - Power factor distribution and transformer losses. Electric motors. Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors. 9 + 1 Unit V ENERGY EFFICIENT TECHNOLOGIES 9 + 1 <td>Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Finanergy consumption - Energy and environment - Energy security - Energy conservation and its importance Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its features. Jnit II [ENERGY SOURCES] 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio iteam, moist air and humidity & heat transfer, units and conversion. Jnit II ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandi teargy freigrance - Matching energy use to requirement - Maximizing syste fifticiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument and energy balance ifagrams. Jnit IV ENERGY EFFICIENCY 9 + Electricity tarice: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. 9 + Jnit IV ENERGY EFFICIENCY 9 + + Improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor istribution and transformer losses. Electric motors. Types - Losses in induction motors - Motor efficiency actors affecting motor performance - Rewinding and motor replacement issues - Ene</td> <td>Unit I</td> <td>ENERGY SCENARIO</td> <td></td> <td>9</td> <td>-</td> <td>(</td>	Commercial and Non-commercial energy -Primary energy resources - Commercial energy production - Finanergy consumption - Energy and environment - Energy security - Energy conservation and its importance Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its features. Jnit II [ENERGY SOURCES] 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio iteam, moist air and humidity & heat transfer, units and conversion. Jnit II ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandi teargy freigrance - Matching energy use to requirement - Maximizing syste fifticiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument and energy balance ifagrams. Jnit IV ENERGY EFFICIENCY 9 + Electricity tarice: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. 9 + Jnit IV ENERGY EFFICIENCY 9 + + Improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor istribution and transformer losses. Electric motors. Types - Losses in induction motors - Motor efficiency actors affecting motor performance - Rewinding and motor replacement issues - Ene	Unit I	ENERGY SCENARIO		9	-	(
energy consumption - Energy needs of growing economy-'Long term energy scenario - Energy sector reforms -Energy and environment - Energy security - Energy conservation and its importance - Restructuring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its features. Unit II ENERGY SOURCES 9 + 1 Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. Unit II ENERGY MANAGEMENT AND AUDIT 9 + 1 Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandin energy costs - Bench marking - Energy requirements, fuel and energy substitution - Energy audit instrument: Material and energy balance diagrams. 9 + 1 Unit IV ENERGY EFFICIENCY 9 + 1 </td <td>energy consumption - Energy and environment - Energy security - Energy scenario - Energy sector reforms -Energy and environment - Energy security - Energy conservation and its importance sector reforms -Energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its features. Jnit II ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio steam, moist air and humidity & heat transfer, units and conversion. Jnit II ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandir nergy costs - Bench marking - Energy requirements, fuel and energy substitution - Energy audit instrument Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Jnit IV ENERGY EFFICIENCY 9 + Electrical system: Electricity billing - Electrical load management and maximum demand control -Power fact mprovement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor istribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency carcors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy saver - Variable speed drives - Energy efficient transformers - Electronic balast - Occupancy sensors Energy efficient lighting controls - Energy saving potential of each te</td> <td></td> <td></td> <td>nrodu</td> <td>-</td> <td></td> <td></td>	energy consumption - Energy and environment - Energy security - Energy scenario - Energy sector reforms -Energy and environment - Energy security - Energy conservation and its importance sector reforms -Energy supply sector - Energy strategy for the future, air pollution, climate change. Energy conservation Act-2001 and its features. Jnit II ENERGY SOURCES 9 + Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio steam, moist air and humidity & heat transfer, units and conversion. Jnit II ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandir nergy costs - Bench marking - Energy requirements, fuel and energy substitution - Energy audit instrument Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Jnit IV ENERGY EFFICIENCY 9 + Electrical system: Electricity billing - Electrical load management and maximum demand control -Power fact mprovement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor istribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency carcors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy saver - Variable speed drives - Energy efficient transformers - Electronic balast - Occupancy sensors Energy efficient lighting controls - Energy saving potential of each te			nrodu	-		
Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. Unit III ENERGY MANAGEMENT AND AUDIT 9 1 Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing system efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instruments Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Unit IV ENERGY EFFICIENCY 9 + Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factor inprovement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor: distribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy saving potential of each technology. 9 + 1 Unit V ENERGY EFFICIENT TECHNOLOGIES 9 + 1 Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy sa	Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio steam, moist air and humidity & heat transfer, units and conversion. Jnit III ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandir snergy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing system fifciencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument daterial and energy balance. Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Jnit IV ENERGY EFFICIENCY 9 + Electricit system: Electricity billing - Electrical load management and maximum demand control - Power fact mprovement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor fistribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency efficient motors. 9 + Jnit V ENERGY EFFICIENT TECHNOLOGIES 9 + Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy saving potential of each technology. Total (45+0)= 45 Perioc Course Outcomes:	energy cor sector refo Restructur	nsumption - Energy needs of growing economy - Long term energy scenario - Energy orms -Energy and environment - Energy security - Energy conservation and ing of the energy supply sector - Energy strategy for the future, air pollution, climat	gy prici	ng - porta	Ene ance	rg -
Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. Unit III ENERGY MANAGEMENT AND AUDIT 9 1 Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing system efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instruments Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Unit IV ENERGY EFFICIENCY 9 + Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factor inprovement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor: distribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy saving potential of each technology. 9 + 1 Unit V ENERGY EFFICIENT TECHNOLOGIES 9 + 1 Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy sa	Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensatio steam, moist air and humidity & heat transfer, units and conversion. Jnit III ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandir snergy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing system fifciencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument daterial and energy balance. Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Jnit IV ENERGY EFFICIENCY 9 + Electricit system: Electricity billing - Electrical load management and maximum demand control - Power fact mprovement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor fistribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency efficient motors. 9 + Jnit V ENERGY EFFICIENT TECHNOLOGIES 9 + Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy saving potential of each technology. Total (45+0)= 45 Perioc Course Outcomes:	Unit II	ENERGY SOURCES		9	+	0
contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation steam, moist air and humidity & heat transfer, units and conversion. Unit III ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit - Need and types of energy audit. Energy management (audit) approach understandin energy costs - Bench marking - Energy performance - Matching energy uses to requirement - Maximizing system efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instruments Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Unit IV ENERGY EFFICIENCY 9 + Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factor improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitors factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunities with energy efficient motors. Unit V ENERGY EFFICIENT TECHNOLOGIES 9 + 1 Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period COURSECOURDERS Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : <t< td=""><td>contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation team, moist air and humidity & heat transfer, units and conversion. Jini III ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandir energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing syste efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Jini IV ENERGY EFFICIENCY 9 + Electrical system: Electricity billing - Electrical load management and maximum demand control -Power fact morors: Types - Losses in induction motors - Motor efficiency: actors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors. 9 + Jini V ENERGY EFFICIENT TECHNOLOGIES 9 + Maximum demand controllers - Automatic power factor controllers - Energy efficient motors - Softstarters with energy saver - Variable speed drives - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: </td><td></td><td></td><td>- The</td><td>-</td><td></td><td>-</td></t<>	contents of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation team, moist air and humidity & heat transfer, units and conversion. Jini III ENERGY MANAGEMENT AND AUDIT 9 + Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandir energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing syste efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Jini IV ENERGY EFFICIENCY 9 + Electrical system: Electricity billing - Electrical load management and maximum demand control -Power fact morors: Types - Losses in induction motors - Motor efficiency: actors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors. 9 + Jini V ENERGY EFFICIENT TECHNOLOGIES 9 + Maximum demand controllers - Automatic power factor controllers - Energy efficient motors - Softstarters with energy saver - Variable speed drives - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes:			- The	-		-
Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understanding energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing systel efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument: Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Unit IV ENERGY EFFICIENCY 9 + 1 Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factr improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor: distribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the process of energy management and energy auditing. CO5 : Conduct Energy Audit in industry.	Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandir Provide the standard of the stand	contents o	f fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporat				
Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understanding energy costs - Bench marking - Energy performance - Matching energy use to requirement - Maximizing systel efficiencies - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instrument: Material and energy balance: Facility as an energy system - Methods for preparing process flow, material and energy balance diagrams. Unit IV ENERGY EFFICIENCY 9 + 1 Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factr improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor: distribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the process of energy management and energy auditing. CO5 : Conduct Energy Audit in industry.	Definition - Energy audit – Need and types of energy audit. Energy management (audit) approach understandir Provide the standard of the stand	Unit III	ENERGY MANAGEMENT AND AUDIT		9	+	0
Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factor improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitors distribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors. Unit V ENERGY EFFICIENT TECHNOLOGIES 9 + 0 Maximum demand controllers - Automatic power factor controllers - Energy efficient motors - Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Electrical system: Electricity billing - Electrical load management and maximum demand control -Power fact Improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor Istribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie With energy efficient motors. Jnit V ENERGY EFFICIENT TECHNOLOGIES 9 Maximum demand controllers - Automatic power factor controllers - Energy efficient motors - Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Jpon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 :	energy cos efficiencies Material ar	ets - Bench marking - Energy performance - Matching energy use to requirement - N s - Optimizing the input energy requirements, fuel and energy substitution - Energy and energy balance: Facility as an energy system - Methods for preparing process f	/laximi audit i	zing nstri	syst umei	er nts
Electrical system: Electricity billing - Electrical load management and maximum demand control -Power factor improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitors distribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie with energy efficient motors. Unit V ENERGY EFFICIENT TECHNOLOGIES 9 + 0 Maximum demand controllers - Automatic power factor controllers - Energy efficient motors - Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Electrical system: Electricity billing - Electrical load management and maximum demand control -Power fact Improvement and its benefit - Selection and location of capacitors - Performance assessment of PF capacitor Istribution and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency Factors affecting motor performance - Rewinding and motor replacement issues - Energy saving opportunitie With energy efficient motors. Jnit V ENERGY EFFICIENT TECHNOLOGIES 9 Maximum demand controllers - Automatic power factor controllers - Energy efficient motors - Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Jpon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 :	Unit IV			9	-	0
Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Joon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	improveme distribution Factors aff	ent and its benefit - Selection and location of capacitors - Performance assessmen and transformer losses. Electric motors: Types - Losses in induction motors - ecting motor performance - Rewinding and motor replacement issues - Energy sa	t of PF Motor	cap effic	acito cieno	ors ;y
Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Maximum demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with energy saver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors Energy efficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Course Outcomes: Joon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Unit V	ENERGY EFFICIENT TECHNOLOGIES		9	+	0
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Course Outcomes: Jpon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Maximum energy sav	demand controllers - Automatic power factor controllers - Energy efficient motors - /er - Variable speed drives - Energy efficient transformers - Electronic ballast - Occ		arter	s wit	h
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Course Outcomes: Jpon completion of this course, the students will be able to: CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.		Total (4	5+0)=	45	Perio	bd
CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO1 : Understand the present energy scenario. CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Fext Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Course Ou		<u> </u>			
CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Fext Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Upon com	pletion of this course, the students will be able to:				
CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO2 : Get fundamental knowledge about energy and its various forms. CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Fext Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO1 :					
CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO3 : Understand the process of energy management and energy auditing. CO4 : Understand the methods improving energy efficiency and energy efficient devices. CO5 : Conduct Energy Audit in industry. Fext Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO2 :					
CO5 : Conduct Energy Audit in industry. Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO5 : Conduct Energy Audit in industry. Fext Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO3 :	Understand the process of energy management and energy auditing.				
Text Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Fext Books: 1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO4 :	Understand the methods improving energy efficiency and energy efficient devices				
1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	CO5 :	Conduct Energy Audit in industry.				
1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	1. Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.	Text Book	s.				
			1 other book, inclusion of Energy Addit, incore within, 2017 .				
			Tripathy, S. C. "Utilization of Electrical Energy and Conservation" McGraw Hill 10	991			

Reference	Books:
1.	General Aspects of Energy Management and Energy Audit, Bureau of Energy Efficiency, New Delhi, 2015.
2.	Energy Efficiency in Electrical Utilities, Bureau of Energy Efficiency, New Delhi, 2015.
E-Referen	ces:
1.	www.bee-india.nic.in
2.	NPTEL Course: Non-Conventional Energy Resources – Prof. PrathapHaridoss, IIT-M.
3.	NPTEL Course: Energy Management Systems and SCADA, 2015 organised by IIT-M.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	2	2	1	3	2	2	2	2	2
CO2	1	1	2	2	1	1	3	2	1	1	2	2
CO3	2	2	2	3	1	1	3	2	2	2	1	2
CO4	2	1	2	2	1	1	3	2	1	2	2	2
CO5	2	2	3	1	2	1	3	1	2	1	2	1

18EEP12	POWER SYSTEM OPERATION AND CONTROL	L 7	P	С
		3 () 0	3
Course Ob	ectives:			
1	To get an overview of system operation and control.			
2	To understand and model power-frequency dynamics and to design power-freque	ency cor	trolle	r.
3	To understand and model reactive power-voltage interaction and different metho			
Ū.	maintaining voltage profile against varying system load.			01
4	To study the economic operation of power system			
5	To teach about SCADA and its application for real time operation and control of p	ower sv	stems	
Unit I	OVERVIEW OF POWER SYSTEM OPERATION AND CONTROL	9	-	0
	d variation: System load characteristics, load curves -daily, weekly and annual, load			
	diversity factor - Reserve requirements: Installed, spinning, cold and hot reserv			
	ration: Load forecasting, unit commitment, load dispatching. Overview of system c	ontrol: C	Soveri	nor
control, LFC	C, EDC, AVR, system voltage control, security control.			
Unit II	REAL POWER - FREQUENCY CONTROL	9	+	0
	als of speed governing mechanism and modeling: Speed-load characteristics	-		rina
	o synchronous machines in parallel; concept of control area, LFC control of a sin			
Static and	dynamic analysis of uncontrolled and controlled cases; Multi-area systems: T	wo-are	a sys	tem
	atic analysis, uncontrolled case, tie-line with frequency bias control; state variable n	iodel- in	tegrat	tion
of economic	dispatch control with LFC.			
11				
Unit III	REACTIVE POWER-VOLTAGE CONTROL	9		0
	itation system, modeling, static and dynamic analysis, stability compensation;			
	of reactive power: Relation between voltage, power and reactive power at a node; r ction of reactive power, Tap-changing transformer, numerical problems - System le			
	roltage magnitude setting, tap setting of OLTC transformer and MVAR injecti			
	o maintain acceptable voltage profile and to minimize transmission loss.		Witten	Ju
	· · · · · · · · · · · · · · · · · · ·			
Unit IV	ECONOMIC DISPATCH AND UNIT COMMITMENT	9		0
	cost curve, co-ordination equations with and without loss, solution by direct method			
	thod (No derivation of loss coefficients.)- Base point and participation factors- Ed	onomic	dispa	atch
	dded to LFC control.			
	of Unit Commitment problem- Constraints in Unit Commitment: spinning reser			
	hydro constraints- fuel constraints and other constraints; Unit Commitment so			
	methods, forward dynamic programming approach, numerical problems only in pr ad average production cost.	iority-lis	st met	noa
Unit V	COMPUTER CONTROL OF POWER SYSTEMSIN	9	+	0
	ns - Energy control centre functions: Monitoring, data acquisition and control, ener	av cont	rol ce	ntre
	ADA: system hardware configuration –master station-remote terminal units- and fu			
	termination- state estimation, security analysis and control - Various operating stat			
	extremis and restorative; State transition diagram showing various state transit			
strategies.				
	Total (45	+0)= 45	Perio	ods
Course Ou	comes:			
Upon comp	etion of this course, the students will be able to:			
CO1 :	Understand the overview of power system operation and control.			
CO2 :	Design power-frequency controller for single and two area system			

CO3 : Understand reactive power control methods for maintaining voltage profile against varying systemade. CO4 : Formulate the optimal scheduling problems in power system. CO5 : Get the knowledge about the computer control of power systems. Text Books: 1. Allen J. Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", Wiley Ir Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I Education Pvt., Limited, New Delhi, 2011.	
CO4 : Formulate the optimal scheduling problems in power system. CO5 : Get the knowledge about the computer control of power systems. Text Books: Image: Comparison of the computer control of power systems. 1. Allen J. Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", Wiley Ir Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Det 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	em
CO5 : Get the knowledge about the computer control of power systems. Text Books: Allen J. Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", Wiley Ir Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New De 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	
Text Books: 1. Allen J. Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", Wiley Ir 1. Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	
1. Allen J. Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", Wiley Ir 1. Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw Hill	
1. Allen J. Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", Wiley Ir 1. Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw Hill	
1. Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw H	
Ltd, New Delhi, Second Edition, Reprint 2016. 2. Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	lia
2. Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw Hill	
Publishing Company Ltd, New Delhi, 34 th reprint 2010. 3. P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw H	
3. 10 th reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	
10" reprint 2011. Reference Books: 1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	hi,
1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	
1. D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw I	
Education But Limited New Delbi 2011	ill
2. L.L. Grigsby, 'The Electric Power Engineering, Hand Book', CRC Press & IEEE Press, 2012	
E-Reference	
1 NPTEL courses on Power System Operation and Control, IIT, Bombay.	
2. NPTEL courses on Power System Generation, Transmission And Distribution, IIT Delhi.	

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	1				1	1
CO2	2	2	2	2	2	2	2				2	2
CO3	1	1	1	1	1	1	1				1	1
CO4	2	2	2	2	2	2	2				2	2
CO5	2	2	2	2	2						1	1

18EEP13	DISTRIBUTED GENERATION AND MICROGRID	L	Т	Ρ	С
		3	0	0	3
Course O	-				
1.	To understand the concept of microgrid				
2.	To impart knowledge about distributed generation technologies, their interconnectio	n in	grid		
3.	To understand relevance of power electronics in DG,				
Unit I	INTRODUCTION		9	+	0
Conventio conventior	nal power generation: advantages and disadvantages, Energy crises, Nor nal energy (NCE) resources: review of Solar PV, Wind Energy systems, Fuel Cell and tidal sources		-	-	-
Unit II	DISTRIBUTED GENERATIONS (DG		9	+	0
for interco	f distributed generations, topologies, selection of sources, regulatory standards/ frame nnecting Distributed resources to electric power systems: IEEE 1547. DG installation DG implementations. Energy storage elements: Batteries, ultra-capacitors, flywheels.	clas	ses	, sec	urity
Unit III	IMPACT OF GRID INTEGRATION		9	+	0
	ents for grid interconnection, limits on operational parameters,: voltage, frequency, The mal operating conditions, islanding issues. Impact of grid integration with NCE sources of the s				
	liability, stability and power quality issues.			51	
	liability, stability and power quality issues. BASICS OF A MICROGRID		9	+	0
system: re Unit IV Concept a	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interfac	nicro	9 ogric	+ Is, ty	/pica
System: re Unit IV Concept a structure a	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interfac	nicro	9 ogric	+ Is, ty	/pica
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interfac	micro æs i	9 ogric n D(9 iicati	+ Is, ty C an + on b	/pica d A(0
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and communication infrastructure, Power quality issues in microgrids, register economics, Introduction to smart microgrids.	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Course O	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comiss, microgrid communication infrastructure, Power quality issues in microgrids, regression s, microgrid communication to smart microgrids. Total (autometers)	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Course O Upon com	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comiss, microgrid communication infrastructure, Power quality issues in microgrids, regression s, microgrid communication to smart microgrids. Total (Utcomes: pletion of this course, the students will be able to	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Course O Upon com CO1 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comes, microgrid communication infrastructure, Power quality issues in microgrids, regression to smart microgrids. Total (automes: pletion of this course, the students will be able to Explain various distributed generation systems	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Course O Upon com CO1 : CO2 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comes, microgrid communication infrastructure, Power quality issues in microgrids, regrescioned communication to smart microgrids. Total (automes: pletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration.	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Upon com CO1 : CO2 : CO3 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comiss, microgrid communication infrastructure, Power quality issues in microgrids, regrescionemics, Introduction to smart microgrids. Total (automes: pletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration. Understand the microgrids and their control schemes.	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Upon com CO1 : CO2 : CO3 : CO3 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interfac CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comes, microgrid communication infrastructure, Power quality issues in microgrids, regrescionomics, Introduction to smart microgrids. Total (a Understand various distributed generation systems Understand various developments happening in the field of Grid integration. Understand the microgrids and their control schemes. Implement distributed generation in a hilly or remote place	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Upon com CO1 : CO2 : CO3 : CO3 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and communication infrastructure, Power quality issues in microgrids, regrescioned to smart microgrids. Total (utcomes: pletion of this course, the students will be able to Explain various distributed generation systems Understand the microgrids and their control schemes. Implement distributed generation in a hilly or remote place Configure a microgrid for a group of energy sources	micro ces i mur ulato	9 ogric n D(9 icati	+ Is, ty C an + on t	/pica d A(0 0 base lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Course O Upon com CO1 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comes, microgrid communication infrastructure, Power quality issues in microgrids, regrescioned to smart microgrids. Total (utcomes: pletion of this course, the students will be able to Explain various distributed generation systems Understand the microgrids and their control schemes. Implement distributed generation in a hilly or remote place Configure a microgrid for a group of energy sources	micro ces i mur ulato	9 ogric n D(9 iicati ory s 0)=4	+ ls, ty C an + on t tanc	ypicad A(0 pase lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Upon com CO1 : CO2 : CO3 : CO3 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID opperation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and communication infrastructure, Power quality issues in microgrids, regrescioned communication to smart microgrids. Total (Utcomes: pletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration. Understand various developments in a hilly or remote place Configure a microgrid for a group of energy sources (s: H. Lee Willis, Walter G. Scott , 'Distributed Power Generation – Planning and Evalue	micro ces i mur ulato	9 ogric n D(9 iicati ory s 0)=4	+ ls, ty C an + on t tanc	ypicad A(0 pase lards
System: re Unit IV Concept a structure a microgrids Unit V Modes of o reactive p techniques Microgrid o Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 :	BASICS OF A MICROGRID and definition of microgrid, microgrid drivers and benefits, review of sources of r and configuration of a microgrid, AC and DC microgrids, Power Electronics interface CONTROL AND OPERATION OF MICROGRID operation and control of microgrid: grid connected and islanded mode, Active and ower control, protection issues, anti-islanding schemes: passive, active and comes, microgrid communication infrastructure, Power quality issues in microgrids, regrescioned to smart microgrids. Total (utcomes: pletion of this course, the students will be able to Explain various distributed generation systems Understand the microgrids and their control schemes. Implement distributed generation in a hilly or remote place Configure a microgrid for a group of energy sources	micro es i ulato	9 ogric n D(9 icati ory s 0)=4	+ ls, ty C an + tance	o pase lard: riod

Referen	e Books:
1	John Twidell and Tony Weir, "Renewable Energy Resources" Tyalor and Francis
	Publications, 2015, 3 rd edition
2	DorinNeacsu, "Power Switching Converters: Medium and High Power", CRC
	Press, Taylor & Francis, 2006.
3	AmirnaserYezdani, and Reza Iravani, "Voltage Source Converters in Power Systems:
	Modeling, Control and Applications", IEEE John Wiley Publications, 2009
4	F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy
	Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada
	on June 19-23, 2005.
5	Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson, 'Facility Microgrids', General Electric Global Research
	Center, Niskayuna, New York, Subcontract report, May 2005
E-Refere	nce
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	2	1	2	1				2
CO2	1	2	2	2	2	1	2	1				2
CO3	1	2	2	2	2	1	2	1				2
CO4	1	2	2	2	2	1	2	1				2
CO5	1	2	2	2	2	1	2	1				2

18EEP14	
Course (
1.	Understand the concepts of power generation through Wind and Solar Power
2.	Learn optimal extraction of renewable power and their integration to grid
Unit I	PHYSICS OF WIND POWER9+0
	f wind power, Indian and Global statistics, Wind physics, Betz limit, Tip speed ratio, stall
	control, Wind speed statistics-probability distributions, Wind speed and power-cumulative distribution
functions	
Unit II	WIND GENERATOR TOPOLOGIES 9 + 0
Review	of modern wind turbine technologies, Fixed and Variable speed wind turbines, Induction
	ors, Doubly-Fed Induction Generators and their characteristics, Permanent-Magnet Synchronous
Generato	ors, Power electronics converters. Generator-Converter configurations, Converter Control.
11	
Unit III	THE SOLAR RESOURCE 9 + 0
	ion, solar radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar day stimation of solar energy availability.
iongui, Ei	Sumation of Solar Chorgy availability.
Unit IV	SOLAR PHOTOVOLTAIC 9 + 0
	gies-Amorphous, monocrystalline, polycrystalline; V-I characteristics of a PV cell, PV
	array, Power Electronic Converters for Solar Systems, Maximum Power Point Tracking (MPPT)
algorithm	ns.Converter Control.
Unit V	GRID INTEGRATION ISSUES9+0
	v of grid code technical requirements. Fault ride-through for wind farms – real and reactive
	egulation, voltage and frequency operating limits, solar PV and wind farm behavior during grid
	nces. Power quality issues. Power system interconnection experiences in the world. Hybrid and
Isolated C	operations of solar PV and wind systems.
	Total (45+0)= 45 Periods
Course C	Dutcomes:
Upon con	npletion of this course, the students will be able to:
CO1	: Understand the physics behind the wind and solar power generation
CO2	: Implementation of optimal extraction techniques in renewable power generation
CO3	: Apply power electronics to renewable power optimization
CO4	: Understand integration techniques used, power quality issues and their mitigation
CO5	: Device methods to create an approximate energy conversion systems.
Text Boo	
Text Dou	Mohan, Net al. "Power Electronics: Converters, Application and Design", Wiley India (P) Ltd, New
1.	Delhi, 2008.
2.	Bimbhra, P.S, "Power Electronics ", Khanna Publishers, New Delhi, 4 th Edition, 2018.
Reference	ce Books:
1.	T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2012, 2 nd edition.
2.	G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons, 2013
3.	S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", McGraw Hill, 2008.
4.	S. F. Sukhatme, Solar Energy. Finiciples of Thermal Collection and Storage, McGraw Fill, 2008.
	H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley
	H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006
5.	H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley
5.	 H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006 G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications, 2004.
	 H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006 G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications, 2004. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons,
5.	 H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006 G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications, 2004.

E-Reference	ce
1	www.onlinecourses.nptel.ac.in
	www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	1	1	0	1	1	1
CO2	1	1	1	1	1	1	1	1	0	1	1	1
CO3	1	1	1	1	1	1	1	1	0	1	1	1
CO4	1	1	1	1	1	1	1	1	0	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

	15 ELECTRICAL AND HYBRID VEHICLES	L	Т	Ρ	С
		3	0	0	3
	Objectives:				
To unde	rstand the operation and need of electrical vehicles, hybrid vehicles with its energy stora	ge te	chno	ologie	es
11			•	1	
Unit I	ELECTRIC VEHICLES	Ohar	9	+	0
-	rations of Electric Vehicles (EV), Performance of Electric Vehicles: Traction Motor Effort and Transmission Requirement, Vehicle Performance, Energy Consumption	Char	acte	eristic	s,
Hactive	Lifert and Transmission Requirement, venicle r enormance, Energy Consumption				
Unit II	HYBRID ELECTRIC VEHICLES		9	+	0
Concept	t of Hybrid Electric Vehicle (HEV) Trains, Architectures of Hybrid Electric Drive Trair	ns, Se	eries	s Hyt	orid
Electric	Drive Trains and Parallel Hybrid Electric Drive Trains, Torque-Coupling Parallel Hyb	rid E	ectr	ic Di	rive
Trains, S	Speed-Coupling Parallel Hybrid Electric Drive Trains, Torque-Coupling and Speed-Co	ouplin	g P	aralle	əl
Hybrid E	ectric Drive Trains				
				1	
Unit III	ELECTRIC PROPULSION SYSTEMS		9	+	0
	hal block diagram of a typical electric propulsion system, Classification of electric mo				
	V applications, Multiquadrant Control of Chopper-Fed DC Motor Drives, Performan		-		
	of BLDC Machines, Switched Reluctance Motor Drives, SRM Drive Converter, Gen on, Vibration and Acoustic Noise in SRM	eratir	ig n	loae	01
Operatio					
Unit IV	ENERGY STORAGES		9	+	0
	Technologies: Lead-Acid Batteries, Nickel-based Batteries, Lithium-Based Batteries –	Liltro	-		-
Dationy		UIIIA			S
Feature	-		-		
	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Sp		-		
	-		-		
	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Sp		-		
Operation Unit V Fuel cel	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Sp on and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle	beed	Flyv 9	vhee	ls, 0
Operation Unit V Fuel cel	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy	eed	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45)	eed	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes:	eed	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon co	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to:	eed 	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon cc CO1	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage technologie	eed 	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon co CO1 CO2	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: Understand the operation of Electrical Vehicles and its energy storage technologie Know Fuel cell, types and characteristics.	eed 	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage technologie Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives	eed 	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO3 CO4	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: impletion of this course, the students will be able to: : Understand the operation of Electrical Vehicles and its energy storage technologie : Operate the vehicle with BLDC and SRM motor drives : Design the EV's and HEV's.	eed 	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage technologie Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives	eed 	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO3 CO4	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand the operation of Electrical Vehicles and its energy storage technologie : Operate the vehicle with BLDC and SRM motor drives : Design the EV's and HEV's. : Choose the energy storage technology for electric vehicle	eed 	Flyv 9 nfig	vhee + uratio	ls, 0 on
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO4 CO5	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand the operation of Electrical Vehicles and its energy storage technologie : Operate the vehicle with BLDC and SRM motor drives : Design the EV's and HEV's. : Choose the energy storage technology for electric vehicle	e – co 5+0)= es.	9 nfig 45	vhee + uratic	ls, 0 0 0 0 0 0 0 0 0 0 0
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO4 CO5	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand the operation of Electrical Vehicles and its energy storage technologie : Operate the vehicle with BLDC and SRM motor drives : Design the EV's and HEV's. : Choose the energy storage technology for electric vehicle Oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric, Hyt Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New York	eed 	9 nfig 45	vhee + uratic Peric	ls, 0 on ods
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO3 CO4 CO5 Text Bo	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I - Characteristics- Types - hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: : Understand the operation of Electrical Vehicles and its energy storage technologie : Operate the vehicle with BLDC and SRM motor drives : Design the EV's and HEV's. : Choose the energy storage technology for electric vehicle oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric, Hydrogen Storage Technology for electric vehicle	eed 	9 nfig 45	vhee + uratic Peric	ls, 0 on ods
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1.	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicles trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage technologie Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric, Hyt Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New York 2016	eed 	9 nfig 45	vhee + uratic Peric	ls, 0 on ods
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. Referen	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage technologie Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric, Hydr Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New York 2016	e – co 5+0)= es.	9 nfig 45	vhee + uratic Peric	ls, 0 on ods
Operation Unit V Fuel cel and con Course Upon cc CO1 CO2 CO3 CO4 CO5 Text Bo 1.	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Sp on and Power Capacity FUEL CELL VEHICLES I – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage technologie Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric, Hyd Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New York 2016 mee Books: Iqbal Hussain ,"Electric and Hybrid Vehicles: Design Fundamentals", CRC Press	e – co 5+0)= es.	9 nfig 45	vhee + uratic Peric	ls, 0 on ods
Operation Unit V Fuel cel and con Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. Referen	s, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh-Spon and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Vehicle trol strategy Total (45 Outcomes: mpletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage technologie Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric, Hydr Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New York 2016	beed = - co 5+0)= = = = = = = = = = = = = =	9 nfig 45 lect edi	vhee	ls, 0 on ods

E-Referenc	e
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1			2		1	1			1
CO2		2		1	3		2				1	
CO3				2	2					2		
CO4	1		3	3		2			3		2	
CO5		3					3	1				2

18EEP16	SOFT COMPUTING AND MACHINE LEARNING	L 3	T	P	<u>C</u> 3
		3	0	0	3
Course Ol	-				
1	To provide adequate knowledge about neural network and fuzzy systems				
2	To provide adequate knowledge of genetic algorithms and its application to econom	nic d	ispa	tch a	ind
3	unit commitment problems To expose the students to the concepts of machine learning				
0					
Unit I	BASIC CIRCUITS ANALYSIS		9	+	0
	n – Biological neuron – Artificial neuron – Neuron model – Supervised and unsu er – Multi layer feed forward network – Learning algorithm- Back propagation n				
Unit II	NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS		9	+	0
function –	ets – Fuzzy sets – Fuzzy relations – Fuzzification – Defuzzification – Fuzzy rules – M Knowledge base – Decision-making logic – Introduction to neuro fuzzy system- Adap uzzy logic control: Home heating system – fuzzy PID control, Fuzzy based motor con	otive			
Unit III	GENETIC ALGORITHMS		9	+	0
	n-Gradient Search – Non-gradient search – Genetic Algorithms: binary and re				
	selection methods, crossover and mutation operators for binary and real coding – c	cons	train	t har	ndlin
methods –	applications to economic dispatch and unit commitment problems.				
Unit IV	MACHINE LEARNING MODELS		•		0
			9	+	U
Generative	models: Definition and characteristics, probabilistic graphical models, density estima	tion	-	+ arnir	-
	· · · · · · · · · · · · · · · · · · ·	tion	in le		ng
Unit V	MACHINE LEARNING CLASSFIERS		in le 9	+	ng 0
Unit V Combining	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec		in le 9	+	ng 0
Unit V Combining	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec d learning and case studies.	cial t	in le 9 opic:	+ s suc	ng 0 :h
Unit V Combining as manifol	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec d learning and case studies. Total (cial t	in le 9 opic:	+ s suc	ng 0 :h
Unit V Combining	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec d learning and case studies. Total (cial t	in le 9 opic:	+ s suc	ng 0 :h
Unit V Combining as manifol Course Ou Upon com	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec d learning and case studies. Total (utcomes: pletion of this course, the students will be able to	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon com CO1 : /	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec d learning and case studies. Total (Itcomes: Deletion of this course, the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field the	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifol Course Ou Upon comp CO1 : / t	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spectod learning and case studies. Total (Itcomes: bletion of this course, the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory and apply them to electrical engineering problems.	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon com CO1 : / t CO2 : -	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Total (Itcomes: Deletion of this course, the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory and apply them to electrical engineering problems. Fo understand and apply computing platform and software for engineering problems.	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon com CO1 : / t CO2 : CO3 :	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Total (utcomes: bletion of this course, the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field the heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems.	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon com CO1 : / t CO2 : CO3 : CO3 : CO4 : S	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Total (utcomes: bletion of this course, the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field th heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon com CO1 : / t CO2 : CO3 : CO3 : CO4 : S	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Total (utcomes: bletion of this course, the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field the heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems.	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon comp CO1 : / CO2 : CO2 : CO3 : CO4 : CO5 : I	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system	cial to 45+0	in le 9 opic: 0)=4	+ s suc 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon comp CO1 : / CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : I	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Ability to understand and apply basic science, circuit theory, Electro-magnetic field the heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system s:	eory	9 opic: 0)=4	+ 5 Pe	ng 0 :h
Unit V Combining as manifold Course Ou Upon com CO1 : / CO2 : CO2 : CO3 : CO4 : CO5 : I Text Book 1. Laura	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system	eory	9 opic: 0)=4 con	+ 5 Pe trol	ng 0 :h
Unit V Combining as manifold Course Ou Upon com CO1 : / CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : I Text Book 1. Laura 2. S.N.S	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed d learning and case studies. Total (Total (Interview of this course, the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field th heory and apply them to electrical engineering problems. Fo understand and apply computing platform and software for engineering problems. Fo understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system s: unceFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu Site and and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd	eory	9 opic: 0)=4 con	+ 5 Pe trol	ng 0 :h
Unit V Combining as manifold Course Ou Upon comp CO1 : / CO2 : CO2 : CO3 : CO4 : CO5 : I Text Book 1. Laura 2. S.N.S 3 Timo	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected speceed learning and case studies. Ability to understand and apply basic science, circuit theory, Electro-magnetic field theory and apply them to electrical engineering problems. Fo understand and apply computing platform and software for engineering problems. Fo understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system s: unceFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu	eory	9 opic: 0)=4 con	+ 5 Pe trol	ng 0 :h
Unit V Combining as manifold Course Out Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : I Laura 2. S.N.S 3 Timor 4 S. Mathematical Science	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spectid learning and case studies. Total (Interview of the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field th heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. Fo understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system s: nnceFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu Bivanandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd Edity, J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997. arsland, 'Machine Learning: An Algorithmic Perspective', Chapman & Hall/CRC, 2009	eory	9 opic: 0)=4 con	+ 5 Pe trol	ng 0 :h
Unit V Combining as manifold Course Out Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : I Laura 2. S.N.S 3 Timor 4 S. Mate	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spection of the second learning and case studies. Total (Interview of the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field the heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. Fo understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system s: nnceFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu Sivanandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd Edity J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997. ursland, 'Machine Learning: An Algorithmic Perspective', Chapman & Hall/CRC, 2009 Books:	eory	9 opic: 0)=4 con	+ 5 Pe trol	ng 0 :h
Unit V Combining as manifold Course Ou Upon comp CO1 : / CO2 : CO2 : CO3 : CO4 : CO5 : I Text Book 1. Laura 2. S.N.S 3 Timot 4 S. Ma Reference 1 Simon	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spected learning and case studies. Total (Total (Interview of the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field th heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system S: anceFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu Sivanandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd Edi Total (Colspan="2">Books: Haykin, 'Neural Networks', Pearson Education, 2009 ,3rd edition.	eory	9 opic: 0)=4 con	+ 5 Pe trol	ng 0 :h
Unit V Combining as manifold Course Ou Upon comp CO1 : / CO2 : CO2 : CO3 : CO4 : CO5 : I Text Book 1. Laura 2. S.N.S 3 Timor 4 S. Ma Reference 1 Simon 2 Hagan	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spected learning and case studies. Total (Interview of the students will be able to Advantages, boosting, hierarchical classifiers, and issues; Selected spected learning and case studies. Total (Interview of the students will be able to Advantages, the students will be able to Advantages, boosting, hierarchical engineering problems. Deletion of this course, the students will be able to Advantages, course, the students will be able to Advantages, provide the students will be able to Advantages, provide the students will be able to Advantages, course, the students will be able to Advantages, provide the students will provide the students and apply computing platform and software for engineering problems. Fo understand machine learning concepts and apply for engineering problems. Solve econo	eory	9 opic: 0)=4 con	+ 5 Pe trol	ng 0 :h
Unit V Combining as manifold Course Ou Upon comp CO1 : / CO2 : CO2 : CO3 : CO4 : CO3 : CO4 : CO5 : I Text Book 1. Laura 2. S.N.S 3 Timoi 4 S. Ma Reference 1 Simon 2 Hagar 3 N.P.Pa	MACHINE LEARNING CLASSFIERS classifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spected learning and case studies. Total (Total (Interview of the students will be able to Ability to understand and apply basic science, circuit theory, Electro-magnetic field th heory and apply them to electrical engineering problems. To understand and apply computing platform and software for engineering problems. To understand machine learning concepts and apply for engineering problems. Solve economic dispatch and unit commitment problem using genetic algorithm Design a fuzzy controller based home heating system S: anceFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu Sivanandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd Edi Total (Colspan="2">Books: Haykin, 'Neural Networks', Pearson Education, 2009 ,3rd edition.	eory	9 popic: 0)=4 con	+ 5 Suc 5 Pe trol 010 113	ng 0 Ch riod

E-References:

1 www.onlinecourses.nptel.ac.in

2 www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2						2
CO2	1	2	3	3	3	2						2
CO3	1	2	2	2	2	2						2
CO4	1	2	2	2	2	2						2
CO5	1	2	3	3	3	2						2

18EEP17	ADVANCED ELECTRIC DRIVES	L	Т	Ρ	C
		3	0	0	3
Course ob	jectives:				
1.	To know about the overview of Electrical drives.				
2.	To know about the Vector control strategies for AC motor drives.				
3.	To understand the concepts of various DSP based control.				
			_		
UNIT I	POWER CONVERTERS FOR AC DRIVES		9	+	0
level invert	ol of inverter, selected harmonic elimination, space vector modulation, current contro er, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper, rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridge	PWN	Л со	nver	ter
	INDUCTION MOTOR DRIVES		9	+	0
	ansformations and reference frame theory, modeling of induction machines, volta	ge f	ed i	nver	ter
control-v/f	control, vector control, direct torque and flux control(DTC).				
	SYNCHRONOUS MOTOR DRIVES		9		0
-	f synchronous machines, open loop v/f control, vector control, direct torque control, (rei f	-	+	U
	us motor drives.	100	eu		
UNIT IV	PERMANENT MAGNET MOTOR AND SWITCHED RELUCTANCE MOTOR DRIVES		9	+	0
Modeling (of synchronous machines, open loop v/f control, vector control, direct torque co	ontro	I, C	SI fe	ed
	us motor drives. Various topologies for SRM drives, comparison, Closed loop spe	eed	and	toro	ue
control of S	SRM.				
	DSP BASED MOTION CONTROL		0		
-	SPs in motion control, various DSPs available, realization of some basic bloc	kc i	9	+ 9D	0 for
	ation of DSP based motion control.			01	101
	Total (45-	⊦0) =	45 F	Perio	ods
Course Ou	itcomes:				
Upon com	pletion of this course, the students will be able to:				
CO1 :	Explain DSP based motion control.				
CO2 :					
	Understand the basics of Permanent magnet motor and Switched reluctance motor	drive	es.		
CO3 :	Learn the concepts of Synchronous motor drives.	drive	es.		
CO3 : CO4 :	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives.	drive	es.		
CO3 :	Learn the concepts of Synchronous motor drives.	drive	es.		
CO3 : CO4 : CO5 :	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives.	drive	es.		
CO3 : CO4 : CO5 : Text Book	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives. s:				
CO3 : CO4 : CO5 : Text Book 1.	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives. s: B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2	2003			
CO3 : CO4 : CO5 : Text Book	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives. s:	2003			
CO3 : CO4 : CO5 : Text Book 1.	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives. s: B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2 P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Systems", John Wiley & Sons, 2013. Books:	2003 d Dri	ve		
CO3 : CO4 : CO5 : Text Book 1. 2. Reference 1.	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives. s: B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2 P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Systems", John Wiley & Sons, 2013. Books: H. A. Taliyat and S. G. Campbell, " DSP based Electromechanical Motion Control", press, 2013.	2003. d Dri ⁻	ve		
CO3 : CO4 : CO5 : Text Book 1. 2. Reference	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives. s: B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2 P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Systems", John Wiley & Sons, 2013. Books: H. A. Taliyat and S. G. Campbell, " DSP based Electromechanical Motion Control"	2003. d Dri ⁻	ve		
CO3 : CO4 : CO5 : Text Book 1. 2. Reference 1.	Learn the concepts of Synchronous motor drives. Gain knowledge of Induction motor drives. Apply Power converters for AC drives. s: B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2 P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Systems", John Wiley & Sons, 2013. Books: H. A. Taliyat and S. G. Campbell, " DSP based Electromechanical Motion Control", press, 2013. R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor Drives", C Press, 2010,1 st edition.	2003. d Dri ⁻	ve		

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	2	2	1	1	1			1	1
CO2	3	3	3	3	3	1	1	1			1	1
CO3	1	3	3	3	3	1	1	1				
CO4	1	3	3	3	3	1	1	1				1
CO5	3	3	3	3	3	1	1	1			1	1

	COMPUTATIONAL ELECTROMAGNETICS	3	0	Р 0	C 3
Course O	ojectives:				
1.	To study the fundamental concepts and analytical methods.				
2.	To give basic knowledge on finite difference methods.				
3.	To understand the concept of variable methods.				
4.	To provide adequate knowledge on moment methods.				
5.	To gain knowledge on finite element method.				
Unit I	FUNDAMENTAL CONCEPTS AND ANALYTICAL METHODS		9	+	(
Separation	EM theory – Classification of EM problems – Superposition principle – Unique of variables in three coordinate systems – Series expansion – Practical application phere, scattering cross sections.				
Unit II	FINITE DIFFERENCE METHODS		9	+	C
stability of	Frence schemes – Finite differencing of Parabolic, Hyperbolic and Elliptic PDEs FD solutions – Practical applications: Transmission lines, Yee's finite difference a g for non-rectangular systems – Numerical integration: Euler's rule, Trapezoidal rule	algorit	hm	– Fi	nite
Unit III	VARIABLE METHODS		9	+	0
method –	in linear spaces – Calculus of variations – Construction of functional from PDEs Weighted Residual method – Collocation method: Subdomain method, Galerkir iethod – Eigen value problems.				
Unit IV	MOMENT METHODS		9	+	0
	I equations – Integral equations – Green's functions – Applications: Quasi-static prol ting cylinder, Hallen's IE, Pocklington's IE, Expansion and weighting functions, EM a dy.				
Unit V	FINITE ELEMENT METHOD		9	+	0
			5		-
mesh gen	f Laplace's equation – Solution of Poisson's equation – Solution of the wave equa eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method.	order			ati
mesh gen Three-dim	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4	order	ele	men	ati :s
mesh gen Three-dim Course O	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method Total (4 utcomes:	order	ele	men	ati :s
mesh gen Three-dim Course O Upon com	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method Total (4 utcomes: pletion of this course, the students will be able to:	order	ele	men	ati :s
mesh gen Three-dim Course O Upon com CO1 :	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4 utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods.	order	ele	men	ati :s -
Mesh gen Three-dim Course O Upon com CO1 : CO2 :	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4 utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications.	order	ele	men	ati :s -
Mesh gen Three-dim Course O Upon com CO1 : CO2 : CO3 :	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4 utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics.	order	ele	men	atio :s -
mesh gen Three-dim Course O Upon com CO1 : CO2 : CO3 : CO4 :	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4 utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods.	order	ele	men	ati :s
Mesh gen Three-dimCourse OUpon comCO1CO2CO3	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4 utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics.	order	ele	men	ati :s
mesh gen Three-dim Course O Upon com CO1 : CO2 : CO3 : CO4 :	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method Total (4 utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method.	order 	ele 45	Perio	ati s
Mesh gen Three-dimCourse OUpon comCO1CO2CO3CO4CO5Text Bool1.	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4: utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pre 2018.	order 5+0)=	ele 45	Perio	ati s
mesh gen Three-dim Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Bool	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4: utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Press	order 5+0)=	ele 45	Perio	ati s
mesh gen Three-dim Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Bool 1.	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method Total (4) utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. s: Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pre 2018. Matthew N.O. Sadiku, "Elements of Electromagnetics", CRC Press, 7 th Edition, 20	order 5+0)=	ele 45	Perio	ati s
mesh gen Three-dim Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Book 1. 2.	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method Total (4) utcomes: pletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. s: Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pre 2018. Matthew N.O. Sadiku, "Elements of Electromagnetics", CRC Press, 7 th Edition, 20	order 5 +0)= ess, 4 ¹ 21.	ele 45	Perio	atii ss -
mesh gen Three-dim Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Book 1. 2. Reference	eration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher ensional elements – Infinite element method – Finite-element time-domain method. Total (4: utcomes: oletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. S: Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pre 2018. Matthew N.O. Sadiku, "Elements of Electromagnetics", CRC Press, 7 th Edition, 20 Books: Thomas Rylander, Par Ingelstorm, "Computational Electromagnetics", Springer Pu	order 5 +0)= ess, 4 ¹ 21.	ele 45	Perio	ati s

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	1	2	1	1	2	1	1	2
CO2	3	3	3	2	1	2	1	1	2	2	1	2
CO3	3	3	1	1	2	1	2	1	1	2	1	1
CO4	3	3	2	1	1	1	2	2	1	2	2	2
CO5	3	3	2	2	1	1	2	3	1	2	2	2

18EEP	9 SPECIAL ELECTRICAL MACHINES		т	D	С
TOLLF		3	0	0	3
Course	Objectives:		-	-	-
1 2	Learn the fundamental concepts of special electric machines Learn proper selection of special machines based on applications				
2					
Unit I	SYNCHRONOUS RELUCTANCE MOTORS		9	+	0
	ctional features – Types – Axial and radial air gap motors – Operating principle – Reluc	tance -	- Ph	asor	
diagram	- Characteristics – Vernier motor				
Unit II	PERMANENT MAGNET BRUSHLESS D.C. MOTORS		9	-	0
	of operation – Types – Magnetic circuit analysis – EMF and torque equations – Power of	ontrol	-	- Mo	-
	eristics and control.	ontrol	0.0		
Unit III	PERMANENT MAGNET SYNCHRONOUS MOTORS		9	+	0
	of operation – EMF and torque equations – Reactance – Phasor diagram – Power contunpere requirements – Torque speed characteristics - Microprocessor based control.	ollers	· Cor	vert	er
voit ai					
Unit IV	SWITCHED RELUCTANCE MOTORS		9	+	0
	ctional features – Principle of operation – Torque prediction – Power controllers – Non-	inear a	inaly	sis -	-
Micropro	ocessor based control - Characteristics – Computer control.				
Unit V	STEPPING MOTORS		9		0
	ctional features – Principle of operation – Variable reluctance motor – Hybrid motor – Sin	nle and	-	+ ti sta	
	ations – Theory of torque predictions – Linear and non-linear analysis – Characteristics				
0					
	Total (5+0)=	45 I	Perio	ods
Course	Outcomes:				
Upon co	mpletion of this course, the students will be able to:				
CO1	: Understand the principles behind the principle of operation of different special mach	ines			
CO2	: Apply the electromagnetic concepts in development of EMF and Torque in machine	s			
CO3	: Select the control structure in terms of hardware to control the special machines				
CO4	: Select appropriate control techniques for efficient control of special machines				
CO5	Develop strategy and methods to implement suitable application-based projects				
000					
Text Bo	oks:				
1	T.J.E. Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Clarendo	n Pres	s, 0	xford	١.
	1989. 2 nd edition				
2.	P.P. Acarnley, "Stepping Motors – A Guide to Motor Theory and Practice", Peter Pere	ngrinu	s, Lo	ndor	١,
	1982.				
3	R. Krishnan, "Switched reluctance motor drives", CRC Press, 2017.			004	
4	R. Krishnan, "Permanent Magnet Synchronous and Brushless DC Motor Drives", (KC P	ess	201	U
E-Refer	ences:				
1	www.onlinecourses.nptel.ac.in				
2	www.class-central.com				
3	www.mooc-list.com				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	0	1	1	0	1	1	1
CO2	1	1	1	1	1	0	1	1	0	1	1	1
CO3	1	1	1	1	1	1	1	1	0	1	1	1
CO4	1	1	1	1	1	1	1	1	0	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

18EEP20	ELECTRICAL WIRING, ESTIMATION AND COSTING	- T	Ρ	С
		3 0	0	3
Course Obj				
1.	Knowledge of I.E rules for different types of electrical installations.			
2.	Planning and preparation of different installation projects			
3.	Knowledge on the costing and estimates of different installations.			
4.	Knowledge on repairs and maintenance of electrical equipment.			
Unit I	ELECTRICAL WIRING AND INDIAN ELECTRICITY RULES	9	+	0
	ymbols, need of electrical symbols, examples of wiring and schematic diagram, E			
	in handling the tools, wiring system, sizes of wires, stranded wires, types of wires, wir			
	, difference between neutral and earth wire, domestic and industrial panel wiring.			ols.
Indian Elect	tricity rules for wiring, Installation of earth electrode as per I.E rule. Indian Electricity Ac	1-200	ა.	
Unit II	ESTIMATION AND COSTING OF DOMESTIC AND INDUSTRIAL WIRING	9	+	0
General pri	inciples of estimation - Electrical Schedule of rates, catalogues, Survey and sou	rce s	electi	ion,
	estimates Quantity and cost of material required. Purchase system, Purchase enquiry			
	ate purchase mode, Comparative statement, Purchase orders, Payment of bills.			
	Industrial wiring : layout, load calculation, cable selection, earthing, selection of switc	hgea	r, ove	erall
estimating a	and costing.			
Unit III	ESTIMATION OF OVERHEAD TRANSMISSION LINES	9	.	0
		-	+	-
	onents of overhead lines, Line supports, Factors governing height of pole, Conductor r r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay			
		3,00		ເບເວ
contiduratio	n spacing and clearances span lengths overhead line insulators insulator mate	riale	liahtn	
	n spacing and clearances, span lengths, overhead line insulators, insulator mate			ning
arrestors, e	rection of supports, setting of stays, earthing of lines, Guarding of overhead lines,	Clear		ning
arrestors, e		Clear		ning
arrestors, e conductor fr Unit IV	erection of supports, setting of stays, earthing of lines, Guarding of overhead lines, erection of supports, setting of stays, earthing of lines, erection ground, Spacing between conductors, I.E rules pertaining to LV transmission line	Clear		ning
arrestors, e conductor fr Unit IV	erection of supports, setting of stays, earthing of lines, Guarding of overhead lines, erection of supports, setting of stays, earthing of lines, grown ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS	Clear s. 9	ance:	ning s of
arrestors, e conductor fr Unit IV	erection of supports, setting of stays, earthing of lines, Guarding of overhead lines, or rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re	Clear s. 9 equire	ances + ed for	ning s of 0 the
arrestors, e conductor fr Unit IV	erection of supports, setting of stays, earthing of lines, Guarding of overhead lines, rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution	Clear s. 9 equire syste	+ d for m, ty	the pes
arrestors, e conductor fr Unit IV I Overhead d overhead di of service co	erection of supports, setting of stays, earthing of lines, Guarding of overhead lines, or rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re	Clear s. 9 equire syste	+ d for m, ty	the pes
Arrestors, e conductor fr Unit IV I Overhead d overhead di of service co to overhead Classificatio	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection	Clear s. 9 equire syste iles p ons, g	+ ed for m, ty ertair graph	the pes ical
Arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS Instribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection	Clear s. 9 equire syste iles p ons, q diagr	ed for m, ty ertair graph am, k	the peshing
Arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection	Clear s. 9 equire syste iles p ons, q diagr	ed for m, ty ertair graph am, k	the pes ical key
Arrestors, e conductor fr Unit IV	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS Instribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection	Clear s. 9 equire syste iles p ons, q diagr	ed for m, ty ertair graph am, k	the pes ical key
arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs	erection of supports, setting of stays, earthing of lines, Guarding of overhead lines, from ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection typical sub stations, equipment for substation and switchgear installations, substation station earthing.	Clear s. 9 equire syste iles p ons, q diagr	ed for m, ty ertair graph am, k	the pes ical key
Arrestors, e conductor fr Unit IV Overhead d overhead di of service co to overhead Classification symbols for diagram of	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	Clear s. 9 equire syste iles p ons, q diagr	ed for m, ty ertair graph am, k	the pes ical key
Arrestors, e conductor fr Unit IV Overhead d overhead di of service co to overhead Classification symbols for diagram of supply, subs Unit V	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	Clear s. 9 equire syste iles p ons, ç diagr on a	ed for m, ty ertair graph am, H uxiliar	ing s of 0 the pes ning ical key ries 0
Arrestors, e conductor fr Unit IV I Overhead d overhead di of service ca to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	Clear s. 9 equire syste lles p ons, q diagr on a 9 on of	ances d for m, ty ertair yraph am, H uxiliar + deta	ing s of 0 the pes ning ical key ries 0
arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. started drawing wor	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	Clear s. 9 equire syste iles p ons, (diagr on a 9 on of cost	ances d for m, ty ertair graph am, H uxiliar deta requi	ing s of the pes ning ical key ries 0 iled ired
arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS Itstribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	Clear s. 9 equire syste iles p ons, (diagr on a 9 on of cost	ances d for m, ty ertair graph am, H uxiliar deta requi	the peshing ical ical ical ired
arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	Clear s. 9 equire syste iles p ons, (diagr on a 9 on of cost	ances d for m, ty ertair graph am, H uxiliar deta requi	the pession of the pe
arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation	ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS Histribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. In of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substation typical sub stations, equipment for substation and switchgear installations, substation earthing. ESTIMATING AND COSTING OF REPAIRS AND MAINTENANCE OF <u>ELECTRICAL DEVICES AND EQUIPMENT</u> er, small motor, automatic electric iron, table/ceiling fan, ICDP/ICTP Switch, preparation ance work, estimation of repairing cost and overall cost, tools used for repairs &main of cost schedule for repair and maintenance of automatic electric iron, single phase transformer, mixer grinder, D.O.L. Starter.	Clear s. 9 equire syste iles p ons, g diagr on a on of cost tenar	ances d for m, ty ertair graph am, k uxiliar deta requi	ing s of 0 the pes ning ical cey ries 0 illed ired rork
arrestors, e conductor fr Unit IV Overhead d overhead di of service co to overhead Classification symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation electric fan,	rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, from ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. rule lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substatistation earthing. ESTIMATING AND COSTING OF REPAIRS AND MAINTENANCE OF ELECTRICAL DEVICES AND EQUIPMENT er, small motor, automatic electric iron, table/ceiling fan, ICDP/ICTP Switch, preparation ance work, estimation of repairing cost and overall cost, tools used for repairs &main of cost schedule for repair and maintenance of automatic electric iron, single phase transformer, mixer grinder, D.O.L. Starter. Total (45+0	Clear s. 9 equire syste iles p ons, g diagr on a on of cost tenar	ances d for m, ty ertair graph am, k uxiliar deta requi	ing s of the pes ning ical cey ries 0 illed ired rork
arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation	rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, from ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. rule lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substatistation earthing. ESTIMATING AND COSTING OF REPAIRS AND MAINTENANCE OF ELECTRICAL DEVICES AND EQUIPMENT er, small motor, automatic electric iron, table/ceiling fan, ICDP/ICTP Switch, preparation ance work, estimation of repairing cost and overall cost, tools used for repairs &main of cost schedule for repair and maintenance of automatic electric iron, single phase transformer, mixer grinder, D.O.L. Starter. Total (45+0	Clear s. 9 equire syste iles p ons, g diagr on a on of cost tenar	ances d for m, ty ertair graph am, k uxiliar deta requi	ing s of the pes ning ical cey ries 0 illed ired rork
arrestors, e conductor fr Unit IV Overhead d overhead di of service co to overhead Classification symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation electric fan,	rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, from ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. rule lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substatistation earthing. ESTIMATING AND COSTING OF REPAIRS AND MAINTENANCE OF ELECTRICAL DEVICES AND EQUIPMENT er, small motor, automatic electric iron, table/ceiling fan, ICDP/ICTP Switch, preparation ance work, estimation of repairing cost and overall cost, tools used for repairs &main of cost schedule for repair and maintenance of automatic electric iron, single phase transformer, mixer grinder, D.O.L. Starter. Total (45+0	Clear s. 9 equire syste iles p ons, g diagr on a on of cost tenar	ances d for m, ty ertair graph am, k uxiliar deta requi	ing s of the pes ning ical cey ries 0 illed ired rork
Arrestors, e conductor fr Unit IV Overhead d overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation electric fan, Upon compl CO1 :	rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, i rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru- d lines and service connection. on of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection typical sub stations, equipment for substation and switchgear installations, substati- station earthing. ESTIMATING AND COSTING OF REPAIRS AND MAINTENANCE OF ELECTRICAL DEVICES AND EQUIPMENT er, small motor, automatic electric iron, table/ceiling fan, ICDP/ICTP Switch, preparati- rk of the product, preparation of material quantity sheet for the product, materials and ance work, estimation of repairing cost and overall cost, tools used for repairs &main of cost schedule for repair and maintenance of automatic electric iron, single phase transformer, mixer grinder, D.O.L. Starter. Total (45+0 tcome: letion of this course, the students will be able to: To understand various types of materials required for wiring.	Clear s. 9 equire syste iles p ons, g diagr on a on of cost tenar	ances d for m, ty ertair graph am, k uxiliar deta requi	ing s of the pes ning ical cey ries 0 illed ired rork
Arrestors, e conductor fr Unit IV Overhead di of service co to overhead Classification symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation electric fan, Upon completion	rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, i rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	Clear s. 9 equire syste iles p ons, g diagr on a on of cost tenar	ances d for m, ty ertair graph am, k uxiliar deta requi	ing s of 0 the pes ning ical cey ries 0 illed ired rork

CO4	:	To prepare detail estimate and costing of overhead transmission line, overhead and underground				
		distribution projects following IE rules.				
CO5	:	To comprehend the estimation of substations.				
CO6	:	To prepare estimates for repairs and maintenance of electrical devices and equipment				
Text B	ooks	r.				
4		Raina K. B. and Bhattacharya S.K. " Electrical Design, estimating & Costing", New Age				
^{1.} International (p) Limited, New Delhi,2017 2 nd edition.						
2.		Gupta J.B., "Electrical Installation Estimating & Costing", S. K. Kataria& Sons, New Delhi,2015.				
3.		Uppal S.L. "Electrical Estimating & Costing", New Age International (p) Limited, New Delhi ,2018				
Refere	nce	Books:				
1.		SurjithSingh, "Electrical Estimating and Costing", Danpat Rai &Co2016.				
		CEA Regulations 2019				
2.	3. I.E rules for wiring and supply act manuals.					
		I.E rules for wiring and supply act manuals.				
	erenc					

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	3	1	1	1					1
CO2	3	2	2	2	1	1	1			1		
CO3	3	1	1	1	2	2	1	1				1
CO4	3	3	2	2	2	3	1	1	1	1	1	
CO5	3	3	2	2	2	1	1					
CO6	2	2	3	2	1	3	2	1	1	1	1	

18EEF	P 21	TOTAL QUALITY MANAGEMENT		T	Ρ	С
		3		0	0	3
~	_					
		Objectives:				
1.		To understand the statistical approach for quality control.				
2.		To Learn about the TQM principle.				
3.		To introduce the concept of statistical process control				
4.		To provide awareness on TQM standards				
5.		To create an awareness about the ISO and QS certification process and its need for the	ie i	ndu	Istrie	s
Unit I		INTRODUCTION		9	+	0
Definit Costs Conce	tion , Ba epts	of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techniques asic concepts of Total Quality Management, Historical Review, Principles of TQM, L , Role of Senior Management, Quality Council, Quality Statements, Strategic Planni ny, Barriers to TQM Implementation.	fo ea	r Q der	uality ship	y
Unit II	1	TQM PRINCIPLES	Т	•	.	_
		r satisfaction – Customer Perception of Quality, Customer Complaints, Service Quali		9	+	0 00r
Appra Partne	isal ersh	a, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Reward, , Benefits, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaiz and Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Ince Measures – Basic Concepts, Strategy, Performance Measure.	zen	i, S	uppl	ier
Unit II	1	STATISTICAL PROCESS CONTROL (SPC)	Т	9	+	0
and Sa	amp	n tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion ole, Normal Curve, Control Charts for variables and attributes, Process capability, Concepten Management tools.				
Unit I	v	TQM TOOLS	Т	9	+	0
House	e of	arking – Reasons to Benchmark, Benchmarking Process, Quality Function Deploym Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Mainte t, Improvement Needs, FMEA – Stages of FMEA.				
Unit V	/	QUALITY SYSTEMS	Т	9	+	0
Need	for	ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System – Elements, Imple ystem, Documentation, Quality Auditing, QS 9000, ISO 14000 – Concept, Requirements a	me	enta	tion	of
		Total (45+0))= 4	45 F	Peric	ds
Cours	se O	Outcomes:				
Upon	com	npletion of this course, the students will be able to:				
CO1	:	Understand the importance of quality, leadership and motivation in TQM				
CO2	:	Understand the problem of customers and continuous process improvement in supplier selection and rating	ра	artn	ersh	ip,
CO3	:	Recall the seven traditional tools, management tools and sigma concepts in TQM				
CO4	:	Identify the TQM tools and know the performance measures, quality control in TQM				
CO4	:	Understand the need for various quality control systems and quality auditing				
CO5	:	Perform the case study on ISO 9000 and 14000.				
Text E	300					
1.		Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education, Inc. 2018 I 0260-6.2018	SB	8N 8	1-29	97-
		0260-6.2018				-

Referen	ce Books:
1.	James R.Evans& William M.Lidsay, "The Management and Control of Quality", (5th Edition), South-
	Western (Thomson Learning), 2002 (ISBN 0-324-06680-5).
2.	Feigenbaum.A.V. "Total Quality Management, McGraw Hill, 2004.
3.	Oakland.J.S. "Total Quality Management Butterworth "Hcinemann Ltd., Oxford. 1989.
4.	Narayana V. and Sreenivasan, N.S. "Quality Management - Concepts and Tasks", New Age
	International 1996.
5.	Zeiri. "Total Quality Management for Engineers", Wood Head Publishers, 1991.
E-Refere	nces:
1	http://textofvideo.nptel.ac.in/video.php?courseId=110104080
2	https://nptel.ac.in/courses/110104085/

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		2			2		3	3	3	3	2
CO2	1		2			2		3	3	3	3	2
CO3	1		1			1		1	1	1	1	1
CO4	1		2			2		2	2	2	2	2
CO5	1		2			2		3	3	3	3	2
CO6	1		1			1		1	1	1	1	1

	RESTRUCTURED POWER SYSTEM			Ρ	С
		3	0	0	3
Course Ob	ojectives:				
1	Know about the implementation of power Systems based on applications				
2	Learn various safety equipment and their installations				
3	Get a clear awareness about automation in power Systems				
Unit I	POWER SYSTEM RESTRUCTURING		9	+	0
Participant	n –Deregulation - Need for deregulation – Power system restructure models - E s – GENCOS- DISCOS- TO- ISO- PX- SC - trading arrangements - Operational PI ectricity Market Participants - Causes of restructuring- types and effects of restructur	anning	j Ac	tiviti	es
Unit II	ELECTRICAL UTILITY		9	+	0
(PoolCo- b environme - wholesale	tility restructuring Power System Operation in competitive environment –Electricity ilateral- hybrid)- Components of restructured system - Power Sector restructuring a ot - Functions and responsibilities of PX- ISO- RTO and ITP - Electric Utility Market – e electricity market characteristic – Electricity Market types (energy- ancillary service al time) – Market power evaluation and mitigation	and inf Mark	ⁱ luer et M	nce lode	on Is
Unit III	EVALUATION OF TRANSMISSION SYSTEM		9	. 1	0
Unit IV	mplementation- Curtailment and cancellation of transaction - Availability Based Tari				
Introductio Market Pa allocation-	OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Eco n and transmission issues in the new market environment.	ts with I mod	lel c	of Ic	ss
Introductio Market Pa allocation- Mechanisn	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment.	ts with I mod conom	Ele lel c ic is	ctric of Ic	sity ss s-
Introductio Market Pa allocation- Mechanism Unit V Introductio State Spac Frequency	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec	ts with I mod conom ck dia onmei	Eler lel c ic is 9 agran	ctric of Ic sue + m a	sity ss s- 0 nc
Introductio Market Pa allocation- Mechanism Unit V Introductio State Spac Frequency	 Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Econ and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM Traditional Vs Restructured Scenario –AGC in New market environment - Bloc e representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). 	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity ss s- 0 nc ad- <i>(I</i>)
Introductio Market Pa allocation- Mechanisn Unit V Introductio State Spac Frequency Generatior	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 nd ad
Introductio Market Pa allocation- Mechanisn Unit V Introductio State Spac Frequency Generatior Course Ou	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 nd ad
Introductio Market Pa allocation- Mechanism Unit V Introductio State Spac Frequency Generation Course Ou Upon comp	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blo ce representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45- ntcomes: Deletion of this course, the students will be able to:	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 no ad
Introductio Market Pa allocation- Mechanism Unit V Introductio State Spac Frequency Generatior Course Ou Upon comp CO1 :	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematical usage sharing problem on transmission facilities - Methodology of graph theory - Eco and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blo the representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45 the top of this course, the students will be able to: Select appropriate electrical utility based on applications	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 nd ad
Introductio Market Pa allocation- Mechanism Unit V Introductio State Spac Frequency Generatior Course Ou Upon comp CO1 : CO2 :	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematical usage sharing problem on transmission facilities - Methodology of graph theory - Econ and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Bloc the representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45 Intercomes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 nd ad
Introductio Market Pa allocation- Mechanism Unit V Introductio State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 :	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematical usage sharing problem on transmission facilities - Methodology of graph theory - Econ and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Bloc the representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45) Intercomes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 no ad
Introductio Market Pa allocation- Mechanism Unit V Introductio State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marker rticipants – Power Flow Tracing – current decomposition axioms- Mathematical usage sharing problem on transmission facilities - Methodology of graph theory - Econ and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Bloc the representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45 Intercomes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	s- 0 noad
Introductio Market Pa allocation- Mechanisn Unit V Introductio State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marke rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blc re representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45 tecmes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model Understand proper selection of automation in power systems Design load frequency control scheme for two area interconnected systems.	ts with I mod conom ock dia onmer n Matr	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 no ad
Introductio Market Pa allocation- Mechanism Unit V Introductio State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 :	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marke rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45 tecomes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model Understand proper selection of automation in power systems Design load frequency control scheme for two area interconnected systems. s:	ts with I mod conom ock dia onmer n Matr +0)= 4	Eler lel c ic is 9 agrai nt – rix (l	ctric sue + Ma Loa	sity s- 0 nd ad
Introductio Market Pa allocation- Mechanisn Unit V Introductio State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marke rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blc re representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45 rtcomes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model Understand proper selection of automation in power systems Design load frequency control scheme for two area interconnected systems. S: Loi Lei Lai, "Power System Restructuring and deregulation"- John Wiley & Sons,20 Md.Shahidehpour, MuwaffagAlmoush, "Restructured Electric Power System – Oper	ts with I mod conom bock dia onmen n Matu +0)= 4	9 agrant	tric of Iccsue + m a Loa DPN	
Introductio Market Pa allocation- Mechanism Unit V Introductio State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : Text Book 1.	n – Approaches to OPF – Application of OPF analysis in Electricity and Power Marke rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n – Traditional Vs Restructured Scenario –AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated envir Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (45 rtcomes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model Understand proper selection of automation in power systems Design load frequency control scheme for two area interconnected systems. Select Lai, "Power System Restructuring and deregulation"- John Wiley & Sons,20	ts with I mod conom bock dia onmer n Matr +0)= 4	9 agrant	tric of Iccsue + m a Loa DPN	

Reference	
1	Xi Fan, Wang, Yonghua Song, Malcolm Irving, "Modern Power System Analysis", Springer, 2008
2	Das D, "Electrical Power Systems", New Age International (P) Ltd, New Delh,- 2008.
3	liic M, Galiana F, Fink L, "Power Systems Restructuring" Norwell MA Kluwer 1998
4	Philipson. L, Willis H.Le, "Understanding Electric Utilities and de-regulation", Marcel Dekker Inc
	Publishers, New York, 2006
E-Referer	ice
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3								1	2
CO2	1	2	3	2	2		2					2
CO3	1	2	3	2	2		2					2
CO4	1	2	2								1	2
CO5	1	2	3	2	2		2					2

	INDUSTRIAL ELECTRICAL SYSTEMS	. T	P	C
		8 0	0	3
Course Ol	bjectives:			
1	Know about the implementation of Electrical Systems based on applications			
2	Learn various safety equipment and their installations			
3	Get a clear awareness about automation in Electrical Systems			
11 14 1		-		
Unit I	ELECTRICAL SYSTEM COMPONENTS	9	+	0
Tariff struc symbols, s	n wiring components, select ion of cables, wires, switches, distribution box, met cture, protection components- Fuse, MCB, MCCB, ELCB, RCCB inverse current cl ingle line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electr safety practices	narac	terist	tics,
Unit II	RESIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS	9	+	0
	residential and commercial wiring systems, general rules and guidelines for insta	-	-	-
calculation calculation	and sizing of wire, rating of main switch, distribution board and protection devices, earlies, requirements of commercial installation, deciding lighting scheme and number of lar cial installation, selection and sizing of components.	hing	syste	em
Unit III	ILLUMINATION SYSTEMS	9		
-	ding various terms regarding light, lumen, intensity, candle power, lamp efficie	-	+	0 oifio
	Incandescent lamps and modern luminaries like CFL, LED and their operation, e ation systems, design of a lighting scheme for a residential and commercial pro-			
Unit IV	INDUSTRIAL ELECTRICAL SYSTEM	9	+	0
Unit IV HT conne SLD, Cable calculation	INDUSTRIAL ELECTRICAL SYSTEM ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct s, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Brow LT panel components.	ng of	– k\	ors, /AR
Unit IV HT conne SLD, Cabl calculation and other I	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Brought LT panel components.	ng of tion eaker	– k\	ors, /AR CB
Unit IV HT conne SLD, Cabl calculation and other I Unit V	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Brow LT panel components.	ng of ction eaker	– k\ s, M	ors, /AR CB
Unit IV HT conne SLD, Cabl calculation and other I Unit V Study of b	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Brought LT panel components.	ng of ction eaker	– k\ s, M	ors, /AR CB
Unit IV HT conne SLD, Cabl calculation and other I Unit V Study of b	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor corrects, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Bruch panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based con inel Metering and Introduction to SCADA system for distribution automation.	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cabl calculation and other I Unit V Study of b	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Bro LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based con inel Metering and Introduction to SCADA system for distribution automation. Total (45+0)	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cablicalculation and other I Unit V Study of b design, Pa	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Bro LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based con inel Metering and Introduction to SCADA system for distribution automation. Total (45+0)	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cablicalculation and other I Unit V Study of b design, Pa	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Bro LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based con inel Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes:	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cable calculation and other I Unit V Study of b design, Pa Course Ou Upon com	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Br LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based con inel Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to:	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cable calculation and other I Unit V Study of b design, Pa Course Ou Upon com CO1 :	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor corrected is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Bract panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based control Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to: Select appropriate switchgears based on applications	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cablicalculation and other I Unit V Study of b design, Pa Course Ou Upon comp CO1 : CO2 : CO3 :	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Brown T panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based con anel Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cablicalculation and other I Unit V Study of b design, Pa Course Ou Upon com CO1 : CO2 :	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor correct is, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Br LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based con inel Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cablicalculation and other I Unit V Study of b design, Pa Course Ou Upon com CO1 : CO2 : CO3 : CO4 : CO5 :	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor corrects, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Brut panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based control Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects.	ng of ction eaker 9 ntrol s	– k\ s, M + syste	ors, /AR CB 0 m
Unit IV HT conne SLD, Cablicalculation and other I Unit V Study of b design, Pa Course Ou Upon com CO1 : CO2 : CO3 : CO3 :	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor corrects, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Br LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based connel Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects. S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publisher	9 htrol s	- k\ s, M + syste Peri	ors /AR CB 0 m
Unit IV HT conne SLD, Cable calculation and other I Unit V Study of b design, Pa Study of b design, Pa Course Ou Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : Text Book	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor corrects, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Br LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based connel Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects. S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publisher K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.	9 ntrol s = 45	- k\ s, M + + yste Perio 08.	 orss /AR CB m ods
Unit IV HT conne SLD, Cable calculation and other I Unit V Study of b design, Pa Course Ou Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 :	ction, industrial substation, Transformer selection, Industrial loads, motors, startir e and Switchgear selection, Lightning Protection, Earthing design, Power factor corrects, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Br LT panel components. INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION asic PLC, Role of in automation, advantages of process automation, PLC based connel Metering and Introduction to SCADA system for distribution automation. Total (45+0) utcomes: pletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects. S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publisher	9 ntrol s = 45	- k\ s, M + + yste Perio 08.	ors /AF CB

E	-Reference	ces:
	1	www.onlinecourses.nptel.ac.in
	2	www.class-central.com

г

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	0	1	1	1	1	0	0	0	1
CO2	1	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

	24					SMA	RT GRIE)				L	T	P	C
												3	0	0	3
Course	e Obj	jectives:													
1		To int	roduce	commu	nication	techno	logies,	advance	d Mete	ering in	frastructu	re an	d ł	nigh-	
1		perform	nance c	omputing	g for Sm	hart Grid				-				-	
Unit I				ON TO S								9		+	0
											ey aspec			art G	Grid
develop	omer	nt, Smart	Grid ar	chitectui	re, ⊦unc	tions of	Smart G	irid Com	ponents	, challei	nges and	benet	its.		
Unit II		COMM				OGIES						9		+	0
	Inica							12 archi	tocturo	and co	mmunica	-	chr	-	_
											nication r				
											IEC 618				
and usa					., ••••••••			etering,		,					
Unit III		CONT	ROL AN	ID AUTO	OMATIO	N TECH	INOLOG	SIES				9		+	0
											tions arch				
											SI, Subst				
		architec	ture, co	mponer	nts and	function	s, Intell	igent ele	ectronic	devices	; (IED), F	Relay	IED), Ba	iy
controll	er.														
Unit IV		TDANG			DIETDI									T	
								GEMEN	ISYIS	EMS		q		- -	
S'truotu	ro o	f Enoro						GEMEN			o Aroo N	9	ron	+	0
			y mana	agement	t syster	ns- Pha	asor me	easurem	ent uni	ts- Wid	e-Area M	Neasu			fo
transmi	issioı	n Syster	iy mana ns- Stru	agement ucture a	t syster nd mair	ns- Pha	asor me onents d	easurem	ent uni	ts- Wid	e-Area M nent Syst	Neasu			fo
transmi	issioı		iy mana ns- Stru	agement ucture a	t syster nd mair	ns- Pha	asor me onents d	easurem	ent uni	ts- Wid		Neasu			foi
transmi	issioı	n Syster Data Ac	iy mana ms- Stru quisition	agement ucture a	t syster nd mair mer info	ns- Pha n compo prmation	asor me onents d	easurem	ent uni	ts- Wid		Neasu			for
transmi Control Unit V	issioi and	Data Ac	iy mana ms- Stru quisition	agement ucture a n- Custo RAGE S	t syster nd mair mer info	ns- Pha n compo prmation	asor me onents c system	easurem of Distrik	ent uni oution N	ts- Wid lanager		Measu tem- S	Sup	ervis	for sory
transmi Control Unit V Need c	and of En	Data Ac	iy mana ns- Stru cquisition GY STO rage for	agement ucture a n- Custo RAGE S the sma	t syster nd mair mer info SYSTEM art grid- E	ns- Pha compo prmation	asor me onents c system torage to	easurem of Distrik echnolog	ent uni oution M gies - Flo	ts- Wid Ianager	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	forsory
transmi Control Unit V Need c electrol	ission and of En yser	n Syster Data Ac ENER(ergy Sto - Superc	y mana ms- Stru cquisition GY STO rage for conducti	agement ucture a n- Custo RAGE S the sma	t syster nd mair mer info SYSTEM art grid- E	ns- Pha compo prmation I Energy s	asor me onents c system torage to	easurem of Distrik echnolog	ent uni oution M gies - Flo	ts- Wid Ianager	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	fo sory
transmi Control Unit V Need c electrol	ission and of En yser	n Syster Data Ac ENER(ergy Sto	y mana ms- Stru cquisition GY STO rage for conducti	agement ucture a n- Custo RAGE S the sma	t syster nd mair mer info SYSTEM art grid- E	ns- Pha compo prmation I Energy s	asor me onents c system torage to	easurem of Distrik echnolog	ent uni oution M gies - Flo	ts- Wid Ianager	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	foi sory
transmi Control Unit V Need c electrol Course	of En yser	n Syster Data Ac ENER(ergy Sto - Superc tcomes:	y mana ms- Stru quisition GY STO rage for conducti	agement ucture a n- Custo RAGE S the sma ing magi	t syster nd mair mer info SYSTEM art grid- E netic end	ns- Pha n compo prmation Energy s ergy sto	asor me onents o system torage to rage sys	easurem of Distrik echnolog	ent uni oution M gies - Flo	ts- Wid Ianager	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	foi sory
transmi Control Unit V Need c electrol Course	of En yser	n Syster Data Ac ergy Sto - Supero tcomes:	y mana ms- Stru quisition GY STO rage for conducti this cou	agement ucture a n- Custo RAGE S the sma ing magi	t syster nd mair mer info SYSTEM art grid- E netic end students	ns- Pha n compo prmation Energy s ergy sto	asor me onents o system torage to rage sys able to:	easurem of Distrik echnolog stems - S	ent uni oution M gies - Flo Superca	ts- Wid lanager ow batte pacitors	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	foi sory
transmi Control Unit V Need c electrol Course Upon co	of En yser	n Syster Data Ac ergy Sto - Supero tcomes: letion of Unders	y mana ms- Stru quisition GY STO rage for conducti this cou	agement ucture a n- Custo RAGE S the sma ing mage rse, the s e concep	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn	ns- Pha n compo prmation Energy sto ergy sto s will be nart Gric	asor me onents o system torage to rage sys able to: and its	easurem of Distrik echnolog stems - S	ent uni oution M gies - Flo Superca	ts- Wid lanager ow batte pacitors	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	foi sory
transmi Control Unit V Need c electrol Course Upon co CO1	of En yser	ENERG ergy Sto - Superc tcomes: etion of Unders Get acc	y mana ms- Stru quisition GY STO rage for conducti this cou this cou stand the quainted	agement ucture a n- Custo RAGE S the sma ing mage rse, the s	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn e smart i	ns- Pha ormation I Energy stores will be nart Gric resource	asor me onents o system torage to rage sys able to: and its es and do	easurem of Distrik echnolog stems - S present evices	ent uni pution M gies - Flo Superca develop	ts- Wid lanager ow batte pacitors	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	foi sory
transmi Control Unit V Need c electrol Course Upon co CO1 CO2 CO3	of En yser ompl	n Syster Data Ac ergy Sto - Superc tcomes: tetion of Unders Get ac Acquire	y mana ms- Stru cquisition GY STO rage for conducti this cou stand the quaintec e knowle	agement ucture a n- Custo RAGE S the sma ing mage rse, the s concep d with the	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn e smart i automati	ms- Pha ormation I Energy stor ergy stor will be mart Gric resource on and o	asor me onents o system torage to rage system able to: and its es and do control in	easurem of Distrik echnolog stems - S present evices frastruct	ent uni pution M gies - Flo Superca develop ture.	ts- Wid lanager ow batte pacitors ments.	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	fo sory
transmi Control Unit V Need c electrol Course Upon co CO1 CO2	of En yser ompl	ENERO ENERO ergy Sto - Supero tcomes: letion of Unders Get act Acquire Select	y mana ms- Stru cquisition GY STO rage for conducti this cou stand the quaintec e knowle an energi	agement ucture a n- Custo RAGE S the sma ing magi rse, the s e concep d with the edge of a	t syster nd mair mer info SYSTEM art grid- E netic end students ots of Sn e smart i automati ge syste	ms- Pha compo prmation Energy stores argy stores argy stores mart Grice resources on and o m and it	asor me onents o system torage to rage sys able to: and its es and do control in s integra	easurem of Distrik echnolog stems - S present evices ofrastruct ation with	ent uni pution M gies - Flo Guperca develop ture. n Smart	ts- Wid lanager ow batte pacitors ments.	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	fo sory
transmi Control Unit V Need c electrol Course Upon ca CO1 CO2 CO3 CO4 CO5	of En yser ompl	n Syster Data Ac ergy Sto - Superc tcomes: letion of Unders Get ac Select Identify	y mana ms- Stru cquisition GY STO rage for conducti this cou stand the quaintec e knowle an energi	Agement Jucture a n- Custo RAGE S the sma ing mage rse, the s e concept d with the edge of a gy storag	t syster nd mair mer info SYSTEM art grid- E netic end students ots of Sn e smart i automati ge syste	ms- Pha compo prmation Energy stores argy stores argy stores mart Grice resources on and o m and it	asor me onents o system torage to rage sys able to: and its es and do control in s integra	easurem of Distrik echnolog stems - S present evices ofrastruct ation with	ent uni pution M gies - Flo Guperca develop ture. n Smart	ts- Wid lanager ow batte pacitors ments.	nent Syst	Veasu tem- S 9 cell and	Sup d hy	ervis	forsory
transmi Control Unit V Need c electrol Course Upon ca CO1 CO2 CO3 CO3 CO4	of En yser ompl	n Syster Data Ac ergy Sto - Supero tecomes: detion of Unders Get ac Select Identify	y mana ms- Stru equisition GY STO rage for conduction this count stand the quainted e knowle an energy suitable	Agement acture a h- Custo RAGE S the sma ing mage the sma ing mage rse, the s e concep d with the edge of a gy storage e commu	t syster nd mair mer info SYSTEM art grid- E netic end students ots of Sm e smart i automati ge syste unicatior	ms- Pha ormation I Energy sto ergy sto s will be hart Grid resource on and o m and it n networ	asor me onents of system torage to rage system able to: and its and de control in s integra ks for sr	easurem of Distrik echnolog stems - S stems - S present evices ofrastruct ation with nart grid	ent uni pution M gies - Flo Superca develop ture. n Smart applicat	ts- Wid lanager ow batte pacitors ments. Grids ions	nent Syst	4easu tem- \$ 9 :ell and (+0) =	Sup d hy	ervis	foi sory
transmi Control Need c electrol Course Upon cc CO1 CO2 CO3 CO4 CO5 Text Bo 1.	of En yser ompl	ENER ENER ENER ENER ENER ENER ENER ENER	y mana ms- Stru quisition GY STO rage for conducti this cou stand the quainted an energy r suitable Momoh	Agement Jucture a n- Custo RAGE S the sma ing mage rse, the s e concep d with the edge of a gy storag e commu-	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sm e smart i automati ge syste unication T GRID	ms- Pha comport prmation Energy store argy store s will be mart Grid resource on and it m and it n networ Fundam	asor me onents o system torage to rage system able to: able to: and its as and do control in s integration ks for sr	easurem of Distrik echnolog stems - S present evices ofrastruct ation with nart grid	develop develop ture. applicat	ts- Wid lanager bw batte bacitors ments. Grids ions alysis",	ry - Fuel c Total (45	9 cell and 9 cell and 1 2.	Sup d hy 45	ervis	
transmi Control Unit V Need c electrol Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2.	of En yser ompl	n Syster Data Ac ergy Sto - Superce tecomes: detion of Unders Get acc Acquire Select Identify : James Janaka "Smart	y mana ms- Stru cquisition GY STO rage for conducti this cou this cou stand the quainted e knowle an ener y suitable Momoh a Ekana Grid: Te	Agement acture a n- Custo RAGE S the sma ing mage rse, the se concept d with the edge of a gy storage e comment "SMAR" ayake, Ne	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn e smart i automati ge syste unicatior T GRID Nick Je y and A	ms- Pha comport primation I Energy store argy store arg	asor me onents o system torage to rage system able to: and its able to: and its and di control ir s integra ks for sr mentals o KithsiriLi ns", Wile	easurem of Distrik echnolog stems - S present evices offrastruct ation with nart grid f Design yanage, ey, 2012	develop develop ture. n Smart applicat	ts- Wid Ianager bw batte bacitors ments. Grids ions alysis", ong Wi	ry - Fuel c Total (45 Wiley, 20 J, Akihiko	12. D Yok	45 	Perio	fo sory gen
transmi Control Need c electrol Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo	of En yser ompl	n Syster Data Ac ergy Sto - Superce tecomes: detion of Unders Get acc Acquire Select Identify : James Janaka "Smart	y mana ms- Stru cquisition GY STO rage for conducti this cou this cou stand the quainted e knowle an ener y suitable Momoh a Ekana Grid: Te	Agement acture a n- Custo RAGE S the sma ing mage rse, the se concept d with the edge of a gy storage e comment "SMAR" ayake, Ne	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn e smart i automati ge syste unicatior T GRID Nick Je y and A	ms- Pha comport primation I Energy store argy store arg	asor me onents o system torage to rage system able to: and its able to: and its and di control ir s integra ks for sr mentals o KithsiriLi ns", Wile	easurem of Distrik echnolog stems - S present evices offrastruct ation with nart grid f Design yanage, ey, 2012	develop develop ture. n Smart applicat	ts- Wid Ianager bw batte bacitors ments. Grids ions alysis", ong Wi	ry - Fuel c Total (45 Wiley, 20	12. D Yok	45 	Perio	for sory gen
transmi Control Need c electrol Course Upon cc CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3.	of En yser Out ompl : : : : ooks	n Syster Data Ac ergy Sto - Superce tecomes: detion of Unders Get acc Acquire Select Identify : James Janaka "Smart	y mana ms- Stru cquisition GY STO rage for conducti this cou this cou stand the quainted e knowle an ener y suitable Momoh a Ekana Grid: Te	Agement acture a n- Custo RAGE S the sma ing mage rse, the se concept d with the edge of a gy storage e comment "SMAR" ayake, Ne	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn e smart i automati ge syste unicatior T GRID Nick Je y and A	ms- Pha comport primation I Energy store argy store arg	asor me onents o system torage to rage system able to: and its able to: and its and di control ir s integra ks for sr mentals o KithsiriLi ns", Wile	easurem of Distrik echnolog stems - S present evices offrastruct ation with nart grid f Design yanage, ey, 2012	develop develop ture. n Smart applicat	ts- Wid Ianager bw batte bacitors ments. Grids ions alysis", ong Wi	ry - Fuel c Total (45 Wiley, 20 J, Akihiko	12. D Yok	45 	Perio	fo sory gen
transmi Control Need c electrol Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3. CO/P	of En yser ompl i i i i i ooks	ENER Data Ac ENER ergy Sto - Superce toomes: toomes: toomes: toomes: Com	y mana ms- Stru cquisition GY STO rage for conducti this cou this cou stand the quainted e knowle an ener y suitable Momoh a Ekana Grid: Te	Agement acture a n- Custo RAGE S the sma ing mage rse, the se concept d with the edge of a gy storage e comment "SMAR" ayake, Ne	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn e smart i automati ge syste unicatior T GRID Nick Je y and A	ms- Pha comport primation I Energy store argy store arg	asor me onents o system torage to rage system able to: and its and its and its and di control ir s integra ks for sr mentals o KithsiriLi ns", Wile	easurem of Distrik echnolog stems - S present evices offrastruct ation with nart grid f Design yanage, ey, 2012	develop develop ture. n Smart applicat	ts- Wid Ianager bw batte bacitors ments. Grids ions alysis", ong Wi	ry - Fuel c Total (45 Wiley, 20 J, Akihiko	12. D Yok	45 	Perio	
transmi Control Need c electrol Course Upon cc CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3.	of En yser ompl i i i i i ooks	ENER Data Ac ENER ergy Sto - Superce toomes: toomes: toomes: toomes: Com	y mana ms- Stru cquisition GY STO rage for conducti this cou this cou stand the quainted e knowle an ener y suitable Momoh a Ekana Grid: Te	Agement acture a n- Custo RAGE S the sma ing mage rse, the se concept d with the edge of a gy storage e comment "SMAR" ayake, Ne	t syster nd mair mer info SYSTEM Int grid- E netic end students ots of Sn e smart i automati ge syste unicatior T GRID Nick Je y and A	ms- Pha comport primation I Energy store argy store arg	asor me onents o system torage to rage system able to: and its and its and its and di control ir s integra ks for sr mentals o KithsiriLi ns", Wile	easurem of Distrik echnolog stems - S present evices offrastruct ation with nart grid f Design yanage, ey, 2012	develop develop ture. n Smart applicat	ts- Wid lanager bw batte bacitors ments. Grids ions alysis", ong Wi	ry - Fuel c Total (45 Wiley, 20 J, Akihiko	12. D Yok	3up d hy 45	Perio	

CO	PO1	PO2	PO3	PO	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3		2	1		1			1
CO2		2	3	1				1			1	
CO3			2		2					2		
CO4	2				3	1	3				2	
CO5		3		2				1	2			2

OPEN ELECTIVES

18EEOE	REI	NEWABLE ENERGY SOURCES	Т	Ρ	С
		3	0	0	3
Course (bjectives:				
1.	To impart knowledge on th	ne Awareness about renewable Energy Sources and technolo	ogies	S.	
•		he Recognize current and possible future role of renewable e			
2.	sources.	5			
Unit I	INTRODUCTION		9	+	0
Energy S		gy Resources – Environmental Aspects of Energy Utilisation a and around the World – Potentials – Achievements / A ems.			
Unit II	SOLAR ENERGY		9	+	0
Thermal		Solar Radiation – Flat Plate and Concentrating Collectors Power Generation – Fundamentals of Solar Photo Voltaic on – Solar PV Applications.			
Unit III	WIND ENERGY		9		0
Wind Dat		pes of Wind Energy Systems – Performance – Site Selection Environmental Aspects.	•	- Detai	
Unit IV	BIO – ENERGY		9	+	0
Biomass	Direct Combustion – Biomass	Gasifiers – Biogas Plants – Digesters – Ethanol Production	– Bi	io Die	esel –
	tion – Biomass Applications.				
Unit V	OTHER RENEWABLE EI		9	+	0
Unit V Tidal Ene	OTHER RENEWABLE EI gy – Wave Energy – Open an	NERGY SOURCES d Closed Ocean Thermal Energy Conversion(OTEC) Cycles - torage – Fuel Cell Systems – Hybrid Systems.	•	+ nall F	-
Unit V Tidal Ene	OTHER RENEWABLE EI gy – Wave Energy – Open an	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems.	- Sn		łydro-
Unit V Tidal Ene Geothern	OTHER RENEWABLE EI gy – Wave Energy – Open an	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles	- Sn		łydro-
Unit V Tidal Ene Geothern	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles - torage – Fuel Cell Systems – Hybrid Systems. Total (45+0	- Sn		łydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies.	- Sn		łydro-
Unit V Tidal Ene Geothern Course O Upon cor CO1 CO2	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy.	- Sn		łydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy.	- Sn		łydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO3 CO4	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu Create awareness about r Apply knowledge in solar Understand basics about Apply adequate inputs on	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy.	- Sn	45 Pe	lydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO3 CO4 CO5	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu Create awareness about r Apply knowledge in solar Understand basics about Apply adequate inputs on Apply knowledge to recog	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles - torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sources	- Sn)) = 4	45 Pe 6.	lydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO3 CO4	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu Create awareness about r Apply knowledge in solar Understand basics about Apply adequate inputs on Apply knowledge to recog	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy.	- Sn)) = 4	45 Pe 6.	iydro-
Unit V Tidal Ene Geothern Upon cor CO1 CO2 CO3 CO4 CO5 CO6	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about l : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles - torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sources	- Sn)) = 4	45 Pe 6.	lydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boc	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about 1 : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sources and technologies and their ap	- Sn)) = 4	45 Pe 6.	lydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boo 1.	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about 1 : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou : Apply knowledge in variou	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sou is renewable energy resources and technologies and their ap	- Sn)) = 4	45 Pe 6.	iydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boc	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about 1 : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou : Apply knowledge in variou	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sources and technologies and their ap	- Sn)) = 4	45 Pe 6.	lydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boo 1.	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou : Apply knowledge in variou : Rai. G.D., "Non-Convention Twidell, J.W. & Weir, A., "Interface	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sou is renewable energy resources and technologies and their ap	- Sn)) = 4	45 Pe 6.	lydro-
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boo 1. 2.	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about l : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou (S: Rai. G.D., "Non-Convention Twidell, J.W. & Weir, A., "I Books: Sukhatme. S.P., "Solar E edition.	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sou is renewable energy resources and technologies and their ap onal Energy Sources", Khanna Publishers, New Delhi, 2011. Renewable Energy Sources", EFN Spon Ltd., UK, 2009. nergy", Tata McGraw Hill Publishing Company Ltd., New De	- Sn) = 4 urces plica	45 Pe	s.
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boo 1. 2. Reference	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si utcomes: pletion of this course, the stu : Create awareness about r : Apply knowledge in solar : Understand basics about : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou (s: Rai. G.D., "Non-Convention Twidell, J.W. & Weir, A., "I Books: Sukhatme. S.P., "Solar Ei edition. Godfrey Boyle, "Renewab 2012. 3rd edition.	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sou is renewable energy resources and technologies and their ap onal Energy Sources", Khanna Publishers, New Delhi, 2011. Renewable Energy Sources", EFN Spon Ltd., UK, 2009. nergy", Tata McGraw Hill Publishing Company Ltd., New De le Energy, Power for A Sustainable Future", Oxford Universit	- Sn) = 4 urces plica	45 Pe	a,3 rd
Unit V Tidal Ene Geothern Course (Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boo 1. 2. Reference 1.	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si pletion of this course, the stu : Create awareness about r : Apply knowledge in solar of : Understand basics about r : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou (S: Rai. G.D., "Non-Convention Twidell, J.W. & Weir, A., "I • Books: Sukhatme. S.P., "Solar E edition. Godfrey Boyle, "Renewab 2012. 3rd edition. Tiwari. G.N., Solar Energy House, New Delhi, 2002.	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sou is renewable energy resources and technologies and their ap onal Energy Sources", Khanna Publishers, New Delhi, 2011. Renewable Energy Sources", EFN Spon Ltd., UK, 2009. nergy", Tata McGraw Hill Publishing Company Ltd., New De le Energy, Power for A Sustainable Future", Oxford University y – "Fundamentals Design, Modelling & Applications", Narosa	- Sn) = 4 urces plica	45 Pe	a,3 rd
Unit V Tidal Ene Geotherm Course C Upon cor CO1 CO2 CO3 CO4 CO5 CO6 Text Boo 1. 2. Reference 1. 2.	OTHER RENEWABLE EI gy – Wave Energy – Open an al Energy – Hydrogen and Si pletion of this course, the stu : Create awareness about r : Apply knowledge in solar of : Understand basics about f : Apply adequate inputs on : Apply knowledge to recog : Apply knowledge in variou : Apply knowledge in variou : Apply knowledge in variou : Sukhatme. S.P., "Solar E edition. Godfrey Boyle, "Renewab 2012. 3rd edition. Tiwari. G.N., Solar Energy House, New Delhi, 2002. Freris. L.L., "Wind Energy	d Closed Ocean Thermal Energy Conversion(OTEC) Cycles- torage – Fuel Cell Systems – Hybrid Systems. Total (45+0 dents will be able to: renewable Energy Sources and technologies. energy. biomass energy. a variety of issues in harnessing renewable Energy. nize current and possible future role of renewable energy sou is renewable energy resources and technologies and their ap onal Energy Sources", Khanna Publishers, New Delhi, 2011. Renewable Energy Sources", EFN Spon Ltd., UK, 2009. nergy", Tata McGraw Hill Publishing Company Ltd., New De le Energy, Power for A Sustainable Future", Oxford Universit	- Sn) = 4 urces plica	45 Pe	a,3 rd

6.	David M. Mousdale – "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2010
7.	Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI Learning Private Limited, New Delhi, 2009.
E-Reference	ces:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	1	1	1	1	1	1	1
CO2	3	1	1	3	1	1	1	1	1	1	1	1
CO3	1	2	2	1	1	1	1	1	1	1	1	1
CO4	3	1	1	3	2	1	1	1	1	1	1	1
CO5	2	1	1	2	1	1	2	1	1	1	1	1
CO6	2	2	1	1	1	1	1	1	1	1	1	1

3 Course Objectives: 1. To introduce communication technologies, infrastructure and high performance com Smart Grid. Unit 1 INTRODUCTION TO SMART GRID 9 Definitions and Need for Smart Grid, key aspects of Smart Grid development, Smart Grid architecture, of Smart Grid Components, challenges and benefits. 9 Unit II COMMUNICATION TECHNOLOGIES 9 Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication tect specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Structure of Energy management systems- Phasor measurement units - Supervisory Con Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid - Energy storage technologies - Flow battery - FL Superconducting magnetic energy storage systems - Supercapacitors 9 Upon completion of this course, the students will be able to: CO1 1 CO1 2 Get acquainted with the smart resources and devices 2 CO2 3 Get acquainted with the smart resources and devices 2 2	+ Function + Inologi or smain +	0 000 es rt 0
1. To introduce communication technologies, infrastructure and high performance com Smart Grid. Unit I INTRODUCTION TO SMART GRID 9 Definitions and Need for Smart Grid, key aspects of Smart Grid development, Smart Grid architecture, of Smart Grid Components, challenges and benefits. 9 Unit I COMMUNICATION TECHNOLOGIES 9 Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication tecl specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Structure of Energy MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Con Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - FL Superconducting magnetic energy storage systems - Supercapacitors 9 Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation	+ Function + Inologi or smain +	(on: (es rt
1. To introduce communication technologies, infrastructure and high performance com Smart Grid. Unit I INTRODUCTION TO SMART GRID 9 Definitions and Need for Smart Grid, key aspects of Smart Grid development, Smart Grid architecture, of Smart Grid Components, challenges and benefits. 9 Unit I COMMUNICATION TECHNOLOGIES 9 Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication tecl specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. 9 Unit II AUTOMATION TECHNOLOGIES 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Com Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - FL Superconducting magnetic energy storage systems - Supercapacitors 9 Upon completion of this course, the students will be able to: CO1 : CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acqua	+ Function + Inologi or smain +	Conservations of the servation of the se
Smart Grid. Unit I INTRODUCTION TO SMART GRID 9 Definitions and Need for Smart Grid, key aspects of Smart Grid development, Smart Grid architecture, of Smart Grid Components, challenges and benefits. 9 Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication teck specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. 9 Smart metering. Unit II AUTOMATION TECHNOLOGIES 9 Smart metering. 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Con Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - FL Superconducting magnetic energy storage systems - Supercapacitors 9 Upon completion of this course, the students will be able to: CO1 1 CO2 : Get acquainted with the smart resources and devices CO2 CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge o	+ Function + Inologi or smain +	(on: (es rt
Definitions and Need for Smart Grid, key aspects of Smart Grid development, Smart Grid architecture, of Smart Grid Components, challenges and benefits. 9 Unit II COMMUNICATION TECHNOLOGIES 9 Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication teck specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. 9 Unit III AUTOMATION TECHNOLOGIES 9 Smart metering. 9 Smart metering. 9 Smart metering. Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Con Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors 9 Upon completion of this course, the students will be able to: CO1 : CO1 : Understand the concepts of Smart Grid and its present developments. CO2 CO2 : Get acquainted with the smart resources and devices CO3 :	Function + nologi pr smain +	on: es rt
of Smart Grid Components, challenges and benefits. 9 Unit II COMMUNICATION TECHNOLOGIES 9 Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication tecl specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. 9 Unit III AUTOMATION TECHNOLOGIES 9 Smart metering: 9 Smart metering: 9 Smart metering: 9 Structure of Energy management systems- 9 Structure of Energy management systems- 9 Structure of Energy management systems- 9 Need of Energy Storage for the smart grid- 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors 9 Votal (45+0) = 4 Course Outcomes: 1 Upon completion of this course, the students will be able to: 1 0 CO1 : Understand the concepts of Smart Grid and its present developments. 1	+ Inologi or smai	es rt
Unit II COMMUNICATION TECHNOLOGIES 9 Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication tech specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. 9 Unit III AUTOMATION TECHNOLOGIES 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Com Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors 9 Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 CO2 : Get acquainted with the smart resources and devices CO3 CO3 : Acquire knowledge of automation and control infrastructure. CO4	nologi or smai	es rt
Communication infrastructure for the Smart Grid, IEEE 802 architecture and, communication teck specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. Unit III AUTOMATION TECHNOLOGIES 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory ComData Acquisition- Customer information system 9 Need of Energy Storage for the smart grid - Energy storage technologies - Flow battery - Fu 9 Superconducting magnetic energy storage systems - Supercapacitors 9 Course Outcomes: Upon completion of this course, the students will be able to: 9 CO1 : Understand the concepts of Smart Grid and its present developments. CO2 CO2 : Get acquainted with the smart resources and devices CO3 CO3 : Acquire knowledge of automation and control infrastructure. CO4	nologi or smai	es rt
specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. Unit III AUTOMATION TECHNOLOGIES 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Com Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors 9 Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids	or smai	rt
specified under IEEE 802, Wireless LANs, ZigBee and 6LoWPAN, ZigBee communication network for metering. Unit III AUTOMATION TECHNOLOGIES 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Com Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors 9 Course Outcomes: Upon completion of this course, the students will be able to: 7 CO1 : Understand the concepts of Smart Grid and its present developments. 7 CO2 : Get acquainted with the smart resources and devices 7 CO3 : Acquire knowledge of automation and control infrastructure. 7 CO4 : Select an energy storage system and its integration with Smart Grids	or smai	rt C
metering. 9 Unit III AUTOMATION TECHNOLOGIES 9 Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. 9 Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory ComData Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu 9 Superconducting magnetic energy storage systems - Supercapacitors 9 Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids	+	0
Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Compata Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu 9 Superconducting magnetic energy storage systems - Supercapacitors 9 Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		-
Smart metering: Benefits, Architecture, Key components and operation, communications architecture metering, Intelligent electronic devices (IED), Relay IED, Bay controller. Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Compata Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu 9 Superconducting magnetic energy storage systems - Supercapacitors 9 Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		-
metering, Intelligent electronic devices (IED), Relay IED, Bay controller. Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Con- Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu 9 Superconducting magnetic energy storage systems - Supercapacitors 9 Total (45+0) = 4 Course Outcomes: 1 Upon completion of this course, the students will be able to: 7 CO1 1 Understand the concepts of Smart Grid and its present developments. CO2 2 Get acquainted with the smart resources and devices CO3 2 Acquire knowledge of automation and control infrastructure. CO4 2 Select an energy storage system and its integration with Smart Grids	tor sm	ar
Unit IV ENERGY MANAGEMENT SYTSEMS 9 Structure of Energy management systems- Phasor measurement units - Supervisory Compata Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu 9 Superconducting magnetic energy storage systems - Supercapacitors 9 Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
Structure of Energy management systems- Phasor measurement units - Supervisory Com Data Acquisition- Customer information system Unit V ENERGY STORAGE SYSTEMS Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
Structure of Energy management systems- Phasor measurement units - Supervisory Com Data Acquisition- Customer information system Unit V ENERGY STORAGE SYSTEMS Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids	+	(
Data Acquisition- Customer information system 9 Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
Unit V ENERGY STORAGE SYSTEMS 9 Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		~
Need of Energy Storage for the smart grid- Energy storage technologies - Flow battery - Fu Superconducting magnetic energy storage systems - Supercapacitors Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
Superconducting magnetic energy storage systems - Supercapacitors Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids	+	0
Total (45+0) = 4 Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids	el cell	-
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids	<u> </u>	
Upon completion of this course, the students will be able to: CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids	o Perio	bd
CO1 : Understand the concepts of Smart Grid and its present developments. CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
CO2 : Get acquainted with the smart resources and devices CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
CO3 : Acquire knowledge of automation and control infrastructure. CO4 : Select an energy storage system and its integration with Smart Grids		
CO4 : Select an energy storage system and its integration with Smart Grids		
CO5 [: Identify suitable communication networks for smart grid applications		
Taxt Backer		
Text Books: 1. James Momoh "SMART GRID Fundamentals of Design and Analysis", Wiley, 2015.		
Janaka Ekanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yoko		
2. "SmartGrid: Technology and Applications", Wiley, 2012.		
3. Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Pre-	yama,	
CO/PO Mapping		

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3		2	1		1			1
CO2		2	3	1				1			1	
CO3			2		2					2		
CO4	2				3	1	3				2	
CO5		3		2				1	2			2

18EEOE	ENERGY CONSERVATION AND MANAGEMENT	L	Т	Ρ	С
Course 0	bjectives:	3	0	0	3
1.	To get knowledge about basics of energy and energy scenario on India.				
2.	To understand the energy conservation concepts.				
3.	To know about electrical energy management.				
11-24				1	
Unit I	ENERGY SCENARIO enario of India – Present non-renewable energy scenario – Gross domestic product-	Enor	9 avi	+	0 Oitu
	energy production and pricing – Energy security - Energy strategy for the future, air p				
	nergy Conservation Act-2001 and its features.	Jonat	011,	CIIII	aic
					-
Unit II	BASICS OF ENERGY		9	+	0
	on – Work, power and energy – Electricity basics – Thermal energy basics – En ns – Energy performance – Matching energy usage to requirement.	hergy	un	its a	ind
COnversio	is – Energy performance – Matching energy usage to requirement.				
Unit III	ENERGY CONSERVATION APPROACHES		9	+	0
	ving opportunities in electric motors, Benefits of Power factor improvement and its te				
	Synchronous Condenser etc., Energy conservation by industrial drives, Methods an				
	onservation in ventilation and air conditioners, compressors pumps, fans and b				
	on in electric furnaces, ovens and boilers., lighting techniques - Natural , CFL, LED	lighti	ng	sour	ces
and fitting	<u>.</u>				
Unit IV			9	+	0
	ide management (DSM)– DSM planning – DSM Techniques – Load management as	a DS	-		-
	conservation – tarrif options for DSM - Energy audit – instruments for energy audit – E				
	n, distribution and utilization systems – economic analysis.	inerg	y u	uun	01
Unit V	ENERGY EFFICIENT TECHNOLOGIES		9	+	0
	demand controllers - Automatic power factor controllers - Energy efficient motors -				
	ver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occu	panc	y se	enso	rs -
Energy er	icient lighting controls - Energy saving potential of each technology.				
	Total (45-	+0)=	45 I	Perie	ods
Course C		,			
Upon com	pletion of this course, the students will be able to:				
Upon com CO1 :	pletion of this course, the students will be able to: Understand the present energy scenario.				
CO1 : CO2 :	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms.				
CO1 : CO2 : CO3 :	Understand the present energy scenario.Get fundamental knowledge about energy and its various forms.Understand the process of energy management and energy auditing.				
CO1 : CO2 : CO3 : CO4 :	 Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. 				
CO1 : CO2 : CO3 :	Understand the present energy scenario.Get fundamental knowledge about energy and its various forms.Understand the process of energy management and energy auditing.				
CO1 : CO2 : CO3 : CO4 : CO5 :	 Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation 				
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation				
CO1 : CO2 : CO3 : CO4 : CO5 :	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation s: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015.	1.			
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1.	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation	1.			
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2. 2. Reference 1.	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation sc: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 199 Books:				
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2. 2.	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation sc: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 199 Books: Guide books for National Certification Examination for Energy Manager / Energy A		rsB		1,
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2. 2. Referenc 1.	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation s: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 199 Books: Guide books for National Certification Examination for Energy Manager / Energy A General Aspects (available online).	udito			
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2. 2. Reference 1.	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation sc: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 199 Books: Guide books for National Certification Examination for Energy Manager / Energy A General Aspects (available online). Guide books for National Certification Examination for Energy Manager / Energy A	udito			
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2. . Reference 1. 2. 2.	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation sc: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 199 Books: Guide books for National Certification Examination for Energy Manager / Energy A General Aspects (available online). Guide books for National Certification Examination for Energy Manager / Energy A Electrical Utilities (available online)	udito .udito	rsB	ook-	
CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2. 2. Referenc 1.	Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation sc: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 199 Books: Guide books for National Certification Examination for Energy Manager / Energy A General Aspects (available online). Guide books for National Certification Examination for Energy Manager / Energy A	udito udito on, 1	rsB 982	ook-	

E-Referen	ces:
1.	www.bee-india.nic.in
2.	NPTEL Course: Non-Conventional Energy Resources – Prof. PrathapHaridoss, IIT-M.
3.	NPTEL Course: Energy Management Systems and SCADA, 2015 organised by IIT-M.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	2	2	1	3	2	2	2	2	2
CO2	1	1	2	2	1	1	3	2	1	1	2	2
CO3	2	2	2	3	1	1	3	2	2	2	1	2
CO4	2	1	2	2	1	1	3	2	1	2	2	2
CO5	2	2	3	1	2	1	3	1	2	1	2	1

	4 ELECTRIC VEHICLES	L	Т	Ρ	C				
		3	0	0	3				
	Objectives								
1.	To understand the components of Electric Vehicle and its global and Indian scenari	0.							
2.	To understand the types of Electric Vehicle and its architectural design.								
3.	To analyze the performance of different types of motor and its electrical an	nd n	necl	nanio	cal				
	connections.								
4.	To analyse the energy storage performance and battery management systems.								
5.	To understand the types of charging stations and its components.								
Unit I	INTRODUCTION TO ELECTRIC VEHICLES								
Compon	ents of Electric Vehicle, Comparison with Internal combustion Engine : Technology, Co	mpa	risc	n wi	th				
Internal of	combustion Engine: Benefits and Challenges, EV classification and their electrification I	eve	ls, E	V					
Terminol	ogy, Global and Indian Scenario: Technology Scenario, Market scenario, Policies and R	legu	latio	ons,					
Unit II	ELECTRIC VEHICLE ARCHITECTURE DESIGN		9	+	0				
	Electric Vehicle and components, Electrical protection and system requirement, Photo								
	/ design, Battery Electric vehicle (BEV), Hybrid electric vehicle (HEV) , Plug-in hybrid ve		•						
	electric vehicle (FCEV), Electrification Level of EV, Comparison of fuel Vs electric and	sola	ar po	ower	,				
	wer operated Electric vehicles.			1	-				
Unit III	ELECTRIC DRIVE AND CONTROLLER		9	+	0				
	Motors, Selection and sizing of Motor, RPM and Torque calculation of motor, Motor Co	ntro	ller	5,					
Compon	ent sizing.	ntro	ller	8,					
Compon Physical	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor.	ntro		1					
Compon Physical Unit IV	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM		9	+	C				
Compon Physical Unit IV Cell Type	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and	d siz	9 2ing	+	0				
Compon Physical Unit IV Cell Type Battery la	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti	d siz on c	9 zing crite	+ ria.	0				
Compon Physical Unit IV Cell Type Battery la Need of	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su	d siz on c	9 zing crite	+ ria.	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features.	d siz on c	9 cing crite /iso	+ ria. ry					
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION	d siz on c perv	9 cing crite /iso 9	ria. ry					
Compon Physical Unit IV Cell Type Battery la Need of control, M Unit V Type of C	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station	d siz on c perv	9 cing crite /iso 9	ria. ry					
Compon Physical Unit IV Cell Type Battery la Need of control, M Unit V Type of C	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station.	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diago	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0 0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diago	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging statior ram of charging station. Total (45+	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diago	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station ram of charging station. Total (45+ Dutcomes:	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diago Course of Upon con	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station ram of charging station. Total (45+ Dutcomes: mpletion of this course, the students will be able to:	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diago Course C Upon con	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging statior ram of charging station. Total (45+ Dutcomes: mpletion of this course, the students will be able to: Understand the concept of Electric Vehicle technology	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diago Course 0 Upon con CO1 CO2	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station arm of charging station. Total (45+ Dutcomes: I Understand the concept of Electric Vehicle technology I Understand the types of EV and analyse their characteristics.	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diagu Course 0 Upon con CO1 CO2 CO3	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging statior and of charging station. Total (45+ Dutcomes: mpletion of this course, the students will be able to: Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller.	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diagu Course C Upon con CO1 CO2 CO3 CO4	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station charging station. Total (45+ Dutcomes: I Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller. Analyse and interpret the battery calculations and configurations.	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diagu Course C Upon cou CO1 CO2 CO3 CO4 CO5 CO6	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM as (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station Charging station. Total (45+ Dutcomes: I Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller. Analyse and interpret the battery calculations and configurations. Understand the control of battery management system Understand and analyse the sizing of charging station	d siz on c perv on,	9 crite /iso 9 Sing	ria. ry + gle	0				
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diagu Course 0 Upon cou CO1 CO2 CO3 CO4 CO5	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM es (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station are of charging station. Total (45+ Dutcomes: npletion of this course, the students will be able to: Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller. Analyse and interpret the battery calculations and configurations. Understand the control of battery management system Understand and analyse the sizing of charging station	d siz on c perv on, 0)=	9 crite viso 9 Sing 45	ria. ry he Perio					
Compon Physical Unit IV Cell Type Battery la Need of control, N Unit V Type of C line diagu Course C Upon cou CO1 CO2 CO3 CO4 CO5 CO6	ent sizing. locations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM as (Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and ay outing design, Battery Pack Configuration, Battery Pack Construction, Battery selecti BMS, Rule based control and optimization based control, Software-based high level su Mode of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION Charging station, Selection and Sizing of charging station, Components of charging station Charging station. Total (45+ Dutcomes: I Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller. Analyse and interpret the battery calculations and configurations. Understand the control of battery management system Understand and analyse the sizing of charging station	d siz on c perv on, 0)=	9 ting crite 9 9 Sing 45	ria. ry ery Perio					

2.	Iqbal Hussain "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, Taylor &Francis Group, Second Edition (2011).
Reference	Books:
1.	Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010
2.	Standards. IEC IEC 60068-2 (1,2,14,30),IEC 61683,IEC 60227,IEC 60502 IEC 60947 part I,II, III ,IEC 61215
E-Reference	es:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

CO PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	1	1	1			1	1
CO2	2	3	3	2	1	1	2	1	1			1
CO3	1	3	3	3	1	1	2	2		1	1	
CO4	1	2	2	3	3	1	2	1		1	1	
CO5	1	1	3	2	3	1	2	2		1	1	1
CO6	1	3	3	3	3	1	2	2	1		1	1

PROTOSEM COURSES SYLLABUS

18MI	EPS11	APPLIED DESIGN THINKING		S	Semeste	er	VI
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives				-	
			. 1 .1 .	1	1		
1		arse enables product innovators and early-stage startup founde			-	-	
2		liarize with the tools & techniques & validate the inherent risk er-commitment & customer-acceptance.	s by linking their pr	ogress t	o custor	ner-mot	ivation,
3	To learn	n the system thinking concepts by reverse engineering techniq	lue.				
Un	it I	DESIGN THINKING PRINCIPLES		9	0	0	9
-	-	an – Centered Design – Understanding the innovation process ding techniques, Mitigate validate risk with FIR(Forge Innova	-	-	-	y, interv	viewing
Un	it II	CUSTOMER-CENTRIC INNOVATION		9	0	0	9
and pro	blem inc	istomer-centric innovation – Problem Validation and Custome idence- Customer Validation. Target user, User persona & use rviews and field visit.				-	
Uni	t III	APPLIED DESIGN THINKING TOOLS		9	0	0	9
Design		imum Usable Prototype(MUP) – MUP challenge brief – Desig Festing Value Proposition: Design a compelling value proposi ign.					e
Uni	t IV	CONCEPT GENERATION		9	0	0	9
build th	ne right p	ation, Concepts Generation and MUP design – Conceptualize rototype: Assess capability, usability and feasibility. Systemat the solution concepts.	-	-			
Un	it V	SYSTEM THINKING & REVERSE ENGINEERIN	NG	9	0	0	9
-		ng, Understanding Systems, Examples and Understandi lentify building blocks/Components – Re-Engineering a comp	• • •	vstems,	Revers	e Engi	neering
	Total = 45 Periods						
T							
1 ex	t Books:						
1	Steve Bl	ank, (2013), The four steps to epiphany: Successful strategies	for products that w	vin, Wil	ey.		
2	Alexand	er Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith	, Trish Papadakos,	(2014),	Value		
3	Proposit	ion Design: How to Create Products and Services Customers	Want, Wiley				

4 Donella H. Meadows, (2015), "Thinking in Systems - A Primer", Sustainability Institute.

5 Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.

Refe	Reference Books:							
1	https://www.ideou.com/pages/design-thinking#process							
2	https://blog.forgeforward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253c a8624							
3	https://blog.forgeforward.in/product-innovation-rubric-adf5ebdfd356							
4	https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e							
5	https://blog.forgeforward.in/user-guide-for-product-innovation-rubric-857181b253dd 6							
6	https://blog.forgeforward.in/startup-failure-is-like-true-lie-7812cdfe9b85							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Define & treat various hypotheses to mitigate the inherent risks in product innovations						
CO2	Design the solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit.	L6: Creating					
CO3	Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching.	L3: Applying					
CO4	Apply system thinking to reverse engineer a product/prototype and understand its internal correlations.	L3: Applying					

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	3	2	3	2	1	1	1	1	1	1	1	2	2	3
C02	2	2	3	2	2	1	1	1	1	1	1	1	3	3	2
CO3	1	2	2	1	1	3	1	1	3	3	1	1	1	1	1
C04	2	3	3	3	3	2	2	1	2	2	1	1	3	3	3
AVG	1.75	2.5	2.5	2.25	2	1.75	1.25	1	1.75	1.75	1	1	2.25	2.25	2.25

0: No correlation, 1: Low correlation, 2: Medium correlation, 3: High correlation

18MF	EPS12	STARTUP FUNDAMENTALS		Semester							
PRER	EQUIS	ITES	Category		Cre	edit	3				
				L	T P		ТН				
			Hours/Week	3	3						
Cours	e Learn	ing Objectives									
1	Learn t	he science of to transforming an innovative idea into high-gro	wth enterprises.								
2	To und	erstand the basic concepts of IPR, and develop a patent draft for	or a potential IP								
Un	it I	ENTREPRENEURIAL MINDSET & METHOD		9	0	0	9				
		Innovation-led, tech-powered entrepreneurship - Underst Effectuation principles - Dealing with the unknowns - Case stu			ttributes	s of an	expert				
Uni	it II	IDEA TO ENTERPRISE		9	0	0	9				
-		nning of Product Concept - Business Model - Business Plannin nd Revenue Planning	g - Building Proof	of Prod	uct and	Value T	esting -				
Uni	t III	MINIMUM VIABLE BUSINESS		9	0	0	9				
		Minimum Viable Business - Disruptive Innovation - Theory o ousiness model - Demystifying Scalability - Funding Opportu	-	petitive	advanta	age - Bu	ilding				
Uni	t IV	INTELLECTUAL PROPERTY		9	0	0	9				
Secret		nd the need for Intellectual Property Rights - IPR Genesis an aphical Indicators - Industrial Designs - Types of Patent – Sa fees									
Uni	it V	PRIOR ART SEARCH AND PATENT DRAFTING	r T	9	0	0	9				
basmati	i rice. Th	n - IP Licensing – IP Commercialization - IP Infringement- (e invention as a concept - Keywords formation - Structure of p fifications - Drafting complete specifications - Draft claims - (batent - Key attribu	tes in pa	atent dra						
					Total	= 45 I	Periods				
	Deales										

Tey	at Books:
1	Steven Blank and Bob Dorf, (2012), The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company, K&S Ranch
2	Dr Saras Sarasvathy, (2008), Effectuation: Elements of Entrepreneurial Expertise, New Horizons in Entrepreneurship series.
3	Elizabeth Verkey, (2005), Law of Patents, Eastern Book Company
4	Prabuddha Ganguli, (2017), Intellectual Property Rights: Unleashing the Knowledge Economy, McGraw Hill Educatio 1st edition

Ref	Reference Books:							
1	WIPO Intellectual Property Handbook https://www.wipo.int/edocs/pubdocs/en/intproperty/489/wipo_pub_489.pdf							
2	https://assets.entrepreneur.com/static/20220301113822-Marketing.pdf							
3	https://www.deluxe.com/blog/startup-fundamentals-guide/							
4	https://www.forbes.com/sites/allbusiness/2018/07/15/35-step-guide-entrepreneurs-starting-a-business/?sh=69a6031e184b							

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Develop an entrepreneurial mindset to identify, assess, shape & act on opportunities.	L3: Applying						
CO2	Demonstrate the potential of an innovative idea to create economic value, as a startup	L2: Understanding						
CO3	Understand the scientific process to explore a viable business model	L2: Understanding						
CO4	Demonstrate knowledge on the fundamental concepts of Intellectual Property	L2: Understanding						

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	2	2	1	1	2	1	2	2	2	3	3	1	1	2
C02	2	2	3	1	1	1	1	2	2	1	3	2	2	2	2
CO3	1	2	2	2	1	1	1	1	1	1	3	2	1	1	1
C04	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1
AVG	1.25	1.75	2	1.25	1	1.25	1	2	1.5	1.25	2.5	2	1.25	1.25	1.5

0: No correlation, 1: Low correlation, 2: Medium correlation, 3: High correlation

18MI	EPS13	COMPUTATIONAL HARDWAR	S	Semeste	er	VI				
PRER	REQUIS	ITES	Category	PE	Cre	edit	3			
				L	Т	Р	ТН			
			Hours/Week	3	0	0	3			
Cours	se Learn	ing Objectives	I							
1		n basic concepts of Embedded Systems by familiarizing the fu oment boards.	inctionalities of em	bedded	platforn	ns with				
2	To understand the core concepts of GPIO Pins, Functionality of peripherals, Selection of I/O devices, Usage									
2	-	nal functions, and Communication protocols.								
3	To fam service	iliarize the current technologies and protocols used in the Inters.	rnet of Things (IoT) and to	learn th	e Cloud	l			
Ur	nit I	BASICS OF EMBEDDED SYSTEM		9	0	0	9			
schema	atics – To	form: Architecture and working - Factors for Microcontroller ool chain - Setup and Configuration - Input/Output Configuration mers, Interrupts - Pulse Width Modulation - Display: 7-segme	tions and Access -							
Un	it II	BASICS OF RASPBERRY PI		9	0	0	9			
Genera	al Purpose	aspberry pi Board - Processor - Setup and Configuration - In e I/O Pins - Protocol Pins - GPIO Access - Pulse Width Modul Bot - Interfacing pi with camera modules.			-					
Uni	it III	SENSORS AND ACTUATORS		9	0	0	9			
Soil M	oisture S	ensors and Actuators - Sensors: Introduction, Characteristics: ensor, LDR - Digital - PIR Sensor, Smoke Sensor, Infrared - S naracteristics and working with relay, DC motors, Servo motor	Sensor, Ultra- Sonic	c Sensor	. Actuat		sor,			
Uni	it IV	COMMUNICATION PROTOCOLS		9	0	0	9			
Comm	Protocols - Wired: RS232 Standard - UART, SPI, I2C - Comparative study of wired protocols - Implementation of wired Serial Communication protocols Wireless: Standards - Bluetooth, RF - Comparative study of wireless protocols - Implementation of wireless Serial Communication protocols.									
Un	it V	INTERNET OF THINGS		9	0	0	9			
embede I/O per	Definition and Architecture of IoT, Building blocks of IoT, Programming with IoT protocols - MQTT, CoAP - Connecting embedded target board to Web, Basics networking in IoT: creating a web page - Creating a server on target board - Controlling I/O peripherals from the webpage, Embedded Application Development, Creating communication between different nodes - Cloud platforms for IoT, Cloud data logging and monitoring, Interfacing with web services.									
					Total	= 45 ł	Periods			
Tex	t Books	:								
1	Raj Kan	nal, "Embedded Systems - SoC, IoT, AI and Real-Time Syste	ems", 4th Edition, N	/lcGraw	Hill, 20	020.				
2	Mohit A	rora, "Embedded System Design", 1st Edition, Learning Byte	es Publishing, 2016							
3	Elecia V	White, "Making Embedded Systems", 1st Edition, Shroff/ O' F	Reilly, 2012.							
4	4 Jack Ganssle, "The Firmware Handbook", 1st Edition, Newnes, 2004.									

Reference Books:						
1	https://juniorfall.files.wordpress.com/2011/11/arduino-cookbook.pdf					
2	https://drive.google.com/file/d/13s0m3lHPEFP2f2aCuVNRWeBZNKXWKTW5/view?ts=6231cab 3					
3	https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSeshia_DigitalV2_2.pdf 4.					
4	https://www.riverpublishers.com/pdf/ebook/RP9788793519046.pdf					

Cours Upon o	Bloom's Taxonomy Level	
CO1	Understand and implement the functions & Capabilities of embedded platforms for easy prototyping.	L2: Understanding
CO2	Identify the type of sensors and actuators for required applications.	L3: Applying
CO3	Develop communication between devices using different protocols.	L3: Applying
CO4	Develop IoT based systems with wireless network connections and accessing devices over cloud.	L3: Applying

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	3	2	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	2	2	2	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
AVG	3	2.25	2.75	2	2.75	0	0	0	0	0	0	0	3	2.5	2.5

0: No correlation, 1: Low correlation, 2: Medium correlation, 3: High correlation

18MEP	PS14	CODING FOR INNOVATORS		S	Semeste	er	VI			
PRERE	QUIS	ITES	Category		Credit					
			Hours/Week	L	Р	ТН				
	3	0	0	3						
Course	Learn	ing Objectives		I						
1 7	Го learr	and express creativity using coding skills.								
2 7	To gain knowledge of Python programming with hands-on experience.									
3 Т	Го dem	onstrate a problem solving using OOPs concepts.								
4 T	Го learr	basics of Linux by familiarizing the concepts of management	at and file structure.							
5 T	Го prac	tise full stack development using cloud platform.								
Unit	Ι	PROGRAMMING PARADIGMS		9	0	0	9			
operation	ion to H s, trave	BASIC OF PROGRAMMING Python: statements, variables, functions, operators, modules, of ersing a list, slicing a list - Text Handling: Strings, string fu open, close, read, copy, word frequency, creating word histog	nctions, conversion	n functi						
Unit l	III	OOPS 5		9	0	0	9			
	•	OPS- verticals- implementation in python - Classes and Objectly lymorphism, Abstraction, Encapsulation.	cts, Methods, Const	tructors	and De	structors	5,			
Unit l	Unit IV SOFTWARE DEVELOPMENT TO DELIVERY						9			
Based) - - Source	Data S code 1	neering - Life Cycle (Tools), Agile Methodologies - Framew tructures - Database Management System - A case study to exp management and version control - GitHub - GitHub Actions	periment from Deve	elopmei	nt to Dep	oloymer	t(D2D)			
	X 7	u - Build Packs AWS- Anaconda					form as			
Unit	v			9	0	0	form as			
Introducti	ion to L stem Str	u - Build Packs AWS- Anaconda OPERATING SYSTEMS Linux - Process Management - Process Scheduling - Memory M ructure - Multithreading - Multicore Programming - Deadloch	-	age Mar	nagemer	ıt - Syste	9 em calls			
Introducti - File Sys	ion to L stem Str	u - Build Packs AWS- Anaconda OPERATING SYSTEMS Linux - Process Management - Process Scheduling - Memory M ructure - Multithreading - Multicore Programming - Deadloch	-	age Mar	nagemer e - Disk	it - Syste Manag	9 em calls			

Tex	xt Books:
1	Zed A. Shaw, "Learn Python 3 the Hard Way", 3rd edition, Addison-Wesley Professional, 2013.
2	Silberschatz Abraham, "Operating System Concepts", 9th edition, John Wiley & Sons Inc (Sea) Pte Ltd, 2016.
3	Paul Barry, "Head-First Python", 2nd edition, O'Reilly Media, Inc, 2016.
4	Anton Spraul, "Think Like a Programmer", 1st edition, No Starch Press, 2012.

E-Re	E-References :							
1	https://www.geeksforgeeks.org/python-programming-language/							
2	https://www.guru99.com/python-tutorials.html							
3	https://www.tutorialspoint.com/python/python_tutorial.pdf							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the aspects of programming protocols	L2: Understanding					
CO2	Develop optimized code for real-world problems	L3: Applying					
CO3	Build full-stack development to deployment	L3: Applying					
CO4	Demonstrate problem solving and continuous development	L2: Understanding					

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	2	2	1	3	0	0	0	0	0	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	1	3	0	0	0	0	0	0	0	3	2	2
C04	2	3	2	1	2	0	0	0	0	0	0	3	2	1	1
AVG	2.5	2.5	2.5	1.25	2.75	0	0	0	0	0	0	3	2.5	1.5	1.5

PREREQUISITES Category OE Credit 3 Interval Control I T P TH Hours/Week I T P TH Interval Control I<	18MI	EPS15	INDUSTRIAL DESIGN AND RAPID PROTO TECHNIQUES	TYPING	S	Semester					
Hours/Week J <thj< tr=""> Intrit In</thj<>	PRER	REQUIS	ITES	Category	OE	Cr	edit	3			
Solution Solution Solution Solution 1 Learn to design a UI/UX design and develop an android application. - - - 2 Provide working CAD model for prototype development. - <					L	Т	Р	ТН			
1 Learn to design a Ul/UX design and develop an android application. 2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to AP1 - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basi				Hours/Week	3	0	0	3			
2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Need	Cours	e Learn	ing Objectives								
3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup - Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 0 0	1	Learn t	o design a UI/UX design and develop an android application.								
4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup - Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapi	2	Provide	e working CAD model for prototype development.								
Unit I UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9	3	Knowle	edge in hardware, 3D Printers and Laser cutters.								
Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit IV ELECTRICAL RAPID PROTOTYPING 9 0	4	Acquir	e basic knowledge in designing electrical circuits and fabrication	on of electronic de	vices.						
Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. Unit III INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods	Un	nit I	UI / UX		9	0	0	9			
SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. Unit III INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensiming & Tolerancing 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - s	- Desig	n proces	s flow, wireframes, best practices in the industry -User engage	• • •	gn alteri	natives	1	-			
Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping - Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA 9 0 0 9 Total = 45 Periods	Workir	ng with D	atabases - Introduction to API - Introduction to Cloud services								
to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods	Uni	t III	INDUSTRIAL DESIGN		9	0	0	9			
Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books: Text Books: Electronic Prototyping - Working With State Prototyping - State Prototyping - Working With State Prototyping - State Prototyping - State Prototyping - State Prototyping - Working With State Prototyping - State Prototyping - Working With State Prototyping - State Prototyping - Working With State Prototyping - Working With PCB design With P	to CAL	D tools - T	Гуреs of 3D modeling - Basic 3D Modeling Tools - Part creati								
methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Uni	it IV	MECHANICAL RAPID PROTOTYPING		9	0	0	9			
Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	method	ls - Tools	s used in different domains - Mechanical Prototyping: 3DPrin			-					
simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Un	it V	ELECTRICAL RAPID PROTOTYPING		9	0	0	9			
Text Books:				s - Electronic Proto	typing -	Worki	ng with				
						Tota	l = 45 H	Periods			
	Теч	t Books	•								
1 Peter Fiell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Llc(2003)											

2 Samar Malik, Autodesk Fusion 360 - The Master Guide.
 3 Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, Pearson, 3rd edition (2014)

E - R	E - References:							
1	https://www.adobe.com/products/xd/learn/get-started.html							
2	https://developer.android.com/guide							
3	https://help.autodesk.com/view/fusion360/ENU/courses/							
4	https://help.prusa3d.com/en/category/prusaslicer_204							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Create quick UI/UX prototypes for customer needs	L6: Creating					
CO2	Develop web application to test product traction / product feature	L3: Applying					
CO3	Develop 3D models for prototyping various product ideas	L3: Applying					
CO4	Built prototypes using Tools and Techniques in a quick iterative methodology	L3: Applying					

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PSO3
C01	2	2	3	2	3	0	0	0	1	1	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	1	1	0	0	3	2	2
CO3	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
C04	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
AVG	2.75	2.25	3	2	3	0	0	0	1	1	0	0	2.75	1.75	1.75

INDUSTRIAL AUTOMATION 18MEPS16 DATA LIFE CYCLE MANAGEMENT	S	emeste	er	VI						
PREREQUISITES Category	OE	Cre	edit	3						
	L	ТН								
Hours/Week	3	0	0	3						
Course Learning Objectives										
1 Acquire conceptual knowledge in Industrial Controllers by scaling of on-board devices and embedded board interfacing with various I/O peripherals.										
2 Learn PLC by working on internal features and also interfacing with Sensors and actuate SCADA and standard communication protocols.	rs along	g HMI c	concept	using						
3 To work with FPGA boards and RT controllers for reprogrammable embedded application	ons usin	g LabV	IEW							
4 Understand the concepts and design electronics circuits										
Unit I INDUSTRIAL CONTROLLERS - I	9	0	0	9						
devices - Module SOM - Interfacing with Input and Output devices - Interfacing protocol based Acquiring and Data Logging from sensors - Interfacing Actuators: Relay, DC Motor, Servo applications.	Motor	- Creat	ting star	ndalone						
Unit II INDUSTRIAL CONTROLLERS - II	9	0	0	9						
Industrial Controllers - II - PLC - Introduction - Mode of Operation - IEC 61131 Programming lang & sequence control - Instruction set - Scan Time - Timers - Counters - Interfacing with Input/Ou Sensors - Interfacing with Actuators - Interfacing with Human Machine Interface - Commission PLC - SCADA.	itput de	vices - I	nterfaci	ng with						
Unit III INDUSTRIAL COMMUNICATION PROTOCOLS	9	0	0	9						
Serial Communication Protocols - I2C, SPI - Serial Field bus protocols CAN, PROFIBUS - Eth Cloud data logging. Multi-sensor communication, Data parsing between Embedded platforms. C communication protocols - Implementation of Industrial Communication protocols.										
Unit IV FPGA AND RT CONTROLLER PROGRAMMING	9	0	0	9						
Introduction to FPGA - Architecture - Operations in FPGA programming - FPGA Pro- implementation in myRIO - Introduction to RT controllers - Architecture - Programming RT Co- applications.	-	-								
Unit V INDUSTRIAL CIRCUIT BOARD DESIGN	9	0	0	9						
Designing basics circuits and to simulate in environment setup - Component selection - Creating Design rules, supply & communication track rules - Component and footprint editor - Understand - Test point creation for measurement - PCB Layout, placement rules - Footprint, 3D models, Bol										
output documentation.	Ms - Ge	-		e types						

Tex	t Books:
1	Ed Doering, NI myRIO Project Essential Guide, National Instruments, 2016.
2	Willian Bolton, Programmable Logic Controllers, 6th edition, Newnes Publications, 2015
3	Richard Zurawski, Industrial Communication Technology Handbook, Second edition, CRC Press, 2014
4	Simon Monk, Make Your Own PCBs with EAGLE, McGraw Hill Education, 2014.
Refere	ences Books:
1	Jeffrey Travis, Jim Kring, LabVIEW for Everyone: Graphical Programming Made Easy and Fun, 3rd edition, Prentice Hall
2	Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing, Fourth edition, Pearson Education, 2016
3	Michael J. Hamill, Industrial Communications and Control Protocols, PDH centre, 2016
4	Ema Design Automation, The Hitchhiker's Guide to PCB Design, First edition, Blurb Publishers, December 2021

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level			
CO1	Understand the usage of controllers in an industrial environment	L2: Understanding			
CO2	Build Real-Time systems for Industrial embedded monitoring and controlling deterministic applications	L3: Applying			
CO3	Communicate between devices at different levels using industrial protocols	L3: Applying			
CO4	Understand the process involved in PCB design using EDA tools and fabricate it	L2: Understanding			

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	2	1	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.25	2.75	1.75	3	0	0	0	0	0	0	0	3	2.75	2.5

18M	EPS17	ROBOTICS/ML&MLOps		S	Semester					
PRER	REQUIS	ITES	Category	EE	Cre	edit	3			
				L	Т	Р	ТН			
			Hours/Week	3	0	0	3			
Cours	se Learn	ing Objectives								
1	Learn t	he fundamentals of ROS								
2	2 Understand the requirements and choose the right sensors and actuators for the application development									
3	Create	Bot in the virtual environment and simulate it to know the fun	ctionalities of the s	ystem d	evelope	d				
4	4 Learn the basics of Robotics Vision System									
5	Integra	te ROS and Computer Vision to build systems for various use	cases							
Ur	nit I	INTRODUCTION TO ROBOT KINEMATICS		9	0	0	9			
		Robotics - Transformations - Forward Kinematics - Kinematic analysis - Numerical Inverse Kinematic Solutions -					Inverse			
Un	it II	SELECTION OF SENSORS AND ACTUATORS		9	0	0	9			
		ensors & Actuators - Types - Selection criteria - Design consid peed characteristics - Hardware Interface & Assembly	lerations: Motor siz	ing - Se	lection	of motor	rs based			
Uni	it III	INTRODUCTION TO ROBOT OPERATING SYS	TEM	9	0	0	9			
ROS p		ROS framework and prerequisites - Understanding communic ing - ROS nodes, topics, messages - ROS services - ROS Too Motion								
Uni	it IV	INTRODUCTION TO ROBOTICS VISION SYST	EM	9	0	0	9			
Gauss	Image basics - Image Processing - Histograms - Gray scale, Color, Equalization - Smoothing and blurring/filtering - Averaging, Gaussian, Median, Bilateral - Thresholding - Simple, Adaptive, Otsu - Gradients and Edge detection - Laplacian, Sobel, Canny - Contours - Camera calibration									
Un	it V	INTEGRATION OF ROS AND COMPUTER VISI	ON	9	0	0	9			
	iction - Ir orld appli	sstallation - CV Bridge - Image publisher node - Image subscrib cations	oer node - Nodes bu	ilding a	nd laund	ching - E	Building			
	Total = 45 Periods									

Tex	xt Books:
1	Introduction to Robotics: Mechanics and Control by John J Craig, Pearson Publishers.
2	Robot Operating System (ROS) for Absolute Beginners by Lentin Joseph, A press; Publishers (2018).
3	Learning OpenCV by Gary Bradski, Adrian Kaehler, O'Reilly Media, Inc.

Refe	erence Books:
1	https://www.intechopen.com/chapters/379
2	https://www.plantengineering.com/articles/eight-selection-criteria-for-actuation-components/
3	https://www.controleng.com/articles/tips-on-sensor-selection/
4	https://www.toptal.com/robotics/introduction-to-robot-operating-system
5	https://www.thomasnet.com/articles/automation-electronics/machine-vision-systems/
6	https://automaticaddison.com/working-with-ros-and-opencv-in-ros-noetic/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand kinematics considerations of robot	L2: Understanding
CO2	Selection of sensors and actuators according to application	L3: Applying
CO3	Utilize the ROS environment to simulate and communicate between robot	L3: Applying
CO4	Develop algorithms to extract features and data from image	L3: Applying
CO5	Utilize the open CV for robotic applications	L3: Applying

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	3	1	2	0	0	0	0	0	0	0	3	3	2
C02	3	3	2	1	2	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	3	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.5	2.75	1.5	2.5	0	0	0	0	0	0	0	3	3	2.5

PROGRAMME ELECTIVE COURSEVERTICALS FOR HONOURS / MINOR DEGREE

VERTICAL I : POWER ENGINEERING

18E	EHO1	01 SUBSTATION ENGINEERING AND AU	TOMATION	SEME	STE	R	
PRE	REQU	JISTIES	CATEGORY	PEC	Cre	edit	3
Dowe	r evetar	n protection, Electrical Measurements, Power system	Hours/Week	L	Т	Р	TH
TOWC	i syster	n protection, Electrical Measurements, i ower system	Hours/ week	3	0	0	3
Cour	se Ob	jectives:					
1.		derstand the importance of the substation design					
2.		tline the different factor for effecting substation design					
3.		assify the bus configurations					
4.		ow the design criteria for substation grounding					
5.	To un	derstand the importance of substation automation					
UNI	ГІ	INTRODUCTION		9	0	0	9
		Need Determination, Budgeting, Financing, Traditional and	innovative Substation I	Design, Si	te Se	lectio	n and
		Design, Construction and Commissioning Process		0			
UNI	ГΠ	HIGH VOLTAGE SWITCHING EQUIPMENT		9	0	0	9
		ditions, Disconnect switches, Load Break switches, high speed	grounding switches, poy	1	•	-	
	t break		8, F	,			,
UNI	гш	TYPES OF SUBSTATIONS & BUS/SWITCHING C	ONFIGURATIONS	9	0	0	9
		n substation, distribution substation, collector substation, swi		insulated	subs		is, air
		ostations, bus configurations: single bus, double bus, double					
		bus, break-and-a-half, Comparison of configurations.					U
UNI		DESIGN OF SUBSTATION GROUNDING AND PR		9	0	0	9
		substation grounding system, accidental ground circuit, Des					
		rid resistance, grid current, use of the design equations, select					
		as. Lightning stroke protection-lightning parameters, empirica	al design methods. Subs	tation fir	e prot	ection	n-Fire
nazar	us, me	protection measures, fire protection selection criterion.					
UNI	гν	SUBSTATION AUTOMATION AND COMMUNIC.	ATIONS	9	0	0	9
		, components of substation automation system, automation		-	-	-	
		data acquisition (SCADA) historical perspective, SCADA f					
		s, components of SCADA system, SCADA communication pro					
proto	col, sec	urity for substation communications, security methods, security	assessment.				
			Total	(45L+0	T)= 4	5 Pe	riods
Text	Books	5:					
1.	Joh	n D. McDonald, Electrical Power Substation Engineering, CR	C Press, 3 rd Edition, 20	17			
Refe	rence	Books:					
1.		S. Dahiya, VinayAttri," Sub-Station Engineering Design & lications, 1 st Edition, 2013.	Computer Application	s"SK	Kata	ria a	nd son
2.		Satnam, P. V. Gupta, "Substation Design and Equipment" D	hananat Rai Publications	1 st Edit	tion ?	013	
3.		an Gonen, "Electric Power Distribution Engineering "CRC pre-		, 1 5t Lan			
	ferenc		,, 201 ···				
1		os://www.transgrid.com.au/what-we-do/our-network/connection	25				
2		s://www.transgrid.com.au/what-we-do/our-network/connection s://new.abb.com/substations	15				
4	Intp	5.// IIC w. a00. COIII/ Substations					

3	https://ieeexplore.ieee.org/document/178016
4	https://www.sciencedirect.com/topics/engineering/substations

Course O	outo	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Understand the commissioning of substation	L2: Understanding
CO2	:	Know working principles of substation switching equipment	L2: Understanding
CO3	:	Identify the different types of bus configurations	L1: Remembering
CO4	:	Design substation grounding and protection	L6: Creating
CO5	:	Analyse the substation communication (SCADA)	L4: Analysing

COs/ POs	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	3	1	1		1	1			1		2	2	1
CO2	1	2	1	1	1								1	1	2
CO3	1	3	2	2	2		1	1				1	1	2	1
CO4	2	2	3	2	3	2						1	2	2	1
CO5	1	2	1	1	3	1	1	1			1	1	2	2	1
Avg	1.4	2.2	2	1.4	2	1.5	1	1	0	0	1	1	1.6	1.8	1.2

18EEHO102	EMS AND SCADA	SEME	STER		
PREREQUISI	TES CATEGORY	PEC		edit	3
Power System	Hours/Week		T	P	TH
		3	0	0	3
Course Objecti					
	knowledge on energy management system.				
	and network analysis function of EMS. ne function and control of SCADA.				
	the concept of SCADA hardware and software.				
	e concept of power system automation using SCADA.				
	ΙΕΡΟΥ ΜΑΝΑ Ο ΕΜΕΝΈ ΑνζΈΓΕΜ	9	0	0	9
	NERGY MANAGEMENT SYSTEM o EMS, Objectives, Evolution of EMS, Evolution (ADA,		nctio
	o EMS, Objectives, Evolution of EMS, Evolution of EMS, Evolution of EMS, EMS Architecture, Practical EMS, Working of EMS,		System		curity
	atic Security Assessment, Operating states of Power System.				Onlin
/	trol Function, Protection Function, Operating States of Power System	Real 1	mic	01 (J
-pp.ice.com - Com					
UNIT II NI	ETWORK ANALYSIS FUNCTION OF EMS	9	0	0	9
	on, Extended Real Time Function, State Estimation: Introduction, Conventional				ır
	conomic Dispatch and Optimal Power Flow: Introduction, Economic Dispatch,	Generatio	n Mode	el,	
Economic Dispate	h Problem, Optimal Power Flow problem Formulation.				
			0	0	0
	CADA	9	0	0	9
	A SCADA Evolution of SCADA Banafits of S		Fund	otion	
		CADA,		ction Moni	
SCADA, SCAI	DA in Process control, SCADA Application, Usage of SCADA	, Real-7		ction Moni	
SCADA, SCAI		, Real-7			
SCADA, SCAI and Control using	DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control	, Real-7	Гime	Moni	torin
SCADA, SCAI and Control using UNIT IV S(DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Controcada CADA HARDWARE AND SOFTWARE	A, Real-7 ol. 9	Гіте 0	Moni	9
SCADA, SCAI and Control using UNIT IV SC ntroduction,	DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote	A, Real-7 ol. 9 Termin	Fime 0 nal	Moni	torin 9 Unit
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU,	DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contro CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU	a, Real-7 ol. 9 Termin and PL	Fime 0 nal C, F	Moni 0 eature	torin 9 Unit
SCADA, SCAI and Control using UNIT IV SC ntroduction, SCADA RTU, SCADA. SCA	DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contro CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU	a, Real-7 ol. 9 Termin and PL	Fime 0 nal	Moni 0 eature	torin 9 Unit
CADA, SCAI nd Control using JNIT IV SC ntroduction, CADA RTU, CADA. SCA Geatures of DNP3	DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contro CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol.	A, Real-7 ol. 9 Termin and PL DNP3 M	Fime 0 nal C, F Iodel,	Moni 0 eature Imp	torin 9 Unit s oorta
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA. SCA Features of DNP3 UNIT V PC	DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contre CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol.	A, Real-7 ol. 9 Termin and PL DNP3 M 9	Fime 0 nal C, F Iodel, 0	Moni 0 eature Imp 0	torin 9 Unit s oortan 9
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA. SCAI Features of DNP3 UNIT V PC Power System A	DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contrest CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, Rt DA Software and DA Software and Protocols: Introduction to ISO Model, I DA Software and Protocols: Introduction to ISO Model, I DA Software and Protocols: Introduction to ISO Model, I DA Software and Protocols: Introduction to ISO Model, I DWER SYSTEM AUTOMATION	A, Real- ol. 9 Termin and PL DNP3 M 9 sification	Fime 0 nal C, F fodel, 0 of Po	Moni	torin 9 Unit sorta 9 yster
SCADA, SCAI und Control using UNIT IV SC UNIT IV SC SC ntroduction, SCADA RTU, SCADA RTU, SCADA SCADA SCA SCA Geatures of DNP3 SCA SCA UNIT V PC PC Power System A Automation, Imp	 DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, 	A, Real- ol. 9 Termin and PL DNP3 M 9 sification	Fime 0 nal C, F fodel, 0 of Po	Moni	torin 9 Unit sorta 9 yster
SCADA, SCAI and Control using SCAI UNIT IV SC Introduction, SCADA SCADA RTU, SCADA SCAI SCAI SCAI SCAI SCAI SCAI SCAI SCAI SCAI SCAI SCAI SCAI <t< td=""><td> DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, </td><td>A, Real- ol. 9 Termin and PL DNP3 M 9 sification</td><td>Fime 0 nal C, F fodel, 0 of Po</td><td>Moni</td><td>torin 9 Unit sorta 9 yster</td></t<>	 DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, 	A, Real- ol. 9 Termin and PL DNP3 M 9 sification	Fime 0 nal C, F fodel, 0 of Po	Moni	torin 9 Unit sorta 9 yster
SCADA, SCAI und Control using UNIT IV SC UNIT IV SC SC ntroduction, SCADA RTU, SCADA RTU, SCADA SCADA SCA SCA Geatures of DNP3 SCA SCA UNIT V PC PC Power System A Automation, Imp	 DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control SCADA, Data Acquisition, Data Communication, Data Presentation, and Control CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I (160870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Clas lementation of Power System Automation and Protection using SCADA, Digital Protection. 	A, Real- ol. 9 Termin and PL DNP3 M 9 sification SCADA	Fime 0 nal C, F 10del, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA. SCAI Features of DNP3 UNIT V PC Power System A Automation, Imp	 DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control SCADA, Data Acquisition, Data Communication, Data Presentation, and Control CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I (160870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Clas lementation of Power System Automation and Protection using SCADA, Digital Protection. 	A, Real- ol. 9 Termin and PL DNP3 M 9 sification	Fime 0 nal C, F 10del, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA. SCA Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I	 DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Control SCADA, Data Acquisition, Data Communication, Data Presentation, and Control CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I (160870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Clas lementation of Power System Automation and Protection using SCADA, Digital Protection. 	A, Real- ol. 9 Termin and PL DNP3 M 9 sification SCADA	Fime 0 nal C, F 10del, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA. SCAI Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I Fext Books:	 DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contrest SCADA, Data Acquisition, Data Communication, Data Presentation, and Contrest CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I (1970) DA Software and Protocols: Introduction to ISO Model, I (1970) DWER SYSTEM AUTOMATION (1970) DUMER SYSTEM AUTOMATION (1970) DUM	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA. SCAI Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I SCADA. SCAI Features of DNP3	A in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contre CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Clas lementation of Power System Automation and Protection using SCADA, Digital Protection. To	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA. SCAI Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I SCADA. SCAI Features of DNP3 UNIT V PC Power System A Automation and I SCADA. SCAI Power System A Automation and I SCAI AUTOMATION A AUTOMATION A SCAI POWER SYSTEM A AUTOMATION A AUTOMATION AUTOMATION A AUTOMATION AUT	 DA in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contrest SCADA, Data Acquisition, Data Communication, Data Presentation, and Contrest CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I (1970) DA Software and Protocols: Introduction to ISO Model, I (1970) DWER SYSTEM AUTOMATION (1970) DUMER SYSTEM AUTOMATION (1970) DUM	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+ Edition, 20	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA RTU, SCADA RTU, SCADA SCA Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I SCAUA I. Wayne C 2. Handsch 3. Mini S. T	A in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contre CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, bigital Protection. To . Turner, Steve Doty, Energy Management Hand book, The Fairmont Press, 6 th n, E. "Energy Management Systems", Springer Verlag, 1990. 'homas, John D McDonald, "Power System SCADA and Smart Grids", CRC Pr	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+ Edition, 20	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA RTU, SCADA SCA Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I SCADA I. Wayne C 2. Handsch 3. Mini S. 7	A in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contre CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. OWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, bigital Protection. To . Turner, Steve Doty, Energy Management Hand book, The Fairmont Press, 6 th n, E. "Energy Management Systems", Springer Verlag, 1990. 'homas, John D McDonald, "Power System SCADA and Smart Grids", CRC Pr	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+ Edition, 20	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA SCA Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I SCADA SCA POWER System A Automation and I SCADA SCA POWER SYSTEM Automation and I SCADA SCA POWER SYSTEM Automation and I SCADA SCA POWER SYSTEM AUTOMATION AND A AUTOMATION AND AUTOMATION AND A AUTOMATION AND A AUTOMATION AND AUTOMATION A	A in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contre CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, bigital Protection. To . Turner, Steve Doty, Energy Management Hand book, The Fairmont Press, 6 th n, E. "Energy Management Systems", Springer Verlag, 1990. 'homas, John D McDonald, "Power System SCADA and Smart Grids", CRC Pr	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+ Edition, 20	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI and Control using UNIT IV SC Introduction, SCADA RTU, SCADA RTU, SCADA. SCA Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I SCADA. SCA POWER System A Automation and I SCADA. SCA POWER SYSTEM POWER SYSTEM Automation and I SCADA. SCA POWER SYSTEM POWER SYSTEM Automation and I SCADA. SCA POWER SYSTEM Automation and I SCADA. SCA POWER SYSTEM AUTOMATION AND ST Reference Bool 1. John D M	A in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contr CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, Digital Protection. . Turner, Steve Doty, Energy Management Hand book, The Fairmont Press, 6 th n, E. "Energy Management Systems", Springer Verlag, 1990. 'homas, John D McDonald, "Power System SCADA and Smart Grids", CRC Pr SS: In Conald, "Electric Power Substation Engineering", , CRC press, 2001	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+ Edition, 20	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1
SCADA, SCAI und Control using UNIT IV SC ntroduction, SCADA RTU, SCADA RTU, SCADA RTU, SCADA RTU, SCADA SCA Features of DNP3 UNIT V PC Power System A Automation, Imp Automation and I SCADA RTU, Rescale 1. Wayne C 2. Handsch 3. Mini S. T Reference Bool 1. John D N 2. Handsch E-References:	A in Process control, SCADA Application, Usage of SCADA SCADA, Data Acquisition, Data Communication, Data Presentation, and Contr CADA HARDWARE AND SOFTWARE SCADA hardware Functions, Remote Basic Functions, RTU Standards, Difference Between RTU DA Software and Protocols: Introduction to ISO Model, I , IEC60870 PROTOCOL, HDLC, Modbus Protocol. DWER SYSTEM AUTOMATION utomation – Benefits - Architecture for Power System Automation, Class lementation of Power System Automation and Protection using SCADA, Digital Protection. . Turner, Steve Doty, Energy Management Hand book, The Fairmont Press, 6 th n, E. "Energy Management Systems", Springer Verlag, 1990. 'homas, John D McDonald, "Power System SCADA and Smart Grids", CRC Pr SS: In Conald, "Electric Power Substation Engineering", , CRC press, 2001	A, Real-7 ol. 9 Termin and PL DNP3 M 9 sification SCADA tal (45L+ Edition, 20	Time 0 nal C, F fodel, 0 of Po based	Moni 0 eature Imp 0 wer s Mod	yster 9 Unit 9 Unit 9 9 9 9 1 1 1 1 1 1 1 1

Course O) uto	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Explore the objectives of EMS.	L2: Understanding
CO2	:	Understand the real time function of EMS.	L1: Remembering
CO3	:	Explain the real time monitoring and control of SCADA.	L4: Analyzing
CO4	:	Analyze the hardware and software functions of SCADA.	L4: Analyzing
CO5	:	Outline the power system automation and protection using SCADA.	L2: Understanding

COUR	SE AR	TICUI	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1						1					2		3
CO2	3		2			2							2		3
CO3	3		2										2		3
CO4	3		2										2		3
CO5	3		2										2		3
Avg	3	1	2	0	0	2	0	1	0	0	0	0	2	0	3
	•	•	3/2/1-i	ndicates	strengt	h of cor	relation	(3- Hig	h, 2-Me	dium, 1	- Low)				

18EEHO103	POWER SYSTEM STATE ESTIMATION AND CONTROL	D SECURITY	SEMI	ESTE	R	
PREREQUIS		CATEGORY	PEC	Cre	dit	3
	on, Transmission and Distribution System; Power System	Hours \Week	L	Т	Р	TH
Analysis and Sta	bility	Hoursweek	3	0	0	3
Course Object	tives:					
	e fundamental knowledge on power system state estimation.					
	arise on network observability analysis. onceptual aspects in power system state estimation and s s.	trategies to enhance	e the sec	cure po	ower s	system
UNIT I	INTRODUCTION			9	0 () 9
Concepts of relia	- Energy management system- SCADA system- Energy co ability, security and stability - State transitions and control st DEMS, Power line carrier communication.					
UNIT II	POWER SYSTEM STATE ESTIMATION			9	0 () 9
	nation: Active and reactive power bus measurements – Line f	flow measurements -	Line cur	-	· ·	
- Bus voltage n	neasurements - Measurement model and assumptions - We	eighted least square	state est	imatio	n algo	
Maximum likelih	hood estimation - Decoupled formulation of WLS state estim	nation- Fast decouple	ed state es	stimati	on.	
UNIT III	NETWORK ORSERVARIEITV ANALVSIS			0	0 (
	NETWORK OBSERVABILITY ANALYSIS estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification				varia	
Tracking state e measurements - measurements- V phasor measurem	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw	n and suppression of	bad meas	y and sureme	varia ents - l	nce of Pseudo
Tracking state e measurements - measurements- V phasor measurem UNIT IV	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION	n and suppression of vork observability - (bad meas Observab	y and sureme ility a	varia ents - l nalysis	nce of Pseudo s using 9
Tracking state e measurements - measurements- V phasor measurem UNIT IV Distribution syst	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison	n and suppression of york observability - (<u>N</u> of different DSSE a	bad meas Observab	y and sureme ility a	varia ents - l nalysis	nce of Pseudo s using
Tracking state e measurements - measurements- V phasor measurem UNIT IV Distribution syst	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION	n and suppression of york observability - (<u>N</u> of different DSSE a	bad meas Observab	y and sureme ility a	varia ents - l nalysis	nce of Pseudo s using
Tracking state e measurements - measurements- V phasor measurem UNIT IV Distribution syst	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison	n and suppression of york observability - (<u>N</u> of different DSSE a tecture.	bad meas Observab	y and sureme ility a	varia ents - l nalysis 0 (elopm	nce of Pseudo s using 9
Tracking state e measurements - We phasor measurements - We UNIT IV Distribution syst measurement syst UNIT V Contingency ana	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION tem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen	bad meas Observab Igorithms nt - Line	y and sureme ility and 9 S- Dev 9 outage	varia ents - l nalysis 0 (elopm 0 (e distri	nce of Pseudo susing () 9 ents in () 9 bution
Tracking state e measurements - Measurements - Measurements - Measurements - Measurements - Measurement systemeasurement syst	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessment ingle contingency a	bad meas Observab Igorithms nt - Line nalysis u	y and sureme ility and 9 s- Dev 9 outage using t	varia ents - l nalysis 0 (elopm 0 (e distri hese f	nce of Pseudo s using) 9 ents in) 9 bution actors.
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency and factors and gene Contingency ram	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION tem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessment ingle contingency a	bad meas Observab Igorithms nt - Line nalysis u	y and sureme ility and 9 s- Dev 9 outage using t	varia ents - l nalysis 0 (elopm 0 (e distri hese f	nce of Pseudo s using) 9 ents in) 9 bution actors.
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency and factors and gene Contingency ran models – Method	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhance	bad meas Observab Igorithms nt - Line nalysis u	y and sureme ility and 9 s- Dev 9 outage using t	varia ents - l nalysis 0 (elopm 0 (e distri hese f	nce of Pseudo s using) 9 ents in) 9 bution actors.
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency and factors and gene Contingency ran models – Method	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhances.	bad meas Observab Igorithms nt - Line unalysis u cement us	y and sureme ility and 9 s- Dev 9 outage issing t sing li	varia ents - 1 nalysis 0 (elopm 0 (e distri hese f neariz	 nce of Pseudo seudo susing 9 ents in 9 bution actors. ed DC
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency and factors and gene Contingency ran models – Method	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhances.	bad meas Observab Igorithms nt - Line nalysis u	y and sureme ility and 9 s- Dev 9 outage issing t sing li	varia ents - 1 nalysis 0 (elopm 0 (e distri hese f neariz	 nce of Pseudo seudo susing 9 ents in 9 bution actors. ed DC
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency ana factors and gene Contingency ran models – Methoo factors - Comper	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhances.	bad meas Observab Igorithms nt - Line unalysis u cement us	y and sureme ility and 9 s- Dev 9 outage issing t sing li	varia ents - 1 nalysis 0 (elopm 0 (e distri hese f neariz	 nce of Pseudo seudo susing 9 ents in 9 bution actors.
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency ana factors and gene Contingency ran models – Methoo factors - Comper	estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION rem state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMEN alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity nsated factors. Emergency and restorative control procedures	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhance s. Total (bad meas Observab Igorithms nt - Line nalysis u cement us (45 L + 0	y and sureme ility and 9 s- Dev 9 outage issing t sing li	varia ents - 1 nalysis 0 (elopm 0 (e distri hese f neariz	 nce of Pseudo seudo susing 9 ents in 9 bution actors. ed DC
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency ana factors and gene Contingency ran models – Methoo factors - Comper Text Books: 1. Ali Abur,	 estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netwenent units. DISTRIBUTION SYSTEM STATE ESTIMATION are state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System architaction shift factors for DC and linearized AC models - State and security indices-Correcting the generator dispatch ds using sensitivity nsated factors. Emergency and restorative control procedures 	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhance s. Total (n", Marcel Dekker, 2	bad meas Observab Igorithms nt - Line nalysis u cement us (45 L + 0 (45 L + 0	y and sureme ility and 9 s- Dev 9 outage using t sing li 0 T) =	varia ents - 1 nalysis 0 (elopm 0 (e distri hese f neariz	 nce of Pseudo seudo susing 9 ents in 9 bution actors. ed DC eriods
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency ana factors and gene Contingency ran models – Methoo factors - Comper Text Books: 1. Ali Abur, 2. Wood, A.	 estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION are state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMENT alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity msated factors. Emergency and restorative control procedures "Power System State Estimation Theory and Implementation J., Wollenberg, B.F., and Sheble, G.B., "Power Generation, "Power Generation, "Power Generation, Sheble, G.B., "Power Generation, "	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhance s. Total (n", Marcel Dekker, 2	bad meas Observab Igorithms nt - Line nalysis u cement us (45 L + 0 (45 L + 0	y and sureme ility and 9 s- Dev 9 outage using t sing li 0 T) =	varia ents - 1 nalysis 0 (elopm 0 (e distri hese f neariz	 nce of Pseudo seudo susing 9 ents in 9 bution actors. ed DC eriods
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency ana factors and gene Contingency ran models – Methoo factors - Comper Text Books: 1. Ali Abur, 2. Wood, A. 3rd Editio	 estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netw nent units. DISTRIBUTION SYSTEM STATE ESTIMATION em state estimation- State of the art methods – Comparison stem and DSSE design- Pseudo measurements- System archi SECURITY ASSESSMENT AND ENHANCEMENAL alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity msated factors. Emergency and restorative control procedures "Power System State Estimation Theory and Implementation J., Wollenberg, B.F., and Sheble, G.B., "Power Generation, n, 2013. bis, Kothari and Ahson, "Computer Aided Power System 	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhances. Total (n", Marcel Dekker, 2 , Operation and Cont	bad meas Observab Igorithms nt - Line analysis u cement us (45 L + 0 (45 L + 0 (2 004. trol", Joh	y and sureme ility and 9 s- Dev 9 outage issing t sing li 0 T)=	varia ents - 1 nalysis 0 (elopm 0 (edistri hese f neariz 45 Po	ce of Pseudo s using 9 ents in 9 9 bution actors. ed DC eriods Sons,
Tracking state e measurements - phasor measurem UNIT IV Distribution syst measurement syst measurement syst UNIT V Contingency ana factors and gene Contingency ran models – Methoo factors - Comper Text Books: 1. Ali Abur, 2. Wood, A. 3rd Editio 3. Mahalana	 estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netwenent units. DISTRIBUTION SYSTEM STATE ESTIMATION The state estimation - State of the art methods – Comparison stem and DSSE design - Pseudo measurements - System archi SECURITY ASSESSMENT AND ENHANCEMENT alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity msated factors. Emergency and restorative control procedures "Power System State Estimation Theory and Implementation J., Wollenberg, B.F., and Sheble, G.B., "Power Generation, on, 2013. bis, Kothari and Ahson, "Computer Aided Power System s, 1991. 	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen single contingency a n for security enhances. Total (n", Marcel Dekker, 2 , Operation and Cont	bad meas Observab Igorithms nt - Line analysis u cement us (45 L + 0 (45 L + 0 (2 004. trol", Joh	y and sureme ility and 9 s- Dev 9 outage issing t sing li 0 T)=	varia ents - 1 nalysis 0 (elopm 0 (edistri hese f neariz 45 Po	ce of Pseudo s using 9 ents in 9 9 bution actors. ed DC eriods Sons,
Tracking state e measurements - Y phasor measurem UNIT IV Distribution syst measurement syst UNIT V Contingency ana factors and gene Contingency ran models – Methoo factors - Comper Text Books: 1. Ali Abur, 2. Wood, A. 3rd Editio 3. Mahalana Publishers Reference Boo	 estimation: Algorithm - Computational aspects – Measure Variance of measurement residuals- Detection, identification Virtual measurements- External system equivalencing- Netwenent units. DISTRIBUTION SYSTEM STATE ESTIMATION The state estimation - State of the art methods – Comparison stem and DSSE design - Pseudo measurements - System archi SECURITY ASSESSMENT AND ENHANCEMENT alysis: Linearized AC and DC models of power systems for eration shift factors for DC and linearized AC models - S sking and security indices-Correcting the generator dispatch ds using sensitivity msated factors. Emergency and restorative control procedures "Power System State Estimation Theory and Implementation J., Wollenberg, B.F., and Sheble, G.B., "Power Generation, on, 2013. bis, Kothari and Ahson, "Computer Aided Power System s, 1991. 	n and suppression of york observability - (N of different DSSE a tecture. NT r security assessmen ingle contingency a n for security enhance s. Total (n", Marcel Dekker, 2 , Operation and Com m Analysis and Co	bad meas Observab Igorithms nt - Line nalysis u cement us (45 L + 0 2004. trol", Joh ontrol", 7	y and sureme ility and sureme ility and sureme sureme 9 outage sing t sing li 0 T)= 0 T)=	varia ents - 1 nalysis 0 (elopm 0 (e distri hese f neariz 45 Po ey and 45 Po	ce of Pseudo s using 9 ents in 9 9 bution actors. ed DC eriods Sons,

Course (Dute	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Understand the conceptual aspects in power system state estimation.	L2: Understanding
CO2	:	Demonstrate various state estimation methods.	L3: Applying
CO3	:	Acquire proficiency to perform observability analysis.	L4: Analysing
CO4	:	Demonstrate the distribution state estimation.	L3: Applying
CO5	:	Realize the security assessment and enhancement strategies.	L3: Applying

COURS	SE AR	FICUL	ATION	N MAT	RIX										
COs\ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO 1	1	3	3	1	1		1				1	2	1	3	1
CO 2	1	2	3	2	2		2				1	2	1	3	1
CO 3	1	2	3	2	2		2				1	2	1	2	1
CO 4	1	2	2	1	1		1				1	2	1	2	1
CO 5	1	2	3	2	2		2				1	2	1	1	1
Avg	1	2.2	2.8	1.6	1.6	0	1.6	0	0	0	1	2	1	2.2	1
	3/2/1 – indicates strength of correlation (3- High, 2-Medium, 1-Low)														

Analysis and Stability Hours/Week 3 0 0 3 Course Objectives: 1 To acquire fundamental knowledge on power system instrumentation. 2 To familiarise on automations in electric power distribution systems. 3. To get conceptual aspects in modern tools for power system automation. 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0	18EEHO104	POWER SYSTEM AUTOMATION		SEME	ESTE	R	
Analysis and Stability Hours/Week 3 0 0 3 Course Objectives: 1 To acquire fundamental knowledge on power system instrumentation. 2 To familiarise on automations in electric power distribution systems. 3 10 <			CATEGORY	PEC	Cre	edit	
Course Objectives:			Hours/Week				TH
1. To acquire fundamental knowledge on power system instrumentation. 2. To familiarise on automations in electric power distribution systems. 3. To get conceptual aspects in modern tools for power system automation. UNIT I MEASUREMENTS AND SIGNAL TRANSMISSION TECHINQUES 9 0 0 9 Object and philosophy of power system instrumentation to measure large currents, high voltages, Torque and Speed - Standa specifications - Data acquisition systems for Power System applications - Data Transmission and Telemetry - PLC equipmer RTU, IED - computer control of power system - Man Machine Interface. UNIT II COMMUNICATION TECHNOLOGIES 9 0 0 9 Communication requirements; Two way capability – outages and faults; Public switched telephone network, Power line carrit communication - ripple control, cyclocontrol, carrier frequency (PLC, DLC, BPL), Radio communication (UHF point to poir UHF multi address system radio, VHF, PSN, Cellular radio), Fibre optics, Satellite communication Standards: IEE80 IEC61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 9 Definitions – automation switching control – management information systems (MIS) – remote terminal units communication method for data transfer – consumer information service (CIS) – graphical information, Subsystems (GIS) automation. Clustomer automation - Substation automation, Subsystems automation control centre – Distribution management systems. 9 0 <td>•</td> <td>•</td> <td></td> <td>3</td> <td>U</td> <td>0</td> <td>3</td>	•	•		3	U	0	3
2. To familiarise on automations in electric power distribution systems. 3. To get conceptual aspects in modern tools for power system automation. UNIT I MEASUREMENTS AND SIGNAL TRANSMISSION TECHNIQUES 9 0 0 9 Object and philosophy of power system instrumentation to measure large currents, high voltages, Torque and Speed - Standa psecifications - Data acquisition systems for Power System applications - Data Transmission and Telemetry - PLC equipmer RTU, ED - computer control of power system - Man Machine Interface. UNIT II COMMUNICATION TECHNOLOGIES 9 0 0 0 9 Communication – requirements; Two way capability – outages and faults; Public switched telephone network, Power line carri communication – ripple control, cyclocontrol, carrier frequency (PLC, DLC, BPL), Radio communication (UHF point to point IHF multi address system radio, VHF, PSN, Cellular radio), Fibre optics, Satellite communication. Subardards: IEE80 IEE61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 0 9 Definitions – automation switching control – management information systems (MIS) – remote terminal units communication for data transfer – consumer information systems. (MIS) – remote terminal units communication to distribution automation: Customer automation - Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems and side management systems, Outstribution management systems and side management systems, Outage management systems, Distribution management systems are outage management systems, Subribution automation, the pMIS applications – DMS coordination							
3. To get conceptual aspects in modern tools for power system automation. UNIT I MEASUREMENTS AND SIGNAL TRANSMISSION TECHNIQUES 9 0 0 0 9 0 0 0 9 0 0 9 0 0 0 9 0 0 0 9 0							
UNIT I MEASUREMENTS AND SIGNAL TRANSMISSION TECHNIQUES 9 0 0 9 UNIT I MEASUREMENTS AND SIGNAL TRANSMISSION TECHNIQUES 9 0 0 9 Object and philosophy of power system instrumentation to measure large currents, high voltages, Torque and Speed - Standad specifications - Data acquisition systems for Power System applications - Data Transmission and Telemetry - PLC equipmer RTU, ED - computer control of power system - Man Machine Interface. UNIT II COMMUNICATION TECHNOLOGIES 9 0 0 9 Communication - ripple control, carrier frequency (PLC, DLC, BLD, BL), Radio communication (UHF point to poin to poin UHF multi address system radio, VHF, PSN, Cellular radio), Fibre optics, Satellite communication Standards: IEE80 IEE61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 9 Definitions - automation switching control - management information systems (MIS) - remote terminal units communication method for data transfer – consume information service (CIS) – graphical information systems (GIS) automation control centre - Distribution management systems-Outage management systems, Distribution management systems UNIT IV DISTRIBUTION AUTOMATION 9 0 0 9 Introduction to distribution automation: Customer automation- Substation automation, Subsystems distribution control centre - Distribution management systems-Outage management systems, Distribution management system		· · ·					
Object and philosophy of power system instrumentation to measure large currents, high voltages, Torque and Speed - Standa specifications - Data acquisition systems for Power System applications - Data Transmission and Telemetry - PLC equipmer RTU, IED - computer control of power system - Man Machine Interface. UNIT II COMMUNICATION TECHNOLOGIES 9 0 0 9 Communication requirements; Two way capability - outages and faults; Public switched telephone network, Power line carrir communication - ripple control, cyclocontrol, carrier frequency (PLC, DLC, BPL), Radio communication. Standards: IEE80 IEC61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 9 Definitions - automation switching control - management information systems (MIS) - remote terminal units communication method for data transfer - consumer information service (CIS) - graphical information systems (GIS) automatic meter reading (AMR) - Remote control load management. 9 0 0 0 9 UNIT IV DISTRIBUTION AUTOMATION 9 0	10 get con						
specifications - Data acquisition systems for Power System applications - Data Transmission and Telemetry - PLC equipmer RTU, IED - computer control of power system - Man Machine Interface. UNIT II COMMUNICATION TECHNOLOGIES 9 0 0 0 9 Communication requirements: Two way capability - outages and faults; Public switched telephone network, Power line carrier frequency (PLC, DLC, BPL), Radio communication (UHF point to poin UHF multi address system radio, VHF, PSN, Cellular radio), Fibre optics, Satellite communication. Standards: IEE80 IEC61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 0 9 0 0 0 0 0 0 9 0 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td></td<>					-		-
Communication requirements; Two way capability – outages and faults; Public switched telephone network, Power line carric communication – ripple control, cyclocontrol, carrier frequency (PLC, DLC, BPL), Radio communication (UHF point to point UHF multi address system radio, VHF, PSN, Cellular radio), Fibre optics, Satellite communication. Standards: IEE80 IEC61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 9 Definitions – automation switching control – management information systems (MIS) – remote terminal units communication method for data transfer – consumer information service (CIS) – graphical information systems (GIS) automatic meter reading (AMR) – Remote control load management. 9 0 0 9 0 0 9 Introduction to distribution automation: Customer automation- Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems. 9 0 0 0 9 UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand optimization automation, distribution management system, aroutage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Imin S Thomas, and John D McDonald, "Power S	specifications - L	Data acquisition systems for Power System applications - Data T					
Communication requirements; Two way capability – outages and faults; Public switched telephone network, Power line carric communication – ripple control, cyclocontrol, carrier frequency (PLC, DLC, BPL), Radio communication (UHF point to point UHF multi address system radio, VHF, PSN, Cellular radio), Fibre optics, Satellite communication. Standards: IEE80 IEC61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 9 Definitions – automation switching control – management information systems (MIS) – remote terminal units communication method for data transfer – consumer information service (CIS) – graphical information systems (GIS) automatic meter reading (AMR) – Remote control load management. 9 0 0 9 0 0 9 Introduction to distribution automation: Customer automation- Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems. 9 0 0 9 9 0 0 9 Systems. UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 9 0 0 9 System solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, aroutage management system; Smart home	UNIT II	COMMUNICATION TECHNOLOGIES			9	0 (09
communication – ripple control, cyclocontrol, carrier frequency (PLC, DLC, BPL), Radio communication (UHF point to point UHF multi address system radio, VHF, PSN, Cellular radio), Fibre optics, Satellite communication. Standards: IEE80 IEC61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 9 Definitions – automation switching control – management information systems (MIS) – remote terminal units communication method for data transfer – consumer information service (CIS) – graphical information systems (GIS) automatic meter reading (AMR) – Remote control load management. UNIT IV DISTRIBUTION AUTOMATION 9 0 0 9 Introduction to distribution automation: Customer automation- Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems. UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	Communication 1	requirements; Two way capability - outages and faults; Public sy			Power	r line	carrier
IEEC61850 UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 0 9 0	communication -	- ripple control, cyclocontrol, carrier frequency (PLC, DLC, BPL	.), Radio communic	cation (U	HF po	oint to	o point,
UNIT III DISTRIBUTION SYSTEM INSTRUMENTATION 9 0 0 9 0 0 9 Definitions – automation switching control – management information systems (MIS) – remote terminal units communication method for data transfer – consumer information service (CIS) – graphical information systems (GIS) automatic meter reading (AMR) – Remote control load management. 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0 0 0 9 0		ess system radio, VHF, PSN, Cellular radio), Fibre optics, S	Satellite communication	ation. Sta	andaro	ds: II	EE802,
Definitions – automation switching control – management information systems (MIS) – remote terminal units communication method for data transfer – consumer information service (CIS) – graphical information systems (GIS) automatic meter reading (AMR) – Remote control load management. UNIT IV DISTRIBUTION AUTOMATION 9 0 0 9 Introduction to distribution automation: Customer automation- Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems. UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions, transmission optimization, Demand optimization, distribution management system, ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	IEC61850						
Definitions – automation switching control – management information systems (MIS) – remote terminal units communication method for data transfer – consumer information service (CIS) – graphical information systems (GIS) automatic meter reading (AMR) – Remote control load management. UNIT IV DISTRIBUTION AUTOMATION 9 0 0 9 Introduction to distribution automation: Customer automation- Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems. UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions, transmission optimization, Demand optimization, distribution management system, ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	UNIT III	DISTRIBUTION SYSTEM INSTRUMENTATION			9	0 0	0 9
<pre>communication method for data transfer – consumer information service (CIS) – graphical information systems (GIS) automatic meter reading (AMR) – Remote control load management.</pre> UNIT IV DISTRIBUTION AUTOMATION 9 0 0 0 9 Introduction to distribution automation: Customer automation- Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems. UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar outage management system; Smart optimization, infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.					-	-	
UNIT IV DISTRIBUTION AUTOMATION 9 0 0 9 0 0 9 Introduction to distribution automation: Customer automation- Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems framework-Advanced real time DMS applications- Advanced analytical DMS applications – DMS coordination with oth systems. 9 0 0 9 UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2 Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3 Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.		utomation switching control – management information sy	vstems (MIS) –	remote	termir	nal u	nits –
Introduction to distribution automation: Customer automation - Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems Distribution management systems UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991. 1							
Introduction to distribution automation: Customer automation - Feeder automation – Substation automation, Subsystems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems distribution control centre – Distribution management systems-Outage management systems, Distribution management systems Distribution management systems UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1 Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2 Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3 Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991. 1	communication i	method for data transfer - consumer information service (CI					
distribution control centre – Distribution management systems-Outage management systems, Distribution management system framework-Advanced real time DMS applications- Advanced analytical DMS applications – DMS coordination with oth systems. UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication automatic meter	method for data transfer – consumer information service (CI reading (AMR) – Remote control load management.		ormation	syste	ems (GIS) -
framework-Advanced real time DMS applications- Advanced analytical DMS applications – DMS coordination with oth systems. UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication automatic meter n	method for data transfer – consumer information service (CI reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION	S) – graphical info	ormation	syste	ems (GIS) -
UNIT V CONCEPTS FOR SMART SYSTEMS 9 0 0 9 Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1 Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. Image: State S	communication in automatic meter in UNIT IV Introduction to c	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation	S) – graphical info		syste 9 n, Su	ems (0 (bsyst	GIS) - 0 9 ems in
Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to contribution contributi	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION listribution automation: Customer automation- Feeder automation rol centre – Distribution management systems-Outage management	 S) – graphical inference of the second se	ormation utomatio	syste 9 n, Su mager	ems (0 0 bsyst ment	GIS) - 0 9 ems in system
Smart system solutions – Asset optimization, Demand optimization, distribution optimization, smart meter ar communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, ar outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to contribution contributi	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION listribution automation: Customer automation- Feeder automation rol centre – Distribution management systems-Outage management	 S) – graphical inference of the second se	ormation utomatio	syste 9 n, Su mager	ems (0 0 bsyst ment	GIS) - 0 9 ems in system
communications, transmission optimization; Demand side management and demand response – DSM Planning-DSI techniques; Advanced metering infrastructure integration with distribution automation, distribution management system, an outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to c distribution contr framework-Adva systems.	method for data transfer – consumer information service (CI reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automat rol centre – Distribution management systems-Outage managemen nced real time DMS applications- Advanced analytical DMS	 S) – graphical inference of the second se	ormation utomatio pution ma S coordi	syste 9 n, Su inager natior	ems (0 (bsyst ment n with	GIS) - 0 9 ems in system 1 other
outage management system; Smart homes with home energy management systems. Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to contribution contribution contribution contribution contribution systems. UNIT V	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation centre – Distribution management systems-Outage management conced real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS	S) – graphical info ion – Substation a ent systems, Distrib applications – DM	ormation utomatio pution ma (S coordi	syste 9 n, Su inager natior 9	ems (0 0 bsyst n with 0 0	GIS) - 0 9 ems in system n other 0 9
Total (45 L + 0 T)= 45 Period Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to c distribution contri- framework-Adva systems. UNIT V Smart system in communications,	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation centre – Distribution management systems-Outage management col centre at time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response	ormation utomatio pution ma S coordi sation, s = – DSM	syste 9 n, Su inager natior 9 mart 1 Pla	ems (0 (bsyst ment n with 0 (mete unning	GIS) - 0 9 ems in system n other 0 9 er and g-DSM
Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to co distribution contri framework-Adva systems. UNIT V Smart system in communications, techniques; Adva	method for data transfer – consumer information service (CI. reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation col centre – Distribution management systems-Outage management col centre – Distribution management systems-Outage management real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution automation	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution	ormation utomatio pution ma S coordi sation, s = – DSM	syste 9 n, Su inager natior 9 mart 1 Pla	ems (0 (bsyst ment n with 0 (mete unning	GIS) - 0 9 ems in system n other 0 9 er and g-DSM
Text Books: 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to co distribution contri framework-Adva systems. UNIT V Smart system in communications, techniques; Adva	method for data transfer – consumer information service (CI. reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation col centre – Distribution management systems-Outage management col centre – Distribution management systems-Outage management real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution automation	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution	ormation utomatio pution ma S coordi sation, s = – DSM	syste 9 n, Su inager natior 9 mart 1 Pla	ems (0 (bsyst ment n with 0 (mete unning	GIS) - 0 9 ems in system n other 0 9 er and g-DSM
 Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991. 	communication in automatic meter in UNIT IV Introduction to contribution contributication contribution contribution contributication co	method for data transfer – consumer information service (CI. reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation col centre – Distribution management systems-Outage management col centre – Distribution management systems-Outage management real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution automation	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s.	ormation automatio pution ma (S coordi (S coor	syste 9 n, Su nager natior 9 mart <i>A</i> Pla ment	ems (0 0 0 bsyst ment n with 0 0 meter anning system	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and
 Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991. 	communication in automatic meter in UNIT IV Introduction to contribution contributication contribution contribution contributication co	method for data transfer – consumer information service (CI. reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation col centre – Distribution management systems-Outage management col centre – Distribution management systems-Outage management real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution automation	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s.	ormation automatio pution ma (S coordi (S coor	syste 9 n, Su nager natior 9 mart <i>A</i> Pla ment	ems (0 0 0 bsyst ment n with 0 0 meter anning system	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and
 Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991. 	communication in automatic meter in UNIT IV Introduction to co distribution contri- framework-Adva systems. UNIT V Smart system in communications, techniques; Adva outage managem	method for data transfer – consumer information service (CI. reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation col centre – Distribution management systems-Outage management col centre – Distribution management systems-Outage management real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution automation	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s.	ormation automatio pution ma (S coordi (S coor	syste 9 n, Su nager natior 9 mart <i>A</i> Pla ment	ems (0 0 0 bsyst ment n with 0 0 meter anning system	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and
3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishe 1991.	communication in automatic meter in UNIT IV Introduction to c distribution contri- framework-Adva systems. UNIT V Smart system in communications, techniques; Adva outage managem Text Books:	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automate rol centre – Distribution management systems-Outage management conced real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution automent system; Smart homes with home energy management systems	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s. Total (4	ormation automatio pution ma (S coordi (S coor	syste 9 n, Su nager natior 9 mart <i>A</i> Pla ment	ems (0 0 0 bsyst ment n with 0 0 meter anning system	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and
	communication in automatic meter in UNIT IV Introduction to c distribution contri- framework-Adva systems. UNIT V Smart system in communications, techniques; Adva outage managem Text Books: 1. Pabla. A.S	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automate col centre – Distribution management systems-Outage management col centre at time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution autorent system; Smart homes with home energy management systems c, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s. Total (4 2004.	ormation automatio pution ma (S coordi (S coor	syste 9 n, Su nager natior 9 mart A Pla ment T)=	ems (0 0 0 bsyst ment n with 0 0 mete anning system 45 Po	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and
Reference Books:	communication in automatic meter in UNIT IV Introduction to co distribution contri- framework-Adva systems. UNIT V Smart system in communications, techniques; Adva outage managem Text Books: 1. Pabla. A.S 2. Mini S The 3. Mahalanat	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automate col centre – Distribution management systems-Outage management col centre at time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution autor ent system; Smart homes with home energy management system; Smart homes with home energy management system; Smart homes with home system SCADA and Smart	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s. Total (4 2004. t Grids", Taylor an	ormation utomatio pution ma (S coordi cation, s e – DSN manages 45 L + 0 d Francis	syste 9 n, Su nager natior 9 mart 4 Pla ment T)= -	ems (0 0 0 bsyst ment n with 0 0 0 meter anning system 45 Po 5.	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and eriods
1. Momoh A. Momoh, and James A. Momoh., "Electric Power Distribution, Automation, Protection, and Control", CF Press, 2007.	communication in automatic meter in UNIT IV Introduction to co distribution contri- framework-Adva systems. UNIT V Smart system in communications, techniques; Adva outage managem Text Books: 1. Pabla. A.S 2. Mini S The 3. Mahalanah 1991.	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automate col centre – Distribution management systems-Outage management col centre at time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution autorent system; Smart homes with home energy management systems c, "Electric Power Distribution", Tata McGraw Hill, New Delhi, Zomas, and John D McDonald, "Power System SCADA and Smart bis, Kothari and Ahson, "Computer Aided Power System Analys:	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s. Total (4 2004. t Grids", Taylor an	ormation utomatio pution ma (S coordi cation, s e – DSN manages 45 L + 0 d Francis	syste 9 n, Su nager natior 9 mart 4 Pla ment T)= -	ems (0 0 0 bsyst ment n with 0 0 0 meter anning system 45 Po 5.	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and eriods
	communication in automatic meter in UNIT IV Introduction to contribution contributic contribution contribution contribution contributio	method for data transfer – consumer information service (Clareading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automatiol centre – Distribution management systems-Outage management col centre – Distribution management systems-Outage management and anced real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution autor ent system; Smart homes with home energy management systems e, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2 omas, and John D McDonald, "Power System SCADA and Smar bis, Kothari and Ahson, "Computer Aided Power System Analys: ks: . Momoh, and James A. Momoh., "Electric Power Distribution	S) – graphical info ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s. Total (4 2004. t Grids", Taylor an is and Control", Ta	ormation utomatio putomatio pution ma S coordi cation, si e – DSN manager 15 L + 0 d Francis ta McGra	syste 9 n, Su inager natior 9 mart 4 Pla ment T)= - 5, 2015 w Hil	ems (0 0 0 bsyst ment n with 0 0 mete unning system 45 Po 5. 11 Pub	GIS) - 0 9 ems in system n other 0 9 er and g-DSM m, and eriods olishers
2. Gonen., "Electric Power Distribution System Engineering", BSP Books, Pvt. Ltd, 2007.	communication in automatic meter in UNIT IV Introduction to co distribution contri- framework-Adva systems. UNIT V Smart system in communications, techniques; Adva outage managem Text Books: 1. Pabla. A.S 2. Mini S Thu 3. Mahalanat 1991. Reference Boo 1. Momoh A Press, 200	method for data transfer – consumer information service (Cli reading (AMR) – Remote control load management. DISTRIBUTION AUTOMATION distribution automation: Customer automation- Feeder automation concerne – Distribution management systems-Outage management nced real time DMS applications- Advanced analytical DMS CONCEPTS FOR SMART SYSTEMS solutions – Asset optimization, Demand optimization, di transmission optimization; Demand side management and anced metering infrastructure integration with distribution autor ent system; Smart homes with home energy management systems defined and John D McDonald, "Power System SCADA and Smar pis, Kothari and Ahson, "Computer Aided Power System Analys: ks: . Momoh, and James A. Momoh., "Electric Power Distribution 7.	S) – graphical infe ion – Substation a ent systems, Distrib applications – DM stribution optimiz demand response nation, distribution s. <u>Total (4</u> 2004. t Grids", Taylor an is and Control", Tat	ormation utomatio putomatio pution ma S coordi cation, si e – DSN manager 15 L + 0 d Francis ta McGra	syste 9 n, Su inager natior 9 mart 4 Pla ment T)= - 5, 2015 w Hil	ems (0 0 0 bsyst ment n with 0 0 mete unning system 45 Po 5. 11 Pub	GIS) 0 9 ems i system n other 0 9 er an g-DSN m, an eriod

Course C)uto	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1		Understand the conceptual aspects in power system measurements and	L2: Understanding
001	•	signal transmission techniques.	E2. Onderstanding
CO2	:	Demonstrate various communication technologies for data transmission.	L3: Applying
CO3	:	Acquire proficiency to distribution system instrumentation.	L3: Applying
CO4	:	Demonstrate the automation in power distribution system.	L3: Applying
CO5	:	Conceptualize the smart tools for automation.	L3: Applying

COUR	COURSE ARTICULATION MATRIX														
CO\/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO 1	1	3	3	1	1		1				1	2	1	3	1
CO 2	1	2	3	2	2		2				1	2	1	3	1
CO 3	1	2	3	2	2		2				1	2	1	2	1
CO 4	1	2	2	1	1		1				1	2	1	2	1
CO 5	1	2	3	2	2		2				1	2	1	1	1
Avg	1	2.2	2.8	1.6	1.6	0	1.6	0	0	0	1	2	1	2.2	1
	3/2/1 – indicates strength of correlation (3- High, 2-Medium, 1-Low)														

18EEHO105	POWER PLANT ENGINEERING	r I	SEME	STEI	ł	
PREREQUISTI	ES	CATEGORY	PEC	Cre	dit	3
Power Systems		Hours/Week	L	Т	P	TH
Tower bystems		Hours, week	3	0	0	3
Course Objectiv	/es:					
The objective of th	is course is to familiarize with operation of various power	plants				
			-			
UNIT I	THERMAL POWER PLANT		9	0	0	9
	layout- main components- boiler- economizer- air prehe					
	wers- FD and ID fans- Coal handling plant-water treatmen			Types	s of b	oilers
and theirs characte	ristics- Steam turbines- and their characteristics- governing	g system for therma	stations			
UNIT II	HYDRO POWER PLANT		9	0	0	9
	ations- Selection of site- layout- classification of hydro pla	ants- general arrang		-	•	
	ning system for hydel plant- types of turbines-pumped stor			- P		
	1					
UNIT III	NUCLEAR POWER PLANT		9	0	0	9
	ants - Principles of nuclear energy -Working of Nuclear					
	Reactor (PWR), CANada Deuterium- Uranium reactor (and L	iquid
Metal Cooled Read	ctors - location - advantages and disadvantages of nuclear p	ower plants - React	tor control	l		
UNIT IV	POWER FROM RENEWABLE ENERGY		9	0	0	9
	ction and working of Solar Thermal, Solar Photo Voltaic (S	SPV), Wind, Tidal.	Geo Ther	mal.	-	-
Fuel Cell power sy		<i>SI ()</i> , <i>() () () () () () () ()</i>	000 110		51080	
k						
UNIT V	POWER PLANT ECONOMICS AND ENVI	RONMENTAL	9	0	0	9
	HAZARDS		-	Ŭ	-	-
	ver generation -Capital & Operating Cost of different po					
	arison of site selection criteria, relative merits & deme					
	ding Waste Disposal Options for Coal and Nuclear Powe	er Plants- safety me	asures for	r Nuc	lear F	ower
plants.						
		Т	otal (45L	-4	5 Pei	rinds
				<u> </u>		Tous
Text Books:						
1. Nag. P.K., Po	ower Plant Engineering, 2nd ed., Tata McGraw-Hill, 2002					
	r, S., Power Plant Engineering, Dhanpat Rai & Sons, 1988					
	M., "Power plant Technology", McGraw-Hill Book Co, 20	002				
Reference Book	s:					
1. Deshpande.M	I.V, "Elements of Electrical Power station Design", Pitman	, New Delhi,Tata M	IcGraw H	ill, 20	08.	
	Bhatnagar and Chakrabarti, "A text book on Power Systems	8				
² . Engineering"	, Dhanpat Rai and Sons, New Delhi, 1997.					

Course Out	comes:	Bloom's Taxonomy
Upon complet	tion of this course, the students will be able to:	Mapped
CO1	: Recall the construction and principle of working for different power plants.	L1: Remembering

CO2	:	Identify the site requirements and component requirements.	L2: Understanding
CO3	:	Analyze the concept governors and their control of power plant.	L4: Analysing
CO4	:	Assess the power plant and its suitability for the environment.	L3: Applying
CO5	:	Interpret the economics involved in design of power plant.	L2: Understanding

COUR	SE AR	TICU	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3														
CO2	CO2 1 2 2 2 2 1 1 2 1 1														
CO3	CO3 1 3 2 2 2 1 1 2 1 1														1
CO4	1	1	3	3	2	2	1		1	1		1	2	2	1
CO5	CO5 1 1 3 2 2 2 1 1 1 1 1 2 2 1														1
Avg	Avg 1.4 2 2.4 2.2 2 1.4 1 1 1 1 1 2 1.4 1														1
			3/2/1-1	indicate	s streng	th of co	rrelation	n (3- Hi	gh, 2-M	ledium,	1- Low)			

18EEHO106	COMPUTER RELAYING AND WIDE MEASUREMENT SYSTEMS	AREA	SEME	STE	R								
PREREQUISTI	ES	CATEGORY	PEC	Cre	edit	3							
Power System Prot	action	Hours/Week	L	Т	P	TH							
Fower System Flot	ection	Hours/ week	3	0	0	3							
Course Objectiv	es:												
	erent techniques of digital relaying - their constructions, we ction to Wide Area Measurement System and network prot		pplication	s and	limit	ations							
	ction to while Area Measurement System and network pro-	ection.											
UNIT I	INTRODUCTION TO COMPUTER RELAYING	G	9	0	0	9							
	hitecture - analog-to-digital converters - anti-aliasing filter			•	•								
		1		1	J	0							
UNIT II	RELAYING PRACTICES		9	0	0	9							
	otection systems, function of protection system, protection distance relays, pilot relaying, transformer protection, rea												
UNIT III	MATHEMATICAL BASIS FOR PROTECTIVE RELAYING 9 0 0 9												
Fourier series, Wal	sh functions, Fourier transforms, probability and random p	rocess, Kalman filte	ering										
			-										
UNIT IV	SYSTEM RELAYING AND CONTROL		9	0	0	9							
	ent Unit - Measurement of frequency and phase – samp nt to state estimation – Monitoring- Control applications	oling clock synchro	nization -	– Apj	plicat	ion of							
phasor measuremen	it to state estimation – Monitoring- Control applications												
UNIT V	WIDE AREA MEASUREMENT SYSTEMS		9	0	0	9							
Wide Area Measur security – Monitori	ement Systems (WAMS) architecture – WAMS based pro- ing approach of apparaent impedances towards relay chara- packup zones – Intelligent load shedding – Intelligent isla	cteristics – WAMS	based out	t-of st	labili ep re	ty and laying							
		Te	otal (45L	L) = 4	5 Pe	riods							
Text Books:													
1.	Arun G. Phadke, James S. Thorp, Computer Rela Edition,2009.	ying for Power S	Systems,	Wile	ey, S	econd							
2.	Allan Thomas Johns, S.K. Salman, Digital Protection Engineering and Technology, Second Edition, 1995.	on for Power Sys	tems, Th	e Ins	stituti	on of							
Reference Books	5:												
1.	A.G. Phadke, J.S. Thorp, Synchronized Phasor Measuren	nents and Their App	olications	, Spri	nger								
2.	Walter A. Elmore, 'Protective Relaying: Theory and App	lications, CRC Pres	s										

Course Out			Bloom's Taxonomy
Upon complet	tion	of this course, the students will be able to:	Mapped
CO1	:	Understand on protection system schemes, its co-ordination and settings for any general power network.	L2: Understanding
CO2	:	Identify the digital relaying, its fundamentals, attributes and implementation.	L2: Understanding
CO3	:	Analyze the concept synchro-phasor based power system relaying	L4: Analysing
CO4	:	Assess the algorithms and its importance	L3: Applying
CO5	:	Recall the power system monitoring using wide area measurement system	L1: Remembering

COUR	SE AR	TICU	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	2	2	2	1	1					1	3	1	1
CO2	CO2 1 3 2 2 2 1 1 1 2 1 1														
CO3	1	3	3	3	3	1	1					1	3	2	1
CO4	3	3	3	3	3	2	1					1	3	2	1
CO5 1 1 3 2 2 2 1														1	
Avg	1.8	2.6	2.6	2.4	2.4	1.4	1	0	0	0	0	1	2.4	1.6	1
			3/2/1-	indicate	s streng	th of co	rrelation	n (3- Hi	gh, 2-M	ledium,	1- Low)			

	POWER SYSTEM PLANNING	GAND RELIABILITY	SEME	STE	R		
PREREQUIS	TIES	CATEGORY	PEC	Cr	edit	3	
Power System	S		L	Т	Р	TH	
		Horus/Week	3	0	0	3	
Course Obje	ctives:						
1. Understa	and the concepts of power system planning						
	power system reliability						
3. Understa	and generation, transmission and distribution plan	ning and reliability					
UNIT I	INTRODUCTION		9	0	0	9	
	bjectives & Factors affecting to System Planning	, Short Term Planning, Medium 7		-	-		
	ive Power Planning.	,		U/	0		
	RELIABILITY		9	0	0	9	
UNIT II Paliability Fail	RELIABILITY ure, Concepts of Probability, Evaluation Techniqu	les (i) Markov Process (ii) Decurs	-	•	-	-	
	equency and Duration of Long & Short Interruption				Stocila	istic	
	ENERATION PLANNING AND RELIAB urces, Integrated Resource Planning, Genera		9	0	0	9	
	biggtives of Transmission Dianning Natwork Dec	RELIABILITY	9 oint India		to roc	9	
for Composite	bjectives of Transmission Planning, Network Rec System Reliability.		-	es, Da	ata rec		
*	System Reliability.	configuration, System and Load P	oint Indico			quire	
UNIT V	System Reliability. DISTRIBUTION PLANNING AND R	configuration, System and Load P ELIABILITY	oint Indico	0	0	quire	
UNIT V Radial Networ	System Reliability.	ELIABILITY iques, Interruption Indices, Effect	oint Indico 9 cts of Lat	0 eral 1	0 Distrib	quire 9 putio	
UNIT V Radial Networ Protection, Eff Indices, Paralle	System Reliability. DISTRIBUTION PLANNING AND R cs, Network Reconfiguration, Evaluation Techn	configuration, System and Load P ELIABILITY iques, Interruption Indices, Effectree, Effects of Transferring Load	oint Indico 9 cts of Lat ls, Distrib	0 eral I oution	0 Distrib Relia	quire	
UNIT V Radial Networ Protection, Eff Indices, Paralle	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure	configuration, System and Load P ELIABILITY iques, Interruption Indices, Effectree, Effects of Transferring Load	oint Indico 9 cts of Lat ls, Distrib	0 eral I oution	0 Distrib Relia	quire quire 9 Dutio abilit	
UNIT V Radial Networ Protection, Eff Indices, Paralle	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure	ELIABILITY ELIABILITY iques, Interruption Indices, Effective ire, Effects of Transferring Load led Maintenance, Temporary and	oint Indico 9 cts of Lat ls, Distrib	0 eral I bution Failu	0 Distrit Relia re, Bi	quire quire 9 outio abilit ceake	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure.	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure	ELIABILITY ELIABILITY iques, Interruption Indices, Effective ire, Effects of Transferring Load led Maintenance, Temporary and	9 cts of Lat ls, Distrib Transient	0 eral I bution Failu	0 Distrit Relia re, Bi	quire quire 9 outio abilit ceake	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books:	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failu l & Meshed Networks, Bus Bar Failure, Schedul	ELIABILITY iques, Interruption Indices, Effective, Effects of Transferring Load ed Maintenance, Temporary and	9 cts of Lat ls, Distrib Transient	0 eral I bution Failu	0 Distrit Relia re, Bi	quire quire 9 outio abilit ceake	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books: 1. R.L. S	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure	ELIABILITY iques, Interruption Indices, Effective, Effects of Transferring Load led Maintenance, Temporary and To	9 y ts of Lat ls, Distrib Transient tal (45L+	0 eral I bution Failu	0 Distrit Relia re, Bi	quire quire 9 outio abilit ceake	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books: 1. R.L. S 2. Roy B	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure 1 & Meshed Networks, Bus Bar Failure, Schedul ullivan "Power System Planning", Tata McGraw H	ELIABILITY iques, Interruption Indices, Effective re, Effects of Transferring Load led Maintenance, Temporary and To <u>Hill Publishing Company Ltd.</u>	9 y ts of Lat ls, Distrib Transient tal (45L+	0 eral I bution Failu	0 Distrit Relia re, Bi	quire quire 9 outio abilit ceake	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books: 1. R.L. S 2. Roy B 3. T. W.	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failur 1 & Meshed Networks, Bus Bar Failure, Schedul ullivan "Power System Planning", Tata McGraw H illinton & Ronald N. Allan "Reliability Evaluation Berrie "Electricity Economics & Planning", Peter	ELIABILITY iques, Interruption Indices, Effective re, Effects of Transferring Load led Maintenance, Temporary and To <u>Hill Publishing Company Ltd.</u>	9 y ts of Lat ls, Distrib Transient tal (45L+	0 eral I bution Failu	0 Distrit Relia re, Bi	quire quire 9 outio abilit ceake	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books: 1. R.L. S 2. Roy B 3. T. W. Reference Bo	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failur 1 & Meshed Networks, Bus Bar Failure, Schedul ullivan "Power System Planning", Tata McGraw H illinton & Ronald N. Allan "Reliability Evaluation Berrie "Electricity Economics & Planning", Peter oks: owdhury, Don Koval, "Power Distribution System	ELIABILITY iques, Interruption Indices, Effect re, Effects of Transferring Load ed Maintenance, Temporary and To Hill Publishing Company Ltd. of Power System", Springer Publ Peregrinus Ltd., London.	9 ets of Lat ls, Distrib Transient otal (45L+	0 eral 1 bution Failu 0T)=	0 Distrib Relia re, Br 45 Pe	9 putio abiliti reakc	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books: 1. R.L. S 2. Roy B 3. T. W. Reference Bo 1. Ali Ch IEEE	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure 1 & Meshed Networks, Bus Bar Failure, Schedul ullivan "Power System Planning", Tata McGraw H illinton & Ronald N. Allan "Reliability Evaluation Berrie "Electricity Economics & Planning", Peter oks:	ELIABILITY iques, Interruption Indices, Effect re, Effects of Transferring Load led Maintenance, Temporary and To Hill Publishing Company Ltd. of Power System'', Springer Publ Peregrinus Ltd., London.	9 ets of Lat ls, Distrib Transient otal (45L+	0 eral 1 bution Failu 0T)=	0 Distrib Relia re, Br 45 Pe	guire 9 putio abiliti reakc	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books: 1. R.L. S 2. Roy B 3. T. W. Reference Bo 1. Ali Ch IEEE 1 2. Roy B	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure l & Meshed Networks, Bus Bar Failure, Schedul ullivan "Power System Planning", Tata McGraw H illinton & Ronald N. Allan "Reliability Evaluation Berrie "Electricity Economics & Planning", Peter owdhury, Don Koval, "Power Distribution System Press, 2009.	ELIABILITY iques, Interruption Indices, Effect re, Effects of Transferring Load led Maintenance, Temporary and To Hill Publishing Company Ltd. of Power System'', Springer Publ Peregrinus Ltd., London.	9 ets of Lat ls, Distrib Transient otal (45L+	0 eral 1 bution Failu 0T)=	0 Distrib Relia re, Br 45 Pe	9 outio abilit reakce	
UNIT V Radial Networ Protection, Eff Indices, Paralle Failure. Text Books: 1. R.L. S 2. Roy B 3. T. W. Reference Bo 1. Ali Ch IEEE 1 2. Roy B E-Reference	DISTRIBUTION PLANNING AND R ks, Network Reconfiguration, Evaluation Techn ects of Disconnects, Effects of Protection Failure l & Meshed Networks, Bus Bar Failure, Schedul ullivan "Power System Planning", Tata McGraw H illinton & Ronald N. Allan "Reliability Evaluation Berrie "Electricity Economics & Planning", Peter owdhury, Don Koval, "Power Distribution System Press, 2009.	ELIABILITY iques, Interruption Indices, Effect re, Effects of Transferring Load led Maintenance, Temporary and To Hill Publishing Company Ltd. of Power System'', Springer Publ Peregrinus Ltd., London.	9 ets of Lat ls, Distrib Transient otal (45L+	0 eral 1 bution Failu 0T)=	0 Distrib Relia re, Br 45 Pe	9 outio abilit reakce	

Course	Out	comes:	Bloom's Taxonomy
Upon co	mpl	etion of this course, the students will be able to:	Mapped
CO1	:	To understand the power system planning	L2: Understanding
CO2	:	To determine the reliability of power system	L1: Applying

CO3	:	to understand the generation planning and reliability of power system	L1: Remembering
CO4	:	to understand the transmission planning and reliability of power system	L2: Understanding
CO5	:	to understand the distribution planning and reliability of power system	L1: Remembering

COURS	SE ART	TICUL	ATION	MATE	RIX										
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	1	1	1	1	1	1	1			1		1	1	1
CO2	1	3	3	3	2	1	2	1	1		1		1	1	1
CO3	1	2	2	3	2	1	2	1	1		1		1	1	1
CO4	1	3	2	3	2	1	2	1	1		1		1	1	1
CO5	1	2	3	3	2	1	2	1	1		1		1	1	1
Avg	1	2.2	2.2	2.6	1.8	1	1.8	1	1	0	1	0	1	1	1
			3/2/1-	indicate	s streng	th of co	rrelation	n (3- Hi	gh, 2-M	ledium,	1- Low)			

18EEHO108	ADVANCED POWER SYSTEM	PROTECTION	SEME	ESTER		
PREREQUISTI	ES	CATEGORY	PEC	Cr	edit	3
Power systems p		Hours/Week	L	Т	Р	TH
		Hours/ week	3	0	0	3
Course Objectiv	es:					
	the concepts of advances in power system protect	ion				
	ital protection of power system equipments					
3. Design of pr	rotection relays					
UNIT I	NUMERICAL PROTECTION		9	0	0	9
Introduction - Blo	ck diagram of numerical relay - Sampling theorem	orem - Correlation with a	a reference	ce wave	- Least	Error
Squared (LES) tech	nique - Digital filtering and numerical over- Curr	rent protection.				
UNIT II	DIGITAL PROTECTION OF TRANSM	ISSION LINE	9	0	0	9
	ection scheme of transmission line – Distance rela			-	_	-
based upon fundam	ental signal - Hardware design - Software design	- Digital protection of EH				
upon traveling wav	e phenomenon - New relaying scheme using amp	litude comparison.				
UNIT III DIG	ITAL PROTECTION OF SYNCHRONO	US GENERATOR &				
	ANSFORMER		9	0	0	9
	lts in synchronous generator - Protection sche					
Synchronous Gene Transformer.	erator - Faults in a Transformer - Schemes u	sed for Transformer Pro	tection -	Digital	Protecti	on of
Transformer.						
UNIT IV	DISTANCE AND OVERCURRENT RE	LAY SETTING AND	9	0	0	9
Directional instant	CO-ORDINATION aneous IDMT over current relay - Directional relation	multi-Zone distance relay	- Distan	ice relav	setting	- Co-
	nce relays - Co-ordination of over current relay					00
orumation or ulsta	nee relays - co-ordination of over current relay	s - Computer graphics u	ispiay - i	vian-mac	mile mi	erface
	ited operation of national power system - Applica			vian-ma		erface
subsystem - Integra	ted operation of national power system - Applica	tion of computer graphics.				erface
	tted operation of national power system - Applica PC APPLICATIONS FOR DESIGNING	tion of computer graphics.				erface
subsystem - Integra UNIT V	ted operation of national power system - Applica	tion of computer graphics. PROTECTIVE	9	0	0	9
subsystem - Integra UNIT V Types of faults – A Transformation to	PC APPLICATIONS FOR DESIGNING RELAYING SCHEME Assumptions - Development of algorithm for SC component quantities - SC studies of multiphas	tion of computer graphics. PROTECTIVE studies - PC based integ	9 grated sof	0 Tware fo	0 or SC stu	9 dies -
subsystem - Integra UNIT V Types of faults - 4	PC APPLICATIONS FOR DESIGNING RELAYING SCHEME Assumptions - Development of algorithm for SC component quantities - SC studies of multiphas	tion of computer graphics. PROTECTIVE studies - PC based integ	9 grated sof	0 Tware fo	0 or SC stu	9 dies -
subsystem - Integra UNIT V Types of faults – A Transformation to	PC APPLICATIONS FOR DESIGNING RELAYING SCHEME Assumptions - Development of algorithm for SC component quantities - SC studies of multiphas	tion of computer graphics. PROTECTIVE studies - PC based integ	9 grated sof peed pro	0 Tware fo	0 r SC stu elays for	9 Idies - r high
subsystem - Integra UNIT V Types of faults - A Transformation to	PC APPLICATIONS FOR DESIGNING RELAYING SCHEME Assumptions - Development of algorithm for SC component quantities - SC studies of multiphas	tion of computer graphics. PROTECTIVE studies - PC based integ	9 grated sof peed pro	0 Tware fo tective r	0 r SC stu elays for	9 Idies - r high
subsystem - Integra UNIT V Types of faults - A Transformation to	PC APPLICATIONS FOR DESIGNING RELAYING SCHEME Assumptions - Development of algorithm for SC component quantities - SC studies of multiphas	tion of computer graphics. PROTECTIVE studies - PC based integ	9 grated sof peed pro	0 Tware fo tective r	0 r SC stu elays for	9 Idies - r high
subsystem - Integra UNIT V Types of faults – A Transformation to voltage long transm Text Books:	Application of national power system - Application of national power system - Application of App	tion of computer graphics. PROTECTIVE 2 studies - PC based integ se systems - Ultra high s	9 grated sof peed pro	0 tective r (45L+01	0 or SC stue elays for C)= 45 Pe	9 Idies - r high
subsystem - Integra UNIT V Types of faults - A Transformation to voltage long transm Text Books: 1. L. P. Singi Internation	Application of national power system - Application of national power system - Application of a provide the system - Application - Applicatio	tion of computer graphics. PROTECTIVE C studies - PC based integraphics se systems - Ultra high s Electromechanical to Micro	9 grated sof peed pro Total (0 itware fo tective r (45L+01	0 or SC stue elays for C)= 45 Pe	9 Idies - r high
subsystem - Integra UNIT V Types of faults - A Transformation to voltage long transm Text Books: 1. L. P. Singlinternation 2. S. R. Bhid	h, "Digital Protection - Protective Relaying from I hal Ltd., New Delhi, Second Edition, 2006 e, "Digital Power System Protection", Prentice H	tion of computer graphics. PROTECTIVE Studies - PC based integ se systems - Ultra high s Electromechanical to Micr all of India Pvt. Ltd., New	9 grated soft peed pro Total (roprocessor	0 ftware fo tective r (45L+01 or", New 014	0 or SC stu elays for ()= 45 Pe Age	9 dies - r high eriods
subsystem - Integra UNIT V Types of faults - A Transformation to voltage long transm Text Books: 1. L. P. Singl Internation 2. S. R. Bhid Paithankan	Application of national power system - Application of national power system - Application of a provide the system - Application - Applicatio	tion of computer graphics. PROTECTIVE Studies - PC based integ se systems - Ultra high s Electromechanical to Micr all of India Pvt. Ltd., New	9 grated soft peed pro Total (roprocessor	0 ftware fo tective r (45L+01 or", New 014	0 or SC stu elays for ()= 45 Pe Age	9 dies - r high eriods
subsystem - Integra UNIT V Types of faults – A Transformation to voltage long transn Text Books: 1. L. P. Singl Internation 2. S. R. Bhid Paithankan	Application of national power system - Application of national power system - Application of an application of a system - Application of a system of a	tion of computer graphics. PROTECTIVE Studies - PC based integ se systems - Ultra high s Electromechanical to Micr all of India Pvt. Ltd., New	9 grated soft peed pro Total (roprocessor	0 ftware fo tective r (45L+01 or", New 014	0 or SC stu elays for ()= 45 Pe Age	9 dies - r high eriods
subsystem - Integra UNIT V Types of faults - A Transformation to voltage long transm Text Books: 1. L. P. Singl Internation 2. S. R. Bhid 3. Paithankan second edi Reference Books	Application of national power system - Application of national power system - Application of an application of a system - Application of a system of a	tion of computer graphics. PROTECTIVE Studies - PC based integrates se systems - Ultra high s Electromechanical to Micra all of India Pvt. Ltd., New Protection", Prentice Hall	9 grated soft peed pro Total (roprocessor	0 ftware fo tective r (45L+01 or", New 014	0 or SC stu elays for ()= 45 Pe Age	9 dies - r high eriods
subsystem - Integra UNIT V Types of faults - A Transformation to voltage long transm Text Books: 1. L. P. Singl Internation 2. S. R. Bhid 3. Paithankan second edi Reference Books 1. Paithankan	Application of national power system - Application of national power system - Application of an application of a system - Application of a system of a system of a system for some of a system for some of a system of a syste	tion of computer graphics. PROTECTIVE Studies - PC based integ se systems - Ultra high s Electromechanical to Micr all of India Pvt. Ltd., New rotection", Prentice Hall Dekker, New York, 1998	9 grated sof peed pro Total (Total (Delhi, 2(of India	0 ftware fo tective r (45L+01 or", New 014	0 or SC stu elays for ()= 45 Pe Age	9 dies - r high eriods
subsystem - Integra UNIT V Types of faults – A Transformation to voltage long transmotion to voltage long transmotion Text Books: 1. L. P. Single Internation 2. S. R. Bhid 3. Paithankar second edit Reference Books: 1. Paithankar second edit	Application of national power system - Application of national power system - Application of an application of a system - Application of a system of a system for second power of a system for second power of a system of a s	tion of computer graphics. PROTECTIVE Studies - PC based integ se systems - Ultra high s Electromechanical to Micr all of India Pvt. Ltd., New rotection", Prentice Hall Dekker, New York, 1998	9 grated sof peed pro Total (Total (Delhi, 2(of India	0 ftware fo tective r (45L+01 or", New 014	0 or SC stu elays for ()= 45 Pe Age	9 dies - r high eriods

	Course Outcomes: Upon completion of this course, the students will be able to:						
	Mapped						
CO1 : To understand the numeric protection L2: Understandi							
CO2	:	To design the digital protection of transmission line	L1: Applying				
CO3	:	To design the digital protection of synchronous generator	L4: Analysing				
CO4							
CO5							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	1	1	1	1	1	1	1			1		1	1	1
CO2	1	3	3	2	2	1	2	1	1		1		1	1	1
CO3	1	2	2	2	2	1	2	1	1		1		1	1	1
CO4	1	3	2	2	2	1	2	1	1		1		1	1	1
CO5	1	2	3	2	2	1	2	1	1		1		1	1	1
Avg	1	2.2	2.2	1.8	1.8	1	1.8	1	1	0	1	0	1	1	1

18EEHO109	HIGH VOLTAGE INSULATION SY	<u>'STEMS</u>	SEMES	STER		
PREREQUISTI	ES	CATEGORY	PEC	Cre	edit	C
High voltage Engin	neering, Measurements and Instrumentation	Hound	L	Т	Р	TI
		Hours\Week	3	0	0	3
Course Objectiv	es:					
	he various types of insulating materials used for power sy	stem equipment				
	e the concept of insulation design.					
	an overview of insulation defects in power system equipn	nent				
4. To understa	nd insulation condition monitoring techniques.					
UNIT I	INSULATING MATERIALS		9	0	0	9
	al insulating materials, characterization of insulation of	condition models of	-		-	-
practical insulating	materials, electrical breakdown and operating stresses, d	evelopment of insulati	ion applica	tions		
UNIT II	ELECTRICAL INSULATION DESIGN CONC	CEPTS	9	0	0	9
	tion design requirements - electrical stress distribution in		tem – elect	tric stre	ess co	ntro
Principles of stress	control, Stress distribution in multiple dielectrics, Stress	calculation.				
			0			
	ULATION DEFECTS IN HV POWER SYSTEM		9	0	0	9
	V bushings - HV power capacitors - HV surge arresters	– HV circuit breakers	, HV Cabl	es - G	as Ins	ulate
system – HV Trans	sformers - HV instrument transformers.					
UNIT IV	BASIC METHODS FOR INSULATION ASSE	SSMENT	9	0	0	9
Generation and me	asurement of test high voltages - Non-destructive electric	cal measurements: Ins	ulation Rea	sistanc	e, die	lectr
dissipation factor,	partial discharges, dielectric response – Physical and cher	nical diagnostic metho	ods.			
	ON THE INCLUSATION CONDITION MONIT					
UNIT V	ONLINE INSULATION CONDITION MONIT TECHNIQUES	ORING	9	0	0	9
Main problem with	Offline condition monitoring - Noise-mitigation technic	ues - Non-electrical c	nline cond	lition r	nonite	ring
	ctric PD location methods for transformers - Electrical or				nonnu	ning
Olimie deoustie/ele	Serie 1 D Tocutori metriodis for transformers - Dicetteur of		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		Tot	tal (45L+	\mathbf{OT})= 4	45 Pe	riod
			`	,		
Text Books:						
	es and Q. Su, "Condition Assessment of High Voltage Ins	sulation in Power Syst	em Equipn	nent",	IET p	owe
and Energ	y Series Publisher, London, United Kingdom, 2008.					
Reference Book	5:					
	nd and Hermann Kärner (1985). High-Voltage Insulation					
2. Ravindra Publishers	Arora & Wolfgang Mosch, "High Voltage and Electrical	Insulation Engineering	g", John W	'iley&	Sons	
	W.S. Zaengl, and J.Kuffel, 'High Voltage Engineering Fu	indamentals' Newness	s Publisher	s. Sec	ond	
	lsevier, New Delhi, 2005.			,	5114	
0 0 1			• •		1.5	
Course Outcom	P65.	I Blo	oom's Tax	onomy	⊭ เ∨เลา	med

Course	Ou	tcomes:	Bloom's Taxonomy Mapped
Upon con	nple	etion of this course, the students will be able to:	
CO1	:	Know the various insulating materials.	L2: Understanding
CO2	:	Understand the concepts of insulation design for power system equipment.	L2: Understanding
CO3	:	Analyze insulation defects in high voltage power system equipment	L4: Analyzing
CO4	:	Recite the basic methods for insulation assessment	L1: Remembering
CO5	:	Apply online insulation condition monitoring techniques	L3: Applying

COUR	SE AR	RTICU	LATIO	ON MA	ATRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PS O1	PS O2	PS O3
CO1	2			1			1						1	1	
CO2	2	1	3	1	1		1						3	2	
CO3	2			3	2	1	1						1	3	
CO4	2	1	1	3		1						1	2	3	1
CO5	2	1	1	3	2		1					1	2	3	1
Avg	2	1	1.6	2.2	1.6	1	1	0	0	0	0	1	1.8	2.4	1
			3/2/	1-indica	ites strei	ngth of	correlati	ion (3- 1	High, 2-	Mediur	n, 1- Lo	ow)			

PREREQ		ACTION ENGINEERING		SEMI	1		-
	UISITES		CATEGORY	PEC	Cre	1	3
Power Elec	tronics, Electrical Machines		Hours/Week	L	T	P	TH
				3	0	0	3
	bjectives:		•• • •	1 1			
	earn the fundamentals of electric gn, construction and operation	traction, power substation, distr	ribution system and o	overhead	contac	et syst	em
		ver supply systems and role of ba	attery banks and main	ntenance			
	earn the traction motor drives an						
	earn about traction power supply	and protection					
5. 101	earn about railway signalling						
UNIT I	INTRODUCTION TO E	LECTRIC TRACTION		9	0	0	9
Requireme	nts of Ideal Traction Systems, th	e Indian Scenario of Electric tra	action, Present day S	tate of an	t Elec	tric tr	actio
		es of Electric Traction over othe					
		e Traction, DC systems, Single					
	ks in Traction, types and mainte	phase with special reference to	locomotives, EMUs	and Met	ro sto	ck, R	ole o
Dattery Dat	ks in Traction, types and manie	nance.					
UNIT II	TRACTION MECHANI	CS		9	0	0	9
Requireme		e Indian Scenario of Electric tra	action, Present day S	tate of a	t Elec	tric tr	action
		es of Electric Traction over othe					
		e Traction, DC systems, Single					
		phase with special reference to	locomotives, EMUs	and Met	ro sto	ck, R	ole o
Battery dai	ks in Traction, types and mainte	nance.					
UNIT III	TRACTION MOTOR A			9	0	0	9
duties, spe of design a Drive Rati based Con	d control methods, Braking me nd construction features for imp ngs, Important Features of Trac verter Controlled Drives, DC Trac ction control of DC locomotive	ction duties, Available motor c thods, special Emphasis and tec roved power to weight ratio, Por etion Drives, conventional DC a raction using Chopper Controlle s and EMU's, Traction control s	chniques of regenera wer Factor and Harn and AC Traction dri ed Drives, AC Tract system of AC locomo	tive brak nonics, T ves, Sen ion empl otives, Co	ing, O ractive nicond oying ontrol	ptimi Effo uctor/ Poly- gear,	zation rt and IGBT -phas
	nduction motors, Power & am oduction to Maglev Technology	p; Auxiliary circuit equipment (ir ma	
motors, int	oduction to Maglev Technology			0	0		uctio
motors, int UNIT IV	oduction to Maglev Technology POWER SUPPLY AND	PROTECTION	aquinment at tractio	9 a substati	0	0	uction 9
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator,	POWER SUPPLY AND bstation, spacing and location ajor equipment like transformer protection, maximum demand a ter transformers, Return Condu ng and Air-conditioning. uirement of catenary wire, cont	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead	ection provided for tions, sectionalizing trolling/monitoring, in length, Automatic	n substati Transforn parallelir Railway weight te	ion, se ner an ig post SCAD ensioni	0 election and the over the and the over the o	9 9 on and orhead feede stems
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator, overhead c	POWER SUPPLY AND bstation, spacing and location ajor equipment like transformer protection, maximum demand a ter transformers, Return Condu ng and Air-conditioning. uirement of catenary wire, cont worlap, Different techniques of cossing of power lines, Protectio	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead n	ection provided for tions, sectionalizing trolling/monitoring, in length, Automatic	n substat: Transforr parallelir Railway weight te systems)	ion, se ner an ig post SCAD ensioni	0 election ad over t and t PA system ing, se	9 on and orhead feede stems ection
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator, overhead c UNIT V	oduction to Maglev Technology POWER SUPPLY AND bstation, spacing and location ajor equipment like transformers protection, maximum demand a ter transformers, Return Conduing and Air-conditioning. uirement of catenary wire, controverlap, Different techniques of cossing of power lines, Protection RAILWAY SIGNALING	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead n	ection provided for tions, sectionalizing trolling/monitoring, a length, Automatic and underground	n substat: Transforn parallelir Railway weight te systems).	ion, se ner an ng post SCAD ension , neut	0 election ad over t and t DA system ing, se ral se 0	9 on and erhead feede stems ection ection 9
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator, overhead c UNIT V Block Sect	oduction to Maglev Technology POWER SUPPLY AND bstation, spacing and location ajor equipment like transformer ajor equipment like transformer protection, maximum demand a ter transformers, Return Condu ng and Air-conditioning. uirement of catenary wire, cont voerlap, Different techniques or cossing of power lines, Protection RAILWAY SIGNALING on Concept, AC/DC Track Circle	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead n	ection provided for tions, sectionalizing trolling/monitoring, in a length, Automatic and underground n speed and signalin	n substat: Transforn parallelir Railway weight te systems) 9 g, Solid s	ion, se ner an ag post SCAD ensioni , neut 0	0 election d over t and t oA system ing, se ral se 0 nterlo	9 on and or head feede stems ection ection 9 cking
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator, overhead c UNIT V Block Sect Automatic	oduction to Maglev Technology POWER SUPPLY AND bstation, spacing and location ajor equipment like transformer protection, maximum demand a ter transformers, Return Conduing and Air-conditioning. uirement of catenary wire, controverlap, Different techniques or cossing of power lines, Protectio RAILWAY SIGNALING on Concept, AC/DC Track Circ Warning Systems, CAB signali	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead n	ection provided for tions, sectionalizing trolling/monitoring, a length, Automatic and underground n speed and signalin ermissible limit of E	n substat: Transforn parallelir Railway weight ta systems) 9 g, Solid s MI and H	ion, se ner an ag post SCAD ensioni , neut 0	0 election d over t and t oA system ing, se ral se 0 nterlo	9 on and or head feede stems ection ection 9 cking
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator, overhead c UNIT V Block Sect Automatic	oduction to Maglev Technology POWER SUPPLY AND bstation, spacing and location ajor equipment like transformer protection, maximum demand a ter transformers, Return Conduing and Air-conditioning. uirement of catenary wire, controverlap, Different techniques or cossing of power lines, Protectio RAILWAY SIGNALING on Concept, AC/DC Track Circ Warning Systems, CAB signali	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead n	ection provided for tions, sectionalizing trolling/monitoring, i a length, Automatic and underground n speed and signalin ermissible limit of E 1g, Electrostatic indu	n substat: Transforn parallelir Railway weight ta systems) 9 g, Solid s MI and H	ion, se mer an ng post SCAD ensionit neut neut 0 State In EMC,	0 election and to A system ing, series ral series nterloop Permi	9 n and crhead feede stems ection ction 9 cking
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator, overhead c UNIT V Block Sect Automatic capacitivel	POWER SUPPLY AND bstation, spacing and location ajor equipment like transformer protection, maximum demand a ter transformers, Return Conduing and Air-conditioning. uirement of catenary wire, controverlap, Different techniques or cossing of power lines, Protectio RAILWAY SIGNALING on Concept, AC/DC Track Circ Warning Systems, CAB signalize	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead n	ection provided for tions, sectionalizing trolling/monitoring, i a length, Automatic and underground n speed and signalin ermissible limit of E 1g, Electrostatic indu	n substat: Transforr parallelir Railway weight te systems) g, Solid s MI and F ction.	ion, se mer an ng post SCAD ensionit neut neut 0 State In EMC,	0 election and to A system ing, series ral series nterloop Permi	9 n an arrhead feede ectio cctior 9 cking ssibl
motors, int UNIT IV Traction su sizing of n lines, surge posts, Boo Train light Design req insulator, overhead c UNIT V Block Sect Automatic capacitivel Reference	POWER SUPPLY AND bstation, spacing and location ajor equipment like transformer protection, maximum demand a ter transformers, Return Condu ng and Air-conditioning. uirement of catenary wire, cont werlap, Different techniques of ossing of power lines, Protectio RAILWAY SIGNALING on Concept, AC/DC Track Circ Warning Systems, CAB signality -coupled current, Coupling between Books:	PROTECTION of Traction substations, Major et and Switchgear, Types of prote and load sharing between substat ctor, 2X25KV AC system, cont act wire, Dropper, Height, span of current collection (overhead n	ection provided for tions, sectionalizing trolling/monitoring, a length, Automatic and underground n speed and signalin ermissible limit of E ng, Electrostatic indu Total	substat: Transform parallelin Railway weight te systems) 9 g, Solid s MI and H ction. (45L+0	0 0 0 $\mathbf{T} = 4$	0 election and to A system ing, series ral series nterloop Permi	9 n an feede stem: ectio cctior g cking ssibl

2.	Douglas W. Hinde, M. Hinde, "Electric Traction Systems and Equipment", Elsevier Science & Technology, 1968
3.	Samuel Sheldon, Erich Hausmann, "Electric Traction and Transmission Engineering", Van Nostrand, 1911
4.	Frederick William Carter, "Railway Electric Traction", E. Arnold & Company, 1922
5.	Edward Parris Burch, "Electric traction for railway trains; a book for students, electrical and mechanical engineers,
5.	superintendents of motive power and others", New York, McGraw-Hill Book Company
6.	Edward Trevert, "Electric Railway Engineering", Lynn, Mass. : Bubier Pub. Co.
7	Burch Edward Parris, "Electric Traction for Railway Trains; a Book for Students, Electrical and Mechanical
7.	Engineers, Superintendents of Motive Power and Others", Arkose Press, ISBN: 9781345582376, 9781345582376

Course O	outo	comes:	Bloom's Taxonomy			
Upon com	plet	ion of this course, the students will be able to:	Mapped			
CO1	CO1 : To understand the basics of traction and supply systems.					
CO2	:	To understand the traction mechanics and ideal choice of supply systems.	L4: Analyzing			
CO3	:	To describe the concepts of traction motors and applying the solid state drive control.	L3: Applying			
CO4	:	To design the protection system for the traction power supply system	L5: Evaluating			
CO5	:	To understand the concepts of railway signaling	L2: Understanding			

COUR	SE AR	TICU	LATIO	ON MA	TRIX			1		•		1	1	1	1
COs/ POs	PO 1	РО 2	РО 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	РО 11	PO 12	PS O1	PS O2	PS O3
CO1	3	2	3	2	2	3	2	1				1	3	2	3
CO2	3	2	3	2	2	3	2	1				1	3	2	3
CO3	3	2	3	2	2	3	2	1				1	3	2	3
CO4	3	2	3	2	2	3	2	2	1	1	2	1	3	2	3
CO5	3	2	3	2	2	3	2	3	1	1	2	1	3	3	3
Avg	3	2	3	2	2	3	2	1.6	1	1	2	1	3	2.2	3
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

PROGRAMME ELECTIVE COURSE VERTICALS FOR HONOURS / MINOR DEGREE

VERTICAL II : POWER CONVERTERS AND DRIVES

18EEHO201 ANALYSIS OF ELECTRICAL MAC	HINES	SEMES	TER		
PREREQUISITES	CATEGORY	PEC	Cre	edit	3
	Hours/Week	L	Т	Р	TH
DC Machines, Synchronous and Induction Machines	110urs/ week	2	0	2	4
Course Objectives:					
1. To model & simulate all types of DC machines					
2. To develop reference frame equations for various elements like R, L and					
 To model an induction (three phase and 'n' phase) and synchronous mac To drive reference frame equations for induction and synchronous maching 					
5. To study the need and working of multiphase induction and synchronous					
				I .	
UNIT I MODELING OF BRUSHED-DC ELECTRIC MACHINE		6	0	6	12
Fundamentals of Operation – Introduction – Governing equations and mode Compound – State model derivation – Construction of Model of a DC M					
Compound.		quantonis	,,		is und
					10
UNIT IIREFERENCE FRAME THEORYHistorical background – phase transformation and commutator transformation	transformation of	6	0	6	12 arv to
arbitrary reference frame .		variables	10III S	tation	ary to
UNIT III INDUCTION MACHINES		6	0	6	12
Three phase induction machine - equivalent circuit – free acceleration character					
variables and arbitrary reference frame variables – Simulation under no loa arbitrary reference variable form.		ms- macm	le val	lable	ioriii,
UNIT IV SYNCHRONOUS MACHINES		6	0	6	12
Three phase synchronous machine - voltage and torque equations in machin (Park's equations).	ne variables and rote	or reference	e fram	ne var	iables
(Park s equations).					
UNIT V MULTIPHASE (MORE THAN THREE-PHASE) MACHI	NES CONCEPTS	6	0	6	12
Preliminary Remarks - Necessity of Multiphase Machines - Evolution of M					
Machines - Working Principle - Multiphase Induction Machine, Multiphase machine. Applications of Multiphase Machines	Synchronous Mach	ine -Mode	ling o	of 'n'	phase
inacinite. Appleations of Multipliase Machines					
LAB COMPONENT					
1 Madeling of DC marking					
 Modeling of DC machines. Simulation under no-load and loaded conditions for a PMDC motor 					
3 Simulation of smooth starting for DC motor.					
4 Simulation under no-load and load conditions of a three phase induction	machine in machine	e variable f	orm a	nd art	oitrary
reference variable form					1
5 Simulation under no-load and load conditions of a three phase synch arbitrary reference variable form.	ronous machine in	machine v	ariabl	e forr	n and
	Total (30)L+0T+30	$\mathbf{P} = 0$	60 Pe	riods
Test Books:					

1.	Stephen D. Umans, "Fitzgerald & Kingsley's Electric Machinery", Tata McGraw Hill, 7th Edition, 2020.
2.	Bogdan M. Wilamowski, J. David Irwin, The Industrial Electronics Handbook, Second Edition, Power Electronics and Motor Drives, CRC Press, 2011, 1st Edition.
3.	Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Pekarek, "Analysis of Electric Machinery and Drive Systems", 3rd Edition, Wiley-IEEE Press, 2013
4.	Chee Mun Ong, Dynamic Simulation of Electric Machinery using MATLAB, Prentice Hall, 1997, 1st Edition
5.	Atif Iqbal,Shaikh Moinoddin, Bhimireddy Prathap Reddy, Electrical Machine Fundamentals with Numerical Simulation using MATLAB/SIMULINK, Wiley,2021,1st Edition
Refere	ence Books
1.	R. Krishnan, Electric Motor & Drives: Modeling, Analysis and Control, Pearson Education, 1st Imprint, 2015, 1st Edition.
2.	R.Ramanujam, Modeling and Analysis of Electrical Machines, I.k.International Publishing House Pvt.Ltd,2018.

Course O			Bloom's Taxonomy		
Upon com	pleti	on of this course, the students will be able to:	Mapped		
CO1	:	Find the modeling for a brushed DC-Motor (Shunt, Series, Compound and separately excised motor) and to simulate DC motors using state models	L1: Remembering		
CO2	:	Apply reference frame theory for, resistive and reactive elements (three phase)	L2: Understanding		
CO3	:	Compute the equivalent circuit and torque of three phase induction motor and synchronous motor in machine variable arbitrary reference frame variable	L5: Evaluating		
CO4	:	Demonstrate the working of multiphase induction and synchronous machine.	L3: Applying		
CO5	:	Compute the model of three phase and multiphase induction and synchronous machine.	L6: Creating		

COs/ Pos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO1	PSO2	PSO3
CO1	3	3	3	3	3		2	1		3		3	3	3
CO2	3	3	3	3	3		2	1		3		3	3	3
CO3	3	3	3	3	3		2	1		3		3	3	3
CO4	3				3		2	1		3		3	3	3
CO5	3				3		2	1		3		3	3	3
Avg	3	3	3	3	3	0	2	1	0	3	0	3	3	3

18E	EHO20	2 MULTILEVEL POWER CONV	ERTERS	SEME	STEF	2	
PREI	REQUI	STIES	CATEGORY	PEC	Cre		3
Power	electror	ics	Hours/Week		T	P	TH
				3	0	0	3
Cour	se Obje	ctives:					
ι.		oduce the fundamentals of multilevel voltage source inver	ters and multilevel cur	rent source	inverte	rs wi	th its
	modula	tion control					
UNIT	ГΙ	DIODE-CLAMPED MULTILEVEL INVERTER	S	9	0	0	9
Dwell Discor	Time Ca ntinuous	nverter - Converter Configuration and Switching State, Sp alculation and Switching Sequence Design, Neutral-Point V Space Vector Modulation, SVM Based on Two-Level -Level Diode-Clamped Inverters	Voltage Control 164				
UNIT	II 7	MULTILEVEL VOLTAGE SOURCE INVERTE	RS	9	0	0	9
		NPC/H-Bridge Inverter, Inverter Topology and Modular		ms and Ha	rmonic	-	
Multil	evel Fly	ing-Capacitor Inverters, Inverter Configuration, Modulation	n Schemes				
						0	
UNIT		CASCADED MULTILEVEL INVERTERS rter, Bipolar Pulse-Width Modulation and Unipolar Pulse		9	0	0	9
		MODULAR MULTILEVEL INVERTER		9	0	0	9
		lular Multilevel Inverter- Power circuit, operation and app ular Multilevel Inverter	lications, DC voltage b	alance contr	ol, Car	rier I	Sased
	101 11104						
UNIT		PWM TECHNIQUES		9	0	0	9
		Iodulation, Selective Harmonic Elimination, Space Vec	tor Modulation-Switch	ing States,	Space	Vec	ctors,
Dwell	Time Ca	alculation, Switching Sequence, Harmonic Content					
			Το	tal (45L+0	T) = 44	5 Pe	riod
				(1021)			
Text]	Books:						
1.	Bin W	u, Mehdi Narimani, 'High-Power Converters and AC Driv	res, 2nd Edition, Wiley-	IEEE Press,	2017		
Refer	ence B	ooks:					
1.		ohan, T. M. Undeland, et al., Power Electronics—Converte as, New York, 2003	rs, Applications and De	sign, 3rd ed	ition, J	ohn V	Wiley
E-Ref	ference						
1	https:/	//archive.nptel.ac.in/courses/108/102/108102157/					
		.					
7	04			DL. 1		т.	
	e Outco			Bloom's Monnod		Taxo	nom

Course O	uto	comes:	Bloom's Taxonomy		
Upon com	pleti	Mapped			
CO1	:	Understand the configurations for multilevel voltage source inverters.	L1: Remembering		
CO2	:	Describe the working principle of multilevel current source inverters	L2: Understanding		
CO3	:	Draw the topology structure of different types of multilevel inverters	L3: Applying		
CO4	:	Understand the principle of space vector modulation for multilevel inverters	L1: Remembering		
CO5	:	Select an appropriate modulation scheme for multilevel inverters	L4: Analyzing		

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	2				1	2	2		2	2	2	2
CO2	1	3			2				2	2		1	1	3	
CO3	1	1		1	1	1	2						1	1	
CO4	1	1		1	1		2	2	1		2	2	1	1	
CO5	2	2	3	1	2	2	1			1	3		2	2	3
Avg	1.4	1.8	2.5	1.25	1.5	1.5	1.67	1.5	1.67	1.67	2.5	1.67	1.4	1.8	2.5
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

PREREQUISITES Power Electronics Course Objectives:		UPS				STEF	2
			CATEGORY	PEC		edit	3
			Hours/Week	L	T	P	TE
Course Objectives:				3	0	0	3
0							
	lge about modern power electronic cor		applications in po-	wer utility			
2. To impart knowled	lge about Resonant converters and UP	S.					
UNIT I DC-DC O	CONVERTERS			9	0	0	9
	Non-isolated DC-DC converters: Cu						
	nodeling Concept of volt-second an	nd charge balance	– High gain inpu	t-parallel o	output	-serie	s DC
DC converter.							
UNIT II SWITCH	IED MODE POWER CONVER	TERS		9	0	0	9
Isolated DC-DC converte	ers: Analysis and state space modellin	ng of fly back, Fo		Luo, Hal	f brid	ge an	d ful
bridge converters- control	circuits and PWM techniques - Bidir	ectional DC-DC o	converters.				
UNIT III RESONA	ANT CONVERTERS			9	0	0	9
	n- basic concepts- Resonant switch- I	oad Resonant co	nverters- ZVS C		-	-	-
	ro Voltage Switching- Series and para				nuge	topon	05100
			C				
	CONVERTERS			9	0	0	9
	concept – Types of multilevel inverte						
	Applications – Switching device current	nts – DC link cap	acitor voltage bala	ancing – F	eature	es of N	MLI
Comparisons of MLI.							
-	CONDITIONERS, UPS, AND F	TILTERS					
UNIT V POWER	, ,			9	0	0	9
	disturbances- Power conditioners -U	PS: offline UPS,	Online UPS, App		~	~	
Introduction- Power line filters, Series-parallel reso	onant filters, filter without series capac	PS: offline UPS, vitors, filter for PV	VM VSI, current f	lications -	- Filte	ers: V	oltag
Introduction- Power line filters, Series-parallel reso		PS: offline UPS, vitors, filter for PV	VM VSI, current f	lications -	- Filte	ers: V	oltag
Introduction- Power line filters, Series-parallel reso	onant filters, filter without series capac	PS: offline UPS, vitors, filter for PV	VM VSI, current f ors.	lications – ilter, DC f	- Filte	ers: Vo – Des	oltag ign c
Introduction- Power line filters, Series-parallel reso	onant filters, filter without series capac	PS: offline UPS, vitors, filter for PV	VM VSI, current f ors.	lications -	- Filte	ers: Vo – Des	oltag ign c
Introduction- Power line filters, Series-parallel reso inductor and transformer	onant filters, filter without series capac	PS: offline UPS, vitors, filter for PV	VM VSI, current f ors.	lications – ilter, DC f	- Filte	ers: Vo – Des	oltag ign c
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books:	onant filters, filter without series capac for power electronic applications – Sel	PS: offline UPS, itors, filter for PV lection of capacito	VM VSI, current f ors. Tota	lications - ilter, DC f l (45L+0	- Filte	ers: Vo – Des	oltag ign c
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Alej	onant filters, filter without series capac for power electronic applications – Sel andro Oliva," Power-Switching Conve	PS: offline UPS, sitors, filter for PV lection of capacito erters", Third Edit	VM VSI, current f ors. Tota	lications - ilter, DC f l (45L+0	- Filte	ers: Vo – Des	oltag ign c
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Alej 2. M.H. Rashid – P	onant filters, filter without series capac for power electronic applications – Sel	PS: offline UPS, sitors, filter for PV lection of capacito erters", Third Edit	VM VSI, current f ors. Tota	lications - ilter, DC f l (45L+0	- Filte	ers: Vo – Des	oltag ign c
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Alej 2. M.H. Rashid – P Reference Books:	onant filters, filter without series capac for power electronic applications – Sel andro Oliva," Power-Switching Conve ower Electronics handbook, Elsevier P	PS: offline UPS, bitors, filter for PV lection of capacito erters", Third Edit Publication, 2001.	VM VSI, current f ors. Tota tion, CRC Press, 2	lications - ilter, DC f 1 (45L+0 010.	T)= 4	- Des	riod
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Ale 2. M.H. Rashid – P Reference Books: 1. Ned Mohan, To	onant filters, filter without series capac for power electronic applications – Sel andro Oliva," Power-Switching Conve ower Electronics handbook, Elsevier F	PS: offline UPS, bitors, filter for PV lection of capacito erters", Third Edit Publication, 2001.	VM VSI, current f ors. Tota tion, CRC Press, 2	lications - ilter, DC f 1 (45L+0 010.	T)= 4	- Des	riod
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Ale 2. M.H. Rashid – P Reference Books: 1. Ned Mohan, To Edition, John Wi	onant filters, filter without series capac for power electronic applications – Sel andro Oliva," Power-Switching Conve ower Electronics handbook, Elsevier F re.M.Undeland, William.P.Robbins, " ley and Sons, 2006.	PS: offline UPS, bitors, filter for PV lection of capacito erters", Third Edit Publication, 2001.	VM VSI, current f ors. Tota tion, CRC Press, 2 ss Converters, Ap	lications – liter, DC f l (45L+0 010.	T)= 4	- Des	riod
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Alej 2. M.H. Rashid – P Reference Books: 1. Ned Mohan, To Edition, John Wi 2. M.H. Rashid, "P	onant filters, filter without series capac for power electronic applications – Sel andro Oliva," Power-Switching Conve ower Electronics handbook, Elsevier F	PS: offline UPS, bitors, filter for PV lection of capacito erters", Third Edit Publication, 2001.	VM VSI, current f ors. Tota tion, CRC Press, 2 ss Converters, Ap	lications – liter, DC f l (45L+0 010.	T)= 4	- Des	riod
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Alej 2. M.H. Rashid – P Reference Books: 1. Ned Mohan, To Edition, John Wi 2. M.H. Rashid, "P E-References:	andro Oliva," Power-Switching Conve ower Electronics handbook, Elsevier F re.M.Undeland, William.P.Robbins, " ley and Sons, 2006. ower Electronics circuits, devices and	PS: offline UPS, bitors, filter for PV lection of capacito erters", Third Edit Publication, 2001.	VM VSI, current f ors. Tota tion, CRC Press, 2 ss Converters, Ap	lications – liter, DC f l (45L+0 010.	T)= 4	- Des	riod
Introduction- Power line filters, Series-parallel reso inductor and transformer Text Books: 1. Simon Ang, Ale 2. M.H. Rashid – P Reference Books: 1. Ned Mohan, To Edition, John Wi 2. M.H. Rashid, "P E-References: 1. NPTEL Course:	onant filters, filter without series capac for power electronic applications – Sel andro Oliva," Power-Switching Conve ower Electronics handbook, Elsevier F re.M.Undeland, William.P.Robbins, " ley and Sons, 2006.	PS: offline UPS, bitors, filter for PV lection of capacito erters", Third Edit Publication, 2001.	VM VSI, current f ors. Tota tion, CRC Press, 2 ss Converters, Ap	lications – liter, DC f l (45L+0 010.	T)= 4	- Des	riod

Course O)uto	Bloom's Taxonomy	
Upon com	Mapped		
CO1	:	Analyze the state space model for DC – DC converters.	L4: Analyzing
CO2	:	Acquire knowledge on switched mode power converters.	L2: Understanding
CO3	:	Outline the PWM techniques for DC-AC converters.	L1: Remembering
CO4	:	Discuss about modern power electronic converters and its applications in electric power utility.	L2: Understanding

_				
	CO5	:	Identify the filters and UPS.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	1	2	2			3	2		2		2	2	2	1
CO2	1	1	3	2			3	2		2		2	3	3	2
CO3	2	2	2	3			3	3		2		1	2	2	1
CO4	2	1	1	2			3	2		2		2	2	3	2
CO5	1	1	2	1			3	3		3		1	2	2	1
Avg	1.6	1.2	2	2	0	0	3	2.4	0	2.2	0	1.6	2.2	2.4	1.4
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

-	EEHO204 MODELING AND CONTROL OF POW	CATEGORY	SEME			-
PF	REREQUISITES	PEC			3	
Po	wer Electronics and Control Systems	Hours/Week	L 3	Т 0	<u>Р</u> 0	TH 3
Co	ourse Objectives:				0	
1.	To learn the basics of control system simulation.					
2.	To do symbolic calculation and study the principles of sliding r	node control and the way of	annly sm	c for h	nick	
	converter.		appij on			
3.	To learn the concept of power factor correction.					
4.	To design simulate smc for buck converter and power factor co	rrection circuit with control	ler.			
TIN	NIT I SIMULATION BASICS IN CONTROL SYST	FMS	9	0	0	9
	ansfer Function-How to build transfer function, identify Poles, zer		-	-	-	
	Multiplication Factors, Constant, Single and Double Integr					
	nctions, Single Pole and Single Zero Functions, RHP Pole					
	nsfer function from state space model.			1		
F T N			0		0	•
	NIT II SYMBOLIC CALCULATIONS		9	0	0	9
	mbolic Variables - Symbolic Vector Variables, Commands for Ha					
	Polynomial Factorization and Roots of Polynomials, Sy atrices - Other Symbolic Matrix Operations.	moone matrix Algebra -	Operation	is with	i Syn	
VIC	arrees - Oner Symbolic Marix Operations.					
UN	NIT III SLIDING MODE CONTROL BASICS		9	0	0	9
	roduction- Introduction to Sliding-Mode Control- Basics of S	Sliding-Mode Theory- Ap	olication	of Slie	ding-	Mod
Co	ntrol to DC-DC Converters-Principle-Sliding mode control of b	uck converter.	-		-	
	NIT IV POWER FACTOR CORRECTION CIRCUIT		9	0	0	9
	roduction, Operating Principle of Single-Phase PFCs, Control					
Av	verage-Current-Control Loop, Designing the Outer Voltage-Con-	ntrol Loop, Example of Sin	gle-Phase	e PFC S	Syste	ms.
			0	0	0	9
TIN	NIT V - I CONTROLI FR DESIGN FOR PEC CIRCLE	ГС	U U			
	NIT V CONTROLLER DESIGN FOR PFC CIRCUT wer factor correction circuit using other SMPS topologies: (9 - PFC c		empl	
Po	wer factor correction circuit using other SMPS topologies: O dgeless topologies.				empl	loym
Po	wer factor correction circuit using other SMPS topologies: C	Cuk and SEPIC converter	- PFC c	ircuits	-	•
Po	wer factor correction circuit using other SMPS topologies: C	Cuk and SEPIC converter		ircuits	-	•
Po bri	wer factor correction circuit using other SMPS topologies: C	Cuk and SEPIC converter	- PFC c	ircuits	-	-
Po bri Te	wer factor correction circuit using other SMPS topologies: C dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control	Cuk and SEPIC converter Total	- PFC c	$(\Gamma) = 4$	5 Pe	rioc
Pov brid Te	ext Books: Feedback Control problems using MATLAB and the Control 2000, 1 st Edition, Cengage Learning.	Cuk and SEPIC converter Total	- PFC c	$(\Gamma) = 4$	5 Pe	riod
Po bri Te	wer factor correction circuit using other SMPS topologies: dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control 2000, 1 st Edition, Cengage Learning. . Ned Mohan,"Power Electronics: A First Course", Johnwiley,	Cuk and SEPIC converter Total	- PFC c (45L+0'	$(\Gamma) = 4$	5 Pe Joe (riod
Pov brid Te	wer factor correction circuit using other SMPS topologies: dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control 2000, 1st Edition, Cengage Learning. Ned Mohan,"Power Electronics: A First Course", Johnwiley, Marian K. Kazimierczuk and AgasthyaAyachit,"Laboratory	Cuk and SEPIC converter Total	- PFC c (45L+0'	$(\Gamma) = 4$	5 Pe Joe (riod
Pov brid Te 1. 2.	wer factor correction circuit using other SMPS topologies: dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control 2000, 1 st Edition, Cengage Learning. Ned Mohan,"Power Electronics: A First Course", Johnwiley, Marian K. Kazimierczuk and AgasthyaAyachit,"Laboratory Converters", Wiley 2016, 1 st Edition.	Cuk and SEPIC converter Total I system tool box By Dear 2013, 1 st Edition. Manual for Pulse-Width	- PFC c (45L+0' Frederic Modulate	Γ) = 4 k and . d DC-	5 Pe Joe (riod
Pov brid Te 1. 2. 3. 4.	wer factor correction circuit using other SMPS topologies: dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control 2000, 1st Edition, Cengage Learning. Ned Mohan,"Power Electronics: A First Course", Johnwiley, Marian K. Kazimierczuk and AgasthyaAyachit,"Laboratory Converters", Wiley 2016, 1st Edition.	Cuk and SEPIC converter Total I system tool box By Dear 2013, 1 st Edition. Manual for Pulse-Width	- PFC c (45L+0' Frederic Modulate	Γ) = 4 k and . d DC-	5 Pe Joe (riod
Poy brid Te 1. 2. 3. 4. Re	wer factor correction circuit using other SMPS topologies: C dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control 2000, 1 st Edition, Cengage Learning. Ned Mohan,"Power Electronics: A First Course", Johnwiley, Marian K. Kazimierczuk and AgasthyaAyachit,"Laboratory Converters", Wiley 2016, 1 st Edition. Power Electronics handbook, Industrial Electronics series, S.I Eference Books: Sliding mode control for Switching Power Converters:,	Cuk and SEPIC converter Total of system tool box By Dear 2013, 1 st Edition. Manual for Pulse-Width K.Varenina, CRC press, 200	- PFC c (45L+0' Frederic Modulate	T) = 4 k and . d DC-	Joe (riod Chow
Pov brid Te 1. 2. 3. 4. Re 1.	 wer factor correction circuit using other SMPS topologies: C dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control 2000, 1st Edition, Cengage Learning. Ned Mohan, "Power Electronics: A First Course", Johnwiley, Marian K. Kazimierczuk and AgasthyaAyachit, "Laboratory Converters", Wiley 2016, 1st Edition. Power Electronics handbook, Industrial Electronics series, S.I efference Books: Sliding mode control for Switching Power Converters:, Yuk Ming Lai Chi-Kong Tse, 1st Edition, CRC Press. 	Cuk and SEPIC converter Total of system tool box By Dear 2013, 1 st Edition. Manual for Pulse-Width K.Varenina, CRC press, 200 Techniques and Impleme	- PFC c (45L+0' Frederic Modulate 2, 1 st Edi	T) = 4 k and . d DC-	Joe (riod Chov
Pov brid Te 1. 2. 3. 4. Re	 wer factor correction circuit using other SMPS topologies: C dgeless topologies. ext Books: Feedback Control problems using MATLAB and the Control 2000, 1st Edition, Cengage Learning. Ned Mohan, "Power Electronics: A First Course", Johnwiley, Marian K. Kazimierczuk and AgasthyaAyachit, "Laboratory Converters", Wiley 2016, 1st Edition. Power Electronics handbook, Industrial Electronics series, S.I efference Books: Sliding mode control for Switching Power Converters:, Yuk Ming Lai Chi-Kong Tse, 1st Edition, CRC Press. Andre Kislovski, "Dynamic Analysis of Switching-Mode DC 	Cuk and SEPIC converter Total I system tool box By Dear 2013, 1 st Edition. Manual for Pulse-Width K.Varenina, CRC press, 200 Techniques and Impleme /DC Converters", Springer	- PFC c (45L+0' Frederic Modulate 2, 1 st Edi	T) = 4 k and . d DC-	Joe (rioc Chow

Course C)uto	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	To calculate transfer function for constant, differential, integral, First order and Second order factors.	L2: Understanding
CO2	:	To illustrate the effect of poles and zero's in the 's' plane.	L1: Remembering
CO3	:	To select Symbolic equations for solving problems related with Matrices, Polynomial and vectors.	L5: Evaluating
CO4	:	To compute the control expression for DC – DC buck converter using sliding mode control theory	L3: Applying
CO5	:	To determine the controller expression for power factor correction circuits and to simulate sliding mode control of buck converter and power factor correction circuit.	L5: Evaluating

COUR	SE AR	RTICU	LATIO	ON MA	ATRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	3	3	3			1		2		3	3	3	3
CO2	3	3	3	3	3			1		2		3	3	3	3
CO3	3	3	3	3	3			1		2		3	3	3	3
CO4	3	3	3	3	3			1		2		3	3	3	3
CO5	3	3	3	3	3			1		2		3	3	3	3
Avg	3	3	3	3	3	0	0	1	0	2	0	3	3	3	3
		-	3/2/	1-indica	ites strei	ngth of	correlat	ion (3-]	High, 2	Mediur	n, 1- Lo	w)	·	·	·

18EE	HO205	DIGITA			POWER ELE	CTRON	ICS	SEN	IES'	ГER		
PRE	REQUIST	IES				CATE	GORY	PEC	2	Cre	edit	3
	-	Power Electron	nics				1887 1	L		Т	Р	С
						Hour	s∖Week	3		0	0	3
Cour	se Objecti	ves:				•						•
1.	To underst	and the concepts	of discrete time sy	stems.								
2.		systems in z don										
3.	To design t	he digital control	lers									
UNIT	די	INTRODUC	TION						9	0	0	9
				ital cor	trol-Importance	of digital	control-S		-	v	-	
					ansform-MATLA	-				-		
-		•	-		stems-Sampling the	-	ies. Treque	ney rea	spon		1150101	e time
systen		, or nequency rea	sponse of discrete	time sys	stenns Sumpring un							
UNIT	T II	Z-PLANE	ANALYSIS	OF	DISCRETE-T	IME	CONTR	OL	•			
		SYSTEMS						-	9	0	0	9
Impul	se sampling		alse transfer functi	ion - Rea	alization of digital	controlle	ers- Mappir	ig betw	veen	s-plar	ne and	
zplane	e - Stability	nalysis of closed	loop systems in z	-plane_	Transient and stead	dy state a	nalyses.	-		-		
											1	1
UNII			PPROACH TC) DISC	RETE-TIME C	ONTRO)L		9	0	0	9
~		STEMS		•					-		-	-
					l systems - Soluti			nd dis	crete	time	state	space
equati	ons -Puise t	ansier function n	natrix - Discretiza	tion of c	ontinuous time sta	ite space	equations.					
UNIT	' IV	DIGITAL	ONTROLLER	DESI	GN METHODS				9	0	0	9
					trollers by using b		ansformati		-	-		-
					· Deadbeat contro							
					zation of Digital co							
											1	1
UNI	T V			S IN P	OWER ELECT	RONIC	S		9	0	0	9
	~ "	APPLICAT		~	~				-	·	-	
					er Control Applica							
					r instantaneous ov ample Code for P			i, inter	rupts	, Dise	crete I	P1 and
TIDU	Juanons, Ai		a i ib implemente			www.gene	ation.					
]	Fotal (45L-	-0T)=	= 45 P	eriods
										,		
Text	Books:											
1	M. Gopa	, "Digital Contro	l and State Variab	le Meth	ods", McGraw Hil	ll Educati	ion, 4th					
1.	Edition, 2											
2.					Education, India,							
3.					ity Press; 2ndEdit			. ~				
4.		strom & Tore Hag nent and Control,		ollers: 1	Theory, Design and	l Tuning'	' Internatio	nal So	cıety	for		
Refer	ence Book	s:										
1.	G.F.Fran Wesley, 2		ell and M.Workm	an, Dig	ital Control of Dyr	namic Sys	stems, 3rd o	ed., Ad	ldiso	n		
			Gary B. Lamont	Digital	control systems: T	Theory h	ardware so	oftware	<u>,</u>			
2.		Hill Book Compa		, 2151ul	control systems. I	. neory, n		, i t v ui t	,			
3.				Systems	", McGraw Hill Ed	lucation,	2007.					

1

https://nptel.ac.in/courses/108103008

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	To understand the digital control system	L2: Understanding				
CO2	:	Capable of determining the stability in z domain	L1: Applying				
CO3	:	To understand the state space analysis	L1: Remembering				
CO4	:	To design the various types of digital controllers	L3: Analysing				
CO5	:	To check the digital controllers in power electronics design	L5: Evaluating				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	1	1	1	1	1	1	1			1		1	1	1
CO2	1	3	3	3	2	1	2	1	1		1		1	1	1
CO3	1	2	2	3	2	1	2	1	1		1		1	1	1
CO4	1	3	2	3	2	1	2	1	1		1		1	1	1
CO5	1	2	3	3	2	1	2	1	1		1		1	1	1
Avg	1	2.2	2.2	2.6	1.8	1	1.8	1	1	0	1	0	1	1	1

18EEHO2 0		PWM CONVERTERS AND A		SEME			1
PREREQU	JISIT	'ES	CATEGORY	PEC		edit	3
Power Electr	onics.		PEC	L 3	T 0	P 0	<u>TH</u> 3
Course Ob	iectiv	765.		5	U	U	5
	•	a strong foundation of fundamental concepts in ba	sic operation of PWM convert	are like sol	lid sta	to driv	VAS
and po	ower o	quality.	-		nu sta		ves
		he student to apply these techniques in application	s including basic circuit operat	ion			
and de	0	inderstand the steady-state and dynamic analysis of	f DWM convertors application				
5. 10 em	able u	inderstand the steady-state and dynamic analysis of	n r www.converters.applications	5			
UNIT I	IN	TRODUCTION		9	0	0	9
		Overview of applications of voltage source conve					
		overters, operation of each type, design of commut ncy control, current source inverter and pulse wid		age and cu	rrent v	wavef	orms
voltage and I	lieque	ney control, current source inverter and pulse wid	in modulated inverter.				
UNIT II	PV	VM TECHNIQUES		9	0	0	9
		lation techniques for bridge converters Bus clam					
		DC Converters: Classification of choppers, operative transforms.	ating principle and control circu	uits for each	ch typ	e. An	alysi
of voltage all							
UNIT III	PE	RFORMANCE ANALYSIS OF LINE CU	RRENT RIPPLE	9	0	0	9
Analysis of	line				togo	and a	nnlia
	gral of	current ripple: Synchronously revolving refere f voltage error; evaluation of line current ripple; h	ybrid PWM for reduced line cu	rrent ripple	e. An	alysis	of d
link current	gral of t: Rela		ybrid PWM for reduced line cu	rrent ripple	e. An	alysis	of d
link current over a carrier UNIT IV	gral of t: Rela r cycle PE	f voltage error; evaluation of line current ripple; hy ition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS	rrent ripple state; rms 9	e. Ana dc cu 0	alysis rrent	of d rippl
link current over a carrier UNIT IV Analysis of t	gral of t: Rela r cycle PE torque	f voltage error; evaluation of line current ripple; h ation between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for	rrent ripple state; rms 9 reduced to	e. An dc cu 0 orque	alysis rrent 0 ripple	of d rippl
link current over a carrier UNIT IV Analysis of t Analysis for	gral of t: Rela <u>r cycle</u> PE torque r inve	f voltage error; evaluation of line current ripple; h ation between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen	rrent ripple state; rms 9 reduced to ce of inve	e. An dc cu 0 orque	alysis rrent 0 ripple	of d rippl
link current over a carrier UNIT IV Analysis of t Analysis for	gral of t: Rela <u>r cycle</u> PE torque r inve	f voltage error; evaluation of line current ripple; h ation between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen	rrent ripple state; rms 9 reduced to ce of inve	e. An dc cu 0 orque	alysis rrent 0 ripple	of d rippl
link current over a carrier UNIT IV Analysis of t Analysis for power factor, UNIT V	gral of t: Rela r cycle PE torque r inve r, influ	f voltage error; evaluation of line current ripple; hy ition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS	rrent ripple state; rms reduced to ce of inve s. 9	e. Ana dc cu 0 orque erter 1 0	alysis rrent 0 ripple oss o 0 0	of d rippl 9 e n lin 9
link current over a carrier UNIT IV Analysis of t Analysis for power factor, UNIT V PWM for m based PWM	gral of t: Rela r cycle PE torque r inve r, influ PV nultile	f voltage error; evaluation of line current ripple; hy attion between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE ripple: Evaluation of harmonic torques and rms rter's loss : Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage	rrent ripple state; rms reduced to ce of inve s. 9 space vect	e. Ana dc cu orque erter 1 0 tors, s	alysis rrent 0 ripple oss o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	of d rippl 9 e n lin 9 vecto
ink current over a carrier UNIT IV Analysis of t Analysis for oower factor, UNIT V PWM for m pased PWM	gral of t: Rela r cycle PE torque r inve r, influ PV nultile	f voltage error; evaluation of line current ripple; hy ation between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power	rrent ripple state; rms reduced to ce of inve s. 9 space vect	e. Ana dc cu orque erter 1 0 tors, s Reac	alysis rrent 0 ripple oss o 0 0 pace tive	of d rippl 9 e n lin 9 vecto
link current over a carrier UNIT IV Analysis of t Analysis for power factor, UNIT V PWM for m based PWM	gral of : Rela r cycle PE torque r inve r, influ PV nultile I, ana n, Con	f voltage error; evaluation of line current ripple; hy ation between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power	rrent ripple state; rms 9 reduced to ce of inve s. 9 space vect filtering,	e. Ana dc cu orque erter 1 0 tors, s Reac	alysis rrent 0 ripple oss o 0 0 pace tive	of d rippl 9 e n lin 9 vecto
link current over a carrier UNIT IV Analysis of t Analysis for power factor, UNIT V PWM for m based PWM compensation Test Books	gral of t: Rela r cycle PE torque r inve r influ PV nultile I, ana n, Cor	f voltage error; evaluation of line current ripple; hy tition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple enstant Volt Per hertz drives, PWM Rectifier etc.	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power Tota	rrent ripple state; rms 9 reduced to ce of inve s. 9 space vect filtering, 1 (45L+0	e. Ana dc cu orque erter 1 0 tors, s Reac T)= 4	alysis rrent 0 ripple oss 0 0 0 pace tive 15 Pe	of d rippl 9 e n lin 9 vecto powe
link current over a carrier UNIT IV Analysis of t Analysis for power factor. UNIT V PWM for m based PWM compensation Test Books 1. D. C Sons	gral of r cycle r cycle r cycle for que r inve r	f voltage error; evaluation of line current ripple; hy tition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple enstant Volt Per hertz drives, PWM Rectifier etc.	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power Tota	rrent ripple state; rms 9 reduced to ce of inve s. 9 space vect filtering, 1 (45L+0	e. Ana dc cu orque erter 1 0 tors, s Reac T)= 4	alysis rrent 0 ripple oss 0 0 0 pace tive 15 Pe	of d rippl 9 e n lin 9 vecto powee
link current over a carrier UNIT IV Analysis of t Analysis for power factor, UNIT V PWM for m based PWM compensation Test Books 1. D. C Son: 2. Bin	gral of r cycle r cycle torque r inve r i	f voltage error; evaluation of line current ripple; hy tition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple nstant Volt Per hertz drives, PWM Rectifier etc. mes, T. A. Lipo, 'Pulse Width Modulation For Po 03.	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power Tota ower Converters: Principles and illey & sons, Inc., 2006.	rrent ripple state; rms 9 reduced to ce of inve s. 9 space vect filtering, 1 (45L+0	e. Ana dc cu orque erter 1 0 tors, s Reac T)= 4	alysis rrent 0 ripple oss o 0 pace tive 15 Pe	of d rippl 9 e n lin 9 vecto powe riod
link current over a carrier UNIT IV Analysis of t Analysis for power factor, UNIT V PWM for m based PWM compensation Test Books 1. D. C Sons 2. Bin	gral of r cycle r cycle r cycle r orque r inve r	f voltage error; evaluation of line current ripple; hy tition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple enstant Volt Per hertz drives, PWM Rectifier etc. mes, T. A. Lipo, 'Pulse Width Modulation For Po 03. 'High Power Converters and AC Drives'', John W an, Undeland and Robbins, "Power Electronics: C	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power Tota ower Converters: Principles and illey & sons, Inc., 2006.	rrent ripple state; rms 9 reduced to ce of inve s. 9 space vect filtering, 1 (45L+0	e. Ana dc cu orque erter 1 0 tors, s Reac T)= 4	alysis rrent 0 ripple oss o 0 pace tive 15 Pe	of d rippl 9 e n lin 9 vecto powe riod
link current over a carrier UNIT IV Analysis of t Analysis for power factor. UNIT V PWM for m based PWM compensation Test Books 1. D. C Sons 2. Bin 3. Ned Sons Reference F	gral of r cycle r cycle r cycle forque r inve r	f voltage error; evaluation of line current ripple; hy tition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple nstant Volt Per hertz drives, PWM Rectifier etc. mes, T. A. Lipo, 'Pulse Width Modulation For Po 03. 'High Power Converters and AC Drives'', John W an, Undeland and Robbins, "Power Electronics: C	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power Tota wer Converters: Principles and illey & sons, Inc., 2006. Tonverters, Applications and De Da Silva "Advanced Power E	rrent ripple state; rms 9 reduced to ce of inve s. 9 space vect filtering, l (45L+0 Practice', esign'', Joh	e. Ana dc cu orque erter 1 0 tors, s Reac (T)= 4	alysis rrent 0 ripple oss o 0 pace tive filey a	of d rippl 9 en lin 9 vecto powe riod
link current over a carrier UNIT IV Analysis of t Analysis for power factor, UNIT V PWM for m based PWM compensation Test Books 1. D. C Sons 2. Bin 3. Ned 3. Ned Sons Reference E	gral of r cycle pE torque r inve , influ PV nultile (, ana n, Cor G. Hol s., 200 Wu, ' I Moh s. Books eli Ci iverter	f voltage error; evaluation of line current ripple; hy tition between line-side currents and dc link current e; rms current rating of dc capacitors. RFORMANCE ANALYSIS OF TORQUE e ripple: Evaluation of harmonic torques and rms erter's loss: Simplifying assumptions in evaluat ence of PWM techniques on switching loss, desig WM FOR MULTILEVEL INVERTER ANI vel inverter -Extensions of sine-triangle PWM to lysis of line current ripple and torque ripple nstant Volt Per hertz drives, PWM Rectifier etc. mes, T. A. Lipo, 'Pulse Width Modulation For Po 03. 'High Power Converters and AC Drives'', John W an, Undeland and Robbins, "Power Electronics: C	ybrid PWM for reduced line cu nt; dc link current and inverter RIPPLE AND LOSS torque ripple, hybrid PWM for ion of inverter loss, dependen n of PWM for low inverter loss D APPLICATIONS o multilevel inverters, voltage . Applications Active power Tota wer Converters: Principles and illey & sons, Inc., 2006. Tonverters, Applications and De Da Silva "Advanced Power E	rrent ripple state; rms 9 reduced to ce of inve s. 9 space vect filtering, l (45L+0 Practice', esign'', Joh	e. Ana dc cu orque erter 1 0 tors, s Reac (T)= 4	alysis rrent 0 ripple oss o 0 pace tive filey a	of d rippl 9 en lin 9 vecto powe riod

1	NPTEL Lecture series by Prof. G. Narayanan, Department of Electrical Engineering, IISC Bangalore on the web-
1.	course . http://www.digimat.in/nptel/courses/video/108108035/

Course O	outo	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Explain the need of PWM	L1: Remembering
CO2	:	Compare the PWM techniques on different aspects	L2: Understanding
CO3	:	Analyze parameter current ripple for different PWM approaches.	L5: Analyzing
CO4	:	Analyze parameters like losses, torque ripple for different PWM approaches.	L4: Analyzing
CO5	:	Develop suitable Pulse Width Modulation method for power converter used	L3: Applying
		for different applications	11 2 0

COUR	SE AR	RTICU	LATIO	ON MA	TRIX									
COs/ Pos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PSO3
CO1	2	2	2	1	1			1	1	2	1	2	1	2
CO2	3	1	1	2	2			1	2	2	1	1	1	1
CO3	1	1	1	2	1			2	2	2	2	2	1	2
CO4	1	2	2	3	3			2	1	1	1	1	1	1
CO5	1	1	1	1	1			1	2	1	1	2	1	2
Avg	1.6	1.4	1.4	1.8	1.6	0	0	1.4	1.6	1.6	1.2	1.6	1	1.6

18EEHC	207	GRID CONVERTERS FOR RENEWABLE APPLICATIONS	ENERGY	SEN	AEST	TER		
PREREC	UIST		CATEGORY	PF	EC	Cre	dit	3
Power elec	tronics	2	Hours\Week	Ι		Т	P	TH
r ower elec	uomes	5	110u15\week	3	3	0	0	3
Course C	-							
1. To :	introdu	ice the inverter structures and grid integration methods for so	blar and wind energy	systen	ns.			
UNIT I	P	HOTOVOLTAIC INVERTER STRUCTURES			9	0	0	9
		peration modes and Solar PV integration with H5 Inverter,	HERIC Inverter. RE	FU In		-	-	
		Half-Bridge Inverter, Conergy NPC Inverter, Three-Phase PV				,		
UNIT II		RID SYNCHRONIZATION IN SINGLE ONVERTERS	-PHASE POW	/ER	9	0	0	9
Grid Sync		ation Techniques for Single-Phase Systems, Grid Synch	hronization Using t	he Fo	urier	Anal	ysis,	Grid
•		Using a Phase-Locked Loop, PLLs Based on In-Quadratur	0	, PLL	Base	d on t	he H	ilbert
Transform	, PLL	Based on the Inverse Park Transform, PLLs Based on Adapt	tive Filtering					
UNIT III	G	RID CONVERTER STRUCTURES FOR WIND T	URBINE SYSTEN	AS	9	0	0	9
		ystem Power Configurations, Grid Power Converter Topolo						
		Converter), Multicell (Interleaved or Cascaded), Wind Turbin	e System Control: Ge	enerat	or-Sid	e Con	trol,	Wind
Turbine Sy	stem	Control Grid Control						
UNIT IV		RID SYNCHRONIZATION IN THREE-PHASE PO ONVERTERS	OWER		9	0	0	9
Reference	Frame Double	ference Frame PLL under Unbalanced and Distorted Gri- e PLL (DDSRF-PLL): Double Synchronous Reference Fra e Second-Order Generalized Integrator FLL (DSOGI-FLL), he DDSRF	ame, Decoupling Ne	twork	and	Analy	vsis o	f the
					0	0	0	
UNIT V		RID CONVERTER CONTROL FOR WIND TURE Control and Direct Power Control: Synchronous Frame VO		ontrol	9 Sun/	0	0	9
		I-Loop Control, Stationary Frame VOC: PQ Open-Loop Co						
Control, V	irtual-1	Flux-Based Control, Direct Power Control, Stand-alone, M	licro-grid, Droop Co	ntrol a	and G	rid Su	appor	ting:
	ected/S	Stand-Alone Operation without Load Sharing, Micro-Gri	id Operation with (Contro	lled S	Storag	ge, D	roop
Control								
			Tota	al (45	L+07	Г) = 4	5 Pei	riods
Text Boo								
		Feodorescu, Marco Liserre, Pedro Rodríguez, 'Grid Conver EEE Press, 2017	ters for Photovoltaic	and V	Wind	Power	r Sys	tems,
Referenc	e Bool	ks:						
		Singh Solanki, " Solar Photovoltaics: Fundamentals, Techno New Delhi, 2011.	ologies and Application	ions",	PHI I	earni	ng Pi	rivate
E-Refere	nce							
1 ht	tps://oi	nlinecourses.nptel.ac.in/noc22_ee71						
•		· -						

Course C			Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
C01	:	Understand the configurations for inverter structures for solar photovoltaic system	L1: Remembering
CO2	:	Use grid synchronization technique for single phase converters	L3: Applying
CO3	:	Draw the topology structure of three phase converter for wind energy conversion system	L3: Applying
CO4	:	Understand the principle of grid converter control for wind energy conversion system	L1-Remembering
CO5	:	Select an grid synchronization scheme for three phase converters	L4-Analyzing

COUR	SE AR		LAIIC	JN MA	ΙΚΙΧ										
COs/ POs	PO 1	РО 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	3	2	2			1		2		2	2	1	3
CO2	1	3		2	2					2		1	1	2	
CO3	1	1	2			1	2		1				1	1	2
CO4	1	1	1				2	2	1		2	2	1	1	1
CO5	1	2	1	1	1	2	1			1	3		2	2	1
Avg	1.2	1.8	1.75	1.67	1.67	1.5	1.67	1.5	1	1.67	2.5	1.67	1.4	1.4	1.75
		1	3/2/1-i	ndicates	strengt	h of cor	relation	(3- Hig	h, 2-Me	edium, 1	- Low)				

PREREQUISIT	SOURCES	EWABLE ENERGY	SEMI	ESTE	R	
	ES	CATEGORY	PEC	Cre	dit	3
		Hours/Week	L	T	P	TH
			3	0	0	3
Course Objecti						
	electric power Generation, Transmission and Distri	ibution				
2. To study Pov	er System Operation and Control					
UNIT I INT	RODUCTION		9	0	0	9
	ity ideal features, Supply guarantee, power qual penetration into the grid, Boundaries of the act					
UNIT II DY	NAMIC ENERGY CONVERSION TECHN	NOLOGIES	9	0	0	9
Introduction, type	s of conventional and nonconventional dynamic	generation technologies		ple of	f ope	
and analysis of re	ciprocating engines, gas and micro turbines, hydro a	nd wind based generation	technolo	ogies		
UNIT III STA	TIC ENERGY CONVERSION TECHNO	LOGIES	9	0	0	9
Linear and nonlin	NTROL ISSUES AND CHALLENGES ar controllers, predictive controllers and adaptive c Techniques, Control of Diesel, PV, wind and fuel c illities.					
		CONVERSION	I			
	EGRATION OF ENERGY CHNOLOGIES	CONVERSION	9	0	0	9
	mportance, sizing, Optimized integrated system ol, Grid connected Photovoltaic systems –classif ty and protection issues, load sharing, operation cations. IEEE & IEC Codes and standards for re	ications, operation, meri n & control of hybrid	its & de energy grations	emerits syste	s; Isla ms,	
Operations, stabil Photovoltaic appl		Total	(45L+0	\mathbf{T}) = 4	45 Pe	eriod
Operations, stabil Photovoltaic appl Text Books:	and Efficient Electric Power Systems. G. Masters 11					
Operations, stabil Photovoltaic appl Text Books: 1. Renewable Edition	and Efficient Electric Power Systems, G. Masters, I	EEE-John Wiley and Son	s Ltd. Pu	ıblishe	rs, 20	013,2ª
Operations, stabil Photovoltaic appl Text Books: 1. Renewable Edition 2. Microgrids	and Active Distribution Networks, S.Chowdh	EEE-John Wiley and Son	s Ltd. Pu	ıblishe	rs, 20	013,2 ⁿ
Operations, stabil Photovoltaic appl Text Books: 1. Renewable Edition 2. Microgrids Electronics 3 Integration	• • • •	EEE-John Wiley and Son ury, S. P. Chowdhury	s Ltd. Pu	ıblishe sley,	rs, 20 IET	013,2" Powe
Operations, stabil Photovoltaic appl Text Books: 1. Renewable Edition 2. Microgrids Electronics 3. Integration	and Active Distribution Networks, S.Chowdh Series, 2012. and Control of Renewable Energy in Electric Powe Viley publishing company, 2010, 2 nd Edition.	EEE-John Wiley and Son ury, S. P. Chowdhury	s Ltd. Pu	ıblishe sley,	rs, 20 IET	013,2 ⁿ Powe
Operations, stabil Photovoltaic appl Text Books: 1. Renewable Edition 2. Microgrids Electronics 3. Integration Dai, John V Reference Book	and Active Distribution Networks, S.Chowdh Series, 2012. and Control of Renewable Energy in Electric Powe Viley publishing company, 2010, 2 nd Edition.	EEE-John Wiley and Son ury, S. P. Chowdhury er System, Ali Keyhani N	s Ltd. Pu , P.Cros Mohamm	iblishe isley, nad Ma	rs, 20 IET arwal	113,2 ⁿ Power
Operations, stabil Photovoltaic appl Text Books: 1. Renewable Edition 2. Microgrids Electronics 3. Integration Dai, John V Reference Book 1. Solar Photo Edition. 2. Solar PV	and Active Distribution Networks, S.Chowdh Series, 2012. and Control of Renewable Energy in Electric Power Viley publishing company, 2010, 2 nd Edition.	EEE-John Wiley and Son ury, S. P. Chowdhury er System, Ali Keyhani M s, Chetan Singh Solanki,	s Ltd. Pu , P.Cros Mohamm PHI Pul	iblishe ssley, nad Ma blisher	rs, 20 IET arwal s, 20	113,2 ⁿ Powe i, Mir 19, 3 ^r

4.	Power Conversion and Control of Wind Energy Systems, Bin Wu, Yongqiang Lang, NavidZargari, IEEE- John Wiley and Sons Ltd. Publishers,2011,1 st Edition.
5.	Report on "Large Scale Grid Integration of Renewable Energy Sources - Way Forward" Central Electricity Authority, GoI, 2013.

Course O	outo	comes:	Bloom's Taxonomy
Upon com	Mapped		
CO1	L2: Understanding		
CO2	:	Model and simulate renewable energy sources.	L5: Evaluating
CO3	:	Apply various MPPT techniques for wind and solar energy generation	L3: Applying
CO4	:	Analyze and simulate control strategies for grid connected and off-grid systems	L4: Analyzing
CO5	:	Develop converters to comply with grid standards to obtain grid integration	L6: Creating

COs/ POs	PO 1	РО 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	2	3	3	1	1	2	1	2	3	3	3	3
CO2	3	2	3	3	3	3	1	1	2	1	2	1	3	3	3
CO3	3	2	3	3	3	3	1	1	1	2	1	1	3	3	3
CO4	3	2	3	3	3	3	1	2	2	2	1	1	3	3	3
CO5	3	2	3	3	3	3	1	2	2	2	2	1	3	3	3
Avg	2.8	2	2.8	2.8	3	3	1	1.4	1.8	1.6	1.6	1.4	3	3	3

18EE J	HO209			Μ	IODERN	ELECT	RICAL DRI	VES	SEME	ESTE	R	
PRER	REQUIS	ITES						CATEGORY	PEC	Cı	edit	3
Electri	cal Drives	s and o	ontrol.					Hours\Week	L 3	T	P	TH
G									3	0	0	3
	se Object											
					lectrical dr							
						for DC mot based contro						
5.	To unders	stanu		epts of var								
UNIT	'I D	DC M	OTOR	DRIVES	S:				9	0	0	9
Modeli	ing of DC	c moto	rs, State	space mo	deling, blo	ck diagram	& Transfer fun	ction, Single phase, th	nree phase	es full	y cont	trolled
								pop control of separat	ely excite	d dc	motor	drive.
Supply	harmonic	cs and	ripple ii	n motor cu	irrent chop	per controll	ed DC motor d	rives.				
UNIT	TI II	NDU	CTION	ΜΟΤΟ	R DRIVE	FS			9	0	0	9
							eling of induc	tion machines, voltag	-			
					flux contro		ching of induc	tion machines, voitag		verter	cont	101-1/1
TINITT		N/NIC	ΠΡΟΝ			DIVES			0	0	Δ	0
UNIT					OTOR DI			irect torque control, C	9	0	0	9
drives.		ICHIOI	ous mac	miles, op	EII IOOD V/I		ctor control, a	fiect torque control, C	SI Ieu sy	/ncm (mous	motor
					-			TED DELLICTAN	CE			
UNIT	P		IANEN DR DR	T MAG	-			HED RELUCTAN	CE 9	0	0	9
UNIT Modeli	IV P Ming of syn	MOT hchror	OR DR	T MAG IVES hines, ope	NET MC en loop v/f	DTOR AN f control, ve	ND SWITCI	irect torque control, C	CSI fed sy			-
UNIT Modeli	IV P Ming of syn	MOT hchror	OR DR	T MAG IVES hines, ope	NET MC en loop v/f	DTOR AN f control, ve	ND SWITCI		CSI fed sy			-
UNIT Modeli drives.	TIV P M ing of syn Various t	AOT nchror topolo	OR DR ous mac gies for	T MAG IVES hines, ope SRM drive	en loop v/f	DTOR AN f control, ve ison, Closed	ND SWITCI	irect torque control, C	CSI fed sy			-
UNIT Modeli drives. UNIT	IV P Ming of syn Various te	AOT nchror topolo DSP E	OR DR ous mac gies for a	T MAG IVES hines, op SRM drive	NET MC en loop v/f es, compar	DTOR AN f control, ve ison, Closed	ND SWITCI ector control, d d loop speed an	irect torque control, C d torque control of SF	SI fed sy M.	/nchro	onous	motor 9
UNIT Modeli drives. UNIT Use of	IV P Ming of syn Various te	AOT hchror topolo DSP E motio	OR DR ous mac gies for a	T MAG IVES hines, op SRM drive	NET MC en loop v/f es, compar	DTOR AN f control, ve ison, Closed	ND SWITCI ector control, d d loop speed an	irect torque control, C	SI fed sy M.	/nchro	onous	motor 9
UNIT Modeli drives. UNIT Use of	IV P N ing of syn Various to V D S DSPs in 1	AOT hchror topolo DSP E motio	OR DR ous mac gies for a	T MAG IVES hines, op SRM drive	NET MC en loop v/f es, compar	DTOR AN f control, ve ison, Closed	ND SWITCI ector control, d d loop speed an	irect torque control, C d torque control of SF basic blocks in DSP f	SI fed sy M.	nchro 0 nentat	onous 0 tion of	motor 9 5 DSP
UNIT Modeli drives. UNIT Use of	IV P N ing of syn Various to V D S DSPs in 1	AOT hchror topolo DSP E motio	OR DR ous mac gies for a	T MAG IVES hines, op SRM drive	NET MC en loop v/f es, compar	DTOR AN f control, ve ison, Closed	ND SWITCI ector control, d d loop speed an	irect torque control, C d torque control of SF basic blocks in DSP f	CSI fed sy RM. 9 for implen	nchro 0 nentat	onous 0 tion of	motor 9 5 DSP
UNIT Modeli drives. UNIT Use of	P P ing of syn Various t Various t D DSPs in r motion con	AOT hchror topolo DSP E motio	OR DR ous mac gies for a	T MAG IVES hines, op SRM drive	NET MC en loop v/f es, compar	DTOR AN f control, ve ison, Closed	ND SWITCI ector control, d d loop speed an	irect torque control, C d torque control of SF basic blocks in DSP f	CSI fed sy RM. 9 for implen	nchro 0 nentat	onous 0 tion of	motor 9 5 DSP
UNIT Modeli drives. UNIT Use of based r	IV P Ming of syn Various to Various to DSPs in 1 motion con Books:	AOT achror topolo DSP E motio ntrol.	OR DR ous mac gies for s ASED n contro	T MAG IVES hines, op SRM drive MOTIO I, various	NET MC en loop v/f es, compar N CONT DSPs avai	DTOR AN f control, ve ison, Closed 'ROL lable, realiz	ND SWITCI ector control, d d loop speed an eation of some	irect torque control, C d torque control of SF basic blocks in DSP f	CSI fed sy RM. 9 for implen	nchro 0 nentat	onous 0 tion of	motor 9 5 DSP
UNIT Modeli drives. UNIT Use of based r Text B	IV P ing of syn N Various tr D DSPs in r D DSPs in r D Books: B. K. B	AOT Anchror topolo DSP F motio ntrol. Gose, " rause,	OR DR ous mac gies for 3 ASED n contro	T MAG IVES hines, op SRM drive MOTIO I, various	NET MC en loop v/f es, compar N CONT DSPs avai	DTOR AN f control, ve ison, Closed ROL lable, realiz	ND SWITCI ector control, d d loop speed an extion of some es", Pearson Ec	irect torque control, C d torque control of SF basic blocks in DSP f Tota	CSI fed sy RM. or implen	nentat	0 iion of	motor 9 DSP eriods
UNIT Modeli drives. UNIT Use of based r Text B 1. 2.	IV P ing of syn Various t V D DSPs in 1 motion con Books: B. K. Be P. C. Ku	AIOT anchror topolo DSP E motio ontrol. Bose, " rause, 013.	OR DR ous mac gies for 3 ASED n contro	T MAG IVES hines, op SRM drive MOTIO I, various	NET MC en loop v/f es, compar N CONT DSPs avai	DTOR AN f control, ve ison, Closed ROL lable, realiz	ND SWITCI ector control, d d loop speed an extion of some es", Pearson Ec	irect torque control, C d torque control of SF basic blocks in DSP f Tota lucation, Asia, 2003.	CSI fed sy RM. or implen	nentat	0 iion of	motor 9 DSP eriods
UNIT Modeli drives. UNIT Use of based r Text B 1. 2.	P P ing of syn N Various t V V D DSPs in r motion con Books: B. K. Bo B. K. Bo P. C. Kn Sons, 20 Sons, 20	AIOT anchror topolo DSP E motio ontrol. Bose, " rause, 013. Ss: 'aliyat	OR DR ous mac gies for ASED n contro	T MAG IVES hines, op SRM drive MOTIO I, various	ENET MC en loop v/f es, compar N CONT DSPs avai	DTOR AN f control, ve ison, Closed ROL lable, realiz	ND SWITCI ector control, d d loop speed an ation of some es", Pearson Ec alysis of Electri	irect torque control, C d torque control of SF basic blocks in DSP f Tota lucation, Asia, 2003.	CSI fed sy RM. 9 for implem 1 (45L+0 7e System	nentat	0 iion of	motor 9 DSP eriods
UNIT Modeli drives. UNIT Use of based r Text B 1. 2. Refere	P P ing of syn Various t Various t D DSPs in r D DSPs in r D DOSPs in r D Books: B. K. Ba B. K. Ba P. C. Kr Sons, 20 Ence Book H. A. Ta press, 20	AIOT hchror topolo DSP E motio ontrol. Gose, " rause, 013. cs: Caliyat 2003 hnan,	OR DR ous mac gies for 3 ASED n contro Modern O. Was and S. C	T MAG IVES hines, ope SRM drive MOTIO I, various	en loop v/f es, compar N CONT DSPs avai ectronics ar id S. D. Sud	DTOR AN f control, ve ison, Closed (ROL lable, realiz nd AC Drive dhoff, "Ana pased Electr	ND SWITCI ector control, d 100p speed and d loop speed and 1000 speed and eation of some 1000 speed and </td <td>irect torque control, C d torque control of SF basic blocks in DSP f Tota lucation, Asia, 2003. c Machinery and Driv</td> <td>CSI fed sy RM. 9 for implem 1 (45L+0 7e System</td> <td>nentat</td> <td>0 iion of</td> <td>motor 9 DSP eriods</td>	irect torque control, C d torque control of SF basic blocks in DSP f Tota lucation, Asia, 2003. c Machinery and Driv	CSI fed sy RM. 9 for implem 1 (45L+0 7e System	nentat	0 iion of	motor 9 DSP eriods

Course Ou Upon com		mes: on of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Apply Power converters for DC drives.	L1: Remembering
CO2	:	Understand the basics of Permanent magnet motor and Switched reluctance motor drives.	L2: Understanding
CO3	:	Learn the concepts of Synchronous motor drives.	L5: Evaluating

CO4	:	Gain knowledge of Induction motor drives.	L4: Analyzing
CO5	•••	Explain DSP based motion control.	L3: Applying

COUR	SE AR	TICU	LATIC	ON MA	TRIX										
COs/ POs	PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	1	3	2	2	1	1	1			1	1	1	1	1
CO2	3	3	3	3	3	1	1	1			1	1	3	3	3
CO3	1	3	3	3	3	1	1	1					1	3	1
CO4	1	3	3	3	3	1	1	1				1	1	3	1
CO5	3	3	3	3	3	1	1	1			1	1	3	3	3
Avg	1.8	2.6	3	2.8	2.8	1	1	1	0	0	1	1	1.8	2.6	1.8
			3/2/1-i	ndicates	s strengt	h of cor	relation	(3- Hig	h, 2-Me	edium, 1	- Low)				

PROGRAMME ELECTIVE COURSE VERTICALS FOR HONOURS / MINOR DEGREE

VERTICAL III: ELECTRIC VEHICLE TECHNOLOGY

18F	EHO	301 ELECTRIC VEHICLE ARCHITEC	TURE	SEM	IES	TER	2	
		ISTIES	CATEGORY	PEC		Cre		3
				L		T	P	TH
Electr	ic Driv	es, Energy management, Electric Vehicles	Hours/Week	3		0	0	3
		jectives:				-		
1.	To pr	ovide knowledge about electric vehicle architecture and power trai	n components.					
2.	-	ow the concepts of dynamics of electrical vehicles	Ĩ					
3.	To im	part knowledge on vehicle control for standard drive cycles of hyb	rid electrical vehicles	s (HEV	s)			
4.	To un	derstand the concept of energy storage systems						
5.	To pr	ovide knowledge about different energy sources and energy manag	ement in HEVs.					
UNI	ſI	HYBRID ELECTRIC VEHICLE ARCHITECTUR TRAIN COMPONENTS	RE AND POWI	ER 9		0	0	9
Histor	ry of ev	volution of Electric Vehicles - Comparison of Electric Vehicles w	ith Internal Combust	ion Eng	gines	s - A	rchite	ecture
of Ele	ectric V	Vehicles (EV) and Hybrid Electric Vehicles (HEV) - Plug-in H						
comp	onents	and sizing, Gears, Clutches, Transmission and Brakes.						
UNI		MECHANICS OF HYBRID ELECTRIC VEHICLES		9		0	0	9
		s of vehicle mechanics - tractive force, power and energy require and power rating and battery capacity.	rements for standard	drive	сус	cles o	of HE	V's -
motor	lorque	and power rating and battery capacity.						
UNI	ГШ	CONTROL OF DC AND AC MOTOR DRIVES		9		0	0	9
		of for constant torque, constant HP operation of all electric m	otors - DC/DC cho			-	-	
		DC motor drives, inverter based V/f Operation (motoring and bra						
opera	tion of	Induction motor and PMSM, Brushless DC motor drives, Switcher	l reluctance motor (S	RM) di	rives	5		
UNI		ENERGY STORAGE SYSTEMS		9		0	0	9
		ciple of operation, types, models, estimation of parameters, batter						
Fly w	-	acity for standard drive cycles, Vehicle to Grid operation of EV's.	Alternate sources: F	uer cer	is, c	Jura	capac	mors,
1 Iy w	neers.							
UNI	ГΥ	HEV CONTROL STRATEGY AND ENERGY MANA	GEMENT	9		0	0	9
		isory control - Selection of modes - power spilt mode - parallel 1				gener	ation	
		el mode - energy management of HEV's.	6					
			Total	(45L-	+0T	')= 4 :	5 Pe	riods
Text	Books							
1.	Iqba	al Husain, 'Electric and Hybrid Electric Vehicles', CRC Press, 201	1.					
2.	Wei	Liu, 'Hybrid Electric Vehicle System Modeling and Control', Sec	ond Edition, WILEY	, 2017.				
Refe		Books:	·					
1.	Jam	es Larminie and John Lowry, 'Electric Vehicle Technology Explai	ned', Second Edition	, 2012.				
		darzi, Gordon A., Hayes, John G, Electric power train: energy syst						
2.	driv	es for hybrid, electric & fuel cell vehicles, Wiley 2018	-					
3.	Del	Doncker, Rik, Pulle, Duco W.J., Veltman, Andre, Advanced Electr	ical Drives, First Edi	tion, C	RC			
5.	Pres	s, Taylor and Francis Group, 2011.						

4.	Mehradad Eshani, Yimin Gao, Ali Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Fundamentals, Theory and Design, Second Edition, CRC Press, Taylor and Francis Group, 2010.								
	RiK De Doncker, Advanced Electric Drives – Analysis , Modeling ,Control, Springer publications								
E-Ref	erence								
1	https://nptel.ac.in/courses/108/106/108106170/								
2	https://nptel.ac.in/courses/108/106/1081061/0/ https://nptel.ac.in/courses/108/102/108102121/								

Course O)utc	comes:	Bloom's Taxonomy
Upon com	pleti	Mapped	
CO1	:	L1: Remembering	
CO2	:	Acquired the concepts of dynamics of electrical vehicles	L2: Understanding
CO3	:	Apply the vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs).	L3: Applying
CO4	:	Ability to design and select energy storage systems.	L6: Creating
CO5	:	Evaluate different energy sources and energy management in HEVs.	L5: Evaluating

COUR	SE AR	TICU	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO2	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO3	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO4	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO5	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
Avg	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
			3/2/1-i	indicate	s streng	th of co	rrelatio	n (3- Hi	gh, 2-M	ledium,	1- Low)			

	DESIGN OF MOTORS AND POWER ELECTRIC VEHI		SEME	STEI	R	
PREREQUIST		CATEGORY	PEC	Cre	edit	3
		Hours/Week	L	Т	Р	T
Power Electronic	s, Special Electrical Machines	Hours/ week	3	0	0	3
Course Object	ives:					
1. To study t	he characteristics of motors used Electric Vehicle					
	tand the design of dc drives used in Electric Vehicl	e				
	e the ac drives used in Electric Vehicle					
4. To unders	tand the role of converters used in Electric Vehicle					
			9	0	0	0
	V MOTORS CHARACTERISTICS	1	-	0		9
	in, Tractive effort in normal driving, Comparison of tor, Torque speed characteristics, DC Motor dynam		Four quad	rant o	perati	on
UNIT II DI	ESIGN OF DC DRIVES		9	0	0	9
	variable speed chopper fed DC drives, Four quad	rant variable sneed chonner fed	-	Ŷ	÷	
	erter, Dual converter fed DC Drive, current loop					
	lers and firing circuits.	····	, , ,			
	~					
UNIT III IN	VERTER FED AC DRIVES		9	0	0	9
Analysis of diffe	rent AC motor with single phase and three phase in	nverters Operations in different	modes and	l conf	igura	tion
	ERMANENT MAGNET AC MOTORS ANI modelling, torque equations, BLDC control met		9	0	0	9
	modeling, torque equations, blbc control met	hods machine sizing current	voltage a	nd sn	eed	imi
	nt power speed range, current control methods- Ap					imi
					s.	
UNIT V PV Sinusoidal PWM	VM AND INVERTER I, Injection of third order harmonics, Space Ve	plication of hall current sensor i	n PM AC	motor 0	•s. 0	9
UNIT V PV Sinusoidal PWM	VM AND INVERTER I, Injection of third order harmonics, Space Ve	plication of hall current sensor i	n PM AC	motor 0	•s. 0	9
UNIT V PV Sinusoidal PWM	VM AND INVERTER I, Injection of third order harmonics, Space Ve	plication of hall current sensor i	n PM AC	motor 0 sation	s. 0 Enc	9 ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C	VM AND INVERTER I, Injection of third order harmonics, Space Ve	plication of hall current sensor i	n PM AC	motor 0 sation	s. 0 Enc	ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C Text Books:	VM AND INVERTER I, Injection of third order harmonics, Space Ve Converters.	plication of hall current sensor is ctor Modulation, Dead time & Tota	n PM AC	motor 0 sation	s. 0 Enc	9 ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C Text Books: 1. B.K. Bo	VM AND INVERTER I, Injection of third order harmonics, Space Ve converters. se, "Power Electronics and Motor Drives", Elsevie	plication of hall current sensor is ctor Modulation, Dead time & Tota	n PM AC	motor 0 sation	s. 0 Enc	ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C Text Books: 1. B.K. Bo Reference Boo	VM AND INVERTER I, Injection of third order harmonics, Space Ve converters. se, "Power Electronics and Motor Drives", Elsevie	plication of hall current sensor in ctor Modulation, Dead time & Tota r 2015.	9 2 compen	motor 0 sation	s. 0 Enc	9 ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C Text Books: 1. B.K. Bo Reference Boo 1. H. Buys Holland	VM AND INVERTER I, Injection of third order harmonics, Space Ve converters. se, "Power Electronics and Motor Drives", Elsevie ks: e and I.J. Robert, "Electrical machines and convert	plication of hall current sensor is ctor Modulation, Dead time & Tota r 2015. ers: Modeling and simulation", I	n PM AC 9 c compen 1 (45L+0 North	motor 0 sation	s. 0 Enc	9 ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C Text Books: 1. B.K. Bo Reference Boo 1. H. Buys Holland 2. R. Krish	VM AND INVERTER I, Injection of third order harmonics, Space Ve converters. se, "Power Electronics and Motor Drives", Elsevier ks: e and I.J. Robert, "Electrical machines and convert digitized 2007.	plication of hall current sensor is ctor Modulation, Dead time & Tota r 2015. ers: Modeling and simulation", I nd Control", Prentice -Hall of Inc	n PM AC 9 c compen 1 (45L+0 North	motor 0 sation	s. 0 Enc	9 ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C Text Books: 1. B.K. Bo Reference Boo 1. H. Buys Holland 2. R. Krish 3. P.S. Bhi	VM AND INVERTER I, Injection of third order harmonics, Space Ve converters. se, "Power Electronics and Motor Drives", Elsevie ks: e and I.J. Robert, "Electrical machines and convert digitized 2007. nan, " Electric Motor Drives Modeling Analysis ar	plication of hall current sensor is ctor Modulation, Dead time & Tota r 2015. ers: Modeling and simulation", I nd Control", Prentice -Hall of Inc	n PM AC 9 c compen 1 (45L+0 North	motor 0 sation	s. 0 Enc	9 ode
UNIT V PV Sinusoidal PWM Resolvers, R/D C Text Books: 1. B.K. Bo Reference Boo 1. H. Buys Holland 2. R. Krish 3. P.S. Bhi E-Reference	VM AND INVERTER I, Injection of third order harmonics, Space Ve converters. se, "Power Electronics and Motor Drives", Elsevie ks: e and I.J. Robert, "Electrical machines and convert digitized 2007. nan, " Electric Motor Drives Modeling Analysis ar	plication of hall current sensor is ctor Modulation, Dead time & Tota r 2015. ers: Modeling and simulation", I nd Control", Prentice -Hall of Inc	n PM AC 9 c compen 1 (45L+0 North	motor 0 sation	s. 0 Enc	9 oder

Course O	uto	comes:	Bloom's Taxonomy
Upon comp	oleti	ion of this course, the students will be able to:	Mapped
CO1	•••	Describe the characteristics of the motors use in EV.	L1: Remembering
CO2	•••	Analyze dynamics of DC motor and different controllers used in their control	L4: Analysing
CO3	•••	Explain the speed control and PWM techniques used in the control of ac motor	L2: Understanding
CO4	•••	Analyze the operation and control of permanent magnet ac motors.	L4: Analyzing
CO5	•••	Analyze sensors used for control of 3-phase ac motors.	L4: Analysing

COs/ POs	PO 1	РО 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	3	1	1		1	1			1		2	2	1
CO2	2	2	1	1	1								1	1	2
CO3	1	2	3	2	2		1	1				1	1	2	1
CO4	2	2	3	2	3	2						1	3	2	1
CO5	1	3	2	1	3	1	1	1			1	1	3	2	1
Avg	1.6	2.2	2.4	1.4	2	1.5	1	1	0	0	1	1	2	1.8	1.2

PREREQUISITES	LECTRIC VEHICLE DESIGN, MEC	HANICS AN	DCONIKOL	SE	MES	STEF	ζ.
			CATEGORY	L	Т	P	С
Power Electronics and	Electrical Machines		PEC	3	0	0	3
Course Objectives:					•	•	
1. To learn the ba	sics of EV and vehicle mechanics						
	<i>V</i> architecture and to study the energy storage	system concer	ots				
	I for batteries and to know the different types			thods			
	ntrol preliminaries for DC-DC converters.						
I	•						
UNIT I INTEF	NAL COMBUSTION ENGINES			9	0	0	9
	and BSFC, Vehicle Fuel Economy, Emiss	ion Control S	Systems Treatme		•	-	
	n of Internal Combustion Engine and Electric						
all-electric vehicles.	n of merina Compusion Engine and Decar	e veniere, reev	iew of light , met	arum	, una	neu ,	, aa
UNIT II ELEC	TRIC VEHICLES AND VEHICLE ME	CHANICS		9	0	0	9
	V), Hybrid Electric Vehicles (HEV), E		- Comparisons	-	÷		
	hicles- Fundamentals of vehicle mechanics.	ingine ratings	Comparisons			iui ii	nem
UNIT III BATT	ERY MODELING, TYPES AND CHAI	PCINC		9	0	0	9
	and Hybrid Vehicles - Battery Basics				-	-	-
	ery - Nickel-Metal-Hydride (Ni MH) Batte						
		1 1 D				D	
Battery, Sodium-Sul	ohur Battery, Sodium-Metal-Chloride, Re	search and D			anced	Bat	terie
	ohur Battery, Sodium-Metal-Chloride, Re ectric Circuit Models. Battery Pack Manager		evelopment for		anced	Bat	terie
			evelopment for		anced	Bat	terie
Battery Modelling, El			evelopment for		anced	Bat	terie
Battery Modelling, El	ectric Circuit Models. Battery Pack Manager	ment, Battery (evelopment for Charging.	Adva 9	0	0	9
Battery Modelling, El UNIT IV CONT Control Design Prelin	ectric Circuit Models. Battery Pack Manager ROL PRELIMINARIES	ment, Battery (- Bode plot and	evelopment for Charging. alysis for First orc	Adva 9 der an	0 Id se	0 cond	9 ord
Battery Modelling, El UNIT IV CONT Control Design Prelin systems - Stability	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f	ment, Battery (- Bode plot and	evelopment for Charging. alysis for First orc	Adva 9 der an	0 Id se	0 cond	9 ord
Battery Modelling, El UNIT IV CONT Control Design Prelin systems - Stability	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f	ment, Battery (- Bode plot and	evelopment for Charging. alysis for First orc	Adva 9 der an	0 Id se	0 cond	9 ord
Battery Modelling, El UNIT IV CONT Control Design Prelir systems - Stability margin study-open loc	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f	ment, Battery (- Bode plot and	evelopment for Charging. alysis for First orc	Adva 9 der an	0 Id se	0 cond	9 ord
Battery Modelling, El UNIT IV CONT Control Design Prelin systems Stability margin study-open loc UNIT V CONT	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES	ment, Battery (- Bode plot and function for b	evelopment for Charging. alysis for First orcoost converter - C	Adva 9 der an Gain n 9	0 Id se nargin	0 cond n and 0	9 ord Pha
Battery Modelling, El UNIT IV CONT Control Design Prelin systems Stability margin study-open loc UNIT V CONT Introduction- Referent	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu	ment, Battery (- Bode plot and function for b	evelopment for Charging. alysis for First orcoost converter - C	Adva 9 der an Gain n 9	0 Id se nargin	0 cond n and 0	9 ord Pha
Battery Modelling, El UNIT IV CONT Control Design Prelin systems Stability margin study-open loc UNIT V CONT Introduction- Referent	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu	ment, Battery (- Bode plot and function for b	evelopment for Charging. alysis for First orcoost converter - C	Adva 9 der an Gain n 9	0 Id se nargin	0 cond n and 0	9 ord Pha
Battery Modelling, El UNIT IV CONT Control Design Prelin systems Stability margin study-open loc UNIT V CONT Introduction- Referent	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu	ment, Battery (- Bode plot and function for b	evelopment for Charging. alysis for First orcoost converter - C	Adv: 9 ler an Jain n 9 ne in	0 Id se nargin 0 I vario	0 cond and 0 ous fr	9 ord Pha 9 came
Battery Modelling, El UNIT IV CONT Control Design Prelin systems Stability margin study-open loc UNIT V CONT Introduction- Referent	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu	ment, Battery (- Bode plot and function for b	evelopment for Charging. alysis for First orcoost converter - C	Adv: 9 ler an Jain n 9 ne in	0 Id se nargin 0 I vario	0 cond and 0 ous fr	9 ord Pha 9 came
Battery Modelling, El UNIT IV CONT Control Design Prelir systems - Stability margin study-open loc UNIT V CONT Introduction- Referent Vector control- Direct	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu	ment, Battery (- Bode plot and function for b	evelopment for Charging. alysis for First orcoost converter - C	Adv: 9 ler an Jain n 9 ne in	0 Id se nargin 0 I vario	0 cond and 0 ous fr	9 ord Pha 9 came
Battery Modelling, El UNIT IV CONT Control Design Prelir systems - Stability margin study-open loc UNIT V CONT Introduction- Referent Vector control- Direct	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu	ment, Battery (- Bode plot and function for b	evelopment for Charging. alysis for First orcoost converter - C	Adv: 9 ler an Jain n 9 ne in	0 Id se nargin 0 I vario	0 cond and 0 ous fr	9 ord Pha 9 came
Battery Modelling, Eli UNIT IV CONT Control Design Prelin systems Stability margin study-open loc UNIT V CONT Introduction- Reference Reference Books:	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu	ment, Battery (- Bode plot and function for b action and sy	evelopment for Charging. alysis for First orcoost converter - C nchronous machi Total (45)	Adva 9 der an Gain n 9 ne in L+07	0 ad senargin 0 a varie Γ) = 4	0 cond and 0 ous fr	9 ord Pha 9 came
Battery Modelling, El UNIT IV CONT Control Design Prelin systems Stability margin study-open loc UNIT V CONT Introduction- Reference Vector control- Direct Reference Books: 1. Electric and Hy Power Flectror	ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu torque control.	ment, Battery (- Bode plot and function for b action and sy dition, Iqbal H	evelopment for Charging. alysis for First orcoost converter - Conv	Adva 9 der am 3ain m 9 ne in L+07 2021	$\begin{array}{c} 0 \\ $	0 cond n and 0 ous fr 45 Pe	9 ord Pha 9 ame
Battery Modelling, Electric and Hy UNIT IV CONT Control Design Prelim systems - Stability margin study-open loc UNIT V CONT Introduction- Reference Reference Books: 1. Electric and Hy 2. Power Electror	Battery Pack Manager ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indutorque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Corr Messo, Joonas Puukko, 1st Edition, Wiley - V	ment, Battery (- Bode plot and function for b action and sy dition, Iqbal H aventional and VCH.	evelopment for Charging. alysis for First orco oost converter - C nchronous machi Total (45) usain, CRC Press, Renewable Energ	Adv: 9 der an Gain m 9 ne in L+07 2021 y App	$\begin{array}{c} 0 \\ \text{id senargin} \\ 0 \\ \text{i varia} \\ \hline \end{array}$	0 cond n and 0 ous fr 45 Pe	9 ord Pha 9 ame erioo
Battery Modelling, Eli UNIT IV CONT Control Design Prelim systems Stability margin study-open loc UNIT V CONT Introduction- Reference Vector control- Direct Reference Books: 1. Electric and Hy 2. Power Electror Suntio, Tuoma Ali Emadi	Battery Pack Manager ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indutorque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Corr Messo, Joonas Puukko, 1st Edition, Wiley - V	ment, Battery (- Bode plot and function for b action and sy dition, Iqbal H aventional and VCH.	evelopment for Charging. alysis for First orco oost converter - C nchronous machi Total (45) usain, CRC Press, Renewable Energ	Adv: 9 der an Gain m 9 ne in L+07 2021 y App	$\begin{array}{c} 0 \\ \text{id senargin} \\ 0 \\ \text{i varia} \\ \hline \end{array}$	0 cond n and 0 ous fr 45 Pe	9 ord Pha 9 ame erioo
Battery Modelling, Electric and Hy UNIT IV CONT Control Design Prelim control Design Prelim systems Stability margin study-open loc UNIT V CONT Introduction- Reference Reference Books: 1. Electric and Hy 2. Power Electror	Battery Pack Manager ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu torque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Cort Messo, Joonas Puukko, 1st Edition, Wiley - V hrdad Ehsani, John M.Miller, "Vehicular Ele	ment, Battery (- Bode plot and function for b action and sy dition, Iqbal H aventional and VCH.	evelopment for Charging. alysis for First orco oost converter - C nchronous machi Total (45) usain, CRC Press, Renewable Energ	Adv: 9 der an Gain m 9 ne in L+07 2021 y App	$\begin{array}{c} 0 \\ \text{id senargin} \\ 0 \\ \text{i varia} \\ \hline \end{array}$	0 cond n and 0 ous fr 45 Pe	9 ord Pha 9 ame erioo
Battery Modelling, El UNIT IV CONT Control Design Prelin systems - Stability margin study-open loc UNIT V CONT Introduction- Reference Vector control- Direct Introduction- Reference Reference Books: 1. Electric and Hy 2. Power Electror Suntio, Tuoma Ali Emadi, Me dekker, Inc 200 Direct	Bittery Pack Manager ROL PRELIMINARIES uinaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indutorque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Corror Messo, Joonas Puukko, 1st Edition, Wiley - V hrdad Ehsani, John M.Miller, "Vehicular Ele 3, 1st Edition.	dition, Iqbal H ventional and VCH.	evelopment for Charging. alysis for First orcoost converter - Coost converter - Converter	Adva 9 der an Gain m 9 ne in L+07	0 ad se nargin 0 varie $\mathbf{\Gamma} = 4$ $\dot{\mathbf{\Gamma}} = 4$	0 cond n and 0 ous fr 45 Pe	9 ord Pha 9 ame rioo
Battery Modelling, Eli UNIT IV CONT Control Design Prelin systems - Stability margin study-open loc UNIT V CONT Introduction- Reference Vector control- Direct Introduction- Reference Reference Books: 1. Electric and Hy 2. Power Electror Suntio, Tuoma Ali Emadi, Me dekker, Inc 200 4. C.C. Chan and Wie Liu "Hyb	Battery Pack Manager ROL PRELIMINARIES inaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indu torque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Cort Messo, Joonas Puukko, 1st Edition, Wiley - V hrdad Ehsani, John M.Miller, "Vehicular Ele	dition, Iqbal H ventional and VCH. ogy', OXFORI	evelopment for Charging. alysis for First orcoost converter - Coost converter - Converter - Converter - Converter - Converter - Conversion Converter - Conversion Con	Adv: 9 der an 3ain n 9 ne in L+07 2021 y App ndian 5, 200	$\begin{array}{c} 0 \\ \text{id senargin} \\ 0 \\ \text{id varia} \\ \hline \end{array}$	0 cond n and 0 ous fr 45 Pe ions, ' ion, N Editic	9 ord Pha 9 ame prioe
Battery Modelling, Eli UNIT IV CONT Control Design Prelin systems - Stability margin study-open loc UNIT V CONT Introduction- Reference Vector control- Direct Introduction- Reference Reference Books: 1. Electric and Hy 2. Power Electron Suntio, Tuoma Ali Emadi, Me dekker, Inc 200 4.	actric Circuit Models. Battery Pack Manager ROL PRELIMINARIES ainaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indutorque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Corres Messo, Joonas Puukko, 1st Edition, Wiley - V hrdad Ehsani, John M.Miller, "Vehicular Ele 3, 1st Edition. K.T. Chau, 'Modern Electric Vehicle Technol	dition, Iqbal H ventional and VCH. ogy', OXFORI	evelopment for Charging. alysis for First orcoost converter - Coost converter - Converter - Converter - Converter - Converter - Conversion Converter - Conversion Con	Adv: 9 der an 3ain n 9 ne in L+07 2021 y App ndian 5, 200	$\begin{array}{c} 0 \\ \text{id senargin} \\ 0 \\ \text{id varia} \\ \hline \end{array}$	0 cond n and 0 ous fr 45 Pe ions, ' ion, N Editic	9 ord Pha 9 ame Prioc
Battery Modelling, Eli UNIT IV CONT Control Design Prelim systems Stability margin study-open loc UNIT V CONT Introduction- Reference Vector control- Direct Reference Books: 1. Electric and Hy 2. Power Electror Suntio, Tuoma Ali Emadi, Me 3. Ali Emadi, Me 4. C.C. Chan and 5. Wie Liu, "Hyb	actric Circuit Models. Battery Pack Manager ROL PRELIMINARIES ainaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indutorque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Corres Messo, Joonas Puukko, 1st Edition, Wiley - V hrdad Ehsani, John M.Miller, "Vehicular Ele 3, 1st Edition. K.T. Chau, 'Modern Electric Vehicle Technol	dition, Iqbal H ventional and VCH. ectric Power Sy ogy', OXFORI ontrol", Second	evelopment for Charging. alysis for First orcoost converter - Coost converter - Coos	Adv: 9 der am 3ain m 9 ne in 1 2021 y App 1 1 2021 y App 1 1 1 2021 y App 1 1 1 2021 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 0\\ \text{id} & \text{senargin}\\ \hline 0\\ \text{id} & \text{varia}\\ \hline \end{array}$	0 cond n and ous fr 15 Pe ions, ' ion, N Editic s, 201	9 ord Pha 9 ame prioe
Battery Modelling, Eli UNIT IV CONT Control Design Prelim systems - Stability margin study-open loc UNIT V CONT Introduction- Reference Vector control- Direct Power Electror Suntio, Tuoma 3. Ali Emadi, Me dekker, Inc 200 4. C.C. Chan and Suition. 6. Dynamic Simu	actric Circuit Models. Battery Pack Manager ROL PRELIMINARIES ainaries - Introduction - Transfer Functions – Transient Performance- Power transfer f p mode. ROL OF AC MACHINES ce frame theory, basics-modeling of indutorque control. brid Vehicles, Design Fundamentals, Third E ic Converters,: Dynamics and Control in Correso, Joonas Puukko, 1st Edition, Wiley - V hrdad Ehsani, John M.Miller, "Vehicular Ele 3, 1st Edition. K.T. Chau, 'Modern Electric Vehicle Technol rid Electric Vehicle System Modeling and Correso	dition, Iqbal H ventional and VCH. cogy', OXFORI ontrol", Second	evelopment for Charging. alysis for First orco oost converter - C nchronous machi Total (45) usain, CRC Press, Renewable Energ ystems", Special I D University Press I Edition, John Wing, Prentice Hall, 19	Adv: 9 ler an Jain n 9 ne in L+07 2021 y App 7 ndian 5, 200 iley & 997, 1	$\begin{array}{c c} 0\\ \hline 0\\ \hline \\ 0\\ \hline 0\\ \hline \\ 0\\ \hline $	0 cond n and ous fr 15 Pe ions, ' ion, N <u>Editic</u> s, 201 ition.	9 ord Pha ame erioo Teuv Marc

Course O	outo	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	To describe the concepts related with EV, HEV and to compare the same	L2: Understanding
		with internal combustion engine vehicles	
CO2	:	To find gain margin & phase margin for various types of transfer functions of	L5: Evaluating
		boost converter	
CO3	:	To demonstrate the Control of A.C Machines	L3: Applying
CO4	:	To explain the concepts related with batteries and parameters of battery	L4: Analyzing
CO5	:	To module the battery and to study the research and development for batteries	L6: Creating

COUR	SE AR	RTICU	LATIO	ON MA	TRIX		I	I	I	I	I	I	I	I	I
COs/ POs	РО 1	РО 2	РО 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3								1	2		2	3		3
CO2	3								1	2		2	3		3
CO3	3						3		1	2		2	3		3
CO4	3						3		1	2		2	3		3
CO5	3						3		1	2		2	3	2	3
Avg	3	0	0	0	0	0	3	0	1	2	0	2	3	2	3
			3/2/	1-indica	ites strei	ngth of	correlat	ion (3-]	High, 2-	Mediur	n, 1- Lo	ow)			

18EF	ЕНО304	DESIGN OF ELECTRIC VEHICLE CHARGING	G SYSTEM	SEM	EST	ER	
PRE	REQUI	STIES	CATEGORY	L	Т	Р	С
Electr	ic vehicle	2	PEC	3	0	0	3
Cour	se Obje	ctives:					
1.	To intro	duce the fundamentals of charging architectures, converter topolo	gies and control sche	mes fo	r elec	tric v	ehicle
	chargin	g system					
UNI	ГІ	CHARGING ARCHITECTURES FOR ELECTRIC V	EHICLES	9	0	0	9
		of EV charging architectures, Onboard Chargers, Level 1: Dedi					
		verter (Semi-fast Charging), Off-Board Chargers, Level 3: Dedicat Bus Architecture, Common DC Bus Architecture	ted Off-Board DC Cl	nargers	(Fast	Char	ging),
Com	IIOII AC I	dus Architecture, Common DC Bus Architecture					
UNI	ГП	CONVERTER TOPOLOGIES FOR CHARGING STA	ATION	9	0	0	9
		er, Multipulse Rectifier with DC Active Power Filter, Non-isolate					
		ZVS Full-Bridge Converter, Grid-connected cascaded H-bridge co		cted Mo	odular	Mult	ilevel
Conve	erter base	d integrated charger for split integrated battery pack, Neutral-Point	Clamped Converter				
UNI	гш	CONTROL SCHEMES AND CHARGING STANDAR	RDS	9	0	0	9
Contr	ol Schem	es for Charging Converters, Single-Phase AC-DC Converter Cont	rol, Three-Phase AC	-DC C	onver		ntrol,
	·	d control (VOC) and direct power control (DPC), Electric Vehicle	e / Plug in Hybrid El	lectric `	Vehic	le cha	rging
Stand	ards						
		BATTERY TECHNOLOGIES FOR TRANSPORTAT	ION				
UNI	ΓIV	APPLICATIONS		9	0	0	9
		m (Ni-Cd) Battery, Nickel-Metal Hydride (Ni-MH), Lithium-Ion	(Li-Ion), Flow Batte	eries, B	attery	Cha	rging
Metho	ods, Batte	ry management system					
UNI	гv	LATEST DEVELOPMENTS IN EV CHARGING		9	0	0	9
		rging, Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H),	EV charging saf	ety co	-	-	
consid	lerations,	Grid-Tied Residential charging Systems, Grid-Tied Public ch					
protoc	cols, Cha	ging cable standards					
			Total (4	15T ⊥0'	T) - 4	5 Po	riode
			10tal (-	IJLTU	1)- ٩	510	lious
Text	Books:						
		n Sachan, P. Sanjeevikumar, Sanchari Deb, Smart Charging Solution	one for Unbrid and F	loctric	Vahio	los V	Vilov
1.		ner Publishing LLC, 2022		lecule	venic	105, V	viicy-
		.					
Refe	rence Bo	ooks:					
1.	Mary	Murphy " Electric and Hybrid Vehicles: Principles, Design and 7	Technology ", Larser	n and H	Keller	Educ	ation,
1.	2019						
E-Re	ference						
1		/archive.nptel.ac.in/courses/108/103/108103009/					
1	intpo./	arom (0.11. 0.11. 0001000) 100/ 100/ 100/ 000000					

Course O	outo	comes:	Bloom's Taxonomy
Upon com	pleti	ion of this course, the students will be able to:	Mapped
CO1	:	Understand the configurations for chargers for electric vehicle	L1: Remembering

CO2	:	Select a converter topology for electric vehicle charging station	L3: Applying
CO3	:	Use an appropriate control scheme for charging converter	L3: Applying
CO4	:	Understand the principle of batteries used for EV charging station	L1: Remembering
CO5	:	Explain the latest developments in Electric vehicle charging technologies	L2: Understanding

COUR	SE AF	RTICU	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	1	2	2		2		1		2		2	2	2	2
CO2	2	1			1					2		1	1	3	
CO3	2	1	1	2	1	1	2		1				1	1	1
CO4	1	1		1		2	2	2	1		2	2	1	1	
CO5	2	2	3	1		3	1			1	3		2	2	3
Avg	1.6	1.2	2	1.5	1	2	1.67	1.5	1	1.67	2.5	1.67	1.4	1.8	2
	•		3/2/1-i	ndicates	s streng	th of co	rrelation	i (3- Hig	gh, 2-M	edium,	l-Low)				

	CHO305 TESTING OF ELECTRIC VEHIC				STEI	
	REQUISITES	CATEGORY		Τ	Р	С
Electi	rical Machines and Power Electronics	PEC	3	0	0	3
Cour	rse Objectives:					
l.	To know various standardization procedures					
2.	To learn the testing procedures for EV & HEV components					
i.	To know the functional safety and EMC					
<u>.</u>	To realize the effect of EMC in EVs					
•	To study the effect of EMI in motor drives and in DC-DC converter	r system				
JNIT	ΓΙ EV STANDARDIZATION		9	0	0	9
	luction - Current status of standardization of electric vehicle	es, electric Vehicles		-	-	
	ardization Bodies Active in the Field – Standardization activities in d					
	ical Commission - Standardization of Vehicle Components.	Ĩ				
				1		
JNIT	TESTING OF ELECTRIC MOTORS AND CONTR		9	0	0	9
	ELECTRIC AND HYBRID ELECTRIC VEHICLES			•	Ĩ	-
	Procedure Using M-G Set, electric motor, controller, application of T Test - Motor Test and Controller Test (Controller Only) Tes					
	mometer, Test Strategy, Test Procedure, Discussion on Test Procedure					
ynai	moniecer, rest strategy, rest riocedure, Discussion on rest riocedure	. Test Hocedure Using	AC D	ynann	omen	
INIT	Γ III FUNDAMENTALS OF FUNCTIONAL SAFETY AN	ND EMC	9	0	0	9
	ional safety life cycle - Fault tree analysis - Hazard and risk a		devel	opme	nt - P	roce
nodel	ls - Development assessments - Configuration management - Reli	ability - Reliability	block	dia	grams	s a1
	dancy - Functional safety and EMC - Functional safety as					
	omous vehicles.	na quanty Standards	1 un	etion	ui sui	oty
JNIT	<u>IV</u> EMC IN ELECTRIC VEHICLES		9	0	0	9
	luction - EMC Problems of EVs, EMC Problems of Motor D					
	m, EMC Problems of Wireless Charging System, EMC Problem of	Vehicle Controller, EM	C Pro	blems	s of E	Batte
Aanag	gement System, Vehicle EMC Requirements.					
JNIT	Γ V EMI IN MOTOR DRIVE AND DC-DC CONVERTE					
	view -EMI Mechanism of Motor Drive System, Conducted Emissio	CR SVSTEM	0	0	0	0
			9 Syste	0 em I	0 GBT	9 EN
		on Test of Motor Drive	e Syste	em, I	GBT	EN
ource	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-D	on Test of Motor Driven. EMI in DC-DC Co	e Syste	em, I er, E	GBT MI S	EN
ource	e, EMI Coupling Path, EMI Modelling of Motor Drive System	on Test of Motor Drivon. EMI in DC-DC Co C Converter System, EN	e Syste onverte AI Cou	em, I er, E ipling	GBT MI S g Path	EN
ource	e, EMI Coupling Path, EMI Modelling of Motor Drive System	on Test of Motor Driven. EMI in DC-DC Co	e Syste onverte AI Cou	em, I er, E ipling	GBT MI S g Path	EN
ource The C	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De	on Test of Motor Drivon. EMI in DC-DC Co C Converter System, EN	e Syste onverte AI Cou	em, I er, E ipling	GBT MI S g Path	EN
ource The C	e, EMI Coupling Path, EMI Modelling of Motor Drive System	on Test of Motor Drivon. EMI in DC-DC Co C Converter System, EN	e Syste onverte AI Cou	em, I er, E ipling	GBT MI S g Path	EN
ourco The C	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De	on Test of Motor Drivon. EMI in DC-DC Co C Converter System, EM Total (4:	e Syste onverte MI Cou	em, I er, E upling Γ) = c	GBT MI S g Path	EN Jourd
Che C Che C Refer 1. 2.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer	on Test of Motor Drivon. EMI in DC-DC Co C Converter System, EN Total (4 es, Ali Emadi, Taylon 2021, 1 st Edition.	e Syste onverte MI Cou	em, I er, E upling Γ) = c	GBT MI S g Path	EN Jourd
Che C Che C Refer 1. 2.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer EMC and Functional Safety of Automotive Electronics, Kai Borgeest	on Test of Motor Driven. EMI in DC-DC Co <u>C Converter System, El</u> Total (4 es, Ali Emadi, Taylor <u>2021, 1st Edition.</u> t, IET 2018, 1 st Edition.	E Systo onverte MI Cou 5L+07	Γ = Γ Γ = Γ Γ = Γ	GBT MI S g Path 45 Pe	erio
ource The C Refer 1. 2. 3.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer EMC and Functional Safety of Automotive Electronics, Kai Borgeest EMI/EMC Computational Modeling Handbook, Druce Archam bea	on Test of Motor Driven. EMI in DC-DC Co <u>C Converter System, El</u> Total (4 es, Ali Emadi, Taylor <u>2021, 1st Edition.</u> t, IET 2018, 1 st Edition.	E Systo onverte MI Cou 5L+07	Γ = Γ Γ = Γ Γ = Γ	GBT MI S g Path 45 Pe	erio
Source Che C Refer 1. 2. 3. 4. 4.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer EMC and Functional Safety of Automotive Electronics, Kai Borgeest EMI/EMC Computational Modeling Handbook, Druce Archam bea 2012, 2 nd Edition.	on Test of Motor Driven. EMI in DC-DC Co <u>C Converter System, El</u> Total (4 es, Ali Emadi, Taylor <u>2021, 1st Edition.</u> t, IET 2018, 1 st Edition.	E Systo onverte MI Cou 5L+07	Γ = Γ Γ = Γ Γ = Γ	GBT MI S g Path 45 Pe	erio
Source Che C Refer 1. 2. 3. 4. 5.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer EMC and Functional Safety of Automotive Electronics, Kai Borgeest EMI/EMC Computational Modeling Handbook, Druce Archam bea	on Test of Motor Drivon. EMI in DC-DC Co <u>C Converter System, EN</u> Total (4 es, Ali Emadi, Taylon <u>2021, 1st Edition.</u> t, IET 2018, 1 st Edition. ult, colin branch, Oma	e Systo onverte <u>AI Cou</u> 5 L+0 7	em, I er, E $_1pling$ $\Gamma) = c$ Franc	GBT MI S g Path 45 Pe	EN Jourd
ource The C Refer 1. 2. 3. 4. 5.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer EMC and Functional Safety of Automotive Electronics, Kai Borgeest EMI/EMC Computational Modeling Handbook, Druce Archam bea 2012, 2 nd Edition. Automotive EMC, Mark Steffika, Springer 2013, 1 st Edition.	on Test of Motor Drivon. EMI in DC-DC Co <u>C Converter System, EN</u> Total (4 es, Ali Emadi, Taylon <u>2021, 1st Edition.</u> t, IET 2018, 1 st Edition. ult, colin branch, Oma	s System SL+07 & I MI Cou	em, I er, E $_1pling$ $\Gamma) = c$ Franc	GBT MI S g Path 45 Pe	EN Jource erioo
ourcci he C Refer 1. 2. 3. 4. 5.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer EMC and Functional Safety of Automotive Electronics, Kai Borgeest EMI/EMC Computational Modeling Handbook, Druce Archam bea 2012, 2 nd Edition. Automotive EMC, Mark Steffika, Springer 2013, 1 st Edition. Electric Vehicle Systems Architecture and Standardization Needs,	on Test of Motor Drivon. EMI in DC-DC Co <u>C Converter System, EN</u> Total (4 es, Ali Emadi, Taylon <u>2021, 1st Edition.</u> t, IET 2018, 1 st Edition. ult, colin branch, Oma	s System SL+07 & I MI Cou	em, I er, E $_1pling$ $\Gamma) = c$ Franc	GBT MI S g Path 45 Pe	EN Jourd
Source Che C Refer 1. 2. 3. 4. 5. 6. 6.	e, EMI Coupling Path, EMI Modelling of Motor Drive System Conducted Emission High-Frequency, Equivalent Circuit of DC-De rence Books: Handbook of Automotive Power Electronics and Motor Drive Edition. Electromagnetic Compatibility of Electric Vehicle, Li Zhai, Springer EMC and Functional Safety of Automotive Electronics, Kai Borgeest EMI/EMC Computational Modeling Handbook, Druce Archam bea 2012, 2 nd Edition. Automotive EMC, Mark Steffika, Springer 2013, 1 st Edition. Electric Vehicle Systems Architecture and Standardization Needs,	on Test of Motor Drivon. EMI in DC-DC Co C Converter System, EN Total (4 es, Ali Emadi, Taylor 2021, 1 st Edition. t, IET 2018, 1 st Edition. tult, colin branch, Oma Reports of the PPP Eu	s System SL+07 & I MI Cou	$\mathbf{\Gamma} = \mathbf{r}, \mathbf{E}$ $\mathbf{r}, \mathbf{E}, \mathbf{r}$ $\mathbf{r} = \mathbf{r}$ $\mathbf{r} = \mathbf{r}$ \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}	GBT MI S g Path 45 Pe	EN ourc erioo 05,

Course Outcomes:Bloom'sTaxonomyUpon completion of this course, the students will be able to:Mapped

CO1	:	To describe the status and other details of standardization of EVs	L1: Remembering
CO2	:	To illustrate the testing protocols for EVs and HEV components	L2: Understanding
CO3	:	To analyze the safety cycle and need for functions safety for EV	L4: Analyzing
CO4	:	To analyze the problems related with EMC for EV components.	L4: Analyzing
CO5	:	To evaluate the EMI in motor drive and DC-DC converter system.	L5: Evaluating

COUR	SE AF	RTICU	LATIO	ON MA	ATRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO 3
CO1	3	1	1				2						3		2
CO2	3	1	1				1						3		2
CO3	3	1	1				2						3		2
CO4	3	1	1				1						3		2
CO5	3	1	1				2						3		3
Avg	3	1	1	0	0	0	1.6	0	0	0	0	0	3	0	2.2
	1		3/2	/1-indic	ates stre	ength of	f correla	tion (3-	High, 2	2-Mediu	m, 1- L	ow)	1		1

18EE	HO3	06 INTELLIGENT CONTROL OF ELECTRIC VEH	ICLES	SE	MES	STEF	K
PREF	REQU	JISITES	CATEGORY	L	Τ	Р	С
Power	Electr	ronics and Electric Vehicle	PEC	3	0	0	3
Cour	se Ob	jectives:					
1.	Тос	design and drive the mathematical model of a BLDC motor and its charac	acteristics				
2.		learn the different control schemes for BLDC motor					
3.	To s	study the basics of fuzzy logic					
4.		study the FPGA & VHDL basics					
5.		implement fuzzy logic control of BLDC motor in real time					
UNIT	T I	MATHEMATICAL MODEL AND CHARACTERISTICS OF THE BLDC MOTOR	ANALYSIS	9	0	0	9
Structu	ure and	d Drive Modes - Basic Structure, General Design Method, Drive Mod	les. Mathematica	al Mo	del,	Diffe	rentia
		ransfer Functions, State-Space Equations. Characteristics Analysis, St	tarting Charact	eristi	cs, S	teady	-Stat
Operat	tion, I	Dynamic Characteristics, Load Matching Commutation Transients					
UNIT	П	SPEED CONTROL FOR ELECTRIC DRIVES		9	0	0	9
		-PID Control Principle, Anti windup Controller, Intelligent Controller	r. Vector Contr	-	-	-	
	c motor						
	III 7	FUZZY LOGIC		9	0	0	9
				-			
Memb cuts - measu propos	• meth res of sitions,	functions: features, fuzzification, methods of membership value nods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning , formation of rules decomposition of rules, aggregation of fu- stems, overview of fuzzy expert system-fuzzy decision making	extension princip g : truth value	fuzzit ple - f es an	fication fuzzy fuz tal	meas bles,	ures fuzz
Memb cuts - measu propos inferer	meth res of sitions, nce sy	functions: features, fuzzification, methods of membership value nods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning , formation of rules decomposition of rules, aggregation of fu- stems, overview of fuzzy expert system-fuzzy decision making	extension princip g : truth value	fuzzii ple - 1 es an izzy	ficatio fuzzy id tal reaso	meas bles, bning	fuzz fuzz
Memb cuts - measu propos inferen	meth mes of sitions, nce sy	functions: features, fuzzification, methods of membership value nods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning , formation of rules decomposition of rules, aggregation of fu- stems, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS	extension princip g : truth value uzzy rules, fu	fuzzil ple - f es an uzzy 9	fication fuzzy id tal reaso	measoles, oning	fuzz fuzz fuzz
Memb cuts - measu propos inferer UNIT Introdu Sparta	meth res of sitions, nce sy F IV uction uction n 7.	functions: features, fuzzification, methods of membership value nods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning , formation of rules decomposition of rules, aggregation of fu- stems, overview of fuzzy expert system-fuzzy decision making	extension princip g : truth value fuzzy rules, fu cessors- Sparta	fuzzit ple - t es an izzy 9 in 3,	ficatio fuzzy id tal reaso 0 Spar	measoles, oning 0 tan (fuzz fuzz fuzz
Memb cuts - measu propos inferer UNIT UNIT Introdu Sparta sorting	meth res of sitions, nce sy FIV uction n 7. g, PWN	 functions: features, fuzzification, methods of membership value and solve fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of frestems, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS FPGA Architecture-Advantages-Review of FPGA family prodivide VHDL Basics- Fundamentals-Instruction set-data type-conditional M generation, Speed detection 	extension princip g : truth value fuzzy rules, fu cessors- Sparta	fuzzif ple - 1 es an izzy 9 in 3, grams	ficatio fuzzy id tal reaso 0 Spar s like	meas bles, oning 0 tan (arith	fuzz fuzz fuzz 9 5 and metic
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT	meth res of sitions, nce sy CIV uction uction n 7. g, PWN	functions: features, fuzzification, methods of membership value and fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - end fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS – FPGA Architecture-Advantages-Review of FPGA family prodiverses. VHDL Basics- Fundamentals-Instruction set-data type-conditional Migeneration, Speed detection REAL TIME IMPLEMENTATION	extension princip g : truth value fuzzy rules, fu cessors- Sparta statements- pro	fuzzit ple - t es an izzy 9 in 3, grams 9	ficatio fuzzy ad tal reaso 0 Spar s like 0	meas bles, oning 0 tan (arith	sures fuzz fuzz fuzz 9 ó an metio
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverte	T IV meth res of sitions, nce sy T IV uction m 7. g, PWN T V er desig	functions: features, fuzzification, methods of membership value and solve and fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - end fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS – FPGA Architecture-Advantages-Review of FPGA family prodiverses. Fundamentals-Instruction set-data type-conditional digeneration, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz	extension princip g : truth value fuzzy rules, fu cessors- Sparta statements- pro	fuzzit ple - t es an izzy 9 in 3, grams 9	ficatio fuzzy ad tal reaso 0 Spar s like 0	meas bles, oning 0 tan (arith	sures fuzz fuzz fuzz 9 ó an metio
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverte	meth res of sitions, nce sy CIV uction uction n 7. g, PWN	functions: features, fuzzification, methods of membership value and solve and fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - end fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS – FPGA Architecture-Advantages-Review of FPGA family prodiverses. Fundamentals-Instruction set-data type-conditional digeneration, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz	extension princip g : truth value fuzzy rules, fu cessors- Sparta statements- pro zy logic control	fuzzif ple - 1 es an izzy 9 in 3, grams 9 of 48	ficatio fuzzy id tal reaso 0 Spar s like 0 S V B	meas bles, bning 0 tan (arith 0 LDC	sures fuzz -fuzz 9 ó an metic 9 moto
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverte	T IV meth res of sitions, nce sy T IV uction m 7. g, PWN T V er desig	functions: features, fuzzification, methods of membership value and solve and fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - end fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS – FPGA Architecture-Advantages-Review of FPGA family prodiverses. Fundamentals-Instruction set-data type-conditional digeneration, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz	extension princip g : truth value fuzzy rules, fu cessors- Sparta statements- pro	fuzzif ple - 1 es an izzy 9 in 3, grams 9 of 48	ficatio fuzzy id tal reaso 0 Spar s like 0 S V B	meas bles, bning 0 tan (arith 0 LDC	sures fuzz fuzz fuzz 9 ó an metio
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverta using	meth res of sitions, nce sy TV uction n 7. g, PWN TV er desi FPGA.	functions: features, fuzzification, methods of membership value and solve and fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - end fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS – FPGA Architecture-Advantages-Review of FPGA family prodiverses. Fundamentals-Instruction set-data type-conditional digeneration, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz	extension princip g : truth value fuzzy rules, fu cessors- Sparta statements- pro zy logic control	fuzzif ple - 1 es an izzy 9 in 3, grams 9 of 48	ficatio fuzzy id tal reaso 0 Spar s like 0 S V B	meas bles, bning 0 tan (arith 0 LDC	sures fuzz fuzz fuzz 9 ó an metio
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverta using	meth res of sitions, nce sy IV uction n 7. g, PWM CV er desi FPGA. FPGA.	 functions: features, fuzzification, methods of membership value and solve and fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of for freeses, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS FPGA AND VHDL BASICS FPGA Architecture-Advantages-Review of FPGA family prodiverses. REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz. Books: rice Powertrain Energy Systems, Power Electronics and Drives for Hybrid Power Pression Pression 	extension princip g : truth value fuzzy rules, fu ocessors- Sparta statements- pro zy logic control Total (45)	9 of 48 L+01	fication fication fuzzy ad tal reason Spar s like 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	meas bles, bning 0 tan 0 arith 0 LDC	sures fuzz fuzz fuzz o an metic 9 moto
cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverta using I Refer	rence l Electr John 0	 functions: features, fuzzification, methods of membership value and solve and fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of firstems, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS FPGA AND VHDL BASICS FPGA Architecture-Advantages-Review of FPGA family prodived bases. REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz. Books: fic Powertrain Energy Systems, Power Electronics and Drives for Hyb G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018. 	extension princip g : truth value fuzzy rules, fu ocessors- Sparta statements- pro zy logic control Total (45) brid, Electric an	9 of 48 L+01	fication fication fuzzy ad tal reason Spar s like 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	meas bles, bning 0 tan 0 arith 0 LDC	sures fuzz fuzz fuzz o an metic 9 moto
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverte using 1 Refer 1.	res of sitions, nce sy IV uction n 7. g, PWN IV er desi FPGA. Electr John 0 VHDI Iqbal	 functions: features, fuzzification, methods of membership value and solve fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fustems, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS FPGA Architecture-Advantages-Review of FPGA family provVHDL Basics- Fundamentals-Instruction set-data type-conditional M generation, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz. Books: fic Powertrain Energy Systems, Power Electronics and Drives for Hyte G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018. L Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1st Edition 20 Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, T 	extension princip g : truth value fuzzy rules, fu cessors- Sparta statements- pro zy logic control Total (45) brid, Electric an 015.	grams of 48	fication fication fuzzy ad tal reason Spar s like 0 0 \mathbf{V} B \mathbf{V} B \mathbf{C} 0	meas bles, bning 0 tan (arith 0 LDC	sures fuzz fuzz fuzz 5 an metic 9 moto
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverte using 1 Refer 1. 2. 3.	rence I Electr John G VHDI Iqbal France	 functions: features, fuzzification, methods of membership value in fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fusters, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS FPGA AND VHDL BASICS FPGA Architecture-Advantages-Review of FPGA family provVHDL Basics- Fundamentals-Instruction set-data type-conditional M generation, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzzion, identifying rotor position via hall effect sensors, open loop and fuzzion. Books: fic Powertrain Energy Systems, Power Electronics and Drives for Hyte G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018. L Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1st Edition 20 Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, T is Group, 2021, 1st Edition. 	extension princip g : truth value fuzzy rules, fu ocessors- Sparta statements- pro zy logic control Total (45) brid, Electric an 015. Third Edition"	fuzzit fuzzit ple - 1 es an izzy grams grams grams grams grams grams grams grams cract cract	0 0	measoles, oning oning tan o arith 0 LDC 15 Pe	sures fuzz fuzz fuzz 5 an metic 9 moto
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverte using 1	rence I Electr John C VHDI Iqbal Franc Chang M.N.	functions: features, fuzzification, methods of membership value in ods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of fistems, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS – FPGA Architecture-Advantages-Review of FPGA family prodiverses Function, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzz . Books: ric Powertrain Energy Systems, Power Electronics and Drives for Hyb G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018. L Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1st Edition 20 Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, T is Group, 2021, 1st Edition. g-liang, Permanent Magnet Brushless DC Motor Drives and Controls, X	extension princip g : truth value fuzzy rules, fu ocessors- Sparta statements- pro zy logic control Total (45) brid, Electric an 015. Third Edition" Kia Wiley 2012,	d Fue CRC 1 st Ed	0 Final constraints of the second seco	measoles, oning oles, oning tan (o arith 0 LDC 15 Pe	sures fuzz, fuzz fuzz 6 an metic 9 moto 9 moto
Memb cuts - measu propos inferer UNIT Introdu Sparta sorting UNIT Inverte using 1 Refer 1. 2. 3. 4.	er desig FPGA. FPG	 functions: features, fuzzification, methods of membership value in fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - e fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning, formation of rules decomposition of rules, aggregation of firstems, overview of fuzzy expert system-fuzzy decision making FPGA AND VHDL BASICS FPGA AND VHDL BASICS FPGA Architecture-Advantages-Review of FPGA family provVHDL Basics- Fundamentals-Instruction set-data type-conditional M generation, Speed detection REAL TIME IMPLEMENTATION gn, identifying rotor position via hall effect sensors, open loop and fuzzion is for Hyte G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018. L Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1st Edition 20 Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, T is Group, 2021, 1st Edition. gn-inang, Permanent Magnet Brushless DC Motor Drives and Controls, X 	extension princip g : truth value fuzzy rules, fu cessors- Sparta statements- pro zy logic control Total (45) brid, Electric an 015. Third Edition" <u>Kia Wiley 2012,</u> Logic Control , 2 nd Edition	d Fue CRC 1 st Ed of D	ficatio ficatio fuzzy ad tal reaso 0 Spar s like 0 Spar s like 0 0 Spar s like 0 Spar s like Spar s like Spar s like Spar	measoles, oning 0 tan 0 arith 0 LDC 15 Pe Il Vel s, Tay and 1	sures fuzz fuzz fuzz 5 an metic 9 moto riod hicles

Course C Upon com		comes: ion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	To design the mathematical model of a BLDC motor and to discuss about its characteristics	L2: Understanding
CO2	:	To demonstrate the PID control, anti-windup controller, Intelligent Controller and Vector Control. Control applied to BLDC motor.	L5: Evaluating
CO3	:	To illustrate the basics of fuzzy logic system	L1: Remembering
CO4	:	To describe the basics of VHDL & FPGA applied to control of EVs.	L2: Understanding
CO5	:	To design and implement of fuzzy logic control scheme for BLDC motor using FPGA in real time	L6: Creating

COUR	SE AR	RTICU	LATIO	ON MA	ATRIX										
COs/ POs	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3								1	2		2	3		3
CO2	3								1	2		2	3		3
CO3	3						3		1	2		2	3		3
CO4	3						3		1	2		2	3		3
CO5	3						3		1	2		2	3	2	3
Avg	3	0	0	0	0	0	3	0	1	2	0	2	3	2	3
			3/2/	1-indica	ates stre	ngth of	correlat	ion (3-1	High, 2-	-Mediur	n, 1- Lo	ow)			

	CHO307	7				HYB	RID I	ELEC	<u>TRIC</u>	C VEH	CLES				SEM	IEST	E	R IV	7
	REQUI											CA	ГEGO	RY	L	Τ	-	P	С
Electri	ic Drive	s, Ele	ectric V	hicles									PEC		3	0	(0	3
Cour	se Obje	ectiv	ves:																
1.	This co	ourse	introdu	es the	fundar	nental	conce	epts, pri	inciple	es and ar	alysis o	of hybr	id and e	lectric	vehicle	s.			
UNIT	T I	HIS	TORY	OF H	VRRI	DFL	FCT	RIC V	/FHI	CLES					9	0		0	9
			mental i								act of n	nodern	drive-t	ains on		-		•	-
			nance, ve																
vehicl	e perfor	manc	ce, Capa	bilities,	Autor	mation	syste	m com	puter f	facilities	•								
UNIT		HYB	BRID E	LECT	RIC	VEH	ICLE	S - IN	TRO	DUCT	ION				9	0		0	9
			icles, mi									orid vel	nicles, s	series H	ybrid	Vehic	cles	s, Se	ries
Paralle	el Hybri	d vel	hicles, p	ug-in ł	nybrid	vehicl	es, po	wer flo	w diag	grams fo	or vario	us oper	ating m	odes. P	lug-in	Hybr	id V	Vehi	cles
			le, arch																
			Classifi														ic E	Bi-c	ycle
and th	eir prop	ulsio	on systen	is, Veh	icle-to	- grid,	vehic	le- to-h	nome c	concepts	, Conce	pt of H	ybrid E	lectric	Vehicle	es.			
UNIT	Г Т	CT T	CTRIC			SION	TINIT	т							9	0		0	9
III															-	Ť		·	-
			nts used											rives, Iı	nductio	on M	oto	r dr	ive
Perma	inent Ma	ignet	t Motor	irives, s	Switch	i Reluc	tance	Motor	drives	s, Drive	system	erncie	icy.						
UNIT	ΓΙΥΙ	ELE	CTRIC	C DRI	VE-T	RAIN	IS								9	0	(0	9
Basic	concept	of e	electric t	action,	intro	luctior	n to va	arious e	electric	c drivetr	ain top	ologies	nowa	flow c	ontrol	in ele	ectr	ric d	rive
train to	opologie	es, fu										0105105	, power						
		<i>,</i>	iel effici	ency an	alysis						I	0105105	, power						
TINIT						D CIA					1		, power		-			0	0
		EV N	MODE	LLIN	G AN		IUL A	ATION	N						9	0	(0	9 tive
Model	lling of	EV N BE	MODE EV-Forw	L LIN ard loo	G AN oking	Mode	IUL el-Driv	ATION ver Per	N rspecti	ve, Ba	ckward	Look	ng Mo	odel-Dri	9 ve Cy	0 vcle	Per	spec	tiv
Model Model	lling of lling of l	EV N BE Drive	MODE	LLINC ard loc Illing of	G AN oking f Brake	Mode e Cont	IUL el-Driv rol Ur	ATION ver Per nit, Moo	N rspecti delling	ve, Baa g of Veh	ckward icle Co	Looki ntrol St	ng Morategy,	odel-Dri Modell	9 ve Cy ing of	0 vcle 2 Vehic	Per Cle (spec Chas	tiv ssis
Model Model Sizing	lling of lling of l g of Con	EV N BE Drive	MODE EV-Forw er, Mode	LLINC ard loc illing of eady St	G AN oking f Brake tate Er	Mode e Cont nergy I	IUL el-Driv rol Ur Balanc	ATION ver Per nit, Moo ce Equa	N rspecti delling ation, 1	ve, Bac g of Veh Powertr	ckward icle Co ain Din	Looki ntrol St	ng Mo rategy, ing-Pea	odel-Dri Modell ak vs C	9 ve Cy ing of ontinue	0 vcle 2 Vehic	Per Cle (spec Chas	tive ssis
Model Model Sizing	lling of lling of l g of Con	EV N BE Drive	MODE EV-Forw er, Mode nents- St	L LIN ard loo lling of eady St	G AN oking f Brake tate Er	Mode e Cont nergy I	IUL el-Driv rol Ur Balanc	ATION ver Per nit, Moo ce Equa	N rspecti delling ation, 1	ve, Bac g of Veh Powertr	ckward icle Co ain Din	Looki ntrol St	ng Mo rategy, ing-Pea nption	odel-Dri Modell ak vs C Predictio	9 ve Cy ing of ontinue	0 vcle 2 Vehic ous p	Per cle (erfo	rspec Chas orma	tive ssis
Model Model Sizing	lling of lling of l g of Con	EV N BE Drive	MODE EV-Forw er, Mode nents- St	L LIN ard loo lling of eady St	G AN oking f Brake tate Er	Mode e Cont nergy I	IUL el-Driv rol Ur Balanc	ATION ver Per nit, Moo ce Equa	N rspecti delling ation, 1	ve, Bac g of Veh Powertr	ckward icle Co ain Din	Looki ntrol St	ng Mo rategy, ing-Pea nption	odel-Dri Modell ak vs C	9 ve Cy ing of ontinue	0 vcle 2 Vehic ous p	Per cle (erfo	rspec Chas orma	tive ssis
Model Sizing Type o	lling of lling of l g of Con	EV M BE Drive npon cycl	MODE EV-Forw er, Mode nents- St	L LIN ard loo lling of eady St	G AN oking f Brake tate Er	Mode e Cont nergy I	IUL el-Driv rol Ur Balanc	ATION ver Per nit, Moo ce Equa	N rspecti delling ation, 1	ve, Bac g of Veh Powertr	ckward icle Co ain Din	Looki ntrol St	ng Mo rategy, ing-Pea nption	odel-Dri Modell ak vs C Predictio	9 ve Cy ing of ontinue	0 vcle 2 Vehic ous p	Per cle (erfo	rspec Chas orma	tive ssis
Model Model Sizing Type of Text	lling of lling of J g of Con of Drive Books:	EV N BE Drive npon cycl	MODE EV-Forw er, Mode nents- St les, Type	LLIN(ard loo Illing of eady St s of Co	G AN oking f Brake cate Er ontrol S	Mode e Cont hergy I Strateg	IUL el-Driv rol Ur Balanc gy, An	ATION ver Pen nit, Moo ce Equa alysis-l	N rspecti delling ation, 1 Perforn	ve, Bao g of Veh Powertr mance, l	ckward icle Co ain Din Range,	Looki ntrol Si nensior Consur	ng Mo rategy, ing-Pea nption	odel-Dri Modell ak vs C Predictio	9 ve Cy ing of ontinuo on 5L+0	0 vcle 2 Vehic ous p	Per cle (erfo	rspec Chas orma	tive ssis
Model Model Sizing Type o	lling of l lling of l g of Con of Drive Books: Good	EV N BE Drive npon cycl	MODE EV-Forw er, Mode nents- St	LLIN(ard loo lling of eady St s of Cc A., Ha	G AN oking f Brake tate Er ontrol S	Mode e Cont hergy I Strateg	IUL el-Driv rol Ur Balanc gy, An	ATION yer Per hit, Moo ce Equa alysis-1	N rspecti delling ation, 1 Perforn	ve, Bac g of Veh Powertr mance, l	ckward icle Co ain Din Range,	Looki ntrol Si nensior Consur	ng Mo rategy, ing-Pea nption	odel-Dri Modell ak vs C Predictio	9 ve Cy ing of ontinuo on 5L+0	0 vcle 2 Vehic ous p	Per cle (erfo	rspec Chas orma	tive ssis
Model Model Sizing Type of Text	lling of lling of l g of Con of Drive Books: Good drive: Wei I	EV N BE Drive npon cycl darzi, s for Liu, I	MODE EV-Forw er, Mode ents- St les, Type , Gordon hybrid, Introduc	LLIN(ard loo lling of eady St s of Co A., Ha electric ion of	G AN oking f Brake ate Er ontrol S ontrol S	Mode e Cont hergy I Strateg	IUL el-Driv rol Ur Balance gy, An Electu vehicle cle sys	ATION /er Pen hit, Moo ce Equa alysis-] ric pow es, Wild stem M	N rspecti delling ation, 1 Perforn vertrair ey 201 Iodellin	ve, Bac g of Veh Powertr mance, I n: energy 8 ng and (ekward icle Co ain Din Range, y syster	Looki ntrol Si nensior Consur ns, pow	ng Mo rategy, ing-Pea nption 1 7 ver elec studen	odel-Dri Modell Ak vs C Prediction Total (4 tronics of t edition	9 ve Cy ing of ontinuo 5L+0 & &	0 Vehic ous p T)= 4	Per cle (erfo	rspec Chas orma	tive ssis
Model Model Sizing Type of Text 1.	lling of l lling of l g of Con of Drive Books: Good drive: Wei I Mehr	EV N BE Drive npon cycl	MODE EV-Forw er, Mode nents- St les, Type , Gordon hybrid, Introduc l Eshani,	LLIN(ard loo lling of eady St s of Cc A., Ha electric ion of Yimin	G AN oking f Brake tate Er ontrol S over a state wyes, Jo e & fue Hybrid Gao, J	Mode e Cont hergy I Strateg bhn G, el cell v d Vehi Ali En	AULA el-Driv rol Ur Balance gy, An Electivehicle cle systematic, M	ATION yer Pen hit, Moo ce Equa alysis-] nic pow es, Wild stem M Modern	N rspecti delling ation, 1 Perforn vertrair ey 201 Iodellin Electr	ve, Baa g of Veh Powertr mance, l n: energ 8 ng and (ric, Hyb	ckward icle Co ain Din Range, y syster Control, rid Elec	Looki ntrol Si nensior Consur ns, pow	ng Mo rategy, ing-Pea nption 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	odel-Dri Modell ak vs C Predictio Total (4 tronics of t editior Cell Ve	9 ve Cy ing of ontinuo 5L+0 & & 2013. hicles,	0 Vehic ous p T)= 4	Per cle (erfo	rspec Chas orma	tive ssis
Model Model Sizing Type of Text 2 1. 2.	Iling of I Iling of I g of Con of Drive Books: Good drive Wei I Mehr Fund	EV N BE Drive npon cycl larzi, s for Liu, I	MODE EV-Forw er, Mode ents- St les, Type , Gordon hybrid, Introduc	LLIN(ard loo lling of eady St s of Cc A., Ha electric ion of Yimin eory an	G AN oking f Brake ate Er ontrol S aves, Jo e & fue Hybrid Gao, J d Desi	Mode e Cont hergy I Strateg Strateg ohn G, el cell v d Vehia Ali En ign, Se	IUL el-Driv rol Ur Balance gy, An Electrive vehicle cle sys radi, M scond	ATION ver Per hit, Moo ce Equa alysis-1 ric pow es, Wild stem M Modern Edition	N rspecti delling ation, 1 Perforn vertrain ey 201 Iodellin Electr h, CRC	ve, Bac g of Veh Powertr mance, l n: energ 8 ng and C ric, Hyb 2 Press, 7	ckward icle Co ain Din Range, y syster Control, rid Elec Faylor a	Looki ntrol St nensior Consur Consur ns, pow	ng Mo rategy, ing-Pe: nption 1 7 ver elec studen d Fuel ncis Gr	odel-Dri Modell ak vs C Prediction Cotal (4 tronics of t edition Cell Ve oup, 20	9 ve Cy ing of ontinuo bn 5L+0 & 2013. hicles, 10.	0 Vehic ous p T)= 4	Per cle (erfo	rspec Chas orma	tive ssis
Model Model Sizing Type of Text 2 1. 2. 3.	Iling of I Iling of I g of Con of Drive Books: Good drive: Wei I Weir I Mehr Fund: Jame: Ali E	EV M BE Drive npon cycl larzi, s for Liu, l adad amer s Lar madi	MODE EV-Forw er, Mode nents- St les, Type , Gordon hybrid, Introduc I Eshani, ntals, Th rminie Ja i, Mehrd	LLIN(ard loo lling of eady St as of Co A., Ha electric ion of Yimin eory an hn Lov ad Ehsa	G AN oking f Brake tate Er ontrol S ontrol S avyes, Jo & fue Gao, J d Desi ani, Jo	Mode e Cont hergy I Strateg Strateg ohn G, el cell v d Vehi Ali En ign, Se lectric	IUL el-Driv rol Ur Balance gy, An Electric vehicle cle system radi, M econd Vehicle	ATION ver Pen hit, Moo ce Equa alysis-l ric pow es, Wild stem M Modern Edition cle Tecl	N rspecti delling ation, 1 Perforn vertrair ey 201 Iodellin Electr h, CRC hnolog	ve, Bac g of Veh Powertr mance, l n: energy 8 ng and C ric, Hyb 2 Press, 7 gy Expla	ckward icle Co ain Din Range, y syster control, rid Elec Faylor a ined, So	Looki ntrol St nensior Consur Consur ns, pow wiley tric, an and Fra econd I	ng Mo rategy, ing-Pe: nption 1 7 ver elec studen d Fuel ncis Gr Edition,	odel-Dri Modell ak vs C Prediction Cotal (4 tronics of t edition Cell Ve oup, 20 Wiley,	9 ve Cy ing of ontinucon 5L+0 & x 2013. hicles, 10. 2012.	0 Vehic ous p T)= 4	Performed and the second secon	rspec Chas orma	tive ssis
Model Model Sizing Type of Text 1 1. 2. 3. 4.	Iling of I Iling of I g of Con of Drive Books: Good drives Wei I Mehr Funds James Ali E Vehio	EV M BE Drive npon cycl larzi, s for Liu, I radad amer s Lar madi cles', ric a	MODE EV-Forw er, Mode nents- St les, Type , Gordon hybrid, Introduc l Eshani, ntals, Th rminie Jo i, Mehrd , CRC P nd Hybr	LLIN(ard loo lling of eady St as of Co ady St s of Co ady St as of Co ady St and St a	G AN oking f Brake ate Er ontrol S ontrol S e & fue Hybrid Gao, J d Desi wry, E ani, Jo 003.	Mode e Cont hergy I Strateg bhn G, el cell v d Vehi Ali En ign, Se lectric hn M.	IUL el-Driv rol Ur Balance gy, An Elective vehicle cle systematic nadi, M vehicle Miller	ATION ver Pen hit, Moo ce Equa alysis-l ric pow es, Wild stem M Modern Edition cle Tecl r, 'Veh	N rspecti delling ation, 1 Perforn vertrair ey 201 Iodellin Electr h, CRC hnolog icular	ve, Bac g of Veh Powertri mance, l n: energy 8 ng and (ric, Hyb 2 Press, 7 gy Expla Electric	ckward icle Co ain Din Range, y syster <u>Control</u> , rid Elec Γaylor a ined, So Power	Looki ntrol St nensior Consur Consur ns, pow wiley tric, an and Fra econd I System	ng Mo rategy, ing-Pea nption 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	odel-Dri Modell ak vs C Prediction Cotal (4 tronics of t edition Cell Ve oup, 20 Wiley,	9 ve Cy ing of ontinucon 5L+0 & x 2013. hicles, 10. 2012.	0 Vehic ous p T)= 4	Performed and the second secon	rspec Chas orma	tive ssis
Model Model Sizing Type of Text 1. 2. 3. 4. 5. 6.	Books: Books: Good drive: Wei I Mehr Fund: Jame: Ali E Vehic Elect	EV M BE Drive npon cycl larzi, s for Liu, l adad amer s Lar madi cles', ric ar	MODE EV-Forw er, Mode hents- St les, Type , Gordon hybrid, Introduc I Eshani, ntals, Th rminie Ja i, Mehrd , CRC P nd Hybr on.	LLIN(ard loo lling of eady St as of Co ady St s of Co ady St as of Co ady St and St a	G AN oking f Brake ate Er ontrol S ontrol S e & fue Hybrid Gao, J d Desi wry, E ani, Jo 003.	Mode e Cont hergy I Strateg bhn G, el cell v d Vehi Ali En ign, Se lectric hn M.	IUL el-Driv rol Ur Balance gy, An Elective vehicle cle systematic nadi, M vehicle Miller	ATION ver Pen hit, Moo ce Equa alysis-l ric pow es, Wild stem M Modern Edition cle Tecl r, 'Veh	N rspecti delling ation, 1 Perforn vertrair ey 201 Iodellin Electr h, CRC hnolog icular	ve, Bac g of Veh Powertri mance, l n: energy 8 ng and (ric, Hyb 2 Press, 7 gy Expla Electric	ckward icle Co ain Din Range, y syster Control, rid Elec Γaylor a ined, So Power	Looki ntrol St nensior Consur Consur ns, pow wiley tric, an and Fra econd I System	ng Mo rategy, ing-Pea nption 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	odel-Dri Modell ak vs C Prediction Cotal (4 tronics of t edition Cell Ve oup, 20 Wiley,	9 ve Cy ing of ontinucon 5L+0 & x 2013. hicles, 10. 2012.	0 Vehic ous p T)= 4	Performed and the second secon	rspec Chas orma	tive ssis
Model Model Sizing Type of Text 1. 2. 3. 4. 5. 6.	Iling of Iling of I g of Con of Drive Books: Good drive Wei I Mehr Fund Jame Ali E Vehid Elect 2ndE	EV M BE Drive npon cycl larzi, s for Liu, l adad amer s Lar madi cles', ric at ditio ook	MODE EV-Forw er, Mode hents- St les, Type , Gordon hybrid, Introduc I Eshani, ntals, Th rminie Ja i, Mehrd , CRC P nd Hybr on.	A., Ha electric ion of Yimin eory an hn Lov ad Ehsa ress, 20 d Vehi	G AN oking f Brake ate Er ontrol S average of the set on trol S average of the set	Mode e Cont hergy I <u>Strateg</u> bhn G, el cell v d Vehi Ali En ign, Se lectric hn M. Design	IUL el-Driv rol Ur Balance gy, An Electric vehicle cle system radi, M econd Vehicle Funda	ATION ver Pen hit, Moo ce Equa alysis-l ric pow es, Wild stem M Modern Edition cle Tecl r, 'Veh amenta	N rspecti delling ation, 1 Perforn / vertrain ey 201 Iodellin Electr h, CRC hnolog icular	ve, Bac g of Veh Powertr mance, l n: energy 8 ng and C ric, Hyb 2 Press, 7 gy Expla Electric al Husse	ckward icle Co ain Din Range, y syster Control, rid Elec Faylor a ined, So Power	Looki ntrol St nensior Consur Consur ns, pow Wiley Wiley tric, an and Fra econd I System C Press	ng Ma rategy, ing-Pe: nption 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	odel-Dri Modell ak vs C Prediction Cotal (4 tronics of t edition Cell Ve oup, 20 Wiley, I, Sea, A	9 ve Cy ing of ontinucon 5L+0 & x 2013. hicles, 10. 2012. xir, and	0 Vehic ous p T)= 4	Performed and the second secon	rspec Chas orma	tive ssis
Model Model Sizing Type of Text 2 1. 2. 3. 4. 5. 6. Refer	lling of l lling of l g of Con of Drive Books: Good drive: Wei I Mehr Fund: Jame: Ali E Vehic Electi 2ndE rence B	EV M BE Drive npon cycl larzi, s for Liu, l adad amer s Lar madi cles', rric ar ditio ook s	MODE EV-Forw er, Mode nents- St les, Type , Gordon hybrid, Introduc d Eshani, ntals, Th rminie Jo i, Mehrd , CRC P nd Hybr on. s:	LLIN(ard loo lling of eady St as of Co ady St s of	G AN oking f Brake tate Er ontrol S ontrol S exercise yes, Jo e & fue Hybrid Gao, J d Desi wry, E ani, Jo 003. cles: D cced Ele Duco V	Mode e Cont hergy I Strateg bhn G, el cell v d Vehid Ali En ign, Se lectric hn M. Design	IUL el-Driv rol Ur Balance gy, An Electrive vehicle cle system roldi, M scond I Vehicle Funda Drivess 'eltma	ATION ver Pen hit, Moo ce Equa alysis-J ric pow es, Wild stem M Modern Edition cle Tecl r, 'Veh amental	N rspecti delling ation, 1 Perforn vertrair ey 201 Iodellin Electr hnolog icular	ve, Bac g of Veh Powertri mance, l n: energy 8 ng and C ric, Hyb 2 Press, 7 gy Expla Electric al Husse Modelin	ckward icle Co ain Din Range, y syster y syster <u>Control,</u> rid Elec <u>Caylor a</u> ined, Se Power in, CRO	Looki ntrol St nensior Consur Consur ns, pow Wiley tric, an and Fra econd I System C Press trol, Sp	ng Ma rategy, ing-Pea nption 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	odel-Dri Modell ak vs C Prediction Cotal (4 tronics of t edition Cell Ve oup, 20 Wiley, I, Sea, A	9 ve Cy ing of ontinuo 5L+0 & & 2013. hicles, 10. 2012. xir, and ions	0 Vehicous p T)= 4	Performed and the second secon	rspec Chas orma	tive ssis

4.	Electric and Hybrid Vehicles Design Fundamentals, Iqbal Husain, Second Edition, CRC Press, Taylor and Francis Group, 2011.
5.	Sandeep Dhameja, 'Electric Vehicle Battery Systems', Newnes, 2002.
6.	Chris Mi, M. Abul Masrur, David Wenzhong Gao, 'Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives', Wiley, 2011.
E-Refe	erence
1	https://nptel.ac.in/courses/108/106/108106170/
2	https://nptel.ac.in/courses/108/102/108102121/

Course O	outo	comes:	Bloom's Taxonomy
Upon com	plet	Mapped	
CO1	:	Plan the selection of electrical machines for hybrid and electric vehicles.	L3: Applying
CO2	:	Analyze the drive-train topologies and advanced propulsion techniques	L4: Analyzing
CO3	:	Understand the concepts of electric vehicles, hybrid electric vehicles and their impact on environment	L2: Understanding
CO4	:	Evaluate modelling and simulation of EV	L5: Evaluating
CO5	:	Demonstrate the power system of various vehicular system.	L6: Creating

COUR	SE AR	RTICU	LATIO	ON MA	ATRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1
CO2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1
CO3	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1
CO4	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1
CO5	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1
Avg	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1
	•	•	3/2/1-	indicate	s streng	th of co	rrelation	n (3- Hi	gh, 2-M	ledium,	1- Low)	•	•	<u>.</u>

18EEHO308	BATTERY MANAGEMENT SYSTEM		SE	MES	STEF	2
PREREQUIS'	TIES	CATEGORY	L	Т	P	С
Basics of Electri	cal Engineering, Electric Circuit theory, Chemistry and Physics	PEC	3	0	0	3
Course Objec	tives:					
	ifferent techniques of digital relaying - their constructions, workir		cation	is and	limit	tation
along with intro	duction to Wide Area Measurement System and network protection	on.				
UNIT I	INTRODUCTION		9	0	0	9
	Battery Management System(BMS), Cells & Batteries, Nominal					
	nnected in series, Cells connected in parallel, Electrochemical a		ls, R	echar	geabl	e cel
Charging and Di	scharging Process, Overcharge and Undercharge, Modes of Charg	ging				
UNIT II	BATTERY-MANAGEMENT-SYSTEM REQUIREM	IENTS.	9	0	0	9
	BMS functionality, Battery pack topology, BMS Functionality,		Temr	beratu	re Se	ensing
	, BMS Functionality, High-voltage contactor control, Isolation					
	Interface, Range estimation, State-of charge estimation.	<i>, , , ,</i>		,		
	DATTEDX CTATE OF CHADGE AND CTATE		1	1	1	<u> </u>
UNIT III	BATTERY STATE OF CHARGE AND STATE ESTIMATION	OF HEALIH	9	0	0	9
			,	v		
Preliminary def		d methods to estim		v		
	initions Battery state of charge estimation (SOC)- voltage-base			v		1
SOC , Model-ba	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) -				I	1
SOC, Model-ba	initions Battery state of charge estimation (SOC)- voltage-base					
SOC, Model-ba	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) -			0	0	9
SOC , Model-ba aging: Negative UNIT IV	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode	Lithium-ion	ate 9	0	-	
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION.	Lithium-ion	ate 9 roach	0 1, Ph	ysics	-base
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric bach, Simulating an electric vehicle, Vehicle range calculations,	Lithium-ion	ate 9 roach	0 1, Ph	ysics	-base
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric bach, Simulating an electric vehicle, Vehicle range calculations, ry packs.	Lithium-ion	ate 9 roach nt po	0 a, Ph wer a	ysics nd vo	-base oltage
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric ach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS	Lithium-ion cal modelling app Simulating constant	ate 9 roach nt po	0 h, Ph wer a	ysics nd vo	-base oltage 9
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte	 initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, 1 	Lithium-ion cal modelling app Simulating constant	ate 9 roach nt po	0 h, Ph wer a	ysics nd vo	-base oltag 9
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric ach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS	Lithium-ion cal modelling app Simulating constant	ate 9 roach nt po	0 h, Ph wer a	ysics nd vo	-base oltag 9
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte	 initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, 1 	Lithium-ion cal modelling app Simulating constant	ate 9 roach nt po 9 batter	0 h, Ph wer a 0 Ty life	ysics nd vo 0 and	-base oltag 9 BMS
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte	 initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, 1 	Lithium-ion cal modelling app Simulating constant	ate 9 roach nt po 9 batter	0 h, Ph wer a 0 Ty life	ysics nd vo 0 and	-base oltag 9 BMS
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing	 initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, 1 	Lithium-ion cal modelling app Simulating constant	ate 9 roach nt po 9 batter	0 h, Ph wer a 0 Ty life	ysics nd vo 0 and	-base oltag 9 BMS
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing	 initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, 1 	Lithium-ion cal modelling app Simulating constant load, and force on T Total	ate 9 roach nt po 9 batter (45I	0 a, Ph wer a 0 Ty life 2 2	o and b and 15 Pe	-base oltag 9 BMS eriod
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing Text Books:	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric bach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, 1 g with multi-battery system	Lithium-ion cal modelling app Simulating constant load, and force on Total Total	9 roach nt po batter (45I	0 a, Ph wer a 0 by life 0 0	ysics- nd vo and 15 Pe 2015	base oltag BMS eriod
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing Text Books: 1. 2.	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, I g with multi-battery system Plett, Gregory L. Battery management systems, Volume I: Bat	Lithium-ion cal modelling app Simulating constant coad, and force on Total tery modeling. Arte t-Circuit Methods,	9 roach nt po 9 batter (45I Arteo	0 a, Ph wer a 0 ry life 2 = 4	ysics- nd vo and 0 and 15 Pe 2015 use, 2	9 BMS Eriod
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing Text Books: 1.	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, I g with multi-battery system Plett, Gregory L. Battery management systems, Volume I: Bat Plett, G., Battery Management Systems: Volume II, Equivalen	Lithium-ion cal modelling app Simulating constant coad, and force on Total tery modeling. Arte t-Circuit Methods,	9 roach nt po 9 batter (45I Arteo	0 a, Ph wer a 0 ry life 2 = 4	ysics- nd vo and 0 and 15 Pe 2015 use, 2	base pltag BMS eriod
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing Text Books: 1. 2.	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, I g with multi-battery system Plett, Gregory L. Battery management systems, Volume I: Bat Plett, G., Battery Management Systems: Volume II, Equivalen Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Management Philips Research Book Series 2002.	Lithium-ion cal modelling app Simulating constant coad, and force on Total tery modeling. Arte t-Circuit Methods,	9 roach nt po 9 batter (45I Arteo	0 a, Ph wer a 0 ry life 2 = 4	ysics- nd vo and 0 and 15 Pe 2015 use, 2	base pltag BMS eriod
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing Text Books: 1. 2. 3 Reference Boo	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric pach, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, I g with multi-battery system Plett, Gregory L. Battery management systems, Volume I: Bat Plett, G., Battery Management Systems: Volume II, Equivalen Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Management Philips Research Book Series 2002.	Lithium-ion cal modelling app Simulating constant load, and force on the Total tery modeling. Arte t-Circuit Methods, nent Systems -Desig	ate 9 roach nt po 9 batter (45I ech H <u>Artec</u> gn by	0 0 0 y life 2 2 2 2 2 2 2 2	ysics- ind vo and and 15 Pe 2015 use, 2 elling	BMS
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing Text Books: 1. 2. 3	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric back, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, I g with multi-battery system Plett, Gregory L. Battery management systems, Volume I: Bat Plett, G., Battery Management Systems: Volume II, Equivalen Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Managem Philips Research Book Series 2002.	Lithium-ion cal modelling app Simulating constant load, and force on the Total tery modeling. Arte t-Circuit Methods, nent Systems -Desig	ate 9 roach nt po 9 batter (45I ech H <u>Artec</u> gn by	0 0 0 y life 2 2 2 2 2 2 2 2	ysics- ind vo and and 15 Pe 2015 use, 2 elling	BMS
SOC , Model-ba aging: Negative UNIT IV Equivalent-circu modelling appro Simulating batte UNIT V Design of batte energy balancing Text Books: 1. 2. 3 Reference Boo	initions Battery state of charge estimation (SOC)- voltage-base sed state estimation - Battery State of Health Estimation (SOH) - electrode, Lithium ion aging: Positive electrode MODELLING AND SIMULATION. it models (ECMs), Physics-based models (PBMs), Empiric back, Simulating an electric vehicle, Vehicle range calculations, ry packs. DESIGN OF BMS ry BMS: Design principles of battery BMS, Effect of distance, I g with multi-battery system Plett, Gregory L. Battery management systems, Volume I: Bat Plett, G., Battery Management Systems: Volume II, Equivalen Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Management Philips Research Book Series 2002. oks: Davide Andrea," Battery Management Systems for Large Lith	Lithium-ion cal modelling app Simulating constant load, and force on the second	9 roach nt po 9 batter (45I Artec gn by cks".	0 a, Ph wer a 0 y life 0 y life 0 Artec	ysics nd vo and and 15 Pe 2015 use, 2 elling h Hou	9 BMS 2015

Course Out	omes:	Bloom's Taxonomy
Upon complet	on of this course, the students will be able to:	Mapped
CO1	: Recall the role of battery management system	L1: Remembering

CO2	:	Identify the requirements of Battery Management System w.r.t application	L2: Understanding
CO3	:	Analyze the concept associated with battery charging / discharging process	L4: Analysing
CO4	:	Assess the various parameters of battery and battery pack	L3: Applying
CO5	:	Design the battery pack model.	L4: Analysing

COUR	SE AR	RTICU	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	2	2	2	1					1	2	2	1
CO2	1	2	2	2	2	2	1					1	2	2	1
CO3	2	3	3	3	3	2	1					1	3	2	1
CO4	3	3	3	3	3	2	1					1	3	2	1
CO5	2	2	3	3	3	3	1					1	3	2	1
Avg	2	2.4	2.6	2.6	2.6	2.2	1	0	0	0	0	1	2.4	1.9	1
	1	1	3/2/1-i	indicate	s streng	th of co	rrelation	n (3- Hi	gh, 2-M	ledium,	1- Low)	1	1	L

18EEHO	309 ADVANCED ELECTRICAL DRIVES FOR ELECT	RIC VEHICLE	SEM	IEST	ER	
PREREQ		CATEGORY	L	Т	P	С
Solid state	drives	PEC	3	0	0	3
Course O	bjectives:					
1. To i	ntroduce the electrical machines with control module for electric vehic	ele propulsion.				
UNIT I	PERMANENT MAGNET BRUSHLESS MOTOR DRIV	'ES	9	0	0	9
	ess Machines : Structure and Principle of PM Brushless Machines, Inv					
for Brushle	ss AC Operation, PM Brushless Motor Control, Application of PM Br	ushless Motor Drives	in Ele	ctric v	ehicle	2
UNIT II	SWITCHED RELUCTANCE MOTOR DRIVES		9	0	0	9
	nfigurations, Switched Reluctance Machine: Structure and Principle	e of operation, Swite		-	-	
Converter	Topologies, Soft-Switching Switched Reluctance Motor Converter	[•] Topologies, Switc	hed R	lelucta		
	orque-Ripple Minimization Control, Switched Reluctance Motor	Drives for Electric	Vehic	le,	Appli	cation
Examples of	of Switched Reluctance Motor Drives in Electric Vehicles					
UNIT III	MAGNETLESS MOTOR DRIVES		9	0	0	9
	us Reluctance Motor Drives, Doubly-Salient DC Motor Drives, Fl	ux-Switching DC M	otor I	Drive,	-	
	Motor Drives, Design Criteria of Advanced Magnetless Motor Drive			oles of	Adv	anced
Magnetless	Motor Drives for EVs, Potential Applications of Advanced Magnetles	ss Motor Drives in EV	s			
UNIT IV	VERNIER PERMANENT MAGNET MOTOR DRIVES	1	9	0	0	9
	nfigurations and Vernier Permanent Magnet Machines, Structure a		ier Pe	erman	-	
	Inverters for Vernier Permanent Magnet Motors, Vernier Permanent					
	I Motor Drives for EVs, Outer-Rotor Vernier PM Motor Drive, Outer ntial Applications of Vernier PM Motor Drives in EVs	r-Rotor Flux-Controll	able V	ernier	· PM 1	Motor
Dive, role	initial Applications of Vermer FW Word Drives in EVS					
UNIT V	DOUBLE-ROTOR ELECTRIC VARIABLE	TRANSMISSION	9	0	0	9
	SYSTEMS			Ŭ	Ŭ	
	tor Machines, Double-Rotor Electric Variable Transmission System (tor EVT Systems, PM DR EVT System, SR DR EVT System, Axial					
	Systems in HEVs	I-MUX DK EVI Syste	m, ro	tentia	Арр	lication
	•					
		Total (4	5L+0	T)=	l5 Pe	riods
Text Boo						
1. K.	T. Chau, 'Electric Vehicle Machines and Drives: Design, Analysis and	d Application, Wiley-	IEEE	Press,	2015	5
Reference	e Books:					
	ary Murphy " Electric and Hybrid Vehicles: Principles, Design and	Technology ", Larsen	and 1	Keller	Educ	ation,
20	19					
E-Refere	nce					
	tps://archive.nptel.ac.in/courses/108/103/108103009/					
I III	ps.//arom/o.np/01.ao.nn/courses/100/105/100105007/					

Course O	outo	Bloom's Taxonomy	
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Explain the use for Permanent magnet Brushless motor drive for electric vehicle	L1: Remembering

CO2	:	Select converter topology for Switched Reluctance Motor used for electric vehicle	L3: Applying
CO3	:	Describe the operation of Magnetless Motor Drives in Electric Vehicles	L2: Understanding
CO4	:	Understand the principle of Vernier Permanent Magnet Machines	L1: Remembering
CO5	:	Select a suitable electric drive for electric vehicle	L4: Analyzing

COUR	SE AR	TICU	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	2	2	3		3		1		2		2	2	1	2
CO2		3			1					2		1	1	2	
CO3	2	1		2	1		1		1				1	1	1
CO4	1	1		1		2	1	2	1		2	2	1	1	1
CO5	1	2	3	1		3				1	3	1	2	2	1
Avg	1.75	1.8	2.5	1.75	1	2.67	1	1.5	1	1.67	2.5	1.5	1.4	1.4	1.25
		1	3/2/1-i	indicate	s streng	th of con	rrelation	n (3- Hig	gh, 2-M	edium,	l-Low)		1	1	L

18EEHO3			SEM	1	EK	
PREREQU		CATEGORY	L	Т	Р	С
Electrical E	Engineering	PEC	3	0	0	3
Course Ot	bjectives:					
1. To u	nderstand the various types of energy storage technologies.					
	nalyze thermal storage system.					
	nalyze different battery storage technologies.					
	nodel the Lithium-ion batteries.					
5. To st	udy the various applications of energy storage systems.					
UNIT I	INTRODUCTION		9	0	0	9
	f energy storage – Types of energy storage – Comparison of energ age technology in power system, application outlook and challer					
UNIT II	THERMAL STORAGE SYSTEM		9	0	0	9
Pressurized	rage – Types – Modeling of thermal storage units – Simple water ar water storage system – Modeling of phase change storage system – sing porous medium approach – Use of TRNSYS.			age u	nits –	
UNIT III	ELECTRICAL ENERGY STORAGE		9	0	0	9
manomatic						
	al modeling of Lead Acid batteries – Flow batteries. LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith			0 ing	0	9
Analysis on Modeling - 1	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith	ium-ion Battery Pack	al coupl	Ŷ	0	
Analysis on Modeling - UNIT V Flywheel, S	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba	ium-ion Battery Pack	al coupli	ing 0	0	9
Analysis on Modeling - UNIT V Flywheel, S	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre	ium-ion Battery Pack E S essed air energy stor	al coupli s. 9 age, Con	ing 0 ncept	0 of H	9 ybric
Analysis on Modeling - UNIT V Flywheel, S	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre	ium-ion Battery Pack E S essed air energy stor	al coupli	ing 0 ncept	0 of H	9 ybrid
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications.	ium-ion Battery Pack E S essed air energy stor	al coupli s. 9 age, Con	ing 0 ncept	0 of H	9 ybrid
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications.	ium-ion Battery Pack ES essed air energy stor Total (al coupli s. age, Con (45L+0)	0 ncept Γ)= 4	0 of H	9 ybrio
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book 1. Ibra Joh 2. Ru- and	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. Stress: ahim Dincer and Mark A. Rosen, 'Thermal Energy m Wiley & Sons, 3rd Edition, 2021. -shi Liu, Lei Zhang and Xueliang sun, 'Electrocher t conversion', Wiley publications, 2 nd Volume set, 2012.	ium-ion Battery Pack ES essed air energy stor Total (7 Storage System nical technologies	al couplines. 9 age, Con 45L+0 s and for o	0 ncept Γ)= 4 App energy	0 of H 5 Per	ybrid iod
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book 1. Ibra Joh 2. Ru- and	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. st: ahim Dincer and Mark A. Rosen, 'Thermal Energy m Wiley & Sons, 3rd Edition, 2021. -shi Liu, Lei Zhang and Xueliang sun, 'Electrocher	ium-ion Battery Pack ES essed air energy stor Total (7 Storage System nical technologies	al couplines. 9 age, Con 45L+0 s and for o	0 ncept Γ)= 4 App energy	0 of H 5 Per	ybrid iod
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book 1. Ibra Joh 2. Ru- and 3. Jun	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. st: ahim Dincer and Mark A. Rosen, 'Thermal Energy m Wiley & Sons, 3rd Edition, 2021. -shi Liu, Lei Zhang and Xueliang sun, 'Electrocher conversion', Wiley publications, 2 nd Volume set, 2012. aqiu Li, "Modeling and simulation of Lithium-ion power battery the	ium-ion Battery Pack ES essed air energy stor Total (7 Storage System nical technologies	al couplines. 9 age, Con 45L+0 s and for o	0 ncept Γ)= 4 App energy	0 of H 5 Per	ybrid iod
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book 1. Ibra Joh 2. Ru- and 3. Jun Reference 1. Lur	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. Supercapacitors, Principles and Mark A. Rosen, 'Thermal Energy in Wiley & Sons, 3rd Edition, 2021. shi Liu, Lei Zhang and Xueliang sun, 'Electrocher I conversion', Wiley publications, 2 nd Volume set, 2012. aqiu Li, "Modeling and simulation of Lithium-ion power battery there Books: nardini.V.J, 'Heat Transfer in Cold Climates', Jeter Superceapacity in the set in th	ium-ion Battery Pack ES essed air energy stor Total (7 Storage System nical technologies	al couplines.	0 ncept Γ)= 4 App energy 2020.	0 of H 5 Per	ybrid iodi
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book 1. Ibra Joh 2. Ru- and 3. Jun Reference 1. Lur Edi 2. Sch	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGIH Supercapacitors, Principles and methods – Applications, Compre pplications, Pumped hydro storage – Applications. String ahim Dincer and Mark A. Rosen, 'Thermal Energy m Wiley & Sons, 3rd Edition, 2021. -shi Liu, Lei Zhang and Xueliang sun, 'Electrocher d conversion', Wiley publications, 2 nd Volume set, 2012. aqiu Li, "Modeling and simulation of Lithium-ion power battery the Books: nardini.V.J, 'Heat Transfer in Cold Climates', Je	ium-ion Battery Pack ES essed air energy stor Total (7 Storage System nical technologies rmal management", S	al couplines.	0 ncept Γ)= 4 App energy 2020.	0 of H 5 Per	9 ybrid iod ons' prag
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book 1. Ibra Joh 2. Ru- and 3. Jun Reference 1. Lur Edi 2. Sch Hen	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compreplications, Pumped hydro storage – Applications. Supercapacitors, Principles and methods – Applications, Compreplications, Pumped hydro storage – Applications. Supercapacitors, Principles and Mark A. Rosen, 'Thermal Energy m Wiley & Sons, 3rd Edition, 2021. -shi Liu, Lei Zhang and Xueliang sun, 'Electrocherd conversion', Wiley publications, 2 nd Volume set, 2012. aqiu Li, "Modeling and simulation of Lithium-ion power battery thered the simulation of Lithium-ion power battery thered the simulation of Lithium-ion power battery thered the simulation of Lithium-ion power battery the simulation of Lithium-ion power battery the set in the simulation of Lithium-ion power battery the set in the simulation of Lithium-ion power battery the set in the se	ium-ion Battery Pack ES essed air energy stor Total (7 Storage System mical technologies rmal management", S ohn Wiley and	al couplines.	0 ncept Γ)= 4 App energy 2020.	0 of H 5 Per plicati 7 sto 981,	9 ybrid iod ons' prag
Analysis on Modeling - 1 UNIT V Flywheel, S storage – Ap Text Book 1. Ibra Joh 2. Ru- and 3. Jun Reference 1. Lur Edi 2. Sch Hen terent 1. Pro	LITHIUM-ION BATTERY MODELING charge and discharge temperature characteristics of Lithium-ion ba Modeling and Optimization of Air Cooling Heat Dissipation of Lith ALTERNATE ENERGY STORAGE TECHNOLOGII Supercapacitors, Principles and methods – Applications, Compreplications, Pumped hydro storage – Applications. Supercapacitors, Principles and methods – Applications, Compreplications, Pumped hydro storage – Applications. Supercapacitors, Principles and Mark A. Rosen, 'Thermal Energy m Wiley & Sons, 3rd Edition, 2021. -shi Liu, Lei Zhang and Xueliang sun, 'Electrocherd conversion', Wiley publications, 2 nd Volume set, 2012. aqiu Li, "Modeling and simulation of Lithium-ion power battery thered the simulation of Lithium-ion power battery thered the simulation of Lithium-ion power battery thered the simulation of Lithium-ion power battery the simulation of Lithium-ion power battery the set in the simulation of Lithium-ion power battery the set in the simulation of Lithium-ion power battery the set in the se	ium-ion Battery Pack ES essed air energy stor Total (7 Storage System nical technologies rmal management", S ohn Wiley and Energy Storage	al couplines.	0 ncept Γ)= 4 App energy 2020.	0 of H 5 Per plicati 7 sto 981,	9 ybrid iod ons' prag

Course C)uto	Bloom's Taxonomy	
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Understand different types of storage technologies.	L2: Understanding
CO2	:	Model a thermal battery energy storage system	L1: Remembering
CO3	:	Analyze the modeling of Lithium-ion batteries.	L4: Analyzing
CO4	:	Analyze the appropriate storage technologies for different applications.	L3: Applying
CO5	:	Explore the alternate energy storage technologies.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1											2		3
CO2	3		2										2		3
CO3	3		2										2		3
CO4	3		2										2		3
CO5		3				2		1					2		3
Avg	3	2	2	0	0	2	0	1	0	0	0	0	2	0	3
	•	•	3/2/1-in	dicates	strength	of corre	elation (3- High,	, 2-Medi	um, 1- l	Low)				

GOVERNMENT COLLEGE OF ENGINEERING, SALEM

REGULATION 2018 A - VERTICALS FOR MINOR DEGREE

VERTICAL - I	VERTICAL - II	VERTICAL - III	VERTICAL - IV	VERTICAL - V	VERTICAL - VI
Civil Engineering	Computer Science and Engineering	Electronics and Communication Engineering	Electrical and Electronics Engineering	Mechanical Engineering	Metallurgical Engineering
18CEM01 Construction Materials	18CSM01 Programming in C++	18ECM01 Electron Devices	18EEM01 – Network Analysis and Synthesis	18MEM01 Engineering Thermodynamics	18MTM01 Advanced Physical Metallurgy
18CEM02 Building Construction & Equipment	18CSM02 Advanced Data Structures and Algorithms	18ECM02 Digital Electronics	18EEM02 – Signals and Systems 18MEM02 Fluid Mechan and Machinery		18MTM02 Metallurgical Thermodynamics and kinetics
18CEM03 Concrete Technology	18CSM03 Computer Organization and Design	18ECM03 Electronic Circuits (EC-I & EC- II, LIC)	18EEM03 – Linear and Digital Electronics Circuits	18MEM03 Manufacturing Processes	18MTM03 Mechanical Behaviour of Materials
18CEM04 Environmental Engineering	18CSM04 Advanced Operating Systems	18ECM04 Signal Processing	18EEM04 – Microprocessor and Microcontrollers	18MEM04 Materials Engineering	18MTM04 Rate Processing in Metallurgy
18CEM05 Basics of Transportation Engineering	18CSM05 Data Communication and Computer Networks	18ECM05 Microprocessors and Microcontrollers	18EEM05 – Control Systems	18MEM05 Kinematics of Machinery	18MTM05 Corrosion and Surface Engineering
18CEM06 Repair and Rehabilitation Structures	18CSM06 Programming Essentials in Python	18ECM06 Analog and Digital Communication	18EEM06 – Measurement and Instrumentation	18MEM06 Hydraulics and Pneumatics	18MTM06 Characterization of Materials
18CEM07 Green Building Technology	18CSM07 Advanced Database System Concepts	18ECM07 Communication Networks (CN)	18EEM07 – Electrical Machines	18MEM07 Design of Machine Elements	18MTM07 Automotive, Aerospace and Defense Materials
	18CSM08 Virtualization and Cloud Computing	18ECM08 Fundamentals of IoT	18EEM08 – Electric Drives and Control	18MEM08 Heat and Mass Transfer	
		18ECM09 Wireless Sensors and Networking (WSN)	18EEM09 – Electric Vehicle and Control	18MEM09 Metrology and Quality Control	
		18ECM10 Basics of Embedded Systems	18EEM10 –Electric Energy Conservation and Auditing	18MEM10 Dynamics of Machinery	

LIST OF MINOR DEGREE - VERTICALS

	Course		~ .	Ho	ours/W	/eek	lits	Maxi	imum I	Marks
S.No.	Code	Course	Cat	L	Т	Р	Credits	CA	FE	Total
		CIVIL ENGIN	EERIN	G						
1	18CEM01	Construction Materials	OE	3	0	0	3	40	60	100
2	18CEM02	Building Construction & Equipment's	OE	3	0	0	3	40	60	100
3	18CEM03	Concrete Technology	OE	3	0	0	3	40	60	100
4	18CEM04	Environmental Engineering	OE	3	0	0	3	40	60	100
5	18CEM05	Basics of Transportation Engineering	OE	3	0	0	3	40	60	100
6	18CEM06	Repair and Rehabilitation of Structures	OE	3	0	0	3	40	60	100
7	18CEM07	Green Building Technology	OE	3	0	0	3	40	60	100
		COMPUTER SCIENCE A	ND EN	GINE	ERIN	G				
1	18CSM01	Programming in C++	OE	3	0	0	3	40	60	100
2	18CSM02	Advanced Data Structures and Algorithms	OE	3	0	0	3	40	60	100
3	18CSM03	Computer Organization and Design	OE	3	0	0	3	40	60	100
4	18CSM04	Advanced Operating Systems	OE	3	0	0	3	40	60	100
5	18CSM05	Data Communication and Computer Networks	OE	3	0	0	3	40	60	100
6	18CSM06	Programming Essentials in Python	OE	3	0	0	3	40	60	100
7	18CSM07	Advanced Database System Concepts	OE	3	0	0	3	40	60	100
8	18CSM08	Virtualization and Cloud Computing	OE	3	0	0	3	40	60	100
		ELECTRONICS AND COMMUN	ICATI	ON EN	IGINI	EERIN	IG			·
1	18ECM01	Electron Devices	OE	3	0	0	3	40	60	100
2	18ECM02	Digital Electronics	OE	3	0	0	3	40	60	100
3	18ECM03	Electronic Circuits	OE	3	0	0	3	40	60	100
4	18ECM04	Signal Processing	OE	3	0	0	3	40	60	100
5	18ECM05	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100

6	18ECM06	Analog and Digital Communication	OE	3	0	0	3	40	60	100
7	18ECM07	Communication Networks	OE	3	0	0	3	40	60	100
8	18ECM08	Fundamentals of IoT	OE	3	0	0	3	40	60	100
9	18ECM09	Wireless sensors and networking	OE	3	0	0	3	40	60	100
10	18ECM10	Basics of Embedded systems	OE	3	0	0	3	40	60	100
		ELECTRICAL AND ELECTR	ONICS	ENGI	NEEF	RING				
1	18EEM01	Linear and Digital Electronics Circuits	OE	3	0	0	3	40	60	100
2	18EEM02	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100
3	18EEM03	Control Systems	OE	3	0	0	3	40	60	100
4	18EEM04	Measurements and Instrumentation	OE	3	0	0	3	40	60	100
5	18EEM05	Electrical Machines	OE	3	0	0	3	40	60	100
6	18EEM06	Electric Drives and Control	OE	3	0	0	3	40	60	100
7	18EEM07	Electric Vehicles and Control	OE	3	0	0	3	40	60	100
8	18EEM08	Electrical Energy Conservation and Auditing	OE	3	0	0	3	40	60	100
9	18EEM09	SMPS and UPS	OE	3	0	0	3	40	60	100
10	18EEM10	Utilization of Electrical Energy	OE	3	0	0	3	40	60	100
		MECHANICAL EN	GINEE	RING		L				
1	18MEM01	Engineering Thermodynamics	OE	3	0	0	3	40	60	100
2	18MEM02	Fluid Mechanics and Machinery	OE	3	0	0	3	40	60	100
3	18MEM03	Manufacturing Processes	OE	3	0	0	3	40	60	100
4	18MEM04	Materials Engineering	OE	3	0	0	3	40	60	100
5	18MEM05	Kinematics of Machinery	OE	3	0	0	3	40	60	100
6	18MEM06	Hydraulics and Pneumatics	OE	3	0	0	3	40	60	100
7	18MEM07	Design of Machine Elements	OE	3	0	0	3	40	60	100
8	18MEM08	Heat and Mass Transfer	OE	3	0	0	3	40	60	100
9	18MEM09	Metrology and Quality Control	OE	3	0	0	3	40	60	100

10.	18MEM10	Dynamics of Machinery	OE	3	0	0	3	40	60	100			
	METALLURGICAL ENGINEEING												
1	18MTM101	Advanced Physical Metallurgy	OE	3	0	0	3	40	60	100			
2	18MTM102	Thermodynamics and Kinetics in Metallurgy	OE	3	0	0	3	40	60	100			
3	18MTM103	Mechanical Behaviour of Materials	OE	3	0	0	3	40	60	100			
4	18MTM104	Rate Processes in Metallurgy	OE	3	0	0	3	40	60	100			
5	18MTM105	Corrosion and Surface Engineering	OE	3	0	0	3	40	60	100			
6	18MTM106	Materials Characterization	OE	3	0	0	3	40	60	100			
7	18MTM107	Automotive, Aerospace and Defence Materials	OE	3	0	0	3	40	60	100			

B.E. – CIVIL ENGINEERING - MINOR DEGREE

18CEM01		CONSTRUCTION MATERIALS		Semester				
PREREQUISITES Category			OE	Credit		3		
NIL			Hours/Week	L	Т	Р	ТН	
			3	0	0	3		
Course Learning Objectives								
1	1 To study the characteristics and Properties of Stones and Brick							
2	To impart	impart knowledge on Cement, Aggregate and Mortar						
3	To understand the behaviour of concrete and seasoning timber							
4	4 To study the Parts and types of flooring and roofing							
5	5 To study carpentry, arches, lintels and finishing works.							
Unit I		STONES, BRICKS		9	0	0	9	
Building Stone –classification of rocks-characteristics of good building stone – deterioration and preservation of stone work – tests on stones - Bricks- manufacture of clay bricks -classification - tests on bricks- bricks for special use- refractory bricks.								
Unit II		CEMENT, AGGREGATES, MORTAR		9	0	0	9	
Cement- composition- manufacturing process-wet and dry processes. Aggregates –coarse and fine aggregates- characteristics and function. Mortar- properties- uses- types of mortars- selection of mortars for various Civil Engineering construction.								
Unit III		CONCRETE, TIMBER AND OTHER MATERIALS		9	0	0	9	
Concrete- ingredients - principles of hardened concrete- Special concrete- types.						с		
Timber- characteristics- seasoning-preservation- Panels of laminates. Glass- properties- uses. Steel- Uses - market forms. Aluminum and other metallic materials for construction.								
Paints, Varnishes and Distempers-types-properties.								
Unit IV		FLOORING AND ROOFING		9	0	0	9	
Components of floor- selection of flooring materials- suitability of floors for various applications. damp proof course, causes of dampness- effect of dampness - requirements of good stairs - classification of stairs -Roofs - types of roofs- requirements - pitched roof - lean to roof-gable roof-hip roof-flat roof-RCC roof.								
Unit V		CARPENTARY, ARCHES, LINTELS AND FINISHING WORKS		9	0	0	9	
Location of doors and windows - size of doors - types of doors - fixture and fastenings for doors and windows - arches - classification - stability of an arch - lintels - classification of lintels - steel lintel. scaffolding - component parts - shoring - methods of plastering - defects in plastering - pointing - objectives- methods of pointing								
Total= 45 Periods								

Te	ext Books:
1	B.C. Punmia, Building Construction, Laxmi Publications; Eleventh edition -2021
2	S.C.Rangwala, Building Construction, CharotarPublishing House Pvt. Ltd, 34th Edition - 2022
3	P. Purushothama Raj., Building Construction Materials and Techniques, Pearson Education India, First Edition - 2017
Ref	erence Books:
1	Shetty M.S., Concrete Technology (Theory and Practice), S.Chand& Company Ltd., 2021.
2	Rangwala S.C., Engineering Materials (Material Science) revised and enlarged by Rangwala K.S. and Rangwala P.S., Charotar Publishing House, 2010.

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	Identify and characterize and properties of Stone and brick	Remember							
CO2	Understand the manufacturing process of cement and functions of mortar	Understand							
CO3	Identify the age of timber and preservation methods of timber	Remember							
CO4	Differentiate the types of roofing and flooring	Understand							
CO5	Understand the miscellaneous works such as carpentry, lintels, Arch, etc.	Understand							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO2	-	2	-	-	-	2	3	-	-	-	-	-	-	-	-
CO3	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-
CO4	1	-	2	-	2	3	2	-	-	-	-	-	-	-	-
CO5	1	-	-	-	3	-	2	-	-	-	-	-	-	-	-
Avg	1	2	2	-	2	3	2	-	-	-	-	-	-	-	-
	•	•	3/2/1	– indica	ates str	ength o	f corre	lation (3- High	n, 2- Me	dium, 1-	Low)			

18C	EM02	PMENT	S	emesto	er		
PRF	EREQUISI	TES	Category	OE	Cr	edit	3
NIL	,		Hours/Week	L	Т	Р	ТН
				3	0	0	3
Cou	rse Learni	ng Objectives				1	
1	Able to ga	in basic knowledge in construction methods.					
2	Able to ga	in basic knowledge in equipment.					
3	Able to ga	in basic knowledge in machineries.					
4	Able to ga	in basic knowledge in fire safety principles.					
5	Able to ga	in basic knowledge in green technology.					
		CLASSIFICATION OF BUILDINGS, FOUND	ATIONS AND	9	0	0	9
1	Unit I	TYPES OF MASONRY		,	U	U	,
level	,Classificatio	n for foundation as per N.B.C, Types of foundation on of stone masonry DOORS, WINDOWS, LINTELS, SCAFFOL		T	-		
τ	U nit II	STAIRCASES		9	0	0	9
		ows – parts of door and window – Types of Door and w – Functions, Scaffolding – Purpose and types –Location of			l, swin	ging ty	pe and
τ	Init III	ROOFS, FLOORINGS, PROTECTIVE AND E FINISHES	DECORATIVE	9	0	0	9
		Roof Slabs – Types of Roofing Systems – Methods of Terr Plastering (Interior and Exterior) – Pointing for Walls ar	U				·
	ning with di cation.	fferent Color Shades available in the Markets – Painting	g – Types of Painti	ing for	Interior	and E	xterior
τ	J nit IV	CONSTRUCTION EQUIPMENT	S	9	0	0	9
	-	ipment for earthwork excavation, drilling, blasting, tuni ial handling and erection of structures	nelling, erection an	d dewa	tering	and pu	mping,
	U nit V	GREEN BUILDING TECHNOLO	GY	9	0	0	9
	-	reen technology – types and importance; zero waste and r co green buildings, green engineering.	oncept, green materi	als – gre	en con	crete (p	ourpose
					Total	= 45 Po	eriods

Te	xt Books:									
1	Building Construction by S.C.Rangawala									
2	Construction Technology by Sarkar Oxford University Press									
3	Building Material & Construction by S.P. Arora& S. P. Bindra									
Ref	erence Books:									
1	Hopkinson And Kay J.D., The Lighting of Building, Faber and Faber, London.									
2	Koerner, R.M, Construction & Geotechnical Methods in Foundations Engineering, McGraw Hill, 1984									
3	Varna M., Construction Equipment and Its Planning & Applications, Metropolitan Books Co, 1979									

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Organize the construction technique to be followed in brick and stone masonry, concreting, flooring, roofing and plastering etc.	Create
CO2	Select safe practices in building construction activities	Evaluate
CO3	Clarify the different types of roofs, floor and productive materials of buildings	understand
CO4	Select the relevant equipment for building construction	Evaluate
CO5	Apply the Principles of green building technology.	Apply

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	2	2	2	1	1	-	-	-	-	1
CO2	-	-	-	-	3	2	2	2	2	2	-	-	-	-	1
CO3	-	-	-	-	2	3	2	2	2	1	-	-	-	-	1
CO4	-	-	-	-	2	2	3	1	1	2	-	-	-	-	1
CO5	-	-	-	-	2	3	2	2	2	2	-	-	-	-	1
Avg	-	-	-	-	2.4	2.4	2.2	1.8	1.6	1.6	-	-	-	-	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18C	EM03	CONCRETE TECHNOLOG	Y	S	emest	er			
PRF	EREQUISI	TES	Category	OE	Cr	edit	3		
NIL	1			L	Т	Р	TH		
			Hours/Week	3	0	0	3		
Cou	rse Learni	ng Objectives	I		1		1		
1	To unders	tand the properties of ingredients of concrete.							
2	To study t	he behavior of concrete at its fresh and hardened state.							
3	To study a	bout the concrete design mix.							
4	To know a	about the procedures in concrete at different stage.							
5	To unders	tand special concrete and their uses.							
1	Unit I		9	0	0	9			
Conc	crete materia	ls, Cement: Field and laboratory tests on cement, Types o	f cement and their use	s, differer	it tests f	for aggr	egates.		
Meth	nods for man	ufacturing of cement- Wet and dry process. Hydration o	f cement, Bogue's co	mpound.					
τ	U nit II	ADMIXTURES		9	0	0	9		
Acce	elerating adu	nixtures, Retarding admixtures, water reducing admix	xtures, Air entraining	g admixtı	ures, co	oloring	agent,		
Plast	icizers. Batc	hing, Mixing, Transportation, placing of concrete, curing	g of Concrete						
τ	J nit III	MIX DESIGN	MIX DESIGN						
Facto	ors influenci	ng mix proportion, Mix design by ACI method and I.S.	code method, Design	of high st	rength o	concrete	<u>.</u> 2.		
τ	J nit IV	BEHAVIOUR OF CONCRE	ТЕ	9	0	0	9		
Strer	igth of conc	rete, Shrinkage and temperature effects, creep of concre	ete, permeability of co	oncrete, d	urabilit	ty of co	ncrete,		
Corr	osion, Cause	s and effects, remedial measures, Thermal properties of	concrete, Micro crack	ting of co	ncrete.				
I	U nit V	SPECIAL CONCRETE		9	0	0	9		
Ligh	t-weight con	ncrete, Fibre reinforced concrete, Polymer modified c	oncrete, Ferro cemer	nt, Mass	concret	te, Rea	dy-mix		
conc	rete, Self-co	mpacting concrete, Quality control, Sampling and testing	g, Acceptance criteria						
					Total	= 45 P	eriods		

Те	ext Books:
1	Neville A.M Properties of Concrete, Pearson publication, 2012.
2	Shetty M.S Concrete technology, S.Chand and Company Ltd, New Delhi 2022.
3	Santha Kumar A.R Concrete Technology, Oxford university Press, NewDelhi, 2022.
4	Mehta K.P Concrete Technology, Chand & Co, NewDelhi, 2006.
5	Robert RatayForensic Structural Engineering Handbook, McGraw Hill LLC, 2009

Ref	erence Books:											
1	Indian Standard Recommended Guide lines for Concrete Mix Design, IS:10262 – 2019, Bureau of Indian Standards, NewDelhi.											
2	Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete IS:383-1970 R2011, Bureau of Indian Standards, NewDelhi.											
3	Gambhir.M.L,Concrete Technology, Volume I & II, Tata McGraw-HillBookCompany,Third print, 2003											
4	Krishna Raju N. Design of Concrete Mixes, CBS publishers. NewDelhi, 2002.											
5	Stephen E. Petty,Forensic Engineering: Damage Assessments for Residential and Commercial Structures,CRCpress,Taylor& Francis,2013.											

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To identify suitable materials to be used in the cement concrete by conducting various tests as per BIS code.	Evaluate
CO2	To know about the specific applications and uses of admixtures.	Understand
CO3	Design the concrete mix using ACI and BIS code methods.	Create
CO4	Determine the properties of fresh and hardened of concrete.	Evaluate
CO5	Design special concretes and to Ensure quality control while testing/ sampling and acceptance criteria for pre and post construction work.	Apply

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	-	1	1	1	2	1	1	1	-	1
CO2	-	-	-	-	3	-	3	-	1	1	-	-	2	-	1
CO3	-	-	-	-	3	-	3	-	-	1	-	-	1	-	1
CO4	-	-	-	-	3	2	1	-	-	-	-	-	-	-	1
CO5	-	-	-	-	3	3	3	1	1	3	1		3	-	1
Avg	-	-	-	-	3	2.5	2.2	1	1	1.75	1	1	1.75	-	1
	•	•	3/2/1	– indica	ates str	ength o	of corre	lation (3- High	n, 2- Meo	lium, 1-	Low)			

18CEM04ENVIRONMENTAL ENGINEERINGS									
PR	EREQUISI	TES	Category	OE	Cr	edit	3		
NII	⊿		Hours/Week	L	Т	P	TH		
		3	0	0	3				
Сог	Course Learning Objectives								
1	To evaluate distribution	the sources of water and analyse its characteristics and pr network	ocesses in water trea	itment, e	xpress t	he anal	ysis of		
2	To design s disposal	ewer system, basic design of the biological treatment proc	esses, gain knowled	ge on slu	dge tre	atment	and its		
3	To predict t	he sources, effects, dispersion of air pollutants air quality	management and its	control r	neasure	s			
4		the characteristics and sources of municipal solid wast olid wastes and its recovery, disposal methods	es, its collection me	ethods, c	off-site	process	sing of		
5	To assess th	ne sources, effects and control measures of noise pollution							
	Unit I	WATER TREATMENT		9	0	0	9		
Wat	er Quality an	d its Treatment: Basics of water quality standards - Phy	vsical, chemical and	biologic	al para	meters;	Water		
qual	lity index; Un	it processes and operations; Water requirement; Water dis	tribution system; Dr	inking w	ater tre	atment.			
	Unit II	WASTEWATER TREATMEN	Г	9	0	0	9		
Sew	verage system	design, quantity and quality of domestic wastewater, prin	mary and secondary	treatmen	nt. Efflu	ent dis	charge		
stan	dards; Sludge	e disposal; Reuse of treated sewage for different applicatio	ns.						
I	Unit III	AIR POLLUTION		9	0	0	9		
Air	Pollution: Ty	pes of pollutants, their sources and impacts, air pollution c	ontrol, air quality sta	andards,	Air qua	lity Ind	ex and		
limi	ts.								
1	Unit IV	SOLID WASTE MANAGEMEN	Τ	9	0	0	9		
Mur	nicipal Solid V	Wastes: Characteristics, generation, collection and transpor	tation of solid wastes	s, engine	ered sys	stems fo	or solid		
wast	waste management (reuse/ recycle, energy recovery, treatment and disposal).								
Unit VNOISE POLLUTION90						0	9		
Nois	se pollution: S	Sources; Health effects; Standards; Measurement and cont	rol methods	1		1	1		
	Total= 45 Periods								

Те	Text Books:					
1	Garg, S.K. Water supply Engineering, Khanna Publishers, New Delhi, 2010.					
2	Garg, S.K. Sewage water disposal and Air pollution, Khanna Publishers, New Delhi, 2010.					
3	George Tchobanoglous et.al., Integrated Solid Waste Management, McGraw-Hill, Publishers, 1993.					
4	Rao, C.S., Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.					

Ref	ference Books:
	Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi,
1	2013.
2	Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, NewDelhi, 1985.
	Metcalf and Eddy, M.C., Wastewater Engineering – Treatment & Reuse, TataMcGraw-Hill Publications, New
3	Delhi,2003.

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Identify the sources of water supply, analyze the characteristics of water with its standards and various unit operations and processes in water treatment, express the analysis of distribution network	Remember		
CO2	Expertise design sewer system, basic design of the biological treatment processes, gain knowledge on sludge treatment and disposal and justify the methods for disposal of sewage	Analyze		
CO3	Predict the sources, effects, dispersion of air pollutants air quality management and its control measures	Apply		
CO4	Aware about the characteristics, types and sources of municipal solid wastes, Learn the collection methods, Know about off-site processing of municipal solid wastes and its recovery, disposal methods	Remember		
CO5	Understand the sources, effects and control methods of noise pollution	Understand		

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	1	3	2	1	3	2	1	1	2	1	1	3	-	2
CO2	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO3	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO4	2	1	3	1	1	3	1	-	-	2	2	1	3	-	2
CO5	2	-	3	-	-	3	-	-	-	2	1	1	3	-	2
Avg	2	1	3	1.3	1	3	1.3	1	1	2	1.6	1	3	-	2
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CEM05 BASICS OF TRANSPORTATION ENGINEERING S									
PRE	REQUISI	TES	Category	OE	Cre	edit	3		
NIL				L	Т	Р	TH		
			Hours/Week	3	0	0	3		
Cour	se Learni	ng Objectives							
1	The objec	tive of the course is to educate the students on various co	mponents of highway	y enginee	ering.				
2	To educat	e the geometric design concepts of highway engineering							
3	To develo	p skills on construction and maintenance of highway.							
4	Ability to	plan various civil engineering aspects of railways and ed	ucate various compo	nents of	railway	s			
5	The cours	e enables the students to develop skill on evaluation and	maintenance of railw	ay track.					
U	J nit I	CROSS SECTIONAL ELEMENTS OF H	IIGHWAYS	9	0	0	9		
Sight	Distance (S	of Way, Carriage Way, Camber, Kerbs, Shoulders and Foo SSD), Overtaking Sight Distance (OSD), Sight Distance t Distance - Cross Sections of Different Class of Roads -	at Intersections, Int	. 0					
U	nit II	GEOMETRIC DESIGN OF HIGH	WAYS	9	0	0	9		
	ing, Excepti	ments – Superelevation, Widening of Pavements on H onal and Minimum Gradients, Summit and Valley Curve			-		-		
U	nit III	CONSTRUCTION AND MAINTENANCE (OF HIGHWAY	9	0	0	9		
		Flexible and Rigid Pavements – Defects in Flexible and of Pavements.	Rigid Pavements -Hi	ghway D	Drainage	e – Eva	luation		
U	nit IV	RAILWAY PLANNING AND DES	SIGN	9	0	0	9		
Gauge Geom	Permanent Way, its Components and Functions of Each Component: Rails - Types of Rails, Rail Fastenings, Concept of Gauges, Coning of Wheels, Creeps Sleepers - Functions, Materials, Density. Ballasts - Functions, Materials, Ballast less Tracks Geometric Design of Railway Tracks Gradients and Grade Compensation, Super-Elevation, Widening of Gauges in Curves, Transition Curves, Horizontal and Vertical Curves.								
T	nit V	RAILWAY TRACK CONSTRUCTION MAIN	TENANCE AND	0	0	0	9		
Unit V OPERATION 9 0 0							9		
		ngs – Turnouts, Track circuiting, Signaling, Interlocking ower, Track Resistance, Level Crossings.	, Lay Outs of Railwa	y Station	is and Y	Yards, F	Rolling		
	Total= 45 Periods								

Te	ext Books:
1	Khanna K., Justo C.E.G., Highway Engineering Revised 10th Edition Khanna Publishers, Roorkee, 2014
2	Kadiyalil. R, Engineering Traffic and Transport Planning, Khanna Publishers, New Delhi, 2019.
3	Chandola S.P. Transportation Engineering-2019

Ref	ference Books:
1	Sharma S.K., Principles Practice and Design of Highway Engineering, S. Chand & Co Ltd. New Delhi, 2006
2	Guidelines Of Ministry of Road Transport and Highways, Government of India.
3	Agarwal M.M., Indian Railway Track, 14th Edition, Prabha and Co., New Delhi, 2002.
4	Saxena S.C. Highway & Traffic Engineering, 2014.

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Classify roads as per Indian Road Congress and describe the principles of highway alignment	Understand					
CO2	Determine the highway geometric elements	Analyse					
CO3	Differentiate between types of pavements, their construction and design principles						
CO4	Explain the functions of components of Railways	Understand					
CO5	Carry out the various methods for track alignment & procedure for construction of railway & maintenance of track	Apply					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
CO2	2	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	2	2	3	1	3	-	-	-	1	-	-
CO4	-	-	-	-	2	2	3	1	2	-	-	-	-	-	-
CO5	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
Avg	2	3	2	2	2	2	3	1	2.25	-	-	-	1	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CI	EM06	REPAIR AND REHABILITATION OF	STRUCTURES	S	emest	er				
PRE	REQUISI	TES	Category	OE	Cr	edit	3			
NIL		Hours/Week	L	Т	Р	TH				
	3 0 0									
Cour	se Learni	ng Objectives		1			1			
1	Study the	various types and properties of repair materials								
2	Learn var	ious distress and damages to concrete structures								
3	Understar	d the importance of maintenance of structures								
4	Assess the	e damage to structures using various tests								
5	Learn var	ious repair techniques of damaged structures, corroded	structures							
τ	J nit I	MAINTENANCE AND REPAIR ST	RATEGIES	9	0	0	9			
Maint	enance, rep	pair and rehabilitation, Facts of Maintenance, import	ance of Maintenance v	arious a	spects	of insp	ection,			
assess	sment proce	dure for evaluating a damaged structure, causes of dete	rioration.							
U	nit II	SERVICEABILITY AND DURABILITY	OF CONCRETE	9	0	0	9			
Quali	ty assuranc	e for concrete construction, concrete properties- stren	ngth, permeability, the	mal pro	perties	and cra	icking-			
effect	s due to cl	imate, temperature, chemical, corrosion- Design and	l construction errors-et	fects of	cover	thickne	ss and			
crack	ing.									
U	nit III	MATERIALS AND TECHNIQUES F	OR REPAIR	9	0	0	9			
Speci	al concretes	and mortar, concrete chemical, special elements for a	ccelerated strength gai	n, expan	sive cei	nent, p	olymer			
concr	ete, Sulphu	infiltrated concrete, ferro cement, fibre reinforced con-	crete, rust eliminators a	nd polym	ers coa	ting for	rebars			
during	g repair, foa	med concrete, mortar and dry pack, vacuum concrete, g	unite and shotcrete, epo	oxy injec	tion, m	ortar rej	pair for			
	-	nd underpinning. Methods of corrosion protection, co	rrosion inhibitors, corre	osion res	istant s	teels, co	oatings			
and ca	athodic prot			T		1	T			
Unit IVREPAIRS, REHABILITATION AND RETROFITTING OF STRUCTURES9						0	9			
Streng	gthening of	Structural elements, deflection, cracking, chemical dist	ruption, weathering cor	rosion, w	ear, fir	e, leaka	ge and			
	e exposure.			-						
	nit V	DEMOLITION TECHNIQ		9	0	0	9			
	Demolition methods by machines, explosives, Advanced techniques-Demolition sequences, dismantling techniques, safety									
preca	precautions in dismantling and demolition, Engineered demolition techniques for dilapidated structures- case studies Total= 45 Periods									
					1 otal	= 45 P	eriods			

Te	Text Books:							
1	Shetty, M.S, Concrete Technology- Theory and Practice, S. Chand and company, New Delhi,2019							
2	Repair and protection of concrete structures by Noel P. Mailvaganam, CRC Press, 1991.							
3	CPWD: Handbook on Repair & Rehabilitation of R.C.C. Buildings, CPWD, Govt. of India, 2002, updated reprint 2011							

Ref	erence Books:
1	Santhakumar A.R, Training Course notes on Damage Assessment and Repair in Low-cost housing, "RHDC.NBO" Anna University, July 1992.
2	Raikar R.N.,Learning from failures- deficiencies in design, construction and services – R&D Centre (SDCPL), Raikar bhavan, Bombay,1987
3	Palaniyappan, N., Estate management, Anna Institute of Management, Chennai, 1992.
4	Lakshmipathy, M. etal., Lecture notes of workshop on Repairs and Rehabilitation of structures, 29-30 th October 1999.
5	https://nptel.ac.in/courses/114106035/38

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Demonstrate the condition of structures	Understand					
CO2	Inspect and evaluate the damaged structure	Analyze					
CO3	Implement the repairing techniques of a structure	Analyze					
CO4	Identify and Use different materials for repairing works	Apply					
CO5	Demonstrate the dismantling and demolishing structures	Apply					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO2	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO3	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO4	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO5	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
Avg	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CE	EM07	GREEN BUILDING TECHNOLO	GY	Semester					
PRE	REQUISI	TES	Category	OE	Cre	edit	3		
NIL				L	Т	Р	ТН		
INIL			Hours/Week	3	0	0	3		
Course Learning Objectives									
1 To Know various aspects of green buildings									
2	To Learn	the principles of planning and orientation of buildings.							
3	To Relate	the construction of green building with prevailing energy	conservation policy a	ind regu	lations.				
4	To Know	and identify different green building construction material	s.						
5	To Learn	different rating systems and their criteria							
U	J nit I	INTRODUCTION TO GREEN BUI	LDING	9	0	0	9		
		cessity, Definition & concept of Green Building, Issues a	-		-	-			
		en Building, Components/ features of Green Building, or Air Quality.	Energy Efficiency,	water	efficiei	ncy, M	aterial		
	nit II	SITE SELECTION AND PLANNI	NG	9	0	0	9		
Site se	election Sit	e selection strategies, Landscaping, building form, orienta		ne and		-	-		
		techniques, roofs, walls, fenestration and shaded finishes, I	-	-					
		nwater harvesting methods for roof & non-roof, reducir	ng landscape water o	lemand	by pro	per irri	gation		
systen	ns, recycle a	and reuse systems, Waste Management.				-			
Uı	nit III	ENERGY AND ENERGY CONSERV	VATION	9	0	0	9		
Introd	uction, Env	vironmental impact of building constructions, present scen	nario, Need of energ	y conse	rvation	, Conce	epts of		
emboo	died energy	,							
-	-	y and life cycle energy, Methods to reduce operational energy		-		-	-		
_		naterials, wind and solar energy harvesting, energy meterin	ng and monitoring, co	_	f net ze	ro buile			
Uı	nit IV	BUILDING MATERIALS		9	0	0	9		
	-	naterials and products- Bamboo, Rice husk ash concrete,		-					
		use of materials with recycled content such as blended cer	-		•				
	tiles, materials from agro and industrial waste, reuse of waste material-Plastic, rubber, Newspaper wood, Nontoxic paint, green roofing.								
	Unit VRATING SYSTEM900						9		
Introd	Introduction to Leadership in Energy and Environmental Design (LEED) criteria, Indian Green Building council (IGBC) Gree						Green		
-	rating, Green Rating for Integrated Habitat Assessment. (GRIHA) criteria, National Productivity council (NPC) Ministry of						•		
New a	New and Renewable Energy (MNRE) Bureau of Energy efficiency (BEE) -BER (Building Energy Rating) – Certificates.								
					Total=	= 45 Pe	eriods		

Te	ext Books:
	Kibert, C.J., Sustainable construction: Green Building design and Delivery, John Wiley Hobouken, NewJersey, 3 rd
	Edition, 2012.
	Chauhan, D S Sreevasthava, S K., Non-conventional Energy Resources, New Age International Publishers, NewDelhi,
2	4 th Edition, 2021

Ref	ference Books:
1	O.P. Gupta, Energy Technology, Khanna Publishing House, NewDelhi
2	Jagadeesh, K S, Reddy Venkatta Rama &Nanjunda Rao, K S., Alternative Building Materials and Technologies, New Age International Publishers, Delhi.
3	Sam Kubba., Handbook of Green Building Design and Construction, Butterworth- Heinemann.
4	Means R S, Green Building - Project Planning and Cost Estimating, John Wiley &Sons
5	Sharma K V, Venkataseshaiah P., Energy Management and Conservation, IK International.

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the concepts of Green Building	Understand					
CO2	Discuss the Planning of Green Building.	Understand					
CO3	Explain the concept of Energy and Energy Conservation.	Understand					
CO4	Select appropriate green building material and technique.	Understand					
CO5	Summarize the Green Building Functions in various organizations.	Understand					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	1	-	2	3	-	-	-	2	1	2	-	-
CO2	1	1	1	2	1	-	-	-	-	-	-	-	2	-	-
CO3	-	1	3	-	2	-	-	-	-	-	-	-	2	-	-
CO4	-	1	2	-	3	-	-	-	-	-	2	-	2	-	-
CO5	1	1	2	3	2	-	-	-	-	-	2	-	2	-	-
Avg	1	1	2	2	2	2	3	-	-	-	2	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

B.E. – COMPUTER SCIENCE ENGINEERING - MINOR DEGREE

1805	18CSM01 PROGRAMMING IN C++									
PRER	EQUIS	ITES	Category	OE	Cre	edit	3			
			Hours/Week	L	TH					
		3	0	0	3					
Cours	e Learn	ing Objectives								
1	To und	erstand and develop the object oriented programming concepts	s.							
2	To fam	iliarize and design the template functions and classes								
3	To diss	eminate and apply exception handling mechanisms.								
4	To lear	n and exploit stream classes.								
Un	it I	INTRODUCTION		9	0	0	9			
program	nming, t	ted programming paradigm - Object oriented programming penefits of OOP, application of OOP - C++ fundamentals xpressions - Control structures - Functions.	• • •		-					
Un	it II	INHERITANCE AND VIRTUAL FUNCT	TIONS	9	0	0	9			
		jects - friend functions- constructors and destructors- Open ng member function and friend function - Type conversions.	erator overloading	– bina	ry and	unary o	operator			
Uni	t III	INHERITANCE AND VIRTUAL FUNCT	ERITANCE AND VIRTUAL FUNCTIONS							
		fining derived classes, types, virtual base classes, abstract clas cts, this pointer, pointer to derived classes - Virtual functions.	sses, constructor in	derived	classes	- Pointe	ers-			
Uni	t IV	TEMPLATES AND EXCEPTION HAND	LING	9	0	0	9			
Generic Classes – class template, class templates with multiple parameters - Generic Functions - function templates, function templates with multiple parameters, member function templates - Exception handling – basics, exception handling mechanism, rethrowing an exception – Exception handling options – understanding terminate() and unexpected() – the uncaught_exception() function – bad_exception().										
Un	Unit VCONSOLE I/O AND FILE HANDLING900									
	C++ Stream Classes – unformatted I/O operations, formatted console I/O operations, manipulators - Files-classes for file operation, opening and closing a file, detecting end of file, files modes, sequential file operations, random file operations.									
	Total (45 L) =45 Periods									

Text	Text Books:							
1	E. Balagurusamy "Object – Oriented Programming with C++" Sixth Edition Tata McGraw-Hill							
Refer	Reference Books:							
1	Herbert Schildt, "The Complete Reference C++", Fifth Edition, Tata McGraw Hill							
2	Bjarne Stroustrup, "The C++ programming language", Fourth Edition Addison Wesley							
3	K.R.Venugopal, Rajkumar Buyya, T.Ravishankar, Mastering in C++, Second Edition, Tata McGraw Hill							

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Build the object oriented programming concepts.	Apply						
CO2	Familiarize and build the template functions and classes	Understand						
CO3	Disseminate and apply exception handling mechanisms.	Apply						
CO4	Depict and exploit steam classes.	Understand						

180	CSM02	ADVANCED DATA STRUCTURES AND AL	GORITHMS				
PRE	REQUIS	ITES	Category	OE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cou	rse Learn	ing Objectives					
1	To und	erstand the concepts of ADTs					
2	To Lea	rn linear data structures – lists, stacks, and queues					
3	To have	e knowledge about non-linear data structures like trees and gra	aphs				
4	To und	erstand concepts about searching and sorting and hashing tech	iniques				
U	Init I	LINEAR DATA STRUCTURES – LIS	ST	9	0	0	9
Circu	larly Linke	ypes (ADTs) – List ADT - Array based Implementation - Lined Lists - Doubly-Linked Lists - Applications of Lists – Polye, Traversal).	-				
U	nit II	LINEAR DATA STRUCTURES –STACKS AN	D QUEUES	9	0	0	9
	-	verations - Applications of Stacks - Evaluating Arithmetic Exp Operations - Circular Queue - DeQueue - Applications of Que		n of inf	ix to po	stfix Exp	pression
U	nit III	NON LINEAR DATA STRUCTURES – T	REES	9	0	0	9
Threa	ded Binar	ee traversals – Binary Tree ADT – Expression Trees – Applica y Trees- AVL Trees – B-Tree – Heaps - Operations of Heaps plications of Heap.		-			
U	nit IV	NON LINEAR DATA STRUCTURES – GI	RAPHS	9	0	0	9
Appli		presentation of Graphs –Types of Graphs - Graph Traversals - Graph Structures: Shortest Path Problem: Dijkstra's Algorithm ithms		-	-		
U	nit V	SEARCHING, SORTING AND HASHING TE	CHNIQUES	9	0	0	9
	· Merge So	ar Search - Binary Search - Sorting Algorithms - Insertion Sort ort - Radix Sort - Hashing: Hash Functions – Separate Chain					-
				Tota	al (45 L	L) =45 I	Periods
	(D 1						
	ext Books		Deener Education	- 2012			
		n Weiss, "Data Structures and Algorithm Analysis in C", 4/E	Pearson Education	n, 2013.			
	erence B						
	Seymour I Pvt. Ltd., 2	Lipschutz, "Data Structures With C ",(Schaum's Outline Ser 2015	ries) Published by	Tata N	IcGraw	-Hill Ed	ucation
2	Ellis Horo	witz, Sartaj Sahni, Dinesh Mehta, "Fundamentals of Data Stru	ctures In C", Secor	nd Editi	on, Silio	con Pres	s, 2008.
5		Gilberg & Behrouz A.Forouzan, "Data Structures: A Pseudo c Publishers,2005.	code Approach With	h C", So	econd E	dition, (Cengage
4	Classic Da	ta Structures", Second Edition by Debasis Samanta, PHI Lear	ning, 2009.				

Cours Upon	Bloom's Taxonomy Level	
CO1	Implement various abstract data types to solve real time problems by using Linear Data Structures	Apply
CO2	Apply the different Non-Linear Data Structures to solve problems	Apply
CO3	Analyze and implement graph data structures to solve various computing problems.	Analyze
CO4	Critically analyze the various sorting and searching algorithms	Analyze

18CSM03	COMPUTER ORGANIZATION AND D	ESIGN				
PREREQUIS	ITES	Category	OE Credit		3	
			L	L T P		ТН
		Hours/Week	3	0	0	3
Course Learn	ing Objectives				1	1
1 To und	erstand the basic structure and operations of digital computer					
2 To lear	n the working of different arithmetic operations					
3 To und	erstand the different types of control and the concept of pipelin	ing				
4 To stud	y the hierarchical memory system including cache memory and	d virtual memory				
5 To und	erstand the different ways of communication with I/O devices a	and standard I/O ir	nterface	8		
UNIT I	INTRODUCTION		9	0	0	9
	,Basic Operational Concepts, Bus Structure ,Memory Locatior Sequencing, Addressing modes.	ns and Addresses, I	Memory	Operati	ons, Ins	truction
UNIT II	ARITHMETIC UNIT		9	0	0	9
	btraction of Signed Numbers, Design of Fast Adders, Multiplic Integer Division, Floating point number operations.	ation of Positive N	lumbers	, Booth	Algorith	nm, Fast
UNIT III	PROCESSOR UNIT AND PIPELININ	IG	9	0	0	9
	oncepts, Execution of Instruction, Multi Bus Organization, Har of pipelining, Data Hazards, Instruction Hazards, Data path &		-	ogramm	ed cont	rol,
UNIT IV	MEMORY SYSTEMS		9	0	0	9
-	Semiconductor RAM, ROM, Cache memory, Improving Cac quirements, Secondary Storage Device.	he Performance, V	/irtual r	nemory	,Memor	У
UNIT V	INPUT AND OUTPUT ORGANIZATI	ON	9	0	0	9
Accessing I/O of SCSI, USB).	levices, Programmed I/O, Interrupts, Direct Memory Access,	Interface circuits,	Standa	rd I/O 1	Interface	es (PCI,
			Tota	l (45 L) =45 I	Periods

Text	t Books:
1	Carl Hamacher V., Zvonko G. Vranesic, Safwat G. Zaky, " Computer organization ", Tata McGraw Hill, 5th Edition, 200
Refer	rence Books:
1	Patterson and Hennessey, "Computer Organization and Design ". The Hardware/Software interface, Harcourt Asia Morgan Kaufmann, 3rd Edition, 2007
2	Hayes, "Computer Architecture and Organization ", 3rd edition, Tata McGraw Hill, 2006
3	Heuring V.P., Jordan H.F., " Computer System Design and Architecture ", 6th edition ,Addison Wesley,2008

Course Outcomes: Upon completion of this course, the students will be able to:		Bloom's Taxonomy Level
CO1	Understand the working principles of computer componets	Understand
CO2	Design the arithmetic and processing units	Create
CO3	Analyze the various computer components	Analyze

\

18CS	SM04	ADVANCED OPERATING SYSTE	MS	Semester			
PRER	EQUIS	ITES	Category	OE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives			l		
1	To un	derstand the structure and functions of Operating systems					
2	To un	derstand the process concepts and scheduling algorithms					
3	To un	derstand the concept of process synchronization and deadlock	S				
4	To lea	rn various memory management schemes					
5	To illu	istrate various file systems and disk management strategies					
UNIT	ГΙ	INTRODUCTION AND OPERATING SYSTEM S	STRUCTURES	9	0	0	9
Hand h	held Syste	tems, Desktop Systems, Multiprocessor Systems, Distributed ems; Operating Systems Structures - System Components, C m Design and Implementation.		-			-
UNIT	ΓII	PROCESS MANAGEMENT		9	0	0	9
Commu Schedu	unication lling Algo		Scheduling-Basic	Concept	ts, Sche	duling (Criteria,
UNIT	ΓIII	PROCESS SYNCHRONIZATION AND DEA	DLOCKS	9	0	0	0
						U	9
Synchr	onization	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock.		-		al Prot	olem of
Synchr	onization ck Avoid	onization- The Critical Section Problem, Synchronization Monitors; Deadlocks- Deadlock Characterization, Method	s for handling Dea	-		al Prot	olem of
Synchro Deadlo UNIT Memor	onization ck Avoid F IV ry Manag	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock.	s for handling Dea	adlocks 9	, Deadlo	cal Protock Prev	olem of vention,
Synchro Deadlo UNIT Memor	onization ck Avoid Γ IV ry Manag ; Virtual 1	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc	s for handling Dea MEMORY ation, Paging, Seg	adlocks 9	, Deadlo	cal Protock Prev	olem of vention,
Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem	onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing.	s for handling Dea MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All	9 mentati 9 File P ocation	, Deadlo 0 on, Seg 0 rotectio Metho	al Prob ock Pre 0 mentation 0 n; File ds, Free	olem of vention, 9 on with 9 System e Space
Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage	onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STF terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In	s for handling Dea MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All	9 mentati 9 File P ocation D Struc	, Deadlo 0 on, Seg 0 rotectio Metho ture; Ca	al Prob ock Prev 0 mentation n; File ds, Free use study	olem of vention, 9 on with 9 System e Space
Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage	onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STF terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In	s for handling Dea MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All	9 mentati 9 File P ocation D Struc	, Deadlo 0 on, Seg 0 rotectio Metho ture; Ca	al Prob ock Prev 0 mentation n; File ds, Free use study	9 on with 9 System e Space v: Linux
Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manago system.	onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STF terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	s for handling Dea MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All	9 mentati 9 File P ocation D Struc	, Deadlo 0 on, Seg 0 rotectio Metho ture; Ca	al Prob ock Prev 0 mentation n; File ds, Free use study	9 on with 9 System e Space v: Linux
Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manago system.	onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Int nentation- ement; M t Books	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STF terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	s for handling Des MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All Management, RAI	9 mentati 9 File P ocation D Struc Tota	, Deadlo 0 on, Seg 0 rotectio Metho ture; Ca 1 (45 L	al Prob ock Prev 0 mentation n; File ds, Free se study) =45 I	olem of vention, 9 on with 9 System e Space 7: Linux Periods
Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Int nentation- ement; M t Books	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory Im lass-Storage Structure - Disk Structure, Disk scheduling, Disk : ham Silberschatz, P.B.Galvin, G.Gagne —Operating System C	s for handling Des MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All Management, RAI	9 mentati 9 File P ocation D Struc Tota	, Deadlo 0 on, Seg 0 rotectio Metho ture; Ca 1 (45 L	al Prob ock Prev 0 mentation n; File ds, Free se study) =45 I	olem of vention, 9 on with 9 System e Space 7: Linux Periods

 1
 Andrew S. Tanenbaum, —Modern Operating Systems, PHI , 2nd edition, 2001

 2
 D.M.Dhamdhere, "Systems Programming and Operating Systems ", 2nd edition, Tata McGraw Hill Company, 1999.

3 Maurice J. Bach, —The Design of the Unix Operating System, 1st edition, PHI, 2004.

Cours Upon	Bloom's Taxonomy Level	
CO1	Identify the components and their functionalities in the operating system	Apply
CO2	Apply various CPU scheduling algorithms to solve problems	Apply
CO3	Analyze the needs and applications of process synchronization and deadlocks	Analyze
CO4	Apply the concepts of memory management including virtual memory and page replacement to the issues that occur in real time applications	Apply
CO5	Solve issues related to file system implementation and disk management	Apply

1805	18CSM05 DATA COMMUNICATION AND COMPUTER NETWORKS Semester		er				
PRER	REQUIS	ITES	Category	OE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To stud	y the concepts of data communications and functions of differ	ent ISO/OSI refere	ence arc	hitectur	e	
2	To unde	erstand the error detection and correction methods and also the	e types of LAN				
3	To stud	y the concepts of subnetting and routing mechanisms					
4	To unde	erstand the different types of protocols and congestion control					
5	To stud	y the application protocols and network security					
UNI	ГΙ	DATA COMMUNICATIONS AND PHYSICA	AL LAYER	9	0	0	9
Interc	onnection	ication; Networks- Physical Structures (Types of Connection n of Networks: Internetwork; Protocols and Standards; Networks: sing; Transmission media-Guided Media, Unguided Media.	• •		-		
UNIT	ΓII	DATA LINK LAYER		9	0	0	9
Correct Window	tion (VR w),Error	pes of errors, Redundancy, Detection versus Correction, Modu C,LRC,CRC, Checksum, Hamming Code);Data link Co Control (Automatic Repeat Request, Stop-and-wait ARQ, Slid Bus, Token Ring, FDDI.	ntrol- Flow Cont	rol (St	op- and	l-Wait,	Sliding
UNI	ГШ	NETWORK LAYER		9	0	0	9
	•	r services-Packet Switching-Network Layer Performance-IPvaters-Routing Algorithm-Distance Vector Routing, Link State		ddressir	ıg- Subi	netting-l	Bridges-
UNI	ГІ	TRANSPORT LAYER		9	0	0	9
		ransport layer-User Datagram Protocol-Transmission Contr tion, Congestion Control, Quality of Service, Techniques to in				and Qu	ality of
UNI	ΓV	PRESENTATION LAYER AND APPLICATION I	LAYER	9	0	0	9
Doma	ain Name	System - Domain Name Space, DNS in the Internet; Electron	ic Mail-FTP- HTT	P- Wor	ld Wide	Web.	1
				Tota	al (45 L	.) = 45 I	Periods
Tev	t Books	•					
1	Behrouz	z A.Ferouzan, "Data Communications and Networking", 4th E	dition, Tata McGra	w-Hill,	2007.		
Refe	rence B	ooks:					
1	Andrey	v S. Tanenbaum, "Computer networks "PHI, 4 th edition 2008					

2	William Stallings," Data and computer communications", 10th edition, PHI, 2012

3 Douglas E. comer," Internetworking with TCP/IP-Volume-I", 6th edition,PHI, 2008

	Course Outcomes: Upon completion of this course, the students will be able to:		
CO1	Classify the fundamentals of data communications and functions of layered architecture	Understand	
CO2	Apply the error detection and correction methods and also identify the different network technologies	Apply	
CO3	Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and routing technologies	Analyze	
CO4	Illustrate the transport layer principles and reliable data transfer using protocols	Apply	
CO5	Analyze the application layer protocols and also the use of network security	Analyze	

18CSM06	06 PROGRAMMING ESSENTIALS IN PYTHON		S	emest	er		
PREREQUIS	ITES	Category	OE	Cr	edit	3	
			L	L	Т	Р	ТН
		Hours/Week	3	0	0	3	
Course Learn	ing Objectives						
1 To lear	n Python data structures, conditional and control structures and	d files					
2 To stud	y Python Modules, packages, Functions and Exceptions.						
3 To des	cribe Object oriented programming features and Regular Expre	essions.					
4 To lear	n about Web programming, GUI Programming and Database	programming					
UNIT I	INTRODUCTION		9	0	0	9	
	s - The Basics-Python Objects-Numbers-Sequences-Mapping a lif-Conditional Expressions-while statement-for statement-bre		itionals	and loc	ps-if sta	itement-	
UNIT II	FUNCTIONS, MODULES AND PACKA	GES	9	0	0	9	
	ng functions-Creating functions-Passing Functions-Formal n, Modules-Packages.	Arguments-Variab	ole leng	gth arg	uments-	variable	
UNIT III	FILES AND EXCEPTIONS		9	0	0	9	
	Output –Errors and Exceptions-Introduction-Detecting and herrions-Standard Exceptions.	andling Exceptions	-Conte	t Mana	gement-	Raising	
UNIT IV	OBJECT ORIENTED PROGRAMMING AND EXPRESSIONS	REGULAR	9	0	0	9	
	ed Programming Introduction-Classes-class Attributes-Insta				e		
Invocation-Stat	c methods and class Methods-Inheritance-Operator overloadir	ig - Regular Expres	sions-N	etwork	Program	nmıng –	
UNIT V	ADVANCED TOPICS		9	0	0	9	
			,	v	Ŭ	,	
GUI Programm	ing- Web Programming-Database Programming						
			Tota	al (45 L) =45 I	Periods	

Tex	Text Books:					
1	1 Wesley J.Chun-"Core Python Programming" –Prentice Hall, Second Edition, 2006.					
Refe	Reference Books:					
1	Swaroop C N, "A Byte of Python ", ebshelf Inc., 1st Edition, 2013					
2	"A Practical Introduction to python programming", Brian Heinold, Mount St. Mary's University, 2012					
3	Learning to Program with Python," Richard L. Halterman"., Southern Adventist University					

	Course Outcomes: Upon completion of this course, the students will be able to:		
CO1	Develop programs using control structures and files.	Create	
CO2	Create own Python Modules, packages, functions and Exceptions.	Create	
CO3	Illustrate Object oriented Programming features and Regular Expressions.	Apply	
CO4	Create own Web programs, GUI and database programs.	Create	

22CS	SM07	ADVANCED DATABASE SYSTEM CO	NCEPTS	Semeste			
PRER	EQUIS	ITES	Category	OE Credit			3
		L	Т	Р	ТН		
		3	0	0	3		
Cours	e Learn	ing Objectives		•			
1	To unde	erstand the fundamentals of data models, SQL queries and rela	ational databases				
2	To mak	e a study of database design using ER Diagram and normalize	2				
3	To impa	art knowledge in transaction processing.					
4	To mak	e the students to understand the file operations and indexing					
5	To fami	liarize the students with advanced databases					
UNI	ΓI	RELATIONAL DATABASES		9	0	0	9
– Relat SQL.	ional Mo	pase System – Views of data – Data Models – Database System del – Keys – Relational Algebra – SQL fundamentals – Adv					
ÛNI	ΓII	DATABASE DESIGN		9	0	0	9
		hip model – E-R Diagrams – Enhanced-ER Model – ER-to- position – First, Second, Third Normal Forms, Dependency H					
valued	Depender	ncies and Fourth Normal Form - Join Dependencies and Fifth					
UNI	ſ III	TRANSACTION		9	0	0	9
Protoco	ols – Two	cepts – ACID Properties – Schedules – Serializability – Concu o Phase Locking – Deadlock – Transaction Recovery – Sav d Recovery.					
UNI		IMPLEMENTATION TECHNIQUE	S	9	0	0	9
B tree	Index Fil	ganization – Organization of Records in Files – Indexing and es – Static Hashing – Dynamic Hashing – Query Processing ery optimization using Heuristics and Cost Estimation.					
UNI	ΓV	ADVANCED TOPICS		9	0	0	9
Object-	Relationa	bases: Architecture, Data Storage, Transaction Processing – O al features, ODMG Object Model, ODL, OQL – XML Da y – Data Warehousing and Data Mining - information Retriev	tabases: XML Hie	erarchic	al Mod	el, DTD	, XML
				Tota	al (45 L	.) =45 I	Periods
						-	

Text	t Books:
1	Abraham Silberschatz, Henry F.Korth and S.Sundarshan "Database System Concepts", Sixth Edition, Tata McGraw Hi 2011.
Refer	rence Books:
1	Ramez Elamassri and Shankant B-Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education, 2011.
2	C.J. Date, "An Introduction to Database Systems", Eighth Edition, Pearson Education Delhi, 2008.
3	Raghu Ramakrishnan, —Database Management Systems, Fourth Edition, McGraw-Hill CollegePublications, 2015.
4	G.K.Gupta,"Database Management Systems", Tata McGraw Hill, 2011.
E-Ref	erences:
1.	Lecture Series on Database Management System by Dr.S.Srinath, IIIT Bangalore, nptl

Cours Upon	Bloom's Taxonomy Level	
CO1	Understand the basic concepts of the database and data models.	Understand
CO2	Design a database using ER diagrams and map ER into Relations and normalize the relations.	Create
CO3	Develop a simple database for applications	Create

18CS	SM08	VIRTUALIZATION AND CLOUD COM	S				
PRER	EQUIS	ITES	Category	OE	DE Credit		3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1		roduce the broad perceptive of Parallel Computing, Distributed	l Computing and C	Cloud C	omputii	ng.	
2	To un	derstand the concept of Virtualization			_	-	
3	To ide	entify the approaches of SLA and programming model in Cloud	d				
4	To un	derstand the Cloud Platforms in Industry and Software Environ	nments.				
5	To lea	rn to design the trusted Cloud Computing system					
UNI	ΓI	INTRODUCTION		9	0	0	9
Compu	ting; Vis	rallel and Distributed Computing – Elements of Parallel and Dis ion of Cloud, Defining a Cloud, characteristics and benefits; G f Clouds, Open Challenges.					
UNI	TII	VIRTUALIZATION		9	0	0	9
Virtual Full Vi	ization a rtualizati		ogy examples-Xen	: Para v	virtualiz	ation, V	Mware:
UNI	1 111	SLA MANAGEMENT IN CLOUD COMPUT PROGRAMMING MODEL	9	0	0	9	
		roaches to SLA Management, Types of SLA, Life Cycle of S chnologies for Data Intensive Computing, MapReduce Program		ment ir	Cloud	; Data Iı	ntensive
UNI	ΓIV	CLOUD INDUSTRIAL PLATFORMS AND SO ENVIRONMENTS	9	0	0	9	
		s in Industry - Amazon Web Service, Google App Engin neka Cloud Application Platform-Aneka Framework Overview				ts –Euc	alyptus,
UNI	ΓV	CLOUD SECURITY AND APPLICATION	ONS	9	0	0	9
Securit	y Risk, C	to the Idea of Data Security, The Current State of Data Sec Cloud Computing and Identity; The Cloud, Digital Identity, and entific Applications.					
				Tota	al (45L) = 45 I	Periods
Tex 1	t Books Raikum	: ar Buyya, Christian Vecchiola, S.Tamarai Selvi, 'Mastering	Cloud Computing	z-Found	lations	and An	olications
1		ming", TMGH,2013.(Unit- I,II & IV)	companie			· · · PI	

-	RajKumar Buyya, James Broberg, Andrezei M.Goscinski, "Cloud Computing: Principles and paradigms",2011(Unit-III & V)
Refer	rence Books:
1	Kai Hwang.GeoffreyC.Fox.JackJ.Dongarra, "Distributed and Cloud Computing ,From Parallel Processing to The Internet of Things", 2012 Elsevier
2	Barrie Sosinsky, "Cloud Computing Bible", Wiley Publisher, 2011

Cours Upon	Bloom's Taxonomy Level	
CO1	Explain the main concepts and architecture of Parallel computing, Distributed Computing and Cloud Computing.	Understand
CO2	Analyze the concept of Virtualization	Analyze
CO3	Identify the approaches of SLA and programming model in Cloud	Apply
CO4	Analyze the Cloud Platforms in Industry and Software Environments.	Analyze
CO5	Identify the security issues in scientific and real time applications.	Apply

B.E. - ELECTRONICS AND COMMUNICATION ENGINEERING - MINOR DEGREE

18ECM01		ELECTRON DEVICES										
PREREQ	UISITES		CATEGORY	OE	Cre	Credit 3						
			Hours/Week	L	Т	P	Т	H				
	3 0											
Course Ol	ojectives:		1	I	-1		1					
1. To int	roduce con	ponents such as diodes, BJTs and FETs, their charac	cteristics and applic	cations								
2. To une	2. To understand, analyse and design of simple diode and transistor circuits.											
3. To kno	ow the swit	ching characteristics of components and the conce	pt of rectifiers and	power suj	pplies							
Unit I	EXTRIN	SIC SEMICONDUCTOR AND PN JUCTIONS			9	0	0	9				
		ductor and their energy band structures- Law of electr	•									
		n and hole densities in extrinsic semiconductors-Mo nation- Hall effect and its applications. Band structur	•									
	• •	f diode equation-temperature dependence of diode c	v		-							
Unit II	SWITC	HING CHARACTERISTICS OF PN JUNTION A	AND SPECIAL D	IODES	9	0	0	9				
		tion and diffusion capacitance- varactor diode-ch	e	•				•				
		e- mechanism of avalanche and Zener breakdown-ter eling effect in thin barriers - tunnel diode-photo diod	• •		akdow	n vol	tag	es-				
				Jues.								
Unit III	BIPOLA	R JUNCTION TRANSISTORS			9	0	0	9				
		and NPN transistors- BJT current components-emi										
e		lulation CB, CE and CC characteristics- breakdown o translator.	characteristics- ED	ers-Moll	model	- trai	1515	tor				
Unit IV	FIELD I	EFFECT TRANSISTORS			9	0	0	9				
		racteristics of JFET-relation between pinch off volta letion types. CMOS circuits. MOS capacitance, BIC	-		ion. M	OSF	ETS	S -				
Unit V	RECTIFIERS AND POWER SUPPLIES											
		and bridge rectifiers with resistive load. Analysis for	••	0								
	-	e multipliers Zener diode regulator. Electronically r temperature coefficient.	egulated d.c power	r supplies	. Line	regul	latio	on,				
				Total (4	15L)= 4	45 Po	erio	ds				
Text Book	s:											

1.	JaconMillman& Christos C. Halkias, "Electronic Devices and Circuits"	Tata McGraw-Hill, 1991.

Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory 8 th edition.", PHI, 2002						
erence Books:						
Donald A. Neaman. "Semiconductor Physics and Devices" 3rd Ed., Tata McGraw-Hill 2002						
S. Salivahanan, N. Suresh kumar and A. Vallavaraj, Electronic Devices and Circuits, TMH, 1998.						
Ben, G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, Pearson Education 2000						
Floyd, "Electronic Devices", Sixth edition, Pearson Education, 2003.						
eferences:						
https://archive.nptel.ac.in/courses/108/108/108108122/						
https://www.youtube.com/watch?v=qqQ8wO-lNmI						
https://slideplayer.com/slide/12438044/						

Course	Course Outcomes:					
Upon completion of this course, the students will be able to:						
CO1	Interpret various applications of diode.	Applying				
CO2	Classify various configurations and biasing technique of BJT	Applying				
CO3	Apply the knowledge of using special devices for various applications	Understanding				
CO4	Discuss operation, biasing and applications of JFET.	Analysing				
CO5	Design power supplies and rectifiers	Applying				

COURSE ARTICULATION MATRIX															
COs/POs	PO	РО	PO	РО	РО	РО	РО	РО	РО	PO	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	-	-	-	I	I	I	-	-	-	1	-	-
CO2	2	2	1	I	I	I	I	I	I	-	I	-	2	-	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	-	2	2	1
CO5	2	2	1	-	-	-	-	-	-	-	-	-	3	2	2
Avg	2	2	1	-	-	-	-	-	-	-	-	-	2.2	2	1.5
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															

18E0	BECM02 DIGITAL ELECTRONICS										
PRE	REQU	JISITES	CATEGORY	OE	Crec	lit	3				
			Hours/Week	L	Т	Р	ТН				
			Hours/ Week	3	0	0	3				
Cour			•								
1	1 To introduce basic postulates of boolean algebra and show the correlation between expressions										
2	To In	troduce the methods for Simplifying Boolean expressions									
3	To O	utline the formal procedures for the analysis and design of co	ombinational circu	uits and s	equenti	ial circ	uits				
4	To in	troduce the Concept of Memories and programmable logic d	evices								
5	To ill	ustrate the concept of synchronous and Asynchronous seque	ntial circuits								
Unit	I	NUMBER SYSTEMS AND LOGIC GATES			9	0 0	9				
- Bo Simp	Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Boolean Algebra and Minimization Techniques - Canonical forms – Conversion between canonical forms – Simplifications of Boolean expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates.										
Unit	Π	COMBINATIONAL CIRCUITS			9	0 0	9				
	-	cedure – Adders/Subtractor – Serial adder/ Subtractor - Paralle xer - encoder / decoder – code converters.	el adder/ Subtracto	or-BCD a	adder- l	Multip	lexer/				
Unit	III	SEQUENTIAL CIRCUITS			9	0 0	9				
and M	Mealy	cedure - Flip flops: SR, JK, T, D and JKMS – Triggering of – Counters: Asynchronous / Ripple counters – Synchronous Iniversal shift register.									
Unit	IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS			9	0 0	9				
Design of fundamental mode circuits – primitive state / flow table – Minimization of primitive state table –state assignment. Problems in Asynchronous Circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazards elimination											
Unit V PLD AND MEMORY DEVICES							9				
Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Array (PLA) - Programmable Array Logic (PAL). Implementation of combinational logic using MUX, ROM, PAL and PLA.											
				Total (45 L) =	= 45 Pe	eriods				
Tex	t Bool	xs:									
1		M. Morris Mano, Digital Design, 4.ed., Pearson Education (Singapore) Pvt. L	td., New	Delhi,	2008					

2	R.P.Jain, Modern Digital Electronics, 4 th edition, TMH, 2010.						
Reference Books:							
1	S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 2 nd ed., Vikas Publishing House Pvt. Ltd, New Delhi, 2004						
2	Charles H.Roth. "Fundamentals of Logic Design", Thomson Publication Company, 2003.						
3	Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.						
4	John F.Wakerly, Digital Design: Principles and practices, PHI, 2006						
E-Refe	E-Reference:						
1	http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01						

2	https://nptel.ac.in/courses/117105080/6
3	https://nptel.ac.in/courses/117105080/12

Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Minimize Boolean expressions and implement using logic gates	Applying					
CO2	Design and analyse combinational logic circuits.	Analysing					
CO3	Design and analyse synchronous and asynchronous sequential logic circuits	Analysing					
CO4	Understand the concepts of memories and PLDs	Understanding					
CO5	Implement circuits using memory and PLDs.	Applying					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	РО	PO	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	2	3	2	-	-	-	-	2	1	-
CO2	3	3	2	2	3	3	2	1	1	-	-	-	3	2	-
CO3	2	2	3	3	2	1	2	1	1	-	-	-	2	2	-
CO4	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
CO5	2	1	2	1	3	2	1	2	-	-	-	I	3	2	-
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	1	-	-	I	2.4	1.6	-
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18EC	M03	ELECTRONIC CIRCUITS						
PREF	REQU	ISITES	CATEGORY	OE		Crec	lit	3
Floot	ron De	viene	Hours/Week	L		Т	Р	ТН
Elecu	ron De	vices	nours/ week	3		0	0	3
Cours	se Obj	ectives	I					
1	To pe	erform analysis on Small signal amplifiers and large sign	nal amplifiers.					
2	To gi	ve a comprehensive exposure to all types of discrete am	plifiers and oscillators	5.				
3	To ur	nderstand the various linear and non-linear applications	of op-amp					
Uni	it I	MIDBAND ANALYSIS OF SMALL SIGNAL AN	IPLIFIERS		9	0	0	9
bias c Mid-b Miller imped emitte	ircuit a band ar r's the lance u er coup	for biasing - Fixed bias circuit - Load line and quiescent as a constant current circuit. CE, CB and CC amplifiers halysis of various types of single stage amplifiers to of orem. Darlington connection using similar and Comp using Darlington connection and bootstrapping. CS, CG and the differential amplifier circuit. Differential gain - CMF	s. Method of drawing btain gain - input imp plementary transistors and CD (FET) amplifie	small-s edance Meth ers. Mu	ignal and ods c ltistag	equi outpo of inc ge am	valer ut im reasi plific	nt circuit. pedance. ng input ers-Basic
Uni	t II	LARGE SIGNAL AMPLIFIERS			9	0	0	9
circuit Calcuit their r and trapower	t of FE lation or relation ansform routpu	acy & High frequency analysis of amplifiers -Hybrid – pi ETs. Gain-bandwidth product of FETs. General express of overall upper and lower cut off frequencies of multist a to cut off frequencies. Classification of amplifiers (Class mer-coupled power amplifiers. Class B complementary- it, efficiency and power dissipation. Crossover distortion ing capacity of transistors with and without heat sink. H	sion for frequency resp tage amplifiers. Ampl ss A, B, AB, C&D), Ef symmetry, push-pull p n and methods of elim	ponse o ifier ris ficiency ower a	of mu se tim y of cl mplif	ltista e and lass A iers. (ge ar l sag A, RC Calcu	nplifiers. time and coupled lation of
power	manui	ing capacity of transistors with and without heat sink. If						
Unit	t III	OSCILLATORS			9	0	0	9
Feed stabi Osci	lback A lization llator -		usen Criterion - Mecha e connection of RC at lysis of LC Oscillator	nd LC s: Colp	or star filter	rt of c s - R Hart	oscill C ph	ation and ase shift
Feed stabi Osci	back A lization llator - er and	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana	usen Criterion - Mecha e connection of RC as lysis of LC Oscillator Electrical equivalent of	nd LC s: Colp	or star filter	rt of c s - R Hart	oscill C ph	ation and ase shift - Clapp -
Feed stabi Osci Mille Unit Analy of Cla Bistab	lback A lization llator - er and t t IV vsis of s uss C tu ble Mu	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade - Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators -	usen Criterion - Mecha e connection of RC at lysis of LC Oscillator Electrical equivalent of S C tuned amplifiers and Astable Multi vibrator	nd LC s: Colp circuit of d their a – Mon	or star filter itts – of Cry 9 applic o stat	t of c s - R Hart ystal. 0 cation	bscill C ph tley - 0 ns - E	ation and ase shift - Clapp - 9 fficiency <i>i</i> brator –
Feed stabi Osci Mille Unit Analy of Cla	lback A lization llator - er and t t IV sis of s uss C tu ble Mu g.	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators - TUNED AMPLIFIERS AND MULTIVIBRATOR single tuned and synchronously tuned amplifiers - Class uned Amplifier- Collector coupled and Emitter coupled	usen Criterion - Mecha e connection of RC at lysis of LC Oscillator Electrical equivalent of RS C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci	nd LC s: Colp circuit of d their a – Mon	or star filter itts – of Cry 9 applic o stat	t of c s - R Hart ystal. 0 cation	bscill C ph tley - 0 ns - E	ation and ase shift - Clapp - 9 fficiency <i>i</i> brator –
Feed stabi Osci Mille Unit Analy of Cla Bistab timing Uni Basic desigr Differ	lback A lization llator - er and t t IV rsis of s uss C tu ble Mu g. t V structu n - DC rentiato	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade - Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators - TUNED AMPLIFIERS AND MULTIVIBRATOR single tuned and synchronously tuned amplifiers - Class uned Amplifier- Collector coupled and Emitter coupled a lti vibrator - Triggering methods – Mono stable and A	usen Criterion - Mecha e connection of RC at lysis of LC Oscillator Electrical equivalent of RS C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci ICATIONS ntial gain - Common I verting and non-invert rigger and its applicati	nd LC s: Colp circuit of d their - Mon illators Mode g ing am ons - A prator.	or star filter: itts – of Cry 9 applic o star using 9 ain, 0 plifie Active	t of c s - R Hart ystal. 0 catior ble M g Em 0 CMR ers - l e filte	oscilla C ph tley - 0 as - E ulti v itter 0 R - 0 Integ	ation and ase shift - Clapp - 9 fficiency vibrator – and base 9 OP-AMP rator and
Feed stabi Osci Mille Unit Analy of Cla Bistab timing Uni Basic desigr Differ high p	lback A lization llator - er and t t IV sis of s ass C tu ble Mu g. t V structu n - DC rentiato bass, ba	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators - TUNED AMPLIFIERS AND MULTIVIBRATOR single tuned and synchronously tuned amplifiers - Class aned Amplifier- Collector coupled and Emitter coupled a lti vibrator - Triggering methods – Mono stable and A OPERATIONAL AMPLIFIERS AND ITS APPLI are and principle of operation - Calculation of different and AC characteristics of OP-AMP. Applications: Invo or - Summing amplifier - Precision rectifier - Schmitt tr and pass and band stop filters - Sine wave oscillators - Calculation - Calcula	usen Criterion - Mecha e connection of RC at lysis of LC Oscillator Electrical equivalent of RS C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci ICATIONS ntial gain - Common I verting and non-invert rigger and its applicati	nd LC s: Colp circuit of d their - Mon illators Mode g ing am ons - A prator.	or star filter: itts – of Cry 9 applic o star using 9 ain, 0 plifie Active	t of c s - R Hart ystal. 0 catior ble M g Em 0 CMR ers - l e filte	oscilla C ph tley - 0 as - E ulti v itter 0 R - 0 Integ	ation and ase shift - Clapp - 9 fficiency ribrator – and base 9 OP-AMP rator and ow pass,
Feed stabi Osci Mille Unit Analy of Cla Bistab timing Uni Basic desigr Differ high p	lback A lization llator - er and i t IV siss C tu ble Mu g. t V structu n - DC rentiato bass, ba	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators - TUNED AMPLIFIERS AND MULTIVIBRATOR single tuned and synchronously tuned amplifiers - Class uned Amplifier- Collector coupled and Emitter coupled A lti vibrator - Triggering methods – Mono stable and A OPERATIONAL AMPLIFIERS AND ITS APPLI ure and principle of operation - Calculation of different and AC characteristics of OP-AMP. Applications: Invor - Summing amplifier - Precision rectifier - Schmitt tr and pass and band stop filters - Sine wave oscillators – C ooks:	usen Criterion - Mecha e connection of RC an lysis of LC Oscillator Electrical equivalent of RS C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci ICATIONS ntial gain - Common I verting and non-invert rigger and its applicati Comparator – Multi vil	nd LC s: Colp circuit of d their i – Mon illators Mode g ing am ions - A prator. To	or star filter: itts – of Cry 9 applic o stat using 9 gain, 0 plifie Active tal (4	t of c s - R Hart ystal. 0 catior ole M g Em 0 CMR ers - 1 e filte 5 L)	oscilla C ph deley - 0 as - E ulti v itter 0 R - 0 Integ ers: L = 45	ation and ase shift - Clapp - 9 fficiency vibrator – and base 9 OP-AMP rator and ow pass, 5 Periods
Feed stabi Osci Mille Unit Analy of Cla Bistab timing Uni Basic desigr Differ high p	lback A lization llator - er and i t IV sis of s uss C tu ble Mu g. t V structu n - DC rentiato bass, ba	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators - TUNED AMPLIFIERS AND MULTIVIBRATOR single tuned and synchronously tuned amplifiers - Class uned Amplifier- Collector coupled and Emitter coupled a lti vibrator - Triggering methods – Mono stable and A OPERATIONAL AMPLIFIERS AND ITS APPLI ure and principle of operation - Calculation of different and AC characteristics of OP-AMP. Applications: Invor - Summing amplifier - Precision rectifier - Schmitt tr and pass and band stop filters - Sine wave oscillators – G ooks: B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju Circuits-II', Pearson Education,2012	usen Criterion - Mecha e connection of RC at lysis of LC Oscillator Electrical equivalent of RS C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci ICATIONS ntial gain - Common I verting and non-invert rigger and its applicati Comparator – Multi vil	nd LC s: Colp circuit of d their - Mon illators Mode g ing am ons - Drator. To Rama	or star filter: itts – of Cry 9 applic o star using 9 gain, 0 plifie Active tal (4	t of c s - R Hart ystal. 0 catior ble M g Em 0 CMR ers - 1 e filte 5 L)	oscilla C philey - itley - 0 as - E ulti v itter 0 Integ ers: L = 45	ation and ase shift - Clapp - 9 fficiency vibrator – and base 9 OP-AMP rator and ow pass, 5 Periods
Feed stabi Osci Mille Unit Analy of Cla Bistab timing Uni Basic desigr Differ high p	lback A lization llator - er and t t V sis of s ass C tu ble Mu g. t V structu n - DC rentiato bass, ba	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators - TUNED AMPLIFIERS AND MULTIVIBRATOR single tuned and synchronously tuned amplifiers - Class med Amplifier- Collector coupled and Emitter coupled a liti vibrator - Triggering methods – Mono stable and A OPERATIONAL AMPLIFIERS AND ITS APPLI ure and principle of operation - Calculation of different and pass and band stop filters - Sine wave oscillators - Constitute moks: B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju Circuits-II", Pearson Education,2012 D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits	usen Criterion - Mecha e connection of RC at lysis of LC Oscillator Electrical equivalent of RS C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci ICATIONS ntial gain - Common I verting and non-invert rigger and its applicati Comparator – Multi vil	nd LC s: Colp circuit of d their - Mon illators Mode g ing am ons - Drator. To Rama	or star filter: itts – of Cry 9 applic o star using 9 gain, 0 plifie Active tal (4	t of c s - R Hart ystal. 0 catior ble M g Em 0 CMR ers - 1 e filte 5 L)	oscilla C philey - itley - 0 as - E ulti v itter 0 Integ ers: L = 45	ation and ase shift - Clapp - 9 fficiency vibrator – and base 9 OP-AMP rator and ow pass, 5 Periods
Feed stabi Osci Mille Unit Analy of Cla Bistab timing Uni Basic desigr Differ high p	lback A lization llator - er and t t IV sis of s ass C two ble Mu g. t V structur n - DC rentiato bass, ba	OSCILLATORS Amplifier: Block diagram - Gain with feedback - Barkhau n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators - TUNED AMPLIFIERS AND MULTIVIBRATOR single tuned and synchronously tuned amplifiers - Class uned Amplifier- Collector coupled and Emitter coupled a lti vibrator - Triggering methods – Mono stable and A OPERATIONAL AMPLIFIERS AND ITS APPLI ure and principle of operation - Calculation of different and AC characteristics of OP-AMP. Applications: Invor - Summing amplifier - Precision rectifier - Schmitt tr and pass and band stop filters - Sine wave oscillators – G ooks: B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju Circuits-II', Pearson Education,2012	usen Criterion - Mecha e connection of RC an lysis of LC Oscillator Electrical equivalent of RS C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci ICATIONS ntial gain - Common I verting and non-invert rigger and its applicati Comparator – Multi vil Pantulu, K.Bhaskara s", New Age Internatio	nd LC s: Colp circuit of d their - - Mon illators Mode g ing am ions - A <u>orator.</u> To Rama	or star filter: itts – of Cry 9 applic o star using 9 gain, 0 plifie Active tal (4	t of c s - R Hart ystal. 0 catior ble M g Em 0 CMR ers - 1 e filte 5 L) hy, "	$\frac{0}{0}$ $\frac{0}{0}$ $\frac{0}{0}$ $\mathbf{R} - 0$ $\mathbf{R} - 0$ $\mathbf{R} - 1$ 0 $\mathbf{R} - 1$	ation and ase shift - Clapp - 9 fficiency ribrator – and base 9 OP-AMP rator and ow pass, 5 Periods

1 Millma , 2011.

2	Sedera& Smith, "Micro Electronic Circuits", 4 th Edition, Oxford University Press, Chennai.
3	Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall of India, 1996.
4	K.R.Botkar, 'Integrated Circuits', 10th edition, Khanna Publishers, 2010.
e-Re	ference:
1	http://nptel.ac.in/courses/117105080/40
2	http://nptel.ac.in/courses/117108038/1
3	https://freevideolectures.com/course/2915/linear-integrated-circuits

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To analyze small signal amplifiers and Large signal Amplifiers.	Applying
CO2	Analyze the frequency response characteristics of amplifiers	Applying
CO3	Develop insight of on oscillator design.	Applying
CO4	Construct and analyse tuned amplifiers and multivibrators.	Applying
CO5	Develop competence in linear and nonlinear Op amp circuit analysis.	Applying

	COURSE ARTICULATION MATRIX														
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	2	-	-	-	-	1	-	-	-	1	2	1
CO2	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO5	1	2	1	2	-	-	-	-	-	-	-	-	1	2	1
Avg	2.4	2	1	2	-	-	-	-	-	-	-	-	1	2	1
		3/	/2/1 -	indica	tes str	ength	of cor	relatio	n (3-H	ligh,2- N	<i>l</i> edium	,1- Lo	w)		

DEDEC							
. NEKE(QUISI	ΓΕS	CATEGORY	OE	Cre	dit	3
			Hours/Week	L	Т	P	T
				3	0	0	
Course C	bjecti	ves:			1		
I. To u	ndersta	nd and perform Fourier and Laplace analysis on signal	s and systems respec	ctively.			
2. To ar	alyse	the Discrete Fourier Transform, Fast Fourier Transform	n algorithms.				
3. To de	esign a	nd realize IIR, FIR filters.					
Unit I	INT	TRODUCTION TO SIGNALS AND SYSTEMS			9	0	0
		f Signals: Even and Odd Signal - Energy and power sig	•				
-		Continuous and Discrete amplitude signal System pusality – Stability - Realizability Linear Time-Invar					
		volution – Correlation - System representation through		-	-		
U nit II	AN	ALYSIS OF SIGNAL AND SYSTEMS			9	0	0
		Fourier Transform, Fourier Series, Relating the Laplac	te Transform to Four	rier Tran	sform, 1	Freq	uen
esponse	of con	tinuous time systems. Introduction to z- Transform.					
U nit III	DIS	CRETE FOURIER TRANSFORM			9	0	0
ntroduct	on to	DFT - Properties of DFT - Circular convolution -	FFT algorithms – F	Radix-2 I	FFT alg	orith	nms
		Time and Decimation in Frequency algorithms.				,01101	
T	INIT	ENTRE IMPLITOE DEGRANGE EN TER DEGLAN					0
U nit IV	INF	FINITE IMPULSE RESPONSE FILTER DESIGN			9	0	0
Character	istics of	of Analog Butterworth filter - Chebyshev filter - Low p	bass filter, High pass	filter, Ba	and pass	s filt	er a
3and stop	o filter	- Transformation of analog filters in to equivalent digi	tal filters using bilin	ear trans	formati	on m	leth
Realizat	ion str	ucture for IIR filters-Direct form - Cascade form - Para	allel form.				
U nit V	FIN	IITE IMPULSE RESPONSE FILTER DESIGN			9	0	0
Blackmar	nn Win	esponse of FIR filter - FIR design using window m dows - Park-McClellan's method - Realization structur cture - Comparison of FIR and IIR filters.	•		•		-
				Total (4	45L)= 4	5 Pe	erio

Text	Books:
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.
2.	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", 4th Edition, Pearson Education, 2009.

Refe	erence Books:
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010.
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.
3.	Emmanuel C. Ifeacher, Barry W. Jervis, "Digital Signal Processing: A Practical Approach", 2nd Edition, Pearson Education, 2004.
4.	S.K. Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.
E-R	eferences:
1.	http://nptel.ac.in/courses/117104074/
2.	https://www.coursera.org/learn/dsp
3.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/

Course	e Outcomes:	Bloom's			
Upon	Upon completion of this course, the students will be able to:				
		Mapped			
CO1	Analyse and understands different types of signals.	Analysing			
CO2	Represent continuous signals and systems in time and frequency domain using different transforms.	Analysing			
CO3	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.	Analysing			
CO4	Design and realize IIR filters.	Applying			
CO5	Design and realize FIR filters.	Applying			

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	РО	PO	РО	РО	РО	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	3	3	-	-	-	-	-	-	-	2	2	2
CO2	3	2	2	3	3	2	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	1	-	1	I	I	-	-	-	1	1	1
CO4	3	2	2	2	1	-	1	I	I	-	-	-	1	1	1
CO5	1	1	1	1	1	I	-	-	-	-	-	-	2	2	1
Avg	2.6	1.8	2	2.2	1.8	2	1						1.6	1.6	1.4
			3/2/1 -	indica	ates str	rength	of con	relatio	on (3-F	ligh,2- N	Mediun	n,1- Lo	ow)		

18ECM05	MICROPROCESSORS AND MICRO	CONTROLLERS				
PREREQUI	ISITES	CATEGORY	OE	Cre	dit	3
		Hours/Week	L	Т	Р	ТН
		Hours/ week	rs/Week 3			
Course Obje	ectives:				1 1	
1. T	o familiarise with 8086 and 8051 architectures.					
2. T	o interface 8086 microprocessor and 8051 microcor	ntrollers with peripherals b	y program	ming.		
3. T	o gain basic knowledge of PIC microcontrollers.					
	086 MICROPROCESSOR ARCHITECTURE			9	0	9
	Microcomputer systems-8086 Architecture – Pin As	•	itecture –	Addres	sing r	nodes
	formats- Directives and Operators-Assembly process				<u> </u>	
	PROGRAMMING AND INTERFACING OF 808			9	0	9
8251 USART	Г. 051 ARCHITECTURE			9	0	9
8051 architec — Addressin	cture - Registers in 8051 - Pin description - 8051 pa	arallel I/O ports - memory	organizati	on - In	struct	ion se
Unit IV P	ROGRAMMING AND INTERFACING OF 805	1		9	0	9
-	nguage programming.8051Timers - Serial Port Progr ADC, DAC and Sensor Interfacing - Motor Control		amming - I	LCD ar	nd Ke	yboard
	TC MICROCONTROLLERS					
Unit V P	IC MICROCONTROLLERS			9	0	9
	teristics of PIC microcontrollers – PIC microcontrol struction set and timers in PIC	oller families-Memory-Pro	ogram Mei	nory –	RAN	/I Data
-			Total	(L+T) :	= 45 p	period
				. ,	1	

Text B	ooks:								
1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.								
2.	Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.McKinlay, "The 8051 Microcontroller and Embedded								
۷.	Systems using Assembly and C", 2e, 2022.								
Referen	nce Books:								
1	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded								
1. Systems: Using Assembly and C", 2nd Edition, Pearson education, 2011.									
2.	Martin Bates,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier, 2011.								
3.	Mathur Sunil,"Microprocessor 8086: Architecture, Programming and Interfacing" PHI Learning Pvt. Ltd. 2011.								
4.	Salvador PinillosGimenez," 8051 Microcontrollers Fundamental Concepts, Hardware, Software and								
4.	Applications in Electronics", Springer 2019.								
E-Refe	erences:								
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon 2020.								
2.	https://nptel.ac.in/courses/108105102								
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html								

Cour	rse Outcomes:	Bloom's Taxonomy
Upor	n completion of this course, the students will be able to:	Mapped
CO1	Describe and analyse the architecture of 8086 microprocessor and 8051 architectures.	Remembering
CO2	Develop assembly language programs and Interface peripherals with 8086.	Applying
CO3	Develop assembly language programs and Interface peripherals with 8051.	Applying
CO4	Determine application specific circuit for real-time applications.	Understanding
CO5	Associate appropriate PIC microcontroller for a given application.	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	-	-	-	-	-	-	-	-	2	-	1	-	-
CO2	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO3	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO4	2	2	2	2	-	-	-	-	-	-	-	-	2	2	2
CO5	2	2	-	2	-	-	-	-	-	-	-	-	2	2	-
Avg	2	2	2	2	-	-	-	-	-	-	2	-	1.8	2	2

18ECN	A06	ANALOG AND DIGITAL COMMUNICA	TION								
PRER	EQUISITE	S	CATEGORY	OE	Credit		3				
			Hours/Week	L	Т	Р	TH				
				3	0	0	3				
Course Objectives:											
1.	Understan	analog and digital communication techniques.									
2.	Learn data	and pulse communication techniques.									
3.	Be familia	ized with source and Error control coding.									
Unit I		DRMATION THEORY				9 0					
	•	nation and entropy - Source coding theorem - Shanno	Ū.	Huffman	coding	s - Di	iscrete				
	•	els – Mutual information – Channel capacity – Channel	coding theorem.								
Unit I	-	ALOG COMMUNICATION			-	9 0					
		oise – External Noise- Internal Noise- Noise Calculation				•					
	• 1	es - Need for Modulation. Theory of Amplitude Mod									
	•	ory of Frequency and Phase Modulation - Comparisor	n of various Anal	og Comm	unicat	ion S	ystem				
(AM –	FM – PM).										
Unit I		GITAL COMMUNICATION			9		09				
-		eying (ASK) – Frequency Shift Keying (FSK) Minimu		,							
		QPSK – 8 PSK – 16 PSK – Quadrature Amplitude M				-	AM –				
Bandw	idth Efficie	ncy- Comparison of various Digital Communication Sy	vstem (ASK – FSI	K – PSK –	QAM).					
Unit I		LSE COMMUNICATION AND MULTIPLE ACC			1		09				
Pulse C	Communicat	ion: Pulse Amplitude Modulation (PAM) – Pulse Time	Modulation (PTN	M) – Pulse	code	Modu	ilation				
(PCM)	(PCM) - Comparison of various Pulse Communication System (PAM - PTM - PCM). Multiple access techniques:										
-	FDMA, CDMA, TDMA, SDMA.										
Unit V		ROR CONTROL CODING			1	_	09				
Linear	block code	s - Cyclic codes - Convolution codes - Maximum lik	kelihood decodin	g of conv	olution	nal co	odes –				
Sequer	ntial decodir	g of convolutional codes – Trellis codes – Applications	S.								
				Total (45L)=	45 P	eriods				

Text	Books:
1.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2014.
2.	J.G.Proakis, M.Salehi, -Fundamentals of Communication Systems, Pearson Education 2014.
Refer	rence Books:
1.	B.P.Lathi, —Modern Digital and Analog Communication Systems ^{II} , 4th Edition, Oxford University Press, 2013.
2.	D.Roody, J.Coolen, —Electronic Communications, 4th edition PHI 2015.
3.	B.Sklar, —Digital Communications Fundamentals and Applications, 5th Edition Pearson Education 2017
4.	H P Hsu, Schaum Outline Series - —Analog and Digital Communications TMH, 5th edition 2006
E-Re	ferences:
1.	https://onlinecourses.nptel.ac.in/noc21_ee74/preview
2.	https://nptel.ac.in/courses/117101051
3.	https://www.digimat.in/nptel/courses/video/117105143/L51.html

		Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO	:	Apply the concepts of Random Process to the design of Communication	Applying
CO	:	Apply analog and digital communication techniques.	Applying
CO	:	Understand the use of data and pulse communication techniques.	Understanding
CO	:	Analyze Source and Error control coding.	Analysing
CO	:	Design AM communication systems and Angle modulated communication	Applying

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO1	PSO	PSO	PSO
POs										10	11	2	1	2	3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

Hours/Week									
Hours/Week									
	P TH								
	0 3								
Course Objectives:									
1. Understand the division of network functionalities into layers.									
2. Be familiar with the components required to build different types of networks									
3. Be exposed to the required functionality at each layer									
4. Learn the flow control and congestion control algorithms									
Unit I FUNDAMENTALS & LINK LAYER 9	0 0 9								
Overview of Data Communications- Networks – Building Network and its types– Overview of Internet - Layering - OSI Mode – Physical Layer – Overview of Data and Signals - introduction to Data Link Layer - L Addressing- Error Detection and Correction									
Unit II MEDIA ACCESS & INTERNETWORKING 9	0 0 9								
Overview of Data link Control and Media access control - Ethernet (802.3) - Wireless LANs – Available Pro Bluetooth – Bluetooth Low Energy – WiFi – 6LowPAN–Zigbee - Network layer services – Packet Switching Address – Network layer protocols (IP, ICMP, Mobile IP)									
Unit IIIROUTING9	0 0 9								
Routing - Unicast Routing – Algorithms – Protocols – Multicast Routing and its basics – Overview of Intrador interdomain protocols – Overview of IPv6 Addressing – Transition from IPv4 to IPv6	main and								
Unit IVTRANSPORT LAYER9	0 0 9								
Introduction to Transport layer –Protocols- User Datagram Protocols (UDP) and Transmission Control Protocols (TCP) –Services – Features – TCP Connection – State Transition Diagram – Flow, Error and Congestion Control - Congestion avoidance (DECbit, RED) – QoS – Application requirements									
Unit V APPLICATION LAYER 9	0 0 9								
Application Layer Paradigms – Client Server Programming – World Wide Web and HTTP - DNS- Electronic Mail (SMTP, POP3, IMAP, MIME) – Introduction to Peer to Peer Networks – Need forCryptography and Network Security – Firewalls.									
Total (45L)= 45	5 Periods								

Text Books: 1.

Behrouz A Forouzan, Data Communications and Networking, 4th Edition, 2020

	C	James F. Kurose, Keith W. Ross, Computer Networking - A Top-Down Approach Featuring the Internet,
4	۷.	Seventh Edition, Pearson Education, 2016.

Refe	Reference Books:							
1.	Nader. F. Mir," Computer and Communication Networks", Pearson Prentice Hall Publishers, 2nd Edition, 2014.							
2.	Alberto Leon-Garcia, IndraWidjajaCommunication Networks 2nd Edition McGraw-Hill Education, 2003							
3.	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill							
	Publisher, 2011.							
4.	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan							
	Kaufmann Publishers, 2011.							
E-Re	ferences:							
1.	https://onlinecourses.nptel.ac.in/noc22_ee61/preview							
2.	https://www.ee.iitb.ac.in/~sarva/courses/EE706/2012/EE706LecNotes.pdf							
3.	http://www.cs.kent.edu/~farrell/net01/lectures/							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Explain the basic concept in modern data communication and different level of layers in the protocol	Understanding					
CO2	Analyse the functions and services of data link layer	Analysing					
CO3	Categorize the functions and services of network layer	Understanding					
CO4	Examine the basic functions of transport layer and congestion in networks	Understanding					
CO5	Analyse the concepts of various network applications and data security	Analysing					

					COL	JRSE .	ARTI	CULA	TION	MATR	IX				
COs/POs	РО	PO	РО	PO	PO5	PO	РО	PO	PO	PO	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4		6	7	8	9	10	11	12			
CO1	2	1	1	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	1	2	-	1	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	-	-	-	-	-	-	-	-	-	3	1	2
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	-	2
CO5	2	1	1	-	1	-	-	-	-	-	-	-	1	1	1
Avg	2.2	1.2	1.2	-	1.25	-	-	-	-	-	-	-	2	1	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E	CM08									
PRI	EREQUIS	ITES	CATEGORY	OE	C	redit		3		
			Hours/Week	L		Т	Р	TH		
			Hours/ week	3		0	0	3		
Cou	Course Objectives									
1	To under	stand Smart Objects and IoT Architectures								
2	To learn	about various IOT-related protocols								
3	To build	simple IoT Systems using Arduino and Raspberry I	Pi							
4	To under	stand data analytics and cloud in the context of IoT								
5	To develo	op IoT infrastructure for popular applications								
Ī	Unit I	FUNDAMENTALS OF IOT			9	0	0	9		
		nternet of Things - Enabling Technologies - Io								
		Alternative IoT models – Simplified IoT Architectu								
	Cloud in I art Objects	oT – Functional blocks of an IoT ecosystem – Sen	sors, Actuators, Sr	nart Ot	ojects	and (Conn	ecting		
	Jnit II	IoT PROTOCOLS			9	0	0	9		
IoT	Access T	echnologies: Physical and MAC layers, topology	y and Security of	IEEE	802.1	5.4,	802.	15.4g,		
802	.15.4e, 190	1.2a, 802.11ah and LoRaWAN – Network Layer: I	P versions, Constra	ained N	lodes a	and C	Const	rained		
		ptimizing IP for IoT: From 6LoWPAN to 6Lo, Ro				-				
	MQTT	ansport Methods: Supervisory Control and Data Ac	equisition – Applic	ation L	ayer F	roto	cols:	COAP		
	nit III	DESIGN AND DEVELOPMENT			9	0	0	9		
		odology - Embedded computing logic - Microcont	roller, System on	Chips -	- IoT	syste	m bu	ilding		
	•	ino - Board details, IDE programming - Raspberry	•	-		•		•		
Pro	ogramming	Ţ.					-			
U	nit IV	DATA ANALYTICS AND SUPPORTING SE	ERVICES		9	0	0	9		
		Unstructured Data and Data in Motion Vs Data in				•		-		
		Iadoop Ecosystem – Apache Kafka, Apache Spa								
	•	ively Cloud for IoT, Python Web Application Fra vith NETCONF-YANG	amework – Djang	0 - AV	NS 10	r 101	- 3	ystem		
	Jnit V	CASE STUDIES/INDUSTRIAL APPLICATI	ONS		9	0	0	9		
Cisc	co IoT syst	em - IBM Watson IoT platform – Manufacturing -	Converged Plantw	vide Etl	hernet	Mod	lel (C	(PwE)		
- Po	ower Utilit	y Industry - Grid Blocks Reference Model - Sma	rt and Connected							
Sma	Smart Lighting, Smart Parking Architecture and Smart Traffic Control Total (45 L) = 45 Periods									
				Tota	1 (45]	L) =	45 P	eriods		

Text	Text Books:								
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017								
2	ArshdeepBahga, Vijay Madisetti, —Internet of Things – A hands-on approachl, Universities Press, 2015								
Refe	erence Books:								
1	Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things – Key applications and Protocols, Wiley, 2012 (for Unit 2).								

1	https://online.stanford.edu/courses/xee100-introduction-internet-things https://www.udemy.com/topic/internet-of-things/
E-Re	ferences:
4	Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011.
3	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Thingsl, Springer, 2011.
2	Jan Ho ⁻ Iler, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Explain the concept of IoT.	Understanding					
CO2	Analyze various protocols for IoT.	Applying					
CO3	Design a PoC of an IoT system using Rasperry Pi/Arduino	Applying					
CO4	Apply data analytics and use cloud offerings related to IoT.	Applying					
CO5	Analyze applications of IoT in real time scenario	Analysing					

	COURSE ARTICULATION MATRIX														
COs/PO	РО	РО	РО	PO	РО	PO	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
s	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E0	CM09	WIRELESS SENSORS AND NETWORK	XING							
PRER	EQUIS	ITE:	CATEGORY	OE	Cre	dit	3			
			Hours/Week	L	Т	Р	ТН			
			Hours/ Week	3	0	0	3			
Course		49.000								
Course	Ŭ									
1.	Learn	fundamental of Ad hoc network and architecture								
2.	Under	stand the MAC and routing protocols.								
3.										
Unit I ROUTING PROTOCOLS 9 0 9										
		d hoc Wireless Networks, Issues in Ad hoc wireless networks	•							
	•	Ad hoc wireless Internet, Issues in Designing a Routing of Routing Protocols, Table Driven Routing Protocols – Des								
		Routing protocols – Ad hoc On–Demand Distance Vector Rou	•	Distance			D V),			
Unit II	[ARCHITECTURES OF WSN			9	0	0 9			
	• •	ion examples, Types of applications, Challenges for Wireless		0		•				
		or Networks, Single-Node Architecture: Hardware Components and execution environments	ents, Energy Cons	umption of	Sens	or N	odes,			
-		itecture: Sensor Network Scenarios, Optimization goals and	figures of merit T	Design prin	cinles	of V	WSN			
		ces of WSNs, gateway concepts.	inguies of ment, L	esign prin	cipies	01	vor,			
Unit II	I	MAC PROTOCOLS AND ROUTING PROTOCOLS			9	0	0 9			
Ũ	-	ssion: Predictive techniques – PCM – DPCM - DM - Transfor	e e							
		rds - Study of EZW. Video compression: Video signal repre coding – The MPEG-1 Video Standard - The MPEG-2 Video								
H.263.	based	Journg The Will 10-1 Video Standard - The Will 10-2 Vide	o Standard: 11.202	- 110-1 K	cconn	nene	ation			
Unit I	V	QUALITY OF SERVICE AND ADVANCED APPLICA	ATION SUPPORT	I	9	0	0 9			
- •		vice: Coverage and deployment, Reliable data transport, Singl			•	•				
control specific		te control - Advanced application support: Advanced in-ne	etwork processing,	Security a	nd Ap	plica	ation-			
^ 					-					
Unit V		SENSOR NETWORK PLATFORMS AND TOOLS			9	0	0 9			
		Hardware – Berkeley Motes, Programming Challenges, Nor	•		•					
		Node-level Simulators – NS2 and its extension to sensor lual nodes – State centric programming.	networks, COOJA	., 1058IM	, Pro	gram	ming			
				Total (45	L) = 4	45 Pe	riods			

Text	Books:
1.	C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education – 2008
2.	Holger Karl and Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2007.
Refe	rence Books:
1.	Feng Zhao and LeonidesGuibas, "Wireless sensor networks ", Elsevier publication - 2004.
2.	Charles E. Perkins, —Ad Hoc Networking ^{II} , Addison Wesley, 2000.
3.	William Stallings, "Wireless Communications and Networks ", Pearson Education – 2004
4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks, Elsevier, 2002, 394 - 422.
E-R	eferences:
1.	https://nptel.ac.in/courses/106105183
2.	https://nptel.ac.in/courses/106105183
3.	https://archive.nptel.ac.in/courses/106/105/106105160/

Course C Upon con	Bloom's Taxonomy Mapped						
CO1	CO1 Know the basics of Ad hoc networks and Wireless Sensor Networks						
CO2	Have a knowledge on architecture of Wireless Sensor Networks	Applying					
CO3	Apply the knowledge to identify MAC and routing protocols	Applying					
CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	Understanding					
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	Remembering					

					С	OURS	SE AR	TICU	LATI	ON M	ATRIX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E0	CM10			BASICS O	F EMBEDDED SYST	EMS					
PRE	REQU	JISITES				CATEGORY	0	E	Cred	it	3
Mior	oproce	essors and I	Mmicroco	ntrollors		Hours/Week	L	л -	Г	Р	TH
WIICI	oproce		Minicioco	nuoners		Hours/ Week	3	; (0	0	3
Cou	Course Objectives										
1	1 To impart knowledge on embedded system architecture and embedded development Strategies										
2					processors and periphera	al interfacing					
3	To u	nderstand b	basics of F	Real Time Operat	ting System					-	
UNI	ΤI	BASICS	OF EMB	EDDED SYSTI	EMS			9	0	0	9
Prog	Introduction - Fundamental Components of Embedded Systems - Challenges for Embedded Systems - Examples - Programming Languages - Recent Trends in Embedded Systems - Architecture of Embedded Systems - Embedded Design Life Cycle - Selection Process - Hardware Software Partitioning - Development Environment.										
UNIT II MEMORY MANAGEMENT AND INTERRUPTS										0	9
Vs I	nterrup		s of Intern		Memory Management N Latency - Interrupt Pri						
UNI	T III	COMMU	UNICATI	ON INTERFAC	CES			9	0	0	9
	0			faces - RS232/U – Bluetooth	ART - RS422/RS485 -	I2C Interface - SPI	Inter	rface -	USB	– C	CAN -
UNI	T IV	REAL T	IME OPE	ERATING SYST	ΓEMS			9	0	0	9
Sche	duling	- Event D	riven Sch	eduling - Resour	t Scheduling - Classifica ree Sharing - Priority Inl es - Message Queues - T	heritance Protocol -	Prior	rity Cei			
UNI	UNIT V VALIDATION AND DEBUGGING									0	9
Host and Target Machines - Validation Types and Methods - Host Testing - Host-Based Testing Setup - Target Testing - Remote Debuggers and Debug Kernels - ROM Emulator - Logical Analyzer – Background Debug Mode - InCircuit Emulator CASE STUDY: RFID Systems - GPS Navigation System – Development of Protocol Converter. Total (45 L) = 45 Periods											
	D 1										

Text]	Books:							
1	Sriram V Iyer and Pankaj Gupta, —Embedded Real-time Systems Programming ^I , Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.							
2	Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011.							
Refer	ence Books:							
1	Prasad K V K K, —Embedded/Real-Time Systems: Concepts, Design and Programming – The Ultimate Reference, Himal Impressions, New Delhi, 2003							
2	Heath, "Embedded Systems Design", Newnes an Imprint of Elsevier, Massachusetts, 2003.							
3	Tammy Noergaard, "Embedded Systems Architecture", Newnes an Imprint of Elsevier, Massachusetts, 2006.							
4	Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013							
E-Ref	E-References:							
1	https://lecturenotes.in/subject/225/embedded-system-es							
2	https://nptel.ac.in/courses/108102045/19							

.

	Course Outcomes: Upon completion of this course, the students will be able to						
CO1	Outline the concepts of embedded systems	Understanding					
CO2	Understand the concept of memory management system and interrupts.	Understanding					
CO3	Know the importance of interfaces.	Understanding					
CO4	Understand real time operating system concepts.	Understanding					
CO5	To realize the applications of validation and debugging.	Applying					

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	-	-	-	-	-	-	3	3	3	-	2
CO2	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
CO3	3	3	3	3	-	-	-	-	-	-	3	3	3	-	2
CO4	3	3	2	3	-	-	-	-	-	-	2	3	3	-	2
CO5	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
Avg	3	3	2	3	-	-	-	-	-	-	2.8	3	3	-	2
		3/	2/1 - i	ndicat	es stre	ength o	of corr	elatior	n (3-H	igh,2- N	Medium	n,1- Lo	w)		

B.E. - ELECTRICAL AND ELECTRONICS ENGINEERING - MINOR DEGREE

181	EEM01	LINEAR AND DIGITAL ELECTRONICS CI	IRCUITS	SEM	IESTI	ER						
PR	EREQ	UISITES	CATEGORY	PE	Cre	edit	3					
F1 -	atura D		Harry/Wash	L	Т	Р	TH					
Ele	ctron D	evices and Circuits	Hours/Week	3	0	0	3					
Co	urse O	bjectives:										
1.	To im	part knowledge on the characteristics& applications of Operation A	Amplifier, functiona	l diagram	and a	oplicat	ions					
	of line											
2.												
3.	3. To design the combinational logic circuits and sequential logic circuits											
Un	it I	OPERATIONAL AMPLIFIERS		9	0	0	9					
Ope	erationa	amplifiers - Equivalent circuit, voltage transfer curve - Open loop	Op-amp configurati	ons-Volt	age ser	ries, V	oltage					
		ack amplifiers configurations, closed loop differential amplifiers f	-	-								
	-	et voltage, minimizing output offset voltage due to input bias curre					-					
	-	ers, CMRR - Open loop and closed loop frequency response of op	o-amps, circuit stabi	lity, slew	rate ar	nd its e	ffects					
in a	Γ.		_									
	it II	APPLICATION OF OPERATIONAL AMPLIFIER AN		9	0	0	9					
		amplifiers- Summing, Scaling and Averaging amplifiers-Instrume	-	-								
	-	and grounded loads - Current to voltage converter - Integrator, Diff	-	-			-					
		Schmitt trigger with voltage limiter- Precision Rectifier Circuits- equency response characteristics of major active filters, first and his		-								
filte		quency response characteristics of major active inters, inst and my	glief ofder fow pass		pass m	ters, ar	i pass					
		block diagram and Applications of Linear ICs: IC 555 Timer -IC 5	566 Voltage control	led oscill:	ator- IC	7 565 F	hase-					
		vs - IC LM317 voltage regulators.	oo voluge control	ieu oseini		20001	nuse					
	it III	COMBINATIONAL LOGIC CIRCUITS		9	0	0	9					
Rep	oresenta	tion of logic functions: SOP and POS forms - Simplification	of switching func	tions: K-	maps	metho	d and					
-		luskey (Tabulation) method.	C		1							
Des	sign:Ad	lers -Subtractors- 2 bit Magnitude Comparator-Multiplexer- Demu	ultiplexer- Encoder	- Priority	Encod	er - De	coder					
- C	ode Co	overters. Implementation of combinational logic circuits using mul	tiplexers and Decod	ler.								
Un	it IV	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS		9	0	0	9					
Flip	p-flops:	SR, D, JK and T- Conversion of flip-flops; Classification of sequen	tial circuits: Moore a	and Mealy	y mode	ls - An	alysis					
and	l design	of synchronous sequential circuits - Design of synchronous counter	ers- Universal shift 1	egister.								
Un	it V	ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS	5	9	0	0	9					
Fur	ndament	al mode and pulse mode circuits, Analysis procedure of asynchro	nous circuits with /	without u	sing of	SR la	tches-					
-		ate / flow table - Reduction of state and flow table - state assignm	•	•	nchro	10us ci	rcuits					
wit	h /witho	ut using of SR latches-Problems in asynchronous sequential circui										
			Tota	al (45L+0	= (T0	45 Pe	riods					

Text	Books:
1.	Ramakant A Gayakward, "Op-Amps and Linear Integrated Circuits", Fourth Edition, Pearson Education, 2003.
2.	Donald.E.Neaman, "Electronic Circuit, Analysis and Design", Tata McGraw Hill Publishing Company Limited, Second
۷.	Edition, 2002.
3.	D.Roy Chowdhury and Shail B. Jain, "Linear Integrated Circuits", Fourth Edition, New Age International (P) Ltd
	Publishers, 2014.
4.	M. Morris Mano, "Digital Design", Third Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2003 / Pearson
4.	Education (Singapore) Pvt. Ltd., New Delhi, 2010.
5.	S. Salivahanan and S. Arivazhagan, "Digital Circuits and Design", Third Edition, Vikas Publishing House Pvt. Ltd,
5.	New Delhi, 201
Refe	rence Books:

1.	Jacob Millman, Christos C.Halkias, "Integrated Electronics - Analog and Digital circuits system", Tata McGraw Hill 2003.
2.	R.P.Jain, "Modern Digital Electronics", Third Edition, Tata McGraw-Hill Publishing company limited, New Delhi, 2011.
3.	Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2015
4.	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", Fifth Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2012.

Cours	e O	utcomes:	Bloom's Taxonomy			
Upon c	omp	Mapped				
CO1	:	Understand the Op-amp characteristics	L2: Understanding			
CO2	:	Understand the applications of Op-amp and other linear ICs. L2: Understanding				
CO3	:	Apply K-map and Tadulation methods to simplify the switching functions	L3: Applying			
CO4	:	Design and implement of combinational logic circuits	L6: Creating			
CO5	:	Analyse and design of synchronous & asynchronous sequential logic circuits	L4: Analyzing			

COUR	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1											2		
CO2	3	2	1	1									3		
CO3	3	2		2	2								3	3	
CO4	3	2	3	1	2							2	3	3	1
CO5	3	2	3	1	2							2	3	3	1
Avg.	2.8	1.8	2.3	1.25	2	-	-	-	-	-	-	2	2.8	3	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EEM02	MICROPROCESSOR AND MICROCONTR	ROLLER	SE	SEMESTER				
PREREQU	ISTIES	CATEGORY	PE	C	redit	3		
C Program	ming		L	Т	Р	TH		
U		Hours/Week	3	0	0	3		
Course Ob	jectives:							
1. To stu	idy the architecture of μP8085 and μC 8051.							
2. To stu	dy the Interrupt structure of 8085 and 8051.							
3. To do	simple applications development with programming 8085 and 8	8051.						
UNIT I	8085 8 BIT MICROPROCESSOR		9	0	0	9		
Fundamental	s of microprocessors – Architecture of 8085 – Groups of Instruc	tions - Addressing r	nodes – I	Basic t	iming d	iagram		
– Organizati	on and addressing of Memory and I/O systems -Interrupt structu	ure – Stack and sub-	routines	- Sim	ple 808	5 based		
system desig	n and programming.							
UNIT II	8051 8 BIT MICROCONTROLLER		9	0	0	9		
Fundamental	s of microcontrollers - Architecture of 8051 - Groups of Ins	tructions - Address	ing mod	es – C	rganiza	tion of		
Memory sys	tems - I/O Ports - Timers/Counters - Serial Port - Interrupt	structure – Simple	program	ming o	concept	s using		
Assemblers a	and Compliers.							
UNIT III	INTERFACING WITH 8051 MICROCONTROLLEI	R	9	0	0	9		
Need and rec	uirements of interfacing – Interfacing – LED, 7 segment and LC	D Displays – Tactil	e switche	es, Mat	rix keyl	ooard –		
Parallel ADC	C - DAC - Interfacing of Current, Voltage, RTD and Hall Sensor	rs.						
UNIT IV	EXTERNAL COMMUNICATION INTERFACE		9	0	0	9		
Synchronous	and Asynchronous Communication. RS232, RS 485, SPI, I2C. I	ntroduction and inte	rfacing to	o proto	cols lik	e Blue-		
tooth and Zig	g-bee.							
UNIT V	APPLICATIONS OF MICROCONTROLLERS		9	0	0	9		
Simple progr	ramming exercises- key board and display interface -Control of s	servo motor stepper	motor co	ontrol-	Applica	ation to		
automation s	ystems.							
		To	tal (45I	(+0T)	- 45 P	eriods		

Text H	Books:						
1.	R.S. Gaonkar, 'Microprocessor Architecture Programming and Application', with 8085, Wiley Eastern Ltd., New Delhi, 2013.						
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.						
3.	Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely 'The 8051 Micro Controller and Embedded Systems', PHI						
5.	Pearson Education, 5th Indian reprint, 2003.						
Refere	Reference Books:						
1.	R. Kamal, "Embedded System", McGraw Hill Education, 2009.						
2.	D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 1991.						
E-Ref	erences;						
1.	www.onlinecourses.nptel.ac.in/noc18_ee41						
2.	www.class-central.com						
3.	www.mooc-list.com						

Cours	e O	utcomes:	Bloom's Taxonomy			
Upon c	comp	pletion of this course, the students will be able to:	Mapped			
CO1	:	Understand basics of microprocessor and microcontroller	L2: Understanding			
CO2	:	Understand the architecture of Microprocessor and Microcontroller	L1: Remembering			
CO3	:	Apply the digital concepts to measure and control simple electrical systems	L3: Applying			
CO4	:	Design and interface communications between digital systems	L2: Understanding			
CO5	:	Design a microcontroller based electrical control system.	L5: Evaluating			

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	1	1	1								1	1	1	
CO2	2	1	1	1								1	1	1	
CO3	2	3	2	3	2							1	1	1	2
CO4	2	3	3	3	2							2	2	2	2
CO5	2	3	3	3	2							2	2	2	2
Avg.	2	2.2	2	2.2	2	-	-	-	-	-	-	1.4	1.4	1.4	2
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18	EEM03	CONTROL SYSTEMS		SEI	MEST	ER						
PR	EREQUI	ISTIES	CATEGORY	PE	Cre	edit	3					
Flee	ctrical Ma	chines and Electric circuit analysis	Hours/Week	L	Т	Р	TH					
LIC		ennies and Electric circuit analysis	Hours/ Week	1	1	0	3					
Co	urse Obje	ectives:										
1.	To under	stand the methods of representation of physical systems and	getting their transfer	functi	on moo	lels.						
2.	2. To provide adequate knowledge in the time response of systems and steady state error analysis.											
3.	-	pasic knowledge in obtaining the open loop and closed loop f	1 , 1	-	ms.							
4.		stand the concept of stability of control system and methods	of stability analysis.									
5.	To study	the designing compensators for a feedback control system.										
UN	UNIT IMODELLING OF LINEAR TIME INVARIANT SYSTEMS69											
Bas	ic element	s in control systems – Open and closed loop systems – Feedba	ck control system ch	naracter	ristics -	Mathe	ematical					
mod	del and Ele	ectrical analogy of mechanical systems - Transfer function	Representation- Sy	nchro ·	– AC a	and DO	C servo-					
mot	tors – Bloc	k diagram reduction techniques – Signal flow graphs.										
UN	IT II	TIME RESPONSE ANALYSIS		6	3	0	9					
Star	ndard test	signals - Time response of first order and second order syst	ems -time domain	specific	cations	- Stea	dy-state					
erro	ors and erro	or constants - Type and order of control systems - Effect o	f adding poles and z	zeros to	o transf	fer fun	ctions –					
Res	ponse with	P, PI, PD and PID controllers.										
UN	IT III	FREQUENCY RESPONSE ANALYSIS		6	3	0	9					
Cor	relation be	tween time and frequency response: Second order systems -	Frequency domain	specific	cations	- Pola	r plots –					
Boo	le plots – C	Computation of Gain Margin and Phase Margin — Constant I	M and N-circles – N	ichols	chart.							
UN	IT IV	STABILITY OF CONTROL SYSTEM		6	3	0	9					
BIE	BO stability	v – Necessary conditions for stability – Routh-Hurwitz stabilit	y criterion – Root lo	cus co	ncepts	– Rule	s for the					
con	struction o	f Root loci - Nyquist stability criterion - Assessment of relat	ive stability using N	lyquist	criterio	on.						
UNIT VCOMPENSATOR AND CONTROLLER DESIGN6309												
Nee	ed for com	pensation - Types of compensators - Electric network rea	alization and freque	ncy ch	aracter	istics of	of basic					
con	pensators	Lag, lead and lag-lead compensators - Design of compensation	tors using root locu	s and H	Bode pl	ot tech	iniques-					
PID	o controller	: Design using reaction curve and Ziegler - Nichols techniqu	ıe.									
	Total (30L+15T) = 45 Periods											

Tex	xt Books:
1.	A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, 2017.
2.	I.J. Nagrath, and M. Gopal, "Control Systems Engineering", New Age International Publishers, Delhi, 7th Edition, 2021.
Ref	ference Books:
1.	K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 5th Edition, 2021.
2.	M. Gopal, "Control Systems: Principles and Design", TMH, New Delhi, 4th Edition, 2018.
E-F	Reference
1.	https://nptel.ac.in/courses/107106081
2.	https://nptel.ac.in/courses/108106098

Course Ou	itco	mes:	Bloom's Taxonomy		
Upon com	plet	ion of this course, the students will be able to:	Mapped		
CO1		Develop the transfer function models of any electrical and electro-mechanical	L2: Understanding		
COI	·	systems.			
CO2	CO2 : Obtain the time responses of the systems and construct root locus plot.				
CO3	:	Analyze the frequency response of the system	L3: Applying		
CO4	:	Analyze the absolute / relative stability of a control system.	L4: Analyzing		
CO5	L3: Applying				

COUR	SE AR	TICU	LATIO	ON MA	ATRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	2	2	2							1	3	2	1
CO2	3	3	3	2	2							1	3	2	1
CO3	3	3	3	2	2							1	3	2	1
CO4	3	3	3	2	2							1	3	2	1
CO5	3	3	3	2	2							1	3	2	1
Avg	3	3	2.8	2	2	-	-	-	-	-	-	1	3	2	1
	•		3/2/1-	indicate	s streng	th of co	rrelation	n (3- Hi	gh, 2-M	ledium,	1- Low)	•	•	·

18E	EM04	MEASUREMENTS AND INSTRUMENTA	ATION	SEN	1ESTI	ER					
PRE	REQU	ISTIES	CATEGORY	PE	Cre	edit	3				
Flootr	ria Circu	it Analysis	Hours/Week	L	Т	Р	TH				
Elecu	ic Circu		Hours/ week	3	0	0	3				
Cour	se Obj	ectives:									
1.	To edu	cate the fundamental concepts and characteristics of measureme	ent System								
2.	To intr quantit	oduce the fundamentals of electrical and electronic instruments ies	for measurement of	Electric	al and I	Non-el	ectrical				
3.	To fam	iliarize Oscilloscope and the bridge circuits for electrical param	neters measurement								
UNI	ГΙ	INTRODUCTION		9	0	0	9				
Eleme	ents of a	generalized measurement system - Static and dynamic character	eristics - Errors in m	neasurem	ent. Me	easurei	nent of				
voltag	ge and cu	irrent - permanent magnet moving coil and moving iron type m	eters		-						
UNI	ΓII	MEASUREMENT OF POWER, ENERGY AND FR	REQUENCY	9	0	0	9				
		of power - single and three phase- electrodynamometer type			-		-				
equati	ion for d	eflection - errors. Measurement of energy-Single phase induction	ion type energy mete	ers, Instru	iment t	ransfo	rmers –				
		otential transformers, Power factor meters- Single phase electro	dynamometer type p	power fac	tor me	ter, fre	quency				
		al resonance type frequency meter									
UNI		DC AND AC BRIDGES		9	0	0	9				
		ions - Wheatstone bridge - Kelvin double Bridge -Maxwell's	s inductance capacit	ance brid	ge – H	lay's b	ridge –				
Ander	rson's bi	idge – Schering bridge and De Sauty's bridge				1					
UNI	ГIV	POTENTIOMETERS, OSCILLOSCOPES AND DIO	GITAL	9	0	0	9				
UNI		INSTRUMENTS		,	U	v	,				
DC Po	otentiom	eter- Crompton's Potentiometer, AC potentiometer- Drysdale p	polar potentiometer-	Gall Tin	sley co	-ordina	ite type				
poten	tiometer	, Cathode Ray Oscilloscope and Digital storage Oscilloscope-O	Construction, operat	tion and a	Applica	ations,	Digital				
multi-meters, Digital voltmeters.											
UNI	ΓV	MEASUREMENT OF NON-ELECTRICAL QUANT	FITIES	9	0	0	9				
		of transducers -Position transducers, Piezo-electric transduce	rs and Hall effect tr	ansduce	s. Me	asuren	nent of				
pressu	ure, temp	perature and displacement- Introduction to Smart Sensors									
			То	tal (45L	-+ 0 T)=	= 45 P	eriods				

Text H	Books:
1.	A.K. Sawhney, 'A Course in Electrical & Electronics Measurement & Instrumentation', Dhanpat Rai and Co, 2015
2.	E.O. Doebelin, 'Measurements Systems- Application and Design', Tata McGraw Hill publishing company, 2015.
Refere	ence Books:
1.	D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt. Ltd, 2010.
2.	H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 2015.
3.	Martin Reissland, ' Electrical Measurements', New Age International(P) Ltd., Delhi, 2011.
E-Ref	erence:
1	https://archive.nptel.ac.in/courses/108/105/108105153/

Course (Duto	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Recall the fundamentals of measurement system in electrical engineering.	L1: Remembering
CO2	:	Describe the working principle of different measuring instruments	L2: Understanding
CO3	:	Choose appropriate instrument for measuring the electrical parameters	L3: Applying
CO4	:	Employ the digital instruments in real time measurements.	L3: Applying
CO5	:	Select an appropriate transducer for measurement of non-electrical quantities	L4: Analysing

COUR	SE AR	FICUL	ATIO	N MA'	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	3				1		2		2	2	1	1
CO2	1	3			3					2		1	2	1	
CO3	1	1		2	1	1	2		1				1	2	1
CO4	1	1		1	1		2	2	1		2	2	1	3	1
CO5	2	2	3	1	2	2	1			1	3		1	2	
Avg	1.4	1.8	2.5	1.75	1.75	1.5	1.67	1.5	1	1.67	2.5	1.67	1.4	1.8	1
		•	3/2/1-ir	dicates	strength	n of cor	relation	(3- Hig	h, 2-Me	edium, 1	- Low)	•			•

18E	EMO	5 ELECTRICAL MACHINES		SEME	ESTEF	ł	
PRE	REQ	UISTIES	CATEGORY	PE	Cre	edit	3
			H	L	Т	P	TH
			Hours/Week	3	0	0	3
Cour	rse O	bjectives:					
1.	To ii	mpart knowledge on construction, working and performance of D	C generators and me	otors.			
2.	To d	eliberate the construction, working and performance of single pha	ase and three phase	ransform	ers.		
3.	To ii	mpart knowledge on construction, working and performance of sy	ynchronous generato	rs and mo	otors.		
4.	Toir	npart knowledge on construction, principle of operation and perfor	rmance of single and	three-pha	ase indu	uction 1	notors.
UNI	ΤI	DC GENERATORS		9	0	0	9
	-	operation, constructional details, types - EMF equation, armatu		-		-	-
-		ns, compensating winding, commutation, methods of improving		-	-		
		ics of different types of DC Generators. Parallel operation of DC	Generators, applicat	1	1	1	
UNI		DC MOTORS		9	0	0	9
	-	operation, significance of back emf, torque equation and power de					
		compound type motors, starting methods, speed control methods efficiency. Testing of DC Machines: Brake test, Swinburne's test		•			
		- applications of DC motors.	, mopkinson's test, r	Cetaruatio	m test,	Separa	
	T III	TRANSFORMER		9	0	0	9
		se transformer: Construction and principle of operation, work	ting of practical tra				
-	-	ulation, losses and efficiency- testing : polarity test, open circuit	• •		-		
-		parallel operation, applications.		,		,	2
Auto	transf	former: Construction and working, saving of copper - application	ns, Three phase tra	nsformer	: const	ructior	, types
of con	nnectio	ons and their comparative features.					
UNI	T IV	SYNCHRONOUS GENERATOR AND MOTOR		9	0	0	9
Syncl	hrono	us Generator: Constructional and working details – Types of r	otors – EMF equation	on – Phas	sor diag	grams o	of non-
salien	nt pole	synchronous generator connected to infinite bus - Synchronizin	g and parallel opera	tion – Sy	nchron	izing t	orque -
Volta	ige reg	ulation – EMF, MMF and ZPF method – steady state power angle	e characteristics – T	wo reacti	on theo	ory – sl	ip test.
				X 7 1	T ,	1 3 7	
-		us Motor: Principle of operation – Torque equation – Operation					
	-	t and power developed equations – Starting methods – Current loc wer Developed -Hunting – natural frequency of oscillations – dar	-	-			on and
UNI	-	THREE PHASE AND SINGLE PHASE INDUCTION				0	9
		THREE THASE AND SINGLE THASE INDOCTION se induction motor: Constructional details – Types of rotors – Pr		Fauival	Ŷ	-	-
	-	eristics - Condition for maximum torque – Losses and efficiency –		-			-
-		Separation of losses – Starters: DOL, Autotransformer and Star					
-		quency control and pole changing $-V/f$ control $-$ Slip power reco	-				
			5				
Singl	e phas	se induction motor: Constructional details – Double field revolve	ing theory and opera	tion – Eq	uivaler	nt circu	it – No
load a	and blo	ocked rotor test - Performance analysis - Starting methods of sing	le-phase induction m	otors – sp	olit pha	se, Cap	acitor-
start,	capaci	itor start and capacitor run Induction motor.					
			To	otal (45L	2+0T)=	= 45 P	eriods
Text	Book	XS:					
1.	I.	J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill	Education, 5th Editi	on, 2017			
2.		S. Bimbhra, "Electric Machinery", Khanna Publishers, 2nd Editi					
		L.Theraja and A.K.Theraja," A text book of Electrical Technolo		Chand &	Compa	any Ltd	., New
3.		elhi, 23 rd Edition, 2009.			-		

 Reference Books:

 1.
 B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers,3rd Edition, Reprint 2015.

2.	Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, First edition, 2010.
3.	A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc Graw Hill publishing Company Ltd, 6th Education, 2017.
4.	Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Education Pvt. Ltd, 4th Edition 2017.

Course (Dute	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Explain the construction and working principle of DC machines, and Interpret various characteristics of DC machines.	L2: Understanding
CO2	:	Compute various performance parameters of the machine, by conducting suitable tests.	L5: Evaluating
CO3	:	Describe the working principle of transformer, auto transformer, three phase transformer connection, and determine the efficiency and regulation.	L3: Applying
CO4	:	Understand the construction and working principle of Synchronous Machines.	L3: Applying
CO5		Understand the construction and working principle, speed control of three phase and single phase induction motor.	L5: Evaluating

COs/ POs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	1	1	1			1				1	3	2	1
CO2	3	3	1	1	1			1				1	3	2	1
CO3	3	3	1	1	1			1				1	3	2	1
CO4	3	3	1	1	1			1				1	3	2	1
CO5	3	3	1	1	1			1				1	3	2	1
Avg.	3	3	1	1	1	-	-	1	-	-	-	1	3	2	1

C Machines and Transformers, Synchronous and Induction Machines, and over Electronics L T P T Owner Electronics 3 0 0 2 Course Objectives:	18EEM06	ELECTRICAL DRIVES AND CONTI	ROL	SEN	MEST	ER	
Hours/Week 3 0 0 2 Course Objectives:	PREREQU	ISTIES	CATEGORY	PE	C	redit	3
Source Objectives: 3 0 0 3 1. To know about the operation analyse of chopper fed DC drive, both qualitatively and quantitatively. 2. To understand the operation and performance of AC motor drives. INIT I DC MOTOR CHARACTERISTICS & CHOPPER FED DC DRIVES 9 0 0 9 leview of torque-speed characteristics, operating point, armature voltage control for varying motor speed. Review of hopper and duty ratio control, chopper fed d motor for speed control, steady state operation of a chopper fed drive, armatur urrent waveform and ripple, calculation of losses in dc motor and chopper. 9 0 0 9 Veriew of Four quadrant operation of de machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structu f DC drive, inner current loop and outer speed loop, dynamic model of de motor – dynamic equations and transfer function iodeling of chopper as gain with switching delay, plant transfer function, current controller specification and design. 9 0 0 9 INIT II INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 0 0 9 veriew of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applied oltage, (ii) applied voltage and frequency. Review of three-phase voltage source inverter, generati f three-phase PWM signals, constant V/f control of induction motor 9 0 0 9	DC Machine	s and Transformers, Synchronous and Induction Machines, and	TT / TT /	L	Т	Р	TH
1. To know about the operation analyse of chopper fed DC drive, both qualitatively and quantitatively. 2. To understand the operation and performance of AC motor drives. INIT I DC MOTOR CHARACTERISTICS & CHOPPER FED DC DRIVES 9 0 0 9 deview of torque-speed characteristics of separately excited dc motor, change in torque-speed curve with armature voltage control for varying motor speed. Review of hopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armature rurent waveform and ripple, calculation of losses in dc motor and chopper. INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structur f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function todeling of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT II INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 NIT II INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) appliol oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generati f three-phase PWM signals, constant V/f control of induction motor VIT V CONTROL OF SLIP RING INDUCTION MOTOR REVES. 9 0 0 9 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneou or orque control	Power Electr	onics	Hours/ week	3	0	0	3
2. To understand the operation and performance of AC motor drives. INIT I DC MOTOR CHARACTERISTICS & CHOPPER FED DC DRIVES 9 0 0 9 teview of torque-speed characteristics of separately excited dc motor, change in torque-speed curve with armature voltage control for varying motor speed. Review of hopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armatu urrent waveform and ripple, calculation of losses in dc motor and chopper. INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 leview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structt f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function odeling of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT II INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 leview of induction motor equivalent circuit and torque-speed curve with (i) applioltage, (ii) applied voltage and frequency. Review of three-phase voltage source inverter, generati f three-phase PVM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT IV CONTROL OF SRM AND BLDC MOTOR DRIVES. 9	Course Ob	jectives:					•
INIT I DC MOTOR CHARACTERISTICS & CHOPPER FED DC DRIVES 9 0 0 9 teview of torque-speed characteristics of separately excited dc motor, change in torque-speed curve with armature voltag xample load torque-speed characteristics, operating point, armature voltage control for varying motor speed. Review of hopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armature urrent waveform and ripple, calculation of losses in dc motor and chopper. 9 0 0 9 INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control struction odeling of chopper as gain with switching delay, plant transfer function, current controller specification and design. 9 0 0 9 INIT II INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed claracteristic, variation of torque-speed curve with (i) appliol applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generati function motor 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0	1. To kn	ow about the operation analyse of chopper fed DC drive, both qu	alitatively and quar	ntitativel	у.		
Leview of torque-speed characteristics of separately excited dc motor, change in torque-speed curve with armature voltag xample load torque-speed characteristics, operating point, armature voltage control for varying motor speed. Review of hopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armature transfer and ripple, calculation of losses in dc motor and chopper. INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control struction f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function oncoleing of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed curve, Review of three-phase voltage source inverter, generatif three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 NIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 0 0 9	2. To un	derstand the operation and performance of AC motor drives.			-		
xample load torque-speed characteristics, operating point, armature voltage control for varying motor speed. Review of hopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armaturent waveform and ripple, calculation of losses in dc motor and chopper. INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structure f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function is oncelling of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) appliol oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generati f three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 Review of or or resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rocesistance, starting torque, power electronic based rotor side control of slip ring	UNIT I	DC MOTOR CHARACTERISTICS & CHOPPER FE	D DC DRIVES	9	0	0	9
xample load torque-speed characteristics, operating point, armature voltage control for varying motor speed. Review of hopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armaturent waveform and ripple, calculation of losses in dc motor and chopper. INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structure f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function is oncelling of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) appliol oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generati f three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 Review of or or resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rocesistance, starting torque, power electronic based rotor side control of slip ring	Review of to	orque-speed characteristics of separately excited dc motor, chan	ge in torque-speed	curve w	ith arn	nature	voltage
hopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armatu urrent waveform and ripple, calculation of losses in dc motor and chopper. INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 deview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structur f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function odeling of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applie oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generation f three-phase PWM signals, constant V/f control of induction motor INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 mpact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external ro sistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneou corque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive			0 1 1				0
urrent waveform and ripple, calculation of losses in dc motor and chopper. INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structure f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function modeling of chopper as gain with switching delay, plant transfer function, current controller specification and design, speontroller specification and design. INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) appliol oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generati f three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous 'orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curree ontrolled Brushless dc motor d	-		•	-	-		
INIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9 teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structing for the provided of		• • • • • •	,			,	
teview of Four quadrant operation of dc machine; single-quadrant, two-quadrant and four-quadrant choppers; Control structul f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function modeling of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applie oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generati f three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneou forque control using current controllers and flux controllers. Construction and Principle of operation of			OF DC DRIVE	9	0	0	9
f DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer function odeling of chopper as gain with switching delay, plant transfer function, current controller specification and design, spectration of chopper as gain with switching delay, plant transfer function, current controller specification and design. INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 Induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applie oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generating three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive				-		-	-
nodeling of chopper as gain with switching delay, plant transfer function, current controller specification and design, specification and design. JNIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applie oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generatient for three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 mpact of rotor resistance of the induction motor torque-speed curve, operation of slip ring induction motor with external rotesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. JNIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 INT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneou Corque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive			-				
ontroller specification and design. JNTT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applie oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generatif f three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 INIT V CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 mpact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rocesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. JNIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneou Corque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Period			• 1				
INIT III INDUCTION MOTOR CHARACTERISTICS 9 0 0 9 Leview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applie oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generating f three-phase PWM signals, constant V/f control of induction motor 9 0 0 9 INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 Impact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rosesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. Impact Of Operation - SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneor or orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Periodet Control of control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushles	-		unent controller s _f	cemean		uesign	i, speci
teview of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with (i) applied oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generating f three-phase PWM signals, constant V/f control of induction motor JNIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 mpact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rotesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. JNIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous forque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Period				0	0	Δ	0
oltage, (ii) applied frequency and (iii) applied voltage and frequency. Review of three-phase voltage source inverter, generating f three-phase PWM signals, constant V/f control of induction motor INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 Impact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rotesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Period			variation of tanga	-			-
f three-phase PWM signals, constant V/f control of induction motor INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 mpact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rotesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous or orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Period			-	-			
INIT IV CONTROL OF SLIP RING INDUCTION MOTOR 9 0 0 9 mpact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rotesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 INIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Periode Controlled State (45L+0T)	•		of three-phase volta	age sourc	e inve	rter, gei	ieratio
mpact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rotesistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery. JNIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous 'orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Period					0	0	
esistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery JNIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolledd Brushless dc motor drive Total (45L+0T)= 45 Perio				-	-	-	-
JNIT V CONTROL OF SRM AND BLDC MOTOR DRIVES. 9 0 0 9 RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneor Orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolled Brushless dc motor drive Total (45L+0T)= 45 Perior	-	• • •				1 extern	al roto
RM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous orque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolledd Brushless dc motor drive Total (45L+0T)= 45 Perio			ng motor, slip powe	r recover	у	-	1
Yorque control using current controllers and flux controllers. Construction and Principle of operation of BLDC Machine ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolledd Brushless dc motor drive Total (45L+0T)= 45 Perio	UNIT V	CONTROL OF SRM AND BLDC MOTOR DRIVES.		9	0	0	9
ensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors – Block diagram of curre ontrolledd Brushless dc motor drive Total (45L+0T)= 45 Perio	SRM constru	ction - Principle of operation - SRM drive design factors-Torque	controlled SRM-B	lock diag	ram of	Instant	aneous
ontrolledd Brushless dc motor drive Total (45L+0T)= 45 Perio	Torque contr	rol using current controllers and flux controllers. Construction	and Principle of op	peration of	of BLI	DC Ma	chine
Total (45L+0T)= 45 Perio	Sensing and	logic switching scheme,-Sinusoidal and trapezoidal type of B	rushless dc motors	- Block	diagr	am of	curren
	controlledd I	Brushless dc motor drive					
Text Books:			Te	otal (451	L+0T)	= 45 P	Period
Text Books:							
Yext Books:							
	Text Books						

1.	G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989.
2.	R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall,2010
3.	Bose B K, "Modern Power Electronics and AC Drives", Pearson Education New Delhi, 2010.
Refere	nce Books:
1.	G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2012.
2.	W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001.
E-Refe	erence
1	https://www.iith.ac.in/~ketan/drives.htmL

Course ()uto	comes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Understand the characteristics of dc motors and induction motors.	L2: Understanding
CO2	:	Summarize the operation of chopper fed DC drives.	L4: Analyzing
CO3	:	Understand the principles of speed-control of dc motors and induction motors.	L2: Understanding
CO4	:	Identify suitable power electronic converters used for dc motor and induction motor speed control.	L3: Applying

COUR	SE AR	TICUI	LATIO	N MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	3	1	3			1	1					1	3	2	
CO2	3	3	1	3		1	1					1	3	2	
CO3	3	3	3	3	1	1	1					1	3	2	
CO4	1	3	3	2	1	1	1					1	3	2	
CO5	3	3	3	3	1	1	1					1	3	2	
Avg.	2.6	2.6	2.6	2.75	1	1	1	-	-	-	-	1	3	2	-
			3/2/1-ii	ndicates	strengt	h of cor	relation	(3- Hig	h, 2-Me	dium, 1	- Low)	1	1	1	J

18E	EM07	ELECTRIC VEHICLES AND CONTRO	L	SEM	ESTI	ER			
PRE	REQU	ISTIES	CATEGORY	PE	Cre	dit	3		
El a ata			Houng/Wools	L	Т	Р	TH		
Electr		les and control	Hours/ week	3	0	0	3		
Cour	se Obj	ectives:							
1.	To pro	vide knowledge on electric vehicle architecture and its configuration	IS						
2.	To imp	part knowledge on vehicle control, use of energy storage systems and	l energy management	in Ele	ctric V	/ehicl	e		
Electrical drives and control Hours/Week L T P TI Electrical drives and control Image: Strate Strat					9				
Confi	Configurations of Electric Vehicles (EV), Performance of Electric Vehicles, Tractive Effort in Normal Driving and Energy Consumption, Hybrid Electric Vehicles (HEV): Classification, Series Hybrid Electric Drive Trains, Parallel Hybrid Electric								
Consu	umption,	, Hybrid Electric Vehicles (HEV): Classification, Series Hybrid El	ectric Drive Trains,	Paralle	l Hyb	rid El	ectric		
Drive	Trains								
TINIT	гп	PLUG-IN HYBRID ELECTRICVEHICLES (PHEV) A	ND FUEL CELL	0	0	•	0		
UNI	1 11	ELECTRIC VEHICLES		9	U	U	9		
Funct	ions and	Benefits of PHEV, Components of PHEVs, Operating Principles of	f Plug-in Hybrid Veh	icle, Co	ontrol	Strate	egy of		
PHEV	/, Fuel C	Cell: Operation and Types, Fuel Cell Electric Vehicle: Configuration	and Control Strategy	7					
UNI	ГШ	ELECTRIC PROPULSION SYSTEMS		9	0	0	9		
Typic	al electr	ic propulsion system, Classification of electric motor drives for EV a	and HEV, Multiquadr	ant Co	ntrol o	of Cho	pper-		
Fed D	C Moto	r Drives, Vector Control of Induction Motor drives, Permanent Mag	netic Brush-Less DC	Motor	Drive	s, Sw	itched		
Reluc	tance M								
UNI	ΓIV	ENERGY STORAGE SYSTEM		9	0	0	9		
Status	s of Bat	tery Systems for Automotive Applications, Battery Technologies	s: Nickel–Metal Hyd	lride (l	Ni-M	H) Ba	attery,		
Lithiu	m–Poly	mer (Li-P) Battery, Lithium-Ion (Li-Ion) Battery, Ultracapacit	ors: Features, opera	ation a	nd pe	erforn	nance,		
Ultrah	nigh-Spe	ed Flywheels, Hybridization of Energy Storages							
UNI	ΓV	ENERGY MANAGEMENT SYSTEM		9	0	0	9		
Energ	y Mana	gement System(EMS) in Electric Vehicle, Rule-based control strat	egy: Deterministic ru	le-base	ed cor	ntrol,	Fuzzy		
logic-	based c	control, and Neural network-based control. Optimization based	control strategy: I	Dynami	c Pro	ogram	ming,		
			e Hybrid Energy Stor	age Sys	stem-	based	EMS,		
Fully-	active ty	ype Hybrid Energy Storage System-based EMS							
			Total (4	45L+0	T)= 4	15 Pe	riods		

Text E	Books:
1.	Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, Taylor & Francis Group, Second
1.	Edition ,2011.
2.	Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, AliEmadi,, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles"
2.	CRC Press, 2016
Refere	ence Books:
1	Ali Emadi, Mehrdad Ehsani, John M.Miller, "Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John
1.	M.Miller, Special Indian Edition, Marcel dekker, Inc 2010
E-Ref	erence:
1	https://archive.nptel.ac.in/courses/108/106/108106170/

Course	e Oi	itcomes:	Bloom's Taxonomy					
Upon co	omp	letion of this course, the students will be able to:	Mapped					
CO1	:	Recall the fundamentals of electric vehicle and its mechanics	L1: Remembering					
CO2	:	Explain the architecture of different forms of hybrid electric vehicles. L2: Understanding						
CO3	:	Illustrate the four-quadrant operation of DC drive, induction motor drive and SRM drive for Electric Vehicles.	L4: Analyzing					
CO4	:	Select an appropriate energy storage system for Electric vehicle	L4: Analyzing					
CO5	:	Use the suitable energy management control strategy for hybrid electric vehicle L3: Applying						

COUR	SE AR	TICUI	LATIO	N MA'	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	1		1	3	1		1					1	1	2	1
CO2	1	2	3	1			2					2	1	2	
CO3	1	1			2		3						1	1	1
CO4	3	1	2	1	2		1					2	1	2	1
CO5	1	2	1	2	1							1	1	2	1
Avg	1.4	1.5	1.75	1.75	1.5	-	1.75	-	-	-	-	1.5	1	1.8	1
		•	3/2/1-ir	ndicates	strengtl	n of cor	relation	(3- Hig	h, 2-Me	dium, 1	- Low)			•	

18EEM08	ELECTRICAL ENERGY CONSERVATION AN	D AUDITING	SEN	1ESTI		
PREREQUI	SITES	CATEGORY	PE	Cre	edit	3
D G		TT (TT)	L	Т	Р	TH
Power Gener	ation, Transmission and Distribution System	Hours/Week	3	0	0	3
Course Obje	ectives:					
1. To get k	knowledge about basics of energy and energy scenario of India.					
	liarise the energy conservation methods.					
3. To acqu	ire knowledge on energy auditing, energy efficiency and mode	ern energy efficient o	levices.			
UNIT I	ENERGY SCENARIO		9	0	0	9
Commercial a	nd non-commercial energy -Primary energy resources - C	Commercial energy	producti	on - F	'inal e	nergy
consumption -	Energy needs of growing economy - Long term energy scen	ario - Energy pricin	ig - Energ	gy sect	or refo	rms -
Energy and en	vironment - Energy security - Energy conservation and its import	rtance - Restructurin	g of the e	nergy s	upply s	sector
- Energy strate	gy for the future, air pollution, climate change. Energy Conser	vation Act-2001 and	l its featu	res.		
UNIT II	BASICS OF ENERGY		9	0	0	9
Electricity tari	ff - Load management and maximum demand control - Therma	al Basics-fuels - The	rmal ener	gy cont	ents of	f fuel,
temperature an	d pressure, heat capacity, sensible and latent heat, evaporation	, condensation, stear	m, moist	air and	humid	lity &
heat transfer, u	inits and conversion.					
UNIT III	ENERGY MANAGEMENT AND AUDIT		9	0	0	9
Definition - Er	nergy audit – Need and types of energy audit. Energy managem	nent (audit) approach	understa	nding	energy	costs
- Bench marki	ng - Energy performance - Matching energy use to requiremen	t - Maximizing syste	em efficie	encies -	Optin	nizing
the input energ	gy requirements, fuel and energy substitution - Energy audit in	struments. Material	and energ	gy bala	nce: Fa	acility
as an energy sy	stem - Methods for preparing process flow, material and energy	gy balance diagrams	•			
UNIT IV	ENERGY EFFICIENCY		9	0	0	9
Electrical syste	em: Electricity billing - Electrical load management and maxim	num demand control	-Power f	actor in	nprove	ement
and its benefit	- Selection and location of capacitors - Performance assessme	nt of PF capacitors,	distributi	on and	transfo	ormer
losses. Electri	c motors: Types - Losses in induction motors - Motor effic	eiency - Factors affe	ecting me	otor pe	rforma	nce -
Rewinding and	1 motor replacement issues - Energy saving opportunities with	energy efficient mot	ors.			
UNIT V		9	0	0	9	
Maximum den	nand controllers - Automatic power factor controllers - Energy	efficient motors -So	oft starter	s with e	energy	saver
	ed drives - Energy efficient transformers - Electronic ballast	- Occupancy sensor	s - Energ	v effic	ient lic	hting
- Variable spe			6	, on the	ionic ng	
-	gy saving potential of each technology.	i i i j		y enne	ient ng	,B

Text	Books:									
1.	Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015.									
2,	Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991.									
3.	Hossam A Gabbar, "Energy Conservation in Infrastructure Systems", Wiley-IEEE Press, New Jersey, 2018									
Refe	erence Books:									
1.	General Aspects of Energy Management and Energy Audit, Bureau of Energy Efficiency, New Delhi, 2015.									
2,	2, Energy Efficiency in Electrical Utilities, Bureau of Energy Efficiency, New Delhi, 2015.									

Course	e Outcomes:	Bloom's Taxonomy
Upon co	ompletion of this course, the students will be able to:	Mapped
CO1	Identify the present energy scenario and future energy strategy.	L1: Understanding
CO2	Recognize the various forms of energy.	L1: Understanding
CO3	Interpret energy management methods and energy auditing.	L3: Applying
CO4	Familiar in energy efficiency of electrical systems.	L4: Analysing
CO5	Familiar with the advanced energy efficient technologies.	L4: Analysing

COUR	SE AR	TICU	LATIO	ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	2	3	2	2		3					1	2	2	1
CO2	1	2	2	2	2		3					1	2	2	1
CO3	2	2	2	3	2		3					1	1	3	1
CO4	2	3	2	2	3		3					1	3	3	1
CO5	2	2	3	1	2		3					1	3	2	1
Avg	1.6	2.2	2.4	2	2.2	-	3	-	-	-	-	1	2.2	2.4	1
			3/2/	1-indica	ites strei	ngth of	correlat	ion (3- 1	High, 2-	Mediur	n, 1- Lo	w)			

18E	EM09	SMPS AND UPS		SEN	MEST	ER	
PREF	REQUI	SITES	CATEGORY	PE	C	redit	3
D				L	Т	P	TH
Power	Electro	nics	Hours/Week	3	0	0	3
Cours	se Obje	ectives:		·		-	•
1.	To imp	art knowledge about modern power electronic converters and	their applications in	power uti	lity.		
2.	To imp	art knowledge about Resonant converters and UPS.					
UNIT	I	DC-DC CONVERTERS		9	0	0	9
Introdu	uction to	o SMPS - Non-isolated DC-DC converters: Cuk, SEPIC t	topologies, Z-source	converter	r – Ze	ta conv	erter -
Analys	sis and s	state space modeling Concept of volt-second and charge ba	alance – High gain in	put-paral	lel out	put-seri	es DC-
DC con	nverter.						
UNIT	II	SWITCHED MODE POWER CONVERTERS		9	0	0	9
Isolate	d DC-D	C converters: Analysis and state space modelling of fly back,	Forward, Push pull, L	uo, Half t	oridge	and full	bridge
conver	rters- co	ntrol circuits and PWM techniques - Bidirectional DC-DC co	onverters.				
UNIT	III	RESONANT CONVERTERS		9	0	0	9
Introdu	uction-	classification- basic concepts- Resonant switch- Load Reson	ant converters- ZVS,	Clampeo	l volta	ge topo	logies-
DC lin	ık invert	ers with Zero Voltage Switching- Series and parallel Resonan	nt inverters- Voltage o	control.			
UNIT	IV	DC-AC CONVERTERS		9	0	0	9
Introdu	uction –	Multilevel concept - Types of multilevel inverters - Diode-	clamped MLI – Flyin	g capacit	ors M	LI – Ca	scaded
MLI –	Cascad	ed MLI - Applications - Switching device currents - DC lin	nk capacitor voltage b	alancing	– Feat	ures of	MLI –
Compa	arisons o	of MLI.					
UNIT	V	POWER CONDITIONERS, UPS, AND FILTERS		9	0	0	9
Introdu	uction-	Power line disturbances- Power conditioners -UPS: offline	UPS, Online UPS, A	pplication	ns – F	ilters: V	oltage
filters,	Series-	parallel resonant filters, filter without series capacitors, filter	for PWM VSI, curren	t filter, D	C filte	ers – De	sign of
inducto	or and ti	ransformer for power electronic applications - Selection of ca	apacitors.				
			To	otal (45L	-+ 0 T)	= 45 Pe	eriods

Text I	Books:									
1.	Simon Ang, Alejandro Oliva," Power-Switching Converters", Third Edition, CRC Press, 2010.									
2.	M.H. Rashid – Power Electronics handbook, Elsevier Publication, 2001.									
Reference Books:										
1.	Ned Mohan, Tore.M.Undeland, William.P.Robbins, "Power Electronics Converters, Applications and Design", 3rd									
1.	Edition, John Wiley and Sons, 2006.									
2.	M.H. Rashid, "Power Electronics circuits, devices and applications", 3 rd Edition, PHI, New Delhi, 2007.									
E-Ref	erences:									
1.	NPTEL Course: Power Electronics, IIT-B.									
2.	www.cdeep.iitb.ac.in. (Electrical Engineering)									

Course ()uto	comes:	Bloom's Taxonomy		
Upon com	plet	Mapped			
CO1	:	Analyze the state space model for DC – DC converters.	L4: Analyzing		
CO2	:	Acquire knowledge on switched mode power converters.	L2: Understanding		
CO3	:	Outline the PWM techniques for DC-AC converters.	L1: Remembering		
CO4	:	Discuss about modern power electronic converters and its applications in electric power utility.	L2: Understanding		
CO5	:	Identify the filters and UPS.	L2: Understanding		

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	2	1	2	2			1					2	2	2	1
CO2	1	1	3	2			1					2	3	3	2
CO3	2	2	2	3			1					1	2	2	1
CO4	2	1	1	2			1					2	2	3	2
CO5	1	1	2	1			1					1	2	2	1
Avg.	1.6	1.2	2	2	-	-	1	-	-	-	-	1.6	2.2	2.4	1.4
		ł	3/2/1-i	ndicates	strengt	h of cor	relation	(3- Hig	sh, 2-Me	edium, 1	- Low)	ł	ł	ł	

18F	EEM10	UTILIZATION OF ELECTRICAL EN	ZATION OF ELECTRICAL ENERGY							
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3			
El a at	ani a al Mara	him a Darman Cristern and Darman Electronian	Hours/Week	L	Т	Р	TH			
Elect		hines, Power System, and Power Electronics	nours/ week	3	0	0	3			
Cour	rse Obje	ctives:								
1.	To unde	rstand the economics of power generation, tariff and energy co	onservation methods	5.						
2.	2. To impart knowledge on principle and design of illumination systems.									
3.	To anal	yze the performance and different methods of electric heating a	and electric welding							
4.	-	rt knowledge on electric traction systems and their performance	ce.							
5.		rstand electric drives for various industrial applications.					-			
UNI	ГΙ	INTRODUCTION		9	0	0	9			
Econo	omics of g	generation – definitions – load duration curve – number and size	ze of generator units	s – Cost o	of elect	rical er	nergy –			
tariff	— availa	bility based Tariff- (ABT) - Battery Energy storage system ((BESS)- Frequency	based en	ergy n	neasure	ement -			
need	for electri	cal energy conservation - methods Introduction to energy au	dit							
UNI	ГΠ	ILLUMINATION		9	0	0	9			
Introd	luction-na	ature of radiation - definition - laws of illumination - lumino	ous efficacy-photom	etry – lig	ghting o	calcula	tions –			
-		nination systems for residential, commercial, street lighting a		• •	-					
lamp-	- mercury	vapour fluorescent lamp-energy efficiency lamps types of l	lighting schemes – r	equireme	nts of g	good li	ghting			
UNI	ГII	HEATING AND WELDING		9	0	0	9			
		lassification of methods of heating - requirements of a good	-	-		-				
tempe	erature co	ntrol of resistance furnace - electric arc furnace -induction	heating - dielectric	heating	 elect 	ric wel	lding –			
		ing - electric arc welding-electrical properties of arc-application	ons of electric arc w	elding.						
UNI	ΓIV	ELECTRIC TRACTION		9	0	0	9			
		requirements of an ideal traction system - supply systems - t								
tractio	on motors	and control -speed control of three phase induction motor-	multiple unit contro	l – braki	ng – re	cent tre	ends in			
electr	ic traction	1.								
UNI	ΓV	DRIVES AND THEIR INDUSTRIAL APPLICATIO	NS	9	0	0	9			
Electu	ric drive -	-advantages of electric drive-individual drive and group drive	e -factors affecting	selection	of mo	tor – ty	pes of			
	•	state -transient characteristics -size of motor- load equalization			- moder	rn metł	nods of			
speed	control c	f D.C drives-dynamic braking using thyristors-regenerative br								
			То	tal (45L	-+ 0 T)=	= 45 P	eriods			

ooks:
C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Pvt.Ltd, 2003.
Eric Openshaw Taylor, "Utilisation of Electric Energy", English Universities Press Limited, 1937
J.B. Gupta, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, 2002.
nce Books:
G.C.Garg, S.K.Gridhar&S.M.Dhir, "A Course in Utilization of Electrical Energy", Khanna Publishers, Delhi, 2003.
H. Partab, "Art and Science of Utilization of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2004.
erences:
www.onlinecourses.nptel.ac.in
www.class-central.com
www.mooc-list.com

Course C)uto	comes:	Bloom's Taxonomy			
Upon com	plet	ion of this course, the students will be able to:	Mapped			
CO1	:	L2: Understanding				
CO2	:	Interpret the concept behind illumination and design a suitable illumination system for a specific application.	L3: Applying			
CO3	:	Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system.	L4: Analyzing			
CO4	:	Explain the concepts and recent trends of traction system.	L4: Analyzing			
CO5	:	L2: Understanding				

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1	1	1	1	2	1	2	2	1	1	1	2	2	3
CO2	2	3	2	3	1	1	2	1	1			1	3	3	2
CO3	3	3	1	3	1	1	2	1					2	2	3
CO4	1	2	2	3	3	1	2	1					2	3	2
CO5	3	1	1	2	1	1	2	1		1		1	2	2	3
CO6	1	3	3	3	3	1	2	2				1	3	3	2
Avg	2.17	2.17	1.67	2.5	1.67	1.17	1.83	1.33	1.5	1	1	1	2.33	2.5	2.5
			3/2/1-i	ndicates	strengt	h of cor	relation	(3- Hig	h, 2-Me	dium, 1	- Low)				•

MECHANICAL ENCINEEDING MINOD DECDEE DE

101/15	3.601	ENGINEERING THERMODYNAMICS												
18ME	M01	(Use of standard thermodynamic tables, Mollier diagram are p												
PRE-I	REQUI	SITE: C.	ATEGORY	PE	Cr	edit	3							
				L	Т	P	ТН							
		H	lours/Week	3	0	0	3							
Cours	e Objec	tives:		L	I									
1.	To imp	part the knowledge on concepts of zeroth and first law of thermodyn	amics.											
2.		ke the learners to understand the third law of thermodynamics ar tions in closed and open systems.	nd analyze the	variou	18 W	ork an	d heat							
3.	To teach properties of pure substance.													
4.	To impart knowledge on the concepts of steam power cycle.													
5.	5. To derive thermodynamic relations for ideal and real gases.													
UNIT	I	BASIC CONCEPT AND FIRST LAW			9	0 0	9							
	s thermal	aw of thermodynamics – application to closed and open systems, s equipment. SECOND LAW AND ENTROPY	steady flow pro	ocesses	with 9	refere								
of thes	se staten	tefrigerator – Heat Pump, Second law of thermodynamics – Kelvin' tents their corollaries. Reversibility and irreversibility. Carnot c cept of entropy, principle of increase of entropy, T-s diagram, T-ds e	ycle, reversed	Carnot		-								
UNIT	III	PROPERTIES OF PURE SUBSTANCES			9	0 0	9							
		on and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diag . Calculation of work done and heat transfer in non-flow and flow p												
UNIT	IV	STEAM POWER CYCLE			9	0 0	9							
	Rankine nation cy	cycle, T-s & h-s diagrams - Performance Improvement - Rehe cles.	at cycle, reger	nerative	e cyc	cle and	l their							
UNIT	V	IDEAL AND REAL GASES AND THERMO DYNAMIC	C RELATION	NS	9	0 0	9							
states, l	Principle	eal and real gases, equation of state of ideal and real gases, Avog of corresponding states, reduced properties and compressibility char uations, Tds, relations, Clausius Clapeyron equations and Joule The	t. Exact differen	ntials, N ent.	laxw	vell rela	ations,							
			To	tal (45	L)=	45 Pe	riods							

Text B	Books:
1.	Nag. P.K, "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2017.
2.	Sonntag, R.E., Borgnakke, C., and Van Wylen, G.J., Fundamentals of Thermodynamics, 6th ed., John Wiley, 2003.
3.	Arora C.P, "Thermodynamics", Tata McGraw Hill, New Delhi, 2003.
4.	Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.

R	lefere	ence Books:
	1.	Cengel, "Thermodynamics- An Engineering Approach", 3rd Edition, Tata McGraw Hill, 2015.
	2.	Merala C, Pother, Craig W and Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGrawHill, New Delhi, 2004.

	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the concepts of zeroth, first and second law of thermodynamics.	Remember
<i>CO2</i>	Analyze the various work and heat interactions for different types of processes for closed and open systems	Evaluate
СОЗ	Evaluate the different properties of pure substances using steam tables and Mollier chart	Evaluate
<i>CO4</i>	Analyze the performance of steam power cycle.	Analyze
<i>CO5</i>	Derive thermodynamic relations for ideal and real gases.	Analyze

COURSE	ART	ICUL	ATIO	ON M	ATR	IX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2			1					1	3	1	1
CO2	3	3	2	2			1					1	3	1	1
CO3	3	3	3	2		1	1					1	3	1	1
CO4	2	3	2	2		1	1					1	3	1	1
CO5	3	3	2	2		1						1	3	1	1
Avg	2.8	3	2.2	2		1	1					1	3	1	1
	•	3/2/	'1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	, 2- Meo	lium, 1-	Low)		•

1	PRE-REQUISITE: CATEGORY						3						
1.Engineering Physics L						Р	ТН						
2.Engineering Chemistry Hours/Week 3							3						
	3.Engineering Mathematics												
Course (Object	tives:											
1. To understand the basic concepts and properties of fluids.													
2. To analyze the kinematic and dynamic concepts of fluid flow.													
3. To understand the various incompressible fluid flow through pipes and between parallel plates.													
4. Т	To apply the principles of fluid mechanics to design and operation of hydraulic turbines.												
5. T	5. To apply the principles of fluid mechanics to design and operation of hydraulic pumps.												
UNIT I		INTRODUCTION AND FLUID STATICS			9	0	0 9						
Basic concepts and units of measurement of physical quantities- Classification of fluids - Properties of fluids – density, relative density, vapour pressure, surface tension, Capillarity and viscosity. Fluid statics- hydrostatic pressure, buoyancy and Archimedes' principle.													
UNIT II		FLUID KINEMATICS AND DYNAMICS			9	0	0 9						
Classification of fluid flow - system and control volume - Lagrangian and Eulerian description for fluid flow - flow patterns- streamline, pathline, streakline and timeline. Velocity potential function and Stream function - continuity equation and its applications. Fluid dynamics - Bernoulli's equation and its applications. Dimensional analysis – Buckingham's theorem, dimensional homogeneity, similarity-laws and models.													
UNIT II	Ι	FLOW THROUGH PIPES AND PLATES			9	0	0 9						
Incompressible fluid flow-Laminar flow- Hagen-Poiseuille equation, shear stress, pressure gradient relationship - flow through pipes and flow between parallel plates. Turbulent flow – flow through pipes, friction factors in turbulent flow - total energy line, hydraulic gradient line, flow through pipes in series and parallel- Moody's friction factor chart. Power transmission-Boundary layer flows - Boundary layer thickness, momentum thickness, energy thickness-boundary layer separation.													
UNIT IV	V	HYDRAULIC TURBINES			9	0	0 9						
curves for	r Pelto	es classification-impulse and reaction turbines-Working Prin- n, Francis and Kaplan turbines (Only descriptive) - Compar- egree of reaction -draft tubes.	-	-	-								
UNIT V		HYDRAULIC PUMPS			9	0	0 9						
Classification of hydraulic pumps- Centrifugal pumps - working principle, specific speed, performance curves and priming(Only descriptive) - Reciprocating pumps - classification, working principle, indicator diagram, air vessels and performance curves. Cavitation in pumps (Only descriptive) - Working principles of gear and vane pumps.													
			Το	tal (45	L)=	45 P	eriod						

Text Books:									
1.	Bansal, R.K., "A Textbook of Fluid Mechanics and Hydraulic Machines, 9th Ed", Laxmi Publication Pvt Ltd, 2010.								
2.	Rajput, R.K., "A Textbook of Fluid Mechanics and Hydraulic Mechanics", S.Chand and Company Ltd, 2011.								
3.	Subramanya. K., "Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Publishing Company Ltd, 2011.								

Reference Books:										
1.	White, "Fluid Mechanics, 8 Ed", McGraw Hill India, 2017.									
2.	Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics 8 th Edition", Wiley, 2016.									
3.	Yunuscengel, John. M.cimbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill, 2017.									
4.	Som, S.K, Biswas.G and SumanChakraborty, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill India, 2011.									
5.	Dr.P.N.Modi, Dr.S.M.Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard book house, 2018.									
E-Refe	E-References:									
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on fluid mechanics.									

COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Understand the basic concepts and properties of fluids.	Remember				
<i>CO2</i>	Analyze the kinematic and dynamic concepts of fluid flow.					
СОЗ	Understand the various incompressible fluid flow through pipes and between parallel plates.	Understand				
<i>CO4</i>	Apply the principles of fluid mechanics to design and operation of hydraulic turbines.	Apply				
<i>CO5</i>	Apply the principles of fluid mechanics to design and operation of hydraulic pumps.	Apply				

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1				2				1		2	2	1
CO2	3	3	1		2								2	2	1
CO3	2	3	2	2	1								2	2	1
CO4	3	3	3	2	1	2	1						2	2	1
CO5	3	3	3	2	1	2	1						2	2	1
Avg	2.8	2.6	2	2	1.25	2	1.3				1		2	2	1
3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)															

	EM03	MANUFACTURING PROCESSE	S				
PRE	-REQUI	SITE:	CATEGORY	PE	Cre	edit	3
1.		science, Engineering mathematics, Engineering Physics	TT (TT)	L	Т	Р	TH
2.	Engine	eering Materials	Hours/Week	3	0	0	3
Cour	rse Objec	tives:					
1.		e the students familiarize with various manufacturing proces f casting.	sses and fabrication t	echniqu	ies of	f met	als and
2.	To deve	lop design concepts of various manufacturing processes.					
3.	Gain kn	owledge to select appropriate manufacturing processes for var	rious parts.				
4.	To deve	lop an entrepreneur skill among the students.					
5.	To evalu	ate and select plastic deformation processes for various parts	•				
UNI	ГΙ	CASTING			9	0	09
mould	ding, inves	me calculation - Moulding machines - Core making. Specia stment moulding, pressure die casting, centrifugal casting, cas	• •	s – CO	1	ulding	-
UNI	ГП	WELDING			9	0	09
	welding, l	welding, tungsten inert gas welding, metal inert gas welding, aser beam welding, defects in welding, Soldering and Brazing				0.	
	lurgical as	METAL FORMING			10	0	0 10
operat	sses, Hot v tions. Roll	METAL FORMING spects of metal forming, slip, twinning mechanics of plastic de working and cold working of metals, Forging processes – ope ling of metals– Types of Rolling mill – Flat strip rolling – sha and wire drawing – Tube drawing – Principles of Extrusion –	n, closed and impress ape rolling operations	ion die	bulk forgi	defor ng –	rmatior forging
operat Princi	sses, Hot v tions. Roll iple of rod	been been been been been been been been	n, closed and impress ape rolling operations	ion die	bulk forgi	defor ng –	rmatior forging
operat Princi UNIT Types and ty Film	sses, Hot v tions. Roll iple of rod Γ IV s of plastic ypical app blowing -	pects of metal forming, slip, twinning mechanics of plastic de working and cold working of metals, Forging processes – ope ling of metals– Types of Rolling mill – Flat strip rolling – sha and wire drawing – Tube drawing – Principles of Extrusion –	en, closed and impress ape rolling operations - Types. ulding of Thermoplas nes – Blow moulding ning – Processing of	ion die – Defe tics – W – Rota	bulk forgi cts in 8 Vorkin tional	defor ng – rolle 0 ng pri mou	rmatior forging d parts 0 8 inciples ilding -
operat Princi UNIT Types and ty Film	sses, Hot v tions. Roll iple of rod F IV s of plastic ypical app blowing - iples and ty	pects of metal forming, slip, twinning mechanics of plastic de working and cold working of metals, Forging processes – ope ling of metals– Types of Rolling mill – Flat strip rolling – sha and wire drawing – Tube drawing – Principles of Extrusion – SHAPING OF PLASTICS s - Characteristics of the forming and shaping processes – Mo lications of - Injection moulding – Plunger and screw machir - Extrusion - Typical industrial applications – Thermoform	en, closed and impress ape rolling operations - Types. ulding of Thermoplas nes – Blow moulding ning – Processing of ling.	ion die – Defe tics – W – Rota	bulk forgi cts in 8 Vorkin tional	defor ng – rolle 0 ng pri mou	rmatior forging d parts 0 8 inciples ilding -
operat Princi UNIT Types and ty Film princi UNIT Forma of pre	sses, Hot v tions. Roll iple of rod Γ IV s of plastic ypical appi blowing - iples and t Γ V ability of S esses used	s - Characteristics of the forming and shaping processes – Molications of - Injection moulding – Plunger and screw maching results of the forming and shaping processes – Molications of - Injection moulding – Plunger and screw maching – Extrusion - Typical industrial applications – Thermoform solutions – Compression moulding – Thermoform moulding – Transfer Matei – T	en, closed and impress ape rolling operations - Types. ulding of Thermoplast hes – Blow moulding hing – Processing of ling. FALLURGY ring, Deep drawing, B gy– Principal steps i	ion die – Defe tics – W – Rota Therm ending	bulk forgi cts in 8 Vorkin tional nosets 9 opera	defor ng – rolle 0 ng pri mou – W 0 ations	ormation forging d parts 0 8 inciples ilding - vorking 0 9 s- types
operat Princi UNIT Types and ty Film princi UNIT Forma of pre	sses, Hot v tions. Roll iple of rod Γ IV s of plastic ypical appi blowing - iples and t Γ V ability of S esses used	pects of metal forming, slip, twinning mechanics of plastic de working and cold working of metals, Forging processes – ope ling of metals– Types of Rolling mill – Flat strip rolling – sha and wire drawing – Tube drawing – Principles of Extrusion – SHAPING OF PLASTICS s - Characteristics of the forming and shaping processes – Mo lications of - Injection moulding – Plunger and screw machin - Extrusion - Typical industrial applications – Thermoforn ypical applications - Compression moulding – Transfer mould SHEET METAL FORMING AND POWDER MET Sheet Metal, load estimation of sheet metal processes - Shear I, Super Plastic forming; Introduction to Powder Metallurg	en, closed and impress ape rolling operations - Types. ulding of Thermoplast hes – Blow moulding hing – Processing of ling. FALLURGY ring, Deep drawing, B gy– Principal steps in netallurgy.	ion die – Defe tics – W – Rota Therm ending	bulk forgi cts in 8 /orkin tional nosets 9 opera d – s	defor ng – rolle 0 mg pri mou – W 0 ations interi	mation forging d parts 0 8 inciple ilding Vorking 0 9 s- type ng and
operat Princi UNIT Types and ty Film princi UNIT Forma of pre	sses, Hot v tions. Roll iple of rod Γ IV s of plastic ypical appi blowing - iples and t Γ V ability of S esses used	pects of metal forming, slip, twinning mechanics of plastic de working and cold working of metals, Forging processes – ope ling of metals– Types of Rolling mill – Flat strip rolling – sha and wire drawing – Tube drawing – Principles of Extrusion – SHAPING OF PLASTICS s - Characteristics of the forming and shaping processes – Mo lications of - Injection moulding – Plunger and screw machin - Extrusion - Typical industrial applications – Thermoforn ypical applications - Compression moulding – Transfer mould SHEET METAL FORMING AND POWDER MET Sheet Metal, load estimation of sheet metal processes - Shear I, Super Plastic forming; Introduction to Powder Metallurg	en, closed and impress ape rolling operations - Types. ulding of Thermoplast hes – Blow moulding hing – Processing of ling. FALLURGY ring, Deep drawing, B gy– Principal steps in netallurgy.	ion die – Defe tics – W – Rota Therm ending nvolved	bulk forgi cts in 8 /orkin tional nosets 9 opera d – s	defor ng – rolle 0 mg pri mou – W 0 ations interi	mation forging d parts 0 8 inciple ilding Vorking 0 9 s- type ng and
operat Princi UNI Types and ty Film princi ONI Forma of pre compa	sses, Hot v tions. Roll iple of rod Γ IV s of plastic ypical appi blowing - iples and t Γ V ability of S esses used	pects of metal forming, slip, twinning mechanics of plastic de working and cold working of metals, Forging processes – ope ling of metals– Types of Rolling mill – Flat strip rolling – sha and wire drawing – Tube drawing – Principles of Extrusion – SHAPING OF PLASTICS s - Characteristics of the forming and shaping processes – Mo lications of - Injection moulding – Plunger and screw machin - Extrusion - Typical industrial applications – Thermoforn ypical applications - Compression moulding – Transfer mould SHEET METAL FORMING AND POWDER MET Sheet Metal, load estimation of sheet metal processes - Shear I, Super Plastic forming; Introduction to Powder Metallurg	en, closed and impress ape rolling operations - Types. ulding of Thermoplast hes – Blow moulding hing – Processing of ling. FALLURGY ring, Deep drawing, B gy– Principal steps in netallurgy.	ion die – Defe tics – W – Rota Therm ending nvolved	bulk forgi cts in 8 /orkin tional nosets 9 opera d – s	defor ng – rolle 0 mg pri mou – W 0 ations interi	mation forging d parts 0 8 inciple ilding Vorking 0 9 s- type ng and

2. NagendraParashar B.S. and Mittal R.K., "Elements of Manufacturing Processes", Prentice-Hall of India Private Limited, 2007.

Reference Books:

1.	Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.
2.	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001.
3.	"H.M.T. "Production Technology – Handbook", Tata McGraw-Hill, 2000.
4.	Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000.
5.	Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.
E-Refe	erences:
1.	https://fdocuments.in/document/production-technology-55844cac00bfc.html?page=40

COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
C01	<i>O1</i> Describe the operational features of various casting processes, design gate and riser and discover various defects in casting.						
<i>CO2</i>	<i>CO2</i> Explain various metal joining processes and compare them.						
СОЗ	Summarize several types of metal forming processes and select suitable method for different applications.	Analyze					
<i>CO4</i>	Analyze various manufacturing methods for plastics and their needs in industry.	Analyze					
<i>CO5</i>	Describe various sheet metal forming processes, load estimation calculation and principles of powder metallurgy	Understand					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1						1			1	2	1
CO2	2	1	2	1		1			1	1			1	2	1
CO3	1	1	1	1						1			1	1	1
CO4	1	1	1		1					1			1	1	1
CO5		1							1	1			1		1
Avg	1.5	1	1.5	1	1	1			1	1			1	1.5	1

18ME	M04						
PRE-F	REQU	SITE:	CATEGORY	PE	Cre	dit	3
1.		eering Physics		L	Т	Р	ТН
2.	Engin	Hours/Week	3	0	0	3	
Course	e Obje	ctives:					1
1.		part concept on reactions, treatment, microstructure and mechanical be rature.	havior of engineer	ing ma	terials	at dif	ferent
2.	To lea	rn basic principles in metallurgy and materials engineering.					
3.	To ide	entity and select suitable engineering materials based on their application	ons.				
UNIT	I	PHASE DIAGRAMS		9	0	0	9
systems diagram	s – Eut 1 - effec	es, Phases, solid solution types, compounds, Hume- Rothery rules; Gi ectic, Eutectoid, Peritectic systems. Lever rule, Equilibrium and no ts of alloying elements – Ferrite and Austenite Stabilizers, TTT and Co	on-equilibrium coo	oling, I	Fe-C E	lquilit	brium
UNIT	II	HEAT TREATMENT		9	0	0	9
Isotherr test – A	nal trar Austemp	all annealing, stress relief, recrystallisation and spheroidizing –norma sformation diagrams – cooling curves superimposed on I.T. diagram ering, martempering – case hardening, carburising, nitriding, cyanidi t treatment of non-ferrous alloys - precipitation hardening. Heat treatment	CCR - Hardenabi ng, carbo-nitriding	lity, Jo g – Fla	miny e me and	end qu I Indu	uench action
UNIT	III	FERROUS AND NON FERROUS METALS		9	0	0	9
precipit	ation h	eels – Tool steels - maraging steels – HSLA steels .Stainless steels- ferr ardened stainless steels. Types of Cast Irons- Gray cast iron, white cast Bronze and Cupronickel, Aluminium alloys, Bearing alloys.				-	
UNIT	IV	MECHANICAL PROPERTIES AND TESTING		9	0	0	9
Fracture	e - Type	operties of engineering materials - Mechanisms of plastic deformation as of fracture – Testing of materials - tension, compression and shear lo ting for hardness (Brinell, Vickers and Rockwell) - Impact test - Izod a	ads - fatigue and c	-	-	-	
UNIT	V	NON DESTRUCTIVE TESTING AND SURFACE ENGIN	IEERING	9	0	0	9
Inspecti	ion and	ve Testing: Basic principles - Testing method - Radiographic testi Liquid Penetrant Inspections. Introduction to surface engineering - D and low energy beam methods, surface engineering charts, elastic conta	Definition, diffusio	-	-		
			Tot	al (45)	L) = 4	5 Pe	riods
Text B	ooks:						
1.	Ke	nneth G. Budinski and Michael K. Buinski, "Engineering Materials", P	rentice Hall of Ind	lia Ltd,	2002.		
2.	Ra	ghavan, V, "Materials Science and Engineering", Prentice Hall of India	a (P) Ltd., 1999.				
3.	3. Aswani.K.G, "A Text Book of Material Science", S.Chand and Co. Ltd., New Delhi, 2001.						

4. Khanna O.P., "A Text Book of Materials Science and Metallurgy", DhanpatRai Sons, 2004. **Reference Books:**

Keleren	te Dooks.
1.	William. D.Callsber, "Material Science and Engineering", John Wiley and Sons, 1997.
2.	Sydney.H.Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
C01	<i>I</i> Understand the formation of materials and their classification based on atomic structure.							
<i>CO2</i>	<i>O2</i> Understand the principles of various heat treatment processes in fabrication industry.							
СОЗ	Describe properties, applications and types of various ferrous and non-ferrous metals used in fabrication industry	Understand						
<i>CO4</i>	Describe various types of failure and select methods for destructive testing	Understand						
<i>C05</i>	Select methods for non destructive testing	Evaluate						

COURSE A	ARTI	CULA	ATIO	N MA	TRIX	K									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	1	1	1						2	3	1
CO2	1		2	1	1	2	1						2	3	1
CO3		1	1	1	1		1						3	2	1
CO4		2	2	1	1	1	1						2	3	1
CO5		2	2	2	1		1						2	2	1
Avg	1	1.5	1.8	1.4	1.0	1.3	1						2.2	2.6	1.0
		3/2/	/1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	2- Mee	lium, 1	Low)	1	•

18ME	M05	KINEMATICS OF MACHINERY						
PRE-F	REQUIS	SITE:	CATEGORY	PE	Cr	edit		3
1. Engi	neering g	raphics. 2.Engineering Mechanics	Hours/Week	L	Т	Р	r	ΓН
			Hours/ week	3	0	0		3
Course Objectives:								
1.	To und	erstand the basic components and layout of linkages in the assem	bly of a system/ ma	chine.				
2.		erstand the principles in analyzing the assembly with respect to t point in a link of a mechanism.	he displacement, ve	elocity,	and	accel	era	tion
3.	To und	erstand basics of cam profile and its displacement.						
4.	To und	erstand the basic concepts of toothed gearing and kinematics of g	ear trains.					
5.	Illustra	te the effects of friction drives in transmission system.						
UNIT	I	BASICS OF MECHANISMS			9	0	0	9
Kinema	tic inver	f mechanisms- Basic kinematic concepts and definitions- Degressions of four bar chain and slider-crank chains Limit positions- Mome common mechanisms- Quick return mechanism, straight-lin	lechanical advantag					
UNIT	II	KINEMATIC ANALYSIS			9	0	0	9
centres	- kinema	elocity and acceleration analysis of simple mechanisms, graph tic analysis of simple mechanisms- slider-crank mechanism dynam ntroduction to linkage synthesis three Position graphical synthesis	nics Coincident poi	nts- Co	orioli	s com		
UNIT	III	KINEMATICS OF CAM			9	0	0	9
simple	harmonic	cams and followers- Terminology and definitions- Displaceme and cycloidal motions- derivatives of follower motions- specifie and undercutting, sizing of cams, graphical method for cam profile	ed contour cams cire					
UNIT	IV	GEARS AND GEAR TRAINS			9	0	0	9
	•	cloidal gear profiles, gear parameters, fundamental law of gearir rence / undercutting- helical, bevel, worm, rack & pinion gears, e			-	-		
UNIT	V	FRICTION IN MACHINE ELEMENTS			9	0	0	9
	Surface contacts- sliding and rolling friction- friction drives- friction in screw threads – bearings and lubrication- friction Clutches- belt and rope drives.							tion
			Tota	al (451	L) =	45 P	eri	ods
Text B	ooks:							
1.	Rattan	S.S, "Theory of Machines", Tata McGraw Hill Publishing Compa	any Ltd., New Delh	i, 1998				

2.	Ghosh, A and Mallick, A.K, "Theory of Mechanisms and Machines", East-West Pvt. Ltd., New Delhi, 1988.
Refere	ence Books:
1.	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.
2.	Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.

3.	Erdman AG and Sandor G N, "Mechanism Design, Analysis and Synthesis", Vol.I, PHI Inc., 1997.									
4.	mbekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.									
5.	John Hannah and Stephens R C, "Mechanisms of Machines", Viva Low Price Student Edition, New Delhi, 1999.									
E-Refe	erences:									
1.	https://archive.nptel.ac.in/courses/112/104/112104121/									
2.	https://nptel.ac.in/courses/112106270									
3.	http://velhightech.com/Documents/ME8492 Kinematics of Machinery.pdf									

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
C01	CO1 Demonstrate and understand the concepts of various mechanisms and pairs.							
<i>CO2</i>	<i>CO2</i> Analyze the velocity and acceleration of simple mechanisms.							
СО3	Construct the cam profile for various motion.	Create						
<i>CO4</i>	Solve problems on gears and gear trains.	Evaluate						
<i>C05</i>	Evaluate the friction in transmission system	Evaluate						

COURSE A	ARTIO	CULA	TION	N MA	TRIX	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1									3	1	
CO2	3	2	2	1									3	1	
CO3	3	2	2	1									3	1	
CO4	3	2	2	1									3	1	
CO5	3	2	2	1									3	1	
Avg	3	2	2	1									3	1	
		3/2/	/1 – ir	ndicat	es str	ength	of co	rrelati	on (3	– High,	2- Med	lium, 1-	Low)		

PRE-REQUISITE: CATEGORY PE Credit 3 Iburs/Week L T P TH Hours/Week L T P TH Iburs/Week Applying the working principles of hydraulics and pneumatics 3 3 0 0 3 Course Designing and develop hydraulic circuits and systems. 5 Solving problems and troubles in fluid power system and its components. 5 9 0 <	18MEM06 HYDRAULICS AND PNEUMATICS											
Hours/Week i <th colsp<="" th=""><th>PRE-</th><th>REQUIS</th><th>SITE:</th><th>CATEGORY</th><th>PE</th><th>Cre</th><th>edit</th><th>3</th></th>	<th>PRE-</th> <th>REQUIS</th> <th>SITE:</th> <th>CATEGORY</th> <th>PE</th> <th>Cre</th> <th>edit</th> <th>3</th>	PRE-	REQUIS	SITE:	CATEGORY	PE	Cre	edit	3			
3 0 0 3 Course Objectives: 1. To enable the students understand the basics of hydraulic and pneumatics . 2. Applying the working principles of hydraulic actuators and control components. . 3. Designing and develop hydraulic circuits and systems. . 4. Applying the working principles of pneumatic power system and its components. . 5. Solving problems and troubles in fluid power systems. 9 0 0 9 UNTT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMIPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications – Fluid power systems – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 0 0				TT /XX / 1 -	L	Т	Р	ТН				
1. To enable the students understand the basics of hydraulics and pneumatics 2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNT I FLUD POWER PRINCIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of fluids and selection - Basics of Hydraulic power; Pumping Theory - Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps - Fixed and Variable displacement pumps - Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders - Types and construction, Application, Hydraulic cushioning - Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Accessories; Reservoirs, Pressure Switches - Filters - types and selection - Applications - Fluid Power ANSI Symbols - Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits - Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air osvern J, Sequ				Hours/ week	3	0	0	3				
2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of Huds and selection - Basics of Hydraulic power; Pumping Theory - Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps - Fixed and Variable displacement pumps - Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders - Types and construction, Application, Hydraulic cushioning - Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Accessories; Reservoirs, Pressure Switches - Filters - types and selection - Applications - Fluid Power ANSI Symbols - Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 4 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 <t< td=""><td>Cour</td><td>se Objec</td><td>tives:</td><th></th><td>1</td><td></td><td></td><td></td></t<>	Cour	se Objec	tives:		1							
3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT III HYDRAULIC CACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Notors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 <	1.	To enabl	e the students understand the basics of hydraulics and pneumatic	CS								
4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of Indust and selection – Basics of Hydraulic – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement – pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Mechanical, hydraulic servo systems. 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quic	2.	Applying	g the working principles of hydraulic actuators and control comp	oonents.								
5. Solving problems and troubles in fluid power systems. UNIT 1 FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulin ontors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9	3.	3. Designing and develop hydraulic circuits and systems.										
UNIT 1 FLUID POWER PRINCIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9	4.	4. Applying the working principles of pneumatic power system and its components.										
Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basies of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydra-lic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction – and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic Circuit - Classification - single cylinder and multi cylinder circu	5.	Solving	problems and troubles in fluid power systems.									
and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement – pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits roblems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, Ledder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and tin	UNIT	ΓI	FLUID POWER PRINICIPLES AND HYDRAULIC	PUMPS		9	0	09				
Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits problems, Introduction to fluidies and pneumatic logic circuits. 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic one control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits Low cost Automation – Hydraulic and Pneumatic power packs. C	Advantages, Disadvantages, Performance, Selection criteria of pumps - Fixed and Variable displacement pu											
motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems.UNIT IIIHYDRAULIC CIRCUITS AND SYSTEMS9009Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems.9009Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits problems, Introduction to fluidics and pneumatic logic circuits.9009Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, Ided r diagram, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits - Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatic power packs. Case studies: A simple sequence, synchronize circuits - Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits - using hydraulic and pneumatic components. </td <td>UNIT</td> <td>T II</td> <td>HYDRAULIC ACTUATORS AND CONTROL COM</td> <th>IPONENTS</th> <td></td> <td>9</td> <td>0</td> <td>09</td>	UNIT	T II	HYDRAULIC ACTUATORS AND CONTROL COM	IPONENTS		9	0	09				
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, Iadder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatic power packs. Case studies: A simple sequence, synchronize circuits	motor Opera Symbo	s - Contro tion – Acc ols – Prob	l Components : Direction Control, Flow control and pressure essories; Reservoirs, Pressure Switches – Filters – types and se lems.	control valves – '	Types,	Cons luid I	tructi Power	on and ANSI				
Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	T III	HYDRAULIC CIRCUITS AND SYSTEMS			9	0	09				
Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits. 9 0 0 9 Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components. Case studies: A simple sequence, synchronize circuits	Intens of hyd	ifier, Air-o Iraulic sys	over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, ems, Hydrostatic transmission, Electro hydraulic circuits – Ser	Speed Control, Dec	celeration	on cir	cuits,	Sizing				
Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	T IV	PNEUMATIC AND ELECTRO PNEUMATIC SYST	EMS		9	0	09				
Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	Exhau - Casc	st Valves, ade metho	Pneumatic actuators, Design of Pneumatic circuit – classification d – Integration of fringe circuits, Electro Pneumatic System –	n - single cylinder a	nd mul	ti cyli	nder	circuits				
electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING										
Total (45L) = 45 Periods	electro failure – Low	o hydrauli e and troub v cost Aut	e pneumatic logic circuits, ladder diagrams, PLC applications in leshooting. Design of Pneumatic circuits for metal working, har omation – Hydraulic and Pneumatic power packs. Case studie	n fluid power contr ndling, clamping co	ol. Flu ounter a	id por and tim	wer c mer c	ircuits, ircuits.				
Total (45L) = 45 Periods												
				Tot	al (45)	L) =	45 P	eriods				

Text I	Books:
1.	Manjumdar S.R, "Oil Hydraulics", Tata McGraw-Hill, December 2002.

2.	Anthony Esposito, "Fluid Power with Applications", Pearson Education 2013.
Refere	ence Books:
1.	Andrew Parr, "Hydraulic and Pneumatics", Jaico Publications House, 2005.
2.	Bolton W. "Pneumatic and hydraulic system", Butterworth-Heinemann 1997
3.	Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 2010
4.	Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006
5.	Srinivasan.R. "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008.
E-Refe	erences:
1.	http://www.fluidpowerjournal.com
2.	http://14.139.160.15/courses/112102011/2
3.	https://www.nfpa.com/home.htm

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
C01	Select the components as per the application	Evaluate						
<i>CO2</i>	Apply the working principles of hydraulic actuators and control components.	Apply						
СО3	Design and develop hydraulic circuits and systems.	Create						
<i>CO4</i>	Apply the working principles of pneumatic power system and its components.	Apply						
<i>C05</i>	Solve problems and troubles in fluid power systems.	Evaluate						

COURSE A	ARTI	CULA	TIO	N MA	TRIX	K									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1										1	1	1
CO2		2	2	1									1	1	1
CO3	1	2	3			1							1	2	1
CO4	1	1	3	2	2								2	1	1
CO5	1	1	2										1	1	1
Avg	1.25	1.4	2.2	1.5	2	1							1.2	1.2	1
	•	3/2/	/1 – ir	ndicat	es str	ength	of co	rrelati	on (3	– High,	2- Mec	lium, 1-	Low)		

18M	EM07	DESIGN OF MACHINE ELEMEN	TS						
PRE	REQUIS	SITE:	CATEGORY	PE	Cre	edit	3		
1.		should study engineering mechanics.	Houng/Wools	L	Т	Р	ТН		
2.	Studen	should study kinematic of machinery.	Hours/Week	3	0	0	3		
Cour	se Objec	tives:							
1.	Understa	nding of background in mechanics of materials and design of	of machine componen	nts.					
2.	An unde consider	erstanding of the origins, nature and applicability of eations	empirical design pri	inciples,	based	l on	safety		
3.	An unde	rstanding the design of shafts and couplings.							
4.	Familiar	ze the design of energy storing elements and engine compo	nents.						
5.	5. An appreciation of the relationships between component level design and overall machine system design and performance								
UNI	CHINE	9	0	0 9					
based Calcu	on mecha lation of p	he design process – Product development cycle- factors inf nical properties - Preferred numbers– Direct, Bending and rinciple stresses for various load combinations, eccentric le ion – design for variable loading – Soderberg, Goodman and	Torsional stress – Ir oading – Factor of s	npact and	l shoc	ck loa	ading –		
UNI	ГП	DESIGN OF SHAFTS AND COUPLINGS			9	0	09		
-		and hollow shafts based on strength, rigidity and critical spe e couplings.	eed – Design of keys	and key	ways	- De	sign of		
UNI	ГШ	DESIGN OF THREADED FASTENERS, RIV JOINTS	YETED AND WI	ELDED	9	0	0 9		
		ers - Design of bolted joints including eccentric loading – E etures- theory of bonded joints.	Design of riveted and	welded j	oints	for p	ressure		
UNI	UNIT IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS								
	• •	Springs, optimization of helical springs - rubber springs - F punching machines- Connecting rods and crank shafts.	Flywheels considering	g stresses	in rir	ns ar	id arms		
UNI	ΓV	DESIGN OF BEARINGS			9	0	09		
	g contact a ct bearings	and rolling contact bearings - Hydrodynamic journal bearin s.	gs, Sommerfeld Nun	nber - Se	lectio	n of I	Rolling		
			Т	otal (45	L) =	45 P	eriods		

Text E	Books:									
1.	Bhandari V.B, "Design of Machine Elements", Tata McGraw Hill Book Co, 2020									
2.	Md.Jalaludeen.S, "A text book of Machine Design", Anuradha Publications, 2006									
Refere	Reference Books:									
1.	Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.									
2.	Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.									

3.	Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.							
4.	PSG Tech, "Design Data Handbook", M/s.DPV Printers, Coimbatore, 2009							
E-Refe	erences:							
1.	https://nptel.ac.in/courses/112105124							
2.	Design of Machine Elements - V. B. Bhandari - Google Books							
3.	A Textbook of Machine Design by R.S.Khurmi And J.K.Gupta [tortuka] 1490186411865.pdf DocDroid							

	RSE OUTCOMES: ompletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Understand the influence of steady and variable stresses in machine component design.	Understand
<i>CO2</i>	Apply the concepts of design to shafts, keys and couplings.	Apply
СОЗ	Familiarize the design of temporary and permanent joints.	Understand
<i>CO4</i>	Design the various energy storing elements and engine components.	Analyse
<i>C05</i>	Familiarize the design of various types of bearings.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2		1	1				1		3	2	1
CO2	2	2	1	2		1	1				1		3	2	1
CO3	2	2	1	2		1	1				1		3	2	1
CO4	2	2	1	2		1	1				1		3	2	1
CO5	2	2	1	2		1	1				1		3	2	1
Avg	2.0	2.0	1.0	2.0		1.0	1.0				1.0		3.0	2.0	1.0

2. The concCOURSE1.	and l	pasic concepts of thermodynamics	CATEGORY	PE	Cre	edit	3			
2. The concCOURSE1.Un	cept o						- -			
COURSE	•	f an anna fan an 14 air an ann air air 1 a	TT /TT/	L	Т	Р	ТН			
1. Un	OB	f energy transfers and their conversion principles	Hours/Week	3	0	0	3			
		JECTIVES		11						
	nderst	anding the science behind conduction heat transfer and its applica	tions.							
2. Di	Differentiating the concepts of forced and natural convection heat transfer.									
3. De	escrib	ing the laws and concepts of radiation heat transfer.								
4. Un	Understanding phase change processes and analyzing heat exchangers.									
5. Stu	udyin	g the concept of mass transfer process and its modes.								
UNIT-I	9	0	0	9						
charts.	I	ces – Unsteady Heat Conduction – Lumped Analysis – Semi Inf CONVECTION HEAT TRANSFER		9	0	0	9			
		uations, boundary layer concept – Forced convection: external fles. Internal flow – entrance effects.	ow – flow over pl	ates, cy	linde	ers, sp	heres			
		-flow over vertical plate, horizontal plate, inclined plate, cylinder	s and spheres.							
UNIT-II	Π	BOILING, CONDENSATION AND HEAT EXCHANG	FERS	9	0	0	9			
		boiling and Flow boiling, Nusselt's theory of condensation- corr - Overall Heat Transfer Co-efficient – Fouling Factors. LMTD a		and con	dens	ation.	Heat			
UNIT-I	IT-IV RADIATION HEAT TRANSFER					0	9			
Radiation la	aws -	Black Body and Gray body Radiation - Shape Factor - Electrical	Analogy -Radiatio	n Shield	nields.					
UNIT-V	V	MASS TRANSFER		9	0	0	9			
		- Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Convective Mass Transfer Problems.	e Molecular Diffus	ion - Eq	uimo	olal co	unter			
			Tot	al(45L)) = 4	5 Pe	riods			

ТЕХТ	BOOKS:							
1	R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2017							
2	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, 2014.							
REFE	REFERENCE BOOKS:							
1	Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5 th Edition - 2013							
2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2017							
3	Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012							
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.							

	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Analyze the mechanism of heat conduction under steady and transient conditions.	Apply
<i>CO2</i>	Develop solutions to problems involving convective heat transfer.	Create
СОЗ	Design a heat exchanger for any specific application.	Understand
<i>CO4</i>	Adopt the concept of radiation heat transfer in real time systems.	Understand
<i>C05</i>	Develop solutions to problems involving combined heat and mass transfer.	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2		1						3	3	1
CO2	3	3	3	3	2		1						3	3	1
CO3	3	3	3	3	2		1						3	3	1
CO4	3	3	3	3	2		1						3	2	1
CO5	2	2	2	2	1		1						3	1	
Avg	2.8	2.8	2.8	2.8	1.8		1						3	2.4	1

18MEM09	METROLOGY AND QUALITY CONTR	OL					
PREREQUIS	SITES	CATEGORY	PE	Cr	edit		3
			L	Т	Р	,	ГН
		Horus/Week	3	0	0		3
COURSE OF	SJECTIVES			1	1		
1.	Explaining the importance of measurements in engineering and compute measurement uncertainty	the factors affecting	g measu	irem	ents a	and	to
2.	Applying the applications of linear and angular measuring instr	uments					
3.	Interpretation of various tolerance symbols.						
4.	Applying the SQC methods in manufacturing.						
5.	Applying the advances in measurements for quality control.						
UNIT-I	BASICS OF MEASUREMENT SYSTEM AND DEVIC	CES		9	0	0	9
	nical loading – static characteristics of instruments – factors consid or analysis and classification - sources of error. Measurement unce CALIBRATION OF INSTRUMENTS AND QUALITY	rtainty.	nstrum	ents	- con	0	only 9
feeler gauges, d	I neasuring instruments - principles of calibration, Calibration of I lial indicator, surface plates, slip gauges, care of gauge blocks. Ge indards. Comparators- mechanical, electrical, optical and pneumat	eneral cares and rule					
UNIT-III	GEOMETRICAL MEASUREMENT AND MACHINE	E ELEMENTS		9	0	0	9
principle, three measurement o errors, base pito	rement - optical protractors, sine bar, roundness measurement, li basic types of limit gauges, Tomlinson surface meter, compu f major, minor and effective diameters. Gear terminology; spur ch measurement. Principle of interferometry, laser interferometer raightness, flatness, roundness deviations.	ter controlled CM gear measurement,	M. ISO checki) me ng o	etric f cor	thre npo	ead, osite
UNIT-IV	STATISTICAL QUALITY CONTROL			9	0	0	9
	 terminology and measurements – Optical measuring instruments Control charts - Sampling plans. 	Acceptance test f	for mac	hine	s. Sta	atist	ical
UNIT-V	SIX SIGMA			9	0	0	9
Control chart, S	ne measure, analyse, improve and control phases. Analyze phase t Scatter chart, Cause and effect diagram, Pareto analysis, interrel thesis Testing, ANOVA Multi variate analysis.						
		Tot	al(45L	.) = (45 P	eri	ods

TEXT	TEXT BOOKS:								
1	Gupta.I.C, —A text book of Engineering Metrology, Dhanpat Rai publications, New Delhi, 2018								
2	Beckwith.T.G, Roy D. Marangoni, John H. Lienhard, - Mechanical Measurements, Prentice Hall, 2006								
REFE	REFERENCE BOOKS:								
1	Jain.R.K, —Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1999.								
2	Holmen.J.P, —Experimental Methods for Engineersl, Tata McGraw Hill Publications Co Limited, 2017.								

3	Grant, E.L., Statistical Quality Control, Mc Graw-Hill, 2004. 3. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004.							
4	Alan S Morris,Measurement and Instrumentation Principles, Butterworth, 2006.							
5	De Feo J A and Barnard W W, —Six Sigma: Break trough and BeyondG, Tata McGraw-Hill, New Delhi, 2005.							
E-REF	E-REFERENCES:							
1	https://nitsri.ac.in/Department/Mechanical%20Engineering/MEC_405_Book_2,_for_Unit_2B.pdf							
2	https://www.nist.gov/system/files/documents/srm/NIST-SRM-RM-Articlefinal.pdf							
3	https://www.researchgate.net/publication/319587859_Computer-Aided_Metrology-CAM							

	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Explain the importance of measurements in engineering and the factors affecting measurements and to compute measurement uncertainty.	Understand
<i>CO2</i>	Apply the working principle and the applications of linear and angular measuring instruments.	Apply
СОЗ	Interpret of various tolerance symbols.	Apply
<i>CO4</i>	Apply the SQC methods in manufacturing.	Apply
<i>C05</i>	Apply the advances in measurements for quality control in manufacturing industries.	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1							2	1	2				2	1	
CO2							3	1	2				1	2	
CO3							2	1					2	1	
CO4				3			2		1				1	2	
CO5				2				3	1				2	1	
Avg	1			2.5			2.25	1.5	1.5				1.6	1.4	

18	MEMI	10	DYNAMICS OF MACHINERY					
PR	EREQU	UISI	res	CATEGORY	PE	Cre	edit	3
En		M1	wing Wingson of Mashington Strength of Materials	Hound Wools	L	Т	Р	ТН
Eng	ineering	Mecr	nanics, Kinematics of Machinery, Strength of Materials	Hours\Week	3	0	0	3
CC	URSE	OBJ	ECTIVES:					
1.	To imp	art sti	udents with the knowledge about motion, masses and forces in	machines and the F	Principl	e of V	irtual	Work.
2.	To faci	litate	the students, to understand the concept of balancing of rotating	g and reciprocating	masse	s.		
3.	To teac	ch con	cepts of free vibration analyses of one and two degree-of-free	dom rigid body sys	tems			
4.			ncepts of forced vibrations analyses of rigid body systems a of vibration and its effects.	and to give awar	eness to	o stuc	lents	on the
5.	To lear	n abo	ut the concept of various types of governors.		-			
U	NIT I	FO	RCE ANALYSIS		9	0	0	9
Spe		ght of	s and Fluctuation of Energy of reciprocating engine mechanis Flywheel Required. LANCING	ns, Coefficient of I	Fluctuat 9	ion of 0	Ener	gy and 9
			c balancing - Balancing of rotating masses - Balancing a single balancing in locomotive Engines - Balancing linkages - balanc		Balanc	ing M	ulti-c	ylinder
-			EE VIBRATION	0	9	0	0	9
Fre Sys	quency b tem -Typ	by En	Vibratory Systems – Types – Single Degree of Freedom System ergy Method, Dunkerly's Method - Critical Speed - Damped Damping – Free Vibration with Viscous Damping, Critically s: Natural Frequency of Two and Three Rotor Systems.	Free Vibration of	Single	Deg	ee Fr	eedom
UN	IT IV	FO	RCED VIBRATION		9	0	0	9
	•		odic Force – Harmonic Force – Force caused by Unbalance – ctor – Vibration Isolation and Transmissibility.	Support Motion -	Logari	thmic	Decr	ement-
U	V TIN	GC	OVERNORS		9	0	0	9
			s - Centrifugal governors - Gravity controlled and spring contro a - Controlling Force - other governor mechanisms.	olled centrifugal go	overnor	s – Cł	aract	eristics
				То	tal (45	L) =	45 P	eriods
		_			_	_	_	

TE	XT BOOKS:
1.	Design of Machinery, Fourth Edition, by R.L. Norton, McGraw Hill, 2007
2.	Mechanical Vibration, V.P.Singh, Dhanpatrai, Delhi
RE	FERENCE BOOKS:
1.	Ballaney, P.L., "Theory of Machines and Mechanisms", Khanna Publishers, New Delhi, 2002.
2.	Shigley, J.E. and Uicker, J.J., "Theory of Machines and Mechanisms", TMH ND, 1998.
3.	Amithabha Ghosh, and Ashok Kumar Malik., "Theory of Mechanisms and Machines", 2nd Ed., Affiliated East and West Press Limited, 1998.
4.	Prof.Nakara, IIT-Delhi Reference Books
	·

E-R	E-REFERENCES:							
1.	www.university.youth4work.com/IIT_Kharagpur_Indian-Institute-of-Technology/study/1653-dynamics-of- Machinery-ebook							
2.	http://nptel.ac.in/courses/112104114/							
	·							

	RSE OUTCOMES:	Bloom's Taxonomy Mapped
C01	Apply basic principles of mechanisms in mechanical system.	Apply
<i>CO2</i>	Familiarize the static and dynamic analysis of simple mechanisms.	Understand
СО3	Analyze the mechanical systems subjected to free vibration.	Analyze
<i>CO4</i>	Analyze mechanical systems subjected to forced vibration.	Analyze
C05	Analyze the various types of governors and its speed control mechanism.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1					1		3	2	1	2
CO2	2	2	3	2	1					1		3	2	1	2
CO3	2	2	3	2						1		3	2	1	2
CO4	2	2	3	2	1					1		3	2	1	2
CO5	1	2	3	2						1		3	2	1	1
Avg	1.8	2.0	3.0	2.2	1					1.0		3.0	2.0	1.0	1.8

MINOR DEGREE: METALLURGICAL ENGINEEING

18N	ATM01	ADVANCED PHYSICAL METALL	URGY	S	emeste	r				
PREF	REQUISIT	ES	Category	OE	Cre	dit	3			
Б.	• 1			L	Т	Р	ТН			
Engin	eering phy	/SICS	Hours/Week	3	0	0	3			
Course Learning Objectives										
1 To impart knowledge on the crystal structure, diffusion, phase diagrams for various engineering materials.										
τ	J nit I	CRYSTAL STRUCTURES		9	0	0	9			
Revie	w of atomic	c bonds, Lattice, unit cell, crystal systems and Bravai	s lattices; Princip	al crys	tal struc	ctures -	- BCC,			
		ts characteristics; Miller indices for crystallographic		•						
Volun	ne, planar a	and linear atomic density; Polymorphism and allotro	py; CsCl, NaCl,	Diamo	ond stru	ctures;	single			
crysta	l and polyc	rystalline and amorphous materials; isotropy and aniso	otropy; Simple pr	oblems	s in the	above t	opics			
U	nit II	9	0	0	9					
Types	of point de	efects, effect of temperature on vacancy concentratio	n, interstitial site	s-octał	edral a	nd tetra	ahedral			
sites;	Line defect	s - dislocations - Edge, screw and mixed dislocation	ns, Burger's vecto	r, slip	and twi	nning;	Planar			
defect	as – grain ł	boundaries, tilt boundaries, small angle grain bound	laries; ASTM gra	ain size	e numb	er, gra	in size			
detern	ninations; V	olume defects; Simple problems in the above topics.								
U	nit III	ATOMIC DIFFUSION IN SOLIDS AND SOLII OF METAL	DIFICATION	9	0	0	9			
Diffus	sion mecha	nisms, steady state diffusion and non-steady state	diffusion-Fick's	first 1	aw and	secon	d law;			
Kirker	ndall effect	and Darken's equation; Factors affecting diffusion; I	Industrial applicat	ions o	f diffusi	on pro	cesses;			
Simpl	e problems	in the above topics; Basic principles of solidification	on of metals and	alloys;	Growt	h of cr	ystals–			
Planar	r growth, o	lendritic growth, Solidification time, dendrite size	; Cooling curves	s; Cas	t or In	got str	ucture,			
Solidi	fication de	fects - Control of casting structure; Directional so	lidification – sin	gle cry	ystal gr	owth;	Simple			
proble	ems in the a	bove topics.								
	nit IV	PHASE DIAGRAMS		9	0	0	9			
Phase	s, solid sol	ution types, compounds, Hume- Rothery rules; Gibb	o's phase rule; Ph	ase di	agram d	letermi	nation;			
-	-	ous alloy systems - composition and amount of phases	-			-				
	-	um cooling- Coring and its effects, homogenization	•	•		-				
	-	, development of microstructure; Eutectoid, Peritectic				diagran	ns with			
interm	nediate phas	ses and compounds; Ternary phase diagrams. Simple j	problems in the al	pove to	pics.					
U	Init V	IRON-CARBON PHASE DIAGRAM		9	0	0	9			
	Ū.	am, Phases in Fe-C system, Invariant reactions, Micro		•		-				
	-	nases, Effect of Alloying elements on Fe-C system, T	• • •	-						
		els and different types of Cast iron; IS Specification f	for Steels and Cas	t Irons	, Simpl	e probl	ems in			
above	topics.									
	Total (45+0) = 45 Hours									

Tex	t Books:
1	Donald R. Askeland,"The Science and Engineering of Materials", Thomson Learning, India Edition, 2007.
2	William D.Callister, "Materials Science and Engineering – An Introduction", 4th edition, JohnWiley & Sons, New York, USA, 1997.
Refe	rence Books:
1	Avner S H."An Introduction to Physical Metallurgy", McGraw Hill Book Co, New York, USA, 1997.
2	Donald R Askeland," Essentials of Material Science and Engineering ", Thomson Learning, India Edition, 2007
3	Raghavan V., "Physical Metallurgy – Principles and Practice", Prentice Hall of India Ltd., New Delhi, 199.
4	William F.Smith, "Foundations of Materials Science and Engineering", Second Edition, McGraw-Hill Inc, New York, 1993.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped		
CO1	••	Describe the basic crystal structure, orientation and their influence on macroscopic properties.	L2: Understanding		
CO2	:	Discuss the role of imperfections in strengthening the materials.	L2: Understanding		
CO3	:	Diagonise the diffusion mechanism in solidification of materials under different conditions.	L4:Analysing		
CO4	:	Apply the concept of phase diagrams in equilibrium transformation of materials phases.	L3:Applying		
CO5	:	Construct the Fe-Fe ₃ C phase diagram and discuss various properties of steel and cast iron.	L3:Applying		

COURS	E ART	ICULA	TION	MATR	<u>XIX</u>											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1		1	
CO2	1	1				1	1						1			1
CO3	1	1	1	1		1							1	1		
CO4	1	1		1	1								1			
CO5	1	1		1									1			1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of cor	relation	(3- High,	2-Medi	um, 1- Lo	ow)		

18MTM02	THERMODYNAMICS AND KINETICS IN	METALLURGY	S	emest	er	
PREREQUISIT	ES	Category	OE	Cr	edit	3
D · · · 1			L	Т	Р	ТН
Engineering ph	ysics and Engineering chemistry	Hours/Week	3	0	0	3
Course Learnin	g Objectives					
1	the basic principles and concepts of thermodynamics	in the field of Meta	llurgy	and m	aterials	s; and
to learn a	bout equations and their applications.		r	1	r	
Unit I	L ENERGY	9	0	0	9	
processes, Thern and work, Interna	stem and surrounding, Classification of systems, nodynamic equilibrium, Reversible and Irreversible p al energy, Heat capacity of materials, Cp-Cv relations, noff's law, Maximum flame temperature.	processes. First law	of the	rmody	ynamic	s: Heat
Unit II	9	0	0	9		
statement of first	ermodynamics: Carnot cycle, Entropy - Statistical inte and second laws, Thermodynamic functions - Maxwel of thermodynamics : Definition, concept and applicati	ll's relations, Gibbs	•			
Unit III	THERMODYNAMIC POTENTIALS AND PHA EQUILIBRIA	SE	9	0	0	9
rule. Le Chateli Thermodynamic	potentials: Fugacity, Activity and Equilibrium consta er's principle, Vant Hoff's equation. Equilibria in p s of surfaces, interfaces and defects, P-G-T diagram tudy of alloy systems.	ohase diagrams: Ph	nase ru	le, Pl	hase st	ability,
Unit IV	THERMODYNAMICS OF SOLUTIONS		9	0	0	9
solutions, Activi	quation, Partial and integral molar quantities, chemica ty coefficient, Henry's law, Alternative standard state ar solutions, Applications of Gibbs - Duhem equation.	s, Sievert's law, Mi				-
Unit V	THERMODYNAMICS OF REACTIONS AND I	KINETICS	9	0	0	9
quantities using	process: Cells, Interconversion of free energy and electroversible cells, Solid electrolytic cells. Kinetics: First tion energy, Determination of order of the reaction.					
			Total	(45+() = 45	Hours

Tex	t Books:
1	Upadhyaya G S andDube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.
2	Ahindra Ghosh, Text book of Materials & MetallurgicalThermodynamics, Prentice Hall India, 2002
3	. David R Gaskell, "Introduction to the Thermodynamics of Materials", Fifth Edition, Taylor & Francis, 2008
Refe	rence Books:
1	David V Ragone, "Thermodynamics of Materials - Volume-1", John Wiley & Sons, Inc. 1995.
2	Dr S.K Dutta,Prof A.B.Lele – Metallurgical thermodynamics kinetics and numericals,S.Chand& co Ltd.,New Delhi 2011
3	Darken LS and Gurry R W,"Physical Chemistry of Metals", CBS publications and distributors, 2002.
4	Parker R H, "An introduction to chemical metallurgy", Pergamon press, New York, second edition, 1978.
5	Kapoor M.L., "Chemical and Metallurgical Thermodynamics Vol. I and II", Nem Chand, 1st Ed., 1981

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	:	Discuss the fundamental concepts of thermodynamics and internal energy	L2: Understanding					
CO2	:	State the thermodynamics entropy and auxiliary functions.	L2: Understanding					
CO3	:	Identify the basic laws, chemical potential and phase equilibria.	L4:Analysing					
CO4	:	Describe the thermodynamics of the solution and various important equations.	L2: Understanding					
CO5	:	Apply to solve problems related to electrochemical processes and kinetics.	L3:Applying					

COURS	E ART	ICULA	TION	MATR	<u>XIX</u>											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1	1										1		1	
CO3	1	1		1	1								1			
CO4	1			1	1								1		1	1
CO5	1	1				1	1						1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High,	2-Medi	um, 1- Lo	ow)		

18M7	ГМ03	MECHANICAL BEHAVIOUR OF MAT	FERIALS	S	Semeste	er					
PRERI	EQUISIT	TES		OE	Cre	edit	3				
Encino				L	Т	Р	ТН				
Engine	ering ph	ysics	Hours/Week	3	0	0	3				
Course	e Learnir	ng Objectives	I								
1	To know	the fundamental concepts of deformation behaviour f	for structural engin	neering	applica	ations.					
Un	it I	DISLOCATIONS AND PLASTIC DEFORMATIC	ON	9	0	0	9				
Strength of perfect crystal and need for dislocations; Characteristics of dislocations – Edge dislocation, Screw dislocation, Burger's vector, mixed dislocation, dislocation loops; Movement of dislocation – Pierls stress, Cross slip, Climb; Dislocations in FCC, HCP and BCC lattice; Stress fields and energies of dislocations, forces on and between dislocations; Dislocation density; Intersections of dislocations – Jogs and kinks; Dislocation multiplication; Dislocation pile-ups; Deformation by slip and twinning; Critical resolved shear stress; Deformation bands and kink bands.											
Uni	Unit IISTRENGTHENING MECHANISMS9009										
Strain hardening; Grain boundary strengthening; Solid solution strengthening - yield-point phenomenon, strain ageing; Precipitation hardening - Conditions for precipitation hardening, Ageing, Formation of precipitates, coarsening of precipitates, Mechanism of strengthening; Dispersion strengthening; Fiber strengthening; Martensite strengthening - examples for above strengthening mechanisms from ferrous and non-ferrous systems, Bauschinger effect; Preferred orientation; Sever plastic deformation.											
Uni	t III	FRACTURE AND FRACTURE MECHANICS		9	0	0	9				
factors cohesiv introdue	affecting ve strengt ction, mo	re – ductile and brittle fracture, Ductile to Brittle Tra g DBTT, determination of DBTT, Hydrogen embritt th of metals, Griffith's theory of brittle fracture, Or des of fracture, stress intensity factor, strain energy rele- ction to COD, J integral.	lement and other rowan's modifica	embri tion. H	ttlemen ⁷ racture	t, Theo mech	oretical anics -				
Uni	t IV	FATIGUE BEHAVIOUR AND TESTS		9	0	0	9				
fatigue,	, cumulat	cycles, S-N curves, effect of mean stress, factors affect ive damage, HCF / LCF, thermo-mechanical fatigue, on, fatigue testing machines.			-	-	• •				
Uni	Unit VCREEP BEHAVIOUR AND TESTS9009										
factors	affecting	ges in creep curve and explanation, structural changes of creep, high temperature alloys, stress rupture testing, Deformation Mechanism Maps	e .				•				
				Tota	al (45+0) = 45	Hours				

Tex	t Books:
1	George. E. Dieter, "Mechanical Metallurgy", 3rd Edition, McGraw-Hill Publications, New York, SI Edition, 2004
2	Marc Andr'e Meyers, Krishan Kumar Chawla, "Mechanical Behavior of Materials", Cambridge University Press, UK, 2009.
Refe	rence Books:
1	Reed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.
2	Davis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-Hill, 1982.
3	Wulff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.
4	Honeycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the mechanical behaviour of materials.	L2: Understanding
CO2	:	Discuss the strengthening mechanisms of materials.	L2: Understanding
CO3	:	List the various types of fractures and their mechanisms, fracture mechanics and various theories describing fracture mechanics.	L2: Understanding
CO4	:	Discuss the fatigue behaviour and the mechanism of fatigue, SN curve and fatigue testing machines.	L2: Understanding
CO5	:	Describe the creep behaviour and mechanism, factors affecting creep and creep testing machines.	L2: Understanding

COURS	E ART	ICULA	TION	MATR	<u>XIX</u>											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1	1								1	1		
CO3	1	1	1		1										1	1
CO4	1	1				1	1								1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

18M	TM04	RATE PROCESSES IN METALLUI	RGY	S	Semeste	er				
PRER	EQUISIT	TES		OE	Cre	edit	3			
				L	Т	Р	TH			
Engin	eering ph	ysics	Hours/Week	3	0	0	3			
				5	U	U	5			
Cours	e Learnir	ng Objectives								
1 To learn the basic principles and concepts of kinetics in the domain of metallurgy and materials; to learn about equations and their applications; And to appreciate that metallurgical kinetics as a Knowledge base with abundant applications.										
U	nit I	INTRODUCTION 9 0 0								
Introdu	uction: Re	ole of kinetics, heterogeneous and homogeneous ki	netics, Role of	heat a	ind ma	ss tran	sfer in			
		netics, rate expression, Effect of Temperature and c								
-		rhenius Equation), Effect of concentration (order of a	reaction), signifi	cance	and det	ermina	tion of			
activat	ion energ	у.			n	[
Un	nit II	KINETICS OF SOLID-FLUID REACTION		9	0	0	9			
Kinetic	cs of solid	-fluid reaction: kinetic steps, rate controlling step, defini	tion of various re	sistanc	es in se	ries, sh	inking			
core m	odel, chei	nical reaction as rate controlling step, Product layer dif	fusion as rate co	ntrollir	ng step,	Mass t	ransfer			
-		fluid film as rate controlling step, heat transfer as the r	-	-			-			
-		and significance of heat and mass transfer coeffic	ient, Theoretical	mode	els for	mass t	ransfer			
coeffic	eients, Cor	relations for heat and mass transfer coefficients			1					
	it III	LIQUID-SOLID PHASE TRANSFORMATION		9	0	0	9			
-		lidification in metals and alloys: thermodynamics inv		•			cation,			
Homog	geneous a	nd heterogeneous nucleation, Mechanisms of growth. F	Rapid Solidificati	on Pro	cessing					
Un	it IV	SOLID STATE PHASE TRANSFORMATIONS		9	0	0	9			
Nuclea	ation and	growth Kinetics, homogeneous and heterogeneous tra	ansformation, Pr	ecipita	tion: C	oherend	ey, age			
harden	ing, partio	cle Coarsening. Ostwald ripening, Order-disorder trans	formation, spino	dal dec	compos	ition, n	nassive			
transfo	rmations				r	1				
Un	Unit VSOLID STATE PHASE TRANSFORMATIONS IN STEEL900									
Recons	structive a	and displacive transformations; Pearlitic transformation	on: mechanism a	and kir	netics: .	Johnson	n-Mehl			
-	-	ology of pearlite; Bainitic transformation: mechanism a	-							
		lartensitic transformation: Mechanism- diffusionless d	isplacive nature;	morph	ology c	of high	carbon			
and lov	w carbon	martensite.								
	Total (45+0) = 45 Hours									

Tex	Text Books:						
1.	Ahindra Ghosh and Sudipto Ghosh, A Text book of Metallurgical Kinetics, PHI learning Pvt. Ltd., New						
	Delhi, 2014						
2.	H.S. Ray, Kinetics of Metallurgical Reactions, International Science publisher, 1993.						
3.	F. Habashi, Kinetics of Metallurgical Processes, Metallurgy Extractive Québec, 1999.						
4.	Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon,						
	1977.						
Ref	erence Books:						

1.	Phase transformations in metals and alloys- D.A. Potter and K.E. Easterling, CRC Press,
	1992. 2. Transformations in Metals, P.G. Shewmon, Mc-Graw Hill, 1969.
2.	Introduction to Physical Metallurgy – S. N. Avner, Tata McGraw Hill, 1997.
3.	Physical Metallurgy Principles, R. E. Reed-Hill and R. Abbaschian, 3rd ed, PWS-Kent
	Publishing, 1992.
4.	Modern Physical Metallurgy, R. E. Smallman, Butterworths, 1963

00000	• •	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the thermodynamic aspects of phase changes.	L2: Understanding
CO2	:	Discuss the fundamentals of solid –fluid reactions.	L2: Understanding
CO3	:	Explain the eutectic and peritectic solidifications and rapid solidification processes.	L2: Understanding
CO4	:	Describe the fundamentals of solidification.	L1: Remembering
CO5	:	Apply the solid state phase transformations in steel.	L3:Applying

COURS	E ART	ICULA	TION	MATR	IX											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1			1
CO2	1	1			1	1									1	1
CO3	1	1		1	1								1	1		
CO4	1	1		1	1									1		1
CO5	1		1			1	1								1	1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

18MTM05	CORROSION AND SURFACE ENGIN	EERING	S	er						
PREREQUISI	TES		OE	Cre	edit	3				
En sin sonin a sh			L	Т	Р	TH				
Engineering ch	lemistry	Hours/Week	3	0	0	3				
Course Learni	ng Objectives									
1 To und	erstand the corrosion and surface engineering, with it	ts application in e	enginee	ring fie	eld.					
Unit I	MECHANISMS AND TYPES OF CORROSION	J	9	0	0	9				
– Galvanic co Cavitations, C	Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion									
Unit II	TESTING AND PREVENTION OF CORROSIO	ON	9	0	0	9				
	aced Cracking Test, Sulphide Stress Corrosion Crack on –Modifications of corrosive environment –Inhibito CORROSION OF INDUSTRIAL COMPONEN	ors – Cathodic Pro								
	CORROSION OF INDUSTRIAL COMPONEN	15	9	U	U	9				
	fossil fuel power plants, Automotive industry, Ch action operations and refining, Corrosion of pipelines	•	•			ion in				
Unit IV	SURFACE ENGINEERING FOR WEAR AND RESISTANCE	CORROSION	9	0	0	9				
	ings –Electro and Electroless Plating –Hot dip coatin Conversion coating –Selection of coating for wear a				g, Flam	e and				
Unit V	THIN LAYER ENGINEERING PROCESSES900									
deposition, Th	Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.									
			Tota	l (45+0) = 45	Hours				
Reference Boo										

Re	Reference Books:							
1.	Fontana. G., Corrosion Engineering, McGraw Hill, 1985.							
2.	Kenneth G. Budinski, Surface Engineering for Wear Resistance, Prenticehall, 1992.							
3.	ASM Metals Hand Book – Vol. 5, Surface Engineering, 1996.							
4.	Denny A Jones, "Principles and prevention of corrosion", 2 nd edition, Prentice Hall, New Jersey, 1995.							
5.	ASM International, Surface Engineering for Corrosion and Wear Resistance,2005.							
6.	Schweitzer. P.A., Corrosion Engineering Hand Book, 3rd Edition, Marcel Decker, 1996.							

Cours Upon		Bloom's Taxonomy Mapped	
CO1	:	Name the different types of corrosion and their mechanism.	L2: Understanding
CO2	:	Estimate corrosion resistance by different tests.	L4:Analysing
CO3	:	Explain the corrosion behavior of different metals in different industries.	L2: Understanding
CO4	:	Classify the different forms of processing techniques of surface engineering materials.	L1: Remembering
CO5	:	Select the type of deposition and spraying technique.	L3:Applying

<u>COURS</u>	E ART	ICULA	TION	MATR	<u>RIX</u>											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1		1							1	1		
CO3	1	1	1	1			1								1	1
CO4	1	1		1	1										1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18N	ATM06	MATERIALS CHARACTERIZAT	ΓΙΟΝ	S					
PRE	REQUISI	TES		OE	Cre	edit	3		
Engi	nooming n			L	Т	Р	ТН		
Engi	neering pl	nysics	Hours/Week	3	0	0	3		
Cour	se Learni	ng Objectives							
1	-	ire knowledge on various characterizations, chemica ents using its analysis tools.	l and thermal ana	lysis o	f metal	llurgica	ıl		
τ	Jnit I	OPTICAL MICROSCOPY		9	0	0	9		
const depth techn	Metallographic specimen preparation. Macro-examination -applications. Metallurgical microscope - principle, construction and working, , Optic properties - magnification, numerical aperture, resolving power, depth of focus, depth of field, different light sources, lens aberrations and their remedial measures, Various illumination techniques-bright field , dark field, phase-contrast, polarized light illuminations, interference microscopy, high temperature microscopy; Quantitative metallography – Image analysis.								
	nit II	X-RAY DIFFRACTION	515.	9	0	0	9		
Characteristic X-ray spectrum, Bragg's Law, Diffraction methods - Laue method, rotating crystal method ar powder method. Diffraction intensity – structure factor calculation. X-ray diffractometer -general features, filte and counters. Applications of X-ray diffraction in materials characterisation – Determination of crystallite siz crystal structure, precise lattice parameter, measurement of stress.									
	nit III	ELECTRON MICROSCOPY		9	0	0	9		
Diffra prepa applie	action effe tration tech cations, E	- specimen interactions. Construction and operation cts and image formation, various imaging modes, selechniques. Scanning electron microscopy – principle lectron probe microanalyser (EPMA)- principle, in uction to HRTEM, FESEM, EBSD.	ected area diffract , equipment, var	ion, ap ious o	plication peratin	ons, spe g mod	ecimen es and		
U	nit IV	SPECTROSCOPIC TECHNIQUES		9	0	0	9		
spect emiss	roscopy, X sion spect	copy – EDS and WDS. Principle, instrumentation, w X-ray photoelectron spectroscopy and Secondary ion r roscopy, Atomic Absorption spectroscopy and X-r orking and applications. UV-Vis, FTIR and Raman s	mass spectroscop ray fluorescence	y/ion	microp	probe. (Optical		
U	nit V	THERMAL ANALYSIS AND CHARACTERIZATION TECHNIQUES	ADVANCED	9	0	0	9		
gravi micro	Thermal Analysis: Principles of differential thermal analysis, differential scanning calorimetry and thermo- graviometric analysis – Instrumentation and applications. Advanced characterization techniques: Scanning probe microscopy - STM and AFM - principle, instrumentation and applications. Field ion microscopy including atom probe - principles, instrumentation and applications. Total (45+0) = 45 Hours								
Text	Books:								
1.	Cullity, B 1978	.D., Elements of X Ray Diffraction, Addison-Wesley	Publishing Com	ipany I	inc, Phi	ilippine	es,		
2.	Brandon, England,	D. and W.D. Kaplan, Microstructural Characterizatio 2013.	on of Materials, J	ohn W	iley &	Sons L	.td,		

3.	Leng, Y., Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, John
	Wiley & Sons (Asia) Pte Ltd, Singapore, 2008

Re	Reference Books:							
1.	ASM Handbook, Volume 10, Materials Characterization, ASM international, USA, 1986.							
2.	Vander Voort, G.F., Metallography: Principle and practice, ASM International, 1999.							
3.	Phillips V A, Modern Metallographic Techniques and their Applications, Wiley Eastern, 1971.							
4.	Angelo, P. C., Materials Characterization, Reed Elsevier India Pvt Ltd, Haryana, 2013.							

Cours Upon		Bloom's Taxonomy Mapped	
CO1	:	Discuss the principles of metallurgical microscope, optical properties and various illumination techniques.	L2: Understanding
CO2	:	Analyze the various diffraction methods, X-ray diffractometer and determination of crystal parameter.	L4:Analysing
CO3	:	Discuss the principles of TEM, SEM, EPMA.	L2: Understanding
CO4	:	Explain various spectroscopic techniques,	L2: Understanding
CO5	:	Discuss the chemical and thermal analysis using advanced methods.	L2: Understanding

COURSE ARTICULATION MATRIX																
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	`1		1	1								1		1	
CO2	1	1	1	1		1							1			1
CO3	1		1			1	1					1	1			1
CO4	1	1		1	1							1	1			1
CO5	1	1		1	1								1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0					1.0	1.0		1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	ITM07	AUTOMOTIVE, AEROSPACE AND DEFENC	CE MATERIAL	S	emeste	er	
PRER	REQUISI	TES		OE	Cre	edit	3
Engin	oo ning n k	vicios		L	Т	Р	TH
Engin	eering ph	lysics	Hours/Week	3	0	0	3
Cours	se Learni	ng Objectives					
1		rstand the properties and applications various materia	ls suitable for au	tomobi	le, airc	raft and	1
	defnce in	ndustries and its components.					
U	Unit I MATERIALS FOR ENGINES AND TRANSMISSION SYSTEMS					0	9
Materi	ials select	ion for IC engines: Piston, piston rings, cylinder, Eng	gine block, Conne	ecting	rod, Cra	ank sha	aft, Fly
wheels	s, Gear bo	x, Gears, Splines, Clutches.					
Ur	nit II	MATERIALS FOR AUTOMOTIVE STRUCTU	RES	9	0	0	9
Materi	ials select	per, shock absor	bers, v	vind sc	reens,	panels,	
brake	shoes, Dis	sc, wheels, differentials, damping and antifriction flui	ids, Tyres and tuł	bes. Ma	aterials	for ele	ctronic
device	es meant f	or engine control, ABS, Steering, Suspension, Sensor	s, anti-collision, A	Anti-fo	g, Hea	d lamp	s.
Un	it III	AEROSPACE METALS AND ALLOYS		9	0	0	9
Types	of corros	sion - Effect of corrosion on mechanical propertie	s – Stress corro	sion c	racking	– Co	rrosion
resista	nce mater	ials used for space vehicles. Heat treatment of carbon	steels – aluminiu	m alloy	/s, mag	nesium	alloys
		oys - Effect of alloying treatment, heat resistance a	-			-	-
powde	er metallu	rgy- application of materials in Thermal protection sy	stems of Aerospa	ice veh	icles –	super a	alloys
Un	it IV	CERAMICS AND COMPOSITES		9	0	0	9
Introd	uction – p	hysical metallurgy – modern ceramic materials – cerm	et - cutting tools -	– glass	cerami	c –proc	luction
of sen	ni-fabricat	ed forms - Plastics and rubber - Carbon/Carbon co	mposites, Fabrica	ation p	rocesse	s invol	lved in
metal	matrix co	mposites - shape memory alloys - applications in aero	ospace vehicle de	sign.			
Uı	nit V	NUCLEAR WASTE AND RADIATION PROTE IRRADIATION EFEFCTS	CCTION,	9	0	0	9
Introd	uction-un	it of nuclear radiation-Types of waste –disposal –ICR	P recommendation	ons-rad	liation		
hazard	ls and pre	vention –radiation dose units - Irradiation Examination	on of Fuels, Irradi	ation b	oehavio	ur of n	netallic
uraniu	m – irradi	iation growth, thermal cycling, swelling, adjusted ura	nium, blistering i	n uran	ium roo	ds. Irra	diation
		ic oxide and mixed oxide fuels, definition and units of	burn up, main ca	uses o	f fuel el	lement	failure
in pow	ver reactor	rs and remedies to avoid failures.					
				Tota	l (45+0) = 45	Hours

Re	ference Books:
1.	ASM Handbook, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. USA, 1991.
2.	Materials Science and Engineering, Willium D. Callister, Jr. John Wiley & Sons publications Or Callister's Materials Science and Engineering Adapted By R. Balasubramaniam, Wiley India, Edition -2010.
3.	Material Science and Engineering, V. Raghavan, Prentice Hall of India, 4th Edition.
4.	Engineering Metallurgy Applied Physical Metallurgy, R. A. Higgins, 6th Edition

5.	Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.
6.	Charles J A and Crane. F A. A., "Selection and Use of Engineering Materials", 3rd Edition, Butterworths, London UK, 1996
7.	ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park Ohio.USA, 1997
8.	Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials", Taylor & Francis Group, London, 2006

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	CO1 : Describe the materials selection criteria for engine and transmission systems.					
CO2	:	Analyze the different materials used for automotive structures and Different electronic materials for automotive applications.	L4:Analysing			
CO3	:	Explain various topics such as elements of aerospace materials and mechanical behaviour of materials,	L2: Understanding			
CO4	:	Compare the ceramics and composites of aerospace materials	L4:Analysing			
CO5	:	Examine the fuels for nuclear materials.	L3:Applying			

PO2 1 1	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
1		1	1											
1											1	1		
1				1							1	1		
		1	1								1		1	
1	1				1						1			1
1		1	1								1			1
1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
	1 1 1.0	1 1 1 1 1.0 1.0	1 1 1 1 1 1 1 1 1.0 1.0										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0 1.0 1.0 1.0 3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)	