GOVERNMENT COLLEGE OF ENGINEERING, SALEM-11

Regulations 2018A B.E. MECHANICAL ENGINEERING

					Hours/	Week		Max	Maximum Marks				
Course Code	Name of the Course	Category	Contact Periods	Lecture	Tutorial/ Demo	Practical	Credits	CA	FE	Total			
			SEMES	TER	- I								
	-		THE	ORY	-				_				
18MA101	Matrices and Calculus	BS	60	3	1	0	4	40	60	100			
18PH102	Physics – Electromagnetism	1	0	4	40	60	100						
18EE103	Basics of Electrical Engineering	ES	60	3	1	0	4	40	60	100			
18ME101	Engineering Graphics & Design	ES	60	1	0	4	3	40	60	100			
			PRAC	TICA	L								
18PH103	Physics Laboratory	BS	45	0	0	3	1.5	60	40	100			
18CY102	Chemistry laboratory	BS	45	0	0	3	1.5	60	40	100			
18EE104	Basics of Electrical Engineering Laboratory	ES	30	0	0	2	1	60	40	100			
18EN103	Professional Communication Laboratory	HS	30	0	0	2	1	60	40	100			
18MC101	Induction Program -21 Days	MC					0						
	Total			10	3	14	20	320	480	800			
		:	SEMES	TER	–II								
			THE	ORY									
18EN101	Professional English	HS	30	2	0	0	2	40	60	100			
18MA201	Differential Equations And Complex Variables	BS	60	3	1	0	4	40	60	100			
18CY101	Chemistry	BS	60	3	1	0	4	40	60	100			
18CS101	Fundamentals Of Problem Solving And C Programming	ES	45	3	0	0	3	40	60	100			
			PRAC	TICA	L		1						
18EN102	Professional English Laboratory	HS	30	0	0	2	1	60	40	100			
18CS102	Computer Practice Laboratory	ES	60	0	0	4	2	60	40	100			
18ME102	Workshop Manufacturing Practices	ES	60	1	0	4	3	60	40	100			
	Total			12	2	10	19	280	420	700			

				I	Hours/W	'eek		Maximum Marks						
Course Code	Name of the Course	Category	Contact Periods	Lecture	Tutorial/ Demo	Practical	Credits	CA	FE	Total				
		SE	MEST	ER – I	II									
			THEC	ORY										
18PH202	18PH202Physics – Waves & Optics And Quantum MechanicsBS603104406010018MA204Fourier Series and TransformsBS6031044060100													
18MA204	Fourier Series and Transforms	BS	60	3	1	0	4	40	60	100				
18ME301	Manufacturing Processes	PC	45	2	1	0	3	40	60	100				
18ME302	Engineering Mechanics	PC	45	3	0	0	3	40	60	100				
18ME303	Thermodynamics	PC	60	3	1	0	4	40	60	100				
18EC308	Basic Electronics Engineering	ES	45	3	0	0	3	40	60	100				
PRACTICAL														
18ME304	Manufacturing Technology Laboratory	PC	45	0	0	3	2	60	40	100				
18EC309	Electronics Laboratory	ES	30	0	0	2	1	60	40	100				
	Total			17	4	5	24	320	480	800				
		SE	EMEST	ER –I	V									
			THEC	ORY										
18ME401	Kinematics of Machinery	PC	60	3	1	0	4	40	60	100				
18ME402	Applied Thermodynamics	PC	45	3	0	0	3	40	60	100				
18ME403	Fluid Mechanics and Machinery	PC	60	3	1	0	4	40	60	100				
18ME404	Strength of Materials	PC	45	3	0	0	3	40	60	100				
18ME405	Materials Engineering	PC	45	3	0	0	3	40	60	100				
18CYMC01	Environmental Science	MC	14	0	0	1	0	-	-	-				
PRACTICAI	1													
18ME406	Strength of Materials and Fluid Mechanics Laboratory	PC	45	0	0	3	1.5	60	40	100				
18ME407	Thermal Engineering Laboratory	PC	45	0	0	3	1.5	60	40	100				
	Total			15	2	7	20	280	420	700				

			Maximum Marks										
Course Code	Name of the Course	Category	Contact Periods	Lecture	Tutorial/ Demo	Practical	Credits	CA	FE	Total			
		SE	MESTE	R – V									
			THEO	RY									
18ME501	Heat and Mass Transfer	PC	60	3	1	0	4	40	60	100			
18ME502	Instrumentation & Control	PC	45	3	0	0	3	40	60	100			
18ME503	Metrology and Quality Control	PC	45	3	0	0	3	40	60	100			
18ME504	Dynamics of Machinery	PC	45	3	0	0	3	40	60	100			
18MEOE1X	Open Elective-I	OE	45	3	0	0	3	40	60	100			
18MC301	Indian Constitution	MC	15	3	0	0	0	-	-	-			
		P	RACTI	CAL			I						
18ME505	Heat Transfer and Refrigeration Laboratory	PC	45	0	0	3	1.5	60	40	100			
18EN501	Communication Skills andLanguage Laboratory	HS	30	0	0	2	2	60	40	100			
18ME506	Dynamics and Metrology Laboratory	PC	45	0	0	3	1.5	60	40	100			
	Total			18	1	8	21	320	480	800			
SEMESTER –VI (Regular Stream)													
18MEPE1X	Program Elective- I	PE		3	0	0	3	40	60	100			
18MEPE2X	Program Elective- II	PE		3	0	0	3	40	60	100			
18MEPE3X	Program Elective- III	PE		3	0	0	3	40	60	100			
18MEPE4X	Program Elective- IV	PE		3	0	0	3	40	60	100			
18MEOE2X	Open Elective – II	OE		3	0	0	3	40	60	100			
18MEOE3X	Open Elective – III	OE		3	0	0	3	40	60	100			
18MEOE4X	Open Elective - IV	OE		3	0	0	3	40	60	100			
		PF	RACTIO	CAL									
18ME605	Mini Project	PRO		0	0	6	1	60	40	100			
	Total			21	0	0	22	320	480	800			
	SEMI	ESTER -	-VI (Pr	otosem	Stream)							
		r	ГНЕОБ	RY									
18MEPS11	Applied Design Thinking	PE		3	0	0	3	100	-	100			
18MEPS12	Startup Fundamentals	PE		3	0	0	3	100	-	100			
18MEPS13	Computational Hardware	PE		3	0	0	3	100	-	100			
18MEPS14	Coding for Innovators	OE		3	0	0	3	100	-	100			
18MEPS15	Industrial Design & Rapid Prototyping Techniques	OE		3	0	0	3	100	-	100			
18MEPS16	Industrial Automation/ Data Life Cycle Management	OE		3	0	0	3	100	-	100			
18MEPS17	Robotics /ML& MLOps	EEC		3	0	0	3	100	-	100			
				21	0	0	21	700		700			

	SEMESTER -VII													
			THEO	RY										
18ME701	Mechatronics	PC		3	0	0	3	40	60	100				
18ME601	Computer Integrated Manufacturing	PC		3	0	0	3	40	60	100				
18ME602	Finite Element Analysis	PC		3	0	0	3	40	60	100				
18ME603	Design of Machine Elements	PC		3	1	0	4	40	60	100				
PRACTICAL														
18ME702	Mechatronics & Simulation Laboratory	PC		0	0	3	1.5	60	40	100				
18ME604	CAD /CAM Laboratory	PC		0	0	3	1.5	60	40	100				
18ME605	Project-I	PRO		0	0	8	4	60	40	100				
		SEM	ESTER	R –VIII										
		r	THEOR	RY										
18MEPE5X	Program Elective- II	PE		3	0	0	3	40	60	100				
18MEPE6X	Program Elective- II	PE		3	0	0	3	40	60	100				
	PRACTICAL													
18ME801	Project-II	PRO		0	0	12	10	80	120	200				
	Total						16	160	240	400				
Grand	Total		Grand Total 10 160 240 400											

PROFESSIONAL ELECTIVE COURSES

			Hours/	Week		Max	imum	Marks
Code No.	Course	Lecture	Tutorial	Practical	Credits	CA	FE	Total
	Electives- I (VI SEMES	TER)						
		L	Т	Р	С	CA	FE	Total
18MEPE11	Composite Materials	3	0	0	3	40	60	100
18MEPE12	Design of Transmission System	3	0	0	3	40	60	100
18MEPE13	Gas Dynamics & Jet Propulsion	3	0	0	3	40	60	100
18MEPE14	Renewable Energy System	3	0	0	3	40	60	100
18MEPE15	Metal Cutting & Tool Design	3	0	0	3	40	60	100
18MEPE16	Aeronautical Engineering	3	0	0	3	40	60	100
18MEPE17	Operations Research	3	0	0	3	40	60	100
	Electives- II (VI SEMES	TER)						
18MEPE21	Advanced Strength of Materials	3	0	0	3	40	60	100
18MEPE22	Internal Combustion Engines	3	0	0	3	40	60	100
18MEPE23	Power plant Engineering	3	0	0	3	40	60	100
18MEPE24	Machine Drawing	3	0	0	3	40	60	100
18MEPE25	Engineering System Analysis and Design	3	0	0	3	40	60	100
	Electives-III (VII SEMES	STER)						
18MEPE31	Applied Hydraulics and Pneumatics	3	0	0	3	40	60	100
18MEPE32	Professional Ethics and Human Values	3	0	0	3	40	60	100
18MEPE33	Maintenance Engineering	3	0	0	3	40	60	100
18MEPE34	Fuels and Combustion	3	0	0	3	40	60	100
18MEPE35	Rapid Product Development Technologies	3	0	0	3	40	60	100
18MEPE36	Refrigeration & Air Conditioning	3	0	0	3	40	60	100
	Electives-IV (VII SEMES	STER)						
18MEPE41	Marine Engineering	3	0	0	3	40	60	100
18MEPE42	Fracture Mechanics and Failure Analysis	3	0	0	3	40	60	100
18MEPE43	Automation in Manufacturing	3	0	0	3	40	60	100
18MEPE44	Fundamentals of Tribology	3	0	0	3	40	60	100
18MEPE45	Advanced Decision Modelling Technique	3	0	0	3	40	60	100
18MEPE46	Total Quality Management	3	0	0	3	40	60	100
	Electives-V (VIII SEMES	STER)						

18MEPE51	Advanced Mechanics of Solids	3	0	0	3	40	60	100
18MEPE52	Heat Transfer Problems in Electronics and Instrumentation	3	0	0	3	40	60	100
18MEPE53	Nuclear Engineering	3	0	0	3	40	60	100
18MEPE54	Analysis and Synthesis of Mechanism	3	0	0	3	40	60	100
18MEPE55	Thermal Turbo Machines	3	0	0	3	40	60	100
	Electives-VI (VIII SEME	STER)						
18MEPE61	Cryogenic Engineering	3	0	0	3	40	60	100
18MEPE62	Introduction to Computational Fluid Dynamics	3	0	0	3	40	60	100
18MEPE63	Robotics	3	0	0	3	40	60	100
18MEPE64	Engineering System Modeling and Simulation	3	0	0	3	40	60	100
18MEPE65	Design of Production Tooling	3	0	0	3	40	60	100

LIST OF OPEN ELECTIVE COURSES

			Hours	/Week	Maximum Marks			
Code No.	Course	Lecture	Tutorial	Practical	Credits	CA	FE	Total
		L	Т	Р	С	CA	FE	Total
18MEOE01	Design of Machine Elements and Machining	3	0	0	3	40	60	100
18MEOE02	Industrial Engineering	3	0	0	3	40	60	100
18MEOE03	Total Quality Management	3	0	0	3	40	60	100
18MEOE04	Principles of Management	3	0	0	3	40	60	100
18MEOE05	Professional Ethics and Human Values	3	0	0	3	40	60	100
18MEOE06	Robotics	3	0	0	3	40	60	100
18MEOE07	Robotic Process Automation	3	0	0	3	40	60	100

Definition of Credit

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
1 Hr. Practical (P) per week	0.5 credit

Structure of Undergraduate Engineering Program:

S.NO	Category	Breakup of Credits
1	Humanities and Social Sciences including Management courses	6
2	Basic Science Courses	27
3	Engineering Science courses including Workshop, Drawing,Basic of Electrical/Mechanical/Computer etc	20
4	Professional Core Courses	64
5	Professional Elective Courses relevant to chosen specialization/Branch	18
6	Open subjects- Electives from other Technical and / or Emerging subjects	12
7	Project Work, Seminar and Internship in Industry or elsewhere	16
8	Mandatory Courses (Environmental Sciences, Induction Program, Essence of Indian Traditional Knowledge)	
	Total	163

MULTIVARIABLE CALCULUS ((INTEGRATION)

Partial derivatives - Euler's theorem for homogenous functions - Total Derivatives - Jacobians - Maxima, Minima

Multiple integrals - Double integrals - Change of order of integration in double integrals - Change of variables (Cartesian to Polar) - Application to Areas - Evaluation of Triple integrals - Application to volumes.

UNIT V **VECTOR CALCULUS**

Vector differentiation-Gradient- Directional derivative - Divergence - Curl Vector integration-Line integration - work done - Surface and Volume integrals - Green's theorem , Gauss divergence and Stokes theorem (without proof) - Simple applications involving cubes and rectangular parallelopipeds.

Total (45+15) = 60 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : learn the fundamental knowledge of matrix theory.
- familiar with the concept of the differentiation and integration and its applications. CO2 :
- CO3 acquire skills in applications of integral and vector calculus.

Text Books:

18MA101

1.

2.

3.

4.

5.

UNIT I

UNIT II

UNIT III

UNIT IV

Course Objectives:

understand

MATRICES

CALCULUS

Gamma functions.

effectively

quadratic form to canonical form by orthogonal transformation.

То

- Grewal. B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna Publications, Delhi, (2015). 1.
- Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2009 2.

Reference Books:

- 1. James Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2nd edition, 2013.
- 2. P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (For I year B.E., B.Tech)", Nineth Edition, S. Chand & Co. Ltd. New Delhi, 2010.
- 3. Srimanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford university publications, New Delhi, 2015
- Ewinkreyzig, "Advanced Engineering Mathematics", 9th edition, John Wiley & Sons, 2006. 4.
- 5. Sivaramakrishnadas.P, Ruknmangadachari.E. "Engineering Mathematics", Pearson, Chennai & Delhi, 2nd edition, 2013.

SEMESTER I

Symmetric, Skew Symmetric and Orthogonal Matrices - Characteristic equation of a Matrix - Eigen values and Eigen

application

of

differential

MATRICES AND CALCULUS

To know the use of matrix algebra needed by engineers for practical applications.

To obtain the knowledge of multiple integration and their related applications.

Definite integrals and their properties - Beta and Gamma functions and their properties.

MULTIVARIABLE CALCULUS (DIFFERENTIATION)

and Saddle point- - Method of Lagrangian multipliers- Taylor's series.

To acquire the knowledge of vector differentiation and integration and its applications.

geometrical

the

To familiarize with partial differentiation concepts and its applications

т L 3 1 n

and

calculus

4

С

Beta,

3

vectors - Properties - Cayley-Hamilton theorem (excluding proof) - Diagonalization of Matrices - Reduction of

3 Curvature , Radius of Curvature (Cartesian coordinates) - Centre and Circle of curvature - Evolutes and Involutes-

3 +

9

9

9

9

3

3

CO-PO MAPPING

CO /PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1
CO3	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1

1- Faintly

2- Moderately

Course Objectives:

- 1. The concept of electrostatics, electric potential and their application.
- 2. The concept of dielectrics, laplace and poisons equation for electrostatic potential.
- 3. The concept of magnetostatics, magnetic fields in matter and their application.
- 4. The concept of Faraday's law, Ampere's Law, Maxwell's Equation and their application.
- 5. The concept of Electromagnetic waves, and Poynting vector.

UNIT I **ELECTROSTATICS IN VACUUM**

Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge- infinite sheet of charge- uniformly charged sphere; Electric potential - potential due to a point chargeelectric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields.

UNIT II ELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM

Classification of materials based on conductivity; Electric dipole - electrostatic field and potential of a dipole; Dielectrics - induced dipoles - polarization in dielectrics - dielectric constant and strength; Linear, isotropic, and homogeneous dielectrics; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Electric displacement; Laplace's and Poisson's equations for electrostatic potential.

UNIT III MAGNETOSTATICS AND MAGNETIC FIELDS IN MATTER

Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor; Ampere's circuit law applications of ampere's law: infinite line current - infinite sheet of current; Magnetization and associated bound currents - auxiliary Field H - Ampere's law in magnetized materials; Magnetic susceptibility and permeability; Classification of magnetic materials - diamagnetic, paramagnetic and ferromagnetic materials - hysteresis loop.

UNIT IV FARADAY'S LAW AND MAXWELL'S EQUATION

Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf; Electromagnetic breaking and its applications; Self Inductance -self-inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current modified ampere's law; Maxwell's equation in vacuum and non-conducting medium.

UNIT V **ELECTROMAGNETIC WAVES**

The wave equation- plane electromagnetic waves in vacuum, their transverse nature and polarization; Polarization by reflection- Brewster's law; Relation between electric and magnetic fields of an electromagnetic wave; Energy carried by electromagnetic waves; Flow of energy and Poynting vector; Variation of intensity of electromagnetic wave with distance; Radiation pressure.

Total (45+15) = 60 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the concepts of electrostatics, electrical potential, and their applications.
- CO2 interpret the concepts of dielectrics, laplace and poisons equation for electrostatic potential. :
- CO3 apply the concepts of magneto statics, magnetic fields in matter and their application.
- CO4 apply the concepts of faraday's law, ampere's law, maxwell's equation. :
- CO5 interpret the concepts of electromagnetic waves and poynting vector.

Text Books:

- 1. Mathew N. O.Sadiku, 'Elements of Electromagnetics', Oxford University Press, Third Edition, 2001.
- Halliday, Resnick, Walker, 'Fundamentals of Physics-Electricity and Magnetism', Wiley India Pvt.Ltd., 2011. 2.
- Gangadhar K.A, Ramanthan P.M, 'Field Theory', Khanna Publications, 2002. 3.

3 9 +

3 9 ÷

9 + 3

3 9 +

3 9 +

Reference Books:

- 1. David J. Griffiths, 'Introduction to Electrodynamics', Prentice-Hall, Inc., 1999.
- 2. Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth edition, 2010.

CO-PO MAPPING

CO /PO	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	0	3	2	1	2	0	1	0	0	3	2	1	3
CO2	3	3	0	2	1	1	0	0	1	0	0	3	2	0	2
CO3	2	3	0	3	3	1	1	0	1	0	0	3	1	2	3
CO4	3	2	0	3	2	1	1	0	1	0	0	2	2	1	3
CO5	3	3	0	3	2	1	1	0	1	0	0	3	3	1	3

1- Faintly

2- Moderately

UNIT IV AC MACHINES

Construction and Principle of operation of Three phase induction motor - Torque slip characteristics - Starting and speed control methods - Loss components and efficiency. Construction and working of Single phase induction motor - Construction and Working of Synchronous generators and types - Applications of all machines.

UNIT V POWER CONVERTERS AND DRIVES

Operation of three phase Converter and Inverter circuits - Working of Chopper and duty ratio control - Chopper control of separately excited DC motor - Stator voltage control of three phase induction motor drives - Rotor resistance control of three phase induction motor - Closed loop control of slip power recovery scheme.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 verify ohm's law and kirchoff's laws for simple electrical circuits.
- CO2 : verify simple network theorems for electrical circuits.
- CO3 : solve problems on ac circuits and analyze three phase ac circuits.
- CO4 understand the performance of dc machines and transformers. 1
- CO5 basic understanding of power electronic circuits and their application in speed control of ac and dc 1 machines.

Text Books:

- 1. D.P.Kothari, I.J.Nagrath,, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- P. S. Bimbhra, "Electrical Machinery", Khanna Publishers, 2011. 2.
- 3. M. H. Rashid, "Power electronics: circuits, devices, and applications", Pearson Education India, 2009.
- G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989 4.

Reference Books:

- Nagsarkar T K and Sukhija M S, "Basic Electrical Engineering", Oxford Press (2005). 1.
- 2. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

Course Objectives:

- 1. To understand and analyze basic electric circuits
- 2. To Study the working principles of Electrical Machines and Transformers
- 3. To Study the working principles of power converters and Drives

UNIT I DC CIRCUITS

Electrical Circuit Elements - Voltage and Current Sources- Source transformation techniques - Ohms law, Kirchhoff's laws -Analysis of simple circuits with DC excitation - Superposition, Thevenin and Norton's theorem. Star and Delta transformation. Time domain analysis of first order RL and RC Circuits.

UNIT II AC CIRCUITS

Representation of Sinusoidal waveforms, peak, rms and average value. Real power, reactive power, apparent power and power factor. Analysis of single phase AC circuits consisting of R,L, C, RL, RC, RLC combinations (Series and Parallel) - Resonance in series Circuits (Study of phenomenon). Three phase circuits - relation between voltage and current in star and delta connections - Three phase balanced circuits.

DC MACHINES AND TRANSFORMERS UNIT III

Construction and Principle of operation and speed control of separately excited DC motor - Characteristics of motors - Applications - Magnetic materials - BH characteristics - Single phase transformer - Equivalent circuit - Types of Losses in a transformer - No Load test and Load test - Regulation and Efficiency - Auto transformer - Three phase transformer connections - Uses of transformers - Applications.

9 3 +

3 ÷

Total (45+15) = 60 Periods

9 ÷ 3

9 3 +

5

9

9 + 3

18EE103

- 3. E.Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum Outline Series, McGraw Hill, Sixth edition (2014).

CO /PO	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	0	1	1	0	0	0	0	0	0	0	0	0	0
CO2	3	2	0	1	1	0	0	0	0	0	0	0	0	0	0
CO3	3	3	0	2	1	1	1	0	0	0	0	0	0	0	0
CO4	3	2	0	1	1	0	0	0	0	0	0	0	0	0	0
CO5	3	2	0	1	1	0	0	0	0	0	0	0	0	0	0

CO-PO MAPPING

1- Faintly

2- Moderately

Course Objectives:

18ME101

- To impart knowledge on concepts, ideas and design of engineering products and to provide an exposure 1. to CAD Modelling.
- 2. Standards of Engineering Drawing: Size, layout and folding of drawing sheets, lettering - Use of drafting instruments

UNIT I PROJECTION OF POINTS. LINES AND PLANE SURFACES

General principles of orthographic projection - Projection of points, located in all quadrants - Projection of straight lines located in first quadrant - Determination of true lengths and true inclinations - Projection of polygonal surface and circular lamina inclined to both reference planes.

UNIT II **PROJECTION OF SOLIDS**

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is perpendicular to one reference plane and also inclined to one reference plane by change of position method.

UNIT III SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

Sectioning of above solids in simple vertical position by cutting planes inclined to one reference plane and perpendicular to other - solids inclined position with cutting planes parallel to one reference plane- Obtaining true shape of section. Development of lateral surfaces of simple and truncated solids - Prisms, pyramids cylinders and cones- Development of lateral surfaces of solids with square and cylindrical cutouts, perpendicular to the axis.

UNIT IV **ISOMETRIC PROJECTION**

Principles of isometric projection -isometric scale - isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones.

UNIT V PERSPECTIVE PROJECTION

Perspective projection of prisms, pyramids and cylinders by visual ray and vanishing point methods.

Note: Study of drafting software - Auto CAD - Coordinate System (Absolute, relative and polar) Creation of simple figures like polygon, Drawing a plan of residential building, Creation of 3-D Models of simple objects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessment only)

Course Outcomes:

Upon completion of this course, the students will be able to:

- : understand the conventions and the methods of engineering drawing. CO1
- CO2 : understand the fundamental concepts of theory of projection.
- CO3 : understand the development of different surfaces.
- CO4 : develop the relationships between 2d and 3d environments.
- CO5 : demonstrate computer aided drafting.

Text Books:

- Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003 1.
- 2. Natarajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 2006.

Reference Books:

- Gopalakrishnana K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1999. 1.
- Dhananjay A. Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata McGraw Hill Publishing 2. Company Limited, 2008.
- 3. Venugopal, K and Prabhu Raja, V., "Engineering Graphics", New Age International (P) Ltd, 2008.
- Gill, P.S, "Engineering Drawing-Geometrical Drawing", S.K Kataria and Sons, 2008. 4.
- 5. CAD Software Theory and User Manuals

9

9

9

9 + 3

Total (45+15) = 60 Periods

3 +

3 +

3

÷

9 + 3

CO-PO MAPPING

CO /PO	РО 1	PO 2	PO 3	PO 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	0	0	0	0	0	0	0	0	0	0	1	1	2
CO2	0	0	2	0	0	0	0	0	0	0	0	0	1	2	1
CO3	0	0	0	2	1	0	0	0	0	0	0	0	2	1	1
CO4	0	1	1	0	0	0	0	0	0	3	0	0	1	2	1
CO5	1	2	0	1	1	0	0	0	0	0	0	2	2	1	3

1- Faintly

2- Moderately

18PH103

PHYSICS LABORATORY

Course Objectives:

- 1. To handle different measuring instruments.
- 2. To understand the basic concepts of interference, diffraction, heat conduction and to measure the important parameters.

EXPERIMENTS:

- 1. Newton's rings Determination of radius of curvature of a Plano convex lens.
- 2. Carey Foster's bridge Determination of specific resistance of the material of the wire.
- 3. Poiseuille's flow Determination of Coefficient of viscosity of a liquid.
- 4. Spectrometer Grating Normal incidence Determination of Wavelength of Mercury lines.
- 5. Lee's disc Determination of thermal conductivity of a Bad conductor.
- 6. Ultrasonic interferometer Determination of velocity of Ultrasonic Waves in Liquid.
- 7. Non-uniform bending Determination of young's modulus of the material of the Bar.
- 8. Determination of Band gap of a given semi conductor.
- 9. Determination of Wavelength of laser using grating and determination of particle size using Laser.
- 10. Determination of Acceptance angle and Numerical Aperture of fiber.

Total = 45 Periods

Course Outcomes:

After completing the laboratory course the students will be able to

- CO1 : handle different measuring instruments and to measure different parameters.
- CO2 : calculate the important parameters and to arrive at the final result based on the experimental measurements.

CO-PO MAPPING

CO /PO	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	2	3	1	1	2	0	3	0	1	2	1	0	3
CO2	3	3	2	3	1	1	2	0	3	0	1	2	1	0	3

1- Faintly

2- Moderately

Total = 45 Periods

Course Objectives:

1. To gain practical knowledge by applying theoretical principles and performing the following experiments.

EXPERIMENTS:

- 1. Estimation of hardness of Water by EDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Estimation of Alkalinity in water
- 4. Estimation of Chloride in water sample (lodimetry)
- 5. Conductometric titration of Strong Acid and Strong Base
- 6. Conductometric titration of Mixture of acids and Strong base
- 7. Determination of strength of Iron by Potentiometric method
- 8. Estimation of Iron by Spectrophotometry
- 9. Determination of molecular weight and degree of Polymerisation by Viscometry.

Course Outcomes:

After completing the laboratory course the students will be able to

- CO1 : know the applicability of the practical skill gained in various fields.
- CO2 : know the composition of brass quantitatively and the molecular weight of polymers.
- CO3 : understand the principle and applications of conductometric titrations, spectrometer and potentiometric titrations.

CO-PO MAPPING

CO /PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0
CO2	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0
CO3	3	3	1	0	0	0	0	0	0	0	0	0	0	0	0

1- Faintly

2- Moderately

18EE104

BASICS OF ELECTRICAL ENGINEERING LABORATORY

L	Т	Ρ	С
0	0	2	1

Total = 30 Periods

Course Objectives:

1. To gain practical knowledge by applying theoretical principles and performing the following experiments.

EXPERIMENTS:

- 1. Introductions to measuring instruments voltmeter, ammeter, wattmeter, multimeter and Digital Storage Oscilloscope.
- 2. Resonance in RLC circuits, verification of laws in electrical circuits.
- 3. Measurement of phase difference between voltage and current
- 4. No load test on single phase transformer and equivalent test
- 5. Load Test on single phase transformer
- 6. Three phase transformer connections
- 7. Voltage Current relations in three phase circuit and three phase power measurement
- 8. Demonstration of cut out section of machines
- 9. Swinburne's Test, Speed Control and Load test on DC motor
- 10. Direction change and load test on three phase induction motor
- 11. Alternator load test and regulation test
- 12. Demonstration of LT switchgear components
- 13. Demonstration of AC and DC drives

Course Outcomes:

After completing the laboratory course the students will be able to

- CO1 : making electrical connections by wires of appropriate wires
- CO2 : acquire exposure to common electrical components and measuring instruments.
- CO3 : verify simple laws using electrical circuits.
- CO4 : do experiment to understand the characteristics of transformers and electrical machines.
- CO5 : understand the working of low tension switch gear components, ac and dc drives.

CO /PO	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	0	1	1	0	1	1	0	0	0	0	0	0	0
CO2	3	2	0	1	1	0	0	0	0	0	0	0	0	0	0
CO3	2	1	0	1	1	0	0	0	0	0	0	0	0	0	0
CO4	3	1	0	2	1	0	0	0	0	0	0	0	0	0	0
CO5	3	2	0	2	1	0	1	1	0	0	0	0	0	0	0

CO-PO MAPPING

- 1- Faintly
- 2- Moderately
- 3- Strongly

Course Objectives:

- 1. To help students improve their reading skills.
- 2. To help students address an audience and present a topic.
- 3. To help students acquire speaking competency in English.
- 4. To help students strengthen their fluency in speaking.

METHODOLOGY – READING

- 1. Reading a story aloud with exact pronunciation, with intonation, and with expressing sense.
- 2. Reading poems for improving verbal skills, memory, and critical thinking.
- 3. Reading newspaper articles for strengthening the vocabulary and writing skills
- 4. Reading homophones with exact pronunciation for expressing different meanings.

METHODOLOGY – SPEAKING

- 1. Power point presentation on general topics for organising and structuring presentation.
- 2. Oral presentation -on basic technical ideas related to engineering.
- 3. Speaking on a given topic current affairs, expressing opinion on social issues.
- 4. Describing a process booking Ticket online, survey for starting a new office, sending an e-mail, etc.
- 5. Organising official events -compering, presenting welcome address, proposing vote of thanks.

Total = 30 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of word-pairs.
- CO2 : vocalize words without the aid of pictures.
- CO3 : develop a well-paced, expressive style of reading.
- CO4 : make effective oral presentations on technical and general contexts.
- CO5 : describe a process with coherence and cohesion.

Text Books:

1. Norman Whitby. Business Benchmark - Pre-Intermediate to Intermediate, Students book, Cambridge University Press, 2014.

Recommended Reading and Reference Sources:

- 1. Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija
- 2. English Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh
- 3. Discussions that Work. Penny Ur.CUP, 1981.
- 4. http://www.onestopenglish.com/skills/speaking/speaking-matters/
- 5. Speak Better Write Better English Paperback November 2012 Norman Lewis, Goyal Publishers and Distributors.

CO /PO	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	2	2	0	2	1	1	2	3	2	1	0	1	2
CO2	0	0	2	1	0	1	2	2	2	3	1	0	0	2	2
CO3	0	0	1	1	0	1	1	1	1	3	1	1	0	0	1
CO4	0	0	2	2	0	0	2	2	1	3	2	2	0	1	2
CO5	0	0	2	1	0	1	1	1	0	3	2	2	0	2	3

CO-PO MAPPING

1- Faintly

2- Moderately

18EN101

SEMESTER II PROFESSIONAL ENGLISH

L T P C 2 0 0 2

Course Objectives:

- 1. Master basic reading skills such as phonics, word recognition and meaningful division of sentences.
- 2. Read fast, decode accurately and remove oral reading errors that affect text meaning.
- 3. Acquire and develop writing skills for academic, social and professional purposes.
- 4. Gain skills in academic and functional writing tasks.

WRITING:

- 1. Word Formation with Prefix and Suffix, Synonyms and Antonyms, Tenses, Parts of Speech, Common Errors in English (Subject -Verb Agreement, Noun-Pronoun Agreement, Prepositions, Articles, Conditional statements, Redundancies, Clichés etc), Voices.
- 2. Email Training Programme and related details, paper submission for seminars and conferences, Fixing an appointment, Arranging and Cancelling a meeting with team members, conference details, hotel accommodation, Reminder mails, Raising queries with team members, Congratulatory mails at work, arranging for a meeting with a foreign client, personal emails.
- 3. Letter Writing Business and need based communication Formats of official, personal and business letters, official leave and request applications (Bonafide certificate, course completion, conduct certificate, permission to arrange industrial visits) complaints, replies to queries from business customers, inviting dignitaries, accepting and declining invitations, Placing orders, cover letter for a job application with resume.
- 4. Technical Report Writing status reports Work Done in the Project, Feasibility Reports on Office Accommodation, Introduction of New Products, Sales Promotion, Customers Feedback, Starting a New Company, Event Reports- Seminars, Conferences, Meeting, Recommendations and Checklists.
- 5. Charts- interpreting pie charts, graphs etc.,

READING:

- 1. Understanding notices, messages, timetables, adverts, graphs, etc.- understanding meaning and purpose of short texts.
- 2. Gapped sentences Meanings, collocations and meanings of individual words.
- 3. Reading passage with multiple choice questions reading for gist and reading for specific Information skimming for general idea of and meaning and contents of the whole text.
- 4. Short reading passage; gap-filling Grammar, especially prepositions, articles, auxiliary verbs, modal verbs, pronouns, relative pronouns and adverbs.
- 5. Short reading passages; sentence matching Scanning ability to pick out specific information in a short text.

METHODOLOGY:

Objective Type:

- 1. Vocabulary of business communication.
- 2. Collocations related to technical and business.
- 3. Coherence in paragraphs use of sequence clues.
- 4. Conversations and appropriate responses.
- 5. Tenses with time makers.
- 6. Verbal phrases
- 7. Description of objects in a sentence or two
- 8. Products and likely slogans
- 9. Tone, vocabulary, expressions in formal and informal letters.
- 10 Email writing- tone, vocabulary, expressions, mail ID., creation, CC, BCC.

DESCRIPTIVE WRITING:

- 1. Skimming and scanning to look for specific information.
- 2. Spotting Errors.
- 3. Email writing in different work place/ profession based contexts with hints.
- 4. Letter writing in different business based contexts with hints.
- 5. Report writing: feasibility report, progress in project reports, accident reports and event reports.

- 6. Checklists in business, office and profession based context.
- 7. Recommendations in business, office and profession based context.
- 8. Resume and Cover letter.
- 9. Mind mapping visuals on social and environmental issues essay writing based on the given mind map visual.

Total = 30 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : read and summarize the main ideas, key details and inferred meanings from a passage.
- CO2 : internalize the grammar items such as prepositions, articles, tenses, verbs, pronouns, and adverbs adjectives through contexts and apply them to spot errors.
- CO3 : develop the ability to classify, check information and prepare reports.
- CO4 : apply the academic and functional writing skills in new contexts.
- CO5 : interpret pictorial representation of data and statistic.

Text Books:

1. Norman Whitby. Business Benchmark -Pre - Intermediate to Intermediate, Students Book, Cambridge University Press, 2014.

Recommended Reading and Reference Sources:

- 1. M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill.
- 2. Farhathullah, T.M. Communication Skills for Technical Students.
- 3. Meenakshi Raman and Sangeetha Sharma, Technical Communication: Principles and Practice, Oxford University Press, New Delhi, 2004.
- 4. David F. Beer and David McMurray, Guide to Writing as an Engineer, John Willey. New York, 2004.
- 5. Collins Cobuild- Student's Grammar: Self-Study Edition with Answers (Collins Cobuild Grammar) paperback- 6 May 1991.
- 6. Essential English Grammar paperback Raymond Murphy CUP 2007.
- 7. Android App for Grammar: <u>https://play.google.com/store/apps/details?id=com.zayaninfotech.english.grammar</u>.
- 8. <u>http://www.onestopenglish.com/grammar/</u>
- 9. Speak Better Write Better English paperback Nov 2012, Norman Lewis, Goyal Publishers and Distributors.
- 10. Essential English Grammar Paperback Raymond Murphy CUP 2007.
- 11. English Reading Comprehension 2014 RPH Editorial Board.
- 12. Proficiency in Reading Comprehension Simplifying the 'Passage' for you, 2008 Ajay Singh.

		-												
CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO 1	PSO 2
CO1	0	0	2	1	0	1	2	2	2	3	1	1	0	1
CO2	0	0	1	2	0	0	1	1	1	3	2	1	0	1
CO3	0	0	2	1	0	0	2	2	2	3	1	2	0	0
CO4	0	0	2	1	0	1	2	1	1	3	1	2	0	2
CO5	0	0	1	2	0	1	0	1	1	3	2	1	0	1
1. Ea	aintly													

CO-PO MAPPING

1- Faintly

2- Moderately

Second order linear differential equations with constant and variable coefficients -Cauchy-Euler equation and Cauchy- Legendre's linear equation - Method of variation of parameters -Simultaneous first order linear equations with constant coefficients.

UNIT II PARTIAL DIFFERENTIAL EQUATIONS - FIRST ORDER

Formation of partial differential equations by elimination of arbitrary constants and functions -Solutions to first order partial differential equations - Standard types of first order linear and non-linear PDE- Lagrange's linear PDE.

PARTIAL DIFFERENTIAL EQUATIONS – HIGHER ORDER UNIT III

Solution to homogeneous and non-homogeneous linear partial differential equations of second and higher order by complementary function and particular integral method - Separation of variables method: simple problems in Cartesian coordinates, Laplace equation in Cartesian and polar coordinates, one dimensional diffusion equation, one dimensional wave equation.

UNIT IV **COMPLEX DIFFERENTIATION**

Functions of a complex variable - Analytic functions - Cauchy - Riemann equation and sufficient conditions (excluding proof) - Harmonic and orthogonal properties of analytic function -Construction of analytic functions -Conformal mappings: w= z+c, cz, 1/z, z2 and Bilinear transformations.

UNIT V **COMPLEX INTEGRATION**

Cauchy's integral theorem - Cauchy's integral formula - Taylor's and Laurent's theorems (Statements only) and expansions - Poles and Residues - Cauchy's Residue theorem - Contour integration: Circular and semi-circle contours with no poles on the real axis.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 learn the techniques of solving ordinary and partial differential equations of second and higher order that arise in engineering problems
- CO2 ÷ familiar with the concept of conformal and bilinear transformations.
- CO3 acquire the knowledge of contour integration over unit circle and semi-circle. •

Text Books:

- 1. Grewal. B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna publications, Delhi, 2015. Ltd., New Delhi, 2009
- 2. Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Education Pvt.

Reference Books:

- James Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2nd edition, 2013. 1.
- 2. P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (For I year

Course Objectives:

18MA201

- 1. To obtain the knowledge to solve second order differential equations with constant and Variable coefficients.
- 2. To familiarize with formation and solutions of first order partial differential equation.
- 3. To familiarize with the solutions of higher order partial differential equations.
- 4. To know about analytic functions with properties, construction of analytic functions and conformal transformations
- 5. To obtain the knowledge of Cauchy's integral theorems, calculus of residues and complex Integration around unit circle and semi-circle.

UNIT I ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER 9

9 +

3

9 3

Total (45+15) = 60 Periods

3

С

4

т

3

+

9

q

3

3

B.E., B.Tech)", Nineth Edition, S. Chand & Co. Ltd. New Delhi, 2010.

- 3. Srimanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford university publications, New Delhi, 2015
- 4. Ewinkreyzig, "Advanced Engineering Mathematics", 9th edition, John Wiley & Sons, 2006.
- 5. Sivaramakrishnadas.P, Ruknmangadachari.E. "Engineering Mathematics", Pearson, Chennai & Delhi, 2nd edition, 2013.

CO-PO MAPPING

CO /PO	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	3	2	1	1	1	1	1	1	1	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	1	1	1	1

1- Faintly

2- Moderately

Rationalize bulk properties and processes in thermodynamic aspects and its extension in electrochemical

Analyze the stereo chemical aspects of organic molecules and chemical reactions that are used in the

CHEMISTRY

Course Objectives: Technology is being increasingly based on the electronic, atomic and molecular level

Analyze microscopic chemistry in terms of atomic and molecular orbitals.

Rationalize periodic properties of elements and the knowledge of acids and bases.

processes. 5. Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques

MOLECULAR STRUCTURE UNIT I

synthesis of organic molecules

modifications. The course will enable the students to:

Formation of molecular orbitals of diatomic molecules - energy level diagrams of - H₂, He₂, N₂, O₂, CO and NO bond order, bond length, bond energy, magnetic behaviour and relative stability;

Aromaticity- Huckel rule - concept of aromaticity - aromatic, non-aromatic and anti-aromatic molecules-Benzenoid, Non-benzenoid and Annulenes only;

Crystal field theory - Postulates- d-orbital splitting in octahedral and tetrahedral complexes- strong field and weak field ligands - spectrochemical series- high spin and low spin complexes- magnetic properties of complexes crystal field stabilisation energy (CFSE) and its calculations for octahedral and tetrahedral complexes.

UNIT II PERIODIC PROPERTIES AND ACID-BASE CONCEPTS

Effective nuclear charge - shielding effect, penetration of orbitals - variations of s, p, d and f orbital energies of atoms -Aufbau principle - electronic configuration of elements - periodic properties - atomic and ionic size, ionization energy, electron affinity and electro negativity - anomalous properties of second period elements diagonal relationship;

Acids and bases - Bronsted-Lowry concept - Lewis concept - pH and pKa - problems - HSAB - buffer solutions - types- mechanism of buffer action- Henderson-Hasselbalch equation- derivation and problems.

UNIT III STEREOCHEMISTRY AND ORGANIC REACTIONS

Stereoisomerism - geometrical isomerism - cis-trans and E-Z nomenclature - optical isomerism - symmetry, chirality, optical activity, enantiomer and diastereomers - absolute configuration - R-S notation - conformational analysis - Ethane, butane, cyclohexane;

Addition reaction - hydrogenation, halogenations - Markovnikov rule - Kharasch effect - hydration, hydro halogenation, hydroboration;

Aliphatic nucleophilic substitution reaction -SN1, SN2 and SNi mechanism - electrophilic substitution reaction in benzene- mechanism - nitration, halogenations, suffocation, alkylation and acylation; Elimination reaction -E1, E2 and E₁CB- mechanism- Saytzeff rule – examples.

UNIT IV **USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA**

Thermodynamic functions- internal energy, enthalpy, entropy and free energy- first and second law of thermodynamics - partial molar properties - Gibbs Duhem equation - variation of chemical potential with temperature and pressure - Third and Zeroth law of thermodynamics - definition only;

Free energy and EMF relation - single electrode potential - electrochemical series and its significance.- cell potential and its measurement (Poggendorff method only) - Nernst equation-derivation and problems-Standard cell potential and equilibrium constant relation- problems.

UNIT V SPECTROSCOPY TECHNIQUES AND APPLICATIONS

Beer-Lambert's law (problem) - UV visible spectroscopy: Principle, Chromophores, auxochrome, Electronic transitions and instrumentation (No applications);

IR spectroscopy: Principles - instrumentation and applications of IR in H₂O, CO₂ and NH₃;

Flame photometry - principle - instrumentation - estimation of sodium by flame photometer;

18CY101

1.

2.

3.

4.

+

9

3

9 3 +

9 + 3

9

9

3

3 +

Atomic absorption spectroscopy - principles - instrumentation - estimation of nickel by atomic absorption spectroscopy.

Total (45+15) = 60 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : Understand in-depth knowledge of atomic and molecular orbitals based chemical aspects.
- CO2 : Realize the nature of periodic properties of elements and the knowledge of acids and bases.
- CO3 : Grasp the knowledge of 3d structural aspects of organic molecules and chemical reactions that are used in the synthesis of organic molecules.
- CO4 : Substantiate the various processes involved in thermodynamic considerations and its involvement in electrochemical aspects.
- CO5 : Aware of spectroscopic techniques in the field of molecular identification of materials.

Text Books:

- 1. P.R. Puri, L.R.Sharma and Madan S. Pathania, "Principle of physical chemistry" 47th Vishal Publishing Co, Jalandhar-8
- 2. C. N. Banwell and E. M. Mccash, "Fundamentals of Molecular Spectroscopy", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2009.
- 3. Raj. K. Bansal "A Text Book of Organic Chemistry" Revised 4th Ed.,(2005), New Age International Publishers Ltd., New Delhi.
- 4. P.S. Kalsi "Stereochemistry conformation and Mechanism", 6th Ed., (2005), New Age International Publishers Ltd., New Delhi.
- 5. J.D. Lee "A New Concise Inorganic Chemistry", 5th Edn., Oxford University Press, 2011.
- 6. Wahid Malik, G.D.Tuli and R.D.Madan, "Selected Topic in Inorganic Chemistry", S.Chand& Co., Ltd (2011).

Reference Books:

- 1. David.W.Ball, Physical Chemistry, Cengage Learning India Pvt. Ltd., New Delhi, 2009.
- 2. G.Aruldhas, Molecular structure and spectroscopy, second edition, PHI learning Pvt. Ltd., New Delhi, 2008.
- 3. Cotton and Wilkinson "Advanced Inorganic Chemistry", 6th Ed., John Wiley & Sons, New York- 2004.
- 4. James E. Huheey, Ellen A. Keiter and Richard L. Keiter "Inorganic Chemistry-Principles of Structure and Reactivity", 4 thEdn., Pearson Education, 11th Impression, 2011.
- 5. F.A. Carey and R.J. Sund berg "Advanced organic chemistry" Vol. I and II- 3rd Ed.,(1984), Plenum Publications.
- 6. Ernest. Eliel and Samuel H. Wilen "Stereochemistry of Organic Compounds" Wiley Student Ed., (2006). John Wiley and Sons Pvt. Ltd., Singapore.

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	0	0	2	0	0	0	3	0	0	0	0	0	0	0
CO2	3	0	0	0	0	3	0	0	0	0	0	0	0	0	0
CO3	3	0	0	2	0	0	0	0	0	0	0	0	0	0	0
CO4	3	0	0	0	0	0	0	3	0	3	0	0	0	0	0
CO5	3	0	0	2	0	3	0	0	0	3	0	0	0	0	0
1	Enintly														

CO-PO MAPPING

1- Faintly

2- Moderately

18CS101

FUNDAMENTALS OF PROBLEM SOLVING AND C PROGRAMMING

Course Objectives:

- 1. To express problem solving through programming.
- 2. To practice the basic concepts of C programming language.
- 3. To provide the basics knowledge about array and strings to solve simple applications.
- 4. To use pointers and functions in the simple applications.
- 5. To review the elementary knowledge of structures and unions.

UNIT I INTRODUCTION TO COMPUTER AND PROBLEM SOLVING

Problem formulation, Problem Solving methods, Need for logical analysis and thinking - Algorithm - Pseudo code - Flow Chart- Need for computer languages, Generation and Classification of Computers- Basic Organization of a Computer.

C PROGRAMMING BASICS AND CONTROL STATEMENTS UNIT II

C Character set- Identifies and Keywords- Data Type- Declarations-Expressions-Statements and Symbolic constants- Operators - Arithmetic Operators - Unary operators - Relational and Logical Operators - Assignment operators - Conditional operators- Managing Input and Output operations- Decision Making-Branching and Looping statements.

UNIT III **ARRAYS AND STRINGS**

Pre-processor directives-Storage classes-Arrays - Initialization - Declaration - one dimensional and two dimensional arrays. Strings - String operations - String handling functions-Simple programs-sorting-searching.

UNIT IV FUNCTIONS AND POINTERS

Function - Library functions and user-defined functions - Function prototypes and function definitions - Call by value -Call by reference - Recursion - Pointers - Definition - Initialization - Pointers arithmetic - Pointers and arrays.

STRUCTURES, UNIONS AND FILE UNIT V

Introduction - need for structure data type - structure definition - Structure declaration - Structure within a structure - Passing structures to functions - Array of structures - Pointers to structures-Union-basic file operation.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : formulate and apply logic to solve basic problems.
- CO2 write, compile and debug programs in c language.
- apply the concepts such as arrays, decision making and looping statements to solve real time CO3 applications.
- CO4 solve simple scientific and statistical problems using functions and pointers. :
- CO5 : write programs related to structures and unions for simple applications.

Text Books:

- Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", Dorling Kindersley (India) 1. Pvt. Ltd., Pearson Education in South Asia, 2011. (Unit-I).
- E.Balagurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2008. 2. (Unit II-V).

Reference Books:

- Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2006. 1.
- 2. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006
- 3. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.

9 +

ΤР

0 0

L

3

С

3

0

0 9 +

9 + 0

9 + 0

Total (45+0) = 45 Periods

9 0

CO-PO MAPPING

	PO	PSO	PSO	PSO											
COFO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	2	2	1	1	1	3	3	3	2	0
CO2	3	3	3	3	3	2	2	1	1	1	3	3	3	2	0
CO3	3	3	3	3	3	2	2	1	1	1	3	3	3	1	0
CO4	3	3	3	3	3	2	2	1	1	1	3	3	3	1	0
CO5	3	3	3	3	3	2	2	1	1	1	3	3	3	1	0

1- Faintly

2- Moderately

18EN102

Course Objectives:

- 1. To acquire and develop listening skills for academic, social and professional purposes.
- 2. To understand short conversations or monologues
- 3. To master basic reading skills such as phonics, word recognition, and fluency
- 4. Acquire and develop pre-intermediate level fluency in oral skills such as discourse management, grammar and vocabulary, pronunciation and interactive communication for academic, social and professional purposes.
- 5. Address an audience and present a topic.
- 6. Express an opinion and justify it.

METHODOLOGY - LISTENING

List of Audio files:

- 1. Job Responsibilities
- 2. Conversation between two employees on company culture
- 3. Emails
- 4. Description of gadgets
- 5. Interview with a leading industrialist
- 6. Office procedures applying for permission, placing an order for office equipment,
- 7. Enquiries about orders and deliveries
- 8. Conversation between two people on general topics
- 9. Telephone Messages
- 10. Fixing and Cancelling appointments
- 11. Asking for directions
- 12. Rescheduling a travel plan
- 13. Tones : Rude and Polite
- 14. Conversation : Statements, Discussions, Debating, Accepting, Negotiating
- 15. Conferences ; Announcements about changes in schedules and sessions
- 16. Motivational Speech
- 17. TED Talk on Team Work
- 18. Describing charts and data
- 19. Presentation at an office
- 20. Short self-descriptions

METHODOLOGY: - Speaking

- 1. Self-Introduction Personal information -Name, Home background, study details, area of interest, hobbies, strengths and weaknesses, projects and paper presentations if any, likes and dislikes in food, clothes, Special features of home town, Personal role models in life, goals and dreams, favorite inspirational quote.
- 2. Situational Role Play between Examiner and Candidate Customer and Sales Manager, Hotel Manager and Organiser, Team Leader and Team member, Bank Manager and Candidate, Interviewer and Applicant, Car Driver and Client, Industrialist and Candidate, Receptionist and Appointment Seeker, New Employee and Manager, Employee and Employee, P.A. and Manager Schedule for training, Asking for directions, Seeking help with office equipment, Clarifying an error in the bill, Quality of Products, Buying a Product, Selling a Product, cancelling and fixing appointments, hotel accommodation, training facilities, dress code, conference facilities, faculty advisors and student, student and student, college Office personnel and student.

Total = 30 Periods

Course Outcomes:

At the end of the course, students will have acquired the following Listening and Speaking skills

- CO1 : Infer, interpret and correlate routine, classroom-related conversation.
- CO2 : Use a range of common vocabulary and context based idioms.
- CO3 : Comprehend native speakers when they speak quickly to one another, although the student might still have trouble.
- CO4 : Identify the most important words in a story/article.
- CO5 : Summarize the main ideas, key details, and inferred meanings from listening passages of up to five minutes.
- CO6 : Vocalize words without the aid of pictures
- CO7 : Make effective self-introductions.
- CO8 : Study options, compare and contrasts the options.
- CO9 : Exercise a choice, justify it by giving examples and illustrations.
- CO10 : Construct a situation and to participate in conversations.

Textbooks:

1. Norman Whit by. Business Benchmark -Pre - Intermediate to Intermediate, Students Book, Cambridge University Press, 2014.

Reference sources:

- 1. Spoken English: A Self-Learning Guide. V. Sasikumar and P V Dhamija.
- 2. English Conversation Practice: Grant Taylor Paperback 1976ely. Krishna Mohan, N P Singh.
- 3. Discussions that Work. Penny Ur. CUP, 1981.
- 4. http://www.onestopenglish.com/skills/speaking/speaking-matters/
- 5. Speak Better Write Better English Paperback November 2012 Norman Lewis, Goyal Publishers and Distributors.

CO/PO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	1	8	9	10	11	12	1	2	3
CO1	0	0	1	1	0	1	1	2	1	3	1	2	0	1	3
CO2	0	0	1	2	0	1	1	2	2	3	1	1	0	1	2
CO3	0	0	1	1	0	0	1	2	1	3	2	1	0	0	1
CO4	0	0	2	2	0	1	2	3	1	3	1	2	0	1	3
CO5	0	0	1	1	0	0	1	1	1	3	2	1	0	1	3
CO6	0	0	1	1	0	1	1	2	0	3	1	2	0	0	2
C07	0	0	2	1	0	0	2	3	0	3	2	1	0	1	2
CO8	0	0	2	2	0	0	2	2	1	3	2	0	0	1	3
CO9	0	0	2	1	0	2	1	2	1	3	0	1	0	0	2
CO10	0	0	1	1	0	1	1	1	2	3	1	2	0	0	2

CO-PO MAPPING

1- Faintly

2- Moderately

Course Objectives:

- 1. To provide basic knowledge of creating Word documents and also producing mail merge.
- 2. To make use of basic functions, formulas and charts in Spread sheet.
- 3. To implement problem solving techniques.
- 4. To promote the programming ability to develop applications for real world problems.

LIST OF EXERCISES

A. Word Processing

- 1. Document creation, Text manipulation with Scientific notations, Table creation, Table formatting and Conversion
- 2. Letter preparation using Mail merge and Draw flow Charts using tools B. Spread Sheet
- 3. Chart Line, XY, Bar and Pie.
- 4. Formula formula editor, Sorting and Import and Export features.
- 5. Spread sheet inclusion of object, Picture and graphics, protecting the document and sheet. C. Simple C Programming
- 6. Program using Control statements.
- 7. Program using Looping.
- 8. Program using Array.
- 9. Program using String.
- 10. Program using Function.
- 11. Program using Structures.
- 12. Program using Pointers.
- 13. Program using Files.

Course Outcomes:

* For programming exercises Flow chart and pseudo code are essential

Total = 60 Periods

Upon completion of this course, the students will be able to:

- CO1 : demonstrate the basic mechanics of word documents and working knowledge of mail merge.
- CO2 : demonstrate the use of basic functions and formulas in spread sheet.
- CO3 : apply good programming methods for program development.
- CO4 : implement c programs for simple applications.

CO/PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	3	3	2	2	1	1	1	3	3	3	2	0
CO2	3	3	3	3	3	2	2	1	1	1	3	3	3	2	0
CO3	3	3	3	3	3	2	2	1	1	1	3	3	3	1	0
CO4	3	3	3	3	3	2	2	1	1	1	3	3	3	1	0

1- Faintly

2- Moderately

COURSE OBJECTIVES:

- 1. To provide an exposure of basic engineering practices to the student
- 2. To provide exposure to the students with hands on experience on various basic engineering practices in Civil and Mechanical Engineering

LIST OF EXERCISES

- 1. Introduction to Safety measures and First aid.
- 2. Study of Lathe -Welding methods and equipment's- Casting process and tools- Sheet metal and fitting tools- Carpentry tools and joints.
- 3. Fitting: V-fitting, Square fitting, Curve fitting.
- 4. Lathe: Facing, turning, taper turning and knurling.
- 5. Welding: BUTT, LAP and T- joints.
- 6. Foundry: Green sand preparation- mould making practice.
- 7. Sheet metal: Cone, tray, cylinder.
- 8. Carpentry: CROSS, T and DOVETAIL joints.
- 9. Drilling: simple exercises.

Total = 60 Periods

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- CO1 : prepare fitting of metal and wooden pieces using simple fitting and carpentry tools manually.
- CO2 : prepare simple lap, butt and tee joints using arc welding equipment.
- CO3 : prepare green sand moulding.
- CO4 : prepare sheet metal components.
- CO5 : prepare simple components using lathe and drilling machine.

REFERENCE BOOKS:

- 1. Bawa, H.S, "Work shop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
- 2. Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
- 3. Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab Manual", VikasPuplishing House Pvt. Ltd, 2006.

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	2	2	1	1	0	1	1	0	0	1	1	1	2
CO2	1	1	2	2	1	1	0	1	1	0	0	1	1	1	2
CO3	1	1	2	2	1	1	0	1	1	0	0	1	1	1	2
CO4	1	1	2	2	1	1	0	1	1	0	0	1	1	1	2
CO5	1	1	2	2	1	1	0	1	1	0	0	1	1	1	2

CO-PO MAPPING

1- Faintly

2- Moderately

SEMESTER III

PHYSICS – WAVES & OPTICS AND QUANTUM MECHANICS

18PH202

Course Objectives:

- 1. To make the students to understand Simple harmonic motion and Waves
- 2. To understand the Propagation of light
- 3. To get clear idea of wave optics
- 4. To understand the Principle and working of laser with applications
- 5. To know the basic concepts of quantum Mechanics and Matter Waves

UNIT I SIMPLE HARMONIC OSCILLATION AND WAVES

Simple harmonic motion ; Damped Simple harmonic motion ; Forced vibrations - resonance; Wave motion- types and characteristics - velocity of a transverse wave along a stretched string -frequency of a vibrating string – harmonics and overtones - progressive waves & stationary waves - wave equation for progressive and Stationary waves.

UNIT II THE PROPAGATION OF LIGHT AND GEOMETRIC OPTICS

Fermats Principle - laws of reflection and refraction ; Mirage effect ; Total internal reflection ; Matrix method - imaging by a spherical refracting surface - imaging by a coaxial optical system; Optical Instruments - simple and compound microscope - astronomical telescope.

UNIT III WAVE OPTICS

Huygens Principle ; Principle of superposition ; Interference of Light – Youngs double slit experiment - Newtons rings - experimental arrangement to determine the wavelength of sodium light ; Michelson Interferometer ; Fraunhofer diffraction from a single slit ; Diffraction grating -determination of wavelength of light and dispersive power ; Polarisation - Polarisation by reflection - Brewsters Law.

UNIT IV LASERS

Properties of Laser beams - monochromacity, coherence, directionality and brightness; Einstiens theory of matter radiation interaction and A&B coefficients - amplification of light by population inversion - pumping methods; Different types of laser - Ruby, Nd-YAG, He-Ne, CO_2 laser - Energy level diagrams; Applications of lasers in science, engineering and medicine.

UNIT V QUANTUM MECHANICS

Introduction - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thomson experiment; Time independent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; Schroedinger equation for Particle in a one dimensional box; Physical Significance of wave function.

Total (45+15) = 60 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand simple harmonic oscillation and propagation of waves.
- CO2 : apply matrix method to analyse system of reflecting and refracting surfaces.
- CO3 : know various experimental techniques in wave optics.
- CO4 : understand the concept of laser and its applications.
- CO5 gain knowledge in the basics of quantum mechanics.

Text Books:

- 1. Ajoy Ghatak, 'Optics', Tata Mc Graw Hill Publishing Co.Ltd, Fourth Edition, 2009
- 2. Gupta Kumar Sharma, 'Quantum Mechanics', Jai Prakash Nath & co, 25th Edition, 2005
- 3. Gaur R.K and Gupta S.L, 'Engineering Physics', Dhanpat Rai Publishers, 2009

Reference Books:

- 1. Palanisamy P.K, 'Engineering Physics', Scitech Publications, 2011
- 2. Rajendran V and Marikani A, 'Engineering Physics', PHI learning PVT, India, 2009

L T P C 3 1 0 4

9

9

9 + 3

3

3

9 + 3

9 + 3

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	0	3	3	1	2	0	1	0	0	3	2	0	2
CO2	3	3	0	2	2	1	0	0	1	0	0	3	2	0	2
CO3	2	3	0	2	3	1	1	0	1	0	0	3	1	0	2
CO4	3	2	0	2	3	1	1	0	1	0	0	2	2	0	1
CO5	3	3	0	2	3	1	1	0	1	0	0	3	2	0	2

1- Faintly

2- Moderately

To gain the skills to form difference equations and find its solution by using Z-transform method.

To obtain the knowledge of solving second order ODE using Laplace transform techniques and inverse

UNIT I FOURIER SERIES

18MA204

1. 2.

3.

4.

5.

Course Objectives:

Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Parseval's Identity - Harmonic Analysis.

UNIT II **BOUNDARY VALUE PROBLEMS**

Laplace transform using convolution theorem.

Classification of second order quasi linear partial differential equations - Solutions of one dimensional wave equation - One dimensional heat equation - Steady state solution of two-dimensional heat equation (Insulated edges excluded) - Fourier series solutions in Cartesian coordinates.

UNIT III LAPLACE TRANSFORM

Laplace Transform- Conditions for existence - Transform of elementary functions - Basic Properties - Transform of derivatives and integrals - Initial and Final value theorems- Transform of periodic Functions - Inverse Laplace Transform- solutions of linear ODE of second order with constant coefficient's using Laplace transformation techniques- statement and application of convolution theorem

UNIT IV FOURIER TRANSFORM

Statement of Fourier integral theorem - Fourier transform pair - Sine and Cosine transforms - Properties -Transforms of simple functions - Convolution theorem - Parseval's Identity

UNIT V Z -TRANSFORM AND DIFFERENCE EQUATIONS

Z-transform of simple functions and properties - Inverse Z - transform -initial and final value theorems-Convolution theorem -Formation of difference equations - Solution of difference equations using Z - transform technique.

Course Outcomes:

Upon completion of this course, the students will be able to:

- : acquire the knowledge about fourier series CO1
- CO2 learn the techniques of solving boundary value problems
- CO3 : familiar with the transform techniques.

Text Books:

- Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata McGraw Hill Education Pvt. 1. Ltd., New Delhi, 2009.
- 2. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volume III", S. Chand & Company Itd., New Delhi, 1996.

Reference Books:

- Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014. 1.
- 2. Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth Edition, McGraw-Hill, Inc., New York, 1995.
- 3. Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematicians", MacMillan, New York, 1988.

FOURIER SERIES AND TRANSFORMS

To impact analytical skills in the areas of boundary value problems and transform techniques.

To familiarize with Fourier transform of a function and its sine and cosine transforms.

It serves as a prerequisite for post graduate and specialized studies and research.

С

3

3

9 3 +

9 3 +

Total (45+15) = 60 Periods

9 3 +

9 ж.

9 + 4. Narayanan, S., Manicavachagom Pillai, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volumes II and III, S. Viswanathan (Printers and Publishers) Pvt. Ltd. Chennai, 2002.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	1	1	1	1	1	1	1	1	1	1	1	1
CO2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1
CO3	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1

1- Faintly

2- Moderately

MANUFACTURING PROCESSES

Course Objectives:

18ME301

To make the students to familiarise with various manufacturing processes such as casting, welding, 1. machining, metal forming, power metallurgy etc. involved in manufacturing of piston, connecting rod, crankshaft, engine block, front axle, frame, body, etc.

UNIT I CASTING

Casting types, procedure to make sand mould, types of core making, moulding tools, machine moulding, special moulding processes - CO₂ moulding; shell moulding, investment moulding, permanent mould casting, pressure die casting, centrifugal casting, continuous casting, casting defects.

UNIT II WELDING

Classification of welding processes. Principles of Oxy-acetylene gas welding. A.C metal arc welding, resistance welding, submerged arc welding, tungsten inert gas welding, metal inert gas welding, plasma arc welding, thermit welding, electron beam welding, laser beam welding, defects in welding, soldering and brazing.

UNIT III MACHINING

General principles (with schematic diagrams only) of working and commonly performed operations in the following machines: Lathe, Shaper, Planer, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. General principles and applications of the following processes: Abrasive jet machining, Ultrasonic machining, Electric discharge machining, Electro chemical machining.

FORMING AND SHAPING OF PLASTICS UNIT IV

Types of plastics - Characteristics of the forming and shaping processes - Moulding of Thermoplastics - Working principles and typical applications of - Injection moulding - Plunger and screw machines - Blow moulding -Rotational moulding - Film blowing - Extrusion - Typical industrial applications - Thermoforming - Processing of Thermosets - Working principles and typical applications - Compression moulding - Transfer moulding.

UNIT V METAL FORMING AND POWDER METALLURGY

Principles and applications of the following processes: Forging, Rolling, Extrusion, Wire drawing and Spinning, Powder metallurgy - Principal steps involved advantages, disadvantages and limitations of powder metallurgy.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 understand various casting and moulding processes. ÷.,
- CO2 : familiar with welding processes
- CO3 able to learn various types of machining processes. 5
- CO4 1 gained knowledge about forming and shaping of plastics.
- CO5 understand various forming processes and principles of powder metallurgy.

Text Books:

- Hajra Choudhury, "Elements of Workshop Technology", Vol. I and II, Media Promoters and Publishers Pvt., 1. Ltd., Mumbai, 2005.
- 2. NagendraParashar B.S. and Mittal R.K., "Elements of Manufacturing Processes", Prentice-Hall of India Private Limited, 2007.

Reference Books:

- SeropeKalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson 1. Education, Inc. 2007.
- Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001. 2.
- "H.M.T. "Production Technology Handbook", Tata McGraw-Hill, 2000. 3.

0 Q ж.

2 Λ 3 1

Р С

т

÷

0

0 ÷

0

9

10

9

Total (45+0) = 45 Periods

+

8 0 +
- 4.
- Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000. Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems. 5.

CO-PO MAPPING

CO/PO	PO	PSO	PSO	PSO											
COIPO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	0	2	0	1	0	0	0	0	0	0	0	0	2	0	1
CO2	0	1	0	0	0	0	0	0	1	0	0	0	0	0	3
CO3	0	1	0	0	0	0	1	0	0	0	1	0	0	1	1
CO4	0	1	0	0	0	0	0	0	2	0	0	0	0	0	1
CO5	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1

1- Faintly

2- Moderately

ENGINEERING MECHANICS

Course Objectives:

18ME302

- 1. To develop capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.
- 2. To analyze the force systems, friction and to study the dynamics of particles, impulse and momentum.

UNIT I STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lami's theorem, Parallelogram and triangular Law of forces - Vectorial representation of forces - Vector operations of forces -additions, subtraction, dot product, cross product - Coplanar Forces - rectangular components - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility .

EQUILIBRIUM OF RIGID BODIES UNIT II

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium - Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Equilibrium of Rigid bodies in two dimensions -Equilibrium of Rigid bodies in three dimensions - Examples

UNIT III **PROPERTIES OF SURFACES AND SOLIDS**

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its applications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections.

UNIT IV FRICTION

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack.

UNIT V **KINETICS OF PARTICLES AND RIGID BODIES**

Equations of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Principle-work-Energy equation-Conservative forces and principle of conservation of energy-Impulse- momentum- Impact- Direct central impact and oblique central impact. Plane motion- Absolute motion- Relative motion- work and energy- impulse and momentum

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : illustrate the vectorial and scalar representation of forces and moments
- CO2 draw free body diagrams and write appropriate equilibrium equations firm free body diagram.
- CO3 : evaluate the properties of surfaces and solids
- CO4 : analyze the systems that involve frictional forces.
- CO5 : apply fundamental concepts of kinematics and kinetics of particles to the analysis of simple, practical problems

Text Books:

- 1. A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications, 2010.
- 2. Engineering Mechanics, R.S. Khurmi, S.Chand Publishing, 2010.

Reference Books:

- Engineering Mechanics, D.S. Bedi, Khanna Book Publishing Co. (P) Ltd. 1.
- Rajasekaran S and Sankarasubramanian G., "Fundamentals of Engineering Mechanics", Vikas Publishing 2. House Pvt. Ltd., 2000
- Palanichamy M.S. and Nagam S., "Engineering Mechanics Statics & Dynamics", Tata McGraw-Hill, 3. 2001
- Engineering Mechanics, DP Sharma, Pearson 4.

т

3

С

3 0

0 9 ÷

0

0 +

Total (45+0) = 45 Periods

9 +

9

9 0 +

9 0 +

5. F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, Vol I - Statics, Vol II, -Dynamics, 9th Ed, Tata McGraw Hill, 2011.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	РО 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	0	0	0	0	0	0	0	0	0	0	1	1	0
CO2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
CO3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO4	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
CO5	1	2	0	0	0	0	0	0	0	0	0	0	1	0	0

1- Faintly

2- Moderately

18ME303

THERMODYNAMICS

L T P C 3 1 0 4

(Use of standard thermodynamic tables, Mollier diagram, Psychometric chart and Refrigerant property tables are permitted)

Course Objectives:

- 1. To understand the fundamentals of thermodynamics such as zeroth, first and second law concept.
- 2. To understand real and ideal gas behavior and thermodynamic relations.
- 3. To impart basic knowledge on psychrometry.

UNIT I BASIC CONCEPT AND FIRST LAW

Basic concepts - concept of continuum, macroscopic approach, thermodynamic systems - closed, open and isolated. Property, state, path and process, quasi-static process, work, modes of work, Zeroth law of thermodynamics – concept of temperature and heat. Concept of ideal and real gases. First law of thermodynamics – application to closed and open systems, internal energy, specific heat capacities, enthalpy, steady flow process with reference to various thermal equipments.

UNIT II SECOND LAW, ENTROPY AND AVAILABILITY

Second law of thermodynamics – Kelvin's and Clausius statements of second law. Reversibility and irreversibility. Carnot cycle reversed Carnot cycle, efficiency, COP. Thermodynamic temperature scale, Clausius inequality, concept of entropy, entropy of ideal gas, and principle of increase of entropy – Carnot theorem, absolute entropy, and availability.

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE 9 + 3

Properties of pure substances – Thermodynamic properties of pure substances in solid, liquid and vapour phases, phase rule, P-V, P-T, T-V, T-S, H-S diagrams, PVT surfaces, thermodynamic properties of steam. Calculations of work done and heat transfer in non-flow and flow processes. Standard Rankine cycle, Reheat and regenerative cycle.

UNIT IV IDEAL AND REAL GASES AND THERMO DYNAMIC RELATIONS 9 + 3

Gas mixtures – Properties of ideal and real gases, equation of state, Avogadro's law, Vander Waal's equation of states, compressibility, and compressibility chart. Dalton's law of partial pressure, Exact differentials, Tds, relations, Maxwell relations, Clausius Clapeyron equations, Joule Thomson Coefficient.

UNIT V PSYCHROMETRY

Psychrometry and psychrometric charts, property calculations of air vapour mixtures. Psychrometric process - Sensible heat exchange processes. Latent heat exchange processes. Adiabatic mixing, evaporative cooling, problems.

Total (45+15) = 60 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the concepts of zeroth, first and second law of thermodynamics.
- CO2 : analyze the various work and heat interactions for different types of processes for closed and open systems.
- CO3 : understand the properties of pure substance and concepts of rankine cycle.
- CO4 : derive thermodynamic relations for ideal and real gases.
- CO5 : understand the basic concepts of Psychrometry.

Text Books:

- 1. Nag. P.K, "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 1998.
- 2. Holman. J.P, "Thermodynamics", 3rd Ed. McGraw-Hill, 1995.
- 3. Arora C.P, "Thermodynamics", Tata McGraw Hill, New Delhi, 2003.
- 4. Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.

9 + 3

+ 3

9

9 + 3

Reference Books:

- 1. Cengel, "Thermodynamics- An Engineering Approach", 3rd Edition, Tata McGraw Hill, 2003.
- 2. Merala C, Pother, Craig W and Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGrawHill, New Delhi, 2004.

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	3	1	2	1	1	1	0	0	0	0	0	1	2	1
CO2	2	1	1	2	3	1	1	0	0	0	0	0	1	3	1
CO3	2	1	3	1	2	1	1	0	0	0	0	0	2	1	3
CO4	1	2	2	1	3	1	1	0	0	0	0	0	2	1	2
CO5	1	2	1	3	1	2	1	0	0	0	0	0	1	2	1

CO-PO MAPPING

1- Faintly

2- Moderately

BASIC ELECTRONICS ENGINEERING

Unit I SEMICONDUCTOR DIODES AND APPLICATIONS

To introduce the basics of electronic components and circuits.

Introduction to Resistors, Inductors, Capacitors and their colour codes, Semi-conductors, Characteristics of PN Junction Diode - Zener Effect - Zener Diode and its Characteristics, Photodiodes, LEDs. Half-wave rectifier, Full-wave rectifier, Full-wave rectifier with capacitor filter.

Unit II BIPOLAR JUNCTION TRANSISTOR

Bipolar junction transistor - CB, CE, CC configurations and characteristics, CE amplifier, Concept of feedback, Negative feedback, voltage series feedback amplifier, Current series feedback amplifier.

Unit II DIGITAL ELECTRONICS

Binary Number System, Logic gates: Basic gates and universal gates, Combinational logic circuit: Half adder, Full adder. Flip-Flops: SR, JK, D and T flip-flops.

Unit IV INTEGRATED CIRCUITS

Introduction to Operational Amplifiers. Ideal OPAMP, Inverting and Non Inverting OPAMP circuits, OPAMP applications: voltage follower, addition, subtraction, integrator and differentiator. Digital to Analog converters - R-2R and weighted resistor types, Analog to Digital converters - Successive approximation and Flash types.

Unit V FUNDAMENTALS OF COMMUNICATION ENGINEERING

Types of Signals: Analog and Digital Signals - Principle of Amplitude and Frequency Modulations. Communication Systems: Radio, TV, Microwave, Satellite and Optical Fibre. (Block Diagram Approach only).

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : to understand the concepts of electronic components and circuits.
- CO2 : to understand the concepts of digital electronics.
- CO3 : gain knowledge of integrated circuits.
- CO4 : to understand the fundamentals concepts of communication engineering.

Text Books:

- 1. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th Edition, 2008.
- 2. R.S. Sedha, "Applied Electronics" S. Chand & Co., 2006.

Reference Books:

- 1. D.P. Kothari, I. J. Nagrath, "Basic Electronics", McGraw Hill Education (India) Private Limited, 2014.
- 2. Robert Boylestad and Louis Nashelsky, [−]Electron Devices and Circuit Theory∥ Pearson Prentice Hall, 10th edition, July 2008.
- 3. Yang, [¬]Fundamentals of Semiconductor devices∥, McGraw Hill International Edition, 1978.
- 4. Mehta V K, "Principles of Electronics", S.Chand & Company Ltd, (1994).

E-References:

- 1. https://www.elprocus.com/basic-electronic-books/
- 2. https://www.mheducation.co.in/engineering/electronics-engineering/basic-electronics

1.

2.

Course Objectives:

9 + 0

9 + 0

9 + 0

9

Total (45+0) = 45 Periods

L

3

ТΡ

0

9

С

0

0 3

-

+ 0

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	0	2	0	0	0	0	1	0	0	0	2	0	0
CO2	3	1	0	2	0	0	0	0	1	0	0	0	2	0	0
CO3	3	2	1	2	0	0	0	0	1	0	0	0	2	0	0
CO4	3	2	1	2	0	0	0	0	1	0	0	0	2	0	2

1- Faintly

2- Moderately

18ME304	MANUFACTURING TECHNOLOGY LABORATORY	L	т	Ρ
		0	0	3

Course Objectives:

1. Study of different types of machine tools like lathe, drilling machine, shaper, grinding machine etc.,

EXPERIMENTS:

- 1. Eccentric turning
- 2. Multi starts thread cutting
- 3. Drilling and grooving
- 4. Counter boring
- 5. Counter sinking
- 6. Shaping the sides of a cubical blank
- 7. Groove cutting and V-cutting
- 8. Dovetail cutting
- 9. T -slot cutting
- 10. Spur gear cutting in milling machine
- 11. Helical Gear Cutting in milling machine
- 12. Contour milling using vertical milling machine
- 13. Surface Grinding of cubical block
- 14. Cylindrical Grinding of circular shaft

Course Outcomes:

After the successful completion of the practical session, the students will be able to:

- CO1 : Acquire necessary skills to operate different machineries.
- CO2 : Perform machining time calculation in machining jobs.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	2	0	2	3	0	0	1	0	0	0	2	2	2	1
CO2	3	2	3	2	0	0	0	1	0	0	0	0	1	1	2

1- Faintly

2- Moderately

3- Strongly

Total = 45 Periods

C 2

Total = 30 Periods

Course Objectives:

- 1. To understand the working of Semiconductor diodes and rectifiers.
- 2. To understand the Basics of digital electronics.
- 3. To understand the applications of Operational Amplifier.

EXPERIMENTS

- 1. Characteristics of PN Junction Diode
- 2. Characteristics of Zener Diode
- 3. Characteristics of Photodiode/LED
- 4. Half-Wave Rectifier and Full-Wave Rectifier
- 5. Full-Wave Rectifier with C Filter
- 6. Characteristics of CE Configuration of BJT
- 7. Study of Logic Gates (Basic gates, Universal gates)
- 8. Implementation of Half Adder
- 9. Implementation of Full Adder
- 10. Realization of JK, D and T Flip flops using NAND Gates
- 11. Inverting and Non inverting Operational amplifier
- 12. Operational amplifier applications (Any two)

Course Outcomes:

Upon completion of this course, the students will be able to :

- CO1 : study experimentally the characteristics of diodes, bjt.
- CO2 : demonstrate functional verification of combinational logic circuits
- CO3 : to demonstrate various applications of operational amplifier

Reference Books:

- 1. Analog Electronic circuits Laboratory Manual. 2. David A. Bell, "Electronic Devices and Circuits", 5thEdition, Oxford University Press,
- 2. B.Sasikala, S.Poornachandra Rao, "Handbook of experiments in Electronics and Communication Engineering", Vikas Publishing, 2007.
- 3. "David A Bell, "Laboratory Manual for Electronic Devices and Circuits", 4th edition, PHI, 2001.

E-References:

- 1. http://nptel.ac.in/courses/117105080/40
- 2. http://nptel.ac.in/courses/117108038/1

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	0	3	1	0	0	0	2	0	0	2	1	0	0
CO2	3	2	0	3	1	0	0	0	2	0	0	2	1	0	0
CO3	3	1	0	3	1	0	0	0	2	0	0	2	1	0	0

- 1- Faintly
- 2- Moderately
- 3- Strongly

18ME401

Course Objectives:

To understand the principles in analyzing the assembly with respect to the displacement, velocity, and 1. acceleration at any point in a link of a mechanism.

SEMESTER IV KINEMATICS OF MACHINERY

- 2. To understand the motion resulting from a specified set of linkages, design few linkage mechanisms and cam mechanisms for specified output motions.
- To understand the basic concepts of toothed gearing and kinematics of gear trains and the effects of 3. friction in motion transmission and in machine components.

UNIT I **BASICS OF MECHANISMS**

Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider crank chains-Limit positions- Mechanical advantage-Transmission angle- Description of some common mechanisms- Quick return mechanism, straight line generators- Universal Joint- Rocker Mechanisms.

UNIT II **KINEMATIC ANALYSIS**

Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centers, velocity and acceleration analysis using loop closure equations- kinematic analysis of simple mechanisms- slider crank mechanism dynamics- Coincident points- Coriolis component of accelerationintroduction to linkage synthesis three Position graphical synthesis for motion and path generation.

UNIT III **KINEMATICS OF CAM**

Classification of cams and followers- Terminology and definitions- Displacement diagrams-Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams- circular and tangent cams- pressure angle and undercutting, sizing of cams, graphical and analytical disc cam profile synthesis for roller and flat face Followers.

UNIT IV GEARS AND GEARTRAINS

Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference/undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics.

UNIT V FRICTION IN MACHINE ELEMENTS

Surface contacts- sliding and rolling friction- friction drives- bearings and lubrication friction Clutches- belt and rope drives- friction in brakes.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : demonstrate and understanding of the concepts of various mechanisms and pairs.
- CO2 : synthesize simple mechanisms for function, path generation and motion generation.
- CO3 : develop CAM profiles
- CO4 : analyze gears and gear trains
- CO5 : examine friction in machine elements

Text Books:

- Rattan S.S, "Theory of Machines", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998. 1.
- 2. Ghosh, A and Mallick, A.K, "Theory of Mechanisms and Machines", East-West Pvt. Ltd., New Delhi, 1988.

Reference Books:

- 1. Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.
- 2. Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.
- 3. Erdman AG and Sandor G N, "Mechanism Design, Analysis and Synthesis", Vol.I, PHI Inc., 1997.

С L т Ρ 3 0 1

÷

3

9

q ж. 3

9 3 +

3 9

9 3 +

Total (45+15) = 60 Periods

- 4. Ambekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.
- 5. John Hannah and Stephens R C, "Mechanisms of Machines", Viva Low Price Student Edition, New Delhi, 1999.

PSO

3

0

0

0

0

0

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	РО 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	2	1	0	0	0	0	0	0	0	3	2
CO2	2	2	1	1	1	0	0	0	0	0	0	0	3	2
CO3	3	2	2	1	1	0	0	0	0	0	0	0	2	2
CO4	3	2	2	2	1	0	0	0	0	0	0	0	3	2
CO5	2	1	2	1	1	0	0	0	0	0	0	0	2	3

CO-PO MAPPING

1- Faintly

2- Moderately

To apply the thermodynamic concepts into various thermal application like IC engines, Steam Turbines, Compressors and Refrigeration and Air conditioning systems

To integrate the concepts, laws and methodologies from the first course in thermodynamics into analysis

APPLIED THERMODYNAMICS

(Use of standard thermodynamic tables, Mollier diagram, Psychometric chart and Refrigerant property tables are

UNIT I **GAS POWER CYCLES**

permitted in the examination)

of cyclic processes

Course Objectives:

Otto, Diesel, Dual, Brayton cycles, Calculation of mean effective pressure and air standard efficiency, Actual and theoretical PV diagram of Four stroke engines, Actual and theoretical PV diagram of two stroke engines.

UNIT II INTERNAL COMBUSTION ENGINES

Classification of IC engine, IC engine components and functions. Valve timing diagram and port timing diagram. Comparison of two stroke and four stroke engines. Fuel supply systems, Ignition Systems, Performance calculation. Comparison of petrol and diesel engine. Fuels, Air-fuel ratio calculation, Knocking and Detonation. Lubrication system and cooling system. Exhaust gas analysis, pollution control norms.

UNIT III STEAM NOZZLES AND TURBINES

Flow of steam through nozzles, shapes of nozzles, effect of friction, critical pressure ratio, supersaturated flow. Impulse and reaction principles, compounding, velocity diagrams for simple and multistage turbines, speed regulations-governors and nozzle governors.

UNIT IV AIR COMPRESSOR

Classification and working principle, work of compression with and without clearance. Volumetric efficiency, Isothermal efficiency and isentropic efficiency of reciprocating air compressors. Multistage air compressor and inter cooling - work of multistage air compressor, various types of compressors (Descriptive treatment only).

UNIT V **REFRIGERATION AND AIR-CONDITIONING**

Vapour compression Refrigeration cycle - super heat, sub cooling, performance calculations. Working principle of vapour absorption system. Ammonia - water, Lithium bromide - water systems (Description only), Comparison between vapour compression and absorption systems. Psychrometry, Psychometric chart, Cooling load calculations. Concept of RSHF, GSHF, ESHF, Air conditioning systems.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 analyze the air standard cycles of internal combustion engines based on otto, diesel and dual cycles. 1
- CO2 : get an insight of various components of internal combustion engines.
- CO3 apply thermodynamic concepts in steam nozzles and turbines
- CO4 get an insight of various types of air compressors. :
- CO5 design refrigeration and air conditioning system for applications. :

Text Books:

- Rajput, R.K, "Thermal Engineering", S. Chand Publishers, 2000. 1.
- 2. Rudramoorthy, R, "Thermal Engineering", Tata McGraw Hill, New Delhi, 2003.
- Kothandaraman, C.P., Domkundwar,S. and Domkundwar, A.V, "A course in Thermal Engineering", 3. Dhanpat Rai and Sons, 5th Edition, 2002.
- 4. Sarkar B.K, "Thermal Engineering", Tata McGraw Hill, 1998

18ME402

1.

2.

0

Total (45+0) = 45 Periods

0

0 9

0 9 +

9 0 +

9

Reference Books:

- 1. Holman. J.P., "Thermodynamics", McGraw Hill, 1985.
- 2. Arora.C.P, "Refrigeration and Air Conditioning", TMH, 1994.

CO-PO MAPPING

CO/PO	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	0	0	0	0	0	0	0	0	0	0	3	1	1
CO2	3	3	2	3	0	0	0	0	0	0	0	0	3	2	1
CO3	3	2	3	1	0	2	0	0	0	0	0	0	3	2	1
CO4	3	2	2	2	0	0	0	0	0	0	0	0	3	2	1
CO5	3	0	0	0	0	1	0	0	0	0	0	0	3	3	1

1- Faintly

2- Moderately

Hydrostatic Pressure, Manometers. Buoyancy and Archimedes' principle.

Definitions and units of measurement of physical quantities. Behavior of fluids - density, relative density, bulk

UNIT II FLUID KINEMATICS

Classification of fluid flows, streamline, streak line, path line, stream function, velocity potential function, vorticity and circulation, flow net. Continuity equation and applications. Fluid Dynamics: Bernoulli's equation and its applications. Dimensional Analysis: Buckingham Π theorem, similarity laws and models.

UNIT III INCOMPRESSIBLE FLUID FLOW

Viscous flow - Navier-Stokes equation. Shear stress, pressure gradient relationship. Laminar flow through circular pipes, Laminar flow between parallel plates. Turbulent flow through pipes. Friction factors in turbulent flow. Moody's friction factor chart. Flow through Pipes Series and Parallel pipes, Power transmission. Boundary Layer flows Boundary layer thickness, Boundary layer separation, Drag and Lift coefficients.

UNIT IV HYDRAULIC TURBINES

Fluid Machines classification, Euler's equation for turbo machines. Working principles, velocity triangles, work done, specific speed, efficiency and performance curves of Pelton, Francis and Kaplan turbines.

UNIT V **HYDRAULIC PUMPS**

Classification of pumps. Centrifugal pumps - working principle, velocity triangle, specific speed, efficiency and performance curves. Reciprocating pumps - classification, working principle, indicator diagram, air vessels and performance curves. Cavitation in pumps. Working principles of gear and vane pumps.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the fundamental concepts of fluid mechanics
- CO2 : apply the bernoulli equation to solve problems in fluid mechanics.
- CO3 understand the concepts of viscous flow and also have a knowledge in boundary layer concept.
- CO4 : apply the principles of fluid mechanics to the design and operation of hydraulic pumps and turbines.

Text Books:

- Bansal, R.K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publication Pvt Ltd, 2007. 1.
- 2. Kumar, D.S., "Fluid Mechanics and Fluid Power Engineering", S.K.Kataria Sons, 2009.
- Subramanya, K., "Fluid Mechanics", Tata McGraw Hill publishing company Ltd, 2007. 3.
- 4. Rajput, R.K., "Fluid Mechanics and Hydraulic Mechanics", S.Chand and Company Ltd, 2002.

Reference Books:

- Streeter, V.L and Wyile, E.B., "Fluid Mechanics", Mc-Graw-Hill, 1999. 1.
- 2. Som, S.K and Biswas, G, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill publishing company Ltd., New Delhi, 1998.

FLUID MECHANICS AND MACHINERY

modulus of elasticity, vapour pressure, surface tension, capillarity and viscosity. Fluid Statics: Concept of

9 +

9

9 3

9 3

9

Total (45+15) = 60 Periods

3

3

3

1. To study the basics of fluid properties.

INTRODUCTION

- 2. To study the kinematics and dynamics concept of the fluid flow.
- 3. To study the working and performance of turbine and pump.

18ME403

UNIT I

Course Objectives:

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	0	0	0	0	0	1	0	0	0	0	2	2	1
CO2	2	3	0	1	0	0	0	1	0	0	0	0	3	2	1
CO3	3	1	0	1	0	0	0	0	0	0	0	1	2	2	1
CO4	2	2	3	3	0	0	0	1	0	0	0	0	2	3	1

1- Faintly

2- Moderately

STRENGTH OF MATERIALS

Course Objectives:

18ME404

- 1. To understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads
- 2. To calculate the elastic deformation occurring in various simple geometries for different types of loading

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

Deformation in solids- Hooke's law, stress and strain- tension, compression and shear stresses-elastic constants and their relations- volumetric, linear and shear strains- principal stresses and principal planes- Mohr's circle. Deformation of simple compound bars-Relation between elastic constants-Thermal stresses.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAMS 9

Beams and types transverse loading on beams- shear force and bend moment diagrams- Types of beam supports, simply supported and over-hanging beams, cantilevers. Theory of bending of beams, bending stress distribution and neutral axis, shear stress distribution, point and distributed loads. Shear stress distribution of simple beams- circular, rectangular, "I" section, "T" section and channel sections.

UNIT III **DEFLECTION OF BEAMS AND COLUMNS**

Moment of inertia about an axis and polar moment of inertia, deflection of a beam using double integration method, computation of slopes and deflection in beams, Macaulay's method - Area moment method - Conjugate beam and strain energy - Maxwell's reciprocal theorems. Columns: End conditions-Equivalent length of a column-Euler's equation-Slenderness ratio-Rankine's formula for columns.

UNIT IV THIN CYLINDERS, SPHERES AND THICK CYLINDERS

Axial and hoop stresses in cylinders subjected to internal pressure, deformation of thick and thin cylinders, deformation in spherical shells subjected to internal pressure - Lame's theorem.

UNIT V **TORSION AND SPRINGS**

Torsion, stresses and deformation in circular and hollow shafts, stepped shafts, deflection of shafts fixed at both ends. Torsion on springs-Wahl's factor of spring-Stresses in helical springs under torsion loads-Stiffness and deflection of springs under axial load.

Total (45+0) = 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes
- CO2 : understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment
- CO3 : calculate the slope and deflection in beams using different methods.
- CO4 analyze and design thin and thick shells for the applied internal and external pressures.
- CO5 : apply basic equation of simple torsion in designing of shafts and helical spring

Text Books:

- Rajput, R.K, "Strength of Materials", S.Chand and Co, 3rd Edition, 2003. 1.
- 2. Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2016.

Reference Books:

- Strength of Materials, D.S. Bedi, Khanna Publishing House 1.
- 2. Subramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education Series, 2010.
- Mechanics of Materials, Punmia, Jain and Jain, Laxmi Publications 3.
- Strength of Materials (Mechanics of Solid), R.S. Khurmi, S.Chand Publications 4.
- 5. Strength of Materials, Jindal U.C., Asian Books Pvt. Ltd., New Delhi, 2009

+

0

0 +

0

0

9

+

9

9 +

CO/PO MAPPING

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
	•	-	•	-	•	•		•	•	10	••		•	-	•
CO1	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0
CO2	2	2	1	1	0	0	0	0	0	0	0	0	1	2	0
CO3	3	2	1	1	0	0	0	0	0	0	0	0	2	2	0
CO4	3	2	2	2	0	0	0	0	0	0	0	0	2	0	1
CO5	2	2	2	2	0	0	0	0	0	0	0	0	2	0	1

Faintly
Moderately

UNIT I FERROUS AND NON FERROUS METALS

To learn basic principles in metallurgy and materials engineering.

materials at different temperature.

Constitution of alloys - Solid solutions, substitution and interstitial - phase diagrams, Isomorphous, eutectic, peritectic, eutectoid and peritectoid reactions, Iron - Iron carbide equilibrium diagram. Classification of steel and cast Iron microstructure, properties and application. Effect of alloying additions on steel (Mn, Si, Cr, Mo, V Tiand W) - stainless and tool steels - HSLA - maraging steels - Gray, White, Malleable, spheroid - Graphite - alloy cast irons, Copper alloys - Brass, Bronze and Cupronickel, Aluminium alloys, Bearing alloys.

UNIT II HEAT TREATMENT

18ME405

1.

2.

3.

Course Objectives:

Definition - Full annealing, stress relief, recrystallisation and spheroidizing -normalizing, hardening and Tempering of steel. Isothermal transformation diagrams - cooling curves superimposed on I.T. diagram CCR -Hardenability, Jominy end quench test - Austempering, martempering - case hardening, carburising, nitriding, cyaniding, carbo-nitriding - Flame and Induction hardening. Heat treatment of non-ferrous alloys - precipitation and age hardening .Heat treatment of HSS tools, gears, springs and gauges.

UNIT III NON-METALLIC MATERIALS

Engineering Ceramics - Properties and applications of Al2O3, SiC, SiC, Si3, N4, PSZ Fracture and Defects of ceramics - Ceramic coating methods: Plasma spraying - APS and VPS, process principles, component preparation, deposition rates, coating materials. Chemical vapour deposition - deposition rates, carbon control of the substrate, industrial CVD, typical procedures, advantages and disadvantages, use of CVD coatings in metal cutting, wear mechanisms.- Fibre and particulate reinforced composites.

UNIT IV MECHANICAL PROPERTIES AND TESTING

Mechanical properties of engineering materials - Mechanisms of plastic deformation, slip and twinning - Creep, Fatigue and Fracture - Types of fracture - Testing of materials - tension, compression and shear loads - fatigue and creep tests - hardness and its effects - testing for hardness (Brinell, Vickers and Rockwell) - Impact test -Izod and Charpy.

UNIT V NON DESTRUCTIVE TESTING AND SURFACE ENGINEERING

Non Destructive Testing: Non Destructive Testing basic principles and testing method for radiographic Testing, Ultrasonic testing, Magnetic Particle Inspection and Liquid Penetrant Inspections Introduction to surface engineering Definition of surface engineering, diffusion techniques, deposition methods, high and low energy beam methods, surface engineering charts, elastic contact mechanics

Total (45+0) = 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 understand the formation of materials and their classification based on atomic structure.
- CO2 describe properties, applications and types of various ferrous and non-ferrous metals used in : fabrication industry.
- CO3 understand the principles of various heat treatment processes in fabrication industry.
- CO4 describe various types of failure and select suitable techniques for failure analysis.

Text Books:

- Kenneth G. Budinski and Michael K. Buinski, "Engineering Materials", Prentice Hall of India Ltd, 2002. 1.
- Raghavan, V, "Materials Science and Engineering", Prentice Hall of India (P) Ltd., 1999. 2.
- 3. Aswani.K.G, "A Text Book of Material Science", S.Chand and Co. Ltd., New Delhi, 2001.

MATERIALS ENGINEERING

To impart concept on reactions, treatment, microstructure and mechanical behavior of engineering

0

0

0

0 +

0

9 +

9

4. Khanna O.P., "A Text Book of Materials Science and Metallurgy", Dhanpat Rai Sons, 2004.

Reference Books:

- 1. William. D.Callsber, "Material Science and Engineering", John Wiley and Sons, 1997.
- 2. Sydney.H.Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	2	2	1	1	1	0	0	0	0	0	2	3	1
CO2	1	0	2	1	1	2	1	0	0	0	0	0	2	3	1
CO3	0	1	1	1	1	0	1	0	0	0	0	0	3	2	1
CO4	0	2	2	1	1	1	1	0	0	0	0	0	2	3	1

1- Faintly

2- Moderately

L	т	Ρ	С
0	0	1	0

6

8

AIM

To impart awareness to the student that they are separate from the environment and should not control the environment.

Course Objectives:

- 1. They are part of the environment
- 2. To have an ancient wisdom drawn from Vedas
- 3. Activities based knowledge to preserve environment
- 4. Conservation of water and its optimization.

Curriculum

Environmental Awareness

- 1. Group activity on water management
- 2. Group discussion on recycle of waste (4R's)
- 3. Slogan making contest.
- 4. Poster making event.
- 5. Expert lecture on environmental awareness.
- 6. Imparting knowledge on reduction of electricity usage

Environmental activities

- 1. Identification and segregation of biodegradable and non-biodegradable waste
- 2. Campus cleaning activity
- 3. Plantation of trees in the college campus and local waste lands.
- 4. Identification of varieties of plants and their usage
- 5. Shutting down the fans and ACs of the campus for an hour
- 6. Field work on growing of kitchen garden for mess.

Total = 14 Periods

18ME406

STRENGTH OF MATERIALS AND FLUID MECHANICS

LABORATORY

С n 0 3 1.5

Т

Course Objectives:

- To analyze and design structural members subjected to tension, compression, torsion, bending and 1. combined stresses using the fundamental concepts of stress, strain and elastic behavior of materials.
- 2. To utilize appropriate materials in design considering engineering properties and sustainability.

STRENGTH OF MATERIAL LABORATORY EXERCISES

- 1. Double shear test on mild steel rod
- 2. Uniaxial tension test on mild steel rod
- 3. Torsion test on mild steel rod
- 4. Impact test on a metallic specimen
- Brinell and Rockwell hardness tests on metallic specimen 5.
- 6. Bending deflection test on beams

FLUID MECHANICS LABORATORY EXERCISES

- 1. Determination of friction factor of pipes
- 2. Performance characteristics of Kaplan turbine
- 3. Determination of the Coefficient of discharge of given Orifice meter
- 4. Determination of the Coefficient of discharge of given Mouthpiece
- 5. Determination of the Coefficient of discharge of given Venturi meter
- Conducting experiments and drawing the characteristic curves of centrifugal pump 6.
- 7. Conducting experiments and drawing the characteristic curves of reciprocating pump.

Total = 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- learn the various techniques of testing methods for materials. CO1
- CO2 perform test and identify the different characteristics of materials.
- CO3 perform experiments on hydraulic machines to draw the performance characteristics. 2

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	0	1	0	0	0	0	0	0	0	2	2	1
CO2	2	3	2	1	1	0	0	0	0	0	0	0	2	2	1
CO3	3	2	2	1	1	0	0	0	0	0	0	0	2	2	1

1- Faintly

2- Moderately

18ME407	THERMAL ENGINEERING LABORATORY	L	т	Р	С
		0	0	3	1.5

Course Objectives:

- 1. To study the value timing-V diagram and performance of IC Engines
- 2. To Study the characteristics of fuels/Lubricates used in IC Engines

EXPERIMENTS:

- 1. Study of I.C. Engines, Components and Loading Devices
- 2. Study of Steam Generators and Turbines.
- 3. Valve Timing and Port Timing Diagrams.
- 4. Performance Test on 4-stroke Diesel Engine.
- 5. Heat Balance Test on 4-stroke Diesel Engine.
- 6. Morse Test on Multi cylinder Diesel Engine.
- 7. Retardation Test to find Frictional Power of a Diesel Engine.
- 8. Determination of Viscosity Red Wood Viscometer.
- 9. Determination of Flash Point and Fire Point.

Course Outcomes:

After the successful completion of the practical session, the students will be able to:

- CO1 : apply thermodynamic theory to real thermodynamic cycles
- CO2 : understand the knowledge on testing the properties of fuels and lubricating oils
- CO3 : demonstrate the performance of internal combustion engines

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	1	3	1	1	0	0	0	0	0	1	1	2
CO2	1	2	1	1	1	2	1	0	0	0	0	0	2	1	1
CO3	2	1	3	1	1	2	1	0	0	0	0	0	3	1	3

1- Faintly

2- Moderately

3- Strongly

Total = 45 Periods

SEMESTER V **HEAT AND MASS TRANSFER**

Course Objectives:

18ME501

- Understand the mechanisms of heat transfer under steady and transient conditions 1.
- 2. Understand the concepts of heat transfer through extended surfaces.
- Learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass 3. transfer

UNIT I CONDUCTION

Basic concepts, Mechanism of heat transfer, Fourier's law of conduction, general differential equation of heat conduction- Cartesian and cylindrical coordinates, one dimensional steady state heat conduction, conduction through plane wall, cylinders and spheres, composite geometries, contact resistance, conduction with heat generation, extended surface heat transfer, unsteady state heat conduction, lumped analysis and use of Heisler charts.

UNIT II **CONVECTIVE HEAT TRANSFER**

Dimensional analysis, boundary layer concept, basic governing equations, external flow-flow over plates, cylinders and spheres, internal flow- laminar and turbulent flow, combined laminar and turbulent flow, flow over bank of tubes, free convection-flow over vertical plate, horizontal plate, inclined plate, cylinders and spheres.

UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

Modes of boiling, Nusselt theory of condensation, correlations in boiling and condensation, types of heat exchangers, methods of analysis, LMTD and NTU method, overall heat transfer coefficient, fouling factors.

UNIT IV RADIATION

Basic laws of radiation, view factor algebra, black body radiation, grey body radiation, radiation shields, electrical analogy using radiosity and irradiation, gaseous emission and absorption.

UNIT V **MASS TRANSFER**

Basic concepts, Diffusion mass transfer-Fick's Law of diffusion, steady state molecular diffusion, convective mass transfer.

Total (45+15)= 60 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : analyze the basic concept of conduction, convection and radiation.
- CO2 : analyze the extended surfaces and evaluate performance parameters
- CO3 : design and analyze the performance of heat exchangers by using the method of LMTD and NTU
- CO4 : understand the fundamental relationship between heat transfer and mass transfer.

Text Books:

- 1. Holman J.P, "Heat and Mass Transfer", Tata McGraw Hill, 2000.
- Sachdeva, R.C, "Fundamentals of Engineering Heat and Mass Transfer", New Age International Publishers, 2. New Delhi, 1995.
- 3. Bejan, A, "Heat Transfer", John Wiley and Sons, 1995.
- 4. Ozisik, M.N, "Heat Transfer", McGraw Hill Book Co., 1994.

Reference Books:

- Yadav, R, "Heat and Mass Transfer", Central Publishing House, Allahabad, 1995. 1.
- C.P.Kothandaraman, "Fundamentals of Heat and Mass Transfer", New Age International Publishers, New 2. Delhi,1998.

9 +

9 +

9 + 3

3

3

3 9

9

3 +

CO-PO MAPPING

CO/PO	PO	PSO	PSO	PSO											
COFC	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	3	3	3	1	0	1	0	0	0	0	0	3	3	0
CO2	3	3	3	2	2	0	1	0	0	0	0	0	3	3	0
CO3	1	3	3	3	2	0	1	0	0	0	0	0	3	3	0
CO4	2	1	3	1	0	0	0	0	0	0	0	0	3	2	0

1- Faintly

2- Moderately

Measurement systems- Sensors and transducers- Classifications of Transducers -Static and Dynamic Characteristics -Sensors for displacement, position and proximity; velocity, motion, force, fluid pressure, liquid flow, liquid level, temperature, light sensors-Selection of sensors

UNIT II SIGNAL CONDITIONING

To understand statistical signal processing

To introduce stability analysis and design of compensators

GENERAL CONCEPTS OF MEASUREMENT

Amplifier characteristics, wheat's stone bridge- Instrumentation sensor - integration and differentiation - sampling, A/D and D/A conversion, choppers, voltage to time conversion, voltage to freq. Conversion concept and methods.

UNIT III DATA ACQUISITION

Real-time interfacing - Introduction - Elements of data acquisition and control - Overview of I/O process, Digital I/O, counters and timers, DMA, Software and hardware installation, Data acquisition interface requirements,-General configuration-single channel and multichannel data acquisition - Data Logging - Data conversion -Introduction To Digital Transmission system.

UNIT IV Time Response Analysis

Response of systems for different time based input, Classification of feedback control system according to type; static error coefficients- generalized steady state errors steady state errors due to impulse, step, ramp and parabolic inputs.

UNIT V **Frequency Domain Analysis**

Frequency response-Bode plot -Polar plot -Determination of closed loop response, open loop response-Correlation between frequency domain and time domain specifications-Effect of Lag, lead and lag-lead compensation on frequency response-Analysis

Total (45+0)= 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : ability to apply common measurement characteristics and terms to select sensors to meet control and monitoring requirements.
- CO2 : ability to design, build and test sensor interface circuits including amplifiers to process the measured variable into a useful signal in the presence of noise and environmental variations.
- CO3 : ability to select, design appropriate signal processing to its instrumentation and control and their measurement
- CO4 : ability to understand and apply basic science, theory control theory and apply them to control engineering problems.
- CO5 : ability to aanalyse the performance of systems and components through the use of analytical techniques

Text Books:

- John G. Webster, "Measurement, Instrumentation, and Sensors Handbook", CRC Press. 1999. 1.
- Murthy, D.V.S., Transducers and Instrumentation, 2nd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2. 2010

Reference Books:

INSTRUMENTATION AND CONTROL

To make the students aware of the modern sensors and advanced measurement systems

To select the correct system of instrumentation and sensing as per the industrial requirements.

To provide adequate knowledge in the time response of systems and steady state error analysis.

L	Т	Ρ	С
3	0	0	3

1.

2.

3.

4.

5.

UNIT I

Course Objectives:

0

9 0

9 +

0

0

9 0

- 1. Patranabis, D, "Sensors and Transducers", Wheeler Publishing Co, Ltd., New Delhi, 1997.
- 2. M. Gopal, 'Control Systems, Principles and Design', 4th Edition, Tata McGraw Hill, New Delhi, 2012
- 3. K.Ogata, Modern Control Engineering, 4th Edition, Prentice Hall, 2002

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	0	0	0	0	0	0	0	0	0	0	1	0	0
CO2	0	0	2	2	0	0	0	0	0	0	0	0	2	0	0
CO3	0	0	0	0	2	0	1	0	0	0	0	1	0	0	1
CO4	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
CO5	0	0	0	0	0	0	0	1	2	0	0	0	0	0	2

CO-PO MAPPING

1- Faintly

2- Moderately

METROLOGY AND QUALITY CONTROL

Course Objectives:

- 1. To provide knowledge on various Metrological equipments available to measure the dimension of the components
- 2. To provide knowledge on the correct procedure to be adopted to measure the dimension of the components.

UNIT I BASICS OF MEASUREMENT SYSTEM AND DEVICES

Definition of metrology, accuracy, precision and sensitivity, Abbe's principle. Three stages of generalized measurement system - mechanical loading - static characteristics of instruments - factors considered in selection of instruments - commonly used terms, error analysis and classification - sources of error. Principle of interferometry, laser interferometer.

UNIT II CALIBRATION OF INSTRUMENTS AND QUALITY STANDARDS 9

Calibration of measuring instruments - principles of calibration, Calibration of Instruments - Vernier caliper, Micrometer, feeler gauges, dial indicator, surface plates, slip gauges, care of gauge blocks. General cares and rules in measurement, ISO 9000 quality standards. Comparators - mechanical, electrical, optical and pneumatic.

UNIT III GEOMETRICAL MEASUREMENT AND MACHINE ELEMENTS

Angular measurement - optical protractors, sine bar, roundness measurement, limit gauge, design of plug gauge, Taylor's principle, three basic types of limit gauges, Tomlinson surface meter, computer controlled CMM. ISO metric thread, measurement of major, minor and effective diameters. Gear terminology; spur gear measurement, checking of composite errors, base pitch measurement.

UNIT IV STATISTICAL QUALITY CONTROL

Surface finish- terminology and measurements - Optical measuring instruments- Acceptance test for machines Statistical Quality Control - Control charts - Sampling plans.

UNIT V SIX SIGMA

Six sigma: define measure, analyse, improve and control phases. Analyse phase tools: Common Tools: Histogram, Box Plot, Control chart, Scatter chart, Cause and effect diagram, Pareto analysis, interrelations diagram. Special Tools: Regression Analysis, Hypothesis Testing, ANOVA, Multivariate analysis.

Total (45+0)= 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : upon completion of this course, the students can demonstrate different measurement technologies and use of them in industrial components
- CO2 : evaluate quality of job, machine and instruments.
- CO3 : perform calibration of measuring instruments
- CO4 : differentiate the accuracy of instruments.

Text Books:

- 1. Gupta.I.C, A text book of Engineering Metrology, Dhanpat Rai publications, New Delhi, 2007
- 2. Beckwith.T.G,Roy D. Marangoni, John H. Lienhard, Mechanical Measurements, Prentice Hall, 2006
- 3 Jain.R.K, Mechanical and Industrial Measurements∥, Khanna Publishers, Delhi, 1999.

Reference Books:

9 +

9

9 +

9

0

0

0

0

- 1. Holmen.J.P, Experimental Methods for Engineers , Tata McGraw Hill Publications Co Limited, 2004.
- 2. Grant, E.L., Statistical Quality Control, Mc Graw-Hill, 2004. 3. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004.
- 3. Alan S Morris, Measurement and Instrumentation Principles , Butterworth, 2006.
- 4. De Feo J A and Barnard W W, [−]Six Sigma: Break trough and Beyond∥, Tata McGraw-Hill, New Delhi, 2005.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	1	0	0	0	0	0	0	0	0	1	0	0
CO2	2	1	2	2	1	0	0	0	0	0	0	0	2	0	0
CO3	2	2	1	2	0	0	2	0	0	0	0	0	0	0	0
CO4	2	2	1	1	0	0	0	0	0	0	0	1	0	0	0

1- Faintly

2- Moderately

Course Objectives:

- 1. To impart students with the knowledge about motion, masses and forces in machines and the Principle of Virtual Work
- 2. To facilitate students to understand the concept of balancing of rotating and reciprocating masses
- 3. To teach students concepts of linear vibration analyses of one and two degree-of-freedom rigid body systems
- 4. To teach students concepts of torsional vibrations analyses of rigid body systems and to give awareness to students on the phenomenon of vibration and its effects
- 5. To teach students about the concept of various types of governors

UNIT I FORCE ANALYSIS

Rigid Body dynamics in general plane motion - Equations of motion - Dynamic force analysis - Inertia force and Inertia torque - D'Alemberts principle - The principle of superposition - Dynamic Analysis in Reciprocating Engines - Gas Forces - Equivalent masses - Bearing loads - Crank shaft Torque - Turning moment diagrams - Fly wheels -Engine shaking Forces - Cam dynamics - Unbalance, Spring, Surge and Windup.

BALANCING UNIT II

Static and dynamic balancing - Balancing of rotating masses - Balancing a single cylinder Engine - Balancing Multi-cylinder Engines - Partial balancing in locomotive Engines - Balancing linkages - balancing machines

UNIT III LONGITUDINAL AND TRANSVERSE VIBRATION

Basic features of vibratory systems - idealized models - Basic elements and lumping of parameters - Degrees of freedom - Single degree of freedom - Free vibration - Equations of motion - Natural frequency of longitudinal and transverse (Free, Forced) vibrations - Types of Damping - Damped vibration (Free, Forced) - critical speed of simple shaft. Response to periodic forcing - Harmonic Forcing - Forcing caused by unbalance - Support motion -Force transmissibility and amplitude transmissibility – Vibration isolation.

UNIT IV **TORSIONAL VIBRATION & VIBRATING MEASUREMENTS**

Torsional systems - Natural frequency of free torsional vibration - Single, two and three rotor systems -Torsionally Equivalent shaft - Introduction to multi-degree-of-freedom systems. Vibration instruments: vibrometer, accelerometer. Vibration Measuring Devices- Vibration exciters - FFT analyzer.

UNIT V **GOVERNORS**

Governors - Types - Centrifugal governors - Gravity controlled and spring controlled centrifugal governors -Characteristics - Effect of friction - Controlling Force - other Governor mechanisms.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : apply basic principles of mechanisms in mechanical system
- CO2 perform static and dynamic analysis of simple mechanisms
- CO3 perform balancing of rotating and reciprocating masses
- CO4 model and analyse mechanical systems subjected to vibration
- CO5 study the various types of governors and its speed control mechanism

Text Books:

- Design of Machinery, Fourth Edition, by R.L. Norton, McGraw Hill, 2007 1.
- Mechanical Vibration, V.P.Singh, Dhanpatrai, Delhi 2.

Reference Books:

- Ballaney, P.L., "Theory of Machines and Mechanisms", Khanna Publishers, New Delhi, 2002. 1.
- 2. Shigley, J.E. and Uiker, J.J., "Theory of Machines and Mechanisms", TMH ND, 1998.

18ME504

9

9 + 0

9

n

0 ж.

0 +

9 0

Total (45+0) = 45 Periods

- 3. Amithabha Ghosh, and Ashok Kumar Malik., "Theory of Mechanisms and Machines", 2nd Ed., Affiliated East and West Press Limited, 1998.
- 4. Prof.Nakara, IIT-Delhi Reference Books

E-References:

- 1. www.university.youth4work.com/IIT_Kharagpur_Indian-Institute-of-Technology/study/1653-dynamics-ofmachinery-ebook
- 2. http://nptel.ac.in/courses/112104114/

00101															
CO/PO	PO	PSO	PSO	PSO											
COIPO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	3	1	0	0	0	0	0	1	0	3	2	1
CO2	2	2	3	2	1	0	0	0	0	0	1	0	3	2	1
CO3	2	2	3	2	0	0	0	0	0	0	1	0	3	2	1
CO4	2	2	3	2	1	0	0	0	0	0	1	0	3	2	1
CO5	1	2	3	2	0	0	0	0	0	0	1	0	3	2	1

CO-PO MAPPING

1- Faintly

2- Moderately

18MC301

INDIAN CONSTITUTION

Course Objectives:

- 1. Learn the salient features of the Indian Constitution.
- 2. To study the List the Fundamental Rights and Fundamental Duties.
- 3. To study the Present a systematic analysis of all dimensions of Indian Political System.
- 4. To study the Understand the power and functions of the Parliament, the Legislature and the Judiciary.

UNIT I

Union and its Territory - Citizenship-Fundamental Rights-Directive Principles of State Policy-Fundamental Duties

UNIT II

The Union-The States-The Union Territories-The Panchayats-The Municipalities

UNIT III

The Co-operative Societies-The scheduled and Tribal Areas-Relations between the Union and the States-Finance, Property, Contracts and Suits-Trade and Commerce within the territory of India

UNIT IV

Services under the Union, the States - Tribunals - Elections- Special Provisions -Relating to certain Classes

UNIT V

Languages-Emergency Provisions - Miscellaneous-Amendment of the Constitution

Total (15+0) = 15 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : Understand the emergence and evolution of the Indian Constitution
- CO2 : Explain the key concepts of Indian Political System
- CO3 : Describe the role of constitution in a democratic society.
- : Present the structure and functions of the Central and State Governments, the Legislature and the CO4 Judiciary

Reference Books:

- 1. SubhashC.Kashyap, Our Constitution, National Book Trust, 2017.
- 2. Durga Das Basu, Introduction to the Constitution of India, Lexis Nexis, 2015
- 3. Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, 1999.
- 4. M.V.Pylee, Constitutional History of India, S.Chand publishing, 2010.

HEAT TRANSFER AND REFRIGERATION LABORATORY

L T P C 0 0 3 1.5

Total = 45 Periods

Course Objectives:

18ME505

- 1. To impart knowledge on conduction, convection and radiation heat transfer through experiments.
- 2. To study the performance of refrigeration cycle / components.

EXPERIMENTS:

HEAT TRANSFER

- 1. Thermal conductivity measurement by guarded plate method
- 2. Thermal conductivity of metal bar
- 3. Thermal conductivity of insulating powder
- 4. Thermal conductivity of pipe insulation using lagged pipe apparatus
- 5. Natural convection heat transfer from a vertical cylinder
- 6. Forced convection inside tube
- 7. Heat transfer from pin-fin (natural and forced convection modes)
- 8. Determination of Stefan-Boltzmann constant
- 9. Determination of emissivity of a grey surface
- 10. Effectiveness of Parallel/counter flow heat exchanger

REFRIGERATION AND AIR CONDITIONING

- 11. Determination of COP of a refrigeration system
- 12. Experiments on air-conditioning system
- 13. Performance test on single/two stage reciprocating air compressor.

Course Outcomes:

After the successful completion of the practical session, the students will be able to:

- CO1 : demonstrate the conduction and convection heat transfer through experiments.
- CO2 : evaluate heat transfer efficients for natural convection and Forced convention
- CO3 : analyze heat exchanger performance using effectiveness method.
- CO4 : calculate radiation heat exchange between black body and gray body surfaces.
- CO5 : demonstrate the working principle of refrigeration and air-conditioning system

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	2	0	0	0	0	0	0	0	0	2	3	1
CO2	2	2	3	1	0	0	0	0	0	0	0	0	2	3	1
CO3	2	3	2	1	0	0	0	0	0	0	0	0	3	3	1
CO4	2	2	3	3	0	0	0	0	0	0	0	0	3	2	1
CO5	2	2	2	3	0	0	0	0	0	0	0	0	2	3	2

CO-PO MAPPING

- 1- Faintly
- 2- Moderately
- 3- Strongly

COMMUNICATION SKILLS AND LANGUAGE LABORATORY

Course Objectives:

- 1. Communicate effectively with interviewers
- 2. Express opinions, illustrate with examples, elucidate and conclude in group discussions
- 3. Write error free letters and prepare reports
- 4. Speak fluently and avoid pitfalls in pronunciation and grammatical errors

EXPERIMENTS:

1.

2.

3.

4.

WRITING SKILLS

- Letter seeking permission to go on industrial visit
- Letter of invitation
- Letter of request for leave
 - Resume and Cover Letter
 - Report Writing Progress in project work

SPEAKING SKILLS

- Welcome Address and Vote of Thanks
- Conversation Skills
- Analysing and presenting business articles
- Power Point Presentation
- Group Discussion

SOFT SKILLS

- Psychometric profile
- Self-Introduction
- Interview skills
- Leadership traits

Conducting a board meeting

VERBAL ABILITIES

- Error Spotting
- Listening Comprehension
- Reading Comprehension
- Rearranging Jumbled sentences
- Vocabulary

Lab Record

- 1. Group Discussion Literature survey
- 2. Group Discussion Transcripts
- 3. Group Discussion Assessment forms
- 4. InterviewSkills Psychometric profile
- 5. Interview Skills Self-introduction
- 6. Interview Skills Resume and Cover Letter
- 7. Interview Skills Transcription of interview
- 8. Interview Skills Assessment sheet signed by interview panel
- 9. Power Point Presentation
- 10. Error spotting worksheet
 - 11. Jumbled sentences worksheet
 - 12. Reading comprehension worksheet
 - 13. Welcome Address
 - 14. Vote of Thanks
 - 15. Letter seeking permission to go on industrial visit
 - 16. Letter of request for leave
 - 17. Report Writing Progress in project work
 - 18. Presentation of business articles Transcription

Total = 30 Periods

LTPC

5.

Course Outcomes:

After the successful completion of the practical session, the students will be able to:

- CO1 : write error free letters and prepare reports
- CO2 : deliver welcome address and vote of thanks
- CO3 : speak coherently with proper pronunciation and accent
- CO4 : avoid common indianisms and grammatical errors
- CO5 : improve repertoire of passive vocabulary
- CO6 : answer questions posed by interviewers confidently
- CO7 : participate in group discussion effectively

CO8 : undertake online psychometric and iq test to understand their strengths and weaknesses

References:

- 1. Anderson, P.V, Technical Communication, Thomason Wadsworth, Sixth Edition, New Delhi, 2007.
- 2. Prakash, P, Verbal and Non-Verbal Reasoning, Macmillan India Ltd., Second Edition, New Delhi, 2004.
- 3. John Seely, The Oxford Guide to Writing and Speaking, Oxford University Press, New Delhi, 2004.
- 4. Evans, D, Decision maker, Cambridge University Press, 1997.
- 5. Thorpe, E, and Thorpe, S, Objective English, Pearson Education, SecondEdition, New Delhi, 2007.
- 6. Turton, N.D and Heaton, J.B, Dictionary of Common Errors, Addision WesleyLongman Ltd., Indian reprint 1998.
- 7. Ready, Steaady, Go. Deepak Mehra, Jaico Publishing House, Delhi, 2015
- 8. Business English Certificate Materials, Cambridge University Press.
- 9. <u>http://www.learnmyself.com (Personality Test and IQ Test).</u>
- 10. http://www.humanmetrics.com/cgi-win/jtypes2.asp

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	2	1	0	2	2	1	1	3	2	2	0	2	3
CO2	0	0	1	1	0	1	1	2	1	3	2	1	0	1	2
CO3	0	0	2	1	0	0	0	1	2	3	1	2	0	0	2
CO4	0	0	2	2	0	2	2	3	1	3	1	2	0	2	1
CO5	0	0	1	2	0	1	1	2	2	3	2	1	0	1	3
CO6	0	0	1	1	0	0	0	1	0	3	2	2	0	0	2
C07	0	0	1	2	0	0	2	3	0	3	1	1	0	2	3
CO8	0	0	2	2	0	0	2	1	1	3	2	0	0	1	3

CO-PO MAPPING

1- Faintly

2- Moderately

- 1. To be familiar With Different Measuring Equipment.
- 2. And Use Of these instruments in Industry For Quality Inspection
- 3. To know the need of accuracy in industry

EXPERIMENTS

- 1. Governors Determination of sensitivity, effort, etc. for Watt, Porter, Proell, Hartnell governors
- 2. Cam Study of jump phenomenon and drawing profile of the cam.
- 3. Motorized Gyroscope-Verification of laws -Determination of gyroscopic couple.
- 4. Whirling of shaft-Determination of critical speed of shaft with concentrated loads.
- 5. Determination of moment of inertia by oscillation method for connecting rod and flywheel.
- 6. Vibrating system Spring mass system-Determination of damping co-efficient of single degree of freedom system.
- 7. Determination of transmissibility ratio vibrating table.
- 8. Determination of torsional frequencies for compound pendulum and flywheel system with Lumped Moment of inertia.
- 9. Transverse vibration -free- Beam. Determination of natural frequency and deflection of beam.
- 10. Calibration of Vernier / Micrometer / Dial Gauge
- 11. Checking Dimensions of part using slip gauges
- 12. Measurements of Gear Tooth Dimensions
- 13. Measurement of Taper Angle using sine bar / tool makers microscope
- 14. Measurement of thread parameters
- 15. Checking the limits of dimensional tolerances using comparators (Mechanical / Pneumatic / Electrical)

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : ability to handle different measurement tools
- CO2 : perform measurements in quality impulsion
- CO3 : avoid errors in measurement
- CO4 : understand balancing of equipment

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	3	2	2	3	0	0	0	0	0	0	0	3	1	2
CO2	0	2	0	3	1	1	0	0	0	0	0	0	1	2	3
CO3	3	1	0	0	0	2	0	0	0	0	0	0	2	3	1
CO4	2	3	0	1	3	1	0	0	0	0	0	0	3	2	1

- 1- Faintly
- 2- Moderately
- 3- Strongly

Total = 45 Periods

History of group technology- role of G.T. in CAD/CAM integration - part families - classification and coding - DCLASS and MICLASS and OPITZ coding systems-facility design using G.T. -benefits of G.T. - cellular manufacturing. Process planning - role of process planning in CAD/CAM integration - approaches to computer aided process planning -variant approach and generative approaches - CAPP and CMPP process planning systems.

UNIT III SHOP FLOOR CONTROL AND INTRODUCTION OF FMS

Shop floor control-phases -factory data collection system -automatic identification methods- Bar code technologyautomated data collection system. FMS-components of FMS - types -FMS workstation -material handling and storage systems- FMS layout -computer control systems-application and benefits.

UNIT IV CIM IMPLEMENTATION AND DATA COMMUNICATION

CIM and company strategy - system modeling tools -IDEF models - activity cycle diagram - CIM open system architecture (CIMOSA) - manufacturing enterprise wheel-CIM architecture - Product data management-CIM implementation software. Communication fundamentals- local area networks -topology - LAN implementations - network management and installations.

UNIT V OPEN SYSTEM AND DATABASE FOR CIM

Open systems-open system inter connection - manufacturing automations protocol and technical office protocol (MAP /TOP). Development of databases -database terminology- architecture of database systems-data modeling and data associations -relational data bases - database operators - advantages of data base and relational database.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : recognize the manufacturing activities interrelated with computers.
- CO2 : understand the concept of group technology and the various approaches of computer aided process planning.
- CO3 : explain the phases of shop floor control activities.
- CO4 : apply the system modeling tools in cim
- CO5 : explain the applications of database and system protocol

Text Books:

- 1. Mikell.P.Groover, "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education, 2008.
- 2. Roger Hanman, "Computer Integrated Manufacturing", Addison -Wesley, 1997.

COMPUTER INTEGRATED MANUFACTURING

Course Objectives:

18ME601

UNIT I

- 1. To gain knowledge on how computers are integrated at various levels of planning and manufacturing.
- 2. To understand the flexible manufacturing system and to handle the product data and various software used for manufacturing

INTRODUCTION

The meaning and origin of CIM- the changing manufacturing and management scene - External communication - islands of automation and software-dedicated and open systems-manufacturing automation protocol - product related activities of a company- marketing engineering - production planning - plant operations - physical distribution- business and financial management.

UNIT IIGROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING9+0

Total (45+0) =45 Periods

9

q

9

9

0

0

0
Reference Books:

- 1. Ranky and Paul G., "Computer Integrated Manufacturing", Prentice Hall International 1986.
- 2. David D.Bedworth, Mark R.Hendersan and Phillip M.Wolfe, "Computer Integrated Design and Manufacturing", McGraw Hill Inc, 1998.
- 3. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003
- 4. Mikell. P.Groover and Emory ZimmersJr, "CAD/CAM", Prentice Hall of India Pvt. Ltd, 1998
- 5. Yoremkoren, "Computer Integrated Manufacturing system", McGraw-Hill, 1983.

CO/PO	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	3	0	2	0	1	0	0	0	2	3	3	2	2
CO2	2	1	1	0	2	0	2	0	2	0	2	2	2	3	2
CO3	2	0	2	0	2	0	0	0	1	0	2	2	2	2	1
CO4	1	2	2	0	2	0	1	0	1	0	2	2	1	2	2
CO5	1	1	1	0	1	0	1	0	1	0	2	1	2	1	2

CO-PO MAPPING

1- Faintly

2- Moderately

FINITE ELEMENT ANALYSIS

Course Objectives:

18ME602

- To equip the students with the basic concepts of Finite Element methods. 1
- 2 To make the students to formulate the physical design problems into FEA including domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems.
- 3 To learn and apply finite element solutions to structural, thermal, dynamic problem to develop the knowledge and skills.
- 4 To familiarize the students in deriving FEA equations for 1D and 2D problems with different types of elements.
- 5 To make the students understand the need for FEA package and the procedure for solving problems

UNIT I INTRODUCTION

Basics of FEM - history - Comparison with other methods - General steps of FEM - Applications and Advantages -Matrix approach- Application to the continuum - Discretization - Types of elements based on geometry- Node numbering, Half band width - Matrix algebra- Gaussian elimination - Classical techniques in FEM - Weighted residual methods -general weighted residual statement - weak formulation of the weighted residual statement comparisons - piecewise continuous trial functions example of a bar finite element - functional and differential forms - principle of stationary total potential - Rayleigh Ritz method - piecewise continuous trial functions application to bar element.

UNIT II **ONE DIMENSIONAL FEA**

General form of total potential for 1-D applications - generic form of finite element equations - linear bar element - quadratic element -nodal approximation - development of shape functions - derivation of element stiffness matrices and vectors - assembly- example problems - extension to plane truss- development of element equations - assembly - element connectivity - global equations - solution methods -beam element - nodal approximation - shape functions - element matrices and vectors - assembly - solution - example solid mechanics problems - Temperature effects.

UNIT III **TWO DIMENSIONAL FEA**

Introduction - approximation of geometry and field variable - 3 noded triangular elements - four noded rectangular elements - higher order elements - Interpolation polynomials- Linear, quadratic and cubic. Simplex complex and multiplex elements- 2D PASCAL's triangle - generalized coordinates approach to nodal approximations difficulties - natural coordinates and coordinate transformations - CST elements - Shape functions and Nodal load vector - Strain displacement matrix and Jacobian for triangular and rectangular element - structural mechanics applications in 2-dimensions - elasticity equations - stress strain relations - plane problems of elasticity - element equations - assembly - example problems in plane stress, plane strain - axisymmetric element applications.

UNIT IV **ISOPARAMETRIC FORMULATIONS**

Isoparametric elements - sub parametric and Super parametric elements - natural co-ordinate systems - Shape functions for isoparametric elements - One and two dimensions - Serendipity elements - axisymmetric applications - need for quadrature formula - transformations to natural coordinates - Gaussian quadrature Numerical integration and application to plane stress problems – Matrix solution techniques - Lagrange's interpolation- Higher order one dimensional elements - Quadratic and cubic element - Applying numerical integration: 1, 2 and 3 gauge point for 1D and 2D cases - example problems.

UNIT V HEAT TRANSFER AND FLUID FLOW APPLICATION

One dimensional heat transfer element - Steady state heat transfer, 1D heat conduction governing Equations -Functional approach for heat conduction- Galerkin's approach for heat conduction - application to onedimensional heat transfer problems- 1D heat transfer in thin fins problems - scalar variable problems in 2-

9 + 0

9

0

0 9 ÷

9 0 +

0

9 ÷

3 Λ 0 3

С Ρ т

Dimensions - Applications to heat transfer in 2- Dimension - Incompressible fluid flow- Basic equations - solution procedure - Galerkin Approach - Problems in incompressible fluid flow.

Total (45+0) = 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : perform the mathematical formulation of the finite element method and apply the same to basic (linear) ordinary and partial differential equations.
- CO2 : develop and solve stiffness equations for 1d fea using bar, truss and beam elements.
- CO3 : develop and solve stiffness equations for 2d fea using cst and other plane elements.
- CO4 : implement the finite element method efficiently in order to solve simple structural problems
- CO5 : solve the basic 1d and 2d heat transfer and fluid flow problems.

Text Books:

- 1. Chandrupatla T. R & Belagundu A. D, "Introduction to Finite Elements in Engineering", 3rd Edition, Prentice Hall College Div, 1990.
- 2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

Reference Books:

- 1. Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005.
- 2. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann, 2004.
- 3. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.
- 4. Bathe K.J, "Finite Element Procedures in Engineering Analysis", Prentice hall, 1981.
- 5. C.S. Desai and J.P. Abel, "Introduction to Finite Element Method", Affiliated East West Press, 1972.

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	1	2	0
CO2	3	2	1	0	0	0	0	0	0	0	0	0	2	1	0
CO3	3	2	1	0	0	0	0	0	0	0	0	0	2	1	0
CO4	3	1	2	2	1	0	0	0	0	0	0	0	2	1	0
CO5	3	2	1	0	1	0	0	0	0	0	0	0	2	1	0

CO-PO MAPPING

1- Faintly

2- Moderately

DESIGN OF MACHINE ELEMENTS

3

9 +

Course Objectives:

18ME603

- 1. A strong background in mechanics of materials based failure criteria underpinning the safety-critical design of machine components
- 2. An understanding of the origins, nature and applicability of empirical design principles, based on safety considerations
- 3. An overview of codes, standards and design guidelines for different elements
- 4. An appreciation of parameter optimization and design iteration
- 5. An appreciation of the relationships between component level design and overall machine system design and performance

UNIT I STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS 9 + 3

Introduction to the design process - Product development cycle- factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers- Direct, Bending and Torsional stress - Impact and shock loading - Calculation of principle stresses for various load combinations, eccentric loading - Design of curved beams - crane hook and 'C' frame - Factor of safety -theories of failure - stress concentration - design for variable loading - Soderberg, Goodman and Gerber relations .

UNIT II DESIGN OF SHAFTS, COUPLINGS AND PIN JOINTS

Design of solid and hollow shafts based on strength, rigidity and critical speed - Design of keys and key ways - Design of rigid and flexible couplings - Design of pin joints like cotter and knuckle joints.

UNIT III DESIGN OF THREADED FASTENERS, RIVETED AND WELDED JOINTS 9 + 3

Threaded fasteners - Design of bolted joints including eccentric loading - Design of riveted and welded joints for pressure vessels and structures.

UNIT IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS 9 + 3

Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting Rods and crank shafts. Heat engines- Brief details about external combustion and internal combustion engines, Design of I.C engine cylinder, piston, connecting rod, crankshaft and flywheel.

UNIT V DESIGN OF BEARINGS, LEVERS, PRESSURE VESSELS AND PIPES 9 + 3

Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number - Selection of Rolling Contact bearings. Design of Levers - Design of pressure vessels and pipes

Total = (45+15) = 60 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : explain the influence of steady and variable stresses in machine component design.
- CO2 : apply the concepts of design to shafts, keys and couplings.
- CO3 : apply the concepts of design to temporary and permanent joints
- CO4 : apply the concepts of design to various energy storing elements and engine components.
- CO5 : design the various types of bearings and levers.

Textbooks:

- 1. Bhandari V.B, "Design of Machine Elements", Tata McGraw Hill Book Co, 2003
- 2. Md.Jalaludeen.S, "A text book of Machine Design", Anuradha Publications, 2006

Reference Books:

1. Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.

- 2. Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.
- 3. Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.
- 4. PSG Tech, "Design Data Handbook", M/s.DPV Printers, Coimbatore, 2009
- 5. R. L. Norton, Mechanical Design An Integrated Approach, Prentice Hall, 1998
- 6. Md.Jalaludeen.S, "Design Data Handbook", Anuradha Publications, 2006

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	3	2	0	0	0	0	0	0	0	0	3	2	0
CO2	3	2	2	1	0	0	0	0	0	0	0	0	2	2	0
CO3	3	2	2	2	0	0	0	0	0	0	0	0	2	2	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO5	3	3	2	1	0	0	0	0	0	0	0	0	3	2	0

1- Faintly

2- Moderately

18ME604

CAD/CAM LABORATORY

Course Objectives:

- 1. To train students in modeling the 3-D geometric information of machine components including assemblies, and automatically generate 2-D production drawings.
- 2. To improve visualization ability of machine components and assemblies before their actual fabrication through modeling.
- 3. To equip the students for implement CNC programs for milling and turning machining operations.
- 4. To create a computer aided manufacturing (CAM) model and generate the machining codes automatically using the CAM system.
- 5. To use full-scale CAD/CAM software systems designed for geometric modeling of machine components and automatic generation of manufacturing information

EXPERIMENTS:

A. CAD EXPERIMENTS

1. The students will be required to carry out the following exercises using software packages (e.g. 3D modeling package / Pro Engineer/ CATIA /I-Deas/ Solid Edge/Solid Works etc.)

CAD LAB

- 2. Introduction to advanced modeling software
- 3. Part Modeling of Screw Jack
- 4. Part Modeling of Flange Coupling
- 5. Part Modeling of Plummer Block
- 6. Part Modeling of Knuckle Joint
- 7. Creation of 3D assembly model of universal joint
- 8. Creation of 3D assembly model of connecting rod
- 9. Creation of 3D assembly model of crank shaft
- 10. Creation of 3D assembly model of Lathe Tailstock
- 11. Detailing of Lathe Tailstock
- 12. Surface Modeling /File import & Export/ STL file generation

B. CAM EXPERIMENTS

13. Tool path generation, Part programming, G & M codes development for machining operations, Physical interpretation of machining features and tool geometries

CAM LAB

- 14. Manual part programming- CNC Turning Centre Facing, Turning, Chamfering, Taper turning, Thread cutting
- 15. Manual part programming- CNC Turning Centre
 - Facing, Turning, Chamfering, Taper turning, Grooving, Threading using canned cycles
- 16. Manual part programming- CNC Milling Linear and circular Profile, Pocket, Drill, Peck-Drill, Bore, Tap- Using canned cycles.
- 17. Part Program generation and tool path simulation for turning & Milling for Fanuc Control System using CAM software.
- 18. Demonstration on CNC Turning & Milling Machines

Course Outcomes:

After the successful completion of the practical session, the students will be able to:

- CO1 : understand how cad technology can be leveraged in the design process and the basic and advanced features available with cad software
- CO2 : design a part or assembly of parts using computer-aided design software.
- CO3 : understand the cnc concepts and manual part programming using g and m codes.
- CO4 : understand modern cnc control systems (fanuc, siemens etc.) and application of various cnc machines.
- CO5 : prepare cnc part programming and perform manufacturing.

Total = 45 Periods

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	0	1	3	0	0	0	0	1	0	1	1	1	1
CO2	2	0	0	0	3	0	0	0	0	0	0	0	1	3	2
CO3	2	1	0	0	3	0	0	0	0	0	0	0	1	2	3
CO4	2	1	0	0	3	0	0	0	0	0	0	0	1	2	3
CO5	2	2	0	1	2	0	0	0	0	0	0	0	1	2	3

1- Faintly

2- Moderately

Total = 30 Periods

Course Objectives:

- 1. To get hands on training in the fabrication of one or more components of a complete working model, which is designed by them
- 2. To design and fabricate models

FABRICATION PROJECT GUIDELINES

- a. Mechanical Assembly and Dismantling Models
- b. Day-life Usage Project
- c. New Scientific Invention
- d. Implementation of Mechanical Principle

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : initiate the students to come out with innovative ideas for various applications.
- CO2 : create an environment to convert the ideas into design of prototype for useful industrial, agricultural and social applications.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	2	1	0	2	1	2	1	3	1	1	3	3	2	2
CO2	2	2	3	1	3	2	2	1	2	1	0	3	1	2	3

1- Faintly

2- Moderately

SEMESTER VII

MECHATRONICS

Course Objectives:

To impart knowledge about the elements and techniques involved in Mechatronics systems which are very 1. much essential to understand the emerging field of automation.

UNIT I INTRODUCTION TO MECHATRONICS

Definition and Introduction to Mechatronic Systems- Mechatronic Products and their functioning- Advanced applications in Mechatronics -Measurement systems- Control Systems- sequential controllers.

UNIT II PHYSICAL SYSTEM MODELING

General System Models- zero order-first order- second order-mechanical systems, electrical systems, thermal systems, electromechanical systems, hydro-mechanical systems, pneumatic systems-Basis of analogies in physical system models.

UNIT III **ACTUATION SYSTEMS**

Electric motors - Solenoids - Solid state switches - Stepper motors- Servo motors- Mechanical actuators-Hydraulic motors - Piezo actuators- Control systems - PID Controllers.- Artificial intelligence in Mechatronics -Adaptive and nonlinear control design- Neural networks and fuzzy systems.

UNIT IV PROGRAMMING LOGIC CONTROLLERS

Introduction to Programmable Logic Controllers - Basic Structure - Input / Output processing - Ladder logic programming - Mnemonics -relays and counters - Shift registers - Master and Jump controls - Data handling -Analog Input / Output - Case studies on PLC.

UNIT V **MECHATRONICS SYSTEMS DESIGN**

Stages in designing of Mechatronics systems - Traditional and Mechatronic design - Possible design solutions. Case studies: Data acquisition and control - Pick and place robot - automatic car park barrier systems - Engine management systems- Mechatronic control in automated manufacturing.

Total (45+0)= 45 Periods

Upon completion of this course, the students will be able to:

- CO1 : students will be able to understand the basic elements underlying mechatronics systems and integrate them in the design of mechatronics systems.
- CO2 students will be able to develop a simulation model for simple physical systems and illustrate • mechatronics design process.
- CO3 : students will be capable of designing, interfacing and understand issues of implementation of different actuation in a mechatronics system for a set of specifications.
- CO4 : students understand how to interface electromechanical systems to plcs.
- CO5 : students will gain practical experience in applying knowledge gained in the course through a handson project.

Text Books:

- 1. Bolton, W, Mechatronics, Pearson Education, 6th Edition, 2015.
- 2. Ganesh S.Hegde, Mechatronics, Jones & Bartlett publishers, 1st Edition, 2010.

Reference Books:

Course Outcomes:

- Michael B. Histand and David G. Alciatore, Introduction to Mechatronics and Measurement Systems, 1. McGraw Hill International Editions, 3rd Edition, 2007.
- Bradley D. A., Dawson D., Buru N.C. and. Loader A.J, Mechatronics, Chapman and Hall, 1st Edition, 1993. 2.
- 3. Dan Necsulesu, Mechatronics, Pearson Education Asia, 1st Edition, 2002

18ME701

С т Λ 3 Λ

3

0 9 +

0 9

q 0

9 0 +

0 9

4. Brian Morriss, Automated Manufacturing Systems - Actuators, Controls, Sensors and Robotics, McGraw Hill International Edition, 1995.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	0	0	0	0	0	0	0	0	0	0	1	0	0
CO2	0	0	2	0	1	0	0	0	0	0	0	0	0	2	0
CO3	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0
CO4	0	0	0	0	2	0	0	0	0	0	3	0	0	2	1
CO5	0	0	0	2	0	0	0	0	0	0	0	3	0	0	3

1- Faintly

2- Moderately

COURSE OBJECTIVES:

- 1. To acquire adequate knowledge to design and simulate the basic electric, hydraulic and pneumatic, PLC systems.
- 2. To gain practical experience in interfacing Microcontroller, Computer and data acquisition system in real world problems
- 3. To design, set up, and conduct engineering experiments and analyze complex engineering problems

1. MECHATRONICS LABORATORY

LIST OF EXPERIMENTS

- Design and testing of fluid power circuits to control

 velocity (ii) direction and (iii) force of single and double acting actuators
- 2. Simulation of basic Hydraulic, Pneumatic and Electric circuits using software.
- 3. Circuits with multiple cylinder sequences in Electro pneumatic using PLC.
- 4. Servo controller interfacing for open loop
- 5. Servo controller interfacing for closed loop
- 6. Stepper motor interfacing with 8051 Micro controller (i)full step resolution (ii) half step resolution
- 7. Computerized data logging system with control for process variables like pressure flow and temperature.

2 SIMULATION LABORATORY

LIST OF EXPERIMENTS

Analysis of Mechanical Components - Use of FEA packages, like ANSYS/ NASTRON etc., Excesses shell include FEA analysis of

- (i) Machine elements under static loads
- (ii) Heat transfer in mechanical systems
- (iii) Determination of natural frequency
- (iv) Axi-Symmetric
- (v) Non-linear systems

Total =45 Periods

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- CO1 : select various control valves and use them in hydraulic and pneumatic circuit development.
- CO2 : get adequate knowledge to simulate the basic electric, hydraulic and pneumatic system using simulation software.
- CO3 : gain practical experience in data acquisition system and develop and evaluate alternate solutions to real world problems.
- CO4 : use softwares as a tool for analyzing complex engineering problems.
- CO5 : design, set up, and conduct engineering experiments and analyze the Results.

CO/PO	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	3	0	0	0	0	0	0	0	0	0	0	1	1	1
CO2	0	0	1	2	0	0	0	0	0	0	0	0	1	2	2
CO3	0	0	1	0	0	0	1	2	0	0	0	0	2	1	3
CO4	0	0	0	3	0	0	0	0	0	0	2	3	2	1	3
CO5	0	0	0	0	0	0	0	0	2	1	2	0	2	2	3

1- Faintly

2- Moderately

PROJECT – I

COURSE OBJECTIVES:

- 1. The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.
- 2. It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester

GUIDELINE FOR REVIEW AND EVALUATION

1. The students may be grouped into 2 to 4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners (Supervisors) constituted by the Head of the Department

Total = 75 Periods

COURSE OUTCOMES:

Upon completion of this course, Students will be able:

- CO1 : to initiate and motivate the students to come out with innovative ideas for different applications.
- CO2 : to create an environment to convert the ideas into design of prototype for useful industrial, agricultural and social applications.
- CO3 : to create an environment to convert the design into manufacturing of prototype for useful industrial, agricultural and social applications.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	2	1	0	2	1	2	1	3	1	1	3	3	2	2
CO2	2	2	3	1	3	2	2	1	2	1	0	3	1	2	3
CO3	1	2	3	2	3	2	2	2	2	2	1	3	2	3	3

1- Faintly

2- Moderately

SEMESTER VIII

18ME801

PROJECT – II

L T P C 0 0 12 10

COURSE OBJECTIVES:

- 1. The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.
- 2. It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester.

GUIDELINE FOR REVIEW AND EVALUATION

1. The students may be grouped into 2 to 4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a Committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners (Supervisors) constituted by the Head of the Department

Total = 90 Periods

COURSE OUTCOMES:

Upon completion of this course, Students will be able:

- CO1 : to initiate and motivate the students to come out with innovative ideas for different applications.
- CO2 : to create an environment to convert the ideas into design of prototype for useful industrial, agricultural and social applications.
- CO3 : to create an environment to convert the design into manufacturing of prototype for useful industrial, agricultural and social applications.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	2	1	0	2	1	2	1	3	1	1	3	3	2	2
CO2	2	2	3	1	3	2	2	1	2	1	0	3	1	2	3
CO3	1	2	3	2	3	2	2	2	2	2	1	3	2	3	3

1- Faintly

2- Moderately

PROFESSIONAL ELECTIVES COURSES

Electives – I (SEMESTER VI)

18MEPE11 COMPOSITE MATERIALS С Т Ρ L 3 0 0 3

Course Objectives:

- 1. To learn about the benefits gained when combining different materials into a composite.
- 2. To make the students to understand different processing methods, issues, properties.
- 3. To practice the testing methods of different composite materials.

UNIT I INTRODUCTION TO COMPOSITES

Fundamentals of composites - need for composites - enhancement of properties - classification of composites -Matrix-Polymer matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix composites (CMC) -Reinforcement - particle reinforced composites, Fibre reinforced composites. Applications of various types of composites. Fiber production techniques for glass, carbon and ceramic fibers

UNIT II **POLYMER MATRIX COMPOSITES**

Polymer resins - thermosetting resins, thermoplastic resins - reinforcement fibres - rovings - woven fabrics non woven random mats - various types of fibres. PMC processes - hand layup processes - spray up processes - compression moulding - reinforced reaction injection moulding - resin transfer moulding - Pultrusion - Filament winding - Injection moulding. Fibre reinforced plastics (FRP), Glass Fibre Reinforced Plastics (GFRP). Laminates-Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates.-applications of PMC in aerospace, automotive industries

UNIT III METAL MATRIX COMPOSITES

Characteristics of MMC, various types of metal matrix composites alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements - particles - fibres. Effect of reinforcement - volume fraction - rule of mixtures. Processing of MMC - powder metallurgy process - diffusion bonding- stir casting - squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface- measurement of interface properties- applications of MMC in aerospace, automotive industries

UNIT IV CERAMIC MATRIX COMPOSITES AND SPECIAL COMPOSITES

Engineering ceramic materials - properties - advantages - limitations - monolithic ceramics - need for CMC ceramic matrix - various types of ceramic matrix composites- oxide ceramics - non oxide ceramics - aluminium oxide - silicon nitride - reinforcements - particles- fibres- whiskers. Sintering - Hot pressing - Cold isostatic pressing (CIPing) - Hot isostatic pressing (HIPing). applications of CMC in aerospace, automotive industries-Carbon /carbon composites - advantages of carbon matrix - limitations of carbon matrix carbon fibre - chemical vapour deposition of carbon on carbon fibre perform. Sol-gel technique- Processing of Ceramic Matrix composites.

UNIT V **MECHANICS OF COMPOSITES**

Lamina Constitutive Equations: Lamina Assumptions - Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina - Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations - Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 use different materials to design new composites
- CO2 apply different techniques to process different types of composites and know the limitations of each process
- CO3 : derive mathematical techniques to predict the macroscopic properties of different laminates

0 9

0

+

0 +

0

9

9

9 ÷

9 + 0

Text Books:

- 1. Mathews F. L. and Rawlings R. D., "Composite Materials: Engineering and Science", Chapman and Hall, London, England, 1st edition, 1994.
- 2. Chawla K. K., "Composite materials", Springer Verlag, Second Edition, 1998

Reference Books:

- 1. Clyne, T. W. and Withers, P. J., "Introduction to Metal Matrix Composites", Cambridge University Press, 1993.
- 2. Strong, A.B., "Fundamentals of Composite Manufacturing", SME, 1989.
- 3. Sharma, S.C., "Composite materials", Narosa Publications, 2000.
- 4. Broutman, L.J. and Krock, R.M., "Modern Composite Materials", Addison-Wesley, 1967.
- 5. ASM Hand Book, "Composites", Vol.21, ASM International, 2001.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	3	2	0	2	0	0	0	0	0	0	2	0	1
CO2	1	2	3	2	1	0	0	0	0	0	0	0	0	2	0
CO3	3	1	1	2	3	1	0	0	0	0	0	0	0	0	0

1- Faintly

2- Moderately

- Selection of wire ropes and pulleys - Design of Transmission chains and Sprockets.

UNIT II SPUR AND HELICAL GEARS

Gear materials - Design of straight tooth spur & helical gears based on speed ratios, number of teeth, Fatigue strength, Factor of safety, strength and wear considerations. Force analysis -Tooth stresses - Dynamic effects -Helical gears - Module - normal and transverse, Equivalent number of teeth - forces.

Motor power capacity for various applications - Design of Flat belts and pulleys - Selection of V belts and sheaves

UNIT III **BEVEL AND WORM GEARS**

Straight bevel gear: Gear materials - Tooth terminology, tooth forces and stresses, equivalent number of teeth, estimation of dimensions of straight bevel gears. Worm Gear: Gear materials - Tooth terminology, Thermal capacity, forces and stresses, efficiency, estimation of dimensions of worm gear pair.

UNIT IV **GEAR BOXES**

Need - Design of sliding and constant mesh gear boxes: Speed selection - Geometric progression - Standard step ratio - Ray diagram, kinematic layout - Determination of number of teeth. Design of multi speed gear box for machine tool applications, Variable speed gear box, Fluid Couplings, Torque Converters for automotive applications.

UNIT V **CLUTCHES, BRAKES AND CAMS**

Design of single and multi plate clutches, cone clutches, internal expanding rim clutches and Electromagnetic clutches. Design of brakes: External shoe brakes - Single and Double Shoe, Internal expanding shoe brakes and Band brakes. Design of Cams: Types- Pressure angle and under cutting, determination of base circle -forces and surface stresses.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : appreciate the functions of various transmission elements and their assemblies
- CO2 : design different transmission components according to the requirement as per standards using data books.
- CO3 : apply the appropriate calculation procedures for the various systems designing

Text Books:

- 1. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 10th Edition, Tata McGraw-Hill, 2014.
- 2. Sundararajamoorthy T. V and Shanmugam .N, "Machine Design", 9th edition, Anuradha Publications, Chennai, 2003.

Reference Books:

- Bhandari V, "Design of Machine Elements", 15th Reprint, Tata McGraw-Hill Book Co, 2014. 1.
- 2. Prabhu. T.J., "Design of Transmission Elements", Mani Offset, Chennai, 2003. Md. Jalaludeen, Machine Design, Volume II, Design of Transmission Systems, 4th edition, Anuradha Publications, 2014.
- 3. GitinMaitra, L. Prasad "Handbook of Mechanical Design", 2nd Edition, Tata McGraw-Hill, 2001.

DESIGN OF TRANSMISSION SYSTEM

To gain knowledge on the principles and procedures for the design of mechanical power transmission

To understand the standard procedures available for design of transmission elements.

To solve the problems for the real time applications of the systems

DESIGN OF FLEXIBLE ELEMENTS

0

0

0 9 +

0

9

9 0

9

9 +

18MEPE12

1.

2.

3.

UNIT I

Course Objectives:

components.

- 4. C.S.Sharma, KamleshPurohit, "Design of Machine Elements", Prentice Hall of India, Pvt. Ltd., 2003.
- 5. Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements", 2nd Edition, Tata McGraw Hill, 2006.

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	2	1	1	0	1	0	0	0	0	0	0	1	0
CO2	2	3	2	1	1	0	0	0	0	0	0	0	0	2	1
CO3	2	1	3	2	1	0	2	0	0	0	0	0	0	2	1

1- Faintly

2- Moderately

GAS DYNAMICS & JET PROPULSION

Course Objectives:

18MEPE13

- 1. To learn the concepts of gas dynamics and various flows
- 2. To acquire the knowledge about the flow through ducts and their phenomena
- 3. To get the concepts of jet and space propulsion

UNIT I BASIC CONCEPTS AND ISENTROPIC FLOWS

Energy and momentum equations of compressible fluid flows - Stagnation states, Mach waves and Mach cone -Effect of Mach number on compressibility - Isentropic flow through variable area ducts - Nozzle and Diffusers -Use of Gas tables.

UNIT II FLOW THROUGH DUCTS

Flow through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) - Variation of flow properties - Use of tables and charts - Generalized gas dynamics.

UNIT III NORMAL AND OBLIQUE SHOCKS

Governing equations - Variation of flow parameters across the normal and oblique shocks - Prandtl - Meyer relations - Use of table and charts - Applications.

UNIT IV JET PROPULSION

Theory of jet propulsion - Thrust equation - Thrust power and propulsive efficiency - Operation principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo prop engines - Aircraft combustors.

UNIT V SPACE PROPULSION

Types of rocket engines - Propellants - Ignition and combustion - Theory of rocket propulsion - Performance study - Staging - Terminal and characteristic velocity - Applications - Space flights.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- : explain basic concepts of gas dynamics and describe the basic fundamental equations of one CO1 dimensional flow of compressible fluid and isentropic flow of an ideal gas
- CO2 : analyze the concepts of flow through ducts and the shock flow.
- CO3 : describe the basic concepts of jet and space propulsion

Text Books:

- 1. Yahya, S.M, "Fundamentals of Compressible Flow", New Age International (P) Limited, New Delhi, 1996.
- 2. Ganesan, V, "Gas Turbines", Tata McGraw Hill Publishing Co., New Delhi, 1999.

Reference Books:

- Hill, P and Peterson, C, "Mechanics and Thermodynamics of Propulsion", Addison -Wesley Publishing 1. Company, 1992.
- 2. Zucrow, N.J. "Principles of Jet Propulsion and Gas Turbines", John Wiley, New York, 1970.
- Cohen, H, Rogers, G.E.C and Saravanamuttoo, "Gas Turbine Theory", Longman Group Ltd., 1980. 3.
- Zucrow, N.J, "Aircraft and Missile Propulsion", Vol. I and II, John Wiley, 1975. 4

9 +

9

9

+

0

0

9 0

0

0 9 +

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0
CO2	2	2	1	3	2	0	1	0	0	0	0	0	1	0	1
CO3	2	1	1	2	0	0	1	0	0	0	0	0	1	0	1

1- Faintly

2- Moderately

18MEPE14

Course Objectives:

- To understand the principles and applications of solar and wind energy. 1.
- 2. To learn the biomass energy and the conversion tecnologies.
- 3. To gain knowledge on wave and tidal energy and their appliations.

UNIT I SOLAR ENERGY

Devices for thermal collectors and storage-Thermal applications-Solar thermal power plant-Solar Photo voltaic Conversion-Solar cell-PV application.

RENEWABLE ENERGY SYSTEM

WIND ENERGY UNIT II

Principles of wind Energy Conversion-Site Selection Considerations-Wind Energy Conversion system-Advantages and Disadvantages of WECS-Wind Energy Collectors Interconnected System Environmental Aspects.

UNIT III **BIO ENERGY**

Biomass Conversion Technologies-Types of Bio gas plants-Bio gas from plant wastes-Site selection Problems related to Bio gas plants-Alternative liquid fuels-Advantages and Disadvantages of Biological Conversion of Solar Energy.

UNIT IV **ENERGY FROM THE OCEANS**

Ocean thermal Electric Conversion-Energy fromTides-Layout of Tidal power house-Tidal power plants-Single and Double basin Arrangement wave-Energy Conversion devices-Hybrid System.

UNIT V **GEOTHERMAL ENERGY AND FUEL CELLS**

Hot Dry Rock Resources systems-Advantages and Disadvantages-Applications of Geothermal Energy-Fuel Cells-Classifications-Advantages and disadvantages-Applications of Fuel cells

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- : acquire awareness about non-conventional sources of energy technologies. CO1
- CO2 understand various renewable energy technologies and systems.
- CO3 impart the knowledge of storage technologies for the autonomous renewable energy : sources.

Text Books:

- Suhas P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., 2007. 1.
- 2. G.D. Rai, "Non-Conventional Energy Sources", Khanna publishers, 2008.

Reference Books:

- 1. Godfrey Boyle, "Renewable Energy", Power for a Sustainable future, Oxford University Press, 1996.
- 2. G.N. Tiwari, "Solar Energy - Fundamentals Design, Modelling and Applications", Navosa Publishing House, 2002.
- Johnson Gavy L, "Wind Energy Systems", Prentice Hall, 1985. 3.

Т Ρ С L

3 0 0 3

9 +

0

0 a +

q ж. 0

9

0

0 9 +

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	1	0	1	0	2	0	1	0	0	0	1	0	0
CO2	1	1	1	1	0	0	1	0	1	0	1	0	0	0	1
CO3	2	1	2	1	0	0	0	0	0	0	0	1	2	1	1

1- Faintly

2- Moderately

METAL CUTTING & TOOL DESIGN

Course Objectives:

18MEPE15

- To provide students with fundamental knowledge and principles in material removal 1. processes.
- 2. To demonstrate the fundamentals of machining processes and machine tools.
- To apply knowledge of basic mathematics to calculate the machining parameters for different 3. machining processes.

UNIT I **MECHANICS OF METAL CUTTING**

Chip formation- Shear Zone- Shear Plane angle: Different Theories. Friction in Metal Cutting- Chip Flow Velocity-Shear Strain. Measurement of cutting forces- Dynamometer Requirements. Classification of Cutting Force Dynamometers. Heat in metal cutting - Heat Sources in Metal Cutting Temperature in Chip Formation-Temperature Distribution- Factors Effecting the Temperature-Work Material, Cutting Variables, Tool Geometry, Cutting Fluid.

UNIT II FAILURE OF CUTTING TOOLS

Tool Wear and Tool Life- Premature failure- Gradual Wear. Crater Wear. Flank Wear, Grooving Wear, Chip notching - Wear Mechanisms in Metal Cutting, Abrasive, Diffusion, Adhesion, and Oxidation Wear - Tool Life, Taylor's Tool Life Equation. Cutting Conditions for Limiting Tool Life Conditions. TV-he Tool Life Plots. Cutting Rate- Tool Life Characteristics Curve. Tool wear measurement - Optical Methods; Flank Wear, Crater Wear Measurement. Radioactive Methods - Augur Electron Spectroscopy (AES)

UNIT III TOOL GEOMETRY

Tool Nomenclature -Basic Tool Angles, Effect of Basic Angles. Tool Nomenclature Systems; British System, ISO System. Geometrical Relationship of True Rake Angle, Angle of Inclination. Design of single point tool - Tool Strength and Rigidity- Design of Form Tools- Types of Form Tools- Circular Form Tool- Profile Design-Geometrical and Analytical Method- Flat Form Tool Design- Grinding the Form Tool. Profile for a Tapered Surface-Tangential Type of Form Tool.

UNIT IV DESIGN OF DRILL BIT AND MILLING CUTTER

Twist Drill Construction- Drill Diameter- Flute Angle - Web Thickness and Chisel Edge- Land Width Margin- Shape of Flute Section - Flute Length- Shank. Geometry of the Cutting Edge, Rake Angle, Relief Angle, Angle of Inclination. Design of milling cutter- Types of Milling Cutters and its design -Profile Sharpened- Form Relieved Milling Cutters

UNIT V **DESIGN OF BROACHING AND REAMING TOOL**

Design of broach- Design Elements of Broach- Number of Teeth, Tooth, Pitch and Chip space- Rear Pilot Length of Broach- Strength of Broach - Reamer Design- Length- Flutes- Rake Angle and Relief Angle - Grinding of Reamer. Thread cutting tools - Thread Cutting Dies- Thread Rolling Tools- Design of Thread Cutting Taps.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 identify the various force acting and its measuring method on metal cutting
- CO2 find the various causes of failure of tool
- CO3 design the drill bit and milling cutter for the machining processes ÷.

Text Books:

- B.J.Ranganth, "Metal Cutting and Tool Design" Vikas publishing 1
- Bhattacharya. A., "Metal Cutting Theory and practice", Central Book Publishers, India, 1984. 2.

88

Т Ρ С

0 0 3

9

0 +

Q ж.

9 ÷

0 9 +

9

0

0

0 +

Reference Books:

- 1. Boothroid D.G. & Knight W.A., "Fundamentals of machining and machine tools", Marcel Dekker, New York, 1989.
- 2. Shaw.M.C. "Metal cutting principles", oxford Clare don press, 1984.
- 3. Graham T.Smith "Cutting Tool Technology" Industrial Handbook , Springer

CO-PO MAPPING

CO/PO	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	2	1	0	0	0	0	0	0	0	0	1	0	0
CO2	2	3	2	2	3	1	0	0	0	0	0	0	0	1	1
CO3	2	2	3	1	0	0	0	0	0	0	0	0	0	2	1

1- Faintly

2- Moderately

90

AERONAUTICAL ENGINEERING

To learn about the concepts of aero foil 3. To provide an understanding of flight instruments

To understand the fundamentals of aerospace engineering

- 4. To provide an understanding of aero propellers
- 5. To learn about the basics about aerodynamics

UNIT I INTRODUCTION

The atmosphere-characteristics of troposphere, stratosphere, thermosphere, and ionosphere- pressure, temperature and density variations in the atmosphere. Application of dimensional analysis - aerodynamic force model study and similitude. 2D aero foils -Nomenclature and classification- pressure distribution in inviscid and real flows- momentum and circulation theory of aerofoil- characteristics.

UNIT II CONCEPT OF AERO FOIL

3D or Finite aero foils - effect of releasing the wingtips- wing tip vortices- replacement of finite wing by horse shoe vertex system, lifting line theory-wing load distribution - aspect ratio, induced drag calculation of induced drag from momentum considerations. Skin friction and from drag- changes in finite wing plan shape.

UNIT III **AERO PROPELLERS**

Propellers - momentum and blade element theories -propeller coefficients and charts. Aircraft performancestraight and level flight -power required and power available graphs for propeller and jet aircraft.

UNIT IV GLIDING AND CLIMBING

Rate of climb-service and absolute ceilings-gliding angle and speed of flattest glide takeoff and landing performance - length of runway required- aircraft ground run- circling flight - radius of tightest turn-jet and rocket assisted take -off high lift devices-range and endurance of airplanes-charts for piston and jet engine aircrafts.

UNIT V **AERODYNAMICS**

Basics of aerodynamics- Fundamentals of potential flows from subsonic to supersonic speeds- Viscous flows including laminar and turbulent boundary layers- Aerodynamic models of airfoils and wings.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : identify, formulate and solve aerospace engineering problems
- CO2 perform analysis of flight dynamics of aircrafts
- CO3 : provided an understanding of flight instruments
- CO4 : provided an understanding of aero propellers
- CO5 : learned about the basics about aerodynamics

Text Books:

- 1. Anderson, Fundamentals of Aerodynamics, McGraw-Hill, 2010
- A.C. Kermode Mechanics of flight, Prentice Hall, 2007 2.

Reference Books:

- 1. Kuethe, A.M., and Chow, C.Y., "Foundations of Aerodynamics", John Wiley & Sons, 1982.
- 2. Hill, Mechanics and thermodynamics of propulsion
- 3. J.J.Bertin, "Aerodynamics for Engineers", Prentice-Hall, 1988.
- 4. EHJ Pallett, Aircraft Instruments and Integrated systems, Longman, 1992
- 5. Houghton and brock, Aerodynamics for Engineering Student, Hodder & Stoughton, 1977

18MEPE16

1. 2.

Course Objectives:

Ρ

С

0

Т

9

9

L

0 +

9 0

0 9

9 0

E-REFERENCES:

Nptel.ac.in / courses /downloads

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	0	0	0	0	0	0	0	0	0	2	1	0
CO2	2	2	1	1	0	0	0	0	0	0	0	0	2	1	0
CO3	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1
CO4	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1
CO5	3	1	1	0	0	0	0	0	0	0	0	0	1	0	0

1- Faintly

2- Moderately

Develop the skills to build own formulations/expand existing formulations, to critically evaluate the impact

OPERATIONS RESEARCH

Build the capabilities to analyze different industrial/business situations involving limited resources.

Strengthen the ability to choose an appropriate solution technique for a given formulation.

Finding the optimal solution for any practical situation which is subjected with some constraints.

UNIT I LINEAR MODELS

of model assumptions.

The phases of operations research study - Formation of linear programming model - Graphical method - Simplex algorithm - Big M method - Two phase method - Dual simplex method.

TRANSPORTATION AND ASSIGNMENT MODELS UNIT II

Enhance the skills on managerial science.

Transportation models - Optimal solution by North West Corner method - Least Cost Method - Vogel's Approximation Method - optimality test - MODI method - Assignment problem formulation - Hungarian method -Unbalanced and maximization assignment problems.

UNIT III **NETWORK MODELS**

Construction of project networks - Network optimization algorithms - Shortest route models, Minimal spanning tree models, Maximum flow models - CPM and PERT networks - Critical path scheduling.

UNIT IV **REPLACEMENT AND SEQUENCING MODELS**

Replacement of items that deteriorate with time: value of money change with time, not change with time -Optimum replacement policy - Individual and group replacement - Sequencing problems – Problems with n jobs with 2 machines, n jobs with 3 machines, n jobs with k machines, 2 jobs with k machines.

UNIT V QUEUING THEORY AND SIMULATION

Queuing systems and structures - Notations and parameters - Queuing models (Model I, Model II, Model III, Model IV) - Simulation- Random number generation - Application of simulation for queuing and maintenance.

Total (45+0)= 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : identify and develop mathematical models from the real situations.
- CO2 understand the mathematical tools that are needed to solve optimization problems.
- CO3 : use mathematical software to solve the proposed models.
- CO4 propose recommendations to the decision-making processes in engineering/ management. .

Text Books:

- 1. Taha, H.A, "Operations Research", 7th Edition, Prentice Hall of India, 2002.
- Hira and Gupta, "Introduction to Operations Research", S. Chand and Co, 2002. 2

Reference Books:

- 1 Bhaskar, S, "Operations Research", Anuradha Publishers, Tamil Nadu, 1999.
- 2. Hillier and Lieberman, "Operations Research", Holden Day, 1986.

18MEPE17

1.

2.

3.

4.

5.

Course Objectives:

С

3

0 a

+ 0

9

9

9

n

0

9 0

- 3. Sharma J.K, "Operations Research", Macmillan, 2007.
- 4. Philip and Ravindran, "Operational Research", John Wiley, 1992.

CO/PO	РО 1	PO 2	PO 3	PO 4	PO 5	РО 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	2	0	0	0	0	0	0	0	1	1	0
CO2	2	2	1	1	3	0	0	0	0	0	0	0	0	1	0
CO3	1	2	2	2	3	0	0	0	0	0	0	0	2	1	0
CO4	1	2	1	2	1	0	0	0	0	0	0	0	1	1	1

1- Faintly

2- Moderately

Elective – II (VI SEMESTER)

18MEPE21

ADVANCED STRENGTH OF MATERIALS

Course Objectives:

- 1. To provide basic knowledge in mechanics of materials to solve real engineering problems and design engineering systems
- 2. To determine the Mechanical behavior of the body by determining the stresses, strains produced by the application of load.
- 3. To apply fundamental concepts related to deformation, moment of inertia, load carrying capacity, shear forces, bending moments, torsional moments, column and struts, principal stresses and strains.

UNIT I ELASTICITY

Stress - Strain relation and General equation of elasticity in cartesian- polar and spherical coordinates- differential equation of equilibrium - compact ability -boundary conditions- representations of three dimensional stress of a tension -generalized Hooke's law - St. Vennant's principle - Plane strain- plane stress - Airy's stress function. Shear Centre- Location of shear centre for various sections - shear flow.

UNIT II UNSYMMETRICAL BENDING

Stresses and deflection in beams subjected to unsymmetrical loading – Kern of a section. Curved flexural members - circumferential and radial stresses - deflection and radial curved beam with re-strained ends - closed ring subjected to concentrated load and uniform load – chain link and crane hooks.

UNIT III THICK CYLINDERS AND ROTATING DISKS

Thick walled cylinder subjected to internal and external pressures - Shrink fit joints - Stresses due to rotation - Radial and tangential stresses in solid disc and ring of uniform thickness and varying thickness - allowable speed. - Rotating shafts and cylinders.

UNIT IV TORSION OF NON CIRCULAR SECTIONS

Torsion of rectangular cross section - St.Vennant Theory - elastic membrane analogy - Prandtl's stress function - Torsional stresses in hollow thin walled tubes.

UNIT V STRESSES IN FLAT PLATES

Stresses in circular and rectangular plates due to various types of loading and end conditions - Buckling of plates. Theory of contact stresses - methods of computing contact stresses - deflection of bodies in point and line contact - applications.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the concepts of stress and strain at a point as well as the stress-strain relationships for homogenous, isotropic materials.
- CO2 : calculate the stresses and strains in axially-loaded members, circular torsion members, and members subject to flexural loadings.
- CO3 : calculate the stresses and strains associated with thin-wall spherical and cylindrical pressure vessels.

Text Books:

- 1. Arthur P.Boresi and Richard J.Schmidt, "Advanced Mechanics of Materials", 6th Edition, John Wiley & Sons-Inc., 2003.
- 2. Arthur P.Boresi and Omar M.Siseborttom- "Advanced Mechanics of Materials", John Wiley International Education, 1985.

9 + 0

+ 0

0

9

9

С

0 3

т

3 0

9 + 0

9 + 0

Reference Books:

- 1. Robert D.Cook and Wareen.C.Yound, "Advanced Mechanics of Materials", 2nd Edition, Macmilon Publishers Company, 1985
- 2. Srinath.L.S, "Advanced Mechanics of Solids", Tata McGraw Hill Publishing Company Limited, 2003
- 3. KrishnaRaju- N and Gururaja-D.R., "Advanced Mechanics of Solids and Structures", Narosa Publishing House, 1997.
- 4. U.C.Jindal, "Advanced Topics of Strength of materials", Galgotia Publications, 1st Edition, 1997

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	1	0	0	0	1	0	2	0	0	3	2	1
CO2	2	3	3	1	0	0	0	0	0	0	0	0	3	2	1
CO3	2	3	3	2	0	0	0	1	0	0	0	0	2	3	1

CO-PO MAPPING

1- Faintly

2- Moderately

18MEPE22

INTERNAL COMBUSTION ENGINES

9

Course Objectives:

- 1. To Acquire the knowledge of engine components and fuel air cycles.
- To understand the working of engine auxiliary systems. 2.
- 3. To learn the combustion aspects of CI and SI Engines and the alternate fuels

UNIT I COMPONENTS OF IC ENGINES AND PERFORMANCE

Classification of Internal combustion Engine, Function and operation of Two stroke and Four stroke engines, Comparison of SI and CI and two stroke and four stroke engines, Effects of supercharging and supercharging Types - centrifugal, roots, vane, Types of scavenging process- Design and Performance data, Efficiency, Specific fuel consumption, IMEP determination -Simple calculations - Performance characteristics, Heat balance calculations, Fuel air cycles and their significance, Comparison of air-standard and fuel air cycles.

UNIT II **ENGINE AUXILIARY SYSTEMS**

Desirable air- fuel ratios for starting, warm up, acceleration, idling and normal operation, Necessity of Carburetors and their function and types, Function and classification of injection systems, Injection pump, governor and nozzle types, Description of construction and function of Electronic injection system and MPFI systems, Energy requirement of ignition system, need, Types - Battery and Magneto ignition types, Ignition timing and engine parameters, Engine oil properties, lubrication system types - mist, wet sump and dry sump lubrication systems, Types of cooling systems - Direct and Indirect - Coolant and antifreeze solutions.

UNIT III COMBUSTION IN SI ENGINES

Homogeneous and heterogeneous mixture, Combustion in spark ignition engines, Stages of combustion in spark ignition engines, Flame front propagation, Factors influencing flame speed, Rate of pressure rise, Phenomenon of knock in SI engines, Effect of engine variables on knock, Combustion chambers for SI engines - Smooth engine operation, High power output and thermal efficiency, Stratified charge engine.

UNIT IV **COMBUSTION IN CI ENGINES**

Combustion in CI engine, Stages of combustion in CI engines, Factors affecting the delay period - compression ratio, engine speed, output, atomization and duration of injection, quality of fuel, intake temperature, intake pressure, Phenomenon of knock in CI engines, Comparison of knock in SI and CI engines, Air motion - Swirl -Squish.

UNIT V ALTERNATE FUELS AND EMISSION

Alternate Fuels -Alcohol, Methanol, Ethanol, Gaseous fuel - Hydrogen, CNG, LPG, Biodiesel -production, advantages & amp; disadvantages. Air pollution due to IC engines, Hydrocarbon emission and their reasons, Formation of oxides of nitrogen, CO, Particulates, aldehydes, sulphur, lead and phosphorus emissions, catalytic converter, exhaust gas recirculation, Flame ionization detector, NDIR, smoke types - measuring device. Emission standards.

Course Outcomes:

Upon completion of this course, the students will be able to:

- describe and explain different types of reciprocating internal combustion engines (ice), their typical CO1 : design features and performance characteristics.
- CO2 : describe and analyze the power cycle of internal combustion engines using ideal gas cycles, air cycles, and fuel-air cycles. compute indicated power and thermal efficiency.
- CO3 explain the characteristic of homogeneous combustion in si-engines and spray combustion in ci-: engines.

9 0

9 0

0

Total (45+0) =45 Periods

9

0 ÷

0 9 ÷

Text Books:

- 1. Ganesan.V, "Internal Combustion Engines" , Tata McGraw-Hill, New Delhi,2009
- 2. Ramalingam.K.K, "Internal Combustion Engines- Theory and practice ",SciTech publications India Pvt. Ltd., Chennai, 2010

Reference Books:

- 1. Thipse.S.S, "internal Combustion Engines", Jaico Publication House., 2010.
- 2. Thipse.S.S, "Alternate Fuels", Jaico Publication House., 2010.
- 3. Mathur.M.L and Sharma.R.P, "A course in internal Combustion Engines", Dhanpat Rai & Sons, New Delhi, 2010.
- 4. Heywood.J.B, "Internal Combustion Engine Fundamentals", McGraw Hill International, New York, 2008
- 5. Domkundwar.V.M, "A course in internal Combustion Engines", Dhanpat Rai & Sons, 2010.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	1	0	0	0	0	0	0	0	0	3	2	1
CO2	3	3	2	2	0	0	0	0	0	0	0	0	2	3	1
CO3	3	2	1	2	0	0	0	0	0	0	0	0	3	2	1

1- Faintly

2- Moderately

POWER PLANT ENGINEERING

Course Objectives:

18MEPE23

1. To learn about the various processes involved in the conventional power plants

2. To study about the instruments and testing methods used in thermal power plants

3. To learn the basic knowledge of different types of diesel, gas and nuclear power plants

STEAM POWER PLANT UNIT I

Layout of steam power plant - boilers - Modern high pressure and supercritical boilers -- Preparation and handling of coal - Pulverizer - Dust collector - Ash removal; Stokers - Different types - Pulverized fuel burning; Draught -Different types - Chimney design - Selection of blowers, Cooling towers - Different types - Analysis of pollution from thermal power plants - Waste heat recovery, Fluidized bed boilers.

INSTRUMENTATION, TESTING OF BOILERS, POWER PLANT ECONOMICS UNIT II 0 9

CO2 recorders - Automatic controls for feed water, steam, fuel, air supply and combustion, Boiler testing and trails - Inspection and safety regulations. Economics of power plant - Actual load curves, fixed costs - Operating costs - Variable load operation.

UNIT III HYDRO ELECTRIC POWER PLANT

Layout of hydel power plant- classification -working - components - layout of pumped storage power plant. Solar power plant- classification - components -working principle.

UNIT IV DIESEL AND GAS POWER PLANT

Layout of Diesel power plant- Important components - performance analysis - Layout of gas power plant classification of gas turbine cycles - components - relative thermal efficiencies of different cycles. Wind mill: layout -components - working.

UNIT V NUCLEAR, MHD POWER GENERATION AND WIND MILL

Elementary treatment - Nuclear fission, chain reaction - Pressurized water reactors, boiling water reactors, gas cooled reactors - Fast breeder reactors, MHD power cycle principles

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : select the suitability of site for a power plant.
- calculate performance of thermal power plant. CO2
- CO3 able to find the suitable types of power plant in any location

Text Books:

- Arora, S.C and Domkundwar, S, "A Course in Power Plant Engineering", Dhanpat Rai and Sons, TMH, 1998. 1.
- 2. Nag P.K, "Power Plant Engineering", Tata McGraw Hill Publishing Co. Ltd., 1998

Reference Books:

- 1. Bernhardt G. Askrotzki and William A. Vopat, "Power Station Engineering and Economy", Tata McGraw Hill Publishing Co. Ltd., 1972.
- 2. Frederick T. Mores, "Power Plant Engineering", Affiliated East-West Press Private Ltd., 1953.
- 3. Nagpal, G.R, "Power Plant Engineering", Khanna Publishers, 1998.
- 4. Joel Weisman and Roy Eckart, "Modern Power Plant Engineering", Prentice Hall International Inc., 1985.

0 9 +

0

0

9 + 0

q

9

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	1	1	0	0	0	0	0	0	0	0	2	1	3
CO2	3	3	2	2	0	0	0	0	0	0	0	0	3	3	1
CO3	3	2	2	1	0	0	0	0	0	0	0	0	3	2	3

1- Faintly

2- Moderately

MACHINE DRAWING

Course Objectives: 1. Provide the fundamental concepts of machine drawing elaborating on how to concretize the idea of new structure such as a machine element.

- 2. Study the conventions and rules to be followed by engineers for making accurate drawings
- 3. Understand the basic dimensioning practices that have to be followed in the preparation of drawings

UNIT I SECTIONAL VIEWS

18MEPE24

Review of sectioning - Conventions showing the section - symbolic representation of cutting plane- types of section - full section, half section, offset section, revolved section, broken section, removed section - section lining.

UNIT II LIMITS, FITS AND TOLERANCES

Limits, Fits and Tolerances- Indication of tolerances on linear dimension of drawings - General aspects, Nominal size and basic dimensions, Definitions, Basis of fit or limit system- Classifications of fits - Selection of fits examples Systems of specifying tolerances, Designation of holes, Shafts and fits, Commonly used holes and shafts.

UNIT III SURFACE TEXTURE

Conventional representation of surface finish - Roughness number symbol, Symbols of Machine elements and welded joints - Surface texture - importance - controlled and uncontrolled surfaces.

UNIT IV **KEYS, SCREW THREADS AND THREADED FASTENERS**

Types of fasteners - temporary fasteners - keys - classification of keys - Heavy duty keys - light duty keys. Screw thread - Nomenclature - different types of thread profiles - threads in sections - threaded fasteners bolts - nuts - through bolt - tap bolt, stud bolt - set screw - cap screws - machine screws - foundation bolts.

UNIT V MANUAL DRAWING PRACTICE

Assembly and detailed drawings of Sleeve & Cotter joint - Knuckle joint - Foot step bearing - Plummer Block -Universal Coupling - Simple Eccentric - Protected type flanged coupling - Union joint, Gland & Stuffing Box, Expansion joint.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the principles and requirements of production drawings.
- CO2 understand the various symbols used in drawing.
- CO3 assemble and disassemble the various mechanical components and joints. :

Text Books:

- Geometrical and Machine Drawing, N.D. Bhatt, Cheroter book stalls, Anand, West Railway 1.
- 2. Machine drawing - P.S. Gill S.K. Kataria& Sons Delhi.
- Machine drawing T.Jones. 3.

Reference Books:

- Mechanical Draughtsmanship, G.L. Tamta, DhanpatRai& Sons, Delhi 1
- 2. Engineering Drawing, D.N. Ghose, DhanpatRai& Sons, Delhi

0 9 +

9 ÷

9 + 0

0

Total (45+0) =45 Periods

9 0

9 0 +

CO/PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO						
00/10	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	0	0	0	0	1	0	0	1	1	1	1	1
CO2	2	1	1	0	0	0	0	1	0	0	1	1	1	1	1
CO3	1	1	1	0	0	0	0	1	0	0	1	1	2	1	1

1- Faintly

2- Moderately
18MEPE25

ENGINEERING SYSTEM ANALYSIS AND DESIGN

Course Objectives:

- 1. Analyze the asymptotic performance of Manual and automated systems.
- 2. Ability to understand the principles of systems documentation.
- 3. Demonstrate a familiarity with Systems flowcharts and structured charts.
- 4. Apply important Planning considerations for advance development.
- 5. Understand the basic concepts and implement the Object Oriented Analysis and design.

UNIT I SYSTEM DEFINITION AND CONCEPTS

Characteristics and types of system, Manual and automated systems Real-life Business sub-systems: Production, Marketing, Personal, Material, and Finance. Systems models types of models: Systems environment and boundaries, Real-time and distributed systems, Basic principles of successful systems.

UNIT II SYSTEMS ANALYST

Role and need of systems analyst, Qualifications and responsibilities, Systems Analyst and agent of change, Introduction to systems development life cycle (SDLC), Various phases of development: Analysis, Design, Development, Implementation, Maintenance Systems documentation considerations: Principles of systems documentation, Types of documentation and their importance, Enforcing documentation discipline in an organization.

SYSTEMS DESIGN AND PROCESS MODELING UNIT III

Logical and physical design, Design representation, Systems flowcharts and structured charts, Data flow diagrams, Common diagramming conventions and guidelines using DFD and ERD diagrams. Data Modeling and systems analysis, Designing the internals: Program and Process design, Designing Distributed Systems.

UNIT IV SYSTEM IMPLEMENTATION AND MAINTENANCE

Planning considerations, Conversion methods, producers and controls, System acceptance Criteria, System evaluation and performance, Testing and validation, Systems quality Control and assurance, Maintenance activities and issues. Threat to computer system and control measures, Disaster recovery and contingency planning.

UNIT V **OBJECT ORIENTED ANALYSIS AND DESIGN**

Introduction to Object Oriented Analysis and design life cycle, object modeling: Class Diagrams, Dynamic modeling: state diagram, Dynamic modeling: sequence diagramming.

Course Outcomes:

Upon completion of this course, the students will be able to:

- gather data to analyse and specify the requirements of a system. CO1 :
- CO2 design system components and environments. :
- CO3 : build general and detailed models that assist programmers in implementing a system.
- CO4 : design a database for storing data and a user interface for data input and output, as well as controls to protect the system and its data.
- CO5 : able to analyse object modeling and dynamics modeling.

Text Books:

- Analysis and design of information systems James A.Senn, McGraw-Hill Education, 2008 1.
- 2. System analysis and design -Perry Edwards , McGraw-Hill Companies, 1993

Reference Books:

- 1. System Analysis and Design Methods, Whitten, Bentaly and Barlow, Galgotia Publication.
- 2. System Analysis and Design Elias M. Award, Galgotia Publication
- 3. Modern System Analysis and Design, Jeffrey A. Hofer Joey F. George Joseph S. Valacich Addison Weseley.

0

0

0 +

С Ρ

L Т

3 0 0 3

0 9 +

Total (45+0) =45 Periods

9 0 +

9 +

9

9

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	2	1	2	0	0	0	0	0	0	0	2	1	0
CO2	0	1	3	2	1	0	0	0	0	0	0	0	2	3	0
CO3	1	2	2	1	1	0	0	0	0	0	0	0	2	3	0
CO4	1	2	3	2	1	0	0	0	0	0	0	0	1	3	0
CO5	0	2	2	2	0	0	0	0	0	0	0	0	0	2	0

1- Faintly

2- Moderately

Electives – III (VII SEMESTER)

18MEPE31

APPLIED HYDRAULICS AND PNEUMATICS

Course Objectives:

- 1. To provide student with knowledge on the application of fluid power in process, construction and manufacturing Industries.
- 2. To provide students with an understanding of the fluids and components utilized in modern industrial fluid power system.
- 3. To develop a measurable degree of competence in the design, construction and operation of fluid power circuits.

UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of fluids and selection - Basics of Hydraulics - Pascal's Law - Principles of flow - Friction loss - Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory - Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary - Fixed and Variable displacement pumps.

UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

Hydraulic Actuators: Cylinders - Types and construction, Application, Hydraulic cushioning - Hydraulic motors -Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Servo and Proportional valves - Applications - Accessories : Reservoirs, Pressure Switches -Applications – Fluid Power ANSI Symbols.

HYDRAULIC CIRCUITS AND SYSTEMS UNIT III

Accumulators, Intensifiers, Industrial hydraulic circuits - Regenerative, Pump Unloading, Double Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

Properties of air - Perfect Gas Laws - Compressor - Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit - Cascade method - Electro Pneumatic System - Elements - Ladder diagram - Problems, Introduction to fluidics and pneumatic logic circuits.

UNIT V **TROUBLE SHOOTING AND APPLICATIONS**

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools - Low cost Automation – Hydraulic and Pneumatic power packs.

Total (45+0)= 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 explain the Fluid power and operation of different types of pumps.
- CO2 summarize the features and functions of Hydraulic motors, actuators and Flow control valves
- CO3 explain the different types of Hydraulic circuits and systems
- CO4 explain the working of different pneumatic circuits and systems :
- CO5 : summarize the various trouble shooting methods and applications of hydraulic and pneumatic systems.

Text Books:

Anthony Esposito, "Fluid Power with Applications", Pearson Education, 2005. 1.

С 3 3 0 Ω

9

9 +

9

0

0

0 +

9 0 +

9 0

Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGrawHill, 2001.

Reference Books:

- 1. Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 1982.
- 2. Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.
- 3. Majumdar S.R., "Pneumatic systems Principles and maintenance", Tata McGraw Hill, 1995
- 4. Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 1989.
- 5. Shanmuga sundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	1	0	0	0	0	0	0	0	0	0	1	1	1
CO2	0	2	2	1	0	0	0	0	0	0	0	0	1	1	1
CO3	1	2	3	0	0	1	0	0	0	0	0	0	1	2	1
CO4	1	1	3	2	2	0	0	0	0	0	0	0	2	1	1
CO5	1	1	2	0	0	0	0	0	0	0	0	0	1	1	1

CO-PO MAPPING

1- Faintly

2- Moderately

106

Course Objectives:

18MEPE32

- 1. To create awareness on Engineering Ethics and providing basic knowledge about engineering Ethics, Variety of moral issues and Professional Ideals.
- 2. To provide basic familiarity about Engineers as responsible Experimenters, Codes of Ethics, Industrial Standards.
- 3. To inculcate knowledge and exposure on Safety and Risk, Risk Benefit Analysis.

UNIT I **HUMAN VALUES**

Morals, Values and Ethics - Integrity - Work Ethic - Service Learning - Civic Virtue - Respect for Others - Living Peacefully - caring - Sharing - Honesty - Courage - Valuing Time - Co-operation - Commitment - Empathy -Self-Confidence - Character - Spirituality.

UNIT II **ENGINEERING ETHICS**

Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - moral autonomy -Kohlberg's theory - Gilligan's theory - consensus and controversy - Models of Professional Roles - theories about right action – Self-interest- customs and religion - uses of ethical theories.

UNIT III **ENGINEERING AS SOCIAL EXPERIMENTATION**

Engineering as experimentation - engineers as responsible experimenters - codes of ethics - a balanced outlook on law - the challenger case study.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the three mile island and Chernobyl case studies. Collegiality and loyalty - respect for authority - collective bargaining - confidentiality conflicts of interest - occupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination.

UNIT V **GLOBAL ISSUES**

Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers consulting engineers-engineers as expert witnesses and advisors -moral leadership-sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Management, Institution of electronics and telecommunication engineers (IETE),India.

Course Outcomes:

Upon completion of this course, the students will be able to:

- : understand the importance of ethics and values in life and society. CO1
- CO2 : understood the core values that shape the ethical behavior of an engineer.
- CO3 exposed awareness on professional ethics and human values. :

Text Books:

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 2005.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

Reference Books:

- Tripathi A N, "Human values", New Age international Pvt. Ltd., New Delhi, 2002. 1.
- 2. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, New Jersey, 2004.
- Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", 3. Wadsworth Thompson Learning, United States, 2000.
- John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003. 4.

С

3

0 9

т

3 0 0

0 9 +

9 0 +

9

9 + 0

Total (45+0) = 45 Periods

0

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	0	3	2	3	0	0	0	0	0	0	3
CO2	0	0	0	0	0	3	2	3	0	0	0	0	0	0	3
CO3	0	0	0	0	0	3	2	3	0	0	0	0	0	0	3

1- Faintly

2- Moderately

108

MAINTENANCE ENGINEERING

Course Objectives:

- 1. To provide the students with the fundamental concepts.
- 2. The necessary Knowledge and the basic skills related to systems reliability and systems maintenance function are learned.
- 3. The course intends to expose the students to the concept of reliability and to help them learn the techniques of estimating reliability and related characteristics of components/ systems
- 4. It exposes them to the necessary engineering techniques used for analyzing, planning and controlling maintenance systems

UNIT I INTRODUCTION

Need of Maintenance Management- Maintenance Policies- Strategies and options in Maintenance management-Maintenance forms/actions and their inter relationships-Maintenance Organizations- factors determining effectiveness-objectives of organization design- types of organization. Types of maintenance – correctiveplanned preventive and predictive maintenance- Factors affecting maintenance- opportunistic maintenance. Maintainability- Factors affecting Maintainability- Maintainability design criteria-operating and down time categories- Availability- types of Availability- approaches to increase equipment Availability.

UNIT II MAINTENANCE PLANNING AND CONTROL

Establishing a Maintenance Plan-Preliminary considerations-Systematic method of Maintenance Plan and schedule planning and schedule of Plant shut downs- Maintenance practices on production machines- Lathe, Drilling, Milling, Welding, Shaper- Machine Reconditioning- Spare Parts Management-Capacity utilization, cost reduction approach to spares- reliability and quality of spares- spare parts procurement- and inventory control of spare parts.

UNIT III RELIABILITY

Definition and basic concepts- Failure data- failure modes and reliability in terms of hazard rate and failure density Function-Hazard models and bath tub curve-applicability of Weibull distribution- Reliability calculations for series, parallel and parallel-series Systems-Reliability calculations for maintained and stand-by systems. Reliability Centred Maintenance.

UNIT IV COMPUTER AIDED MAINTENANCE MANAGEMENT

Introduction -Definition- Basic components of CMMS- Uses of Computers in Maintenance -CMMS effectiveness - Approach towards Computerization- selection of computer system- Master files-Maintenance files- Maintenance Module- classification records- Preventive and repair planning module- codification for Break down- job sequencing files/records.

UNIT V CONDITION MONITORING

Condition monitoring Techniques- Visual monitoring- Leak detection-wear monitoring-Crack monitoring- Noise and sound Monitoring-Temperature monitoring-Vibration monitoring-Signature analysis-Shock monitoring-Lubricant-Analysis-Methodology-Equipments-Applications.

Total (45+0)= 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the maintenance principles, functions and practices adapted in industries.
- CO2 : know the different categories of maintenance.
- CO3 : gain knowledge about the instruments used for condition monitoring.
- CO4 : provide in depth knowledge in Maintenance management systems
- CO5 : provide the details of various Replacement and Inspection decision models for maximizing profit and minimizing downtime

9 + 0

9 + 0

9

9 + 0

0

+

9 + 0

Text Books:

- 1. S.K.Shrivastava, "Industrial Maintenance Management", S. Chand and Co, 2000.
- 2. Bhattacharya, "Installation, Servicing and Maintenance", S. Chand and Co, 1995.

Reference Books:

- 1. ADS Carter and Macmilan, "Mechanical Reliability Engineering", *Macmillan* Education Ltd., 1991.
- 2. Roy Billington, Allen, R.N and Pitman, "Reliability Evaluation of Engineering Systems", Pitman, London, 1983.
- 3. Gopal Krishnan, P and Banerji, A.K, "Maintenance & Spare Parts Management", Prentice-Hall of India Pvt Ltd, 1995.
- 4. Grant Ireson, W and Clyde, F, "Hand Book of Reliability Engineering & Management", McGraw Hill, 1998.

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	0	1	2	1	3	0	2	1	0	0	3	1	1	1
CO2	2	0	0	3	1	2	0	1	2	0	0	1	2	1	1
CO3	2	0	2	2	3	2	0	2	1	0	2	1	2	1	1
CO4	1	0	0	2	2	1	0	0	0	0	3	2	3	2	1
CO5	1	0	3	0	2	0	3	0	2	0	1	1	1	1	1

1- Faintly

2- Moderately

FUELS AND COMBUSTION

18MEPE34

- **Course Objectives:** Ability to characterize the fuels. 1.
- 2. Understanding of thermodynamics and kinetics of combustion.
- 3. Understand and analyse the combustion mechanisms of various fuels.

UNIT I **CHARACTERIZATION**

Fuels - Types and Characteristics of Fuels - Determination of Properties of Fuels - Fuels Analysis - Proximate and Ultimate Analysis - Moisture Determination - Calorific Value - Gross & Net Calorific Values - Calorimetry -DuLong's Formula for CV Estimation.

UNIT II **SOLID FUELS & LIQUID FUELS**

Solid Fuels-Types - Coal Family - Properties - Calorific Value - ROM, DMMF, DAF and Bone Dry. Renewable Solid Fuels - Biomass - Agro Fuels - Manufactured Solid Fuels. Liquid Fuels-Types - Sources - Petroleum Fractions - Classification - Refining - Properties of Liquid Fuels - Calorific Value, Specific Gravity, Flash & Fire Point, Octane Number, Cetane Number etc., - Alcohols - Tar Sand Oil - Liquefaction of Solid Fuels.

UNIT III **GASEOUS FUELS**

Classification - Composition & Properties - Estimation of Calorific Value - Gas Calorimeter. Rich & Lean Gas -Wobbe Index - Natural Gas - Dry & Wet Natural Gas - Stripped Natural Gas - Foul & Sweet Natural Gas -Liquefied Petroleum Gas - Liquefied natural gas - Compressed natural gas - Methane - Producer Gas -Gasifiers - Water Gas - Town Gas.

UNIT IV COMBUSTION

Stoichiometry - Mass Basis & Volume Basis - Excess Air Calculation - Fuel & Flue Gas Compositions-Calculations - Rapid Methods - Combustion Processes - Stationary Flame - Surface or Flameless Combustion -Submerged Combustion - Pulsating & Slow Combustion Explosive Combustion.

UNIT V **COMBUSTION EQUIPMENT'S**

Coal Burning Equipment's - Types - Pulverized Coal Firing - Fluidized Bed Firing - Fixed Bed & Recycled Bed -Cyclone Firing - Spreader Stokers - Vibrating Grate Stokers - Sprinkler Stokers, Traveling Grate Stokers. Oil Burners - Vaporizing Burners, Atomizing Burners. Gas Burners - Atmospheric Gas Burners - Air Aspiration Gas Burners - Burners.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : analyse the characterization of the fuel.
- CO2 determination of Flash and Fire point of various fuel blends.
- CO3 : understand the various alternative fuel options available for conventional fuels.

Text Books:

- 1. Samir Sarkar, Fuels & Combustion, 2nd Edition, Orient Longman, 1990.
- 2. Bhatt, Vora Stoichiometry, 2nd Edition, Tata McGraw Hill, 1984.

Reference Books:

- 1. Blokh AG, Heat Transfer in Steam Boiler Furnace, Hemisphere Publishing Corpn, 1988.
- 2. Civil Davies, Calculations in Furnace Technology, Pergamon Press, Oxford, 1966.
- 3. Sharma SP, Mohan Chander, Fuels & Combustion, Tata McGraw Hill, 1984.
- 4. Shaha AK (2003), Combustion Engineering & Fuel Technology, Oxford and IBH Publications, New York.
- Kenneth K Kou (2002), Principles of Combustion, Wiley & Sons Publications, New York. 5.

0

0

0

0 +

9

9

9

9

Total (45+0) = 45 Periods

0 9 +

+

CO/PO	РО 1	PO 2	РО 3	PO 4	PO 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	3	3	0	1	0	0	0	0	0	0	1	1	0
CO2	2	2	3	1	0	1	0	0	0	0	0	0	1	2	0
CO3	2	1	3	2	0	1	0	0	0	0	0	0	1	1	0

1- Faintly

2- Moderately

RAPID PRODUCT DEVELOPMENT TECHNOLOGIES

Course Objectives:

18MEPE35

- 1. To understand advanced techniques in RPT
- 2. To familiarize the students with recent developments in RPT
- 3. To learn Precision machining techniques

UNIT I INTRODUCTION

Need for time compression in product development- Product development - conceptual design - development - detail design - prototype - tooling -History of RP systems- Survey of applications- Growth of RP industry-classification of RP systems

UNIT II STEREO LITHOGRAPHY SYSTEMS

Stereo lithography systems - Principle - process parameters - process details - machine details- Applications. Selective laser sintering - Principle - process parameters - process details - machine details- Applications-Direct Metal Laser Sintering (DMLS) system - Principle - process parameters - process details - machine details-Applications.

UNIT III FUSED DEPOSITION MODELING

Fusion Deposition Modelling - Principle - process parameters - process details - machine details- Applications. Laminated Object Manufacturing - Principle - process parameters - process details - machine details-Applications.

UNIT IV SOLID GROUND CURING AND CONCEPT MODELERS

Solid Ground Curing - Principle - process parameters - process details - machine details- Applications. 3-Dimensional printers - Principle - process parameters - process details - machine details- Applications- and other concept modelers like thermo jet printers- Sander's model maker- JP system 5- Object Quadra system. Laser Engineering Net Shaping (LENS)- Ballistic Particle Manufacturing (BPM) -Principle.

UNIT V RAPID TOOLING AND SOFTWARES

Introduction to rapid tooling – direct and indirect method- Indirect Rapid Tooling - Silicone rubber tooling-Aluminium filled epoxy tooling- Spray metal tooling- etc. Direct Rapid Tooling - Direct AIM- Quick cast process-Copper polyamide- Rapid Tool- DMILS- ProMetal- Sand casting tooling- Laminate tooling- soft tooling vs hard tooling. Software for RP - STL files- Magics- Mimics. Application of Rapid prototyping in Medical field.

Total (45+0)= 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : generating a good understanding of RP history, its development and applications.
- CO2 : expose the students to different types of Rapid prototyping processes, materials used in RP systems and reverse engineering
- CO3 : develop creativity in design of RPT product.

Text Books:

- 1. Pham D.T. & Dimov.S. S, "Rapid manufacturing", Springer Verlag, London, 2001.
- 2. Paul F Jacobs, "Rapid Prototyping and manufacturing Fundamentals of Stereo lithographic", Society of Manufacturing Engineering, Dearborn, USA 1992.

Reference Books:

- 1. Terry wohlers, "Wohlers Report 2007", Wohlers Associates, USA 2007.
- 2. "Rapid Prototyping and Tooling", Industrial Design Centre, IIT Mumbai, 1998.

LTPC

9 + 0

9 + 0

9 + 0

+ 0

9

9 + 0

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	3	0	3	1	1	0	0	0	0	0	3	2	2
CO2	2	3	2	0	3	1	1	0	0	0	0	0	2	1	2
CO3	2	2	1	0	3	1	1	0	0	0	0	0	2	1	2

1- Faintly

2- Moderately

Upon completion of this course, the students will be able to:

- CO1 : students understood the basic concepts of refrigeration and properties of refrigerants
- CO2 : knowledge about the simple and multiple vapour compression systems has been acquired by the students
- CO3 : students have understood the other refrigeration systems and their applications
- CO4 : the Knowledge about the psychometric processes and the use of charts in problem solving have been practiced by the students
- CO5 : students can able to demonstrate the operations in different Refrigeration & Air Conditioning systems and also able to design Refrigeration & Air conditioning systems

Text Books:

Course Outcomes:

- Arora, C.P., "Refrigeration and Air Conditioning", 3rd edition, McGraw Hill, New Delhi, 1. 2010
- 2. Arora S. C. and Domkundwar, Refrigeration and Air-Conditioning, Dhanpat Rai, 2010

REFRIGERATION & AIR CONDITIONING

- **Course Objectives:** 1. To understand the underlying principles of operations in various Refrigeration & Air conditioning systems
 - 2. To familiarize the components of the refrigerating systems
 - 3. To know the applications of refrigeration and air conditioning systems
 - 4. To provide knowledge on cooling load calculation and the system design aspects
 - 5. To know the wide range of applications of refrigeration and air conditioning systems

UNIT I INTRODUCTION

18MEPE36

Thermodynamics of refrigeration- reversed Carnot cycle- heat pump and refrigeration machines, Limitations of reversed Carnot cycle - Unit of Refrigeration and C.O.P.- Ideal cycles- Refrigerants Desirable properties -Classification - Nomenclature - ODP & GWP.

UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM

Vapour compression cycle: p-h and T-s diagrams - deviations from theoretical cycle - sub cooling and super heating- effects of condenser and evaporator pressure on COP- multi pressure system - low temperature refrigeration - Cascade systems - problems. Equipments: Type of Compressors, Condensers, Expansion devices, Evaporators.

UNIT III **OTHER REFRIGERATION SYSTEMS**

Working principles of Vapour absorption systems and adsorption cooling systems - Steam jet refrigeration-Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration - Magnetic - Vortex and Pulse tube refrigeration systems.

PSYCHROMETRIC PROPERTIES AND PROCESSES UNIT IV

Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychometric chart; Psychometric of air-conditioning processes, mixing of air streams.

UNIT V AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION

Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls.

Total (45+0)= 45 Periods

114

С L Т Ρ 3 0 3 O

8

8

0 +

10 0 +

0

10 + 0

9 0 +

Reference Books:

- 1. Roy J. Dossat, "Principles of Refrigeration", 4th edition, Pearson Education Asia, 2009.
- 2. Stoecker, W.F. and Jones J. W., "Refrigeration and Air Conditioning", McGraw Hill, New Delhi, 1986.
- 3. Ballaney P. L, Refrigeration and Air-Conditioning, Khanna Publishers, New Delhi, 2014
- 4. Manohar Prasad, Refrigeration and Air-Conditioning, New Age International, 2011
- 5. ASHRAE Hand book, Fundamentals, 2010

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	2	3	0	0	0	0	0	0	0	0	2	1	0
CO2	2	2	1	3	0	0	0	0	0	0	0	0	2	1	0
CO3	2	2	1	2	0	0	0	0	0	0	0	0	1	1	0
CO4	2	1	1	2	0	0	0	0	0	0	0	0	1	1	0
CO5	1	1	1	3	0	0	0	0	0	0	0	0	2	1	0

1- Faintly

2- Moderately

UNIT I SHIP SYSTEMS

Ship system formulations, main propulsion system requirements, and main propulsion system trade-off studies, arrangement of machinery, piping diagrams, and auxiliary systems.

UNIT II **I.C ENGINE CHARACTERISTICS**

Characteristics of internal combustion engines, marine uses for such engines. Marine steam generators, selection and design of boilers. Main propulsion steam engines. Main propulsion steam turbines. Main propulsion gas turbines. Electric propulsion drives.

UNIT III **VIBRATIONS ANALYSIS**

Propeller shafting and shafting system vibration analysis. Pumps, blowers, compressors, ejectors, condensers, heat exchangers, distilling plants. Hull machinery design considerations and machinery installations, machinery foundation designs, hydrostatic power transmission equipment and systems.

UNIT IV **ENVIRONMENTAL SYSTEM**

Machinery for environmental control and waste treatment. Electric generating plants, switchboards and panels, lighting and power distribution, power equipment, lighting fixtures. Electronics navigation and radio communication. Automation systems. Safety considerations.

UNIT V NUCLEAR APPLICATION

Fundamentals of pressurized-water nuclear steam supply systems for use in marine propulsion, reactor design considerations, nuclear fuels, reactor coolants, reactor control, shielding, safety, health physics, and economics. Total (45+0)= 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- : understand the Marine Engineering principles, functions and practices. CO1
- CO2 develop knowledge of reducing vibration and environmental pollution.

Text Books:

- Grover T K, "Marine Engineering", Anmol Publications Pvt Ltd, 2008. 1.
- Harrington and Roy, L, "Marine Engineering", The Society of Naval Architects and Marine Engineers, 1991. 2.

Reference Books:

- Cameron, I.R., "Nuclear Fission Reactors", Plenum Press, 1998. 1.
- 2. Henke and Russell, W., "Introduction to Fluid Power Circuits and Systems", Addison-Wesley, 1970.

Electives – IV (VII SEMESTER)

MARINE ENGINEERING

18MEPE41

Course Objectives:

- 1. To create an institution which provides an platform.
- 2. Naval architects and all those who seek professional avenues in fields related to the maritime industry are trained.
- 3. Learning that professional edge to succeed is better.
- 4. We endeavor to fulfill our vision of providing the maritime professionals with all the possibilities to make shipping safer, cleaner and environmentally adaptive.

0

С

Λ 3

9

0 9 +

9 +

0 9 +

9 +

т

Λ

3

0 +

0

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2	3	0	0	0	0	0	0	1	1	2	1	1
CO2	1	2	2	2	0	2	3	0	2	0	1	2	2	1	1

1- Faintly

Moderately
Strongly

The geometry of stress and strain, elastic deformation, plastic and elasto-plastic deformation, Brittle fracture: Griffith's theory, Ductile fracture, Probabilistic aspects of fracture mechanics - Microstructure.

UNIT II **MECHANICS OF FRACTURE- STATIC LOADING**

BASIC CONCEPTS IN FRACTURE MECHANICS

Elastic fields - Analytical solutions yielding near a crack front - Irwin's approximation - plastic zone size -Dugdaale model - J integral and its relation to crack opening displacement. Strain energy release and stress intensity factor. Evaluation of fracture Toughness of different materials: size effect & control.

UNIT III FAILURE ANALYSIS OF FATIGUE FRACTURE

Fundamental sources of failures- Deficiency in design, Empirical Relation describing crack growth by fatigue -Life calculations for a given load amplitude - effects of changing the load spectrum - Effects of Environment. Micro structural analysis of fatigue failures, some case studies in analysis of fatigue failures.

UNIT IV FAILURE ANALYSIS OF CREEP RUPTURE

Fracture at elevated temperature: Time dependent mechanical behaviour, stress rupture, Micro Structural changes during creep, Mechanism of creep deformation and Creep deformation maps, Prediction of time to rupture, Creep-fatigue interaction. Some case studies in analysis of creep failures.

UNIT V FAILURE ANALYSIS OF CORROSION AND WEAR

A different environment. Types of wear, Role of friction, Interaction of corrosion and wear. Analysis of wear failure.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : Ability to design structure to prevent failure from the internal defect that unit within the structure.
- CO2 Ability to design structure to prevent fatigue and creep.
- CO3 : Ability to define different deformation and related theories.
- CO4 : Ability to analyse the corrosion and wear failure and system methods to prevent corrosion and wear
- CO5 : Ability to analyse fatigue failures

Text Books:

- 1. Hertz berg R W, "Deformation and fracture mechanics of Engineering Materials" Second Edition John Wiley sons inc, New York 1983.
- 2. Knott. J.F, "Fundamentals of Fracture Mechanics" Butterworth London, 1973.

Reference Books:

- Evalds H L and RJH Warnhil, "Fracture Mechanics", Edward Arnold Ltd, Baltimore, 1984. 1.
- Campbell J E, Underwood J H, and Gerberich W., "Applications of Fracture Mechanics for the selection of 2. Materials ", American Society for Metals, Metals Park Ohio, 1982.
- Fracture Mechanics Metals Handbook, ninth edition, vol. 8 437-491, American Society of Metals Metal 3. Park Ohio, 1985.

FRACTURE MECHANICS AND FAILURE ANALYSIS

Identify and explain the types of fractures of engineered materials and their characteristic features.

Understand the differences in the classification of fracture mechanics and how their corresponding parameters can be utilized to determine conditions under which engineering materials will be liable to fail

Understand and explain the mechanisms of fracture; and learn how to carry out engineering failure

18MEPE42

1. 2.

3.

UNIT I

Course Objectives:

analysis.

catastrophically in service.

9 + 0

0

0

9

9 +

- 9 0
- 0 9 +

Total (45+0) = 45 Periods

- Kare Hellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, 1985. Prashant Kumar, "Elements of Fracture Mechanics", Wheeler Publishing, 1999. 4.
- 5.

CO/PO	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	3	3	2	1	0	0	0	0	0	0	0	1	2	1
CO2	1	3	2	2	1	0	0	0	0	0	0	0	1	2	2
CO3	1	3	2	3	1	0	0	0	0	0	0	0	2	1	1
CO4	2	2	1	2	3	0	0	0	0	0	0	0	1	2	1
CO5	1	3	0	2	3	0	0	0	0	0	0	0	1	1	1

1- Faintly

2- Moderately

AUTOMATION IN MANUFACTURING

Course Objectives:

- To get the knowledge of various elements of manufacturing automation 1.
- 2. To study various techniques of automatic material handling in a manufacturing organization.
- To identify suitable automation hardware for the given application 3.
- To incorporate application of electronics and computer engineering in mechanical engineering for 4. enhancing manufacturing automation
- To develop CNC programs to manufacture industrial components 5.

UNIT I Introduction to automation

Automation overview, Requirement of automation systems, Architecture of Industrial Automation system - Basic Elements of an Automated System, Advanced Automation Functions, Levels of Automations. Manufacturing Support System - Automation in Manufacturing Systems - Reasons for Automating- Automation Principles and Strategies-Automation Migration Strategy

UNIT II **Detroit-Type Automation**

Automated Flow lines, Methods of Work part Transport, Transfer Mechanism, Buffer Storage, Control Functions, and Automation for Machining Operations, Design and Fabrication Considerations. Analysis of Automated Flow Lines: General Terminology and Analysis, Analysis of Transfer Lines Without Storage, Partial Automation, Automated Flow Lines with Storage Buffers, Computer Simulation of Automated Flow Lines.

UNIT III **Control Technologies in Automation**

Industrial Control Systems, Process Industries Verses Discrete-Manufacturing Industries, Continuous Verses Discrete Control, Computer Process Control and its Forms. Computer Based Industrial Control: Introduction & Automatic Process Control, Building Blocks of Automation System: LAN, Analog & Digital I/O Modules, SCADA System and RTU. man-machine interface

UNIT IV **Numerical Control Machines**

NC components, NC coordinate systems, Point to point, line and contouring systems, open and close loop control system, Steps in NC manufacturing, Role of NC/CNC technology in modern manufacturing, Features of CNC system, components and tooling of machining centre and CNC turning centre, Automatic tool changer, Feedback devices: Encoders and linear scale, Features of DNC and adaptive control systems.

UNIT V **CNC** Programming

Part programming fundamentals, Manual Part Programming, APT Programming, Geometric & motion commands, Post processor commands, Safety measures in CNC programming.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : the student shall be able to understand the effect of manufacturing automation strategies
- CO2 : knowledge of industrial automation by transfer lines and automated assembly lines.
- CO3 : ability to understand the electronic control systems in metal machining and other manufacturing processes.
- CO4 : identify different CNC components, systems and controls CNC machines
- CO5 : ability to write CNC programming to solve complex machining process

Text Books:

1 M.P.Grover, Automation, Production Systems and Computer Integrated Manufacturing, Pearson Education. 5th edition, 2009.

18MEPE43

4

9

0

9 0

0 9 +

9 + 0

9 0 +

Reference Books:

- 1. Computer Numerical Control (CNC) Machines Paperback 1, P. Radhakrishnan , New Central Book Agency; 1st edition, 2013
- 2. Steve F Krar, "Computer Numerical Control Simplified", Industrial Press, 2001.

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	2	1	1	2	2	0	0	0	1	1	1	2	2
CO2	1	2	2	1	1	2	1	0	0	0	1	1	1	2	2
CO3	1	2	2	2	2	2	1	0	0	0	1	1	1	2	2
CO4	0	1	1	1	3	2	2	0	0	0	1	1	1	2	2
CO5	0	1	1	1	3	2	2	0	0	0	1	1	1	2	2

CO-PO MAPPING

1- Faintly

2- Moderately

Course Objectives:

18MEPE44

- To provide broad based understanding of the interdisciplinary subject 'tribology' and its technological 1. significance.
- 2. To understand the nature of engineering surfaces, their topography and learn about surface characterisation techniques.
- 3. To learn about consequences of wear, wear mechanisms, wear theories and analysis of wear problems.

UNIT I SURFACES AND FRICTION

Topography of Engineering surfaces- Contact between surfaces - Sources of sliding Friction- Adhesion-Ploughing- Energy dissipation mechanisms Friction Characteristics of metals - Friction of non-metals. Friction of lamellar solids - friction of Ceramic materials and polymers - Rolling Friction - Source of Rolling Friction - Stick slip motion - Measurement of Friction.

UNIT II WEAR

Types of wear - Simple theory of Sliding Wear Mechanism of sliding wear of metals - Abrasive wear - Materials for Adhesive and Abrasive wear situations - Corrosive wear - Surface Fatigue wear situations - Brittle Fracture - wear - Wear of Ceramics and Polymers - Wear Measurements.

UNIT III LUBRICANTS AND LUBRICATION TYPES

Types and properties of Lubricants - Testing methods - Hydrodynamic Lubrication - Elasto- hydrodynamic Iubrication- Boundary Lubrication - Solid Lubrication- Hydrostatic Lubrication.

UNIT IV FILM LUBRICATION THEORY

Fluid film in simple shear - Viscous flow between very close parallel plates - Shear stress variation Reynolds Equation for film Lubrication - High speed unloaded journal bearings - Loaded journal bearings - Reaction torque on the bearings - Virtual Co-efficient of friction - The Sommer field diagram.

UNIT V SURFACE ENGINEERING AND MATERIALS FOR BEARINGS

Surface modifications - Transformation Hardening, surface fusion - Thermo chemical processes - Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase processes - Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginally lubricated and dry bearings.

Total (45+0) = 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the surface phenomena related to relative motion, the nature of friction, and mechanisms of wear.
- CO2 : introduce and expose students to the field and fundamentals in tribology and its applications.
- CO3 : ability to identify different types of sliding & rolling friction, Wear and related theories.
- CO4 ability to distinguish among the different lubricant regime :
- CO5 ability to select materials for bearing :

Text Books:

- A. Harnoy. "Bearing Design in Machinery "Marcel Dekker Inc, New York, 2003. 1.
- B.C. Majumdar ; A.H.Wheeler "Introduction to Tribology of Bearings" 2.

Reference Books:

- M. M. Khonsari & E. R. Booser, "Applied Tribology", John Willey & Sons, New York, 2001 1.
- E. P. Bowden and Tabor.D., "Friction and Lubrication", Heinemann Educational Books Ltd., 1974. 2
- 3. A. Cameron, "Basic Lubrication theory", Longman, U.K., 1981.
- M. J. Neale (Editor), "Tribology Handbook", Newnes. Butterworth-Heinemann, U.K., 1995. 4.

9 + 0

0 +

9

9

0

9 + 0

0 9 +

CO/PO	PO	PSO	PSO	PSO											
COIFU	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	1	1	2	0	0	0	0	0	1	2	1
CO2	0	1	2	2	1	1	1	0	0	0	0	0	1	1	1
CO3	1	2	2	2	1	1	0	0	0	0	0	0	2	1	1
CO4	0	1	2	2	1	0	0	0	0	0	0	0	2	1	1
CO5	0	2	2	2	0	0	0	0	0	0	0	0	1	2	1

1- Faintly

Moderately
Strongly

ADVANCED DECISION MODELLING TECHNIQUE

Course Objectives:

18MEPE45

- Consider the role of decision modelling in economic evaluation to guide decision making. 1.
- 2. Use the basic building blocks of decision analysis such as joint and conditional probabilities and expected values.
- 3. Implement the principles of conceptual modelling as a way of planning a model.

UNIT I **DECISION MAKING AND QUANTITATIVE TECHNIQUES**

Forecasting methods & Time Series Analysis, Stochastic process introduction, Decision Analysis: Decision Trees& Utility Theory, Decision Making under uncertainty, Decision Making under risk, Decision Making under certainty, Decision Making under conflict (Game Theory).

UNIT II LINEAR PROGRAMMING FORMULATION AND SOLUTION

Linear Programming, Graphical & Simplex method, Dual simplex, Sensitivity Analysis & Duality, Integer Linear Programming, Transportation, Transhipment & Assignment Models.

UNIT III **MULTI-CRITERIA DECISION MAKING TOOLS**

Multi-criteria Decision making, Linear Goal Programming, Scoring Models, Fuzzy outranking, AHP (Analytic Hierarchy Process} concepts & applications, ANP (Analytic Network Process) an Introduction.

UNIT IV INVENTORY AND QUEUING MANAGEMENT

Inventory models (static, dynamic, probabilistic & stochastic), Waiting Line / Queuing models steady state operation(M/M/1), Simulation concepts & applications for inventory & Queuing situations, Network models; shortest route, maximal flow problem.

UNIT V ADVANCE QUANTITATIVE METHODS

PERT& CPM Techniques & Applications, Glimpses of Meta-heuristics, Tabu, Simulated Annealing & Genetic algorithm, Markov chains & Decision Processes, Sequencing, Dynamic Programming, Nonlinear Programming (Quadratic & Geometric Programming).

Total (45+0) = 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : apply the discussed techniques to solve basic problems.
- CO2 understand Structure real life problems, build and analyze a model.
- CO3 implement key generic analytic steps in decision analysis such as evidence identification and basic synthesis, sensitivity analysis and reporting results.
- CO4 : think critically about the structure of decision models in particular situations and apply these appropriately
- CO5 : Understand when and how the techniques can be applied in business

Text Books:

- 1. Charles A. Gallagher Hugh. J.Watson, 1985, Quantitative Methods for Business Decisions, McGraw Hill.
- 2. Nobbert Lloyd Enrick, 1979, Management Operations Research, Holt Rinchart and Winston.

Reference Books:

- 1. Ronald L. Rardin, 1998, Optimization in Operations Research, Prentice Hall, Upper saddle-River New Jersey.
- 2. Hadley.G, 1972, Linear Programming, Addison Wesley Publication Company.
- 3. Wisniewski MIK, 2004, Quantitative Methods for Decision Makers, Macmillan India Ltd.
- 4. Thomas L. Saaty, 2005, Theory and applications of the analytic network process: Decision making within benefits, opportunities, costs and risks, RWS Publications, Pittsburgh.

Т Ρ С L 3 0 0 3

9 +

9

0

0 9 +

0

9 0 +

9 0 +

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	0	2	2	1	2	0	1	2	1	0	2
CO2	2	1	1	0	0	1	1	0	0	0	0	0	1	0	2
CO3	2	1	1	1	1	0	0	0	0	0	0	0	2	0	1
CO4	2	1	1	1	0	1	1	1	0	0	1	1	2	0	1
CO5	2	1	1	1	0	1	1	1	0	0	0	0	2	0	1

1- Faintly

2- Moderately

TOTAL QUALITY MANAGEMENT

Course Objectives:

18MEPE46

- 1. Understand the philosophy and core values of Total Quality Management (TQM)
- 2. Explain the salient contributions of Quality Gurus like Deming, Juran and Crosby.
- 3. Determine the voice of the customer and convert into quality terms to enhance the economic performance and long-term business success of an organization.

UNIT I INTRODUCTION

Definition of Quality - Dimensions of Quality - Quality planning - Quality costs, Analysis techniques for quality costs - Basic concepts of total quality management (TQM) - Historical review - Principles of TQM - Leadership -Role of senior management - Quality council, Quality statements - Strategic planning - Deming philosophy -Barriers to TQM implementation.

UNIT II **TQM PRINCIPLES**

Customer satisfaction - Customer perception of quality, Customer complaints, Service quality, Customer Retention, Employee involvement - Motivation, Empowerment, Teams, Recognition and reward, Performance appraisal - Continuous process improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen - Supplier Partnership, Sourcing, Supplier selection, Supplier rating, Relationship development - Performance measures, Basic concepts, Strategy.

UNIT III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, Statistical fundamentals – Measures of central tendency and dispersion, Population and sample, Normal curve - Control charts for variables and attributes, Process capability - Concept of six sigma, new seven Management tools.

UNIT IV **TQM TOOLS**

Benchmarking - Reasons to benchmark, Benchmarking process, Quality function deployment (QFD) process -House of quality, Benefits - Taguchi quality loss function - Total productive maintenance (TPM) concept, Improvement needs - FMEA - Stages of FMEA.

UNIT V **QUALITY MANAGEMENT SYSTEMS**

Need for ISO 9000 and other quality systems, ISO 9001:2008 quality system - Elements, Implementation of quality system, Documentation, Quality auditing, TS 16949:2002.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : Identify customer needs and convert those as quality index that will be used as inputs in TQM methodologies.
- CO2 : Measure the performance quality i.e. cost of poor quality, process effectiveness and efficiency to identify areas for improvement.
- CO3 : Determine the set of performance indicators that will align people with the objectives of an organization.
- CO4 : Apply various TQM tools as a means to improve quality
- CO5 : Explain ISO standards & quality systems, procedure for implementation, documentation and auditing

Text Books:

- Dale H. Besterfiled et al., "Total Quality Management", Pearson Education Asia, 1999. 1.
- 2. Feigenbaum.A.V. "Total Quality Management", McGraw Hill, 1991.

С Т Ρ 3 0 3 0

+

9

0

9 0 +

9 0 +

9 + 0

0 9 ÷

Total (45 + 0) = 45 Periods

Reference Books:

- 1. Oakland.J.S, "Total Quality Management", Butterworth Hcinemann Ltd., Oxford. 1989.
- 2. Narayana V and Sreenivasan, N.S, "Quality Management Concepts and Tasks", New Age International, 1996.
- 3. James R.Evans and William M.Lidsay, "The Management and Control of Quality", 5th Edition, South-Western, 2002.
- 4. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991.

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	0	2	1	0	0	1	3	1	1	1	2
CO2	0	0	1	2	0	1	1	0	0	0	1	2	0	1	1
CO3	0	0	0	0	3	0	1	1	0	0	2	0	1	2	2
CO4	0	2	0	0	3	0	0	0	2	2	3	0	0	1	1
CO5	0	0	2	1	2	0	0	0	2	0	3	0	0	1	1

CO-PO MAPPING

1- Faintly

2- Moderately

UNIT II SHEAR CENTER AND UNSYMMETRICAL BENDING

Location of shear center for various thin sections - shear flows. Stresses and Deflections in beams subjected to unsymmetrical loading-kern of a section.

UNIT III STRESSES IN FLAT PLATES AND CURVED MEMBERS

Circumference and radial stresses - deflections - curved beam with restrained ends - closed ring subjected to concentrated load and uniform load - chain links and crane hooks. Solution of rectangular plates - pure bending of plates - deflection - uniformly distributed load - various end conditions.

TORSION OF NON-CIRCULAR SECTIONS UNIT IV

Torsion of rectangular cross section - St. Venants theory - elastic membrane analogy - Prandtl's stress function torsional stress in hollow thin walled tubes.

UNIT V STRESSES IN ROTATING MEMBERS AND CONTACT STRESSES

Radial and tangential stresses in solid disc and ring of uniform thickness and varying thickness allowable speeds. Methods of computing contact stress- deflection of bodies in point and line contact applications.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : apply concepts of stress and strain analyses in advanced mechanics of solids problems.
- CO2 : use the procedures in theory of elasticity at a basic and advanced level.
- CO3 : solve general bending problems.
- CO4 apply energy methods in structural mechanics problems
- CO5 : gain understanding into the effects of various types of loading on structures.

Text Books:

- 1. Arthur P Boresi, Richard J. Schmidt, "Advanced mechanics of materials", John Wiley, 2002.
- 2. Timoshenko and Goodier, "Theory of Elasticity", McGraw Hill.

Reference Books:

- Allan F. Bower, "Applied Mechanics of Solids", CRC press Special Indian Edition -2012, 2010 1.
- 2. G H Ryder Strength of Materials Macmillan, India Ltd, 2007.
- 3. Srinath. L.S., "Advanced Mechanics of solids", Tata McGraw Hill, 1992.
- 4. Robert D. Cook, Warren C. Young, "Advanced Mechanics of Materials", Mc-Millan pub. Co., 1985.
- 5. K. Baskar and T.K. Varadan, "Theory of Isotropic/Orthotropic Elasticity", Ane Books Pvt. Ltd., New Delhi, 2009

E-References:

Electives – V (VIII SEMESTER)

ADVANCED MECHANICS OF SOLIDS

Course Objectives:

18MEPE51

- 1. Know the concepts of stress and strain.
- 2. Analyze the beam of different cross sections for shear force, bending moment, slope and deflection.
- 3. Understand the concepts necessary to design the structural elements and pressure vessels.
- 4. To gain knowledge of different types of stresses, Strains and deformation induced in Mechanical Components due to external loads.

UNIT I **ELASTICITY**

Stress-Strain relations and general equations of elasticity in Cartesian, Polar and curvilinear coordinates, differential equations of equilibrium-compatibility-boundary conditions-representation of three-dimensional stress of a tension generalized hook's law - St. Venant's principle - plane stress - Airy's stress function. Energy methods.

0 9 +

Total (45+0) =45 Periods

9 0 +

9 +

9

9

С Т L 3 Ω 3 Ω

0

+

0

+

0

1. NPTEL Videos/Tutorials

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	РО 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	1	1	2	1	2	0	0	0	0	0	1	1	1
CO2	2	1	3	1	1	3	1	0	0	0	0	0	2	3	1
CO3	3	1	2	1	2	1	1	0	0	0	0	0	3	1	2
CO4	1	2	1	2	1	1	1	0	0	0	0	0	1	1	2
CO5	3	1	3	1	1	1	1	0	0	0	0	0	1	1	1

Faintly
Moderately

18MEPE52

HEAT TRANSFER PROBLEMS IN ELECTRONICS AND INSTRUMENTATION

3 0 0 3

9

9 +

9

0

0

0

0

Course Objectives:

- 1. To understand the underlying principles of heat transfer
- 2. To learn the conduction heat transfer in electronic equipments
- 3. To familiarize with the convection heat transfer in electronic applications
- 4. To acquire the knowledge in the radiation heat transfer in electronic instruments
- 5. To understand the principles of thermal Design of Electronic Equipments

UNIT I INTRODUCTION

Basics of Electronic and instrumentations, basics of thermodynamics and heat transfer, Components of Electronic Systems, Thermal management in electronic devices - Packaging Trends. Electronic packaging and interconnection technology.

UNIT II CONDUCTION HEAT TRANSFER IN ELECTRONIC EQUIPMENT

Thermal Conductivity, Thermal Resistances, Conductivity in Solids, Conductivity in Fluids, Conduction–Steady State, Conduction in Simple Geometries, Conduction through a Plane Wall, Conduction through Cylinders and Spheres. Conduction–Transient, Lumped Capacitance Method, Conduction in Extended Surfaces. Fin Efficiency, Fin Optimization, Fin Surface Efficiency, Thermal Contact Resistance in Electronic Equipment, Discrete Heat Sources and Thermal Spreading.

UNIT III CONVECTION HEAT TRANSFER IN ELECTRONIC EQUIPMENT 9 +

Convection Heat Transfer in Electronic Equipment. Natural Convection in Electronic Devices, Overall Heat Transfer Coefficient. Liquid Cooling Systems, Coolant Selection, Pressure Drop and Pump Requirements. Air Cooling System, Induced or Draft Cooling, Selection of Fans and Blowers.

UNIT IV RADIATION HEAT TRANSFER IN ELECTRONIC EQUIPMENT

The Electromagnetic Spectrum, Radiation Equations, Stefan-Boltzmann Law, Surface Characteristics, Emittance, Emittance Factor, Emittance from Extended Surface, Absorptance, Reflectance, Specular Reflectance, Heat Transfer with Phase Change. Combined Modes of Heat Transfer for Electronic Equipment, Radiation and Convection in Parallel.

UNIT V INTRODUCTION TO THERMAL DESIGN OF ELECTRONIC EQUIPMENT 9 + 0

Analysis of Thermal Failure of Electronic Components. Analysis of Thermal Stresses and Strain, Effect of PCB Bending Stiffness on Wire Stresses, Vibration Fatigue in Lead Wires and Solder Joints. Electronics Cooling Methods in Industry. Heat Sinks, Heat Pipes, Heat Pipes in Electronics Cooling, Thermoelectric Cooling, Immersion Cooling, Cooling Techniques for High Density Electronics.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : students understood the basic concepts of heat and mass transfer principles
- CO2 : knowledge about the concept of conduction heat transfer in electronic and instrumentation
- CO3 : students have understood the convective heat transfer in the electronic appliances
- CO4 : the Knowledge about the radiation heat transfer in electronic instruments
- CO5 : students can able to design the thermal systems in electronic equipments

Text Books:

- 1. Heat transfer Dr. A.S. Padalkar, NiraliPrakashan, Pune 2012
- 2. Heat & mass transfer, D.S. Kumar, S.K. Kataria& Sons, 2010

Reference Books:

- 1. Heat transfer B.L. Singhal, Techmax, publication, Pune 2010
- 2. Heat & mass transfer, Mills and Ganesan, Pearson Publication, New Delhi 2010

E-References:

1. nptel.ac.in/ courses/downloads

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1	1	2	1	1	1	0	0	0	0	0	1	1	1
CO2	2	1	1	2	3	1	1	0	0	0	0	0	1	2	2
CO3	3	1	1	2	1	2	1	0	0	0	0	0	1	1	2
CO4	1	1	1	1	2	2	1	0	0	0	0	0	1	3	1
CO5	1	0	3	2	1	1	1	0	0	0	0	0	2	3	1

1- Faintly

2- Moderately

NUCLEAR ENGINEERING

Course Objectives:

18MEPE53

- To teach students fundamental physics about nuclear processes and a heat transfer techniques from 1. nuclear energy
- 2. To introduce students about the nuclear fuels with its properties and also extraction process of nuclear fuels.
- 3. To teach about the characteristics of spent fuel and reprocessing of solvent extraction
- 4. To teach about the nuclear reactor product
- 5. To teach about the safety aspects to be used in nuclear process and disposal of nuclear waste

UNIT I NUCLEAR REACTIONS

Mechanism of Nuclear Fission - Nuclides - Radioactivity - Decay Chains - Neutron Reactions - the Fission Process - Reactors - Types of Fast Breeding Reactor - Design and Construction of Nuclear reactors - Heat Transfer Techniques in Nuclear Reactors - Reactor Shielding.

UNIT II **REACTOR MATERIALS**

Nuclear Fuel Cycles - Characteristics of Nuclear Fuels - Uranium - Production and Purification of Uranium -Conversion to UF4 and UF6 - Other Fuels like Zirconium, Thorium - Beryllium.

UNIT III REPROCESSIG

Nuclear Fuel Cycles - Spent Fuel Characteristics - Role of Solvent Extraction in Reprocessing - Solvent Extraction Equipment.

UNIT IV NUCLEAR REACTOR

Nuclear reactors: types of fast breeding reactors-design and construction of fast breeding reactors-heat transfer techniques in nuclear reactors-reactor shielding. Fusion reactors.

UNIT V SAFETY AND DISPOSAL

Safety and disposal: Nuclear plant safety-safety systems-changes and consequences of accident-criteria for safety-nuclear waste-types of waste and its disposal-radiation hazards and their prevention-weapons proliferation.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : learn about the fundamental knowledge about nuclear reactions
- CO2 : learn about the various nuclear fuels and its properties.
- CO3 : study about the processing of nuclear fuel cycles
- CO4 : learn about the function of nuclear reactor
- CO5 : study about safe disposal of nuclear wastes.

Text Books:

- Thomas J.Cannoly, "Fundamentals of nuclear Engineering" John Wiley 1978. 1.
- 2. Glasstone, S and Sesonske, A, "Nuclear Reactor Engineering", 3rd Edition, Von Nostrand, 1981.
- 3. Lamarsh, J.R., "Introduction to Nuclear Reactor Theory", Wesley, 1966.

Reference Books:

- 1. Winterton, R.H.S., "Thermal Design of Nuclear Reactors", Pergamon Press, 1981.
- 2. Jelly N A, "Nuclear Engineering", Cambridge University Press, 2005.
- 3. Duderstadt, J.J and Hamiition, L.J, "Nuclear Reactor Analysis", John Wiley, 1976.
- Walter, A.E and Reynolds, A.B, "Fast Breeder Reactor", Pergamon Press, 1981. 4.

9 0 +

0 9

Total (45 + 0) = 45 Periods

9 0 +

0

0 ж.

9 +

9

E- Reference

1. http://nptel.ac.in/courses/112101007/

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	2	1	1	1	1	0	0	0	0	0	1	1	1
CO2	1	1	2	1	2	1	2	0	0	0	0	0	2	3	3
CO3	1	1	1	1	1	1	1	0	0	0	0	0	1	2	1
CO4	3	1	1	1	1	2	1	0	0	0	0	0	3	1	1
CO5	1	1	2	1	1	1	1	0	0	0	0	0	1	3	1

1- Faintly

2- Moderately

Review of Fundamentals of Kinematics - Mobility Analysis - Classifications of Mechanisms - Kinematic Inversion - Grashoff's law - Mechanical Advantage - Transmission Angle - Position Analysis - Vector Loop Equations for four bar, Slider Crank, Six bar linkages - Analytical and Graphical methods for velocity and acceleration analysis - Four bar linkage jerk analysis. Plane complex mechanism.

UNIT II KINEMATIC SYNTHESIS OF LINKAGES

Type, Number and Dimensional Synthesis - Function Generation - Path Generation and Motion Generation. -Graphical Methods: Two Position, Three Position and Four Position synthesis of four bar Mechanism, Slider crank Mechanism, Precision positions Over lay Method. Analytical Methods: Blotch's Synthesis - Freudestien's Method - Coupler curve Synthesis - Cognate linkages - The Roberts - Chebyshev theorem.

PATH CURVATURE THEORY UNIT III

Fixed and moving centrodes. - Hartmann's Construction - Inflection Points, The Inflection Circle - The Euler -Savary Equation - The collination axis and Bobiller's theorem - Conjugate points and inverse motion - The Cubic Stationary curvature - Ball's Point.

UNIT IV DYNAMICS OF MECHANISMS

Static force analysis - Inertia force analysis - Combined static and inertia force Analysis - Shaking force -Introduction to force and moment balancing of linkages.

UNIT V SPATIAL MECHANISMS AND ROBOTICS

Introduction: Mobility of mechanisms - Description of spatial motions - Kinematic analysis of spatial mechanism -Kinematic synthesis of spatial mechanisms: position, velocity and acceleration analysis. Eulerian Angles -Introduction to Robotic Manipulators - Topological arrangements of robotic arms - Kinematic analysis of spatial mechanism - Denavit - Hartenberg Parameters, Forward and inverse kinematics of robotic manipulators.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : analysis the kinematics of mechanisms
- CO2 synthesis the kinematics of linkages
- CO3 : acquire knowledge about the theory of path curvature
- CO4 learned the dynamics of mechanisms
- CO5 design the robotics arms and manipulators ÷

Text Books:

- Rao.J.S and Dukkipatti.R.V, "Mechanisms and Machine Theory", 2nd Edition, New Age international (P) 1. Ltd., 2007
- 2. Shigley.J.E and Uicker J.J., "Theory of Machines and Mechanisms", McGraw Hill, 1995.

Reference Books:

1. Norton.R. L, "Design of Machinery", McGraw Hill, 2010.

ANALYSIS AND SYNTHESIS OF MECHANISM

Course Objectives:

18MEPE54

- To Study of kinematics of various mechanisms and kinematic synthesis of linkages. 1.
- 2. To Study of various graphical constructions of acceleration analysis.
- 3. To Study Static and dynamic force analysis of linkages.
- 4. To Study Kinematic analysis and kinematic synthesis of spatial mechanisms
- 5. To Study about the spatial mechanisms and robotics

UNIT I KINEMATIC ANALYSIS OF MECHANISMS

9

Total (45+0) =45 Periods

0 +

3

+

0

0 9 +

0

9 0 +

+

9

9

Т Ρ С L 3 0 0

- 2. Sandor.G.N and Erdman A. G, "Mechanism Design, Analysis and Synthesis", Vol: I and Vol: II, Prentice Hall, Digitized 2007.
- 3. Hamilton.HMabie and Charles F. Reinhofz, "Mechanisms and Dynamics of Machinery", John Wiley & Sons, Digitized 2007.
- 4. AmitabhaGhose and Ashok Kumar Malik, "Theory of Mechanisms and Machines", EWLP, Delhi, 1999.

E-References:

1. Nptel.ac.in / courses / downloads

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	1	1	2	1	1	0	0	0	0	0	1	2	1
CO2	2	1	3	1	1	1	1	0	0	0	0	0	1	2	1
CO3	1	3	1	1	1	2	1	0	0	0	0	0	1	1	3
CO4	1	2	1	1	1	2	3	0	0	0	0	0	2	1	1
CO5	1	1	1	1	2	1	1	0	0	0	0	0	3	1	2

1- Faintly

2- Moderately

THERMAL TURBO MACHINES

Course Objectives:

1. To understand the various systems, principles, operations and applications of different types of turbo machinery components.

UNIT I INTRODUCTION TO TURBO MACHINES

Turbines, Pumps, Compressors, Fans and Blowers - Stages of Turbo machines - Energy transfer between fluid and rotor - Stage velocity triangles Thermal Turbo machines - Classification - General energy equation -Modified to turbo machines - compression and expansion process - Velocity triangles - Work - T-S and H-S diagram, Total - to - Total and Total - to - Static efficiencies. Dimensional analysis - Non dimensional parameters of compressible flow Turbo machines - Similarity laws, applications and limitations.

UNIT II CENTRIFUGAL FANS AND COMPRESSOR

Definition, selection and classifications -Types of blading design-velocity triangles - Stage Parameters - Flow analysis in impeller blades -Design parameter- Volute and Diffusers - Efficiencies and Losses - Fan noises - Causes and remedial measures. Centrifugal Compressors: - Constructional details - Stage velocity triangles – Stage work - Stage pressure rise - Stage efficiency - Degree of reaction - Slip factor - H-S diagram - Efficiencies - Performance characteristics.

UNIT III AXIAL FANS AND COMPRESSOR

Definition and classifications - Stage parameters - Types of fan stages-performance characteristics. Cascade of blades - Cascade tunnel - Blade geometry-Cascade variables-Energy transfer and loss in terms of lift and drag - Axial Flow Compressors: definition and classifications - Constructional details - Stage velocity triangles - Stage work - Stage pressure rise - H-S diagram - Stage efficiencies and losses- Degree of reaction - Radial equilibrium-Surging and Stalling - Performance characteristics.

UNIT IV AXIAL FLOW TURBINES

Construction details -90⁰ IFR turbine- Stage work - Stage Velocity triangles - Stage pressure rise - Impulse and reaction stage - Effect of degree of reaction - H-S diagram - Efficiencies and Losses -Performance characteristics.

UNIT V RADIAL FLOW TURBINES AND WIND TURBINES

Constructional details – Stage velocity triangles - H-S diagram - Stage efficiencies and losses -Performance characteristics. Wind turbines: definition and classifications - Constructional details -Horizontal axis wind turbine-Power developed – Axial thrust – Efficiency.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the Basic Concept of Compressors, Turbines, Fans and Blowers
- CO2 : analyze the velocity triangles of Centrifugal fans and Compressors.
- CO3 : analyze the construction details and performance of axial fans and compressor.
- CO4 : analyze the design variations of axial flow turbines.
- CO5 : study the construction features and performance analysis of radial flow turbine and wind turbine

Text Books:

- 1. Yahya, S.M., "Turbines, Compressors and Fans", Tata McGraw Hill Publishing Company, 1996.
- 2. Dixon S.L, "Fluid Mechanics, Thermodynamics of Turbo Machines", 2nd Edition, Pergamon press, 1990.
- 3. Kadambi V and Manohar Prasad, "An Introduction to Energy Conversion Vol. III Turbo Machines", Wiley Eastern India Ltd, 1977.

9 + 0

9 + 0

9

Total (45+0) =45 Periods

0

9 + 0

9

+ 0

18MEPE55

Reference Books:

- 1. Bruneck, Fans, Pergamom Press, 1973.
- 2. Earl Logan, Jr., Hand book of Turbomachinery, Marcel Dekker Inc., 1992.
- 3. Shepherd, D.H., Principles of Turbomachinery, Macmillan, 1969.
- 4. Stepanpff, A.J., Blowers and Pumps, John Wiley and Sons Inc. 1965.
- 5. Ganesan, V., Gas Turbines, Tata McGraw Hill Pub. Co., 1999.
- 7. Rangwala A S, "Structural Dynamics of Turbo-Machines", New Age International, 2005.
- 8. Astashev VK, Babitsky VI and Kolovsky MZ, "Dynamics and Control of Machines", Springer Pub, 2000

CO-PO MAPPING

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	РО 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	1	1	3	1	1	0	0	0	0	0	1	2	2
CO2	1	3	1	1	2	1	1	0	0	0	0	0	1	1	3
CO3	2	1	3	1	1	2	1	0	0	0	0	0	1	1	2
CO4	2	1	1	1	3	1	1	0	0	0	0	0	1	1	2
CO5	2	1	1	3	1	2	1	0	0	0	0	0	2	3	1

1- Faintly

2- Moderately
To familiarize with various gas liquefaction systems and to provide design aspects of cryogenic storage

Liquefaction systems ideal system, Joule Thomson expansion, Adiabatic expansion, LindeHampson Cycle, Claude & Cascaded System, Magnetic Cooling, Stirling Cycle Cryo Coolers.

UNIT II **GAS LIQUEFACTION SYSTEMS**

INTRODUCTION

Introduction-Production of low Temperatures-General Liquefaction systems- Liquefaction systems for Neon. Hydrogen and Helium -Critical components of Liquefaction systems.

CRYOGENIC REFRIGERATION SYSTEMS UNIT III

Ideal Refrigeration systems- Refrigeration using liquids and gases as refrigerant- Refrigerators using solids as working media.

UNIT IV **CRYOGENIC FLUID STORAGE AND TRANSFER SYSTEMS**

To provide the knowledge of evolution of low temperature science

To be familiar with the applications of low temperature technology

To provide knowledge on the properties of materials at low temperature

To learn information concerning low temperature processes and techniques

Cryogenic Storage vessels and Transportation, Thermal insulation and their performance at cryogenic temperatures, Super Insulations, Vacuum insulation, Powder insulation, Cryogenic fluid transfer systems.

UNIT V **CRYOGENIC FLUID STORAGE AND TRANSFER SYSTEMS**

Pressure flow-level and temperature measurements. Types of heat exchangers used in cryogenic systems (only description with figure) Cryo pumping Applications.

Course Outcomes:

18MEPE61

1.

2.

3.

4.

5.

UNIT I

Course Objectives:

and transfer lines

Upon completion of this course, the students will be able to:

- CO1 Know about properties of material at cryogenic temperatures.
- CO2 know about various liquefaction systems.
- CO3 get ideas on cryogenic refrigeration systems, cryogenic instrumentation and cryogenic heat exchangers.
- CO4 : learned about the cryogenic fluid storage and transfer systems.
- CO5 acquire knowledge about the cryogenic fluid storage and transfer systems.

Text Books:

- J. H. Boll Jr, Cryogenic Engineering 1.
- R. B. Scott, Cryogenic Engineering, Van Nostrand Co., 1959 2.

Reference Books:

- Klaus D. Timmerhaus and Thomas M.Flynn, Cryogenic Process Engineering, Plenum Press, New York, 1 1989
- 2. Randal F.Barron, Cryogenic systems, McGraw Hill, 1986.

E-References:

nptel.ac.in / courses / downloads 1.

Electives – VI (VIII SEMESTER)

CRYOGENIC ENGINEERING

Т L 3

Total (45+0) =45 Periods

9

9

9

9 +

Q 4 0

0

0

0

0

Ρ С

Λ 3

Ω

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	2	0	0	0	0	0	0	0	0	0	1	0
CO2	0	0	3	0	0	0	0	0	0	0	0	0	0	0	2
CO3	0	0	0	0	2	0	0	0	0	0	0	0	3	0	0
CO4	0	3	0	0	0	0	0	0	0	0	0	0	0	0	1
CO5	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0

1- Faintly 2- Moderately

INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Course Objectives:

18MEPE62

To introduce numerical modeling and its role in the field of heat transfer and fluid flow. 1.

- 2. To enable the students to understand the various discretization methods and solving methodologies.
- 3. To create confidence to solve complex problems in the field of heat transfer and fluid dynamics by using high speed computers.

UNIT I **GOVERNING DIFFERENTIAL EQUATION AND FINITE DIFFERENCE METHOD** 9 +

Classification, Initial and Boundary conditions, Initial and Boundary value problems. Finite difference method, Central, Forward, Backward difference, Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.

UNIT II **CONDUCTION HEAT TRANSFER**

Steady one-dimensional conduction, two and three dimensional steady state problems, Transient onedimensional problem, Two-dimensional Transient Problems.

UNIT III **INCOMPRESSIBLE FLUID FLOW**

Governing Equations, Stream Function - Verticity method, Determination of pressure for viscous flow, simple Procedure of Patankar and Spalding, Computation of Boundary layer flow, Finite difference approach.

UNIT IV CONVECTION HEAT TRANSFER AND FEM

Steady One-Dimensional and Two-Dimensional Convection - Diffusion, Unsteady one-dimensional convection -Diffusion, Unsteady two-dimensional convection - Diffusion - Introduction to finite element method - Solution of steady heat conduction by FEM - Incompressible flow - Simulation by FEM.

UNIT V **TURBULENCE MODELS**

Algebraic Models - One equation model, K - £ Models, Standard and High and Low Reynolds number models, Prediction of fluid flow and heat transfer using standard codes.

Total(45+0) = 45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand and be able to numerically solve the governing equations for fluid flow.
- CO2 : solve computational problems related to fluid flows and heat transfer.
- CO3 Solve the problems related to incompressible fluid flow.
- CO4 interpret the knowledge, capability of analyzing and solving heat convection problem.
- CO5 understand and apply turbulence models to engineering fluid flow problems.

Text Books:

- 1. Ghoshdasdidar, P.S, "Computer Simulation of flow and heat transfer", Tata McGraw-Hill Publishing Company Ltd., 1998.
- 2. Muralidhar, K.andSundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 1995.

Reference Books:

- Bose, T.X., "Numerical Fluid Dynamics", Narosa Publishing House, 1997 1.
- 2. Fletcher, C.A.J. "Computational Techniques for Fluid Dynamics 2-Specific Techniques for Different Flow Categories", Springer and Verlag, 1987
- 3. Taylor, C and Hughes, J.B, "Finite Element Programming of the Navier Stock Equation", Pineridge Press Limited, U.K., 1981.
- Subas, V, Patankar, "Numerical heat transfer fluid flow", Hemisphere Publishing Corporation, 1980. 4.

9 +

9

9

0

0

0

0

9 0 +

CO/PO	РО 1	PO 2	РО 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	0	0	0	0	0	0	0	0	0	0	0	2	0	0
CO2	0	2	0	0	0	0	0	0	0	0	0	0	0	1	0
CO3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	3
CO4	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0
CO5	0	0	0	3	0	0	0	0	0	0	0	0	2	0	0

1- Faintly

2- Moderately

18MEPE63

Course Objectives:

- 1. To explore concepts of Robot technologies that is playing vital role in manufacture.
- 2. Describe various Robot technology applications.
- 3. Develop an understanding of Robot Kinematics and dynamics.
- 4. Explain and summarize Robot End effectors and Sensors.
- 5. Explore conceptual understanding of Robot programming.

UNIT I INTRODUCTION

Robot - definition - robot anatomy - co-ordinate systems - work envelope - types and classification - specifications - joint notations - types of joints - speed of motion - pay load - robot parts and their functions - need for robots in Indian scenario.

ROBOTICS

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

Drives - hydraulic, pneumatic, mechanical and electrical - servo motors - stepper motors - salient features, application - end effectors - types: tools - grippers - mechanical grippers - pneumatic and hydraulic grippers, magnetic grippers, vacuum grippers, multiple grippers.

UNIT III SENSORS AND MACHINE VISION

Requirements of sensors - principles, types and applications of following types of sensors proximity (inductive, Hall effect, capacitive, ultrasonic and optical) - range (Triangulation, structured light approach, laser range) - speed, position (resolvers, optical encoders, pneumatic) - force - torque - touch sensors (binary, analog sensor) - introduction to machine vision -functions - image processing and analysis.

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

Forward kinematics and reverse kinematics of manipulators - two, three degrees of freedom (in 2 dimensional) – homogeneous transformation matrix - simple problems - lead through programming, robot programming languages - VAL programming -motion commands - sensor commands - end effecter commands - simple programs for loading, unloading and palletizing operations.

UNIT V APPLICATIONS, IMPLEMENTATION AND ROBOT ECONOMICS

Robot cell design - types - Application of robots in processing - assembly - inspection - material handling - loading - unloading - automobile - implementation of robots in industries - safety considerations for robot operations - economic analysis of robots - pay back method and rate of return method.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : understand the basic concepts, parts of robots and types of robots.
- CO2 : understand the potential applications of robots in industries as part of automation tool
- CO3 : familiar with the various drive systems for robot, sensors and their applications in robots, programming of robots.
- CO4 : discuss about the various applications of robots, justification, implementation and safety of robot
- CO5 : select an appropriate robot for a particular application.

Text Books:

- 1. Mikell. P. Groover, 'Industrial Robotics Technology', Programming and Applications, McGraw Hill Co, 1995.
- Fu.K.S. Gonzalz.R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co., 1987.

Reference Books:

1. Richard D.Klafter, Thomas A.Chmielewski and MichealNegin, "Robotic engineering -An Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 2005.

9

9 +

9 + 0

+ 0

0

9 + 0

9 +

9 + 0

- 2. Janakiraman.P.A. "Robotics and Image Processing", Tata McGraw-Hill, 1995.
- 3. YoramKoren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
- 4. A.K.Gupta and S.K.Arora, "Industrial Automation and Robotics", Laxmi Publications Pvt ltd, 2007.
- 5. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., 'Robotics control, sensing, vision and intelligence', McGraw Hill Book co, 1987.
- 6. Craig. J. J. 'Introduction to Robotics mechanics and control', Addison- Wesley, 1999.
- 7. Ray Asfahl. C., 'Robots and Manufacturing Automation', John Wiley & Sons Inc., 1985.

E-References:

1. NPTEL Videos/Tutorials

CO-PO MAPPING PO PO PO PO PO PO PO PSO PSO PSO PO PO PO PO PO CO/PO CO1 CO2 CO3 CO4 CO5

1- Faintly

2- Moderately

ENGINEERING SYSTEM MODELING AND SIMULATION

Course Objectives:

18MEPE64

- 1. Outline the fundamentals of system simulation
- 2. Identify the different types of techniques to generate Random numbers
- 3. Outline random number and variate generation.
- 4. The ability to analyze a system and to make use of the information to improve the performance

UNIT I INTRODUCTION

Static physical models, dynamic physical models, static mathematical models, dynamic mathematical models, principles used in modeling. System studies, a corporate model: Environment segment, production segment, management segment. Types of system study.

UNIT II MATHEMATICAL AND STATISTICAL MODELS

Probability concepts, Queuing Models, Methods for generating random variables and Validation of random numbers.

UNIT III **DESIGN OF SIMULATION EXPERIMENTS**

Problem formulation, data collection and reduction, time flow mechanism, key variables, logic flow chart, starting condition, run size, experimental design consideration, output analysis and interpretation validation.

UNIT IV SIMULATION LANGUAGES

Input modeling: data collection, identifying the distribution with data, parameter estimation, goodness of fit test, fitting a non-stationary Poisson process, selecting input models without data, multivariate and time series input models. Verification and validation of simulation models, model building, verification and validation, verification of simulation models, calibration and validation of models.

UNIT V **CASE STUDIES**

Development of simulation models using simulation language studied for systems like queuing systems, Production systems, Inventory systems, maintenance and replacement systems and Investment analysis.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : modeling any given system with rationality.
- CO2 predicting the behavior through fine grained analysis.
- CO3 : simulate the life cycle analysis, and drives over issues like model verification and validation.
- CO4 : design simulation models for various case studies like inventory, traffic flow networks, etc.
- CO5 : practice on simulation tools and impart knowledge on building simulation systems.

Text Books:

- Geoffrey Gordon, "System Simulation", 2nd Edition, Prentice Hall, India, 2002. 1.
- Narsingh Deo, "System Simulation with Digital Computer, "Prentice Hall, India, 2001. 2

Reference Books:

- 1. Jerry Banks and John S.Carson, Barry L. Nelson, David M.Nicol, "Discrete Event System Simulation", 3rd Edition, Prentice Hall, India, 2002.
- 2. Thomas J. Schriber, Simulation using GPSS, John Wiley, 1991.
- Shannon, R.E. Systems simulation, The art and science, Prentice Hall, 1975. 3.

E-References:

1 NPTEL Videos/Tutorials

9

9

9

9

0

0 +

0

0 +

9

0

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	2	0	0	0	0	0	0	0	0	0	0	0	3	0
CO2	0	0	0	3	0	0	0	0	0	0	0	0	1	0	0
CO3	0	0	2	0	0	0	0	0	0	0	0	0	0	0	3
CO4	0	0	0	0	0	3	0	0	0	0	0	0	0	2	0
CO5	0	0	0	0	1	0	0	0	0	0	0	0	2	0	0

1- Faintly

2- Moderately

18MEPE65

Course Objectives:

- 1. Describe tool design methods and punch and die manufacturing techniques
- 2. Select material for cutting tools and gages; classify various cutting tools and gages and identify their nomenclature

DESIGN OF PRODUCTION TOOLING

- 3. Describe the principles of clamping, drill jigs and computer aided jig design
- 4. Design fixtures for milling, boring, lathe, grinding, welding; identify fixtures and cutting tools for NC machine tools
- 5. Explain the principles of dies and moulds design

UNIT I DESIGN OF CUTTING TOOLS

Tool materials, design of single point cutting tool, form tool, drill, reamer, broach & plain milling cutter.

UNIT II METAL CUTTING

Theory of metal cutting - design of tool holders for single point tools - Boring bars - selection of tools for machining applications - economics of machining.

UNIT III DESIGN OF FIXTURES

Standard work holding devices - principles of location and clamping - clamping methods and elements - quickacting clamps - design & sketching of milling fixtures for simple components - Turning, Grinding, Welding fixtures. Inspection fixtures and design of gauges.

UNIT IV DESIGN OF DRILL JIGS

Drill bushings - types of jigs: Plate, Leaf, Turn over & Box Jigs - design & sketching of drill jigs for machining simple components.

UNIT V PRESS TOOLS

Power presses - die cutting operations - centre of pressure - scrap strip lay out for blanking - press tonnage calculations - Progressive & Compound dies - die design for simple components. Drawing dies - blank development - estimation of drawing force - blank holders & blank holding pressure - design & sketching of drawing dies for simple components - Bending dies & Combination tools.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : identify the various cutting tools for different machining processes.
- CO2 : select suitable tools for metal machining
- CO3 : identify suitable fixures for various components.
- CO4 : ability to design jigs for machining components.
- CO5 : the students can able to design jigs, fixtures and press tools

Text Books:

- 1. Cyril Donaldson, Lecain and Goold: Tool Design Tata McGraw Hill publications
- A Bhattacharyya: Metal Cutting Theory and Practice Central Book Agency Kolkata
- 2.

Reference Books:

- 1. ASTME: Fundamentals of Tool Design Prentice Hall
- 2. F W Wilson: Hand Book of Fixture Design McGraw Hill publications.
- 3. Edward G Hoffman, "Jigs and Fixture Design", Thomson Delmar Learning, Singapore 2004.
- 4. Joshi P H, "Jigs and Fixtures", Tata McGraw Hill Publishing Company Limited, New Delhi 2004.

+ 0

+ 0

0

9

9

9

9 + 0

9 + 0

r

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	2	0	0	0	0	0	0	0	0	0	2	0	0
CO2	0	0	0	0	3	0	0	0	0	0	0	0	0	1	0
CO3	0	0	0	2	0	0	0	0	0	0	0	0	0	0	3
CO4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2
CO5	0	2	0	0	0	0	0	0	0	0	0	0	0	3	0

1- Faintly

2- Moderately

COURSE OBJECTIVES:

18MEOE01

- 1. To familiarize the various steps involved in the design process
- 2. To understand the basic concepts of machining techniques
- 3. To know the factors influencing the processes and their applications

UNIT I STRESSES IN MACHINE ELEMENTS

Stress in simple machine members- axial, bending, torsional, bearing stress, Hertz contact stress; combined stresses, principle stresses, Theories of failure, factor of safety, stress concentration, preferred numbers.

UNIT II **DESIGN OF SHAFTS AND WELDED JOINTS**

Design of shaft members subjected to simple and combined stresses - Welded joints- Types of welding symbols, design of welded joints subjected to various load -Design of Riveted joints

UNIT III **DESIGN OF MACHINE ELEMENTS**

Springs: Design of helical springs- stresses and deflection - design procedure. Bearings: Need for bearing, Types, sliding and rolling contact bearings, hydro- dynamic and hydro static bearings- Life of bearings - Selection of bearings-Problems.

UNIT IV **METAL CUTTING**

Theory of metal cutting: Introduction, mechanics of metal cutting, orthogonal and oblique cutting, merchants equation, chip formation, heat generation, cutting fluids, cutting tool life, recent developments and applications (Dry machining and high speed machining)

UNIT V MACHINE TOOLS AND SURFACE FINISHING PROCESSES

Tools and machine tools: Cutting tool materials, cutting tool nomenclature, introduction to machine tools, lathe, shaper, planning, milling, drilling and boring machines, working principle, operations, work holding devices. Surface finishing processes: Introduction to Grinding honing, lapping processes and machines. Introduction to CAD/CAM/CIM.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- CO1 analyze the stresses induced in a machine element.
- CO2 1 understand the design concept of joints under various loading.
- CO3 identify the process parameters associated with various machining processes. •

TEXT BOOKS:

- 1. Rao P N, "Manufacturing Technology" Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2006
- 2. HMT, "Production Technology" Tata McGraw-Hill Co., New Delhi, 1998
- 3. Robert L Mott, "Machine Elements in Mechanical Design", Macmillan Publishing Co., London. UK, 1992.
- Shighley and Mische, "Mechanical Engineering Design" McGraw Hill, 1992. 4.

REFERENCE BOOKS:

- Milton C Shaw, "Metal Cutting Principles", Clarendon Press, Oxford, 1999. 1.
- 2. James Brown, "Advanced Machining Technology Handbook", McGraw- Hill Book Company, New York, 1988.

9

0 9

0 +

0 9

+

Total (45+0)= 45 Periods

9

9

0

0

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	3	3	0	0	0	1	0	0	0	0	3	3	0
CO2	1	3	3	0	0	0	0	0	0	0	0	0	3	3	0
CO3	0	2	0	2	0	0	0	0	0	0	0	0	1	3	0

1- Faintly

2- Moderately

FORECASTING AND INVENTORY

Use quality tools to foresee and solve issues in the industrial situations.

Characteristics and Principles, Qualitative methods - Delphi technique, Market Research, Intrinsic method - Timeseries analysis, Moving averages, Exponential smoothing - The Bon Jenkins method, Extrinsic methods -Regression models, Measurement of forecast errors. Inventory models - Classification of inventory systems -EOQ models and purchase discounts - ABC and other classification methods - Applications

INDUSTRIAL ENGINEERING

Assume professional, technical, managerial and leadership roles in the industrial organizations.

Apply knowledge through discovery, synthesis, and integration for the betterment of the organization.

UNIT II **FACILITIES PLANNING**

Work collaboratively.

Facilities planning - An overview, Facilities planning and engineering economic analysis - Facilities location problems - Types of layouts - Computerized layout planning - Warehouse management, Value added management, Management system audit - Role of KAIZEN, TQM, QC and POKA YOKE in facilities planning.

UNIT III JIT AND MODERN MANUFACTURING PRINCIPLES

Apply engineering principles to the work environment.

Introduction - Elements of Just In Time (JIT), Pull versus Push method, Kanban system - Single Minute Exchange of Die (SMED) - Continuous improvement - Optimized production technology - Business process reengineering (BPR), Lean manufacturing concepts - Implementation of Six Sigma concepts - Cellular manufacturing -Concurrent engineering - Agile manufacturing - Rapid manufacturing.

UNIT IV AGGREGATE PLANNING AND SUPPLY CHAIN MANAGEMENT

Approaches to aggregate planning - Development of master production schedule - Capacity planning - Materials requirements planning (MRP-I), Manufacturing resources planning (MRP-II), Enterprises resources planning (ERP) - Supply chain management (SCM) - Supply chain and "Keiretsu".

UNIT V SCHEDULING AND CONTROLLING

Objectives in scheduling - Major steps involved - Production control in repetitive, batch and job shop manufacturing environment - Allocation of units for a single resource, allocation of multiple resources - Resource balancing -Flexible manufacturing system - Concepts, advantages and limitation.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- apply knowledge of mathematics, science, and engineering in the direction to improve the CO1 : productivity of industries.
- CO2 : design a system to meet desired needs within realistic constraints.
- CO3 function in multidisciplinary teams. :
- CO4 use the techniques, skills, and modern engineering tools in manufacturing practice. ·

TEXT BOOKS:

- Dilworth B. James, "Operations Management Design, Planning and control for Manufacturing and 1. Services", McGraw Hill Inc., New York, 1992.
- Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn. 1984. 2.

REFERENCE BOOKS:

- Tomkins, J.A and White, J.A, "Facilities Planning", John Wiley and Sons, 1984. 1.
- 2. Vollman T.E, "Manufacturing Planning and Control systems", Galgotia Publications, 2002.
- 3. Elwood S. Buffa, and Rakesh K.Sarin, "Modern Production and Operations Management", 8th Edition. John Wiley and Sons, 2000.

1. 2.

3. 4.

5.

UNIT I

COURSE OBJECTIVES:

С

3

Т Ρ

3 0 0

+

9

9 0

9 0 +

Total (45+0)= 45 Periods

0

CO/PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	РО	РО	PO	PSO	PSO	PSO
00/10	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	0	0	0	0	0	0	0	0	2	2	0
CO2	1	2	3	1	0	0	0	0	0	0	0	0	1	2	1
CO3	0	0	0	0	0	0	0	0	3	0	0	1	0	0	2
CO4	0	2	2	0	3	1	0	0	0	0	0	0	1	2	3

Faintly
 Moderately
 Strongly

18MEOE03

Course Objectives:

- 1. Understand the philosophy and core values of Total Quality Management (TQM)
- 2. Explain the salient contributions of Quality Gurus like Deming, Juran and Crosby.
- 3. Determine the voice of the customer and convert into quality terms to enhance the economic performance and long-term business success of an organization.

TOTAL QUALITY MANAGEMENT

UNIT I INTRODUCTION

Definition of Quality - Dimensions of Quality - Quality planning - Quality costs, Analysis techniques for quality costs - Basic concepts of total quality management (TQM) - Historical review - Principles of TQM - Leadership - Role of senior management - Quality council, Quality statements - Strategic planning - Deming philosophy - Barriers to TQM implementation.

UNIT II **TQM PRINCIPLES**

Customer satisfaction - Customer perception of quality, Customer complaints, Service quality, Customer Retention, Employee involvement - Motivation, Empowerment, Teams, Recognition and reward, Performance appraisal - Continuous process improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen - Supplier Partnership, Sourcing, Supplier selection, Supplier rating, Relationship development - Performance measures, Basic concepts, Strategy.

UNIT III STATISTICAL PROCESS CONTROL (SPC)

The seven tools of quality, Statistical fundamentals – Measures of central tendency and dispersion, Population and sample, Normal curve - Control charts for variables and attributes, Process capability - Concept of six sigma, new seven Management tools.

UNIT IV **TQM TOOLS**

Benchmarking - Reasons to benchmark, Benchmarking process, Quality function deployment (QFD) process -House of quality, Benefits - Taguchi quality loss function - Total productive maintenance (TPM) concept, Improvement needs - FMEA - Stages of FMEA.

UNIT V QUALITY MANAGEMENT SYSTEMS

Need for ISO 9000 and other quality systems, ISO 9001:2008 quality system - Elements, Implementation of quality system, Documentation, Quality auditing, TS 16949:2002.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : Identify customer needs and convert those as quality index that will be used as inputs in TQM methodologies.
- CO2 : Measure the performance quality i.e. cost of poor quality, process effectiveness and efficiency to identify areas for improvement.
- CO3 Determine the set of performance indicators that will align people with the objectives of an : organization.
- CO4 : Apply various TQM tools as a means to improve quality
- CO5 : Explain ISO standards & quality systems, procedure for implementation, documentation and auditing

Text Books:

- Dale H. Besterfiled et al., "Total Quality Management", Pearson Education Asia, 1999. 1.
- 2. Feigenbaum.A.V. "Total Quality Management", McGraw Hill, 1991.

Reference Books:

1. Oakland.J.S, "Total Quality Management", Butterworth - Hcinemann Ltd., Oxford. 1989.

+

9

0

9 0 +

0

0 9 +

Total (45 + 0) = 45 Periods

9 0 ÷

9 +

- 2. Narayana V and Sreenivasan, N.S, "Quality Management Concepts and Tasks", New Age International, 1996.
- 3. James R.Evans and William M.Lidsay, "The Management and Control of Quality", 5th Edition, South-Western, 2002.
- 4. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991.

CO/PO	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	0	2	1	0	0	1	3	1	1	1	2
CO2	0	0	1	2	0	1	1	0	0	0	1	2	0	1	1
CO3	0	0	0	0	3	0	1	1	0	0	2	0	1	2	2
CO4	0	2	0	0	3	0	0	0	2	2	3	0	0	1	1
CO5	0	0	2	1	2	0	0	0	2	0	3	0	0	1	1

1- Faintly

2- Moderately

9

COURSE OBJECTIVES:

- 1. To understand the term management basic features of management, principles usages in all walks of life and industrial growth.
- 2. Knowledge on the principles of management is essential for all kinds of people in all kinds of organizations. After studying this course, students will be able to have a clear understanding of the managerial functions like planning, organizing, staffing, leading and controlling.
- 3. Students will also gain some basic knowledge in international aspect of management.

UNIT I MANAGEMENT AN INTRODUCTION AND OVERVIEW

Definitions of management - features of management - Management thoughts - different schools of management - Scientific management - Arts or Science, Management Vs administration - Principles of Management.

UNIT II FUNCTIONS OF MANAGEMENT

Role of managers. Functions approach to management, Management functions, Management levels -, reconciling functions and role, responsibility of managers - towards subordinates, peers, supervisors, customers, government, company, creditors, shareholders, competitors etc..

UNIT III MANAGERIAL PLANNING AND DECISION MAKING

Planning fundamentals, objectives. Management by objectives - Changes in objectives - goal distortions - major types of planing, policies and objectives, procedures - methods, rules, programmes and schedule, projects, budgets - importance of decision making, types of decisions, decision making process - decision theory - quantitative techniques - decision making conditions - Operation Research (OR), Definition, successful areas of operation research - Decision tree.

UNIT IV ORGANIZATION

Organization: Basic concepts - organization as a structure - as a process - as a group properties of modern organization - typology, importance of organization - business /industrial organization - sole trading, partnership company, co - operative , public enterprise line (military), line and staff, functional , matrix committee based organization - departmentalization - need, bases of departmentation - career planning and management.

UNIT V STAFFING, CONTROLLING AND COMMUNICATION

Nature and purpose of staffing - man power planning, aims and objectives of HR recruitment, selection and training sources of recruitment, process of recruitment, training methods - performance appraisal methods - communication - importance process - barriers to communications. How to remove obstacles of effective communication - controlling - definition - Characteristics of control - types of control - requirements of effective control - direct and preventive control repairing, control techniques.

Total (45+0)= 45 Periods

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- CO1 : understand the basic concepts of management
- CO2 : explain the contributions and functions, types of business organization
- CO3 : list the various types of leadership and evaluate the motivation theories and techniques.
- CO4 : select forecasting models for future demands and to make decision in the management processes.

TEXT BOOKS:

- 1. Herald knootz and Heinz weihrich, Essentials of Management McGraw-Hill Publishing Company, Singapore International Edition, 2007
- Joseph L, Massie, Essentials of Management∥, Prentice Hall of India Pvt., Ltd (Pearson) Fourth Edition, 2003.

REFERENCE BOOKS:

9 + 0

+ 0

9 + 0

9 + 0

9 + 0

- 1. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management" 7th Edition, Pearson Education, 2011.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Harold Koontz & Heinz Weihrich "Essentials of management" Tata Mc Graw Hill, 1998.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata McGraw Hill, 1999.

E-REFERENCES:

1. Nptel.ac.in / courses / downloads

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	0	0	0	0	0	1	0	3	0	1	3
CO2	0	0	0	0	0	1	0	2	1	0	0	2	0	1	2
CO3	0	0	0	1	0	0	0	0	3	2	0	2	0	1	3
CO4	0	0	0	0	0	1	1	0	2	0	0	1	0	1	2

CO-PO MAPPING

- 1- Faintly
- 2- Moderately
- 3- Strongly

UNIT III **ENGINEERING AS SOCIAL EXPERIMENTATION** 0 9 Engineering as experimentation - engineers as responsible experimenters - codes of ethics - a balanced outlook on law - the challenger case study.

SAFETY, RESPONSIBILITIES AND RIGHTS UNIT IV

Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk - the three mile island and Chernobyl case studies. Collegiality and loyalty - respect for authority - collective bargaining - confidentiality - conflicts of interest - occupational crime - professional rights - employee rights - Intellectual Property Rights (IPR) - discrimination.

UNIT V **GLOBAL ISSUES**

Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers consulting engineers-engineers as expert witnesses and advisors -moral leadership-sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Management, Institution of electronics and telecommunication engineers (IETE), India.

Course Outcomes:

Upon completion of this course, the students will be able to:

- : understand the importance of ethics and values in life and society. CO1
- CO2 understood the core values that shape the ethical behavior of an engineer.
- CO3 exposed awareness on professional ethics and human values. :

Text Books:

- 1. Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 2005.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.

Reference Books:

- Tripathi A N, "Human values", New Age international Pvt. Ltd., New Delhi, 2002. 1.
- 2. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, New Jersey, 2004.
- Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", 3. Wadsworth Thompson Learning, United States, 2000.
- John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003. 4.

3. To inculcate knowledge and exposure on Safety and Risk, Risk Benefit Analysis.

UNIT I **HUMAN VALUES**

Morals, Values and Ethics - Integrity - Work Ethic - Service Learning - Civic Virtue - Respect for Others -Living Peacefully - caring - Sharing - Honesty - Courage - Valuing Time - Co-operation - Commitment -Empathy - Self-Confidence - Character - Spirituality.

UNIT II **ENGINEERING ETHICS**

Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - moral autonomy -Kohlberg's theory - Gilligan's theory - consensus and controversy - Models of Professional Roles - theories about right action - Self-interest- customs and religion - uses of ethical theories.

1. To create awareness on Engineering Ethics and providing basic knowledge about engineering Ethics, Variety of moral issues and Professional Ideals.

2. To provide basic familiarity about Engineers as responsible Experimenters, Codes of Ethics, Industrial Standards.

18MEOE05

Course Objectives:

С т Ρ 3 3 0 0

0 +

9

0

9 + 0

+

9 0 +

Total (45+0) = 45 Periods

9

CO/PO	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	0	2	1	3	0	0	1	0	1	1	0
CO2	0	0	0	0	0	0	2	3	0	0	0	0	1	0	0
CO3	0	0	0	0	0	1	1	3	0	0	0	0	1	0	3

1- Faintly

2- Moderately

18MEOE06

Course Objectives:

- 1. To explore concepts of Robot technologies that is playing vital role in manufacture.
- 2. Describe various Robot technology applications.
- 3. Develop an understanding of Robot Kinematics and dynamics.
- 4. Explain and summarize Robot End effectors and Sensors.
- 5. Explore conceptual understanding of Robot programming.

UNIT I INTRODUCTION

Robot - definition - robot anatomy - co-ordinate systems - work envelope - types and classification - specifications - joint notations - types of joints - speed of motion - pay load - robot parts and their functions - need for robots in Indian scenario.

ROBOTICS

UNIT II **ROBOT DRIVE SYSTEMS AND END EFFECTORS**

Drives - hydraulic, pneumatic, mechanical and electrical - servo motors - stepper motors - salient features, application - end effectors - types: tools - grippers - mechanical grippers - pneumatic and hydraulic grippers, magnetic grippers, vacuum grippers, multiple grippers.

UNIT III SENSORS AND MACHINE VISION

Requirements of sensors - principles, types and applications of following types of sensors proximity (inductive, Hall effect, capacitive, ultrasonic and optical) - range (Triangulation, structured light approach, laser range) speed, position (resolvers, optical encoders, pneumatic) - force - torque - touch sensors (binary, analog sensor) - introduction to machine vision -functions - image processing and analysis.

ROBOT KINEMATICS AND ROBOT PROGRAMMING UNIT IV

Forward kinematics and reverse kinematics of manipulators - two, three degrees of freedom (in 2 dimensional) homogeneous transformation matrix - simple problems - lead through programming, robot programming languages - VAL programming -motion commands - sensor commands - end effecter commands - simple programs for loading, unloading and palletizing operations.

UNIT V APPLICATIONS, IMPLEMENTATION AND ROBOT ECONOMICS

Robot cell design - types - Application of robots in processing - assembly - inspection - material handling - loading -unloading - automobile - implementation of robots in industries - safety considerations for robot operations economic analysis of robots - pay back method and rate of return method.

Total (45+0) =45 Periods

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 understand the basic concepts, parts of robots and types of robots.
- CO2 understand the potential applications of robots in industries as part of automation tool :
- CO3 familiar with the various drive systems for robot, sensors and their applications in robots, : programming of robots.
- CO4 : discuss about the various applications of robots, justification, implementation and safety of robot
- CO5 select an appropriate robot for a particular application. ·

Text Books:

- 1. Mikell. P. Groover, 'Industrial Robotics Technology', Programming and Applications, McGraw Hill Co, 1995.
- Fu.K.S. Gonzalz.R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill 2. Book Co., 1987.

Reference Books:

Richard D.Klafter, Thomas A.Chmielewski and MichealNegin, "Robotic engineering -An Integrated 1. Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 2005.

0 3

Т Ρ

0

3

С

9 +

9 +

0 9 +

+

0 9

9 0 +

0

0

- 2. Janakiraman.P.A. "Robotics and Image Processing", Tata McGraw-Hill, 1995.
- 3. YoramKoren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
- 4. A.K.Gupta and S.K.Arora, "Industrial Automation and Robotics", Laxmi Publications Pvt ltd, 2007.
- 5. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., 'Robotics control, sensing, vision and intelligence', McGraw Hill Book co, 1987.
- 6. Craig. J. J. 'Introduction to Robotics mechanics and control', Addison- Wesley, 1999.
- 7. Ray Asfahl. C., 'Robots and Manufacturing Automation', John Wiley & Sons Inc., 1985.

E-References:

1. NPTEL Videos/Tutorials

CO-PO MAPPING

CO/PO	РО	PO	РО	PO	PSO	PSO	PSO								
00/10	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	1	0	0	0	0	0	0	0	2	3	1
CO2	0	0	2	0	3	0	1	0	0	0	0	0	1	3	1
CO3	1	2	0	0	2	0	0	0	0	0	1	2	1	2	1
CO4	0	0	0	0	0	3	0	0	0	0	0	0	1	1	1
CO5	0	0	0	0	2	0	0	0	0	0	0	2	1	1	1

1- Faintly

2- Moderately

18MEOE07

Course Objectives:

- To study the various parts of robots and fields of robotics. 1.
- 2. To study the various kinematics and inverse kinematics of robots.
- 3. To study the Euler, Lagrangian formulation of Robot dynamics.
- 4. To study the trajectory planning for robot.
- To study the control of robots for some specific applications. 5.

UNIT I **BASIC CONCEPTS**

Definition and origin of robotics - different types of robotics - various generations of robots - degrees of freedom - Asimov's laws of robotics - dynamic stabilization of robots.

ROBOTIC PROCESS AUTOMATION

UNIT II POWER SOURCES AND SENSORS

Hydraulic, pneumatic and electric drives - determination of HP of motor and gearing ratio - variable speed arrangements - path determination - micro machines in robotics - machine vision - ranging - laser - acoustic magnetic, fiber optic and tactile sensors.

UNIT III MANIPULATORS, ACTUATORS AND GRIPPERS

Construction of manipulators - manipulator dynamics and force control - electronic and pneumatic manipulator control circuits - end effectors - U various types of grippers - design considerations.

UNIT IV **KINEMATICS AND PATH PLANNING**

Solution of inverse kinematics problem - multiple solution jacobian work envelop - hill Climbing Techniques robot programming languages

UNIT V **CASE STUDIES**

Mutiple robots - machine interface - robots in manufacturing and non- manufacturing applications - robot cell design - selection of robot.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 explain the basic concepts of working of robot.
- CO2 analyze the function of sensors in the robot. :
- CO3 : analyze the working of manipulates, actuators and grippers.
- CO4 write program to use a robot for a typical application.
- CO5 : use Robots in different applications.

Text Books:

- Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., "Industrial Robotics", Mc Graw-Hill Singapore, 1996. 1.
- 2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.

Reference Books:

- Deb. S.R., "Robotics Technology and flexible Automation", John Wiley, USA 1992. 1.
- 2. Klafter R.D., Chimielewski T.A., Negin M., "Robotic Engineering - An integrated approach", Prentice Hall of India, New Delhi, 1994.
- 3. Mc Kerrow P.J. "Introduction to Robotics", Addison Wesley, USA, 1991.
- Issac Asimov "Robot", Ballantine Books, New York, 1986. 4.
- 5. Barry Leatham - Jones, "Elements of industrial Robotics" PITMAN Publishing, 1987.
- Mikell P.Groover, Mitchell Weiss, Roger N.Nagel Nicholas G.Odrey, "Industrial Robotics Technology, 6. Programming and Applications ", McGraw Hill Book Company 1986.
- 7. Fu K.S. Gonzaleaz R.C. and Lee C.S.G., "Robotics Control Sensing, Vision and Intelligence" McGraw Hill International Editions, 1987.

9 0

q 0 ж.

Total (45+0) =45 Periods

+

0

9

Т Ρ С

L 3 0 0 3

0 9

9 0 +

CO/PO	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	РО 9	РО 10	РО 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	2	0	0	0	0	0	0	0	2	2	0
CO2	0	3	1	1	1	0	0	0	0	0	0	0	1	3	0
CO3	0	3	2	1	1	0	0	0	0	0	0	0	1	3	0
CO4	0	0	0	2	3	0	0	0	0	0	0	0	0	0	0
CO5	0	0	0	0	0	1	2	2	0	0	0	0	0	0	0

1- Faintly

2- Moderately

PROTOSEM COURSES SYLLABUS

18MI	EPS11	APPLIED DESIGN THINKING		S	Semeste	er	VI
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives				-	
1	TI		. 1 .1 .	1	1		
	The cou	irse enables product innovators and early-stage startup founde	ers to learn the custo	omer de	velopm	ent proc	ess
2	To fami custome	liarize with the tools & techniques & validate the inherent risk er-commitment & customer-acceptance.	s by linking their pr	ogress t	o custor	ner-mot	ivation,
3	To learn	n the system thinking concepts by reverse engineering techniq	lue.				
Un	it I	DESIGN THINKING PRINCIPLES		9	0	0	9
Explor &empa	ing Huma thy –buil	an – Centered Design – Understanding the innovation process ding techniques, Mitigate validate risk with FIR(Forge Innova	ss, discovering area ation Rubric) – Cas	is of op e Studio	portunit es.	y, interv	viewing
Un	it II	CUSTOMER-CENTRIC INNOVATION		9	0	0	9
Importa and pro – Custo	ance of cu oblem inc	istomer-centric innovation – Problem Validation and Custome idence- Customer Validation. Target user, User persona & use rviews and field visit.	er Discovery – Unde r stories. Activity : (rstandii Custom	ng probl er devel	em sign opment	ificance process
Uni	t III	APPLIED DESIGN THINKING TOOLS		9	0	0	9
Concep Design Propos	ot of Mini ing and T ition Desi	imum Usable Prototype(MUP) – MUP challenge brief – Desig Festing Value Proposition: Design a compelling value proposi ign.	gning & Crafting th tion: Process, tools	e value and tec	proposi hniques	tion – of Valu	e
Uni	t IV	CONCEPT GENERATION		9	0	0	9
Solutio build th alternat	n Explorate the right protections and	ation, Concepts Generation and MUP design – Conceptualize rototype: Assess capability, usability and feasibility. Systemat the solution concepts.	the solution concept tic concept generati	ot: explo on; eva	ore, itera luation t	te and l echnolo	earn; gy
Un	it V	SYSTEM THINKING & REVERSE ENGINEERIN	NG	9	0	0	9
System Method	Thinkin lology, Ic	ng, Understanding Systems, Examples and Understandi lentify building blocks/Components – Re-Engineering a comp	ngs, Complex Sy plex system.	vstems,	Revers	e Engi	neering
					Total	= 45 F	eriods
T							
1 ex	I BOOKS						
1	Steve Bl	ank, (2013), The four steps to epiphany: Successful strategies	for products that w	vin, Wil	ey.		
2	Alexand	er Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith	, Trish Papadakos,	(2014),	Value		
3	Proposit	ion Design: How to Create Products and Services Customers	Want, Wiley				

4 Donella H. Meadows, (2015), "Thinking in Systems -A Primer", Sustainability Institute.

5 Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.

Refer	ence Books:
1	https://www.ideou.com/pages/design-thinking#process
2	https://blog.forgeforward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253c a8624
3	https://blog.forgeforward.in/product-innovation-rubric-adf5ebdfd356
4	https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e
5	https://blog.forgeforward.in/user-guide-for-product-innovation-rubric-857181b253dd 6
6	https://blog.forgeforward.in/startup-failure-is-like-true-lie-7812cdfe9b85

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Define & treat various hypotheses to mitigate the inherent risks in product innovations	L1: Remembering						
CO2	Design the solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit.	L6: Creating						
CO3	Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching.	L3: Applying						
CO4	Apply system thinking to reverse engineer a product/prototype and understand its internal correlations.	L3: Applying						

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	3	2	3	2	1	1	1	1	1	1	1	2	2	3
C02	2	2	3	2	2	1	1	1	1	1	1	1	3	3	2
C03	1	2	2	1	1	3	1	1	3	3	1	1	1	1	1
C04	2	3	3	3	3	2	2	1	2	2	1	1	3	3	3
AVG	1.75	2.5	2.5	2.25	2	1.75	1.25	1	1.75	1.75	1	1	2.25	2.25	2.25

18MF	EPS12	STARTUP FUNDAMENTALS		5	VI								
PRER	EQUIS	ITES	Category		Cre	edit	3						
				L	Т	Р	ТН						
			Hours/Week	3	0	0	3						
Cours	e Learn	ing Objectives											
1	Learn t	he science of to transforming an innovative idea into high-gro	wth enterprises.										
2	To und	To understand the basic concepts of IPR, and develop a patent draft for a potential IP											
Un	it I	ENTREPRENEURIAL MINDSET & METHOD		9	0	0	9						
Introdu entrepro	ction to eneur - E	Innovation-led, tech-powered entrepreneurship - Underst Effectuation principles - Dealing with the unknowns - Case stu	and from research dies of startup failu	n the a res.	ttributes	s of an	expert						
Uni	it II	IDEA TO ENTERPRISE		9	0	0	9						
Design Target 1	and Plan Market a	nning of Product Concept - Business Model - Business Plannin nd Revenue Planning	g - Building Proof	of Prod	uct and	Value 7	esting -						
Uni	t III	MINIMUM VIABLE BUSINESS		9	0	0	9						
Framew proof o	vork for I f viable l	Minimum Viable Business - Disruptive Innovation - Theory o pusiness model - Demystifying Scalability - Funding Opportu	f Disruption - Com nities	petitive	advanta	age - Bu	ilding						
Uni	t IV	INTELLECTUAL PROPERTY		9	0	0	9						
Introd Secret trends	uction and - Geogr - Patent	nd the need for Intellectual Property Rights - IPR Genesis an aphical Indicators - Industrial Designs - Types of Patent – Sa fees	d Development - C Imple Patent Applie	Copyrig	ht - Tra IPR in	demark INDIA;	- Trade Global						
Uni	it V	PRIOR ART SEARCH AND PATENT DRAFTING	r J	9	0	0	9						
Prior A basmati provisio	art Search i rice. Th onal spec	n - IP Licensing – IP Commercialization - IP Infringement- (e invention as a concept - Keywords formation - Structure of p rifications - Drafting complete specifications - Draft claims - (Case Study on App patent - Key attribu Case studies on pate	le vs S tes in pa ent draf	amsung atent dra ting	, Case s Ifting - I	tudy on Drafting						
					Total	= 45 I	Periods						

Tey	at Books:
1	Steven Blank and Bob Dorf, (2012), The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company, K&S Ranch
2	Dr Saras Sarasvathy, (2008), Effectuation: Elements of Entrepreneurial Expertise, New Horizons in Entrepreneurship series.
3	Elizabeth Verkey, (2005), Law of Patents, Eastern Book Company
4	Prabuddha Ganguli, (2017), Intellectual Property Rights: Unleashing the Knowledge Economy, McGraw Hill Educatio 1st edition

Ref	erence Books:
1	WIPO Intellectual Property Handbook https://www.wipo.int/edocs/pubdocs/en/intproperty/489/wipo_pub_489.pdf
2	https://assets.entrepreneur.com/static/20220301113822-Marketing.pdf
3	https://www.deluxe.com/blog/startup-fundamentals-guide/
4	https://www.forbes.com/sites/allbusiness/2018/07/15/35-step-guide-entrepreneurs-starting-a-business/?sh=69a6031e184b

Cours	Course Outcomes:								
Upon	Tuxonomy Lever								
CO1	Develop an entrepreneurial mindset to identify, assess, shape & act on opportunities.	L3: Applying							
CO2	Demonstrate the potential of an innovative idea to create economic value, as a startup	L2: Understanding							
CO3	Understand the scientific process to explore a viable business model	L2: Understanding							
CO4	Demonstrate knowledge on the fundamental concepts of Intellectual Property	L2: Understanding							

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	2	2	1	1	2	1	2	2	2	3	3	1	1	2
C02	2	2	3	1	1	1	1	2	2	1	3	2	2	2	2
C03	1	2	2	2	1	1	1	1	1	1	3	2	1	1	1
C04	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1
AVG	1.25	1.75	2	1.25	1	1.25	1	2	1.5	1.25	2.5	2	1.25	1.25	1.5

18MI	EPS13	COMPUTATIONAL HARDWAR	E	S	Semeste	er	VI				
PRER	REQUIS	ITES	Category	PE	Cre	edit	3				
				L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Cours	se Learn	ing Objectives	I								
1	1 To learn basic concepts of Embedded Systems by familiarizing the functionalities of embedded platforms with development boards.										
2	To understand the core concepts of GPIO Pins, Functionality of peripherals, Selection of I/O devices , Usage										
2	of Inter	nal functions, and Communication protocols.									
3	To fam service	iliarize the current technologies and protocols used in the Intes.	rnet of Things (IoT) and to	learn th	e Cloud	l				
Ur	nit I	BASICS OF EMBEDDED SYSTEM		9	0	0	9				
Embed schema Analog	lded Platf atics – To g I/O - Ti	form: Architecture and working - Factors for Microcontroller ool chain - Setup and Configuration - Input/Output Configuration mers, Interrupts - Pulse Width Modulation - Display: 7-segme	r/Microprocessor set tions and Access - ent , LCD , OLED.	election Librarie	. Arduin es - Digi	o - Boa tal I/O -	rds and ADC -				
Un	it II	BASICS OF RASPBERRY PI		9	0	0	9				
Raspbe Genera APIs -	erry Pi: R al Purpose Twitter I	aspberry pi Board - Processor - Setup and Configuration - In e I/O Pins - Protocol Pins - GPIO Access - Pulse Width Modul Bot - Interfacing pi with camera modules.	stalling Python IDI ation - Network Lil	LE using praries -	g Comm · Web se	and Terrices -	rminal - Twitter				
Uni	it III	SENSORS AND ACTUATORS		9	0	0	9				
Interfac Soil M Introdu	cing of S oisture S action, Ch	ensors and Actuators - Sensors: Introduction, Characteristics: ensor, LDR - Digital - PIR Sensor, Smoke Sensor, Infrared - S naracteristics and working with relay, DC motors, Servo motor	Analog - Potention Sensor, Ultra- Sonic r, Stepper motor an	neter, To Senson d its dri	emperati r. Actuat vers.	are Sens ors -	sor,				
Uni	it IV	COMMUNICATION PROTOCOLS		9	0	0	9				
Protoco Comm wireles	ols - Wire unication ss Serial (ed: RS232 Standard - UART, SPI, I2C - Comparative study of protocols Wireless: Standards - Bluetooth, RF - Comparative Communication protocols.	f wired protocols - 1 e study of wireless p	[mplem protocol	entation s - Impl	of wire ementat	d Serial ion of				
Un	it V	INTERNET OF THINGS		9	0	0	9				
Definit embed I/O per Cloud	tion and ded targe ripherals platforms	Architecture of IoT, Building blocks of IoT, Programming v t board to Web, Basics networking in IoT: creating a web pag from the webpage, Embedded Application Development, Cr s for IoT, Cloud data logging and monitoring, Interfacing with	with IoT protocols ge - Creating a server reating communica web services.	- MQT er on tai tion bet	T, CoA rget boat tween di	P - Con rd - Con ifferent	necting trolling nodes -				
					Total	= 45 ł	reriods				
Tex	t Books	:									
1	Raj Kan	nal, "Embedded Systems - SoC, IoT, AI and Real-Time Syste	ems", 4th Edition, N	/lcGraw	Hill, 20	020.					
2	Mohit A	rora, "Embedded System Design", 1st Edition, Learning Byte	es Publishing, 2016								
3	Elecia V	Vhite, "Making Embedded Systems", 1st Edition, Shroff/ O' F	Reilly, 2012.								
4	Jack Ga	nssle, "The Firmware Handbook", 1st Edition, Newnes, 2004									

Refe	rence Books:
1	https://juniorfall.files.wordpress.com/2011/11/arduino-cookbook.pdf
2	https://drive.google.com/file/d/13s0m3lHPEFP2f2aCuVNRWeBZNKXWKTW5/view?ts=6231cab 3
3	https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSeshia_DigitalV2_2.pdf 4.
4	https://www.riverpublishers.com/pdf/ebook/RP9788793519046.pdf

Cours Upon o	Bloom's Taxonomy Level	
CO1	Understand and implement the functions & Capabilities of embedded platforms for easy prototyping.	L2: Understanding
CO2	Identify the type of sensors and actuators for required applications.	L3: Applying
CO3	Develop communication between devices using different protocols.	L3: Applying
CO4	Develop IoT based systems with wireless network connections and accessing devices over cloud.	L3: Applying

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	3	2	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	2	2	2	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
AVG	3	2.25	2.75	2	2.75	0	0	0	0	0	0	0	3	2.5	2.5

18M	EPS14	CODING FOR INNOVATORS		S	VI		
PRER	REQUIS	ITES	Category		3		
				L	Т	Р	TH
			Hours/ week	3	0	0	3
Cours	se Learn	ing Objectives		I		l	
1	To lear	n and express creativity using coding skills.					
2	To gain	knowledge of Python programming with hands-on experienc	e.				
3	To dem	onstrate a problem solving using OOPs concepts.					
4	To lear	n basics of Linux by familiarizing the concepts of managemen	t and file structure.				
5	To prac	tise full stack development using cloud platform.					
Ur	nit I	PROGRAMMING PARADIGMS		9	0	0	9
Un Introdu operati Operat	it II action to l ions, trave ions: File	BASIC OF PROGRAMMING Python: statements, variables, functions, operators, modules, e ersing a list, slicing a list - Text Handling: Strings, string fu	conditional stateme nctions, conversion grams from text file	9 ents, loo n functi	0 op staten ons, Dic	0 nents, L ctionarie	9 ists: list es - File
Uni	it III	OOPS 5		9	0	0	9
OOPS Inheri	S- Why O itance, Po	OPS- verticals- implementation in python - Classes and Objectly olymorphism, Abstraction, Encapsulation.	cts, Methods, Const	tructors	and De	structors	5,
Uni	it IV	SOFTWARE DEVELOPMENT TO DELIVERY		9	0	0	9
Softw Based - Sour servic	vare Engin l) - Data S rce code ce - Herok	neering - Life Cycle (Tools), Agile Methodologies - Framew Structures - Database Management System - A case study to ex management and version control - GitHub - GitHub Actions cu - Build Packs AWS- Anaconda	ork - Why Framev periment from Deve - GitBash - Contir	works - elopmen nuous Ir	Softwar nt to Dep ntegratio	re Testin ploymer n - Plat	ng(Tool nt(D2D) form as
Un	nit V	OPERATING SYSTEMS		9	0	0	9
Introdu - File S Docker	uction to I System St rs - Kube	Linux - Process Management - Process Scheduling - Memory Programming - Deadloc metes	Management - Stora k Handling - Disk S	age Mar Structur	nagemer re - Disk	it - Syste Manag	em calls ement -
					Total	= 45 I	Periods

Text	t Books:
1	Zed A. Shaw, "Learn Python 3 the Hard Way", 3rd edition, Addison-Wesley Professional, 2013.
2	Silberschatz Abraham, "Operating System Concepts", 9th edition, John Wiley & Sons Inc (Sea) Pte Ltd, 2016.
3	Paul Barry, "Head-First Python", 2nd edition, O'Reilly Media, Inc, 2016.
4	Anton Spraul, "Think Like a Programmer", 1st edition, No Starch Press, 2012.

E-Re	ferences :
1	https://www.geeksforgeeks.org/python-programming-language/
2	https://www.guru99.com/python-tutorials.html
3	https://www.tutorialspoint.com/python/python_tutorial.pdf

Cours Upon o	Bloom's Taxonomy Level	
CO1	Understand the aspects of programming protocols	L2: Understanding
CO2	Develop optimized code for real-world problems	L3: Applying
CO3	Build full-stack development to deployment	L3: Applying
CO4	Demonstrate problem solving and continuous development	L2: Understanding

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	2	2	1	3	0	0	0	0	0	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	1	3	0	0	0	0	0	0	0	3	2	2
C04	2	3	2	1	2	0	0	0	0	0	0	3	2	1	1
AVG	2.5	2.5	2.5	1.25	2.75	0	0	0	0	0	0	3	2.5	1.5	1.5

PREREQUISITES Category OE Credit 3 Interval Control of the second	18MI	EPS15	INDUSTRIAL DESIGN AND RAPID PROTO TECHNIQUES	TYPING	S	VI		
Hours/Week I T P TH 3 0 0 3 Course Learning Objectives	PRER	REQUIS	ITES	Category	OE	3		
Hours/Week 3 0 0 3 Course Learning Objectives 1 Learn to design a UI/UX design and develop an android application. - <th></th> <th></th> <th></th> <th></th> <th>L</th> <th>Т</th> <th>Р</th> <th>ТН</th>					L	Т	Р	ТН
Course Learning Objectives 1 Learn to design a U/UX design and develop an android application. 2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit 1 UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 0 0 9				Hours/Week	3	0	0	3
1 Learn to design a UI/UX design and develop an android application. 2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Vinit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between	Cours	e Learn	ing Objectives					
2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives VInit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and writing basics - Dimensioning & Tolerancing 9 0 0 9 Vent III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Read	1	Learn t	o design a UI/UX design and develop an android application.					
3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different dom	2	Provide	e working CAD model for prototype development.					
4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0	3	Knowle	edge in hardware, 3D Printers and Laser cutters.					
Unit I UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Init III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping engraving - RD Works - Additive manufacturing 9 0 0 9 Unit IV ELECTRICAL RAPID PROTOTYPING 9 0 </td <td>4</td> <td>Acquir</td> <td>e basic knowledge in designing electrical circuits and fabrication</td> <td>on of electronic de</td> <td>vices.</td> <td></td> <td></td> <td></td>	4	Acquir	e basic knowledge in designing electrical circuits and fabrication	on of electronic de	vices.			
Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 9 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V	Un	nit I	UI / UX		9	0	0	9
Ont II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. Unit III INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Init V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods <td>Interfac - Desig</td> <td>ce Design n proces</td> <td>a - Layout and composition for Web, Mobile and Devices - Types s flow, wireframes, best practices in the industry -User engage</td> <td>ography - Informat ment ethics - Desig</td> <td>ion arch gn alterr</td> <td>nitecture natives</td> <td>- Colou</td> <td>r theory</td>	Interfac - Desig	ce Design n proces	a - Layout and composition for Web, Mobile and Devices - Types s flow, wireframes, best practices in the industry -User engage	ography - Informat ment ethics - Desig	ion arch gn alterr	nitecture natives	- Colou	r theory
Unit IIIINDUSTRIAL DESIGN9009Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & TolerancingUnit IVMECHANICAL RAPID PROTOTYPING9009Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping engraving - RD Works - Additive manufacturing9009Unit VELECTRICAL RAPID PROTOTYPING9009Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDATotal = 45 Periods	SDLC Workir data to	- Introdung with D cloud - H	ction to App Development - Types of Apps - web Developm Databases - Introduction to API - Introduction to Cloud services Embedding ML models to Apps - Deploying application.	ent - understandin s - Cloud environm	g Stack ent Setu	- Front 1p- Read	end - ba ling and	ckend - writing
Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Uni	t III	INDUSTRIAL DESIGN		9	0	0	9
Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books: - - - -	Introdu to CAE basics -	oction to 1 D tools - 7 - Dimens	Industrial Design - Points, lines, and planes - Sketching and co Γypes of 3D modeling - Basic 3D Modeling Tools - Part creati ioning & Tolerancing	ncept generation - on - Assembly - Pr	Sketch coduct d	to CAD lesign ai	- Introc nd rende	luction ring
Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Uni	it IV	MECHANICAL RAPID PROTOTYPING		9	0	0	9
Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA - - Total = 45 Periods Text Books:	Need for method engravi	or prototy ls - Tools ing - RD	yping - Domains in prototyping - Difference between actual mass used in different domains - Mechanical Prototyping: 3DPrin Works - Additive manufacturing	anufacturing and p nting and classifica	rototypi tion - L	ing - Ra aser Cu	pid prot tting and	otyping 1
Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Un	it V	ELECTRICAL RAPID PROTOTYPING		9	0	0	9
Total = 45 Periods Text Books:	Electron simula	ronic Pro ation tool	btotyping: Basics of electronic circuit design - lumped circuits - simple PCB design with EDA	s - Electronic Proto	typing -	Worki	ng with	
Text Books:						Tota	l = 45 H	Periods
	Теч	t Books	•					
		_	-					

2 Samar Malik, Autodesk Fusion 360 - The Master Guide.
 3 Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, Pearson, 3rd edition (2014)

E - R	E - References:						
1	https://www.adobe.com/products/xd/learn/get-started.html						
2	https://developer.android.com/guide						
3	https://help.autodesk.com/view/fusion360/ENU/courses/						
4	https://help.prusa3d.com/en/category/prusaslicer_204						

Cours Upon c	Bloom's Taxonomy Level	
CO1	Create quick UI/UX prototypes for customer needs	L6: Creating
CO2	Develop web application to test product traction / product feature	L3: Applying
CO3	Develop 3D models for prototyping various product ideas	L3: Applying
CO4	Built prototypes using Tools and Techniques in a quick iterative methodology	L3: Applying

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	2	3	2	3	0	0	0	1	1	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	1	1	0	0	3	2	2
C03	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
C04	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
AVG	2.75	2.25	3	2	3	0	0	0	1	1	0	0	2.75	1.75	1.75

INDUSTRIAL AUTOMA 18MEPS16 DATA LIFE CYCLE MANA(TION GEMENT	S	VI					
PREREQUISITES	Category	OE	edit	3				
	Hours/Week	3	0	0	3			
Course Learning Objectives								
1Acquire conceptual knowledge in Industrial Controllers by s interfacing with various I/O peripherals.	scaling of on-board devices	and emb	edded b	oard				
2 Learn PLC by working on internal features and also interface SCADA and standard communication protocols.	ing with Sensors and actuate	ors alon	g HMI o	concept	using			
3 To work with FPGA boards and RT controllers for reprogra	mmable embedded applicati	ons usir	ıg LabV	IEW				
4 Understand the concepts and design electronics circuits								
Unit I INDUSTRIAL CONTROLLERS - I		9	0	0	9			
devices - Module SOM - Interfacing with Input and Output devices Acquiring and Data Logging from sensors - Interfacing Actuator applications.	s - Interfacing protocol base s: Relay, DC Motor, Serve	d Analo Motor	g and E - Crea	Digital so ting star	ensors - ndalone			
Unit II INDUSTRIAL CONTROLLERS - II		9	0	0	9			
Industrial Controllers - II - PLC - Introduction - Mode of Operation - & sequence control - Instruction set - Scan Time - Timers - Counter Sensors - Interfacing with Actuators - Interfacing with Human Mac PLC - SCADA.	IEC 61131 Programming lan rs - Interfacing with Input/Ou chine Interface - Commissio	guages: utput de oning ar	for PLC vices - 1 id opera	- Progra interfaci tional s	amming ng with afety of			
Unit III INDUSTRIAL COMMUNICATION PROT	TOCOLS	9	0	0	9			
Serial Communication Protocols - I2C, SPI - Serial Field bus protocols - Cloud data logging. Multi-sensor communication, Data parsing betw communication protocols - Implementation of Industrial Communication	cols CAN, PROFIBUS - Etl veen Embedded platforms. C ication protocols.	nernet, I Compara	HTTP, 7 tive stu	CCP/UD dy of In	I, WiF, dustrial			
Unit IV FPGA AND RT CONTROLLER PROGRA	MMING	9	0	0	9			
Introduction to FPGA - Architecture - Operations in FPGA p implementation in myRIO - Introduction to RT controllers - Archite applications.	programming - FPGA Pro ecture - Programming RT Co	grammi ontroller	ng in s - Crea	LabVIE ting stat	W and ndalone			
Unit V INDUSTRIAL CIRCUIT BOARD DESIGN	1	9	0	0	9			
Designing basics circuits and to simulate in environment setup - Con- Design rules, supply & communication track rules - Component and - Test point creation for measurement - PCB Layout, placement rules	mponent selection - Creating footprint editor - Understan	g librari ding co	es - Sch mponen	ematic of the package				
output documentation.	s - Poolprint, 3D models, Bo	Ms - Ge	enerating	g GERB	lesign - ge types ER and			

Text	t Books:
1	Ed Doering, NI myRIO Project Essential Guide, National Instruments, 2016.
2	Willian Bolton, Programmable Logic Controllers, 6th edition, Newnes Publications, 2015
3	Richard Zurawski, Industrial Communication Technology Handbook, Second edition, CRC Press, 2014
4	Simon Monk, Make Your Own PCBs with EAGLE, McGraw Hill Education, 2014.
Refere	nces Books:
1	Jeffrey Travis, Jim Kring, LabVIEW for Everyone: Graphical Programming Made Easy and Fun, 3rd edition, Prentice Hall
2	Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing, Fourth edition, Pearson Education, 2016
3	Michael J. Hamill, Industrial Communications and Control Protocols, PDH centre, 2016
4	Ema Design Automation, The Hitchhiker's Guide to PCB Design, First edition, Blurb Publishers, December 2021

Course Upon c	Bloom's Taxonomy Level	
CO1	Understand the usage of controllers in an industrial environment	L2: Understanding
CO2	Build Real-Time systems for Industrial embedded monitoring and controlling deterministic applications	L3: Applying
CO3	Communicate between devices at different levels using industrial protocols	L3: Applying
CO4	Understand the process involved in PCB design using EDA tools and fabricate it	L2: Understanding

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	2	1	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.25	2.75	1.75	3	0	0	0	0	0	0	0	3	2.75	2.5
18M	EPS17	S	er	VI											
----------------------------	---	--	---	--------------------	----------------------	----------------------	-----------------	--	--						
PRER	REQUIS	EE	Cre	edit	3										
		L	Т	Р	ТН										
			Hours/Week	3	0	0	3								
Cours	se Learn	ing Objectives													
1	Learn t	he fundamentals of ROS													
2	Unders	tand the requirements and choose the right sensors and actuate	ors for the application	on deve	lopment	-									
3	Create	Bot in the virtual environment and simulate it to know the fun	ctionalities of the s	ystem d	evelope	d									
4	Learn t	he basics of Robotics Vision System													
5	Integra	te ROS and Computer Vision to build systems for various use	cases												
Ur	nit I	INTRODUCTION TO ROBOT KINEMATICS		9	0	0	9								
Introc Kiner	luction to natics - K	Robotics - Transformations - Forward Kinematics - Kinematic analysis - Numerical Inverse Kinematic Solutions -	natics equations - 1 Analytical Inverse	Link tra Kinema	nsforma tic Solu	tions - tions	Inverse								
Un	it II	SELECTION OF SENSORS AND ACTUATORS		9	0	0	9								
Introdu on torq	ction - S ue and sp	ensors & Actuators - Types - Selection criteria - Design consid peed characteristics - Hardware Interface & Assembly	lerations: Motor siz	ing - Se	lection	of motor	rs based								
Uni	it III	INTRODUCTION TO ROBOT OPERATING SYS	TEM	9	0	0	9								
Introdu ROS p Gazebo	iction to l rogramm o - ROS I	ROS framework and prerequisites - Understanding communic ing - ROS nodes, topics, messages - ROS services - ROS Too Motion	ations in ROS - RC ls and Utilities - UF	S Ecos RDF , R	ystem - viz - Siı	Introduc nulatior	ction to 1 -								
Uni	it IV	INTRODUCTION TO ROBOTICS VISION SYST	EM	9	0	0	9								
Image Gauss - Con	Image basics - Image Processing - Histograms - Gray scale, Color, Equalization - Smoothing and blurring/filtering - Averaging, Gaussian, Median, Bilateral - Thresholding - Simple, Adaptive, Otsu - Gradients and Edge detection - Laplacian, Sobel, Canny - Contours - Camera calibration														
Un	Unit VINTEGRATION OF ROS AND COMPUTER VISION900														
Introdu real wo	Introduction - Installation - CV Bridge - Image publisher node - Image subscriber node - Nodes building and launching - Building real world applications														
	Total = 45 Periods														

Text	t Books:
1	Introduction to Robotics: Mechanics and Control by John J Craig, Pearson Publishers.
2	Robot Operating System (ROS) for Absolute Beginners by Lentin Joseph, A press; Publishers (2018).
3	Learning OpenCV by Gary Bradski, Adrian Kaehler, O'Reilly Media, Inc.

Refei	Reference Books:				
1	https://www.intechopen.com/chapters/379				
2	https://www.plantengineering.com/articles/eight-selection-criteria-for-actuation-components/				
3	https://www.controleng.com/articles/tips-on-sensor-selection/				
4	https://www.toptal.com/robotics/introduction-to-robot-operating-system				
5	https://www.thomasnet.com/articles/automation-electronics/machine-vision-systems/				
6	https://automaticaddison.com/working-with-ros-and-opencv-in-ros-noetic/				

Cours Upon o	Bloom's Taxonomy Level	
CO1	Understand kinematics considerations of robot	L2: Understanding
CO2	Selection of sensors and actuators according to application	L3: Applying
CO3	Utilize the ROS environment to simulate and communicate between robot	L3: Applying
CO4	Develop algorithms to extract features and data from image	L3: Applying
CO5	Utilize the open CV for robotic applications	L3: Applying

CO-PO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	3	1	2	0	0	0	0	0	0	0	3	3	2
C02	3	3	2	1	2	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	3	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.5	2.75	1.5	2.5	0	0	0	0	0	0	0	3	3	2.5

0: No correlation, 1: Low correlation, 2: Medium correlation, 3: High correlation

PROFESSIONAL ELECTIVE COURSES – VERTICALS

VERTICAL 1 – CLEAN AND GREEN ENERGY TECHNOLOGY

18M	EHO101	HYDROGEN AND FUEL CELL TECHNO	LOGIES				
			CATEGORY	PE	Cre	edit	С
			HermedWeels	L	Т	Р	TH
	Hours/ week					0	3
COU	RSE OBJE	ECTIVES					
1	To study in	n detail on the hydrogen production methodologies, possible a	applications and vario	is stora	ige op	tions	
2	To unders kinetics	tand the working principle of atypical fuel cell, its types	and to elaboration its	thern	nodyn	amic	s and
3	To study the	he cost effectiveness and eco-friendliness of Fuel Cells					
UNI	TI	INTRODUCTION		9	0	0	9
Hyd elect wate	rogen–physi rolysis–gasif r.	cal and chemical properties, salient characteristics, Product ication-biological hydrogen production-photo dissociation	ion of hydrogen – ste – direct thermal or	am ref catalyti	ormir c spl	itting	ater of
UNI	TII	HYDROGENSTORAGE		9	0	0	9
Hyd mana	rogenstorage	options-compressedgas-liquidhydrogen-Hydride-chemicalS ydrogen.	Storage– compariso	ons,	safety	ý	and
UNI	TIII	FUELCELLS		9	0	0	9
Hist comp	ory–principle parison on ba	e-working-thermodynamicsandkineticsoffuelcellprocess–perf ttery Vs fuel cell.	ormance evaluation of	fuel ce	-11—		·
UNI	TIV	FUELCELL-TYPES		9	0	0	9
Тур	es of fuel cel	Is-AFC, PAFC,SOFC, MCFC, DMFC, PEMFC- Relative mo	erit sand demerits.				
UNITV APPLICATIONOFFUELCELLANDECONOMICS							9
Fuel envii	cell usage	for domestic power systems, large scale power generate alysison usage of Hydrogen and Fuel cell, Future trendsin fue	ion, Auto mobile, Sp el cells.	bace, I	Econo	mic	and
			Total	(45L)	= 45]	Perio	ods

REFI	REFERENCE BOOKS:					
1	ViswanathanB.andAuliceScibioh.M,FuelCells-Principlesand Applications,UniversitiesPress,2006					
2	RebeccaL.andBusby,HydrogenandFuelCells:AComprehensiveGuide,Penn WellCorporation,Oklahoma,2005					
3	$Bent Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Elsevier, UK 2005 \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Applications, Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Sorensen (Sorensen), Hydrogen and Fuel Cells: Emerging Technologies \ and Sorensen (Sorensen $					
4	KordeschK.AndG.Simader,FuelCellandtheirApplications,Wiley-Vch,Germany1996					
5	Hart A.B. and G.J. Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London 1989 International Content of the Content of Content					
6	JeremyRifkin,TheHydrogenEconomy,PenguinGroup,USA2002					
7	BarclayF.J.,FuelCells,EnginesandHydrogen,Wiley,2009					

COUR Upon c	Bloom Taxonomy Mapped	
C01	Describe and analyze the techniques of Hydrogen generation	Analyze
<i>CO2</i>	Describe and classify various options for Hydrogen storage	Analyze
СО3	Explain the principal operations of fuel cell, its thermodynamics and kinetics	Understand
<i>CO4</i>	Comprehendthedifferenttypesoffuelcellscomparetheirmeritsanddemerits	Understand
CO5	Identify the potential application of a fuel cells for domestic ,automotive, spacecraft power generations and evaluate the techno-economics of a fuel cells	Analyze

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	0	0	1	0	0	0	0	0	0	0	1	1
CO2	3	2	0	0	1	0	0	0	0	0	0	0	1	1
CO3	3	2	1	1	1	0	1	0	0	0	0	0	1	1
CO4	3	3	1	2	1	1	1	0	0	0	0	0	1	1
CO5	3	2	1	1	2	2	1	0	0	0	0	1	1	1
Avg	3	2.2	0.6	0.8	1.2	1.5	0.6	0.0	0.0	0.0	0.0	0.2	1	1
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)													

18M	IEHO102	THERMAL MANAGEMENT OF ELECTR BATTERY SYSTEMS	RIC VEHICLE								
			CATEGORY	PE	C	redit	3				
			Horne (Wools	L	Т	Р	TH				
			Hours/ week	3	0	0	3				
COUR	RSE OBJEC	TIVES									
1	1 To know Thermal Management of Electric Vehicle Battery Systems										
2	To recogniz	te the applications of PC Min Thermal Management									
3	To investig Experimenta	ate the Thermal be haviorsin Electric Vehicle Battery	Systems through Si	mulati	on an	d					
4	To calculate	the Energy and Exergy Analyses of Battery TMSs									
5	Toobtainsol	$utions for case {\it Studies on Thermal Management Solutions} \\$	ofElectricbatteries								
UNI	ГІ	INTRODUCTION			9	0	0 9	1			
Introc Batter Mana	luction, Curre ies, Lithiun gement/Fault	ent Battery Technologies: Lead Acid Batteries, Nicken- In-Ion Batteries, Battery Environmental Impact Diagnosis/Thermal Management.	el Cadmium Batteri , Battery Manage	es, Nio ement	ckel I Sys	Metal tems,	Hydrid Safet	le ty			
UNI	ГП	PHASECHANGEMATERIALSFORTHERMALMANAGEMENT SYSTEMS									
Basic ,Heat	Properties ar Transfer Enh	d Types of PCMs, Organic PCMs, Inorganic PCMs , ancements, Environmental Impact of Phase Change M	Measurement of The aterials, Application	ermal i s of PC	Prope Ms.	rties c	f PCM	ls			
UNI	r III	SIMULATION AND EXPERIMENTAL BATTERY TMS	NVESTIGATIO	N O	F9	0	0 9)			
nume Proce liquid	rical Model dure, Vehicle battery TMS	Development for Cell and Sub modules, Cell and Level Experimentation Set Up and Procedure, Illustra using PCMs	Module Level Exp ative, Simulation and	erimer d Expe	tation rimer	n Set ntation	Up an s on th	id ne			
UNI	ΓIV	ENERGYANDEXERGYANALYSESOFBAT"	FERYTMS		9	0	0 9)			
TMS Batter	Comparison, y Thermal M	Mode ling of Major TMS Components ,Energy and lanagement Systems	Exergy Analyses, Ill	ustrati	ve Ex	ample	: Liqui	id			
UNI	UNITV CASE STUDIESONTHERMALMANAGEMENT SOLUTIONSOF ELECTRIC BATTERIES				9	0	0 9)			
Case Batter	Case Study1:Experimental and Theoretical Investigation of Temperature Distributions in a Prismatic Lithium- Ion Battery.										
CaseS Disch	CaseStudy2: Thermal Management Solutions for Electric Vehicle Lithium-Ion Batteries based on Vehicle Charge and Discharge Cycles										
			То	tal (4	5L) =	= 45Pe	eriods				

REFE	REFERENCE BOOKS:						
1	IbrahimDinçer,HalilS.Hamut,NaderJavani,ThermalManagement ofElectricVehicle BatterySystems,C,2017						
2	Halil S.Hamut, Nader Javani, Ibrahim Dinçer, Thermal Management of Electric Vehicle Battery Systems, Wiley, 2016						
3	WeixiangShen,RuiXiong,AdvancedBatteryManagementTechnologiesforElectric Vehicles,JohnWileyandsons,Firstedition2019						
4	Chitra A., Sanjeevikum ar Padmanaban, Jens Bo Holm-Nielsen, Artificial Intelligent Techniques						

	forElectricandHybridElectricVehicles,JohnW	ileyandsons,Firstedition2020
5	BrunoScrosati, ElectricVehicles,WoodheadPublishing,2015	$\label{eq:constraint} Jurgen Garche, Werner Tillmetz, Advances in Battery Technologies for$

COUF Upon d	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describe and analyze the techniques of thermal management of electric vehicle battery systems	Analyze
<i>CO2</i>	Describe and classify various applications of PC Min thermal management	Understand
СОЗ	Investigate the thermal behaviour sin electric vehicle battery systems through simulation and experimental.	Analyze
<i>CO4</i>	Calculate the energy and exergy analyses of battery TMSS	Analyze
<i>C05</i>	Identifythesolutionsforcasestudiesonthermalmanagementsolutionsofelectricbatteries	Analyze

COURSE	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	0	2	0	1	0	0	0	0	0	1	0	0
CO2	3	2	1	0	1	0	1	0	0	0	1	0	2	0	0
CO3	3	2	2	3	1	0	1	0	0	0	1	0	2	0	0
CO4	3	2	1	2	1	1	0	0	0	0	1	0	2	0	0
CO5	3	3	0	0	1	2	1	1	1	1	1	0	2	0	0
Avg	2.8	2.2	0.8	1	1.2	0.6	0.8	0.2	0.01	0.01	0.04	0.0	1.8	0.0	0.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

18MI	EHO103	ELECTRIC AND HYBRID VEHICLE TE	CHNOLOGY							
			CATEGORY	PE	Crec	lit		3		
			Hours/Wook	L	Т	Р	T	H		
			Hours/ Week	3	0	0		3		
COUR	SE OBJE	CTIVES								
1	To intro	duce the concept of hybrid and electric drive trains								
2	2 Toelaborateonthetypesandutilizationofhybridandelectricdrivetrains									
3	To expos	seon different types of AC and DC drives for electric veh	nicles							
4	To under	rstand and utilize different types of energy storage system	ns							
5	To intro	duce concept of energy management strategies and drive	sizing							
UNIT	I I	INTRODUCTION			9	0	0	9		
Basics and ele	Basics of vehicle performance, vehicle power source characterization, transmission characteristics, History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles									
UNIT	T II	HYBRID ELECTRIC DRIVE TRAINS			9	0	0	9		
Basic hybrid variou	concept o ldrive-train is electric d	f hybridtraction, introduction to various hybrid drive topologies,fuel efficien cyanalysis.ElectricDrive-trains:B rive-traintopologies, power flow control in electricdrive-	e-train to pologies, asicconceptofelectric train.	power traction	flow , intro	con oduct	ntrol tion	in to		
UNIT	T III	CONTROLOFAC&DCDRIVES								
Introd Induct	uction to el	ectric components used in hybrid and electric vehicles, C drives, Permanent MagnetMotordrive,and SwitchRelucta	Configuration and con nceMotordrives, driv	ıtrol– D 'esysten	C Mo n effi	otor o cienc	lrive y	es,		
UNIT	T IV	ENERGYSTORAGE AND DRIVE SIZING			9	0	0	9		
Introdu Hybrid interna storage	Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Energy storage and it sanalysis, Hybridization of different energy storage devices, Sizing the drive system: Matching the electric machine and the internalcombustionengine(ICE),Sizingthepropulsionmotor,sizingthepowerelectronics,selectionof appropriate energy storage technology									
UNIT	UNIT VENERGY MANAGEMENTSTRATEGIES90									
Energy ndcom	yManageme parisonofe	entStrategies:Introductiontoenergymanagementstrategiesus nergymanagementstrategies,implementationissues	sedinhybridandelectri	cvehicle	es,clas	ssific	atior	na		
			Τα	otal(45	L) =	45 I	Peri	ods		

REFERENCE BOOKS:								
1	IqbalHussein,ElectricandHybridVehicles:DesignFundamentals,CRC press,2003							
2	JamesLarminie, johnlowry, Electric Vehicle Technology Explained, Wiley, 2003							
3	MehrdadEhsani, YimiGao, SebastianE. Gay,AliEmadi, ModernElectric,HybridElectric andfuelcellvehicles: Fundamentals,theoryanddesign, CRC press,2004							
4	Randd.A.J,Woods,R&dellrmbatteriesforelectricvehicles,johnwiley&Sons,1998							

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Characterize and configure hybrid drive trains requirement for a vehicle	Understand					
<i>CO2</i>	Design and apply appropriate hybrid and electric drive train sina vehicle	Create					
СО3	Design and install suitable AC and DC drives for electric vehicles	Create					
<i>CO4</i>	Arrive at a suitable energy storage system for a hybrid/electric vehicle	Understand					
<i>C05</i>	Apply energy management strategiestoen sure better economy and efficiency	Apply					

COURSE .	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	0	1	1	1	0	0	0	0	0	0	0	1
CO2	3	2	2	0	1	1	0	1	1	0	0	0	0	0	2
CO3	3	1	3	1	2	1	1	2	0	1	0	0	0	0	2
CO4	2	3	1	1	1	1	1	1	0	1	2	0	0	1	1
CO5	3	2	0	0	1	1	1	0	0	2	1	2	0	1	1
Avg	2.8	2	1.6	0.4	1.2	1	1	0.8	0.2	0.8	0.6	0.4	0.0	0.4	1.4
			3/2/	/1 – in	dicate	s stren	gth of	correla	tion (3	– high, 2	2- medium	, 1- low)			

18ME	HO104	ALTERNATE FUELS FORICENGIN	IES					
			CATEGORY	PE	Credit			С
			Harry/Wash	L	Т	Р	T	Ή
			Hours/ week	3	0	0		3
COUR	SE OBJ	ECTIVES						
1	To exp	ose potential alternate fuels and their characteristics						
2	Tousea	ppropriates ynthetic fuels and fuel additives for better combustion classifier to the state of	naracteristics					
3	To util	ze alcohol fuels effectively for low emissions						
4	Toelab	orate on the utilization of Bio-Diese land its types as a suitable fuel in Constraints of the state of the	lengines					
5	To util	ze different gaseousfuelsandpredicttheirperformanceandcombu	stioncharacteristics					
UNIT I INTRODUCTION								
Availa Hydro	ıbility, N gen, Liqu	leed, Suitability, Properties, Meritsand Demerits of Potential Alt efied Petroleum Gas, Natural Gas, Biogas, Fuel standards Fuel	ernativeFuels– Alc standards–ASTM&	ohols, EN	Bio	o-]	Dies	sel,
UNIT	II	SPECIAL AND SYNTHETIC FUELS			9	0	0	9
Differe their asfuela	ent syntho effec andfuelad	etic fuels, Merits and demerits, Dual, Bi-fuel and Pilot inject t on performance and emission ch ditives,propertiesandcharacteristics	defuel systems, Fuel aracteristics of	l addit	ives– engir	- typ nes,E	es a Ethei	ind rs–
UNIT	' III	ALCOHOL FUELS					0	9
Alcoho in engi	ols–Prope ines. Issue	rties, Production methods and usage in engines. Performance, es & limitation in alcohols	, combustion and en	nission	Cha	racte	erist	ics
UNIT	IV	BIO-DIESEL FUELS			9	0	0	9
Vegeta Blendi diesel	Vegetable oils and their important properties. Fuel properties characterization. Methods of using vegetable oils– Blending,preheating,Transesterificationandemulsification–Performance,combustion and emission Characteristics in diesel engines							
UNIT	UNIT VGASEOUS FUELS90							
Biogas Issues	s, Natural &limitati	gas, LPG, Hydrogen–Properties, problems, storage and safety on in Gaseous fuels	spects. Methods of u	tilizat	ion ir	n eng	ines	5.
	Total (45L) = 45 Periods							

REF	REFERENCE BOOKS:						
1	KeithOwenandtrevoreoley,AutomotiveFuelsHandbook,SAE publications,1990						
2	PundirB.P,I.C.EnginesCombustionandEmission,2010, Narosapublishinghouse						
3	PundirB.P,EngineCombustionandEmission,2011, Narosapublishinghouse, Keith						
4	Richardl.Bechtold,AutomotiveFuelsguidebook, SAE publications,1997						

CO Upon	URSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>C01</i>	Analyze potential alternate fuels and their characteristics	Analyze
<i>CO2</i>	Use appropriate synthetic fuels and fuel additives for better combustion characteristics	Understand
СО3	Describethepropertiesofalcoholfuelandestimatetheperformanceofalcoholfuelsand its emissions	Understand
<i>CO4</i>	Explaintheproperties and combustion and emission characteristics of bio-diesel	Understand
<i>C05</i>	Explain different gaseous fuels and predict heir performance and combustion characteristics	Understand

COURSE	OURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	0	1	1	1	0	0	0	0	0	0	3	2
CO2	3	2	1	1	0	1	0	0	0	0	1	0	2	2
CO3	2	3	2	1	1	0	1	0	0	1	0	0	2	2
CO4	2	1	1	1	1	1	1	0	1	0	2	0	0	2
CO5	1	0	0	0	0	2	0	0	0	2	1	0	0	0
Avg	2.2	1.8	0.8	0.8	0.6	1	0.4	0.0	0.2	0.6	0.8	0.0	1.4	1.6
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)													

18MEHO	105	ADVANCED ENERGY STORAGE TECHN	OLOGIES								
			CATEGORY	PE	Cre	dit	3				
			TT (TT /) -	L	Т	Р	TI	H			
			Hours/Week	3	0	0	3				
COURSE	OBJ	ECTIVES		•		•					
1 To	1 Tounderstandthevarioustypesofenergystoragetechnologiesanditsapplications										
2 To	ostuč	ythevariousmodelingtechniquesofenergystoragesystemsusi	ngTRNSYS								
3 To	lea	n the concepts and types of batteries									
4 To	omak	e the students to get understand the concepts of Hydrogen and Bio the student standard the sta	ogasstorage								
5 To	o pro	vide the insight son Fly wheel and compressed energy stora	age systems								
UNITI	9	0	0	9							
Necessityo	fene	gystorage-typesofenergystorage-comparisonofenergystora	getechnologies-Aj	pplicat	ions						
UNIT II		THERMAL STORAGE SYSTEM			9	0	0	9			
Thermal st water stora	orag ge s	e–Types–Modelling of thermal storage units–Simple wate /stem–Modelling of phase change storage system–Simple u	er and rock bed st nits, packed bed st	orage torage	system units	– pre	ssuri	ized			
UNIT III		ELECTRICAL ENERGY STORAGE			9	0	0	9			
Fundament battery,stor oxide and I	alco ageo Lithi	nceptofbatteries–measuringofbatteryperformance,chargingar lensity,energydensity,andsafetyissues.Typesofbatteries–Lea um Battery	nddischargingofa ndAcid,Nickel–Cao	lmium	,Zinc N	Manga	anes	e di			
UNIT IV		HYDROGEN AND BIOGAS STORAGE			9	0	0	9			
Hydrogens comparisor	toraş 1s.Sa	ge options–compressed gas–liquid hydrogen–Metal fety and management of hydrogen and Bio gas storage- Ap	Hydrides,chemica	lStorag	e,Biog	as	stora	ige-			
UNIT V		ALTERNATE ENERGY STORAGE TECHNOI	LOGIES		9	0	0	9			
Flywheel,S Application	upei is	capacitors,Principles&Methods–Applications,Compresseda	airEnergystorage,C	oncept	ofHybi	ridSto	orage	<u>-</u>			
				Total	(45L)	= 45	Per	iod			

REF	REFERENCE BOOKS:							
1	IbrahimDincerandMark A.Rosen, ThermalEnergyStorageSystemsand Applications, JohnWiley&Sons2002							
2	JamesLarminieandAndrewDicks,FuelcellsystemsExplained,Wileypublications,2003							
3	LuisaF.Cabeza,AdvancesinThermalEnergyStorageSystems:Methodsand Applications,ElsevierWoodheadPublishing,2015							
4	RobertHuggins, EnergyStorage: Fundamentals, Materials and Applications, 2ndedition, Springer, 2015							
5	Ru-shiliu,Leizhang,Xueliangsun,electrochemicaltechnologiesforenergystorageand conversion,Wileypublications,2012							

COU Upon	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Identify the energy storage technologies for suitable applications	Analyze						
<i>CO2</i>	Analyze the energy storage systems	Analyze						
СО3	Recognize the concept sand types of batteries	Understand						
<i>CO4</i>	Diagnose the principle of operations of Hydrogen and Bio gas storage	Understand						
<i>C05</i>	Analyze the concepts of Fly wheel and compressed energy storage systems	Analyze						

COUDER						7								
COURSE	AKII	CUL	ATIO	N MA	TRIX	Ĺ								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	0	0	1	1	0	1	0	0	0	0	3	1
CO2	2	3	1	1	1	0	1	0	1	0	0	0	0	0
CO3	3	2	0	1	0	0	1	1	0	0	1	0	3	0
CO4	3	1	2	1	1	2	1	0	0	2	0	0	1	1
CO5	2	3	1	1	0	0	0	0	1	0	0	0	0	1
Avg	2.6	2.2	0.8	0.8	0.6	0.6	0.6	0.4	0.4	0.4	0.2	0.0	1.4	0.6
			3/2/1	– indic	ates st	rength	of corr	elation	(3 – hi	gh, 2- me	edium, 1-	low)		

18ME	CHO106	SOLAR POWER PLANT	8					
			CATEGORY	PE	Cred	lit		3
			Hours/Week	L	Т	Р	Т	H
				3	0	0		3
COUR	RSE OBJ	IECTIVES						
1	Toexp	lainconceptofvariouspowercyclesinvolvedinthesolarpo	owerplants					
2	To lea	rn and study the solar adiation and various solar powe	r plants					
3	To out	tline the variety of solar systems used to collect solar e	nergy					
4	To lea	rn electrical performance of PV power plants						
5	To sur	nmarize basic economics of solar power plants						-
UNIT		9	0	0	9			
Power	rPlantSce	nario-Classification,BasicPrinciplesandFeatures-Comp	parisonandselection Cri	teria				
UNIT	ГП	SOLARPOWERCYCLES			9	0	0	9
Vapou	urcycles-	Organiccycles–CombinedCycles–BinaryCycles–Stirlin	ngCycle–BraytonCycle	– Ericss	on Cy	cle		
UNIT	ГIII	SOLAR THERMAL POWER PLANTS		9	0	0	9	
Collec Sola	ctor, Reco ar Chimne	eiver, Energy Transfer Power cycles-Tower, Trough eys – Hybrid Systems	and Dish Systems- Co	oncentrat	ing D	ish Sy	/ster	ns -
UNI	ΓIV	SOLAR PV POWER PLANTS			9	0	0	9
Intern Stan	ationalPV nd-Alone	/PowerProgrammes-PhotovoltaicPowerSystems-Syste Systems - Grid-Connected Systems –Electrical Perfor	mIntegration–EnergyS nance.	torage -	Power	Elec	tron	ics -
UNI	UNIT V ECONOMICS OF POWER PLANTS							9
Metho Ecor	ods of fix nomic Ar	ing power tariff –Simple Methods to Calculate the Pl nalysis for the Selection of Alternative Decisions and t	ant Economy –Life Cy he future of the Power I	cle Cost Plants	t - Pay	back	Peri	od -
				Total(4	45L):	45Pe	rio	ds

REF	REFERENCE BOOKS:									
1	Duffie, J.A., and Beckman, W.A. Solar Energy Thermal Process, John Wiley and Sons, NewYork,2006									
2	Kosuke Kurokawa (Ed.), Eergyfrom the Desert –Feasibilityofverylarge-scale photovoltaicpowergenerationsystems, James and James 2003									
3	SukhatmeS.P.,SolarEnergy,TataMcGrawHillsPvtCo.,3rdEdition,2008									
4	C.J.Winter, R.L.Sizmann, L.L.Vant-Hull, SolarPowerPlants, Springer-Verlag Berlinand Heidelberg GmbH&Co.K,2001									

CO Upon	URSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describe the concept of various power cycles involved in the solar power plants we relearn the solar power plant of the solar plan	Understand
<i>CO2</i>	Analyze different cycle for solar power generation	Analyze
СО3	Describetheconstructionandworkingofcomponentsolarthermalpowerplant	Understand
<i>CO4</i>	Explain PV system and its Integration	Understand
<i>CO5</i>	Fix power tariff and analyze economical aspects of power plant	Analyze

COURSE	OURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	1	0	1	2	1	0	0	0	0	0	2	2
CO2	3	2	1	1	2	0	1	0	0	0	0	0	2	2
CO3	2	1	0	0	1	0	1	0	0	0	0	0	1	0
CO4	3	2	1	2	0	0	0	1	0	0	0	0	1	0
CO5	1	2	0	0	2	0	0	0	0	0	0	0	1	0
Avg	2.4	1.6	0.6	0.6	1.2	0.4	0.6	0.2	0	0	0	0	1.4	0.8
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)													

18ME	HO107	MATERIALS FOR SOLAR DEVICE	ES					
			CATEGORY	PE	Crec	lit		3
			TT /TT /] -	L	Т	Р	T	H
			Hours/ week	3	0	0		3
COUR	SE OBJ	ECTIVES						
1	To con	nprehend the materials that has been implicated in various fo	orms of solar energy	v source	es and	its s	tora	ges
2	To edu	cate the structure-property relationship and appreciate enove	el developments in t	the mat	erials			
3	To exp	lain the concept and the diverse materials used for solar devi	ices					
4	To exp	licate in depth knowledge of about solar cells, thermal energ	y storage and electr	rical en	ergy	storag	ges	
5	To gat	her idea of system balance and analysis with reference toitsco	ost					
UNIT	Ĩ	MATERIALSFORSOLAR COLLECTORS			9	0	0	9
Collec Absor Degrae	ctor Mate ber Coat dation of	rials for Low, Medium and High Temperature Applicatio ings, Insulations, Use of Plastics–Reliability and Durabi Low- Cost Solar Collectors	ns-Glazing Materi lity of Solar Coll	als, Op ectors–	tical ∙ Env	Mate ironr	erials nent	s— :al
UNII	T II	MATERIALS FOR SOLAR CELLS			9	0	0	9
Crysta impuri silicon	ulline Stru itieson en 1 solar cel	cture – Fundamental Principles of Energy Bands–Types of S ergy levels—Structure of Silicon solar cell–Fabrication and ls	Semiconductors – I d Optimization of s	Doping solar ce	and in 11s– A	nflue Amor	nce pho	of us
UNIT	T III	NOVEL AND THIN FILM SOLAR CELLS			9	0	0	9
Cadmi Multi	ium Tellu Junction	uride, Galium-Arsenic, GaInP/GaAs/Ge-Thin Film, Single and Tandem Junction Solar Cells – Conversion Efficiency of	e Crystalline, Pol Solar Cells–Organ	ycrysta ic solar	lline cells	Mate	erial	S-
UNIT	ΓIV	ENERGY STORAGE MATERIALS			9	0	0	9
Therm Recha Capaci	nal Storag rgeable itors.	ge Concepts-Materials for Sensible and Latent Heat Energ Batteries–Types, Operating range, Comparison and su	y Storage. Chemic itability for vario	cal stor ous ap	age (Conce ions-	epts Sup	er
UNIT	ΓV	MATERIALS AND COST ANALYSIS			9	0	0	9
Functi Wires, Case s	ionalrequi Pipes,Va studies.	rementsofothermaterialsforcomponentslikeInvertors,ChargeOlves,etc.andidentificationofsuitablematerials-SimpleCostAna	Controllers, lysisfor alternative	s electi	on of	mate	erial	S-
			То	tal (45	L) =	45 F	Peri	ods

REF	ERENCE BOOKS:
1	Ibrahim Dincer and Marc A Rosan, Thermal Energy Storage: Systems and Applications, JohnWiley, 2003.
2	Sukhatme and Nayak, Solar Energy: Principles of Thermal Collection & Storage, Tata McGrawHill, 2008
3	Nelson, J, The Physics of Solar Cells, Imperial College Press, 2003
4	Jef Poortmans and VladimirArkhipov, Thin Film Solar Cells, JohnWiley and Sons,2008.
5	ThomasMarkvart, SolarElectricity, JohnWiley and Sons,2007

COUR Upon o	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describethefundamentalprinciplesofmaterialsbestsuitedformakingsolarcollectors, their reliability, characteristics and possibility of using plastics.	Understand
<i>CO2</i>	Explore the materials for solar cells, principles, doping and fabrication and optimizations of solar cells.	Analyze
CO3	Explore the novel materials for the fabrication of solar cell, their efficiency and organic solar cells.	Analyze
<i>CO4</i>	Explain the concept and the diverse materials used for solar energy devices for diverse applications.	Understand
<i>C05</i>	Describe the requirements of system balance and analysis with reference to its cost.	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	0	0	0	0	1	0	0	0	0	1	1	1
CO2	3	2	1	0	0	0	1	0	0	0	0	0	1	1	2
CO3	2	3	0	0	1	0	0	0	0	0	0	0	2	2	2
CO4	2	1	0	0	2	1	0	0	1	0	0	0	1	1	1
CO5	3	2	0	1	0	0	1	0	0	0	0	1	1	1	2
Avg	2.6	2	1	1	1.5	1	1	1	1	0	0	1	1.2	1.2	1.6
			3/2	/1 – ir	ndicate	es strei	ngth of	f correla	ation (3	– high, 2	2- medium	n, 1- low)			

	CHO108	DESIGN OF SOLAR AND WIND SYSTEMS							
		CATEGO	RY	PE	Cred	lit		3	
		Hours/Weel		L	Т	Р	Т	Ή	
				3	0	0		3	
OUR	SE OBJ	IECTIVES							
1	To learn	and study the radiation principles with respective solar energy estimation.							
2	TounderstandPVtechnologyprinciplesandtechniquesofvarioussolarcells/materialsforenergy conversion								
3	To under	rstand the fundamentals of wind energy and its conversion system.							
4	Tounder	rstandtheaerodynamicsandtypesofloads,generatorsinwindturbines							
5	To learn	and study the radiation principles with respective solar energy estimation.							
UN	UNITI SOLAR RADIATION AND COLLECTORS								
Sun colle perfe	angles–I ector the ormance	Radiation-extra-terrestrial characteristics -estimation on horizontal and til ermal analysis –evacuated tubular collectors-concentrator collectors- parameters - compound parabolic concentrators - parabolic trough concentrator	ed lass rs -	surfa sificati Helio	ces - ion-d stats.	flat esigr	pla a	ate nd	
UNIT II SOLAR THERMAL TECHNOLOGIES									
UN	IT II	SOLAR THERMAL TECHNOLOGIES			9	0	0	9	
UN Prine syste	IT II ciple of v ems – Sol	SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar dr	Th ying	ermal g.	9 Ener	0 rgy s	0 tora	9 ige	
UN Prine syste	IT II ciple of v ems – Sol IT III	SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar da SOLAR PV SYSTEM DESIGN	The ying	ermal g.	9 Ener 9	0 rgy s 0	0 tora 0	ge Ige	
UNI Prine syste UNI Sola conc cent	IT II ciple of v ems – Sol IT III ur cells - cepts-PVs ralized an	SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar da SOLAR PV SYSTEM DESIGN p-njunction- Solar cell array system analysis and performance predictio systemdesign-designprocessandoptimization–detailedarraydesign-storageauto and decentralized SPV systems – hybrid and grid connected system.	The ying n-so	ermal g. Iar ce y-volt	9 Ener 9 ell ar tage	0 rgy s 0 ray regu	0 atora 0 desi latio	gn gn on-	
UNI Prina syste UNI Sola conc cent	IT II ciple of v ems – Sol IT III ur cells - cepts-PVs ralized an IT IV	SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar da SOLAR PV SYSTEM DESIGN p-njunction- Solar cell array system analysis and performance predictio systemdesign-designprocessandoptimization–detailedarraydesign-storageauto and decentralized SPV systems – hybrid and grid connected system. WIND ENERGY FUNDAMENTALS AND WIND MEASUREMI	The ying 1-so om	ermal g. Jar ce y-volt	9 Ener 9 ell ar tage 9	0 rgy s 0 ray regu 0	0 atora 0 desi latic	gn gn gn	
UNI Princ syste UNI Sola conc cent UNI Win turbi Betz	IT II ciple of v ems – Sol IT III ur cells - cepts-PVs ralized an IT IV d Energy ines, Atm z's Limit,	SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar da SOLAR PV SYSTEM DESIGN p-njunction- Solar cell array system analysis and performance prediction systemdesign-designprocessandoptimization–detailedarraydesign-storageauto and decentralized SPV systems – hybrid and grid connected system. WIND ENERGY FUNDAMENTALS AND WIND MEASUREMI Passics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Pow nospheric Boundary Layers, Instrumentation for wind measurements, wind Turbulence Analysis.	Tho ying n-so com C NT er C data	ermal g. olar ce y-volt F S Conten	 9 9 ell artage 9 nt, Claysis, 	0 rgy s 0 ray regu 0 ass o tabu	0 ttora desi latic f wi latic	gn gn on- 9 nd on,	
UNI Prind syste UNI Sola conc cent UNI Win turbi Betz UNI	IT II ciple of v ems – Sol IT III ur cells - cepts-PVs ralized an IT IV d Energy ines, Atm t's Limit, IT V	SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar de SOLAR PV SYSTEM DESIGN p-njunction- Solar cell array system analysis and performance prediction systemdesign-designprocessandoptimization–detailedarraydesign-storageauto and decentralized SPV systems – hybrid and grid connected system. WIND ENERGY FUNDAMENTALS AND WIND MEASUREMI Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Pow nospheric Boundary Layers, Instrumentation for wind measurements, wind Turbulence Analysis. AERODYNAMIC THEORY AND WIND TURBINES	Tho ying n-so com CNT er C data	ermal g. Jar ce y-volt FS Contern a anal	 9 9 9 ell artage 9 nt, Claysis, 9 	0 rgy s 0 ray regu 0 asss o tabu 0	0 ttora 0 desi latic 1 atic 0	gn gn on-	
UNI Sola conc cent UNI Win turbi Betz UNI Air (Rot Freq Gen	IT II ciple of v ems – Sol IT III rr cells - cepts-PVs ralized an IT IV d Energy ines, Atm c's Limit, IT V foil term tor& Blaa juency, V erat or Dr	SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar de SOLAR PV SYSTEM DESIGN p-njunction- Solar cell array system analysis and performance prediction systemdesign-designprocessandoptimization-detailedarraydesign-storageauto and decentralized SPV systems – hybrid and grid connected system. WIND ENERGY FUNDAMENTALS AND WIND MEASUREMIN Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Pownospheric Boundary Layers, Instrumentation for wind measurements, wind Turbulence Analysis. AERODYNAMIC THEORY AND WIND TURBINES atinology, Bladeelementtheory, Blade design, Rotor performance and dynam de), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Orariable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled rive systems.	The ying n-so om CNT CNT CNT data	ermal g. olar ce y-volt FS Conten a anal Bala stant nerato	 9 Ener 9 ell ar tage 9 nt, Cla ysis, 9 ncing Speed or typ 	0 rgy s rgy rgy s 0 ray regu 0 asss o tabu 0 g teck d Ccc e, Di	0 ttora 0 desi latic 0 f wi latic 0 hniq onsta rect	gn on-	
UNI Prine syste UNI Sola conc cent UNI Win turbi Betz UNI Air (Rot Freq Gend	IT II ciple of v ems – Sol IT III rr cells - cepts-PVs ralized an IT IV d Energy ines, Atm c's Limit, IT V foil term tor& Blaa juency, V erat or Dr	 SOLAR THERMAL TECHNOLOGIES working, types, design and operation of-Solar heating and cooling systems- lar Desalination – Solar cooker: domestic, community – Solar Pond – Solar de SOLAR PV SYSTEM DESIGN p-njunction- Solar cell array system analysis and performance prediction systemdesign-designprocessandoptimization—detailedarraydesign-storageauto and decentralized SPV systems – hybrid and grid connected system. WIND ENERGY FUNDAMENTALS AND WIND MEASUREMI Passics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Pow nospheric Boundary Layers, Instrumentation for wind measurements, wind Turbulence Analysis. AERODYNAMIC THEORY AND WIND TURBINES tinology, Bladeelementtheory, Blade design, Rotor performance and dynam de), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, O variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled rive systems. 	The ying n-so lom ENT er C data	ermal g. olar ce y-volt F S Conten a anal Bala stant nerato	 9 Ener 9 ell ar tage 9 nt, Cla ysis, 9 ncing Speed or typ 	0 rgy s rgy rgy s 0 rray regu 0 asss o tabu 0 g teck d Cc e, Di	0 ttora 0 desi latic 0 f wi latic 0 f wi rect	gn gn- nd on,	

REF	ERENCE BOOKS:
1	Sukhatme S.P., Nayak.J.P, 'SolarEnergy – Principle of Thermal Storage and collection'', TataMcGrawHill, 2008.
2	SolarEnergyInternational, "Photovoltaic – Designand InstallationManual" – New SocietyPublishers, 2006.
3	DuffieA.andBeckannW.A., "SolarEngineeringofThermalProcesses, JohnWiley, 1991.
4	JohnDSorensenandJensNSorensen, "WindEnergySystems", WoodheadPublishing

COUR	Bloom Taxonomy Manned		
Upon c	completion of this course, the students will be able to:	Mappeu	
C01	Classify and describe solar radiation and collectors.	Understand	
<i>CO2</i>	Describe the principle and design the solar heating, cooling and other solar applications.	Understand	
СОЗ	Explain the principle, working, design optimization of PV system for different applications.	Understand	
<i>CO4</i>	Describe the basics and measurements of wind energy.	Understand	
<i>C05</i>	Explain the aerodynamic constructional details of wind turbine.	Understand	

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	1	0
CO2	3	1	2	1	0	0	0	0	0	0	0	0	3	2	0
CO3	3	2	2	0	1	0	0	0	0	1	0	0	3	2	2
CO4	3	2	0	1	0	1	0	0	0	0	0	0	3	2	0
CO5	3	2	0	0	1	1	0	0	0	0	0	0	3	2	0
Avg	Avg 3 1.8 1 0.6 0.5 0.4 0 0 0.2 0 0 3 1.8 0.4														
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

18MF	EHO109	FIRE ENGINEERING AND EXPLOSION CONTROL					
		CATEGORY	PE	Cr	edit	3	;
			L	Т	Р	T	Ή
		Hours/Week	3	0	0		3
COUF	RSE OBJ	ECTIVES					
1	Tounder	standandlearn the fundamental soffire, explosion and theory of combustion.					
2	To know	various classes of fires & types of fire extinguishers					
3	To under	rstand and learn various fire protection systems, components and their working	g				
4	To under	rstand the various fire-resistant materials and to design fire protection of build	ing				
5	To under	rstand the principles of explosion protection systems					
UNI	ГІ	FIREANDEXPLOSIONS		9	0	0	9
Fire p explo Flix b	oroperties sion –vap oorough, N	of solid, liquid and gases - fire spread -toxicity of products of combustion – to our clouds– flash fire– jetfires– pool fires-auto-ignition–boiling liquid expan Aexico disaster, Bombay Victoria dock ship explosions.	neory ding v	of con vapour	nbusti explo	on a osior	nd 1 –
UNI	ГΠ	FIRE PREVENTION AND PROTECTION		9	0	0	9
variou and si	us classes irens – foa	offires– A,B, C,D,E –types of fire extinguishing – active and passive offires– A,B, C,D,E –types of fire extinguishers– fire stoppers– hydrant pit m generators – escape from fire rescue operations–fire drills–notice- first aid	pes – for bu	hoses	-fire	alari	ns
UNI	ГШ	FIRE PREVENTION AND PROTECTION		9	0	0	9
Sprin instal CO2s	kler-hydra lations, re system, foa	ants-standpipes–specialfiresuppressionsystemslikedelugeandemulsifier, selection liability, maintenance, evaluation and standards –alarmand detection system am system– smoke venting-firefighting systems.	oncrite s, sup	eria o pressio	f the on sys	abo tems	ve s –
UNI	ΓIV	BUILDING FIRE SAFETY		9	0	0	9
Objec struct buildi	ctives of f ural integ ings–snoo	ire safe building design, Fire load, fire resistant material and fire testing-strity-concept of egress design-with calculations-fire certificates-fire safety rekers.	ructui quire	al fire nents	prote for hi	ectio gh ri	n— ise
UNI	ΓV	EXPLOSION PROTECTING SYSTEMS		9	0	0	9
Princi Conta gases dioxid	iples of ainment,Fl , suppress de(SO ₂),ch	explosion-detonation and blast waves-explosion parameters – ameArrestors, isolation, suppression, venting, explosion relief of large enclosure- sion system based on carbon dioxide (CO ₂) and halons-hazards in LPG, a lorine (Cl ₂).	Explo explo Ammo	osion osion onia(N	Prot ventin H ₃), S	ectio g-in Sulpł	on, ert iur
		T	otal (45L)	= 45	Peri	iods
REFE	RENCE	BOOKS:					
1	Gupta.	R.S., "HandBookofFire Technology" OrientLongman, Bombay 1977.					
2	"Accid	lentPreventionmanualforindustrialoperations"N.S.C.,Chicago,1982.					
3	Dinko	Tuhtar, "Fireandexplosionprotection".					

4 "DavisDanieletal,"HandBookoffiretechnology".
 5 FirefightershazardousmaterialsreferencebookFirePreventioninFactories",anNostrandReinHold,New York,1991.

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:					
C01	Describe the fundamentals of fire, explosion and theory of combustion.	Understand				
<i>CO2</i>	Classify the fire, class of fire and equipment for fire extinguishing.	Understand				
СО3	Explainvarious industrial fire protection systems components and their working.	Understand				
<i>CO4</i>	Design the building with fire protection and concepts of their design.	Create				
<i>C05</i>	Describe the explosion protection system for various application.	Understand				

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	1	0	1	0	0	0	0	0	0	2	0	0
CO2	3	2	0	0	0	1	2	0	0	0	0	0	2	0	0
CO3	3	2	0	1	2	1	2	0	0	0	0	0	2	0	0
CO4	2	1	3	2	0	1	2	0	0	0	1	0	2	0	0
CO5	3	2	0	1	2	2	1	0	0	0	1	0	2	0	0
Avg	Avg 2.8 1.8 3 1.25 2 1.2 1.75 0 0 0 1 1 2 0 0														
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

18ME	8MEHO110 ENERGY MANAGEMENT AND ENVIRONMENTAL BENEFITS									
		CATEGORY I	PE	Crec	lit		3			
			L	Т	Р	T	H			
		Hours/ week	3	0	0		3			
COUR	RSE OBJ	IECTIVES								
1	To creat	e a warenesson the energy scenario of India with respect to world								
2	To learn	the methodology adopted for an energy audit								
3	To appre	ciate the concepts adopted in project management								
4	Tostudy	hedifferenttechniquesadoptedforfinancialappraisalofaproject								
5	To Com	prehend the impact of energy on environment		1	1					
UNI	ГІ	ENERGYSCENARIO		9	0	0	9			
Comp energ impor	Comparison of energy scenario – India and World (energy sources, generation mix, consumption pattern, T&D losses, energy demand, percapitaenergy consumption)– energy pricing–energy security-energy conservation and its importance, Energy Conservation Act 2001.									
UNI	ΓII	ENERGY MANAGEMENT		9	0	0	9			
Energ energ monit	y audit-n y substitu oring and	eed-types- methodology- barriers-analysis on energy costing and sharing ben tion-billing parameters in TANGEDCO-demand side management-instruments for targeting- CUSUM energy labeling.	ch r or en	narkii ergy a	ng- f audit	uel –ene	and rgy			
UNI	Г III	PROJECT MANAGEMENT		9	0	0	9			
Four Defin PERT	Basic Ele ition and) and Per	ments of Project Management- Project Management Life Cycle- Stepsin Project Scope, Technical Design, Financing, Contracting, Implementation Techniques (formance Monitoring.	Maı Gant	nagen t cha	nent- rt, C	Pro PM	ject and			
UNI	ΓIV	FINANCIAL MANAGEMENT		9	0	0	9			
Invest Retur	tment app noninvest	praisal for energy conservation projects - Financial analysis techniques, Sin ment, Netpresent value, Internalrate of return-Cashflows, Riskands ensitivity analysis: m	nple nicro	payl andm	back acro	per facto	iod, ors.			
UNI	ΓV	ENERGY AND ENVIRONMENT		9	0	0	9			
Green Conce Partie Carbo	house eff erns– Uni s (COP), on Fund(P	ect and the carbon cycle - current evidence and future effects of climate change – ited Nations Frame work Convention on Climate Change (UNFCC),Kyoto Pro Emissions trading (ET), Joint Implementation (JI), Clean Development Mechani CF), sustainable development.	Glol otoco ism (bal Er ol, Co (CDN	nviro onfer I),Pro	nme ence oto t	ntal of ype			
		Total (45L) = 4	5 Pe	rioc	ls			
L		· · · · · · · · · · · · · · · · · · ·								
REFE	RENCE	BOOKS:								
1	Energy	Manager Training Manual (4Volumes) available at http://www.em- ea.org/g	gbool	k1.asj	p, a Gov	web	site			

1	administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Governmen ofIndia.2004.
2	L.C.Witte, P.S.Schmidt, D.R.Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washing ton, 1988.
3	W.C.turner,"EnergyManagementHandbook"Wiley,NewYork,1982.

4	W.R.MurphyandG.M	lcKay"EnergyM	anagement''Bu	tterwor	ths,London198	7.
5	Eastop.T.D&Croft &Technical,ISBN-0-	D.R,Energy 582-03184,1990	Efficiency.	for	Engineers	andTechnologists,.LogmanScientific

COUR Upon d	COURSE OUTCOMES: Upon completion of this course, the students will be able to:					
C01	Recognize the importance of energy conservation and suggest measures for improving percapita energy consumption.	Understand				
<i>CO2</i>	Analyses the energy sharing and cost sharing pattern of fuel susedin industries.	Analyze				
СО3	Apply Gantt Chart, CP M and PERT in energy conservation projects.	Apply				
<i>CO4</i>	Evaluate the techno-economics of a project adopting discounting and non-discounting cash flow techniques.	Evaluate				
<i>CO</i> 5	Assess the sources of additional revenue generation for energy conservation projects adopting	Evaluate				

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	0	1	0	0	0	1	1	0	0	2	2
CO2	3	2	0	0	0	1	0	0	0	0	0	2	0	2	0
CO3	3	1	1	1	0	1	0	0	0	0	0	0	0	2	3
CO4	3	2	0	0	0	0	1	0	0	0	0	1	0	0	2
CO5	CO5 2 1 0 0 1 2 1 0														
Avg	Avg 2.8 1.6 1 1 1.25 1 0 1 1 1.5 0 2 0														
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

VERTICAL 2 - COMPUTATIONAL ENGINEERING

PREREQUISITES CATEGORY PE Credit C Hours/Week L T P TH 1. Upon completion of this course, the students will understand and systematize numerical solution techniques for the partial differential equations governing the physics of mechanical engineering problems. 2. 2. Numerical Methods use computers to solve problems by step-wise, repeated and iterative solution techniques for the ingineers. 9 0 0 9 3. This course is designed to give an overview of numerical methods of interest to scientists and mechanical engineers. 9 0 0 9 Errors: Introduction, Types of errors, Rules for estimate errors, Error propagation. Error in the approximation of function. Roots of Equation - Bracketing Method: Bisection Method, False position method - Open method. Newton-Raphson's method for Single root, multiple roots, Iterative method for Non-linear equations - Roots of polynomial: Muller's Method, limited to TWO Iterations. 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9	18MEHO201 NUMERICAL METHODS IN MECHANICAL ENGINEERING								
L T P TH Hours/Week I T P TH O 3 0 0 3 COULSE OBJECTIVES:	PREF	REQUISI	TES	CATEGORY	PE	Cr	edit	С	
Industrie for the students will understand and systematize numerical solution techniques for the partial differential equations governing the physics of mechanical engineering problems. 2. Numerical Methods use computers to solve problems by step-wise, repeated and iterative solution methods, which would otherwise be tedious or unsolvable by hand-calculations. 3. This course is designed to give an overview of numerical methods of interest to scientists and mechanical engineers. UNIT I RERORS 9 0 0 0 Perors: Introduction, Types of errors, Rules for estimate errors, Error propagation, Error in the approximation of function. Roots of Equation - Bracketing Method: Bisection Methd, False position method - Open method: Newton-Raphson's method for Single root, multiple roots, Iterative method for Non-linear equations - Roots of polynomial: Muller's Method, limited to TWO Iterations. UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 0 0				Hours/Week	L	Т	Р	TH	
COURSE OBJECTIVES: 1. Upon completion of this course, the students will understand and systematize numerical solution techniques for the partial differential equations governing the physics of mechanical engineering problems. 2. Numerical Methods use computers to solve problems by step-wise, repeated and iterative solution methods. which would otherwise be tedious or unsolvable by hand-calculations. 3. This course is designed to give an overview of numerical methods of interest to scientists and mechanical engineers. UNIT I ERRORS 9 0 0 9 Errors: Introduction, Types of errors, Rules for estimate errors, Error propagation, Error in the approximation of function. Roots of Equation - Bracketing Method: Bisection Methe, False position method. Open method. Newton-Raphson's method for Single root, multiple roots, Iterative method for Non-linear equations - Roots of polynomial: Muller's Method, limited to TWO Iterations. 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION AND INTEGRATION 9 0 0 9 0				Hours, week	3	0	0	3	
Image: Constraint of this course, the students will understand and systematize numerical solution techniques for the partial differential equations governing the physics of mechanical engineering problems. Image: Constraint of this course, the students will understand and systematize numerical solution techniques for the partial differential equations governing the physics of mechanical engineering problems. Image: Constraint of this course is designed to give an overview of numerical methods of interest to scientists and mechanical engineers. 9 0 0 9 Image: Constraint of this course is designed to give an overview of numerical methods of interest to scientists and mechanical engineers. 9 0 0 9 Image: Constraint of this course, Rules for estimate errors, Error propagation, Error in the approximation of function. Noto of Equation - Bracketing Method. Bisection Methd, False position method. Newton-Raphson's method for Single root, multiple roots, Iterative method for Non-linear equations - Roots of polynomial: Muller's Method, limited to TWO Iterations. 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION AND INTEGRATION 9 0 0 9 0 0 9 </td <td>COU</td> <td>RSE OBJ</td> <td>ECTIVES:</td> <td></td> <td></td> <td></td> <td></td> <td></td>	COU	RSE OBJ	ECTIVES:						
2. Numerical Methods use computers to solve problems by step-wise, repeated and iterative solution methods, which would otherwise be tedious or unsolvable by hand-calculations. 3. This course is designed to give an overview of numerical methods of interest to scientists and methods engineers. UNIT I ERRORS 9 0 0 9 Errors: Introduction, Types of errors, Rules for estimate errors, Error propagation, Error in the approximation of function. Roots of Equation - Bracketing Method: Bisection Methd, False position method - Open method: Newton-Raphson's method, limited to TWO Iterations. 9 0 0 9 UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 UNIT II NUMERICAL DIFFERENTIATION AND INTEGRATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIAL EQUATION 9 0 0 9 Ordifference Formula Central difference Formula, Central difference Formula, Central differenc	1.	Upon con partial di	npletion of this course, the students will understand and systemat fferential equations governing the physics of mechanical engineer	ize numerical soluti ing problems.	on tech	nnique	es for	the	
A. This course is designed to give an overview of numerical methods of interest to scientists and methanical engineers. VNIT I ERRORS 9 0	2.	Numeric would ot	al Methods use computers to solve problems by step-wise, repeat herwise be tedious or unsolvable by hand-calculations.	ed and iterative solu	ition m	nethod	ls, wł	iich	
UNIT IERRORS9009Errors: Introduction, Types of errors, Rules for estimate errors, Error propagation, Error in the approximation of function. Roots of Equation - Bracketing Method: Bisection Methd, False position method - Open method: Newton-Raphson's method for Single root, multiple roots, Iterative method for Non-linear equations - Roots of polynomial: Newton-Raphson's Method, limited to TWO Iterations.9009UNIT IILINEAR ALGEBRAIC EQUATION9009Linear Algebraic Equation - Gauss Elimination Method. Pitfalls and improving techniques - LU decomposition method. Gauss-Seidel Iteration method. Curve Fitting & Interpolation- Least Square Regression - Linear regression, Parabolic regression - Interpolation-Interpolating polynomial, Lagrange's interpolating polynomial, Divided Difference Formula9009Numerical Differentiation and Integration - Newton-Cote's Integration of equation: Trapezoidal rule, Simpson's rules - Integration of Equation: Gauss Quadrature methods Numerical difference Formula, Central difference Formula, Central difference Formula, Central difference Formula, Backward difference Formula, - For unequally spaced Data: Forward difference Formula, Central difference Formula, Backward Stende, Picard's Method, Runge-Kutta 4th Order method. Boundary value Problem-Finite Difference Method Eigen value problem: Eigen value problem based on Power method.UNIT IVPARTIAL DIFFERENTIAL EQUATION9009Ordinary Differential Equation - Taylor's series method, Picard's Method, Euler's Method, Runge-Kutta 4th Order method. Boundary value Problem-Finite Difference-Elliptical equation, Liebmann's method to Solve Laplace's and Poisson's Equations - Finit	3.	This cou engineers	rse is designed to give an overview of numerical methods os.	f interest to scient	ists ar	nd me	echan	ical	
Errors: Introduction, Types of errors, Rules for estimate errors, Error propagation, Error in the approximation of function. Roots of Equation - Bracketing Method: Bisection Methd, False position method - Open method: Newton-Raphson's method for Single root, multiple roots, Iterative method for Non-linear equations - Roots of polynomial: Muller's Method, limited to TWO Iterations. UNIT II LINEAR ALGEBRAIC EQUATION 9 0 0 9 Linear Algebraic Equation - Gauss Elimination Method. Pitfalls and improving techniques - LU decomposition method, Gauss-Jacobi and Gauss-Seidel Iteration method. Curve Fitting & Interpolation - Least Square Regression - Linear regression, Parabolic regression - Interpolation-Interpolating polynomial, Lagrange's interpolating polynomial, Divided Difference Formula 9 0 0 9 UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIAL EQUATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIAL EQUATION 9 0 0 9 UNIT III NUMERICAL DIFFERENTIAL EQUATION 9 0 0 9 Ordinary Differential Equation - Taylor's series method, Picard's Method, Euler's Method, Runge-Kutta 4th Order method. <t< td=""><td>UNI</td><td>ΤI</td><td>ERRORS</td><td></td><td>9</td><td>0</td><td>0</td><td>9</td></t<>	UNI	ΤI	ERRORS		9	0	0	9	
UNIT IILINEAR ALGEBRAIC EQUATION9009Linear Algebraic Equation - Gauss Elimination Method. Pitfalls and improving techniques - LU decompositon - Linear Gauss-Jacobi and Gauss-Seidel Iteration method. Curve Fitting & Interpolation - Least Square Regression - Linear regression - Interpolation-Interpolating polynomial, Lagrange's interpolating polynomial, Difference Formula Difference Formula9009Numerical Differentiation and Integration - Newton-Cote's Integration of equation: Trapezoidal rule, Simpon's rules - 	Error Root meth Meth	Errors: Introduction, Types of errors, Rules for estimate errors, Error propagation, Error in the approximation of function. Roots of Equation - Bracketing Method: Bisection Methd, False position method - Open method: Newton-Raphson's method for Single root, multiple roots, Iterative method for Non-linear equations - Roots of polynomial: Muller's Method, limited to TWO Iterations.							
Linear Algebraic Equation - Gauss Elimination Method. Pitfalls and improving techniques - LU decomposition method, Gauss-Jacobi and Gauss-Seidel Iteration method. Curve Fitting & Interpolation- Least Square Regression - Linear regression, Parabolic regression - Interpolation-Interpolating polynomial, Lagrange's interpolating polynomial, Divided Difference FormulaUNIT IIINUMERICAL DIFFERENTIATION AND INTEGRATION9009Numerical Differentiation and Integration - Newton-Cote's Integration of equation: Trapezoidal rule, Simpson's rules - Integration of Equation: Gauss Quadrature methods Numerical differentiation: For Equally spaced Data: Forward difference Formula, Central difference Formula, Backward difference Formula, - For unequally spaced Data: Divided difference Formula.9009Ordinary Differential Equation - Taylor's series method, Picard's Method, Euler's Method, Runge-Kutta 4th Order method.9009Ordinary Differential Equation - Finite Difference-Elliptical equation, Liebmann's method to Solve Laplace's and Poisson's Equations - Finite Difference-Parabolic Equation - Implicit Method- Crank-Nicolson method Only)9009	UNI	TII	LINEAR ALGEBRAIC EQUATION		9	0	0	9	
UNIT IIINUMERICAL DIFFERENTIATION AND INTEGRATION9009Numerical Differentiation and Integration - Newton-Cote's Integration of equation: Trapezoidal rule, Simpson's rules - Integration of Equation: Gauss Quadrature methods Numerical differentiation: For Equally spaced Data: Forward difference Formula, Central difference Formula, Backward difference Formula, - For unequally spaced Data: Divided difference Formula.UNIT IVORDINARY DIFFERENTIAL EQUATION9009Ordinary Differential Equation - Taylor's series method, Picard's Method, Euler's Method, Runge-Kutta 4th Order method - Boundary value Problem-Finite Difference Method Eigen value problem: Eigen value problem based on Power method.9009UNIT VPARTIAL DIFFERENTIAL EQUATION9009Partial Differential Equation - Finite Difference-Elliptical equation, Liebmann's method to Solve Laplace's and Poisson's Equations - Finite Difference-Parabolic Equation - Implicit Method- Crank-Nicolson method (Derivation Only)9009	Linea Gaus regre Diffe	ar Algebrai s-Jacobi a ssion, Para erence Forn	c Equation - Gauss Elimination Method. Pitfalls and improving nd Gauss-Seidel Iteration method. Curve Fitting & Interpolati bolic regression - Interpolation–Interpolating polynomial, Lagra nula	techniques - LU de on- Least Square nge's interpolating	compo Regres polync	sition sion omial,	meth – Lir Divi	iod, iear ded	
Numerical Differentiation and Integration - Newton-Cote's Integration of equation: Trapezoidal rule, Simpson's rules - Integration of Equation: Gauss Quadrature methods Numerical differentiation: For Equally spaced Data: Forward difference Formula, Central difference Formula, Backward difference Formula, - For unequally spaced Data: Divided difference Formula. UNIT IV ORDINARY DIFFERENTIAL EQUATION 9 0 0 9 Ordinary Differential Equation - Taylor's series method, Picard's Method, Euler's Method, Runge-Kutta 4th Order method - Boundary value Problem-Finite Difference Method Eigen value problem: Eigen value problem based on Power method. 9 0 0 9 UNIT V PARTIAL DIFFERENTIAL EQUATION 9 0 0 9 Power method.	UNI	TIII	NUMERICAL DIFFERENTIATION AND INTEGRA	ΓΙΟΝ	9	0	0	9	
UNIT IVORDINARY DIFFERENTIAL EQUATION9009Ordinary Differential Equation - Taylor's series method, Picard's Method, Euler's Method, Runge-Kutta 4th Order method - Boundary value Problem-Finite Difference Method Eigen value problem: Eigen value problem: and the power method.9009UNIT VPARTIAL DIFFERENTIAL EQUATION9009Partial Differential Equation - Finite Difference-Elliptical equation, Liebmann's method to Solve Laplace's and Poisson's Equations - Finite Difference-Parabolic Equation - Implicit Method- Crank-Nicolson method (Derivation Only)09	Num Integ diffe diffe	erical Differration of I rence Form rence Form	erentiation and Integration - Newton-Cote's Integration of equat Equation: Gauss Quadrature methods Numerical differentiati nula, Central difference Formula, Backward difference Formula, ula.	ion: Trapezoidal ru on: For Equally sp , - For unequally s	le, Sim aced I paced	ipson Data: Data:	's rul Forw Divi	es - ard ded	
Ordinary Differential Equation - Taylor's series method, Picard's Method, Euler's Method, Runge-Kutta 4th Order method - Boundary value Problem-Finite Difference Method Eigen value problem: Eigen value problem based on Power method. UNIT V PARTIAL DIFFERENTIAL EQUATION 9 0 0 9 Partial Differential Equation - Finite Difference–Elliptical equation, Liebmann's method to Solve Laplace's and Poisson's Equations - Finite Difference-Parabolic Equation - Implicit Method- Crank-Nicolson method (Derivation Only) Implicit Method- Crank-Nicolson method (Derivation Only)	UNI	TIV	ORDINARY DIFFERENTIAL EQUATION		9	0	0	9	
UNIT V PARTIAL DIFFERENTIAL EQUATION 9 0 0 9 Partial Differential Equation - Finite Difference-Elliptical equation, Liebmann's method to Solve Laplace's and Poisson's Equations - Finite Difference-Parabolic Equation - Implicit Method- Crank-Nicolson Laplace's and Complexity Only) Implicit Method- Crank-Nicolson Implicit Method- Crank-Nicolson Implicit Method- Crank-Nicolson Total (45L) = 45 Periods	Ordin meth Powe	nary Differ od - Boun er method.	ential Equation - Taylor's series method, Picard's Method, E dary value Problem-Finite Difference Method Eigen value p	uler's Method, Ru roblem: Eigen valu	nge-Ku e prob	itta 4 olem 1	th Oi based	der on	
Partial Differential Equation - Finite Difference–Elliptical equation, Liebmann's method to Solve Laplace's and Poisson's Equations - Finite Difference- Parabolic Equation - Implicit Method- Crank-Nicolson method (Derivation Only) Total (45L) = 45 Periods	UNI	ΤV	PARTIAL DIFFERENTIAL EQUATION		9	0	0	9	
Total (45L) = 45 Periods	Parti Poiss Only	al Differer son's Equa)	tial Equation - Finite Difference–Elliptical equation, Liebma tions - Finite Difference- Parabolic Equation - Implicit Metho	ann's method to S d- Crank-Nicolson	olve] metho	Lapla od (D	ce's erivat	and tion	
Total (45L) = 45 Periods									
				Tota	l (45I	L) = 4	5 Pe	riods	

EXT BOOKS:								
1.	B. S. Grewal and J. S. Grewal, "Numerical methods in Engineering and Science," 6 th Edition, Khanna publishers, New Delhi, 2004.							

2.	D. G. Luenberger, "Linear and Nonlinear Programming," Springer, 3rd Edition, 2008.
REFER	RENCES:
1.	K. E. Atkinson, "An Introduction to Numerical Analysis," Wiley, 2nd Edition, 1989.
2.	S. D. Conte and C. de Boor, Elementary Numerical Analysis, Third Edition, Tata McGraw-Hill Education, 2005.
3.	F.B. Hildebrand, Introduction to Numerical Analysis, Second (Revised) Edition, Courier Dover Publications, 1987.
4.	E. Kreyszig, Advanced Engineering Mathematics, Tenth Ed., John Wiley and Sons, 2010
5.	R. L. Burden and J. D. Faires, Numerical Analysis, 9th Edition (second Indian Reprint 2012), Brooks/Cole, 2011.
6.	L.N. Trefethen, David Bau III, Numerical Linear Algebra, SIAM, 1997.
7.	A.Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, Springer-Verlag, New York, 2000.

COUR Upon d	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>C01</i>	Apply various methods to find roots of equations.	Apply
<i>CO2</i>	Implement different methods to solve simultaneous equations and apply the methods of Regression and interpolation.	Apply& Evaluate
СО3	Implement various numerical methods for differentiation and Integration.	Apply
<i>CO4</i>	Apply various methods to solve engineering problems with Ordinary differential equations.	Apply
<i>C05</i>	Solve Partial differential equations involved in Engineering Problems.	Apply

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO2	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO3	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO4	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO5	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
Avg	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
				3/2/1	– indi	icates	streng	gth of c	correla	tion (3	– high,	2- medi	um, 1- lo	w)	

18MEHO202										
PREREQUISI	REREQUISITES CATEGORY									
			L	Т	Р	TH				
	3	0	0	3						
COURSE OBJ	ECTIVES:					-				
1. Enhanced	understanding of fluid mechanics, including the equations of moti	on in differential fo	rm and	l turbı	ilence	e.				
UNIT I	INTRODUCTION		9	0	0	9				
Eulerian and L Deformation of Education in In	agrangian Description of Fluid Motion, Lines of Flow Visualiza Fluid Elements, Linear and Volumetric Deformation; Perspectivitegral Form Stream Function and Velocity Potential.	tion and Accelerati es from Mass Cons	on of Servation	Flow, on, C	Ang ontinu	ular uity				
UNIT II	VISCOUS FLUID FLOW		9	0	0	9				
Euler Equation Reynolds Trans control volume tensor, Cauchy/	for Inviscid Flow, Bernoulli's Equation, Examples of Bernoulli's sport Theorem Mass and Linear Momentum Conservation, Reyno , Reynolds transport theorem angular momentum conservation, I Navier equation, Navier Stokes equation.	Equation, Reynolds lds transport theore ntroduction to tract	Trans m arbi ion ve	port E trarily ctor a	equation moving and strain the strain	on, ing ress				
UNIT III	FLUID DYNAMICS		9	0	0	9				
Lubrication The	eory, Thin Film Dynamics, Stokes Flow past a Sphere.									
UNIT IV	TURBULENCE		9	0	0	9				
Introduction to Boundary Laye Momentum Inte	Turbulence, Statistical Treatment of Turbulence and Near - er Theory, Similarity Solution of Boundary Layer Equation, Mor egral Method and Boundary Layer Separation, Potential Flow.	Wall Velocity Prot nentum Integral Me	files, I thod,	ntrodı Appli	uctior cation	to of				
UNIT V	COMPRESSIBLE FLOWS		9	0	0	9				
Stagnation prop Nozzle- Compr	perties, Compressible Flows - variable area- Normal Shock- Con essible Flow with Friction.	werging Nozzle- C	onverg	ging D	Diverg	ging				
		Tota	l (45I	L) = 4	5 Pe	riods				

TEXT B	EXT BOOKS:									
1.	Rouse, H. (1957), "Advanced Fluid Mechanics", John Wiley & Sons, N York									
2.	Mohanty A.K. (1994), "Fluid Mechanics", Prentice Hall of India, N Delhi									
REFER	ZENCES:									
1.	Wand D.J., and Harleman D.R. (91964) "Fluid Dynamics", Addison Wesley.									
2.	Schlichting, H.: (1976) "Boundary Layer theory", International Text - Butterworth									
3.	Lamb, H.R. (1945) "Hydrodynamics", Rover Publications									
4.	White, F.M. (1980) "Viscous Fluid Flow", McGraw Hill Pub. Co, N York									
5.	Yalin, M.S.(1971), "Theory of Hydraulic Models", McMillan Co., 1971.									

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
<i>CO1</i>	Explain the fundamental concepts of fluid flow.	Understand					
<i>CO2</i>	Apply the Bernoulli to solve problems related to Viscous fluid flow.	Apply					
CO3	Device the concepts of fluid dynamics in various geometry.	Create					
<i>CO4</i>	Depict the turbulence of fluid flow.	Analyze					
<i>C05</i>	Interpret the knowledge for Compressible Flows in various geometrical configuration.	Evaluate					

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO2	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO3	3	3	2	3	3	0	0	0	0	0	0	1	2	2	0
CO4	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO5	3	3	2	3	3	0	0	0	0	0	0	1	2	2	0
Avg	3	3	2	3	1.2	0	0	0	0	0	0	1	2	2	0
			3	/2/1 -	- indic	ates s	trengt	h of co	orrela	tion (3 -	– high, ź	2- medi	um, 1- lo	w)	

18MEHO2)3 FUNDAMENTALS OF BIO-MECHAN	ICS										
PREREQU	SITES	CATEGORY	PE	Cr	edit	С						
1.Basic k	nowledge of physics and biology which includes kinetics	Hound	L T P T 3 0 0 0									
&kinemat	cs.	Hours/ week										
COURSE C	BJECTIVES:											
1. Expl	in the principles of mechanics.											
2. Discuss the mechanics of physiological systems.												
3. Expl	in the mechanics of joints.											
4. Illust	rate the mathematical models used in the analysis of biomechanical	systems										
UNIT I	INTRODUCTION TO MECHANICS		9	0	0	9						
principles – and acceler equations –	Linear motion, Newton's laws of motion, Impulse and Momentu ation, Kinematics – Link segment models, Force transducers, I Constitutive equations of Non-viscous fluid, Newtonian Viscous fluid	m, Work and Energy Force plates, Introdu- iid and Hookean Elas	Kinet tion t tic soli	ics – o Co d	Velo nstitu	tive						
UNIT II	BIO-FLUID MECHANICS		9	0	0	9						
cylinder and mechanics Stress, Effe Blood vesse Prosthetic h	cone and plate, Rheological properties of blood, Pressure-flow rel n straight tube – Steady Laminar flow, Turbulent flow, Flow de et of pulsatility, Boundary Layer Separation, Structure of blood ve ls, Heart – Cardiac muscle characterization, Native heart valves – I eart valve fluid dynamics.	ationship for Non-Ne evelopment, Viscous ssels, Material proper Mechanical properties	wtonia and Tu ties an and va	n Flu urbule d mo alve c	ids, F ent Sl deling lynam	'luid heer g of nics,						
UNIT III	BIO-SOLID MECHANICS		9	0	0	9						
Constitutive circulation, material pro Hill's mode	equation of viscoelasticity – Maxwell & Voight models, anis elasticity and strength, viscoelastic properties, functional adapta perties and modeling of Soft Tissues – Cartilage, Tendons and Li s, mathematical modeling, Bone fracture mechanics, Implants for b	otropy, Hard Tissue tion, Soft Tissues – gaments Skeletal Mu pone fracture	s – St Struct scle –	ructu ure, f Musc	re, bl functi le act	lood ons, ion,						
UNIT IV	BIO-MECHANICS OF JOINTS		9	0	0	9						
Skeletal join of joints, Ty synovial joi	ts, forces and stresses in human joints, Analysis of rigid bodies in opes of joints, Biomechanical analysis of elbow, shoulder, spinal conts, Gait analysis, Motion analysis using video.	equilibrium, Free bod blumn, hip, knee and	y diagr ankle,	ams, Lubri	Struc	ture n of						
UNIT V	MODELING AND ERGONOMICS		9	0	0	9						
Introduction disorders, E vibrations, l	to Finite Element Analysis, finite element analysis of lumbar gonomic principles contributing to good workplace design, Design and transmitted vibrations.	ar spine; Ergonomic n of a Computer work	s – N statio	luscu n, Wł	loskel iole b	letal ody						
		Tota	l (45L) = 4	5 Pe	riods						

TEXT BOOKS:									
1.	Y.C. Fung, "Bio-Mechanics- Mechanical Properties of Tissues", Springer-Verlag, 1998.								
2.	Subrata Pal, "Textbook of Biomechanics", Viva Books Private Limited, 2009.								

REFE	RENCES:
1.	Krishna B. Chandran, Ajit P. Yoganathan and Stanley E. Rittgers, "Biofluid Mechanics: The Human Circulation", Taylor and Francis, 2007.
2.	Sheraz S. Malik and Shahbaz S. Malik, "Orthopaedic Biomechanics Made Easy", Cambridge University Press, 2015.
3.	Jay D. Humphrey, Sherry De Lange, "An Introduction to Biomechanics: Solids and Fluids, Analysis and Design", Springer Science Business Media, 2004.
4.	Shrawan Kumar, "Biomechanics in Ergonomics", Second Edition, CRC Press 2007.
5.	Neil J. Mansfeild, "Human Response to Vibration", CRC Press, 2005.
6.	Carl J. Payton, "Biomechanical Evaluation of movement in sports and Exercise", 2008
7.	NPTEL: Mechanical Engineering - NOC:Biomechanics of Joints and Orthopaedic Implants

COUR Upon d	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Understand the fundamentals of mechanics and its application in human system.	Understand						
<i>CO2</i>	Understand the principles of bio-fluid dynamics and its application in human system.	Understand						
CO3	Understand the fundamentals of bio-solid mechanics.	Understand						
<i>CO4</i>	Analyze the biomechanics of different human joints and also the forces at a skeletal joint for various static and dynamic human activities.	Analyze						
<i>CO5</i>	Give Examples of computational mathematical modelling applied in Bio-mechanics.	Analyze						

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0
CO2	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0
CO3	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0
CO4	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0
CO5	2	2	2	2	2	0	0	0	0	0	1	0	2	2	0
Avg	2	2	2	2	0.4	0	0	0	0	0	1	0	2	2	0
				3/2/1	– indi	cates	streng	th of c	orrela	tion (3 -	– high, 2	2- mediu	ım, 1- lov	v)	

18MI	EHO204													
PREF	REQUISIT	TES	CATEGORY	PE	Cre	dit	C							
Mac	hine learnii	ng is a mathematical discipline, and students will benefit from		L	Т	Р	TH							
a goo and e	od backgrow	and in probability, linear algebra and calculus, programming, s essential.	Hours/Week	3	0	0	3							
COUI	RSE OBJI	ECTIVES:	11				<u> </u>							
1.	Understa	nd a wide variety of learning algorithms.												
2.	Understand how to evaluate models generated from data.													
3.	Apply the algorithms to a real problem.													
4.	4. Optimize the models learned and report on the expected accuracy that can be achieved by applying the models.													
UNI	ΤI	INTRODUCTION		9	0	0	9							
Intro hypo	oduction: Bathesis space	asic definition-types of learning-designing a learning system-per e and inductive bias- evaluation-cross-validation.	spective and issu	es in m	achine	leari	ning-							
UNI	UNIT II CONCEPT LEARNING AND THE GENERAL-TO-SPECIFIC ORDERING													
Intro and t	oduction-a c he candidat	concept task, concept learning as search-find S: finding a maxir e elimination algorithm-remarks on version spaces and candidate	nally specific hype elimination-indu	othesis ctive b	- versi ias.	ion sp	aces							
UNI	TIII	DECISION TREE LEARNING		9	0	0	9							
Intro algor learn	oduction-de ithm-hypot ing.	cision tree representation-appropriate problems for decision tree hesis space search in decision tree learning-inductive bias in dec	learning-the basi ision tree learning	c decis g-issues	ion tre in de	e lean cision	ning tree							
UNI	T IV	ARTIFICIAL NEURAL NETWORKS		9	0	0	9							
Intro netw recog	duction-neu orks and th gnition, adv	aral network representation-appropriate problems for neural n back propagation algorithm-remarks on the back propagation anced topics in artificial neural networks.	etwork learning- 1 algorithm-an ill	percer ustrativ	otrons- e exar	multi nple:	layer face							
UNI	ΤV	LEARNING SYSTEM		9	0	0	9							
Prob K ne comp	ability and l arest neight plexity-VC	Bayes learning, bayes optimal classifier, gibbs algorithm, Naïve l bour learning - locally weighted regression, Computational learn Dimension -Ensemble learning, analytical learning-learning with	bayes classifier, in ing theory-PAC l perfect domain th	nstance earning heories	based mode prolo	learn el -Sa g –EI	ing - mple 3G.							
			Тл	tal (45	\mathbf{L}) = 4	15 P4	riod							
			10	un (70			1040							

REFERI	ENCES:
1.	Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997.
2.	Introduction to Machine Learning Edition 2, by Ethem Alpaydin
3.	T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer 2011. (Available for download on the authors' web-page: http://statweb.stanford.edu/~tibs/ElemStat Learn/)
4.	Kevin P. Murphy. Machine Learning: A Probabilistic Perspective, MIT Press 2012. (Electronic copy available through the Bodleian library.)
5.	Christopher M. Bishop. Pattern Recognition and Machine Learning, Springer 2007.
6.	S. Haykin. Neural networks and learning machines. Pearson 2008.

COUR Upon d	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Have a good understanding of the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc.	Understand
<i>CO2</i>	Have an understanding of the strengths and weaknesses of many popular machine learning approaches.	Understand
СО3	Appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning.	Understand
<i>CO4</i>	Be able to design and implement Artificial Neural Networks algorithms in a range of real-world applications.	Create
<i>C05</i>	Be able to design and implement various machine learning algorithms in a range of real-world applications.	Create

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	1	3	0	0	0	0	0	0	1	2	2	0
CO2	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
CO3	2	2	0	1	3	0	0	0	0	0	0	1	2	2	0
CO4	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
CO5	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
Avg	2	2	0	1	3	0	1.8	0	0	0	0	1	2	2	0
				3/2/1	- ind	icates	streng	gth of	correl	ation (3	– high,	2- med	ium, 1- lo	ow)	

18MEHO205	DESIGN OPTIMIZATION & DESIGN TH	EORY								
PREREQUIS	TES	CATEGORY	PE	Cre	edit	C				
			L	Т	Р	TH				
		Hours/Week	3	0	0	3				
				•		4				
COURSE OB	IECTIVES:									
1. The prin problem	nary objective of this course is for students to gain knowledge s into mathematical optimization problems that can be solved usin	to translate practica g numerical method	l engir ls for o	neerin ptimiz	g des zatior	ign 1				
UNIT I	JNIT I INTRODUCTION									
UNIT II The technique	DESIGN OPTIMIZATION TECHNIQUE of unconstrained minimization. The golden section, Random, nethods, and equality and inequality constraints	Pattern, and Gradi	9 ent sea	0 arch 1	0 netho	9 ods,				
UNIT III	PROGRAMME		9	0	0	9				
Direct methods programming,	s and indirect methods using penalty function, Lagrange multipli Genetic algorithms	ers, Geometric prog	grammi	ing, st	ocha	stic				
UNIT IV	ENGINEERING APPLICATION		9	0	0	9				
Engineering a maximum weig	pplications, structural-design application axial and transverse the base of shafts and torsion members, design optimization of the base of	loaded members springs.	for m	inimu	ım c	ost,				
UNIT V	DYNAMICS APPLICATION		9	0	0	9				
Dynamics appl	ications for a two-degree freedom system. Vibration absorbers. A	plication in mechan	isms.							

Total (45L) = 45 Periods

TEXT B	OOKS:
1.	S. S. Rao, Engineering Optimization: Theory and Practice, 4th edition, John Wiley & Sons, 2009. ISBN: 0470183527.
2.	Kalyanmoy Deb, "Optimization for Engineering Design", Prentice Hall of India, New Delhi, 2005
REFEF	RENCES:
1.	R.C. Johnson, "Optimum Design of Mechanical Elements", Willey, New York, 1980
2.	Kalyanmoy Deb, "Evolutionary multi-objective optimization, Willey, New York.
3.	S. S. Stricker, "Optimising performance of energy systems" Battelle Press, New York, 1985.
4.	J. S. Arora, "Introduction to Optimum Design", McGraw Hill, New York, 1989.
5.	L.C.W. Dixon, "Non-Linear Optimisation - Theory and Algorithms", Birkhauser, Boston, 1980.
6.	R.J. Duffin, E.L. Peterson and C.Zener "Geometric Programming-Theory and Applications", Willey, New York, 1967.
7.	G.B.Dantzig "Linear Programming and Extensions Princeton University Press", Princeton, N. J., 1963
8.	R. Bellman "Dynamic Programming-Princeton" University Press, Princeton, N.J. 1957.

COUR Upon c	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
CO1	Demonstrate an understanding of how design optimization fits into the overall engineering design process.	Create
CO2	Formulate practical engineering design problems as well-posed optimization problems.	Create
CO3	Determine the advantages and disadvantages of applying different optimization techniques for a specific problem.	Analyze
CO4	Model and analyze multi-objective and multi-disciplinary optimization problems.	Analyze

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1	0	0	0	0	0	0	2	2	2	0
CO2	2	2	3	3	1	0	0	0	0	0	0	2	2	2	0
CO3	2	2	2	3	1	0	0	0	0	0	0	2	2	2	0
CO4	2	2	2	3	1	0	0	0	0	0	0	2	2	2	0
Avg	2	2	2.5	3	1	0	0	0	0	0	0	2	2	2	0
				3/2/1	- ind	icates	streng	gth of c	correla	ation (3	– high,	2- medi	um, 1- lo	w)	

18MF	ODS											
PREF	REQUISI	TES	CATEGORY	PE	Cr	edit	С					
				L	Т	Р	TH					
			Hours/week	3	0	0	3					
COU	RSE OBJ	ECTIVES:				•	•					
1.	To devel	op a thorough understanding of the advanced finite element analy	sis techniques.									
2.	An abilit	y to effectively use the tools of the analysis for solving practical p	roblems arising in e	nginee	ering	design	1.					
3.	3. To understand and solve the Finite Element 1-D structural and 2-D structural problems.											
4.	4. To develop and understand the dynamic problems in structures											
5.	To gain t	he knowledge of FEM for heat transfer analysis and flow analysis	1									
UNI	TI	INTRODUCTION		9	0	0	9					
Lines Diffe Shap of nu	ar/Non-line erential equ be functions umerical int	aretc., Historical Perspective of FEM and applicability to me ation as the starting point for FEM, steps in finite element metho , Linear Elements, Local and Global coordinates, Coordinate tran egration, Nodal degrees of freedom. Compatibility conditions, As	cchanical engineerin d, discretization, typ sformation and Gaus sembly and boundar	ng des bes of ss- Le by con	ign p eleme gendr sidera	oroble onts us e sche tions.	ms. sed, eme					
UNI	T II	ONE DIMENSIONAL PROBLEMS		9	0	0	9					
and cond conti space invol	their advar litions and inuity (C0 e frames an lving 1-D e	atages and disadvantages. Formulation for Truss elements, Ca introduction to contact problems. Beams and Frames: Revie and C1 Continuity), interpolation for beam elements and form d examples problems involving hand calculations. Algorithmic a lements.	se studies with em w of bending of b alation of FE chara- approach for develop	phasis beams, cterist bing c	on l high ics, P ompu	oound ler of lane ter co	lary rder and odes					
UNI	TIII	TWO DIMENSIONAL PROBLEMS		9	0	0	9					
Inter form elem of tw	polation in ulation for ents, sub pa o-dimensio	two dimensions, natural coordinates, Isoparametric representation plane stress plane strain and axi-symmetric problems; Triangular arametric, Isoparametric and super parametric elements. General on problems. Introduction plate bending elements and shell element	on, Concept of Jaco and Quadrilateral el considerations in fin nts.	bian. ement nite ele	Finite s, hig ement	elen her or anal	nent rder ysis					
UNI	TIV	DYNAMIC ANALYSIS		9	0	0	9					
FE f Form damp	formulation nulation of ping and for	in dynamic problems in structures using Lagragian Method, dynamic equations of motion and introduction to the solution rmulation of damping matrices, Model analysis, Mode superposition	Consistent and lut on procedures. More on methods and red	mped delling uction	mass g of s techr	mod struct niques	lels, ural s.					
UNI	T V	FEM IN HEAT TRANSFER & FLUID MECHANICS		9	0	0	9					
Finit chara boun based	e element acteristics a adaries. Intr d on Potent	solution for one dimensional heat conduction with convective nd simple numerical problems. Formulation for 2-D and 3-D he oduction to thermo-elastic contact problems. Finite element app ial function and stream function. Design case studies.	e boundaries. Form at conduction proble lications in potential	nulatio ems w l flow	on of vith co s; For	elem onvec mula	nent tive tion					
			Total	(45L) = 4	5 Pei	riods					

REFER	ENCES:
1.	K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996
2.	J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998
3.	Cook and Robert Davis etal, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.
4.	Segerlind L.J, "Applied Finite Element Analysis", 2nd Edition, John Wiley, 1984.
5.	O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mechanics, Fifth Edition, Butterworth-Heinemann, Oxford,

COUR Upon c	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the concept of the finite element method for solving design problems.	Understand
<i>CO2</i>	Formulate and solve manually problems in 1-D structural systems involving bars, trusses, beams and frames.	Apply
СО3	Develop 2-D FE formulations involving triangular, quadrilateral elements, and higher-order elements	Create
<i>CO4</i>	Apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	Evaluate
<i>C05</i>	Apply the knowledge of FEM for heat transfer analysis and flow analysis	Apply

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	1	0	0	0	1	1	0	0	0	1	2	0
CO2	3	1	3	3	3	0	0	1	1	0	0	0	0	0	3
CO3	3	1	3	3	2	0	0	1	1	0	0	0	0	0	0
CO4	3	2	3	3	2	0	2	2	1	0	0	0	1	2	0
CO5	3	1	1	1	1	0	0	0	1	0	0	0	1	1	0
Avg	3.0	1.2	2.6	2.2	1.6	0.0	0.4	1.0	1.0	0.0	0.0	0.0	0.6	1.0	0.6
				3/2/1	l – ind	licate	s strer	ngth of	corre	elation (3 – higl	n, 2- med	ium, 1- lo	w)	

18MI	EHO207	ADVANCED COMPUTATIONAL FLUID DYN	NAMICS (CFD)					
PRER	REQUISIT	ES	CATEGORY	PE	Cr	edit	3	
Knov	vledge of ur	dergraduate heat transfer and fluid mechanics, basic	Hound	L	Т	Р	TH	
comp	outational flu	uid dynamics	Hours/ week	3 0 0 3				
COUI	RSE OBJE	ECTIVES:						
1.	The prim partial dif technique complex g modelling	ary objective of the course is to teach fundamentals of co ferential equations (PDE) primarily in complex geometry. T s for solving incompressible and compressible N-S equatio geometry, transformation of N-S equation in curvilinear coord c.	mputational method for the emphasis of the co n in primitive variable linate system and intro	or solv urse is es, grid duction	ing no to tea l gene n to tu	on-lir ach C ratior rbule	iear FD 1 in nce	
UNI	ΤI		9	0	0	9		
upwi UNI Point	nd and centr T II t iterative/bl	ral difference schemes, stability, dissipation and dispersion er SOLUTION OF SIMULTANEOUS EQUATIONS ock iterative methods, Gauss-Seidel iteration (concept of cen MRES (m) matrix solvers, different acceleration techniques	rors	9 due, S	0 OR), 0	0 CGS,	9 Bi-	
		INCOMPRESSIBLE FLOW		9	0	0	9	
High incor Predi boun boun	er order up npressible M ctor - Corr dary condit dary conditi	wind schemes: second order convective schemes, QUICI N-S equation (Explicit time stepping, Semi–explicit time ste rector step, discretization of N-S and continuity equation ions (no-slip, moving wall, slip boundary and inflow con ons for unsteady flows, algorithm for the SMAC method, stal	K. Solution of NS equipping). SMAC methols, pressure correction aditions), outflow (zero pility considerations for	uation d for s Poiss ro grac r SMA	s: Sol stagge on's e lient/C C met	ution red g equati Drlans thod.	of rid: ion, ski)	
UNI	T IV	9	0	0	9			
Trans paran N-S e	sformation neters and the equations in	of governing equation in $\xi \eta$ - plane, transformation of Lap he accuracy of the solution, basic facts about transformation, transformed plane, matrices and Jacobians	place equation, introdu grid transformation on	compl	to geo ex geo	ometr	ical ies.	
UNI	ΤV	COMPRESSIBLE FLOW		9	0	0	9	
N-S a treatr Stege equat	and energy ment such a er and Warr tions: MacC	equations, properties of Euler equation, linearization. Soluti as Lax-Wendroff, MacCormark, Beam and Warming scher ming, Van Leer's flux splitting, Roe's approximate Riemar ormack, Jameson algorithm in finite volume formulation and	on of Euler equation: nes, Upwind schemes in solver, TVD schen transformed coordinat	Explic for Enes. So e syste	it and culer e olution m.	impl equati	licit ion: N-S	
			Total	(45L)) = 45	Per	iods	
ГЕХТ	BOOKS:							

1.	Computational Fluid Flow and Heat Transfer, Second Edition by K. Muralidhar, T. Sundararajan (Narosa), 2011.
2.	Computational Fluid Dynamics by Chung T. J., Cambridge University Press, 2003.
3.	Computational Fluid Dynamics by Tapan K. Sengupta, University Press, 2005.
4.	Numerical Computation of Internal and External Flows by Hirch C., Elesvier 2007.

REFE	REFERENCES:								
1.	K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996								
2.	J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998								
3.	Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.								
4.	Segerlind L.J, "Applied Finite Element Analysis", 2nd Edition, John Wiley, 1984.								
5.	O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mechanics, Fifth Edition, Butterworth-Heinemann, Oxford,								

COUR Upon d	Bloom Taxonomy Mapped						
C01	<i>CO1</i> Understand and be able to numerically solve the incompressible and compressible flows.						
<i>CO2</i>	Solve computational problems related to iterative methods.	Evaluate					
СО3	Solve the problems related to incompressible fluid flow.	Evaluate					
<i>CO4</i>	Interpret the knowledge, capability of analyzing and solving FDE in complex geometries problem.	Apply					
<i>CO5</i>	Solve the problems related to compressible fluid flow.	Evaluate					

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO2	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
CO3	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
CO4	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO5	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
Avg	2	2	1	2.2	2	0	0	0	0	0	0	0	2	2	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															
PREREQUISI	ITES	CATEGORY PE Cr													
--	--	---	--	--	--	---									
		Hours/Week	L	Т	Р	ТН									
			3	0	0	3									
COURSE OBJ	IECTIVES:														
1. Knowled applicat	dge of smart materials and structures is essential designing mech ions, the course aims at training students in smart materials and st	anical systems for a ructures application	dvance and an	ed eng alysis	gineer	ing									
UNIT I	SMART STRUCTURES		9	0	0	9									
with induced st dual Actuator Piezoelectrical	train Rate effects, Inchworm Linear Motor Beam Modeling with its, Pure Extension, Pure Bending harmonic excitation, Be Applications.	nduced strain Actuat	ion-sir Mod	ngle A lel, p	ctuat oroble	mg ors, ms,									
UNIT II	SHAPF MEMORY ALLOV		0	•	0	0									
Experimental I SMA Wires, V	Phenomenology, Shape Memory Effect, Phase Transformation, Vibration Control through SMA, Multiplexing. Applications Of	Tanaka's Constituti SMA and Problems.	ve Mo ER ar	del, t nd MI	esting R Flui	of ds:									
Experimental I SMA Wires, V Mechanisms at Response. Post	Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others.	Tanaka's Constituti SMA and Problems. Plastic and Related	ve Mo ER ar d Mod	del, t nd MI lels, F	esting R Flui Pre-Yi	of ds: eld									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III	Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS	Tanaka's Constituti SMA and Problems. Plastic and Related	ye Mo ER ar d Mod	del, tu nd MI lels, F	esting R Flui Pre-Yi	of ds: eld 9									
Experimental I SMA Wires, V Mechanisms at Response. Post UNIT III series and Para Characteristics. Strategies and I	Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absord , Sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures	ye Mo ER ar d Mod 9 Physica: Mod	del, ti nd MI lels, F 0 al Phe eling,	esting R Flui Pre-Yi 0 enome Con	9 of ds: eld 9 ena, trol									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III series and Para Characteristics. Strategies and I UNIT IV	Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absord , Sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours MEMS	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures	ye Mo ER ar d Mod 9 Physicz : Mod	del, t nd MI lels, F 0 al Phe eling,	esting R Flui Pre-Yi 0 enome Con	9 of ds: eld 9 ena, trol 9									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III series and Para Characteristics. Strategies and I UNIT IV Mechanical Pr Characteristics	 Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absord , Sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours MEMS roperties of MEMS Materials, Scaling of Mechanical Systems, of MEMS, Miniaturization, Microelectronics Integration. 	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures Fundamentals of T	ye Mo ER ar d Mod 9 Physica: Mod 9 Theory,	del, tr nd MI els, F 0 al Phe eling, 0 The	esting R Flui Pre-Yi o enome Con 0 Intrir	<pre>9 of of ids: eld 9 ena, trol 9 nsic</pre>									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III series and Para Characteristics. Strategies and I UNIT IV Mechanical Pr Characteristics UNIT V	 Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absord , Sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours MEMS operties of MEMS Materials, Scaling of Mechanical Systems, of MEMS, Miniaturization, Microelectronics Integration. 	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures Fundamentals of T	ye Mo ER ar d Mod 9 Physica: Mod 9 Theory, 9	del, tr nd MI els, F 0 al Phe eling, 0 The	esting R Flui Pre-Yi enome Con 0 Intrir	9 of ids: eld 9 ena, trol 9 nsic 9									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III series and Para Characteristics. Strategies and I UNIT IV Mechanical Pr Characteristics UNIT V Sensors and A Flexural Beam	 Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absord , Sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours MEMS operties of MEMS Materials, Scaling of Mechanical Systems, of MEMS, Miniaturization, Microelectronics Integration. DEVICES ctuators, Conductivity of Semiconductors, Crystal Planes and O Bending Analysis Under Simple Loading Conditions), Polymers 	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures Fundamentals of T Drientation, (Stress a in MEMS, Optical M	ye Mo ER ar d Mod 9 Physica: Mod Sheory, 9 Theory, 9 and Str 1EMS	del, tr nd MI els, F 0 al Phe eling, 0 The 0 rain R Appli	esting R Flui Pre-Yi enome Con 0 Intrir 0 Relatic cation	9 of ids: eld 9 ma, trol 9 nsic 9 ons, 1s.									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III series and Para Characteristics, Strategies and I UNIT IV Mechanical Pr Characteristics UNIT V Sensors and A Flexural Beam	 Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absord, sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours MEMS operties of MEMS Materials, Scaling of Mechanical Systems, of MEMS, Miniaturization, Microelectronics Integration. DEVICES ctuators, Conductivity of Semiconductors, Crystal Planes and O Bending Analysis Under Simple Loading Conditions), Polymers 	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures Fundamentals of T Drientation, (Stress a in MEMS, Optical M	ye Mo ER ar d Mod 9 Physica Mod 9 Theory, 9 Theory, 9 and Stu 1EMS	del, tr nd MI lels, F 0 al Phe eling, 0 The 0 rain R Appli	esting R Flui Pre-Yi o enome Con Intrir 0 Relation cation	 9 of ids: eld 9 ma, trol 9 asic 9 ons, as. riod 									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III series and Para Characteristics. Strategies and I UNIT IV Mechanical Pr Characteristics UNIT V Sensors and A Flexural Beam	 Phenomenology, Shape Memory Effect, Phase Transformation, /ibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absort, , Sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours MEMS operties of MEMS Materials, Scaling of Mechanical Systems, of MEMS, Miniaturization, Microelectronics Integration. DEVICES ctuators, Conductivity of Semiconductors, Crystal Planes and O Bending Analysis Under Simple Loading Conditions), Polymers 	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures Fundamentals of T Drientation, (Stress a in MEMS, Optical M Tota	ye Mo ER ar d Mod 9 Physica Mod 9 Theory, 9 Theory, 9 and Str 1EMS al (451	del, tr nd MI lels, F 0 al Phe eling, 0 The 0 The cain R Appli 2) = 4	esting R Flui Pre-Yi o com Con Intrir o cation IS Pe	9 of ods: eld 9 ana, trol 9 nsic 9 ons, ns. riod riod									
Experimental I SMA Wires, V Mechanisms a Response. Post UNIT III series and Para Characteristics. Strategies and I UNIT IV Mechanical Pr Characteristics UNIT V Sensors and A Flexural Beam	 Phenomenology, Shape Memory Effect, Phase Transformation, Vibration Control through SMA, Multiplexing. Applications Of nd properties, Fluid Composition and behavior, The Bingham -Yield flow applications in Clutches, Dampers and Others. VIBRATION ABSORBERS allel Damped Vibrations (OverView), Active Vibration Absord , Sensors, Fiber Optics in Crack Detection, applications. Co Limitations, Active Structures in Practice. 13Hours MEMS operties of MEMS Materials, Scaling of Mechanical Systems, of MEMS, Miniaturization, Microelectronics Integration. DEVICES ctuators, Conductivity of Semiconductors, Crystal Planes and O Bending Analysis Under Simple Loading Conditions), Polymers 	Tanaka's Constituti SMA and Problems. Plastic and Related pers, Fiber Optics, I ontrol of Structures Fundamentals of T Drientation, (Stress a in MEMS, Optical M Tota	ye Mo ER ar d Mod 9 Physica Mode 9 Theory, 9 Theory, 9 and Str 1EMS al (45I	0 del, tr nd Milels, H eling, 0 al Pheeling, 0 The 0 rain R Appli L) = 4	esting R Flui Pre-Yi O enome Con Intrir O telatic cation	9 of ids: eld 9 ma, trol 9 nsic 9 ns, ns. riod									

1.	Smart Materials and Structures - M. V. Gandhi and B. So Thompson, Chapman and Hall, London; New York, 1992 (ISBN: 0412370107).
2.	Smart Structures and Materials - B. Culshaw, Artech House, Boston, 1996 (ISBN :0890066817). 3. Smart Structures: Analysis and Design - A. V. Srinivasan, Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267).
REFEF	RENCES:
1.	Electro ceramics: Materials, Properties and Applications - A. J. Moulson and J. M. Herbert. John Wiley &Sons, ISBN: 0471497429
2.	Piezoelectric Sensories: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors. Materials and Amplifiers, Springer, Berlin; New York, 2002 (ISBN: 3540422595).

3.	Piezoelectric Actuators and Transonic Motors - K. Uchino, Kluwer Academic Publishers, Boston, 1997 (ISBN: 0792398114).
4.	Handbook of Giant Magneto strictive Materials - G. Engdahl, Academic Press, San Diego, Calif.; London, 2000 (ISBN: 012238640X).
5.	Shape Memory Materials - K. Otsuka and C. M. Wayman, Cambridge University Press, Cambridge; New York, 199~ (ISBN: 052144487X).

COURS Upon co	COURSE OUTCOMES: Upon completion of this course, the students will be able to:					
C01	Understand the behavior and applicability of various smart materials	Understand				
<i>CO2</i>	Design simple models for smart structures & materials	Create				
СОЗ	Perform simulations of smart structures & materials application	Analyse				
<i>CO</i> 4	Conduct experiments to verify the predictions	Analyze				

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO2	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO3	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO4	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
Avg	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
				3/2/1	- ind	icates	stren	gth of	correl	ation (3	– high,	2- med	ium, 1- l	ow)	

PREF		HO209 DESIGN OF PRESSURE VESSELS					
	REQUISI	res	CATEGORY	PE	Cr	edit	3
			Hours/Wook	L	Т	Р	TE
			Hours/ week	3	0	0	3
COU	RSE OBJ	ECTIVES:					
1.	To study	about the various types of stresses act in the pressure vessels					
2.	To design	n components of pressure vessel using codes and standards.					
3.	To study	the design the supportive members of pressure vessels.					
4.	To study	about design considerations of pressure vessels.					
5	To study	about the design of pipes related to design of pressure vessels.					
UNI	ΊΤΙ	STRESSES IN PRESSURE VESSELS		9	0	0	9
with dual Piezo	Actuators	ann Kate effects, inchworm Linear Motor Beam Modeling with in , Pure Extension, Pure Bending harmonic excitation, Be Applications.	nucea strain Actuat rnoulli-Euler beam	ion-sin Mod	igie A el, p	roble	ors, ms,
UNI	IT II	DESIGN OF VESSELS USING CODES		9	0	0	9
and	Spherical)	and end closures. Bending of circular plates and determination	on of stresses in si	(Cylind mply a	lrical, suppo	rted a	ical and
clam Exce reinf	Spherical) ped circula essive elast forcement li	and end closures. Bending of circular plates and determination ar plate. Thermal stresses, Stress concentration in plate having tic deformation, Plastic instability, Brittle rupture and cree mits, design of composite analysis, wind and seismic load consid	on of stresses in si g circular hole due p. Theory of reim eration in the design	to bi- forced	lrical, suppo axial open ssure	rted loadi ing vesse	ical and ing, and l.
clam Exce reinf	Spherical) ped circula essive elast forcement li	and end closures. Bending of circular plates and determination ar plate. Thermal stresses, Stress concentration in plate having the deformation, Plastic instability, Brittle rupture and cree mits, design of composite analysis, wind and seismic load consid SUPPORTS FOR VERTICAL & HORIZONTAL VES	on of stresses in si g circular hole due p. Theory of reim eration in the design	(Cylind mply = to bi- forced of pre 9	drical, suppo axial open ssure 0	Cont rted a loadi ing a vesse 0	ical and ing, and l. 9
clam Exce reinf UNI Intro code	Spherical) ped circula sorcement li CT III duction to s; Supports el; Design o	and end closures. Bending of circular plates and determination ar plate. Thermal stresses, Stress concentration in plate having the deformation, Plastic instability, Brittle rupture and cree- mits, design of composite analysis, wind and seismic load consid SUPPORTS FOR VERTICAL & HORIZONTAL VES ASME codes for pressure vessel design, Pressure vessel and re- traction for short vertical vessels, Stress concentration at a variable this of nozzles.	on of stresses in si g circular hole due p. Theory of reini eration in the design SELS elated components' ckness transition sec	to bi- forced of pre 9 design ction in	Irical, suppo axial open ssure 0 using a cy	contred a loadi ing a vesse 0	ical and ing, and il. 9 ME ical
clam Exce reinf UNI Intro code vesse UNI	Spherical) ped circula sssive elast forcement li c T III duction to s; Supports el; Design c T IV	and end closures. Bending of circular plates and determination ar plate. Thermal stresses, Stress concentration in plate having tic deformation, Plastic instability, Brittle rupture and cree mits, design of composite analysis, wind and seismic load consid SUPPORTS FOR VERTICAL & HORIZONTAL VES ASME codes for pressure vessel design, Pressure vessel and re- for short vertical vessels, Stress concentration at a variable thi of nozzles. OTHER DESIGN CONSIDERATIONS	on of stresses in si g circular hole due p. Theory of reim eration in the design SELS elated components' ckness transition sec	(Cylind mply = to bi- forced of pre 9 design ction in	Irical, suppo axial open ssure 0 using n a cy 0	Contred a loadi loadi ing a vesse 0 g ASI dindri	ical and ing, and il. 9 ME ical
clam Exce reinf UNI Intro code vesse UNI Buck cylin stiffe temp resist	Spherical) ped circula ssive elast orcement li T III duction to s; Supports el; Design of T IV cling pheno ders or tub eners, and perature, irr tant to exter	and end closures. Bending of circular plates and determination ar plate. Thermal stresses, Stress concentration in plate having the deformation, Plastic instability, Brittle rupture and cree- mits, design of composite analysis, wind and seismic load consid SUPPORTS FOR VERTICAL & HORIZONTAL VES ASME codes for pressure vessel design, Pressure vessel and re- for short vertical vessels, Stress concentration at a variable thi of nozzles. OTHER DESIGN CONSIDERATIONS menon, Elastic Buckling of circular ring and cylinders under ex- es under external pressure, Effect of supports on Elastic Buckling buckling under combined External pressure and Axial loadir adiation, corrosion, and other hostile environments; High strengt rnal high pressures found in undersea exploration, offshore drilling	spincation to shens on of stresses in si g circular hole due p. Theory of rein- eration in the design SELS elated components' ckness transition sec ternal pressure, Coli g of Cylinders, Desi g. Fatigue, shock, h, light weight pres g, and mineral mini	(Cylind mply : to bi- forced of pre 9 design ction in apse o gn of c high p sure ve ng.	lrical, suppo axial open ssure 0 using n a cy 0 f thic pressu pressu	Contred a loadi ing a vesse 0 g ASI dindri di	ical and ing, and il. 9 ME ical 9 Iled tial igh sels
clam Exce reinf UNI Intro code vessa UNI Buck cylin stiffe temp resist	Spherical) ped circula sssive elast forcement li torcement li duction to s; Supports el; Design of t T IV cling pheno iders or tub eners, and berature, irration tant to exter t T V	 and end closures. Bending of circular plates and determination of the plate in the state of the plate in the state of the plate in the state of the plate. Thermal stresses, Stress concentration in plate having the deformation, Plastic instability, Brittle rupture and cree mits, design of composite analysis, wind and seismic load conside SUPPORTS FOR VERTICAL & HORIZONTAL VES ASME codes for pressure vessel design, Pressure vessel and rest for short vertical vessels, Stress concentration at a variable this of nozzles. OTHER DESIGN CONSIDERATIONS menon, Elastic Buckling of circular ring and cylinders under external pressure, Effect of supports on Elastic Buckling buckling under combined External pressure and Axial loadir adiation, corrosion, and other hostile environments; High strengt rnal high pressures found in undersea exploration, offshore drillin PIPING DESIGN 	ternal pressure, Coli g of Cylinders, Desi g, and mineral mini	(Cylind mply = 100 mply	<pre>lrical, suppo axial open ssure 0 using n a cy 0 f thic ircum pressu essels, 0</pre>	Contred a loadi ing a vesse 0 g ASI dindri di k-wal feren ure, h Vess 0 g 0 k-wal feren ure, h vess 0 0 k-wal n feren ure, h vess 0 0 k-wal n feren ure, h vess 0 0 k-wal n feren ure, h vess 0 k-wal	ical and ing, and il. 9 ME ical 9 Iled tial igh sels 9
clam Exce reinf UNI Intro code vessa UNI Buck cylin stiffe temp resist UNI Flow pipin and t	Spherical) ped circula sssive elast orcement li T III duction to s; Supports el; Design of T IV ding pheno ders or tub eners, and perature, irr tant to exter T V diagram, ag system a their behavi	 and end closures. Bending of circular plates and determination of the plate is a serie of the plate is the plate. Thermal stresses, Stress concentration in plate having the deformation, Plastic instability, Brittle rupture and cree mits, design of composite analysis, wind and seismic load conside SUPPORTS FOR VERTICAL & HORIZONTAL VES ASME codes for pressure vessel design, Pressure vessel and rest for short vertical vessels, Stress concentration at a variable this of nozzles. OTHER DESIGN CONSIDERATIONS menon, Elastic Buckling of circular ring and cylinders under extension under combined External pressure and Axial loadir adiation, corrosion, and other hostile environments; High strengt rula high pressures found in undersea exploration, offshore drilling PIPING DESIGN Piping layout and piping stress analysis; Flexibility factor and s per B31.1 piping code. Piping components - bends, tees, bello or; Introduction to piping Codes and Standards. 	spincation to shens on of stresses in si g circular hole due p. Theory of rein eration in the design SELS elated components' ckness transition sec ternal pressure, Col g of Cylinders, Desi g. Fatigue, shock, h, light weight pres g, and mineral mini stress intensification ws and valves. Typ	(Cylind mply : to bi- forced of pre 9 design ction in 9 lapse o gn of c high j sure ve ng. 9 on fact es of p	 drical, supported axial open ssure 0 using a cy 0 f thick incomposed as a cy 0 f thick incomposed as a cy o a cy a cy	Contred a loadi ing a vesse 0 g ASI dindri g ASI dindri the set of the set	ical and ing, and i. 9 ME ical 9 Iled tial igh sels 9 Of orts

TEXT BOOKS:						
1.	Dennis Moss "Pressure Vessel Design Manual"					
2.	Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors.					

REFE	REFERENCES:						
1.	Harvey J F, "Pressure vessel design", CBS, publication.						
2.	Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India.						
3.	Stanley M Wales, "Chemical Process Equipment, Selection and Design", Butterworths,						
4.	Series in Chemical Engineering, 1988. 6. J. Phillip Ellenberger "Pressure Vessels: ASME Code Simplified".						
5.	"ASME Pressure Vessel and Boiler Code", Section VIII Div. 1, 2, and 3.						
6.	"American standard code for pressure piping", B 31.1.						
7.	Smith P, "Fundamentals of Piping Design", Elsevier.						

COUR Upon d	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Determine stresses in pressure vessels	Evaluate					
<i>CO2</i>	Design pressure vessels using ASME codes	Create					
СО3	Design support members of pressure vessels	Create					
<i>CO4</i>	Apply other design considerations for pressure vessels	Apply					
<i>C05</i>	Design of pressurized fluid piping	Create					

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	2	0	0	0	0	0	0	0	0	3	3	0
CO2	2	3	3	3	0	0	0	0	0	0	0	0	3	3	0
CO3	2	3	3	3	0	0	0	0	0	0	0	0	3	3	0
CO4	3	1	1	1	0	0	0	0	0	0	0	0	3	3	0
CO5	2	3	3	3	0	0	0	0	0	0	0	0	3	3	0
Avg	2	2.4	2.4	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3	3	0.0
				3/2/1	- ind	icates	stren	gth of	correl	ation (3	– high,	2- med	ium, 1- le	ow)	

18MEH	O210	MECHANICAL VIBRATIONS					
REREC	EQUISITES CATEGORY P					edit	3
			Hours/Week	ek <u>L T</u> <u>3</u> 0		Р	TF
			Hours/ Week			0	3
COURSE	E OBJ	IECTIVES:					
1.	To u	nderstand the Fundamentals of Vibration and its practical application	s.				
2.	To u	nderstand the characteristics of free and forced vibration.					
3.	To u	nderstand the Single and Multi DOF of vibration system.					
4.	To u	nderstand the working principle and operations of various vibration r	neasuring instrumen	ts			
5	To u	nderstand about the vibration analysis methods.					
UNIT I		FUNDAMENTALS OF VIBRATIONS		9	0	0	9
– periodi	ic, non	-periodic, harmonic, non-harmonic. Degree of freedom, static equili	brium position, vib	ation	classi	ficatio	on –
steps inv	olved i	in vibration analysis.		1	1	1	1
steps inv UNIT I Free und formulati damped, damping	damped ion of critica	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's illy damped, over damped – logarithmic decrement – Coulomb's da	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi	9 stem - mped scous	0 - Me systen and c	0 thods n – ur coulon	9 for nder nb's
steps inv UNIT I Free und formulati damped, damping UNIT I Forced S motion e	damped damped ion of d critica s. II Single 1	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's illy damped, over damped – logarithmic decrement – Coulomb's da FORCED VIBRATION OF SINGLE DEGREE OF FREE DOF system – Analysis of linear and torsional systems subjected to on (excluding elastic damper) – vibration isolation – force transmis	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi DOM SYSTEMS harmonic force exc sibility – motion tr	9 mped scous 9 citation	0 - Me systen and c 0 n and	0 thods n – un coulon 0 harmo	9 for nder nb's 9 onic
steps inv UNIT I Free und formulati damped, damping UNIT I Forced S motion e isolators	damped ion of a critica g. II Single I excitati & mou	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's illy damped, over damped – logarithmic decrement – Coulomb's da FORCED VIBRATION OF SINGLE DEGREE OF FREE DOF system – Analysis of linear and torsional systems subjected to on (excluding elastic damper) – vibration isolation – force transmis unts – Rotor dynamics, critical speed of single rotor, undamped and d	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi DOM SYSTEMS harmonic force exc sibility – motion tra lamped.	9 mped scous 9 citation ansmis	0 - Me systen and c 0 n and sibilit	0 thods m – un coulon 0 harmory, typ	9forndernb's9oniconiconic
steps inv UNIT I Free und formulati damped, damping UNIT I Forced S motion e isolators UNIT I	damped ion of a critica critica s. II Single J excitati & mot V	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's illy damped, over damped – logarithmic decrement – Coulomb's da FORCED VIBRATION OF SINGLE DEGREE OF FREE DOF system – Analysis of linear and torsional systems subjected to on (excluding elastic damper) – vibration isolation – force transmis unts – Rotor dynamics, critical speed of single rotor, undamped and d VIBRATION OF MULTI DEGREE OF FREEDOM SYST	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi DOM SYSTEMS harmonic force exc sibility – motion tra lamped. EMS	9 mped scous 9 citation msmis 9	0 - Me system and c 0 n and sibilit	0 thods n – un coulon 0 harmo y, typ	 9 for nder nb's 9 onic pical 9
steps inv UNIT I Free und formulati damped, damping UNIT I Forced S motion e isolators UNIT I Free und Matrix an method f	I damped ion of critica critica critica critica s. II Single I excitati & mou V lamped nd Stiff for line for tran	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's lly damped, over damped – logarithmic decrement – Coulomb's da FORCED VIBRATION OF SINGLE DEGREE OF FREE DOF system – Analysis of linear and torsional systems subjected to on (excluding elastic damper) – vibration isolation – force transmis unts – Rotor dynamics, critical speed of single rotor, undamped and de VIBRATION OF MULTI DEGREE OF FREEDOM SYST 1 Multi Degree of Freedom vibration system – Influence Coefficie finess Matrix - Eigen values and Eigen vectors for linear system and ear and torsional unbalanced system; Two rotors, three rotors and ge isverse vibratory system.	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi DOM SYSTEMS harmonic force exc sibility – motion tra amped. TEMS nts and stiffness co torsional two degre ared system; Dunke	9 mped scous 9 citation msmis 9 efficie e of fi rley's	0 - Me syster and c 0 n and sibilit 0 ents- I reedor and R	0 thods n – un coulon harmo y, typ 0 Flexib n; Ho cayleig	 9 for nder nb's 9 onic onic oical 9 illity ilzer gh's
steps inv UNIT I Free und formulati damped, damping UNIT I Forced S motion e isolators UNIT I Free und Matrix ai method f method f	rolved i I dampedion of formation of	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's lly damped, over damped – logarithmic decrement – Coulomb's da FORCED VIBRATION OF SINGLE DEGREE OF FREED DOF system – Analysis of linear and torsional systems subjected to on (excluding elastic damper) – vibration isolation – force transmis unts – Rotor dynamics, critical speed of single rotor, undamped and de VIBRATION OF MULTI DEGREE OF FREEDOM SYST 1 Multi Degree of Freedom vibration system – Influence Coefficie finess Matrix - Eigen values and Eigen vectors for linear system and ear and torsional unbalanced system; Two rotors, three rotors and ge isverse vibratory system. VIBRATION MEASURING INSTRUMENTS ANI ANALYSIS	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi DOM SYSTEMS harmonic force exc sibility – motion tra lamped. TEMS nts and stiffness co torsional two degre ared system; Dunke	9 mped scous 9 citation msmis 9 efficie e of fi rley's 8	0 - Me syster and c 0 n and sibilit 0 ents- I reedor and R 0	0 thods n – un coulon harmo y, typ 0 Flexib n; Ho cayleig 0	9forndernb's9oniconical9illitydzergh's9
steps inv UNIT I Free und formulati damped, damping UNIT I Forced S motion e isolators UNIT I Free und Matrix an method f UNIT V Vibration of Senso Frequence shapes.	rolved i I dampedion of critica ion of for g. II Single I excitati & moutor V damped for line for line for line for rand V n Anal prs- Ac cy Mea	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's lly damped, over damped – logarithmic decrement – Coulomb's da FORCED VIBRATION OF SINGLE DEGREE OF FREED DOF system – Analysis of linear and torsional systems subjected to on (excluding elastic damper) – vibration isolation – force transmis unts – Rotor dynamics, critical speed of single rotor, undamped and de VIBRATION OF MULTI DEGREE OF FREEDOM SYST d Multi Degree of Freedom vibration system – Influence Coefficie finess Matrix - Eigen values and Eigen vectors for linear system and ear and torsional unbalanced system; Two rotors, three rotors and ge isverse vibratory system. VIBRATION MEASURING INSTRUMENTS ANI ANALYSIS ysis Overview - Experimental Methods in Vibration AnalysisVib celerometer MountingsVibration Exciters-Mechanical, Hydraulic, asuring Instruments System Identification from Frequency Resp	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi DOM SYSTEMS harmonic force exc sibility – motion tra amped. TEMS nts and stiffness co torsional two degre ared system; Dunke D VIBRATION ration Measuring In Electromagnetic ar onse -Testing for	9 mped scous 9 citation msmis 9 efficie e of fi rley's 9 strume ad Eler resona	0 - Me system and c 0 - and sibilit 0 - and sibilit 0 - and R - and sibilit 0 - and sibilit	0 thods n – un coulon harme y, typ 0 Flexib n; Ho cayleig 0 Selec namin	 9 for nder nder nb's 9 onic onic onic onic onic onic onic onic
steps inv UNIT I Free und formulati damped, damping UNIT I Forced S motion e isolators UNIT I Free und Matrix ai method f UNIT V Vibration of Senso Frequence shapes.	I damped ion of critica crica critica crica critica critica critica critica critica critica cr	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDO d single DOF vibration system – Longitudinal, transverse, tors differential equations by newton, energy, lagrangian and Rayleigh's illy damped, over damped – logarithmic decrement – Coulomb's da FORCED VIBRATION OF SINGLE DEGREE OF FREED DOF system – Analysis of linear and torsional systems subjected to on (excluding elastic damper) – vibration isolation – force transmis unts – Rotor dynamics, critical speed of single rotor, undamped and d VIBRATION OF MULTI DEGREE OF FREEDOM SYST 1 Multi Degree of Freedom vibration system – Influence Coefficie finess Matrix - Eigen values and Eigen vectors for linear system and ear and torsional unbalanced system; Two rotors, three rotors and ge sverse vibratory system. VIBRATION MEASURING INSTRUMENTS ANI ANALYSIS ysis Overview - Experimental Methods in Vibration AnalysisVib celerometer MountingsVibration Exciters-Mechanical, Hydraulic, asuring Instruments System Identification from Frequency Resp	M SYSTEMS ional vibration sys method. Viscous da mping; combined vi DOM SYSTEMS harmonic force exc sibility – motion tra amped. EMS nts and stiffness co torsional two degre ared system; Dunke D VIBRATION ration Measuring In Electromagnetic ar onse -Testing for Tota	9 mped scous 9 citation unsmis 9 efficie e of fin rley's 9 strumo d Elear resona 1 (451	0 - Me system and c 0 n and sibilit 0 ents- I reedon and R 0 ents - ctrody ince a	0 thods n – un coulon harmo y, typ 0 Flexib n; Ho cayleis 0 Selec namio und m	9forndernb's9onicoical9illityolzergh's9ctioncs -noderiode

IEXI BOC	EAT BUUNS:							
1.	Mechanical Vibration by V.P.Singh							
2.	Singiresu S. Rao, "Mechanical Vibrations", Pearson Education Incorporated, 2017.							

REFERE	NCES:
1.	Benson H. Tongue, "Principles of Vibrations", Oxford University, 2007.
2.	Grover. G.K., edited by Nigam. S. P., "Mechanical Vibrations", Nem Chand and Bros., 2014.
3.	David A. Bies and Colin H. Hansen, "Engineering Noise Control – Theory and Practice", Spon Press, 2009.
4.	Julian Happian-Smith – "An Introduction to Modern Vehicle Design", Butterworth-Heinemann, 2001.
5.	William T. Thomson, "Theory of Vibration with Applications", Taylor and Francis, 2003.
6.	Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009
7.	Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 2009
8.	NPTEL :: Mechanical Engineering - NOC:Introduction to Mechanical Vibration

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Determine stresses in pressure vessels	Evaluate						
<i>CO2</i>	Design pressure vessels using ASME codes	Create						
СО3	Design support members of pressure vessels	Create						
<i>CO4</i>	Apply other design considerations for pressure vessels	Apply						
<i>C05</i>	Design of pressurized fluid piping	Create						

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	0	0	0	0	0	0	0	0	2	2	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO3	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO5	1	1	2	2	0	0	0	0	0	0	0	0	2	2	0
Avg	2.2	2.4	2	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	2	0.0
				3/2/1 -	– indio	cates s	strengt	th of co	orrelat	ion (3 –	high, 2	- mediu	m, 1- low)	

VERTICALS -3 PRODUCT AND PROCESS DEVELOPMENT

	IO301	PRECISION ENGINEERING										
PRERE	QUIS	TES	CATEGORY	PE	E Credit		3					
			House/Wools	L	Т	Р	TH					
			nours/ week	3	0	0	3					
COURS	E OBJ	ECTIVES:										
1. E	Explain	the need and progress of precision engineering.										
2. T	2. To know about the principle and working of different methods of precision machining.											
3. T	o unde	rstand about micromachining.										
4. T	o know	about Laser devices and machine vision.										
5. T	To unde	rstand about SEM and 3D surface topography.										
UNI	ΤI	INTRODUCTION		9	0	0	9					
Introduc – Norma	ction to al, Prec	Precision Engineering, Need for precision manufacturing, Four Cl sion, High-precision, Ultraprecision Processes and Nanotechnolog	asses of Achievabl y	e Macl	nining	g Acc	uracy					
UNI	TII	PRECISION MACHINING		9	0	0	9					
Overviev micro-gr	w of N rinding,	ficro- and Nano-machining, Conventional micro machining tec Ultra-precision diamond turning, SPDT Single point diamond turn	hniques - micro t ning.	urning	, mic	ro-mi	lling					
UNIT	ΓIII	MICRO MACHINING		9	0	0	9					
Micro e microma	electric: achining	al discharge machining, Photochemical machining, Electro og, Electron beam micromachining, Focused Ion Beam micromachin	chemical micromaning, etc	chinin	g, La	aser	beam					
UNIT	ΓIV	LASER AND OPTICS		9	0	0	9					
	1 . •											
Micro e microma	achining	al discharge machining, Photochemical machining, Electro og, Electron beam micromachining, Focused Ion Beam micromachin	chemical microma	chinin	g, La	aser	beam					
Micro e microma	electric achining T V	al discharge machining, Photochemical machining, Electro o g, Electron beam micromachining, Focused Ion Beam micromachin MEASUREMENT AND CHARACTERISATION	chemical microma iing.	chinin	g, La 0	aser 0	beam 9					

ТЕХТ В	OOKS:
1.	Jain, V.K., Introduction to micromachining, Narosa publishers, 2018
2.	Venktesh V.C., Sudin Izman, Precision Engineering, Tata Mc.Graw Hill Publishing Company, New Delhi 2007.
REFERI	ENCES:
1.	David Dornfeld, Dae-Eun Lee, Precision Manufacturing, Springer, 2008
2.	Kevin Harding, "Handbook of Optical Dimensional Metrology, Series: Series in Optics and optoelectronics", Taylor & Francis, 2013
3.	Murty, R.L., Precision Engineering in Manufacturing, New Age publishers, 2005.

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Impart knowledge progress of precision engineering	Understand						
<i>CO2</i>	Identify principle and working of different methods of precision machining	Understand						
СОЗ	Apply knowledge on micromachining	Apply						
<i>CO4</i>	Define the uses of Laser devices and machine vision	Remember						
<i>CO</i> 5	Apply knowledge on Surface metrology	Apply						

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	1	0	0	1	0	0	0	0	2	1	2	2
CO2	1	3	1	1	0	0	1	0	0	0	0	2	0	1	1
CO3	3	3	1	1	2	0	1	0	0	0	0	3	0	1	3
CO4	3	2	1	2	2	0	1	0	0	0	0	3	2	1	3
CO5	2	3	0	3	1	0	1	0	0	0	0	3	0	1	2
Avg	2.2	2.6	0.6	1.6	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.6	0.6	1.2	2.2
	-	•		3/2/1 -	– indio	cates s	strengt	h of co	orrelat	ion (3 –	high, 2	- mediui	n, 1- low)	

18MEH	HO302	ADVANCED MATERIALS TECHNOLOGY				
PRERE	EQUISI	ITES CATEGORY	PE	Cr	edit	3
		Hours/Wesk	L	Т	Р	TE
		Hours/ week	3	0	0	3
COURS	SE OBJ	IECTIVES:				
1. To	o underst	tand knowledge of crack and failure of metals				
2. To	o know	different types of coatings				
3. Ap	apply know	owledge of composites				
4. To	o underst	tand properties of modern alloys				
5. To	o know a	about advanced aerospace alloys				
UNIT	ΤI	REVIEW OF MECHANICAL BEHAVIOUR OF MATERIALS	9	0	0	9
durate la t	tractures	s- damping property of materials- fracture toughness –initiation and propagation of fa	atigue c	cracks	s - Cr	eep
uctile i mechani UNIT	nism –Hy F II	ydrogen embrittlement of metals SURFACE MODIFICATION OF MATERIALS	9	0	0	9
UNIT Mechani implanta Diamone	hism –Hy F II hical sur- tation- d nd coatin	ydrogen embrittlement of metals SURFACE MODIFICATION OF MATERIALS face treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels	9 pour d ind org	0 eposi anic	0 tion – coatin	9 Ion .g –
UNIT Mechani implanta Diamono UNIT	hism –Hy Γ II nical sur- tation- di nd coatin Γ III	ydrogen embrittlement of metals SURFACE MODIFICATION OF MATERIALS face treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels ADVANCED HEAT TREATMENT OF MATERIALS	9 pour d ind org 9	0 eposi anic 0	0 tion – coatin 0	9 Ion 1g – 9
UNIT Mechani implanta Diamon UNIT Compos	hism –Hy F II nical sur- tation- d nd coatin F III site- Typ	ydrogen embrittlement of metals SURFACE MODIFICATION OF MATERIALS face treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels ADVANCED HEAT TREATMENT OF MATERIALS pes- Natural composites- Metal matrix composites- Ceramic matrix composites- Appl	9 pour d nd org 9 ication	0 eposi anic 0 s	0 tion – coatin 0	9 -Ion -Ion
UNIT Mechani implanta Diamond UNIT Compos UNIT	nism –Hy F II nical sur tation- d nd coatin F III site- Typ F IV	ydrogen embrittlement of metals SURFACE MODIFICATION OF MATERIALS rface treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels ADVANCED HEAT TREATMENT OF MATERIALS pes- Natural composites- Metal matrix composites- Ceramic matrix composites- Appl MODERN MATERIALS AND ALLOYS	9 pour d nd org 9 ication 9	0 eposi anic 0 s 0	0 tion – coatin 0	9 -Ion g - 9 9
UNIT Mechani implanta Diamono UNIT Compos UNIT Super al refractor	nism –Hy F II nical sur- tation- d nd coatin F III site- Typ F IV alloys Ha pries, Sili	surface mobilitement of metals SURFACE MODIFICATION OF MATERIALS rface treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels ADVANCED HEAT TREATMENT OF MATERIALS pes- Natural composites- Metal matrix composites- Ceramic matrix composites- Appl MODERN MATERIALS AND ALLOYS rastelloy, Inconel, Invar, and Monel and uses.–Refractory materials - Fireclay refractica brick, Magnesite refractories	9 pour d nd org 9 ication 9 ctories.	0 eposi anic 0 s 0 High	0 tion – coatin 0 0 alum	9 Ion g – 9 9 nina
UNIT Mechani implanta Diamono UNIT Compos UNIT Super al refractor Ceramic Alumini	hism –Hy F II hical sur- tation- d- hd coatin F III site- Typ F IV alloys Ha bries, Sili c and the hium-Nic	surface mobilitement of metals SURFACE MODIFICATION OF MATERIALS face treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels ADVANCED HEAT TREATMENT OF MATERIALS pes- Natural composites- Metal matrix composites- Ceramic matrix composites- Appl MODERN MATERIALS AND ALLOYS astelloy, Inconel, Invar, and Monel and uses.–Refractory materials - Fireclay refractica brick, Magnesite refractories eir applications - Low melting alloys Mercury, Cadmium, Zinc, Lead– Shape memockel and Nickel -Titanium	9 pour d nd org 9 ication 9 ctories.	0 eposi anic 0 s 0 High	0 tion – coatin 0 0 alum Coppe	9 Ion 19 9 iina er –
UNIT Mechani implanta Diamona UNIT Compos UNIT Super al refractor Ceramic Alumini	hism –Hy F II hical sur- tation- d hd coatin F III site- Typ F IV hlloys Ha ories, Sili c and the hium-Nic F V	surface mobilitement of metals SURFACE MODIFICATION OF MATERIALS face treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels ADVANCED HEAT TREATMENT OF MATERIALS pes- Natural composites- Metal matrix composites- Ceramic matrix composites- Appl MODERN MATERIALS AND ALLOYS astelloy, Inconel, Invar, and Monel and uses.–Refractory materials - Fireclay refractica brick, Magnesite refractories eir applications - Low melting alloys Mercury, Cadmium, Zinc, Lead– Shape memockel and Nickel -Titanium APPLICATION OF ADVANCED MATERIALS	9pour dnd org9ication9ictories.ory allo9	0 eposi anic s 0 s 0 High oys - 0	0 tion – coatin 0 alum Coppo	9 Ion 1g - 9 iina er - 9
UNIT Mechani implanta Diamono UNIT Compos UNIT Super al refractor Ceramic Alumini UNIT Ti and N Newer m AH36, I	nism –Hy F II nical sur- tation- d nd coatin F III site- Typ F IV alloys Ha ories, Sili c and the nium-Nic F V Ni based material DH36, a	surface modification of metals surface treatment and coating –Case hardening and hard facing –thermal spraying –Va liffusion coating –electroplating and electroforming –conversion coating –Ceramic a ng – Advanced surface modification of steels ADVANCED HEAT TREATMENT OF MATERIALS pes- Natural composites- Metal matrix composites- Ceramic matrix composites- Appl MODERN MATERIALS AND ALLOYS astelloy, Inconel, Invar, and Monel and uses.–Refractory materials - Fireclay refractica brick, Magnesite refractories eir applications - Low melting alloys Mercury, Cadmium, Zinc, Lead– Shape memockel and Nickel -Titanium APPLICATION OF ADVANCED MATERIALS d alloys for gas turbine applications –Maraging (Low carbon and high Nickel) ard s and their treatment for automobile applications – Materials for aerospace (AL606 and EH36)and nuclear systems	9 pour d nd org 9 ication 9 ctories. ory allo 9 nd cryo 1,AL 7	0 eposi anic 0 s 0 High oys - 0 0 genic 7075).	0 tion – coatin 0 alum Coppo 0 steel Mari	9 Ion g - 9 9 iina er - 9 is - ine(

ТЕХТ В	OOKS:
1.	Dowling, "Mechanical Behaviour Of Materials, Engineering Method Of Determination, Fracture", Mcgraw Hill, 1999
2.	Dieter, 'Engineering Design, A materials And Processing Approach'', Third Edition, Mcgraw Hill, 1999
REFERI	ENCES:
1.	P.Rama Rao, "Advances In Materials And Their Applications", Willey Eastern Ltd., 1993.
2.	Serope Kalpakjian, "Manufacturing Engineering And Technology' Third Edition, Addison Wisley Publishing Co.,1995.

3.	Kennith G .Budinski, "Surface Engineering For Wear Resistance", Prentice Hall, 1998.
4.	Dieter, ''Mechanical Metallurgy' 'Mcgraw Hill, 1989
5.	D.R.Gabe, 'Principles Of Metal Surface Treatment And Protection', Pergamon Press1978.

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:								
C01	Impartknowledge of crack and failure of metals	Understand							
<i>CO2</i>	Identify the different types of coatings	Understand							
СО3	Applyknowledge of composites	Apply							
<i>CO4</i>	Define the properties of modern alloys	Remember							
<i>CO</i> 5	Provide information of advanced aerospace alloys	Remember							

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	1	0	0	1	0	0	0	0	2	1	2	2
CO2	1	3	1	1	0	0	1	0	0	0	0	2	0	1	1
CO3	3	3	1	1	2	0	1	0	0	0	0	3	0	1	3
CO4	3	2	1	2	2	0	1	0	0	0	0	3	2	1	3
CO5	2	3	0	3	1	0	1	0	0	0	0	3	0	1	2
Avg	2.2	2.6	0.6	1.6	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.6	0.6	1.2	2.2
	-	•		3/2/1	– indi	cates s	strengt	h of co	orrelat	ion (3 –	high, 2	- mediu	n, 1- low)	

18M	EHO303	ADDITIVE MANUFACTURING					
PREREQUISITES CATEGORY							3
1. M	anufacturii	L	Т	Р	ΤН		
2. En	gineering l	Materials	Hours/ week	3	0	0	3
COUI	RSE OBJ	ECTIVES:					
1.	To introdu	ace the development of Additive Manufacturing (AM), various bu	siness opportunities	and ap	plicat	tions	
2.	To familia developmo	rize various software tools, processes and techniques to create phy ent / prototyping requirements, using AM.	vsical objects that sa	tisfy p	roduc	t	
3.	To be acqu	aainted with vat polymerization and material extrusion processes.					
4.	To be fam	iliar with powder bed fusion and direct energy deposition.					
5.	To gain kr	nowledge on applications of binder jetting, material jetting and lan	ninated object manuf	facturi	ng pro	ocess	es
UI	NIT I	INTRODUCTION		9	0	0	9
Rapio Print Propo	d Manufac ing-Bio Pr erty.	turing – Additive Manufacturing. AM Process Chain- Classifica inting- Food Printing-Printing Electronics. Business Opportuniti	tion – Benefits. App es and Future Direc	olications	ons: B - Inte	uildi llectu	ng 1al
UN		DESIGN FOR ADDITIVE MANUFACTURING (DFAN	VI)	9	0	U	9
Conc DFA Struc Appl	cepts and C M for Par cture Gene ications- C	Objectives- AM Unique Capabilities: Part Consolidation-Topology et Quality Improvement. Data Processing - CAD Model Prep- eration -Model Slicing - Tool Path Generation-Customized Case Studies.	7 Optimization Light aration -Part Orient Design and Fabric	t weigl ation ation	ht Stru and S for N	uctur Supp Medio	e - ort cal
UN	IT III	VAT POLYMERIZATION AND MATERIAL EXTRU	SION	9	0	0	9
Photo Digit Depo	o polymeri al Light P osition Moo	zation: Stereo lithography Apparatus (SLA)- Materials -Process - Processing (DLP) - Materials – Process - Advantages - Applica deling (FDM)- Process-Materials - Applications and Limitations.	Advantages Limitat tions. Extrusion Ba	ions- A sed Sy	Applie /stem:	cation : Fus	ıs. ed
UN	IT IV	POWDER BED FUSION AND DIRECT ENERGY DE	POSITION	9	0	0	9
Powe Typie Proce Bean	der Bed Fr cal Materia ess - Advar n Depositio	usion: Selective Laser Sintering (SLS): Process – Powder Fusi als and Application. Selective Laser Melting (SLM) and Electro ntages and Applications. on Process: Laser Engineered Net Shaping (LENS)- Process -M	on Mechanism –Pro on Beam Melting (l aterial Delivery - Pr	EBM):	Param Mate Paran	neters erials neter	 s -
		OTHED ADDITIVE MANUEACTUDINC DOCCESS	rc.	0	Δ	0	0
Bind Mode Princ	Binder Jetting: Three -Dimensional Printing - Materials -Process - Benefits and Limitations. Material Jetting: Multi-jet Modeling- Materials - Process - Benefits. Sheet Lamination Process: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding – Thermal Bonding- Materials-Application and Limitation.						
			Total (4	51 \	<i>15</i> P	0	
			1 otal (43	э г) =	43 ľ	erio	us

ТЕХТ В	EXT BOOKS:								
1.	Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.								
2.	Ian Gibson, David W. Rosen and Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", 2nd edition, Springer., United States, 2015, ISBN13: 978-1493921126.								

REFER	ENCES:
1.	Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590.
2.	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN: 9783446425521.
3.	Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States, 2006, ISBN: 978-1-4614-9842-1.
4.	Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.
5.	Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead Publishing., United Kingdom, 2016, ISBN: 9780081004333.

COUR Upon c	Bloom Taxonomy Mapped	
<i>C01</i>	Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.	Remember
<i>CO2</i>	Acquire knowledge on process of transforming a concept into the final product in AM technology.	Understand
CO3	Elaborate the vat polymerization and material extrusion processes and its applications.	Apply
<i>CO4</i>	Acquire knowledge on process and applications of powder bed fusion and direct energy deposition.	Apply
<i>C05</i>	Evaluate the advantages, limitations, applications of binder jetting, material jetting and laminated object manufacturing processes.	Evaluate

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	0	0	0	0	0	1	2	0	1	0	2	1	1	1
CO2	2	1	1	1	1	0	2	1	0	1	0	2	1	2	1
CO3	2	1	0	0	0	0	1	0	0	1	0	2	1	1	1
CO4	2	1	0	0	0	0	1	0	0	1	0	2	1	1	1
CO5	2	1	0	0	0	0	1	0	0	1	0	2	1	1	1
Avg	2.0	0.8	0.2	0.2	0.2	0.0	1.2	0.6	0.0	1.0	0.0	2.0	1.0	1.2	1.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

18N	AEHO304	NON DESTRUCTIVE TESTING AND FAILURE	ANALYSIS				
PRI	EREQUIS	ITES	CATEGORY	PE	Cr	edit	3
			Harry (Wash	L	Т	Р	TH
			Hours/ week	3	0	0	3
COU	URSE OBJ	ECTIVES:					
1.	To develo quality in	p the fundamental knowledge about non-destructive and destruction and production engineering components.	active analysis, in o	order	to cor	ntrol	the
τ	U NIT I	INTRODUCTION AND SURFACE NDT		9	0	0	9
Nor Too dev	n destructiv ols, applicati velopers. Ma	e testing– Comparison with destructive testing, importance, sc ons and limitations. Liquid penetrant Inspection - Principles, pro- gnetic particle inspection - Principles, advantage and limitations.	ope and difficulties perties required for a	. Visu a good	al Ins pene	specti trant	on: and
U	NIT II	RADIOGRAPHY AND ACOUSTIC EMISSION		9	0	0	9
Rac app	diography- blications, lir	basic principle, electromagnetic radiation sources, radiogra nitations and safety. Acoustic emission testing- procedures and its	phic imaging, ins importance.	pectio	n tec	chniqu	ies,
U	NIT III	EDDY CURRENT AND ULTRASONIC TESTING		9	0	0	9
Edd insp	dy current te pection meth	sting – principle, application, limitation; Ultrasonic testing – basi ods, flaw characterization techniques, immersion testing, advanta	c properties of soun ge and limitations.	d bear	n, trai	nsduc	ers,
U	NIT IV	LEAK TESTING AND THERMOGRAPHY		9	0	0	9
Lea des	ak testing, H tructive testi	olography and Thermography – principles, procedures and applicant ng methods; Defects in casting, forging, rolling and welding.	ations; Comparison	and se	lectio	n of N	Non
U	JNIT V	FAILURE ANALYSIS METHODOLOGY		9	0	0	9
Fai inv	lure analysi estigation of	s methodology, tools and techniques of failure analysis, failure analysis; types of failure and techniques for failure analy	re data retrieval, _l vsis.	proced	ural s	steps	for
			Total (45L)	= 45	Perio	ods

TEXT I	BOOKS:
1.	Baldev Raj, "Practical Non-Destructive Testing", Narosa Publishing House, 1997.
2.	J. Prasad and C. G. K. Nair, Non-Destructive Test and Evaluation of Materials, Tata McGraw-Hill Education, 2nd edition (2011).
3.	Peter J Shull, "Nondestructive Evaluation- Theory, Techniques and Applications" Marcel Dekker, Inc, USA 2002, ISBN: 0-8247-8872-9.
REFER	ENCES:
1	George E Dieter, "Mechanical Metallurgy", McGraw Hill Book Company
2	B.Hull and V.John. "Non-Destructive Testing", McMillan
3	A.K Das, "Metallurgy of failure analysis", TMH, 1992

COUR	Bloom Taxonomy Manned	
Upon c	completion of this course, the students will be able to:	mapped
C01	Understand the concept of destructive and Non-destructive testing methods.	Understand
<i>CO2</i>	Explain the working principle and application of die penetrant test and magnetic particle inspection.	Remember
СОЗ	Understand the working principle of eddy current inspection, Ultrasonic testing and applications.	Understand
<i>CO4</i>	Apply radiographic techniques for testing and acoustic emission testing.	Apply
<i>C0</i> 5	Define tools and techniques of failure analysis, procedural steps for investigation of failure.	Remember

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	1	0	0	0	0	0	0	0	0	2	2	0
CO2	2	2	1	3	0	0	0	0	0	0	0	0	2	2	0
CO3	2	2	1	3	1	0	0	0	0	0	0	0	2	2	0
CO4	2	2	1	3	1	0	0	0	0	0	0	0	2	2	0
CO5	2	2	1	3	3	0	0	0	0	0	0	0	2	2	0
Avg	1.8	2	1	2.6	1	0	0	0	0	0	0	0	2	2	0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

18N	IEHO305	PRODUCT LIFE CYCLE MANAGEME	NT		-		
PRE	REQUIS	ITES	CATEGORY	GORY PE Cre			
			Harry (Weals	L	Т	Р	TH
			Hours/ week	3	0	0	3
COU	RSE OBJ	ECTIVES:				1	
1.	To study a	bout the history, concepts and terminology in PLM					
2.	To learn th	ne functions and features of PLM/PDM					
3.	To develo	p different modules offered in commercial PLM/PDM tools					
4.	To demon	strate PLM/PDM approaches for industrial applications					
5.	To use PL	M/PDM with legacy data bases, Coax& ERP systems					
τ	NIT I	HISTORY, CONCEPTS AND TERMINOLOGY OF PI	LM	9	0	0	9
(EDN Comr Mana	I), Product nerce (CPC gement, He	Data Management (PDM), Collaborative Product Definition Ma), Product Lifecycle Management (PLM). PLM/PDM Infrastructu terogeneous data sources and applications	nagement (cPDm) ure – Network and	, Colla Comm	borati iunica	ve Pr	oduc , Dat
U	NIT II	PLM/PDM FUNCTIONS AND FEATURES		9	0	0	9
User Mana transp	Functions gement, Pro port, data tra	– Data Vault and Document Management, Workflow and oduct Classification and Programme Management. Utility Function inslation, image services, system administration and application in	Process Managem ns – Communicatio tegration	ent, Pi n and I	roduc Notifie	t Str	n, dat
U.	NIT III	DETAILS OF MODULES IN A PDM/PLM SOFTWAR	E	9	0	0	9
Case Arena applic	studies bas , Oracle Ag ation - Brai	ed on top few commercial PLM/PDM tools – Teamcenter, Wir gile PLM and Autodesk VaultArchitecture of PLM software- se nd name to be removed	ndchill, ENOVIA, election criterion of	Aras P Softwa	LM, are fo	SAP r part	PLM ticula
U	NIT IV	ROLE OF PLM IN INDUSTRIES		9	0	0	9
Case strate; imple perfor	studies on F gy, PLM mentation, mance- pro	² LM selection and implementation (like auto, aero, electronic) - of feasibility study, change management for PLM, financial j ten step approach to PLM, benefits of PLM for-business, organ cess compliance and process automation	ther possible sector ustification of Pl isation, users, proc	s, PLM LM, ba luct or	l visic arriers servi	oning, s to ce, p	PLN PLN roces
U	NIT V	BASICS ON CUSTOMISATION/INTEGRATION OF I SOFTWARE	PDM/PLM	9	0	0	9
PLM	Customizat	ion, use of EAI technology (Middleware), Integration with legacy	data base, CAD, SI	LM and	I ERP		
			Total	(45L) :	= 45]	Perio	ods
	TROOM	•					
ТЕХ	L ROOK):					

2. Product Life Cycles and Product Management, Praeger Publishers Inc (27 March 1989)ISBN-10 : 0899303196 **REFERENCES:**

AnttiSaaksvuori and AnselmiImmonen, "Product Lifecycle Management", Springer Publisher, 2008 (3rd Edition) IvicaCrnkovic, Ulf Asklund and AnnitaPerssonDahlqvist, "Implementing and Integrating Product Data Management and Software Configuration Management", Artech House Publishers, 2003.

3.	J ohn Stark, "Global Product: Strategy, Product Lifecycle Management and the Billion Customer Question", Springer Publisher, 2007
4.	John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer Publisher, 2011 (2nd Edition).
5.	Michael Grieves, "Product Life Cycle Management", Tata McGraw Hill, 2006.

COUR Upon d	Bloom Taxonomy Mapped	
C01	Summarize the history, concepts and terminology of PLM	Remember
<i>CO2</i>	Develop the functions and features of PLM/PDM	Create
СО3	Discuss different modules offered in commercial PLM/PDM tools.	Evaluate
<i>CO4</i>	Interpret the implement PLM/PDM approaches for industrial applications.	Analyze
<i>CO5</i>	Integrate PLM/PDM with legacy data bases, cax& ERP systems	Analyze

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	0	0	0	0	0	0	0	2	2	1	1	0
CO2	1	1	0	0	0	0	0	0	0	0	2	2	1	1	0
CO3	1	1	0	0	1	0	0	0	0	0	2	2	1	1	0
CO4	1	1	0	0	2	0	0	0	2	0	2	2	1	1	0
CO5	1	1	0	0	3	0	0	0	2	0	2	2	1	1	0
Avg	1	1	0	0	1	0	0	0	0.8	0	2	2	1	1	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															

18MEHO306 ERGONOMICS IN DESIGN										
PRE	REQUIS	TTES CATEGORY	PE	Cr	edit	3				
		Home/Week	L	Т	Р	TH				
		Horus/ week	3	0	0	3				
COU	RSE OBJ	ECTIVES:								
1.	Accurately (ergonomi	v recognize and evaluate hazards (ergonomic in nature) Accurately recognize and eval c in nature) which are likely to cause occupational illnesses or injuries.	uate h	azard	5					
2.	To introdu	ce students about the essentials of Static and dynamic anthropometry and Posture and	job re	elation	l					
3.	Apply the	knowledge, skills, and abilities obtained in through subject into an industrial based pr	oblem	•						
U	UNIT I INTRODUCING ERGONOMICS AND DISCIPLINE APPROACH: ERGONOMICS/ HUMAN FACTORS									
Desi Obje Phys	gn today- l ective, Mut siology (wo	Human aid to lifestyle, Journey, Fitting task to man their contractual structure, Dom ual task comfort: two way dialogue, communication model, Ergonomics/ human F rk physiology) and stress	ain, P actors	hiloso funda	ophy a ment	and als,				
UN	II TIN	HUMAN PHYSICAL DIMENSION CONCERN AND POSTURE AND MOVEMENT	9	0	0	9				
cross Hum Vert	s-legged po an body- s ical work s	pointery, Stand Posture- erect, Anthroponetry fandmark: Sitting postures, Anthropo ostures, Anthropometric measuring techniques, Statistical treatment of data and per tructure and function, Posture and job relation, Posture and body supportive devices, o urface, Horizontal work surface, Movement, Work Counter.	Theory:	le cal	culati	ons ics,				
UN	III III	ENVIRONMENTS FACTORS	9	0	0	9				
Com and displ	munication perception, lays, Enviro	a and cognitive issues, Psycho-social behaviour aspects, behaviour and stereotype, Into Cognitive aspects and mental workload, Human error and risk perception; Visual pomental factors influencing human performance.	format perfor	ion pi manc	rocess e, Vis	ing sual				
UN	NIT IV	ERGONOMIC DESIGN PROCESS, PERFORMANCE SUPPORT AND DESIGN INTERVENTION	9	0	0	9				
Ergo chec fatig appli	onomics de k, Some cl ue, errors, ication poss	sign methodology, Ergonomics criteria/check while designing, Design process in necklists for task easiness. Occupational safety and stress at workplace in view to discomforts and unsafe acts, Workstation design, Furniture support, Vertical art sibility, Humanising design: Design and human compatibility, comfort and adaptabilit	volvin reduce n reac y aspe	ng erg e the ch an ects.	gonom poten d des	nics tial tign				
UI	UNIT V OFFICE FURNITURE GUIDELINES FOR FIT AND FUNCTION, DESIGN ERGONOMICS IN INDIA AND UNIVERSAL DESIGN CONSIDERATIONS									
Offic Acce Desi Stair	ce Furnitur essories Re- gn Conside s, Resource	e Guidelines for Fit and Function Anticipate Actions, Chairs, Desk and Work surface sources for Designing Ergonomic Products. Design Ergonomics in India: scope for ex erations Wheelchairs Crutches, Canes, and Walkers Knobs, Handles, and Controls es on Universal Design.	es, Stor xplorat Acce	rage a tion. U ss Ra	nd Fi Jnive mps	les, rsal and				
		Total	(45L)	= 45	Perio	ods				

TEXT I	BOOKS:
1.	Bridger, RS: Introduction to Ergonomics, 2nd Edition, Taylor & Francis, 2003.
2.	Dul, J. and Weerdmeester, B. Ergonomics for beginners, a quick reference guide, Taylor & Francis, 1993.

REFERI	EFERENCES:							
1.	Green, W.S. and Jordan, P.W, Human Factors in Product Design, Taylor & rancis, 1999.							
2.	D. Chakrabarti, Indian Anthropometric Dimensions for ergonomic design practice, National Institute of Design, Ahmedabad, 1997							
3.	G. Salvendy (edit), Handbook of Human Factors and ergonomics, John Wiley & Sons, Inc., 1998.							

COUR Upon c	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Learn about the basics of Human aid to lifestyle, Physiology and stress	Understand
<i>CO</i> 2	Learn about the anthropometry: body growth and somatotypes, further about Vertical work surface, Horizontal work surface can also be obtained.	Remember
СО3	Study about the communication and cognitive issues, it promotes about environmental factors influencing human performance.	Understand
<i>CO4</i>	Learn about the Ergonomics design methodology and gives fathom notion on Occupational safety and stress at workplace	Apply
<i>C05</i>	Study about Office furniture guidelines for fit and function and universal design considerations	Apply

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO2	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO3	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO4	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO5	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
Avg	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
				3/2/1	— indi	cates	streng	gth of c	orrela	tion (3 -	– high, ź	2- medi	.um, 1- lov	w)	

18M	EHO307	SURFACE ENGINEERING	SURFACE ENGINEERING							
PRE	REQUIS	ITES CATE	GORY	PE	Cr	edit	3			
			Hours/Wook		Т	Р	TH			
		Hour	s/ vv eek	3	0	0	3			
COU	RSE OBJ	ECTIVES:								
1.	To teach	students fundamental about surface properties in engineering applications	and Wear	modes						
2.	To intro	duce students about the essentials of electroplating and Other plating proce	sses							
3.	To teach	about the thin film for wear application, Coating specifications.								
4.	To teach	about the special surfacing processes								
5.	To teach	about the hard facing processes and applications								
U	NIT I	BASICS OF SURFACE ENGINEERING		9	0	0	9			
eros Ul Fund	wear modes; Categories of wear, Low stress, High stress and Gouging abrasion, Cavitation, Sturry er erosion, Fretting wear, Adhesive wear, Seizure, Galling, Oxidative wear, Spalling, Impact wear brinel UNIT II PLATING PROCESSES					0 plati	9			
Hard	d anodizing	, Other plating processes, Applicability of plating for wear resistance.		iig, 50i	cetive	più	<u>,</u>			
UN	III TII	THIN FILM COATINGS		9	0	0	9			
The	rmal evapoi	ration, PVD and CVD, Sputter coating, Ion plating, Thin film for wear appl	ication, Co	oating s	pecifi	catio	ns.			
UN	NIT IV	SPECIAL SURFACING PROCESSES		9	0	0	9			
Reb Wea	uilding and ar sleeves, V	l surface cements, Wear tiles, Electrospark deposition coatings, Fused c Vear plates.	arbide clo	th cera	umic (coatir	ngs,			
U	NIT V	HARD FACING PROCESSES AND APPLICATIONS		9	0	0	9			
Shie weld Hard Hard	elded metal ling, Plasm dfacing tran dfacing with	arc welding, Gas tungsten arc welding, Gas metal arc welding, Flux coax a arc welding oxyacetylene welding, Furnace fusing, Thermal spray pr insformation, Fusion alloys, Non fusion materials. Hardfacing in new do in fusion processes, Nonfusion deposits, Weldability considerations, Finishi	ed are wel ocesses ar esigns, Ha ng conside	ding, S nd their rdfacin rations	ubme r appl g for	erged licatio repa	arc ons, iirs,			
			Total	(45L)	= 45	Perio	ods			

TEXT F	TEXT BOOKS:						
1.	Budinski, K.G., Surface Engineering for Wear Resistance, Prentice Hall (1988).						
2.	Mathews, A., Advanced Surface Coatings: A Hand book of Surface Engineering, Spinger (1991)						
REFER	ENCES:						
1.	Hocking, M.G., Metallic and Ceramic Coatings, John Wiley (1989)						
2.	Strafford, K.N., Datta, P.K., and Gray, J.S., Surface Engineering Practice, Processes, Fundamentals and Applications in Corrosion and Wear, Ellis Harwood (1990).						

COUR Upon c	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Learn about the basics and Current status of surface engineering. Wear modes	Understand
<i>CO2</i>	Learn about the Fundamentals of electroplating and Other plating processes	Understand
СО3	Study about the Thermal evaporation and wear application, Coating specifications.	Remember
<i>CO4</i>	Learn about the rebuilding and surface cements, Wear sleeves, Wear plates	Understand
<i>C05</i>	Study about Shielded metal arc welding, Gas tungsten arc welding and Nonfusion deposits, Weldability considerations, Finishing considerations.	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO2	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO3	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO4	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO5	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
Avg	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
				3/2/1	– indi	cates	streng	th of c	orrela	tion (3 -	– high, ź	2- medi	um, 1- lov	w)	

		INDUSTRIAL LATOUT DESIGN AND SE					1.4 2	
PREF	REQUIS	SITES	CATEGORY	PE	Cr	edit	3	
	1. Knov	wledge in basic manufacturing systems.	Hours/Week	L	Т	P	TH	
	2. Knov	wledge in operations research		3	0	0	3	
	3. Knov	wledge in safety regulations.						
OUI	RSE OB	JECTIVES:						
1.	To get t	the basics of process layout & product layout						
2.	To expl	ore the layout planning by computer applications following differ	ent algorithms.					
3.	To imbi	be knowledge on safety management functions and its techniques	3.					
4.	To intro	duce knowledge on accident reporting & investigation procedure						
5.	To assin	nilate knowledge on workplace hazards & its control						
UN	NIT I	INTRODUCTION		9	0	0	9	
Dbjec liffer pecii UN Heuri node	ctives of a rent layou fication, I NIT II istics for el. Branch	a good plant layout, principles of a good layout, Classification of its, Layout design procedures, Overview of the plant layout. Pro Implementation and follow up, comparison of product and process COMPUTERIZED LAYOUT PLANNING Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fix and bound method, Evaluation of layout.	s layout, Advantage s layout.	9 Quadra	out: S 0 tic as	0 o signn	9 1ent	
Objec differ specif UN Heuri mode UN	ctives of a rent layou fication, I NIT II istics for el. Branch IT III	a good plant layout, principles of a good layout, Classification of its, Layout design procedures, Overview of the plant layout. Pro Implementation and follow up, comparison of product and process COMPUTERIZED LAYOUT PLANNING Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fix and bound method, Evaluation of layout. SAFETY REGULATIONS etv. Safety and productivity. Definitions: Accident Injury. Up	s Layout, Advantage ocess layout & Produ s layout. ed position layout- (9 Quadra 9 Onditic	0 tic as 0	0 signn 0	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Objec differ specif UN Heuri mode UN Need Occur of m Offic	ctives of a rent layou fication, I NIT II istics for el. Branch IT III I for safe mrence, R anagemen cer, Safety	a good plant layout, principles of a good layout, Classification of its, Layout design procedures, Overview of the plant layout. Pro- Implementation and follow up, comparison of product and process COMPUTERIZED LAYOUT PLANNING Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fix and bound method, Evaluation of layout. SAFETY REGULATIONS ety. Safety and productivity. Definitions: Accident, Injury, Uneportable accidents. Theories of accident causation. Safety organ and, supervisors, workmen, unions, government and voluntary a committee, Overview of factories act 1948 – ISO-45001.	nsafe act, Unsafe C nization- objectives, t agencies in safety. S	9 Quadra 9 onditic ypes, f Safety	0 tic as 0 0, D unctic policy	0 signn 0 anger ons, F 7. Sat	9 nent 9 rous cole fety	
Objec differ specif UN Heuri mode UN Need Occur of ma Offic UN	ctives of a rent layou fication, I NIT II istics for el. Branch IIT III I for safe urrence, R anagemen cer, Safety IIT IV	a good plant layout, principles of a good layout, Classification of its, Layout design procedures, Overview of the plant layout. Pro- Implementation and follow up, comparison of product and process COMPUTERIZED LAYOUT PLANNING Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fix and bound method, Evaluation of layout. SAFETY REGULATIONS ety. Safety and productivity. Definitions: Accident, Injury, Uneportable accidents. Theories of accident causation. Safety organ int, supervisors, workmen, unions, government and voluntary a committee, Overview of factories act 1948 – ISO-45001. SAFETY HARAZDS IN MACHINES	nsafe act, Unsafe C nization- objectives, t agencies in safety. S	9 Quadra 9 onditic ypes, f Safety 9	0 tic as 0 on, D unctic policy	0 signn 0 anger ons, F y. Sat 0	9 nent 9 ous cole fety 9	
Objec differ specif UN Heuri mode UN Need Occu of m Offic UN Mach – Saf	ctives of a rent layou fication, I NIT II istics for el. Branch IT III I for safe mrence, R anagemen cer, Safety IT IV nine Guard Fety in Ma	a good plant layout, principles of a good layout, Classification of its, Layout design procedures, Overview of the plant layout. Pro- Implementation and follow up, comparison of product and process COMPUTERIZED LAYOUT PLANNING Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fix and bound method, Evaluation of layout. SAFETY REGULATIONS ety. Safety and productivity. Definitions: Accident, Injury, Uneportable accidents. Theories of accident causation. Safety organ and, supervisors, workmen, unions, government and voluntary a committee, Overview of factories act 1948 – ISO-45001. SAFETY HARAZDS IN MACHINES ding, Guarding of hazards, Machine Guarding types and its application and Mechanical material handling- Safety in use of electricity.	s Layout, Advantage ocess layout & Produ s layout. aced position layout- (nsafe act, Unsafe C nization- objectives, t agencies in safety. S cation – Safety in well ty	9 Quadra 9 ondition ypes, f Safety 9 Iding a	0 tic as 0 on, D unctic policy 0 nd Ga	0 isignn 0 anger pons, F y. Saa 0 ass cut	ion, 9 nent 9 rous cous cole fety 9 ting	
Objec differ specif UN Heuri mode UN Need Occur of ma Offic UN Mach – Safe	ctives of a rent layou fication, I NIT II istics for el. Branch IIT III I for safe urrence, Ru anagemer cer, Safety IIT IV nine Guard fety in Ma NIT V	a good plant layout, principles of a good layout, Classification of its, Layout design procedures, Overview of the plant layout. Pre- Implementation and follow up, comparison of product and process COMPUTERIZED LAYOUT PLANNING Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fix and bound method, Evaluation of layout. SAFETY REGULATIONS ety. Safety and productivity. Definitions: Accident, Injury, Up eportable accidents. Theories of accident causation. Safety organ int, supervisors, workmen, unions, government and voluntary a committee, Overview of factories act 1948 – ISO-45001. SAFETY HARAZDS IN MACHINES ding, Guarding of hazards, Machine Guarding types and its appli- nual and Mechanical material handling- Safety in use of electricit CHEMICAL AND FIRE HAZARDS	A Layout, Advantage ocess layout & Produ s layout. A deposition layout- (nsafe act, Unsafe C nization- objectives, t agencies in safety. S cation – Safety in wel ty	9 Quadra 9 onditic ypes, f Safety 9 Iding a 9	0 tic as 0 on, D on, D ounctic policy 0 nd Ga	0 isignn 0 anger pns, F 7. Sat 0 as cut 0	ion, 9 nent 9 rous Role fety 9 ting 9	
Objec differ specif UN Heuri mode UN Need Occur of m Offic UN Mach – Safe UN Toxic hazar Hazar	ctives of a rent layou fication, I NIT II istics for el. Branch IT III I for safe mrence, R anagemen cer, Safety IT IV nine Guard fety in Ma NIT V city- TLV rds- contro	a good plant layout, principles of a good layout, Classification of its, Layout design procedures, Overview of the plant layout. Pre- Implementation and follow up, comparison of product and process COMPUTERIZED LAYOUT PLANNING Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fix and bound method, Evaluation of layout. SAFETY REGULATIONS ety. Safety and productivity. Definitions: Accident, Injury, Ur eportable accidents. Theories of accident causation. Safety organ at, supervisors, workmen, unions, government and voluntary a committee, Overview of factories act 1948 – ISO-45001. SAFETY HARAZDS IN MACHINES ding, Guarding of hazards, Machine Guarding types and its applic mual and Mechanical material handling- Safety in use of electricity CHEMICAL AND FIRE HAZARDS /- Types of Chemical Hazards-Occupational diseases caused b ol measures Fire triangle- Types of fire - first aid fire fighting equication and Risk Analysis, case studies	y dust, fumes, gases	9 Quadra 9 onditic ypes, f Gafety 9 Iding a 9 , smokty	0 tic as 0 on, D unctic policy 0 nd Ga 0 ce and - LPC	0 isignn 0 anger panger panger panger anger anger	ion, 9 nent 9 rous Role fety 9 ting 9 /ent ety -	

ТЕХТ В	TEXT BOOKS:						
1.	James M Moore-Plant Layout Design, Mac Millan Co.1962 LCCCN61-5204.						
2.	Krishnan N.V. "Safety Management in Industry" Jaico Publishing House, Bombay, 1997						
REFERI	ENCES:						
1.	James Apple, "Plant Layout & Material Handling", The Ronalt Press Co., New Delhi, 1998.						
2.	Pannerselvam. R, "Production and Operations Management", PHI, 2017						

3.	Sunderesh Heragu-Facilities Design, PWS Publishing Company, ISBN-0-534-95183.
4.	Heinrich H.W. "Industrial Accident Prevention" McGraw-Hill Company, New York, 1980.
5.	Blake R.B., "Industrial Safety" Prentice Hall, Inc., New Jersey, 1973
6.	John Ridley, "Safety at Work", Butterworth & Co., London, 1983.

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	<i>CO1</i> Able to get the basics of layout design procedure and selection of appropriate layout for industries.							
<i>CO2</i>	The students will be able to plan and design plant and production layouts through basic strategies and with computer application	Create						
СО3	Apply principles of safety management, its functions and technique in any organization.	Apply						
<i>CO4</i>	Apply machine guarding principles in industrial applications.	Apply						
<i>C05</i>	Realize chemical hazards, toxicity, fire and explosion in the work place and involve to take various control measures to prevent hazards	Understand						

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	2	3	2	1	1	2	2	2	2	3	2	2
CO2	0	1	2	3	0	1	0	1	2	0	2	0	1	2	1
CO3	0	2	2	1	3	1	1	1	1	0	1	2	2	3	2
CO4	0	2	1	1	2	0	0	1	1	1	2	0	2	1	1
CO5	1	2	2	1	2	0	0	1	1	1	2	1	3	2	1
Avg	0.4	1.8	1.6	1.6	2.0	0.8	0.4	1.0	1.4	0.8	1.8	1.0	2.2	1.0	1.4
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

18M							
PREI	REQUISI	TES	CATEGORY	PE	Cr	edit	3
			TT /TT / -	L	Т	Р	TH
			Hours/week	3	0	0	3
COUI	RSE OBJ	ECTIVES:		•	•		•
1.	To study	the various aspects of digital manufacturing.					
2.	To inculo	ate the importance of DM in Product Lifecycle Management and	Supply chain Mana	gemen	t		
3.	To formu	late of smart manufacturing systems in the digital work environm	ent				
4.	To interp	ret IOT to support the digital manufacturing					
5.	To elabor	rate the significance of digital twin				-	
UN	NIT I	INTRODUCTION		9	0	0	9
Intro cycle Manu	duction – 1 , Smart fac ifacturing.	Need – Overview of Digital Manufacturing and the Past – Aspect etory, and value chain management – Practical Benefits of Digita	s of Digital Manufa l Manufacturing – 7	acturin The Fu	g: Pro ture o	oduct of Dig	life gital
UN	II TI	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAGI	EMENT	9	0	0	9
Proto SC - UN	type devel Effective I IT III	opment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM SMART FACTORY	ly Chain - Scope&	Challe 9	nges i 0	n Dig 0	;ital 9
Smar Princ	t Factory - iples of a S	- Levels of Smart Factories – Benefits – Technologies used in Sm Smart Factory – Creating a Smart Factory – Smart Factories and C	art Factory – Smart bybersecurity	Facto	ry in	IoT- l	Key
UN	IT IV	INDUSTRY 4.0		9	0	0	9
Intro servie to Ma	duction – 1 ces – Intell achine com	Industry 4.0 –Internet of Things – Industrial Internet of Things igent networks of manufacturing – Cloud computing – Data analy munication – Case Studies.	 Framework: Connytics –Cyber physic 	nectivi al syst	ty dev ems -	vices -Macł	and 11ne
UN	NIT V	STUDY OF DIGITAL TWIN		9	0	0	9
Basic Type	c Concepts s – Charac	- Features and Implementation - Digital Twin: Digital Thread teristics of a Good Digital Twin Platform - Benefits, Impact & Ch	and Digital Shadow nallenges – Future o	/- Buil f Digit	lding tal Tw	Block vins	(s –
			Total	(45L)	= 45	Peri	ods
ТЕХТ	BOOKS	:					
1.	Zude Z Verlag	hou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of E London Limited, 2012.	Digital Manufacturin	ig Scie	nce, S	Spring	;er-
2.	Alasda	ir Gilchrist, "Industry 4.0: The Industrial Internet of Things", A p	ress, 2016.				
REFE	RENCE	5:					

1.Lihui Wang and Andrew YehChing Nee, Collaborative Design and Planning for Digital Manufacturing,
Springer-Verlag London Limited, 2009.2Andrew Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digital Twin Driven Smart Manufacturing", Elsevier

2. Andrew Fen Chris Nee, Fen Tao, and Meng Zhang, Digital Twin Driven Science., United States, 2019.

3.	Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation", Springer Series in Advanced Manufacturing., Switzerland, 2017
4.	Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018.
5.	Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018

COUR Upon d	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Impart knowledge to use various elements in the digital manufacturing.	Understand					
<i>CO2</i>	Differentiate the concepts involved in digital product development life cycle process and supply chain management in digital environment.	Analyze					
СО3	Select the proper procedure of validating practical work through digital validation in Factories.	Apply					
<i>CO4</i>	Implementation the concepts of iot and its role in digital manufacturing.	Apply					
<i>CO5</i>	Analyse and optimize various practical manufacturing process through digital twin.	Analyze					

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO2	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO3	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO4	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO5	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
Avg	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

18MEHO310 SMART MOBILITY AND INTELLIGENT VEHICLES										
PRE	REQUIS	ITES	CATEGORY	PE	Cre	edit	3			
			Hours/Wook	L	Т	P	TH			
			Hours/ week	3	0	0	3			
COU	RSE OBJ	ECTIVES:								
1.	To introduvehicles	ace students to the various technologies and systems used to imple	ement smart mobility	and i	ntellig	ent				
2.	To learn B Systems a	asics of Radar Technology and Systems, Ultrasonic Sonar System nd other sensors for automobile vision system	ns, LIDAR Sensor T	echno	logy a	nd				
3.	To learn B	asic Control System Theory applied to Autonomous Automobiles								
4.	To produc informatic	e overall impact of automating like various driving functions, con n that assist with a task	necting the automob	oile to	source	s of				
5.	To allow t potentially	he automobile to make autonomous intelligent decisions concerni mip impact the safety of the occupants through connected car & autom	ng future actions of nomous vehicle tech	the vel nology	hicle tl	hat				
U	NIT I	INTRODUCTION TO AUTOMATED, CONNECTED . INTELLIGENT VEHICLES	AND	9	0	0	9			
Cone Pow Con	cept of Au ertrain Ele nected, and	tomotive Electronics, Electronics Overview, History & Evolu ctronics, Introduction to Automated, Connected, and Intellige Intelligent Vehicles	tion, Infotainment, nt Vehicles. Case	Body, studies	Chas s: Aut	sis, a coma	and ted,			
Ul	NIT II	SENSOR TECHNOLOGY FOR SMART MOBILITY		9	0	0	9			
Basi Tech Boar	cs of Rada nnology, Na rd Control S	r Technology and Systems, Ultrasonic Sonar Systems, Lidar Seight Vision Technology, Other Sensors, Use of Sensor Data Fu Systems	ensor Technology as sion, Integration of	nd Sys Senso	stems, r Data	Carr to (iera On-			
UN	III TII	CONNECTED AUTONOMOUS VEHICLE		9	0	0	9			
Basi Theo Netw	c Control S ory and Au works and A	ystem Theory applied to Automobiles, Overview of the Operation atonomous Vehicles, Role of Surroundings Sensing Systems a Autonomy.	n of ECUs, Basic Cy and Autonomy, Rol	ber-Pl le of '	nysical Wirele	l Syst ess D	tem Data			
UN	NIT IV	VEHICLE WIRELESS TECHNOLOGY AND NETWO	ORKING	9	0	0	9			
Wire Syst Com and	eless Syster em Concep puter Netw On-Board V	n Block Diagram and Overview of Components, Transmission Sy ots– Demodulation/Decoding, Wireless Networking and Applica orking – the Internet of Things, Wireless Networking Fundamen Vehicle Networks	stems – Modulation ations to Vehicle A tals, Integration of V	/Enco utono Wireles	ding, I my, B ss Net	Recei asics work	ver of ing			
UI	NIT V	CONNECTED CAR AND AUTONOMOUS VEHICLE TECHNOLOGY		9	0	0	9			
Con Veh Mor	nectivity F icle-to-Roa al, Legal, R	undamentals, Navigation and Other Applications, Vehicle-to- dside and Vehicle-to-Infrastructure Applications, Autonomous coadblock Issues, Technical Issues, Security Issues	Vehicle Technolog Vehicles - Driverle	y and ess Ca	Appl r Tecl	icatio	ons, ogy,			
			Total	(45L)	= 451	Perio	ods			
TEX	ΤΒΛΟΙΖά	N								
TEX			· 1 . " 2016 T							
1.	Board	igent Transportation Systems and Connected and Automated Veh	icies", 2016, Transp	ortatic	n Kes	earch	1			

2. Radovan Miucic, "Connected Vehicles: Intelligent Transportation Systems", 2019, Springer

REFERENCES:

1. Tom Denton, "Automobile Electrical and Electronic systems, Roultedge", Taylor & Francis Group, 5th Edition, 2018.

COUR Upon d	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Recognize the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles	Understand
<i>CO2</i>	Select the concept of remote sensing and the types of sensor technology needed to implement remote sensing	Understand
СОЗ	Familiar with the concept of fully autonomous vehicles	Understand
<i>CO4</i>	Apply the basic concepts of wireless communications and wireless data networks	Apply
<i>C05</i>	Analyse the concept of the connected vehicle and its role in automated vehicles	Analyse

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO2	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO3	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO4	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO5	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
Avg	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

GOVERNMENT COLLEGE OF ENGINEERING, SALEM

REGULATION 2018 A - VERTICALS FOR MINOR DEGREE

VERTICAL - I	VERTICAL - II	VERTICAL - III	VERTICAL - IV	VERTICAL - V	VERTICAL - VI
Civil Engineering	Computer Science and Engineering	Electronics and Communication Engineering	Electrical and Electronics Engineering	Mechanical Engineering	Metallurgical Engineering
18CEM01 Construction Materials	18CSM01 Programming in C++	18ECM01 Electron Devices	18EEM01 – Network Analysis and Synthesis	18MEM01 Engineering Thermodynamics	18MTM01 Advanced Physical Metallurgy
18CEM02 Building Construction & Equipment	18CSM02 Advanced Data Structures and Algorithms	18ECM02 Digital Electronics	18EEM02 – Signals and Systems	18MEM02 Fluid Mechanics and Machinery	18MTM02 Metallurgical Thermodynamics and kinetics
18CEM03 Concrete Technology	18CSM03 Computer Organization and Design	18ECM03 Electronic Circuits (EC-I & EC- II, LIC)	18EEM03 – Linear and Digital Electronics Circuits	18MEM03 Manufacturing Processes	18MTM03 Mechanical Behaviour of Materials
18CEM04 Environmental Engineering	18CSM04 Advanced Operating Systems	18ECM04 Signal Processing	18EEM04 – Microprocessor and Microcontrollers	18MEM04 Materials Engineering	18MTM04 Rate Processing in Metallurgy
18CEM05 Basics of Transportation Engineering	18CSM05 Data Communication and Computer Networks	18ECM05 Microprocessors and Microcontrollers	18EEM05 – Control Systems	18MEM05 Kinematics of Machinery	18MTM05 Corrosion and Surface Engineering
18CEM06 Repair and Rehabilitation Structures	18CSM06 Programming Essentials in Python	18ECM06 Analog and Digital Communication	18EEM06 – Measurement and Instrumentation	18MEM06 Hydraulics and Pneumatics	18MTM06 Characterization of Materials
18CEM07 Green Building Technology	18CSM07 Advanced Database System Concepts	18ECM07 Communication Networks (CN)	18EEM07 – Electrical Machines	18MEM07 Design of Machine Elements	18MTM07 Automotive, Aerospace and Defense Materials
	18CSM08 Virtualization and Cloud Computing	18ECM08 Fundamentals of IoT	18EEM08 – Electric Drives and Control	18MEM08 Heat and Mass Transfer	
		18ECM09 Wireless Sensors and Networking (WSN)	18EEM09 – Electric Vehicle and Control	18MEM09 Metrology and Quality Control	
		18ECM10 Basics of Embedded Systems	18EEM10 –Electric Energy Conservation and Auditing	18MEM10 Dynamics of Machinery	

LIST OF MINOR DEGREE - VERTICALS

	Course			Но	urs/W	eek	lits	Maximum Marks			
S.No.	Code	Course	Cat	L	Т	Р	Cree	CA	FE	Total	
		CIVIL ENGIN	EERIN	G							
1	18CEM01	Construction Materials	OE	3	0	0	3	40	60	100	
2	18CEM02	Building Construction & Equipment's	OE	3	0	0	3	40	60	100	
3	18CEM03	Concrete Technology	OE	3	0	0	3	40	60	100	
4	18CEM04	Environmental Engineering	OE	3	0	0	3	40	60	100	
5	18CEM05	Basics of Transportation Engineering	OE	3	0	0	3	40	60	100	
6	18CEM06	Repair and Rehabilitation of Structures	OE	3	0	0	3	40	60	100	
7	18CEM07	Green Building Technology	OE	3	0	0	3	40	60	100	
COMPUTER SCIENCE AND ENGINEERING											
1	18CSM01	Programming in C++	OE	3	0	0	3	40	60	100	
2	18CSM02	Advanced Data Structures and Algorithms	OE	3	0	0	3	40	60	100	
3	18CSM03	Computer Organization and Design	OE	3	0	0	3	40	60	100	
4	18CSM04	Advanced Operating Systems	OE	3	0	0	3	40	60	100	
5	18CSM05	Data Communication and Computer Networks	OE	3	0	0	3	40	60	100	
6	18CSM06	Programming Essentials in Python	OE	3	0	0	3	40	60	100	
7	18CSM07	Advanced Database System Concepts	OE	3	0	0	3	40	60	100	
8	18CSM08	Virtualization and Cloud Computing	OE	3	0	0	3	40	60	100	
	I	ELECTRONICS AND COMMUN	ICATIO	ON EN	IGINE	ERIN	G				
1	18ECM01	Electron Devices	OE	3	0	0	3	40	60	100	
2	18ECM02	Digital Electronics	OE	3	0	0	3	40	60	100	
3	18ECM03	Electronic Circuits	OE	3	0	0	3	40	60	100	
4	18ECM04	Signal Processing	OE	3	0	0	3	40	60	100	
5	18ECM05	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100	

6	18ECM06	Analog and Digital Communication	OE	3	0	0	3	40	60	100
7	18ECM07	Communication Networks	OE	3	0	0	3	40	60	100
8	18ECM08	Fundamentals of IoT	OE	3	0	0	3	40	60	100
9	18ECM09	Wireless sensors and networking	OE	3	0	0	3	40	60	100
10	18ECM10	Basics of Embedded systems	OE	3	0	0	3	40	60	100
	I	ELECTRICAL AND ELECTR	ONICS	ENGI	NEEF	RING	1			
1	18EEM01	Linear and Digital Electronics Circuits	OE	3	0	0	3	40	60	100
2	18EEM02	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100
3	18EEM03	Control Systems	OE	3	0	0	3	40	60	100
4	18EEM04	Measurements and Instrumentation	OE	3	0	0	3	40	60	100
5	18EEM05	Electrical Machines	OE	3	0	0	3	40	60	100
6	18EEM06	Electric Drives and Control	OE	3	0	0	3	40	60	100
7	18EEM07	Electric Vehicles and Control	OE	3	0	0	3	40	60	100
8	18EEM08	Electrical Energy Conservation and Auditing	OE	3	0	0	3	40	60	100
9	18EEM09	SMPS and UPS	OE	3	0	0	3	40	60	100
10	18EEM10	Utilization of Electrical Energy	OE	3	0	0	3	40	60	100
		MECHANICAL EN	IGINEE	RING						
1	18MEM01	Engineering Thermodynamics	OE	3	0	0	3	40	60	100
2	18MEM02	Fluid Mechanics and Machinery	OE	3	0	0	3	40	60	100
3	18MEM03	Manufacturing Processes	OE	3	0	0	3	40	60	100
4	18MEM04	Materials Engineering	OE	3	0	0	3	40	60	100
5	18MEM05	Kinematics of Machinery	OE	3	0	0	3	40	60	100
6	18MEM06	Hydraulics and Pneumatics	OE	3	0	0	3	40	60	100
7	18MEM07	Design of Machine Elements	OE	3	0	0	3	40	60	100
8	18MEM08	Heat and Mass Transfer	OE	3	0	0	3	40	60	100
9	18MEM09	Metrology and Quality Control	OE	3	0	0	3	40	60	100

10.	18MEM10	Dynamics of Machinery	OE	3	0	0	3	40	60	100
		METALLURGICAL	ENGIN	EEIN	G					
1	18MTM101	Advanced Physical Metallurgy	OE	3	0	0	3	40	60	100
2	18MTM102	Thermodynamics and Kinetics in Metallurgy	OE	3	0	0	3	40	60	100
3	18MTM103	Mechanical Behaviour of Materials	OE	3	0	0	3	40	60	100
4	18MTM104	Rate Processes in Metallurgy	OE	3	0	0	3	40	60	100
5	18MTM105	Corrosion and Surface Engineering	OE	3	0	0	3	40	60	100
6	18MTM106	Materials Characterization	OE	3	0	0	3	40	60	100
7	18MTM107	Automotive, Aerospace and Defence Materials	OE	3	0	0	3	40	60	100

B.E. – CIVIL ENGINEERING - MINOR DEGREE

18CF	EM01	LS	S					
PRE	REQUISI	TES	Category	OE	Cro	edit	3	
NIL			Hours/Week	L	Т	Р	ТН	
				3	0	0	3	
Cour	rse Learni	ng Objectives		-			I	
1	To study	the characteristics and Properties of Stones and Brick						
2	To impart	knowledge on Cement, Aggregate and Mortar						
3	To unders	stand the behaviour of concrete and seasoning timber						
4	To study	the Parts and types of flooring and roofing						
5	To study	carpentry, arches, lintels and finishing works.						
U	J nit I	STONES, BRICKS		9	0	0	9	
Buildi work bricks	Building Stone –classification of rocks-characteristics of good building stone – deterioration and preservation of stone work – tests on stones - Bricks- manufacture of clay bricks -classification - tests on bricks- bricks for special use- refractory bricks.							
U	nit II	CEMENT, AGGREGATES, MOR	RTAR	9	0	0	9	
Ceme charao constr	nt- compo cteristics an ruction.	sition- manufacturing process-wet and dry processes d function. Mortar- properties- uses- types of mortars- sel	Aggregates –coar ection of mortars for	se and various (fine ag Civil Er	ggregat 1gineeri	es- ng	
U	nit III	CONCRETE, TIMBER AND OTHER M	IATERIALS	9	0	0	9	
Concr	ete- ingredi	ents - principles of hardened concrete- Special concrete-	types.	G. 1 I	T	1.	с	
Alum	er- characte	ristics- seasoning-preservation- Panels of laminates. Glassical structure in the season of the seaso	ass- properties- uses.	Steel- (Jses - 1	market	forms.	
Paints	. Varnishes	and Distempers-types-properties.						
U	nit IV	FLOORING AND ROOFING	3	9	0	0	9	
Comp of dar pitche	oonents of fl npness- effe ed roof - lea	loor- selection of flooring materials- suitability of floors f ect of dampness - requirements of good stairs - classificat n to roof-gable roof-hip roof-flat roof-RCC roof.	for various application ion of stairs -Roofs -	l ns. damp types of	proof o roofs- 1	course, equirer	causes nents -	
Unit VCARPENTARY, ARCHES, LINTELS AND FINISHING WORKS9009								
Locat: classif metho	ion of door fication - st ods of plaste	s and windows - size of doors - types of doors - fixture ability of an arch - lintels - classification of lintels - stee ering - defects in plastering - pointing - objectives- method	e and fastenings for c el lintel. scaffolding ds of pointing	loors and - compoi	l windo nent pa	ows - a rts - sho	rches - oring -	
	Total= 45 Periods							

Те	ext Books:
1	B.C. Punmia, Building Construction, Laxmi Publications; Eleventh edition -2021
2	S.C.Rangwala, Building Construction, Charotar Publishing House Pvt. Ltd, 34th Edition - 2022
3	P. Purushothama Raj., Building Construction Materials and Techniques, Pearson Education India, First Edition - 2017
Ref	erence Books:
1	Shetty M.S., Concrete Technology (Theory and Practice), S.Chand& Company Ltd., 2021.
2	Rangwala S.C., Engineering Materials (Material Science) revised and enlarged by Rangwala K.S. and Rangwala P.S., Charotar Publishing House, 2010.

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Identify and characterize and properties of Stone and brick	Remember			
CO2	Understand the manufacturing process of cement and functions of mortar	Understand			
CO3	Identify the age of timber and preservation methods of timber	Remember			
CO4	Differentiate the types of roofing and flooring	Understand			
CO5	Understand the miscellaneous works such as carpentry, lintels, Arch, etc.	Understand			

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO2	-	2	-	-	-	2	3	-	-	-	-	-	-	-	-
CO3	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-
CO4	1	-	2	-	2	3	2	-	-	-	-	-	-	-	-
CO5	1	-	-	-	3	-	2	-	-	-	-	-	-	-	-
Avg	1	2	2	-	2	3	2	-	-	-	-	-	-	-	-
	•		3/2/1	– indica	ates str	ength o	f corre	lation (3- Higł	n, 2- Me	dium, 1-	Low)			

18C	EM02	BUILDING CONSTRUCTION & EQUI	PMENT	S	er				
PRF	EREQUISI	TES	Category	OE	Cr	edit	3		
NIL	,		Hours/Week	L	Т	Р	ТН		
				3	0	0	3		
Cou	rse Learni	ng Objectives							
1	Able to ga	in basic knowledge in construction methods.							
2	Able to ga	in basic knowledge in equipment.							
3	3 Able to gain basic knowledge in machineries.								
4	Able to ga	in basic knowledge in fire safety principles.							
5	Able to ga	in basic knowledge in green technology.							
	CLASSIFICATION OF BUILDINGS, FOUNDATIONS AND								
1	Unit I	TYPES OF MASONRY		,	U	U	,		
Site level	investigatio ,Classificatio	n for foundation as per N.B.C, Types of foundation on of stone masonry DOORS, WINDOWS, LINTELS, SCAFFOL	n and prevention	of dan	npness	at bas	sement		
τ	J nit II	STAIRCASES		9	0	0	9		
Door	rs and windo ered. Lintels	ows – parts of door and window – Types of Door and w – Functions, Scaffolding – Purpose and types –Location of	vindows–Ventilators stairs.Types of stain	s – fixeo rs	l, swin	ging ty	pe and		
τ	Init III	ROOFS, FLOORINGS, PROTECTIVE AND E FINISHES	DECORATIVE	9	0	0	9		
Roof Type	Beams and es of floors-	Roof Slabs – Types of Roofing Systems – Methods of Terr Plastering (Interior and Exterior) – Pointing for Walls ar	nite Proofing – Metl 1d Floors using Gro	hods of 1 outs – W	Damp p hite W	proofing ashing,	g. Color		
Wasl appli	ning with di cation.	fferent Color Shades available in the Markets – Painting	g – Types of Painti	ing for	Interior	and E	xterior		
Unit IVCONSTRUCTION EQUIPMENTS90									
Selec	ction of equ	ipment for earthwork excavation, drilling, blasting, tuni ial handling and erection of structures	nelling, erection an	d dewa	tering	and pu	mping,		
l	U nit V	GREEN BUILDING TECHNOLO	GY	9	0	0	9		
Intro and l	duction to gr imitations),	reen technology – types and importance; zero waste and r co green buildings, green engineering.	oncept, green materi	als – gre	en con	crete (p	ourpose		
					Total	= 45 Po	eriods		

r	
Те	ext Books:
1	Building Construction by S.C.Rangawala
2	Construction Technology by Sarkar Oxford University Press
3	Building Material & Construction by S.P. Arora& S. P. Bindra
Ref	erence Books:
1	Hopkinson And Kay J.D., The Lighting of Building, Faber and Faber, London.
2	Koerner, R.M, Construction & Geotechnical Methods in Foundations Engineering, McGraw Hill, 1984
3	Varna M., Construction Equipment and Its Planning & Applications, Metropolitan Books Co, 1979

Cour	se Outcomes:	Bloom's
Upon	completion of this course, the students will be able to:	I axonomy Mapped
CO1	Organize the construction technique to be followed in brick and stone masonry, concreting, flooring, roofing and plastering etc.	Create
CO2	Select safe practices in building construction activities	Evaluate
CO3	Clarify the different types of roofs, floor and productive materials of buildings	understand
CO4	Select the relevant equipment for building construction	Evaluate
CO5	Apply the Principles of green building technology.	Apply

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	2	2	2	1	1	-	-	-	-	1
CO2	-	-	-	-	3	2	2	2	2	2	-	-	-	-	1
CO3	-	-	-	-	2	3	2	2	2	1	-	-	-	-	1
CO4	-	-	-	-	2	2	3	1	1	2	-	-	-	-	1
CO5	-	-	-	-	2	3	2	2	2	2	-	-	-	-	1
Avg	-	-	-	-	2.4	2.4	2.2	1.8	1.6	1.6	-	-	-	-	1
	•	•	3/2/1	– indica	ates str	ength o	f corre	lation (3- Higł	n, 2- Me	dium, 1-	Low)			

18C	EM03	CONCRETE TECHNOLOG	Y	S	emest	er				
PRF	EREQUISI	TES	Category	OE	Cr	edit	3			
NIL	1			L	Т	Р	TH			
			Hours/ week	3	0	0	3			
Cou	rse Learni	ng Objectives	I		1		1			
1	To unders	tand the properties of ingredients of concrete.								
2	2 To study the behavior of concrete at its fresh and hardened state.									
3	3 To study about the concrete design mix.									
4	4 To know about the procedures in concrete at different stage.									
5	5 To understand special concrete and their uses.									
1	Unit I	INTRODUCTION		9	0	0	9			
Conc	Concrete materials, Cement: Field and laboratory tests on cement, Types of cement and their uses, different tests for aggregates.									
Meth	nods for man	ufacturing of cement- Wet and dry process. Hydration o	f cement, Bogue's co	mpound.						
τ	U nit II	ADMIXTURES		9	0	0	9			
Acce	elerating adu	nixtures, Retarding admixtures, water reducing admix	xtures, Air entraining	g admixtı	ures, co	oloring	agent,			
Plast	icizers. Batc	hing, Mixing, Transportation, placing of concrete, curing	g of Concrete							
τ	J nit III	MIX DESIGN		9	0	0	9			
Facto	ors influenci	ng mix proportion, Mix design by ACI method and I.S.	code method, Design	of high st	rength o	concrete	<u>.</u> 2.			
τ	J nit IV	BEHAVIOUR OF CONCRE	ТЕ	9	0	0	9			
Strer	igth of conc	rete, Shrinkage and temperature effects, creep of concre	ete, permeability of co	oncrete, d	urabilit	ty of co	ncrete,			
Corr	osion, Cause	s and effects, remedial measures, Thermal properties of	concrete, Micro crack	ting of co	ncrete.					
I	Unit VSPECIAL CONCRETE9009									
Ligh	t-weight con	ncrete, Fibre reinforced concrete, Polymer modified c	oncrete, Ferro cemer	nt, Mass	concret	te, Rea	dy-mix			
conc	rete, Self-co	mpacting concrete, Quality control, Sampling and testing	g, Acceptance criteria							
					Total	= 45 P	eriods			

Те	Text Books:				
1	Neville A.M Properties of Concrete, Pearson publication, 2012.				
2	Shetty M.S Concrete technology, S.Chand and Company Ltd, New Delhi 2022.				
3	Santha Kumar A.R Concrete Technology, Oxford university Press, NewDelhi, 2022.				
4	Mehta K.P Concrete Technology, Chand & Co, NewDelhi, 2006.				
5	Robert RatayForensic Structural Engineering Handbook, McGraw Hill LLC, 2009				

Reference Books:												
1	Indian Standard Recommended Guide lines for Concrete Mix Design, IS:10262 – 2019, Bureau of Indian Standards, NewDelhi.											
2	Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete IS:383-1970 R2011, Bureau of Indian Standards, NewDelhi.											
3	Gambhir.M.L,Concrete Technology, Volume I & II, Tata McGraw-HillBookCompany,Third print, 2003											
4	Krishna Raju N. Design of Concrete Mixes, CBS publishers. NewDelhi, 2002.											
5	Stephen E. Petty,Forensic Engineering: Damage Assessments for Residential and Commercial Structures,CRCpress,Taylor& Francis,2013.											

Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	To identify suitable materials to be used in the cement concrete by conducting various tests as per BIS code.						
CO2	To know about the specific applications and uses of admixtures.	Understand					
CO3	Design the concrete mix using ACI and BIS code methods.	Create					
CO4	Determine the properties of fresh and hardened of concrete.	Evaluate					
CO5	Design special concretes and to Ensure quality control while testing/ sampling and acceptance criteria for pre and post construction work.	Apply					

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	-	1	1	1	2	1	1	1	-	1
CO2	-	-	-	-	3	-	3	-	1	1	-	-	2	-	1
CO3	-	-	-	-	3	-	3	-	-	1	-	-	1	-	1
CO4	-	-	-	-	3	2	1	-	-	-	-	-	-	-	1
CO5	-	-	-	-	3	3	3	1	1	3	1		3	-	1
Avg	-	-	-	-	3	2.5	2.2	1	1	1.75	1	1	1.75	-	1
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															
180	CEM04	ENVIRONMENTAL ENGINEER	ONMENTAL ENGINEERING												
------	--	---	-------------------------	-----------	-----------	----------	---------	--	--						
PR	EREQUISI	TES	Category	OE	Cr	edit	3								
NII	⊿			L	Т	Р	TH								
			Hours/ week	3	0	0	3								
Сог	Course Learning Objectives														
1	To evaluate distribution	the sources of water and analyse its characteristics and pr network	ocesses in water trea	itment, e	xpress t	he anal	ysis of								
2	To design s disposal	ewer system, basic design of the biological treatment proc	esses, gain knowled	ge on slu	dge tre	atment	and its								
3	To predict t	he sources, effects, dispersion of air pollutants air quality	management and its	control r	neasure	s									
4	To identify municipal s	the characteristics and sources of municipal solid wast olid wastes and its recovery, disposal methods	es, its collection me	ethods, c	off-site	process	sing of								
5	To assess th	ne sources, effects and control measures of noise pollution													
	Unit I	WATER TREATMENT		9	0	0	9								
Wat	er Quality an	d its Treatment: Basics of water quality standards - Phy	vsical, chemical and	biologic	al para	meters;	Water								
qual	lity index; Un	it processes and operations; Water requirement; Water dis	tribution system; Dr	inking w	ater tre	atment.									
	Unit II	WASTEWATER TREATMEN	Г	9	0	0	9								
Sew	verage system	design, quantity and quality of domestic wastewater, prin	mary and secondary	treatmen	nt. Efflu	ent dis	charge								
stan	dards; Sludge	e disposal; Reuse of treated sewage for different applicatio	ns.												
I	Unit III	AIR POLLUTION		9	0	0	9								
Air	Pollution: Ty	pes of pollutants, their sources and impacts, air pollution c	ontrol, air quality sta	andards,	Air qua	lity Ind	ex and								
limi	ts.														
1	Unit IV SOLID WASTE MANAGEMENT				0	0	9								
Mur	Municipal Solid Wastes: Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid														
wast	waste management (reuse/ recycle, energy recovery, treatment and disposal).														
	Unit VNOISE POLLUTION900														
Nois	se pollution: S	Sources; Health effects; Standards; Measurement and cont	rol methods	1		1	1								
	Total= 45 Periods														

Те	Text Books:					
1	Garg, S.K. Water supply Engineering, Khanna Publishers, New Delhi, 2010.					
2	Garg, S.K. Sewage water disposal and Air pollution, Khanna Publishers, New Delhi, 2010.					
3	George Tchobanoglous et.al., Integrated Solid Waste Management, McGraw-Hill, Publishers, 1993.					
4	Rao, C.S., Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.					

Ref	erence Books:
1	Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi,
1	2013.
2	Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, NewDelhi, 1985.
	Metcalf and Eddy, M.C., Wastewater Engineering – Treatment & Reuse, TataMcGraw-Hill Publications, New
3	Delhi,2003.

Cour	rsa Autoomos;	Bloom's			
Unon	United outcomes:				
Opon	completion of this course, the students will be able to.	Mapped			
CO1	Identify the sources of water supply, analyze the characteristics of water with its standards and	Remember			
COI	various unit operations and processes in water treatment, express the analysis of distribution network	Remember			
CON	Expertise design sewer system, basic design of the biological treatment processes, gain knowledge	Analyze			
02	on sludge treatment and disposal and justify the methods for disposal of sewage				
CON	Predict the sources, effects, dispersion of air pollutants air quality management and its control	Apply			
COS	measures	· · · pp··			
	Aware about the characteristics, types and sources of municipal solid wastes, Learn the collection				
CO4	methods, Know about off-site processing of municipal solid wastes and its recovery, disposal	Remember			
	methods				
CO5	Understand the sources, effects and control methods of noise pollution	Understand			
200					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	1	3	2	1	3	2	1	1	2	1	1	3	-	2
CO2	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO3	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO4	2	1	3	1	1	3	1	-	-	2	2	1	3	-	2
CO5	2	-	3	-	-	3	-	-	-	2	1	1	3	-	2
Avg	2	1	3	1.3	1	3	1.3	1	1	2	1.6	1	3	-	2
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CF	18CEM05 BASICS OF TRANSPORTATION ENGINEERING Semes									
PRE	REQUISI	TES	Category	OE	Cre	edit	3			
NIL			TT / TT /	L	Т	P	TH			
			Hours/ week	3	0	0	3			
Cour	Course Learning Objectives									
1	1 The objective of the course is to educate the students on various components of highway engineering.									
2	To educat	e the geometric design concepts of highway engineering								
3	To develo	p skills on construction and maintenance of highway.								
4	Ability to	plan various civil engineering aspects of railways and edu	cate various compo	nents of a	railways	8				
5	The cours	e enables the students to develop skill on evaluation and m	aintenance of railw	ay track.	-		-			
U	J nit I	CROSS SECTIONAL ELEMENTS OF HI	GHWAYS	9	0	0	9			
Eleme Sight Illumi	ents- Right of Distance (S nation Sigh	of Way, Carriage Way, Camber, Kerbs, Shoulders and Foot SSD), Overtaking Sight Distance (OSD), Sight Distance a t Distance - Cross Sections of Different Class of Roads -	paths (IRC Standard	ls), Sight ermediat	Distance Sight	ces - Ste Distan	ce and			
U	nit II	GEOMETRIC DESIGN OF HIGHW	AYS	9	0	0	9			
Horizo Limiti Only)	ontal Align ing, Excepti	ments – Superelevation, Widening of Pavements on Ho onal and Minimum Gradients, Summit and Valley Curves	rizontal Curves, V -Geometric Design	ertical A of Hill F	lignme Roads (I	nts - R RC Sta	olling. ndards			
U	nit III	CONSTRUCTION AND MAINTENANCE O	F HIGHWAY	9	0	0	9			
Const and M	ruction of F Iaintenance	Flexible and Rigid Pavements – Defects in Flexible and R of Pavements.	igid Pavements -Hi	ghway D	rainage	e – Eval	luation			
U	nit IV	RAILWAY PLANNING AND DESI	IGN	9	0	0	9			
Perma Gauge Geom Trans	Permanent Way, its Components and Functions of Each Component: Rails - Types of Rails, Rail Fastenings, Concept of Gauges, Coning of Wheels, Creeps Sleepers - Functions, Materials, Density. Ballasts - Functions, Materials, Ballast less Tracks Geometric Design of Railway Tracks Gradients and Grade Compensation, Super-Elevation, Widening of Gauges in Curves, Transition Curves, Horizontal and Vertical Curves.									
Image: Unit V RAILWAY TRACK CONSTRUCTION MAINTENANCE AND						0	0			
OPERATION 9 0							9			
Points Stock	Points and Crossings – Turnouts, Track circuiting, Signaling, Interlocking, Lay Outs of Railway Stations and Yards, Rolling Stock, Tractive Power, Track Resistance, Level Crossings.									
	Total= 45 Periods									

Te	ext Books:
1	Khanna K., Justo C.E.G., Highway Engineering Revised 10th Edition Khanna Publishers, Roorkee, 2014
2	Kadiyalil. R, Engineering Traffic and Transport Planning, Khanna Publishers, New Delhi, 2019.
3	Chandola S.P. Transportation Engineering-2019

Ref	Reference Books:					
1	Sharma S.K., Principles Practice and Design of Highway Engineering, S. Chand & Co Ltd. New Delhi, 2006					
2	Guidelines Of Ministry of Road Transport and Highways, Government of India.					
3	Agarwal M.M., Indian Railway Track, 14th Edition, Prabha and Co., New Delhi, 2002.					
4	Saxena S.C. Highway & Traffic Engineering, 2014.					

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Classify roads as per Indian Road Congress and describe the principles of highway alignment	Understand			
CO2	Determine the highway geometric elements	Analyse			
CO3	Differentiate between types of pavements, their construction and design principles	Analyse			
CO4	Explain the functions of components of Railways	Understand			
CO5	Carry out the various methods for track alignment & procedure for construction of railway & maintenance of track	Apply			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
CO2	2	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	2	2	3	1	3	-	-	-	1	-	-
CO4	-	-	-	-	2	2	3	1	2	-	-	-	-	-	-
CO5	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
Avg	2	3	2	2	2	2	3	1	2.25	-	-	-	1	-	-
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

18CI	EM06	REPAIR AND REHABILITATION OF	STRUCTURES	S	emest	er	
PRE	REQUISI	TES	Category	OE	Cr	edit	3
NIL		L	Т	Р	TH		
				3	0	0	3
Cour	se Learni	ng Objectives		1			1
1	Study the	various types and properties of repair materials					
2	Learn var	ious distress and damages to concrete structures					
3	Understar	d the importance of maintenance of structures					
4	Assess the	e damage to structures using various tests					
5	Learn var	ious repair techniques of damaged structures, corroded	structures				
τ	J nit I	MAINTENANCE AND REPAIR ST	RATEGIES	9	0	0	9
Maint	enance, rep	pair and rehabilitation, Facts of Maintenance, import	ance of Maintenance v	arious a	spects	of insp	ection,
assess	sment proce	dure for evaluating a damaged structure, causes of dete	rioration.				
U	nit II	SERVICEABILITY AND DURABILITY	OF CONCRETE	9	0	0	9
Quali	ty assuranc	e for concrete construction, concrete properties- stren	ngth, permeability, the	mal pro	perties	and cra	icking-
effect	s due to cl	imate, temperature, chemical, corrosion- Design and	l construction errors-et	fects of	cover	thickne	ss and
crack	ing.						
U	nit III	MATERIALS AND TECHNIQUES F	OR REPAIR	9	0	0	9
Speci	al concretes	and mortar, concrete chemical, special elements for a	ccelerated strength gai	n, expan	sive cei	nent, p	olymer
concr	ete, Sulphu	infiltrated concrete, ferro cement, fibre reinforced con-	crete, rust eliminators a	nd polym	ers coa	ting for	rebars
during	g repair, foa	med concrete, mortar and dry pack, vacuum concrete, g	unite and shotcrete, epo	oxy injec	tion, m	ortar rej	pair for
crack	s, shoring a	nd underpinning. Methods of corrosion protection, co	rrosion inhibitors, corre	osion res	istant s	teels, co	oatings
and ca	athodic prot	ection.		T		1	T
U	nit IV	9	0	0	9		
Streng	Strengthening of Structural elements, deflection, cracking, chemical disruption, weathering corrosion, wear, fire, leakage and						
marin	marine exposure.						
U	nit V	DEMOLITION TECHNIQU	JES	9	0	0	9
Demo	Demolition methods by machines, explosives, Advanced techniques-Demolition sequences, dismantling techniques, safety						
preca	precautions in dismanting and demolition, Engineered demolition techniques for dilapidated structures- case studies						
					1 otal	= 45 P	eriods

Те	ext Books:
1	Shetty, M.S, Concrete Technology- Theory and Practice, S. Chand and company, New Delhi,2019
2	Repair and protection of concrete structures by Noel P. Mailvaganam, CRC Press, 1991.
3	CPWD: Handbook on Repair & Rehabilitation of R.C.C. Buildings, CPWD, Govt. of India, 2002, updated reprint 2011

Ref	erence Books:
1	Santhakumar A.R, Training Course notes on Damage Assessment and Repair in Low-cost housing, "RHDC.NBO" Anna University, July 1992.
2	Raikar R.N.,Learning from failures- deficiencies in design, construction and services – R&D Centre (SDCPL), Raikar bhavan, Bombay,1987
3	Palaniyappan, N., Estate management, Anna Institute of Management, Chennai, 1992.
4	Lakshmipathy, M. etal., Lecture notes of workshop on Repairs and Rehabilitation of structures, 29-30 th October 1999.
5	https://nptel.ac.in/courses/114106035/38

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Demonstrate the condition of structures	Understand				
CO2	Inspect and evaluate the damaged structure	Analyze				
CO3	Implement the repairing techniques of a structure	Analyze				
CO4	Identify and Use different materials for repairing works	Apply				
CO5	Demonstrate the dismantling and demolishing structures	Apply				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO2	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO3	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO4	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO5	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
Avg	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CE	CEM07 GREEN BUILDING TECHNOLOGY Semester								
PRE	REQUISI	TES	Category OE Credit						
NIII				L	Т	Р	TH		
INIL			Hours/Week	3	0	0	3		
Course Learning Objectives									
1 To Know various aspects of green buildings									
2	To Learn	the principles of planning and orientation of buildings.							
3	To Relate	the construction of green building with prevailing energy	conservation policy a	ind regu	lations.				
4	To Know	and identify different green building construction material	s.						
5	To Learn	different rating systems and their criteria							
U	J nit I	INTRODUCTION TO GREEN BUI	LDING	9	0	0	9		
Introd	uction, Neo	cessity, Definition & concept of Green Building, Issues a	and strategies of Gre	en Bui	lding, F	Principl	es and		
Efficie	its of Gree ency. Indoo	en Building, Components/ features of Green Building, or Air Ouality.	Energy Efficiency,	water	efficiei	ncy, M	aterial		
U	nit II	SITE SELECTION AND PLANNI	NG	9	0	0	9		
Site se	election Sit	e selection strategies. Landscaping building form orienta	tion building envelo	ne and	fenestra	tion m	aterial		
and co	onstruction	techniques, roofs, walls, fenestration and shaded finishes, I	Environmental design	n (ED) s	trategie	es for bu	uilding		
constr	uction, Rai	nwater harvesting methods for roof & non-roof, reducir	ng landscape water o	lemand	by pro	per irri	gation		
systen	ns, recycle a	and reuse systems, Waste Management.				-			
Uı	nit III	ENERGY AND ENERGY CONSERV	VATION	9	0	0	9		
Introd	uction, Env	vironmental impact of building constructions, present scen	nario, Need of energ	y conse	rvation	, Conce	epts of		
emboo	died energy	,							
operat	tional energ	y and life cycle energy, Methods to reduce operational energy	gy, Energy efficient b	uilding,	zero oz	zone dej	pleting		
potent	tial (ODP) r	naterials, wind and solar energy harvesting, energy meterin	ng and monitoring, co	oncept o	f net ze	ro buile	lings.		
Uı	nit IV	BUILDING MATERIALS		9	0	0	9		
Green	building n	naterials and products- Bamboo, Rice husk ash concrete,	plastic bricks, Baga	sse part	icle bo	ard, Ins	sulated		
concre	ete forms. u	use of materials with recycled content such as blended cer	nents, pozzolana cen	nents, fl	yash br	icks, vi	trified		
tiles, r	naterials fro	om agro and industrial waste, reuse of waste material-Plastic	c, rubber, Newspaper	wood,	Nontox	ic paint	, green		
U	Unit V RATING SYSTEM 9 0 0 9						9		
Introd	Introduction to Leadership in Energy and Environmental Design (LEED) criteria, Indian Green Building council (IGBC) Greer						Green		
rating	rating, Green Rating for Integrated Habitat Assessment. (GRIHA) criteria, National Productivity council (NPC) Ministry of								
New a	New and Renewable Energy (MNRE) Bureau of Energy efficiency (BEE) -BER (Building Energy Rating) – Certificates.								
	Total= 45 Periods								

Te	xt Books:
4	Kibert, C.J., Sustainable construction: Green Building design and Delivery, John Wiley Hobouken, NewJersey, 3rd
1	Edition, 2012.
2	Chauhan, D S Sreevasthava, S K., Non-conventional Energy Resources, New Age International Publishers, NewDelhi,
	4 th Edition, 2021

Ref	erence Books:
1	O.P. Gupta, Energy Technology, Khanna Publishing House, NewDelhi
2	Jagadeesh, K S, Reddy Venkatta Rama &Nanjunda Rao, K S., Alternative Building Materials and Technologies, New Age International Publishers, Delhi.
3	Sam Kubba., Handbook of Green Building Design and Construction, Butterworth- Heinemann.
4	Means R S, Green Building - Project Planning and Cost Estimating, John Wiley &Sons
5	Sharma K V, Venkataseshaiah P., Energy Management and Conservation, IK International.

Cour	Course Outcomes:						
Upon	Upon completion of this course, the students will be able to:						
CO1	Understand the concepts of Green Building	Understand					
CO2	Discuss the Planning of Green Building.	Understand					
CO3	Explain the concept of Energy and Energy Conservation.	Understand					
CO4	Select appropriate green building material and technique.	Understand					
CO5	Summarize the Green Building Functions in various organizations.	Understand					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	1	-	2	3	-	-	-	2	1	2	-	-
CO2	1	1	1	2	1	-	-	-	-	-	-	-	2	-	-
CO3	-	1	3	-	2	-	-	-	-	-	-	-	2	-	-
CO4	-	1	2	-	3	-	-	-	-	-	2	-	2	-	-
CO5	1	1	2	3	2	-	-	-	-	-	2	-	2	-	-
Avg	1	1	2	2	2	2	3	-	-	-	2	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

B.E. – COMPUTER SCIENCE ENGINEERING - MINOR DEGREE

1805	SM01									
PRER	EQUIS	Category	OE	Cre	edit	3				
			L T							
		3	0	0	3					
Cours	e Learn	ing Objectives								
1	To und	erstand and develop the object oriented programming concepts	s.							
2	To fam	iliarize and design the template functions and classes								
3	To diss	eminate and apply exception handling mechanisms.								
4	To lear	n and exploit stream classes.								
Un	it I	INTRODUCTION		9	0	0	9			
Proced program Operate	ure orien nming, b ors and e	ted programming paradigm - Object oriented programming penefits of OOP, application of OOP - C++ fundamentals xpressions - Control structures - Functions.	g paradigm - Basi –structure of C++	c conce prograi	epts of n, toker	object o 1s, data	oriented types -			
Un	it II	INHERITANCE AND VIRTUAL FUNCT	TIONS	9	0	0	9			
Classes overloa	s and ob ding usir	jects - friend functions- constructors and destructors- Open ng member function and friend function - Type conversions.	erator overloading	– bina	ry and	unary o	operator			
Uni	t III	INHERITANCE AND VIRTUAL FUNCT	TIONS	9	0	0	9			
Inherita pointer	ance – de s to objec	fining derived classes, types, virtual base classes, abstract clas cts, this pointer, pointer to derived classes - Virtual functions.	sses, constructor in	derived	classes	- Pointe	ers-			
Uni	t IV	TEMPLATES AND EXCEPTION HAND	LING	9	0	0	9			
Generic templat rethrow uncaug	Generic Classes – class template, class templates with multiple parameters - Generic Functions - function templates, function templates with multiple parameters, member function templates - Exception handling – basics, exception handling mechanism, rethrowing an exception – Exception handling options – understanding terminate() and unexpected() – the uncaught exception()									
Un	Unit VCONSOLE I/O AND FILE HANDLING9009									
C++ S operati	C++ Stream Classes – unformatted I/O operations, formatted console I/O operations, manipulators - Files-classes for file operation, opening and closing a file, detecting end of file, files modes, sequential file operations, random file operations.									
	Total (45 L) =45 Periods									

Text	Text Books:						
1	E. Balagurusamy "Object – Oriented Programming with C++" Sixth Edition Tata McGraw-Hill						
Refei	Reference Books:						
1	Herbert Schildt, "The Complete Reference C++", Fifth Edition, Tata McGraw Hill						
2	Bjarne Stroustrup, "The C++ programming language", Fourth Edition Addison Wesley						
3	K.R.Venugopal, Rajkumar Buyya, T.Ravishankar, Mastering in C++, Second Edition, Tata McGraw Hill						

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Build the object oriented programming concepts.	Apply					
CO2	Familiarize and build the template functions and classes	Understand					
CO3	Disseminate and apply exception handling mechanisms.	Apply					
CO4	Depict and exploit steam classes.	Understand					

180	CSM02	ADVANCED DATA STRUCTURES AND AL	GORITHMS				
PRE	REQUIS	ITES	Category	OE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cou	rse Learn	ing Objectives					
1	To und	erstand the concepts of ADTs					
2	To Lea	rn linear data structures – lists, stacks, and queues					
3	To have	e knowledge about non-linear data structures like trees and gra	aphs				
4	To und	erstand concepts about searching and sorting and hashing tech	iniques				
U	Init I	LINEAR DATA STRUCTURES – LIS	ST	9	0	0	9
Abstr Circu Delet	act Data T larly Linke ion, Merge	ypes (ADTs) – List ADT - Array based Implementation - Lined Lists - Doubly-Linked Lists - Applications of Lists – Polye, Traversal).	nked List Implemer nomial Manipulati	ntation - on – A	– Singly ll opera	Linked tions (Ir	l Lists - isertion,
U	nit II	LINEAR DATA STRUCTURES –STACKS AN	D QUEUES	9	0	0	9
Stack - Que	ADT - Op ue ADT -	verations - Applications of Stacks - Evaluating Arithmetic Exp Operations - Circular Queue - DeQueue - Applications of Que	ression - Conversio eue	n of inf	ix to po	stfix Exp	pression
U	nit III	NON LINEAR DATA STRUCTURES – T	REES	9	0	0	9
Threa Min I	ADI – Tre ided Binary Heap - App	y Trees - AVL Trees – B-Tree – Heaps - Operations of Heaps - plications of Heap.	- Priority Queues -	nary Se Binary	arch Tr Heap - I	ee ADT Max Hea	 ap -
U	nit IV	NON LINEAR DATA STRUCTURES – GI	RAPHS	9	0	0	9
Defin Appli Krusł	ition – Rep cation of C cal's Algor	presentation of Graphs –Types of Graphs - Graph Traversals - Graph Structures: Shortest Path Problem: Dijkstra's Algorithm ithms	Breadth First Searc - Minimum Spann	ch - Dej ing Tre	pth Firs es: Prin	t Search n's Algo	- rithm -
U	nit V	SEARCHING, SORTING AND HASHING TE	CHNIQUES	9	0	0	9
Searc Sort - Hashi	hing: Line · Merge So ing.	ar Search - Binary Search - Sorting Algorithms - Insertion Sort ort - Radix Sort - Hashing: Hash Functions – Separate Chain	t - Selection Sort - S ing – Open Addres	Shell So sing – I	rt - Bub Rehashi	ble Sort ng – Ex	- Quick tendible
				Tota	al (45 L	L) =45 I	Periods
	(D 1						
Te	ext Books	White "Dete Structures and Alexanthing Anglesis in C." 4/	Далина Б. ф ф ф	- 2012			
	Mark Allei	n Weiss, "Data Structures and Algorithm Analysis in C", 4/E	Pearson Education	n, 2013.			
Ref	erence B	ooks:					
1	Seymour I Pvt. Ltd., 2	Lipschutz, "Data Structures With C ",(Schaum's Outline Ser 2015	ries) Published by	Tata N	IcGraw	-Hill Ed	ucation
2	Ellis Horo	witz, Sartaj Sahni, Dinesh Mehta, "Fundamentals of Data Stru	ctures In C", Secor	nd Editi	on, Silio	con Pres	s, 2008.
3	Richard F. Learning F	Gilberg & Behrouz A.Forouzan, "Data Structures: A Pseudo c Publishers,2005.	code Approach With	h C", So	econd E	dition, C	Cengage
4	Classic Da	ta Structures", Second Edition by Debasis Samanta, PHI Lear	ning, 2009.				

Cours Upon	Bloom's Taxonomy Level	
CO1	Implement various abstract data types to solve real time problems by using Linear Data Structures	Apply
CO2	Apply the different Non-Linear Data Structures to solve problems	Apply
CO3	Analyze and implement graph data structures to solve various computing problems.	Analyze
CO4	Critically analyze the various sorting and searching algorithms	Analyze

18CSM03	COMPUTER ORGANIZATION AND D	ESIGN				
PREREQUIS	ITES	Category	OE Credit		3	
			L T P		Р	ТН
	Hours/Week	3	0	0	3	
Course Learn	ing Objectives				1	1
1 To und	erstand the basic structure and operations of digital computer					
2 To lear	n the working of different arithmetic operations					
3 To und	erstand the different types of control and the concept of pipelin	ing				
4 To stud	y the hierarchical memory system including cache memory and	d virtual memory				
5 To und	erstand the different ways of communication with I/O devices a	and standard I/O ir	nterface	8		
UNIT I	INTRODUCTION		9	0	0	9
Functional units and Instruction	,Basic Operational Concepts, Bus Structure ,Memory Locatior Sequencing, Addressing modes.	ns and Addresses, I	Memory	Operati	ons, Ins	truction
UNIT II	ARITHMETIC UNIT		9	0	0	9
Addition and Su Multiplication, 1	btraction of Signed Numbers, Design of Fast Adders, Multiplic Integer Division, Floating point number operations.	ation of Positive N	lumbers	, Booth	Algorith	nm, Fast
UNIT III	PROCESSOR UNIT AND PIPELININ	IG	9	0	0	9
Fundamental Co Basic Concepts	oncepts, Execution of Instruction, Multi Bus Organization, Har of pipelining, Data Hazards, Instruction Hazards, Data path &	dwired control, M Control Considera	licro pro tions.	ogramm	ed cont	rol,
UNIT IV	MEMORY SYSTEMS		9	0	0	9
Basic Concepts, Management rec	Semiconductor RAM, ROM, Cache memory, Improving Cac quirements, Secondary Storage Device.	he Performance, V	/irtual r	nemory	,Memor	У
UNIT V INPUT AND OUTPUT ORGANIZATION		9	0	0	9	
Accessing I/O of SCSI, USB).	levices, Programmed I/O, Interrupts, Direct Memory Access,	Interface circuits,	Standa	rd I/O 1	Interface	es (PCI,
			Tota	l (45 L) =45 I	Periods

Text	t Books:
1	Carl Hamacher V., Zvonko G. Vranesic, Safwat G. Zaky, " Computer organization ", Tata McGraw Hill, 5th Edition, 200
Refer	rence Books:
1	Patterson and Hennessey, "Computer Organization and Design ". The Hardware/Software interface, Harcourt Asia Morgan Kaufmann, 3rd Edition, 2007
2	Hayes, "Computer Architecture and Organization ", 3rd edition, Tata McGraw Hill, 2006
3	Heuring V.P., Jordan H.F., " Computer System Design and Architecture ", 6th edition ,Addison Wesley,2008

Course Outcomes: Upon completion of this course, the students will be able to:		Bloom's Taxonomy Level
CO1	Understand the working principles of computer componets	Understand
CO2	Design the arithmetic and processing units	Create
CO3	Analyze the various computer components	Analyze

\

18CS	SM04	ADVANCED OPERATING SYSTE	MS	Semester			
PRER	EQUIS	ITES	Category	OE Credit		edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives			l		
1	To un	derstand the structure and functions of Operating systems					
2	To un	derstand the process concepts and scheduling algorithms					
3	To un	derstand the concept of process synchronization and deadlock	S				
4	To lea	rn various memory management schemes					
5	To illu	istrate various file systems and disk management strategies					
UNIT	ГΙ	INTRODUCTION AND OPERATING SYSTEM S	STRUCTURES	9	0	0	9
Main fr Hand h Prograr	rame Sys neld Syste ms, Syste	tems, Desktop Systems, Multiprocessor Systems, Distributed ems; Operating Systems Structures - System Components, C m Design and Implementation.	Systems, Clustered Operating System S	l Syster Services	ns, Real s, Syster	l Time s n calls,	ystems, System
UNIT	ΓII	PROCESS MANAGEMENT		9	0	0	9
Process Commu Schedu	ses-Proce unication ling Algo	ss Concepts, Process Scheduling, Operation on Pro- ; Threads- Multithreading Models, Threading Issues; CPU prithms.	cesses, Co-Opera Scheduling-Basic	ting P. Concept	rocesses ts, Sche	s, Inter duling (Process Criteria,
UNI	ΓIII	PROCESS SYNCHRONIZATION AND DEA	DLOCKS	9	0	0	0
						U	9
Process Synchro Deadlo	s Synchr onization ck Avoid	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock.	Hardware, Sema s for handling De	phores, adlocks	Classic , Deadle	cal Prot	blem of vention,
Process Synchro Deadlo UNIT	s Synchr onization ck Avoid F IV	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL	Hardware, Sema s for handling Dea MEMORY	phores, adlocks	Classic , Deadlo 0	cal Protock Prev	y blem of vention, 9
Process Synchro Deadlo UNIT Memor paging;	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing.	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg	phores, adlocks 9 mentati	Classic , Deadlo 0 on, Seg	cal Protock Prev	9 olem of vention, 9 on with
Process Synchro Deadlo UNIT Memor paging; UNIT	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE	phores, adlocks. 9 mentati 9	Classic , Deadlo 0 on, Seg 0	al Prob ock Prev 0 mentation	9 olem of vention, 9 on with 9
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manago system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization a, Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc	Classic , Deadlo on, Seg on, Seg rotectio Metho ture; Ca	al Prob ock Prev 0 mentation 0 n; File ds, Free sse study	9 olem of vention, 9 on with 9 System e Space v: Linux
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization a, Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STF terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo on, Seg on, Seg o rotectio Metho ture; Ca al (45 L	val Probasility cal Probasility cal Probasility mentation 0 mentation 0 n; File ds, Free isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space v: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid Γ IV ry Manag ; Virtual 1 Γ V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg 0 rotectio Metho ture; Ca al (45 L	val Probasility cal Probasility cal Probasility mentation 0 n; File ds, Free isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M t Books	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo on, Seg on, Seg rotectio Metho ture; Ca	al Prob ock Prev 0 mentation n; File ds, Free use study	y olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system. Tex	s Synchr onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Inthentation- ement; M t Books Abrah	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk : ham Silberschatz, P.B.Galvin, G.Gagne —Operating System C	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE cure, File Sharing, nplementation, All Management, RAI	phores, adlocks. 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg o rotectio Metho ture; Ca hl (45 L	val Prob cal Prob pock Prev n 0 n; File ds, Free isse study 0) =45 H	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system. Tex 1 Refer	s Synchr onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Int nentation- ement; M t Books Abrah	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory Im lass-Storage Structure - Disk Structure, Disk scheduling, Disk : aam Silberschatz, P.B.Galvin, G.Gagne —Operating System C poks:	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE cure, File Sharing, nplementation, All Management, RAI	phores, adlocks. 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo on, Seg on, Seg rotectio Metho ture; Ca hl (45 L	val Prob cal Prob pock Prev n 0 n; File ds, Freed isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods

 1
 Andrew S. Tanenbaum, —Modern Operating Systems, PHI , 2nd edition, 2001

 2
 D.M.Dhamdhere, "Systems Programming and Operating Systems ", 2nd edition, Tata McGraw Hill Company, 1999.

3 Maurice J. Bach, —The Design of the Unix Operating System, 1st edition, PHI, 2004.

Cours Upon	Bloom's Taxonomy Level	
CO1	Identify the components and their functionalities in the operating system	Apply
CO2	Apply various CPU scheduling algorithms to solve problems	Apply
CO3	Analyze the needs and applications of process synchronization and deadlocks	Analyze
CO4	Apply the concepts of memory management including virtual memory and page replacement to the issues that occur in real time applications	Apply
CO5	Solve issues related to file system implementation and disk management	Apply

1805	SM05	DATA COMMUNICATION AND COM NETWORKS	PUTER	Semester			
PRER	REQUIS	ITES	Category	OE Credit			3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To stud	y the concepts of data communications and functions of differ	ent ISO/OSI refere	ence arc	hitectur	e	
2	To unde	erstand the error detection and correction methods and also the	e types of LAN				
3	To stud	y the concepts of subnetting and routing mechanisms					
4	To unde	erstand the different types of protocols and congestion control					
5	To stud	y the application protocols and network security					
UNI	ГΙ	DATA COMMUNICATIONS AND PHYSICA	AL LAYER	9	0	0	9
Data Interc Mode	Commun connection el, Addres	ication; Networks- Physical Structures (Types of Connection n of Networks: Internetwork; Protocols and Standards; Networks: sing; Transmission media-Guided Media, Unguided Media.	ons, Physical Topo vork Models-The (logy),C OSI Mo	ategorie del, La	es of Ne yers in	etworks, the OSI
UNIT	ΓII	DATA LINK LAYER		9	0	0	9
Introdu Correct Windo Etherne	tion-Ty tion (VR w),Error et, Token	pes of errors, Redundancy, Detection versus Correction, Modu C,LRC,CRC, Checksum, Hamming Code);Data link Co Control (Automatic Repeat Request, Stop-and-wait ARQ, Slid Bus, Token Ring, FDDI.	Ilar Arithmetic; Blo ntrol- Flow Cont ing Window ARQ)	ck Cod rol (St , HDLC	ing-Erro op- and ; Local	or Detec l-Wait, Area Ne	tion and Sliding etworks-
UNI	ГШ	NETWORK LAYER		9	0	0	9
Netwo Gatev	ork Layer vays- Rou	r services-Packet Switching-Network Layer Performance-IPvaters-Routing Algorithm-Distance Vector Routing, Link State	4 addresses-IPv6 a Routing.	ddressir	ıg- Subi	netting-l	Bridges-
UNI	ГІ	TRANSPORT LAYER		9	0	0	9
Duties Service	of the T e-Congest	ransport layer-User Datagram Protocol-Transmission Contr tion, Congestion Control, Quality of Service, Techniques to in	ol Protocol- Cong nprove QoS, Integr	estion (ated Se	Control rvices.	and Qu	ality of
UNI	ΓV	PRESENTATION LAYER AND APPLICATION I	LAYER	9	0	0	9
Doma	ain Name	System - Domain Name Space, DNS in the Internet; Electron	ic Mail-FTP- HTT	P- Wor	ld Wide	Web.	1
				Tota	al (45 L	.) = 45 I	Periods
Tev	t Books	•					
		-					
1	Behrouz	A.Ferouzan, "Data Communications and Networking", 4th E	dition, Tata McGra	w-Hill,	2007.		
Refe	rence B	ooks:					
1	Andrey	v S. Tanenbaum, "Computer networks "PHI, 4 th edition 2008					

2	William Stallings," Data and computer communications", 10th edition, PHI, 2012

3 Douglas E. comer," Internetworking with TCP/IP-Volume-I", 6th edition,PHI, 2008

Cours	Bloom's Taxonomy Level	
Upon	completion of this course, the students will be able to:	
CO1	Classify the fundamentals of data communications and functions of layered architecture	Understand
CO2	Apply the error detection and correction methods and also identify the different network technologies	Apply
CO3	Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and routing technologies	Analyze
CO4	Illustrate the transport layer principles and reliable data transfer using protocols	Apply
CO5	Analyze the application layer protocols and also the use of network security	Analyze

18CSM06	PROGRAMMING ESSENTIALS IN PY	THON	Semester			
PREREQUIS	ITES	Category	OE	3		
			L T P			TH
		Hours/Week	3	0	0	3
Course Learn	ing Objectives					
1 To lear	n Python data structures, conditional and control structures and	d files				
2 To stud	y Python Modules, packages, Functions and Exceptions.					
3 To des	cribe Object oriented programming features and Regular Expre	essions.				
4 To lear	n about Web programming, GUI Programming and Database	programming				
UNIT I	INTRODUCTION		9	0	0	9
Python: Feature else statement-e	s - The Basics-Python Objects-Numbers-Sequences-Mapping a lif-Conditional Expressions-while statement-for statement-bre	and set types- Cond eak-continue.	itionals	and loc	ps-if sta	itement-
UNIT II	FUNCTIONS, MODULES AND PACKA	GES	9	0	0	9
Functions-Calli scope-Recursion	ng functions-Creating functions-Passing Functions-Formal n, Modules-Packages.	Arguments-Variab	ole leng	gth arg	uments-	variable
UNIT III	FILES AND EXCEPTIONS		9	0	0	9
Files and Input/ Exceptions-Ass	Output –Errors and Exceptions-Introduction-Detecting and herrions-Standard Exceptions.	andling Exceptions	-Conte	t Mana	gement-	Raising
UNIT IV	UNIT IV OBJECT ORIENTED PROGRAMMING AND REGULAR EXPRESSIONS			0	0	9
Object Oriente	ed Programming Introduction-Classes-class Attributes-Insta	inces-Instances att	ributes-	Buildin	g and	Method
Invocation-Stat	c methods and class Methods-Inheritance-Operator overloadir	ig - Regular Expres	sions-N	etwork	Program	nmıng –
			9	0	0	9
			,	v	Ŭ	,
GUI Programm	ing- Web Programming-Database Programming					
			Tota	al (45 L) =45 I	Periods

Text	Text Books:				
1	Wesley J.Chun-"Core Python Programming" – Prentice Hall, Second Edition, 2006.				
Refer	Reference Books:				
1	Swaroop C N, "A Byte of Python ", ebshelf Inc., 1st Edition, 2013				
2	"A Practical Introduction to python programming", Brian Heinold, Mount St. Mary's University, 2012				
3	Learning to Program with Python," Richard L. Halterman"., Southern Adventist University				

Cours Upon	Bloom's Taxonomy Level	
CO1	Develop programs using control structures and files.	Create
CO2	Create own Python Modules, packages, functions and Exceptions.	Create
CO3	Illustrate Object oriented Programming features and Regular Expressions.	Apply
CO4	Create own Web programs, GUI and database programs.	Create

22CS	SM07	ADVANCED DATABASE SYSTEM CO	NCEPTS	S					
PRER	EQUIS	ITES	Category	OE Credit			3		
		L	Т	Р	ТН				
		3	0	0	3				
Cours	e Learn	ing Objectives							
1	To unde	erstand the fundamentals of data models, SQL queries and rela	ational databases						
2	To mak	e a study of database design using ER Diagram and normalize	9						
3	To impa	art knowledge in transaction processing.							
4	To mak	e the students to understand the file operations and indexing							
5	To fami	liarize the students with advanced databases							
UNI	ГІ	RELATIONAL DATABASES		9	0	0	9		
Purpose – Relat SOL.	e of Datal ional Mo	pase System – Views of data – Data Models – Database System del – Keys – Relational Algebra – SQL fundamentals – Adv	Architecture – Intr anced SQL feature	oductions – Emi	n to rela bedded	tional da SQL– D	tabases ynamic		
ÙNI	ΓII	DATABASE DESIGN		9	0	0	9		
Entity-	Relations	hip model – E-R Diagrams – Enhanced-ER Model – ER-to-	Relational Mapping	g – Fun	ctional]	Depende	encies – Multi		
valued	Depender	ncies and Fourth Normal Form – Join Dependencies and Fifth	n Normal Form.		INUIIIIa		- Wulu-		
UNI	ſШ	TRANSACTION		9	0	0	9		
Transac Protoco	ction Con ols – Two rency and	cepts – ACID Properties – Schedules – Serializability – Concu Phase Locking – Deadlock – Transaction Recovery – Sav	rrency Control – N ve Points – Isolatio	eed for on Leve	Concurr ls – SQ	rency – I L Facili	Locking ities for		
UNI	ΓΙ	IMPLEMENTATION TECHNIQUE	S	9	0	0	9		
RAID - B tree operation	– File Org Index Fil ons – Que	ganization – Organization of Records in Files – Indexing and es – Static Hashing – Dynamic Hashing – Query Processing ery optimization using Heuristics and Cost Estimation.	Hashing –Ordered g Overview – Algo	Indices orithms	– B+ tro for SEL	ee Index ECT an	Files – d JOIN		
UNI	ΓV	ADVANCED TOPICS		9	0	0	9		
Distribu Object- Schema systems	Distributed Databases: Architecture, Data Storage, Transaction Processing – Object-based Databases: Object Database Concepts, Object-Relational features, ODMG Object Model, ODL, OQL – XML Databases: XML Hierarchical Model, DTD, XML Schema, XQuery – Data Warehousing and Data Mining - information Retrieval: IR Concepts, Retrieval Models, Queries in IR								
				Tota	al (45 L	.) =45 I	Periods		

Text	t Books:
1	Abraham Silberschatz, Henry F.Korth and S.Sundarshan "Database System Concepts", Sixth Edition, Tata McGraw Hi 2011.
Refer	rence Books:
1	Ramez Elamassri and Shankant B-Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education, 2011.
2	C.J. Date, "An Introduction to Database Systems", Eighth Edition, Pearson Education Delhi, 2008.
3	Raghu Ramakrishnan, —Database Management Systems, Fourth Edition, McGraw-Hill CollegePublications, 2015.
4	G.K.Gupta,"Database Management Systems", Tata McGraw Hill, 2011.
E-Ref	erences:
1.	Lecture Series on Database Management System by Dr.S.Srinath, IIIT Bangalore, nptl

Cours Upon	Bloom's Taxonomy Level	
CO1	Understand the basic concepts of the database and data models.	Understand
CO2	Design a database using ER diagrams and map ER into Relations and normalize the relations.	Create
CO3	Develop a simple database for applications	Create

18CS	SM08	VIRTUALIZATION AND CLOUD COM	RTUALIZATION AND CLOUD COMPUTING					
PRER	EQUIS	ITES	Category	OE	E Credit		3	
				L	Т	Р	ТН	
		Hours/Week	3	0	0	3		
Cours	e Learn	ing Objectives						
1	To int	roduce the broad perceptive of Parallel Computing, Distributed	l Computing and C	Cloud C	omputii	ng.		
2	To un	derstand the concept of Virtualization						
3	To ide	entify the approaches of SLA and programming model in Cloud	d					
4	To un	derstand the Cloud Platforms in Industry and Software Enviror	nments.					
5	To lea	rn to design the trusted Cloud Computing system						
UNI	ΓI	INTRODUCTION		9	0	0	9	
Princip Compu Model,	les of Par tting; Vis Types of	rallel and Distributed Computing – Elements of Parallel and Dis ion of Cloud, Defining a Cloud, characteristics and benefits; G f Clouds, Open Challenges.	tributed Computin	g, Tech Archite	nologie cture- (s for Dis Cloud Re	tributed eference	
UNI	TII	VIRTUALIZATION		9	0	0	9	
Virtual Virtual Full Vi	ization, l ization a rtualizati	Programming Language-Level Virtualization, Application-Level Cloud computing, Pros and cons of Virtualization, Technologon.	vel Virtualization ogy examples-Xen	,Other	types of virtualiz	f Virtua ation, V	lization, Mware:	
UNI	[11]	SLA MANAGEMENT IN CLOUD COMPUT PROGRAMMING MODEL	9	0	0	9		
Traditio Compu	onal App ting - Te	roaches to SLA Management, Types of SLA, Life Cycle of S chnologies for Data Intensive Computing, MapReduce Program	LA, SLA Manage nming Model.	ment ir	Cloud	; Data Iı	ntensive	
UNI	ΓΙ	CLOUD INDUSTRIAL PLATFORMS AND SO ENVIRONMENTS	9	0	0	9		
Cloud OpenN	Platform ebula; A	s in Industry - Amazon Web Service, Google App Engin neka Cloud Application Platform-Aneka Framework Overview	e; Cloud Softwar , Anatomy of Ane	e Envi ka Con	ronmen tainer.	ts –Euc	alyptus,	
UNI	ΓV	CLOUD SECURITY AND APPLICATION	ONS	9	0	0	9	
An Intr Securit Cons; (roduction y Risk, C Cloud Sci	to the Idea of Data Security, The Current State of Data Sec Cloud Computing and Identity; The Cloud, Digital Identity, and tentific Applications.	curity in the Cloud I Data Security, Co	d, Clou ontent L	d Comp .evel Se	outing an ecurity, F	nd Data Pros and	
				Tota	al (45L) = 45 I	Periods	
	t Books Raikum	: ar Buyya, Christian Vecchiola, S.Tamarai Selvi, 'Mastering	Cloud Computing	z-Found	lations	and Ap	olications	
1	Program	ming", TMGH,2013.(Unit- I,II & IV)	companie			· · · PI		

2	RajKumar Buyya, James Broberg, Andrezei M.Goscinski, "Cloud Computing: Principles and paradigms",2011(Unit-III & V)
Refer	rence Books:
1	Kai Hwang.GeoffreyC.Fox.JackJ.Dongarra, "Distributed and Cloud Computing ,From Parallel Processing to The Internet of Things", 2012 Elsevier
2	Barrie Sosinsky, "Cloud Computing Bible", Wiley Publisher, 2011

Cours	Bloom's	
Upon	Taxonomy Level	
CO1	Explain the main concepts and architecture of Parallel computing, Distributed Computing and Cloud Computing.	Understand
CO2	Analyze the concept of Virtualization	Analyze
CO3	Identify the approaches of SLA and programming model in Cloud	Apply
CO4	Analyze the Cloud Platforms in Industry and Software Environments.	Analyze
CO5	Identify the security issues in scientific and real time applications.	Apply

B.E. - ELECTRONICS AND COMMUNICATION ENGINEERING - MINOR DEGREE

18ECM01		ELECTRON DEVICES										
PREREQ	UISITES		CATEGORY	OE	Cre	Credit 3						
			Hours/Week	L	Т	P	Т	H				
3 0												
Course Ol	ojectives:		1	I	-1		1					
1. To int	roduce con	ponents such as diodes, BJTs and FETs, their charac	cteristics and applic	cations								
2. To une	2. To understand, analyse and design of simple diode and transistor circuits.											
3. To kno	ow the swit	ching characteristics of components and the conce	pt of rectifiers and	power suj	pplies							
Unit I	EXTRIN	SIC SEMICONDUCTOR AND PN JUCTIONS			9	0	0	9				
N and P typ	be semicon	ductor and their energy band structures- Law of electr	rical neutrality-calc	ulation of	locatio	on of	Fer	mi				
level and f	ree electron ntinuity equ	and hole densities in extrinsic semiconductors-Mo ation- Hall effect and its applications. Band structur	bility, drift current e of PN junction –	and cond	uctivity	y-dif ent ir	tusı 1 a I	on PN				
junction- d	erivation o	f diode equation-temperature dependence of diode c	haracteristics and e	quivalent	model	s.						
Unit II	SWITCI	HING CHARACTERISTICS OF PN JUNTION A	AND SPECIAL D	IODES	9	0	0	9				
Calculation	n of transi	tion and diffusion capacitance- varactor diode-ch	arge control descr	ription of	diode	-swi	tchi	ng				
characteris	tics of diod	e- mechanism of avalanche and Zener breakdown-ten	mperature depende	nce of bre	akdow	n vol	tag	es-				
Dackwalu		ening effect in thin barriers - tunner diode-photo diod		Jues.								
Unit III	BIPOLA	R JUNCTION TRANSISTORS			9	0	0	9				
Construction	on of PNP	and NPN transistors- BJT current components-emi	tter to collector an	d base to	collec	tor c	urre	ent				
switching t	imes- Phot	o translator.	characteristics- ED	ers-Moll	model	- trai	1515	tor				
Unit IV	FIELD I	EFFECT TRANSISTORS			9	0	0	9				
Construction	on and cha	racteristics of JFET-relation between pinch off volta letion types. CMOS circuits. MOS capacitance, BIC	age and drain curre MOS, SOI CMOS.	ent derivat	ion. M	OSF	ETS	S -				
Unit V	RECTIFIERS AND POWER SUPPLIES 9											
Half-wave	, full-wave	and bridge rectifiers with resistive load. Analysis for	or Vdc and ripple v	oltage wit	h C, C	L, L-	C a	nd				
C-L-C filte output resi	ers. Voltagestance and	e multipliers Zener diode regulator. Electronically r temperature coefficient.	egulated d.c power	r supplies	. Line	regul	latio	on,				
				Total (4	15L)= 4	45 Po	erio	ds				
Text Book	s:											

1.	JaconMillman& Christos C. Halkias, "Electronic Devices and Circuits"	Tata McGraw-Hill, 1991.

2.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory 8 th edition.", PHI, 2002						
Refer	ence Books:						
1.	Donald A. Neaman. "Semiconductor Physics and Devices" 3rd Ed., Tata McGraw-Hill 2002						
2.	S. Salivahanan, N. Suresh kumar and A. Vallavaraj, Electronic Devices and Circuits, TMH, 1998.						
3.	Ben, G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, Pearson Education 2000						
4.	Floyd, "Electronic Devices", Sixth edition, Pearson Education, 2003.						
E-Re	ferences:						
1.	https://archive.nptel.ac.in/courses/108/108/108108122/						
2.	https://www.youtube.com/watch?v=qqQ8wO-lNmI						
3.	https://slideplayer.com/slide/12438044/						

Course Outcomes:					
Upon completion of this course, the students will be able to:					
CO1	Interpret various applications of diode.	Applying			
CO2	Classify various configurations and biasing technique of BJT	Applying			
CO3	Apply the knowledge of using special devices for various applications	Understanding			
CO4	Discuss operation, biasing and applications of JFET.	Analysing			
CO5	Design power supplies and rectifiers	Applying			

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	РО	PO	PSO1	PSO2	PSO3						
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	2	1	-	I	-	-	-	I	-	-	-	2	-	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	-	2	2	1
CO5	2	2	1	-	-	-	-	-	-	-	-	-	3	2	2
Avg	2	2	1	-	-	-	-	-	-	-	-	-	2.2	2	1.5
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															

18E0	ECM02 DIGITAL ELECTRONICS									
PRE	REQU	JISITES	CATEGORY	OE	Crec	lit	3			
			Hours/Week	L	Т	Р	ТН			
	3									
Cour			•							
1	1 To introduce basic postulates of boolean algebra and show the correlation between expressions									
2	To In	troduce the methods for Simplifying Boolean expressions								
3	To O	utline the formal procedures for the analysis and design of co	ombinational circu	uits and s	equenti	ial circ	uits			
4	To in	troduce the Concept of Memories and programmable logic d	evices							
5	To ill	ustrate the concept of synchronous and Asynchronous seque	ntial circuits							
Unit	Ι	NUMBER SYSTEMS AND LOGIC GATES			9	0 0	9			
Num - Bo Simp using	Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Boolean Algebra and Minimization Techniques - Canonical forms – Conversion between canonical forms – Simplifications of Boolean expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates									
Unit	Π	COMBINATIONAL CIRCUITS			9	0 0	9			
Desig Dem	gn proo ultiple	cedure – Adders/Subtractor – Serial adder/ Subtractor - Paralle xer - encoder / decoder – code converters.	el adder/ Subtracto	or-BCD a	adder- l	Multip	lexer/			
Unit	III	SEQUENTIAL CIRCUITS			9	0 0	9			
Desig and M regis	gn Pro Mealy ters- U	cedure - Flip flops: SR, JK, T, D and JKMS – Triggering of – Counters: Asynchronous / Ripple counters – Synchronous Iniversal shift register.	Flip-flop - Reali counters – Modu	zation of Ilo n cour	flip flo nter. Re	ops – N egister	Aoore : shift			
Unit	IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS			9	0 0	9			
Design of fundamental mode circuits – primitive state / flow table – Minimization of primitive state table –state assignment. Problems in Asynchronous Circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazards alimination										
Unit V PLD AND MEMORY DEVICES							9			
Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Array (PLA) - Programmable Array Logic (PAL). Implementation of combinational logic using MUX, ROM, PAL and PLA										
				Total (45 L) =	= 45 Pe	eriods			
Tex	t Bool	xs:								
1		M. Morris Mano, Digital Design, 4.ed., Pearson Education (Singapore) Pvt. L	td., New	Delhi,	2008				

2	R.P.Jain, Modern Digital Electronics, 4th edition, TMH, 2010.							
Referen	Reference Books:							
1	S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 2 nd ed., Vikas Publishing House Pvt. Ltd, New Delhi, 2004							
2	Charles H.Roth. "Fundamentals of Logic Design", Thomson Publication Company, 2003.							
3	Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.							
4	John F.Wakerly, Digital Design: Principles and practices, PHI, 2006							
E-Refer	E-Reference:							
1	http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01							

2	https://nptel.ac.in/courses/117105080/6
3	https://nptel.ac.in/courses/117105080/12

Course	Outcomos	D1
Course	Outcomes:	Bloom's
Upon co	npletion of this course, the students will be able to:	Taxonomy
-		Mapped
CO1	Minimize Boolean expressions and implement using logic gates	Applying
CO2	Design and analyse combinational logic circuits.	Analysing
CO3	Design and analyse synchronous and asynchronous sequential logic circuits	Analysing
CO4	Understand the concepts of memories and PLDs	Understanding
CO5	Implement circuits using memory and PLDs.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	РО	PO	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	2	3	2	-	-	-	-	2	1	-
CO2	3	3	2	2	3	3	2	1	1	-	-	-	3	2	-
CO3	2	2	3	3	2	1	2	1	1	-	-	-	2	2	-
CO4	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
CO5	2	1	2	1	3	2	1	2	-	-	-	-	3	2	-
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	1	-	-	-	2.4	1.6	-
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															

18EC	M03	ELECTRONIC CIRCUITS						
PREI	REQU	ISITES	CATEGORY	OE		Crec	lit	3
Elect	ron De	vices	Hours/Week	L		Т	Р	ТН
Elect			Hours/ Week	3	3			
Cours	se Obj	ectives					•	
1	To pe	erform analysis on Small signal amplifiers and large sign	nal amplifiers.					
2	To gi	ve a comprehensive exposure to all types of discrete and	plifiers and oscillators	5.				
3	To ur	nderstand the various linear and non-linear applications	of op-amp					
Un	it I	MIDBAND ANALYSIS OF SMALL SIGNAL AM	IPLIFIERS		9	0	0	9
BJT – bias c Mid-t Miller imped emitte	Need ircuit a pand ar r's the lance u er coup	for biasing - Fixed bias circuit - Load line and quiescent as a constant current circuit. CE, CB and CC amplifiers halysis of various types of single stage amplifiers to of orem. Darlington connection using similar and Comp sing Darlington connection and bootstrapping. CS, CG led differential amplifier circuit. Differential gain - CMF	point. Different types s. Method of drawing btain gain - input imp plementary transistors and CD (FET) amplifie RR. Use of constant cur	of bias small-s edance Meth ers. Mu rrent ci	sing ci signal e and ods o ltistag rcuit t	rcuit equi outpu f inc ge am o imp	s. Us valer it im reasi plifie	e of Self at circuit. pedance. ng input ers-Basic c CMRR.
Uni	t II	LARGE SIGNAL AMPLIFIERS			9	0	0	9
Low I circui Calcu their r and tr power	requent t of FE lation relation ansforr outpu	ETS. Gain-bandwidth product of FETs. General express of overall upper and lower cut off frequencies of multist to cut off frequencies. Classification of amplifiers (Class mer-coupled power amplifiers. Class B complementary- t, efficiency and power dissipation. Crossover distortion ing capacity of transistors with and without heat sink. H	equivalent circuit of B sion for frequency resp tage amplifiers. Ampl ss A, B, AB, C&D), Eff symmetry, push-pull p n and methods of elim leat sink design.	onse (ifier rig ficienc ower a inating	of mu se tim y of cl mplifi it. Ca	equer ltistage ass A iers. (ilcula	ge an l sag A, RC Calcu tion	furvalent nplifiers. time and coupled lation of of actual
Unit	t III	OSCILLATORS			9	0	0	9
Feed stabi Osci Mille	back A lization llator - er and l	Amplifier: Block diagram - Gain with feedback - Barkhan n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators -	usen Criterion - Mecha e connection of RC an lysis of LC Oscillator Electrical equivalent of	nism fond LC s: Colp circuit	or star filters oitts – of Cry	t of c s - R Hart vstal.	oscilla C ph ley -	ation and ase shift - Clapp -
Unit	t IV	TUNED AMPLIFIERS AND MULTIVIBRATOR	RS		9	0	0	9
Analy of Cla Bistat	vsis of s uss C tu ble Mu	single tuned and synchronously tuned amplifiers - Class and Amplifier- Collector coupled and Emitter coupled the vibrator - Triggering methods – Mono stable and A	C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci	d their – Mon Illators	applic o stab using	ation ole M g Em	is - E ulti v itter a	fficiency ibrator – and base
Uni	t V	OPERATIONAL AMPLIFIERS AND ITS APPL	ICATIONS		9	0	0	9
Basic design Differ high p	structu n - DC rentiato bass, ba	are and principle of operation - Calculation of different and AC characteristics of OP-AMP. Applications: Invort or - Summing amplifier - Precision rectifier - Schmitt thand pass and band stop filters - Sine wave oscillators – C	ntial gain - Common I verting and non-invert rigger and its applicati Comparator – Multi vil	Mode g ing am ons - A orator. To	gain, (aplifie Active tal (4	CMR rs - l filte 5 L)	R - (integi rs: L = 45	DP-AMP rator and ow pass, Periods
Т	ext Bo	oks:						
		B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju	Pantulu, K.Bhaskara	Rama	Murt	hy, "	Elect	tronic
	2 I	D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits	s", New Age Internatio	onal Pv	t. Ltd.	, 201	1.	
R	eferen	ce Books:						
	1 I	Millman J. and Taub H., "Pulse Digital and Switching w	aveform", 3rd Edition,	, McGr	aw-H	ill In	terna	tional

1 Millma , 2011.

2	Sedera& Smith, "Micro Electronic Circuits", 4 th Edition, Oxford University Press, Chennai.						
3	Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall of India, 1996.						
4	K.R.Botkar, 'Integrated Circuits', 10th edition, Khanna Publishers, 2010.						
e-Ref	e-Reference:						
1	http://nptel.ac.in/courses/117105080/40						
2	http://nptel.ac.in/courses/117108038/1						
3	https://freevideolectures.com/course/2915/linear-integrated-circuits						

Cour Upon	Bloom's Taxonomy Mapped	
CO1	To analyze small signal amplifiers and Large signal Amplifiers.	Applying
CO2	Analyze the frequency response characteristics of amplifiers	Applying
CO3	Develop insight of on oscillator design.	Applying
CO4	Construct and analyse tuned amplifiers and multivibrators.	Applying
CO5	Develop competence in linear and nonlinear Op amp circuit analysis.	Applying

	COURSE ARTICULATION MATRIX														
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO2	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO5	1	2	1	2	-	-	-	-	-	-	-	-	1	2	1
Avg	2.4	2	1	2	-	-	-	-	-	-	-	-	1	2	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

DEDEC							
. NEKE(QUISI	ΓΕS	CATEGORY	OE	Cre	dit	
			Hours/Week	L	Т	P	T
				3	0	0	
Course C	bjecti	ves:			1		
I. To u	ndersta	nd and perform Fourier and Laplace analysis on signal	s and systems respec	ctively.			
2. To ar	alyse	the Discrete Fourier Transform, Fast Fourier Transform	n algorithms.				
3. To de	esign a	nd realize IIR, FIR filters.					
J nit I	INT	TRODUCTION TO SIGNALS AND SYSTEMS			9	0	0
Classifica	tion of	f Signals: Even and Odd Signal - Energy and power sig	gnals - Continuous ti	me (CT)	and Dis	scret	e tii
DT) sigr	als - (e – Ca	Continuous and Discrete amplitude signal System p usality – Stability - Realizability, - Linear Time-Invar	properties and represion in the second secon	sentation: Impulse	: lineari	ity - e an	Trr d st
esponse	– Conv	volution – Correlation - System representation through	differential equation	s and diff	ference	equa	tio
Unit II	AN	ALYSIS OF SIGNAL AND SYSTEMS			9	0	0
ntroducti	on to l	Fourier Transform, Fourier Series, Relating the Laplac	the Transform to Four	rier Tran	sform, 1	Freq	uen
esponse	of con	inuous time systems. Introduction to z- Transform.					
J nit III	DIS	CRETE FOURIER TRANSFORM			9	0	0
ntroduct	on to	DFT – Properties of DFT - Circular convolution -	FFT algorithms – F	Radix-2 I	FFT alg	orith	nms
Decimati	on in T	Time and Decimation in Frequency algorithms.				,01101	
T	INIT	ENTRE IMPLITOE DEGRANGE EN TER DEGLAN					
Jnit IV	INF	INITE IMPULSE RESPONSE FILTER DESIGN			9	U	0 2
Character	istics of	of Analog Butterworth filter - Chebyshev filter - Low p	bass filter, High pass	filter, Ba	and pass	s filt	er a
3and stop	o filter	- Transformation of analog filters in to equivalent digi	tal filters using bilin	ear trans	formati	on m	leth
Realizat	ion str	ucture for IIR filters-Direct form - Cascade form - Para	allel form.				
J nit V	FIN	IITE IMPULSE RESPONSE FILTER DESIGN			9	0	0
Linear pl Blackmar Direct for	nase re nn Win m stru	esponse of FIR filter - FIR design using window m dows - Park-McClellan's method - Realization structur cture - Comparison of FIR and IIR filters.	nethod: Rectangular, res for FIR filters - I	, Hammi Linear ph	ng, Ha ase stru	nnin cture	g a es a
				Total (4	45L)= 4	5 Pe	erio

Text	Books:
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.
2.	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", 4th Edition, Pearson Education, 2009.

Refer	rence Books:
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010.
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.
3.	Emmanuel C. Ifeacher, Barry W. Jervis, "Digital Signal Processing: A Practical Approach", 2nd Edition, Pearson Education, 2004.
4.	S.K. Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.
E-Re	ferences:
1.	http://nptel.ac.in/courses/117104074/
2.	https://www.coursera.org/learn/dsp
3.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/

Course	Bloom's					
Upon c	Upon completion of this course, the students will be able to:					
		Mapped				
CO1	Analyse and understands different types of signals.	Analysing				
CO2	Represent continuous signals and systems in time and frequency domain using different transforms.	Analysing				
CO3	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.	Analysing				
CO4	Design and realize IIR filters.	Applying				
CO5	Design and realize FIR filters.	Applying				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	3	3	-	-	-	-	-	-	-	2	2	2
CO2	3	2	2	3	3	2	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	1	I	1	-	-	-	-	-	1	1	1
CO4	3	2	2	2	1	I	1	-	-	-	-	-	1	1	1
CO5	1	1	1	1	1	I	-	-	I	-	-	-	2	2	1
Avg	2.6	1.8	2	2.2	1.8	2	1						1.6	1.6	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18ECM0	5 MICROPROCESSORS AND MICROCON										
PREREQ	UISITES	CATEGORY	OE	Crec	lit	3					
		Hound	L	Т	Р	TH					
		Hours/ week	3	0	0	3					
Course O	bjectives:	·									
1.	To familiarise with 8086 and 8051 architectures.										
2.	To interface 8086 microprocessor and 8051 microcontrollers with peripherals by programming.										
3.	To gain basic knowledge of PIC microcontrollers.										
Unit I	8086 MICROPROCESSOR ARCHITECTURE		9	0	9						
Overview	Overview of Microcomputer systems-8086 Architecture - Pin Assignments - Internal Architecture - Addressing modes-										
Instruction Formats- Directives and Operators-Assembly process.											
Unit II	PROGRAMMING AND INTERFACING OF 8086			9	0	9					
Fundamen	tal I/O considerations- Programmed I/O- Interrupt I/O- Basic	c 8086 Configurations- N	Minimu	n Mode	e-Ma	ximum					
Mode-Sys	tem Bus timing- I/O Interfaces-Peripheral Interfacing usin	g 8255 PPI - 8279 Key	/board/I	Display	cont	roller -					
8251 USA	RT.										
Unit III	8051 ARCHITECTURE			9	0	9					
8051 archi	tecture - Registers in 8051 - Pin description - 8051 parallel	I I/O ports - memory or	ganizati	on - Ins	struct	ion set					
— Addres	sing modes										
Unit IV	PROGRAMMING AND INTERFACING OF 8051			9	0	9					
Assembly	language programming.8051Timers - Serial Port Programm	ing - Interrupts Program	ming - l	LCD an	d Ke	yboard					
Interfacing	g - ADC, DAC and Sensor Interfacing - Motor Control.										
Unit V	PIC MICROCONTROLLERS			9	0	9					
Main char	acteristics of PIC microcontrollers - PIC microcontroller	families-Memory-Progr	am Mei	nory –	RAN	/I Data					
Memory -	Instruction set and timers in PIC			•							
	Total $(L+T) = 45$ periods										
<u> </u>				. /	1						
Text Rook	· · ·										

Text D	UOKS.									
1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.									
2	Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.McKinlay, "The 8051 Microcontroller and Embedded									
۷.	Systems using Assembly and C", 2e, 2022.									
Reference Books:										
1	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded									
1.	Systems: Using Assembly and C", 2nd Edition, Pearson education, 2011.									
2.	Martin Bates,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier, 2011.									
3.	Mathur Sunil,"Microprocessor 8086: Architecture, Programming and Interfacing" PHI Learning Pvt. Ltd. 2011.									
4	Salvador PinillosGimenez," 8051 Microcontrollers Fundamental Concepts, Hardware, Software and									
4.	Applications in Electronics", Springer 2019.									
E-Refe	prences:									
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon 2020.									
2.	https://nptel.ac.in/courses/108105102									
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html									

Cour	rse Outcomes:	Bloom's Taxonomy
Upor	a completion of this course, the students will be able to:	Mapped
CO1	Describe and analyse the architecture of 8086 microprocessor and 8051 architectures.	Remembering
CO2	Develop assembly language programs and Interface peripherals with 8086.	Applying
CO3	Develop assembly language programs and Interface peripherals with 8051.	Applying
CO4	Determine application specific circuit for real-time applications.	Understanding
CO5	Associate appropriate PIC microcontroller for a given application.	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	-	-	-	-	-	-	-	-	2	-	1	-	-
CO2	2	2	2	2	-	-	-	1	-	-	-	-	2	2	-
CO3	2	2	2	2	-	-	-	1	-	-	-	-	2	2	-
CO4	2	2	2	2	-	-	-	-	-	-	-	-	2	2	2
CO5	2	2	-	2	-	-	-	-	-	-	-	-	2	2	-
Avg	2	2	2	2	-	-	-	-	-	-	2	-	1.8	2	2

18ECN	18ECM06 ANALOG AND DIGITAL COMMUNICATION												
PRER	EQUISITE	S	CATEGORY	OE	Cre	dit	3						
			Hours/Week	L	Т	Р	TH						
				3	0	0	3						
Course Objectives:													
1.	1. Understand analog and digital communication techniques.												
2.	Learn data and pulse communication techniques.												
3.	Be familiarized with source and Error control coding.												
Unit I	Unit IINFORMATION THEORY909												
Uncertainty, information and entropy - Source coding theorem - Shannon Fano coding - Huffman coding - Discrete													
memoryless channels – Mutual information – Channel capacity – Channel coding theorem.													
Unit IIANALOG COMMUNICATION990													
Noise: Source of Noise – External Noise- Internal Noise- Noise Calculation. Introduction to Communication Systems:													
Modul	ation – Typ	es – Need for Modulation. Theory of Amplitude Mod	ulation – Evoluti	on and D	escript	ion o	f SSB						
Techni	ques – The	ory of Frequency and Phase Modulation – Comparisor	n of various Anal	og Comm	unicat	ion S	ystem						
(AM –	FM - PM).												
Unit I	I DI	GITAL COMMUNICATION			9	9 0	09						
Amplit	ude Shift K	eying (ASK) – Frequency Shift Keying (FSK) Minimu	ım Shift Keying (MSK) –P	hase S	hift K	Keying						
(PSK)	– BPSK –	QPSK – 8 PSK – 16 PSK – Quadrature Amplitude M	Modulation (QAN	(1) - 8 QA	АM –	16 Q	AM –						
Bandw	idth Efficie	ncy- Comparison of various Digital Communication Sy	vstem (ASK – FS)	K – PSK –	QAM).							
Unit I	V PL	LSE COMMUNICATION AND MULTIPLE ACC	ESS TECHNIQU	JES	9	9 0	09						
Pulse C	Communicat	ion: Pulse Amplitude Modulation (PAM) – Pulse Time	Modulation (PT)	M) – Pulse	code	Modu	ilation						
(PCM)	– Compari	son of various Pulse Communication System (PAM -	- PTM - PCM).	Multiple a	iccess	techn	iques:						
FDMA, CDMA, TDMA, SDMA.													
Unit V	ER	ROR CONTROL CODING			9	9 0	09						
Linear	block code	s - Cyclic codes - Convolution codes - Maximum lik	kelihood decodin	g of conv	olution	nal co	odes –						
Sequer	ntial decodir	g of convolutional codes – Trellis codes – Applications	S.										
	Total (45L)= 45 Periods												

Text	Books:								
1.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2014.								
2.	J.G.Proakis, M.Salehi, -Fundamentals of Communication Systems, Pearson Education 2014.								
Refer	Reference Books:								
1.	B.P.Lathi, —Modern Digital and Analog Communication Systems ^I , 4th Edition, Oxford University Press, 2013.								
2.	D.Roody, J.Coolen, —Electronic Communications, 4th edition PHI 2015.								
3.	B.Sklar, —Digital Communications Fundamentals and Applications, 5th Edition Pearson Education 2017								
4.	H P Hsu, Schaum Outline Series - —Analog and Digital Communications TMH, 5th edition 2006								
E-Re	ferences:								
1.	https://onlinecourses.nptel.ac.in/noc21_ee74/preview								
2.	https://nptel.ac.in/courses/117101051								
3.	https://www.digimat.in/nptel/courses/video/117105143/L51.html								

Cours	se C	Outcomes:	Bloom's Taxonomy			
Upon	co	mpletion of this course, the students will be able to:	Mapped			
CO	:	Apply the concepts of Random Process to the design of Communication	Applying			
CO	:	Apply analog and digital communication techniques.	Applying			
CO	:	Understand the use of data and pulse communication techniques.	Understanding			
CO	:	Analyze Source and Error control coding.	Analysing			
CO	:	Design AM communication systems and Angle modulated communication	Applying			

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO1	PSO	PSO	PSO
POs										10	11	2	1	2	3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18ECM07												
PREREQUISI	TES	CATEGORY	OE	Crea	Credit							
		Hours/Week	L	Т	Р	TH						
			3	0	0	3						
Course Object	ives:			1								
1. Understand	the division of network functionalities into layers.											
2. Be familiar with the components required to build different types of networks												
3. Be exposed to the required functionality at each layer												
4. Learn the flow control and congestion control algorithms												
Unit I FUNDAMENTALS & LINK LAYER												
Overview of Data Communications- Networks – Building Network and its types– Overview of Internet - Protocol Layering - OSI Mode – Physical Layer – Overview of Data and Signals - introduction to Data Link Layer - Link layer Addressing- Error Detection and Correction												
Unit II MI	EDIA ACCESS & INTERNETWORKING			9	0	09						
Overview of Da Bluetooth – Blu Address – Netw	ata link Control and Media access control - Ethern netooth Low Energy – WiFi – 6LowPAN–Zigbee - rork layer protocols (IP, ICMP, Mobile IP)	et (802.3) - Wireless LAN - Network layer services –	s – Avai Packet S	lable P Switchi	roto ng –	- IPV4						
Unit III RC	UTING			9	0	0 9						
Routing - Unica interdomain pro	st Routing – Algorithms – Protocols – Multicast R stocols – Overview of IPv6 Addressing – Transition	outing and its basics – Ove a from IPv4 to IPv6	rview of	Intrad	oma	in and						
Unit IV TR	ANSPORT LAYER			9	0	09						
Introduction to –Services – Fea avoidance (DEC	Introduction to Transport layer –Protocols- User Datagram Protocols (UDP) and Transmiision Control Protocols (TCP) –Services – Features – TCP Connection – State Transition Diagram – Flow, Error and Congestion Control - Congestion avoidance (DECbit, RED) – QoS – Application requirements											
Unit V AP	Unit V APPLICATION LAYER 9 0 0 9											
Application La (SMTP, POP3, – Firewalls.	yer Paradigms – Client Server Programming – We IMAP, MIME) – Introduction to Peer to Peer Netw	orld Wide Web and HTTF orks – Need forCryptogram	• - DNS- bhy and l	Electi	ronio k Se	c Mail ecurity						
			Total (45L)= ·	45 P	eriods						

Text Books: 1.

Behrouz A Forouzan, Data Communications and Networking, 4th Edition, 2020
2.	James F. Kurose, Keith W. Ross, Computer Networking - A Top-Down Approach Featuring the Intern	et,								
	Seventh Edition, Pearson Education, 2016.									

Refer	ence Books:
1.	Nader. F. Mir," Computer and Communication Networks", Pearson Prentice Hall Publishers, 2nd Edition, 2014.
2.	Alberto Leon-Garcia, IndraWidjajaCommunication Networks 2nd Edition McGraw-Hill Education, 2003
3.	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill
	Publisher, 2011.
4.	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan
	Kaufmann Publishers, 2011.
E-Re	ferences:
1.	https://onlinecourses.nptel.ac.in/noc22_ee61/preview
2.	https://www.ee.iitb.ac.in/~sarva/courses/EE706/2012/EE706LecNotes.pdf
3.	http://www.cs.kent.edu/~farrell/net01/lectures/

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Explain the basic concept in modern data communication and different level of layers in the protocol	Understanding				
CO2	Analyse the functions and services of data link layer	Analysing				
CO3	Categorize the functions and services of network layer	Understanding				
CO4	Examine the basic functions of transport layer and congestion in networks	Understanding				
CO5	Analyse the concepts of various network applications and data security	Analysing				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO5	PO	PSO1	PSO2	PSO3						
	1	2	3	4		6	7	8	9	10	11	12			
CO1	2	1	1	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	1	2	-	1	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	-	-	-	-	-	-	-	-	-	3	1	2
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	-	2
CO5	2	1	1	-	1	-	-	-	-	-	-	-	1	1	1
Avg	2.2	1.2	1.2	-	1.25	-	-	-	-	-	-	-	2	1	1.4
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															

18E	CM08	INTERNET OF THINGS								
PRI	PREREQUISITES CATEGORY				C	redit		3		
			Houng/Wook	L		Т	Р	TH		
			Hours/ week	3 0 0						
Cou	ırse Objec	tives					1			
1	To under	stand Smart Objects and IoT Architectures								
2	To learn	about various IOT-related protocols								
3	To build	simple IoT Systems using Arduino and Raspberry I	Pi							
4	To under	stand data analytics and cloud in the context of IoT								
5	To develo	op IoT infrastructure for popular applications								
Ī	Unit I	FUNDAMENTALS OF IOT			9	0	0	9		
Evo	lution of 1	nternet of Things - Enabling Technologies - Io	Γ Architectures: o	neM2N	И, ІоТ	Wo	orld I	Forum		
(IoT	WF) and A	Alternative IoT models – Simplified IoT Architectu	re and Core IoT F	unction	al Sta	ck	Fog	Edge		
and Sma	Cloud in I art Objects	of – Functional blocks of an Io1 ecosystem – Sen	sors, Actuators, Sr	nart Ot	ojects	and (Conn	ecting		
I	Jnit II	IOT PROTOCOLS			9	0	0	9		
IoT	Access T	echnologies: Physical and MAC layers, topology	y and Security of	IEEE	802.1	5.4,	802.	15.4g,		
802	.15.4e, 190	1.2a, 802.11ah and LoRaWAN – Network Layer: I	P versions, Constra	ained N	lodes a	and C	Const	rained		
Net	works – O	ptimizing IP for IoT: From 6LoWPAN to 6Lo, Ro	outing over Low P	ower a	nd Lo	ssy N	Vetwo	orks –		
App and	MOTT	ansport Methods: Supervisory Control and Data Ac	equisition – Applic	ation L	ayer F	roto	cols:	COAP		
U	nit III	DESIGN AND DEVELOPMENT			9	0	0	9		
De	sign Meth	odology - Embedded computing logic - Microcont	roller, System on	Chips -	- IoT	syste	m bu	ilding		
blo	ocks - Ardı	ino - Board details, IDE programming - Raspberry	y Pi - Interfaces an	nd Rasp	oberry	Pi w	vith F	ython		
Pro	ogramming	Ţ.					-			
U	nit IV	DATA ANALYTICS AND SUPPORTING SE	ERVICES		9	0	0	9		
Stru	ctured Vs	Unstructured Data and Data in Motion Vs Data in	n Rest – Role of M	Iachine	e Lear	ning	- No	SQL		
Data	abases – H	Iadoop Ecosystem – Apache Kafka, Apache Spa	rk – Edge Stream	ning Ai	nalytic	s an	d Ne	twork		
Ana Mar	llytics – A nagement v	vith NETCONE-YANG	amework – Djang	0 - AV	NS 10	r 101	- 3	ystem		
U	Jnit V	CASE STUDIES/INDUSTRIAL APPLICATI	ONS		9	0	0	9		
Cisc	co IoT syst	em - IBM Watson IoT platform – Manufacturing -	Converged Plantw	vide Etl	hernet	Mod	lel (C	(PwE)		
- Po	- Power Utility Industry - Grid Blocks Reference Model - Smart and Connected Cities: Layered architecture						ecture,			
Sma	Smart Lighting, Smart Parking Architecture and Smart Traffic Control						• 1			
	Total (45 L) = 45 Periods						eriods			

Text	Books:							
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017							
2	ArshdeepBahga, Vijay Madisetti, —Internet of Things – A hands-on approachl, Universities Press, 2015							
Refe	Reference Books:							
1	Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things – Key applications and Protocols, Wiley, 2012 (for Unit 2).							

2	Jan Ho ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.
3	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Thingsl, Springer, 2011.
4	Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011.
E-Re	eferences:
1	https://online.stanford.edu/courses/xee100-introduction-internet-things
2	https://www.udemy.com/topic/internet-of-things/
3	https://www.netacad.com/courses/iot

Course (Upon con	Bloom's Taxonomy Mapped	
CO1	Explain the concept of IoT.	Understanding
CO2	Analyze various protocols for IoT.	Applying
CO3	Design a PoC of an IoT system using Rasperry Pi/Arduino	Applying
CO4	Apply data analytics and use cloud offerings related to IoT.	Applying
CO5	Analyze applications of IoT in real time scenario	Analysing

COURSE ARTICULATION MATRIX															
COs/PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E0	CM09	WIRELESS SENSORS AND NETWORK	XING					
PRER	EQUIS	ITE:	CATEGORY	OE Credit				
			Hours/Wook	L	ТН			
			Hours/ Week	3	0	3		
Course		4:						
Course	e Objec	uves:						
1.	Learn	fundamental of Ad hoc network and architecture						
2.	Under	stand the MAC and routing protocols.						
3.	Have	an in-depth knowledge on QoS, security and sensor network	platforms					
Unit I		ROUTING PROTOCOLS			9	0	0 9	
Elemer	nts of A	d hoc Wireless Networks, Issues in Ad hoc wireless networks	, Example commer	cial applica	tions	of A	d hoc	
networ Classif	king, A	Ad hoc wireless Internet, Issues in Designing a Routing	Protocol for Ad	Hoc Wire	less]	Netw	orks,	
On–De	mand I	Routing protocols – Ad hoc On–Demand Distance Vector Rou	ting (AODV).	Distance			D V),	
Unit II	[ARCHITECTURES OF WSN			9	0	0 9	
WSN a	pplicat	on examples, Types of applications, Challenges for Wireless	Sensor Networks,	Enabling T	echno	ologi	es for	
Wirele Operat	ss Sens ing sys	or Networks, Single-Node Architecture: Hardware Compor ems and execution environments	ients, Energy Cons	umption of	Sens	or N	odes,	
Netwo	rk Arch	itecture: Sensor Network Scenarios Ontimization goals and	figures of merit T	Design prin	ciples	of V	VSN	
Service	e interfa	ces of WSNs, gateway concepts.	ingules of mont, L	esign prin	erpies	01	, DI (,	
Unit II	I	MAC PROTOCOLS AND ROUTING PROTOCOLS			9	0	0 9	
Image	compre	ssion: Predictive techniques – PCM – DPCM - DM - Transfor	m coding - Introduc	ction to JPH	EG - JI	PEG-	2000	
- JBIG Model	standa	rds - Study of EZW. Video compression: Video signal repre	sentation – ITU-T	Recommen	ndatio	n H.í	261 –	
H.263.	based	Journg The Will LO-1 Video Standard - The Will LO-2 Vide	o Standard: 11.202	- 110-1 K	cconn	nene	ation	
Unit I	V	QUALITY OF SERVICE AND ADVANCED APPLICA	ATION SUPPORT	I	9	0	0 9	
Quality	of Ser	vice: Coverage and deployment, Reliable data transport, Singl	le packet delivery, I	Block deliv	ery, C	longe	estion	
control	and ra	te control - Advanced application support: Advanced in-ne	etwork processing,	Security a	nd Ap	plica	ation-	
specific	c suppo	II.			-			
Unit V		SENSOR NETWORK PLATFORMS AND TOOLS			9	0	0 9	
Sensor	Node	Hardware – Berkeley Motes, Programming Challenges, Nor	de-level software p	latforms –	Tiny	OS, 1	nesC,	
beyond	CONTIKIOS, Node-level Simulators – NS2 and its extension to sensor networks, COOJA, TOSSIM, Programming beyond individual nodes – State centric programming.							
				Total (45	L) = 4	45 Pe	riods	

Text	Books:
1.	C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education – 2008
2.	Holger Karl and Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2007.
Refer	ence Books:
1.	Feng Zhao and LeonidesGuibas, "Wireless sensor networks ", Elsevier publication - 2004.
2.	Charles E. Perkins, —Ad Hoc Networkingl, Addison Wesley, 2000.
3.	William Stallings, "Wireless Communications and Networks ", Pearson Education – 2004
4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks, Elsevier, 2002, 394 - 422.
E-Ref	ferences:
1.	https://nptel.ac.in/courses/106105183
2.	https://nptel.ac.in/courses/106105183
3.	https://archive.nptel.ac.in/courses/106/105/106105160/

Course C Upon con	Bloom's Taxonomy Mapped	
CO1	Know the basics of Ad hoc networks and Wireless Sensor Networks	Understanding
CO2	Have a knowledge on architecture of Wireless Sensor Networks	Applying
CO3	Apply the knowledge to identify MAC and routing protocols	Applying
CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	Understanding
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	Remembering

					С	OURS	SE AR	TICU	LATI	ON M	ATRIX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
			3/2/	1 - ind	licates	stren	gth of	correl	ation	(3-Higl	h,2- Me	edium, I	- Low)		

18E0	CM10												B	\$A	S	510	C	S	C)F	FJ	E	M	B	E	D)I	D)]	Þ	E	Ľ)	S	Y	Y:	S	T	'F	EI	M	IS	,																				
PRE	REQU	JISITES																																								C	A	.7	[]	EC	36)F	27	7			OF	£		(Cr	e	di	t			3
Mior	oproce	acore and l	м	<u>М</u>	٢.	Л.	mi	or		201	ntr	-01	10	rc	,																											Ц	[/			•c/	٦X)	0	.l.				L			'	Г]	2		T	H
WIICI	oproce		111	VI		11			0	.0.				15	•																											1		л	11	5/	••	C	- 1				3				0)			3
Cou	rse Ob	jectives																																																													
1	To in	npart know	wle	/le	e	le	dg	ge	0	n e	em	be	ed	de	ed	l s	;ys	ste	er	m	a	ırc	chi	ite	ect	tu	ır	re	e	2	a	ın	nd	le	er	m	ıb	e	d	ld	le	d	d	e	V	elo	эp	m	er	It	St	ra	eg	ie	3								
2	To u	nderstand t	the	he	e	ne	b	us	; (Co	mr	nι	ın	ic	cat	tic	on	ı i	n	p	rc	oc	es	sso	ors	S	a	an	n	ld	d	p	be	r	ip	pł	ne	er	a	1	iı	nt	eı	ſ	a	cir	ıg																
3	To u	nderstand b	ba	oas	lS	as	sic	s	of	F R	lea	17	Гi	m	le	0)pe	er	ra	.ti	ng	g S	Sy	/st	ter	m	1																														_						
UNI	ΤI	BASICS	50	0)]	C	F	E	M	B	EI)D)E	E) (SY	YS	57	ΓΙ	EI	M	IS	;																																9			0		0)		9
Intro Prog Desig	ductio rammi gn Life	n - Fundar ng Langua e Cycle - So	ame Iage Sel	ne ige ele	je je	e ge	ent es ect	al - ic	R R	Co ec Pi	mp en roc	t t	ne Tr SS	en er	nts nd H	s c 1s Iar	of ir rd ⁻	E n w	Er E /a	n In In	be ab 2 S	ed seo So	lde dd oft	ed lec wa	d ar	Sy S re	ys Sy e I	st ys P	ste st Pa	te ste ai	er te ar	m er rti	ns n iti	s io	- - 01	ni	Cł A na	ha Aro g	al c	1e :h -]	ei it D	ng teo Per	ge et ve	s u el	f re	for e c pn	· E of ne	En E nt	nb m E	ec be	ld ed vii	ed de roi	Sy d S um	yst Sys en	ei ste t.	ns en	; - 15	- -	Ex E	an mł	np be	le dd	s - led
UNI	T II	MEMOR	RY	RY	Y	Y	N	1	11	NA	G	E	M	Ē	CN	JT	ΓΑ	AI	N	D) I	IN	JT	E.	R	R	RI	U	U]	J	P	רי	2	5																					9			0		()		9
Men Vs I Inter	ory Ao nterrup rupt So	ccess Proce ots - Types ervice Rout	ced es utir	edu s c tin	lt C n	dı c in	are of es	e - Ir	T nte	УI err	pes up	ts	of] -	M I	le: Int	m ter	or rrı	ry ur	pt	N : I	Ле La	en ate	no en@	ory cy	y N y -	М -	la I	ar In	n nt	na	aş te	er	rı	m up	ne pt	er t	nt P	N Pri	M ic		ri	hc ty	od -	ls –	- F	D Pro) Ogi	A ra	m	m	/le at	m le	ory In	ı Iı ite:	nte	eri up	fac /t (cir Co	ng on	- l tro	Po 511	lli er	ng s -
UNI	T III	COMMU	UN	JN	N	N	10	CA	1	ΓΙ	10	1	IN	IJ	ſF	ER	۲F	7A	1(CI	E	S																																	9			0		()		9
Inter IRD/	facing A - Eth	Buses - Se hernet - IEE	Ser EEE	eri EE	ri E	ri E	al 8	І 02	nte 2. 1	erf	fac —]	es B1	: - ue	F eto	R.S 00	52 otł	:32 h	2/	′U	JA	₹£	RT	ſ -	- F	RS	S∠	42	2	22	2,	2/]	/R	85	54	48	8:	5	-]	12	20		Iı	nt	e	rfa	ice	e .		SF	ľ	In	er	fac	:e	-	U	SI	3	_ (C	41	Л -
UNI	T IV	REAL T	ΓIN	IN	M	N	ſF	C (D	PE	R	A'	ГІ	IN	10	3 6	SY	Y	S	T	E	Μ	IS	;																															9			0		()		9
Real- Sche Inter	-Time duling Task (Concepts - - Event D Communic	- 7 Driv cat	- T riv ati	T iv ti	T iv ti	'as vei loi	sk n (1 -	N Sc · N	Ia che Mu	nag edu itez	ge ıli x -	m ng - S	ei g Se	nt -] em	- Re	T es ph	'as soi ho	sk ui or(s (rc es	Sc :e 3 -	ch S - N	ieć ha Me	du ari ess	ilii inį sa	ng g	g ge		- F Ç	P Q	C Pr Qu	C ri u	la o e	as ri ue	si ity es	if y s	fic Iı -	ca nl T	at h `i	tio ne	oi ri	n ita ers	o in s	f ic	S e C	ch P oi	ro ro m	lu to ne	lii cc ere	ng ol cia	 - 1 1	lg Pri R]	ori ori TO	ith ity S.	m C	s 'e	- (ilir	Cle ng	oc ; F	k 1 Pro	D1 oto	riv cc	ven ol -
UNI	ΤV	VALIDA	AT	Т	[]	Γ	IC)N	1 4	AN	ND	D)E	EB	BL	JC	30	GI	IN	N	G																																		9			0		()		9
Host - Ren Emu	Host and Target Machines - Validation Types and Methods - Host Testing - Host-Based Testing Setup - Target Testing - Remote Debuggers and Debug Kernels - ROM Emulator - Logical Analyzer – Background Debug Mode - InCircuit Emulator CASE STUDY: RFID Systems - GPS Navigation System – Development of Protocol Converter. Total (45 L) = 45 Periods																																																														

1 Sriram V Iyer and Pankaj Gupta, —Embedded Real-time Systems Programmingl, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006. 2 Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011. Pafarence Realert	
2 Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011. Performence Receiver	
Deference Deele	
Reference doors.	
1Prasad K V K K, —Embedded/Real-Time Systems: Concepts, Design and Programming – The Ultimate Reference, Himal Impressions, New Delhi, 2003	
2 Heath, "Embedded Systems Design", Newnes an Imprint of Elsevier, Massachusetts, 2003.	
3 Tammy Noergaard, "Embedded Systems Architecturel, Newnes an Imprint of Elsevier, Massachusetts, 2006.	
4 Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013	
E-References:	
1 https://lecturenotes.in/subject/225/embedded-system-es	
2 https://nptel.ac.in/courses/108102045/19	

.

Course O Upon con	putcomes: apletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Outline the concepts of embedded systems	Understanding
CO2	Understand the concept of memory management system and interrupts.	Understanding
CO3	Know the importance of interfaces.	Understanding
CO4	Understand real time operating system concepts.	Understanding
CO5	To realize the applications of validation and debugging.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	-	-	-	-	-	-	3	3	3	-	2
CO2	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
CO3	3	3	3	3	-	-	-	-	-	-	3	3	3	-	2
CO4	3	3	2	3	-	-	-	-	-	-	2	3	3	-	2
CO5	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
Avg	3	3	2	3	-	-	-	-	-	-	2.8	3	3	-	2
		3/	2/1 - i	ndicat	es stre	ength o	of corr	elatior	n (3-H	igh,2- N	Medium	n,1- Lo	w)		

B.E. - ELECTRICAL AND ELECTRONICS ENGINEERING - MINOR DEGREE

181	EEM01	LINEAR AND DIGITAL ELECTRONICS CI	IRCUITS	SEM	IESTI	ER							
PR	EREQ	UISITES	CATEGORY	PE	Cre	edit	3						
F1 -	atura D		Harry/Wash	L	Т	Р	TH						
Ele	ctron D	evices and Circuits	Hours/ week	3	0	0	3						
Co	urse O	bjectives:											
1.	To im	part knowledge on the characteristics& applications of Operation A	Amplifier, functiona	l diagram	and a	oplicat	ions						
	of line	ar ICs.											
2.	To sin	plify the switching functions											
3.	To des	ign the combinational logic circuits and sequential logic circuits											
Un	it I	OPERATIONAL AMPLIFIERS		9	0	0	9						
Ope	erationa	amplifiers - Equivalent circuit, voltage transfer curve - Open loop	Op-amp configurati	ons-Volt	age ser	ries, V	oltage						
shu	nt feedt	ack amplifiers configurations, closed loop differential amplifiers f	or single and differe	ential outp	outs.								
Out	tput offs	et voltage, minimizing output offset voltage due to input bias curre	ent and input offset	current, f	actors	affectii	ng off						
set	paramet	ers, CMRR - Open loop and closed loop frequency response of op	o-amps, circuit stabi	lity, slew	rate ar	nd its e	ffects						
in a	pplicati	ons.		Γ.		_							
Un	it II	APPLICATION OF OPERATIONAL AMPLIFIER AN	D LINEAR ICS	9	0	0	9						
DC	DC & AC amplifiers- Summing, Scaling and Averaging amplifiers-Instrumentation amplifier- Voltage to Current converter for floating and grounded loads. Current to voltage converter. Integrator, Differentiator, Voltage comparators, Zaro Crossing												
for	floating	and grounded loads - Current to voltage converter - Integrator, Diff	ferentiator. Voltage	comparat	ors - Zo	ero Cro	ossing						
Det	tector -	Schmitt trigger with voltage limiter- Precision Rectifier Circuits-	Peak Detector-Sam	ple and H	lold Cli	cuit, A	Active						
FIIL filte	ers - rie	quency response characteristics of major active inters, inst and my	glief ofder fow pass		pass III	ters, ar	i pass						
Fur	nctional	block diagram and Applications of Linear ICs: IC 555 Timer -IC 4	566 Voltage control	led oscill:	ator- IC	7 565 F	hase-						
loci	ked loor	s - IC LM317 voltage regulators.	oo voluge control	ieu oseini		20001	nuse						
Un	it III	COMBINATIONAL LOGIC CIRCUITS		9	0	0	9						
Rep	oresenta	tion of logic functions: SOP and POS forms - Simplification	of switching func	tions: K-	maps	metho	d and						
Qui	ineMcC	luskey (Tabulation) method.	C		1								
Des	sign:Ad	lers -Subtractors- 2 bit Magnitude Comparator-Multiplexer- Demu	ultiplexer- Encoder	- Priority	Encod	er - De	coder						
- C	ode Co	overters. Implementation of combinational logic circuits using mul	tiplexers and Decod	ler.									
Un	it IV	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS		9	0	0	9						
Flip	p-flops:	SR, D, JK and T- Conversion of flip-flops; Classification of sequen	tial circuits: Moore a	and Mealy	y mode	ls - An	alysis						
and	and design of synchronous sequential circuits - Design of synchronous counters- Universal shift register.												
Un	it V	ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS	5	9	0	0	9						
Fur	ndament	al mode and pulse mode circuits, Analysis procedure of asynchro	nous circuits with /	without u	sing of	SR la	tches-						
prir	nitive st	ate / flow table - Reduction of state and flow table - state assignm	ent –Design Proced	ure of asy	nchro	10us ci	rcuits						
wit	h /witho	ut using of SR latches-Problems in asynchronous sequential circui	ts: cycles -Races -H	Hazards.									
			Tota	al (45L+0	= (T0	45 Pe	riods						

Text	Books:
1.	Ramakant A Gayakward, "Op-Amps and Linear Integrated Circuits", Fourth Edition, Pearson Education, 2003.
2	Donald.E.Neaman, "Electronic Circuit, Analysis and Design", Tata McGraw Hill Publishing Company Limited, Second
۷.	Edition, 2002.
3	D.Roy Chowdhury and Shail B. Jain, "Linear Integrated Circuits", Fourth Edition, New Age International (P) Ltd
5.	Publishers, 2014.
4	M. Morris Mano, "Digital Design", Third Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2003 / Pearson
4.	Education (Singapore) Pvt. Ltd., New Delhi, 2010.
5	S. Salivahanan and S. Arivazhagan, "Digital Circuits and Design", Third Edition, Vikas Publishing House Pvt. Ltd,
5.	New Delhi, 201
Refe	rence Books:

1	Jacob Millman, Christos C.Halkias, "Integrated Electronics - Analog and Digital circuits system", Tata McGraw Hill
1.	2003.
c	R.P.Jain, "Modern Digital Electronics", Third Edition, Tata McGraw-Hill Publishing company limited, New Delhi,
۷.	2011.
3.	Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2015
4	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", Fifth Edition, Tata McGraw Hill
4.	Publishing Company Limited, New Delhi, 2012.

Cours	Course Outcomes: Bloom's Taxonomy										
Upon c	omj	Mapped									
CO1	:	Understand the Op-amp characteristics	L2: Understanding								
CO2	:	Understand the applications of Op-amp and other linear ICs.	L2: Understanding								
CO3	:	Apply K-map and Tadulation methods to simplify the switching functions	L3: Applying								
CO4	:	Design and implement of combinational logic circuits	L6: Creating								
CO5	:	Analyse and design of synchronous & asynchronous sequential logic circuits	L4: Analyzing								

COUR	RSE AR	RTICU	LATIO	ON MA	TRIX										
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1											2		
CO2	3	2	1	1									3		
CO3	3	2		2	2								3	3	
CO4	3	2	3	1	2							2	3	3	1
CO5	3	2	3	1	2							2	3	3	1
Avg.	2.8	1.8	2.3	1.25	2	-	-	-	-	-	-	2	2.8	3	1
			3/	2/1-indi	icates st	rength o	of correl	lation (3	8- High,	2-Medi	um, 1-1	Low)			

18EEM02 MICROPROCESSOR AND MICROCONTROLLER SEMESTER											
PREREQUISTIES CATEGORY	PE	Cr	edit	3							
C Programming	L	Т	Р	TH							
Hours/ week	3	0	0	3							
Course Objectives:											
1. To study the architecture of μ P8085 and μ C 8051.											
2. To study the Interrupt structure of 8085 and 8051.											
3. To do simple applications development with programming 8085 and 8051.											
UNIT I 8085 8 BIT MICROPROCESSOR	9	0	0	9							
Fundamentals of microprocessors - Architecture of 8085 - Groups of Instructions - Addressing	nodes – I	Basic tii	ning di	agram							
- Organization and addressing of Memory and I/O systems -Interrupt structure - Stack and sub	-routines	- Simpl	e 8085	based							
system design and programming.											
UNIT II 8051 8 BIT MICROCONTROLLER	9	0	0	9							
Fundamentals of microcontrollers - Architecture of 8051 - Groups of Instructions - Address	ing mode	es – Or	ganizat	ion of							
Memory systems - I/O Ports - Timers/Counters - Serial Port - Interrupt structure - Simple	program	ming co	oncepts	using							
Assemblers and Compliers.											
UNIT III INTERFACING WITH 8051 MICROCONTROLLER	9	0	0	9							
Need and requirements of interfacing - Interfacing - LED, 7 segment and LCD Displays - Tactil	e switche	s, Matr	ix keyb	oard –							
Parallel ADC – DAC – Interfacing of Current, Voltage, RTD and Hall Sensors.											
UNIT IV EXTERNAL COMMUNICATION INTERFACE	9	0	0	9							
Synchronous and Asynchronous Communication. RS232, RS 485, SPI, I2C. Introduction and inte	erfacing to	protoc	ols like	Blue-							
tooth and Zig-bee.											
UNIT V APPLICATIONS OF MICROCONTROLLERS	9	0	0	9							
Simple programming exercises- key board and display interface -Control of servo motor stepper	motor co	ntrol- A	Applicat	tion to							
automation systems.											
Te	Total (45L+0T)= 45 Periods										

Text H	Books:
1.	R.S. Gaonkar, 'Microprocessor Architecture Programming and Application', with 8085, Wiley Eastern Ltd., New
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.
3	Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely 'The 8051 Micro Controller and Embedded Systems', PHI
5.	Pearson Education, 5th Indian reprint, 2003.
Refere	ence Books:
1.	R. Kamal, "Embedded System", McGraw Hill Education, 2009.
2.	D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 1991.
E-Ref	erences;
1.	www.onlinecourses.nptel.ac.in/noc18_ee41
2.	www.class-central.com
3.	www.mooc-list.com

Course	Course Outcomes: Bloom's Taxonomy								
Upon co	omp	Mapped							
CO1	:	Understand basics of microprocessor and microcontroller	L2: Understanding						
CO2	:	Understand the architecture of Microprocessor and Microcontroller	L1: Remembering						
CO3	:	Apply the digital concepts to measure and control simple electrical systems	L3: Applying						
CO4	:	Design and interface communications between digital systems	L2: Understanding						
CO5	:	Design a microcontroller based electrical control system.	L5: Evaluating						

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	2	1	1	1								1	1	1	
CO2	2	1	1	1								1	1	1	
CO3	2	3	2	3	2							1	1	1	2
CO4	2	3	3	3	2							2	2	2	2
CO5	2	3	3	3	2							2	2	2	2
Avg.	2	2.2	2	2.2	2	-	-	-	-	-	-	1.4	1.4	1.4	2
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18 F	EEM03	CONTROL SYSTEMS		SEI	MEST	ER			
PR	EREQUI	STIES	CATEGORY	PE	Cre	edit	3		
Flag	etrical Ma	chines and Electric circuit analysis	Hours/Week	L	Т	Р	TH		
Lice		ennies and Electric circuit analysis	Hours/ Week	1	1	0	3		
Co	urse Obje	ectives:							
1.	To under	stand the methods of representation of physical systems and	getting their transfer	functi	on mo	lels.			
2.	To provi	de adequate knowledge in the time response of systems and s	teady state error ana	lysis.					
3.	To give b	basic knowledge in obtaining the open loop and closed loop f	requency response of	of system	ms.				
4.	To under	stand the concept of stability of control system and methods	of stability analysis.						
5.	To study	the designing compensators for a feedback control system.							
UNIT IMODELLING OF LINEAR TIME INVARIANT SYSTEMS6909									
Bas	ic elements	s in control systems – Open and closed loop systems – Feedba	ick control system ch	aracter	ristics -	Mathe	ematical		
mod	del and Ele	ectrical analogy of mechanical systems - Transfer function	Representation- Sy	nchro -	– AC a	and DO	C servo-		
mot	ors – Bloc	k diagram reduction techniques – Signal flow graphs.							
UN	IT II	TIME RESPONSE ANALYSIS		6	3	0	9		
Star	ndard test	signals - Time response of first order and second order syst	ems –time domain	specific	cations	- Stea	dy-state		
erro	ors and erro	or constants - Type and order of control systems - Effect of	f adding poles and a	zeros to	o transf	fer fun	ctions -		
Res	ponse with	P, PI, PD and PID controllers.							
UN	IT III	FREQUENCY RESPONSE ANALYSIS		6	3	0	9		
Cor	relation be	tween time and frequency response: Second order systems -	Frequency domain	specific	cations	- Pola	r plots –		
Bod	le plots – C	Computation of Gain Margin and Phase Margin — Constant I	M and N-circles – N	ichols o	chart.				
UN	IT IV	STABILITY OF CONTROL SYSTEM		6	3	0	9		
BIB	BO stability	- Necessary conditions for stability – Routh-Hurwitz stabilit	ty criterion – Root lo	cus co	ncepts	-Rules	s for the		
con	struction o	f Root loci – Nyquist stability criterion – Assessment of relat	tive stability using N	lyquist	criterio	on.			
UN	IT V	COMPENSATOR AND CONTROLLER DESIGN	1	6	3	0	9		
Nee	ed for com	pensation - Types of compensators - Electric network rea	alization and freque	ncy ch	aracter	istics of	of basic		
com	compensators: Lag, lead and lag-lead compensators - Design of compensators using root locus and Bode plot techniques-								
PID	PID controller: Design using reaction curve and Ziegler - Nichols technique.								
	Total (30L+15T) = 45 Periods								

Tey	Text Books:						
1.	A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, 2017.						
2.	I.J. Nagrath, and M. Gopal, "Control Systems Engineering", New Age International Publishers, Delhi, 7th Edition, 2021.						
Ref	ference Books:						
1.	K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 5th Edition, 2021.						
2.	M. Gopal, "Control Systems: Principles and Design", TMH, New Delhi, 4th Edition, 2018.						
E-F	Reference						
1.	https://nptel.ac.in/courses/107106081						
2.	https://nptel.ac.in/courses/108106098						

Course Ou	Course Outcomes:								
Upon com	Mapped								
CO1		Develop the transfer function models of any electrical and electro-mechanical	L2: Understanding						
COI	·	systems.							
CO2	:	Obtain the time responses of the systems and construct root locus plot.	L3: Applying						
CO3	:	Analyze the frequency response of the system	L3: Applying						
CO4	:	Analyze the absolute / relative stability of a control system.	L4: Analyzing						
CO5	:	Design the compensators and PID controller of a feedback control system.	L3: Applying						

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	2	2	2							1	3	2	1
CO2	3	3	3	2	2							1	3	2	1
CO3	3	3	3	2	2							1	3	2	1
CO4	3	3	3	2	2							1	3	2	1
CO5	3	3	3	2	2							1	3	2	1
Avg	3	3	2.8	2	2	-	-	-	-	-	-	1	3	2	1
			3/2/1-	indicate	s streng	th of co	rrelation	n (3- Hi	gh, 2-M	ledium,	1- Low)			

18E	EM04	MEASUREMENTS AND INSTRUMENTA	TION	SEN					
PRE	REQUI	ISTIES	CATEGORY	PE	Cre	edit	3		
Floot	ria Circu	it Analysis	Hours/Wook	L	Т	Р	TH		
Elecu			Hours/ week	3	0	0	3		
Cour	se Obj	ectives:							
1.	To edu	cate the fundamental concepts and characteristics of measureme	ent System						
2.	2. To introduce the fundamentals of electrical and electronic instruments for measurement of Electrical and Non-electrical quantities								
3.	To fam	iliarize Oscilloscope and the bridge circuits for electrical param	neters measurement						
UNI	ГΙ	INTRODUCTION		9	0	0	9		
Eleme	ents of a	generalized measurement system - Static and dynamic character	eristics - Errors in m	neasurem	ent. Me	easurer	nent of		
voltag	ge and cu	irrent - permanent magnet moving coil and moving iron type mo	eters						
UNI	UNIT IIMEASUREMENT OF POWER, ENERGY AND FREQUENCY9009								
Measu	Measurement of power - single and three phase- electrodynamometer type watt meters - Construction, operation - torque								
equati	ion for d	eflection - errors. Measurement of energy-Single phase inducti	on type energy meter	ers, Instru	iment t	ransfo	mers –		
Curre	nt and P	otential transformers, Power factor meters- Single phase electro	dynamometer type p	power fac	tor me	ter, fre	quency		
meter	-Electric	al resonance type frequency meter				-			
UNI	ГШ	DC AND AC BRIDGES		9	0	0	9		
Balan	ce equat	ions - Wheatstone bridge - Kelvin double Bridge - Maxwell's	inductance capacitation	ance brid	ge – H	lay's b	ridge –		
Ander	rson's br	idge – Schering bridge and De Sauty's bridge				-			
TINIT	ги	POTENTIOMETERS, OSCILLOSCOPES AND DIC	GITAL	0	0	0	0		
UNI	1 1 1	INSTRUMENTS		,	U	U	,		
DC P	otentiom	eter- Crompton's Potentiometer, AC potentiometer- Drysdale p	olar potentiometer-	Gall Tin	sley co	-ordina	ite type		
poten	tiometer	, Cathode Ray Oscilloscope and Digital storage Oscilloscope-G	Construction, operat	ion and A	Applica	tions,	Digital		
multi-meters, Digital voltmeters.									
UNI	ΓV	MEASUREMENT OF NON-ELECTRICAL QUANT	TITIES	9	0	0	9		
Classi	ification	of transducers -Position transducers, Piezo-electric transducer	rs and Hall effect tr	ansducer	s. Me	asuren	ent of		
pressure, temperature and displacement- Introduction to Smart Sensors									
	Total (45L+0T)= 45 Periods								

Text B	Text Books:							
1.	A.K. Sawhney, 'A Course in Electrical & Electronics Measurement & Instrumentation', Dhanpat Rai and Co, 2015							
2.	E.O. Doebelin, 'Measurements Systems- Application and Design', Tata McGraw Hill publishing company, 2015.							
Refere	ence Books:							
1.	D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt. Ltd, 2010.							
2.	H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 2015.							
3.	Martin Reissland, ' Electrical Measurements', New Age International(P) Ltd., Delhi, 2011.							
E-Reference:								
1	https://archive.nptel.ac.in/courses/108/105/108105153/							

Course O	Course Outcomes:							
Upon com	Upon completion of this course, the students will be able to:							
CO1	:	Recall the fundamentals of measurement system in electrical engineering.	L1: Remembering					
CO2	:	Describe the working principle of different measuring instruments	L2: Understanding					
CO3	:	Choose appropriate instrument for measuring the electrical parameters	L3: Applying					
CO4	:	Employ the digital instruments in real time measurements.	L3: Applying					
CO5	:	Select an appropriate transducer for measurement of non-electrical quantities	L4: Analysing					

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	3				1		2		2	2	1	1
CO2	1	3			3					2		1	2	1	
CO3	1	1		2	1	1	2		1				1	2	1
CO4	1	1		1	1		2	2	1		2	2	1	3	1
CO5	2	2	3	1	2	2	1			1	3		1	2	
Avg	1.4	1.8	2.5	1.75	1.75	1.5	1.67	1.5	1	1.67	2.5	1.67	1.4	1.8	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EEM05 ELECTRICAL MACHINES SEMESTER							
PRE	REQ	UISTIES	CATEGORY	PE	Cre	edit	3
			II /II / -	L	Т	P	TH
			Hours/ week	3	0	0	3
Cour	rse O	bjectives:					
1.	To in	npart knowledge on construction, working and performance of D	C generators and mo	otors.			
2.	2. To deliberate the construction, working and performance of single phase and three phase transformers.						
3.	3. To impart knowledge on construction, working and performance of synchronous generators and motors.						
4.	To ir	npart knowledge on construction, principle of operation and perform	rmance of single and	three-pha	ase indu	action 1	notors.
UNIT IDC GENERATORS900							9
Princ	iple of	operation, constructional details, types - EMF equation, armatu	re reaction, demagn	etizing ar	nd cross	s magn	etizing
Ampe	ere tur	ns, compensating winding, commutation, methods of improving	g commutation, inter	rpoles, O	pen cir	cuit ar	nd load
chara		ics of different types of DC Generators. Parallel operation of DC	Generators, applicat	ions of D	C Gene	erators.	
UNI		DC MOTORS	1 11 .	9	0	0	9
Princi	iple of	operation, significance of back emf, torque equation and power de	eveloped by armature	e, load cha	aracteri	stics of	ion for
maxi	mum e	officiency Testing of DC Machines: Brake test Swinburne's test	Honkinson's test	etardatio	n test	Separa	tion of
core 1	losses	- applications of DC motors.	, mopkinson's test, r	Cetardatio	in test,	Separa	1011 01
UNI	Т Ш	TRANSFORMER		9	0	0	9
Singl	e pha	se transformer: Construction and principle of operation, work	ting of practical trai	nsformer	- equiv	valent	circuit,
voltag	ge regi	ulation, losses and efficiency- testing : polarity test, open circuit	t and short circuit te	sts, back-	to back	c test,	all day
effici	ency, j	parallel operation, applications.					-
Auto	transf	former: Construction and working, saving of copper - application	ns, Three phase tra	nsformer	: const	ructior	, types
of con	nnectio	ons and their comparative features.					
UNI	T IV	SYNCHRONOUS GENERATOR AND MOTOR		9	0	0	9
Syncl	hrono	us Generator: Constructional and working details – Types of re-	otors – EMF equation	on – Phas	sor diag	grams o	of non-
salien	nt pole	synchronous generator connected to infinite bus - Synchronizin	g and parallel opera	tion – Sy	nchron	izing t	orque -
Volta	ige reg	ulation – EMF, MMF and ZPF method – steady state power angle	e characteristics – T	wo reacti	on theo	ory – sl	ip test.
G1		Materia Divide Constitution (Constitution Constitution)		¥7 1	т	1 1 7 .	
Sync	nrono r input	us Motor: Principle of operation – Forque equation – Operation	i on infinite dus dars	input co	Inverte nstant (ed v ci	irves –
const	ant no	wer Developed Hunting natural frequency of oscillations dar	mor windings sync	hronous (onstant (excitati	ion and
LINI	ан ро т v	THREE PHASE AND SINCLE PHASE INDUCTION	I MOTOR				0
Three	r v e nhas	e induction motor: Constructional details – Types of rotors – Pr	inciple of operation	– Equival	ent ciro	uit – T	orque-
Slip	c plius charact	eristics - Condition for maximum torque – Losses and efficiency –	- load test - No load a	and block	ed roto	r tests -	Circle
diagra	am – \$	Separation of losses – Starters: DOL, Autotransformer and Star	r delta starters – Sp	eed contr	ol meth	hods: V	/oltage
contro	ol, Fre	quency control and pole changing - V/f control - Slip power reco	overy Scheme.				e
Singl	e phas	se induction motor: Constructional details – Double field revolve	ing theory and opera	tion – Eq	uivalen	nt circu	it – No
load a	and blo	ocked rotor test - Performance analysis - Starting methods of single	le-phase induction m	otors – sp	olit pha	se, Cap	acitor-
start,	start, capacitor start and capacitor run Induction motor.						
			To	otal (45L	/+0T)=	= 45 P	eriods
Text	Book	IS:					
1.	I.	J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill	Education, 5th Editi	on, 2017			
2.	Р.	S. Bimbhra, "Electric Machinery", Khanna Publishers, 2nd Editi	on, 2021.				
2	B	L.Theraja and A.K.Theraja," A text book of Electrical Technolo	gy - Volume-II", S.	Chand &	Compa	ny Ltd	l., New
5.	D	elhi, 23 rd Edition, 2009.					

 Reference Books:

 1.
 B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers,3rd Edition, Reprint 2015.

2.	Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, First edition, 2010.
3.	A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc Graw Hill publishing Company Ltd, 6th Education, 2017.
4.	Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Education Pvt. Ltd, 4th Edition 2017.

Course O	outo	comes:	Bloom's Taxonomy
Upon com	pleti	ion of this course, the students will be able to:	Mapped
CO1	:	Explain the construction and working principle of DC machines, and Interpret various characteristics of DC machines.	L2: Understanding
CO2	:	Compute various performance parameters of the machine, by conducting suitable tests.	L5: Evaluating
CO3	:	Describe the working principle of transformer, auto transformer, three phase transformer connection, and determine the efficiency and regulation.	L3: Applying
CO4	:	Understand the construction and working principle of Synchronous Machines.	L3: Applying
CO5	:	Understand the construction and working principle, speed control of three phase and single phase induction motor.	L5: Evaluating

COURS	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	1	1	1			1				1	3	2	1
CO2	3	3	1	1	1			1				1	3	2	1
CO3	3	3	1	1	1			1				1	3	2	1
CO4	3	3	1	1	1			1				1	3	2	1
CO5	3	3	1	1	1			1				1	3	2	1
Avg.	3	3	1	1	1	-	-	1	-	-	-	1	3	2	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18F	EEM06	ELECTRICAL DRIVES AND CONTI	ROL	SEN	AEST	ER		
PRE	EREQU	UISTIES	CATEGORY	PE	Cr	edit	3	
DC N	Machine	es and Transformers, Synchronous and Induction Machines, and	HoundWoolr	L	Т	Р	ТН	
Pow	er Elect	ronics	nours/ week	3	0	0	3	
Cou	rse Ob	ojectives:						
1.	To kr	now about the operation analyse of chopper fed DC drive, both qu	alitatively and quar	ititatively	/.			
2.	To ur	nderstand the operation and performance of AC motor drives.						
UNI	IT I	DC MOTOR CHARACTERISTICS & CHOPPER FE	D DC DRIVES	9	0	0	9	
Revi	ew of t	orque-speed characteristics of separately excited dc motor, char	ige in torque-speed	curve w	ith arm	ature v	oltage,	
exan	nple loa	d torque-speed characteristics, operating point, armature voltage	e control for varying	g motor	speed.	Review	w of dc	
chop	per and	duty ratio control, chopper fed dc motor for speed control, stead	y state operation of	a choppe	r fed d	rive, ar	rmatu re	
curre	ent wave	eform and ripple, calculation of losses in dc motor and chopper.						
UNIT II MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE 9 0 0 9								
Revi	ew of F	our quadrant operation of dc machine; single-quadrant, two-quadr	ant and four-quadra	nt chopp	ers; Co	ntrol st	ructure	
of D	C drive	, inner current loop and outer speed loop, dynamic model of dc n	notor – dynamic equ	ations a	nd trans	sfer fur	nctions,	
mod	eling of	chopper as gain with switching delay, plant transfer function, c	current controller sp	ecificatio	on and	design	, speed	
contr	roller sp	becification and design.						
UNI	III TI	INDUCTION MOTOR CHARACTERISTICS		9	0	0	9	
Revi	ew of in	nduction motor equivalent circuit and torque-speed characteristic	, variation of torque	e-speed c	urve w	ith (i)	applied	
volta	age, (ii)	applied frequency and (iii) applied voltage and frequency. Review	of three-phase volta	ige sourc	e inver	ter, gen	neration	
of th	ree-pha	se PWM signals, constant V/f control of induction motor						
UNI	IT IV	CONTROL OF SLIP RING INDUCTION MOTOR		9	0	0	9	
Impa	act of ro	tor resistance of the induction motor torque-speed curve, operation	on of slip-ring induc	tion mot	or with	extern	al rotor	
resis	tance, s	tarting torque, power electronic based rotor side control of slip rin	ng motor, slip power	recover	у			
UNI	IT V	CONTROL OF SRM AND BLDC MOTOR DRIVES.		9	0	0	9	
SRM	l constru	uction - Principle of operation - SRM drive design factors-Torque	controlled SRM-Bl	ock diag	am of l	Instanta	aneous	
Torq	ue cont	rol using current controllers and flux controllers. Construction	and Principle of op	eration of	of BLD	C Mac	chine -	
Sens	ing and	l logic switching scheme,-Sinusoidal and trapezoidal type of B	rushless dc motors	- Block	diagra	m of o	current	
controlledd Brushless dc motor drive								
	Total (45L+0T)= 45 Periods							
·								
Tex	t Book	s:						

1.	G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989.				
2.	R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall,2010				
3.	Bose B K, "Modern Power Electronics and AC Drives", Pearson Education New Delhi, 2010.				
Refere	nce Books:				
1.	G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2012.				
2.	W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001.				
E-Reference					
1	https://www.iith.ac.in/~ketan/drives.htmL				

Course O	outo	Bloom's Taxonomy	
Upon comp	Mapped		
CO1	:	Understand the characteristics of dc motors and induction motors.	L2: Understanding
CO2	:	Summarize the operation of chopper fed DC drives.	L4: Analyzing
CO3	:	Understand the principles of speed-control of dc motors and induction motors.	L2: Understanding
CO4	:	Identify suitable power electronic converters used for dc motor and induction motor speed control.	L3: Applying

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1	3			1	1					1	3	2	
CO2	3	3	1	3		1	1					1	3	2	
CO3	3	3	3	3	1	1	1					1	3	2	
CO4	1	3	3	2	1	1	1					1	3	2	
CO5	3	3	3	3	1	1	1					1	3	2	
Avg.	2.6	2.6	2.6	2.75	1	1	1	-	-	-	-	1	3	2	-
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18E	EM07	ELECTRIC VEHICLES AND CONTRO	L	SEM	ESTI	ER		
PRE	REQU	ISTIES	CATEGORY	PE	Cre	dit	3	
El a ata		and control	Houng/Wools	L	Т	Р	TH	
Electr	ical driv	es and control	Hours/ week	3	0	0	3	
Cour	se Obj	ectives:						
1.	To pro	vide knowledge on electric vehicle architecture and its configuration	IS					
2. To impart knowledge on vehicle control, use of energy storage systems and energy management in Electric Vehicle							e	
UNI	ГΙ	ELECTRIC VEHICLES		9	0	0	9	
Confi	guration	s of Electric Vehicles (EV), Performance of Electric Vehicles, Tra	active Effort in Norn	nal Dri	ving	and E	nergy	
Consu	imption,	Hybrid Electric Vehicles (HEV): Classification, Series Hybrid El	ectric Drive Trains,	Paralle	l Hyb	rid El	ectric	
Drive	Trains							
TINIT	0	0	•	0				
UNI	ELECTRIC VEHICLES							
Funct	ions and	Benefits of PHEV, Components of PHEVs, Operating Principles of	f Plug-in Hybrid Veh	icle, Co	ontrol	Strate	egy of	
PHEV	/, Fuel C	Cell: Operation and Types, Fuel Cell Electric Vehicle: Configuration	and Control Strategy	7				
UNI	ГШ	ELECTRIC PROPULSION SYSTEMS		9	0	0	9	
Typic	al electr	ic propulsion system, Classification of electric motor drives for EV a	and HEV, Multiquadr	ant Co	ntrol o	of Cho	pper-	
Fed D	C Moto	r Drives, Vector Control of Induction Motor drives, Permanent Mag	netic Brush-Less DC	Motor	Drive	s, Sw	itched	
Reluc	tance M	otor Drives for Electric Vehicles						
UNI	ΓIV	ENERGY STORAGE SYSTEM		9	0	0	9	
Status	of Bat	tery Systems for Automotive Applications, Battery Technologies	s: Nickel–Metal Hyd	dride (1	Ni-M	H) Ba	attery,	
Lithiu	m–Poly	mer (Li-P) Battery, Lithium-Ion (Li-Ion) Battery, Ultracapacit	ors: Features, opera	ation a	nd pe	erforn	nance,	
Ultrah	nigh-Spe	ed Flywheels, Hybridization of Energy Storages						
UNI	UNIT VENERGY MANAGEMENT SYSTEM9009							
Energ	y Mana	gement System(EMS) in Electric Vehicle, Rule-based control strat	egy: Deterministic ru	ile-base	ed cor	ntrol,	Fuzzy	
logic-	based c	control, and Neural network-based control. Optimization based	control strategy: I	Dynami	c Pro	ogram	ming,	
Metaheuristic optimization methods and Model predictive control, Semi-active type Hybrid Energy Storage System-based EMS,								
Fully-active type Hybrid Energy Storage System-based EMS								
			Total (4	45L+0	T)= 4	15 Pe	riods	

Text B	Books:
1	Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, Taylor & Francis Group, Second
1.	Edition ,2011.
2	Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, AliEmadi,, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles"
2.	CRC Press, 2016
Refere	ence Books:
Refere	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John
Refere 1.	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010
Refere 1. E-Refe	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010 erence:

Course	0ι	itcomes:	Bloom's Taxonomy
Upon co	mpl	etion of this course, the students will be able to:	Mapped
CO1	:	Recall the fundamentals of electric vehicle and its mechanics	L1: Remembering
CO2	:	Explain the architecture of different forms of hybrid electric vehicles.	L2: Understanding
CO3	:	Illustrate the four-quadrant operation of DC drive, induction motor drive and SRM drive for Electric Vehicles.	L4: Analyzing
CO4	:	Select an appropriate energy storage system for Electric vehicle	L4: Analyzing
CO5	:	Use the suitable energy management control strategy for hybrid electric vehicle	L3: Applying

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1		1	3	1		1					1	1	2	1
CO2	1	2	3	1			2					2	1	2	
CO3	1	1			2		3						1	1	1
CO4	3	1	2	1	2		1					2	1	2	1
CO5	1	2	1	2	1							1	1	2	1
Avg	1.4	1.5	1.75	1.75	1.5	-	1.75	-	-	-	-	1.5	1	1.8	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EI	E M08	ELECTRICAL ENERGY CONSERVATION AN	D AUDITING	SEM	IESTI	ER		
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3	
Down	Conor	ation Transmission and Distribution System	HoundWoolr	L	Т	Р	TH	
Powe	er Gener	ation, Transmission and Distribution System	Hours/ week	3	0	0	3	
Cou	rse Obje	ectives:						
1.	To get l	knowledge about basics of energy and energy scenario of India.						
2.	2. To familiarise the energy conservation methods.							
3.	To acqu	ire knowledge on energy auditing, energy efficiency and mode	rn energy efficient o	levices.				
UNI	INIT IENERGY SCENARIO9009							
Com	nercial a	and non-commercial energy -Primary energy resources - C	commercial energy	productio	on - F	Final e	nergy	
consu	mption -	Energy needs of growing economy - Long term energy scen	ario - Energy pricin	g - Energ	gy sect	or refo	rms -	
Energ	gy and en	vironment - Energy security - Energy conservation and its impor	tance - Restructurin	g of the er	nergy s	upply s	sector	
- Energy strategy for the future, air pollution, climate change. Energy Conservation Act-2001 and its features.								
UNIT IIBASICS OF ENERGY9009							9	
Electr	ricity tari	ff - Load management and maximum demand control - Therma	l Basics-fuels - The	mal ener	gy con	tents of	fuel,	
tempe	erature ar	nd pressure, heat capacity, sensible and latent heat, evaporation	, condensation, steam	m, moist a	air and	humid	ity &	
heat t	ransfer, u	units and conversion.						
UNI	ГШ	ENERGY MANAGEMENT AND AUDIT		9	0	0	9	
Defin	ition - E	nergy audit – Need and types of energy audit. Energy managem	ent (audit) approach	understa	inding	energy	costs	
- Ben	ch marki	ng - Energy performance - Matching energy use to requiremen	t - Maximizing syste	em efficie	encies -	- Optin	nizing	
the in	put energ	gy requirements, fuel and energy substitution - Energy audit ins	struments. Material	and energ	gy bala	nce: Fa	cility	
as an	energy s	ystem - Methods for preparing process flow, material and energ	y balance diagrams					
UNI	ГIV	ENERGY EFFICIENCY		9	0	0	9	
Electr	rical syst	em: Electricity billing - Electrical load management and maxim	um demand control	-Power f	actor i	mprove	ement	
and it	s benefit	- Selection and location of capacitors - Performance assessment	nt of PF capacitors,	distributi	on and	transfo	ormer	
losses	s. Electri	c motors: Types - Losses in induction motors - Motor effic	iency - Factors affe	ecting mo	otor pe	rforma	nce -	
Rewinding and motor replacement issues - Energy saving opportunities with energy efficient motors.								
UNI	ΓV	ENERGY EFFICIENT TECHNOLOGIES		9	0	0	9	
Maxi	mum der	nand controllers - Automatic power factor controllers - Energy	efficient motors –So	oft starter	s with o	energy	saver	
- Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting								
contro	controls - Energy saving potential of each technology.							
			Total	(45 L+ 0	T) =	45 Pe	riods	

Text	Fext Books:					
1.	Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015.					
2,	Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991.					
3.	Hossam A Gabbar, "Energy Conservation in Infrastructure Systems", Wiley-IEEE Press, New Jersey, 2018					
Refe	rence Books:					
1.	General Aspects of Energy Management and Energy Audit, Bureau of Energy Efficiency, New Delhi, 2015.					
2,	Energy Efficiency in Electrical Utilities, Bureau of Energy Efficiency, New Delhi, 2015.					

Course	Course Outcomes: Bloom's							
Upon co	mpletion of this course, the students will be able to:	Mapped						
CO1	Identify the present energy scenario and future energy strategy.	L1: Understanding						
CO2	Recognize the various forms of energy. L1: Understanding							
CO3	Interpret energy management methods and energy auditing. L3: Applying							
CO4	Familiar in energy efficiency of electrical systems.	L4: Analysing						
CO5	Familiar with the advanced energy efficient technologies. L4: Analysing							

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	2	3	2	2		3					1	2	2	1
CO2	1	2	2	2	2		3					1	2	2	1
CO3	2	2	2	3	2		3					1	1	3	1
CO4	2	3	2	2	3		3					1	3	3	1
CO5	2	2	3	1	2		3					1	3	2	1
Avg	1.6	2.2	2.4	2	2.2	-	3	-	-	-	-	1	2.2	2.4	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EEM0	SMPS AND UPS		SEN	AEST	ER				
PREREQ	JISITES	CATEGORY	PE	Cr	edit	3			
Dames Elas		Hound	L	Т	Р	TH			
Power Elect	onics	Hours/ week	3	0	0	3			
Course Ol	Course Objectives:								
1. To in	npart knowledge about modern power electronic converters and t	heir applications in J	power uti	lity.					
2. To in	part knowledge about Resonant converters and UPS.								
UNIT I	DC-DC CONVERTERS		9	0	0	9			
Introduction	to SMPS - Non-isolated DC-DC converters: Cuk, SEPIC to	pologies, Z-source	converter	- Zet	a conv	erter -			
Analysis an	l state space modeling Concept of volt-second and charge bal	ance – High gain inj	put-parall	el outp	ut-serie	es DC-			
DC converte	r.								
UNIT II	UNIT IISWITCHED MODE POWER CONVERTERS9009								
Isolated DC	DC converters: Analysis and state space modelling of fly back, F	orward, Push pull, L	10, Half b	ridge a	nd full	bridge			
converters-	control circuits and PWM techniques - Bidirectional DC-DC cor	overters.							
UNIT III	RESONANT CONVERTERS		9	0	0	9			
Introduction	- classification- basic concepts- Resonant switch- Load Resonar	nt converters- ZVS,	Clamped	l voltag	ge topol	logies-			
DC link inv	erters with Zero Voltage Switching- Series and parallel Resonant	inverters- Voltage c	ontrol.						
UNIT IV	DC-AC CONVERTERS		9	0	0	9			
Introduction	- Multilevel concept - Types of multilevel inverters - Diode-c	lamped MLI – Flyin	g capacit	ors MI	I – Ca	scaded			
MLI – Case	aded MLI – Applications – Switching device currents – DC link	capacitor voltage b	alancing	– Featu	ires of	MLI –			
Comparison	s of MLI.								
UNIT V	POWER CONDITIONERS, UPS, AND FILTERS9009								
Introduction	- Power line disturbances- Power conditioners -UPS: offline U	PS, Online UPS, A	pplication	ns – Fi	lters: V	'oltage			
filters, Serie	s-parallel resonant filters, filter without series capacitors, filter for	or PWM VSI, curren	t filter, D	C filter	s – De	sign of			
inductor and	inductor and transformer for power electronic applications – Selection of capacitors.								
	Total (45L+0T)= 45 Periods								

ooks:
Simon Ang, Alejandro Oliva," Power-Switching Converters", Third Edition, CRC Press, 2010.
M.H. Rashid – Power Electronics handbook, Elsevier Publication, 2001.
nce Books:
Ned Mohan, Tore.M.Undeland, William.P.Robbins, "Power Electronics Converters, Applications and Design", 3rd
Edition, John Wiley and Sons, 2006.
M.H. Rashid, "Power Electronics circuits, devices and applications", 3 rd Edition, PHI, New Delhi, 2007.
erences:
NPTEL Course: Power Electronics, IIT-B.
www.cdeep.iitb.ac.in. (Electrical Engineering)

Course O	uto	comes:	Bloom's Taxonomy
Upon com	plet	Mapped	
CO1	:	Analyze the state space model for DC – DC converters.	L4: Analyzing
CO2	:	Acquire knowledge on switched mode power converters.	L2: Understanding
CO3	:	Outline the PWM techniques for DC-AC converters.	L1: Remembering
CO4	:	Discuss about modern power electronic converters and its applications in electric power utility.	L2: Understanding
CO5	:	Identify the filters and UPS.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	1	2	2			1					2	2	2	1
CO2	1	1	3	2			1					2	3	3	2
CO3	2	2	2	3			1					1	2	2	1
CO4	2	1	1	2			1					2	2	3	2
CO5	1	1	2	1			1					1	2	2	1
Avg.	1.6	1.2	2	2	-	-	1	-	-	-	-	1.6	2.2	2.4	1.4
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EEM10 UTILIZATION OF ELECTRICAL ENERGY SEMESTER									
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3		
El a at	ani a al Mara	him a Darman Seletana and Darman Electronian	Harry/Wash	L	Т	Р	ТН		
Elect	incal Mac	nines, Power System, and Power Electronics	Hours/ week	3	0	0	3		
Cour	rse Obje	ctives:			•				
1.	To unde	rstand the economics of power generation, tariff and energy co	onservation methods	5.					
2.	To impa	rt knowledge on principle and design of illumination systems.							
3.	To anal	yze the performance and different methods of electric heating a	and electric welding						
4.	To impa	rt knowledge on electric traction systems and their performance	ce.						
5.	To unde	rstand electric drives for various industrial applications.					-		
UNI	ГΙ	INTRODUCTION		9	0	0	9		
Econo	omics of g	generation – definitions – load duration curve – number and size	ze of generator units	s – Cost o	of elect	rical er	nergy –		
tariff	— availa	bility based Tariff- (ABT) - Battery Energy storage system ((BESS)- Frequency	based en	ergy n	neasure	ement -		
need	for electri	cal energy conservation - methods Introduction to energy au	dit						
UNI	UNIT IIILLUMINATION909								
Introd	luction-na	ature of radiation - definition - laws of illumination - lumino	ous efficacy-photom	etry – lig	ghting o	calcula	tions –		
design	n of illun	nination systems for residential, commercial, street lighting a	nd sports ground-	types of l	lamps -	-incano	lescent		
lamp-	- mercury	vapour fluorescent lamp-energy efficiency lamps types of l	lighting schemes – r	equireme	nts of g	good li	ghting		
UNI	ГШ	HEATING AND WELDING		9	0	0	9		
Introd	luction- c	lassification of methods of heating - requirements of a good	l heating material -	design of	of heati	ing eler	ment –		
tempe	erature co	ntrol of resistance furnace - electric arc furnace -induction	heating - dielectric	heating	 elect 	ric wel	lding –		
resista	ance weld	ing - electric arc welding-electrical properties of arc-application	ons of electric arc w	elding.					
UNI	ΓIV	ELECTRIC TRACTION		9	0	0	9		
Introd	luction –	requirements of an ideal traction system - supply systems - t	rain movement -me	chanism	of train	move	ment –		
tractio	on motors	and control -speed control of three phase induction motor-	multiple unit contro	l – braki	ng – re	cent tre	ends in		
electr	ic traction	1.							
UNI	ΓV	DRIVES AND THEIR INDUSTRIAL APPLICATIO	NS	9	0	0	9		
Electu	ric drive -	-advantages of electric drive-individual drive and group drive	e -factors affecting	selection	of mo	tor – ty	pes of		
loads	- steady	state -transient characteristics -size of motor- load equalization	on – industrial appli	cations -	- moder	rn metł	nods of		
speed	speed control of D.C drives-dynamic braking using thyristors-regenerative braking using thyristors.								
	Total (45L+0T)= 45 Periods								

Text B	Books:
1.	C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Pvt.Ltd, 2003.
2.	Eric Openshaw Taylor, "Utilisation of Electric Energy", English Universities Press Limited, 1937
3.	J.B. Gupta, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, 2002.
Refere	ence Books:
1.	G.C.Garg, S.K.Gridhar&S.M.Dhir, "A Course in Utilization of Electrical Energy", Khanna Publishers, Delhi, 2003.
2.	H. Partab, "Art and Science of Utilization of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2004.
E-Ref	erences:
1.	www.onlinecourses.nptel.ac.in
2.	www.class-central.com
3.	www.mooc-list.com

Course O	uto	comes:	Bloom's Taxonomy
Upon com	olet	ion of this course, the students will be able to:	Mapped
CO1	:	Understand the economics of power generation, tariff and energy conservation methods.	L2: Understanding
CO2	:	Interpret the concept behind illumination and design a suitable illumination system for a specific application.	L3: Applying
CO3	:	Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system.	L4: Analyzing
CO4		Explain the concepts and recent trends of traction system.	L4: Analyzing
CO5	:	Discuss the concepts of electric drives and their characteristics.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1	1	1	1	2	1	2	2	1	1	1	2	2	3
CO2	2	3	2	3	1	1	2	1	1			1	3	3	2
CO3	3	3	1	3	1	1	2	1					2	2	3
CO4	1	2	2	3	3	1	2	1					2	3	2
CO5	3	1	1	2	1	1	2	1		1		1	2	2	3
CO6	1	3	3	3	3	1	2	2				1	3	3	2
Avg	2.17	2.17	1.67	2.5	1.67	1.17	1.83	1.33	1.5	1	1	1	2.33	2.5	2.5
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

MECHANICAL ENGINEEDING MINOD DECREE

		ENGINEERING THERMODYNAMICS	DEGREE							
18ME	M01	(Use of standard thermodynamic tables, Mollier diagram are pe	rmitted)							
PRE-I	REQUI	SITE: CA	FEGORY	PE	Cr	edit	3			
				L	Т	P	TH			
		Hot	urs/Week	3	0	0	3			
Cours	e Objec	tives:		I		1 1				
1.	1. To impart the knowledge on concepts of zeroth and first law of thermodynamics.									
2.	To ma interac	ke the learners to understand the third law of thermodynamics and tions in closed and open systems.	analyze the	e variou	is wo	ork and	d heat			
3.	To tea	ch properties of pure substance.								
4.	To imp	part knowledge on the concepts of steam power cycle.								
5.	To der	ive thermodynamic relations for ideal and real gases.								
UNIT	IT I BASIC CONCEPT AND FIRST LAW									
and heat various	at. First	aw of thermodynamics – application to closed and open systems, ste equipment.	ady flow pro	ocesses	with	refere	nce to			
UNIT	Ш	SECOND LAW AND ENTROPY			9	0 0	9			
Heat er of thes inequal	ngine – F se staten lity, Con	terrigerator – Heat Pump, Second law of thermodynamics – Kelvin's a nents their corollaries. Reversibility and irreversibility. Carnot cyc cept of entropy, principle of increase of entropy, T-s diagram, T-ds equ	and Clausius le, reversed uations, Entro	stateme Carnot opy.	ents-	Equiva le. Cla	alence ausius			
UNIT	Ш	PROPERTIES OF PURE SUBSTANCES			9	0 0	9			
Steam dryness Chart.	- format s fractior	ion and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagra . Calculation of work done and heat transfer in non-flow and flow pro-	ams. PVT successes using \$	urface. Steam 7	Dete Fable	rminat and N	ion of Iollier			
UNIT	IV		9	0 0	9					
Basic 1 combin	Rankine nation cy	cycle, T-s & h-s diagrams - Performance Improvement - Reheat cles.	cycle, reger	nerative	cyc	le and	their			
UNIT	T V IDEAL AND REAL GASES AND THERMO DYNAMIC RELATIONS 9 0 0 9									
Properties of ideal and real gases, equation of state of ideal and real gases, Avogadro's law, Vander Waal's equation of states, Principle of corresponding states, reduced properties and compressibility chart. Exact differentials, Maxwell relations, Specific heat equations, Tds, relations, Clausius Clapeyron equations and Joule Thomson Coefficient.										
	Total (45L)= 45 Periods									

Text B	Text Books:							
1.	Nag. P.K, "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2017.							
2.	Sonntag, R.E., Borgnakke, C., and Van Wylen, G.J., Fundamentals of Thermodynamics, 6th ed., John Wiley, 2003.							
3.	Arora C.P, "Thermodynamics", Tata McGraw Hill, New Delhi, 2003.							
4.	Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.							

Refere	nce Books:
1.	Cengel, "Thermodynamics- An Engineering Approach", 3rd Edition, Tata McGraw Hill, 2015.
2.	Merala C, Pother, Craig W and Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGrawHill, New Delhi, 2004.

COUI Upon	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the concepts of zeroth, first and second law of thermodynamics.	Remember
<i>CO2</i>	Analyze the various work and heat interactions for different types of processes for closed and open systems	Evaluate
СО3	Evaluate the different properties of pure substances using steam tables and Mollier chart	Evaluate
<i>CO4</i>	Analyze the performance of steam power cycle.	Analyze
<i>C05</i>	Derive thermodynamic relations for ideal and real gases.	Analyze

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2			1					1	3	1	1
CO2	3	3	2	2			1					1	3	1	1
CO3	3	3	3	2		1	1					1	3	1	1
CO4	2	3	2	2		1	1					1	3	1	1
CO5	3	3	2	2		1						1	3	1	1
Avg	2.8	3	2.2	2		1	1					1	3	1	1
		3/2/	/1 - in	dicat	es str	ength	of co	rrelati	on (3	– High,	, 2- Mee	dium, 1	· Low)		

licates strength of correlation (3 – High, 2- Medium, 1- Low) 3/2/1

PRE-RE												
1	PRE-REQUISITE: CATEGORY											
1.Engineering Physics L												
2.Enginee	ering C	hemistry	Hours/Week	3	0	0	3					
3.Engineering Mathematics												
Course (Object	ives:										
1. 7	To und	erstand the basic concepts and properties of fluids.										
2. 7	2. To analyze the kinematic and dynamic concepts of fluid flow.											
3. Т	To und	erstand the various incompressible fluid flow through pipes ar	nd between parallel p	lates.								
4. Т	To apply the principles of fluid mechanics to design and operation of hydraulic turbines.											
5. T	Го appl	y the principles of fluid mechanics to design and operation of	hydraulic pumps.									
UNIT I		INTRODUCTION AND FLUID STATICS			9	0	09					
Basic con relative de Archimed	Basic concepts and units of measurement of physical quantities- Classification of fluids - Properties of fluids – density, relative density, vapour pressure, surface tension, Capillarity and viscosity. Fluid statics- hydrostatic pressure, buoyancy and Archimedes' principle.											
UNIT II		FLUID KINEMATICS AND DYNAMICS			9	0	0 9					
streamline application dimension	e, pathl ons. Flonation	ine, streakline and timeline. Velocity potential function and uid dynamics - Bernoulli's equation and its applications. Dir nogeneity, similarity-laws and models.	rian description for f Stream function - co nensional analysis –	ontinuity Buckir	w - fio / equa ighan	ow p ation 1's th	atterns and its eorem					
UNIT II	Ι	FLOW THROUGH PIPES AND PLATES			9	0	0 9					
Incompressible fluid flow-Laminar flow- Hagen-Poiseuille equation, shear stress, pressure gradient relationship - flow through pipes and flow between parallel plates. Turbulent flow – flow through pipes, friction factors in turbulent flow - total energy line, hydraulic gradient line, flow through pipes in series and parallel- Moody's friction factor chart. Power transmission-Boundary layer flows - Boundary layer thickness, momentum thickness, energy thickness-boundary layer separation.												
UNIT IV	V	HYDRAULIC TURBINES			9	0	0 9					
Hydraulic curves for specific sp	e turbin r Pelto peed de	es classification-impulse and reaction turbines-Working Prin n, Francis and Kaplan turbines (Only descriptive) - Compar- gree of reaction -draft tubes.	ciple, work done-eff rison between impu	ïciency lse and	and preact	perfo ion t	rmance urbine					
UNIT V		HYDRAULIC PUMPS			9	0	0 9					
Classificat priming(C performan	tion of Only de	f hydraulic pumps- Centrifugal pumps - working principlescriptive) - Reciprocating pumps - classification, working yves. Cavitation in pumps (Only descriptive) - Working princip	e, specific speed, p principle, indicator ples of gear and vane	perform diagram pumps	ance 1, air	curv vess	es and els and					
			To	tal (45	L)=	45 P	eriod					

Text B	ooks:
1.	Bansal, R.K., "A Textbook of Fluid Mechanics and Hydraulic Machines, 9th Ed", Laxmi Publication Pvt Ltd, 2010.
2.	Rajput, R.K., "A Textbook of Fluid Mechanics and Hydraulic Mechanics", S.Chand and Company Ltd, 2011.
3.	Subramanya. K., "Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Publishing Company Ltd, 2011.

Refere	ence Books:
1.	White, "Fluid Mechanics, 8 Ed", McGraw Hill India, 2017.
2.	Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics 8 th Edition", Wiley, 2016.
3.	Yunuscengel, John. M.cimbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill, 2017.
4.	Som, S.K, Biswas.G and SumanChakraborty, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill India, 2011.
5.	Dr.P.N.Modi, Dr.S.M.Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard book house, 2018.
E-Refe	rences:
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on fluid mechanics.

COURS Upon co	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Understand the basic concepts and properties of fluids.	Remember				
<i>CO2</i>	Analyze the kinematic and dynamic concepts of fluid flow.	Analyze				
СО3	Understand the various incompressible fluid flow through pipes and between parallel plates.	Understand				
<i>CO4</i>	Apply the principles of fluid mechanics to design and operation of hydraulic turbines.	Apply				
<i>C05</i>	Apply the principles of fluid mechanics to design and operation of hydraulic pumps.	Apply				

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1				2				1		2	2	1
CO2	3	3	1		2								2	2	1
CO3	2	3	2	2	1								2	2	1
CO4	3	3	3	2	1	2	1						2	2	1
CO5	3	3	3	2	1	2	1						2	2	1
Avg	2.8	2.6	2	2	1.25	2	1.3				1		2	2	1
	•	3/2/	/1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	2- Meo	lium, 1	- Low)	•	•

18MEM03 MANUFACTURING PROCESSES												
PRE	REQUI	SITE:	CATEGORY	PE	Cre	edit	3					
1. 2.	Basic s Engine	cience, Engineering mathematics, Engineering Physics ering Materials	Hours/Week	L	Т	Р	ТН					
				3	0	0	3					
Cour	se Objec	tives:										
1.	1. To make the students familiarize with various manufacturing processes and fabrication techniques of metals and design of casting.											
2.	To develop design concepts of various manufacturing processes.											
3.	Gain kno	owledge to select appropriate manufacturing processes for various	us parts.									
4.	To deve	op an entrepreneur skill among the students.										
5.	To evalu	ate and select plastic deformation processes for various parts.										
UNI	ΓI	CASTING			9	0	09					
Conce solidif mould	Concepts of Manufacturing Process -Sand casting -Patterns – Design of Pattern, mould and cores- gating and risering design, solidification time calculation - Moulding machines - Core making. Special moulding processes – CO2 moulding; shell moulding, investment moulding, pressure die casting, centrifugal casting, casting defects.											
UNI	T II	WELDING			9	0	09					
Classi subme beam	fication or erged arc v welding, l	f welding processes. Principles of Oxy-acetylene gas weldin welding, tungsten inert gas welding, metal inert gas welding, pla aser beam welding, defects in welding, Soldering and Brazing, A	g. Metal arc weld asma arc welding, t Adhesive Bonding.	ing, re hermit	sistan weldi	ce w ng, e	elding, lectron					
UNIT	T III	METAL FORMING			10	0	0 10					
Metal proces operat Princi	lurgical as sses, Hot v ions. Roll ple of rod	pects of metal forming, slip, twinning mechanics of plastic defor vorking and cold working of metals, Forging processes – open, ing of metals– Types of Rolling mill – Flat strip rolling – shape and wire drawing – Tube drawing – Principles of Extrusion – T	mation, load estima closed and impress rolling operations ypes.	ition of ion die – Defe	bulk forgi cts in	defor ng – 1 rolleo	mation forging d parts.					
UNI	T IV	SHAPING OF PLASTICS			8	0	0 8					
Types and ty Film princi	Types of plastics - Characteristics of the forming and shaping processes – Moulding of Thermoplastics – Working principles and typical applications of - Injection moulding – Plunger and screw machines – Blow moulding – Rotational moulding – Film blowing – Extrusion - Typical industrial applications – Thermoforming – Processing of Thermosets – Working principles and typical applications - Compression moulding – Transfer moulding.											
UNI	Γ	SHEET METAL FORMING AND POWDER META	LLURGY		9	0	09					
Forma of pre compa	bility of S esses used acting tech	Sheet Metal, load estimation of sheet metal processes - Shearing , Super Plastic forming; Introduction to Powder Metallurgy- niques, Advantages, limitations and applications of powder met	g, Deep drawing, B - Principal steps in allurgy.	ending nvolvec	opera 1 – s	ations interi	- types ng and					
			Tot	al (45	L) =	45 P	eriods					
Text	Books:											
1.	Hajra Mumb	Choudhury, "Elements of Workshop Technology", Vol. I and II, ai, 2005.	Media Promoters a	nd Pub	lishe	rs Pvt	., Ltd.,					

2. NagendraParashar B.S. and Mittal R.K., "Elements of Manufacturing Processes", Prentice-Hall of India Private Limited, 2007.

Reference Books:

1.	Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.								
2.	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001.								
3.	"H.M.T. "Production Technology – Handbook", Tata McGraw-Hill, 2000.								
4.	Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000.								
5.	Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.								
E-Refe	E-References:								
1.	https://fdocuments.in/document/production-technology-55844cac00bfc.html?page=40								

COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Describe the operational features of various casting processes, design gate and riser and discover various defects in casting.	Understand				
<i>CO2</i>	Explain various metal joining processes and compare them.	Understand				
СОЗ	Summarize several types of metal forming processes and select suitable method for different applications.	Analyze				
<i>CO4</i>	Analyze various manufacturing methods for plastics and their needs in industry.	Analyze				
<i>C05</i>	Describe various sheet metal forming processes, load estimation calculation and principles of powder metallurgy	Understand				

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1						1			1	2	1
CO2	2	1	2	1		1			1	1			1	2	1
CO3	1	1	1	1						1			1	1	1
CO4	1	1	1		1					1			1	1	1
CO5		1							1	1			1		1
Avg	1.5	1	1.5	1	1	1			1	1			1	1.5	1
	•	3/2/	′1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	, 2- Mee	dium, 1	- Low)		

18ME	MEM04 MATERIALS ENGINEERING							
PRE-REQUISITE: CATEGORY						dit	3	
1. Engineering Physics						Р	ТН	
2.	Engin	eering Chemistry	Hours/Week	3	0	0	3	
Course	e Obje	ctives:					1	
1. To impart concept on reactions, treatment, microstructure and mechanical behavior of engineering materials at temperature.							ferent	
2.	To learn basic principles in metallurgy and materials engineering.							
3.	To ide	entity and select suitable engineering materials based on their application	ons.					
UNIT	I	PHASE DIAGRAMS		9	0	0	9	
Crystal systems diagram	Crystal structures, Phases, solid solution types, compounds, Hume- Rothery rules; Gibb's phase rule; Binary isomorphous alloy systems – Eutectic, Eutectoid, Peritectic systems. Lever rule, Equilibrium and non-equilibrium cooling, Fe-C Equilibrium diagram - effects of alloying elements – Ferrite and Austenite Stabilizers, TTT and CCT diagrams.						alloy orium	
UNIT	II	HEAT TREATMENT		9	0	0	9	
Isotherr test – A hardeni	nal trar nal trar ng. Hea	sformation diagrams – cooling curves superimposed on I.T. diagram ering, martempering – case hardening, carburising, nitriding, cyanidir t treatment of non-ferrous alloys - precipitation hardening. Heat treatment	CCR - Hardening ng, carbo-nitriding ent of HSS tools, g	lity, Jo g – Fla ears, sp	miny e me and rings a	ng of end qu I Indu nd ga	uench uction uges.	
UNIT	III	FERROUS AND NON FERROUS METALS		9	0	0	9	
Plain carbon steels – Tool steels - maraging steels – HSLA steels .Stainless steels- ferritic and Austenitic, martensitic, duplex and precipitation hardened stainless steels. Types of Cast Irons- Gray cast iron, white cast iron, malleable cast iron, S.G.Iron. Copper alloys – Brass, Bronze and Cupronickel, Aluminium alloys, Bearing alloys.								
UNIT	UNIT IV MECHANICAL PROPERTIES AND TESTING					0	9	
Mechanical properties of engineering materials - Mechanisms of plastic deformation, slip and twinning – Creep, Fatigue and Fracture - Types of fracture – Testing of materials - tension, compression and shear loads - fatigue and creep tests – hardness and its effects – testing for hardness (Brinell, Vickers and Rockwell) - Impact test - Izod and Charpy.								
UNIT V NON DESTRUCTIVE TESTING AND SURFACE ENGINEERING						0	9	
Non Destructive Testing: Basic principles - Testing method - Radiographic testing, Ultrasonic testing, Magnetic Particle Inspection and Liquid Penetrant Inspections. Introduction to surface engineering - Definition, diffusion techniques, deposition methods, high and low energy beam methods, surface engineering charts, elastic contact mechanics.								
Total (45L) = 45 Periods								
Text Books:								
1.	Ke	nneth G. Budinski and Michael K. Buinski, "Engineering Materials", P	rentice Hall of Ind	lia Ltd,	2002.			
2.	Ra	ghavan, V, "Materials Science and Engineering", Prentice Hall of India	a (P) Ltd., 1999.					
3.	As	vani.K.G, "A Text Book of Material Science", S.Chand and Co. Ltd., 1	New Delhi, 2001.					

4. Khanna O.P., "A Text Book of Materials Science and Metallurgy", DhanpatRai Sons, 2004. **Reference Books:**

Reference Dooks.							
1.	William. D.Callsber, "Material Science and Engineering", John Wiley and Sons, 1997.						
2.	Sydney.H.Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994.						

COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
C01	Understand the formation of materials and their classification based on atomic structure.	Understand	
<i>CO2</i>	Understand the principles of various heat treatment processes in fabrication industry.	Understand	
СОЗ	Describe properties, applications and types of various ferrous and non-ferrous metals used in fabrication industry	Understand	
<i>CO4</i>	Describe various types of failure and select methods for destructive testing	Understand	
<i>C05</i>	Select methods for non destructive testing	Evaluate	

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	1	1	1						2	3	1
CO2	1		2	1	1	2	1						2	3	1
CO3		1	1	1	1		1						3	2	1
CO4		2	2	1	1	1	1						2	3	1
CO5		2	2	2	1		1						2	2	1
Avg	1	1.5	1.8	1.4	1.0	1.3	1						2.2	2.6	1.0
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)						dium, 1								

18ME	8MEM05 KINEMATICS OF MACHINERY								
PRE-REQUISITE: CATEGORY PE						Credit		3	
1. Engineering graphics. 2.Engineering Mechanics L					Т	Р	r	ГН	
			Hours/ week	3	0	0		3	
Course	e Objec	tives:			•				
1.	To und	erstand the basic components and layout of linkages in the assem	bly of a system/ ma	chine.					
2.	To und at any j	erstand the principles in analyzing the assembly with respect to t point in a link of a mechanism.	he displacement, ve	elocity,	and	accel	era	tion	
3.	To und	erstand basics of cam profile and its displacement.							
4.	To und	erstand the basic concepts of toothed gearing and kinematics of g	ear trains.						
5.	Illustra	te the effects of friction drives in transmission system.							
UNIT	I	BASICS OF MECHANISMS			9	0	0	9	
Classifi Kinema Descrip	Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider-crank chains Limit positions- Mechanical advantage - Transmission angle- Description of some common mechanisms- Quick return mechanism, straight-line generators.								
UNIT	II	KINEMATIC ANALYSIS			9	0	0	9	
Displac centres of accel	Displacement, velocity and acceleration analysis of simple mechanisms, graphical velocity analysis using instantaneous centres - kinematic analysis of simple mechanisms- slider-crank mechanism dynamics Coincident points- Coriolis component of acceleration introduction to linkage synthesis three Position graphical synthesis for motion and path generation.								
UNIT	UNIT III KINEMATICS OF CAM 9							9	
Classification of cams and followers- Terminology and definitions- Displacement diagrams- Uniform velocity, parabolic, simple harmonic and cycloidal motions- derivatives of follower motions- specified contour cams circular and tangent cams-pressure angle and undercutting, sizing of cams, graphical method for cam profile design.									
UNIT	UNIT IV GEARS AND GEAR TRAINS						0	9	
Involute and cycloidal gear profiles, gear parameters, fundamental law of gearing and conjugate action, spur gear contact ratio and interference / undercutting- helical, bevel, worm, rack & pinion gears, epicyclic and regular gear train kinematics.									
UNIT VFRICTION IN MACHINE ELEMENTS9							0	9	
Surface contacts- sliding and rolling friction- friction drives- friction in screw threads – bearings and lubrication- friction Clutches- belt and rope drives.						tion			
	Total (45L) = 45 Periods								
Text B	ooks:								
1.	1. Rattan S.S, "Theory of Machines", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998.								

2.	Ghosh, A and Mallick, A.K, "Theory of Mechanisms and Machines", East-West Pvt. Ltd., New Delhi, 1988.						
Refere	nce Books:						
1.	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.						
2.	Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.						
3.	Erdman AG and Sandor G N, "Mechanism Design, Analysis and Synthesis", Vol.I, PHI Inc., 1997.						
--------	--	--	--	--	--	--	--
4.	Ambekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.						
5.	John Hannah and Stephens R C, "Mechanisms of Machines", Viva Low Price Student Edition, New Delhi, 1999.						
E-Refe	E-References:						
1.	https://archive.nptel.ac.in/courses/112/104/112104121/						
2.	https://nptel.ac.in/courses/112106270						
3.	http://velhightech.com/Documents/ME8492 Kinematics of Machinery.pdf						

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Demonstrate and understand the concepts of various mechanisms and pairs.	Apply			
<i>CO2</i>	Analyze the velocity and acceleration of simple mechanisms.	Analyze			
СОЗ	Construct the cam profile for various motion.	Create			
<i>CO4</i>	Solve problems on gears and gear trains.	Evaluate			
<i>C05</i>	Evaluate the friction in transmission system	Evaluate			

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1									3	1	
CO2	3	2	2	1									3	1	
CO3	3	2	2	1									3	1	
CO4	3	2	2	1									3	1	
CO5	3	2	2	1									3	1	
Avg	3	2	2	1									3	1	
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

PRE-REQUISITE: CATEGORY PE Credit 3 Iburs/Week L T P TH Hours/Week L T P TH 3 0 0 3 3 Course Objectives:	18MI	E M06	HYDRAULICS AND PNEUMATICS					
Hours/Week L T P TH 3 0 0 3 Course Objectives:	PRE-	REQUIS	QUISITE: CATEGORY PE					
Hours/ week 3 0 0 3 Course Objectives: 1. To enable the students understand the basics of hydraulic and pneumatics . 2. Applying the working principles of hydraulic actuators and control components. . 3. Designing and develop hydraulic circuits and systems. . 4. Applying the working principles of pneumatic power system and its components. . 5. Solving problems and troubles in fluid power systems. . UNIT I FUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications – Fluid power systems – Types of fluids - Properties of Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Clinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems.				TT /XX / 1 -	L	Т	Р	ТН
Course Objectives: 1. To enable the students understand the basics of hydraulics and pneumatics 2. Applying the working principles of hydraulic circuits and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems. Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 10 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic oncortol, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0				Hours/ week	3	0	0	3
1. To enable the students understand the basics of hydraulics and pneumatics 2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems. Problems. Disdvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic notors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 9	Cour	se Objec	tives:		1			
2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pncumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic solver, Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 4 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0	1.	To enabl	e the students understand the basics of hydraulics and pneumatic	CS				
3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Operation – Accessorics; Reservoirs, Pressure Switches – Filters – types and selection - Application, E-Pluid Power ANSI Symbols – Problems. 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 Accumulators, Intensifier, Andustrial hydraulic circuits – Regenerative, Pump Unloading, D	2.	Applying	g the working principles of hydraulic actuators and control comp	oonents.				
4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic power, Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Ait-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0	3.	Designir	g and develop hydraulic circuits and systems.					
5. Solving problems and troubles in fluid power systems. 9 0 0 9 INTO I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of Hydraulic power; Pumping Theory - Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps - Fixed and Variable displacement pumps - Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic cushioning - Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Accessories; Reservoirs, Pressure Switches - Filters - types and selection - Applications - Fluid Power ANSI Symbols - Problems. 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits - Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits - Servo and Proportional valves - Applications - Mechanical, hydraulic servo systems. 9 0 0 9 0 0	4.	Applyin	g the working principles of pneumatic power system and its com	ponents.				
UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 0 0 9 0	5.	Solving	problems and troubles in fluid power systems.					
Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power: Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Sthaust Valves, Pneumatic a	UNIT	ΓI	FLUID POWER PRINICIPLES AND HYDRAULIC	PUMPS		9	0	09
UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidies and pneumatic logic circuits. 9 <th>Proble Advar Proble</th> <th>ems, Sour ntages, D ems.</th> <th>ces of Hydraulic power; Pumping Theory – Pump Classifi isadvantages, Performance, Selection criteria of pumps – Fi</th> <th>ication – Construct xed and Variable</th> <th>ction, V displac</th> <th>Vorki emen</th> <th>ng, I t pu</th> <th>Design, mps –</th>	Proble Advar Proble	ems, Sour ntages, D ems.	ces of Hydraulic power; Pumping Theory – Pump Classifi isadvantages, Performance, Selection criteria of pumps – Fi	ication – Construct xed and Variable	ction, V displac	Vorki emen	ng, I t pu	Design, mps –
Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification – single cylinder and multi cylinder circuits roblems, Introduction to fluidics and pneumatic logic circuits. 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 <	UNIT	T II	HYDRAULIC ACTUATORS AND CONTROL COM	IPONENTS		9	0	09
UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9<	motor Opera Symbo	s - Contro tion – Acc ols – Prob	l Components : Direction Control, Flow control and pressure essories; Reservoirs, Pressure Switches – Filters – types and se lems.	control valves – '	Types, ons – F	Cons luid I	tructi Powe	on and ANSI
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, Iadder diagram, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatics components. - Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	T III	HYDRAULIC CIRCUITS AND SYSTEMS			9	0	0 9
UNIT IVPNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS9009Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits.9009UNIT VDESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatics components.9009Total (45L) = 45 Periods	Accur Intens of hyd Mecha	nulators, ifier, Air-o Iraulic sys anical, hyc	Intensifiers, Industrial hydraulic circuits – Regenerative, Pun over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, tems, Hydrostatic transmission, Electro hydraulic circuits – Ser raulic servo systems.	np Unloading, De Speed Control, Dec vo and Proportiona	ouble - celeration l valve	Pun on cir s – Aj	np, P cuits, pplica	ressure Sizing ations -
Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	T IV	PNEUMATIC AND ELECTRO PNEUMATIC SYST	EMS		9	0	09
UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components. Total (45L) = 45 Periods	Proper Exhau - Casc proble	rties of air st Valves, ade metho ems, Introc	 Air preparation and distribution – Filters, Regulator, Lubri Pneumatic actuators, Design of Pneumatic circuit – classification Integration of fringe circuits, Electro Pneumatic System – Integration to fluidics and pneumatic logic circuits. 	cator, Muffler, Ai n - single cylinder a Elements – Ladder	ir contr nd mul diagra	ol Va ti cyli m – ti	alves, nder imer	Quick circuits circuits
Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components. Total (45L) = 45 Periods	UNIT	Γ V	DESIGN OF FLUID POWER CIRCUITS AND TRO	UBLESHOOTI	NG	9	0	09
Total (45L) = 45 Periods	Servo electro failure – Low using	Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.						
Total (45L) = 45 Periods								
				Tot	al (45)	L) =	45 P	eriods

Text Books:						
1.	Manjumdar S.R, "Oil Hydraulics", Tata McGraw-Hill, December 2002.					

2.	Anthony Esposito, "Fluid Power with Applications", Pearson Education 2013.							
Refere	Reference Books:							
1.	Andrew Parr, "Hydraulic and Pneumatics", Jaico Publications House, 2005.							
2.	Bolton W. "Pneumatic and hydraulic system", Butterworth-Heinemann 1997							
3.	Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 2010							
4.	Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006							
5.	Srinivasan.R. "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008.							
E-Refe	erences:							
1.	http://www.fluidpowerjournal.com							
2.	http://14.139.160.15/courses/112102011/2							
3.	https://www.nfpa.com/home.htm							

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Select the components as per the application	Evaluate			
<i>CO2</i>	Apply the working principles of hydraulic actuators and control components.	Apply			
СО3	Design and develop hydraulic circuits and systems.	Create			
<i>CO4</i>	Apply the working principles of pneumatic power system and its components.	Apply			
<i>C05</i>	Solve problems and troubles in fluid power systems.	Evaluate			

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1										1	1	1
CO2		2	2	1									1	1	1
CO3	1	2	3			1							1	2	1
CO4	1	1	3	2	2								2	1	1
CO5	1	1	2										1	1	1
Avg	1.25	1.4	2.2	1.5	2	1							1.2	1.2	1
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

18M	EM07	DESIGN OF MACHINE ELEMEN	TS				
PRE	REQUIS	SITE:	CATEGORY	PE	Cre	edit	3
1.	Student	should study engineering mechanics.	Houng/Wools	L	Т	Р	ТН
2.	Studen	should study kinematic of machinery.	Hours/ week	3	0	0	3
Cour	se Objec	tives:					
1.	Understa	nding of background in mechanics of materials and design of	of machine componen	nts.			
2.	An unde consider	erstanding of the origins, nature and applicability of eations	empirical design pri	inciples,	based	l on	safety
3.	An unde	rstanding the design of shafts and couplings.					
4.	Familiar	ze the design of energy storing elements and engine compo	nents.				
5.	An appr performa	eciation of the relationships between component level de	esign and overall ma	achine sy	rstem	desi	gn and
UNI	ſI	STEADY STRESSES AND VARIABLE STR MEMBERS	RESSES IN MA	CHINE	9	0	0 9
Introd based Calcu stress	luction to t on mecha lation of p concentrat	he design process – Product development cycle- factors inf nical properties - Preferred numbers– Direct, Bending and rinciple stresses for various load combinations, eccentric le ion – design for variable loading – Soderberg, Goodman and	luencing machine des Torsional stress – Ir oading – Factor of s d Gerber relations.	sign, sele npact and afety -the	ction l shoc cories	of m xk loa of fa	aterials ading – ailure –
UNI	ГП	DESIGN OF SHAFTS AND COUPLINGS			9	0	09
Desig rigid a	n of solid and flexible	and hollow shafts based on strength, rigidity and critical spe e couplings.	eed – Design of keys	and key	ways	- De	sign of
UNI	ГШ	DESIGN OF THREADED FASTENERS, RIV JOINTS	YETED AND WI	ELDED	9	0	0 9
Threa vessel	ded fasten s and struc	ers - Design of bolted joints including eccentric loading – E etures- theory of bonded joints.	Design of riveted and	welded j	oints	for p	ressure
UNIT IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS							09
Vario for en	Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting rods and crank shafts.						
UNI	ΓV	DESIGN OF BEARINGS			9	0	09
Slidin Conta	Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number - Selection of Rolling Contact bearings.						
			Т	otal (45	L) =	45 P	eriods

Text B	Books:						
1.	Bhandari V.B, "Design of Machine Elements", Tata McGraw Hill Book Co, 2020						
2.	Md.Jalaludeen.S, "A text book of Machine Design", Anuradha Publications, 2006						
Refere	Reference Books:						
1.	Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.						
2.	Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.						

3.	Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.						
4.	PSG Tech, "Design Data Handbook", M/s.DPV Printers, Coimbatore, 2009						
E-Refe	E-References:						
1.	https://nptel.ac.in/courses/112105124						
2.	Design of Machine Elements - V. B. Bhandari - Google Books						
3.	A Textbook of Machine Design by R.S.Khurmi And J.K.Gupta [tortuka] 1490186411865.pdf DocDroid						

COURSE OUTCOMES: On completion of the course the student will be able to					
C01	Understand the influence of steady and variable stresses in machine component design.	Understand			
<i>CO2</i>	Apply the concepts of design to shafts, keys and couplings.	Apply			
СОЗ	Familiarize the design of temporary and permanent joints.	Understand			
<i>CO4</i>	Design the various energy storing elements and engine components.	Analyse			
<i>C05</i>	Familiarize the design of various types of bearings.	Understand			

COURSE .	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2		1	1				1		3	2	1
CO2	2	2	1	2		1	1				1		3	2	1
CO3	2	2	1	2		1	1				1		3	2	1
CO4	2	2	1	2		1	1				1		3	2	1
CO5	2	2	1	2		1	1				1		3	2	1
Avg	2.0	2.0	1.0	2.0		1.0	1.0				1.0		3.0	2.0	1.0
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

PREREQ 1.The laws 2. The conc COURSE 1. Un	and l cept o	ITES basic concepts of thermodynamics	CATEGORY	PE	Cre	edit	3	
1. The laws2. The concCOURSE1.Un	and l cept c	basic concepts of thermodynamics			Credit		- -	
2. The concCOURSE1.	cept o	1. The laws and basic concepts of thermodynamics Hours/Week						
COURSE	OB	2. The concept of energy transfers and their conversion principles 3						
1. Un		JECTIVES		11				
	nderst	anding the science behind conduction heat transfer and its applica	tions.					
2. Di	fferei	ntiating the concepts of forced and natural convection heat transfer	ſ.					
3. De	escrib	ing the laws and concepts of radiation heat transfer.						
4. Ur	nderst	anding phase change processes and analyzing heat exchangers.						
5. Stu	udyin	g the concept of mass transfer process and its modes.						
UNIT-J	UNIT-I CONDUCTION HEAT TRANSFER							
charts.	I	CONVECTION HEAT TRANSFER		9	0	0	9	
Conservation	on eq	uations, boundary layer concept – Forced convection: external flux	ow – flow over pl	ates, cy	linde	ers, sp	heres	
Free conve	ction	-flow over vertical plate, horizontal plate, inclined plate, cylinder	s and spheres.					
UNIT-II	Π	BOILING, CONDENSATION AND HEAT EXCHANG	FERS	9	0	0	9	
Regimes of Exchanger	f Pool types	boiling and Flow boiling, Nusselt's theory of condensation- corr - Overall Heat Transfer Co-efficient – Fouling Factors. LMTD a	elations in boiling nd NTU methods.	and con	dens	ation.	Heat	
UNIT-I	NIT-IV RADIATION HEAT TRANSFER						9	
Radiation la	aws -	Black Body and Gray body Radiation - Shape Factor - Electrical	Analogy -Radiatio	n Shield	ls.			
UNIT-V	IT-V MASS TRANSFER 9 0 0 9							
Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Molecular Diffusion - Equimolal counter diffusion. Basic Convective Mass Transfer Problems.								
	Total(45L) = 45 Periods							

ТЕХТ	BOOKS:
1	R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2017
2	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, 2014.
REFE	RENCE BOOKS:
1	Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5 th Edition - 2013
2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2017
3	Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Analyze the mechanism of heat conduction under steady and transient conditions.	Apply
<i>CO2</i>	Develop solutions to problems involving convective heat transfer.	Create
СО3	Design a heat exchanger for any specific application.	Understand
<i>CO4</i>	Adopt the concept of radiation heat transfer in real time systems.	Understand
<i>C05</i>	Develop solutions to problems involving combined heat and mass transfer.	Apply

COURSE	ART	ICUL	ATIO	ON MA	ATRI	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2		1						3	3	1
CO2	3	3	3	3	2		1						3	3	1
CO3	3	3	3	3	2		1						3	3	1
CO4	3	3	3	3	2		1						3	2	1
CO5	2	2	2	2	1		1						3	1	
Avg	2.8	2.8	2.8	2.8	1.8		1						3	2.4	1
	•	3/2/	/1 – in	dicat	es str	ength	of con	rrelati	on (3	– High,	2- Med	lium, 1-	Low)	•	

18MEM09	METROLOGY AND QUALITY CONTR	OL						
PREREQUIS	ITES	CATEGORY	PE	Cr	edit		3	
			L	Т	Р	,	ГН	
		Horus/Week	3	0	0		3	
COURSE OF	JECTIVES							
1.	1. Explaining the importance of measurements in engineering and the factors affecting measurements and to compute measurement uncertainty							
2.	Applying the applications of linear and angular measuring instr	uments						
3.	Interpretation of various tolerance symbols.							
4.	Applying the SQC methods in manufacturing.							
5.	Applying the advances in measurements for quality control.							
UNIT-I	BASICS OF MEASUREMENT SYSTEM AND DEVIC		9	0	0	9		
system - mechai used terms, erro	nical loading – static characteristics of instruments – factors consider analysis and classification - sources of error. Measurement unce	Three stages of ge ered in selection of i rtainty.	instrum	ed n ents	- con	nmo	only	
UNIT-II	CALIBRATION OF INSTRUMENTS AND QUALITY	Y STANDARDS		9	0	0	9	
Calibration of r feeler gauges, d 9000 quality sta	neasuring instruments - principles of calibration, Calibration of lial indicator, surface plates, slip gauges, care of gauge blocks. Ge indards. Comparators- mechanical, electrical, optical and pneumat	Instruments - Verni eneral cares and rule ic.	er calij es in m	per, l easu	Micro reme	ome nt, 1	eter, ISO	
UNIT-III	GEOMETRICAL MEASUREMENT AND MACHINE	E ELEMENTS		9	0	0	9	
Angular measur principle, three measurement o errors, base pito Inspection of st	rement - optical protractors, sine bar, roundness measurement, li basic types of limit gauges, Tomlinson surface meter, compu f major, minor and effective diameters. Gear terminology; spur ch measurement. Principle of interferometry, laser interferometer raightness, flatness, roundness deviations.	mit gauge, design o tter controlled CM gear measurement, , Machine vision, I	of plug M. IS(checki Fundam	gau D me ng o enta	ge, T etric of con 1 of (`ayl thro npc GD	or's ead, osite &T.	
UNIT-IV	STATISTICAL QUALITY CONTROL			9	0	0	9	
Surface finish - Quality Control	 terminology and measurements – Optical measuring instruments Control charts - Sampling plans. 	Acceptance test f	for mac	hine	s. Sta	atist	ical	
UNIT-V	SIX SIGMA			9	0	0	9	
Six sigma: Defi Control chart, S Analysis, Hypo	Six sigma: Define measure, analyse, improve and control phases. Analyze phase tools: CommonTools: Histogram, Box Plot, Control chart, Scatter chart, Cause and effect diagram, Pareto analysis, interrelations diagram. Special Tools: Regression Analysis, Hypothesis Testing, ANOVA Multi variate analysis.							
	Total(45L) = 45 Periods							

TEXT	TEXT BOOKS:							
1	Gupta.I.C, —A text book of Engineering Metrology, Dhanpat Rai publications, New Delhi, 2018							
2	Beckwith.T.G, Roy D. Marangoni, John H. Lienhard, - Mechanical Measurements, Prentice Hall, 2006							
REFE	REFERENCE BOOKS:							
1	Jain.R.K, —Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1999.							
2	Holmen.J.P, -Experimental Methods for Engineersl, Tata McGraw Hill Publications Co Limited, 2017.							

3	Grant, E.L., Statistical Quality Control, Mc Graw-Hill, 2004. 3. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004.
4	Alan S Morris,Measurement and Instrumentation Principles, Butterworth, 2006.
5	De Feo J A and Barnard W W, -Six Sigma: Break trough and BeyondG, Tata McGraw-Hill, New Delhi, 2005.
E-REF	ERENCES:
1	https://nitsri.ac.in/Department/Mechanical%20Engineering/MEC_405_Book_2,_for_Unit_2B.pdf
2	https://www.nist.gov/system/files/documents/srm/NIST-SRM-RM-Articlefinal.pdf
3	https://www.researchgate.net/publication/319587859_Computer-Aided_Metrology-CAM

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Explain the importance of measurements in engineering and the factors affecting measurements and to compute measurement uncertainty.	Understand
<i>CO2</i>	Apply the working principle and the applications of linear and angular measuring instruments.	Apply
СОЗ	Interpret of various tolerance symbols.	Apply
<i>CO4</i>	Apply the SQC methods in manufacturing.	Apply
<i>C05</i>	Apply the advances in measurements for quality control in manufacturing industries.	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1							2	1	2				2	1	
CO2							3	1	2				1	2	
CO3							2	1					2	1	
CO4				3			2		1				1	2	
CO5				2				3	1				2	1	
Avg				2.5			2.25	1.5	1.5				1.6	1.4	
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

18	BMEMI								
PR	EREQ	UISI	res	CATEGORY	PE	Cre	edit	3	
Eng		M1	wing Wingson the of Machinese Strength of Materials	Hound Wools	L	Т	Р	ТН	
Eng	gineering	Meci	fames, Kinematics of Machinery, Strength of Materials	Hours week	3	0	0	3	
CO	COURSE OBJECTIVES:								
1.	To imp	art sti	udents with the knowledge about motion, masses and forces in	machines and the F	Principl	e of V	irtual	Work.	
2.	To faci	litate	the students, to understand the concept of balancing of rotating	g and reciprocating	masse	s.			
3.	To teac	ch con	cepts of free vibration analyses of one and two degree-of-free	dom rigid body sys	tems				
4.	To tea phenor	ch co nenor	ncepts of forced vibrations analyses of rigid body systems a of vibration and its effects.	and to give awar	eness to	o stuc	lents	on the	
5.	To lear	n abo	ut the concept of various types of governors.		-				
UI	NIT I	FO	RCE ANALYSIS		9	0	0	9	
Moi Spe UN	ment Dia ed, Weig NIT II	agram ght of BA l	s and Fluctuation of Energy of reciprocating engine mechanis Flywheel Required. LANCING	ns, Coefficient of I	Fluctuat 9	ion of 0	Ener	gy and	
Stat Eng	tic and dy gines - Pa	ynami artial l	c balancing - Balancing of rotating masses - Balancing a single balancing in locomotive Engines - Balancing linkages - balanc	e cylinder Engine - ing machines	Balanc	ing M	ulti-c	ylinder	
UN		FR	EE VIBRATION	0	9	0	0	9	
Bas Free Sys Tor	ic Featur quency b tem -Typ sional Sy	res of by En- pes of stem	Vibratory Systems – Types – Single Degree of Freedom System ergy Method, Dunkerly's Method - Critical Speed - Damped Damping – Free Vibration with Viscous Damping, Critically s: Natural Frequency of Two and Three Rotor Systems.	n – Transverse Vib l Free Vibration of y Damped System,	ration o Single Under	f Bea Degr Dam	ms – I ee Fr ped S	Vatural eedom ystem.	
UN	IT IV	FO	RCED VIBRATION		9	0	0	9	
Res Mag	ponse to gnificatio	Perio on Fac	odic Force – Harmonic Force – Force caused by Unbalance – ctor – Vibration Isolation and Transmissibility.	Support Motion -	Logari	thmic	Decr	ement-	
UN	UNIT V GOVERNORS 9 (
Gov - Ef	vernors - ffect of fi	Type riction	s - Centrifugal governors - Gravity controlled and spring contro a - Controlling Force - other governor mechanisms.	olled centrifugal go	overnor	s – Cł	aract	eristics	
	Total (45L) = 45 Periods								
_		_				_	_	_	

TE	XT BOOKS:
1.	Design of Machinery, Fourth Edition, by R.L. Norton, McGraw Hill, 2007
2.	Mechanical Vibration, V.P.Singh, Dhanpatrai, Delhi
RE	FERENCE BOOKS:
1.	Ballaney, P.L., "Theory of Machines and Mechanisms", Khanna Publishers, New Delhi, 2002.
2.	Shigley, J.E. and Uicker, J.J., "Theory of Machines and Mechanisms", TMH ND, 1998.
3.	Amithabha Ghosh, and Ashok Kumar Malik., "Theory of Mechanisms and Machines", 2nd Ed., Affiliated East and West Press Limited, 1998.
4.	Prof.Nakara, IIT-Delhi Reference Books

E-R	E-REFERENCES:								
1.	www.university.youth4work.com/IIT_Kharagpur_Indian-Institute-of-Technology/study/1653-dynamics-of- Machinery-ebook								
2.	http://nptel.ac.in/courses/112104114/								

COURSE OUTCOMES: On completion of the course the student will be able to						
C01	Apply basic principles of mechanisms in mechanical system.	Apply				
<i>CO2</i>	Familiarize the static and dynamic analysis of simple mechanisms.	Understand				
СО3	Analyze the mechanical systems subjected to free vibration.	Analyze				
<i>CO4</i>	Analyze mechanical systems subjected to forced vibration.	Analyze				
<i>C05</i>	Analyze the various types of governors and its speed control mechanism.	Analyze				

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1					1		3	2	1	2
CO2	2	2	3	2	1					1		3	2	1	2
CO3	2	2	3	2						1		3	2	1	2
CO4	2	2	3	2	1					1		3	2	1	2
CO5	1	2	3	2						1		3	2	1	1
Avg	1.8	2.0	3.0	2.2	1					1.0		3.0	2.0	1.0	1.8
3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)															

MINOR DEGREE: METALLURGICAL ENGINEEING

18N	MTM01	ADVANCED PHYSICAL METALL	URGY	S	emeste	r					
PREI	REQUISIT	ES	Category	OE	Cre	dit	3				
. .				L	Т	Р	ТН				
Engir	ieering phy	/SICS	Hours/Week	3	0	0	3				
Cour	se Learning	g Objectives									
1	To impar	t knowledge on the crystal structure, diffusion, phase	diagrams for varie	ous eng	gineerin	g mate	rials.				
τ	Unit I	CRYSTAL STRUCTURES		9	0	0	9				
Revie	w of atomic	c bonds, Lattice, unit cell, crystal systems and Bravai	s lattices; Princip	al crys	tal struc	ctures -	- BCC,				
FCC,	HCP and i	ts characteristics; Miller indices for crystallographic	c planes and dire	ctions,	interpl	anar sj	bacing;				
Volur	ne, planar a	and linear atomic density; Polymorphism and allotro	py; CsCl, NaCl,	Diamo	ond stru	ctures;	single				
crystal and polycrystalline and amorphous materials; isotropy and anisotropy; Simple problems in the above topics											
U	J nit II	CRYSTALLINE IMPERFECTIONS		9	0	0	9				
Types	Types of point defects, effect of temperature on vacancy concentration, interstitial sites-octahedral and tetrahedral										
sites; Line defects - dislocations - Edge, screw and mixed dislocations, Burger's vector, slip and twinning; Planar											
defects - grain boundaries, tilt boundaries, small angle grain boundaries; ASTM grain size number, grain size											
determinations; Volume defects; Simple problems in the above topics.											
U	nit III	ATOMIC DIFFUSION IN SOLIDS AND SOLII OF METAL	DIFICATION	9	0	0	9				
Diffu	sion mecha	nisms, steady state diffusion and non-steady state	diffusion-Fick's	first 1	aw and	secon	d law;				
Kirke	ndall effect	and Darken's equation; Factors affecting diffusion; I	Industrial applicat	ions of	f diffusi	on pro	cesses;				
Simpl	le problems	in the above topics; Basic principles of solidification	on of metals and	alloys;	Growt	h of cr	ystals–				
Plana	r growth, o	dendritic growth, Solidification time, dendrite size	; Cooling curves	s; Cast	t or In	got str	ucture,				
Solidi	ification de	fects - Control of casting structure; Directional so	lidification - sin	gle cry	ystal gr	owth;	Simple				
proble	ems in the a	bove topics.									
U	nit IV	PHASE DIAGRAMS		9	0	0	9				
Phase	s, solid solu	ution types, compounds, Hume- Rothery rules; Gibb	o's phase rule; Ph	ase dia	agram d	letermi	nation;				
Binar	y isomorpho	ous alloy systems - composition and amount of phases	, development of 1	nicrost	ructure	-equil	ibrium				
and n	on-equilibri	ium cooling- Coring and its effects, homogenization	n; Binary eutectic	system	m - cor	npositi	on and				
amou	nt of phases	, development of microstructure; Eutectoid, Peritectic	and monotectic re	action	Phase of	liagran	ns with				
intern	nediate phas	ses and compounds; Ternary phase diagrams. Simple	problems in the al	pove to	pics.						
τ	Unit VIRON-CARBON PHASE DIAGRAM900										
Iron-c	carbon diagr	am, Phases in Fe-C system, Invariant reactions, Micro	structure of slowl	y coole	ed steels	, comp	osition				
and a	mount of pl	nases, Effect of Alloying elements on Fe-C system, T	ype, structure, pr	opertie	es and a	pplicat	ions of				
Plain	Carbon Ste	els and different types of Cast iron; IS Specification f	for Steels and Cas	st Irons	, Simpl	e probl	ems in				
above	topics.										
				Tota	al (45+0) = 45	Hours				

Text	t Books:
1	Donald R. Askeland,"The Science and Engineering of Materials", Thomson Learning, India Edition, 2007.
2	William D.Callister, "Materials Science and Engineering – An Introduction", 4th edition, JohnWiley & Sons, New York, USA, 1997.
Refei	rence Books:
1	Avner S H."An Introduction to Physical Metallurgy", McGraw Hill Book Co, New York, USA, 1997.
2	Donald R Askeland," Essentials of Material Science and Engineering ", Thomson Learning, India Edition, 2007
3	Raghavan V., "Physical Metallurgy – Principles and Practice", Prentice Hall of India Ltd., New Delhi, 199.
4	William F.Smith, "Foundations of Materials Science and Engineering", Second Edition, McGraw-Hill Inc, New York, 1993.

Cours Upon	e O con	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Describe the basic crystal structure, orientation and their influence on macroscopic properties.	L2: Understanding
CO2	:	Discuss the role of imperfections in strengthening the materials.	L2: Understanding
CO3	:	Diagonise the diffusion mechanism in solidification of materials under different conditions.	L4:Analysing
CO4	:	Apply the concept of phase diagrams in equilibrium transformation of materials phases.	L3:Applying
CO5	:	Construct the Fe-Fe ₃ C phase diagram and discuss various properties of steel and cast iron.	L3:Applying

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1		1	
CO2	1	1				1	1						1			1
CO3	1	1	1	1		1							1	1		
CO4	1	1		1	1								1			
CO5	1	1		1									1			1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-ir	idicates	strengt	h of co	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18MTM02	S	er									
PREREQUISIT	ES	Category	OE	Cr	edit	3					
D · · · 1			L	Т	Р	ТН					
Engineering ph	ysics and Engineering chemistry	Hours/Week	3	0	0	3					
Course Learnin	g Objectives										
1 To learn	the basic principles and concepts of thermodynamics	in the field of Meta	llurgy	and m	aterials	s; and					
to learn about equations and their applications.											
Unit I	LENERGY	9	0	0	9						
Introduction: System and surrounding, Classification of systems, Path and state properties, Thermodynamic processes, Thermodynamic equilibrium, Reversible and Irreversible processes. First law of thermodynamics: Heat and work, Internal energy, Heat capacity of materials, Cp-Cv relations, Nernst Equation, Enthalpy, Thermochemistry Hess's law, Kirchoff's law, Maximum flame temperature.											
Unit II	ENTROPY AND AUXILARY FUNCTIONS		9	0	0	9					
Second law of th statement of first and Zeroth laws	Second law of thermodynamics: Carnot cycle, Entropy - Statistical interpretation of entropy, Free energy, Combined statement of first and second laws, Thermodynamic functions - Maxwell's relations, Gibbs Helmholtz equation. Third and Zeroth laws of thermodynamics : Definition, concept and applications										
Unit III	THERMODYNAMIC POTENTIALS AND PHA EQUILIBRIA	SE	9	0	0	9					
Thermodynamic rule. Le Chateli Thermodynamic diagrams to the s	potentials: Fugacity, Activity and Equilibrium consta er's principle, Vant Hoff's equation. Equilibria in p s of surfaces, interfaces and defects, P-G-T diagram tudy of alloy systems.	ant. Clausius - Clay bhase diagrams: Ph as, Application of f	yperon nase ru Tree en	equat le, Pl ergy	tion, Tr hase st - comp	outons ability, osition					
Unit IV	THERMODYNAMICS OF SOLUTIONS		9	0	0	9					
Gibbs - Duhem e solutions, Activi functions, Regul	quation, Partial and integral molar quantities, chemica ty coefficient, Henry's law, Alternative standard state ar solutions, Applications of Gibbs - Duhem equation.	l potential, Ideal sol s, Sievert's law, Mi	utions xing fu	- Rao inctio	ult's lav	w, Real excess					
Unit V	THERMODYNAMICS OF REACTIONS AND I	KINETICS	9	0	0	9					
Electro chemical process: Cells, Interconversion of free energy and electrical work, Determination of thermodynamic quantities using reversible cells, Solid electrolytic cells. Kinetics: First, Second and third order reactions, Arrhenius equation - activation energy, Determination of order of the reaction.											
	Total (45+0) = 45 Hours										

Text	t Books:
1	Upadhyaya G S andDube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.
2	Ahindra Ghosh, Text book of Materials & MetallurgicalThermodynamics, Prentice Hall India, 2002
3	. David R Gaskell, "Introduction to the Thermodynamics of Materials", Fifth Edition, Taylor & Francis, 2008
Refer	rence Books:
1	David V Ragone, "Thermodynamics of Materials - Volume-1", John Wiley & Sons, Inc. 1995.
2	Dr S.K Dutta,Prof A.B.Lele – Metallurgical thermodynamics kinetics and numericals,S.Chand& co Ltd.,New Delhi 2011
3	Darken LS and Gurry R W,"Physical Chemistry of Metals", CBS publications and distributors, 2002.
4	Parker R H, "An introduction to chemical metallurgy", Pergamon press, New York, second edition, 1978.
5	Kapoor M.L., "Chemical and Metallurgical Thermodynamics Vol. I and II", Nem Chand, 1st Ed., 1981

Course Upon	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	:	Discuss the fundamental concepts of thermodynamics and internal energy	L2: Understanding						
CO2	:	State the thermodynamics entropy and auxilary functions.	L2: Understanding						
CO3	:	Identify the basic laws, chemical potential and phase equilibria.	L4:Analysing						
CO4	:	Describe the thermodynamics of the solution and various important equations.	L2: Understanding						
CO5	:	Apply to solve problems related to electrochemical processes and kinetics.	L3:Applying						

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1	1										1		1	
CO3	1	1		1	1								1			
CO4	1			1	1								1		1	1
CO5	1	1				1	1						1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-ir	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	1TM03	MECHANICAL BEHAVIOUR OF MAT	FERIALS	S	emeste	r					
PREF	REQUISI	TES		OE	Cre	edit	3				
F er e in	.			L	Т	Р	ТН				
Engin	ieering pn	ysics	Hours/Week	3	0	0	3				
Cours	se Learnir	ng Objectives									
1	To know	the fundamental concepts of deformation behaviour f	or structural engin	neering	applica	ations.					
U	nit I	DISLOCATIONS AND PLASTIC DEFORMATIC	ON	9	0	0	9				
Strength of perfect crystal and need for dislocations; Characteristics of dislocations – Edge dislocation, Screw dislocation, Burger's vector, mixed dislocation, dislocation loops; Movement of dislocation – Pierls stress, Cross slip, Climb; Dislocations in FCC, HCP and BCC lattice; Stress fields and energies of dislocations, forces on and between dislocations; Dislocation density; Intersections of dislocations – Jogs and kinks; Dislocation multiplication; Dislocation pile-ups; Deformation by slip and twinning; Critical resolved shear stress; Deformation bands and kink bands.											
U	nit II	9	0	0	9						
ageing coarse streng effect	Strain hardening; Grain boundary strengthening; Solid solution strengthening - yield-point phenomenon, strain ageing; Precipitation hardening - Conditions for precipitation hardening, Ageing, Formation of precipitates, coarsening of precipitates, Mechanism of strengthening; Dispersion strengthening; Fiber strengthening; Martensite strengthening - examples for above strengthening mechanisms from ferrous and non-ferrous systems, Bauschinger effect: Preferred orientation; Sever plastic deformation										
Ur	nit III	FRACTURE AND FRACTURE MECHANICS		9	0	0	9				
Types of fracture – ductile and brittle fracture, Ductile to Brittle Transition Temperature (DBTT), Metallurgical factors affecting DBTT, determination of DBTT, Hydrogen embrittlement and other embrittlement, Theoretical cohesive strength of metals, Griffith's theory of brittle fracture, Orowan's modification. Fracture mechanics - introduction, modes of fracture, stress intensity factor, strain energy release rate, fracture toughness and determination of <i>KIC</i> introduction to COD. Lintegral											
Uı	nit IV	FATIGUE BEHAVIOUR AND TESTS		9	0	0	9				
Fatigu fatigu crack	ie: Stress c e, cumulat propagatic	cycles, S-N curves, effect of mean stress, factors affect ive damage, HCF / LCF, thermo-mechanical fatigue, on, fatigue testing machines.	ing fatigue, struct application of fr	ural ch acture	anges a mechar	accomp nics to	anying fatigue				
U	Unit VCREEP BEHAVIOUR AND TESTS900										
Creep factor of ext	Creep curve, stages in creep curve and explanation, structural changes during creep, creep mechanisms, metallurgical factors affecting creep, high temperature alloys, stress rupture testing, creep testing machines, parametetric methods of extrapolation. Deformation Mechanism Maps										
				Tota	al (45+0)) = 45	Hours				

Text	t Books:
1	George. E. Dieter, "Mechanical Metallurgy", 3rd Edition, McGraw-Hill Publications, New York, SI Edition, 2004
2	Marc Andr'e Meyers, Krishan Kumar Chawla, "Mechanical Behavior of Materials", Cambridge University Press, UK, 2009.
Refer	rence Books:
1	Reed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.
2	Davis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-Hill, 1982.
3	Wulff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.
4	Honeycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984

Cours Upon	e O cor	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the mechanical behaviour of materials.	L2: Understanding
CO2	:	Discuss the strengthening mechanisms of materials.	L2: Understanding
CO3	:	List the various types of fractures and their mechanisms, fracture mechanics and various theories describing fracture mechanics.	L2: Understanding
CO4	:	Discuss the fatigue behaviour and the mechanism of fatigue, SN curve and fatigue testing machines.	L2: Understanding
CO5	:	Describe the creep behaviour and mechanism, factors affecting creep and creep testing machines.	L2: Understanding

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1	1								1	1		
CO3	1	1	1		1										1	1
CO4	1	1				1	1								1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	TM04	RATE PROCESSES IN METALLUI	RGY	S	er										
PRER	EQUISIT	TES		OE	Cre	edit	3								
				L	Т	Р	TH								
Engin	eering ph	ysics	Hours/Week	3	0	0	3								
				5	U	U	5								
Cours	Course Learning Objectives														
1	1 To learn the basic principles and concepts of kinetics in the domain of metallurgy and materials; to learn about equations and their applications; And to appreciate that metallurgical kinetics as a Knowledge base with abundant applications.														
U	nit I	INTRODUCTION		9	0	0	9								
Introdu	uction: Re	ole of kinetics, heterogeneous and homogeneous ki	netics, Role of	heat a	ind ma	ss tran	sfer in								
metallu	urgical ki	netics, rate expression, Effect of Temperature and c	oncentration on	reactio	on kine	tics: ef	fect of								
temper	ature (Ar	rhenius Equation), Effect of concentration (order of a	reaction), signifi	cance	and det	ermina	tion of								
activat	ion energ	у.			n	[
Un	nit II	KINETICS OF SOLID-FLUID REACTION		9	0	0	9								
Kinetic	cs of solid	-fluid reaction: kinetic steps, rate controlling step, defini	tion of various re	sistanc	es in se	ries, sh	inking								
core m	odel, chei	nical reaction as rate controlling step, Product layer dif	fusion as rate co	ntrollir	ng step,	Mass t	ransfer								
throug	h external	fluid film as rate controlling step, heat transfer as the r	ate controlling st	ep, Co	ncentra	tion bo	undary								
layer,	definition	and significance of heat and mass transfer coeffic	ient, Theoretical	mode	els for	mass t	ransfer								
coeffic	eients, Cor	relations for heat and mass transfer coefficients			1										
Un	it III	LIQUID-SOLID PHASE TRANSFORMATION		9	0	0	9								
Princip	oles of So	lidification in metals and alloys: thermodynamics inv	olved, eutectic a	nd per	itectic	Solidifi	cation,								
Homog	geneous a	nd heterogeneous nucleation, Mechanisms of growth. F	Rapid Solidificati	on Pro	cessing										
Un	it IV	SOLID STATE PHASE TRANSFORMATIONS		9	0	0	9								
Nuclea	ation and	growth Kinetics, homogeneous and heterogeneous tra	ansformation, Pr	ecipita	tion: C	oherend	ey, age								
harden	ing, partio	cle Coarsening. Ostwald ripening, Order-disorder trans	formation, spino	dal dec	compos	ition, n	nassive								
transfo	rmations				r	1									
Un	nit V	SOLID STATE PHASE TRANSFORMATIONS I	N STEEL	9	0	0	9								
Recons	structive a	and displacive transformations; Pearlitic transformation	on: mechanism a	and kir	netics: .	Johnson	n-Mehl								
equation	on, morph	ology of pearlite; Bainitic transformation: mechanism a	nd kinetics; morp	phology	y of upp	er bain	ite and								
lower	bainite; M	lartensitic transformation: Mechanism- diffusionless d	isplacive nature;	morph	ology c	of high	carbon								
and lov	w carbon	martensite.													
				Tota	al (45+0)) = 45	Hours								

Tex	t Books:									
1.	Ahindra Ghosh and Sudipto Ghosh, A Text book of Metallurgical Kinetics, PHI learning Pvt. Ltd., New									
	Delhi, 2014									
2.	H.S. Ray, Kinetics of Metallurgical Reactions, International Science publisher, 1993.									
3.	F. Habashi, Kinetics of Metallurgical Processes, Metallurgy Extractive Québec, 1999.									
4.	Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon,									
	1977.									
Ref	Reference Books:									

1.	Phase transformations in metals and alloys- D.A. Potter and K.E. Easterling, CRC Press,
	1992. 2. Transformations in Metals, P.G. Shewmon, Mc-Graw Hill, 1969.
2.	Introduction to Physical Metallurgy – S. N. Avner, Tata McGraw Hill, 1997.
3.	Physical Metallurgy Principles, R. E. Reed-Hill and R. Abbaschian, 3rd ed, PWS-Kent
	Publishing, 1992.
4.	Modern Physical Metallurgy, R. E. Smallman, Butterworths, 1963

Cours Upon	e O con	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the thermodynamic aspects of phase changes.	L2: Understanding
CO2	:	Discuss the fundamentals of solid –fluid reactions.	L2: Understanding
CO3	:	Explain the eutectic and peritectic solidifications and rapid solidification processes.	L2: Understanding
CO4	:	Describe the fundamentals of solidification.	L1: Remembering
CO5	:	Apply the solid state phase transformations in steel.	L3:Applying

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1			1
CO2	1	1			1	1									1	1
CO3	1	1		1	1								1	1		
CO4	1	1		1	1									1		1
CO5	1		1			1	1								1	1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of cor	relation	(3- High,	, 2-Medi	um, 1- Lo	ow)		

18MTM05	CORROSION AND SURFACE ENGIN	EERING	S	er								
PREREQUISI	TES		OE	3								
Engineering ek			L	Т	Р	ТН						
Engineering cr	lemistry	Hours/Week	3	0	0	3						
Course Learni	ng Objectives											
1 To und	erstand the corrosion and surface engineering, with it	ts application in e	enginee	ring fie	eld.							
Unit I	MECHANISMS AND TYPES OF CORROSION	J	9	0	0	9						
Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion												
Unit II	TESTING AND PREVENTION OF CORROSIC	ON	9	0	0	9						
Hydrogen Indu against corrosi processes.	aced Cracking Test, Sulphide Stress Corrosion Crack on –Modifications of corrosive environment –Inhibito	rs	tion o tectior	f Corro 1–Spec	ial surf	acing						
	CORROSION OF INDUSTRIAL COMPONEN	15	9	U	U	9						
Corrosion in petroleum produ	fossil fuel power plants, Automotive industry, Chuction operations and refining, Corrosion of pipelines	emical processir - wear of industr	ng indu ial com	ustries, ponent	corros ts.	ion in						
Unit IV	SURFACE ENGINEERING FOR WEAR AND RESISTANCE	CORROSION	9	0	0	9						
Diffusion coat Arc processes-	ings –Electro and Electroless Plating –Hot dip coatin Conversion coating –Selection of coating for wear a	g –Hard facing-M nd Corrosion resi	Aetal s istance	praying	g, Flam	e and						
Unit V	THIN LAYER ENGINEERING PROCESSES		9	0	0	9						
Laser and Elec deposition, Th Coating of too	Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.											
			Tota	l (45+0) = 45	Hours						
Deference Boy												

Re	ference Books:
1.	Fontana. G., Corrosion Engineering, McGraw Hill, 1985.
2.	Kenneth G. Budinski, Surface Engineering for Wear Resistance, Prenticehall, 1992.
3.	ASM Metals Hand Book – Vol. 5, Surface Engineering, 1996.
4.	Denny A Jones, "Principles and prevention of corrosion", 2 nd edition, Prentice Hall, New Jersey, 1995.
5.	ASM International, Surface Engineering for Corrosion and Wear Resistance, 2005.
6.	Schweitzer. P.A., Corrosion Engineering Hand Book, 3rd Edition, Marcel Decker, 1996.

Course Upon	e O con	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Name the different types of corrosion and their mechanism.	L2: Understanding
CO2	:	Estimate corrosion resistance by different tests.	L4:Analysing
CO3	:	Explain the corrosion behavior of different metals in different industries.	L2: Understanding
CO4	:	Classify the different forms of processing techniques of surface engineering materials.	L1: Remembering
CO5	:	Select the type of deposition and spraying technique.	L3:Applying

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1		1							1	1		
CO3	1	1	1	1			1								1	1
CO4	1	1		1	1										1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

18N	ITM06	MATERIALS CHARACTERIZAT	S									
PREI	REQUISI	OE	Cre	edit	3							
Engi	neering pl	L	Т	Р	ТН							
		3	0	0	3							
Cour	se Learni			•								
1	To acqu compon	lysis o	f metal	llurgica	1							
U	nit I	OPTICAL MICROSCOPY		9	0	0	9					
Metal constr depth techn	Metallographic specimen preparation. Macro-examination -applications. Metallurgical microscope - principle, construction and working, Optic properties - magnification, numerical aperture, resolving power, depth of focus, depth of field, different light sources, lens aberrations and their remedial measures, Various illumination techniques-bright field , dark field, phase-contrast, polarized light illuminations, interference microscopy, high											
U	nit II	X-RAY DIFFRACTION		9	0	0	9					
Chara powd and c crysta	er method ounters. A al structure	Laue method, r K-ray diffractome erisation – Deter	rotating crystal method and leter -general features, filters rmination of crystallite size,									
Uı	nit III	ELECTRON MICROSCOPY		9	0	0	9					
Diffra prepa applic analy	Electron beam - specimen interactions. Construction and operation of Transmission Electron Microscopy – Diffraction effects and image formation, various imaging modes, selected area diffraction, applications, specimen preparation techniques. Scanning electron microscopy – principle, equipment, various operating modes and applications, Electron probe microanalyser (EPMA)- principle, instrumentation, qualitative and quantitative area built for the term of the term.											
U	nit IV	SPECTROSCOPIC TECHNIQUES		9	0	0	9					
X-ray spectroscopy – EDS and WDS. Principle, instrumentation, working and applications of Auger Electron spectroscopy, X-ray photoelectron spectroscopy and Secondary ion mass spectroscopy / ion microprobe. Optical emission spectroscopy, Atomic Absorption spectroscopy and X-ray fluorescence spectroscopy - principle, construction, working and applications. UV-Vis, FTIR and Raman spectroscopy.												
U	nit V	THERMAL ANALYSIS AND CHARACTERIZATION TECHNIQUES	ADVANCED	9	0	0	9					
Thermal Analysis: Principles of differential thermal analysis, differential scanning calorimetry and thermo- graviometric analysis – Instrumentation and applications. Advanced characterization techniques: Scanning probe microscopy - STM and AFM - principle, instrumentation and applications. Field ion microscopy including atom probe - principles, instrumentation and applications. Total (45+0) = 45 Hours												
Text 1.	Books: Cullity, B 1978	.D., Elements of X Ray Diffraction, Addison-Wesley	Publishing Com	npany I	nc, Phi	ilippine	es,					
2.	Brandon, England, 2	D. and W.D. Kaplan, Microstructural Characterizatio 2013.	on of Materials, J	ohn W	iley &	Sons L	.td,					

3.	Leng, Y., Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, John
	Wiley & Sons (Asia) Pte Ltd, Singapore, 2008

Re	Reference Books:								
1.	ASM Handbook, Volume 10, Materials Characterization, ASM international, USA, 1986.								
2.	Vander Voort, G.F., Metallography: Principle and practice, ASM International, 1999.								
3.	Phillips V A, Modern Metallographic Techniques and their Applications, Wiley Eastern, 1971.								
4.	Angelo, P. C., Materials Characterization, Reed Elsevier India Pvt Ltd, Haryana, 2013.								

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Discuss the principles of metallurgical microscope, optical properties and various illumination techniques.	L2: Understanding				
CO2	:	Analyze the various diffraction methods, X-ray diffractometer and determination of crystal parameter.	L4:Analysing				
CO3	:	Discuss the principles of TEM, SEM, EPMA.	L2: Understanding				
CO4	:	Explain various spectroscopic techniques,	L2: Understanding				
CO5	:	Discuss the chemical and thermal analysis using advanced methods.	L2: Understanding				

COURSE ARTICULATION MATRIX																
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	`1		1	1								1		1	
CO2	1	1	1	1		1							1			1
CO3	1		1			1	1					1	1			1
CO4	1	1		1	1							1	1			1
CO5	1	1		1	1								1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0					1.0	1.0		1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

18M	ITM07	AUTOMOTIVE, AEROSPACE AND DEFENC	CE MATERIAL	S								
PRER	REQUISI	TES		OE	Cre	edit	3					
Engin		L	Т	Р	TH							
Engin	leering pr	lysics	Hours/Week	3	0	0	3					
Cours	se Learni											
1	To unde	erstand the properties and applications various materials suitable for automobile, aircraft and										
	defnce in	ndustries and its components.										
U	nit I	MATERIALS FOR ENGINES AND TRANSMIS SYSTEMS	SSION	9	0	0	9					
Materi	ials select	ion for IC engines: Piston, piston rings, cylinder, Eng	gine block, Conne	ecting	rod, Cra	ank sha	aft, Fly					
wheels	s, Gear bo	x, Gears, Splines, Clutches.										
Ur	nit II	MATERIALS FOR AUTOMOTIVE STRUCTU	RES	9	0	0	9					
Materi	ials select	ion for bearings, leaf springs, chasis & frames, Bur	per, shock absor	bers, v	vind sc	reens,	panels,					
brake	shoes, Dis	sc, wheels, differentials, damping and antifriction flui	ids, Tyres and tuł	bes. Ma	aterials	for ele	ctronic					
device	es meant f	or engine control, ABS, Steering, Suspension, Sensor	s, anti-collision, A	Anti-fo	g, Hea	d lamp	s.					
Un	it III	AEROSPACE METALS AND ALLOYS		9	0	0	9					
Types	of corros	sion - Effect of corrosion on mechanical propertie	s – Stress corro	sion c	racking	– Co	rrosion					
resista	nce mater	ials used for space vehicles. Heat treatment of carbon	steels – aluminiu	m alloy	/s, mag	nesium	alloys					
and tit	tanium all	oys - Effect of alloying treatment, heat resistance a	lloys – tool and	die ste	els, ma	gnetic	alloys,					
powde	er metallu	rgy- application of materials in Thermal protection sy	stems of Aerospa	ice veh	icles –	super a	alloys					
Un	it IV	CERAMICS AND COMPOSITES		9	0	0	9					
Introd	uction – p	hysical metallurgy – modern ceramic materials – cerm	et - cutting tools -	– glass	cerami	c –proc	luction					
of sen	ni-fabricat	ed forms - Plastics and rubber - Carbon/Carbon co	mposites, Fabrica	ation p	rocesse	s invol	lved in					
metal	matrix co	mposites - shape memory alloys - applications in aero	ospace vehicle de	sign.								
Uı	nit V	9	0	0	9							
Introd	uction-un	it of nuclear radiation-Types of waste –disposal –ICR	P recommendation	ons-rad	liation							
hazard	ls and pre	vention –radiation dose units - Irradiation Examinatio	on of Fuels, Irradi	ation b	oehavio	ur of n	netallic					
uranium – irradiation growth, thermal cycling, swelling, adjusted uranium, blistering in uranium rods. Irradiation												
effects	effects in ceramic oxide and mixed oxide fuels, definition and units of burn up, main causes of fuel element failure											
in pow	ver reactor	rs and remedies to avoid failures.										
				Tota	l (45+0) = 45	Hours					

Re	ference Books:
1.	ASM Handbook, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. USA, 1991.
2.	Materials Science and Engineering, Willium D. Callister, Jr. John Wiley & Sons publications Or Callister's Materials Science and Engineering Adapted By R. Balasubramaniam, Wiley India, Edition -2010.
3.	Material Science and Engineering, V. Raghavan, Prentice Hall of India, 4th Edition.
4.	Engineering Metallurgy Applied Physical Metallurgy, R. A. Higgins, 6th Edition

5.	Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.
6.	Charles J A and Crane. F A. A., "Selection and Use of Engineering Materials", 3rd
	Edition, Butterworths, London UK, 1996
7.	ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park
	Ohio.USA, 1997
8.	Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials",
	Taylor & Francis Group, London, 2006

Cours Upon	Bloom's Taxonomy Mapped		
CO1	:	Describe the materials selection criteria for engine and transmission systems.	L2: Understanding
CO2	:	Analyze the different materials used for automotive structures and Different electronic materials for automotive applications.	L4:Analysing
CO3	:	Explain various topics such as elements of aerospace materials and mechanical behaviour of materials,	L2: Understanding
CO4	:	Compare the ceramics and composites of aerospace materials	L4:Analysing
CO5	:	Examine the fuels for nuclear materials.	L3:Applying

COURSE ARTICULATION MATRIX																
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1	1			1							1	1		
CO3	1			1	1								1		1	
CO4	1	1	1				1						1			1
CO5	1	1		1	1								1			1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		