GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636001

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Regulations 2018A

B.E. METALLURGICAL ENGINEERING – FULL TIME

				Hou	rs/week			Maximum Marks			
Course code	Name of the Course	Category	Contact periods	Lecture	Tutorial /Demo*	Practical	Credits	CA	FE	Total	
		S	EMEST	ER I			L	I		_	
			THEO	RY							
I8EN101	Professional English	HS	2	2	0	0	2	40	60	100	
I8MA101	Matrices and Calculus	BS	4	3	1	0	4	40	60	100	
I8CY101	I8CY101 Chemistry			3	1	0	4	40	60	100	
I8CS101	I8CS101Fundamentals of Problem solving and Programming		3	3	0	0	3	40	60	100	
		Р	RACTI	CAL						_	
I8EN102	Professional English Laboratory	HS	2	0	0	2	1	60	40	100	
I8CS102	Computer Practice Laboratory	ES	4	0	0	4	2	60	40	100	
I8ME102	Workshop Manufacturing Practices	ES	5	1	0	4	3	60	40	100	
18MC101	Induction Program	MC	0	0	0	0	0				
	TOTAL		24	12	2	10	19	-	-	700	
		SI	EMEST	ER II							
			THEO	RY							
18MA201	Differential Equations and Complex variables	BS	4	3	1	0	4	40	60	100	
18PH101	Physics - Mechanics	BS	4	3	1	0	4	40	60	100	
18EE203	Basic Electrical Engineering for Metallurgy	ES	4	3	1	0	4	40	60	100	
18ME101	Engineering graphics and Design	ES	5	1	0	4	3	40	60	100	
		Р	RACTI	CAL							
18PH103	Physics Laboratory	BS	3	0	0	3	1.5	60	40	100	
18CY102 Chemistry Laboratory		BS	3	0	0	3	1.5	60	40	100	
18EN103 Professional Communication Laboratory		HS	2	0	0	2	1	60	40	100	
18EE204	18EE204Basic Electrical Engineering Laboratory for Metallurgy		2	0	0	2	1	60	40	100	
	TOTAL			10	3	14	20	-	-	800	

				Hou	rs/week			Maximum Marks			
Course code	Name of the Course	Category	Contact periods	Lecture	Tutorial /Demo*	Practical	Credits	CA	FE	Total	
		S	SEMEST	TER II	[I	L	1		
			THE	ORY							
18MA204	Fourier Series & Transforms	BS	4	3	1	0	4	40	60	100	
18MT301	Elements of Physical Metallurgy	PC	4	3	1	0	4	40	60	100	
18MT302	Mineral Dressing, Fuels & Furnaces	PC	3	3	0	0	3	40	60	100	
18MT303	Metallurgical Thermodynamics & Kinetics	PC	4	3	1	0	4	40	60	100	
18MT304	Testing of Materials	PC	3	3	0	0	3	40	60	100	
18CE305 Engineering Mechanics		ES	4	3	1	0	4	40	60	100	
	PRACTICAL										
18MT305	Metallography Laboratory	PC	3	0	0	3	1	60	40	100	
18MT306	Chemical Metallurgy Laboratory	PC	3	0	0	3	1	60	40	100	
18CYMC01	Environmental Sciences	MC	1	0	0	1	0				
	TOTAL		29	18	4	7	24	-	-	800	
		5	SEMEST	FER IV	7						
			THE	ORY							
18MA302	Statistics and Numerical Methods	BS	4	3	1	0	4	40	60	100	
18CY301	Biology for Engineers	BS	3	2	1	0	3	40	60	100	
18MT401	Mechanical Behaviour of Materials	PC	3	3	0	0	3	40	60	100	
18MT402	Phase Transformation	PC	3	3	0	0	3	40	60	100	
18MT403	Iron Making	PC	3	3	0	0	3	40	60	100	
18XXXXX	Open Elective Course I	OE	3	3	0	0	3	40	60	100	
PRACTICAL											
18MT404	Material Testing Laboratory	PC	3	0	0	3	1	60	40	100	
18MT405	Machine shop Practice	PC	3	0	0	3	1	60	40	100	
	TOTAL		25	17	2	6	21	-	-	800	

				Hou	rs/week			Ma	ximum Ma	arks
Course code	Name of the Course	Category	Contact periods	Lecture	Tutorial /Demo*	Practical	Credits	CA	FE	Total
			SEMES	TER V						
			THE	ORY						
18MT501	Heat treatment and Surface Engineering	PC	3	3	0	0	3	40	60	100
18MT502	Steel Making	PC	3	3	0	0	3	40	60	100
18MT503	Corrosion Engineering	PC	3	3	0	0	3	40	60	100
18MT504	Introduction to Instrumentation	ES	3	3	0	0	3	40	60	100
18MTXXX	Professional Elective course I	PE	3	3	0	0	3	40	60	100
18MTXXX	Professional Elective course II	PE	3	3	0	0	3	40	60	100
18MCIN01 Ideation Sprits		EEC	3	3	0	0	1	-	-	100
PRACTICAL										
18MT505	Heat treatment Laboratory	PC	3	0	0	3	1	60	40	100
18MT506	Corrosion Science Laboratory	PC	3	0	0	3	1	60	40	100
	TOTAL		24	18	0	06	21	-	-	800
	S	EMEST	ER VI	(Regula	r Stream)					
			THE	ORY						
18MTXXX	Professional Elective Course III	PE	3	3	0	0	3	40	60	100
18MTXXX	Professional Elective Course IV	PE	3	3	0	0	3	40	60	100
18MTXXX	Professional Elective Course V	PE	3	3	0	0	3	40	60	100
18MTXXX	Professional Elective Course VI	PE	3	3	0	0	3	40	60	100
18XXXXX	Open Elective Course II	OE	3	3	0	0	3	40	60	100
18XXXXX	Open Elective Course III	OE	3	3	0	0	3	40	60	100
18XXXXX	Open Elective Course IV	OE	3	3	0	0	3	40	60	100
	TOTAL						21			

	SE	EMESTI	ER VI (Protoser	n Stream)					
			THE	ORY						
18MEPS11	Applied Design Thinking	Proto sem	3	3	0	0	3	100	-	100
18MEPS12	Startup Fundamentals	Proto sem	3	3	0	0	3	100	-	100
18MEPS13	Computational Hardware	Proto sem	3	3	0	0	3	100	-	100
18MEPS14	Coding for Innovators	Proto sem	3	3	0	0	3	100	-	100
18MEPS15	Industrial Design & Rapid Prototyping Techniques	Proto sem	3	3	0	0	3	100	-	100
18MEPS16	Industrial Automation/ Data Life Cycle Management	Proto sem	3	3	0	0	3	100	-	100
18MEPS17	Robotics /ML& MLOps	Proto sem	3	3	0	0	3	100	-	100
	TOTAL		21	21	0	0	21			700
	SEMESTER VII									
	THEORY									
18MT701	Characterization of Materials	PC	3	3	0	0	3	40	60	100
18MT702	Introduction to Industrial Management	HS	3	3	0	0	3	40	60	100
18MT601	Non Ferrous Extractive Metallurgy	PC	3	3	0	0	3	40	60	100
18MT602	Forming Processes	PC	3	3	0	0	3	40	60	100
18MT603	Foundry Processes and Metallurgy	PC	3	3	0	0	3	40	60	100
18MT604	Welding Processes and Metallurgy	PC	3	3	0	0	3	40	60	100
			PRACT	FICAL						
18MT703	Materials Characterization Laboratory	PC	3	0	0	3	1	60	40	100
18MT704	Computer application in Metallurgy Laboratory	PC	3	0	0	3	1	60	40	100
18MT605	Welding & NDT Laboratory	PC	3	0	0	3	1	60	40	100
18MT606	Foundry & Forming Processes Laboratory	PC	3	0	0	3	1	60	40	100
	TOTAL		30	18	0	12	22	-	-	1000
		S	EMEST	TER VI	Ι					
	THEORY									
18MT801	Total Quality Management	HS	3	3	0	0	3	40	60	100
18MTXXX	Mandatory Course	MC	2	2	0	0	0	0	0	0
18EN501 Communication Skills Laboratory			4	0	0	4	2	60	40	100
18MT802	Project Work	EEC	16	0	0	16	10	80	120	200
	TOTAL		25	5	0	20	15	-	-	400
	Grand Total						163			

CREDIT DISTRIBUTION SEMESTER WISE

	SEMESTER	Ι	II	III	IV	V	VI	VII	VIII	TOTAL	
	CREDITS	19	20	24	21	21	21	22	15	163	
BS	Basic Scien		PC Professional Core								
HS	Humanities	Humanities and Social Sciences					PEC Professional Elective				
ES	Engineering	Engineering Sciences				OE	Op	en Elective			
MC	Mandatory Course										
EEC	Employability Enhancement Course										

PROFESSIONAL ELECTIVE COURSES (PEC)

S.N O	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
		PROFE	SSIONAL ELEC	TIVE I	•			
1.	18MTE11	Transport phenomena	PE	3	3	0	0	3
2.	18MTE12	Fractography and failure analysis	PE	3	3	0	0	3
3.	18MTE13	Metallurgical kinetics	PE	3	3	0	0	3
4.	18MTE14	Solidification Processing	PE	3	3	0	0	3
5	18MTE15	Fracture Mechanics	PE	3	3	0	0	3
	PROFESSIONAL ELECTIVE II							
1.	18MTE21	Ferrous and Non Ferrous alloys	PE	3	3	0	0	3
2.	18MTE22	Composite Materials	PE	3	3	0	0	3
3.	18MTE23	Ceramic materials	PE	3	3	0	0	3
4.	18MTE24	224 Metallurgy of tool Steels PE		3	3	0	0	3
5.	18MTE25	Bio and smart materials	PE	3	3	0	0	3
		PROFES	SIONAL ELEC	TIVE III				
1.	18MTE31	Nonmetallic Materials	PE	3	3	0	0	3
2	19MTE22	Continuous costing of steel	DE	3	2	0	0	2
2.	18MTE32	Special casting Technology	PE	3	3	0	0	3
	100011255	Alternate routes of Iron making	1 L	5	5	0	0	5
4.	18MTE34	Antimate routes of from making	PE	3	3	0	0	3
5.	18MTE35	Secondary steel making	PE	3	3	0	0	3
	I	PROFES	SIONAL ELEC	TIVE IV	r	1	1	
1.	18MTE41	Particulate processing Technology	PE	3	3	0	0	3
2.	18MTE42	Severe plastic deformation	PE	3	3	0	0	3
3.	18MTE43	Metallurgical waste utilization and management	PE	3	3	0	0	3
4.	18MTE44	Computational Materials Engineering	PE	3	3	0	0	3
5.	18MTE45	Special welding processes	PE	3	3	0	0	3
	•	PROFES	SIONAL ELEC	TIVE V				
1.	18MTE51	Physics of Engineering Materials	PE	3	3	0	0	3
2.	18MTE52	X- ray diffraction and Electron microscopy	PE	3	3	0	0	3
3.	18MTE53	Electrical ,Electronics and magnetic materials	PE	3	3	0	0	3
4.	18MTE54	Surface engineering	PE	3	3	0	0	3
5.	18MTE55	Additive manufacturing	PE	3	3	0	0	3
	·	PROFESS	SIONAL ELECT	TIVES VI	·	·		
1.	18MTE61	Nano Materials	PE	3	3	0	0	3
2.	18MTE62	Thin films, coatings and applications	PE	3	3	0	0	3
3.	18MTE63	Aerospace materials	PE	3	3	0	0	3
4.	18MTE64	Modeling and simulation in material processes	PE	3	3	0	0	3
5.	18MTE65	Nuclear materials	PE	3	3	0	0	3

OPEN ELECTIVE COURSES (OEC) – Courses offered to other departments

S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	18MTOE01	Foundry and Welding Technology	OE	3	3	0	0	3
2	18MTOE02	Surface Engineering	OE	3	3	0	0	3
3.	18MTOE03	Design and Selection of Materials	OE	3	3	0	0	3
4.	18MTOE04	Nano science and Technology	OE	3	3	0	0	3

SUMMARY OF CREDIT DISTRIBUTION TABLE

			B.E., M	ETALL	URGIC	CAL EN	GINEE	RING			
S NO	Course Work subject			Cree	dits Per	Semeste	er	-		Total	Credits
5.110	Area	Ι	П	Ш	IV	V	VI	VII	VIII	Credit	AICTE
1	Basic Sciences	8	11	4	7	-	-	-	-	30	25
2	Humanities and Social Sciences	3	1	-	-	-	2	3	3	11	12
3	Engineering Sciences	8	8	4	-	3	-	-	-	23	24
4	Professional Core	-	-	16	11	11	14	5	-	57	48
5	Professional Elective	-	-	-	-	6	3	6	3	18	18
6	Open Elective	-	-	-	3	-	3	6	-	12	18
7	Employment Enhancement Course	-	-	-	-	-	-	-	10	10	15
8	Mandatory Course	0#	-	0#	-	-	0#	-	-	00	-
	TOTAL	19	20	24	21	21	22	22	15	163	160*

0[#] Non credit Course *Minor variation is allowed as per need of the respective disciplines.

SEMESTER - III

		18MA204	FOURIER SERIES AND TRANSFORMS	L	Т	Ρ	С	
				3	1	0	4	
Со	urse O	bjectives:						
1.	To im	pact analytical skills in	n the areas of boundary value problems and transform ted	chniqu	Jes.			
2.	To ob Lapla	tain the knowledge of ce transform using co	solving second order ODE using Laplace transform tech nvolution theorem.	nique	s and	d inve	rse	
3.	To fa	miliarize with Fourier t	ransform of a function and its sine and cosine transforms	•				
4.	It serv	es as a prerequisite f	or post graduate and specialized studies and research.					
5.	To ga	in the skills to form di	fference equations and find its solution by using Z-transfo	rm m	etho	d.	1	
U	ΝΙΤΙ	FOURIER SERIES	i		9	+	3	
Diri ran	chleťs ge cos	conditions – General ine series – Parseval'	Fourier series – Odd and even functions – Half range sin s Identity – Harmonic Analysis.	e seri	ies –	Half		
U	NIT II	BOUNDARY VAL	JE PROBLEMS		9	+	3	
Cla equ (Ins	Classification of second order quasi linear partial differential equations – Solutions of one dimensional wave equation – One dimensional heat equation – Steady state solution of two-dimensional heat equation (Insulated edges excluded) – Fourier series solutions in Cartesian coordinates.							
U	NIT III	LAPLACE TRANS	FORM		9	+	3	
Lap Tra Inve Lap	lace 1 nsform erse L lace tr	ransform- Conditions of derivatives and in aplace Transform- s ansformation techniqu	6 for existence – Transform of elementary functions – tegrals – Initial and Final value theorems- Transform of p olutions of linear ODE of second order with constant ues- statement and application of convolution theorem	Basi perioc coet	c Pro dic Fu fficier	operti unctio nt's u	es – ns – Ising	
U	VI TIV	FOURIER TRANS	FORM		9	+	3	
Sta Tra	temen nsform	t of Fourier integral the is of simple functions	eorem – Fourier transform pair – Sine and Cosine transfo – Convolution theorem - Parseval's Identity	rms –	- Proj	pertie	s –	
U	NIT V	Z-TRANSFORM	AND DIFFERENCE EQUATIONS		9	+	3	
Z-tr Cor trar	ansfor volutio	m of simple functions on theorem -Formati technique.	s and properties – Inverse Z – transform –initial and fin on of difference equations – Solution of difference equations	nal va quatic	alue 1 ons 1	theore using	ems- Z –	
			Total (L+T) =	45L+	15T=	:60 H	ours	
Со	Course Outcomes:							
Upo	on com	pletion of this course.	the students will be able to:					
со	1 :	Acquire the knowled	lge about Fourier series					
CO	2 :	Learn the technique	s of solving boundary value problems					
CO	3 :	Familiar with the tra	nsform techniques.					
Тех	Text Books:							

1.	Veerarajan T, "Engineering Mathematics (For Semester III)", 3 rd Edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2009.
2.	P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volume III", S. Chand & Company Itd., New Delhi, 1996.
Refer	ence Books:
1.	Grewal, B.S., "Higher Engineering Mathematics", 43 rd Edition, Khanna Publishers, Delhi, 2014.
2.	Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth Edition, McGraw- Hill, Inc., New York, 1995.
3.	Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematicians", MacMillan, New York, 1988.
4.	Narayanan, S., Manicavachagom Pillai, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volumes II and III, S. Viswanathan (Printers and Publishers) Pvt. Ltd. Chennai, 2002.

	1	8MT301	ELEMENTS OF PHYSICAL METALLURGY	L	Т	Ρ	С
				3	1	0	4
Course	e Ol	ojectives:					
1. To	dev ncip	velop an understand les to engineering a	ing of the basic principles of physical metallurgy and appli pplications.	catior	ns the	ose	
UNIT	I	CRYSTAL STRU	CTURES		9	+	3
Review BCC, F spacing structur problem	of CC g;Vc res; ns i	atomic bonds, Lattic , HCP and its charac olume, planar and lin single crystal and p n the above topics.	e, unit cell, crystal systems and Bravais lattices; Principal cteristics; Miller indices for crystallographic planes and dire ear atomic density;Polymorphism and allotropy;CsCl, NaC olycrystalline and amorphous materials;isotropy and anisc	crysta ection CI, Dia tropy	al stru is, int amon ; Sim	ucture erplai d ple	s – nar
UNIT	II	CRYSTALLINE IN	IPERFECTIONS		9	+	3
Types tetrahee twinning number	Types of point defects, effect of temperature on vacancy concentration, interstitial sites-octahedral and tetrahedral sites;Line defects – dislocations – Edge, screw and mixed dislocations, Burger's vector, slip and twinning; Planar defects – grain boundaries, tilt boundaries, small angle grain boundaries; ASTM grain size number, grain size determinations; Volume defects;Simple problems in the above topics.						
UNIT		ATOMIC DIFFUS	ON IN SOLIDS AND SOLIDIFICATION OF METAL		9	+	3
Kirkenc process Growth or Ingo crystal	Kirkendall effect and Darken's equation; Factors affecting diffusion; Industrial applications of diffusion processes; Simple problems in the above topics; Basic principles of solidification of metals and alloys; Growth of crystals– Planar growth, dendritic growth, Solidification time, dendrite size; Cooling curves; Cast or Ingot structure, Solidification defects – Control of casting structure; Directional solidification – single crystal growth; Simple problems in the above topics.						
UNIT	IV	PHASE DIAGRAI	MS		9	+	3
Phases determin microst eutection and mon diagram	s, s ruci c sy ono ns.	olid solution types ion; Binary isomorp ture – equilibrium a stem - composition tectic reaction, Phi Simple problems in t	, compounds, Hume- Rothery rules; Gibb's phase ru hous alloy systems – composition and amount of phase and non-equilibrium cooling- Coring and its effects, how and amount of phases, development of microstructure; ase diagrams with intermediate phases and compour the above topics.	ile; F ses, c nogen Eutec nds; -	hase levelo izatio toid, Ferna	e diag opmer on; Bi Perite ary pl	gram nt of nary ectic nase
UNIT	V	IRON-CARBON F	HASE DIAGRAM, COLD WORKING AND HOT WORKI	NG	9	+	3
Iron-ca compos and ap Irons, S	Iron-carbon diagram, Phases in Fe-C system, Invariant reactions, Microstructure of slowly cooled steels, composition and amount of phases, Effect of Alloying elements on Fe-C system, Type, structure, properties and applications of Plain Carbon Steels and different types of Cast iron; IS Specification for Steels and Cast Irons, Simple problems in above topics.						
			Tot	al (L-	-T) =	60 H	ours
Course	e Oi	utcomes:					
Upon c	om	oletion of this course	e, the students will be able to:				
CO1	:	Understand the bas	sic crystal structure, orientation and their influence on mac	rosco	pic p	roper	ties.
CO2	:	Explain and relate	the role of imperfections in strengthening the materials.				

CO3	:	Apply the diffusion mechanism in solidification of materials under different conditions.
CO4	:	Understand and apply the concept of phase diagrams in equilibrium transformation of materials phases.
CO5		Explain and apply the common strengthening processes viz. Cold working and Hot working and post treatment process.
Text E	lool	(S:
1.	Do 200	nald R. Askeland,"The Science and Engineering of Materials", Thomson Learning, India Edition, 07.
2.	Wil So	liam D.Callister, "Materials Science and Engineering – An Introduction", 4 th edition, John Wiley & ns, New York, USA, 1997.
Refere	ence	e Books:
1.	Avı	ner S H."An Introduction to Physical Metallurgy", McGraw Hill Book Co, New York, USA, 1997.
2.	Do Ed	nald R Askeland," Essentials of Material Science and Engineering ", Thomson Learning, India ition, 2007.
3.	Ra 199	ghavan V., "Physical Metallurgy – Principles and Practice", Prentice Hall of India Ltd., New Delhi, 96.
4.	Wil Inc	liam F.Smith, "Foundations of Materials Science and Engineering", Second Edition, McGraw-Hill , New York, 1993.
E-Refe	eren	ice
1.	ww	w.matter.org
2.	ww	w.doitpoms.ac.uk

18MT302			MINERAL DRESSING, FUELS & FURNACES	L	т	Ρ	С				
	3	0	0	3							
Course Objectives:											
1. To as	1. To gain knowledge on the theoretical aspects of common mineral processing techniques and the associated equipments used in extraction processes.										
2. To	2. To understand the fundamentals and applications of fuels, furnaces and refractories.										
UNIT	.1	MINERA	L DRESSING – I		9	+	0				
Introdu dressir gyrator dry an Industr	Introduction to mineral dressing – Minerals, Ores, Physical characteristics of ores relevant to mineral dressing, industrially important minerals; Sampling of ores; Comminution – Crushing and Grinding - Jaw, gyratory, cone and roll crushers – ball, rod, vibratory and hammer mills - Closed and open circuit grinding – dry and wet grinding. Power requirement calculations for crushing and grinding, Rittingers law; Sizing, Industrial screening.										
UNIT	' II	MINERA	L DRESSING – II		9	+	0				
Chemi Princip hydroc – princ operati	Chemical processing of ores – leaching, ion - exchange and liquid - solvent extraction. Classification – Principles and laws of classification – theory of settling; Types of classifiers – mechanical, hydraulic and hydrocyclone. Gravity concentration – Principles, Jigs, types of jigs, spirals, tables; Heavy media separation – principles, different media used, static and dynamic separating vessels; Froth flotation – principle, operation and machines: Magnetic and electrostatic separation. Thickeners and filters										
UNIT	III	FUELS /	AND THEIR PROPERTIES		9	+	0				
Classif and its Coal g fuels; T	icati pro as, Гest	ion – solid perties; Pe Producer g ing of solid	, liquid and gaseous fuels; Coal – Classification, Manufacturing of troleum – classification, composition of crude petroleum; Gaseous I as, Water gas, Blast furnace gas – manufacture, properties and ap , liquid and gaseous fuels; Combustion calculations - Air requiremen	f met Fuels oplica ots for	alluro - Na tions r corr	gical atural of al obusti	coke gas, bove on				
UNIT	IV	FURNA	CES:		9	+	0				
Introdu balanc operati type a continu	ictio e ca ion nd o uous	n, classifications alculations of Crucible coreless ty stype furnation	ation of furnaces; Measurement of Temperature and Pressure, Ther – simple problems; Melting and Heat treatment furnaces – Constru- furnaces, Reverberatory furnaces, Cupola, Rotary furnace, Induct pe), Arc furnace (direct and indirect arc furnaces), Resistance fu- lices; Methods of heat recovery – recuperator and regenerators; Burn	mal e uctior tion f irnac ners.	efficie nal d urnac es, E	ency, etails ces ((Batch	heat and Core and				
UNIT	V	REFRAC	CTORIES		9	+	0				
Introdu materia magne refracte	ictio als, site ory o	n, Classific manufactu , dolomite, cement, rar	cation – Acid, Basic, Neutral refractories; Properties and tests fo re, properties and applications of the following refractories – Silica chromite, chrome-magnesite, magnesite-chrome, carbon and gr mming mixes and castables.	r refi , fire aphit	acto clay e re	ries; , alun fracto	Raw nina, ries,				
			Tota	al (L+	T) =	45 He	ours				
Cours	e O	utcomes:									
Upon o	com	pletion of th	nis course, the students will be able to:		_	-					
CO1	:	Explain th dressing.	e basic mineral dressing principles, processes and equipments use	d in n	niner	al					
CO2	:	Understar floatation	nd the chemical processing of ores and gain knowledge on classifica and other mineral beneficiation processes.	ation,	froth						
CO3	:	Explain th	e different types of fuels, testing of the fuels and quality valuation of	the f	uels.						

CO4	:	Understand and explain the basic operation of furnace, different tyes of furnaces and various methods of heat recovery.							
CO5	:	Gain knowledge on the testing of refractories, explain the various refractories, their properties and applications							
Text Books:									
1.	Gilchrist.J.D., "Extraction Metallurgy", 2 nd Edition, Pergamon Press, London, 1981.								
2.	Gupta.O.P., "Elements of Fuels, Furnaces and Refractories", 4 th Edition, Khanna Publishers, New Delhi, 2000.								
3.	Ga	udin A.M. , "Principles of Mineral Dressing", TMH ,New Delhi,1986.							
Refer	ence	Books:							
1.	Wil	Is.B.A., Napier-Munn, T.J., "Mineral Processing Technology", 7th Edition, Pergamon Press, 2006.							
2.	Fei	urstenau, M.C. and Han, K.N., "Principles of Mineral Processing", SME, USA, 2003.							
3.	Jai	n.S.K. "Ore Processing", Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, 1986.							
E -Ref	ierer	nces							
1.	<u>http</u>	os://nptel.ac.in/courses/113104008/							
2.	https://nptel.ac.in/courses/113104060/10								
3.	http	https://nptel.ac.in/courses/113104058/							

18	3MT303	METALLURGICAL THERMODYNAMICS AND KINETICS	L	Т	Р	С					
	3										
Course Objectives:											
1. To learn the basic principles and concepts of thermodynamics, in the field of metallurgy and materials; and to learn about equations and their applications.											
	UNIT I CONCEPTS AND FIRST LAW OF THERMODYNAMICS:										
Introduction: System and surrounding, Classification of systems, Path and state properties, Thermodynamic processes, Thermodynamic equilibrium, Reversible and Irreversible processes.First law of thermodynamics: Heat and work, Internal energy, Heat capacity of materials, C _p -C _v relations,Nernst Equation, Enthalpy, Thermochemistry, Hess's law, Kirchoff's law, Maximum flame temperature.											
UNIT I	I SECOND	AND THIRD LAW OF THERMODYNAMICS:		9	+	3					
Second Combine Helmhol	law of thermody ed statement of tz equation. Th	ynamics: Carnot cycle, Entropy - Statistical interpretation of entro first and second laws, Thermodynamic functions - Maxwell's rela ird and Zeroth lawsof thermodynamics : Definition, concept and a	py, Fi itions, pplica	ee e Gibla tions	nergy os- s	,					
UNIT II	I THERMOD	OYNAMIC POTENTIALS AND PHASE EQUILIBRIA:		9	+	3					
Thermoo equation rule, Pha free ene	dynamic pote a,Troutons rule. ase stability, Th rgy - composition	ntials:Fugacity, Activity and Equilibrium constant. Claus Le Chatelier's principle, Vant Hoff's equation. Equilibria in pha nermodynamics of surfaces, interfaces and defects, P-G-T diag on diagrams to the study of alloy systems.	sius ase di rams,	- agra App	Clayp ms:Pł Ilicatic	eron nase on of					
	THERMO	OYNAMICS OF SOLUTIONS:		9	+	3					
Gibbs - law, Re functions	Duhem equatio al solutions, A s and excess fu	n, Partial and integral molar quantities, chemical potential, Ideal ctivity coefficient, Henry's law, Alternative standard states, S nctions, Regular solutions, Applications of Gibbs - Duhem equati	solut ievert on.	ions 's la	- Rac w, Mi	oult's ixing					
	/ ELECTRO	CHEMICAL PROCESS AND KINETICS:		9	+	3					
Electro thermod order rea	chemical proc ynamic quantit actions, Arrheni	ess:Cells, Interconversion of free energy and electrical work ies using reversible cells, Solid electrolytic cells. Kinetics: Firs us equation - activation energy, Determination of order of the rea	k, De t, Seo ction.	term cond	ination and	n of third					
		Tot	al (L+	-T) =	60 Ho	ours					
Course	Outcomes:										
Upon co	mpletion of this	course, the students will be able to:									
CO1	: Explain the	basic concepts of thermodynamics and the first law of thermodyn	amics	8							
CO2	: Understand	the second and third laws of thermodynamics.									
CO3	: Know the th	ermodynamic potential and phase diagram.									
CO4	: Describe the	e thermodynamics of the solution and various important equation	s.								
CO5	CO5 : Discuss the concept of electrochemical processes and kinetics.										
Text Bo	oks:										
1.	Ahindra Ghosh	, Text book of Materials & MetallurgicalThermodynamics, Prentic	e Hall	India	a, 200)2					
2.	Upadhyaya G S 1977.	dhyaya G S andDube R K., "Problems in Metallurgical Thermodynamics & Kinetics",Pergamon, 7.									

3.	David R Gaskell, "Introduction to the Thermodynamics of Materials", Fifth Edition, Taylor & Francis, 2008							
Reference Books:								
1.	David V Ragone, "Thermodynamics of Materials - Volume-1", John Wiley & Sons, Inc. 1995.							
2.	.Dr S.K Dutta ,Prof A.B.Lele – Metallurgical thermodynamics kinetics and numericals,S.Chand & co Ltd.,New Delhi 2011							
3.	Darken LS and Gurry R W ,"Physical Chemistry of Metals", CBS publications and distributors, 2002.							
4.	Parker R H, "An introduction to chemical metallurgy", Pergamon press, New York, second edition, 1978.							
5.	Kapoor M.L., "Chemical and Metallurgical Thermodynamics Vol. I and II", Nem Chand, 1 st Ed., 1981.							
E-References:								
1.	www.nptelvideos.in/2012/12/basicthermodynamics.html							

18MT304 TESTING OF MATERIALS L T											
	3 0 0 3										
Course Objectives:											
1.	1. To gain knowledge on the mechanical behaviour of materials and to apply them to design the materials for various engineering applications.										
2.	To gai	n knowledg	e on various mechanical tests carried out on the materials.								
3.	To dev quality	elop the fui in manufac	ndamental knowledge about various non-destructive techniques in cturing and production engineering components.	ordei	to c	ontrol	the				
U	NIT I	TENSILE	TESTS:		9	+	0				
test ten flov spe tors	testing standards. Engineering stress and strain, True stress – True strain curves, Relationship between the tensile properties, Hollomon, Ludwig equation, Ductility measurement in tension test, Effect of strain rate on flow properties, Plastic Instability (Necking), Hot tensile tests, Testing machines – types, Testing procedures, specimen dimensions, Notch tensile test, Anisotropy of tensile properties. Compression test, Bend test, torsion test & shearing test.										
0			SS TESTS AND IMPACT TESTS:		9	+	U				
Der Pre test	ts - Vic	rypes of r s - Relative kers and K ed Charpy t	e merits and demerits, Hardness conversion, Rebound hardness t noop hardness tests, Concept of nano indentation. Izod and Cl est, Drop-weight Test and other large scale tests.	test, harpy	Aron Micro Micro	bhardi bhardi bact te	ests, ness ests.				
U		LIQUID P	ENETRANT, MAGNETIC PARTICLE AND EDDY CURRENT		9	+	0				
Vis dev ma test	ual insp velopers gnetisat ting: Prii	ection, Liq and clean ion methoo nciple, appl	uid penetrant inspection: Principle, applications, advantages and ers, Fluorescent penetrant test. Magnetic particle inspection: Princ ds, magnetic particles, demagnetisation. Advantages and limitat ication and Instrumentation of Eddy current testing.	d lim ciples ions.	itatio s, ap Edo	ns, D plicati ly cu	yes, ons, rrent				
U	VIT IV	RADIOG	RAPHY TESTING:		9	+	0				
X-ray ray law Exp Gai	ays and s. Absor , charac oosure mma ray	Gamma ra ption of ray teristics of charts, Ra /s, Industria	ays, Production of X-rays, properties. Gamma ray sources, characters, scattering, types and use of filters and screens, geometric factor films – grain fineness, density, speed, contrast, characteristic curved diographic equivalence. Fluoroscopy, Xero-Radiography, Safety al computed tomography (ICT).	cterist ors, li ves, F y wit	tics o nvers Pene h X	of Gar se squ trame -rays	nma Jare, ters, and				
U	NIT V	ULTRAS	ONIC TESTING AND OTHER NDT METHODS:		9	+	0				
Typ me refe Oth me	Types of Ultrasonic waves, principles of wave propagation, characteristics of ultrasonic waves, Inspection methods - pulse echo, Transmission and resonance techniques, Types of scanning, Test block, IIW - reference blocks. Introduction to Time of flight diffraction (TOFD) and Phased array Ultrasonic Testing. Other NDT techniques : Principle, application and Instrumentation of Infrared and Thermal inspection methods, Holography and Acoustic emission testing. Pressure and Leak testing. LASER shearography.										
			Tota	al (L+	-T) =	45 H	ours				
Co	urse Ou	itcomes:									
Upo	on comp	letion of thi	is course, the students will be able to:								
СО	1 :	Understan procedures	d and explain the material properties, testing machines – their type s.	s and	test	ing					

CO2	:	Explain the different types of hardness test and impact tests and their uses.					
CO3	:	Understand the basic concepts of NDT and the principle of techniques like Visual inspection, Liquid penetrant inspection, Magnetic particle inspection and Eddy current testing.					
CO4	:	Explain the principles of radiography and ultrasonics.					
CO5	:	Explain the principle of NDT methods like, Thermal inspection, Holography, Acoustic emission testing, Pressure testing, Leak testing and LASER shearography					
Text Books:							
1.	George. E. Dieter, "Mechanical Metallurgy", 3 rd Edition, McGraw-Hill Publications, New York, SI Edition, 2004						
2.	S	Suryanarayana, "Testing of Metallic Materials", Prentice Hall India, 1979.					
3.	Ba He	aldev Raj, Jayakumar T. Thavasimuthu M, "Practical Non-Destructive testing", Narosa Publishing ouse, NewDelhi, 1997.					
4.	Ва	arry Hull and Vernon John, "Non Destructive Testing", ELBS / Macmillan, 2001.					
5.	М	c Gonnagle, W T ,"Non-Destructive Testing", McGraw Hill Book Co., 2003.					
Refere	nce	e Books:					
1.	D	avis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-Hill, 1982.					
2.	W	ulff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.					
3.	Н	oneycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984					

18CE305 ENGINEERING MECHANICS						Р	С				
				3	1	0	4				
Cοι	Course Objectives:										
1.	1. To explain the importance of mechanics in the context of engineering and conservation equations.										
2.	To e	xplain the signifi	cance of centroid, centre of gavity and moment of inertia								
3.	To a acce	pply the different leration	t principles to study the motion of a body, and concept of relative	e velo	city	and					
U	NIT I	BASICS & S	TATICS OF PARTICLES		9	+	3				
Intro Law sub Equ	oduct / of fo tractio iilibriu rincip	ion – Units and prces – Vectors pn, dot product, im of a particle – le of transmissibi	Dimensions – Laws of Mechanics – Lame's theorem, Parallelo – Vectorial representation of forces and moments – Vector op , cross product – Coplanar Forces – Resolution and Comp Forces in space – Equilibrium of a particle in space – Equivaler ility – Single equivalent force.	gram perati positic nt sys	and ons: on of stems	triang addit force s of fo	jular ions, es – rces				
U	NIT II	EQUILIBRIU	IM OF RIGID BODIES		9	+	3				
Free and and dim	Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Equilibrium of Rigid bodies in two dimensions – Equilibrium of Rigid bodies in two										
UN	NIT III	PROPERTIE	S OF SURFACES AND FRICTION		9	+	3				
Det Cer and Prin resi	ermin htroid perp hcipal stanc	ation of Areas a of sections – se endicular axis th axes of inertia-F e – Belt friction.	and Volumes – Theorms of Pappus - Guildinus – First mome cond and product moments of plane area of various sections–P neorem - Polar moment of inertia – Principal moments of inert rictional force – Laws of Coulomb friction – simple contact friction	aralle aralle tia of on – F	are el axi plan Rollin	a and s theo e are g	as –				
UN	VI TIV	KINEMATIC	S AND KINETICS OF PARTICLES		9	+	3				
Equ Ene Dire	ation ergy e ect ce	s of motion- Rec quation-Conserv ntral impact and	tilinear motion-curvelinear motion- Relative motion- D'Alembert' vative forces and principle of conservation of energy-Impulse- m oblique central impact	s Prir omer	nciple ntum-	e-worl Impa	<- act-				
U	V TIV	KINEMATIC	S AND KINETICS OF RIGID BODIES		9	+	3				
Plar imp	ne mo ulse a	otion- Absolute m and momentum	notion- Relative motion- translating axes and rotating axes- work	c and	ener	gy-					
			Tota	al (L+	·T) =	60 H	ours				
Cοι	urse (Outcomes:									
Upc	on cor	mpletion of this c	ourse, the students will be able to:								
co	1 :	Understand th	ne basics and statics of the particle								
CO	2 :	Establish the equilibrium of rigid bodies and draw the free body diagram and mention the supports and the reactions for the diagram									
CO	3 :	Determine the moment of ine	e areas and volumes of the surfaces using the various theorems ertia of different body shapes	and	find	the					
CO	4 :	Comprehend	the frictional forces acting on a rolling and the resting body								
CO	CO5 : Understand the laws of motion, the kinematics of motion and the interrelationship.										
Tex	t Boo	oks:									

1.	Rajasekaran S and Sankarasubramanian G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt. Ltd., 2000.								
2.	Palanichamy M.S. and Nagan S., Engineering Mechanics – Statics & Dynamics, Tata McGraw-Hill, 2001.								
Refer	Reference Books:								
1.	Bansal R.K., Engineering Mechanics, Laxmi Publications (P) Ltd., 2007.								
2.	Kumar K.L., Engineering Mechanic, Tata McGraw-Hill Publishing Company Limited, New Delhi, 1998.								
3.	Beer F.P and Johnson Jr. E.R. Vector Mechanics for Engineers, Vol. 1 Statics and Vol. 2 Dynamics, McGraw-Hill International Edition, 1997.								
4.	Hibbeller R.C., Engineering Mechanics, Vol. 1 Statics, Vol. 2 Dynamics, Pearson Education Asia Pvt. Ltd., 2000.								
5.	Irving H. Shames, Engineering Mechanics – Statics and Dynamics, IV Edition – Pearson Education Asia Pvt. Ltd., 2003.								
6.	Ashok Gupta, Interactive Engineering Mechanics – Statics – A Virtual Tutor (CDROM), Pearson Education Asia Pvt., Ltd., 2002.								

18MT305			METALLOGRAPHY LABORATORY	L	Т	Р	С				
		0	0	3	1						
EXPERIMENTS											
1.	Sample preparation and mounting										
2.	Stu	idy of met	allurgical microscope								
3.	Mic	crostructu	re of different types of cast iron in unetched condition								
4.	Mic	crostructu	re of different types of cast iron in etched condition								
5.	Mic	crostructu	re of pure iron, plain carbon steels								
6.	Ov	erheated	structure and banded structure in steel								
7.	AS	TM grain	size determination								
8.	Mic	crostructu	re of tool steels and stainless steels								
9.	Mic	crostructu	re of cast and wrought aluminium alloys								
10	Mic	crostructu	re of copper alloys								
11.	Su	lphur and	Phosphor printing								
12	Inc	lusion rati	ing								
I				Tota	I (P) =	= 45 H	ours				
Cours	se O	utcomes									
After t	he s	successful	I completion of the practical session, the students will be able to								
CO1	:	Observe	e and Explain the metallurgical microscope								
CO2	:	Operate	the process of sample preparation and mounting								
CO3	:	View an	d analyze the microstructure of various samples								
CO4	CO4 : Conduct the process of sulphur printing and phosphor printing										
CO5	O5 : Observe the unconventional structure in steel and determine the ASTM grain size.										

	18M	Т306	CHEMICAL METALLURGY LABORATORY	L	т	Р	С				
-				0	0	3	1				
Course Objectives:											
1.	To gain knowledge about the various properties of minerals and to become familiar with the equipments used in mineral processing, by means of experiments or demonstration of the laboratory scale equipments.										
EXPE	EXPERIMENTS										
1.	Fla	sh and Fire poi	nt of oils								
2.	Re	d wood viscome	eter								
3.	Siz	e distribution us	sing sieve analysis								
4.	Scr	eening efficiend	Cy								
5.	Sar	npling of ores									
6.	Jav	/ crusher									
7.	Bal	l mill									
8.	Mu	fle Furnace ter	nperature calibration								
9.	Pro	ximate analysis	s of Coal.								
10.	Set	tling velocity of	CaCO₃ powder.								
11.	Fro	th Flotation									
				Tota	ıl (P) :	= 45 H	ours				
Cours	se O	utcomes									
After t	he s	uccessful comp	pletion of the practical session, the students will be able to								
CO1	:	Perform the m	ineral beneficiation operations.								
CO2	:	Perform the co	omminution related experiments and necessary calculations.								
CO3	:	Obtain the ski	lls for physical observation of minerals / ores.								
E- Re	fere	nces									
1.		https://www.yo	putube.com/watch?v=yLtuDv3GzWo								
2. https://www.youtube.com/watch?v=VzJ60uMdFe8		https://www.yo	outube.com/watch?v=VzJ60uMdFe8								
3.		https://www.yo	outube.com/watch?v=6kFONdchY0U								

180	CYMC01	C01 ENVIRONMENTAL SCIENCE L T P									
			0	0	1	0					
Course Objectives:											
1.	1. To impart awareness to the student that they are separate from the environment and should not control the environment.										
2.	They are part of the environment										
3.	To have a	an ancient wisdom drawn from Vedas									
4.	Activities	based knowledge to preserve environment									
5.	Conserva	ation of water and its optimization.									
ENVI	RONMEN	TAL AWARENESS		6	Hou	rs					
1.	Group ad	ctivity on water management									
2.	Group di	scussion on recycle of waste (4R's)									
3.	Slogan n	naking contest.									
4.	Poster m	aking event.									
5.	Expert le	cture on environmental awareness.									
6.	Impartinę	g knowledge on reduction of electricity usage									
ENVI	RONMEN	TAL ACTIVITIES		8 H	lour	'S					
1.	Identifica	tion and segregation of biodegradable and non biodegradable waste									
2.	Campus	cleaning activity									
3.	Plantatio	n of trees in the college campus and local waste lands.									
4.	Identifica	tion of varieties of plants and their usage									
5.	Shutting	down the fans and ACs of the campus for an hour									
6.	Field wor	rk on growing of kitchen garden for mess									

SEMESTER - IV

	18MA302 STATISTICS AND NUMERICAL METHODS L T P							С			
					3 1 0						
Course Objectives:											
1.	1. To understand the statistical averages and fitting of curves.										
2.	2. To gain the knowledge of significance test for large and small samples.										
3.	То	obt	ain the knowledge about	numerical interpolation, differentiation and integration	l .						
4.	To and	acc d m	ulti step methods.	rical solution to first order ordinary differential equation	ns us	ing s	ingle	step			
5.	To exp	gai blici	n the knowledge of nume t and implicit methods.	rical solution to second order partial differential equat	ions	by us	sing				
U	NIT	I	BASIC STATISTICS			9	+	3			
Mea Squ	asur Iares	es (s —F	of Central tendency: Mom Fitting of straight lines, se	nents, Skewness and Kurtosis, Curve fitting by the Me cond degree parabolas and curves reducible to linear	ethod form	of Le ns.	east				
U	ΤΙΛ	II	TEST OF HYPOTHESI	S		9	+	3			
Tes diffe test	t of eren for	sig ce rati	nificance: Large Sample of means- Small Sample o of variances - Chi-squa	e tests for Single proportion, difference of proportion e test for single mean, difference of means and corr re test for goodness of fit and independence of attribu	n, sin relatio ites.	igle r on co	mean p-effic	and cient,			
UN	I TI	11	INTERPOLATION, NU	MERICAL DIFFERENTIATION AND INTEGRATION		9	+	3			
equ and forn rule	atio Ba nula	ns I ckw e N	by Ğauss Elimination and vard formulae. Interpolati lumerical Differentiation a	d Gauss Seidal iterative methods - Interpolation using on with unequal intervals: Newton's divided differen and Integration: Trapezoidal rule and Simpson's 1/3	g Nev ice a rule,	vton' nd L Simp	s For agrar oson's	ward ıge's 3 3/8			
UN	IIT I	V	NUMERICAL SOLUTIO	ON FOR ORDINARY DIFFERENTIAL EQUATIONS		9	+	3			
Ord met - co	inar hod rrec	y di of i tor	ifferential equations: Tayl fourth order for solving fir methods.	or series method- Euler and modified Euler's method- st and second order differential equations- Milne's an	- Run d Ada	ige-K am's	lutta predi	ctor			
U	'TIV	V	NUMERICAL SOLUTIO	ON FOR PARTIAL DIFFERENTIAL EQUATION		9	+	3			
Par Imp met	tial d licit hod	diffe anc s) -	erential equations: Finite of Explicit methods for one Finite difference explicit	difference solution of two dimensional Laplace and Po e dimensional heat equation (Bender Schmidt and Cra method for wave equation.	oissor ank-N	n equ licho	lation Ison	S-			
				Tot	al (L	+T) =	=60 H	ours			
Cοι	ırse	οι	utcomes:								
Upc	Upon completion of this course, the students will be able to:										
co	CO1 : Learn about statistical averages and fitting the curves by Least Square Method.										
CO	2	:	Acquire the techniques of	of interpolation.							
CO	3	:	Familiar with the numeri	cal differentiation and integration							
CO	4	:	Solve the initial value pro	oblems for ordinary differential equations.							

CO5	:	Learn to find the numerical solution of partial differential equation by using Finite difference method.							
Text E	Text Books:								
1.	Veerarajan T, "Probability and Random Process (With Queuing theory)", 4 th Edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2016.								
2.	Kai	ndasamy.P, Thilagavathy.K, Gunavathi.K, "Numerical Methods" S.Chand & Co., New Delhi, 2005.							
3.	Gu De	pta, S.C. and Kapur, V.K., "Fundamentals of Mathematical Statistics", S.Chand and Sons, New hi, 11 th Edition 2014							
Refere	ence	Books:							
1.	Fru Ind	end John, E. and Miller Irwin, "Probability and Statistics for Engineers", 8 th Edition, Prentice Hall ia (P) Ltd, 2010.							
2.	Ge Asi	rald, C. F. and Wheatley, P.O., "Applied Numerical Analysis" , Sixth Edition , Pearson Education a , New Delhi – 2002							
3.	M.ł	K.Venkataraman, "Numerical Methods", National Publishing Company,2000							
4.	Jai Ne	n M.K.Iyengar, K & Jain R.K., "Numerical Methods for Scientific and Engineering Computation ", w Age International (P) Ltd, Publishers 2003							
5.	Ma Lax	nish Goyal, "Numerical Methods and Statistical techniques Using "C" ", 1 st Edition, mi Publications (P) Ltd, 2009.							

	18CY	'301	BIOLOGY FOR ENGINEERS	L	т	Ρ	С						
				2	1	0	3						
Co	Course Objectives:												
To field	To introduce students to modern biology with an emphasis on evolution of biology as a multi-disciplinary field and to make them aware of biological principles. The course will facilitate the students to:												
1.	Realize	e that all for	ms of life have the same building blocks.										
2.	Conve	y that witho	ut catalysis life would not have existed on earth.										
3.	Know 1	he analysis	of biological processes at the reduction level										
4.	Compr world.	ehend the	fundamental principles of energy transactions are the same in physic	cal a	nd b	iologi	cal						
5.	Unders	stand the fu	ndamentals about the molecular basis of coding and decoding				-						
U	NIT I	BIOMOL	ECULES		6	+	3						
Car stru rea	bohydra icture oi ctions o	ates- classi nly; Amino f amino aci	fication - Glucose properties and structural elucidation –fructose, acids- classification- amphoteric nature of amino acids - zwitter ior ds; Vitamins - general characteristics- classification- function and de	suc n - is ficie	rose oele ncy c	, star ctric p diseas	ch - point ses						
U	NIT II	ENZYME	S		6	+	3						
spe acti rea acc	cificity, ion-locl ction(te cumulation	reversibility and key mperature, on)- enzym	 v, sensitiveness to heat and inhibitors, colloidal nature)- mechanism mechanism and koshland induced fit mechanism -Factors affectir pH, substrate concentration, enzyme concentration, water inhibitors e kinetics –michaelis-menten equation. 	sm o ng ra s, en	of the ate o d pro	e enz of enz oduct	yme yme						
U	NIT III	MACRO	NOLECULES		6	+	3						
Pro pro rea syn	teins- o perties o ction, x thesis-	classificatio of proteins- anthoprote mechanism	n- structure of proteins- primary, secondary, tertiary and qua physical and chemical properties- colour reaction of proteins (biure ic reaction, ninhydrin reaction, azo dye reaction Hopkins Cole of protein synthesis.	atern et rea read	ary actior ction)	struc n, mill) -Pro	ture- ions otein						
U	VIT IV	METABO	LISM		6	+	3						
The exe stru off type	ermodyn ergonic i ucture of phase- l es- struo	amics as a reactions- of ATP; Glyo kinds of rea cture of pign	applied to biological systems - exothermic and endothermic versu concept of equilibrium constant and its relation to standard free ener- colysis- definition- flow chart- steps involved in glycolysis- preparate ctions in glycolysis; Photosynthesis- definition- significance photosy ments factors affecting photosynthesis- external and internal factors.	us ei ergy ory p nthe	nder - spo bhase tic- p	gonic ontane e and oigme	and eity - pay nts						
U	NIT V	NUCLEIC	CACIDS		6	+	3						
Typ nuc RN coc	Types-Structural components of nucleic acids- acid, pentose sugar and nitrogenous base- nucleoside – nucleotide and its functions - single and double helical structure of DNA-comparison between DNA and RNA- types of RNA- transcription -mRNA, tRNA and rRNA and their function - replication of DNA- genetic code characteristics												
			Total	l (L+	T) =	45 Ho	ours						
Co	urse Ou	itcomes:											

Upon completion of this course, the students will be able to:							
CO1	:	preciate that all types of life have the identical structural units.					
CO2	:	Highlight the idea that without catalysis, living beings would not have existed on earth.					
CO3	•••	Be familiar with the investigation of biological processes at the reduction level.					
CO4		Figure out that the primary principles of energy transactions are alike in physical and chemical					
Text B	ook	is:					
	F	J.L.Jain, Sanjay jain and Nitin jain- "Fundamentals of Biochemistry" - Sixth edition, S.Chand and					
1.	СС	ompany Ltd., Ram nagar, 2005.					
	D	Dr.A.V.S.S.Rama Rao-" Text book of Biochemistry"- Text book of Biochemistry- First edition- UBS					
2.	Publishers' Distributors Pvt. Ltd., 2008.						
3.	U.	. Satyanarayana – "Biochemistry"-5th edition – Sri Padmavathi Publications Ltd., 2017.					
Refere	nce	Books:					
	С	ampbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M,L.; Wasserman, S. A.; Minorsky,					
1.	Ρ.	V.; Jackson, R. B" Biology: A global approach"- Pearson Education Ltd					
2.	C	onn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H-" Outlines of Biochemistry"- John Wiley and Sons					
	By	/ Nelson, D. L.; and Cox- "Principles of Biochemistry"- V Edition- M. M.W.H. Freeman and					
3.	C	ompany					
1	St	ent, G. S.; and Calender-" Molecular Genetics"- Second edition - R. W.H. Freeman and					
4.	СС	ompany, Distributed by Satish Kumar Jain for CBS Publisher					

	18MT	401	MECHANICAL BEHAVIOUR OF MATERIALS	L	т	Ρ	С				
							3				
Со	Course Objectives:										
1.	1. To gain knowledge on the mechanical behaviour of materials and to apply them to design the materials for various engineering applications.										
2.	2. To gain knowledge on fracture, fatigue and creep behaviour of materials										
UNIT I DISLOCATION THEORY AND PLASTIC DEFORMATION 9											
Stre Scr stre disl and she	Strength of perfect crystal and need for dislocations; Characteristics of dislocations – Edge dislocation, Screw dislocation, Burger's vector, mixed dislocation, dislocation loops; Movement of dislocation – Pierls stress, Cross slip, Climb; Dislocations in FCC, HCP and BCC lattice; Stress fields and energies of dislocations, forces on and between dislocations; Dislocation density; Intersections of dislocations – Jogs and kinks; Dislocation multiplication; Dislocation pile-ups; Deformation by slip and twinning; Critical resolved										
U	NIT II	STRENG	THENING MECHANISMS		9	+	0				
Stra stra pre stre nor	ain hard ain agei cipitates engtheni a-ferrous	ening; Gra ng; Precip , coarseni ng; Martens svstems.s	in boundary strengthening; Solid solution strengthening - yield- itation hardening - Conditions for precipitation hardening, Age ng of precipitates, Mechanism of strengthening; Dispersion st site strengthening - examples for above strengthening mechanisms imple problems; Bauschinger effect; Preferred orientation; Sever pla	point eing, reng from astic	phe Fori theni ferro defo	nome matio ng; F ous a rmatio	non, n of Fiber nd on.				
U		FRACTU	RE AND FRACTURE MECHANICS:		9	+	0				
Typ fact The me tou	bes of fra tors affe eoretical chanics ghness a	acture – du ecting DB cohesive s - introduct and determ	ctile and brittle fracture, Ductile to Brittle Transition Temperature (D TT, determination of DBTT, Hydrogen embrittlement and ot strength of metals, Griffith's theory of brittle fracture, Orowan's mo tion, modes of fracture, stress intensity factor, strain energy rele ination of K_{IC} , introduction to COD, J integral, R Curve.	BTT her odifica ease), Me emb ation rate	tallur rittlen . Frac , frac	gical nent, cture cture				
U	NIT IV	FATIGUE	BEHAVIOUR AND TESTS:		9	+	0				
Fat acc cra	igue: St company ck propa	ress cycle ring fatigue agation, fati	s, S-N curves, effect of mean stress, factors affecting fatigue, , cumulative damage, low cycle fatigue, application of fracture me gue testing machines.	struc echa	tural nics	char to fat	nges igue				
U	NIT V	CREEP B	BEHAVIOUR AND TESTS:		9	+	0				
Cre me Par stru	eep curv tallurgica rameter uctures a	e, stages in al factors at methods and compor	n creep curve and explanation, structural changes during creep, of ffecting creep, high temperature alloys, stress rupture testing, creep of extrapolation. Introduction to remaining life assessment of ments, Creep-Fatigue interaction.	creep p test high	mea ting r ter	chanis nachi npera	sms, nes, iture				
			Tota	al (L+	T) =	45 He	ours				
Co	urse Ou	tcomes:									
Upo	on comp	letion of thi	is course, the students will be able to:								
со	1 :	Understan	d and explain the mechanical behaviour of materials.								
СО	2 :	Understan theories de	d the various types of fractures and their mechanisms, fracture mechanisms fracture mechanics.	chani	cs ar	nd vai	ious				
со	3 :	Understan fatigue tes	d and explain the fatigue behaviour and the mechanism of fatigue, sting machines.	SN c	urve	and					

CO4	:	Explain the creep behaviour and mechanism, factors affecting creep and creep testing machines.						
Text B	Text Books:							
1.	George. E. Dieter, "Mechanical Metallurgy", 3 rd Edition, McGraw-Hill Publications, New York, SI Edition, 2004							
2.	Marc Andr´e Meyers, Krishan Kumar Chawla, "Mechanical Behavior of Materials", Cambridge University Press, UK, 2009.							
Refere	nce	Books:						
1.	R	eed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.						
2.	D	avis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-Hill, 1982.						
3.	W	ulff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.						
4.	Н	oneycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984						

		18MT402	PHASE TRANSFORMATION	L	Т	Р	С				
	3						3				
Course Objectives:											
1. To develop an understanding of the basis of physical metallurgy and correlate transformations of structure of materials with their properties for engineering applications.											
UNIT		9	+	0							
Driving dendrit from m	Driving force for solidification, Alloy solidification – Single phase binary alloy solidification, Cellular and dendritic solidification, constitutional super cooling, eutectic solidification, Solidification during quenching from melt, Concept of Activation energy and Arrhenius equation, Simple problems in above topics.										
UNIT	. 11	TRANSFORMATION P	KINETICS		9	+	0				
Nuclea change and nu Diffusio	ation e an ucle on-C	- Types of nucleation; d nucleation rate; Heter ation rate; Rate of Het controlled growth, Overall	Homogeneous nucleation - critical nucleus size, ogeneous nucleation - critical nucleus size, critical erogeneous nucleation, Growth Kinetics, Interface Transformation Kinetics – Empirical equations.	critica free e -Con	al fre enerç trolle	ee en gy cha d gro	ergy ange owth,				
UNIT	III	DIFFUSIONAL TRANS	SFORMATIONS		9	+	0				
kinetics simple of grov transfo transfo	s fo nur wth, orma orma	r interface controlled gr nerical problems, Pearliti Eutectoid transformatio tion; Spinodal decompos tions; Precipitation.	owth and diffusion controlled growth, Johnson-Me c Transformation, Experimental characteristics, Mec on – nucleation and growth of pearlite, Interlamell ition - uphill diffusion, examples from metallic system;	hl-Av hanis lar sp s; Orc	rami m ar bacin der-D	equa Id kin g, Ba Disord	ition, etics iinite er				
UNIT	IV	GRAIN GROWTH	IING AND RECOVERT RECRESTALLIZATION AND	,	9	+	0				
PARTI RECO mecha COLD micros HOT W in abov	CLE VER nisn WC truct VOR	COARSENING – Drivin RECRYSTALLIZATIO NS. RKING – Structure and sures, Factors controlling KING – Concept of hot w pics.	ng force for coarsening, Kinetics of coarsening (Gi N AND GRAIN GROWTH – Recovery, Recrystalliz Properties of cold worked metals, Effect of mechai recrystallization, Annealing textures. working, Comparisons with cold working, warm workir	reenw ation nical ng, Sir	vood' , Gra prop mple	s mo ain gr erties probl	del), owth and ems				
UNIT	V	DIFFUSIONLESS TRA	NSFORMATIONS		9	+	0				
Massiv transfo transfo system alloys.	Massive transformations; Martensite transformation – Definition, Characteristic features of martensitic transformation in steels; Morphology of martensite - lath and plate martensite; Crystallography of martensitic transformation; Kinetic characteristics of martensitic transformation; Martensite in Non-Ferrous systems;Thermo elastic Martensite; Shape Memory effect - Examples and applications of shape memory alloys.										
Course	e Oı	utcomes:									
Upon o	com	pletion of this course, the	students will be able to:								
CO1	:	Understand mechanism	of solidification and transformation								

CO2	:	Understand and explain the concept of growth and nucleation of crystal structures and phases in different materials.							
CO3	:	escribe the phase transformation that is controlled by diffusion.							
CO4	:	Describe the particle coarsening, recovery recrystallization and grain growth, cold and hot working							
CO5	:	Describe the various phase transformations that occur due to diffusionless transformation.							
Text B	ool	(S:							
1.	Ra	ghavan , V."Solid State Phase Transformations", Prentice - Hall of India, New Delhi, 2004.							
2.	Po and	rter, D.A. and Easterling , K.E., "Phase Transformations in Metals and Alloys", 2nd ed., Chapman d Hall, London 1992.							
Refere	ence	e Books:							
1.	Ro 20 ⁻	mesh C. Sharma, "Phase transformation in Materials", CBS Publishers &Distributors, New Delhi, 11.							
2.	Re	Reed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.							
3.	R. Ed	E. Smallman A.H.W. Ngan, "Modern Physical Metallurgy", Butterworth-Heinemann publication, 8th ition, 2013.							

18MT403			IRON MAKING	L	Т	Р	С				
3						0	3				
Course Objectives:											
1. To know the importance of the iron making and to apply them for the advancement of the production feasibilities in industries to compete with the modern day manufacturing routes.											
UN	IT I	RAW MATE	RIALS AND BURDEN PREPARATION:		9	+	0				
Iron ore classification, Indian iron ores, characteristics of coal for coke making, selection of coals, coke quality, problems associated with Indian raw materials, Burden preparation: Iron Ore beneficiation, Agglomeration - Theory and practice of Sintering and Pelletizing, testing of burden materials, burden distribution on blast furnace performance.											
UN	TII	PHYSICO-C	HEMICAL-THERMAL PRINCIPLES:		9	+	0				
Reduction of iron ores and oxides of iron by solid and gaseous reductions, C-O and Fe-C-O equilibria, thermodynamics and kinetics study of direct and indirect reduction, Gruner's theorem, physical chemistry of blast furnace reactions., Rist diagrams, material and heat balance.											
UNI	тШ	BLAST FUR CONTROL:	NACE DESIGN, PRACTICE AND INSTRUMENTATION		9	+	0				
Blast gas c	furna Ieani	ace parts, const ng equipments,	ruction and design aspects ancillary equipments for charging, p , pig casting, blast furnace instrumentation and control of furnac	rehea e.	ating	the b	ast,				
UNI	ΤΙ	BLAST FUR	NACE OPERATION:		9	+	0				
Blast furna RAF	furn ce, E Calc	ace operation, Desulphurisatior culations, mode	irregularities and remedies, Compositional control of metal of Hot metal , Reichard's diagram, internal zones and gas flo rn trends in blast furnace practice.	and ow in	slaç blas	g in l t furn	olast ace,				
UN	тν	ALTERNATI	IVE ROUTES OF IRON MAKING:		9	+	0				
Alteri spon produ	native ge iro uctior	e routes of iror on production-c o of Fe-Si, Fe-M	n production – low shaft and charcoal furnace, electro-t coal based and gas based, sponge iron production in India. F In and Fe –Cr, Introduction to mathematical modeling in Iron ma	herm erro Iking	al p alloy proce	furna esses	ises, ices,				
			Total (4	15+0)	= -	45 H	ours				
Cour	se O	utcomes:									
Upon	com	pletion of this c	ourse, the students will be able to:								
CO1	:	Understand a the blast furna	nd define the feeding of raw materials that must be processed b ace	efore	load	ling ir	ito				
CO2	:	Describe the establish the l	escribe the various physical and chemical principles and study the different equilibria and study the heat and mass balance								
CO3	:	Design the bla place in it	ast furnace by describing the various parts of blast furnace and t	the re	eactic	ons ta	king				
CO4	:	Describe the o	Describe the operational features of the blast furnace, the irregularities in operation								

CO5	Alternate iron making process using different methods like low shaft and charcoal fired furnace, production of ferro alloys						
Text E	Books:						
1.	Ahindra Ghosh and Amit Chatterjee, "Iron Making and Steel Making – Theory and Practice", Prentice Hall of India Private Ltd., New Delhi 2008.						
2.	Tupkary R J, "Introduction to Modern Iron Making", Khanna Publishers, Third edition, New Delhi, 2004.						
Refere	ence Books:						
1.	Biswas .A.K , " Principles of blast furnace iron making- theory and practice" , SBA Pub, Kolkata 1994						
2.	David H Wekelin, "The Making, Shaping and Treating of Steel", AISE Steel Foundation, edition 11, 1999.						
E-Ref	E-References:						
1.	https://nptel.iitm.ac.in						

18MT404 MATERIALS TESTING LABORATORY							С				
				0	0	3	1				
Course Objectives:											
1.	1. To learn about several of material testing principles, procedures and generating reports for quality control.										
EXPE	RIM	ENTS									
1.	Те	nsile testing of base mater	ials(Sample – Round,Flat,pipe)								
2	Те	nsile testing of base mater	ials by tensometer								
3	Те	nsile testing of weldments	(Longitudinal/Transverse)								
4	Со	mpression test - Base ma	terial								
5	Imp	pact testing of base mater	als (Charpy & Izod)								
6	Imp	pact testing of weldments	(Charpy & Izod)								
7	Bei	nd Test 0f base material /	Weldment								
8	На	rdness – Brinell / Rockwel	Ι								
9	На	rdness – Vickers									
10	Mic	crohardness test									
11	Fat	igue test									
12	We	ear test – Pin on disc									
13.	Cre	eep test(using lead wire)									
				Tota	al (P) :	= 45 H	ours				
Cours	se O	utcomes									
After t	he s	successful completion of th	ne practical session, the students will be able to								
CO1	:	Gain knowledge in pract	ical aspects of sample preparation for testing.								
CO2	:	Hands on experience in	operation of Material testing equipment.								
CO3	:	Gain knowledge in vario	us mechanical tests of base materials and weldments								

18MT	E40	5	MACHINESHOP PRACTICE	L	т	Р	с				
	0 0 3 1										
Course Objectives:											
1.	1. To practice and know about various machining machine.										
EXPERIMENTS											
1.	Lat	he									
2.	Dri	lling									
3.	Sh	aping									
4.	Ge	ar hobbing									
5.	Ke	yway milling									
6.	Stu	dy on cylindrical grinding,	boring, and CNC machines.								
			-	Tota	I (P) :	= 60 H	lours				
Cours	se O	utcomes									
After t	he s	successful completion of th	e practical session, the students will be able to								
CO1	:	Understand the machinin the given components.	g concepts and also do the machining operations like facir	ing ai	nd tur	ning fo	or				
CO2	:	Explain the different met tailstock set over and tap	nods of taper turning and do the taper turning operation us er turning attachment.	sing r	netho	ds like	;				
CO3	:	Recognize performance of drilling, tapping, reami	and principle of basic drilling operation and also various su ng and counter Sink by using radial drilling machine.	ucces	ssful r	nachir	ning				
CO4	:	Understand the fundam explain the steps for ma pattern like split pattern a	entals of casting and molding principles and its emergi aking green sand molding and also build the core by usi and loose piece pattern.	ging a sing c	applic Jiffere	ations nt typ	and es of				
CO5	:	Explain the fundamentals joints by using arc weldir	s of welding process and to make the joints like butt joint, lang equipment for industrial applications.	lap jo	ints a	nd tee	;				

SEMESTER - V

	1	8M	T501	HEAT TREATMENT AND SURFAC	CE ENGINEERING	L	Т	Р	С			
	3						0	0	3			
Course Objectives:												
1.	1. To study transformations in steels, various heat treatment processes and their equipments											
UN	UNIT I TRANSFORMATIONS IN STEELS:											
Iron · gene Conti	Iron - carbon equilibrium diagram: Transformations on heating and cooling, influence of alloying elements, general principles of heat treatment of steels, Isothermal and Continuous cooling transformations in steels. Continuous cooling curves TTT and CCT diagrams.											
UN	IT I	I	HEAT TREA	MENT PROCESSES:			9	+	0			
Anne elimii & Ja harde temp	Annealing - types, Normalizing, Hardening - Retained austenite -measurement and methods of its elimination, Hardenability studies- Jominy end quench test, Grossman's experiments Tempering- Hollomon & Jaffe tempering correlations, Temper embrittlement, Austempering and Martempering, Precipitation hardening, Thermo mechanical treatment, Various heating media used for heat treatment, furnaces, temperature and atmosphere control. Quenching media and their characteristics.											
UNI	TI		HEAT TREA	MENT OF SPECIFIC ALLOYS			9	+	0			
Heat treatr treatr	tre ner ner	eatr nt c nt o	nent of carbo f gray cast iro f aluminium a	steels, various types of tool steels, s, white cast irons, malleabilising and ys and copper alloys. Defects in heat t	high speed steels, ar S.G.irons, austemperin treated parts: causes ar	d die g of 3 id ren	e ste S.G.I nedie	els. I ron. I es.	leat leat			
UNI	T I\	/	CASE HAR	NING			9	+	0			
Carb Flam Meas	uris e h sure	ard ard	. Nitriding, Cy ening, Electro ent of case de	niding, Carbonitriding, Boriding, Alum beam hardening, Laser beam hardeni ո.	inising, Siliconising, Ch ng: principle, methods,	romis opera	sing ating	Induc variat	tion, ples.			
UN	IT V	/	SURFACE I	GINEERING			9	+	0			
Introc sputt CBN Elect	duc er ,Dia rop	tior co amo lati	to Lubrication ating -Ion pl and andDLCc ng	and tribology, Physical vapour depoing - Chemical vapourdeposition - tings. Principle and applications of	osition processes - The - reactive sputtering - surfacing, Principle a	ermal - TiC ind a	eva C,TiN pplic	oorati ,Alum ation	on - ìina, s of			
					Tota	al (L+	-T) =	45 H	ours			
Cour	se	Ou	tcomes:									
Upon	n co	mp	letion of this c	urse, the students will be able to:								
CO1		:	Classify the c parameter ch	erent transformation processes that ar ges.	re taking place in steels	with	respe	ect to				
CO2		:	Describe the the combinat	ferent process of heat treatment that i of heat and mechanical properties.	nfluences the materials	prop	erties	and	also			
CO3		:	Define the ha	ening property and hardenability of ste and explain the process of carburizin	eels by applying various g, nitriding, nitro-carburi	diffus zing	sion etc.					
CO4		:	Explain and a for various he	alyze the various heat treatment equip treatment processes and also describ	ments, heat treating me be the heat treating furna	dium aces.	, tem	perat	ure			
CO5		:	Describe and steel and diffe	scuss the heat treatment processes for ant varieties of cast iron.	or specific alloys like too	l stee	els, h	igh sp	eed			

Text Books:								
1.	Rajan and Sharma "Heat Treatment Principles and Techniques" – Prentice Hall of India (P) Ltd, New Delhi, 2011.							
2.	Vijendra Singh,"Heat Treatment of Metals", Standard Publishers Distributors, Delhi, 2007.							
3.	Romesh.C.Sharma, "Principles of Heat Treatment of Steels", New Age International Pvt. Ltd. Publishers, New Delhi, 2009.							
4.	Kenneth G.Budinski, "Surface Engineering for Wear Resistance", Prentice Hall, Englewood Cliff,1998.							
Reference Books:								
1.	Prabhudev, K H., "Handbook of Heat Treatment of Steels", Tata - McGraw Hill Publishing Co., New Delhi, 2000.							
2.	American Society for Metals, "Metals Handbook Vol.4", ASM Metals Parks, Ohio, USA, 2001.							
3.	Karl-Erik Thelning, "Steel and its Heat Treatment", Butterworths London, second edition 1984.							
4.	ASMMetals Handbook, Vol.5, "Surface Engineering", Metals Park, Ohio, 2001.							
18	MT502	STEEL MAKING	L	т	Ρ	С		
---	--	---	--------------------------	------------------------	----------------------------	-----------------------	--	--
			3	0	0	3		
Course O	bjectives:							
To know the feasibilities	To know the importance of the steel making and to apply them for the advancement of the production feasibilities in steel industries to compete with the modern day manufacturing routes.							
UNIT I	UNIT I PHYSICAL CHEMISTRY OF STEEL MAKING 9 + 0							
History & Chemical reaction, mechanisi Compositi	History & Development of Steel making processes. Raw materials for Steel making & plant layout. Physico- Chemical Principles and Kinetic aspects of Steel making - Carbon reaction, Phosphorus reaction, Silicon reaction, Manganese reaction & Sulphur reaction, Reaction at slag-metal interface, Oxygen transport mechanism, Deoxidation of steel –Thermodynamics, Kinetics and Mechanism, Slag – Functions, Composition, Properties and Theories							
UNIT II	OLDER STE	EL MAKING & ELECTRIC STEEL MAKING PROCESS		9	+	0		
Review of Hearth Pr Induction Stainless Modern ap	Review of older Steel making process: Bessemer processes – Acid & Basic Bessemer Process, Open Hearth Process – Reasons for the decline, Electric Steel making process: Electric Arc Furnace and Induction furnace – Constructional features, Production practice for Plain Carbon Steels, Low Alloy Steels & Stainless Steels, Developments in Electric Arc Furnace technology – Furnace design, Operational features. Modern approaches to Steel making – External treatments to remove Sulphur, Phosphorus & Silicon.							
UNIT III	OXYGEN ST	TEEL MAKING PROCESS		9	+	0		
Top blown Character blown bas only.	n process, LD p stics of LD pro sic Oxygen cor	process – LD vessel design & Lance design, Charge material, o pcess & Reactions in LD converter. LDAC, Kaldo process, Rom nventional process (Q-BOP/OBM/LWS),EOF. Principles & Me	Opera tor pr chani	ationa oces sm c	al fea s. Bo of refi	ture, ttom ning		
UNIT IV	SECONDAR	Y STEEL MAKING PROCESS		9	+	0		
Introductic Stainless Stainless ESR proc Degassing	Introduction, Stirring techniques, Cleanliness improvement, Perrin Process, Decarburization techniques: Stainless Steel making technology - AOD process, VOD process, CLU process, Nitrogen problem in Stainless Steel making. Injection Metallurgy, Plunging techniques, Post solidification treatments – VAR & ESR process. Tundish Metallurgy. Ladle furnace. Vacuum treatment – Principle & Function of Degassing, Degassing processes - Ladle degassing, Stream degassing, Recirculation degassing.							
UNIT V	INGOT AND	CONTINOUS CASTING OF STEEL		9	+	0		
Casting Pit practice – Teeming Ladle, Ingot mould, Teeming methods. Solidification of Steel in Ingot moulds- Killed, Rimmed and Capped Steels. Ingot defects and their remedies. Gases in Steel. Continuous Casting of Steel – Introduction, Principles, Constructions features and Operation of a typical Continuous Casting Machine. Defects in Continues Casting products. Current status of Continuous Casting Technology. Quality Control in Continues casting. Metallurgical Defects and their remedies. Indian Steel Industry and global trends in steel making technology, Introduction to mathematical modeling in steel making processes								
		Total (4	45+0)	= 4	45 H	ours		
Course O	utcomes:							
Upon com	pletion of this c	ourse, the students will be able to:						
CO1 :	Specify the pa thermodynam	articular reactions taking place in the steel making process along ics,kinetics and the mechanism of reaction	g with	the				

CO2	:	Review the older steel making process and modern electric steel making processes			
CO3	:	Discuss and describe the conventional steel making processes viz. oxygen steel making processes			
CO4	:	Describe the secondary steel making processes, the process following the primary refining of raw pig iron			
CO5	:	Specify the casting process for steel and discuss the ingot defects and their respective remedies			
Text E	Text Books:				
1.	Ch	akrabarti, A.K., Steel Making, Prentice Hall of India Pvt. Ltd. New Delhi, 2010.			
2.	Tupkary, R.H., and V.R. Tupkary, Introduction to Modern Steel Making, 7 th Edition, Khanna Publications, New Delhi, 2012.				
Refere	ence	e Books:			
1.	Fru	ichan, R.J., The Making, Shaping and Treating of Steel, AISE Steel Foundation, 11th Ed., 1998.			
2.	Ghosh, A., and A. Chatterjee, Iron Making and Steel Making – Theory and Practice, Prentice Hall of India Private Ltd., New Delhi, 2008.				
E-Ref	eren	ices:			
1.	https://nptel.iitm.ac.in				

18MT503			CORROSION ENGINEERING	L	Т	Ρ	С	
				3	0	0	3	
Course Objectives:								
1. T e	1. To know the concept of different types of corrosion and to understand the basic principles of corrosion engineering.							
UNI	ТΙ	CORRO	SION PRINCIPLES		9	+	0	
Electrochemical and thermodynamic principles, electrode potential of metals, EMF and galvanic series, merits and demerits, Pourbaix diagram and its importance to iron, aluminium and magnesium metals, corrosion rate expressions. Exchange current density, polarization - concentration, activation and resistance, Tafel equation, passivity, electrochemical behaviour of active-passive metals, flade potential, factors governing metals exhibiting passivity, mixed potential theory and its application.						ries, tals, nce, ctors		
UNI	TII	FORMS	OF CORROSION		9	+	0	
Atmos hydro remed	sphei gen (dial n	ric, galvanio damage, ca neasures.	c, crevice, pitting, stress corrosion cracking, intergranular corrosion, avitation, fretting corrosion and high temperature oxidation-descriptic	corro on, ca	uses	fatigu and	IE,	
UNI	T III	CORRO	SION TESTING		9	+	0	
Purpo cracki Polari	ose c ing a izatio	of testing - and pitting, n methods	laboratory, semi-plant and field tests, susceptibility tests of IGC ASTM standards for corrosion testing; Corrosion testing for F to measure corrosion rate, Tafel extrapolation method, Linear Polar	C, st Passi isatic	ress vatin on me	corro g me ethod.	sion tals.	
UNI	ΓΙν	CORRO	SION PREVENTION		9	+	0	
Corro inorga	sion anic d	prevention coatings, m	by design improvements, anodic and cathodic protection, metallic, r echanical and chemical methods and various corrosion inhibitors	non-n	netall	ic and	k	
UNI	Т٧	CORRO	SION IN INDUSTRIES		9	+	0	
Corro Scale autom refinin	sion forr notive ng, co	in Boiler P nation in e industry, prrosion of	lant: Corrosion on water-side of the boiler, fire-side of the boiler at boilers and its prevention. Practical remedial treatments in bo chemical processing industries, corrosion in petroleum producti pipelines.	nd th oilers. on o	eir p Co pera	reven rrosio tions	tion. n in and	
			Total (L+T)	= (4	5+0)	45 Ho	ours	
Cours	se O	utcomes:						
Upon	com	pletion of th	nis course, the students will be able to:					
CO1	:	Explain th	e electro chemical and thermodynamic principles and to discuss the	e pou	rbaix	diagr	am.	
CO2	:	Understar	nd the different forms of corrosion and their causes and remedies.					
CO3	:	Describe	the processes of ASTM testing methods and polarization methods.					
CO4	:	Understar	nd the corrosion preventive methods such as mechanical and chemi	cal m	netho	ds.		
CO5	:	Explain th	e corrosion in petroleum industries and pipe lines.					
Text Books:								

1.	Mars G. Fontana, Corrosion Engineering, Tata McGraw Hill Education, 2005.					
2.	Denny A. Jones, Principles and prevention of corrosion, 2 nd Edition, Prentice Hall Inc.,1996.					
Reference Books:						
1.	ASM hand book, Vol 13: Corrosion, ASM International, USA, 2001.					
2.	Rajnarayan, Metallic corrosion and prevention, Oxford Publications, 2001.					
3.	Trethewey, K.R., and Chamberlain, J., Corrosion – For science and engineering, 2 nd Edition, Longman Inc., 1996.					
4.	Uhlig, H.H., and R. Winston Revie, Corrosion and corrosion control – An introduction to corrosion science and engineering, Third edition, John Wiley & Sons, 1985.					
E-Ref	E-References:					
1.	www.nptel.ac.in/courses/113108051/					

18MT504		504	INTRODUCTION TO INSTRUMENTATION	L	Т	Ρ	С	
				3	0	0	3	
Course Objectives:								
1.	1. To acquire basics knowledge on measurements using different tools and skills to implement measurement techniques to control the system.							
U	UNIT I GENERAL CHARACTERISTICS OF A MEASUREMENT SYSTEM				9	+	0	
Thre tran indu mea	Three stages generalized measurement system(sensing and modifying and terminative stages) Sensors and transducers - displacement and velocity transducers - potentiometer strain gauge LVDT - variable inductance transducers, capacitance transducers - Static and dynamic characteristics - Errors in measurement - Error analysis and classification - statistical treatment of data.							
U	NIT II	GEO	METRICAL MEASUREMENT		9	+	0	
Line for a mea	ear me angula asurem	asuremo r measu nent, Me	ents- limit gauges (types and design) - mechanical Comparators, slip urement - vernier and optical protractors, Sine bar. Flatness, parallel asurement of surface finish: direct and indirect methods.	gaug ism a	e, In and r	strum ound	ients ness	
UN	III TII	FORCE, TORQUE AND STRAIN MEASUREMENT			9	+	0	
Elas mea stan	stic ele asuring ndards	ements circuit, - test pr	for force measurement, torque measurements, electrical resistance. temperature compensation, strain gauge rosettes. Instrument calit ocedures.	Strai oratio	n ga n - (uges calibr	and ation	
UN	IIT IV	FLOW, LEVEL AND VIBRATION MEASUREMENT			9	+	0	
Flow and level measurements: Variable head flow meters, variable area flow meters, positive displacement flow meters, hot wire anemometer, open channel flow meters, mass flow measurement - thickess, liquid and continuous level measurement. Vibration measurement: Elementary Accelerometer and Vibrometer- seismic instruments for absolute displacement – velocity seismic accelerometer, Piezo electric accelerometer.								
UN	V TIV	TEMI	PERATURE AND PRESSURE MEASUREMENT		9	+	0	
Temperature scales, thermometers, thermocouples, resistance thermometers, thermisters, pyrometers. Manometers, mechanical pressure sensors - electrical pressure measuring devices, pressure transmitters- low and vacuum pressure measurement systems.								
			Tota	al (L+	-1) =	45 H	ours	
Cou	irse O	utcome	s:					
Upo	on com	pletion o	of this course, the students will be able to:					
CO1	1 :	Under	standing the general characterization of a measurement system					

CO2	:	Select Tools suitable for linear, angular and surface measurements				
CO3	:	Understanding force, torque and strain measurements				
CO4	:	Familiarize the various flow, level and vibration measuring instruments				
CO5		Choose instruments for different temperature and pressure conditions				
Text B	look	is:				
1.	Ra pro	dhakrishnan V.R., Instrumentation and control for the Chemical, Mineral and Metallurgical cesses, Allied publishers pvt limited, New Delhi 1997				
2.	Beo Lim	ckwith T.G. and Buck N.L., Mechanical Measurements, Addition Wesley Publishing Company ited, 1995.				
Refere	Reference Books:					
1.	Ra 198	ngan Mani. and Sharma, Instrumentation, Tata McGraw Hill Publications Co. Ltd., New Delhi, 35.				
2.	Na Pul	kra B.C., Theory and Applications of Automatic Controls, New Age International P. Limited, blishers, 1998.				
3.	Ho De	mon J.P., Experimental methods for Engineers, Tata McGraw Hill Publications Co. Ltd., New hi, 2004.				
4.	Jai	n R.K., Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1984.				
E- refe	eren	ces				
1.	https://nptel.ac.in/courses/112106138/					

	18N	1T505	HEAT TREATMENT LABORATORY	L	т	Ρ	С			
				0	0	3	1			
Objec	tive									
1. To understand the various heat treatment process and their equipment's										
EXPERIMENTS										
1.	Annealing of carbon steels-Heattreatment practice and Analysis									
2.	Normalising of carbon steels - Heattreatment practice and Analysis									
3.	Effe	ect of quench	ing media on hardening of steel - Heattreatment practice and Analy	sis						
4.	Effe	ect of temperi	ng temperature on hardened steel - Heattreatment practice and An	alysi	S					
5.	Effe	ect of temperi	ng time on hardened steel- Heattreatment practice and Analysis							
6.	Ca	rburizing of st	eel							
7.	Ca	se hardness o	depth measurements							
8.	He	at treatment c	of cast iron - Heattreatment practice and Analysis							
9.	Age	e hardening o	f aluminium alloys Heattreatment practice and Analysis							
10.	Ide	ntification of c	defects in heat treated materials							
			То	tal (I	P) = 4	15 Ho	ours			
Cours	se O	utcomes								
After t	he s	uccessful cor	npletion of the practical session, the students will be able to							
CO1	:	Conduct and	d explain the process of annealing and normalizing process on Carb	oon s	steels	6.				
CO2	:	Determine t	he effect of Quenching and Tempering process of Hardened steel.							
CO3	:	Conduct the	process of carburizing of steels.							
CO4	:	Observe and	d determine the defects in Heat treated steels							
CO5	:	Determine t	he Age hardening of aluminium alloys							

1	8MT	506	CORROSION SCIENCE LABORATORY	L	т	Ρ	С					
				0	0	3	1					
Cour	Course Objectives:											
1. To gain knowledge about corrosion and its applications in the engineering field.												
EXPE	EXPERIMENTS											
1.	Corrosion rate determination by weight loss method.											
2.	Effect of inhibitors on rate of corrosion.											
3.	Oxalic acid etch test for IGC ASTM A262 – Practice A											
4.	Inv	estigation	of pitting corrosion in steel by indicator test.									
5.	Ca	ryout Pola	arization Studies by using electrochemical workstation.									
6.	Ca	ry out Imp	bedance studies by electrochemical workstation.									
7.	Det	erminatior	n of pitting potential of steel by polarization technique.									
8.	Sal	t spray tes	st.									
9.	Ele	ctroplating	g of Copper									
10.	Ele	ctroplating	g of Nickel									
			Т	otal (I	P) = 4	45 Hc	ours					
Cour	se O	utcomes										
After	the s	uccessful	completion of the practical session, the students will be able to									
CO1	:	Determin	e the corrosion rate by weight loss method.									
CO2	:	Analyze	the effect of inhibitor on corrosion rate.									
CO3	:	Investiga	te galvanic corrosion and pitting corrosion.									
CO4	:	Perform	electroplating of copper and nickel.									
Refer	ence	e books										

1.		Mars G. Fontana, Corrosion Engineering, Third Edition, Mc Graw Hill Inc., 1987.		
2.		Rajnarayan, Metallic corrosion and prevention, Oxford Publications, 2001.		
E- References				
1.		https://www.youtube.com/watch?v=Wo99UhTpbi8		
2.		https://www.youtube.com/watch?v=OxhCU_jBiOA		

18EN501		COMMUNICATION SKILLS LABORATORY	L	т	Ρ	С					
			0	0	4	1					
Cour	Course Objectives:										
1.	Communicate effectively with interviewers										
2.	Express opinions, illustrate with examples, elucidate and conclude in group discussions										
3.	Write error free letters and prepare reports										
EXPE	RIMENTS										
1.	WRITING	SKILLS (5 hours)									
	• L	etter seeking permission to go on industrial visit									
	• L	etter of invitation									
	• R	esume and Cover Letter									
	• R	eport Writing – Progress in project work									
2.	SPEAKIN	IG SKILLS (5 hours)									
	• W	/elcome Address and Vote of Thanks									
	• A	nalysing and presenting business articles									
	• P	ower Point Presentation									
	• G	roup Discussion									
3.	SOFT SK	ILLS (5 hours)									
	• P	sychometric profile									
	• S	elf-Introduction									
	• Ir	terview skills									
	• C	onducting a board meeting									
4.	VERBAL	ABILITIES (5 hours)									
	• E	rror Spotting									

	•	Listening Comprehension
	•	Rearranging Jumbled sentences
	• \	/ocabulary
5.	Lab Rec	ord
	1.	Group Discussion - Literature survey
	2.	Group Discussion - Transcripts
	3.	Group Discussion - Assessment forms
	4.	Interview Skills – Psychometric profile
	5.	Interview Skills - Self-introduction
	6.	Interview Skills – Resume and Cover Letter
	7.	Interview Skills - Transcription of interview
	8.	Interview Skills - Assessment sheet signed by interview panel
	9.	Power Point Presentation
	10.	Error spotting worksheet
	11.	Jumbled sentences worksheet
	12.	Welcome Address
	13.	Vote of Thanks
	14.	Letter seeking permission to go on industrial visit
	15.	Report Writing – Progress in project work
	16.	Presentation of business articles – Transcription
		Total (P) = 20 Hours
Cours	se Outcor	nes
After t	he succes	ssful completion of the practical session, the students will be able to
CO1	: Writ	e error free letters and prepare reports

CO2		:	Deliver welcome address and vote of thanks	
CO3		:	Speak coherently with proper pronunciation and accent	
CO4	CO4 : Avoid common Indianisms and grammatical errors		Avoid common Indianisms and grammatical errors	
CO5	O5 : Improve repertoire of passive vocabulary			
CO6		:	Answer questions posed by interviewers confidently	
C07		:	Participate in group discussion effectively	
CO8		:	Undertake online psychometric and IQ test to understand their strengths and weaknesses	
Refe	rer	nce	e Books:	
1.	A	nd	erson, P.V, Technical Communication, Thomason Wadsworth, Sixth Edition, New Delhi, 2007.	
2.	Pi	rak	kash, P, Verbal and Non-Verbal Reasoning, Macmillan India Ltd., Second Edition, New Delhi, 2004.	
3.	Jo	bhr	n Seely, The Oxford Guide to Writing and Speaking, Oxford University Press, New Delhi, 2004.	
4.	E١	va	ns, D, Decision maker, Cambridge University Press, 1997.	
5.	Tł	noi	rpe, E, and Thorpe, S, Objective English, Pearson Education, Second Edition, New Delhi, 2007.	
6.	Т	urt	on, N.D and Heaton, J.B, Dictionary of Common Errors, Addision	
7.	W	/es	sley Longman Ltd., Indian reprint 1998.	
8.	R	ea	dy,Steaady, Go. Deepak Mehra, Jaico Publishing House, Delhi,2015	
E-Re	fer	en	nces:	
1.	ht	tp:	//www.seemypersonality.com (Personality Test and IQ Test).	
2.	ht	tp:	//www.humanmetrics.com/cgi-win/jtypes2.asp	

SEMESTER - VI

18MT601		Г601	NON-FERROUS EXTRACTIVE METALLURGY	L	т	Ρ	С
				3	0	0	3
Cou	irse	Object	ives:				
1.	To me	study tł tallurgy	ne various ores of non ferrous metals and their extraction through Pyro, Hy routes	/dro a	and E	lectro)
2.	To me	underst tals	and principles and gain knowledge on the processes used in the extractio	n of r	onfe	rrous	
3.	То	study th	he different refining techniques to purify the crude metal				
U	ΝΙΤ	I P)	ROMETALLURGY		9	+	0
Intro Pyro Roa diag	oduc ome stin Iram	tion: S tallurgy g Techr <u>is – Ca</u> i	ources of metals, unit operations and unit processes of metal extra , advantages, Pyrometallurgical Processes – Drying, Calcination, Sir niques – Predominance Area Diagrams. Principles of Smelting and Conve bothermic, Hydrothermic and Metallothermic reductions.	ction. ntering rting.	9, R g, R Ellin	nciple oastir gham	s of ng –
UN	IT I	II HY	(DROMETALLURGY		9	+	0
Prin Lead leac	ciple chin hing	es of H g – Le g, Gase	ydrometallurgy, advantages, Leaching – Properties of good solvent. Pre aching methods, Recovery of metals from liquor – Solvent extraction, ous reduction of metals in aqueous solutions, Cementaion, Recycling of le	epara Ion each I	ition excha iquor	of ore ange,	e for Bio
UN	IIT I	II EL	ECTROMETALLURGY AND PURIFICATION METHODS		9	+	0
Prin Elec extra	ciple ctrov	es of E vinning on. Fire	Electrometallurgy, advantages, Aqueous and Fused salt electrolysis, of metals. Purification of Crude metals produced in bulk – Distillation, Liqu refining, Electrolytic refining, Zone refining, VAR, EBM and ESR.	Elect uatior	roref 1, Liq	ining uid-Li	and iquid
UN	IIT I	V EX OI	(TRACTION AND REFINING OF METALS FROM SULPHIDE AND OXID RES	DE	9	+	0
Extr	acti	on and	Refining of metals from sulphide ores – Copper, Nickel, Lead and Zinc. Ex	ktracti	ion a	nd	
Refi	ning	g of met	als from oxide ores – Aluminium, Magnesium and Tin.				
UN	י דוו		PRODUCT METALS RECOVERY		9	+	0
Extr meta Meta	actionals als f allur	on and from ha gical w	Refining of precious metals – Gold, Silver and Platinum. Extraction o lides – Titanium, Zirconium and Uranium. Recovery of by-product meta astes, Material and Energy balance.	if mei Is an	tals i d tre	rare e atme	earth nt of
			Tota	l (45+	-0) =	45 He	ours
Cou	irse	Outco	mes:				
Upo	n co	ompletio	on of this course, the students will be able to:				
CO1	1	: Exp pyr	posure to different sources non ferrous metals and understand the process ometallurgical extraction.	s prine	ciples	s of	
CO2	2	: Uno	derstand the process principles of hydrometallurgical extraction.				
CO3	3	: Exp	plain the process principles of electrometallurgical extraction and refining o	of met	als.		
CO4	1	: Exp	lain the extraction of metals from sulphide and oxide ores.				
CO5	5	Exp me	plain the production of precious metals and rare earth metals. Recovery of allurgical wastes.	meta	ls fro	m	

Text E	Text Books:				
1.	Ray H.S, Sridhar R and Abraham K.P, Extraction of Non Ferrous Metals, Affiliated East-West Press Pvt Ltd, New Delhi, 2008.				
2.	Ray H.S and Gosh A, Principles of Extractive Metallurgy, Prentice Hall of India, New Delhi, 1994				
Refer	Reference Books:				
1.	Terkel Rosenqvist, Principles of Extractive Metallurgy, 2 nd Edition, McGraw-Hill International book Company, 1983				
2.	Venkatachalam S, Hydrometllurgy, Narosa Publishing House, New Delhi, 1998				
3.	R.Raghavan Extractive Metallurgy of Non - Ferrous Metals ,Vijay Nicole Imprints Private Limited ,Chennai 2016				
4.	Pehlke R.D, Unit Processes in Extractive Metallurgy, American Elsevier Publishing Company, New York, USA, 1977.				
E-Ref	E-References:				
1.	https://nptel.ac.in/syllabus/113105021/				

18MT602			2 FORMING PROCESSES	L	т	Р	С		
			· ·	3	0	0	3		
Cou	Course Objectives:								
1.	Kno	ow th	ne concepts of Metal forming and associates technologies						
2.	Арр	oly fo	orming concepts in conventional and advanced manufacturing.						
3.	Kno	ow th	ne applications of forming processes in various manufacturing sectors						
UNI	τı		FUNDAMENTALS OF METAL FORMING		9	+	0		
of y form Tem geo	Introduction to forming processes, Bulk forming Vs sheet metal forming, Classification of forming process based on loading conditions. Tensor Analysis, Yield criteria: Von Mises, Tresca yield criteria. Comparison of yield criteria, Octahedral shear stress and shear strain- Forming load calculations Fundamentals of forming processes - variables in metal forming and their optimization, Flow stress determination, Temperature in metal forming, Hot, Cold and Warm working, Strain rate effects, Deformation zone geometry. Workability, Metallurgical structures, friction and lubrication, Residual stresses								
UNI	тΠ		FORGING AND ROLLING		9	+	0		
Clas prop caus slab Defe	ssific berti ses s ar ects	catio es a and nd sh cau	In of Forging, Types of presses and hammers, Open die forging ,Clos and design, Calculation of forging loads, Effect of forging on microstruct remedies, Forging applications.Classification of Rolling Processes, Rollin heet, types of rolling mills. Forces and geometrical relationship in rolling. An ses and remedies.	ed di ure Fo g of E alysis	e foi orging Bloon of ro	rging, g defe ns, bi Illing l	Die ects, lets, oad.		
UNI	T III		EXTRUSION AND DRAWING		9	+	0		
Extr hydi seai rem	usio rosta mles edie	on: [atic ss pi es, D	Direct and Indirect extrusion, equipments, container less extrusion port extrusion, defects and remedies. Analysis of extrusion, tube extrusion pe and tube. Hydrostatic extrusion. Equal Channel Angular Extrusion. Defect prawing of rods, wires and tubes. Introduction to Super plasticity	hole and ts cau	extru proc ises a	usion ductio and	die, n of		
UNI	T IV	1	SHEET METAL WORKING AND HIGH VELOCITY FORMING		9	+	0		
She blan hydi strai form	et N king rauli in h nabil	Meta g, Pı ic, M iarde lity. I	Il Forming: Bending, spinning, stretch forming, deep drawing. Cutting r unching. Defects and applications. High velocity forming methods: Explos Magnetic pulse forming and pneumatic method, Dynapak method. Forma ening coefficient (n value), strain rate sensitivity (m value), plastic strai Introduction to formability limit diagram.	nethod sive fo bility f n ratio	ds - ormin æsts: o (r	Shea g, Ele Effe value	ring, ectro ct of) on		
UNI	ΤV		POWDER METALLURGY		9	+	0		
Step mec isos	os in han tatic	n P/N nical c pre	A advantages and disadvantages. Powder production methods-physical, chemethods. Compaction-Pressure and pressure-less compaction techniques. Issing, Sintering- solid state and liquid phase sintering. Microwave sintering,	emica Hot ar Typica	l and nd Cc al app	old olicati	ons		
			Total (L	⊦T) = 4	45	H	ours		
Cou	irse	Out	tcomes:						
Upo	n co	ompl	etion of this course, the students will be able to:						
CO	1	: 1	Understand and describe the fundamentals of metal forming – Yielding, wor	<a bility<="" td=""><td>/</td><td></td><td></td>	/				
CO2	2	:	Exhibit the knowledge in Rolling and forging processes						
coa	3	:	Explain the Extrusion and Drawing processes, their defects and remedies						
CO4	1	: 1	Understand the fundamentals of various sheet metal forming						

C05		Understand and describe the fundamentals of Powder metallurgy processes			
Text Books:					
1.	Dieter G.E ,Mechanical metallurgy , third edition ,McGraw hill company ,SI edition 1995				
2.	Sinha A.K ,Powder metallurgy ,Dhanpat Rai & sons ,New Delhi,2001				
Reference Books:					
1.	AS	M Metal handbook Vol 14 Forming and forging ,Metal park Ohio USA,2001			
2	ASM Metal handbook Volume 14A: Metalworking: Bulk FormingMetal park Ohio USA,2005				
3.	AS	M Metal handbook Volume 14B: Metalworking: Sheet FormingMetal park Ohio USA,2005			
4.	Metal forming Handbook – Springer				
5.	P.C Angelo ,R.Subramaninan Powder Metallurgy Science,Technology and Applications ,PHI Learning Private Ltd,New Delhi 2009				

18MT603		FOUNDRY PROCESSES AND METALLURGY	L	т	Ρ	С	
		·	3	0	0	3	
Cour	se Ob	ojectives:					
1. 1	To kno	w the basic concept of metal casting technology					
2. T	To app	ly the concept to produce new materials					
UN	IT I	MOULDING MATERIALS AND PATTERNS:		9	+	0	
Introc colou Moule	duction r cod ding s	n to foundry operations, patterns - functions, types, allowances, selection c es, core boxes, moulding practice, ingredients of moulding sand and cor ands. Sand preparation.	f pat e sa	tern nd, 1	mate Festin	rials, g of	
UNI	TII	MOULDING AND CASTING TECHNIQUES:		9	+	0	
Sand di-oxi inves	moul de p tment	ding: green sand moulding, dry sand moulding, skin dry sand moulding, she rocess, permanent mould casting, die casting, centrifugal casting, plas casting, squeeze casting, full mouldprocess,Rheocasting,Thixo casting.	l mou ter n	ulding nould	g, car 1 cas	bon- sting,	
UNI	T III	DESIGN OF CASTINGS:		9	+	0	
Elem Chvo riser	ents c rinov': efficie	f gating system, types, design of gating system with examples, functions of ris s rule, design and positioning of riser with examples, use of chills, exotherm ncy, yield calculations. Use of softwares for foundry applications	ic co	types mpo	s of ris unds	sers, etc.,	
UNI	T IV	QUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION:		9	+	0	
calcu Inspe Pollut	lations ection tion co	s.Cleaning and repair of castings. Casting defects and remedies. Heat tree of casting. Principles of mechanisation, automation and foundry layout. Sand reported in foundries.	atmei eclar	nt of natio	casti n anc	ngs.	
Meltir magn Fluidi and D	ng pra nesium ty, ind Degas	actice and Metallurgy of steels, alloy steels, cast irons, aluminium alloys, a alloys, Solidification of Castings, Fluidity, Definition, Factors affecting an oculation in cast irons, modification in Al-Si system, Slag-Metal Reactions sing Technique Tota	copp nd Me , Gas al (L+	oer a easu ses • T) =	alloys remer in M 45 H	and nt of etals ours	
Cour	se Oı	itcomes:					
Upon	comp	etion of this course, the students will be able to:					
CO1	:	Explain the solidification of casting, effect of solidification range, fluidity and fa fluidity	actors	affe	cting		
CO2	:	Discuss the cast iron categories, their types and different heat treatment meth graphitization, spherodization etc and denote the ASTM standards for all the	nods l variet	ike ies			
CO3	:	Discuss the alloying element effect on the steels and mention the precaution moulding and melting of steels	to be	take	n in		
CO4	:	Describe the casting methods employed for fabrication of non-ferrous alloys					
C05	.05 : Mention the melting procedure that is adopted for the various alloys like steels, stainless steels, discuss the slag-metal reactions					els,	
Text	Text Books:						
1.	Hei Co	ne R W., Loper, C.R.Rosenthal, P.C., "Principles of Metal Casting" ,Tata-McG Ltd, New Delhi, 2011.	raw ⊦	lill Pu	ublish	ing	
2.	Jain P.L ,"Principles of Foundry Technology", Tata McGraw Hill Publishing Co Ltd, New Delhi, 2004.				04.		

3.	Srinivasan N K., "Foundry Engineering", Khanna Tech Publications, New Delhi, 2009.			
Reference Books:				
1.	RamanaRao T V.,"MetalCasting : Principles and Practice", New Age International Publishing Co., New Delhi, 2004.			
2.	ASM Metals hand Book, Vol 15, "Casting" ASM International, 10th edition, 2001.			
3.	Beeley P R., "Foundry Technology", Butterworths, London, 2005.			

18	MT6	4 WELDING PROCESSES AND METALLURGY	L	Т	Р	С	
			3	0	0	3	
Cou	rse (bjectives:					
1.	To k	ow the concepts of different materials joining and allied processes.					
2.	To u	derstand the metallurgical aspects of welding.					
U	I TI	GAS, ARC AND OTHER WELDING PROCESSES:		9	+	0	
Intro duty shie elec proc	Introduction to welding and allied processes. Overview of arc welding power sources, open circuit voltage, duty cycle. Fusion welding processes–Principle, merits, demerits and applications of oxy-acetylene welding, shielded metal arc welding, submerged arc welding, gas tungsten arc welding, gas metal arc welding, electro slag welding. Consumables for these processes. Thermit welding process, Resistance welding processes						
UN	IIT II	SOLID STATE AND SPECIAL WELDING PROCESSES:		9	+	0	
Prin welc welc bear	ciple, ling, ling m we	merits, limitations and applications of Cold pressure welding, hot pressure iction stir welding, ultrasonic welding, induction pressure welding, explosive v rocesses. Principle, merits, limitations and applications of Electron beam, p ding processes.	ure w veldin lasma	eldin g and arc	g, fri d diffu and l	ction Ision aser	
UN	IT III	OTHER JOINING AND ALLIED PROCESSES:		9	+	0	
Prin Prin	ciple. ciple:	techniques, joint design, materials, merits, limitations and applications of Brazi of Cutting processes and Hard facing techniques.	ng, So	olderi	ng.	I	
UNIT IV WELDING METALLURGY:				9	+	0	
Hea meta Con	t flov al ar cept	in welding, weld thermal cycles and their effects, simple problems, structured heat affected zone, slag-metal reactions, gas-metal reactions, solidificated f weldability and its assessment.	ral ch tion d	ange of we	es in eld m	weld etal.	
UN	IIT V	WELDING AND WELDABILITY OF ALLOYS:		9	+	0	
Wel stee alloy	ding ls, w vs, w	f plain carbon steels, C-Mn steels, low alloy steels, welding of cast irons, weld lding of aluminium and its alloys, welding of copper and its alloys, welding of ti lding of Ni and its alloys. Dissimilar welding. Arc welding defects, their causes	ng of taniun and re	stain n and emed	less its ies.		
		Τοί	al (L-	-T) =	45 H	ours	
Cou	rse (utcomes:					
Upo	n cor	pletion of this course, the students will be able to:					
CO1		Understand the working principle, merits and demerits of different convention processes.	nal we	lding			
CO2	2 :	Understand the working principle, merits and demerits of different solid state	weldi	ng pi	oces	ses.	
COS	3 :	Understand the working principle, merits and demerits of different special we	lding	proce	esses	•	
CO4	:	Understand the working principle and importance of allied processes in meta	ıls joir	ing.			
C05	:	Solve welding heat flow related problems. Learn weldability and welding rela different materials.	ted pr	oblei	ns of		
Tex	Text Books:						
1.	S	nivasan N K ,"Welding Technology", Khanna Publications, Delhi, 2001.					

2.	Parmar, R.S., "Welding Processes and Technology", 3 rd edition. Khanna Publishers, New Delhi, 2003.					
3.	Parmar, R.S., "Welding Engineering and Technology", Khanna Publishers, New Delhi, 2003.					
Refer	Reference Books:					
1.	Davies A C, "Welding",10th edition, Cambridge University Press, UK, 1996.					
2.	AWS Welding Handbooks, AWS, New York, 1995.					
3.	Howard B. Cary, "Modern Welding Technology", Prentice Hall, New Jersey, USA, 2004.					
4.	Sindo Kou, Welding Metallurgy, John Wiley & Sons, 1987.					
5.	Norman Bailey, "Weldability of ferritic steels", Jaico Publishing House, 1997.					
6.	Nadkarni S.V., "Modern Arc Welding Technology", Oxford & IBH Publishing Co., 1988.					
7.	Schwartz M.M.,"Metals Joining Manual", McGraw- Hill Inc.,1979.					
8.	ASM Metals Handbook, Vol. 6,"Welding Brazing & Soldering", ASM International, Metals park, Ohio, USA, 2001.					

18MT605			WELDING AND NON-DESTRUCTIVE TESTING LABORATORY	L	т	Р	С
			·	0	0	3	1
Cours	se C	Objec	tives:				
1.	То	kno	w about the concepts of welding technology and apply them for the fabrication	of con	npone	nts.	
2.	To co	prov mpoi	ride an understanding on the concepts of NDT and apply them for assessing the nents.	e qua	lity of		
EXPE	RIN	IEN	S: Welding Laboratory				
1.	Pr	epara	ation of square butt joint using Shielded metal arc welding process.				
2.	Eff	fect o	f welding parameters on weld bead characteristics (using Profile projector).				
3.	St	udy a	and demonstration of GTA welding, GMA welding and Solid state welding proce	esses.			
4.	Mi	crost	ructural observation of weldments.				
5.	Pr	actic	e for preparation of WPS and PQR.				
6.	St	udy a	and demonstration of weldability testing methods related to cold cracking and h	ot cra	cking.		
EXPE	RIN	IEN	S: Non-Destructive Laboratory				
1.	Vis	suali	nspection.				
2.	Lic	quid p	penetrant inspection.				
3.	Ma	agne	ic particle inspection.				
4.	Ed	ldy c	urrent inspection.				
5.	lde	entifio	cation of welding & casting defects in radiographs.				
6.	Ult	traso	nic testing and use of IIW blocks and Reference Blocks.				
				Tota	I (P) =	= 45 H	ours
Cours	se C	Dutco	omes				
After	the	succ	essful completion of the practical session, the students will be able to				
CO1		: F	Prepare square butt joints				
CO2		: /	Analyze the weld bead characteristics using profile projector				
CO3		: เ	Inderstand the basics of GTA and GMA processes				
CO4		: 1	Perform liquid penetrant, magnetic particle and eddy current inspection				
CO5		: 1	nterpret the radiograph and study of IIW block				
18N	ЛТ6	06	FOUNDRY & FORMING PROCESSES LABORATORY	L	т	Ρ	С

	0				0	3	1	
Cour	Course Objectives:							
1.	Тс	o kn	ow the concept of material forming technology					
2.	Тс	o ap	ply them for the advanced manufacturing processing for various structural engin	eering	g appli	cation	S	
EXPE	RIN	MEN	NTS:					
1.	AF	=s (Grain Fineness Number.					
2.	M	oist	ure Content determination and Mouldability Test.					
3.	Sa	and	Strength Tests. and Mould Hardness Test					
4.	Pe	erm	eability Test and Shatter Index Test					
5.	Τe	ensi	on Test- Finding n and k value.					
6.	С	uppi	ing test.					
7.	Co	old i	rolling of aluminium/brass sheets.					
8.	Ef	fect	of Recrystallisation annealing temperature & time on cold worked alloys.					
9.	De	eter	mination of particle size and shape of metal powders.					
10.	De	eter	mination of Flow rate, Apparent and Tap densities of Powders.					
				Tota	ıl (P) :	= 45 H	ours	
Cour	se (Out	comes					
After	the	suc	cessful completion of the practical session, the students will be able to					
CO1		:	Determine the strength, collapsibility of the moulding sand					
CO2		:	Roll the different sheets to obtain a reduced thickness of given sheets					
CO3		:	Vary the material properties of cold worked alloys by changing the recrystallisat temperature and time	tion ar	nealir	ng		
CO4 : Understanding the effect of Recrystallisation annealing tempera		Understanding the effect of Recrystallisation annealing temperature & time on o	time on cold worked alloys					
CO5		:	Simulating metal flow using a model material					

SEMESTER - VII

18MT701		01	CHARACTERIZATION OF MATERIALS	L	т	Ρ	С
				3	0	0	3
Cou	rse (Objec	ctives:				
1.	То р	rovid	e an understanding of the basic principles of various characterizations tech	nique	S		
2.	To le	earn t	he uses of analytical instruments to carryout metallurgical characterization.				
UN	IIT I	N	IETALLOGRAPHIC TECHNIQUES:		9	+	0
Meta propo source field, quan	ertie ces, pha titat	ical r s - m lens ise-co ive m	nicroscope - principle, construction and working, metallographic specimen agnification, numerical aperture, resolving power, depth of focus, depth of aberrations and their remedial measures, various illumination technique ontrast, polarized light illuminations, interference microscopy, high temperate etallography – Image analysis.	prepa f field es-bri ture n	aratio , diff ght t nicro	on, op erent field, scopy	otical light dark 7;
UN	IT II	X	-RAY DIFFRACTION TECHNIQUES :		9	+	0
Char powo Appli para	acte der icatio mete	eristic meth ons o er, me	X-ray spectrum, Bragg's Law, Diffraction methods - Laue method, rotat od, Principle, equipment and applications, X-ray diffractometer, filt f X-ray diffraction in materials characterization – Determination of crystal st easurement of stress, Introduction of GIXRD, SAX/WAX.	ing c ers a ructui	rysta and re, la	I met coun ttice	hod, ters,
UN	IT III	E	LECTRON OPTICAL TECHNIQUES:		9	+	0
princ diffra mode quan	iple, ictio es a ititat	con n, ap ind a ive ar	struction and working , specimen preparation, various imaging mod plications, Scanning electron microscopy(SEM) – principle, equipment pplications, Electron probe microanalyser(EPMA)- principle, instrumentat halysis, HRTEM.	les, , vari ion, o	seleo ous quali	cted opera tative	area ating and
UN	IT IV	' S	URFACE ANALYSIS TECHNIQUES:		9	+	0
Princ spec fluore	tros esce	, instr copy, ence s	rumentation, working and applications of Auger Electron spectroscopy, X-ra Secondary ion mass spectroscopy / ion microprobe, Optical emission spec spectroscopy.	iy pho trosc	otoele opy a	ectror and X	ı -ray
UN	тν	T T	HERMAL ANALYSIS AND ADVANCED CHARACTERIZATION ECHNIQUES:		9	+	0
Adva instru Atom Diffe Instru	Advanced characterization techniques: Field ion microscopy including atom probe - principle, instrumentation and applications, Scanning probe microscopy - principle, instrumentation and applications, Atomic force microscopy - principle, instrumentation and applications. Thermal techniques: Principles of Differential thermal analysis, Differential scanning calorimetry and Thermograviometric analysis – Instrumentation.						
			Tota	al (L+	T) =	45 He	ours
Course Outcomes:							
Upor	n cor	nplet	ion of this course, the students will be able to:				
CO1	:	De	escribe the principle of various optical metallographic techniques.				
CO2	:	De	emonstrate the Bragg's law of diffraction and the principle of XRD.				
CO3	:	De	escribe the principle of various electron optical techniques.				
CO4	CO4 : Describe the various surface analyzing techniques.						

C05	State the thermal analysis technique and apply them to determine various thermal events in materials.
Text E	Books:
1.	Angelo .P.C , " Materials Characterization ", Reed Elsevier India Pvt Ltd, Haryana, 2016.
2.	Hebbar K R, " Basics of X-Ray Diffraction and its Applications", I.K. International Publishing House Pvt Ltd, New Delhi, 2011
3.	Khangaonkar.P.R., "An Introduction to Materials Characterization", Penram International Publishing (India) Pvt. Ltd, Mumbai, 2010.
Refer	ence Books:
1.	Phillips V A, "Modern Metallographic Techniques and their Applications", Wiley Eastern, 1971.
2.	Cherepin and Malik, "Experimental Techniques in Physical Metallurgy", Asia Publishing Co., Mumbai, 1968.
3.	Cullity B D., Stock S R "Elements of X-ray Diffraction", Prentice Hall, Inc 2001.
4.	ASM Handbook, Volume 10, "Materials Characterization", 9 th edition, ASM international, USA, 1986.
5.	Vander Voort, "Metallography: Principle and practice", Mc Graw Hill Inc., 1984.
6.	Kehl G L., "The Principles of Metallographic Laboratory Practice", McGraw Hill Book Company, 1949.
7.	Small man R.E., 'Modern Physical Metallurgy', 4 th Edition, Butterworths, 1985.

18MT702				INTRODUCTION TO INDUSTRIAL MANAGEMENT	L	Т	Ρ	С
					3	0	0	3
Cοι	Course Objectives:							
1.	On bas	stu sics	dying this cou of manageme	irse the students can contribute to the success of companies by ent.	unde	rstan	ding 1	the
2.	То	pro	vide an oppor	tunity to learn basic management concepts essential for busines	s.			
3.	Ga	in k	nowledge on	various factors of production in increasing the efficiency of the co	mpa	ny.		
4.	The	ey o	an able to kno	ow better organizational bheaviour and modern concepts of indu	strial	mana	agem	ent.
U	NIT		BASICS OF			9	+	0
Dev Indi Und –Tra	velop vidu lerta ade	pme ial akin Un	ont of Manage Ownership – gs, Corporate ion.	ement Thought. Approaches to the study of Management, Form Partnership – Joint Stock Companies – Co-operative Enterpris Frame Work – Share Holders – Board of Directors – Committee	s of (ses – s – C	Drga Pub hief	nizati olic Se Exect	on – ector utive
UNI	ΤII		FUNCTION	S OF MANAGEMENT		9	+	0
Mak Dec app – C mar	king centi rais omr nage	raliz al - nur eme	Organizing - zation – Orga Career Strate lication, Contr ent – Preventiv	 Nature and Process – Premises – Departmentalization – inizational culture, Staffing – selection and training – Placemegy – Organizational Development. Leading – Managing human olling – Process of Controlling – Controlling techniques, product ve control, Industrial Safety. 	- Line ent - factor ivity a	e an - Pe - Le and c	d sta rforma eader operat	aff – ance ship tions
UNI	TIII	I	ORGANIZA	TIONAL BEHAVIOUR		9	+	0
Defi beh Imp Sati	initic avic licat isfac	on our tion ctio	 Organization causes – s. Personality t. Learning and 	on – Managerial Role and functions – Organizational app Environmental Effect – Behavior and Performance, Perceptic – Contributing factors – Dimension – Need Theories – Process ad Behavior – Learning Curves, Work Design and approaches	roach n – Theoi	ies, Orga ies -	Indiv nizat - Job	idual ional
UNI	ΤIV	/	GROUP DY	ÍNAMICS		9	+	0
Gro com Gric Typ dec Dev	Group Behavior – Groups – Contributing factors – Group Norms, Communication – Process – Barriers to communication – Effective communication, leadership – formal and informal characteristics – Managerial Grid – Leadership styles – Group Decision Making – Leadership Role in Group Decision, Group Conflicts – Types – Causes – Conflict Resolution – Inter group relations and conflict, Organization centralization and decentralization – Formal and informal – Organizational Structures – Organizational Change and Development – Change – Resistance to Change – Culture and Ethics							
UNI	тν		MODERN C	CONCEPTS		9	+	0
Mar Futu Bus Mar	Management by Objectives (MBO), Management by Exception (MBE), Strategic Management – Planning for Future direction – SWOT Analysis – Information technology in management – Decisions support system – Business Process Re-engineering (BPR) – Enterprises Resource Planning (ERP) – Supply Chain Management (SCM) – Activity Based Management (ABM).							
				Total	(L+T) =	45 H	ours
Cοι	irse	e O1	itcomes:					
Upc	on co	om	pletion of this	course, the students will be able to:				
CO	1	:	Gain knowle	edge in Basics of the industrial management and the outline of ind	dustri	al fac	ctors.	
CO	2	:	Gain knowled	dge on management functions and to apply it for different situation	ons.			

CO3	:	Develop their learning behaviour in an industrial set up.					
CO4	:	Improve Personality skills, Major determination in profession in group behavior.					
CO5		Gain knowledge on modern concepts for better industrial management.					
Text E	Text Books:						
1.	Herald Knottz and Heinz Weihrich, 'Essentials of Management', Tata McGraw Hill Education Pvt. Ltd., 2010						
2.	Ste	phen P. Robbins, 'Organization Behaviour', Pearson Education Inc., 13 edition, 2010.					
Refere	Reference Books:						
1.	Tie 11(s, AF, Stoner and R.Edward Freeman, 'Management' Prentice Hall of India Pvt. Ltd. New Delhi) 011, 1992.					
2.	Jos	seph J, Massie, 'Essentials of Management' Prentice Hall of India Pvt. Ltd. 1985.					
3.	Ρ.0	C. Tripathi & P.N. Reddy, 'Principles of Management', Tata McGraw Hill, 2006.					
4.	Ra	avi M. Kishore, "Project Management", Tata McGraw Hill, New Delhi, 2007.					
E-References:							
1.	http	os://nptel.ac.in/courses/112107142/					
2.	https://nptel.ac.in/courses/112107143/						

18MT703			MATERIAL CHARACTERIZATION LABORATORY	L	т	Р	С		
	0	0	3	1					
Cours	Course Objectives:								
1.	To develop the understanding of the various characterization tools and use of the tools.								
EXPE	RIM	ENTS	6						
1.	Det	termir	nation of volume fraction of phases using image analysis.						
2.	Det	termir	nation of nodularity and nodule count in cast iron using image analysis.						
3.	Stu	idy of	Wulff net diagram, Stereographic projection & Pole Figure.						
4.	Str	ucture	e Factor determination.						
5.	Ind	exing	of XRD patterns.						
6.	Est	imatio	on of precise lattice parameter of cubic crystals.						
7.	Det	termir	nation of crystallite size and r.m.s.strain for mechanically alloyed power.						
8.	Ana	alysis	of SEM fractographs.						
9.	Ana	alysis	of TEM images						
10.	Inte	erpret	ation of DSC curves						
				Tota	l (P) :	= 45 H	ours		
Cours	Course Outcomes								
After t	he s	succes	ssful completion of the practical session, the students will be able to						
CO1	:	Dete	ermine the volume fraction of phases, nodule count and nodularity						
CO2	:	Inde	ex the XRD patterns						
CO3	:	Ana	lyze SEM and TEM images						
CO4	Interpret DSC curves								

18MT70		04	COMPUTER APPLICATION IN METALLURGY LABORATORY	L	т	Ρ	С
	0	0	3	1			
Cours	se O	bjecti	ives:				
1.	То	becor	me familiar with computational Technique including related mathematical bac	kgrour	nd		
EXPE	RIM	ENTS	3				
	No mo	te : C de	ompute the following experiments through programming and exhibit the	e resu	lts in	graph	nical
1	Pa	ramet	ric approaches in creep data, Larson miller parameter.				
2	Sta	atistica	al quality control, use of various charts				
3	Nu	merica	al solution for non-linear equations				
4	Ca	lculati	on of adiabatic flame temperatures, at the tuyers of a coke fueled shaft furna	ce.			
5	Co	oling	of pig iron in transfer ladle				
6	The	ermo	chemical data calculation – enthalpy increment				
7	Pre	edictin	g the scrap requirement of oxygen steel making process.				
8	He	at loss	s through furnace roof.				
9	Un	stead	y state heat flow-cooling of a slab.				
10	Ent	thalpy	and free energy change of a reaction.				
				Tota	ı l (P) =	= 45 H	ours
Cours	se O	utcor	nes				
After t	he s	succes	ssful completion of the practical session, the students will be able to				
CO1	:	Calc resu	culate the adiabatic flame temperatures of shaft furnace through programming	g and e	exhibit	the	
CO2	:	Dem	nonstrate the usage of various control charts				
CO3	:	Crea	ate the concept of enthalpy and free energy change of reaction.				
CO4	:	Prec	dict the scrap requirement of oxygen steel making process				

SEMESTER – VIII

18MT801			TOTAL QUALITY MANAGEMENT	L	т	Ρ	С	
						0	3	
Cοι	Course Objectives:							
1.	To g Guru	ive the stu us like Den	dent an overview of quality and TQM and explaining the salient contril ning, Juran and Crosby. General barriers in implementing TQM.	butior	ns of	Quali	ty	
2.	To make students to understand the TQM concepts like customer Focus, Employee Focus and their involvement, continuus process improvement and Supplier Management							
3.	To p Six s	provide exp sigma.Failu	posure to students on the basic and new seven management tools,Qu are mode effect analysis.	ality	conc	epts li	ke	
4.	To e	xplore indu	ustrial applications of Quality function deployment, taguchi quality cond	cepts	and	TPM.		
U	NIT I	PRINC	CIPLES AND CONCEPTS OF QUALITY		9	+	0	
Bas Poli Ben	ics o cies ichma	f Quality M and Obje arking.	lanagement - Development of Quality Management Systems - Qualit ctives - Functional planning deployment from Strategic plans -	y Pla Meas	nning urem	g - Qu nents	ality and	
U	NIT II	QUAL	ITY AUDITS		9	+	0	
Pro QA Pre	duct, plans ventiv	Process a - Quality /e actions	nd System, Supplier Evaluation and Performance evaluation - Plannir Costs Prevention, Appraisal and Failure Costs - Quality Improvements - Role of Quality Control – Calibration.	ng Qu s - Co	ality orrect	Audits ive ar	3 - 1d	
UN	III TIV	CONC	EPTS OF TQM		9	+	0	
Bus Nev Exc	siness v 7 to sellen	Excellence ols, Busine ce Awards	e models (EFQM, Deming, Malcolm Balridge), TQM tools , Simple SC ess Process Reengineering, Cost/Time diagram, Quality Function Dep and Case Studies - Six Sigma concepts	QC to ploym	ols to ent -	FME Busir	CA, iess	
UN	VI TIV	STATI	STICAL QUALITY CONTROL		9	+	0	
Met Cun Cap	hods nulati babilit	and Philos ve sum an y Analysis	sophy of statistical process control –Control Charts for Variables and A d Exponential - weighted moving average control charts- other SPC te	Attribu echni	utes - ques	– –Pro	cess	
U	V TIV	EMPL	OYEE PARTICIPATION		9	+	0	
Hist SQ Invo	torica C, Be plvem	l foundatio havioral m ent progra	n of employee involvement programs classical and industrial enginee anagement innovations, Quality circles Self managed teams- Implem ms.	ring a entin	ppro gEm	aches ploye	;, e	
			Tota	al (L+	·T) =	45 Ho	ours	
Cοι	urse	Outcomes						
Upc	on coi	mpletion of	this course, the students will be able to:					
CO	1	Student manufa	is will be able to gain basic knowledge in total quality management rel cturing and service industry including IT sector.	evant	to b	oth		
CO	2	Student based o	is will be able to implement the basic principles of TQM in manufacturi organization.	ing ar	nd se	rvice		
CO:	3	The stu manufa	dent would be able to apply the tools and techniques of quality manag cturing and services processes	jemei	nt to			
CO	4	The stu	dents will be able to gain the knowledge on various ISO standards and	d qua	lity s	ystem	าร	
Тех	t Boo	oks:						
1.	Juran, J.M. and Gryna, 'Quality Control Hand Book', 2nd Ed., 1999.							

2.	Evans R. J and Lindsay M. W, 'The Management and control of quality', 2nd Ed, 2011, Jaico Publishing house.				
Refer	Reference Books:				
1.	James R. Evans and William M. Lindsay, "The Management and Control of Quality", 6th Edition, South-Western (Pg.Thomson Learning), 2005.				
2.	Janakiraman,B and Gopal, R.K, "Total Quality Management – Text and Cases", Prentice Hall (Pg.India) Pvt. Ltd, 2006.				
3.	Pathak ,"Total Quality Management- Macmillan publishers India Ltd.				
4.	Suganthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (Pg.India) Pvt. Ltd.,2006.				
E-References:					
1.	https://onlinecourses.nptel.ac.in/noc17_mg18/preview				
2.	https://onlinecourses.nptel.ac.in/noc18_mg04/preview				

	PROFESSIONAL ELECTIVES - I							
18M	TE1	1 TRANSPORT PHENOMENA	L	т	Р	С		
		(Use of HMT databook is permitted in University Examinations)	3	0	0	3		
Cour	se O	bjectives:						
T 1. m a	To understand basic concepts related to heat flow, fluid flow, mass transfer, in the context of metallurgical processes; to become familiar with the mathematical treatment and equations related to above transport phenomena; to comprehend the science behind process modeling.							
UNI	ТΙ	MOMENTUM TRANSFER – I		9	+	0		
Dimer viscos tube, Creep	nsior sity, Hago bing f	s and units, Properties of fluid, Concept of pressure and its measuremer ypes of fluids. Types of flow.Conservation of momentum in steady state - Flu en-Poisulle equation, Equation of continuity, Conservation of Momentum - Navi low past a sphere – Stoke's law. Classical Reynold's experiment,	nt. No uid flo ier-St	ewtor ow in okes	n's lav a ciro equa	v of cular tion.		
UNI	тШ	MOMENTUM TRANSFER – II		9	+	0		
– con Frictic plate. nozzle	cept on los Intro es.	of velocity boundary layer. Flow past a submerged sphere. Energy balance – E ss, Influence of bends, fittings and changes in the pipe radius, Concept of head duction - flow through packed bed of solids and fluidized beds, compressible fl	Berno I, Pito Iow a	oulli's ot tub nd su	equa e, Or perso	tion. ifice onic		
UNI	r III	HEAT TRANSFER – I		9	+	0		
Trans dimer transf simple	ient ision er w e pro	heat conduction system – lumped capacitance approach, semi-infinite al finite system (no derivations and only simple problems). Convection: (th forced convection – flow through pipes, flow over plates, spheres and cylind blems only).	syst Corre ers (i	ems latior no de	and for rivatio	one heat ons,		
UNI	ΓΙν	HEAT TRANSFER – II		9	+	0		
Corre and v deriva Solidi reflec excha	Correlation for heat transfer with natural convection – Heat transfer by natural convection from vertical plates and vertical cylinders, Natural convection over horizontal plates, horizontal cylinders and spheres (no derivation, simple problems only). Concept of overall heat transfer coefficient and thermal boundary layer, Solidification heat transfer. Radiation: fundamental laws, black body radiation, emissivity, absorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation exchange between surfaces, radiation exchange between black bodies – simple problems.							
UNI	Т٧	MASS TRANSFER		9	+	0		
Conce and it diffusi thickn conce	Concept of mass diffusion, factors affecting diffusivity in solids, liquids and gases. Fick's laws of diffusion and its applications, Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant fluid, diffusion through porous media. Unsteady state diffusion: diffusion of gas (like hydrogen) in a plate of finite thickness. Mass transfer by forced and free convection in laminar flow, Mass transfer coefficients and concentration boundary layer. Introduction to mass transfer correlations. Basics of Dimensional Analysis.							
		Tota	al (L-	+1)=	45 Ho	ours		
Cours	se O	utcomes:						
Upon	com	pletion of this course, the students will be able to:						
CO1	:	Explain the mechanics of fluid and its basic properties and equation describin properties	ig its	motio	on and	t		
CO2	:	Describe the flow of fluids through plates and pipes.						

CO3	:	Understand and explain the modes and mechanism of heat conduction of a material				
CO4	:	. Describe the mode of conductive heat transfer and different flow types				
CO5	:	Explain the method of radiative heat transfer and also the means of transfer of materials mass by different methods				
Text Books:						
1.	Gaskell, D.R., An Introduction to Transport Phenomena in Materials Engineering, 2 nd Edition, Momentum Press, New Jersey, 2012.					
2.	Geiger, G.H., and D.R. Poirier, Transport Phenomena in Metallurgy, Addison-Wesley Publishing Company, Inc., Philippines, 1973					
Refere	ence	Books:				
1.	The	emelis, N.J., Transport and Chemical Rate Phenomena, Gordon & Breach Publishing Group, 1995				
2.	Bird, R.B., W.E. Stewart, E.N. Lightfoot, and D.J. Klingenberg, Introductory Transport Phenomena, John Wiley & Sons, Inc., 2015					
3.	Мо	hanty, A.K., Rate Processes in Metallurgy, PHI Learning, India, 2009.				
4.	Sachdeva, R.C., Fundamentals of Engineering Heat and Mass Transfer, New Age International Publishers,					

18MTE12	FRACTOGRAPHY AND FAILURE ANALYSIS	L	т	Ρ	С	
		3	0	0	3	
Course Objectiv	/es:			•		
1 To learn a	bout various types of failures and their mechanisms					
			0		0	
	Design Material Processing Service and Maintenance	Stage	and the second	t Fai	v Iuro	
Analysis, class mechanics cond and Brittle Frac	ification and identification of Various Types of Fracture-Ov cept.Ductileand Brittle Fracture, Fracture Origin, Initiators, chara ture.	verviev	w of	frac frac	ture ctile	
UNIT II FATIGU	JE AND CREEP FAILURE		9	+	0	
General Conce Life Some Cas Fatigue, Metallu on Certain Gas	pts, fracture Characteristics Revealed by Microscopy, Factors se Studies of Fatigue Failures. Creep, Stress Rupture, Elev urgical Instabilities, Environmental Induced Failure, Elevated Te Turbine Components and Petroleum Refinery Components.	s Affe /ated empe	cting Tem rature	Fati pera e Eff	gue ture ects	
UNIT III WEAR	AND CORROSION FAILURES		9	+	0	
Types of Wear, Failure. Corrosi overview of Va Stress Corrosic Hydrogen Dama	, Role of Friction in Wear, Lubricated and Non-Lubricated Wea on Failures-Factors Influencing Corrosion Failures, Analysis of rious types of Corrosion Stress Corrosion Cracking, Sources on Cracking. Procedure for Analyzing Stress Corrosion Crackin age Failures.	ar, An Corro . Cha g, vai	alyzin sion racte rious	ng N Failu ristic: type	/ear res, s of s of	
UNIT IV FAILUF	RE OF FORGING, CASTING AND WELDMENTS		9	+	0	
Causes of Failure in Forging like material characteristics, Deficiencies in design, Improper Processing, Fabrication or Deterioration resulting from service conditions, Failure of Iron and Steel Castings, effect of Surface Discontinuities, Internal Discontinuities, Microstructure, Improper Composition, Improper Heat Treatment, Stress Concentration and Service Conditions. Failure of Weldments-Reasons for Failure procedure for Weld Failure Analysis.						
Reliability Conc Poisson. Expon system, Mean T	ept and Hazard Function, Life Prediction, Condition Monitoring, ential and Weibull Distribution for Reliability, Bath Rub Curve, P Fime Between Failures and Life Testing.	Applic aralle	ation I and	of Serie	es	
	Т	otal(L	+T)=	45 Ho	ours	
Course Outcom	es:					

Up	on co	mpletion of this course, the students will be able to:			
СС	D1 :	Mention the different sources of failures and specify the deficiencies in design,material, processing, service and maintenance			
СС	92 :	Discuss the fatigue and creep failures that take place under cyclic loading andhigh temperature conditions			
CC)3 :	Investigate the failures occurring due to wear and corrosional damages			
со	94 :	Discuss the failures occurring due to the process of forging, casting and at theweld joints			
CC	95 :	Describe the process of reliability and hazard function and the different systems			
Тех	t Bo	oks:			
1.	1.C and	olangelo, V.J., and F.A. Heiser, Analysis of Metallurgical Failures, John Wiley Sons Inc., New York, USA, 1974.			
2.	Cha Put	arlie R Brooks, Ashok Choudhury Metallurgical Failure Analysis, McGraW -Ilill Iishing Co. USA, 1993			
Refe	Reference Books:				
1.	ASM Handbook, Vol. 10: Failure Analysis and Prevention, ASM Metals Park, Ohio, 1995				
2.	Das, A.K., Metallurgy of 'Failure Analysis, Tata McGraw-Hill Publishing Co., New Delhi, 1996.				

	18MTE13	METALLURGICAL KINETICS	L	т	Ρ	С	
			3	0	0	3	
Course Ob	jectives:						
To lear 1. learn a base w	 To learn the basic principles and concepts of kinetics, in the domain of metallurgy and materials; and to learn about equations and their applications; and to appreciate that metallurgical kinetics is a knowledge base with abundant applications 						
				•			
UNIT I	. Role of kinetics beter	geneous and homogeneous kinetics. Role of heat and	d ma	9 ss tr	+ ansfei	0 r in	
metallurgica of temperat determinati	al kinetics, rate expression sure (Arrhenius Equation) on of activation energy.	on, Effect of Temperature and concentration on reaction, Effect of concentration (order of a reaction), signification	on kir ance	netics and	s: effe	ct	
UNIT II	KINETICS OF SOLID-	FLUID REACTION		9	+	0	
shrinking co step, Mass step, Conce Theoretical	transfer through externa entration boundary layer, model for mass transfer	I fluid film as rate controlling step, Product layer diffusion as definition and significance of heat and mass transfer of coefficients, Correlations for heat and mass transfer of	rate rate coeff	cont cont icien cient	trolling rolling t, s.	s, g)	
UNIT III	KINETICS OF LIQUID	SOLID TRANSFORMATION		9	+	0	
Kinetics of heterogene changes - c Diffusion - c	liquid-liquid reaction, Kin ous nucleation kinetics, l classification, nucleation driving force, classificatio	etics of liquid-solid transformation - driving force, hom kinetics of growth, kinetics of alloy solidification. Solid and growth processes. n, Ficks laws, diffusion coefficients.	ogen state	eous pha	s and se		
UNIT IV	KINETICS OF SOLID-	STATE PHASE TRANSFORMATION		9	+	0	
Kinetics of solid-state phase transformation - scope and classification, kinetics of homogeneous and heterogeneous nucleation, interface growth velocity, kinetics of special transformations (Widmanstatten, massive, polymorphic, coarsening, recrystallization, age hardening), kinetics of invariant and moving boundary transformation,							
				•		•	
Kinetics of Avrami s m isothermal	UNIT V OVERALL TRANSFORMATION KINETICS 9 + 0 Kinetics of phase transition in polymers, glass, ceramics. Overall transformation kinetics - Johnson-Mehl and Avrami s model, kinetics of non-random nucleation, kinetics of diffusion controlled, isothermal and non-isothermal kinetic analysis 9 + 0					and	
Total (L+T)=45+0=45Hours Course Outcomes:							

Upon	Upon completion of this course, the students will be able to:					
CO1	:	Study about roles of kinematics, heat and mass transfer in metallurgy				
CO2	:	Formulate kinematics of solid-fluid-gas reaction				
CO3	:	Details about kinematics of solid-fluid transformation				
CO4	:	Knowledge about solid phase transformation				
Text E	Book	KS:				
1.	Ahi lea	indra Ghosh and Sudipto Ghosh, A Text book of Metallurgical Kinetics, PHI rning Pvt. Ltd., New Delhi, 2014				
2.	H.S. Ray, Kinetics of Metallurgical Reactions, International Science publisher, 1993					
Reference Books:						
1.	F. Habashi, Kinetics of Metallurgical Processes, Métallurgie Extractive Québec, 1999					
2.	Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.					
18MT	E14	4 SURFACE ENGINEERING	L	Т	Ρ	С
--	--	--	---------------	----------------	------------	-----
			3	0	0	3
Cours	se C	Dbjectives:				
1.	Ana diff	alyze the various concepts of surface engineering and comprehend the de iculties	sign			
UNIT	I	TRIBOLOGY AND PLATING PROCESSES		9	+	0
Introduction to tribology, Wear: Types of wear-adhesive, abrasive, oxidative, corrosive, erosive and trotting wear, roles of friction and lubrication and wear testing. Plating Processes: Fundamentals of electrodeposition, plating of nickel, chromium, tin and copper, pulsed plating, hydrogen embrittlement, plating adhesion, electroless plating,electrochemicalconversion coating, selective plating for repair, plating properties, hard anodizing.						
UNIT		HARD FACING PROCESSES		٥		0
SMAW,GTAW, GMAW, FCAW, SAW, PAW,Oxy-Acetylene Welding, Furnace fusing, Thermal-spray, name spray processes-HVOF, Detonation gun and jet kote processes,hardfacing consumables.					1	
UNIT		SPECIAL DIFFUSION PROCESSES		9	+	0
Princi Selec hardn	ple tior	ofdiffusion processes-Boriding, Aluminising, Siliconising, C of diffusion processes-Characteristics of diffused layer-micro structure s evaluation-properties and applications.	hror eanc	nisi Imic	ng- cro	
UNIT	IV	THIN FILM COATINGS		9	+	0
Physi Cherr coatir	cal nica ngs.	vapourdeposition processes-Thermal evaporation-sputtercoating-lon pl I vapour deposition-reactive sputtering-TiC, TiN, Alumina,CBN,Diamon Structure, properties and applications.	atin d ar	g- nd E	DLC	
UNIT	v	HIGH ENERGY MODIFICATION AND SPECIAL PROCESSES		9	+	0
Electr Comp Electr centri	Electron beam hardening, glazing, Laser beam hardening glazing ion implantation, Composite surface created by laser and Electron beam. Surface cements, Wear tiles, Electro spark deposition, fused carbide cloth, thermal/chemical. Ceramic coatings, centrifugal cast wear coatings, Wear sleeves and Wearplates.					
		Total(1 +T)- 45	<u>то -</u>	. 15	Hoi	ire
Cours	:e (+0 -	. 43	1100	113
Upon	co	mpletion of this course, the students will be able to:				
CO1	:	Understand the influence of the tribological characteristics and improv material property by the plating process	ise t	he		
CO2	:	Explain the various hard facing processes				
CO3	:	Enhancement of surface properties with diffusion of foreign atoms into surface of the material such as boriding, aluminizing, etc	the	ou	ter	
CO4	:	Describe the various vapour deposition processes of different materia surface of native materials using the Chemical, Physical and Thermal vapour of the second sec	is or depo	n the ositi	e on	

		processes.			
CO	Describe the Modern processes and high energy processes like electron beam hardening, laser beam hardening.				
Text	ext Books:				
1.	Chattopadhyay R., Surface Wear: Analysis, Treatment, Prevention, ASM International, USA, 2001				
2.	Kenneth G. Budinski, Surface Engineering for Wear Resistance, Prentice Hall, Englewood Cliff, 1990.				
Refe	eren	ce Books:			
1.	AS	M Metals Handbook, Vol 5: Surface Engineering, ASM International, Ohio, 1994.			
2.	Ernest Rabinowicz, Friction and Wear of Materials, 2nd ed., John Wiley & Sons, NY, 1995.				
3.	Davis J.R., Surface Engineering for Corrosion and Wear resistance, ASM International, 2001.				

L T 18MTE15 FRACTURE MECHANICS	Ρ	С				
		3	0	0	3	
Course	Objectives:					
To gain t	he knowledge of fracture mechanics and knowing the experimental measurements	and	appl	icatio	ons	
of fractu	e mechanics					
Unit I	TYPES OF FRACTURE				9	
Ductile a Transitio temperat scale tes	Ductile and brittle fracture, features of fracture surface for ductile, brittle and mixed modes, fractography Transition temperature approach: Notched bar impact tests. Ductile to brittle transition, influence of temperature, strain rate and multi-axial loading, limitations of charpy testing. Drop-weight test and other large scale tests – fracture analysis diagram.					
Unit II	FRACTURE MECHANICS APPROACH				9	
Stress di stress co	stributions around discontinuities, stress analysis in simple cracked bodies, plane s Inditions, stress intensity factor and fracture toughness.	train	and	plar	ie	
Unit III	YIELDING FRACTURE MECHANICS				9	
Concept displace	of crack opening displacement, calculation of COD. The J contour integral- derivati nent diagram. The relationship between J and COD	on of	J fr	om l	oad –	
Unit IV	EXPERIMENTAL MEASUREMENT OF FRACTURE TOUGHNESS				9	
K _{IC} testin	g – test piece requirements and types, fatigue pre-cracking, determination of COD,	estir	natic	on of		
					0	
					9	
Concept	s of tolerable defects, use of fracture mechanics in design and material selection.					
		Tot	al =	45 ł	lours	
Course	Outcomes:					
Upon co	mpletion of this course, the students will be able to:					
CO1 L	nderstand the concept of DBTT and various mechanical tests of materials					
CO2 A	nalyze the crack, discontinuities and stress intensity factor					
СОЗ К	CO3 Know the concept of COD, J and displacement diagram					
CO4 L	se of fracture mechanics in design and selection of various materials					
Referen	ce Books:					
1. Dav	1. David Broek, Elementary Engineering Fracture Mechanics, Sujthoff Noordhoof, 1978					

2.	Hertzberg R.W. Deformation and Fracture Mechanics of Engineering Materials, 3 rd edition, John Wiley 1989
3.	Rolfe T., Bassom J., Fracture and Fatigue Control of Structures – Applications of Fracture Mechanics, Prentice Hall, 1977
4.	Tetelmen A.S. and McEvily. A.J. Fracture of Structural Materials John Wiley & Sons, 1967
5.	Gurney T.R., Fatigue of Welded Structures, Cambridge University Press, 1979

18M1	FE21	FERROUS AND NON-FERROUS ALLOYS	L	Т	Ρ	С
			3	0	0	3
Course Ob	jectives:					
1. To stud	dy the funda	mentals, properties and applications of Ferrous and Non Ferrous	syste	ms.		
UNIT I	ALLOY ST	EELS		9	+	0
Introduction: Modern melting processes for making special steels; the effect of alloying elements on Steel. Maraging steels, HSLA, microalloyed steels, silicon steels, CRGO(Cold Rolled Grain Oriented Sheet) steels and high manganese steels: structure, property, heat treatment and applications. Steels for special applications:Armour steel, steels for high temperature applications – High carbon steels, Ultra high strength steels, creep resistant steels.						
UNIT II	STAINLES	S STEELS		9	+	0
Types of st properties, manufactur stainless st	ainless steel structure ar e, structure, eel.	s; ferritic, martensitic, austenitic, precipitation hardening, duplex, nd applications; nickel free stainless steels high nitrogen stair properties and applications. Sensitisation and the remedial mea	heat nless asures	resis stee s for	sting, ls – auste	their their nitic
UNIT III	COPPER /	ALLOYS		9	+	0
Properties bronze, pho properties a applications	and applicat osphor bron: and applicat s.Heat Treat	ions of copper, influence of alloying elements, Brasses: Cu-Zn ze, Al bronze, Be bronze- compositions, properties and uses; c ions; strengthening of copper alloys by mechanical alloying, OF ment of Copper Alloys.	alloy: oppe FHC (s. Br r-nicl copp	onzes kel all er an	3:Tin loys, d its
UNIT IV	LIGHT ME	TALS AND ALLOYS		9	+	0
Aluminium Heat treata alloys. Mag Si, Ag, Th, Alloying ele property co titanium allo	- Properties ble and Nor nesium - pro Zr; classifica ments – Alp prrelations; t bys.Titanium	and uses of aluminum. Alloys of aluminium, Classification, Wrough, heat treatable, Age hardening. Overaging –Al-Li alloys, superpoperties and uses of Magnesium alloys, influence of alloying elemation – cast alloys and wrought alloys Titanium -Unique character tha stabilisers; beta stabilisers. α , α - β and β Titanium alloys - mathematical processing; near-net shape processing; superpotential stabilises their properties and uses.	ght an plastic ments eristic ajor ty erplas	nd C c forr s – A s of pes, stic f	ast all ning o l, Mn the m struct ormin	loys, of Al , Zn, letal, ture- lg of
UNIT V	NICKEL A	ND OTHER ALLOYS		9	+	0
Properties of nickel and uses of nickel, Nickel base superalloys composition; solid solution alloys, precipitation hardenable alloys, ODS alloys - heat treatment, properties and applications; Nickel-iron base alloys - heat treatment, properties and applications; Ni base soft magnetic alloys, Ni base heating element alloys; Ni base controlled expansion alloys; nickel base DS alloys and single crystals. nickel in special alloys and magnetic materials, Nickel aluminides. Zinc alloys, properties and uses, Die casting qualities. Use of zinc in corrosion protection of ferrous materials. Lead, Tin alloys. Major characteristics and applications, low melting nature solder alloys.						
Total (L+T) = (45+0) 45 Hours						
Course Outcomes:						
Upon comp	letion of this	course, the students will be able to:				
CO1 :	Describe the	e different types of alloy steels.				

CO2	:	Discuss the types of stainless steels, properties and their applications.				
CO3	:	: Discuss and describe the properties and applications of copper alloys.				
CO4	:	: Understand the light weight division of aluminium alloys and Titanium alloys.				
CO5	:	Explain the roll of Nickel, Lead, zinc and tin alloys				
Text E	Text Books:					
1.	William F.Smith, Structure and Properties of Engineering Alloys, McGraw Hill India, 1993.					
2.	P.C. Angelo, B.Ravisankar, "Non-Ferrous Alloys: Structure, Properties and Engineering applications, Cengage Learning India Pvt. Ltd., New Delhi, 2017.					
3.	Brick, Gordon and Pense, Structure and Properties of Engineering Materials, McGraw Hill Book Co., New York, 1992.					
Refere	ence	e Books:				
1.	K.C Ltd	G.Budinski and M.K.Budinski, Engineering Materials- Properties and Selection, PHI Learning Pvt , New Delhi, 2010.				
2.	Cla	ark and Varney, Physical Metallurgy for Engineers, Affiliated east West press, New York, 1987.				
3.	Balram Gupta, Aerospace Materials, Vol.1,2 and 3, S.Chand& Co., New Delhi, 1996.					
E-Refe	E-References:					
1.	www.nptel.ac.in/courses/113105021/					

	18MTE22	COMPOSITE MATERIALS	L	т	Ρ	С
			3	0	0	3
Course Ob	jectives:					
1. To kno applica	w manufacture of differe tions	nt type of Composite materials and develop for specif	ic en	ginee	ering	
UNIT I	INTRODUCTION TO C	COMPOSITES		9	+	0
Fundament of composit composites	Fundamentals of composites - need for composites – enhancement of properties - classification of composites – Matrix-Polymer matrix composites (PMC), Metal matrix composites (MMC), Ceramic matrix composites (CMC) – Reinforcement – particle reinforced composites – Eibro reinforced composites					
Applications fibers	Applications of various types of composites. Fiber production techniques for glass, carbon and ceramic fibers					
UNIT II	POLYMER MATRIX C	OMPOSITES		9	+	0
woven fabri up processe moulding - plastics (FF aerospace,	ins – thermosetting resil ics – non woven random es – spray up processes resin transfer moulding RP), Glass Fibre Reinfor automotive industries	mats – various types of fibres. PMC processes - han – compression moulding – reinforced reaction injectio – Pultrusion – Filament winding – Injection mouldin ced Plastics (GFRP). Laminates- different typesapp	d lay on ng. Fi plicati	ibre ons o	reinfo of PN	rced C in
	METAL MATRIX COM	POSITES		9	+	0
limitations of mixtures. P casting, a s applications	of MMC, Reinforcements Processing of MMC – p pray process, Liquid infil s of MMC in aerospace, a	automotive industries automotive industries b) a minute industries	ie Fra casti erface	actior ing – e proj	n – ru - sque pertie	le of eeze s-
UNIT IV		OMPOSITES AND SPECIAL COMPOSITES		9	+	0
Engineering – ceramic n aluminium o Cold and ho Carbon /car chemical va Matrix com	Engineering ceramic materials – properties – advantages – limitations – monolithic ceramics -need for CMC – ceramic matrix - various types of ceramic matrix composites- oxide ceramics – non oxide ceramics – aluminium oxide – silicon nitride – reinforcements – particles- fibres whiskers. Sintering - Hot pressing – Cold and hot isostatic pressing (CIP and HIP). Applications of CMC in aerospace, automotive industries-Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vapour deposition of carbon on carbon fibre perform. Sol-gel techniqueProcessing of Ceramic					
UNIT V	MECHANICS OF COM	IPOSITES		9	+	0
Lamina Cor Hooke's La matrix (Qij), Basic Assu Moduli. Eva Lamina stre	Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates					
Course Ou	Total (L+T) = (45+15)= 60 Hours Course Outcomes:					

Upon o	com	pletion of this course, the students will be able to:		
CO1	:	classify the composites and know about their properties		
CO2	:	details about the processing of polymer matrix composites and their application		
CO3	:	characterize the metal matrix composite and study about its processing and application		
CO4	:	understanding the concept of ceramix matrix composite and some special composites		
CO5	:	formulate the mechanics of composite and the determination of lamina stress with laminates		
Text B	look	KS:		
1.	Ma Ha	thews F. L. and Rawlings R. D., Composite Materials: Engineering and Science, Chapman and II, London, England, 1st edition, 1994.		
2.	Ch	awla K. K., Composite materials, Springer – Verlag, Second Edition, 1998		
Refere	ence	Books:		
1.	Clyne, T. W. and Withers, P. J., Introduction to Metal Matrix Composites, Cambridge University Press, 1993.			
2.	Strong, A.B., Fundamentals of Composite Manufacturing, SME, 1989.			
3.	Bro	outman, L.J. and Krock, R.M., Modern Composite Materials, Addison-Wesley, 1967.		

18MTE23		CERAMIC MATERIALS	L	т	Ρ	С	
			3	0	0	3	
Course Ob	jectives:						
1. To stud	dy about preparation, pro	perties and applications of ceramic materials					
	r					[
UNIT I	INTRODUCTION			9	+	0	
Review of t ceramcis, C structures -	conding types in ceramic ceramic crystal structures examples. Co-ordination	s – calculation of percentage ionic character. Types o s: Sodium chloride, cesium chloride, alumina, spinel a n number and ionic radius ratio - Pauling's R	nd flu	uorite	1		
UNIT II	PROPERTIES AND A	PPLICATIONS OF ENGINEERING CERAMICS		9	+	0	
Ceramics for Boron Nitric functions - applications Nickel, Mar thermal fun	or mechanical functions: de (CBN) - properties and Barium Titanate and its r s. Ceramics for magnetic aganese and Iron ferrites ctions: Refractories - De	Abrasives - properties and applications SiC, Cubic d applications. Ceramics for electrical and insulating nodifications - insulating porcelains - properties and functions - Normal and inverse spinel structure - Zing - structure properties and applications Ceramics for sirable characteristics - applications - Ceramics for nu	c, Jclear	r app	licatio	ns.	
UNIT III	PREPARATION AND	FORMING OF CERAMICS		9	+	0	
.Preparatio description proc ess de Liquid Phas	n of Alumina, Zirconia, S of slip and slurry casting tails of hot pressing, Hot se sintering. shock wave	ilicon carbide, Silicon Nitrides, Boron Nitride, Brief - applications. Powder processing equipment and t Isostatic Pressing and Cold Isostatic Pressing. compaction, reaction sintering, cermets					
UNIT IV	GLASSES			9	+	0	
Types of gl ceramics- h solutes – ci pressing, d	Types of glasses - structure, properties and applications of various types of glasses. Silicate Glass ceramics- heat flow and precipitation from glasses – growth controlled by diffusion of solutes – crystalline glasses – enamels – photosensitive and photochromic glasses; Blowing, pressing, drawing, rolling and casting - Pilkington process for float glass.						
UNIT V	PROPERTY EVALUAT	ΓΙΟΝ		9	+	0	
Rupture strength, fracture Toughness, Elastic Constants, Hardness, Creep, Thermal Property Coefficient of thermal expansion, Electronic Property, Measurement of electro-optic properties Weibull Statistics of Strength Data for Fine Ceramics.							
	Total (L+T) = (45+0) 45 Hours						
Course Ou	tcomes:						
Upon comp	Upon completion of this course, the students will be able to:						

CO1	:	Know the structure and properties of different ceramic materials .				
CO2	:	CO2: Understand the phase diagrams and comprehend the phase transformations in ceramic materials.				
CO3	:	CO3: Understand the testing methods for evaluating the mechanical properties of ceramic materials				
CO4	:	Select ceramic materials and to develop new ceramics for different engineering Applications.				
CO5	:	Understand and design the electrical, magnetic and optical properties of ceramic				
Text B	Text Books:					
1.	Mic	chael Barsoum, Fundamentals of Ceramics, Mc Graw Hill Publishing Co. Inc, 1997.				
2.	Kingery, W D, Introduction to Ceramics, John Wiley, USA, 1960					
Refere	Reference Books:					
1.	William F.Smith, Foundations of Materials Science and Engineering, Second Edition, McGraw-Hill Inc, New York, 1993.					
2.	Va	nVlack K H, Physical Ceramics for Engineers, Addison Wesley, 1964.				

18MTE	24		METALLURGY OF TOOL STEELS	L	т	Ρ	С
						0	3
					•		<u>.</u>
Course	Course Objectives:						
1. To me	gai etallu	n understanding of heat t urgy of different tool steel	reatment of tool components based on geometry and and in the materials	unde	ersta	nd the	•
UNIT	I	FUNDAMENTALS OF	HEAT TREATMENT AND TOOL STEELS		9	+	0
Classifi system Effect Distortion method	cati , TT of s on i ls of	on of Tool steels-AISI s T diagrams, Formation of specific alloying element n tool steels during heat f tool steels.	system-composition of tool steels-Effect of alloying of complex carbides, austenite formation, Hardenabi s. Heat Treatment of Tool steels: their characteris treatment, selection of tool steels for various applica	elen lity a stics ation	nents nd T and -Man	on empe selec ufact	Fe-C ring- tion- uring
UNIT	II	HEAT TREATMENT A	ND METALLURGY OF W, S, O, A & D TYPE TOOL		9	+	0
Water I and hig process	narc gh s, ha	dening tool steels, shock carbon-high Cr(O,A&D ardenability, distortion cha	resistance tool steels, cold work tool steels-oil harde types): Constitution, classification of principal type aracteristics, properties and application.	əning es, h	, me neat	dium treati	alloy ment
UNIT		HEAT TREATMENT A	ND METALLURGY OF H, T, M, SPECIAL PURPOSI	Ε	9	+	0
Hot wo classific	rk to catio	ool steels, high speed too on of principal types, heat	I steels, maraging tool steels, special purpose tool ste t treatment process, specific requirements and applica	els: o ations	cons S	titutio	n,
UNIT	IV	ADVANCED TOOL MA	ATERIALS		9	+	0
Sintere reinford	d tu ed	ngsten carbide tools-ISO grades-cubic boron nitrid	classification-Uses of P, M and K grades-cermet-cera e-poly crystalline diamond-Manufacturing techniques-	amic: ·prop	s, miz erties	xed a s	nd
		T		<u> </u>			
	V lisin	g of tool steels - TiN coat	NTS AND COATINGS ting by PVD - coating of carbide tools - mono and mul	ti lay	9 er co	+ ating:	0 s of
TO, TR, Alamina and DEO by TVD and OVD processes - selection of tool materials							
	Total (L+T) = (45+0) 45 Hours						
Course Outcomes:							
Upon c	omp	pletion of this course, the	students will be able to:				
CO1	:	Classify the tool materia	Is according to AISI systems and discuss the refining	meth	nods	like V	AR,
CO2	:	Discuss the heat treatme	ent methods adopted for tool steels				

CO3	:	Describe properties and the testing methods that are adopted for tool steels				
Text B	Text Books:					
1.	Ro	bert Wilson, "Metallurgy and Heat Treatment of Tool Steels", McGraw-Hill, New York, 1975.				
2.	Payson, "Metallurgy of Tool Steels", John Wsiley and sons, New York, 1962					
Refere	Reference Books:					
1.	Da Oh	vis.J.R. "ASM Speciality Handbook-Tool Materials", American Society of Metals, Metals Park, io, USA, 1995.				
2.	Ge Me	orge Roberts, George Krauss and Richard Kennedy, "Tool Steels", ASM International, 1998, tals Park, Ohio, USA, 1998				
3.	Ro	berts, Haymaker and Johnson, "Tool Steels", 3 rd edition, ASM, 1962.				

18MTE25	18MTE25 BIO AND SMART MATERIALS L		т	Р	с			
3								
Course Obj	ectives:							
1. To st	1. To study about Bio and shape memory material, dental materials							
	TRODUCTION		٩	L	0			
Smart mater materials, bi Biocompatik and failure, hemolysis–i	Smart materials–Functional materials–Polyfunctional materials–Structural materials, Electrical materials, bio-compatible materials–Intelligent biological materials–Biomimetics–Wolff's Law–Biocompatibility–Material response: swelling and leaching, corrosion and dissolution, deformation and failure, friction and wear–host response: the inflammatory process–coagulation and hemolysis–in vitro and in vivo evaluationofbiomaterials.							
UNIT II E	LECTRO-RHEOLOGICAL AND PIEZOELECTRIC MATERIALS		9	+	0			
The principal ingredients of smart materials-microsensors-hybrid smart materials-an algorithm for synthesizing smart materials-active, passive reactive actuator based smart structures suspensions and electro-rheological fluids-fluid actuators- design parameter-application of Electo- rheological fluids-Basics, Principles and instrumentation and application of Magnetorheological fluids-Piezoelectric materials: polymers and ceramics, mechanism, properties and application. Introduction to electro-restrictive andmagneto-restrictive materials								
	SHAPE MEMORY MATERIALS		9	+	0			
Nickel –Titanium alloy (Nitinol)–Materials characteristics of Nitinol–martensitic transformations– austenitic transformations–thermoelastic martensitic transformations–classification of SMA alloys- mechanism of magnetic SMA–applications of SMA–continuum applications of SMA fasteners–SMA fibers–reaction vessels, nuclear reactors, chemical plant, etc.–SMA memorization process (Satellite Antenna Applications) SMA blood clot filter–Impediments to applications of SMA–Shape memory polymers–mechanismofshapememory-Primarymoulding–secondarymoulding–typesandapplications.								
	ORTHOPAEDIC AND DENTAL MATERIALS		9	+	0			
Bone and teeth composition, formation and properties-bioresorbable, bioinert, bioactive materials-temporary fixation devices-joint replacement-biomaterials used in bone and joint replacement metals and alloys-Fillings and restoration materials-Materials for oral and maxillofacial surgery-dental cements and dental amalgams-dental adhesives-bone tissueengineering.								
В	IO MATERIALS FOR CARDIOVASCULAR OPTHALMOLOGY AND SP	KIN						
	EGENERATION	•	9	+	0			
Blood clotting–blood theology–approaches to thrombo resistance materials development–blood vessels–The heart–aorta and valves–geometry of blood circulation–cardiac pacemakers–blood substitutes–extracorporeal blood circulation devices. The lungs–vascular implants: vascular graft,								

cardiac valve prostheses, card–Biomaterials in ophthalmology-skingrafts-connective tissue graftstissue adhesives- drug delivery methods and materials.

Total(L+T)= 45 Hours

Course Outcomes:

Upon completion of this course, the students will be able to:

CO	1 :	Discuss the implant material's properties and manufacturing methods						
CO2	2 :	Explain the polymeric biomaterials and describe the techniques used formanufacturing, sterilization and improving properties						
COS	3 :	Discuss ceramic and composite biomaterials used for implantation and its properties and explain manufacturing methods						
CO4	4 :	Explain the biomedical applications of the smart materials with its detailed Properties						
CO	O5 : Discuss the instruments used for surface and chemical analysis of implant materials and explain material selection for implantation							
Text	во	oks:						
1.	1. Sujata V., Bhat., Biomaterials, Narosa Publication House, New Delhi, 2002							
	M. V. Gandhi and B. S. Thompson, Smart Materials and Structures, Chapman and							
2.	На	ll, London, First Edition, 1992						
Refe	eren	ce Books:						
1.	Duerig,T. W., Melton, K. N, Stockel, D. and Wayman, C.M., Engineering aspects of Shapememory Alloys, Butterworth – Heine							
2.	Rogers, C. A., Smart Materials, Structures and Mathematical issues, Technomic Publishing Co., U.S.A, 1989.							
3.	Mc Pu	hsen Shahinpoor and Hans-Jo [¨] rg Schneider Intelligent Materials, RSC blishing,2008						
4.	Mel Schwartz (Ed), Encyclopaedia of Smart Materials Volume –I and II, John Wiley & Sons, Inc.2002							

18MTE31			NON METALLIC MATERIALS	L	т	Р	С
	1011		I	3	0	0	3
Cours	se O	bjectives				I	1
1. T	o ga ompo	in basic knowl osites and app	edge about the various non - metallic materials like polymers, ce bly them in the advance engineering applications	eramic	s an	d	
UNI	ΤI	INTRODUC	TION TO POLYMERS		9	+	0
Class polym exam prope	Classification- thermoset, thermoplastics and elastomers. Structure of polymers-crystalline and amorphous polymers-concept of Glass Transition Temperature (Tg). Polymerization-types and mechanisms with examples Degree of polymerization -molecular weight of polymers- problems. Polymer additives. Example, properties.						hous with nple,
UNI	UNIT II POLYMER PROPERTIES AND PROCESSING					+	0
Applic polym Visco polym	atior ers: elast ers.	ns of engineer Processing (icity- creep a	ing plastics. Elastomers- types, properties, examples and applic of thermoset and thermoplastic polymers. Applications. Beha nd stress relaxation in polymers. Yielding and fracture of po	ation. aviour olyme	Pro of rs. C	cessir polyn Crazin	ng of ners: g of
UNI		CERAMICS	3		9	+	0
with n - Tech glasse	netal: nnica es. B	s and polymer I applications. Iowing, pressi	s .Production and properties: Boron Nitride, Silicon Carbide, Bor Types of glasses - structure, properties and applications of varions, drawing, rolling and casting - Pilkington process for float glas	on ca bus ty s.	rbide pes (e, SIA of	LON
UNIT IV FIBER COMPOSITES		9	+	0			
Comp comp comp	osite osite osite	es: Introduction s - Rule of M s: Use of fiber	n - Classification - Examples. Fiber composites: Constituents and Aixtures - Types of fibers and matrices. Production technique composites in automobile, aerospace, sports and leisure application	nd fui s (in ations	nctio brief	ns of) for	fiber fiber
UNI	Г٧	PARTICUL	ATE AND LAMINAR COMPOSITES		9	+	0
True particulate and Dispersion strengthened composites - Production techniques – Applications – Functions and examples of dispersoids – particle size and inter particle spacing – examples of particulate composites. Laminar composites – types – layered and honeycomb structures – examples, manufacture and applications.							
Cours	se O	utcomes:		ui (E i	.,-		
Upon	com	pletion of this	course, the students will be able to:				
CO1	:	Explain the c	different types of polymers, polymerization mechanisms and poly	mer a	dditi	ves	
CO2	:	Explain the p	properties, processing and behaviour of polymers.				
CO3	:	Describe the	various ceramics, glasses and explain their processing and prop	oertie	s.		
CO4	:	Describe the commercial f	concept of composites and their types. Explain the uses of fiber field.	comp	oosite	es in	
CO5	:	Explain the p	production, properties and uses of various Particulate and Lamina	ar cor	npos	ites.	

Text E	Text Books:					
1.	Bhargava A K, Engineering Materials - Polymers, Ceramics and Composites, Prentice Hall of India Ltd., New Delhi, 2012.					
2.	Pahari A K and Chauhan B S, Engineering Chemistry, Laxmi Publications, New Delhi, 2006.					
3.	Van Vlack L K Physical Ceramics for Engineers, Addison Wesley, Massachusetts, 1964.					
4.	Mallick P K, Fiber Reinforced Composites: materials, manufacturing and design, CRC Press, Taylor & Francis group, London, 2010.					
Refer	Reference Books:					
1.	Jacobs, J A and Kilduff T F, Engineering Materials Technology, Prentice Hall Inc., N.J., 1988.					
2.	Krishnan K Chawla, Composite materials: Science and Engineering, Springer, 1998.					
E- Re	ference					
1.	https://nptel.ac.in/courses/Webcourse/Composite%20Materials/pdf//LNm1.pdf					
2.	web.eng.fiu.edu/wangc/EGN3365-16.pdf					
3.	https://nptel.ac.in/courses/112107086/6					
4.	https://nptel.ac.in/courses/104103071/pdf/mod16.pdf					

18MTE32			CONTINUOUS CASTING OF STEEL	L	Т	Ρ	С
				3	0	0	3
Course	Course Objectives:						
1. ap inc	 To develop an understanding of the basic principles of continuous casting, impart modeling skills and to apply them for industrial problems to enable them to solve the problems encountered in the steel industries. 						
UNIT		INTRODUCTION			09	+	0
Advant	age	s- design of casters, met	allurgical comparison of continuous casting with ingot	casti	ng		
	-						
UNIT	II	HEAT TRANSFER IN	MOULD AND SECONDARY ZONE		09	+	0
Heat tr	ans	fer and solidification in co	ontinuous casting – heat transfer in mould- mould flux	and h	neat	transf	er in
3000110	ary	2000 - 2011C.					
UNIT	111	TUNDISH DESIGN AN	ID PRACTICE		09	+	0
Moderr electro vortex beller s	n Tu mag Vs t slag	Indish practice for clean s gnetic stirring use of sub he drum funnel through r free teeming	steel production. Tundish design and operation-mould merged entry nozzle (SEN) and water model study for otational flow. Their characteristics and use of vortex	l and r funr buste	its o nel fo er to a	perati rmatic allow	on)n.
UNIT	IV	DEFECTS IN CONTIN			09	÷	0
Metallu	irgic	al defects and their reme	edies. centre line micro segregation and porosity –crac	cks of	ther of	defect	ts –
Oscilla	tion	marks.					
UNIT	v		IS AND RECENT DEVELOPMENTS		09	+	0
Inclusion distribution in cast products – inclusion modification. Application of Thermodynamics to deoxidation and inclusion formation. Deoxidation reaction. Modeling for inclusion prediction. Thin slab casting, Round casts and combination casts. High speed casting –breakouts and mould powder entrapments –Near net shape castings. Thin strip production of carbon steels and stainless steels and their characteristics. Recent studies on thin strip casting.							
Total (L+T) = 45 Hours							
Course	Course Outcomes:						
Upon c	om	oletion of this course, the	students will be able to:				
CO1	:	Design a continuous ca	sting machine which has a wide advantage over ingot	casti	ng		
CO2	:	: Gain knowledge about transfer of heat in continuous casting machine					

CO3	:	Design a proper metallurgical tundish for proper transferring of heat from ladle to the continuous caster and the use of Electromagnetic stirrer					
CO4	:	Provide remedies for the common defects that are formed during the continuous casting of steel					
CO5	:	Describe the role of inclusion in the steel, the modification of inclusion to derive at the required mechanical properties					
Text E	Text Books:						
1.	Ahindra Ghosh Principles of Secondary Processing and Casting of liquid steel, , Oxford & IBA Publishers, 1990						
2.	David H Wekelin,, The Making, Shaping and Treating of Steel, AISE Steel Foundation, 1999						
Refere	Reference Books:						
1.	Ch 199	atterjee A and Govindarajan S, Monograph on Continuous Casting at TATA Steel, Jamshedpur, 31.					
2.	Bri US	ma combe J K and Samarasekara (Eds)., Continuous Casting Vol.2, The Iron and Steel Institute, A,1984.					
3.	Ahindra Ghosh and Amit Chatterjee, Iron Making and Steel Making – Theory and Practice, Prentice Hall of India Private Ltd., New Delhi 2008.						

18MTE33			SPECIAL CASTING TECHNIQUE	L	Т	Ρ	С	
				3	0	0	3	
Course	e Ol	bjectives:						
1. To gai kno inti	 To know the raw materials casting procedures and parameters of various special casting processes to gain knowledge on designing appropriate processes to produce for different applications to gain knowledge on using economical design to give better quality castings to develop components of intricate shape and design by properly selecting the moulding and casting techniques 							
UNIT	' 	SHELL MOULDING			9	+	0	
Various Materia Methoc	s Sp als u Is o	becial Casting Techniques used for Shell Moulding, a f Moulding.	s-Shell Moulding Machines, Pattern Equipment, Sand application of Shell Moulding, advantages of Shell Mou	is, Re ulding	sins g ove	and c r othe	other er	
UNIT		CENTRIFUGAL CAST	ING		9	+	0	
Types	of C	Centrifugal Casting Proces	sses-calculation of Mould Rotary Speeds, Techniques	s, equ	ipme	nts a	nd	
Produc	tion	Processes, advantages	and limitations of Centrifugal Casting Methods.					
UNIT	111	INVESTMENT CASTIN	IG		9	+	0	
Introdu	ctio	n, Pattern and Mould Mat	terials used, Techniques and Production of Investmen	nt Mor	ulds,	Shav	/	
FILCES	5, г	un moulu Process, applic						
UNIT	IV	DIE CASTING			9	+	0	
Die Cas Materia Rheo a	stin als. ind	g Machines Gravity and F Metals Cast by Die Castii Thixo Processes, Advant	Pressure Die Casting, Cold and Hot Chamber Operation ng Method, Casting of Aluminium, Magnesium and Zin ages of Die Casting	on an nc All	nd De oys.	tails, Comp	Die bo,	
		1						
UNIT	V	ORGANIC AND OTHE	R PROCESSES		9	+	0	
Cold Bo Magnet	ox, tic N	Hot Box and No Bake Pro Moulding, Impulse Mouldi	ocesses, Fluid Sand Process, V Process, Graphite Mo ng, High Pressure Moulding, Metal Injection Moulding	ouldin J.	ng Pro	ocess	,	
			Total	l (45+	-0) =	45 H	ours	
Course	e Oi	utcomes:						
Upon c	om	pletion of this course, the	students will be able to:					
CO1	:	Describe the shell mould	ding process over the conventional processes of casti	ing				
CO2	:	Provide the procedure for	or centrifugal casting of pipes and other hollow shafts					
CO3	:	Discuss the investment and mention their applic	casting method with different processes like Shaw, fu ations	ll mou	uld pi	roces	S	

CO4	. Mention the modern die casting method and its type like and different operations performed in the chamber				
CO5	Describe the organic processes that can be used to cast metals like metal injection moulding, magnetic moulding, impulse moulding.				
Text Books:					
1.	Beeley, P.R., Foundry Technology, Butterworths, London, 1982.				
2.	Clegg., A.J., Precision Casting Processes, Pergamon Press, London, 1991.				
Refere	Reference Books:				
1.	Hei Del	ine, Loper and Rosenthal, Principles of Metal Casting, Tata McGraw Hill Publishing Co., Ltd., New Ihi, 1995.			
2.	Dumond, T.C., Shell Moulding and Shell Moulded Castings, Reinhold Publishing Corporation Inc., 1984.				
3.	Do	ehler, E.H., Die Casting, McGraw Hill Book Co, New York, 1991.			

18MTE34			ALTERNATE ROUTES OF IRON MAKING	L	т	Р	С
	3				0	0	3
Course	e Ol	ojectives:					
1. To for	1. To know the importance of the Iron making and to apply them for the advancement of alternative route for the production feasibilities in steel Industries to compete with the modern day manufacturing routes.						
UNIT	1	BLAST FURNACE AN	ID ITS MODIFICATION		9	+	0
Blast fu	Irna	ce iron making. Low Sha	ft Furnace – Construction, Process and Advantages, N	/ini E	Blast	Furna	aces
	- 3	Jecial Features, Modern	blast rumace, Charcoal blast rumace.				
UNIT	II	ELECTRO THERMAL	PROCESSES		9	+	0
Electro	–Th	ermal Processes – Subr	nerged Arc Furnace – Construction, Operation and Sm	eltin	g pra	actice	
woderr	n tre	ends & Special features. I	rregularities in operation.				
UNIT		SPONGE IRON MAKI	NG		9	+	0
Sponge	e Irc	n production – Introduction	on, Properties, Uses & Process of making Sponge Iror	n. Co	al Ba	ased	
Sponge	e Irc	on process: Finmet proces	ss, HYL-I, MIDREX, HYL-IV M process	55. (545 1	Jasec	
		1				r	r
UNIT	IV	SMELTING REDUCTION	ON AND OTHER PROCESSES		9	+	0
Smeltin process furnace furnace	ng F s – e(C e(IT	leduction – Introduction, l Based on stages (Single OREX,FINEX), Electrical mk3).	Raw materials & Fundamentals. Classification of Smeli stage , two stage operation), Based on Types of furnad Furnace (INRED, ELRED),Converter type(HI-smelt),	ting ce –' Rota	Redu Verti ary H	uction cal sh earth	aft
						1	1
UNIT	V	IRON MAKING IN IND	IA		9	+	0
Blast fu role in	ırna Glol	ce design in India. Main pal steel trade. Future sc	problems in iron making in India. Sponge Iron making i ope of Iron making processes in India.	n Ind	dia. I	ndia's	;
			Tota	l (L+	-T) =	45 H	ours
Course Outcomes:							
Upon c	om	oletion of this course, the	students will be able to:				
CO1	:	Know about special feat	tures of blast furnace.				
CO2	:	Details of modern trends	s in electro thermal process				
CO3	:	Knowledge about spong	ge iron making				

CO4	:	Describe about smelting reduction and other process				
Co5	:	Analyse iron making in India				
Text E	Text Books:					
1.	Sa Ltd	rangi, A., and B. Sarangi, Alternative roots to Iron Making, 2nd Edition, Prentice Hall of India Pvt ., New Delhi, 2016.				
Refere	Reference Books:					
1.	R.H Edi	I. Tupkary and V.R. Tupkary., An Introduction to Modern Iron Making, Khanna Publishers, Fourth tion.New Delhi, 2010				
2.	Biswas .A.K , Principles of blast furnace iron making- theory and practice , SBA Pub, Kolkata 1994					
3.	David H Wekelin,, The Making, Shaping and Treating of Steel, AISE Steel Foundation, 1999.					

		18MTE35	SECONDARY STEEL MAKING	L	т	Р	С	
				3	0	0	3	
Course	Course Objectives:							
1. To im	1. To become familiar with a wide array of making special steels by various process an learn about impurities present in it							
UNIT I THERMODYNAMICS AND KINETICS OF DEOXIDATION 9					9	+	0	
Oxyger	n in	molten steel, Types of De	eoxidation, Complex Deoxidisers, Kinetics of removal	of De	eoxid	ation		
produc	1S, I	Deoxidation on industrial	Scale.					
UNIT	II	METALLURGICAL PR	NINCIPLES IN SECONDARY STEEL MAKING		9	+	0	
Thermo	odyi	namics of reactions during	g degassing, Fluid flow and mixing in ladle, Kinetics a	nd m	ass t	ransfe	ər,	
	njec	alon metallurgy.						
UNIT	III	LADLE FURNACES A	ND SECONDARY STEEL MAKING		9	+	0	
Introdu	ctio	n, Process variables, Stir	ring, Synthetic slag, Purging, Vacuum treatments, Inje	ection	met	allurg	ly,	
Laule								
UNIT	IV	INCLUSIONS IN STEE	L		9	+	0	
Influen	ce c	of inclusions on mechanic Inclusion control.	al properties, Identification of inclusions, Origin of nor	n-met	allic			
	,							
UNIT	V	CONTINUOUS CASTI	NG AND SEGREGATION		9	+	0	
Solidific solidific Develo	catio catio	on rate in ingot, Heat tran on, Dendritic solidification ents in continuous casting	sfer in continuous casting, Segregation of solutes in p , Morphology of killed steel ingots, Defects in continue g	olane ous ca	front ast p	roduc	ts,	
					_,			
			Tota	al (L+	T) =	45 H	ours	
Course	e Oi	utcomes:						
Upon c	om	pletion of this course, the	students will be able to:					
CO1	:	Discuss and explain the	thermodynamics and kinetics of deoxidation					
CO2	:	Explain the basic metall	urgical principles that govern the process of secondar	y ste	el ma	aking		
CO3	:	Describe the metallurgic ladle injection metallurg	cal process taking place in the steel making ladle and	also	expla	ain the	e	
CO4	:	Mention modification of	steel properties using steel inclusions					

CO5		Specify and explain the process of continuous casting in steel and the common defects like segregation that are produced in casting and give a remedy			
Text B	Text Books:				
1.	Ah Pu	ndra Ghosh, Principles of Secondary Processing and Casting of liquid steel, Oxford & IBH olishers, 1990			
2.	Ahindra Ghosh, Secondary steel making- Principles and applications, CRC Press, USA, 2001				
Refere	Reference Books:				
1.	Ch 199	atterjee A and Govindarajan S, Monograph on Continuous casting at TATA Steel,Jamshedpur, 91			
2.	Da	vid H Wekelin, The Making, Shaping and Treating of Steel, AISE Steel Foundation, 1999			
3.	Ch Ste	ow, C., et al., High speed continuous casting of steel billets Part 1 and Part 2, Ironmaking & elmaking, Vol.29, pp. 53-69, 2002			
4.					

	18MTE41	PARTICULATE PROCESSING TECHNOLOGY	L	Т	Ρ	С	
3				0	0	3	
Course Ob	Course Objectives:						
1. To intro importa	1. To introduce the importance non-conventional processing routes for different materials and its importance for advanced materials manufacturing.						
UNIT I	CHARACTERISTICS A	AND TESTING OF METAL POWDERS		9	+	0	
Sampling, o Principle ar adsorption area. appar	chemical composition pur nd procedure of sieve and methods and resistivity n rent and tap density. gree	rity, surface contamination etc. Particle size. and its malysis, microscopic analysis: sedimentation, elutriation nethods: particle shape, classifications, microstructure en density. green strength, sintered compact density,	ieasu i, per e. spe poros	ireme meal ecific sity, s	ent, bility. surfa shrink	ce age.	
UNIT II	POWDER MANUFACT	FURE AND CONDITIONING		9	+	0	
thermal dec precipitation Electrolysis powders pr mixing, type	composition, carbonyl. re n from aqueous solution and atomisation process oduced by these method es of equipment, types of	g, bai mining, atomisation, shotting Chemical method eduction by gas-hydride, dehydride process, electro de and fused salts, hydrometallurgical method. Physical ses, types of equipment, factors affecting these proce ls, applications, Powder Conditioning, Heat treatment f mixing and blending	s Cor sposif meth sses, blen	den ods: exa ding	mples and	of	
UNIT III	POWDER COMPACTI	ON		9	+	0	
Pressureles and double hot tempera	ss Compaction: slip casti ended compaction, Colo ature compaction, contin	ng and slurry casting. Pressure compaction- lubrication d isostatic compaction, powder rolling, extrusion, explo uous compaction	on, sii osive	ngle com	endeo pactic	d in,	
UNIT IV	SINTERING			9	+	0	
Stage of sir activated si sintering at	ntering, property changes ntering, Hot pressing and mosphere, finishing oper	s, mechanisms of sintering, liquid phase sintering and d Hot Isostatic Pressing HIP, vacuum sintering, sinteri ations – sizing, coining, repressing and heat treatmer	infiltr ing fu nt.	atior rnac	n, es an	d	
UNIT V	POWDER METALLUR	GY APPLICATIONS		9	+	0	
Advantages and disadvantages of P/M, Major applications in aerospace. nuclear and automobile industries. Bearing Materials-types, self lubrication and other types, methods of production, properties, applications. Sintered Friction Materials-clutches, brake linings, Tool Materials- cemented carbides, oxide ceramics, Cermets- Dispersion strength hened materials							
Total (L+T) = 45 Hours							
Course Ou	tcomes:						
Upon comp	letion of this course, the	students will be able to:					

CO1	:	Describe the basic mechanism of powder production for variety of materials to meet the demand of the research and industrial needs			
CO2	:	Characterize the various powders (materials) based on the engineering applications			
CO3	:	Differentiate the processing routes for various powders (materials) and associated technology			
CO4	:	Define modern day processing routes and apply them successfully to materials processing			
Text E	Text Books:				
1.	SinhaA.K., Powder Metallurgy, Dhanpat Rai& Sons. New Delhi, 2001.				
2.	Sands. R L. and Shakespeare. C.R. Powder Metallurgy, George Newes Ltd. London, 1966.				
Refere	ence	Books:			
1.	AS	M Handbook. Vol. 7, Powder Metallurgy, Metals Park, Ohio, USA, 1990.			
2.	Ani	mesh Bose., Advances in Particulate Materials, Butterworth - Heinemann. New Delhi, 1995.			
3.	Ke	mpton. H Roll., Powder Metallurgy, Metallurgical Society of AMIE, 1988.			
4.	Ra Pul	makrishnan.P., Powder Metallurgy Opportunities for Engineering Industries, Oxford and IBH bilshing Co., Pvt. Ltd, New Delhi, 1987.			
5.	Erhard Klar, Powder Metallurgy Applications, Advantages and Limitations, American Society for Metals 1983				

18MTE42			SEVERE PLASTIC DEFORMATION	L	Т	Ρ	С
3					0	0	3
Course	Course Objectives:						
1. To ma	kno ateri	ow the fundamental conc als for various load-beari	epts of mechanical behavior of materials and to apply ng structural engineering applications.	them	ı to d	esign	the
UNIT	1	INTRODUTION AND E	ECAE		9	+	0
Severe Concep distribu	pla ot of itior	stic deformation process f qual channel angular ex i in ECAE.	es (SPD), advantages over conventional metal formin trusion (ECAE), Plastic zone during ECAE. Material fl	g pro ow a	cess nd st	es. ress	
					٩	+	0
Multi-pa	ass	processing in ECAE, Pro	cessing parameters, defects associated with ECAE.	Contii	้ง านอนะ	▪ s EC/	ν Ε.
Concep channe	ot of el. d	f Incremental equal chanr ie design, punch design,	nel angular pressing (I-ECAP). Tooling of ECAP – Co tool materials for punch and dies	nfigur	atior	of	
	.,						
UNIT		HIGH PRESSHURE T	ORSION		9	+	0
Introdu	ctio	n to high pressure torsior tures. Principles of HPT-i	n (HPT) – advantages over other SPD techniques. Ch dealised, fully constrained, quasi-constrained HPT, D	aract esign	eristi crite	c HPT ria	Γ
11110100				ooigii	01110		
UNIT	IV	CYCLIC EXTRUSION-	COMPRESSION AND ARB		9	+	0
Concep	ot cy Intr	clic extrusion-compressi	on, microstructural evolution during CEC, grain refined	ment	in alı ing A	umini RB	um
anoys.	<u></u>		Ton Bonding, principle of Arth, nanostructure formatio	in dui	ing /		
UNIT	v	TWIST EXTRUSION A	ND OTHER PROCESSES		9	+	0
Introdu and rec FSP.	ctio cent	n to twist extrusion, proce developments of TE. Fri	essing technique for TE, formation of nanostructure in ction stir processing: principle and operating paramete	TE. A	Appli pplic	catior ations	is s of
			Tota	al (L+	T) =	45 He	ours
Course Outcomes:							
Upon c	om	pletion of this course, the	students will be able to:				
CO1	:	Knowledge about mater	ial flow and stress distribution in ECAE				
CO2	:	Details about different p	rocessing parameters of ECAE and its tooling				
CO3	:	Formulate the design cr	iteria for high pressure torsion				

CO4	:	Know about the concepts of cyclic extrusion-compression and evolution of microstructure during CEC			
CO5	:	Describes various applications of friction stir processing and its principle			
Text E	Text Books:				
1.	Rosochowski, A., Severe Plastic Deformation Technology, Whittles Publishing, UK, 2017.				
Refere	Reference Books:				
1.	Proceedings of the Conference "Nanomaterials by Severe Plastic Deformation – NANOSPD2", December 9-13, 2002, Vienna, Austria, Edited by Zehetbauer, M and Z. Valiev.				

	18MTE43	METALLURGICAL WASTE UTILIZATION AND MANAGEMENT	L	т	Р	С
			3	0	0	3
Course	Objectives:					
1. Stud mat	dent should be capable of u erials for various conditions	nderstand various wastes in environment conditions a and to learn about utilization of metallurgical waste.	and c	hoos	e suit	able
UNIT I	MINING AND METALI	LURGICAL WASTE		9	+	0
Environr Beneficia Hydrome waste pr	nental and health impacts or ation waste production. Fer etallurgical waste production roduction.	of Mining and Metallurgical waste. Various kind of was rous metal waste production. Ferroalloys waste produ n. Metal manufacturing and finishing waste production	ites: N iction n. Pos	/linin st-coi	g and	er
	UTILIZATION OF MIN	ING AND BENEFICIATION WASTE		9	+	0
Utilizatio Preventi	n of mine overburden and v	waste rock. Potential utilization of mineral beneficiation	n taili	ngs.	1	
Tiovona						
UNIT II	I UTILIZATION OF FER	ROUS METAL WASTE		9	+	0
Recyclin making o Recyclin	g and reuse of blast furnac dusts – Plasma based proc g and reuse of steelmaking	e ironmaking slags, steel making dusts and sludges. L essing, hydrometallurgical processing, solidification ar J slags	Jtiliza nd sta	ation abiliza	of ste ation.	el
	UTILIZATION OF HYD	DROMETALLURGICAL AND METAL FINISHING		9	+	0
Utilizatio process: ceramics operatio	n of Jarosite, goethite prod metallurgical utilization thress and Pigments. Recycling and n. Metal recovery from pick	uced during extraction of zinc, Utilization of red mud p ough metal recovery, utilization in building and constru and utilization of surface oxide scale produced during ling and plating sludges	oroduo uctior meta	ced in , Gla I forr	n Bay ass- ning	er
- 1						
UNIT V	WASTE MANAGEME	NT		9	+	0
Waste m	nanagement and utilization s and residue end users. Pr	options: zero waste process approach, synergy betwe rocess integration to mineral waste utilization. Process	en re s inte	esidu nsific	e ation	
			<u></u>	T_	15 LL	
Course	Outcomos:	1016	ai (L+		43 H	Juis
000138						
Upon co	mpletion of this course, the	students will be able to:				
CO1	: Analyse various mining	and metallurgical waste and their health impacts				
CO2	: Utilization of wastes of r	nining and prevention of acid rain drainage				

CO3	•••	Know about the ways of recycling and reuse of steelmaing slags	
CO4	:	Analyse various routes of utilization of hydrometallurgical and metal finishing wastes	
CO5	•••	Implementing the approach of zero waste	
Text Books:			
1.	1. Ndlovu, S., G.S. Simate and E. Matinde, Waste production and utilization in the Metal Extraction Industry, CRC Press, 2017		

18MTE44		COMPUTATIONAL MATERIALS ENGINEERING	L	т	Ρ	с
			3	0	0	3
-			-			
Course Objectives:						
1. To	bec	ome familiar with computational techniques including related mathematical ba	ackgro	ound		
UNIT I		Introduction To Computational Methods		9	+	0
Solving methoo Integra	l se I, S tion	ts of equations – Gauss elimination method, Choleski method, Iterative r ystem of non-linear equations- Newton Raphson method, Computer p - Newton-Cotes integration formulae, Trapezoidal rule, Simpson's rule, Gaus	netho rograr sian q	ds, I ns. uadr	Relaxa Nume ature	ation erical
UNIT	II	Numerical solution of partial differential equations		9	+	0
Laplace Poissor Sparse prograr	e's e n eq nes: ns	quations - Representations as a difference equation, Iterative methods for La uation - Derivative boundary conditions, Irregular and non-rectangular grids, s, ADI method, Applications to heat, mass and momentum transfer problems,	place Matrix Com	s eq patt outer	uatior erns,	IS,
UNIT		Finite Element Method		9	+	0
Weight isopara	ed r met	esidue technique, variational approach, element types, plane triangular, quad ric elements, three dimensional elements	rilater	al cu	rved	
UNIT	IV	Analysis of production processes		9	+	0
Finite e time ste plasticit	elem eppi ty– s	ent analysis of metal casting - Special considerations, latent heat incorporation ng procedures – crank – Nicholson algorithm, Prediction of grain structure. B solid and flow formulation – small incremental deformation formulation	on, ga asic c	p ele once	ment, pts of	
UNIT	V	Curve fitting and approximation of functions		9	+	0
Least s prograr algorith	squa ns. l ims,	are approximation, fitting of non-linear curves by least squares, Regression ntroduction to Artificial neural networks, various algorithms and ca studies In GA for materials design and process optimization, case studies.	n ana roduc	alys tion	Comp to Ge	outer netic
Total (L+T) = 45 Hours						
Course	e Ou	tcomes:				
Upon c	omp	letion of this course, the students will be able to:				
CO1	:	Understand the basics of the computational methods that can be used for nu	meric	al int	egrati	on
CO2	:	Use of plasma arc for the welding of two metals				

CO3	:	: Safe use of domestic explosive materials for the joining of the weld metals			
CO4	:	Employing the advantage of frictional force in generating heat which can be used to join dissimilar metals			
Text E	Text Books:				
1.	Zoe Barber, Introduction to Materials Modeling, Maney Publishing, Institute of Materials, London, 2005.				
2.	Rao S S, "The Finite element Method in Engineering", Pergaman Press, New York, 1989.				
Refere	Reference Books:				
1.	Lev Tra	vis R W, Morgan K, Thomas H R and Seetharamu K N, "The Finite Element method in Heat nsfer Analysis", John Wiley, 1994			
2.	Ма	lanie Mitchell, "An introduction to genetic algorithms", MIT Press, 1998.			
3.	Ko evo	enraad Janssens,"Computational Materials Engineering, An introduction to microstructural olution", Elsevier, 2007.			

18MTE45 SPECIAL WELDING PROCESSES L T P						С	
				3	0	0	3
Course	Course Objectives:						
1. To	uno	derstand the concepts of	different welding process and various parameters for	its ap	plica	ations	
UNIT	.1	RADIANT ENERGY W	/ELDING		9	+	0
Electro Degree Paramo	n B es of eter	eam Welding- Backgroun Vacuum, Equipment and s, Applications and Limita	nd of the Process, Guns, Weld Environment, Welding i d Safety, Joint Design, Applications, Laser Beam Weld ations.	in Dif ding,	ferer Proc	nt cess	
			NG		0		0
Plasma Equipn Needle Joint D	a Are nent Arc esig	c Welding- theory and Pri and Tooling, Joint Desig Micro Plasma Welding - In, Shielding, Weld Pene	inciples, Transferred arc and Non-Transferred arc Tec In Advantages, Disadvantages, Economics, Materials Characteristics of Process, Operating Characteristics tration and Shape, Applications.	chniq and a s, Fix	ues, Appli turing	catior g and	ns.
UNIT			G		9	+	0
Explos Advant Parama and Ap	ive age eter plic	Welding- theory and Key s and Limitations, Joint E s, Physical Characteristic ations.	Variables, Parameters, Weld Quality, Equipment and Design, Materials and Applications. Adhesive Bonding- cs, Metal Adhesive, Equipment, Design, Economics of	Tool - theo Proc	ing, ory a ess,	nd Ke Mate	y rials
UNIT	IV	FRICTION AND FRICT	FION STIR WELDING		9	+	0
Frictior Bondin Materia	n We g, Ir als, <i>I</i>	Advantages, Limitations Advantages, F Influence of Process Para Advantages, Limitations a	Process Variants, Different Stages of Friction Welding, meters, Weld Quality and Process Control, Joining of and Applications. Friction stir welding – process variab	, Mec Dissi bles,	chani milai appli	sm of r catior	าร
UNIT	V	DIFFUSION WELDING	AND VACUUM BRAZING		9	+	0
Diffusion Welding- theory and Principle of Process, Key Variables, Intermediate Materials, Deformation Welding, Equipment and Tooling, Joint Design, Economics, Advantages and Limitations, Materials and Applications. Vacuum Brazing- theory, mechanisms and Key Variables, Equipment and Tooling, Stop-off and PartingAgents, Advantages, Limitations, Economics Materials and Applications.							
	Total (L+T) = 45 Hours						
Course	e Oı	utcomes:					
Upon c	om	pletion of this course, the	students will be able to:				
CO1	:	Apply radiant energy co	ncepts using different process parameters				

CO2	:	Characterization of plasma arc welding process and its associate technology			
CO3	:	Know about the key variables and theory of explosive welding and their physical characteristics			
CO4	:	Differentiate friction and friction stir welding process and its various applications			
CO5	:	Describes the concepts of diffusion welding and vacuum brazing			
Text B	Text Books:				
1.	Schwartz M.M., Metals Joining Manual, McGraw-Hill Inc., 1979.				
2.	Parmar R.S., Welding Processes and Technology, Khanna Publishers, New Delhi, 1998				
Refere	Reference Books:				
1.	ASM Metals Hand Book Welding, Brazing and Soldering, Vol. 6, ASM, Ohio, 1988.				
2.	Howard B. Cary, Modern Welding Technology, Prentice Hall, New Jersey, USA, 1989				

18MTE51	PHYSICS OF ENGINEERING MATERIALS	L	Т	Ρ	С		
		3	0	0	3		
Course Ob	Course Objectives:						
1. To und	erstand the several types of materials and their principles.						
UNIT I	CONDUCTING MATERIALS		9	+	0		
Conduction thermal cor – Quantum Carrier cond insulators	in metals: mobility and conductivity – Classical free electron theory of met ductivity – Wiedemann Franz law – Lorentz number – drawbacks of classical theory – Fermi distribution function: Effect of temperature on Fermi function – centration in metals – Band theory of solids: distinction between conductors, s	als – free e Den semic	Elect electi sity c ondu	ctrical ron th of stat uctors	and eory es – and		
UNIT II	SEMICONDUCTING MATERIALS		9	+	0		
Carrier co semiconduo Compound formation o effect – Sol applications	Carrier concentration in intrinsic semiconductors (derivation) – Carrier concentration in extrinsic semiconductors (qualitative) – variation of Fermi level with temperature and doping concentration – Compound semiconductors – importance of compound semiconductors – Physics of pn junction diode : formation of pn junction – barrier potential – forward and reverse biased VI characteristics – Photovoltaic effect – Solar cell: Parameters (qualitative study) – Hall effect : determination of hall coefficient – applications						
UNIT III	DIELECTRIC MATERIALS		9	+	0		
Dielectrics: Orientationa Internal field dielectric m	Electrical susceptibility – Dielectric constant – Dielectric polarization – Electro al and Space charge polarization – frequency and temperature dependence of d – Classius – Mosotti relation (derivation) – dielectric loss – dielectric breakdo aterials (capacitor and transformer).	nic , l f pola own –	lonic rizati - Use	, ion – es of			
UNIT IV	MAGNETIC AND SUPERCONDUCTING MATERIALS		9	+	0		
Magnetic n Domain the Ferrites – a Supercondu SQUID.	naterials: Origin of magnetic moment – Bohr magneton – Dia, Para and ory of ferromagnetism – Hysteresis – Hard and soft magnetic materials – An pplication of ferrites. uctivity: Properties – Type I& Type II superconductors – applications – m	Ferro tiferro agne	mag o ma tic le	gnetis gnetis evitatio	m – sm – on –		
UNIT V	MODERN ENGINEERING MATERIALS:		9	+	0		
Metallic glasses: Preparation, properties, applications – Shape memory alloys: (SMA) – Processing, characterization and applications. Nano – materials: Introduction – top down and bottom up approach – synthesis – Ball milling, Plasma arcing and Sol – Gel technique – properties – applications. CNTs: Structure – Structure – properties – Synthesis – Carbon arc method, Pulsed vapour deposition, Chemical vapour deposition – properties – applications.							
	Tota	al (L+	T) =	45 Ho	ours		
Course Ou	Course Outcomes:						
Upon comp	letion of this course, the students will be able to:						
CO1 :	Classify the conducting and semiconducting materials and mention the theori conductivity and apply Fermi distribution function to calculate carrier concentr	es rel ation	ating in m	the etals			
CO2 :	Discuss the optical properties of materials like polarization and photo elastic e directions of stress as isoclinic and isochromatic fringes	effect	and	the			
CO3 :	Mention the magnetic and superconducting materials and the special applicat superconducting materials like maglev and SQUIDS	ion o	f				

CO4	:	Discuss the dielectric materials and different equations that can be used to describe the electronic characteristics of the dielectric material					
C05	:	Explain and mention the modern engineering materials					
Text E	Text Books:						
1.	P.k 200	K.Palanisamy, 'Materials Science', Scitech Publications (India) pvt.ltd. Chennai, Second edition, 07.					
2.	M. Arumugam, 'Materials Science', Anuradha Publications, Kumbakonam, 2006						
3.	Rajendran V and Marikani A, 'Materials Science', Tata McGraw Publications, New Delhi, 2004						
4.	Jayakumar S, 'Materials Science', RK Publishers, Coimbatore, 2008.						
Refere	Reference Books:						
1.	Ch 200	arles Kittel, 'Introduction to Solid state Physics', John Wiley and Sons, 7th Edition, Singapore, 07.					
2.	Ch	arles P. Poole and Frank J. Ownen, 'Introduction to Nanotechnology', Wiley India, 2007.					
3.	М.\$	S. Vijaya and G. Rangarajan, 'Materials Science', Tata McGraw Hill, New Delhi, 2012.					
		18MTE52	X-RAY DIFFRACTION AND ELECTRON MICROSCOPY	L	т	Ρ	С
---	---	--	---	--------------------------	-----------------------	----------------------	----------
				3	0	0	3
Course	Ob	jectives:					
1. To	stuc	ly about X-ray diffraction	methods and its uses, TEM, SEM				
						[r
UNIT	UNIT I Fundamentals of X-ray Diffraction					+	0
Properti Detectio	ies c on o	of X-rays: Continuous sp f x-rays. X-ray diffraction	ectrum, characteristic spectrum, absorption, filters. Pi - Bragg's Law, diffraction direction	roduc	tion	of x-ra	ays,
UNIT	II	X-ray Diffraction			9	+	0
Diffraction	ion r	nethods – Laue, Rotating	g Crystal and Powder methods. Intensity of diffracted	bean	ns-So	catteri	ing
by an or	10011			gone		Jataro	<u> </u>
UNIT I		Applications of X-ray	Diffraction		9	+	0
X-ray di and resi	iffrac idua	ction application in deter	mination of crystallite size, crystal structure, precise la	attice	para	meter	•
	1000	in chocol chomical analy					
UNIT I	V	Transmission Electro	n Microscopy		9	+	0
Transmi resolvin diffractio milling.	iissio Ig po on, t App	on electron microscopy (ower, image formation, c echniques of specimen lications of TEM.	TEM) instrumentation – electron sources, elements o ontrast mechanism, bright field and dark field images preparation-mechanical thinning, electrochemical thin	f elec , sele ning	tron cted and i	optics area on	,
	V	Scanning Electron Mi	croscopy		9	+	0
seconda prepara Beam m	Components of scanning electron microscope (SEM), electron beam – specimen interaction, Detection of secondary electrons, detection of back scattered electrons, image formation, methods of specimen preparation, Operational variables, Introduction to electron backscatter diffraction (EBSD) and Focused-Ion Beam microscopy						
					_,		
			Tot	al(L+	-T) =	45 Ho	ours
Course Outcomes:							
Upon co	omp	letion of this course, the	students will be able to:				
CO1	:	Learn to obtain the num	erical solutions of linear and non-linear equations				
CO2	:	Acquired the techniques	of interpolation and approximations				
CO3	 CO3 Familiarize with the numerical differentiation and integration, will know to solve the initial value problems for ordinary differential equations. 						

Text E	Text Books:				
1.	Cullity, B.D., Elements of X Ray Diffraction, Addison-Wesley Publishing Company Inc, Philippines, 1978				
2.	Brandon, D. and W.D. Kaplan, Microstructural Characterization of Materials, John Wiley & Sons Ltd, England, 2013				
Refer	Reference Books:				
1.	Goldstein, J., et al., Scanning Electron Microscopy and X-ray Microanalysis, Kluwer Academic/Plenum Publishers, New York, 2003.				
2.	Goodhew, P.J., J. Humphreys, and R. Beanland, Electron Microscopy and Analysis, Taylor & Francis, London, 2000				
3.	Hebbar, K.R., Basics of X-Ray Diffraction and Its Applications, I.K. International Publishing House Pvt. Limited, India, 2007.				
4.	Williams, D.B. and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, Springer Science+Business Media, New York, 2009				

	18MTE53	ELECTRICAL, ELECTRONICS AND MAGNETIC MATERIALS	L	Т	Ρ	С		
			3	0	0	3		
Course O	bjectives:							
1. To stu	1. To study super conductors, magnetic materials, semiconductors, optoelectronic materials.							
UNIT I	UNIT I DIELECTRIC AND PIEZO ELECTRIC MATERIALS				+	0		
Free elect phenomer breakdow	ron theory - Band theory - na - concept of polarization n - ferro electricity - piezo	 discussion on specific materials used as conductors n- frequency and temperature dependence - dielectric electricity and pyro electricity – BaTiO3 – structure and 	- Die loss id pro	lectri - die operti	c lectric ies	;		
		8		٥	+	0		
Concept c	f superconductivity – BCS	S theory of super conductivity – Types of super conductivity	ctors	–YB	т СО-	U		
structure a	and properties – specific s	uper conducting materials – Fabrication and engineer	ing a	pplic	ations	3.		
UNIT III	MAGNETIC MATERIA	LS		9	+	0		
Origin of N	Agnetism - Introduction to	o dia, para, ferri and ferro magnetism – Curie tempera	ature	– Ma	gneti	с о		
anisotropy	 hard and soft magnetic magnets 	materials- iron based alloys - ferrites and garnets - ra	are ea	arth a	alloys	-		
UNIT IV	OPTOELECTRONIC M	IATERIALS		9	+	0		
Principles –LCD, LE	of photoconductivity, lumi D and diode laser materia	inescence photo detectors – Optical disc and optoel Is - electro optic modulators - Kerr and Pockel's effect	lectro t – Lil	onic n NbO3	nateri 3	als		
	SEMICONDUCTORS		<u> </u>	0		0		
Semicond	ucting materials and types	s: simple, compound and oxide semiconductors – sem	nicon	9 ducti	+ na	U		
materials crystals- z Lithograph	in devices – Production of one melting – Czochralsk iv	silicon starting materials – methods for crystal growth i method – Epitaxial films by VPE, MBE and MOCVD	n for t techr	oulk s nique	single s –			
	•							
		Tota	al (L+	-T) =	45 Ho	ours		
Course Outcomes:								
Upon com	pletion of this course, the	students will be able to:						
CO1 :	Understand the band ga	ap theory for conducting, semiconducting and insulatin	ıg ma	ateria	ls.			
CO2 :	Understand various elec	ctrical phenomenon such as ferro electricity, piezo elec	ctricit	ÿ				
CO3 :	Learn about photocondu their performances	uction phenomenon, optical materials and various opti	cal d	evice	es and	1		

CO4	:	Study various kinds of magnetism principles, various types of materials exhibiting					
CO5	:	 Study the theory of superconductivity phenomenon and superconducting materials and their applications along with recent advancements Understand the fundamentals of semiconducting materials and operational principles of solid state devices made of these semiconducting materials. To learn various methods of producing semiconductors and their processing methods used in the semiconducting materials industry. 					
Text B	Text Books:						
1.	Kittel C., 'Introduction to Solid State Physics', 7th Edition, Wiley Eastern, New International Publishers, 2004						
2.	Dekker A. J., 'Electrical Engineering materials, Prentic Hall, 1995						
Reference Books:							
1.	Dekker. A.J, Solid state Physics, Mac Millan India, 1995						
2.	Va	n Vlack L.H, Elements of Materials Science and Engineering, 6th edition, Addison Wiley, 1989					
3.	Kasap and Capper, Handbook of electronic and photonic materials, 2006, NY						

18MTE54		54	SOLIDIFICATION PROCESSING	L	т	Ρ	С
				3	0	0	3
Course	e Ok	ojectiv	es:				
1. To	aco	quire ba	asics knowledge on solidification, heat transfer, dendritic growth, runner	, rise	r and	l fluid	flow
					0		0
Thermo	l odvr	amics	of solidification: pure metal solidification i.e. G vs T curves for liquid and	d solia	y d alle	+ 0V	U
solidific solidific	catio	on. Sch on Hiera	eil equation: Mathematical analysis of redistribution of solute during dire archy of equilibrium, Local Interface equilibrium, Interface non-equilibriu	ection m,	al		
		THE	ORIES OF GRAIN GROWTH		9	+	0
Microso instabil Macro modelin	egre lity, ma ng o	egation Ivantso ss Tra of solidi	, Constitutional undercooling, Theories of nucleation and growt ov's theory of dendritic growth.Macro scale Phenomena- Mathematics of ansport-solute diffusion controlled segregation, analysis of solute re- fication-	h: N f diffu edistri	ullin: Isive butic	s-Sek trans on- M	erka port, acro
UNII		SOL	IDIFICATION AND TYPES OF CASTING	v of o	9	+	0
peritec	tic g	rowth,	Structure of casting and ingots, Types of casting, Heat transfer	yore	uleci		wuri,
	11/	MEI			0		0
design	of	riser a	nd gating Solidification, heat transfer, fluid flow during fusion welding	n Ca	sting	T Defe	ects
Melting Solid s	furi tate	naces. diffusi	Role of kinetics, heterogeneous and homogeneous kinetics- Kinetics of ve transformation- Mechanism of transformation.	f solic	l-fluic	d read	tion-
UNIT Molting	V		TING AND SOLIDIFICATION OF ALLOYS	d flou	9	+	U sion
welding	g and g.				uun	ing iu	51011
			Tot	al /l	T) _	15 H	oure
Course	Total (L+T) = 45 Hours						
Upon c	omp	oletion	of this course, the students will be able to:				
CO1	:	Expla	in the principles of solidification in metals and alloys				
CO2	:	Corre condi	late the morpho-genesis of solidification microstructures with the heat a tions	nd ma	ass t	ransfe	er
CO3	:	Descr	ibe the casting techniques				

CO4	:	Design the gating and risering of castings				
CO5	:	Identify the melting furnaces for metals and alloys				
Text E	Text Books:					
1.	Kurz and Fisher: Solidification Processing, Trans Tech publications 1998.					
2.	R. W. Heine, C. R. Loper, P. C. Rosenthal: Principles of metal casting, McGraw Higher Ed 1976.					
Reference Books:						
1.	K. Easterling: Introduction to Physical metallurgy of welding, Butterworth-Hienemann 1992.					
2.	P. K. Jain: Principles of foundry technology, McGraw-Hill 1987					

18MTE55		55	ADDITIVE MANUFACTURING	L	Т	Ρ	С		
	0	0	3						
Cours	Course Objectives:								
1. To	1. To know about additive manufacturing and rapid prototyping technologies.								
UNI	-		ODUCTION		9	+	U		
design	ar ov i (CA	AD), coi	, need of additive manufacturing (AM), reverse engineering (RE), and c mputer aided manufacturing (CAM) and AM, AM tooling and uses.	ompu	iter a	laea			
		T				-			
UNIT		ADD	ITIVE MANUFACTURING SYSTEMS		9	+	0		
Princip Depos (vi) Las	ole, p ition ser E	orocess Model Enginee	, advantages and applications of (i) Stereo lithography (ii)3-D Printing (ling (FDM) (iv) Laminated Object Manufacturing (LOM) (v) Selective Las ered Net Shaping (LENS) (vii) Direct Metal Deposition (DMD).	ii) Fu ser Si	sed interi	ng (S	SLS)		
		1				[
UNIT	. 111	MAT	MATERIALS AND MECHANISMS		9	+	0		
Polymo Metals	er, p s use	hoto po d in DN	blymerization and SLS, ceramics for SLS and Laser chemical vapour de AD and SLS, effect of rapid solidification and non-equilibrium structure.	posit	ion (LCVD),		
UNIT	IV	APP	LICATIONS		9	+	0		
Design	n and	d produ	ction of Customized implants and prosthesis using AM, Computer Aide	d Tiss	sue		L		
Ligine		g (OAT	L).						
UNIT	۰v	ОТН	ER APPLICATIONS		9	+	0		
Reacti Aerosp	ve a bace	nd Ligh , Auton	ntweight, Wear and Corrosion resistant and improved thermal properties nobile, Oil and Gas and Agriculture.	suita	able f	or			
Total (L+T) = 45 Hours									
Course Outcomes:									
Upon o	Upon completion of this course, the students will be able to:								
CO1	:	Explai	in the need for Additive Manufacturing (AM) and Rapid Prototyping Tec	nnolo	gies				
CO2	:	Descr	ibe the principles, process and advantages of different AM systems						
CO3	:	Desig	n and apply AM for customized implants and industrial products						

TEXT	TEXT BOOKS					
1.	A. Gebhardt, "Rapid prototyping", Hanser Gardener Publications, 2003.					
2.	L.W. Liou and F.W. Liou, "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.					
Refer	Reference Books:					
1.	A.K. Kamrani and E.A. Nasr, "Rapid Prototyping: Theory and Practice", Springer, 2006.					
2.	P.D. Hilton and P.F. Jacobs, "Rapid Tooling: Technologies and Industrial Applications", CRC press, 2000.					

18MTE61		I	NANO MATERIALS	L	т	Ρ	С				
							0	3			
Cοι	Course Objectives:										
1.	1. Able to describe the various methods synthesis										
2.	Abl	e to c	characterize the Nano materials								
3.	Kno	ow the	e appl	lication of nano materials in Various fields				-			
U	NIT	I I	INTRO	ODUCTION AND SYNTHESIS BY MECHANICAL METHODS:		9	+	0			
dim elec top met EC/	Introduction: Definition, classification of nanomaterials- Structure of nanomaterials - Effect of nanoscale dimensions on various properties – Structural, thermal, chemical, mechanical, magnetic, optical and electronic properties. Comparison nanomaterialswith conventional materials. Synthesis: Basic approaches- top down and bottom up approaches- various methods for producing nanomaterials. Solid State (Mechanical methods): Mechanical Alloying (MA) and Mechanical Milling (MM)- Severe Plastic deformation –										
U		11 :	SYNT	HESIS BY PHYSICAL& CHEMICAL		9	+	0			
Top invo Eva con	o dov olvec apora solic	wn ap 1 for v ation, 1ation	oproad variou Sputte is, Spa	ch, Nanolithography,Bottom up approach:Chemical methods:CVD – S is types of CVD, Sol-gel method and co-precipitation techniques.Physering &Laser ablation .Consolidation of nanomaterials : Prob ark plasma sintering .	Steps sicalr blems	and netho s,S	reac ods:P hockv	tions VD - vave			
U	Ι ΤΙΛ	II	APPL	ICATIONS OF NANOMATERIALS - I		9	+	0			
Nar app	no-el olicat	ectro ions.	nics, l Quan	Micro- and Nano-Electromechanical systems, nanosensors, Electrical a tum dots: Fabrication and applications. Nanofluids and their application	and c ns.	optica	I				
UN	I TIV	V	APPL	ICATIONS OF NANOMATERIALS - II		9	+	0			
Ene app issu	ergy olicat ues r	appli ions. elateo	icatior Carb d to na	ns: energy storage devices, fuel cells, solar cells, Biomedical app on nanotubes: Types, structures, synthesis and applications. Health anomaterials.	licatio and	ons. envi	Struc ronme	tural ental			
U	NIT V	V	CHARACTERIZATION OF NANOMATERIALS				+	0			
App Trai wor inde	Application of X-ray diffraction in nanomaterial characterization. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Atomic Force Microscope, Field Ion Microscope – Construction, working principle, different modes of operation and application in nanomaterial characterization. Nano- indentation technique. Introduction to 3D Atom Probe Tomography.										
				Total	(L+T) =	45 H	ours			
Cοι	Course Outcomes:										
Upo	on co	omple	etion c	of this course, the students will be able to:							
со	1	: E a	xplair nd me	n the fabrication of nanomaterial's using different methods such as med echanical milling	chani	cal al	loying	1			
CO	2	: D m	escril) Nethoo	be the various deposition processes of nanomaterial's like physical ,cho	emica	al ano	d ther	mal			
CO	3	: D)escril	be the electronic and optical applications of nanomaterial's							

CO4	:	Describe the energy storage devices and explain the applications related to biomedical and bioactive fields				
CO5	:	Demonstrate the various nano material characterization techniques such as AFM,XRDandTEM				
Text E	Text Books:					
1.	B.S Murthy ,P.Shankar,Baldevraj,B.BRath,JamesMurday – Text book nano science and nanotechnology, University press(India)Pvt Ltd, Hyderabad 2012					
2.	Dieter vollath, Nanomaterials: An introduction to Synthesis, Properties and applications, Second edition, Wiley – VCH verlagGmbh& co, Germany 2013					
Refere	Reference Books:					
1.	Pradeep T, " Nano : The essentials", Tata McGraw Hill Publishing Company Limited, New Delhi, 2007					
2.	B. S. Murty et al., Textbook of Nanoscience and Nanotechnology, Universities Press (India) Private Limited 2013					
3.	Bh	arathBhushan, Springer Handbook of Nanotechnology, Springer – Verlag, New York, 2004.				
4.	Charles P. Poole and Frank J Owens, Introduction to Nanotechnology, John Wiley and Sons Inc, New York, 2003.					

18MTE62		52 THIN FLIMS,COATINGS A	ND APPLICATIONS	L	Т	Р	С
				3	0	0	3
Course	Course Objectives:						
1. To	stu	dy about thin flims, coatings and application te	echniques.				
UNIT	1	INTRODUCTION			9	+	0
Need for desorp vacuur	or n tion n pu	iniaturization, Basics of thin film, Brief review film growth: nucleation and growth kinetics. V mps, surface: role of substrate surface, subst	of kinetic theory of adsorption, /acuum science and technology, rate cleaning. Epitaxy, thin film g	rowth	n con	trol,	
		[I	I
UNIT	II	TECHNIQUES OF COATING			9	+	0
Physic of glow proces	al va v dis ses	por deposition (PVD) processes, evaporation charge and various sputtering processes. Fun	: thermal and e-beam. Principles damentals of Chemical Vapor De	eposi	tion	(CVD))
						1	1
UNIT	III	OTHER TECHNIQUES			9	+	0
Pulsed coating printing	las j, sc j.	er deposition (PLD), other techniques: electro- I-gel, Langmuir Blodgett (LB) techniques, SIL#	-deposition, spin AR technique, Doctor blade techr	nique	·,		
	N7				0		0
Hard o	n v Nati	a: physical mechanical and protective proper	rties basic thin film thickness		9	+	U
measu	rem	ent, microstructural characterization of films/co	pating.				
UNIT	۷	APPLICATIONS			9	+	0
Thin fill resista	m d nce	evices: optoelectronicdevices, photo-detectors	s, solar cells. Applications: high h	ardne	ess,	corros	sion
biocom	pat	bility and high temperature stability.					
			Total (L	_+T) =	= 45	Н	ours
Course	e O	itcomes:					
Upon c	om	eletion of this course, the students will be able	to:				
CO1	:	Explain the basics of adsorption, desorption a	and need of vacuum				
CO2		Describe the principles, process and advanta	ages of different techniques				
CO3	:	Know about various hard coating techniques					

CO4	:	Identify thin flim devices and applications of it.				
Text E	Text Books:					
1.	Milton Ohring, Materials Science of Thin Films, 2nd Edition, Academic Press, 2001					
2.	Hartmut Frey and Hamid R Khan, Handbook of Thin Film Technology, Springer, 2016					
Refere	Reference Books:					
1.	K. I	L. Chopra & L. K. Malhotra, Thin film Technology and Application, Tata McGraw-Hill, 1985				
2.	Pet	ter M. Martin, Handbook of Deposition Technologies for Films and Coatings, Elsevier, 1994				
3.	Sam Zhang, Nanostructured Thin Films and Coating, CRC Press, 2010					

18MTE63		AEROSPACE MATERIALS	L	т	Ρ	С
			3	0	0	3
Course Ob	ojectiv	es:				
1. To ana	alyse th	ne materials for aerospace.				
	1					1
UNIT I	MEC	HANICAL BEHAVIOUR OF ENGINEERING MATERIALS		9	+	0
Knowledge of various type of hardness testing machines and various types of hardness number linear and non – linear elastic properties – stress and strain curves – yielding and strain hardening toughness- modulus of resilience- bauchinger effect- effect of notches – testing and flaw detection of materials and components.						
				•	_	•
	MAI	ERIALS IN AIRCRAFT CONSTRUCTION-01		9	+	0
treatments Magnesium problems, s Titanium ar	n and i special nd its a	ts alloys: cast and wrought alloys-aircraft applications, future specifications I treatments. alloys: application, forming,machining,welding and heat treatment.	on, fa	brica	tion	
UNIT III	MAT	ERIALS IN AIRCRAFT CONSTRUCTION-02		9	+	0
Steels: plai resistant st Maraging s Copper allo Superalloys	in and eels, s steels: bys: Mo s: use	low carbon steels, various low alloy steels. Aircraft steel specification, contructural applications. Properties and applications onel,K-monel –Ni base-Co base-Fe base- forging and casting of superalloys-welding,	orrosi	ion a treatr	nd he ment.	at
			<u> </u>			
UNITIV	ADH	ESIVE AND SEALANTS FOR AIRCRAFTS		9	+	0
Advantages structural a Typical bor methods of	s of bo idhesiv ided jo f const	onded structure in airframes, crack arresting-weight saving- technology of e materials- test for bonding structure pints & non destructive tests for bonded joint bonded sandwich structure ruction of honeycombs	s- ma	ateria	e bon Is –	aing
	NON	METALS IN AIRCRAFT CONSTRUCTION	<u> </u>	٩	_	0
Wood and	fabric	in aircraft construction and specifications- Glues use of glass, plastics a	nd ru	bber	in	
aircrafts, in	troduc	tion to glass and carbon composites				
	Total (I ±T) - 45 Hours					
Course Ou	utcom	es:				-
Upon comp	oletion	of this course, the students will be able to:				

CO1	:	Explain the production, properties and application of composites		
CO2	:	Describe the metal matrix composites		
CO3	:	Know about Ti. Ni based composites		
CO4	:	Identify materials for engines and plasma engines		
Text B	Text Books:			
1.	1. H. Buhl, Advanced Aerospace Materials, Springer Verlag, Berlin 1992.			
Refere	Reference Books:			
1.	Balram Gupta et.al Aerospace Materials Vol 1, 2, 3 ARDB, S. Chand& Co. 1996.			

18MTE6		64 MODELING AND SIMULATION IN MATERIAL PROCESSES	L	Т	Р	С			
		· ·	3	0	0	3			
			_						
Course	Course Objectives:								
1. To	o stu	dy about thin flims, coatings and application techniques.							
UNIT	.1	INTRODUCTION		9	+	0			
Introdu conduc transfe	iction r mo	n to modeling, simulation models, Casting process: modeling of heat transfer, modeling, one-dimensional and multidimensional inverse modeling, fluid flow odel,	direct and l	t hea heat	t				
	' II	CASTING MODELING		9	-	0			
thermo	dyn	amics of solidification, metal/mold interfacial heat transfer, deformation and		3	т	U			
stresse	es in	castings, thermo-mechanical modeling in casting, determination of heat trans	sfer co	oeffic	ent a	nd			
air gap	WIC	th in permanent mould castings, continuous casting and DC casting process,							
			<u> </u>	0		0			
Weldin	a pr	OCCESS: weld heat -source models, thermal analysis with-microstructure, trans	ient fli	y uid flo	+)W	U			
residua micros	al str truct	resses in welds, Heat treatment: metal quenchant, interfacial heat transfer, dis sure model, carburization model, quench crack simulation, creep simulation,	fusior	n moo	lel,				
UNIT	IV	MODELLING		9	+	0			
Modeli Phase	ng o field	f rolling, forming and extrusion processes, Artificial Neural Net works in mate	rials p	roces	ssing,				
1 11030	neic								
UNIT	v	SOFTWARES		9	+	0			
introdu	ctio	n to commercially available softwares - Solid Cast, FlowCast, OptiCast, Defor	m HT	, Pro	Cast,	•			
Magma	aSof	t, Design of experiments and factorial designs.							
		Total	L+T)	= 45	Н	ours			
Course	e Oı	utcomes:							
Upon c	comp	pletion of this course, the students will be able to:							
CO1	:	Explain the basics of modeling.							
CO2	:	Describe the principles in casting modeling.							
CO3	:	Know about welding and heat treatment simulation							
CO4	:	Identify commercially available softwares for modeling							

Text E	Books:			
1.	Modeling in Welding, Hot Powder Forming and Casting (Eds. L. Koarlsson), ASM, MaterialsPark,OH,1997.			
2.	Szekely, J., Evans, J.E. and Brimacombe, J.K., The Mathematical and Physical Modelling of Primary Metal processing Operations, Wiley, 1988.			
Refer	Reference Books:			
1.	Numerical Recipes: The Art of Scientific Computing, Cambridge Univ. Press, N.Y., 1988.			
2.	D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, warrendale 1994.			
3.	R.I. L. Guthrie: Engineering in Process Metallurgy, Oxford Science Publications (1989)			

18MTE65		NUCLEAR MATERIALS	L	т	Ρ	С		
			3	0	0	3		
Course Ob	Course Objectives:							
1. To stud	dy abc	out materials required for nuclear applications.						
UNIT I	INTE	RODUCTION		9	+	0		
Structure of thorium and	f a nuo d their	clear power plant, requirements of reactor materials, fuel materials, pluto alloys & compounds,	nium	urar	niuma	nd		
UNIT II	COF	RE MATERIALS		9	+	0		
materials, n steel; mater copper allo <u>r</u> reactor mat	core materials: beryllium, graphite, control and shielding materials, magnesium & its alloys, aluminium & its alloys, zirconium & its alloys, austenitic stainless steel; materials for reactor vessel and other components, pearlitic steels, ferritic, chromium stainless steels, copper alloys, titanium and its alloys, coolants used in reactors: radiation embrittlement, corrosion of reactor materials, mechanical properties of materials.							
UNIT III	REA	CTOR INSTRUMENTATION		9	+	0		
Reactor Ins overview – Encore dete electrons fr	strume – press ectors rom ga	ntation — general considerations — Reactor Nuclear Instrumentation sy surized water nuclear instrumentation, boiling water reactor nuclear instr , self powered detectors, detectors based on beta decay, detectors base mma decay.	/stem umer ed on	ns — ntatio secc	an n, mdary	y		
						1		
UNIT IV	NUC	LEAR TECHNIQUES FOR MATERIAL ANALYSIS		9	+	0		
Nuclear tec the techniq analysis, th analysis(EF nuclear rea techniques.	chnique ue, nu ie quai RDA). actions	es for materials analysis — basic principles of materials analysis, basic clear techniques for elemental analysis, main nuclear processes useful ntitative estimate, Rutherford back scattering (RBS) and elastic recoil de Nuclear reaction analysis — principle of the technique and required inst suitable for nuclear reaction analysis, neutron activation analysis. PIXE	requir for m tectic rume and	reme ateria on ntatio XRF	nts fo als on,	r		
UNIT V	NUC	LEAR WASTE MANAGEMENT		9	+	0		
Nuclear Wa fuel, reproc classificatio radionuclide principles a	Nuclear Waste Management: Introduces scientific and engineering aspects of the management of spent fuel, reprocessed high-level waste, low-level wastes, and decommissioning wastes. Characteristics and classification of nuclear wastes and waste forms. Fundamental processes and governing equations of radionuclide transport in the environment. Discussion of performance assessment for repositories. Design principles and evaluation methods for geologic waste disposal systems.							
		Total (I	_+T) :	= 45	н	ours		
Course Ou	Course Outcomes:							

Upon c	Upon completion of this course, the students will be able to:				
CO1	:	Know about the structure of a nuclear power plant			
CO2	:	Identify the reactor core materials			
CO3	:	Classify various reactor vessel materials			
CO4	:	Identify corrosion of reactor materials and mechanical properties of materials.			
Text Books:					

1. V.Gerasimov& A. Monakhov, Nuclear Engineering Materials, Mir Publishers, Moskow, 1983. 2. D.S.Clark& W.R Varney, Physical Metallurgy for engineers, East West Press, New Delhi, 1987 Reference Books: 1. C.M.Srivatsava&C.Srinivasan, Science of engineering Materials, 1997, New Age International.

OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS

		18MTOE01	FOUNDRY AND WELDING TECHNOLOGY	L	Т	Р	С	
				3	0	0	3	
Course	Course Objectives:							
1. To	kno	ow the basic concepts of	metal casting technology and to apply them to produce	e of ı	new	mater	ials	
2. To enq	kno gine	ow the concepts of differe eering principle of every p	ent materials joining technology and emphasis on unde processes.	erlyin	g sci	ence	and	
UNIT	1		ALS AND PATTERNS		9	+	0	
Introduc colour Mouldir	ction cod	n to foundry operations, es, core boxes, mouldi ands. Sand preparation,.	patterns - functions, types, allowances, selection of ng practice, ingredients of moulding sand and core . Sand reclamation in foundries	f pat e sa	tern nd, T	mate Festin	rials, g of	
					٥		0	
Sand m	noul	ding: green sand mouldir	ng, dry sand moulding, skin dry sand moulding, shell m	noulc	ling,	+ carbo	n-	
casting	, ful	I mould process, Rheocas	sting, Thixo casting.	asu	ig, s	queez	<u>e</u>	
		1				1	1	
UNIT		MELTING PRACTICE	· · · · · · · · · · · · · · · · · · ·		9	+	0	
and ma	pra gne	esium alloys, Cleaning ar	nd repair of castings. Casting defects and remedies	ys, c	oppe	er allo	ys 	
UNIT	V	WELDING AND OTHE	R JOINING PROCESSES		9	+	0	
Classifi gas tun	cati gste	on of welding processes en arc and gas metal arc	 oxy-acetylene welding, arc welding-manual, submerg welding, electro slag and electro gas welding.Brazing, 	jed a , solo	rc w derin	elding g and	,	
outing								
UNIT	v	SPECIAL WELDING F	PROCESSES		9	+	0	
Principl and las	e, e er b	equipment, process varial beam welding processes.	bles, merits, limitations and applications of Electron be friction, friction stir welding, ultrasonic explosive and d	am, liffus	plası ion v	ma ar veldin	c g.	
	Total (45+0) = 45 Hours							
Course	Course Outcomes:							
Upon c	omp	pletion of this course, the	students will be able to:					
CO1	:	Discuss the alloying ele moulding and melting of	ment effect on the steels and mention the precaution to f steels	o be	take	n in		
CO2	:	Mention the melting pro	cedure that is adopted for the various alloys like steels	s, sta	inles	s stee	els,	

		discuss the slag-metal reactions				
CO3	:	Understand and describe the gas and arc Welding processes such as Fusion welding process, Arc welding-manual process and Gas metal arc welding etc and their heat sources				
CO4	:	Describe the Brazing, Soldering and cutting processes and their advantages, limitations and applications				
CO5	:	Explain the pressure welding processes such as cold, hot pressure welding, friction, friction stir welding processes, and special welding process such as Electron beam, plasma arc and laser beam welding.				
Text E	Text Books:					
1.	Heine R W., Loper, C.R.Rosenthal, P.C.,"Principles of Metal Casting", Tata-McGraw Hill Publishing Co Ltd, New Delhi, 2008.					
2.	Sri	nivasan N K., "Foundry Engineering", Khanna Tech Publications, New Delhi, 2005.				
3.	Pa	rmar, R.S., "Welding Processes and Technology", 2nd edn. Khanna Publishers, New Delhi, 2001				
4.	Sri	nivasan N K ,"Welding Technology", Khanna Publications, Delhi, 2000				
Reference Books:						
1.	Be	eley P R., "Foundry Technology", Butterworths, London, 1982.				
2.	Ho	ward B. Cary, "Modern Welding Technology", Prentice Hall, New Jersey, USA, 1998.				

18MTOE02		SURFACE ENGINEERING	L	Т	Р	С		
			3	0	0	3		
Course Objectives:	Course Objectives:							
1. Analyze the variou	s concepts o	f surface engineering and comprehend the design dif	ficulti	es				
UNIT I TRIBOLO	GY AND PL	ATING PROCESSES		9	+	0		
Introduction to tribology, Wear: Types of wear - adhesive, abrasive, oxidative, corrosive, erosive and trotting wear, roles of friction and lubrication and wear testing. Plating Processes: Fundamentals of electrodeposition, plating of nickel, chromium, tin and copper, pulsed plating, hydrogen embrittlement, plating adhesion, electroless plating, electrochemical conversion coating, selective plating for repair, plating properties, hard anodizing.								
		ESSES		٥	+	0		
SMAW, GTAW, GMAW	, FCAW, SA	W, PAW, Oxy-Acetylene Welding, Furnace fusing, Th	nerma	al-spr	ray, na	ame		
spray processes - HVO	F, Detonatio	n gun and jet kote processes, hard facing consumable	es.					
		DROCESSES		_		•		
Principle of diffusion pro	ocesses - Bo	priding, Aluminising, Siliconising, Chromising - Selection	on of	diffu	+ sion	U		
processes - Characteris and applications.	stics of diffus	ed layer - micro structure and micro hardness evalua	tion -	prop	erties	5		
						•		
Physical vapour deposi	ition process	> es - Thermal evaporation - sputter coating - lon platin	a - C	9 hemi	+ cal	U		
vapour deposition - rea properties and application	ctive sputteri ions.	ing - TiC, TiN, Alumina, CBN, Diamond and DLC coat	ings.	Stru	cture,			
UNIT V HIGH ENE	RGY MODI	FICATION AND SPECIAL PROCESSES		9	+	0		
Electron beam hardenin created by laser and El cloth, thermal / chemica	ng, glazing, L lectron beam al. Ceramic c	Laser beam hardening glazing ion implantation, Comp Surface cements, Wear tiles, Electro spark deposition coatings, centrifugal cast wear coatings, Wear sleeves	oosite on, fu s and	surfa sed o Wea	ace carbid ir plate	e es.		
	Total (L+T) = 45 Hours							
Course Outcomes:								
Upon completion of this	s course, the	students will be able to:						
CO1 : Understand by the platin	I the influenc	e of the tribological characteristics and improvise the	mate	rial p	roper	ty		

CO2	:	Explain the various hard facing processes					
CO3	:	Enhancement of surface properties with diffusion of foreign atoms into the outer surface of the material such as boriding, aluminizing, etc					
CO4	:	Describe the various vapour deposition processes of different materials on the surface of native materials using the Chemical, Physical and Thermal vapour deposition processes.					
CO5	:	Describe the Modern processes and high energy processes like electron beam hardening, laser beam hardening.					
Text E	Text Books:						
1.	Chattopadhyay R., Surface Wear: Analysis, Treatment, Prevention, ASM International, USA, 2001						
2.	Kenneth G. Budinski, Surface Engineering for Wear Resistance, Prentice Hall, Englewood Cliff, 1990.						
Refere	Reference Books:						
1.	ASM Metals Handbook, Vol 5: Surface Engineering, ASM International, Ohio, 1994.						
2.	Ernest Rabinowicz, Friction and Wear of Materials, 2nd ed., John Wiley & Sons, NY, 1995.						
3.	Davis J.R., Surface Engineering for Corrosion and Wear resistance, ASM International, 2001.						

		18MTOE03	DESIGN AND SELECTION OF MATERIALS	L	Т	Ρ	С
				3	0	0	3
Course	e Ol	bjectives:					
1. To Dif	kno ffere	ow different types of mate ent applications.	erials and properties and to select better materials for				
					_		
UNIT				9	+	0	
tools a	nd r	n Design, Evolution of En naterial data, Interaction	between Function, Material, Shape and Process	, Des	ign ii		
UNIT	11	MATERIAL PROPERT	TIES		9	+	0
Revisio Young ^t modulu	Revision of engineering materials and properties, Material properties interrelationship charts such as Young's modulus-density, Strength-density, Young's modulus-Strength, wear rate-hardness, Young's modulus – relative cost, strengthrelative cost and others						
UNIT	III	MATERIAL SELECTIO	DN		9	+	0
aided s heat ex	ais s sele (cha	ction, structural index; Ca angers, airframes, ship st	gy: material attributes, attribute limits, selection procedures studies: table legs, flywheel, springs, pressure ves ructures, automobile structures	aure, ssels,	com bear	ings,	
UNIT	IV	PROCESSES AND PR			9	+	0
The pro	oce	sses: shaping, joining and	d finishing, Process selection, ranking processes, cost	t, con	npute	r bas	ed
proces	s se	election, Case studies: far	n, pressure vessel, optical table, economical casting.				
	v				٩	+	0
Selecti	on i	under multiple constraints	conflicting objectives, penalty-functions, exchange c	onsta	ants.	• Case	U
studies	: cc	nnecting rods for high pe	rformance engines, windings of high field magnets.		,		
			Tota	al (L+	-T) =	45 He	ours
Course	e O	utcomes:					
Upon c	om	pletion of this course, the	students will be able to:				
CO1	:	Explain the physical, ch	emical and electrical properties of metals and their se	lectio	n crit	erion	
CO2	:	Suggest the materials for	or corrosion and wear resistance process.				
CO3	:	Suggest the materials for	or high and low temperature process.				
CO4	:	Suggest the materials for	or auto and aero industry				

CO5	:	Suggest the materials for nuclear and mining industries.				
Text E	Bool	(S:				
1.	Mic 200	chael F. Ashby, Materials Selection in Mechanical Design, third edition, Butterworth-Heinemann, D5				
2.	J. Charles, F.A.A. Crane, J. A.G. Furness, Selection and Use of Engineering Materials, third edition, Butterworth-Heinemann, 2006					
Refere	ence	e Books:				
1.	AS	M Metals Handbook, Vol.20: Materials Selection and Design, ASM International, 1997				
2.	My	er Kutz, Handbook of Materials Selection, John Wiley & Sons, Inc., New York, 2002				

	L	т	Ρ	С						
			3	0	0	3				
		· · ·								
Course Objectives:										
1. To stu	dy about nanomaterials a	and its application								
· ·										
UNIT I	INTRODUCTION			9	+	0				
Definition, I Nanoscale Properties clays, nanc nanomateri	Length scales, surface a and Technology, Top do of selected nanomaterial owires, quantum dots (QI als.	rea/volume ratio of micron to nanoscale materials, Imp own and bottom up approaches, Classification of nanor is including carbon nanotubes (CNT), graphene, metal Ds), effect of size on thermal, mechanical and electrica	ortar mate I nan al pro	nce c rials, opart perti	icles, es of					
			<u> </u>	0		0				
UNIT II Exprination	of Nonomotoriole: Top	JMATERIALS		9		U				
Deformatio deposition (EG) or gra	n, Bottom-up approache (ALD), and Sol-gel methe phene.	s-chemical vapour deposition, physical vapour deposit od, Synthesis and purification of CNT, synthesis of exp	tion, a pand	atom ed gr	ic lay aphite	er Ə				
UNIT III	NANOCOMPOSITES			9	+	0				
Fabrication magnetic p Consolidati	of nanocomposites: Fat article-polymer, CNT-me on of nanomaterials.	prication of Clay-rubber, Clay-polymer, CNT-polymer, E stal, trade off between the composites and nanocompo	EG-p sites	olym etc.	er,					
UNIT IV	CHARACTERIZATION	N OF NANOMATERIALS		9	+	0				
Characteriz microscope microscopy	zation of Nanomaterials:, e (SEM), Transmission E - Atomic force microsco	X-ray diffraction (XRD), Dynamic Light Scattering, Sca lectron Microscope (TEM), UV-Visible spectroscopy, S pe (AFM) and scanning tunneling microscope (STM). N	annir Scanr Nano	ng ele ning pinde	ectror probe ntatio	ו n.				
UNIT V	APPLICATIONS OF N	ANOMATERIALS		9	+	0				
ONIT V APPLICATIONS OF NANOMALERIALS 9 + 0 Applications of nanomaterials: Electronics, structural, biomedical, sensors nanofluids, optical, magnetic, biomedical fields, solar cells, LED, LCD, electrically conducting polymers, batteries, fuel cells, SMART materials. Environmental and health issues related to nanomaterials. 9 + 0										
Total (L+T) = 45 Hours										
Course Ou	itcomes:		-	-						
Upon comp	pletion of this course, the	students will be able to:								
CO1 :	Define and differentiate engineering applications	engineering materials on the basis of structure and pro	oper	ties f	or					

CO2	:	Various applications of nanomaterials							
CO3	:	Select a material for a particular application based on the requirements.							
CO4	:	Predict and apply the necessary protection mechanism to prevent corrosion							
CO5	:	Understanding details about SEM, TEM							
Text E	Text Books:								
1.	B.S. Murty, P. Shankar, Baldev Raj, B B Rath, James Murday, Textbook of Nanoscience and Nanotechnology, University Press (I) Pvt. Ltd., 2013.								
2.	Bh 20	arat Bhushan (Ed), Springer Handbook of Nanotechnology, Springer-Verlag Berlin Heidelberg, 04							
Refere	ence	e Books:							
1.	Ch Yo	arles P Poole and Frank J Owens, "Introduction to Nanotechnology", John Wiley and Sons, New rk, 2003.							
2.	Michael Wilson, Kamali Kannagara and Geoff Smith, "Nanotechnology: Basic Science and Emerging Technology", Chapman and Hall, New York, 2002.								
3.	Pra	adeep T, "Nano: The Essentials", Tata Mc Graw Hill, New Delhi, 2007.							

PROTOSEM COURSES SYLLABUS

18MI	EPS11	APPLIED DESIGN THINKING		Semester VI						
PRER	EQUIS	ITES	Category	ry PE Credit						
				L	Т	Р	TH			
			Hours/Week	3	0	0	3			
Cours	e Learn	ing Objectives				-				
1	TI		. 1 .1 .	1	1					
	The cou	irse enables product innovators and early-stage startup founde	ers to learn the custo	omer de	velopm	ent proc	ess			
2	To fami custome	liarize with the tools & techniques & validate the inherent risk er-commitment & customer-acceptance.	s by linking their pr	ogress t	o custor	ner-mot	ivation,			
3	To learn	n the system thinking concepts by reverse engineering techniq	lue.							
Un	it I	DESIGN THINKING PRINCIPLES		9	0	0	9			
Explor &empa	ing Huma thy –buil	an – Centered Design – Understanding the innovation process ding techniques, Mitigate validate risk with FIR(Forge Innova	ss, discovering area ation Rubric) – Cas	is of op e Studio	portunit es.	y, interv	viewing			
Un	it II	CUSTOMER-CENTRIC INNOVATION		9	0	0	9			
Importa and pro – Custo	ance of cu blem inc omer inter	istomer-centric innovation – Problem Validation and Custome idence- Customer Validation. Target user, User persona & use rviews and field visit.	er Discovery – Unde r stories. Activity : (rstandii Custom	ng probl er devel	em sign opment	ificance process			
Uni	t III	APPLIED DESIGN THINKING TOOLS		9	0	0	9			
Concep Design Propos	ot of Mini ing and T ition Desi	imum Usable Prototype(MUP) – MUP challenge brief – Desig Festing Value Proposition: Design a compelling value proposi ign.	gning & Crafting th tion: Process, tools	e value and tec	proposi hniques	tion – of Valu	e			
Uni	t IV	CONCEPT GENERATION		9	0	0	9			
Solutio build th alternat	n Explorate the right protections and	ation, Concepts Generation and MUP design – Conceptualize rototype: Assess capability, usability and feasibility. Systemat the solution concepts.	the solution concept tic concept generati	ot: explo on; eva	ore, itera luation t	te and l echnolo	earn; gy			
Un	it V	SYSTEM THINKING & REVERSE ENGINEERIN	NG	9	0	0	9			
System Method	Thinkin lology, Ic	ng, Understanding Systems, Examples and Understandi lentify building blocks/Components – Re-Engineering a comp	ngs, Complex Sy plex system.	vstems,	Revers	e Engi	neering			
Total = 45 Periods										
T										
1 ex	I BOOKS									
1	Steve Bl	ank, (2013), The four steps to epiphany: Successful strategies	for products that w	vin, Wil	ey.					
2	Alexand	er Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith	, Trish Papadakos,	(2014),	Value					
3	3 Proposition Design: How to Create Products and Services Customers Want, Wiley									

4 Donella H. Meadows, (2015), "Thinking in Systems -A Primer", Sustainability Institute.

5 Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.

Refer	ence Books:
1	https://www.ideou.com/pages/design-thinking#process
2	https://blog.forgeforward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253c a8624
3	https://blog.forgeforward.in/product-innovation-rubric-adf5ebdfd356
4	https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e
5	https://blog.forgeforward.in/user-guide-for-product-innovation-rubric-857181b253dd 6
6	https://blog.forgeforward.in/startup-failure-is-like-true-lie-7812cdfe9b85

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Define & treat various hypotheses to mitigate the inherent risks in product innovations	L1: Remembering					
CO2	Design the solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit.	L6: Creating					
CO3	Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching.	L3: Applying					
CO4	Apply system thinking to reverse engineer a product/prototype and understand its internal correlations.	L3: Applying					

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	3	2	3	2	1	1	1	1	1	1	1	2	2	3
C02	2	2	3	2	2	1	1	1	1	1	1	1	3	3	2
C03	1	2	2	1	1	3	1	1	3	3	1	1	1	1	1
C04	2	3	3	3	3	2	2	1	2	2	1	1	3	3	3
AVG	1.75	2.5	2.5	2.25	2	1.75	1.25	1	1.75	1.75	1	1	2.25	2.25	2.25

18MF	EPS12	STARTUP FUNDAMENTALS		5	Semester					
PRER	EQUIS	ITES	Category		Cre	edit	3			
				L	ТН					
			Hours/Week	3	0	0	3			
Cours	e Learn	ing Objectives								
1	Learn t	he science of to transforming an innovative idea into high-gro	wth enterprises.							
2	To und	erstand the basic concepts of IPR, and develop a patent draft f	or a potential IP							
Un	it I	ENTREPRENEURIAL MINDSET & METHOD		9	0	0	9			
Introdu entrepro	ction to eneur - E	Innovation-led, tech-powered entrepreneurship - Underst Effectuation principles - Dealing with the unknowns - Case stu	and from research dies of startup failu	n the a res.	ttributes	s of an	expert			
Uni	it II	IDEA TO ENTERPRISE		9	0	0	9			
Design Target 1	and Plan Market a	nning of Product Concept - Business Model - Business Plannin nd Revenue Planning	g - Building Proof	of Prod	uct and	Value 7	esting -			
Uni	t III	MINIMUM VIABLE BUSINESS		9	0	0	9			
Framew proof o	vork for I f viable l	Minimum Viable Business - Disruptive Innovation - Theory o pusiness model - Demystifying Scalability - Funding Opportu	f Disruption - Com nities	petitive	advanta	age - Bu	ilding			
Uni	t IV	INTELLECTUAL PROPERTY		9	0	0	9			
Introd Secret trends	uction and - Geogr - Patent	nd the need for Intellectual Property Rights - IPR Genesis an aphical Indicators - Industrial Designs - Types of Patent – Sa fees	d Development - C Imple Patent Applie	Copyrig	ht - Tra IPR in	demark INDIA;	- Trade Global			
Uni	it V	PRIOR ART SEARCH AND PATENT DRAFTING	r J	9	0	0	9			
Prior A basmati provisio	art Search i rice. Th onal spec	n - IP Licensing – IP Commercialization - IP Infringement- (e invention as a concept - Keywords formation - Structure of p rifications - Drafting complete specifications - Draft claims - (Case Study on App patent - Key attribu Case studies on pate	le vs S tes in pa ent draf	amsung atent dra ting	, Case s Ifting - I	tudy on Drafting			
					Total	= 45 I	Periods			

Tey	at Books:
1	Steven Blank and Bob Dorf, (2012), The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company, K&S Ranch
2	Dr Saras Sarasvathy, (2008), Effectuation: Elements of Entrepreneurial Expertise, New Horizons in Entrepreneurship series.
3	Elizabeth Verkey, (2005), Law of Patents, Eastern Book Company
4	Prabuddha Ganguli, (2017), Intellectual Property Rights: Unleashing the Knowledge Economy, McGraw Hill Educatio 1st edition

Ref	erence Books:
1	WIPO Intellectual Property Handbook https://www.wipo.int/edocs/pubdocs/en/intproperty/489/wipo_pub_489.pdf
2	https://assets.entrepreneur.com/static/20220301113822-Marketing.pdf
3	https://www.deluxe.com/blog/startup-fundamentals-guide/
4	https://www.forbes.com/sites/allbusiness/2018/07/15/35-step-guide-entrepreneurs-starting-a-business/?sh=69a6031e184b

Cours	Bloom's Taxonomy Level		
Upon	completion of this course, the students will be able to:	Tuxonomy Lever	
CO1	Develop an entrepreneurial mindset to identify, assess, shape & act on opportunities.	L3: Applying	
CO2	Demonstrate the potential of an innovative idea to create economic value, as a startup	L2: Understanding	
CO3	Understand the scientific process to explore a viable business model	L2: Understanding	
CO4	Demonstrate knowledge on the fundamental concepts of Intellectual Property	L2: Understanding	

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	2	2	1	1	2	1	2	2	2	3	3	1	1	2
C02	2	2	3	1	1	1	1	2	2	1	3	2	2	2	2
C03	1	2	2	2	1	1	1	1	1	1	3	2	1	1	1
C04	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1
AVG	1.25	1.75	2	1.25	1	1.25	1	2	1.5	1.25	2.5	2	1.25	1.25	1.5

18MI	EPS13	COMPUTATIONAL HARDWAR	E	S	VI		
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives	I				
1	To lear	n basic concepts of Embedded Systems by familiarizing the fu	inctionalities of em	bedded	platforn	ns with	
2	To und	erstand the core concepts of GPIO Pins, Functionality of perip	oherals, Selection of	f I/O de	vices , U	Jsage	
2	of Inter	nal functions, and Communication protocols.					
3	To fam service	iliarize the current technologies and protocols used in the Intes.	rnet of Things (IoT) and to	learn th	e Cloud	l
Ur	nit I	BASICS OF EMBEDDED SYSTEM		9	0	0	9
Embed schema Analog	lded Platf atics – To g I/O - Ti	form: Architecture and working - Factors for Microcontroller ool chain - Setup and Configuration - Input/Output Configuration mers, Interrupts - Pulse Width Modulation - Display: 7-segme	r/Microprocessor set tions and Access - ent , LCD , OLED.	election Librarie	. Arduin es - Digi	o - Boa tal I/O -	rds and ADC -
Un	it II	BASICS OF RASPBERRY PI		9	0	0	9
Raspbe Genera APIs -	erry Pi: R al Purpose Twitter I	aspberry pi Board - Processor - Setup and Configuration - In e I/O Pins - Protocol Pins - GPIO Access - Pulse Width Modul Bot - Interfacing pi with camera modules.	stalling Python IDI ation - Network Lil	LE using praries -	g Comm · Web se	and Terrices -	rminal - Twitter
Uni	it III	SENSORS AND ACTUATORS		9	0	0	9
Interfac Soil M Introdu	cing of S oisture S action, Ch	ensors and Actuators - Sensors: Introduction, Characteristics: ensor, LDR - Digital - PIR Sensor, Smoke Sensor, Infrared - S naracteristics and working with relay, DC motors, Servo motor	Analog - Potention Sensor, Ultra- Sonic r, Stepper motor an	neter, To Senson d its dri	emperati r. Actuat vers.	are Sens ors -	sor,
Uni	it IV	COMMUNICATION PROTOCOLS		9	0	0	9
Protoco Comm wireles	ols - Wire unication ss Serial (ed: RS232 Standard - UART, SPI, I2C - Comparative study of protocols Wireless: Standards - Bluetooth, RF - Comparative Communication protocols.	f wired protocols - 1 e study of wireless p	[mplem protocol	entation s - Impl	of wire ementat	d Serial ion of
Un	it V	INTERNET OF THINGS		9	0	0	9
Definit embed I/O per Cloud	tion and ded targe ripherals platforms	Architecture of IoT, Building blocks of IoT, Programming v t board to Web, Basics networking in IoT: creating a web pag from the webpage, Embedded Application Development, Cr s for IoT, Cloud data logging and monitoring, Interfacing with	with IoT protocols ge - Creating a server reating communica web services.	- MQT er on tai tion bet	T, CoA rget boat tween di	P - Con rd - Con ifferent	necting trolling nodes -
					Total	= 45 ł	reriods
Tex	t Books	:					
1	Raj Kan	nal, "Embedded Systems - SoC, IoT, AI and Real-Time Syste	ems", 4th Edition, N	/lcGraw	Hill, 20	020.	
2	Mohit A	rora, "Embedded System Design", 1st Edition, Learning Byte	es Publishing, 2016				
3	Elecia V	Vhite, "Making Embedded Systems", 1st Edition, Shroff/ O' F	Reilly, 2012.				
4	Jack Ganssle, "The Firmware Handbook", 1st Edition, Newnes, 2004.						

Refe	rence Books:
1	https://juniorfall.files.wordpress.com/2011/11/arduino-cookbook.pdf
2	https://drive.google.com/file/d/13s0m3lHPEFP2f2aCuVNRWeBZNKXWKTW5/view?ts=6231cab 3
3	https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSeshia_DigitalV2_2.pdf 4.
4	https://www.riverpublishers.com/pdf/ebook/RP9788793519046.pdf

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand and implement the functions & Capabilities of embedded platforms for easy prototyping.	L2: Understanding					
CO2	Identify the type of sensors and actuators for required applications.	L3: Applying					
CO3	Develop communication between devices using different protocols.	L3: Applying					
CO4	Develop IoT based systems with wireless network connections and accessing devices over cloud.	L3: Applying					

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	3	2	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	2	2	2	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
AVG	3	2.25	2.75	2	2.75	0	0	0	0	0	0	0	3	2.5	2.5

18M	EPS14	CODING FOR INNOVATORS		S	Semeste	er	VI					
PRER	REQUIS	ITES	Category		Cre	edit	3					
				L	Т	Р	TH					
			Hours/ week	3	0	0	3					
Cours	se Learn	ing Objectives		I		I						
1	1 To learn and express creativity using coding skills.											
2	To gain	knowledge of Python programming with hands-on experienc	e.									
3	To dem	onstrate a problem solving using OOPs concepts.										
4	To lear	n basics of Linux by familiarizing the concepts of managemen	t and file structure.									
5	To prac	tise full stack development using cloud platform.										
Ur	nit I	PROGRAMMING PARADIGMS		9	0	0	9					
Un Introdu operati Operat	it II action to l ions, trave ions: File	BASIC OF PROGRAMMING Python: statements, variables, functions, operators, modules, e ersing a list, slicing a list - Text Handling: Strings, string fu	conditional stateme nctions, conversion grams from text file	9 ents, loo n functi	0 op staten ons, Dic	0 nents, L ctionarie	9 ists: list es - File					
Uni	it III	OOPS 5		9	0	0	9					
OOPS Inheri	S- Why O itance, Po	OPS- verticals- implementation in python - Classes and Objectly olymorphism, Abstraction, Encapsulation.	cts, Methods, Const	tructors	and De	structors	5,					
Uni	it IV	SOFTWARE DEVELOPMENT TO DELIVERY		9	0	0	9					
Softw Based - Sour servic	vare Engin l) - Data S rce code ce - Herok	neering - Life Cycle (Tools), Agile Methodologies - Framew Structures - Database Management System - A case study to ex management and version control - GitHub - GitHub Actions cu - Build Packs AWS- Anaconda	ork - Why Framev periment from Deve - GitBash - Contir	works - elopmen nuous Ir	Softwar nt to Dep ntegratio	re Testin ploymer n - Plat	ng(Tool nt(D2D) form as					
Un	nit V	OPERATING SYSTEMS		9	0	0	9					
Introdu - File S Docker	uction to I System St rs - Kube	Linux - Process Management - Process Scheduling - Memory Programming - Deadloc metes	Management - Stora k Handling - Disk S	age Mar Structur	nagemer re - Disk	it - Syste Manag	em calls ement -					
					Total	= 45 I	Periods					

Text	t Books:
1	Zed A. Shaw, "Learn Python 3 the Hard Way", 3rd edition, Addison-Wesley Professional, 2013.
2	Silberschatz Abraham, "Operating System Concepts", 9th edition, John Wiley & Sons Inc (Sea) Pte Ltd, 2016.
3	Paul Barry, "Head-First Python", 2nd edition, O'Reilly Media, Inc, 2016.
4	Anton Spraul, "Think Like a Programmer", 1st edition, No Starch Press, 2012.

E-Re	E-References :								
1	https://www.geeksforgeeks.org/python-programming-language/								
2	https://www.guru99.com/python-tutorials.html								
3	https://www.tutorialspoint.com/python/python_tutorial.pdf								

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the aspects of programming protocols	L2: Understanding					
CO2	Develop optimized code for real-world problems	L3: Applying					
CO3	Build full-stack development to deployment	L3: Applying					
CO4	Demonstrate problem solving and continuous development	L2: Understanding					

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	2	2	1	3	0	0	0	0	0	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	2	2
CO3	3	2	3	1	3	0	0	0	0	0	0	0	3	2	2
C04	2	3	2	1	2	0	0	0	0	0	0	3	2	1	1
AVG	2.5	2.5	2.5	1.25	2.75	0	0	0	0	0	0	3	2.5	1.5	1.5

PREREQUISITES Category OE Credit 3 Interval Control of the second	18MI	EPS15	INDUSTRIAL DESIGN AND RAPID PROTO TECHNIQUES	S	VI									
Hours/Week I T P TH 3 0 0 3 Course Learning Objectives	PRER	REQUIS	ITES	Category	OE	Cr	edit	3						
Hours/Week 3 0 0 3 Course Learning Objectives 1 Learn to design a UI/UX design and develop an android application. - <th></th> <th></th> <th></th> <th></th> <th>L</th> <th>Т</th> <th>Р</th> <th>ТН</th>					L	Т	Р	ТН						
Course Learning Objectives 1 Learn to design a U/UX design and develop an android application. 2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit 1 UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 0 0 9				Hours/Week	3	0	0	3						
1 Learn to design a UI/UX design and develop an android application. 2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Vinit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between	Cours	e Learn	ing Objectives											
2 Provide working CAD model for prototype development. 3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives VInit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and writing basics - Dimensioning & Tolerancing 9 0 0 9 Vent III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Read	1	Learn t	o design a UI/UX design and develop an android application.											
3 Knowledge in hardware, 3D Printers and Laser cutters. 4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different dom	2	Provide	e working CAD model for prototype development.											
4 Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices. Unit I UI/UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0	3	Knowle	edge in hardware, 3D Printers and Laser cutters.											
Unit I UI / UX 9 0 0 9 Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Init III INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping engraving - RD Works - Additive manufacturing 9 0 0 9 Unit IV ELECTRICAL RAPID PROTOTYPING 9 0 </td <td>4</td> <td colspan="13">Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices.</td>	4	Acquire basic knowledge in designing electrical circuits and fabrication of electronic devices.												
Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Colour theory - Design process flow, wireframes, best practices in the industry -User engagement ethics - Design alternatives Unit II APP DEVELOPMENT 9 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. 9 0 0 9 Unit II INDUSTRIAL DESIGN 9 0 0 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing 9 0 9 Unit IV MECHANICAL RAPID PROTOTYPING 9 0 9 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V	Un	nit I	UI / UX		9	0	0	9						
Ont II APP DEVELOPMENT 9 0 0 9 SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application. Unit III INDUSTRIAL DESIGN 9 0 0 9 Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Init V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods <td>Interfac - Desig</td> <td>ce Design n proces</td> <td>a - Layout and composition for Web, Mobile and Devices - Types s flow, wireframes, best practices in the industry -User engage</td> <td>ography - Informat ment ethics - Desig</td> <td>ion arch gn alterr</td> <td>nitecture natives</td> <td>- Colou</td> <td>r theory</td>	Interfac - Desig	ce Design n proces	a - Layout and composition for Web, Mobile and Devices - Types s flow, wireframes, best practices in the industry -User engage	ography - Informat ment ethics - Desig	ion arch gn alterr	nitecture natives	- Colou	r theory						
Unit IIIINDUSTRIAL DESIGN9009Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & TolerancingUnit IVMECHANICAL RAPID PROTOTYPING9009Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping engraving - RD Works - Additive manufacturing9009Unit VELECTRICAL RAPID PROTOTYPING9009Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDATotal = 45 Periods	SDLC Workir data to	- Introdung with D cloud - H	ction to App Development - Types of Apps - web Developm Databases - Introduction to API - Introduction to Cloud services Embedding ML models to Apps - Deploying application.	ent - understandin s - Cloud environm	g Stack ent Setu	- Front 1p- Read	end - ba ling and	ckend - writing						
Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation - Assembly - Product design and rendering basics - Dimensioning & Tolerancing Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Uni	t III	INDUSTRIAL DESIGN		9	0	0	9						
Unit IV MECHANICAL RAPID PROTOTYPING 9 0 0 9 Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books: - - - -	Introdu to CAE basics -	oction to 1 D tools - 7 - Dimens	Industrial Design - Points, lines, and planes - Sketching and co Γypes of 3D modeling - Basic 3D Modeling Tools - Part creati ioning & Tolerancing	ncept generation - on - Assembly - Pr	Sketch coduct d	to CAD lesign ai	- Introc nd rende	luction ring						
Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping: 3DPrinting and classification - Laser Cutting and engraving - RD Works - Additive manufacturing Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Uni	it IV	MECHANICAL RAPID PROTOTYPING		9	0	0	9						
Unit V ELECTRICAL RAPID PROTOTYPING 9 0 0 9 Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA - - Total = 45 Periods Text Books:	Need for method engravi	or prototy ls - Tools ing - RD	yping - Domains in prototyping - Difference between actual mass used in different domains - Mechanical Prototyping: 3DPrin Works - Additive manufacturing	anufacturing and p nting and classifica	rototypi tion - L	ing - Ra aser Cu	pid prot tting and	otyping 1						
Electronic Prototyping: Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA Total = 45 Periods Text Books:	Un	it V	ELECTRICAL RAPID PROTOTYPING		9	0	0	9						
Total = 45 Periods Text Books:	Electron simula	ronic Pro ation tool	btotyping: Basics of electronic circuit design - lumped circuits - simple PCB design with EDA	s - Electronic Proto	typing -	Worki	ng with							
Text Books:						Tota	l = 45 H	Periods						
	Теч	t Books	•											
		_	-											

2 Samar Malik, Autodesk Fusion 360 - The Master Guide.
 3 Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, Pearson, 3rd edition (2014)

E - R	E - References:								
1	https://www.adobe.com/products/xd/learn/get-started.html								
2	https://developer.android.com/guide								
3	https://help.autodesk.com/view/fusion360/ENU/courses/								
4	https://help.prusa3d.com/en/category/prusaslicer_204								

Cours Upon c	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Create quick UI/UX prototypes for customer needs	L6: Creating						
CO2	Develop web application to test product traction / product feature	L3: Applying						
CO3	Develop 3D models for prototyping various product ideas	L3: Applying						
CO4	Built prototypes using Tools and Techniques in a quick iterative methodology	L3: Applying						

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	2	2	3	2	3	0	0	0	1	1	0	0	2	1	1
C02	3	3	3	2	3	0	0	0	1	1	0	0	3	2	2
C03	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
C04	3	2	3	2	3	0	0	0	1	1	0	0	3	2	2
AVG	2.75	2.25	3	2	3	0	0	0	1	1	0	0	2.75	1.75	1.75
INDUSTRIAL AUTOMA 18MEPS16 DATA LIFE CYCLE MANA(TION GEMENT	S	Semester												
--	--	---------------------------------	----------------------------------	-----------------------------------	--------------------------------	--									
PREREQUISITES	Category	OE	Cre	edit	3										
		L	Т	Р	ТН										
	Hours/Week	3	0	0	3										
Course Learning Objectives															
1Acquire conceptual knowledge in Industrial Controllers by s interfacing with various I/O peripherals.	scaling of on-board devices	and emb	edded b	oard											
2 Learn PLC by working on internal features and also interface SCADA and standard communication protocols.	ing with Sensors and actuate	ors alon	g HMI o	concept	using										
3 To work with FPGA boards and RT controllers for reprogra	mmable embedded applicati	ons usir	ıg LabV	IEW											
4 Understand the concepts and design electronics circuits															
Unit I INDUSTRIAL CONTROLLERS - I		9	0	0	9										
devices - Module SOM - Interfacing with Input and Output devices Acquiring and Data Logging from sensors - Interfacing Actuator applications.	s - Interfacing protocol base s: Relay, DC Motor, Serve	d Analo Motor	g and E - Crea	Digital so ting star	ensors - ndalone										
Unit II INDUSTRIAL CONTROLLERS - II		9	0	0	9										
Industrial Controllers - II - PLC - Introduction - Mode of Operation - & sequence control - Instruction set - Scan Time - Timers - Counter Sensors - Interfacing with Actuators - Interfacing with Human Mac PLC - SCADA.	IEC 61131 Programming lan rs - Interfacing with Input/Ou chine Interface - Commissio	guages: utput de oning ar	for PLC vices - 1 id opera	- Progra interfaci tional s	amming ng with afety of										
Unit III INDUSTRIAL COMMUNICATION PROT	TOCOLS	9	0	0	9										
Serial Communication Protocols - I2C, SPI - Serial Field bus protocols - Cloud data logging. Multi-sensor communication, Data parsing betw communication protocols - Implementation of Industrial Communication	cols CAN, PROFIBUS - Etl veen Embedded platforms. C ication protocols.	nernet, I Compara	HTTP, 7 tive stu	CCP/UD dy of In	I, WiF, dustrial										
Unit IV FPGA AND RT CONTROLLER PROGRA	Unit IVFPGA AND RT CONTROLLER PROGRAMMING900														
Introduction to FPGA - Architecture - Operations in FPGA p implementation in myRIO - Introduction to RT controllers - Archite applications.	programming - FPGA Pro ecture - Programming RT Co	grammi ontroller	ng in s - Crea	LabVIE ting stat	W and ndalone										
Unit V INDUSTRIAL CIRCUIT BOARD DESIGN	1	9	0	0	9										
Designing basics circuits and to simulate in environment setup - Component selection - Creating libraries - Schematic design - Design rules, supply & communication track rules - Component and footprint editor - Understanding component package types - Test point creation for measurement - PCB Layout, placement rules - Footprint, 3D models, BoMs - Generating GERBER and output documentation.															
output documentation.	s - Poolprint, 3D models, Bo	Ms - Ge	enerating	g GERB	lesign - ge types ER and										

Text	t Books:
1	Ed Doering, NI myRIO Project Essential Guide, National Instruments, 2016.
2	Willian Bolton, Programmable Logic Controllers, 6th edition, Newnes Publications, 2015
3	Richard Zurawski, Industrial Communication Technology Handbook, Second edition, CRC Press, 2014
4	Simon Monk, Make Your Own PCBs with EAGLE, McGraw Hill Education, 2014.
Refere	nces Books:
1	Jeffrey Travis, Jim Kring, LabVIEW for Everyone: Graphical Programming Made Easy and Fun, 3rd edition, Prentice Hall
2	Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing, Fourth edition, Pearson Education, 2016
3	Michael J. Hamill, Industrial Communications and Control Protocols, PDH centre, 2016
4	Ema Design Automation, The Hitchhiker's Guide to PCB Design, First edition, Blurb Publishers, December 2021

Cours Upon c	Bloom's Taxonomy Level	
CO1	Understand the usage of controllers in an industrial environment	L2: Understanding
CO2	Build Real-Time systems for Industrial embedded monitoring and controlling deterministic applications	L3: Applying
CO3	Communicate between devices at different levels using industrial protocols	L3: Applying
CO4	Understand the process involved in PCB design using EDA tools and fabricate it	L2: Understanding

CO-PO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	2	1	3	0	0	0	0	0	0	0	3	2	2
C02	3	3	3	2	3	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	2	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.25	2.75	1.75	3	0	0	0	0	0	0	0	3	2.75	2.5

0: No correlation, 1: Low correlation, 2: Medium correlation, 3: High correlation

18M	MEPS17 ROBOTICS/ML&MLOps Sen					Semester		
PRER	EREQUISITES Categor					edit	3	
				L	Т	Р	ТН	
		3	0	0	3			
Cours	se Learn	ing Objectives						
1	Learn t	he fundamentals of ROS						
2	Unders	tand the requirements and choose the right sensors and actuate	ors for the application	on deve	lopment	-		
3	Create	Bot in the virtual environment and simulate it to know the fun	ctionalities of the s	ystem d	evelope	d		
4	Learn t	he basics of Robotics Vision System						
5	Integra	te ROS and Computer Vision to build systems for various use	cases					
Ur	nit I	INTRODUCTION TO ROBOT KINEMATICS		9	0	0	9	
Introc Kiner	luction to natics - K	Robotics - Transformations - Forward Kinematics - Kinematic analysis - Numerical Inverse Kinematic Solutions -	natics equations - 1 Analytical Inverse	Link tra Kinema	nsforma tic Solu	tions - tions	Inverse	
Un	it II	SELECTION OF SENSORS AND ACTUATORS		9	0	0	9	
Introdu on torq	ction - S ue and sp	ensors & Actuators - Types - Selection criteria - Design consid peed characteristics - Hardware Interface & Assembly	lerations: Motor siz	ing - Se	lection	of motor	rs based	
Uni	it III	INTRODUCTION TO ROBOT OPERATING SYS	TEM	9	0	0	9	
Introdu ROS p Gazebo	iction to l rogramm o - ROS I	ROS framework and prerequisites - Understanding communic ing - ROS nodes, topics, messages - ROS services - ROS Too Motion	ations in ROS - RC ls and Utilities - UF	S Ecos RDF , R	ystem - viz - Siı	Introduc nulatior	ction to 1 -	
Uni	it IV	INTRODUCTION TO ROBOTICS VISION SYST	EM	9	0	0	9	
Image Gauss - Con	e basics - sian, Med tours - C	Image Processing - Histograms - Gray scale, Color, Equalizati lian, Bilateral - Thresholding - Simple, Adaptive, Otsu - Gradi amera calibration	on - Smoothing and ents and Edge detec	l blurrin ction - L	g/filteri aplacia	ng - Ave 1, Sobel	eraging, , Canny	
Un	it V	INTEGRATION OF ROS AND COMPUTER VISI	ON	9	0	0	9	
Introdu real wo	iction - Ir orld appli	stallation - CV Bridge - Image publisher node - Image subscrib cations	oer node - Nodes bu	ilding a	nd laund	ching - E	Building	
					Total	= 45 F	Periods	

Text	t Books:
1	Introduction to Robotics: Mechanics and Control by John J Craig, Pearson Publishers.
2	Robot Operating System (ROS) for Absolute Beginners by Lentin Joseph, A press; Publishers (2018).
3	Learning OpenCV by Gary Bradski, Adrian Kaehler, O'Reilly Media, Inc.

Refei	Reference Books:					
1	https://www.intechopen.com/chapters/379					
2	https://www.plantengineering.com/articles/eight-selection-criteria-for-actuation-components/					
3	https://www.controleng.com/articles/tips-on-sensor-selection/					
4	https://www.toptal.com/robotics/introduction-to-robot-operating-system					
5	https://www.thomasnet.com/articles/automation-electronics/machine-vision-systems/					
6	https://automaticaddison.com/working-with-ros-and-opencv-in-ros-noetic/					

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand kinematics considerations of robot	L2: Understanding					
CO2	Selection of sensors and actuators according to application	L3: Applying					
CO3	Utilize the ROS environment to simulate and communicate between robot	L3: Applying					
CO4	Develop algorithms to extract features and data from image	L3: Applying					
CO5	Utilize the open CV for robotic applications	L3: Applying					

CO-PO Mapping

CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	3	1	2	0	0	0	0	0	0	0	3	3	2
C02	3	3	2	1	2	0	0	0	0	0	0	0	3	3	3
CO3	3	2	3	2	3	0	0	0	0	0	0	0	3	3	3
C04	3	3	3	2	3	0	0	0	0	0	0	0	3	3	2
AVG	3	2.5	2.75	1.5	2.5	0	0	0	0	0	0	0	3	3	2.5

0: No correlation, 1: Low correlation, 2: Medium correlation, 3: High correlation

HONOURS DEGREE

VERTICAL 1: WELDING

PREREC	8MTH101 Advanced Metal Joining Processes Semes						
	QUISIT	ES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course L	Learning				L		
1 T	To under	rstand the various special/ advanced welding proc	cesses.				
2 T va	Fo gain l various s	knowledge on the principle of operation, advantage of a special / advanced welding processes.	ges, limitations	and ap	plication	ons of	ſ
Unit	t I	ELECTRON BEAM AND LASER BEAM V	VELDING	9	0	0	9
degrees Laser B applicat	 Heat generation and regulation, equipment details in typical set-up, electron beam welding in different degrees of vacuum, advantages, disadvantages and applications. Laser Beam Welding: Laser sources for welding, Principles of operation, advantages, limitations, and applications. Introduction to Hybrid Welding Process 						
Unit	II	ELECTRO SLAG WELDING AND RESISTAN	CE WELDING	9	0	0	9
Electro selectio variants Resistan and volt process welding	o slag we on of cu s of elec ince wel ltage for s variabl g, Percu	elding - Heat generation, principles of operations, rrent, voltage and other process variables, nature etro slag welding, Electrogas welding. dding - Principles of contact resistance, surface p r spot welding – Temperature distribution, spot v les, choice of electrode material, seam welding, p ssion welding, High frequency welding.	, wire and consu of fluxes and th preparation, calo velding cycle, in projection weldin	mable neir ch culatio ter-rel ng. Fla	oice, a oice, a on of cu ationsh sh wel	urrent, nip bet ding, U	ques, tions, time ween Upset
Unit]	III	SOLID STATE WELDING PROCES	SES	9	0	0	9
Advanta solid sta solid sta Cold pr welding advanta	Advantages of solid state welding processes over conventional welding processes. High temperature solid state welding, Low temperature solid state welding, Fundamental principles, Overview of various solid state welding processes. and principles of operation, applications. Cold pressure welding, Induction pressure welding, Explosive welding, Diffusion welding, Ultrasonic welding, Forge welding, Roll welding– Principles of operation, equipment, process characteristics						
Unit	IV	FRICTION AND FRICTION STIR WEI	LDING	9	0	0	9
Friction equipme Friction traverse limitatio	 Friction Welding- Theoretical considerations, Process characteristics, Friction Welding machines and equipments, welding variables, weld properties, Joint design, Applications. Friction Stir Welding - Principles of operation, Important welding parameters - tool rotation and traverse speeds, tool tilt and plunge depth, tool design. Generation and flow of heat. Advantages, limitations and applications. Flaws and defects in FSW. Friction surfacing and friction processing. 						s and a and ages,
Unit V OTHER JOINING PROCESSES, CUTTING AND SURFACING 9 0 0							9

Adhesive bonding – Concept, Procedure, Testing of Adhesive bonded joints, types of adhesive bonded joints, Sandwich Construction, selection and types of adhesives. Welding of plastics, Underwater Welding. Thermit Welding, Brazing and Soldering -Fundamentals, Types, brazing and soldering alloys and their classification. Thermal cutting – Oxy-fuel cutting, arc cutting, plasma arc cutting, laser cutting. Surfacing.

Total =45 Periods

Refer	rence Books:
1	AWS Welding Handbook. 9 th edition. Volume 2, Welding Processes,2013.
2	Schwartz M.M., "Metals Joining Manual", McGraw Hill Books.1979.
3	Metals Handbook (Welding, Brazing and Soldering) Vol. 6, 10 th Edition. ASM1995.
4	Howard B.Cary, "Modern Welding Technology", Prentice Hall, 6 th Ed.,2017.
5	Tylecote R.F., "The Solid Phase Welding of Metals", Edward Arnold Publishers Ltd. London.1968.
6	Christopher Davis, "Laser Welding - Practical Guide", Jaico Publishing House, 1994.

Course	Course Outcomes:						
Upon co	ompletion of this course, the students will be able to:						
CO1	Explain the principle of operation, advantages, limitations and applications of various solid state welding processes.						
CO2	Explain the principle of operation, advantages, limitations and applications of FRW and FSW processes.						
CO3	Explain the principle of operation, advantages, limitations and applications of EBW and LBW processes.						
CO4	Explain the principle of operation, advantages, limitations and applications of ESW and Resistance welding processes.						
C05	Explain the principle and features of various special joining techniques and thermal cutting methods.						

CO/PO	РО	PO	РО	PO	PO	PO	PO	РО	РО	РО	PO	РО	PSO	PSO	PSO	PSO
00/10	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	2	2	1	1	0	0	0	1	3	3	3	3	
CO2	3	3	2	1	2	1	0	0	1	2	0	0	3	3	3	
CO3	3	2	2	2	2	1	2	3	1	1	0	0	3	3	3	
CO4	3	3	3	2	3	1	0	0	0	0	1	3	3	3	3	1
CO5	3	2	2	2	1	1	2	0	0	0	0	2	3	3	3	1
Avg.	2.8	2.2	2.2	1.8	2.2	1	1	0.6	0.4	0.6	0.4	1.6	3	3	3	.4

18MTH102METALLURGY OF WELDINGS								
PRER	REQUISITE	ES	Category	PE	Cre	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	se Learning	Objectives		1				
1	To gain un geometry	derstanding of heat flow and temperature distributio	n on weld compo	nents b	based of	n weld		
2	To underst parameters	and the solidification structure and growth morphology	ogy on weld joins	in rela	tion to	the wel	ding	
3	Study phase alloy steels	se transformations in weld joints with aid of CCT, So s, carbon steels and stainless steels.	chaffler and Delor	ng diag	grams a	nd welc	ling of	
I	Unit I	HEAT FLOW IN ARC WELDIN	G	9	0	0	9	
Joint consi effec	Geometry, iderations. S	plate thickness, preheating and other factors. Comp olidification – Epitaxial growth – weld metal solidif parameters – absorption of gases – gas/metal and sla	arison of welding fication – cellular ag/metal reactions	g proce and co	sses ba	r struct	these ures –	
ι	J nit II	WELDABILITY AND WELDABILITY T	TESTING	9	0	0	9	
– co weld	old cracking ments-Tensi	tests, hot cracking tests, Internal restraint tests, E on tests and Bendtests.	xternal restraint	tests, N	/lechani	ical tes	ts for	
U	Init III	WELDABILITY OF CARBON STEELS A ALLOYSTEELS	ND LOW	9	0	0	9	
Form alloy prehe Rehe	nation of steels.Phase eating, Post l eat cracking a	different microstructural zones in welded transformationinweldmetalandheataffectedzones.Hy- heating and post weld heat treatment, Hot cracking – and Lamellar cracking.	plain-carbon s drogeninduced cr - compositional fe	teels, acking, eatures	C-Mn , Carbo – Effec	and n equiv ct of S a	low valent, and P,	
U	J nit IV	WELDABILITY OF STAINLESS ST	EEL	9	0	0	9	
Introd elemen WRC ferritic	luction to sta nts, Weldabi diagrams, M c, martensitio	inless steel classification, effect of alloying elements lity of austenitic stainless steels – Hot cracking – co lode of solidification, Sensitisation, Sigma embrittles c and duplex stainless steels, selection of filler metal	s, Austenitising el nstitution diagran ment. Metallurgic s	ements ns – Sc al diffi	, Ferrit haffler, culties	ising Delong in welc	g, ling of	
τ	U nit V	iit V WELDABILITY OF OTHER ALLOYS AND DISSIMILAR 9 0 0						
Weld weld Weld	ling of cast ability probl lability of A	t irons, High Cr steels, Maraging Steels – Proc ems encountered and solutions. I alloys, Cu Alloys, T iAlloys and Ni Alloys – S	ess, procedure a election of weld	ind fill	er met	al sele	ction,	
appro Dissi diluti	opriate for ea imilar weldii ion - techniq	ach material. ng: Metallurgical problems in dissimilar welding- ca ues of dissimilar welding.	lculation of diluti	on- me	thods o	of contr	olling	
					Tota	al =45 H	Periods	

Refe	rence Books:
1	Parmar R.S., "Welding Engineering and Technology", Khanna Publishers.1997.
2	Lancaster J.F., "Metallurgy of Welding", George Allen & Unwin. Boston.1980.
3	Kou. S., "Welding Metallurgy", John Wiley & Sons.1987.
4	Granjon. H., "Fundamentals of Welding Metallurgy", Jaico Publishing House. New Delhi1994.
5	Norman Bailey, "Weldability of Ferritic Steels", Jaico Publishing House.1997

Course Upon co	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1 To understand heat flow in welding, structures formed and effect of various parameters.								
CO2	To gain knowledge in various types of weld ability tests.							
CO3	To know about weldability of carbon steels and low alloy steels and weldability issues.							
CO4	To understand welding of stainless steels.							
CO5	To get familiar in the area of welding of castiroN and dissimilar welding							

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	3	2	2	1	1	0	0	0	0	1	3	1	0	
CO2	3	2	1	2	2	1	1	0	0	0	0	1	2	1	3	
CO3	2	2	2	2	2	1	1	0	0	0	1	1	2	2	3	
CO4	3	2	2	2	3	1	0	0	0	0	0	1	3	2	3	
CO5	3	2	2	1	2	2	0	0	0	0	1	1	3	3	3	1
Avg.	2.8	2	2	1.8	2.2	1.2	0.6	0	0	0	0.4	1	2.6	1.8	2.4	0.2

18MTH103 WELDING EQUIPMENTS AND CONSUMABLES Semester								
PRER	EQUISITE	ES	Category	PE	Cre	edit	3	
-				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Learning	Objectives						
1	To know	the basic knowledge of equipment's and accessories	s of various weldi	ng proc	cess.			
2	To gain k	nowledge on selection of consumables for different	welding processe	s.				
J	U nit I	EQUIPMENTS AND ACCESSORIES FOR WELDING PROCESS	VARIOUS	9	0	0	9	
Gas v Torch Arc v arc v (GM)	Gas welding process – Compressed gas cylinders, Cylinder valves, Pressure valves, Gas hoses, Welding torches, Torch tips, Tip cleaner and spark lighter. Arc welding process – Shielded metal arc welding (SMAW): Equipment and operating accessories.Gas tungsten arc welding (GTAW): Power source, GTAW torch, wire feed mechanism, materials.Gas metal arc welding (GMAW): power source, wire feed units, GMAW gun and wire feed conduit assembly, shielding gas and cooling							
U	nit II	R OTHER	9 9	0	0	9		
Elect Vacc laser Weld Mach	ron Beam V um chamber operation, r ling Process nines, Press	Velding – Cathode, Electron accelerating system, Ber, Work traversing system, Seam tracking methods. I uby laser equipment and setup. Thermit Welding – ses – Friction welding machines and equipment. Type Machines, Portable Welder.	eam focusing syst Laser welding – F Equipment setup Resistance Wel	em, W Principl and op ding –	eld vie e and n peration Rocke	wing sy nechani 1. Solid er-Arm	vstem, Ism of -State Type	
U	nit III	ARC WELDING POWER SOURC	ES	9	0	0	9	
A.C. Trans (Spar Volt- D.C. Weld	Welding Post sformer, Bas rately Excite Ampere Ch Welding P ling Power S	ower Sources – Operating Principles of a Welding sic Types of Welding Transformers. D.C. Welding P ed), Opposition Series Generator (Self Excited), S aracteristics of Welding Generators, Multi-Operate ower Sources – General Theory of Rectifier De Source, Pulsed Arc Welding Power Sources, Transist	g Transformer, R ower Sources – C Split-Pole D.C. V or D.C. Welding sign, Solid-State tor Welding Powe	equirer Oppositi Velding Power Weldi er Sourc	ments of ion Seri g Gener r Sourc ng Reo ces.	of a We ies Gen rator, C ces. Rec ctifiers,	elding erator Dutput ctified SCR	
U	nit IV	AUTOMATION IN WELDING		9	0	0	9	
Introdu Autom Autom	Introduction to automation in welding, Welding sequence and classification of processes, Manual welding, Semi- Automatic welding, Automatic welding, Automated welding, Adaptive controls, Automatic welding versus Automated welding, remote welding, Robotic welding and Selecting a welding system.							
U	J nit V	WELDING CONSUMABLES		9	0	0	9	
Coated coding Specif Compo fluxes	d Electrodes g of electro ications for osition and o and Shieldin	s- Electrode Coating, classification and coding of odes for SMAW/MMAW of low and medium solid Wires and Rods and Tubular Electrodes chemical classification of SAW Fluxes, Roles of flu ng gases – inlet and activated shielding gases.	covered (heavy alloy steels. We or Flux-Cored x ingredients, Phy	coated elding Wires ysical c	l), Clas Rods . Weld classific	and W and Flucture and Flucture ation o	on and Vires – uxes – f SWA	
	Total =45 Periods						Periods	
L								

Tex	t Books:
1	Welding Engineering and Technology by Dr. R.S. Parmar, Khanna Publishers, 2013.

2 Welding Technology by Dr. N.K.Srinivasan, Khanna Publishers, 2001.

Refer	rence Books:
1	Text Book Of Welding Technology by Bruce Stirling, DhanpatRai Publications, 2011.
2	AWS Welding Handbook. 9th editionVolume1, "Welding Science and Technology", 2013
3	AWS Welding handbook, 3 rd edition, WeldingConsumablesGases and GasMixtures for FusionWelding and AlliedProcesses, 2021

Course Upon co	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the basic knowledge on handling welding equipments and accessories.						
CO2	Describe and understand the appropriate power sources for welding operations.						
CO3	Gain knowledge on advancements of automations in welding processes.						
CO4	Demonstrate and select suitable consumables for different welding processes.						

	PO	PSO	PSO	PSO	PSO											
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	2	2	1	1	0	0	0	1	3	3	3	3	
CO2	3	3	2	1	2	1	0	0	1	2	0	0	3	3	3	
CO3	3	2	2	2	2	1	2	3	1	1	0	0	3	3	3	1
CO4	3	3	3	2	3	1	0	0	0	0	1	3	3	3	3	

18MTH104 WELDING CODES AND STANDARDS Sen						er	
PREF	REQUISIT	TES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	se Learnin	ng Objectives					
1	Overvie problem	w and Introductory treatment of codes and standa as, written document procedures and qualification	rds in the referen	nce–N	o num	erical	
2	² To acquire knowledge on various welding codes and standards related to various engineering applications.						
U	nit I	STRUCTURAL WELDING CODES	5	9	0	0	9
Desi code	gn require s and stan	ements, allowable stress values, workmanship and ndards	inspection, intr	oducti	on to v	velding	7
Un	it II	PETROLEUM PIPING FABRICATIO	DN	9	0	0	9
Proc field	ess and pr welding a	roduct standards for manufacturing of pipe – weld and inspection, API 1104 and API 5L	ing procedure a	nd wel	der qu	alificat	tions,
Un	it III	PRESSURE VESSEL FABRICATIO	N	9	0	0	9
Desi treat	gn require ment and	ements fabrication methods, joint categories, weld hydro testing.	ing and inspecti	on, po	st weld	l heat	
Un	it IV	WELDING PROCEDURE AND WELDER QUAI	LIFICATION	9	0	0	9
Wel	ding proce	edure specification, procedure qualification record	ls, performance	qualifi	cation	, variat	oles
Un	nit V	MATERIALS AND CONSUMABLE	S	9	0	0	9
Intro ASN	oduction to IE/AWS 1	o materials standards and testing of materials, con requirements	sumables testing	g and c	Jualific	ation a	is per
	Total =45 Periods						
Refe	rence Boo	oks:					
1	AWS D1	1 Structural Welding Code 2					
2	2 ASME Section VIII – Division 1						
3	3 ASME SectionIX						

4	ASME Section II Part A andC
5	API6A
6	API 1104

Course Outcomes:

Upon completion of this course, the students will be able to:

oponee	
CO1	Identify various design requirements and applicability of AWS D1.1.
CO2	Apply API 1104 and AP15L for pipe welding applications.
CO3	Apply ASME II, V, VIII and IX for boiler fabrication.
CO4	Understand and apply WPS, PQR and performance qualification variables for a specific welding application.
CO5	Understand different materials standard, testing

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	2	2	1	1	1	0	1	1	1	2	3	3	3	
CO2	3	2	2	2	2	1	2	2	2	2	2	1	3	3	3	
CO3	3	2	3	3	1	1	1	0	0	0	0	1	3	3	3	
CO4	1	1	2	2	1	2	1	0	0	0	2	2	3	3	3	1
CO5	1	2	2	2	2	1	0	0	1	1	0	2	3	3	3	
Avg.	2.2	1.8	2.2	2.2	1.4	1.2	1	.4	.8	.8	1	1.6	3	3	3	0.2

18M	TH105	Semeste							
PRER	EQUISIT	ES	Category	PE	Cre	edit	3		
				L	Т	Р	TH		
			Hours/Week	3	0	0	3		
Cours	e Learnin	g Objectives							
1	¹ To compile and work with the automated equipments and its processing are Automation of arc welding processes and other related welding processes								
2	To emul machine	ate the Automated welding equipment, Arc and ves, controls and sensors and gain knowledge on or	vork motion and perations using t	stand	ardizec ots.	ł arc w	elding		
U	nit I	AUTOMATION OF ARC WELDING PRO	CESSES	9	0	0	9		
Need adapt advat and c PAW	I for auto tive cont ntages an legree of 7 and Stuc	mation in welding, introduction to semi-automa rol welding. Automatic welding system – fa d disadvantages of welding automation - Arc we automation possible in different welding process welding.	atic mechanized actors affecting elding processes ses like GMAW	, autor weld s suital , FCA	matic, ling pr ble for W, SA	robotic roducti autom W, GT	e and vity– ation 'AW,		
U	nit II	AUTOMATION OF OTHER RELATED PR	ROCESSES	9	0	0	9		
Autom cutting	nation of F g- Arc and	Resistance welding, EBW, and Laser beam Welding, Plasma cutting - Laser beam cutting, thermal spraying	Solid State weld	ling. A	utomat	ion of (oxygen		
Un	nit III	AUTOMATED WELDING EQUIPMENT, ARC MOTION DEVICES	C AND WORK	9	0	0	9		
Weld – spo in au carria posit	ling powe pols, coils atomated ages, side ioners, tu	er sources, type of electrode wire feeders and elec s, rods, drums, pay off packs, typical adaptors and welding and functions of torches. Types of star beam carriages, manipulators and Gantry carri- rning rolls, head and tail stock positioners. Comb	trode wire dispe d spiders. Types adardized arc m ages. Work mot ination of arc an	rsing s of we otion ion de d worl	system Iding t devices evices k motio	orches s – Tra – Univ on devi	used actor, versal aces.		
Un	nit IV	STANDARDIZED ARC WELDING MACHINE AND SENSORS	S, CONTROLS	9	0	0	9		
Standa around machin machin weldin	Standardized arc welding equipment, types of standardized welding machines – seamers, welding lathes, weld – around machines, nozzle welders and bore welders. I beam welders and strip welders. Standardized welding machines for maintenance work. Automatic welding of pipes and tubes Introduction to some dedicated arc welding machines. Temporary portable automated tooling for welding control functions involved in a mechanized total welding system sensor systems – introduction and classification								
U	nit V	ROBOTIC ARC WELDING	9	0	0	9			
Intro Revo robot weld	Introduction to flexible automatic welding. Robotic arc welding system, types of welding Robots – Revolute, Cartesian, Spherical, Cylindrical and Scara – Hybrid robots far welding, features of welding robot, robotic part – holding positioners, Teaching the robot, some case studies of robotic application in welding.								
					Tota	ıl =45 F	Periods		

Refe	rence Books:
1	Howard B. Cary "Arc welding Automation"- Marcel Dekker, New York1995
2	AWS Welding Handbook, Vol. 3, 9th edition, A W S.,2015.
3	AWS Welding Handbook, vol.5, "Engineering Costs, Quality and Safety", 9 th edition, AWS,2015.
4	The Procedure Handbook of Arc Welding, 13 th Edition, Lincoln Electric, USA,1994
5	Proceedings of the International Conference on Assembly Automation, British Welding Institute, 1985. Kozyrev, Industrial Robots Handbook, Mir Publishers, Moscow.

Course Upon co	Course Outcomes: Upon completion of this course, the students will be able to:							
C01	Gain knowledge on automation of the arc welding processes.							
CO2	Gain knowledge on the different kinds of welding processes.							
CO3	Gain knowledge on the welding equipments and work motions of the automated devices.							
CO4	Gain detailed knowledge on standardized arc welding machines, controls and sensors.							
C05	Get familiarized in the area of Robotic Arc welding.							

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
C01	3	3	3	2	3	1	1	0	1	0	1	2	3	2	2	
CO2	3	2	2	3	3	1	1	0	1	0	0	3	3	2	3	
CO3	2	2	2	3	3	1	1	0	1	0	0	2	1	2	1	
CO4	2	3	3	2	3	1	1	0	1	0	0	2	1	2	1	
CO5	2	2	2	2	3	1	1	0	1	0	0	2	3	2	2	1
Avg.	2.4	2.4	2.4	2.4	3	1	1	0	1	0	0.2	2.2	2.2	2	1.8	0.2

18MTH106	WELDING APPLICATION TECHN	NOLOGY	S	Semest	er	
PREREQUISIT	ES	Category	PE	Cr	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course Learnin	g Objectives					
¹ To unde	rstand the materials, process, fabrication techniqu	les used in weld	ing of	pressu	re vess	sels,
piping a	nd pipelines, shipyards, railways, chemical plants	and structural.				
2 To gain procedu	knowledge of the materials, processes, fabrication res used in oil and gas industries and chemical pla	n, inspection and ants.	d strin	gent q	uality o	control
3 To lear	about welding economics such as weldment	t deposition rat	es foi	diffe	rent w	elding
processe for vario	s, welding cost estimation, standard data for cos us welding procedure.	st estimation an	d com	parati	ve cost	t study
Unit I	WELDING OF STRUCTURALS AND PRESSU	RE VESSELS	9	0	0	9
STRUCTURA	LS: Types of structural elements and their weldin	ng, materials use	d in b	ridges	and we	elding
of bridges.						
PRESSURE V	ESSELS: Material selection and factors affecting	g it, fabrication	of con	ventio	nal pre	ssure
vessels – wel	ding processes used, nozzle welding, tube to t	tube plate weld	ls, flai	nges, v	vessel	ends,
Int II	WELDING OF STOPAGE TANKS AND I	DIDINGS	is. 0	0	0	0
Unit II	WELDING OF STORAGE TAINES AND I	FIFINOS	9	U	U	9
WELDING O backing welds offshore pipev	F PIPING AND PIPELINES: pipe steels and e rings, fittings, alloys used for piping, pipe weld ork, pipelines and pipeline welding, under water	electrodes, types ling procedures, pipeline weldin	s of jo prehe g.	oints an eating a	nd wel and PV	lding, VHT,
Unit III	WELDINGIN CHEMICAL PLANTS, CRYOGEN JOINING TECHNIQUES	NICS & MICRO	9	0	0	9
CHEMICAL	PLANTS: Welding of oil-refinery compone	nts and fertili	zer p	lant c	compoi	nents.
CRYOGENIC	S: Materials used for cryogenic applications, pr	oblems of weld	ling. V	Weldin	g proc	esses
and procedure	s used for welding cryogenic materials.				. 1	.1
MICRO JOIN	ING TECHNIQUES: Various techniques used to	or joining of elec	ctronic	circui	ts and	other
Unit IV	WELDING OF SHIP STRUCTURE AND RA	AILWAYS	9	0	0	9
SHID STRUC	 FURE: Main parts of ship structure materials for	ship building u	nit on	d block	r meth	ad of
shin construct	on welding of submarine steels welding of offsh	ore structures	init and	J DIOCF	meth	JU 01
RAILWAYS:	Materials used for locomotive subassemblies, ra	il coaches, wag	ons an	d its		
subassemblies	rails and welding processused					
Unit V	WELDING OF AEROSPACE AND AUTO	MOBILE	9	0	0	9
AEROSPACE	: Main parts of aerospace structure, materials for	aircrafts buildin	g. met	hod of	àircra	ft
construction, v AUTOMOBII	velding of aircraft structures. E: Main parts in Automobiles, Materials used for	automobile sub	assem	ublies,	weldin	g of
automobile co	mponents.			,		-
				Tota	al =45 I	Periods

Refer	rence Books:
1	S.V.Nadkarni, "Modern Arc Welding Technology", Oxford-IBH Publishers, New Delhi, 7 th edition1996.
2	R.S.Parmar, "Welding Engineering and Technology", Khanna Publishers, New Delhi, 1 st edition1997.
3	AWS Welding Handbook, Sec.5 – Applications of Welding, 5thEdition,1967.
4	AWS Welding Handbook, Vol.4, 7 th Edition,1991.
5	ASM Metals Handbook, Vol.6, Welding, Brazing and Soldering, ASM, New York, 1998.
6	Howard B. Cary, "Modern Welding Technology", Prentice Hall, New Jersey, USA, 1989.

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1	Select the suitable welding procedures for the fabrication of structural elements and
	conventional pressure vessels and solve the difficulties in welding of pressure vessel steels.
CO2	Choose the correct materials, electrodes, type of joint, welding processes and
	fittings for the fabrication of storage tanks, piping as well as pipe lines.
CO3	Solve the problems involved in welding of oil refinery components, fertilizer components and
	cryogenic materials.
CO4	Explain the shipbuilding activities and solve the problems involved in welding of submarine
	steels and railway materials.
CO5	Gain knowledge on materials used in Aerospace and Automobile components and their
	weldments.

CO/PO	PO 1	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO 11	PO 12	PSO	PSO	PSO	PSO
	I	2	3	4	5	0	1	8	9	10	11	12	I	2	3	-
CO1	3	2	2	2	3	2	1	0	1	0	0	2	2	2	3	
CO2	3	2	2	3	2	1	1	0	1	0	1	1	2	3	3	
CO3	2	2	2	2	3	1	1	0	1	1	1	2	1	2	3	
CO4	2	3	2	3	2	1	2	0	1	0	1	2	1	2	3	1
CO5	2	2	2	2	3	1	2	0	1	0	1	2	2	2	3	1
Avg.	2.4	2.2	2	2.4	2.6	1.2	1.4	0	1	0.2	0.8	1.8	1.6	2.2	3	0.4

18MTH107	18MTH107 BRAZING, SOLDERING, SURFACING AND CUTTING								
PREREQUISIT	TES	Category	PE	Cre	edit	3			
			L	Т	Р	ТН			
	Hours/Week				0	3			
Course Learnin	g Objectives								
1 To und solderi	derstand the fundamental concepts, applications, ng, surfacing and cutting	advantage sand	l limit	ations	of bra	azing,			
Unit I	FUNDAMENTALS OF BRAZING AND SO	LDERING	9	0	0	9			
Wetting and s and vertical ca	preading characteristics, surface tension and contapillary joints. Capillary dams.	tact angle conce	pts. Fi	lling o	of horiz	zontal			
Unit II	FLUXES AND ATMOSPHERES FOR BRAZ SOLDERING	ZING AND	9	0	0	9			
braze metal fl brazing specifi fixturing for b	ux removal and related corrosion problem. Atm fic base metal metallurgy of filler metal for br razing.	osphere for braz azing and solde	zing a ering -	nd atm - joint	ospher design	re for n and			
Unit III	SOLDERING AND BRAZING PROCE	ESSES	9	0	0	9			
Hand soldering, furnace brazing, soldering-brazin	flame soldering furnace soldering, hot gas blanket sole induction brazing, dip brazing resistance brazing, vac g and soldering defects	dering, wave sold cum brazing, etc.,	ering, e applic	etc., tor ations o	ch braz of brazi	ing ng			
Unit IV	SURFACING		9	0	0	9			
Thermal spray improve wear applications.	ying, plasma spraying, laser surface alloying a resistance and corrosion resistance. CVD, PVD	nd modification and ion implan	. Surf	acing . Clado	sprayin ding aı	ng to nd its			
Unit V	THERMAL CUTTING PROCESSI	ES	9	0	0	9			
Oxygen cuttin processes- car laser beam cut	ng-oxy fuel gas, metal powder, chemical flux bon arc, air carbon arc cutting. Metal and plasma tting, water jet cutting and under water cutting.	and oxygen a arc cutting, Hi	rc cut gh ene	tting. ergy be	Arc cu eam cu	utting tting,			
Total =45 Periods									
Reference Boo	ks:								
1 Schwart	z M "Brazing – for the Engineering Technologie	es" Champan ar	d Hall	1995					
2 Manko.	H.H., "Solders and Soldering".2 nd Edition, McGra	w Hill1979	ia 11al.	., 1775	•				
³ Udin, Fu	nk, and Wulf ., "Welding for ENGINEERS".								

4 ASM Metals Hand Book Vol. 6 "Welding and Brazing",1988.

5	Lancaster .J .F . "Metallurgy of Welding, Brazing and Soldering" 3 rd edition. George Allen & Unwin.1980.
6	Brooke, "Indusrial Brazing", Bcton.1975.

Course Upon co	Outcomes: mpletion of this course, the students will be able to:
CO1	Explain the concepts of brazing and soldering.
CO2	Understand the fluxes and atmosphere for brazing and soldering.
CO3	To gain knowledge on brazing and soldering processes.
CO4	To understand surfacing techniques.
CO5	To get familiar in the areas of thermal cutting processes.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	2	2	2	1	1	0	0	1	0	3	3	2	2	
CO2	3	3	2	2	2	1	1	0	1	1	0	2	1	2	2	
CO3	3	3	3	3	3	1	1	2	1	0	0	3	1	3	1	1
CO4	2	2	2	2	2	1	0	0	1	1	0	2	1	1	1	1
CO5	3	2	2	3	3	1	1	0	1	0	0	2	0	2	2	1
Avg.	2.8	2.4	2.2	2.4	2.4	1	.8	0.4	0.8	0.6	0	2.4	1.2	2	1.6	0.6

18	MTH108	DESIGN OF WELDMEN	TS	S	Semeste	er			
PRER	EQUISITES		Category	PE	Cre	edit	3		
				L	Т	Р	ТН		
			Hours/Week	3	0	0	3		
Cours	e Learning Ob	jectives		ı					
1	To design a such as desig and residual	system, a component, or a process to meet gn basics, weld design for static loading, we stresses and failure analysis of the manufactu	desired needs v ld design for dy nring.	vithin /namic	realisti 2 loadii	ic cons ng, dis	traints tortion		
	Unit I	DESIGN BASICS		9	0	0	9		
Types conne Gener	of joints, Typ ctions, weldin al and specific	bes of welds, variants of joints, selection of w ng symbols, weld dimensions, NDT sym c design principles.	eld type, weld jo bols. Principles	oints food of w	or strue veld jo	ctural t int des	ubular sign –		
	Unit II	WELD DESIGN FOR STATIC LC	ADING	9	0	0	9		
Mater loadin	ial or section g like tension	properties, Weld design stress calculation for , compression, bending, shear, torsion and sh	or welds, design ock	n unde	r diffe	rent ty	pes of		
I	Unit III	WELD DESIGN FOR DYNAMIC L	OADING	9	0	0	9		
life of weld o	Basic details welded joint lesign using fi	s of fatigue and fatigue failure, S-N curve, Go, methods of improving fatigue life of weld racture toughness value (KIC).	oodman diagram ed structures, d	n, facto esign	ors affe for fati	ecting f igue lo	atigue ading,		
1	Unit IV	DISTORTION AND RESIDUAL ST	TRESSES	9	0	0	9		
Types fixture	Welding res of distortion es and positior	idual stresses–causes, occurrence, effects–t – factors affecting distortion –distortion cont ners.	hermal and me rol methods – p	chanic redicti	cal stre	ess reli rrection	eving. n, jigs,		
	Unit V	FRACTURE MECHANICS	5	9	0	0	9		
tempe design	Concept of rature approace of for high temp	stress intensity factor - LEFM and EPFN ch - fracture toughness testing, application of perature applications.	M concepts - b fracture mechan	orittle nics to	fractur fatigu	re- trai e, welc	isition lments		
					Tota	l =45 F	eriods		
Refe	rence Books:								
1	Blodgett. O. W	V., Design of Weldments, James F. Lincoln Arc W	Velding Foundation	on, 199	91.				
2	R.S.Parmar, W	velding Engineering and Technology 2ndedition,2	2010.						
3	Gurney T.R. F	atigue of Welded Structures. Cambridge Univers	ity Press,1980.						
4	Rolfe. T., Barsom. J., Fracture and Fatigue Control of Structures – Applications of Fracture Mechanics, Prentice Hall,1987.								
5	ASM Metals H	Iand Book. Failure Analysis and Prevention. Vol	. 11. ASM2002.						
6	Das, A.K., Me	tallurgy of Failure Analysis, Tata McGraw Hill, I	New Delhi,1997.						
7	Donald J. Wulpi, Understanding how components fail, ASM International, 3rdEdition, 2013.								

8 Colangelo.V.J. and Heiser.F.A., "Analysis of Metallurgical Failures", John Wileyand Sons Inc. New York, USA,1987.

Course Upon co	Outcomes: ompletion of this course, the students will be able to:
CO1	Gain knowledge on design basics of the welding operations.
CO2	Gain knowledge on the weld design for static loading processes.
CO3	Gain knowledge on the weld design for dynamic loading processes.
CO4	Gain detailed knowledge on factors influencing the distortion and residual stresses.
C05	Get familiarized in the failure analysis sector.

	PO	PO	РО	РО	PO	PO	РО	PO	PO	РО	PO	PO	PSO	PSO	PSO	PSO
0/10	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	2	2	2	1	0	0	0	0	0	1	3	1	2	
CO2	3	3	2	2	3	1	1	0	0	0	0	2	3	1	1	
CO3	3	2	2	1	3	1	0	0	0	0	0	1	3	2	1	1
CO4	3	2	2	2	1	1	1	0	0	0	0	1	1	2	2	
CO5	3	2	2	1	3	2	0	0	0	0	0	1	0	2	3	
Avg.	3	2.2	2	1.6	2.4	1.2	.4	0	0	0	0	1.2	2	1.6	1.8	0.2

18	MTH109	FAILURE ANALYSIS IN WELD	MENTS	S	Semeste	er	
PRER	REQUISITES		Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	se Learning O	bjectives			I		
1	To understand materials th	and the concepts on failure and fracture and nat can withstand catastrophic failures of weld	llysis of weldm nents at differen	ents a it envi	nd to ronme	design nt.	new
	Unit I	INTRODUCTION TO FAILURE ANA	ALYSIS	9	0	0	9
Stage fract	es of failure ure mechanic	analysis, classification and identification of es, characteristics of ductile and brittle fracture	various types o	of fract	ture. C	Vervie	w of
1	Unit II	WELDMENT SURFACE FAILUR	RES	9	0	0	9
Type over corre dama	es of wear, view of vari osion crackir age failures.	analyzing wear failure. Corrosion failures- ous types of corrosion stress corrosion crac ng. Procedure for analyzing stress corrosion	factors influen cking, sources, 1 cracking, vari	cing c charac ious ty	corrosi cteristic ypes o	on fail cs of s f hydr	lures, stress ogen
τ	U nit III	WELDMENT CREEP AND FATIGUE F	MENT CREEP AND FATIGUE FAILURES				9
Gener ruptur on we	al concepts, fr e, elevated ten ldment failure	acture characteristics revealed by microscopy, fact nperature fatigue, metallurgical instabilities, enviro s.	ors affecting fatig	gue life failure	, Creep . Some	, stress case stu	udies
τ	U nit IV	FAILURE OF WELDED PRODU	CTS	9	0	0	9
Caus of w failu	ses of failure veldments, str re analysis ar	in forge weldments, failure of welded iron an ress concentration by weldments, in-service nd data extraction.	d steel castings, weldment failu	impro res. Pi	per he rocedu	at treat re for	ment weld
1	Unit V	RELIABILITY		9	0	0	9
Relia expo betw	ability conce pnential and V veen failures a	pt and hazard function, life prediction, condi Weibull distribution for reliability, bathtub curv and life testing.	tion monitoring, ve, parallel and s	, appli series :	cation system	of Poi , mean	sson, time
					Tota	l =45 P	eriods
Refe	rence Books:						
1	Colangelo.V New York,	V.J. and Heiser.F.A., "Analysis of Metallurgica USA,1987.	ll Failures", John	n Wile	y and S	Sons Ir	nc
2	Das, A.K., "	Metallurgy of Failure Analysis", Tata McGrav	w Hill, New Del	hi,199	2.		
3	DonaldJ.Wu	ılpi,"Understandinghowcomponentsfail",ASM	International,3rd	Editio	on, 201	3.	
4	ASM Metals 10 th Edition,	s Handbook "Failure Analysis and Prevention' 1995.	', ASM Metals I	Park. C	Dhio, V	'ol.10,	_

5 Colangelo.V.J. and Heiser.F.A., "Analysis of Metallurgical Failures", John Wiley and Sons Inc. New York, USA,1987.

Course	Outcomes:
Upon co	ompletion of this course, the students will be able to:
CO1	Understand the concepts of types of failures and analysis
CO2	Learn the various factors affecting/causing failures of weldments
CO3	Design new materials that can withstand failures, especially considering weldments in different environment.
CO4	To understand failure in welded products.
CO5	To learn various concepts in reliability.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	1	1	1	1	0	0	0	0	1	2	2	2	3	
CO2	3	2	2	1	1	1	0	0	0	0	0	1	1	1	2	
CO3	2	2	1	1	1	0	0	0	0	0	1	1	1	0	1	
CO4	3	2	2	1	1	1	0	0	0	0	1	1	0	1	2	1
CO5	2	1	2	1	2	1	0	0	0	0	0	1	0	0	1	
Avg.	2.6	1.8	1.6	1	1.2	0.8	0	0	0	0	0.6	1.2	0.8	0.8	1.8	0.2

18M	TH110	FINITE ELEMENT ANALYSIS IN V	VELDING	5	Semeste	er		
PRER	REQUISIT	TES	Category	PE	Cre	edit	3	
			TT /TT/ 1	L	Т	Р	ТН	
			Hours/week	3	SemesterPECreditLTP300300900angular and rectangu plications – Conducti is - Theory of elastic placement9900Hexahedralelements considerations – Stratic placement900900Hexahedralelements considerations – Stratic placement900			
Cours	e Learnin	g Objectives						
1	To prov methods	ide the basic FEM modeling and to analyze and sets.	olve metallurgic	al prol	blems ı	using t	hose	
U	nit I	TWO DIMENSIONAL PROBLEM	IS	9	0	0	9	
Poiss elemand c – Pla	son equat ents – Ev convectio une strain	ion – Laplace equation – Weak form – Element aluation of integrals – Assembly – Axi-symmetri n heat transfer – Torsional cylindrical member – – Plane stress – Axi-symmetric problems– Princip	t matrices for tr c problems – Ap Transient analy ple of virtual dis	iangul pplicat sis - T placer	ar and ions – 'heory nent	rectan Condu of elas	gular Iction Iticity	
U	nit II	ISOPARAMETRIC ELEMENTS AND ITS AP	PLICATIONS	9	0	0	9	
Intro Num calcu	duction - herical in alations –	 Bilinear quadrilateral elements – Quadratic description – Gauss quadrature – Static condense Examples of 2D and 3D applications 	quadrilaterals – sation – Load	Hexa consid	hedral leratio	eleme ns – S	ents - Stress	
Un	nit III	NON-LINEAR PROBLEMS AND ERROR E	STIMATES	9	0	0	9	
Intro Geor conta refine	duction-I netric No act proble ement	terative Techniques-Material non-Linearity-Elas on linearity-large displacement Formulation-App ems- Error norms and Convergence rates- hig	to Plasticity-Pla blication in Met h refinement w	asticity al For vith ac	v-Visco ming l daptivi	o plast Process ty-Ada	icity- s and ptive	
Un	nit IV	DYNAMIC PROBLEM		9	0	0	9	
Direc Tech	ct Formu inique -He	llation-Free-Transient and Forced Response-S oubolt- Wilson- Newmark - Methods –Examples	olution Proced	ures-S	ubspac	ce Iter	rative	
U	nit V	FLUID MECHANICS		9	0	0	9	
Gove Slow	erning Eq V Non- Ne	uations of Fluid Mechanics-Inviscid and Incon wtonian Flow-Navier Stokes Equation-Steady an	pressible Flow d Transient Solu	-Poten itions.	tial Fo	ormulat	tions- Periods	
Refe	rence Boo	ks:						
1	Cook, Ro Sons,198	obert Davis et al "Concepts and Applications of F 31.	inite Element A	nalysi	s", Wil	ey, Jol	nn &	
2	Desai C. Press,19	S. and Abel J.F., "Introduction to Finite Element 72.	Method", Affilia	ated Ea	ast- We	est		
3	Chandru Ltd.,200	patla, Belagundu, "Finite Elements in Engineering 2.	g", Prentice Hall	l of In	dia Priv	vate		
4	O.C. Zie	nkiewicz and R.L. Taylor, Finite element method	s Vol I &Vol II,	McGı	aw Hi	11,1989	,1992.	
5	K.J. Batl	ne, Finite element procedures, PHI Ltd., 1996						

Course	e Outcomes:
Upon co	ompletion of this course, the students will be able to:
CO1	Demonstrate understanding of FE formulation for axi- symmetric problems in heat transfer and elasticity
CO2	To identify the primary and secondary variables of the problem and choose correct nodal degrees of freedom and develop suitable shape functions for an iso parametric element.
CO3	Able to solve contact problems by using the techniques of non-linear equations of equilibrium
CO4	Understand to solve the dynamic flow problems by iterative methods
C05	Solve non Newtonian Flow-Navier Stokes Equation by FE equations.

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	3	2	3	1	0	0	0	1	0	1	3	2	3	0	
CO2	3	3	3	3	2	0	0	0	0	0	0	2	2	3	0	
CO3	3	2	3	3	1	0	0	0	0	0	0	1	2	3	0	
CO4	3	2	3	3	1	1	0	0	1	0	0	2	2	3	0	1
CO5	3	3	3	3	2	1	0	0	0	0	0	2	0	3	0	
Avg.	2.6	2.6	2.8	3	1.4	.4	0	0	0.4	0	0.2	2	2	3	0	.2

VERTICAL 2: MATERIALS AND PROCESSING

18MTH201	ELECTRICAL, MAGNETIC AND OPTICA	AL MATERIALS	Semester							
PREREQUISITE	S	Category	PE	Cre	edit	3				
			L	Т	Р	TH				
		Hours/Week	3	0	0	3				
Unit I	ELECTRICAL AND DIELECTRIC MATER	IALS:	9	0	0	9				
Review of electric composition, frequ (OFHC Copper, A (ceramics and poly	cal conduction - resistivity and dielectric phenor ency and temperature on these properties - discuss l alloys, Fe-Si alloys, amorphous metals) - discus mers) - dielectric loss, dielectric breakdown – Ferro	mena - concept o sion on specific n sion on specific r o electricity, piezo	of pola naterial nateria and py	arization ls used ls used yro elec	n - effe as cone as diel ctricity.	ects of ductors lectrics				
Unit II	MAGNETIC MATERIALS:		9	0	0	9				
Introduction to dia nickel alloys - ferri of hard and soft ma	, para, ferri and ferro magnetism - hard and soft m tes and garnets - (Ag - Mn - Al) alloys - (Cu - Ni- C gnetic materials - Giant magneto resistance- Nano	agnetic materials Co) alloy - fine pa materials	- iron- rticle n	silicon	alloys - appli	– iron, cations				
Unit III	SEMICONDUCTING AND SUPERCONDUC MATERIALS :	CTING	9	0	0	9				
Review of semico silicon, oxide ser superconductivity	nducting materials - concept of doping - simple niconductors; amorphous semiconductors - FE	and compound se ER, MOSFET a	emicon nd CN	ductors MOS -	- amo Conc	rphous ept of				
Unit IV	PRODUCTION OF ELECTRONIC MATER	IALS:	9	0	0	9				
Review of electron - synthesis of epita starting application	ic materials - methods of crystal growth for bulk si ixial films by VPE, PVD, MBE and MOCVD tech s.	ngle crystals - zoi hniques - lithogra	ne melt phy; p	ing-refi roductio	ining, le on of si	eveling licon -				
Unit V	OPTICAL PROPERTIES OF MATERIALS:		9	0	0	9				
Introduction to electroproperties of meta applications of opti	ctromagnetic radiation, atomic and electronic intera ls, optical properties of nonmetals, opacity and tr cal phenomena-luminescence, photoconductivity, l	actions with electr ranslucency in ins asers, optical fiber	omagn sulators rs in co	etic rad s, color ommuni	liation, of ma	optical terials,				
		I	Total ((45+15)) = 60 P	eriods				
Defense D										
Keierence Books	:									
1 Raghavan	V, Materials Science and Engineering, 4th Edit	ion, Prentice Ha	ll of Ir	idia, 19	998.					
2 Pradeep fu	ley, Electrical, magnetic, and Optical Materials	, 1st edition, CR	C pres	s, 2010	0					
3 Kittel C,	3 Kittel C, Introduction to Solid State Physics, 6th Edition, Wiley Eastern, New International									

3	Kittel C,	Introduction	to	Solid	State	Physics,	6th	Edition,	Wiley	Eastern,	New	Inter
	Publishers	s, 1997.										

4 Dekker A.J, Solid State Physics, MacMillan India, 1995

Course Outcomes:

Upon completion of this course, the students will be able to:

Understand the conducting, semiconducting, superconducting, dielectric, ferro-electric and
piezoelectric behavior of materials
Differentiate between diamagnetic, paramagnetic, ferromagnetic, ferromagnetic, and
antiferromagnetic behavior of materials
Synthesis and processing of semi-conducting materials for engineering applications
Study the effect of composition, structure and temperature on the properties of the
materials.

COURSE ARTICULATION MATRIX

CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSo	PSO
0	1	2	3	4	5	5	6	7	8	9	0	1	2	1	2	3
CO1	1	0	0	2	2	0	0	0	0	0	0	1	2	3	2	2
CO2	1	1	1	2	1	0	0	0	0	0	0	2	1	3	3	3
CO3	1	2	2	2	3	0	0	0	0	0	0	1	2	2	2	3
CO4	1	2	3	2	3	1	0	0	1	1	0	2	1	3	2	3
CO5	1	1	2	1	0	0	0	0	0	0	2	1	3	3	3	1
Total	1	1.2	1.6	1.8	1.8	0.2	0	0	0.2	0.2	0.4	1.4	1.8	2.8	2.4	2.4

18MTH202	MATERIALS TECHNOLO	OGY	5	Semeste	er	
PREREQUISI	TES	Category	PE	Cre	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
I mit I	CONSTITUTION OF ALLOYS AND PH	ASE	0	0	0	0
	DIAGRAMS		9	U	U	9
Phases, solid s	olutions, compounds - Concept of phase diagram	n – phases and m	icro c	onstitu	ents in	steels
and cast irons	- equilibrium and non-equilibrium cooling of	various Fe-C al	loys -	- Fe-C	Equil	ibrium
diagram - effe	ts of alloying elements and cooling rate on struct	ure and propertie	es of st	teels an	d cast	irons.
Unit II	HEAT TREATMENT		9	0	0	9
Introduction to	measu	rement	, annea	aling –		
normalizing –	nardening and tempering – heat treatment atmosp	heres – quenchir	ng mec	lia – ca	se har	dening
techniques.						
Unit III	STEELS		9	0	0	9
Introduction to	specifications – plain carbon steels – low allo	y and Q and T	steels	dual p	hase st	teels –
Ultra high st	ength steels – maraging steels – HSLA stee	els – steels for	magn	netic a	nd ele	ctrical
applications, p	ocessing, properties & applications					
Unit IV	STAINLESS STEELS AND CAST IRON	S	9	0	0	9
Stainless steel	– phase diagrams – effects of chromium and ni	ckel – Ferritic ar	nd Aus	stenitic	. marte	ensitic.
duplex and p	ecipitation hardened stainless steels. Types of	Cast Irons- Gra	ay Cas	st iron.	white	e iron,
malleable iron	S.G. Iron and alloy cast irons – physical metallit	urgy, compositio	n of c	ast iror	ns, proj	perties
and application	s. Heat treatment of cast irons					
Unit V	NON-FERROUS ALLOYS		9	0	0	9
Brasses, bronz	es, Cu-Ni alloys – High Strength Al Alloys, Ti a	alloys, Ni alloys	and M	Ig allo	ys - Pł	nysical
metallurgy, co	nposition, properties and applications					
			Total ((45+15)	= 60 F	Periods
Tart Daalar						
Text Books:						
1 Raghav	n V. "Physical Metallurgy – Principles and Pract	ice", Prentice Ha	ll of I	ndia, 1	993.	
2 Brick G	orden Phillips. "Structure and Properties of Alloy	s", McGraw Hill	, 1976			
3 Flinn. F 1999	.A. and Trojan. P.K. "Engineering Materials a	nd their Applica	tions"	, 4th E	Edition	, Jaico,
	,					
Keierence Bo	KS:					
1 Leslie.	V.C., "The Physical Metallurgy of Steels". McGr	aw Hill. 1983.				
2 Metals	Iand book. 10th edition. Volume 2. ASM. 1995.					

3 Askeland. D.R. "The Science and Engineering of Materials". PWT Kent Publishing Company, Boston, 1989 4 Pickering F.B. "Physical Metallurgy and Design of Steels". Applied Science Publishers Limited. Lon

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSo2	PSO3
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1

Category	S	emeste	er	
		Cre	edit	3
	L	Т	Р	ТН
Hours/Week	3	0	0	3
	9	0	0	9
Structure of p ature (Tg). Po r weight of poly	oolyme olyme mers-	ers-cry rizatio proble	stalling n-type ems. Po	e and s and olymer
SING	9	0	0	9
s, examples and rs. Applications ng and fracture	d appli . Beha of po	cation viour lymers	s. Proc of poly s. Craz	essing ymers: ing of
	9	0	0	9
operties: Boron es - structure, pr and casting - Pi	Nitrid roperti lkingto	le, Sili les and on pro-	con Ca applic cess fo	arbide, ations
	9	0		r float
			0	r float 9
imposites: Cons ices. Production ce, sports and le	tituent techn tsure a	ts and iques applica	0 functi (in bri- tions.	9 ons of ef) for
omposites: Cons ices. Production ce, sports and le DSITES	tituent techn eisure a 9	ts and iques applica 0	0 functi (in brid tions. 0	9 ons of ef) for 9
omp ices ce, s)SI' 'rod oarti omb	osites: Cons Production sports and le TES uction tech cle spacing structures	osites: Constituent Production techni sports and leisure a TES 9 uction techniques cle spacing – exar structures – exar	90osites: Constituents and. Production techniquessports and leisure applicaTES90uction techniques – Applicationcle spacing – examples of structures – examples,	900osites: Constituents and function. Production techniques (in bridssports and leisure applications.TES90uction techniques – Applicationcle spacing – examples of partionstructures – examples, manuf

Van Vlack L K Physical Ceramics for Engineers, Addison Wesley, Massachusetts, 1964.

3 Mathews & Rawlings, Composites: Science and Engineering, ELBS, London, 1994.

Reference Books:

2

1	Gabor Koves, Materials for structural and Mechanical Functions, Taraporevala & Sons, Bombay, 1980.
2	Broutman L J and Krock R J, Modern Composite Materials, Addison Wesley Pub. Co., Massachusetts, 1986.
3	Jacobs, J A and Kilduff T F, Engineering Materials Technology, Prentice Hall Inc., N.J., 1988.
4	Mallick P K, Fiber Reinforced Composites: materials, manufacturing and design, CRC Press, Taylor & Francis group, London, 2010.
5	Krishnan K Chawla, Composite materials: Science and Engineering, Springer, 1998.

COURSE ARTICULATION MATRIX

CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSo	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	0	0	1	0	2	0	0	0	0	0	1	0	2	3	1
CO2	1	1	3	3	2	0	2	0	0	1	2	0	2	2	2
CO3	2	2	2	1	2	1	1	1	1	1	3	1	1	0	0
CO4	1	0	0	0	3	2	0	1	2	2	1	1	1	0	0
CO5	0	2	1	2	2	1	3	1	1	1	0	1	0	1	3
Total	0.8	1	1.4	1.2	2.2	0.8	1.2	0.6	0.8	1	1.4	0.6	1.6	1.2	1.2

18MTH204	DESIGN AND SELECTION OF M	IATERIALS	S	Semeste	er	
PREREQUISITES		Category	PE	Cre	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Unit I			9	0	0	9
Technologically im environmental and strength-density, fra	portant properties of materials - Physical, electrical properties of materials. Materia cture toughness-strength.	chemical, mec l property char	hanica ts - N	l, ther Aodulu	mal, c s – d	ptical, ensity,
Unit II			9	0	0	9
Types of design, I structural shape fact – case studies.	Design tools and materials data – Materia ors – limit to shape efficiency Comparison	lls and shape – of structural sect	- micr tions a	oscopi ind ma	c and terial i	micro ndices
Unit III			9	0	0	9
materials – Collection the situations – case	on of data on availability, requirements and studies.	l non-functional	thing	s- its in	mporta	ince to
		1	9	U	U	9
studies - Influence	- systematic selection of process – Selection of manufacturing aspects and processing on of materials.	on charts - Ran route on proper	rties o	f mate	esses erials a	– case and its
Unit V			9	0	0	9
Selection of materia mining industries.	ls for automobile, nuclear, power generation	, aerospace, petr	ochem	nical, e	lectror	ic and
			Total ((45+15)	= 60 I	Periods
Text Books:						
1 M.F. Ashby, Oxford, 2005.	"Materials Selection in Mechanical Desig	gn' – Third ed	ition,	Elsevi	er pub	olishers,
2 Gladius Lewi	s, "Selection of Engineering Materials", Prer	ntice Hall Inc, N	ew Jer	sey, U	SA, 19	95.
3 Charles.J.A. London, UK,	and Crane,F.A.A., "Selection and Use of 1989.	Engineering N	Materi	als", E	Butter	worths,
4 Angelo P C	and Ravisankar B, "Introduction to Steel-	Processing, Pro	perties	s and A	Applic	ations",

CRC Press, Taylor & Francis Group, Florida, U.S.A., 2019.

5

Park Ohio. USA, 1997

ASM Handbook. "Materials Selection and Design", Vol.20- ASM Metals

Course Upon co	e Outcomes: ompletion of this course, the students will be able to:
CO1	Understand the types of materials and properties
CO2	Know the different methods for materials selection
CO3	Know the different methods for process selection
CO4	Know the different methods for process selection
CO5	Selection of materials for Specific engineering applications and processes

COURSE ARTICULATION MATRIX

CO/P	P	PO	PO	P	P	P	P	P	P	PO	PO	PO1	PSO	PSo2	PSO
0	0	2	3	O4	05	06	07	08	09	10	11	2	1		3
	1														
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1

18MTH205			HIGH TEMPERATURE MAT	FERIALS	Semester			
PREREQUISITES				Category	PE Cre		edit	3
					L	Т	Р	ТН
				Hours/Week	3	0	0	3
Cours	se Learn	ing Objec	tives					
1	To im	part knov	ledge on requirements for materials for hi	igh temperature	use an	d the		
	Behavior of materials at high temperatures.				1	1		
U	nit I	INTRO	DUCTION		9	0	0	9
Need for n prope	for high naterial erties and	tempera testing a preferre	ture materials, historical development of h at high temperatures, requirements of 1 d microstructure, environmental resistance	high temperature high temperature e, erosion and w	mater re ma ear).	ials, ar terials	nd equi (mech	pment nanical
Un	Unit IIPRINCIPLES FOR HIGH TEMPERATURE900STRENGTHENING90				9			
Metallic materials (solid solution strengthening, precipitation strengthening, dispersion strengthening grain size and grain boundary effects) Ceramic materials (phase control, defect tolerance, thermal shock resistance) composite materials.								
Un	it III	CREE	AND STRESS RUPTURE		9	0	0	9
at elevated temperatures - fatigue interaction: Modes of high temperature fracture and fatigue fracture, creep-fatigue interaction (creep accelerated by fatigue), fatigue-creep interaction (fatigue accelerated by creep), micro-mechanism of damage, fracture criterion for creep fatigue, creep-fatigue failure mapping, creep-fatigue testing influence of environment								
Unit IV		MATE	RIALS FOR HIGH TEMPERATURE		9	0	0	9
Metals / alloys, super alloys, steels, titanium and its alloys, ceramics (Alumina, Zirconia, Silicon carbide, Silicon nitride, Glass ceramics) composites (Metal matrix composites, ceramic matrix composites) carbon – carbon composites.								
Unit V		COATI TEMPI APPLI	NGS FOR PROTECTION AGAINST H CRATURE CORROSION AND EROSI CATIONS	HIGH ON AND	9	0	0	9
Corro high and n	osion / c tempera uclear in	oxidation ture erosindustry.	resistant coatings (metallic, ceramic, rare on and wear, thermal barrier coats - App	e and reactive m plications in inc	netal re lustry,	einforc aerosp	ed coa bace, d	tings), efense
Total (45+15) = 60 Periods								
Refe	rence B	ooks:						
1 Meetham, G. W., Van de Voorde, M. H., "Materials for High Temperature Engineering Applications (Engineering Materials)", 1 st 2000 Ed., Springer., 2013.								

3 Reed R. C., "The Super-alloys: Fundamentals and Applications", Cambridge University Press, 2008.

Chan R. W., "High temperature structural materials", Chapman & Hall, 1996.

2

4	Birks, N., Meier, G. H., and Pettit, F. S., "Introduction to the High Temperature Oxidation of
	Metals", Cambridge University Press, 2009.
5	Bose, S., "High Temperature Coatings", Butterworth-Heinemann, 2007.

Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Understand the materials behavior at high temperature.		
CO2	Discuss the oxidation mechanisms of metallic and ceramic materials.		
CO3	Explain mechanisms of creep, thermal fatigue.		
CO4	Classify materials for high temperature applications.		
CO5	Select the materials and/or coatings for high temperature applications.		

18MTH206		PROCESSING OF NON METALLIC	MATERIALS	'ERIALS Semester		er	
PREREQUISITE		5	Category	PE Credit		edit	3
			TT / T T/ 1	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course Learn	ing	Objectives					
1 To int	rodu	ce the student to the range of non-metallic mate	erials available f	for eng	ineerii	ng.	
To ge	To get an exposure to the techniques associated with the synthesis and processing of t			these			
materi	als.						
Unit I		INTRODUCTION TO NON METALLIC	MATERIALS	9	0	0	9
materials. Int polymerizatic Introduction, classification	materials. Introduction to Polymers: Concept of polymers, types of polymers reactions, Mechanism of polymerization, Ceramics: Introduction, classification, structure, and applications of ceramics. Glasses: Introduction, classification, structural features and applications of glasses. Composites: Introduction, classification, and applications of composite materials.						
Unit II		PROCESSING OF POLYMERS		9	0	0	9
Extrusion - s	singl	e screw and twin screw extrusion, Film blow	ving, Pipe extru	usion,	extrus	ion of	sheet,
Calendaring,	The	ermoforming. Molding - Injection molding,	Blow molding	, Con	npressi	on me	olding,
Injection stre	etch	blow molding, Resin transfer molding, Gas	and water as	sisted	injecti	on me	olding,
Reaction Inje	ctio	n Molding, Pultrusion, Pull winding.					
Unit III		PROCESSING OF CERAMICS		9	0	0	9
Powder Preparation Techniques: Sol-gel technology – Precipitation, Coprecipitation,			itation	and H	Iydrotl	nermal	
precipitation	tech	niques. Preparation of Al ₂ O ₃ , ZrO ₂ , SiC, Si ₃ N ₄	BN & B4C.				
Ceramic Processing Techniques: Hot Pressing, Hot Isostatic Pressing, (HIP). Spark Plasma Sintering. Sintering							
Unit IV		PROCESSING OF GLASSES	3	9	0	0	9
Glass Melting Process: Process leading to glass formation - Volatilization - Effect of pre-sintering-							
refining - Physico - chemical reactions taking in glass batch- Homogenization and devitrification -							
Tempering – Annealing. Glass Forming Process: Hand operation – Laboratory ware and Bulb making,							
Tube making – Danner process – Up draw process, down draw process, pressing – Hand press, Flat glass							
- Pitts berg process, Foucault process, Float process.							
Unit V		PROCESSING OF COMPOSITES		9	0	0	9

Processing of PMC: Processing of Thermoset Matrix Composites - Hand Lay-Up and Spray Techniques, Filament winding, Pultrusion, Resin Transfer Molding (RTM), Bag molding processes. Processing of Thermoplastic Matrix Composites - Film Stacking Technique, Diaphragm Forming, Commingled fibers, Injection molding, Sheet Molding Compound (SMC). **Processing of CMC** Cold Pressing & Sintering, Hot Pressing, Reaction Bonding Processes, Infiltration, Directed Oxidation, In Situ Chemical Reaction Technique, Sol-Gel, Polymer Infiltration & Pyrolysis.

Total (45+15) = 60 Periods

TEXT BOOKS:

1. Textbook of Polymer Science; Fred W. Billmeyer, Wiley 2007

2. Introduction to Ceramics; Kingery, Bowen, Uhlman. Wiley India Pvt Limited, 2012

3. Composite Materials: Science and Engineering; Krishan K. Chawla, Springer, 2012

Reference Books:			
1	W.S. Smith: Principles of Materials Science and Engineering, McGraw-Hill.		
2	2. Manufacturing Processes for Engineering Materials : S. Kalpakjian, 3rd edition Addison -		
	Wesley, 1997		
3	3. Plastic Materials and Processing : A. Brent Strong, Prentice Hall, ISBN 0-13-021626-7		
4	4. Handbook of Glass Manufacture - F.V. Tooley		
5	5. Composite Materials: Engineering and Science: F.L. Mathews and R.D. Rawlings, CRC press,		
	084930251X		

Course Outcomes: Upon completion of this course, the students will be able to:															
CO1	• list the prominent non-metallic materials available for engineering applications.														
CO2	• understand the various processing techniques of polymers.														
CO3	• understand the various manufacturing techniques of ceramic materials.														
CO4	• Indicate the various glass melting and forming techniques.														
CO5	 Understand the various manufacturing techniques of PMCs and CMCs. 														
CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
-------	---------	---------	---------	---------	---------	---------	---------	---------	---------	----------	----------	----------	----------	----------	----------
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3
AVG	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3

18MTH207 BIOMATERIALS				S	Semest	er	
PRER	EQUISITE	S	Category	PE	Cr	edit	3
				L	Т	Р	TH
	Hours/ week				0	0	3
Cours	e Learning	Objectives					
1	Learn char	acteristics and classification of Biomaterials					
2	To underst	tand the importance of Biomaterials in medical	applications				
1	Unit I	INTRODUCTION TO BIOMATERIALS		9	0	0	9
Defin mater fractu	itions, Type ials - Tensil re, Stress co	es of materials – Ceramics, metals, polyme le testing, Compressive testing, Shear testing, E oncentration, Fracture toughness and Fatigue.	rs and compos Bend or flexura	ites. I l tests.	Basic , Ducti	propertile and	ies of brittle
τ	J nit II	METALLIC AND CERAMIC MATERIAI	ĹS	9	0	0	9
Meta nano or bi	Illic implar structured n oresorbable	nts – Stainless steels, co-based alloys, Transformer and corrosion, ce bioactive ceramics, nanostructured bio cerami	i-based alloys, ramic implant – cs.	shap bio ir	e men nert, bi	mory odegra	alloy, dable
U	nit III	POLYMERIC IMPLANT MATERIALS		9	0	0	9
Polyz polyz conta spinr	merization, mers, Bio p act lens, in ning: a new	factors influencing the properties of polymers, olymers: Collagen, Elastin and chitin. Medica traocular lens. Membranes for plasma separ approach.	polymers as bio I Textiles, Mate ration and Bloo	materi rials f od ox	ials, bi or oph ygenat	odegra thalmo ion, el	dable logy: lectro
U	nit IV	TESTING OF BIOMATERIALS		9	0	0	9
Bioco carcin device	mpatibility, ogenicity, r es: ETO, gau	blood compatibility and tissue compatibil nutagenicity and special tests, Invitro and Inv mma radiation, autoclaving. Effects of sterilizat	lity tests, Tox ivo testing; Ste ion.	icity rilisati	tests, on of	sensiti: implan	zation, ts and
τ	U nit V	APPLICATION OF BIOMATERIALS		9	0	0	9
Artific (Dial	cial Heart, F yser membr	rosthetic Cardiac Valves, Artificial lung (oxygane), Dental Implants, Orthopaedic Implants a	enator), Artificia nd Biomaterials	al Kidı in Op	ney hthalm	nology.	
				Total ((45+15) = 60 I	Periods
Tex	t Books:						
1	C. Mauli Basic The	Agrawal, Joo L. Ong, Mark R. Appleford and eory with Engineering Applications, Cambridge	Gopinath Mani, e University Pre	Introd ss 201	luction 4	to Bio	materia
2	Sujata V.	Bhatt, "Biomaterials", Second Edition, Narosa	Publishing Hou	ise, 20	05		
Refe	rence Books	:					
1	Donglu Shi	i, Introduction to Biomaterials, Tsinghua Unive	rsity Press 2006				
2	Sreeram	Ramakrishna, MuruganRamalingam, T. S. Sam	path Kumar, and	d Wins	ston O	. Soboy	yejo,

"Biomaterials: A Nano Approach", CRC Press, 2010.

3

Course Upon co	Outcomes: mpletion of this course, the students will be able to:
CO1	Understand the testing standards applied for biomaterials.
CO2	Identify significant gap required to overcome challenges and further development in metallic and ceramic materials
CO3	Identify significant gap required to overcome challenges and further development in polymeric materials
CO4	To demonstrate purpose of Biomaterials in various applications

18MTH208	ADVANCES IN NUCLEAR MATE	CES IN NUCLEAR MATERIALS				
PREREQUISITES		Category	PE	PE Cred		3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Unit I			9	0	0	9
Introduction to nu ecological and envi	clear energy / reactors – comparison of c ronmental aspects	lifferent modes	of er	nergy	genera	tion –
Unit II			9	0	0	9
Nuclear reactions –	concept of half-life, nuclear minerals – relate	ed exploration a	nd proo	cessing	5	
Unit III			9	0	0	9
Material requireme rods – fabrication re	ents – structural materials, rare earth materia	als coolants, shi	elding	mater	ials ar	d fuel
Unit IV			9	0	0	9
Nuclear irradiation	effects on structural materials – safe guards,	safety and health	n prote	ction		
Unit V			9	0	0	9
Strategic issues – c at international leve	urrent status and major needs, overview of neel.	uclear scenario	in Ind	ia, nuc	lear sc	enario
			Total (45+15)) = 60 H	Periods
Text Books:						

1	Benjamin M. M., Van Nostrand "Nuclear Reactor Materials and Applications", Reinhold Company
	Inc, 1983
2	Henley E.J., & Herbert Kouts, "Advances in Nuclear Science and Technology".

Course Upon co	Outcomes: mpletion of this course, the students will be able to:
CO1	Learn different types of materials used to produce nuclear energy
CO2	Understand properties of nuclear materials and applications
CO3	Learn and understand the safety precautions of nuclear radiation and protection.

18N	ATH209	AUTOMOTIVE AND AEROSPACE MATE	RIALS	Semester			
PREI	REQUISIT	ΈS	Category	PE	PE Credit		
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cour	se Learnin	g Objectives					1
1	To know	the details of electrodes for various materials used for	r different weldin	g proce	esses		
τ	Unit I	MATERIALS FOR ENGINES AND TR SYSTEMS	RANSMISSION	9	0	0	9
Mater	ials selection	on for IC engines: Piston, piston rings, cylinder, Eng	gine block, Conne	ecting	rod, Cr	ank sh	aft, Fly
wheel	s, Gear box	x, Gears, Splines, Clutches.		1	1		1
U	J nit II	MATERIALS FOR AUTOMOTIVE STRUCTU	RES	9	0	0	9
Mater	ials selecti	on for bearings, leaf springs, chasis & frames, Bun	nper, shock absor	rbers, v	wind sc	creens,	panels,
brake	shoes, Dis	c, wheels, differentials, damping and antifriction Flu	uids, Tyres and tu	ibes.M	aterials	for ele	ctronic
device	es meant fo	r engine control, ABS, Steering, Suspension, Sensors,	anti-collision, A	nti-fog.	, Head	lamps.	
U	nit III	NON-FERROUS MATERIALS IN AIRCRAFT CONSTRUCTION		9	0	0	9
Alum	inum and i	its alloys: Types and identification. Properties - Ca	stings - Heat tre	atment	proces	sses - S	Surface
treatm	nents. Mag	nesium and its alloys: Cast and Wrought alloys -	Ai rcraft applica	tion, f	eatures	specif	ication,
fabric	ation probl	ems, Special treatments.Titanium and its alloys: Ap	plications, machi	ning, f	orming	, weldi	ng and
heat t	reatment, (Copper Alloys. Wood and fabric in aircraft construct	tion and specifica	ations -	- Glues	Use of	t glass,
plastic				0	0	0	0
		FERROUS MATERIALS IN AIRCRAFT CONS		9		0	9
Steels	etructural	low carbon steels, various low alloy steels, aircraft steels	eel specifications,	corros	Junanc	heat ro	basa
Cobal	t base - Iro	n base - Forging and Casting of Super alloys - Weldin	Meanons. Super A	Alloys.	086 -	INICKEI	Uase -
U	Jnit V	CERAMICS AND COMPOSITES	<u>.6, 110ar a caunion</u>	. 9	0	0	9
Introd	luction. m	odern ceramic materials, cermets, glass ceram	ic. production	of sei	ni-fabr	icated	forms.
Carbo	on/Carbon	composites, Fabrication processes and its aerospa	ace applications	involv	red in	metal	matrix
comp	osites, poly	mer composites					
				Total ((45+15)) = 60 I	Periods
Refe	erence Boo	ks:					
	ASM IIo	ndhook "Soloation of Matarials Val. 1 and 2" ASN	A Matala Davis C	h:a I	<u>6 A 10</u>	01	
1	ASIM HAI	nubook, Selection of Materials Vol. 1 and 2", ASN		71110. U	5A, 19	71.	
2	Materials Materials	Science and Engineering, Willium D. Callister, Jr. J Science and Engineering Adapted By R. Balasubrama	ohn Wiley & Son aniam, Wiley Indi	ns publ ia, Edit	ication ion -20	s Or Ca 10.	allister's
3	Material S	Science and Engineering, V. Raghavan, Prentice Hall	of India, 4th Editi	on.			

- 4 H Buhl, Advanced Aerospace Materials, Springer, Berlin 1992, ISBN-13: 978-3540558880
- 5 Balram Gupta, Aerospace material Vol. 1,2,3,4ARDB, S Chand & Co ,2009, ISBN-13: 978- 8121922005.
- 6 ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park Ohio.USA, 1997.
- 7 Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials", Taylor & Francis Group, London, 2006

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1	Understand the use of Materials selection criteria for engine and transmission systems.
CO2	Understand the Different materials used for automotive structures and Different electronic materials for automotive applications
CO3	Explain mechanical behavior and heat treatment of aerospace nonferrous materials.
CO4	Understand the properties and heat treatment of ferrous materials for aircraft materials.
CO5	Understand the properties of ceramics and composites for aircraft materials.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSo2	PSO3
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1

18MTH210	PROCESSING OF NON FERROUS	METAL ORES	Semester					
		Category	Category PE Credit					
		Hours/Week	L	Т	Р	ТН		
Course Objectives								
1. To study the p	rocessing of non ferrous metals ores.							
2. To understand	the fundamental principles and operations of	non ferrous ores.						
UNIT I FUN	AMENTALS OF EXTRACTION METAI	LURGY		9	+	0		
Principles of Pyro Smelting and Com Principles of Hyd extraction, Ion exc Principles of Elect of metals. Purific	netallurgy - Drying, Calcination, Sintering, erting. rometallurgy, Leaching – Properties of goo hange, Bio leaching, Gaseous reduction of me rometallurgy - Aqueous and Fused salt electro ation of Crude metals produced in bulk	Roasting – Predomin d solvent - Leachin tals in aqueous soluti olysis, Electro refining – Distillation, Liqu	g me ons. g and lation	Area thods Elec , Fi	a Dia s – S etro w re re	grams olvent inning fining		
Electrolytic refinirUNIT IIEXT	g, Zone refining. ACTION AND REFINING OF METALS	FROM SULPHIDE		9	+	0		
ORE				,	-			
refining; Hydro-M solutions; Electro Blast furnace sme retort processes: F	etallurgical copper extraction; Leaching proving - NICKEL: Simplified flow sheet ting, Refining of lead bullion and ZINC: Ge roduction in a Blast furnace: Leaching purific	s for the extraction eneral Principles: Ho cation: Electrolysis,	f cop of n rizon <u>Refin</u>	per f ickel tal au ning.	from 1 l,- Ll nd ve	leach EAD: rtical		
	KACTION AND REFINING OF METALS	FROM UXIDE OR	ES .	<u>9</u>	+	0		
MAGNESIUM: P winning practice process: Hall – processes of alur refining of Tin an	oduction of a hydrous Magnesium chloride and problem, refining, Pidgeon and Handsp Heroult process: Anode effect: Efficiency and TIN: Smelting of 7 I Electrolytic refining. TUNGSTEN: Flow s	e from seawater and oring processes - Al of the process: Re Fin concentrates, Re sheets for the extraction	magi LUM efinin efinir ion of	nesite INIU Ig, A Ig of <u>f Tun</u>	e. Ele IM: H Altern f Tin Igster	ectro- Bayer ative -Fire		
UNIT IV EXT ORE	ACTION AND REFINING OF METALS	FROM HALIDE		9	+	0		
Extraction of m chlorination of ti separating HF fro processes for dige and uranium.	tals rare earth metals from halides – ania, Kroll's process. Refining. ZIRCONIU n Zirconium, Reduction of Zr compound to stion of uranium ores, Purification of crude	TITANIUM: Upgr JM - Treatment of metal and URANIU e salt, Production of	ading Zirco JM, A reac	g of on, N Acid tor g	ilme Ietho and a rade	enite, d for Ilkali UO2		
UNIT V EXT	ACTION OF PRECIOUS METALS AND ALS RECOVERY	BYPRODUCT FRO	OM	9	+	0		
Extraction and R and Cyandiation p from base materia Recovery of by-p	efining of precious metals – GOLD: Amal rocess, SILVER: Chloridizing roasting, Cy ores, and PLATINUM: INCO process. oduct metals and treatment of Metallurgica	gamation process, C andiation, Parke's pr I wastes - Secondary	Chlori roces	nations and	on pro l reco of Co	pocess overy pper,		
metallurgical was	mmum, Non scrap sources of Aluminities.	um, 1m, Vanadium				n of		
		Tota	11 (L+	-1)=	: 43 H	iours		

Course	Course Outcomes:						
Upon c	Upon completion of this course, the students will be able to:						
CO1	•••	Understand the principles of extraction processes.					
CO2		Explain the extraction of metals from sulphides ores.					
CO3	:	Explain the extraction of metals from Oxides ores.					
CO4	:	Explain the extraction of metals from halide ores.					
CO5	:	Explain the extraction of precious metals and secondary refining processes.					

Text]	Books:
1.	Ray H.S, Sridhar R and Abraham K.P, Extraction of Non Ferrous Metals, Affiliated East-West Press Pvt Ltd, New Delhi, 2008.
2.	Ray H.S and Gosh A, Principles of Extractive Metallurgy, Prentice Hall of India, New Delhi, 1994
3.	Principles of Extractive Metallurgy-Gosh
Refer	ence Books:
1.	Text book of Metallurgy-A.R. Bailey.
2.	Terkel Rosenqvist, Principles of Extractive Metallurgy, 2nd Edition, McGraw-Hill International book Company, 1983
3.	Venkatachalam S, Hydrometllurgy, Narosa Publishing House, New Delhi, 1998
4.	R.Raghavan Extractive Metallurgy of Non - Ferrous Metals, Vijay Nicole Imprints Private Limited, Chennai 2016.
5.	Pehlke R.D, Unit Processes in Extractive Metallurgy, American Elsevier Publishing Company, New York, USA, 1977.

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
РО																
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	0.2
	1 T	lointly.		2 1	/ a dam	staltr		2 64	ion altr							

1- Faintly, 2- Moderately, 3- Strongly

GOVERNMENT COLLEGE OF ENGINEERING, SALEM

REGULATION 2018 A - VERTICALS FOR MINOR DEGREE

VERTICAL - I	VERTICAL - II	VERTICAL - III	VERTICAL - IV	VERTICAL - V	VERTICAL - VI
Civil Engineering	Computer Science and Engineering	Electronics and Communication Engineering	Electrical and Electronics Engineering	Mechanical Engineering	Metallurgical Engineering
18CEM01 Construction Materials	18CSM01 Programming in C++	18ECM01 Electron Devices	18EEM01 – Network Analysis and Synthesis	18MEM01 Engineering Thermodynamics	18MTM01 Advanced Physical Metallurgy
18CEM02 Building Construction & Equipment	18CSM02 Advanced Data Structures and Algorithms	18ECM02 Digital Electronics	18EEM02 – Signals and Systems	18MEM02 Fluid Mechanics and Machinery	18MTM02 Metallurgical Thermodynamics and kinetics
18CEM03 Concrete Technology	18CSM03 Computer Organization and Design	18ECM03 Electronic Circuits (EC-I & EC- II, LIC)	18EEM03 – Linear and Digital Electronics Circuits	18MEM03 Manufacturing Processes	18MTM03 Mechanical Behaviour of Materials
18CEM04 Environmental Engineering	18CSM04 Advanced Operating Systems	18ECM04 Signal Processing	18EEM04 – Microprocessor and Microcontrollers	18MEM04 Materials Engineering	18MTM04 Rate Processing in Metallurgy
18CEM05 Basics of Transportation Engineering	18CSM05 Data Communication and Computer Networks	18ECM05 Microprocessors and Microcontrollers	18EEM05 – Control Systems	18MEM05 Kinematics of Machinery	18MTM05 Corrosion and Surface Engineering
18CEM06 Repair and Rehabilitation Structures	18CSM06 Programming Essentials in Python	18ECM06 Analog and Digital Communication	18EEM06 – Measurement and Instrumentation	18MEM06 Hydraulics and Pneumatics	18MTM06 Characterization of Materials
18CEM07 Green Building Technology	18CSM07 Advanced Database System Concepts	18ECM07 Communication Networks (CN)	18EEM07 – Electrical Machines	18MEM07 Design of Machine Elements	18MTM07 Automotive, Aerospace and Defense Materials
	18CSM08 Virtualization and Cloud Computing	18ECM08 Fundamentals of IoT	18EEM08 – Electric Drives and Control	18MEM08 Heat and Mass Transfer	
		18ECM09 Wireless Sensors and Networking (WSN)	18EEM09 – Electric Vehicle and Control	18MEM09 Metrology and Quality Control	
		18ECM10 Basics of Embedded Systems	18EEM10 –Electric Energy Conservation and Auditing	18MEM10 Dynamics of Machinery	

LIST OF MINOR DEGREE - VERTICALS

	Course	Correct		Но	urs/W	eek	dits	Maximum Marks			
S.No.	Code	Course	Cat	L	Т	Р	Cree	CA	FE	Total	
		CIVIL ENGIN	EERIN	G							
1	18CEM01	Construction Materials	OE	3	0	0	3	40	60	100	
2	18CEM02	Building Construction & Equipment's	OE	3	0	0	3	40	60	100	
3	18CEM03	Concrete Technology	OE	3	0	0	3	40	60	100	
4	18CEM04	Environmental Engineering	OE	3	0	0	3	40	60	100	
5	18CEM05	Basics of Transportation Engineering	OE	3	0	0	3	40	60	100	
6	18CEM06	Repair and Rehabilitation of Structures	OE	3	0	0	3	40	60	100	
7	18CEM07	Green Building Technology	OE	3	0	0	3	40	60	100	
		COMPUTER SCIENCE A	ND EN	GINE	ERIN	G					
1	18CSM01	Programming in C++	OE	3	0	0	3	40	60	100	
2	18CSM02	Advanced Data Structures and Algorithms	OE	3	0	0	3	40	60	100	
3	18CSM03	Computer Organization and Design	OE	3	0	0	3	40	60	100	
4	18CSM04	Advanced Operating Systems	OE	3	0	0	3	40	60	100	
5	18CSM05	Data Communication and Computer Networks	OE	3	0	0	3	40	60	100	
6	18CSM06	Programming Essentials in Python	OE	3	0	0	3	40	60	100	
7	18CSM07	Advanced Database System Concepts	OE	3	0	0	3	40	60	100	
8	18CSM08	Virtualization and Cloud Computing	OE	3	0	0	3	40	60	100	
	I	ELECTRONICS AND COMMUN	ICATIO	ON EN	IGINE	ERIN	G				
1	18ECM01	Electron Devices	OE	3	0	0	3	40	60	100	
2	18ECM02	Digital Electronics	OE	3	0	0	3	40	60	100	
3	18ECM03	Electronic Circuits	OE	3	0	0	3	40	60	100	
4	18ECM04	Signal Processing	OE	3	0	0	3	40	60	100	
5	18ECM05	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100	

6	18ECM06	Analog and Digital Communication	OE	3	0	0	3	40	60	100
7	18ECM07	Communication Networks	OE	3	0	0	3	40	60	100
8	18ECM08	Fundamentals of IoT	OE	3	0	0	3	40	60	100
9	18ECM09	Wireless sensors and networking	OE	3	0	0	3	40	60	100
10	18ECM10	Basics of Embedded systems	OE	3	0	0	3	40	60	100
	I	ELECTRICAL AND ELECTR	ONICS	ENGI	NEEF	RING	1			
1	18EEM01	Linear and Digital Electronics Circuits	OE	3	0	0	3	40	60	100
2	18EEM02	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100
3	18EEM03	Control Systems	OE	3	0	0	3	40	60	100
4	18EEM04	Measurements and Instrumentation	OE	3	0	0	3	40	60	100
5	18EEM05	Electrical Machines	OE	3	0	0	3	40	60	100
6	18EEM06	Electric Drives and Control	OE	3	0	0	3	40	60	100
7	18EEM07	Electric Vehicles and Control	OE	3	0	0	3	40	60	100
8	18EEM08	Electrical Energy Conservation and Auditing	OE	3	0	0	3	40	60	100
9	18EEM09	SMPS and UPS	OE	3	0	0	3	40	60	100
10	18EEM10	Utilization of Electrical Energy	OE	3	0	0	3	40	60	100
		MECHANICAL EN	IGINEE	RING						
1	18MEM01	Engineering Thermodynamics	OE	3	0	0	3	40	60	100
2	18MEM02	Fluid Mechanics and Machinery	OE	3	0	0	3	40	60	100
3	18MEM03	Manufacturing Processes	OE	3	0	0	3	40	60	100
4	18MEM04	Materials Engineering	OE	3	0	0	3	40	60	100
5	18MEM05	Kinematics of Machinery	OE	3	0	0	3	40	60	100
6	18MEM06	Hydraulics and Pneumatics	OE	3	0	0	3	40	60	100
7	18MEM07	Design of Machine Elements	OE	3	0	0	3	40	60	100
8	18MEM08	Heat and Mass Transfer	OE	3	0	0	3	40	60	100
9	18MEM09	Metrology and Quality Control	OE	3	0	0	3	40	60	100

10.	18MEM10	Dynamics of Machinery	OE	3	0	0	3	40	60	100
		METALLURGICAL	ENGIN	EEIN	G					
1	18MTM101	Advanced Physical Metallurgy	OE	3	0	0	3	40	60	100
2	18MTM102	Thermodynamics and Kinetics in Metallurgy	OE	3	0	0	3	40	60	100
3	18MTM103	Mechanical Behaviour of Materials	OE	3	0	0	3	40	60	100
4	18MTM104	Rate Processes in Metallurgy	OE	3	0	0	3	40	60	100
5	18MTM105	Corrosion and Surface Engineering	OE	3	0	0	3	40	60	100
6	18MTM106	Materials Characterization	OE	3	0	0	3	40	60	100
7	18MTM107	Automotive, Aerospace and Defence Materials	OE	3	0	0	3	40	60	100

B.E. – CIVIL ENGINEERING - MINOR DEGREE

18CF	EM01	CONSTRUCTION MATERIAI	S	emeste	er		
PRE	REQUISI	TES	Category	OE	Cro	edit	3
NIL			Hours/Week	L	Т	Р	ТН
				3	0	0	3
Cour	rse Learni	ng Objectives		-			I
1	To study	the characteristics and Properties of Stones and Brick					
2	To impart	knowledge on Cement, Aggregate and Mortar					
3	To unders	stand the behaviour of concrete and seasoning timber					
4	To study	the Parts and types of flooring and roofing					
5	To study	carpentry, arches, lintels and finishing works.					
U	J nit I	STONES, BRICKS		9	0	0	9
Buildi work bricks	ing Stone – – tests on st s.	classification of rocks-characteristics of good building s ones - Bricks- manufacture of clay bricks -classification -	tone – deterioration tests on bricks- bricks	and pres for spec	ervatio ial use-	n of sto refracto	one ory
U	nit II	CEMENT, AGGREGATES, MOR	RTAR	9	0	0	9
Ceme charao constr	nt- compo cteristics an ruction.	sition- manufacturing process-wet and dry processes d function. Mortar- properties- uses- types of mortars- sel	Aggregates –coar ection of mortars for	se and various (fine ag Civil Er	ggregat 1gineeri	es- ng
U	nit III	CONCRETE, TIMBER AND OTHER M	IATERIALS	9	0	0	9
Concr	ete- ingredi	ents - principles of hardened concrete- Special concrete-	types.	G. 1 I	T	1.	с
Alum	er- characte	ristics- seasoning-preservation- Panels of laminates. Glassical structure in the season of the seaso	ass- properties- uses.	Steel- (Jses - 1	market	forms.
Paints	. Varnishes	and Distempers-types-properties.					
U	nit IV	FLOORING AND ROOFING	3	9	0	0	9
Comp of dar pitche	oonents of fl npness- effe ed roof - lea	loor- selection of flooring materials- suitability of floors f ect of dampness - requirements of good stairs - classificat n to roof-gable roof-hip roof-flat roof-RCC roof.	for various application ion of stairs -Roofs -	l ns. damp types of	proof o roofs- 1	course, equirer	causes nents -
U	nit V	CARPENTARY, ARCHES, LINTELS AN WORKS	D FINISHING	9	0	0	9
Locat: classif metho	Location of doors and windows - size of doors - types of doors - fixture and fastenings for doors and windows - arche classification - stability of an arch - lintels - classification of lintels - steel lintel. scaffolding - component parts - shoring methods of plastering - defects in plastering - pointing - objectives- methods of pointing						rches - oring -
	Total= 45 Periods						

Те	ext Books:
1	B.C. Punmia, Building Construction, Laxmi Publications; Eleventh edition -2021
2	S.C.Rangwala, Building Construction, Charotar Publishing House Pvt. Ltd, 34th Edition - 2022
3	P. Purushothama Raj., Building Construction Materials and Techniques, Pearson Education India, First Edition - 2017
Ref	erence Books:
1	Shetty M.S., Concrete Technology (Theory and Practice), S.Chand& Company Ltd., 2021.
2	Rangwala S.C., Engineering Materials (Material Science) revised and enlarged by Rangwala K.S. and Rangwala P.S., Charotar Publishing House, 2010.

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Identify and characterize and properties of Stone and brick	Remember			
CO2	Understand the manufacturing process of cement and functions of mortar	Understand			
CO3	Identify the age of timber and preservation methods of timber	Remember			
CO4	Differentiate the types of roofing and flooring	Understand			
CO5	Understand the miscellaneous works such as carpentry, lintels, Arch, etc.	Understand			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-
CO2	-	2	-	-	-	2	3	-	-	-	-	-	-	-	-
CO3	1	-	-	-	1	-	-	-	-	-	-	-	-	-	-
CO4	1	-	2	-	2	3	2	-	-	-	-	-	-	-	-
CO5	1	-	-	-	3	-	2	-	-	-	-	-	-	-	-
Avg	1	2	2	-	2	3	2	-	-	-	-	-	-	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18C	EM02	BUILDING CONSTRUCTION & EQUI	PMENT	S	emesto	er	
PRF	EREQUISI	TES	Category	OE	Cr	edit	3
NIL	,		Hours/Week	L	Т	Р	ТН
				3	0	0	3
Cou	rse Learni	ng Objectives				1	
1	Able to ga	in basic knowledge in construction methods.					
2	Able to ga	in basic knowledge in equipment.					
3	Able to ga	in basic knowledge in machineries.					
4	Able to ga	in basic knowledge in fire safety principles.					
5	Able to ga	in basic knowledge in green technology.					
		CLASSIFICATION OF BUILDINGS, FOUND	ATIONS AND	0	0	0	0
1	Unit I	TYPES OF MASONRY		,	U	U	,
Site level	investigatio ,Classificatio	n for foundation as per N.B.C, Types of foundation on of stone masonry DOORS, WINDOWS, LINTELS, SCAFFOL	n and prevention	of dan	npness	at bas	sement
τ	J nit II	STAIRCASES		9	0	0	9
Door	rs and windo ered. Lintels	ows – parts of door and window – Types of Door and w – Functions, Scaffolding – Purpose and types –Location of	vindows–Ventilators stairs.Types of stain	s – fixeo rs	l, swin	ging ty	pe and
τ	Init III	ROOFS, FLOORINGS, PROTECTIVE AND E FINISHES	DECORATIVE	9	0	0	9
Roof Type	Beams and es of floors-	Roof Slabs – Types of Roofing Systems – Methods of Terr Plastering (Interior and Exterior) – Pointing for Walls ar	nite Proofing – Metl 1d Floors using Gro	hods of 1 outs – W	Damp p hite W	proofing ashing,	g. Color
Wasl appli	ning with di cation.	fferent Color Shades available in the Markets – Painting	g – Types of Painti	ing for	Interior	and E	xterior
τ	J nit IV	CONSTRUCTION EQUIPMENT	S	9	0	0	9
Selec	ction of equ	ipment for earthwork excavation, drilling, blasting, tuni ial handling and erection of structures	nelling, erection an	d dewa	tering	and pu	mping,
l	U nit V	GREEN BUILDING TECHNOLO	GY	9	0	0	9
Intro and l	duction to gr imitations),	reen technology – types and importance; zero waste and r co green buildings, green engineering.	oncept, green materi	als – gre	en con	crete (p	ourpose
					Total	= 45 Po	eriods

r	
Те	ext Books:
1	Building Construction by S.C.Rangawala
2	Construction Technology by Sarkar Oxford University Press
3	Building Material & Construction by S.P. Arora& S. P. Bindra
Ref	erence Books:
1	Hopkinson And Kay J.D., The Lighting of Building, Faber and Faber, London.
2	Koerner, R.M, Construction & Geotechnical Methods in Foundations Engineering, McGraw Hill, 1984
3	Varna M., Construction Equipment and Its Planning & Applications, Metropolitan Books Co, 1979

Cour	se Outcomes:	Bloom's				
Upon completion of this course, the students will be able to:						
CO1	Organize the construction technique to be followed in brick and stone masonry, concreting, flooring, roofing and plastering etc.	Create				
CO2	Select safe practices in building construction activities	Evaluate				
CO3	Clarify the different types of roofs, floor and productive materials of buildings	understand				
CO4	Select the relevant equipment for building construction	Evaluate				
CO5	Apply the Principles of green building technology.	Apply				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	2	2	2	1	1	-	-	-	-	1
CO2	-	-	-	-	3	2	2	2	2	2	-	-	-	-	1
CO3	-	-	-	-	2	3	2	2	2	1	-	-	-	-	1
CO4	-	-	-	-	2	2	3	1	1	2	-	-	-	-	1
CO5	-	-	-	-	2	3	2	2	2	2	-	-	-	-	1
Avg	-	-	-	-	2.4	2.4	2.2	1.8	1.6	1.6	-	-	-	-	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CEM03 CONCRETE TECHNOLOGY Semes										
PRF	EREQUISI	TES	Category	OE	Cr	edit	3			
NIL	1			L	Т	Р	TH			
			Hours/ week	3	0	0	3			
Cou	rse Learni	ng Objectives	I		1		1			
1	To unders	tand the properties of ingredients of concrete.								
2	2 To study the behavior of concrete at its fresh and hardened state.									
3	3 To study about the concrete design mix.									
4	4 To know about the procedures in concrete at different stage.									
5	To unders	tand special concrete and their uses.								
1	Unit I	INTRODUCTION		9	0	0	9			
Conc	crete materia	ls, Cement: Field and laboratory tests on cement, Types o	f cement and their use	s, differer	it tests f	for aggr	egates.			
Meth	nods for man	ufacturing of cement- Wet and dry process. Hydration o	f cement, Bogue's co	mpound.						
τ	U nit II	ADMIXTURES		9	0	0	9			
Acce	elerating adu	nixtures, Retarding admixtures, water reducing admix	xtures, Air entraining	g admixtı	ures, co	oloring	agent,			
Plast	icizers. Batc	hing, Mixing, Transportation, placing of concrete, curing	g of Concrete							
τ	J nit III	MIX DESIGN		9	0	0	9			
Facto	ors influenci	ng mix proportion, Mix design by ACI method and I.S.	code method, Design	of high st	rength o	concrete	<u>.</u> 2.			
τ	J nit IV	BEHAVIOUR OF CONCRE	ТЕ	9	0	0	9			
Strer	igth of conc	rete, Shrinkage and temperature effects, creep of concre	ete, permeability of co	oncrete, d	urabilit	ty of co	ncrete,			
Corr	osion, Cause	s and effects, remedial measures, Thermal properties of	concrete, Micro crack	ting of co	ncrete.					
I	U nit V	SPECIAL CONCRETE		9	0	0	9			
Ligh	t-weight con	ncrete, Fibre reinforced concrete, Polymer modified c	oncrete, Ferro cemer	nt, Mass	concret	te, Rea	dy-mix			
conc	rete, Self-co	mpacting concrete, Quality control, Sampling and testing	g, Acceptance criteria							
					Total	= 45 P	eriods			

Те	Text Books:					
1	Neville A.M Properties of Concrete, Pearson publication, 2012.					
2	Shetty M.S Concrete technology, S.Chand and Company Ltd, New Delhi 2022.					
3	Santha Kumar A.R Concrete Technology, Oxford university Press, NewDelhi, 2022.					
4	Mehta K.P Concrete Technology, Chand & Co, NewDelhi, 2006.					
5	Robert RatayForensic Structural Engineering Handbook, McGraw Hill LLC, 2009					

Ref	erence Books:											
1	Indian Standard Recommended Guide lines for Concrete Mix Design, IS:10262 – 2019, Bureau of Indian Standards, NewDelhi.											
2	Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete IS:383-1970 R2011, Bureau of Indian Standards, NewDelhi.											
3	Gambhir.M.L,Concrete Technology, Volume I & II, Tata McGraw-HillBookCompany,Third print, 2003											
4	Krishna Raju N. Design of Concrete Mixes, CBS publishers. NewDelhi, 2002.											
5	Stephen E. Petty,Forensic Engineering: Damage Assessments for Residential and Commercial Structures,CRCpress,Taylor& Francis,2013.											

Cour Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To identify suitable materials to be used in the cement concrete by conducting various tests as per BIS code.	Evaluate
CO2	To know about the specific applications and uses of admixtures.	Understand
CO3	Design the concrete mix using ACI and BIS code methods.	Create
CO4	Determine the properties of fresh and hardened of concrete.	Evaluate
CO5	Design special concretes and to Ensure quality control while testing/ sampling and acceptance criteria for pre and post construction work.	Apply

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	3	-	1	1	1	2	1	1	1	-	1
CO2	-	-	-	-	3	-	3	-	1	1	-	-	2	-	1
CO3	-	-	-	-	3	-	3	-	-	1	-	-	1	-	1
CO4	-	-	-	-	3	2	1	-	-	-	-	-	-	-	1
CO5	-	-	-	-	3	3	3	1	1	3	1		3	-	1
Avg	-	-	-	-	3	2.5	2.2	1	1	1.75	1	1	1.75	-	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

180	18CEM04 ENVIRONMENTAL ENGINEERING Semester									
PR	EREQUISI	TES	Category	OE	Cr	edit	3			
NII	⊿			L	Т	Р	TH			
			Hours/ week	3	0	0	3			
Сог	urse Learni	ng Objectives								
1	To evaluate distribution	the sources of water and analyse its characteristics and pr network	ocesses in water trea	itment, e	xpress t	he anal	ysis of			
2	² To design sewer system, basic design of the biological treatment processes, gain knowledge on sludge treatment and its disposal									
3	To predict t	he sources, effects, dispersion of air pollutants air quality	management and its	control r	neasure	s				
4	⁴ To identify the characteristics and sources of municipal solid wastes, its collection methods, off-site processing of municipal solid wastes and its recovery, disposal methods									
5	⁵ To assess the sources, effects and control measures of noise pollution									
	Unit I	WATER TREATMENT		9	0	0	9			
Wat	er Quality an	d its Treatment: Basics of water quality standards - Phy	vsical, chemical and	biologic	al para	meters;	Water			
qual	lity index; Un	it processes and operations; Water requirement; Water dis	tribution system; Dr	inking w	ater tre	atment.				
	Unit II	WASTEWATER TREATMEN	Г	9	0	0	9			
Sew	verage system	design, quantity and quality of domestic wastewater, prin	mary and secondary	treatmen	nt. Efflu	ent dis	charge			
stan	dards; Sludge	e disposal; Reuse of treated sewage for different applicatio	ns.							
I	Unit III	AIR POLLUTION		9	0	0	9			
Air	Pollution: Ty	pes of pollutants, their sources and impacts, air pollution c	ontrol, air quality sta	andards,	Air qua	lity Ind	ex and			
limi	ts.									
1	Unit IV	SOLID WASTE MANAGEMEN	Τ	9	0	0	9			
Mur	nicipal Solid V	Wastes: Characteristics, generation, collection and transpor	tation of solid wastes	s, engine	ered sys	stems fo	or solid			
wast	te manageme	nt (reuse/ recycle, energy recovery, treatment and disposal).							
	Unit V	NOISE POLLUTION		9	0	0	9			
Nois	se pollution: S	Sources; Health effects; Standards; Measurement and cont	rol methods	1		1	1			
					Total	= 45 Pe	eriods			

Те	ext Books:
1	Garg, S.K. Water supply Engineering, Khanna Publishers, New Delhi, 2010.
2	Garg, S.K. Sewage water disposal and Air pollution, Khanna Publishers, New Delhi, 2010.
3	George Tchobanoglous et.al., Integrated Solid Waste Management, McGraw-Hill, Publishers, 1993.
4	Rao, C.S., Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.

Ref	erence Books:
1	Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi,
	2013.
2	Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, NewDelhi, 1985.
	Metcalf and Eddy, M.C., Wastewater Engineering – Treatment & Reuse, TataMcGraw-Hill Publications, New
3	Delhi,2003.

Cour	rsa Autoomos;	Bloom's				
Unon	secondation of this course, the students will be able to:	Taxonomy				
Opon	completion of this course, the students will be able to.	Mapped				
CO1	Identify the sources of water supply, analyze the characteristics of water with its standards and					
COI	various unit operations and processes in water treatment, express the analysis of distribution network	Remember				
CON	Expertise design sewer system, basic design of the biological treatment processes, gain knowledge	Analyze				
02	on sludge treatment and disposal and justify the methods for disposal of sewage					
CON	Predict the sources, effects, dispersion of air pollutants air quality management and its control	Apply				
COS	measures	· · pp· y				
	Aware about the characteristics, types and sources of municipal solid wastes, Learn the collection					
CO4	methods, Know about off-site processing of municipal solid wastes and its recovery, disposal	Remember				
	methods					
CO5	Understand the sources, effects and control methods of noise pollution	Understand				
200						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	1	3	2	1	3	2	1	1	2	1	1	3	-	2
CO2	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO3	2	1	3	1	1	3	1	-	1	2	2	1	3	-	2
CO4	2	1	3	1	1	3	1	-	-	2	2	1	3	-	2
CO5	2	-	3	-	-	3	-	-	-	2	1	1	3	-	2
Avg	2	1	3	1.3	1	3	1.3	1	1	2	1.6	1	3	-	2
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CF	EM05	BASICS OF TRANSPORTATION ENGIN	NEERING	S	emeste	er						
PRE	REQUISI	TES	Category	OE	Cre	edit	3					
NIL			TT / TT /	L	Т	P	TH					
			Hours/ week	3	0	0	3					
Cour	se Learni	ng Objectives			I							
1	1 The objective of the course is to educate the students on various components of highway engineering.											
2	2 To educate the geometric design concepts of highway engineering											
3	To develo	p skills on construction and maintenance of highway.										
4	4 Ability to plan various civil engineering aspects of railways and educate various components of railways											
5 The course enables the students to develop skill on evaluation and maintenance of railway track.												
U	Unit ICROSS SECTIONAL ELEMENTS OF HIGHWAYS900											
Eleme Sight Illumi	Elements- Right of Way, Carriage Way, Camber, Kerbs, Shoulders and Footpaths (IRC Standards), Sight Distances - Stopping Sight Distance (SSD), Overtaking Sight Distance (OSD), Sight Distance at Intersections, Intermediate Sight Distance and Illumination Sight Distance - Cross Sections of Different Class of Roads -											
U	nit II	GEOMETRIC DESIGN OF HIGHW	AYS	9	0	0	9					
Horizo Limiti Only)	ontal Align ing, Excepti	ments – Superelevation, Widening of Pavements on Ho onal and Minimum Gradients, Summit and Valley Curves	rizontal Curves, V -Geometric Design	ertical A of Hill F	lignme Roads (I	nts - R RC Sta	olling. ndards					
U	nit III	CONSTRUCTION AND MAINTENANCE O	F HIGHWAY	9	0	0	9					
Const and M	ruction of F Iaintenance	Flexible and Rigid Pavements – Defects in Flexible and R of Pavements.	igid Pavements -Hi	ghway D	rainage	e – Eval	luation					
U	nit IV	RAILWAY PLANNING AND DESI	IGN	9	0	0	9					
Perma Gauge Geom Trans	Permanent Way, its Components and Functions of Each Component: Rails - Types of Rails, Rail Fastenings, Concept of Gauges, Coning of Wheels, Creeps Sleepers - Functions, Materials, Density. Ballasts - Functions, Materials, Ballast less Tracks Geometric Design of Railway Tracks Gradients and Grade Compensation, Super-Elevation, Widening of Gauges in Curves, Transition Curves, Horizontal and Vertical Curves.											
T	nit V	RAILWAY TRACK CONSTRUCTION MAINT	TENANCE AND	0	0	0	0					
	mt v	9	U	U	9							
Points Stock	Points and Crossings – Turnouts, Track circuiting, Signaling, Interlocking, Lay Outs of Railway Stations and Yards, Rolling Stock, Tractive Power, Track Resistance, Level Crossings.											
	Total= 45 Periods											

Te	ext Books:
1	Khanna K., Justo C.E.G., Highway Engineering Revised 10th Edition Khanna Publishers, Roorkee, 2014
2	Kadiyalil. R, Engineering Traffic and Transport Planning, Khanna Publishers, New Delhi, 2019.
3	Chandola S.P. Transportation Engineering-2019

Ref	Reference Books:						
1	Sharma S.K., Principles Practice and Design of Highway Engineering, S. Chand & Co Ltd. New Delhi, 2006						
2	Guidelines Of Ministry of Road Transport and Highways, Government of India.						
3	Agarwal M.M., Indian Railway Track, 14th Edition, Prabha and Co., New Delhi, 2002.						
4	Saxena S.C. Highway & Traffic Engineering, 2014.						

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Classify roads as per Indian Road Congress and describe the principles of highway alignment	Understand			
CO2	Determine the highway geometric elements	Analyse			
CO3	Differentiate between types of pavements, their construction and design principles	Analyse			
CO4	Explain the functions of components of Railways	Understand			
CO5	Carry out the various methods for track alignment & procedure for construction of railway & maintenance of track	Apply			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
CO2	2	3	2	2	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	2	2	3	1	3	-	-	-	1	-	-
CO4	-	-	-	-	2	2	3	1	2	-	-	-	-	-	-
CO5	-	-	-	-	2	2	3	1	2	-	-	-	1	-	-
Avg	2	3	2	2	2	2	3	1	2.25	-	-	-	1	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CI	EM06	REPAIR AND REHABILITATION OF	REPAIR AND REHABILITATION OF STRUCTURES						
PRE	REQUISI	TES	Category	OE	Credit		3		
NIL			Hours/Week	L	Т	Р	TH		
				3	0	0	3		
Cour	se Learni	ng Objectives		1			1		
1	Study the	various types and properties of repair materials							
2	Learn var	ious distress and damages to concrete structures							
3	Understar	d the importance of maintenance of structures							
4	Assess the	e damage to structures using various tests							
5	Learn var	ious repair techniques of damaged structures, corroded	structures						
τ	J nit I	MAINTENANCE AND REPAIR ST	RATEGIES	9	0	0	9		
Maint	enance, rep	pair and rehabilitation, Facts of Maintenance, import	ance of Maintenance v	arious a	spects	of insp	ection,		
assess	sment proce	dure for evaluating a damaged structure, causes of dete	rioration.						
U	nit II	SERVICEABILITY AND DURABILITY	OF CONCRETE	9	0	0	9		
Quali	ty assuranc	e for concrete construction, concrete properties- stren	ngth, permeability, the	mal pro	perties	and cra	icking-		
effect	s due to cl	imate, temperature, chemical, corrosion- Design and	l construction errors-et	fects of	cover	thickne	ss and		
crack	ing.								
U	nit III	MATERIALS AND TECHNIQUES F	OR REPAIR	9	0	0	9		
Speci	al concretes	and mortar, concrete chemical, special elements for a	ccelerated strength gai	n, expan	sive cei	nent, p	olymer		
concr	ete, Sulphu	infiltrated concrete, ferro cement, fibre reinforced con-	crete, rust eliminators a	nd polym	ers coa	ting for	rebars		
during	g repair, foa	med concrete, mortar and dry pack, vacuum concrete, g	unite and shotcrete, epo	oxy injec	tion, m	ortar rej	pair for		
crack	s, shoring a	nd underpinning. Methods of corrosion protection, co	rrosion inhibitors, corre	osion res	istant s	teels, co	oatings		
and ca	athodic prot	ection.		T		1	T		
U	nit IV	REPAIRS, REHABILITATION AND RET STRUCTURES	9	0	0	9			
Streng	gthening of	Structural elements, deflection, cracking, chemical dist	ruption, weathering cor	rosion, w	ear, fir	e, leaka	ge and		
marin	e exposure.			-					
U	nit V	DEMOLITION TECHNIQU	JES	9	0	0	9		
Demo	Demolition methods by machines, explosives, Advanced techniques-Demolition sequences, dismantling techniques, safety								
preca	precautions in dismantling and demolition, Engineered demolition techniques for dilapidated structures- case studies								
					1 otal	= 45 P	eriods		

Те	ext Books:
1	Shetty, M.S, Concrete Technology- Theory and Practice, S. Chand and company, New Delhi,2019
2	Repair and protection of concrete structures by Noel P. Mailvaganam, CRC Press, 1991.
3	CPWD: Handbook on Repair & Rehabilitation of R.C.C. Buildings, CPWD, Govt. of India, 2002, updated reprint 2011

Ref	erence Books:
1	Santhakumar A.R, Training Course notes on Damage Assessment and Repair in Low-cost housing, "RHDC.NBO" Anna University, July 1992.
2	Raikar R.N.,Learning from failures- deficiencies in design, construction and services – R&D Centre (SDCPL), Raikar bhavan, Bombay,1987
3	Palaniyappan, N., Estate management, Anna Institute of Management, Chennai, 1992.
4	Lakshmipathy, M. etal., Lecture notes of workshop on Repairs and Rehabilitation of structures, 29-30 th October 1999.
5	https://nptel.ac.in/courses/114106035/38

Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Demonstrate the condition of structures	Understand		
CO2	Inspect and evaluate the damaged structure	Analyze		
CO3	Implement the repairing techniques of a structure	Analyze		
CO4	Identify and Use different materials for repairing works	Apply		
CO5	Demonstrate the dismantling and demolishing structures	Apply		

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO2	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO3	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO4	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
CO5	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
Avg	1	-	2	2	2	2	3	2	-	-	-	1	2	-	-
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

18CE	EM07	GREEN BUILDING TECHNOLO	GREEN BUILDING TECHNOLOGY						
PRE	REQUISI	TES	Category	OE	E Cred		3		
NIII				L	Т	Р	TH		
INIL			Hours/Week	3	0	0	3		
Cour	se Learni	ng Objectives							
1	To Know	various aspects of green buildings							
2	To Learn	the principles of planning and orientation of buildings.							
3	To Relate	the construction of green building with prevailing energy	conservation policy a	ind regu	lations.				
4	To Know	and identify different green building construction material	s.						
5	To Learn	different rating systems and their criteria							
U	J nit I	INTRODUCTION TO GREEN BUI	LDING	9	0	0	9		
Introd	uction, Neo	cessity, Definition & concept of Green Building, Issues a	and strategies of Gre	en Bui	lding, F	Principl	es and		
Efficie	its of Gree ency. Indoo	en Building, Components/ features of Green Building, or Air Ouality.	Energy Efficiency,	water	efficiei	ncy, M	aterial		
U	nit II	SITE SELECTION AND PLANNI	NG	9	0	0	9		
Site se	election Sit	e selection strategies. Landscaping building form orienta	tion building envelo	ne and	fenestra	tion m	aterial		
and co	onstruction	techniques, roofs, walls, fenestration and shaded finishes, I	Environmental design	n (ED) s	trategie	es for bu	uilding		
constr	uction, Rai	nwater harvesting methods for roof & non-roof, reducir	ng landscape water o	lemand	by pro	per irri	gation		
systen	ns, recycle a	and reuse systems, Waste Management.				-			
Uı	nit III	ENERGY AND ENERGY CONSERV	VATION	9	0	0	9		
Introd	uction, Env	vironmental impact of building constructions, present scen	nario, Need of energ	y conse	rvation	, Conce	epts of		
emboo	died energy	,							
operat	tional energ	y and life cycle energy, Methods to reduce operational energy	gy, Energy efficient b	uilding,	zero oz	zone dej	pleting		
potent	tial (ODP) r	naterials, wind and solar energy harvesting, energy meterin	ng and monitoring, co	oncept o	f net ze	ro buile	lings.		
Uı	nit IV	BUILDING MATERIALS		9	0	0	9		
Green	building n	naterials and products- Bamboo, Rice husk ash concrete,	plastic bricks, Baga	sse part	icle bo	ard, Ins	sulated		
concre	ete forms. u	use of materials with recycled content such as blended cer	nents, pozzolana cen	nents, fl	yash br	icks, vi	trified		
tiles, r	naterials fro	om agro and industrial waste, reuse of waste material-Plastic	c, rubber, Newspaper	wood,	Nontox	ic paint	, green		
U	Unit V RATING SYSTEM 9 0 0								
Introd	uction to Le	eadership in Energy and Environmental Design (LEED) crit	eria, Indian Green Bu	ilding c	ouncil ((IGBC)	Green		
rating	rating, Green Rating for Integrated Habitat Assessment. (GRIHA) criteria, National Productivity council (NPC) Ministry of								
New a	New and Renewable Energy (MNRE) Bureau of Energy efficiency (BEE) -BER (Building Energy Rating) – Certificates.								
					Total=	= 45 Pe	eriods		

Te	xt Books:
4	Kibert, C.J., Sustainable construction: Green Building design and Delivery, John Wiley Hobouken, NewJersey, 3rd
1	Edition, 2012.
2	Chauhan, D S Sreevasthava, S K., Non-conventional Energy Resources, New Age International Publishers, NewDelhi,
	4 th Edition, 2021

Ref	Reference Books:						
1	O.P. Gupta, Energy Technology, Khanna Publishing House, NewDelhi						
2	Jagadeesh, K S, Reddy Venkatta Rama &Nanjunda Rao, K S., Alternative Building Materials and Technologies, New Age International Publishers, Delhi.						
3	Sam Kubba., Handbook of Green Building Design and Construction, Butterworth- Heinemann.						
4	Means R S, Green Building - Project Planning and Cost Estimating, John Wiley &Sons						
5	Sharma K V, Venkataseshaiah P., Energy Management and Conservation, IK International.						

Course Outcomes:			
Upon completion of this course, the students will be able to:			
CO1	Understand the concepts of Green Building	Understand	
CO2	Discuss the Planning of Green Building.	Understand	
CO3	Explain the concept of Energy and Energy Conservation.	Understand	
CO4	Select appropriate green building material and technique.	Understand	
CO5	Summarize the Green Building Functions in various organizations.	Understand	

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	1	-	2	3	-	-	-	2	1	2	-	-
CO2	1	1	1	2	1	-	-	-	-	-	-	-	2	-	-
CO3	-	1	3	-	2	-	-	-	-	-	-	-	2	-	-
CO4	-	1	2	-	3	-	-	-	-	-	2	-	2	-	-
CO5	1	1	2	3	2	-	-	-	-	-	2	-	2	-	-
Avg	1	1	2	2	2	2	3	-	-	-	2	1	2	-	-
3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)															

B.E. – COMPUTER SCIENCE ENGINEERING - MINOR DEGREE

18CS	SM01	PROGRAMMING IN C++					
PRER	EQUIS	ITES	Category	OE	3		
				L	Т	Р	ТН
			Hours/Week	3	0	3	
Cours	e Learn	ing Objectives					
1	To und	erstand and develop the object oriented programming concepts	s.				
2	To fam	iliarize and design the template functions and classes					
3	To diss	eminate and apply exception handling mechanisms.					
4	To lear	n and exploit stream classes.					
Un	it I	INTRODUCTION		9	0	0	9
Proced program Operate	Procedure oriented programming paradigm - Object oriented programming paradigm - Basic concepts of object oriented programming, benefits of OOP, application of OOP - C++ fundamentals –structure of C++ program, tokens, data types - Operators and expressions - Control structures - Functions.						
Un	it II	INHERITANCE AND VIRTUAL FUNCT	TIONS	9	0	0	9
Classes overloa	s and ob ding usir	jects - friend functions- constructors and destructors- Open ng member function and friend function - Type conversions.	erator overloading	– bina	ry and	unary o	operator
Uni	t III	INHERITANCE AND VIRTUAL FUNCT	TIONS	9	0	0	9
Inherita pointer	ance – de s to objec	fining derived classes, types, virtual base classes, abstract clas cts, this pointer, pointer to derived classes - Virtual functions.	sses, constructor in	derived	classes	- Pointe	ers-
Uni	t IV	TEMPLATES AND EXCEPTION HAND	LING	9	0	0	9
Generic Classes – class template, class templates with multiple parameters - Generic Functions - function templates, function templates with multiple parameters, member function templates - Exception handling – basics, exception handling mechanism, rethrowing an exception – Exception handling options – understanding terminate() and unexpected() – the uncaught exception() function – bad exception().							
Un	it V	CONSOLE I/O AND FILE HANDLING		9	0	0	9
C++ S operati	tream Cl on, openi	asses – unformatted I/O operations, formatted console I/O ng and closing a file, detecting end of file, files modes, sequer	operations, manip ntial file operations	ulators , randoi	- Files- n file op	classes perations	for file s.
	Total (45 L) =45 Periods						

Text Books:					
1	E. Balagurusamy "Object – Oriented Programming with C++" Sixth Edition Tata McGraw-Hill				
Reference Books:					
1	Herbert Schildt, "The Complete Reference C++", Fifth Edition, Tata McGraw Hill				
2	Bjarne Stroustrup, "The C++ programming language", Fourth Edition Addison Wesley				
3	K.R.Venugopal, Rajkumar Buyya, T.Ravishankar, Mastering in C++, Second Edition, Tata McGraw Hill				

Cours Upon	Bloom's Taxonomy Level	
CO1	Build the object oriented programming concepts.	Apply
CO2	Familiarize and build the template functions and classes	Understand
CO3	Disseminate and apply exception handling mechanisms.	Apply
CO4	Depict and exploit steam classes.	Understand

180	CSM02	ADVANCED DATA STRUCTURES AND AL	GORITHMS				
PRE	REQUIS	ITES	Category	OE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cou	rse Learn	ing Objectives					
1	To und	erstand the concepts of ADTs					
2	To Lea	rn linear data structures – lists, stacks, and queues					
3	To have	e knowledge about non-linear data structures like trees and gra	aphs				
4	To und	erstand concepts about searching and sorting and hashing tech	iniques				
U	Init I	LINEAR DATA STRUCTURES – LIS	ST	9	0	0	9
Abstr Circu Delet	act Data T larly Linke ion, Merge	ypes (ADTs) – List ADT - Array based Implementation - Lined Lists - Doubly-Linked Lists - Applications of Lists – Polye, Traversal).	nked List Implemer nomial Manipulati	ntation - on – A	– Singly ll opera	Linked Linked	l Lists - isertion,
U	nit II	LINEAR DATA STRUCTURES –STACKS AN	D QUEUES	9	0	0	9
Stack - Que	ADT - Op ue ADT -	verations - Applications of Stacks - Evaluating Arithmetic Exp Operations - Circular Queue - DeQueue - Applications of Que	ression - Conversio eue	n of inf	ix to po	stfix Exp	pression
U	nit III	NON LINEAR DATA STRUCTURES – T	REES	9	0	0	9
Threa Min I	ADI – Tre ided Binary Heap - App	y Trees - AVL Trees – B-Tree – Heaps - Operations of Heaps - plications of Heap.	- Priority Queues -	nary Se Binary	arch Tr Heap - I	ee ADT Max Hea	 ap -
U	nit IV	NON LINEAR DATA STRUCTURES – GI	RAPHS	9	0	0	9
Defin Appli Krusł	ition – Rep cation of C cal's Algor	presentation of Graphs –Types of Graphs - Graph Traversals - Graph Structures: Shortest Path Problem: Dijkstra's Algorithm ithms	Breadth First Searc - Minimum Spann	ch - Dej ing Tre	pth Firs es: Prin	t Search n's Algo	- rithm -
U	nit V	SEARCHING, SORTING AND HASHING TE	CHNIQUES	9	0	0	9
Searc Sort - Hashi	hing: Line · Merge So ing.	ar Search - Binary Search - Sorting Algorithms - Insertion Sort ort - Radix Sort - Hashing: Hash Functions – Separate Chain	t - Selection Sort - S ing – Open Addres	Shell So sing – I	rt - Bub Rehashi	ble Sort ng – Ex	- Quick tendible
				Tota	al (45 L	L) =45 I	Periods
	(D 1						
Te	ext Books	White "Dete Structures and Alexanthing Anglesis in C." 4/	Далина Б. ф ф ф	- 2012			
	Mark Allei	n Weiss, "Data Structures and Algorithm Analysis in C", 4/E	Pearson Education	n, 2013.			
Ref	erence B	ooks:					
1	Seymour I Pvt. Ltd., 2	Lipschutz, "Data Structures With C ",(Schaum's Outline Ser 2015	ries) Published by	Tata N	IcGraw	-Hill Ed	ucation
2	Ellis Horo	witz, Sartaj Sahni, Dinesh Mehta, "Fundamentals of Data Stru	ctures In C", Secor	nd Editi	on, Silio	con Pres	s, 2008.
3	Richard F. Learning F	Gilberg & Behrouz A.Forouzan, "Data Structures: A Pseudo c Publishers,2005.	code Approach With	h C", So	econd E	dition, C	Cengage
4	Classic Da	ta Structures", Second Edition by Debasis Samanta, PHI Lear	ning, 2009.				

Cours Upon	Bloom's Taxonomy Level	
CO1	Implement various abstract data types to solve real time problems by using Linear Data Structures	Apply
CO2	Apply the different Non-Linear Data Structures to solve problems	Apply
CO3	Analyze and implement graph data structures to solve various computing problems.	Analyze
CO4	Critically analyze the various sorting and searching algorithms	Analyze

18CSM03	COMPUTER ORGANIZATION AND D	ESIGN					
PREREQUIS	ITES	Category	OE Credit 3				
			L	ТН			
		Hours/Week	3	0	0	3	
Course Learn	ing Objectives				1	1	
1 To und	erstand the basic structure and operations of digital computer						
2 To lear	n the working of different arithmetic operations						
3 To und	erstand the different types of control and the concept of pipelin	ing					
4 To stud	y the hierarchical memory system including cache memory and	d virtual memory					
5 To und	erstand the different ways of communication with I/O devices a	and standard I/O ir	nterface	8			
UNIT I	INTRODUCTION		9	0	0	9	
Functional units and Instruction	,Basic Operational Concepts, Bus Structure ,Memory Locatior Sequencing, Addressing modes.	ns and Addresses, I	Memory	Operati	ons, Ins	truction	
UNIT II	ARITHMETIC UNIT		9	0	0	9	
Addition and Su Multiplication, 1	btraction of Signed Numbers, Design of Fast Adders, Multiplic Integer Division, Floating point number operations.	ation of Positive N	lumbers	, Booth	Algorith	nm, Fast	
UNIT III	PROCESSOR UNIT AND PIPELININ	IG	9	0	0	9	
Fundamental Co Basic Concepts	oncepts, Execution of Instruction, Multi Bus Organization, Har of pipelining, Data Hazards, Instruction Hazards, Data path &	dwired control, M Control Considera	licro pro tions.	ogramm	ed cont	rol,	
UNIT IV	MEMORY SYSTEMS		9	0	0	9	
Basic Concepts, Management rec	Semiconductor RAM, ROM, Cache memory, Improving Cac quirements, Secondary Storage Device.	he Performance, V	/irtual r	nemory	,Memor	У	
UNIT V	VINPUT AND OUTPUT ORGANIZATION9009						
Accessing I/O of SCSI, USB).	levices, Programmed I/O, Interrupts, Direct Memory Access,	Interface circuits,	Standa	rd I/O 1	Interface	es (PCI,	
			Tota	l (45 L) =45 I	Periods	

Text	t Books:						
1	Carl Hamacher V., Zvonko G. Vranesic, Safwat G. Zaky, " Computer organization ", Tata McGraw Hill, 5th Edition, 200						
Refer	Reference Books:						
1	Patterson and Hennessey, "Computer Organization and Design ". The Hardware/Software interface, Harcourt Asia Morgan Kaufmann, 3rd Edition, 2007						
2	Hayes, "Computer Architecture and Organization ", 3rd edition, Tata McGraw Hill, 2006						
3	Heuring V.P., Jordan H.F., " Computer System Design and Architecture ", 6th edition ,Addison Wesley,2008						

Cours Upon	Bloom's Taxonomy Level	
CO1	Understand the working principles of computer componets	Understand
CO2	Design the arithmetic and processing units	Create
CO3	Analyze the various computer components	Analyze

\

18CS	SM04	ADVANCED OPERATING SYSTE	MS	Semester			
PRER	EQUIS	ITES	Category	OE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives			l		
1	To un	derstand the structure and functions of Operating systems					
2	To un	derstand the process concepts and scheduling algorithms					
3	To un	derstand the concept of process synchronization and deadlock	S				
4	To lea	rn various memory management schemes					
5	To illu	istrate various file systems and disk management strategies					
UNIT	ΓI	INTRODUCTION AND OPERATING SYSTEM S	STRUCTURES	9	0	0	9
Main fr Hand h Prograr	rame Sys neld Syste ms, Syste	tems, Desktop Systems, Multiprocessor Systems, Distributed ems; Operating Systems Structures - System Components, C m Design and Implementation.	Systems, Clustered Operating System S	l Syster Services	ns, Real s, Syster	l Time s n calls,	ystems, System
UNIT	ΓII	PROCESS MANAGEMENT		9	0	0	9
Process Commu Schedu	ses-Proce unication ling Algo	ss Concepts, Process Scheduling, Operation on Pro- ; Threads- Multithreading Models, Threading Issues; CPU prithms.	cesses, Co-Opera Scheduling-Basic	ting P. Concept	rocesses ts, Sche	s, Inter duling (Process Criteria,
UNI	ΓIII	PROCESS SYNCHRONIZATION AND DEA	DLOCKS	9	0	0	0
						U	9
Process Synchro Deadlo	s Synchr onization ck Avoid	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock.	Hardware, Sema s for handling De	phores, adlocks	Classic , Deadle	cal Prot	blem of vention,
Process Synchro Deadlo UNIT	s Synchr onization ck Avoid F IV	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL	Hardware, Sema s for handling Dea MEMORY	phores, adlocks	Classic , Deadlo 0	cal Protock Prev	y blem of vention, 9
Process Synchro Deadlo UNIT Memor paging;	s Synchr onization ck Avoid Γ IV ry Manag ; Virtual 1	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing.	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg	phores, adlocks 9 mentati	Classic , Deadlo 0 on, Seg	cal Protock Prev	9 olem of vention, 9 on with
Process Synchro Deadlo UNIT Memor paging; UNIT	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE	phores, adlocks. 9 mentati 9	Classic , Deadlo 0 on, Seg 0	al Prob ock Prev 0 mentation	9 olem of vention, 9 on with 9
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manago system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization a, Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc	Classic , Deadlo on, Seg on, Seg rotectio Metho ture; Ca	al Prob ock Prev 0 mentation 0 n; File ds, Free sse study	9 olem of vention, 9 on with 9 System e Space v: Linux
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization a, Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STF terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo on, Seg on, Seg o rotectio Metho ture; Ca al (45 L	val Probasility cal Probasility cal Probasility mentation 0 mentation 0 n; File ds, Free isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space v: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid Γ IV ry Manag ; Virtual 1 Γ V ystem Int nentation- ement; M	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In Iass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE ure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg 0 rotectio Metho ture; Ca al (45 L	val Probasility cal Probasility cal Probasility mentation 0 n; File ds, Free isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system.	s Synchr onization ck Avoid F IV ry Manag ; Virtual 1 F V ystem Inthentation- ement; M t Books	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk	Hardware, Sema s for handling Des MEMORY ation, Paging, Seg RUCTURE rure, File Sharing, nplementation, All Management, RAI	phores, adlocks 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg on, Seg rotectio Metho ture; Ca al (45 L	val Prob cal Prob cock Prev o mentation n; File ds, Free ise study .) =45 I	y olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system. Tex	s Synchr onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Inthentation- ement; M t Books Abrah	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory In lass-Storage Structure - Disk Structure, Disk scheduling, Disk : ham Silberschatz, P.B.Galvin, G.Gagne —Operating System C	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE ture, File Sharing, nplementation, All Management, RAI	phores, adlocks. 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo , Deadlo on, Seg on, Seg rotectio Metho ture; Ca hl (45 L	val Prob cal Prob pock Prev n 0 n; File ds, Free isse study 0) =45 H	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods
Process Synchro Deadlo UNIT Memor paging; UNIT File Sy Implem Manage system. Tex 1 Refer	s Synchr onization ck Avoid F IV y Manag ; Virtual 1 F V ystem Int nentation- ement; M t Books Abrah	onization- The Critical Section Problem, Synchronization , Monitors; Deadlocks- Deadlock Characterization, Method lance ,Deadlock Detection, Recovery from Deadlock. MEMORY MANAGEMENT AND VIRTUAL gement- Background, Swapping, Contiguous Memory Alloc Memory - Demand paging, Page Replacement, Thrashing. FILE SYSTEM AND MASS-STORAGE STR terface - File Concepts, Access methods, Directory Struct - File System Structure and Implementation, Directory Im lass-Storage Structure - Disk Structure, Disk scheduling, Disk : ham Silberschatz, P.B.Galvin, G.Gagne —Operating System C poks:	Hardware, Sema s for handling Dea MEMORY ation, Paging, Seg RUCTURE cure, File Sharing, nplementation, All Management, RAI	phores, adlocks. 9 mentati 9 File P ocation D Struc Tota	Classic , Deadlo on, Seg on, Seg rotectio Metho ture; Ca hl (45 L	val Prob cal Prob pock Prev n 0 n; File ds, Freed isse study 0 isse study 0	9 olem of vention, 9 on with 9 System e Space 7: Linux Periods

 1
 Andrew S. Tanenbaum, —Modern Operating Systems, PHI , 2nd edition, 2001

 2
 D.M.Dhamdhere, "Systems Programming and Operating Systems ", 2nd edition, Tata McGraw Hill Company, 1999.

3 Maurice J. Bach, —The Design of the Unix Operating System, 1st edition, PHI, 2004.

Cours Upon	Bloom's Taxonomy Level		
CO1	Identify the components and their functionalities in the operating system	Apply	
CO2	Apply various CPU scheduling algorithms to solve problems	Apply	
CO3	Analyze the needs and applications of process synchronization and deadlocks	Analyze	
CO4	Apply the concepts of memory management including virtual memory and page replacement to the issues that occur in real time applications	Apply	
CO5	Solve issues related to file system implementation and disk management	Apply	

18CSM05		DATA COMMUNICATION AND COMPUTER NETWORKS		Semester					
PREREQUISITES Category				OE Credit		3			
					Т	Р	ТН		
			Hours/Week	3	0	0	3		
Cours	Course Learning Objectives								
1	To study the concepts of data communications and functions of different ISO/OSI reference architecture								
2	To understand the error detection and correction methods and also the types of LAN								
3	To stud	To study the concepts of subnetting and routing mechanisms							
4	To unde	To understand the different types of protocols and congestion control							
5	To stud	y the application protocols and network security							
UNI	ГΙ	DATA COMMUNICATIONS AND PHYSICA	AL LAYER	9	0	0	9		
Data Communication; Networks- Physical Structures (Types of Connections, Physical Topology), Categories of Networks, Interconnection of Networks: Internetwork; Protocols and Standards; Network Models-The OSI Model, Layers in the OSI Model, Addressing; Transmission media-Guided Media, Unguided Media.									
UNIT	ΓII	DATA LINK LAYER		9	0	0	9		
Introduction-Types of errors, Redundancy, Detection versus Correction, Modular Arithmetic; Block Coding-Error Detection and Correction (VRC,LRC,CRC, Checksum, Hamming Code);Data link Control- Flow Control (Stop- and-Wait, Sliding Window),Error Control (Automatic Repeat Request, Stop-and-wait ARQ, Sliding Window ARQ), HDLC; Local Area Networks-Ethernet, Token Bus, Token Ring, FDDI.									
UNI	ГШ	NETWORK LAYER		9	0	0	9		
Network Layer services-Packet Switching-Network Layer Performance-IPv4 addresses-IPv6 addressing- Subnetting-Bridges- Gateways- Routers-Routing Algorithm-Distance Vector Routing, Link State Routing.									
UNI	ГІ	TRANSPORT LAYER		9	0	0	9		
Duties of the Transport layer-User Datagram Protocol-Transmission Control Protocol- Congestion Control and Quality of Service-Congestion, Congestion Control, Quality of Service, Techniques to improve QoS, Integrated Services.									
UNI	ΓV	PRESENTATION LAYER AND APPLICATION I	LAYER	9	0	0	9		
Domain Name System - Domain Name Space, DNS in the Internet; Electronic Mail-FTP- HTTP- World Wide Web.									
Total (45 L) =45 Periods									
Tex	t Books	•							
1 Behrouz A.Ferouzan, "Data Communications and Networking", 4th Edition, Tata McGraw-Hill, 2007.									
Refe	rence B	ooks:							
Andrew S. Tanenbaum, "Computer networks "PHI, 4 th edition 2008									

2	William Stallings," Data and computer communications", 10th edition, PHI, 2012

3 Douglas E. comer," Internetworking with TCP/IP-Volume-I", 6th edition,PHI, 2008

Cours	Bloom's Taxonomy Level					
Upon						
CO1	Classify the fundamentals of data communications and functions of layered architecture	Understand				
CO2	Apply the error detection and correction methods and also identify the different network technologies	Apply				
CO3	Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and routing technologies	Analyze				
CO4	Illustrate the transport layer principles and reliable data transfer using protocols	Apply				
CO5	Analyze the application layer protocols and also the use of network security	Analyze				
18CSM06	PROGRAMMING ESSENTIALS IN PY	THON	Semester			
-------------------------------------	--	--------------------------------------	-----------	----------	-----------	----------
PREREQUIS	ITES	Category	OE Credit		3	
			L	Т	Р	ТН
	Hours/Week 3		3	0	0	3
Course Learn	ing Objectives					
1 To lear	n Python data structures, conditional and control structures and	d files				
2 To stud	y Python Modules, packages, Functions and Exceptions.					
3 To des	cribe Object oriented programming features and Regular Expre	essions.				
4 To lear	n about Web programming, GUI Programming and Database	programming				
UNIT I	INTRODUCTION		9	0	0	9
Python: Feature else statement-e	s - The Basics-Python Objects-Numbers-Sequences-Mapping a lif-Conditional Expressions-while statement-for statement-bre	and set types- Cond eak-continue.	itionals	and loc	ps-if sta	itement-
UNIT II	FUNCTIONS, MODULES AND PACKA	GES	9	0	0	9
Functions-Calli scope-Recursion	ng functions-Creating functions-Passing Functions-Formal n, Modules-Packages.	Arguments-Variab	ole leng	gth arg	uments-	variable
UNIT III	UNIT III FILES AND EXCEPTIONS 9 0 0		9			
Files and Input/ Exceptions-Ass	Output –Errors and Exceptions-Introduction-Detecting and herrions-Standard Exceptions.	andling Exceptions	-Conte	t Mana	gement-	Raising
UNIT IV	OBJECT ORIENTED PROGRAMMING AND EXPRESSIONS	REGULAR	9	0	0	9
Object Oriente	ed Programming Introduction-Classes-class Attributes-Insta	inces-Instances att	ributes-	Buildin	g and	Method
Invocation-Stat	c methods and class Methods-Inheritance-Operator overloadir	ig - Regular Expres	sions-N	etwork	Program	nmıng –
			9	0	0	9
			,	v	Ŭ	,
GUI Programm	ing- Web Programming-Database Programming					
			Tota	al (45 L) =45 I	Periods

Text	Text Books:			
1	Wesley J.Chun-"Core Python Programming" – Prentice Hall, Second Edition, 2006.			
Refer	Reference Books:			
1	Swaroop C N, "A Byte of Python ", ebshelf Inc., 1st Edition, 2013			
2	"A Practical Introduction to python programming", Brian Heinold, Mount St. Mary's University, 2012			
3	Learning to Program with Python," Richard L. Halterman"., Southern Adventist University			

Cours Upon	Bloom's Taxonomy Level	
CO1	Develop programs using control structures and files.	Create
CO2	Create own Python Modules, packages, functions and Exceptions.	Create
CO3	Illustrate Object oriented Programming features and Regular Expressions.	Apply
CO4	Create own Web programs, GUI and database programs.	Create

22CS	SM07 ADVANCED DATABASE SYSTEM CONCEPTS Semester						
PRER	EQUIS	ITES	Category	OE Credit		3	
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To unde	erstand the fundamentals of data models, SQL queries and rela	ational databases				
2	To mak	e a study of database design using ER Diagram and normalize	9				
3	To impa	art knowledge in transaction processing.					
4	To mak	e the students to understand the file operations and indexing					
5	To fami	liarize the students with advanced databases					
UNI	ГІ	RELATIONAL DATABASES		9	0	0	9
Purpose – Relat SOL.	e of Datal ional Mo	pase System – Views of data – Data Models – Database System del – Keys – Relational Algebra – SQL fundamentals – Adv	Architecture – Intr anced SQL feature	oductions – Emi	n to rela bedded	tional da SQL– D	tabases ynamic
ÙNI	ÙNIT II DATABASE DESIGN 9 0 9					9	
Entity-	Relations	hip model – E-R Diagrams – Enhanced-ER Model – ER-to-	Relational Mapping	g – Fun	ctional]	Depende	encies – Multi
valued	Depender	ncies and Fourth Normal Form – Join Dependencies and Fifth	n Normal Form.		noma		- Wulu-
UNI	r III	TRANSACTION		9	0	0	9
Transac Protoco	ction Con ols – Two rency and	cepts – ACID Properties – Schedules – Serializability – Concu Phase Locking – Deadlock – Transaction Recovery – Sav	rrency Control – N ve Points – Isolatio	eed for on Leve	Concurr ls – SQ	rency – I L Facili	Locking ities for
UNI	ΓΙ	IMPLEMENTATION TECHNIQUE	S	9	0	0	9
RAID - B tree operation	RAID – File Organization – Organization of Records in Files – Indexing and Hashing –Ordered Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing – Query Processing Overview – Algorithms for SELECT and JOIN operations – Query optimization using Heuristics and Cost Estimation.						
UNI	ΓV	ADVANCED TOPICS		9	0	0	9
Distributed Databases: Architecture, Data Storage, Transaction Processing – Object-based Databases: Object Database Concepts, Object-Relational features, ODMG Object Model, ODL, OQL – XML Databases: XML Hierarchical Model, DTD, XML Schema, XQuery – Data Warehousing and Data Mining - information Retrieval: IR Concepts, Retrieval Models, Queries in IR systems.							
	Total (45 L) =45 Periods						

Text	t Books:
1	Abraham Silberschatz, Henry F.Korth and S.Sundarshan "Database System Concepts", Sixth Edition, Tata McGraw Hi 2011.
Refer	rence Books:
1	Ramez Elamassri and Shankant B-Navathe, "Fundamentals of Database Systems", Sixth Edition, Pearson Education, 2011.
2	C.J. Date, "An Introduction to Database Systems", Eighth Edition, Pearson Education Delhi, 2008.
3	Raghu Ramakrishnan, —Database Management Systems, Fourth Edition, McGraw-Hill CollegePublications, 2015.
4	G.K.Gupta,"Database Management Systems", Tata McGraw Hill, 2011.
E-Ref	erences:
1.	Lecture Series on Database Management System by Dr.S.Srinath, IIIT Bangalore, nptl

Cours Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the basic concepts of the database and data models.	Understand
CO2	Design a database using ER diagrams and map ER into Relations and normalize the relations.	Create
CO3	Develop a simple database for applications	Create

18CS	SM08	VIRTUALIZATION AND CLOUD COM	PUTING	Semester			
PRER	EQUIS	ITES	Category	OE Credit		3	
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To int	roduce the broad perceptive of Parallel Computing, Distributed	l Computing and C	Cloud C	omputii	ng.	
2	2 To understand the concept of Virtualization						
3	To ide	entify the approaches of SLA and programming model in Cloud	d				
4	To un	derstand the Cloud Platforms in Industry and Software Enviror	nments.				
5	To lea	rn to design the trusted Cloud Computing system					
UNI	ΓI	INTRODUCTION		9	0	0	9
Princip Compu Model,	les of Par tting; Vis Types of	rallel and Distributed Computing – Elements of Parallel and Dis ion of Cloud, Defining a Cloud, characteristics and benefits; G f Clouds, Open Challenges.	tributed Computin	g, Tech Archite	nologie cture- (s for Dis Cloud Re	tributed eference
UNI	TII	VIRTUALIZATION		9	0	0	9
Virtual Virtual Full Vi	ization, l ization a rtualizati	Programming Language-Level Virtualization, Application-Level Cloud computing, Pros and cons of Virtualization, Technologon.	vel Virtualization ogy examples-Xen	,Other	types of virtualiz	f Virtua ation, V	lization, Mware:
UNIT III SLA MANAGEMENT IN CLOUD COMPUTING AND 9 PROGRAMMING MODEL 9		9	0	0	9		
Traditio Compu	onal App ting - Te	roaches to SLA Management, Types of SLA, Life Cycle of S chnologies for Data Intensive Computing, MapReduce Program	LA, SLA Manage nming Model.	ment ir	Cloud	; Data Iı	ntensive
UNI	ΓΙ	CLOUD INDUSTRIAL PLATFORMS AND SO ENVIRONMENTS	OFTWARE	9	0	0	9
Cloud OpenN	Platform ebula; A	s in Industry - Amazon Web Service, Google App Engin neka Cloud Application Platform-Aneka Framework Overview	e; Cloud Softwar , Anatomy of Ane	e Envi ka Con	ronmen tainer.	ts –Euc	alyptus,
UNI	ΓV	CLOUD SECURITY AND APPLICATION	ONS	9	0	0	9
An Intr Securit Cons; (roduction y Risk, C Cloud Sci	to the Idea of Data Security, The Current State of Data Sec Cloud Computing and Identity; The Cloud, Digital Identity, and tentific Applications.	curity in the Cloud I Data Security, Co	d, Clou ontent L	d Comp .evel Se	outing an ecurity, F	nd Data Pros and
				Tota	al (45L) = 45 I	Periods
	t Books Raikum	: ar Buyya, Christian Vecchiola, S.Tamarai Selvi, 'Mastering	Cloud Computing	z-Found	lations	and Ap	olications
1	Program	ming", TMGH,2013.(Unit- I,II & IV)	companie			· · · PI	

2	RajKumar Buyya, James Broberg, Andrezei M.Goscinski, "Cloud Computing: Principles and paradigms",2011(Unit-III & V)
Refer	rence Books:
1	Kai Hwang.GeoffreyC.Fox.JackJ.Dongarra, "Distributed and Cloud Computing ,From Parallel Processing to The Internet of Things", 2012 Elsevier
2	Barrie Sosinsky, "Cloud Computing Bible", Wiley Publisher, 2011

Cours	Bloom's	
Upon	completion of this course, the students will be able to:	Taxonomy Level
CO1	Explain the main concepts and architecture of Parallel computing, Distributed Computing and Cloud Computing.	Understand
CO2	Analyze the concept of Virtualization	Analyze
CO3	Identify the approaches of SLA and programming model in Cloud	Apply
CO4	Analyze the Cloud Platforms in Industry and Software Environments.	Analyze
CO5	Identify the security issues in scientific and real time applications.	Apply

B.E. - ELECTRONICS AND COMMUNICATION ENGINEERING - MINOR DEGREE

18ECM01		ELECTRON DEVICES						
PREREQ	PREREQUISITES CATEGORY OE Credit 3							
			Hours/Week	L	Т	P	Т	H
				3	0	0		3
Course Ol	ojectives:		1	I	-1		1	
1. To int	roduce con	ponents such as diodes, BJTs and FETs, their charac	cteristics and applic	cations				
2. To uno	derstand, a	nalyse and design of simple diode and transistor circu	uits.					
3. To kno	ow the swit	ching characteristics of components and the conce	pt of rectifiers and	power suj	pplies			
Unit I	EXTRIN	SIC SEMICONDUCTOR AND PN JUCTIONS			9	0	0	9
N and P typ	be semicon	ductor and their energy band structures- Law of electr	rical neutrality-calc	ulation of	locatio	on of	Fer	mi
level and f	ree electron ntinuity equ	and hole densities in extrinsic semiconductors-Mo ation- Hall effect and its applications. Band structur	bility, drift current e of PN junction –	and cond	uctivity	y-dif ent ir	tusı 1 a I	on PN
junction- d	erivation o	f diode equation-temperature dependence of diode c	haracteristics and e	quivalent	model	s.		
Unit II	SWITCI	HING CHARACTERISTICS OF PN JUNTION A	AND SPECIAL D	IODES	9	0	0	9
Calculation	n of transi	tion and diffusion capacitance- varactor diode-ch	arge control descr	ription of	diode	-swi	tchi	ng
characteris	tics of diod	e- mechanism of avalanche and Zener breakdown-ten	mperature depende	nce of bre	akdow	n vol	tag	es-
Dackwalu		ening effect in thin barriers - tunner diode-photo diod		Jues.				
Unit III	BIPOLA	R JUNCTION TRANSISTORS			9	0	0	9
Construction	on of PNP	and NPN transistors- BJT current components-emi	tter to collector an	d base to	collec	tor c	urre	ent
switching t	imes- Phot	o translator.	characteristics- ED	ers-Moll	model	- trai	1515	tor
Unit IV	FIELD I	EFFECT TRANSISTORS			9	0	0	9
Construction	on and cha	racteristics of JFET-relation between pinch off volta letion types. CMOS circuits. MOS capacitance, BIC	age and drain curre MOS, SOI CMOS.	ent derivat	ion. M	OSF	ETS	S -
Unit V	RECTIF	IERS AND POWER SUPPLIES			9	0	0	9
Half-wave	, full-wave	and bridge rectifiers with resistive load. Analysis for	or Vdc and ripple v	oltage wit	h C, C	L, L-	C a	nd
C-L-C filters. Voltage multipliers Zener diode regulator. Electronically regulated d.c power supplies. Line regulation, output resistance and temperature coefficient.								
				Total (4	15L)= 4	45 Po	erio	ds
Text Book	s:							

1.	JaconMillman& Christos C. Halkias, "Electronic Devices and Circuits"	Tata McGraw-Hill, 1991.

2.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory 8 th edition.", PHI, 2002
Refer	ence Books:
1.	Donald A. Neaman. "Semiconductor Physics and Devices" 3rd Ed., Tata McGraw-Hill 2002
2.	S. Salivahanan, N. Suresh kumar and A. Vallavaraj, Electronic Devices and Circuits, TMH, 1998.
3.	Ben, G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, Pearson Education 2000
4.	Floyd, "Electronic Devices", Sixth edition, Pearson Education, 2003.
E-Re	ferences:
1.	https://archive.nptel.ac.in/courses/108/108/108108122/
2.	https://www.youtube.com/watch?v=qqQ8wO-lNmI
3.	https://slideplayer.com/slide/12438044/

Course	e Outcomes:	Bloom's
Upon o	completion of this course, the students will be able to:	Taxonomy Mapped
CO1	Interpret various applications of diode.	Applying
CO2	Classify various configurations and biasing technique of BJT	Applying
CO3	Apply the knowledge of using special devices for various applications	Understanding
CO4	Discuss operation, biasing and applications of JFET.	Analysing
CO5	Design power supplies and rectifiers	Applying

	COURSE ARTICULATION MATRIX S/POs PO PO														
COs/POs	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	2	1	-	I	-	-	-	I	-	-	-	2	-	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	-	2	2	1
CO5	2	2	1	-	-	-	-	-	-	-	-	-	3	2	2
Avg	2	2	1	-	-	-	-	-	-	-	-	-	2.2	2	1.5
			3/2/1 -	indica	ates str	rength	of cor	relatio	on (3-F	ligh,2- N	Mediun	n,1- Lo	w)		

18E0	CM02	DIGITAL ELECTRONICS								
PRE	REQU	JISITES	CATEGORY	OE	Crec	lit	3			
			Hours/Week	L	Т	Р	ТН			
			3							
Cour	rse Ob	jectives		•			•			
1	To in	troduce basic postulates of boolean algebra and show the con	relation between	expressio	ons					
2	To In	troduce the methods for Simplifying Boolean expressions								
3	To O	utline the formal procedures for the analysis and design of co	ombinational circu	uits and s	equenti	ial circ	uits			
4	To in	troduce the Concept of Memories and programmable logic d	evices							
5	To ill	ustrate the concept of synchronous and Asynchronous seque	ntial circuits							
Unit	Ι	NUMBER SYSTEMS AND LOGIC GATES			9	0 0	9			
Num - Bo Simp using	nber Sy olean olificat g gates	vstems - signed Binary numbers - Binary Arithmetic - Binary Algebra and Minimization Techniques - Canonical forms ions of Boolean expressions using Karnaugh map - LOGIC C	y codes -conversion s – Conversion b GATES - Impleme	on from o between entations	one cod canonic of Logi	e to ar cal for ic Fun	nother rms – ctions			
Unit	Π	COMBINATIONAL CIRCUITS			9	0 0	9			
Desig Dem	gn proo ultiple	cedure – Adders/Subtractor – Serial adder/ Subtractor - Paralle xer - encoder / decoder – code converters.	el adder/ Subtracto	or-BCD a	adder- l	Multip	lexer/			
Unit	III	SEQUENTIAL CIRCUITS			9	0 0	9			
Desig and M regis	gn Pro Mealy ters- U	cedure - Flip flops: SR, JK, T, D and JKMS – Triggering of – Counters: Asynchronous / Ripple counters – Synchronous Iniversal shift register.	Flip-flop - Reali counters – Modu	zation of Ilo n cour	flip flo nter. Re	ops – N egister	Aoore : shift			
Unit	IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS			9	0 0	9			
Desig assig Dyna	gn of t nment amic H	fundamental mode circuits – primitive state / flow table – . Problems in Asynchronous Circuits: Cycles – Races – Haz azards elimination	Minimization of ards. Design of H	primitive Iazard Fi	e state ee Circ	table cuits: S	–state Static,			
Unit	V	PLD AND MEMORY DEVICES			9	0 0	9			
Class Logic PAL	sificati c Arra and P	on of memories –RAM organization –ROM organization. F y (PLA) - Programmable Array Logic (PAL). Implementation LA.	Programmable Log on of combination	gic Devid al logic ι	ces: Pro using M	ogrami IUX, I	nable ROM,			
				Total (45 L) =	= 45 Pe	eriods			
Tex	t Bool	xs:								
1		M. Morris Mano, Digital Design, 4.ed., Pearson Education (Singapore) Pvt. L	td., New	Delhi,	2008				

2	R.P.Jain, Modern Digital Electronics, 4th edition, TMH, 2010.
Referen	ce Books:
1	S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 2 nd ed., Vikas Publishing House Pvt. Ltd, New Delhi, 2004
2	Charles H.Roth. "Fundamentals of Logic Design", Thomson Publication Company, 2003.
3	Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.
4	John F.Wakerly, Digital Design: Principles and practices, PHI, 2006
E-Refer	rence:
1	http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01

2	https://nptel.ac.in/courses/117105080/6
3	https://nptel.ac.in/courses/117105080/12

Course	Outcomos	D1
Course	Outcomes:	Bloom's
Upon co	npletion of this course, the students will be able to:	Taxonomy
-		Mapped
CO1	Minimize Boolean expressions and implement using logic gates	Applying
CO2	Design and analyse combinational logic circuits.	Analysing
CO3	Design and analyse synchronous and asynchronous sequential logic circuits	Analysing
CO4	Understand the concepts of memories and PLDs	Understanding
CO5	Implement circuits using memory and PLDs.	Applying

				С	OURSI	E ART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	РО	PO	PO4	РО	PO	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	2	3	2	-	-	-	-	2	1	-
CO2	3	3	2	2	3	3	2	1	1	-	-	-	3	2	-
CO3	2	2	3	3	2	1	2	1	1	-	-	-	2	2	-
CO4	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
CO5	2	1	2	1	3	2	1	2	-	-	-	-	3	2	-
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	1	-	-	-	2.4	1.6	-
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	Low)			

18EC	M03	ELECTRONIC CIRCUITS						
PREI	REQU	ISITES	CATEGORY	OE		Crec	lit	3
Elect	ron De	vices	Hours/Week	L		Т	Р	ТН
Elect			Hours/ Week	3		0	0	3
Cours	se Obj	ectives					•	
1	То ре	erform analysis on Small signal amplifiers and large sign	nal amplifiers.					
2	To gi	ve a comprehensive exposure to all types of discrete and	plifiers and oscillators	5.				
3	To ur	nderstand the various linear and non-linear applications	of op-amp					
Un	it I	MIDBAND ANALYSIS OF SMALL SIGNAL AM	IPLIFIERS		9	0	0	9
BJT – bias c Mid-t Miller imped emitte	Need ircuit a pand ar r's the lance u er coup	for biasing - Fixed bias circuit - Load line and quiescent as a constant current circuit. CE, CB and CC amplifiers halysis of various types of single stage amplifiers to of orem. Darlington connection using similar and Comp sing Darlington connection and bootstrapping. CS, CG led differential amplifier circuit. Differential gain - CMF	point. Different types s. Method of drawing btain gain - input imp plementary transistors and CD (FET) amplifie RR. Use of constant cur	of bias small-s edance Meth ers. Mu rrent ci	sing ci signal e and ods o ltistag rcuit t	rcuit equi outpu f inc ge am o imp	s. Us valer it im reasi plifie	e of Self at circuit. pedance. ng input ers-Basic c CMRR.
Uni	t II	LARGE SIGNAL AMPLIFIERS			9	0	0	9
Low I circui Calcu their r and tr power	requent t of FE lation relation ansforr outpu	ETS. Gain-bandwidth product of FETs. General express of overall upper and lower cut off frequencies of multist to cut off frequencies. Classification of amplifiers (Class mer-coupled power amplifiers. Class B complementary- t, efficiency and power dissipation. Crossover distortion ing capacity of transistors with and without heat sink. H	equivalent circuit of B sion for frequency resp tage amplifiers. Ampl ss A, B, AB, C&D), Eff symmetry, push-pull p n and methods of elim leat sink design.	onse (ifier rig ficienc ower a inating	of mu se tim y of cl mplifi it. Ca	equer ltistage ass A iers. (ilcula	ge an l sag A, RC Calcu tion	furvalent nplifiers. time and coupled lation of of actual
Unit	t III	OSCILLATORS			9	0	0	9
Feed stabi Osci Mille	back A lization llator - er and l	Amplifier: Block diagram - Gain with feedback - Barkhan n of amplitude - Analysis of Oscillator using Cascade Wien bridge Oscillator and Twin-T Oscillators - Ana Pierce oscillators - Frequency range of RC Oscillators -	usen Criterion - Mecha e connection of RC an lysis of LC Oscillator Electrical equivalent of	nism fond LC s: Colp circuit	or star filters oitts – of Cry	t of c s - R Hart vstal.	oscilla C ph ley -	ation and ase shift - Clapp -
Unit	t IV	TUNED AMPLIFIERS AND MULTIVIBRATOR	RS		9	0	0	9
Analy of Cla Bistat	vsis of s uss C tu ble Mu	single tuned and synchronously tuned amplifiers - Class and Amplifier- Collector coupled and Emitter coupled the vibrator - Triggering methods – Mono stable and A	C tuned amplifiers and Astable Multi vibrator Astable Blocking Osci	d their – Mon Illators	applic o stab using	ation ole M g Em	is - E ulti v itter a	fficiency ibrator – and base
Uni	t V	OPERATIONAL AMPLIFIERS AND ITS APPL	ICATIONS		9	0	0	9
Basic design Differ high p	structu n - DC rentiato bass, ba	are and principle of operation - Calculation of different and AC characteristics of OP-AMP. Applications: Invort or - Summing amplifier - Precision rectifier - Schmitt thand pass and band stop filters - Sine wave oscillators – C	ntial gain - Common I verting and non-invert rigger and its applicati Comparator – Multi vil	Mode g ing am ons - A orator. To	gain, (aplifie Active tal (4	CMR rs - l filte 5 L)	R - (integi rs: L = 45	DP-AMP rator and ow pass, Periods
Т	ext Bo	oks:						
		B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju	Pantulu, K.Bhaskara	Rama	Murt	hy, "	Elect	tronic
	2 I	D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits	s", New Age Internatio	onal Pv	t. Ltd.	, 201	1.	
R	eferen	ce Books:						
	1 I	Millman J. and Taub H., "Pulse Digital and Switching w	aveform", 3rd Edition,	, McGr	aw-H	ill In	terna	tional

1 Millma , 2011.

2	Sedera& Smith, "Micro Electronic Circuits", 4 th Edition, Oxford University Press, Chennai.
3	Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall of India, 1996.
4	K.R.Botkar, 'Integrated Circuits', 10th edition, Khanna Publishers, 2010.
e-Ref	ference:
1	http://nptel.ac.in/courses/117105080/40
2	http://nptel.ac.in/courses/117108038/1
3	https://freevideolectures.com/course/2915/linear-integrated-circuits

Cour Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To analyze small signal amplifiers and Large signal Amplifiers.	Applying
CO2	Analyze the frequency response characteristics of amplifiers	Applying
CO3	Develop insight of on oscillator design.	Applying
CO4	Construct and analyse tuned amplifiers and multivibrators.	Applying
CO5	Develop competence in linear and nonlinear Op amp circuit analysis.	Applying

					COU	RSE A	ARTIC	ULA	ΓΙΟΝ	MATRI	X				
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO2	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO5	1	2	1	2	-	-	-	-	-	-	-	-	1	2	1
Avg	2.4	2	1	2	-	-	-	-	-	-	-	-	1	2	1
		3	/2/1 -	indica	tes str	ength	of cor	relatio	n (3-H	ligh,2- N	/ledium	,1- Lo	w)		

DEDEC							
. NEKE(QUISI	ΓΕS	CATEGORY	OE	Cre	dit	
			Hours/Week	L	Т	P	T
				3	0	0	
Course C	bjecti	ves:			1		
I. To u	ndersta	nd and perform Fourier and Laplace analysis on signal	s and systems respec	ctively.			
2. To ar	alyse	the Discrete Fourier Transform, Fast Fourier Transform	n algorithms.				
3. To de	esign a	nd realize IIR, FIR filters.					
J nit I	INT	TRODUCTION TO SIGNALS AND SYSTEMS			9	0	0
Classifica	tion of	f Signals: Even and Odd Signal - Energy and power sig	gnals - Continuous ti	me (CT)	and Dis	scret	e tii
DT) sigr	als - (e – Ca	Continuous and Discrete amplitude signal System p usality – Stability - Realizability, - Linear Time-Invar	properties and represion in the second secon	sentation: Impulse	: lineari	ity - e an	Trr d st
esponse	– Conv	volution – Correlation - System representation through	differential equation	s and diff	ference	equa	tio
Unit II	AN	ALYSIS OF SIGNAL AND SYSTEMS			9	0	0
ntroducti	on to l	Fourier Transform, Fourier Series, Relating the Laplac	the Transform to Four	rier Tran	sform, 1	Freq	uen
esponse	of con	inuous time systems. Introduction to z- Transform.					
J nit III	DIS	CRETE FOURIER TRANSFORM			9	0	0
ntroduct	on to	DFT – Properties of DFT - Circular convolution -	FFT algorithms – F	Radix-2 I	FFT alg	orith	nms
Decimati	on in T	Time and Decimation in Frequency algorithms.				,01101	
T	INIT	ENTRE IMPLITOE DEGRANGE EN TER DEGLAN					
Jnit IV	INF	INITE IMPULSE RESPONSE FILTER DESIGN			9	U	0 2
Character	istics of	of Analog Butterworth filter - Chebyshev filter - Low p	bass filter, High pass	filter, Ba	and pass	s filt	er a
3and stop	o filter	- Transformation of analog filters in to equivalent digi	tal filters using bilin	ear trans	formati	on m	leth
Realizat	ion str	ucture for IIR filters-Direct form - Cascade form - Para	allel form.				
J nit V	FIN	IITE IMPULSE RESPONSE FILTER DESIGN			9	0	0
Linear pl Blackmar Direct for	nase re nn Win m stru	esponse of FIR filter - FIR design using window m dows - Park-McClellan's method - Realization structur cture - Comparison of FIR and IIR filters.	nethod: Rectangular, res for FIR filters - I	, Hammi Linear ph	ng, Ha ase stru	nnin cture	g a es a
				Total (4	45L)= 4	5 Pe	erio
Intercention Control of the procession							

Text	Books:
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.
2.	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", 4th Edition, Pearson Education, 2009.

Refer	rence Books:
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010.
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.
3.	Emmanuel C. Ifeacher, Barry W. Jervis, "Digital Signal Processing: A Practical Approach", 2nd Edition, Pearson Education, 2004.
4.	S.K. Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.
E-Re	ferences:
1.	http://nptel.ac.in/courses/117104074/
2.	https://www.coursera.org/learn/dsp
3.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/

Course	e Outcomes:	Bloom's
Upon c	completion of this course, the students will be able to:	Taxonomy
		Mapped
CO1	Analyse and understands different types of signals.	Analysing
CO2	Represent continuous signals and systems in time and frequency domain using different transforms.	Analysing
CO3	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.	Analysing
CO4	Design and realize IIR filters.	Applying
CO5	Design and realize FIR filters.	Applying

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	3	3	-	-	-	-	-	-	-	2	2	2
CO2	3	2	2	3	3	2	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	1	I	1	-	-	-	-	-	1	1	1
CO4	3	2	2	2	1	I	1	-	-	-	-	-	1	1	1
CO5	1	1	1	1	1	I	-	-	I	-	-	-	2	2	1
Avg	2.6	1.8	2	2.2	1.8	2	1						1.6	1.6	1.4
			3/2/1 -	indica	ates sti	ength	of cor	relatio	on (3-H	ligh,2- M	Mediun	n,1- Lo	ow)		

18ECM0	5 MICROPROCESSORS AND MICROCON											
PREREQ	UISITES	CATEGORY	OE	Crec	lit	3						
		Hound/Wook	L	Т	Р	TH						
		Hours/ week	3	0	0	3						
Course O												
1.	1. To familiarise with 8086 and 8051 architectures.											
2.	To interface 8086 microprocessor and 8051 microcontrollers with peripherals by programming.											
3.	To gain basic knowledge of PIC microcontrollers.											
Unit I	8086 MICROPROCESSOR ARCHITECTURE		9	0	9							
Overview	Address	sing 1	nodes-									
Instruction	Formats- Directives and Operators-Assembly process.											
Unit II	PROGRAMMING AND INTERFACING OF 8086		9	0	9							
Fundamen	tal I/O considerations- Programmed I/O- Interrupt I/O- Basic	e 8086 Configurations- N	Minimu	n Mode	e-Ma	ximum						
Mode-Sys	tem Bus timing- I/O Interfaces-Peripheral Interfacing usin	g 8255 PPI - 8279 Key	/board/I	Display	cont	roller -						
8251 USA	RT.											
Unit III	8051 ARCHITECTURE			9	0	9						
8051 archi	tecture - Registers in 8051 - Pin description - 8051 parallel	I/O ports - memory or	ganizati	on - Ins	struct	ion set						
— Addres	sing modes											
Unit IV	PROGRAMMING AND INTERFACING OF 8051			9	0	9						
Assembly	language programming.8051Timers - Serial Port Programm	ing - Interrupts Program	iming - l	LCD an	d Ke	yboard						
Interfacing	g - ADC, DAC and Sensor Interfacing - Motor Control.											
Unit V	PIC MICROCONTROLLERS			9	0	9						
Main char	acteristics of PIC microcontrollers - PIC microcontroller	families-Memory-Progr	am Mei	nory –	RAN	/I Data						
Memory -	Instruction set and timers in PIC			-								
			Total	(L+T) =	= 45 p	periods						
L												
r												
Text Rool	· · ·											

Text D	UOKS.										
1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.										
2	Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.McKinlay, "The 8051 Microcontroller and Embedded										
۷.	Systems using Assembly and C", 2e, 2022.										
Refere	nce Books:										
1	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded										
1.	Systems: Using Assembly and C", 2nd Edition, Pearson education, 2011.										
2.	Martin Bates,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier, 2011.										
3.	Mathur Sunil,"Microprocessor 8086: Architecture, Programming and Interfacing" PHI Learning Pvt. Ltd. 2011.										
4	Salvador PinillosGimenez," 8051 Microcontrollers Fundamental Concepts, Hardware, Software and										
4.	Applications in Electronics", Springer 2019.										
E-Refe	prences:										
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon 2020.										
2.	https://nptel.ac.in/courses/108105102										
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html										

Cour	rse Outcomes:	Bloom's Taxonomy			
Upor	a completion of this course, the students will be able to:	Mapped			
CO1	Describe and analyse the architecture of 8086 microprocessor and 8051 architectures.	Remembering			
CO2	Develop assembly language programs and Interface peripherals with 8086.	Applying			
CO3	Develop assembly language programs and Interface peripherals with 8051.	Applying			
CO4	Determine application specific circuit for real-time applications.	Understanding			
CO5	Associate appropriate PIC microcontroller for a given application.	Understanding			

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	-	-	-	-	-	-	-	-	2	-	1	-	-
CO2	2	2	2	2	-	-	-	I	1	-	-	-	2	2	-
CO3	2	2	2	2	-	-	-	1	1	-	-	-	2	2	-
CO4	2	2	2	2	-	-	-	-	-	-	-	-	2	2	2
CO5	2	2	-	2	-	-	-	-	-	-	-	-	2	2	-
Avg	2	2	2	2	-	-	-	-	-	-	2	-	1.8	2	2

18ECM06 ANALOG AND DIGITAL COMMUNICATION												
PRER	EQUISITE	S	CATEGORY	OE	Cre	dit	3					
			Hours/Week	L	Т	Р	TH					
				3	0	0	3					
Course Objectives:												
1.	. Understand analog and digital communication techniques.											
2.	Learn data	and pulse communication techniques.										
3.	Be familia	ized with source and Error control coding.										
Unit I	INF	DRMATION THEORY				9 0	09					
Uncert	Uncertainty, information and entropy - Source coding theorem - Shannon Fano coding - Huffman coding - Discrete											
memor	yless chann	els – Mutual information – Channel capacity – Channel	coding theorem.									
Unit I	I AN	ALOG COMMUNICATION				9 0	09					
Noise:	Source of N	oise – External Noise- Internal Noise- Noise Calculation	on. Introduction t	o Commu	nicatio	on Sy	stems:					
Modul	ation – Typ	es – Need for Modulation. Theory of Amplitude Mod	ulation – Evoluti	on and D	escript	ion o	f SSB					
Techni	ques – The	ory of Frequency and Phase Modulation – Comparisor	n of various Anal	og Comm	unicat	ion S	ystem					
(AM –	FM - PM).											
Unit I	I DI	GITAL COMMUNICATION			9	9 0	09					
Amplit	ude Shift K	eying (ASK) – Frequency Shift Keying (FSK) Minimu	ım Shift Keying (MSK) –P	hase S	hift K	Keying					
(PSK)	– BPSK –	QPSK – 8 PSK – 16 PSK – Quadrature Amplitude M	Modulation (QAN	$(1) - 8 Q_{1}$	АM –	16 Q	AM –					
Bandw	idth Efficie	ncy- Comparison of various Digital Communication Sy	vstem (ASK – FSI	K – PSK –	QAM).						
Unit I	V PL	LSE COMMUNICATION AND MULTIPLE ACC	ESS TECHNIQU	JES	9	9 0	09					
Pulse C	Communicat	ion: Pulse Amplitude Modulation (PAM) – Pulse Time	Modulation (PTN	M) – Pulse	code	Modu	ilation					
(PCM)	– Compari	son of various Pulse Communication System (PAM -	- PTM - PCM).	Multiple a	iccess	techn	iques:					
FDMA	FDMA, CDMA, TDMA, SDMA.											
Unit V	ER	ROR CONTROL CODING			9	9 0	09					
Linear	block code	s - Cyclic codes - Convolution codes - Maximum lik	kelihood decodin	g of conv	olution	nal co	odes –					
Sequer	ntial decodir	g of convolutional codes – Trellis codes – Applications	S.									
				Total (45L)=	45 P	eriods					

Text	Books:										
1.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2014.										
2.	J.G.Proakis, M.Salehi, -Fundamentals of Communication Systems, Pearson Education 2014.										
Refer	Reference Books:										
1.	B.P.Lathi, —Modern Digital and Analog Communication Systems ^I , 4th Edition, Oxford University Press, 2013.										
2.	D.Roody, J.Coolen, —Electronic Communications, 4th edition PHI 2015.										
3.	B.Sklar, —Digital Communications Fundamentals and Applications, 5th Edition Pearson Education 2017										
4.	H P Hsu, Schaum Outline Series - —Analog and Digital Communications TMH, 5th edition 2006										
E-Re	ferences:										
1.	https://onlinecourses.nptel.ac.in/noc21_ee74/preview										
2.	https://nptel.ac.in/courses/117101051										
3.	https://www.digimat.in/nptel/courses/video/117105143/L51.html										

Cours	se C	Outcomes:	Bloom's Taxonomy			
Upon	co	mpletion of this course, the students will be able to:	Mapped			
CO	:	Apply the concepts of Random Process to the design of Communication	Applying			
CO	:	Apply analog and digital communication techniques.	Applying			
CO	:	Understand the use of data and pulse communication techniques.	Understanding			
CO	:	Analyze Source and Error control coding.	Analysing			
CO	:	Design AM communication systems and Angle modulated communication	Applying			

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO1	PSO	PSO	PSO
POs										10	11	2	1	2	3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
			3/2/	/1 - ind	icates st	rength o	of corre	lation (3	3-High,2	2- Medi	um,1- L	.ow)			

18ECM07									
PREREQUISI	PREREQUISITES CATEGORY O								
		L	Т	P	TH				
			3	0	0	3			
Course Object	ives:			1	1 1				
1. Understand	the division of network functionalities into layers.								
2. Be familiar	with the components required to build different typ	pes of networks							
3. Be exposed	to the required functionality at each layer								
4. Learn the f	low control and congestion control algorithms								
Unit I FU	NDAMENTALS & LINK LAYER			9	0	0 9			
Overview of D Layering - OSI Addressing- Err	ata Communications- Networks – Building Netw Mode – Physical Layer – Overview of Data and Si or Detection and Correction	ork and its types– Overvio ignals - introduction to Dat	ew of In a Link L	ternet ayer -	- Pr Link	otocol a layer			
Unit II MI	EDIA ACCESS & INTERNETWORKING			9	0	09			
Overview of Da Bluetooth – Blu Address – Netw	ata link Control and Media access control - Ethern netooth Low Energy – WiFi – 6LowPAN–Zigbee - rork layer protocols (IP, ICMP, Mobile IP)	et (802.3) - Wireless LAN - Network layer services –	s – Avai Packet S	lable P Switchi	roto ng –	- IPV4			
Unit III RC	UTING			9	0	0 9			
Routing - Unica interdomain pro	st Routing – Algorithms – Protocols – Multicast R stocols – Overview of IPv6 Addressing – Transition	outing and its basics – Ove a from IPv4 to IPv6	erview of	Intrad	oma	in and			
Unit IV TR	ANSPORT LAYER			9	0	09			
Introduction to –Services – Fea avoidance (DEC	Transport layer –Protocols- User Datagram Protoco tures – TCP Connection – State Transition Diagram Cbit, RED) – QoS – Application requirements	bls (UDP) and Transmiision n – Flow, Error and Conges	n Control tion Con	Protoc	cols Cong	(TCP) gestion			
Unit V AP	Jnit V APPLICATION LAYER 9 0 0 9								
Application La (SMTP, POP3, – Firewalls.	Application Layer Paradigms – Client Server Programming – World Wide Web and HTTP - DNS- Electronic Mail (SMTP, POP3, IMAP, MIME) – Introduction to Peer to Peer Networks – Need forCryptography and Network Security – Firewalls.								
			Total (45L)= 45 Periods						

Text Books: 1.

Behrouz A Forouzan, Data Communications and Networking, 4th Edition, 2020

2	James F. Kurose, Keith W. Ross, Computer Networking - A Top-Down Approach Featuring the Intern	et,
۷.	Seventh Edition, Pearson Education, 2016.	

Refer	ence Books:
1.	Nader. F. Mir," Computer and Communication Networks", Pearson Prentice Hall Publishers, 2nd Edition, 2014.
2.	Alberto Leon-Garcia, IndraWidjajaCommunication Networks 2nd Edition McGraw-Hill Education, 2003
3.	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill
	Publisher, 2011.
4.	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan
	Kaufmann Publishers, 2011.
E-Re	ferences:
1.	https://onlinecourses.nptel.ac.in/noc22_ee61/preview
2.	https://www.ee.iitb.ac.in/~sarva/courses/EE706/2012/EE706LecNotes.pdf
3.	http://www.cs.kent.edu/~farrell/net01/lectures/

Course Upon o	e Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the basic concept in modern data communication and different level of layers in the protocol	Understanding
CO2	Analyse the functions and services of data link layer	Analysing
CO3	Categorize the functions and services of network layer	Understanding
CO4	Examine the basic functions of transport layer and congestion in networks	Understanding
CO5	Analyse the concepts of various network applications and data security	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO5	PO	PSO1	PSO2	PSO3						
	1	2	3	4		6	7	8	9	10	11	12			
CO1	2	1	1	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	1	2	-	1	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	-	-	-	-	-	-	-	-	-	3	1	2
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	-	2
CO5	2	1	1	-	1	-	-	-	-	-	-	-	1	1	1
Avg	2.2	1.2	1.2	-	1.25	-	-	-	-	-	-	-	2	1	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E	CM08	INTERNET OF THINGS						
PRI	EREQUIS	ITES	CATEGORY	OE	C	redit		3
		Hours(Weak						TH
			Hours/ week	3		0	0	3
Cou	ırse Objec	tives					1	
1	To under	stand Smart Objects and IoT Architectures						
2	To learn	about various IOT-related protocols						
3	To build	simple IoT Systems using Arduino and Raspberry I	Pi					
4	To under	stand data analytics and cloud in the context of IoT						
5	To develo	op IoT infrastructure for popular applications						
Ī	Unit I	FUNDAMENTALS OF IOT			9	0	0	9
Evo	lution of 1	nternet of Things - Enabling Technologies - Io	Γ Architectures: o	neM2N	И, ІоТ	Wo	orld I	Forum
(IoT	WF) and A	Alternative IoT models – Simplified IoT Architectu	re and Core IoT F	unction	al Sta	ck	Fog	Edge
and Sma	Cloud in I art Objects	of – Functional blocks of an Io1 ecosystem – Sen	sors, Actuators, Sr	nart Ot	ojects	and (Conn	ecting
I	Jnit II	IOT PROTOCOLS			9	0	0	9
IoT	Access T	echnologies: Physical and MAC layers, topology	y and Security of	IEEE	802.1	5.4,	802.	15.4g,
802	.15.4e, 190	1.2a, 802.11ah and LoRaWAN – Network Layer: I	P versions, Constra	ained N	lodes a	and C	Const	rained
Net	works – O	ptimizing IP for IoT: From 6LoWPAN to 6Lo, Ro	outing over Low P	ower a	nd Lo	ssy N	Vetwo	orks –
App and	MOTT	ansport Methods: Supervisory Control and Data Ac	equisition – Applic	ation L	ayer F	roto	cols:	COAP
U	nit III	DESIGN AND DEVELOPMENT			9	0	0	9
De	sign Meth	odology - Embedded computing logic - Microcont	roller, System on	Chips -	- IoT	syste	m bu	ilding
blo	ocks - Ardı	ino - Board details, IDE programming - Raspberry	y Pi - Interfaces an	nd Rasp	oberry	Pi w	vith F	ython
Pro	ogramming	Ţ.					-	
U	nit IV	DATA ANALYTICS AND SUPPORTING SE	ERVICES		9	0	0	9
Stru	ctured Vs	Unstructured Data and Data in Motion Vs Data in	n Rest – Role of M	Iachine	e Lear	ning	- No	SQL
Data	abases – H	Iadoop Ecosystem – Apache Kafka, Apache Spa	rk – Edge Stream	ning Ai	nalytic	s an	d Ne	twork
Ana Mar	Analytics – Alvely Cloud for IoT, Python Web Application Framework – Django – AWS for IoT – System Management with NETCONE-YANG							ystem
U	Jnit V	CASE STUDIES/INDUSTRIAL APPLICATI	ONS		9	0	0	9
Cisc	co IoT syst	em - IBM Watson IoT platform – Manufacturing -	Converged Plantw	vide Etl	hernet	Mod	lel (C	(PwE)
- Po	ower Utilit	y Industry - Grid Blocks Reference Model - Sma	rt and Connected	Cities:	Layer	red a	rchite	ecture,
Sma	art Lighting	g, Smart Parking Architecture and Smart Traffic Co	ontrol	T (1 (4 7 3	<u>, , , , , , , , , , , , , , , , , , , </u>	45 5	• 1
	Total (45 L) = 45 Periods							eriods

Text	Books:
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017
2	ArshdeepBahga, Vijay Madisetti, —Internet of Things – A hands-on approachl, Universities Press, 2015
Refe	rence Books:
1	Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things – Key applications and Protocols, Wiley, 2012 (for Unit 2).

2	Jan Ho ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.
3	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Thingsl, Springer, 2011.
4	Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011.
E-Re	eferences:
1	https://online.stanford.edu/courses/xee100-introduction-internet-things
2	https://www.udemy.com/topic/internet-of-things/
3	https://www.netacad.com/courses/iot

Course (Upon con	Bloom's Taxonomy Mapped	
CO1	Explain the concept of IoT.	Understanding
CO2	Analyze various protocols for IoT.	Applying
CO3	Design a PoC of an IoT system using Rasperry Pi/Arduino	Applying
CO4	Apply data analytics and use cloud offerings related to IoT.	Applying
CO5	Analyze applications of IoT in real time scenario	Analysing

	COURSE ARTICULATION MATRIX														
COs/PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

18E0	18ECM09 WIRELESS SENSORS AND NETWORKING									
PRER	EQUIS	ITE:	CATEGORY	OE	Cre	dit	3			
			Hours/Wook	L T P						
	Hours/ week 3									
Course		4:								
Course	e Objec	uves:								
1.	Learn	fundamental of Ad hoc network and architecture								
2.	Under	stand the MAC and routing protocols.								
3.	Have	an in-depth knowledge on QoS, security and sensor network	platforms							
Unit I		ROUTING PROTOCOLS			9	0	0 9			
Elemer	nts of A	d hoc Wireless Networks, Issues in Ad hoc wireless networks	, Example commer	cial applica	tions	of A	d hoc			
networ Classif	king, A	Ad hoc wireless Internet, Issues in Designing a Routing	Protocol for Ad	Hoc Wire	less]	Netw	orks,			
On–De	mand I	Routing protocols – Ad hoc On–Demand Distance Vector Rou	ting (AODV).	Distance			D V),			
Unit II	[ARCHITECTURES OF WSN			9	0	0 9			
WSN a	pplicat	on examples, Types of applications, Challenges for Wireless	Sensor Networks,	Enabling T	echno	ologi	es for			
Wirele Operat	ss Sens ing sys	or Networks, Single-Node Architecture: Hardware Compor ems and execution environments	ients, Energy Cons	umption of	Sens	or N	odes,			
Netwo	rk Arch	itecture: Sensor Network Scenarios Ontimization goals and	figures of merit T	Design prin	ciples	of V	VSN			
Service	e interfa	ces of WSNs, gateway concepts.	ingules of mont, L	esign prin	erpies	01	, DI (,			
Unit II	I	MAC PROTOCOLS AND ROUTING PROTOCOLS			9	0	0 9			
Image	compre	ssion: Predictive techniques – PCM – DPCM - DM - Transfor	m coding - Introduc	ction to JPH	EG - JI	PEG-	2000			
- JBIG Model	standa	rds - Study of EZW. Video compression: Video signal repre	sentation – ITU-T	Recommen	ndatio	n H.í	261 –			
H.263.	based	Journg The Will LO-1 Video Standard - The Will LO-2 Vide	o Standard: 11.202	- 110-1 K	cconn	nene	ation			
Unit I	V	QUALITY OF SERVICE AND ADVANCED APPLICA	ATION SUPPORT	I	9	0	0 9			
Quality	of Ser	vice: Coverage and deployment, Reliable data transport, Singl	le packet delivery, I	Block deliv	ery, C	longe	estion			
control	and ra	te control - Advanced application support: Advanced in-ne	etwork processing,	Security a	nd Ap	plica	ation-			
specific	c suppo	II.			-					
Unit V	VSENSOR NETWORK PLATFORMS AND TOOLS9090									
Sensor	Node	Hardware – Berkeley Motes, Programming Challenges, Nor	de-level software p	latforms –	Tiny	OS, 1	nesC,			
beyond	ikiOS, l indivi	lual nodes – State centric programming.	networks, COOJA	., 1058IM	, Pro	gram	ming			
				Total (45	L) = 4	45 Pe	riods			

Text	Books:
1.	C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education – 2008
2.	Holger Karl and Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2007.
Refer	ence Books:
1.	Feng Zhao and LeonidesGuibas, "Wireless sensor networks ", Elsevier publication - 2004.
2.	Charles E. Perkins, —Ad Hoc Networkingl, Addison Wesley, 2000.
3.	William Stallings, "Wireless Communications and Networks ", Pearson Education – 2004
4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks, Elsevier, 2002, 394 - 422.
E-Ref	ferences:
1.	https://nptel.ac.in/courses/106105183
2.	https://nptel.ac.in/courses/106105183
3.	https://archive.nptel.ac.in/courses/106/105/106105160/

Course C Upon con	Dutcomes : npletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Know the basics of Ad hoc networks and Wireless Sensor Networks	Understanding
CO2	Have a knowledge on architecture of Wireless Sensor Networks	Applying
CO3	Apply the knowledge to identify MAC and routing protocols	Applying
CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	Understanding
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	Remembering

					С	OURS	SE AR	TICU	LATI	ON M	ATRIX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
			3/2/	1 - ind	licates	stren	gth of	correl	ation	(3-Higl	h,2- Me	edium, I	- Low)		

18E0	CM10												B	\$A	S	510	C	S	C)F	FI	E	M	B	E	D)I	D)]	Þ	E	Ľ)	S	Y	Y:	S	T	'F	EI	M	IS	,																				
PRE	REQU	JISITES																																								C	A	.7	[]	EC	36)F	27	7			OF	£		(Cr	e	di	t			3
Mior	oproce	acore and l	м	<u>М</u>	٢.	Л.	mi	or		201	ntr	-01	10	rc	,																											Г	[/			•c/	٦X)	0	.l.				L			'	Г]	2		T	H
WIICI	oproce		111	VI		11			0	.0.				15	•																											1		л	11	5/	**	C	- 1				3				0)			3
Cou	rse Ob	jectives																																																													
1	To in	npart know	wle	/le	e	le	dg	ge	0	n e	em	be	ed	de	ed	l s	;ys	ste	er	m	a	ırc	chi	ite	ect	tu	ır	re	e	2	a	ın	nd	le	er	m	ıb	e	d	ld	le	d	d	e	V	elo	эp	m	er	It	St	ra	eg	ie	3								
2	To u	nderstand t	the	he	e	ne	b	us	; (Co	mr	nι	ın	ic	cat	tic	on	ı i	n	p	rc	oc	es	sso	ors	S	a	an	n	ld	d	p	be	r	ip	pł	ne	er	a	1	iı	nt	eı	ſ	a	cir	ıg																
3	To u	nderstand b	ba	oas	1S	as	sic	s	of	F R	lea	17	Гi	m	le	0)pe	er	ra	.ti	ng	g S	Sy	/st	ter	m	1																														_						
UNI	ΤI	BASICS	50	0)]	C	F	E	M	B	EI)D)E	E) (SY	YS	57	ΓΙ	EI	Μ	IS	;																																9			0		0)		9
Intro Prog Desig	ductio rammi gn Life	n - Fundar ng Langua e Cycle - So	ame Iage Sel	ne ige ele	je je	e ge	ent es ect	al - ic	R R	Co ec Pi	mp en roc	t t	ne Tr SS	en er	nts nd H	s c 1s Iar	of ir rd ⁻	E n w	Er E /a	n In In	be ab	ed seo So	lde dd oft	ed lec w	d ar	Sy S re	ys Sy e I	st ys P	ste st Pa	te ste ai	er te ar	m er rti	ns n iti	s io	- - 01	ni	Cł A na	ha Aro g	al c	1e :h -]	ei it D	ng teo Per	ge et ve	s u el	f re	for e c pn	· E of ne	En E nt	nb m E	ec be	ld ed vii	ed de roi	Sy d S um	yst Sys en	ei ste t.	ns en	; - 15	- H	Ex E	an mł	np be	le dd	s - led
UNI	T II	MEMOR	RY	RY	Y	Y	N	1	11	NA	G	E	M	Ē	CN	JT	ΓΑ	AI	N	D) I	IN	JT	E.	R	R	RI	U	U]	J	P	רי	2	5																					9			0		()		9
Men Vs I Inter	ory Ao nterrup rupt So	ccess Proce ots - Types ervice Rout	ced es utir	edu s c tin	lt C n	dı c in	are of es	e - Ir	T nte	УI err	pes up	ts	of] -	M I	le: Int	m ter	or rrı	ry ur	pt	N : I	Ле La	en ate	no en@	ory cy	y N y -	М -	la I	ar In	n nt	na	aş te	er	rı	m up	ne pt	er t	nt P	N Pri	M ic		ri	hc ty	od -	ls –	- F	D Pro) Ogi	A ra	m	m	/le at	m le	ory In	ı Iı ite:	nte rri	eri up	fac /t (cir Co	ng on	- l tro	Po 511	lli er	ng s -
UNI	T III	COMMU	UN	JN	N	N	10	CA	1	ΓΙ	10	1	IN	IJ	ſF	ER	۲F	7A	1(CI	E	S																																	9			0		()		9
Inter IRD/	facing A - Eth	Buses - Se hernet - IEE	Ser EEE	eri EE	ri E	ri E	al 8	І 02	nte 2. 1	erf	fac —]	es B1	: - ue	F eto	R.S 00	52 otł	:32 h	2/	′U	JA	₹£	RT	ſ -	- F	RS	S∠	42	2	22	2,	2/]	/R	85	54	48	8:	5	-]	12	20		Iı	nt	e	rfa	ice	e .		SF	ľ	In	er	fac	:e	-	U	SI	3	_ (C	41	Л -
UNI	T IV	REAL T	ΓIN	IN	M	N	ſF	C (D	PE	R	A'	ГІ	IN	10	3 6	SY	Y	S	T	E	Μ	IS	;																															9			0		()		9
Real- Sche Inter	-Time duling Task (Concepts - - Event D Communic	- 7 Driv cat	- T riv ati	T iv ti	T iv ti	'as vei loi	sk n (1 -	N Sc · N	Ia che Mu	nag edu itez	ge ıli x -	m ng - S	ei g Se	nt -] em	- Re	T es ph	'as soi ho	sk ui or(s (rc es	Sc :e 3 -	ch S - N	ieć ha Me	du ari ess	ilii inį sa	ng g	g ge		- F Ç	P Q	C Pr Qu	C ri u	la o e	as ri ue	si ity es	if y s	fic Iı -	ca nl T	at h `i	tio ne	oi ri	n ita ers	o in s	f ic	S e C	ch P oi	ro ro m	lu to ne	lii cc ere	ng ol cia	 - 1 1	lg Pri R]	ori ori TO	ith ity S.	m C	s 'e	- (ilir	Cle ng	oc ; F	k 1 Pro	D1 oto	riv cc	ven ol -
UNI	ΤV	VALIDA	AT	Т	[]	Γ	IC)N	1 4	AN	ND	D)E	EB	BL	JC	30	GI	IN	N	G																																		9			0		()		9
Host - Ren Emu	Host and Target Machines - Validation Types and Methods - Host Testing - Host-Based Testing Setup - Target Testing Remote Debuggers and Debug Kernels - ROM Emulator - Logical Analyzer – Background Debug Mode - InCircuit Emulator CASE STUDY: RFID Systems - GPS Navigation System – Development of Protocol Converter.Total (45 L) = 45 Periods																																																														

1 Sriram V Iyer and Pankaj Gupta, —Embedded Real-time Systems Programmingl, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006. 2 Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011. Pafarence Realert	
2 Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011. Performence Receiver	
Deference Deele	
Reference doors.	
1Prasad K V K K, —Embedded/Real-Time Systems: Concepts, Design and Programming – The Ultimate Reference, Himal Impressions, New Delhi, 2003	
2 Heath, "Embedded Systems Design", Newnes an Imprint of Elsevier, Massachusetts, 2003.	
3 Tammy Noergaard, "Embedded Systems Architecturel, Newnes an Imprint of Elsevier, Massachusetts, 2006.	
4 Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013	
E-References:	
1 https://lecturenotes.in/subject/225/embedded-system-es	
2 https://nptel.ac.in/courses/108102045/19	

.

Course O Upon con	putcomes: apletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Outline the concepts of embedded systems	Understanding
CO2	Understand the concept of memory management system and interrupts.	Understanding
CO3	Know the importance of interfaces.	Understanding
CO4	Understand real time operating system concepts.	Understanding
CO5	To realize the applications of validation and debugging.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	-	-	-	-	-	-	3	3	3	-	2
CO2	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
CO3	3	3	3	3	-	-	-	-	-	-	3	3	3	-	2
CO4	3	3	2	3	-	-	-	-	-	-	2	3	3	-	2
CO5	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
Avg	3	3	2	3	-	-	-	-	-	-	2.8	3	3	-	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

B.E. - ELECTRICAL AND ELECTRONICS ENGINEERING - MINOR DEGREE

181	EEM01	LINEAR AND DIGITAL ELECTRONICS CI	IRCUITS	SEM	IESTI	ER								
PR	EREQ	UISITES	CATEGORY	PE	Cre	edit	3							
F1 -	atura D		Harry/Wash	L	Т	Р	TH							
Ele	ctron D	evices and Circuits	Hours/ week	3	0	0	3							
Co	urse O	bjectives:												
1.	To im	part knowledge on the characteristics& applications of Operation A	Amplifier, functiona	l diagram	and a	oplicat	ions							
	of line	ar ICs.												
2.	To sin	plify the switching functions												
3.	To des	ign the combinational logic circuits and sequential logic circuits												
Un	it I	OPERATIONAL AMPLIFIERS		9	0	0	9							
Ope	erationa	amplifiers - Equivalent circuit, voltage transfer curve - Open loop	Op-amp configurati	ons-Volt	age ser	ries, V	oltage							
shu	nt feedt	ack amplifiers configurations, closed loop differential amplifiers f	or single and differe	ential outp	outs.									
Out	tput offs	et voltage, minimizing output offset voltage due to input bias curre	ent and input offset	current, f	actors	affectii	ng off							
set	paramet	ers, CMRR - Open loop and closed loop frequency response of op	o-amps, circuit stabi	lity, slew	rate ar	nd its e	ffects							
in a	pplicati	ons.		Γ.		_								
Un	it II	APPLICATION OF OPERATIONAL AMPLIFIER AN	D LINEAR ICS	9	0	0	9							
DC	& AC	amplifiers- Summing, Scaling and Averaging amplifiers-Instrume	entation amplifier-	Voltage to	Curre	nt con	verter							
for	for floating and grounded loads - Current to voltage converter - Integrator, Differentiator. Voltage comparators - Zero Crossing													
Det	Detector - Schmitt trigger with voltage limiter- Precision Rectifier Circuits-Peak Detector-Sample and Hold circuit, Active													
FIIL filte	ers - rie	quency response characteristics of major active inters, inst and my	glief ofder fow pass		pass III	ters, ar	i pass							
Fur	nctional	block diagram and Applications of Linear ICs: IC 555 Timer -IC 4	566 Voltage control	led oscill:	ator- IC	7 565 F	hase-							
loci	ked loor	s - IC LM317 voltage regulators.	oo voluge control	ieu oseini		20001	nuse							
Un	it III	COMBINATIONAL LOGIC CIRCUITS		9	0	0	9							
Rep	oresenta	tion of logic functions: SOP and POS forms - Simplification	of switching func	tions: K-	maps	metho	d and							
Qui	ineMcC	luskey (Tabulation) method.	C		1									
Des	sign:Ad	lers -Subtractors- 2 bit Magnitude Comparator-Multiplexer- Demu	ultiplexer- Encoder	- Priority	Encod	er - De	coder							
- C	ode Co	overters. Implementation of combinational logic circuits using mul	tiplexers and Decod	ler.										
Un	it IV	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS		9	0	0	9							
Flip	p-flops:	SR, D, JK and T- Conversion of flip-flops; Classification of sequen	tial circuits: Moore a	and Mealy	y mode	ls - An	alysis							
and	l design	of synchronous sequential circuits - Design of synchronous counter	ers- Universal shift 1	egister.										
Un	it V	ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS	5	9	0	0	9							
Fur	ndament	al mode and pulse mode circuits, Analysis procedure of asynchro	nous circuits with /	without u	sing of	SR la	tches-							
prir	nitive st	ate / flow table - Reduction of state and flow table - state assignm	ent –Design Proced	ure of asy	nchro	10us ci	rcuits							
wit	h /witho	ut using of SR latches-Problems in asynchronous sequential circui	ts: cycles -Races -H	Hazards.										
			Tota	al (45L+0	= (T0	45 Pe	riods							

Text	Books:
1.	Ramakant A Gayakward, "Op-Amps and Linear Integrated Circuits", Fourth Edition, Pearson Education, 2003.
2	Donald.E.Neaman, "Electronic Circuit, Analysis and Design", Tata McGraw Hill Publishing Company Limited, Second
۷.	Edition, 2002.
3	D.Roy Chowdhury and Shail B. Jain, "Linear Integrated Circuits", Fourth Edition, New Age International (P) Ltd
5.	Publishers, 2014.
4	M. Morris Mano, "Digital Design", Third Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2003 / Pearson
4.	Education (Singapore) Pvt. Ltd., New Delhi, 2010.
5	S. Salivahanan and S. Arivazhagan, "Digital Circuits and Design", Third Edition, Vikas Publishing House Pvt. Ltd,
5.	New Delhi, 201
Refe	rence Books:

1.	Jacob Millman, Christos C.Halkias, "Integrated Electronics - Analog and Digital circuits system", Tata McGraw Hill
1.	2003.
c C	R.P.Jain, "Modern Digital Electronics", Third Edition, Tata McGraw-Hill Publishing company limited, New Delhi,
2.	2011.
3.	Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2015
4.	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", Fifth Edition, Tata McGraw Hill
	Publishing Company Limited, New Delhi, 2012.

Cours	e O	utcomes:	Bloom's Taxonomy
Upon c	omj	pletion of this course, the students will be able to:	Mapped
CO1	:	Understand the Op-amp characteristics	L2: Understanding
CO2	:	Understand the applications of Op-amp and other linear ICs.	L2: Understanding
CO3	:	Apply K-map and Tadulation methods to simplify the switching functions	L3: Applying
CO4	:	Design and implement of combinational logic circuits	L6: Creating
CO5	:	Analyse and design of synchronous & asynchronous sequential logic circuits	L4: Analyzing

COUR	RSE AR	TICU	LATIO	ON MA	TRIX										
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	1											2		
CO2	3	2	1	1									3		
CO3	3	2		2	2								3	3	
CO4	3	2	3	1	2							2	3	3	1
CO5	3	2	3	1	2							2	3	3	1
Avg.	2.8	1.8	2.3	1.25	2	-	-	-	-	-	-	2	2.8	3	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EEM02 MICROPROCESSOR AND MICROCONTROLLER	SEI	MEST	ER	
PREREQUISTIES CATEGORY	PE	Cr	edit	3
C Programming	L	Т	Р	TH
Hours/ week	3	0	0	3
Course Objectives:				
1. To study the architecture of μ P8085 and μ C 8051.				
2. To study the Interrupt structure of 8085 and 8051.				
3. To do simple applications development with programming 8085 and 8051.				
UNIT I 8085 8 BIT MICROPROCESSOR	9	0	0	9
Fundamentals of microprocessors - Architecture of 8085 - Groups of Instructions - Addressing	nodes – I	Basic tii	ning di	agram
- Organization and addressing of Memory and I/O systems -Interrupt structure - Stack and sub	-routines	- Simpl	e 8085	based
system design and programming.				
UNIT II 8051 8 BIT MICROCONTROLLER	9	0	0	9
Fundamentals of microcontrollers - Architecture of 8051 - Groups of Instructions - Address	ing mode	es – Or	ganizat	ion of
Memory systems - I/O Ports - Timers/Counters - Serial Port - Interrupt structure - Simple	program	ming co	oncepts	using
Assemblers and Compliers.				
UNIT III INTERFACING WITH 8051 MICROCONTROLLER	9	0	0	9
Need and requirements of interfacing - Interfacing - LED, 7 segment and LCD Displays - Tactil	e switche	s, Matr	ix keyb	oard –
Parallel ADC – DAC – Interfacing of Current, Voltage, RTD and Hall Sensors.				
UNIT IV EXTERNAL COMMUNICATION INTERFACE	9	0	0	9
Synchronous and Asynchronous Communication. RS232, RS 485, SPI, I2C. Introduction and inte	erfacing to	protoc	ols like	Blue-
tooth and Zig-bee.				
UNIT V APPLICATIONS OF MICROCONTROLLERS	9	0	0	9
Simple programming exercises- key board and display interface -Control of servo motor stepper	motor co	ntrol- A	Applicat	tion to
automation systems.				
Te	otal (45I	2+0T)=	= 45 Pe	eriods

Text H	Books:					
1.	R.S. Gaonkar, 'Microprocessor Architecture Programming and Application', with 8085, Wiley Eastern Ltd., New					
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning, 2004.					
3	Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely 'The 8051 Micro Controller and Embedded Systems', PHI					
5.	Pearson Education, 5th Indian reprint, 2003.					
Refere	Reference Books:					
1.	R. Kamal, "Embedded System", McGraw Hill Education, 2009.					
2.	D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 1991.					
E-Ref	erences;					
1.	www.onlinecourses.nptel.ac.in/noc18_ee41					
2.	www.class-central.com					
3.	www.mooc-list.com					

Course	e O	utcomes:	Bloom's Taxonomy				
Upon co	omp	Mapped					
CO1	:	Understand basics of microprocessor and microcontroller	L2: Understanding				
CO2	:	Understand the architecture of Microprocessor and Microcontroller	L1: Remembering				
CO3	:	Apply the digital concepts to measure and control simple electrical systems	L3: Applying				
CO4	:	Design and interface communications between digital systems	L2: Understanding				
CO5	:	Design a microcontroller based electrical control system.	L5: Evaluating				

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	2	1	1	1								1	1	1	
CO2	2	1	1	1								1	1	1	
CO3	2	3	2	3	2							1	1	1	2
CO4	2	3	3	3	2							2	2	2	2
CO5	2	3	3	3	2							2	2	2	2
Avg.	2	2.2	2	2.2	2	-	-	-	-	-	-	1.4	1.4	1.4	2
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18 F	EEM03		SEI	MEST	ER						
PR	EREQUI	STIES	CATEGORY	PE	Cre	edit	3				
Flag	etrical Ma	chines and Electric circuit analysis	Hours/Week	L	Т	Р	TH				
Lice		ennies and Electric circuit analysis	Hours/ Week	1	1	0	3				
Co	urse Obje	ectives:									
1.	To under	stand the methods of representation of physical systems and	getting their transfer	functi	on mo	lels.					
2.	2. To provide adequate knowledge in the time response of systems and steady state error analysis.										
3.	3. To give basic knowledge in obtaining the open loop and closed loop frequency response of systems.										
4.	4. To understand the concept of stability of control system and methods of stability analysis.										
5. To study the designing compensators for a feedback control system.											
UN	IT I	MODELLING OF LINEAR TIME INVARIANT S	SYSTEMS	6	9	0	9				
Bas	Basic elements in control systems - Open and closed loop systems - Feedback control system characteristics - Mathematical										
mod	model and Electrical analogy of mechanical systems - Transfer function Representation- Synchro - AC and DC servo-										
mot	motors – Block diagram reduction techniques – Signal flow graphs.										
UN	IT II	TIME RESPONSE ANALYSIS		6	3	0	9				
Star	ndard test	signals - Time response of first order and second order syst	ems –time domain	specific	cations	- Stea	dy-state				
erro	ors and erro	or constants - Type and order of control systems - Effect of	f adding poles and a	zeros to	o transf	fer fun	ctions -				
Res	ponse with	P, PI, PD and PID controllers.									
UN	IT III	FREQUENCY RESPONSE ANALYSIS		6	3	0	9				
Cor	relation be	tween time and frequency response: Second order systems -	Frequency domain	specific	cations	- Pola	r plots –				
Bod	le plots – C	Computation of Gain Margin and Phase Margin — Constant I	M and N-circles – N	ichols o	chart.						
UN	IT IV	STABILITY OF CONTROL SYSTEM		6	3	0	9				
BIB	BO stability	- Necessary conditions for stability – Routh-Hurwitz stabilit	ty criterion – Root lo	cus co	ncepts	- Rules	s for the				
con	struction o	f Root loci – Nyquist stability criterion – Assessment of relat	tive stability using N	lyquist	criterio	on.					
UN	IT V	COMPENSATOR AND CONTROLLER DESIGN	1	6	3	0	9				
Nee	ed for com	pensation - Types of compensators - Electric network rea	alization and freque	ncy ch	aracter	istics of	of basic				
com	pensators:	Lag, lead and lag-lead compensators - Design of compensat	ators using root locu	s and E	Bode pl	ot tech	iniques-				
PID	controller	: Design using reaction curve and Ziegler - Nichols techniqu	ıe.								
			Total	(30L+	-15T)	= 45 F	Periods				

Tey	Text Books:									
1.	A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition, 2017.									
2.	I.J. Nagrath, and M. Gopal, "Control Systems Engineering", New Age International Publishers, Delhi, 7th Edition, 2021.									
Ref	Reference Books:									
1.	K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 5th Edition, 2021.									
2.	M. Gopal, "Control Systems: Principles and Design", TMH, New Delhi, 4th Edition, 2018.									
E-F	Reference									
1.	https://nptel.ac.in/courses/107106081									
2.	https://nptel.ac.in/courses/108106098									

Course Ou	itco	mes:	Bloom's Taxonomy
Upon com	plet	ion of this course, the students will be able to:	Mapped
CO1		Develop the transfer function models of any electrical and electro-mechanical	L2: Understanding
COI	·	systems.	
CO2	:	Obtain the time responses of the systems and construct root locus plot.	L3: Applying
CO3	:	Analyze the frequency response of the system	L3: Applying
CO4	:	Analyze the absolute / relative stability of a control system.	L4: Analyzing
CO5	:	Design the compensators and PID controller of a feedback control system.	L3: Applying

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	2	2	2							1	3	2	1
CO2	3	3	3	2	2							1	3	2	1
CO3	3	3	3	2	2							1	3	2	1
CO4	3	3	3	2	2							1	3	2	1
CO5	3	3	3	2	2							1	3	2	1
Avg	3	3	2.8	2	2	-	-	-	-	-	-	1	3	2	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18E	EM04	MEASUREMENTS AND INSTRUMENTA	TION	SEN	ER						
PRE	REQUI	ISTIES	CATEGORY	PE	Cre	edit	3				
Floot	ria Circu	it Analysis	Hours/Wook	L	Т	Р	TH				
Elecu			Hours/ week	3	0	0	3				
Cour	se Obj	ectives:									
1.	To edu	cate the fundamental concepts and characteristics of measureme	ent System								
2.	2. To introduce the fundamentals of electrical and electronic instruments for measurement of Electrical and Non-electrical quantities										
3. To familiarize Oscilloscope and the bridge circuits for electrical parameters measurement											
UNI	ГΙ	9	0	0	9						
Eleme	Elements of a generalized measurement system - Static and dynamic characteristics - Errors in measurement. Measurement of										
voltage and current - permanent magnet moving coil and moving iron type meters											
UNI	UNIT IIMEASUREMENT OF POWER , ENERGY AND FREQUENCY9009										
Measu	urement	of power - single and three phase- electrodynamometer type	watt meters - Con	struction	, opera	tion –	torque				
equati	ion for d	eflection - errors. Measurement of energy-Single phase inducti	on type energy meter	ers, Instru	iment t	ransfo	mers –				
Curre	nt and P	otential transformers, Power factor meters- Single phase electro	dynamometer type p	power fac	tor me	ter, fre	quency				
meter	-Electric	al resonance type frequency meter				-					
UNI	ГШ	DC AND AC BRIDGES		9	0	0	9				
Balan	ce equat	ions - Wheatstone bridge - Kelvin double Bridge - Maxwell's	inductance capacitation	ance brid	ge – H	lay's b	ridge –				
Ander	rson's br	idge – Schering bridge and De Sauty's bridge				-					
TINIT	ги	POTENTIOMETERS, OSCILLOSCOPES AND DIC	GITAL	0	0	0	0				
UNI	1 1 1	INSTRUMENTS		,	U	U	,				
DC P	otentiom	eter- Crompton's Potentiometer, AC potentiometer- Drysdale p	olar potentiometer-	Gall Tin	sley co	-ordina	ite type				
poten	tiometer	, Cathode Ray Oscilloscope and Digital storage Oscilloscope-G	Construction, operat	ion and A	Applica	tions,	Digital				
multi-	-meters,	Digital voltmeters.									
UNI	ΓV	MEASUREMENT OF NON-ELECTRICAL QUANT	TITIES	9	0	0	9				
Classi	ification	of transducers -Position transducers, Piezo-electric transducer	rs and Hall effect tr	ansducer	s. Me	asuren	ent of				
pressu	ure, temp	perature and displacement- Introduction to Smart Sensors									
			То	tal (45L	(+ 0 T)=	= 45 P	eriods				

Text B	Books:						
1.	A.K. Sawhney, 'A Course in Electrical & Electronics Measurement & Instrumentation', Dhanpat Rai and Co, 2015						
2.	E.O. Doebelin, 'Measurements Systems- Application and Design', Tata McGraw Hill publishing company, 2015.						
Refere	Reference Books:						
1.	D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt. Ltd, 2010.						
2.	H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 2015.						
3.	Martin Reissland, ' Electrical Measurements', New Age International(P) Ltd., Delhi, 2011.						
E-Ref	E-Reference:						
1	https://archive.nptel.ac.in/courses/108/105/108105153/						

Course O	outo	comes:	Bloom's Taxonomy					
Upon com	Upon completion of this course, the students will be able to:							
CO1	:	Recall the fundamentals of measurement system in electrical engineering. L1: Remembering						
CO2	:	Describe the working principle of different measuring instruments	L2: Understanding					
CO3	:	Choose appropriate instrument for measuring the electrical parameters	L3: Applying					
CO4	:	Employ the digital instruments in real time measurements.	L3: Applying					
CO5	:	Select an appropriate transducer for measurement of non-electrical quantities	L4: Analysing					

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	3				1		2		2	2	1	1
CO2	1	3			3					2		1	2	1	
CO3	1	1		2	1	1	2		1				1	2	1
CO4	1	1		1	1		2	2	1		2	2	1	3	1
CO5	2	2	3	1	2	2	1			1	3		1	2	
Avg	1.4	1.8	2.5	1.75	1.75	1.5	1.67	1.5	1	1.67	2.5	1.67	1.4	1.8	1
	•	•	3/2/1-ir	ndicates	strengtl	n of cor	relation	(3- Hig	h, 2-Me	dium, 1	- Low)	•	•	•	•

18E	EMO	5 ELECTRICAL MACHINES		SEME					
PRE	REQ	UISTIES	CATEGORY	PE	Cre	edit	3		
			II /II / -	L	Т	P	TH		
			Hours/ week	3	0	0	3		
Cour	rse O	bjectives:							
1.	To in	npart knowledge on construction, working and performance of D	C generators and mo	otors.					
2.	To d	eliberate the construction, working and performance of single pha	ase and three phase t	ransform	ers.				
3.	To in	npart knowledge on construction, working and performance of sy	nchronous generato	rs and mo	otors.				
4.	To ir	npart knowledge on construction, principle of operation and perform	rmance of single and	three-pha	ase indu	action 1	notors.		
UNI	ТІ	DC GENERATORS		9	0	0	9		
Princ	iple of	operation, constructional details, types - EMF equation, armatu	re reaction, demagn	etizing ar	nd cross	s magn	etizing		
Ampe	ere tur	ns, compensating winding, commutation, methods of improving	g commutation, inter	rpoles, O	pen cir	cuit ar	nd load		
chara		ics of different types of DC Generators. Parallel operation of DC	Generators, applicat	ions of D	C Gene	erators.			
UNI		DC MOTORS	1 11 .	9	0	0	9		
Princi	iple of	operation, significance of back emf, torque equation and power de	eveloped by armature	e, load cha	aracteri	stics of	ion for		
maxi	mum e	ompound type motors, starting methods, speed control methods	Honkinson's test	etardatio	n test	Separa	tion of		
core 1	losses	- applications of DC motors.	, mopkinson's test, r	Cetardatio	in test,	Separa	1011 01		
UNI	Т Ш	TRANSFORMER		9	0	0	9		
Singl	e pha	se transformer: Construction and principle of operation, work	ting of practical trai	nsformer	- equiv	valent	circuit,		
voltag	ge regi	ulation, losses and efficiency- testing : polarity test, open circuit	t and short circuit te	sts, back-	to back	c test,	all day		
effici	ency, j	parallel operation, applications.					-		
Auto	transf	former: Construction and working, saving of copper - application	ns, Three phase tra	nsformer	: const	ructior	, types		
of con	nnectio	ons and their comparative features.							
UNI	T IV	SYNCHRONOUS GENERATOR AND MOTOR		9	0	0	9		
Syncl	hrono	us Generator: Constructional and working details – Types of re-	otors – EMF equation	on – Phas	sor diag	grams o	of non-		
salien	nt pole	synchronous generator connected to infinite bus - Synchronizin	g and parallel opera	tion – Sy	nchron	izing t	orque -		
Volta	ige reg	ulation – EMF, MMF and ZPF method – steady state power angle	e characteristics – T	wo reacti	on theo	ory – sl	ip test.		
G1		Materia Divide Constitution Theorem		¥7 1	т	1 1 7 .			
Sync	nrono r input	us Miotor: Principle of operation – Forque equation – Operation	i on infinite dus dars	input co	Inverte nstant (ed v ci	irves –		
const	ant no	wer Developed Hunting natural frequency of oscillations dar	mor windings sync	hronous (onstant (excitati	ion and		
LINI	ан ро т v	THREE PHASE AND SINCLE PHASE INDUCTION	I MOTOR				0		
Three	r v e nhas	e induction motor: Constructional details – Types of rotors – Pr	inciple of operation	– Equival	ent ciro	uit – T	orque-		
Slip	c plius charact	eristics - Condition for maximum torque – Losses and efficiency –	- load test - No load a	and block	ed roto	r tests -	Circle		
diagra	am – \$	Separation of losses – Starters: DOL, Autotransformer and Star	r delta starters – Sp	eed contr	ol meth	hods: V	/oltage		
contro	ol, Fre	quency control and pole changing - V/f control - Slip power reco	overy Scheme.				e		
Singl	e phas	se induction motor: Constructional details – Double field revolve	ing theory and opera	tion – Eq	uivalen	nt circu	it – No		
load a	and blo	ocked rotor test - Performance analysis - Starting methods of single	le-phase induction m	otors – sp	olit pha	se, Cap	acitor-		
start, capacitor start and capacitor run Induction motor.									
			To	otal (45L	/+0T)=	= 45 P	eriods		
Text	Book	IS:							
1.	I.	J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill	Education, 5th Editi	on, 2017					
2.	Р.	S. Bimbhra, "Electric Machinery", Khanna Publishers, 2nd Editi	on, 2021.						
2	B	L.Theraja and A.K.Theraja," A text book of Electrical Technolo	gy - Volume-II", S.	Chand &	Compa	ny Ltd	l., New		
5.	D	elhi, 23 rd Edition, 2009.							

 Reference Books:

 1.
 B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers,3rd Edition, Reprint 2015.

2.	Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, First edition, 2010.
3.	A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc Graw Hill publishing Company Ltd, 6th Education, 2017.
4.	Stephen J. Chapman, 'Electric Machinery Fundamentals'4th edition, McGraw Hill Education Pvt. Ltd, 4th Edition 2017.

Course O	Bloom's Taxonomy		
Upon com	Mapped		
CO1	:	Explain the construction and working principle of DC machines, and Interpret various characteristics of DC machines.	L2: Understanding
CO2	:	Compute various performance parameters of the machine, by conducting suitable tests.	L5: Evaluating
CO3	:	Describe the working principle of transformer, auto transformer, three phase transformer connection, and determine the efficiency and regulation.	L3: Applying
CO4	:	Understand the construction and working principle of Synchronous Machines.	L3: Applying
CO5	:	Understand the construction and working principle, speed control of three phase and single phase induction motor.	L5: Evaluating

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	1	1	1			1				1	3	2	1
CO2	3	3	1	1	1			1				1	3	2	1
CO3	3	3	1	1	1			1				1	3	2	1
CO4	3	3	1	1	1			1				1	3	2	1
CO5	3	3	1	1	1			1				1	3	2	1
Avg.	3	3	1	1	1	-	-	1	-	-	-	1	3	2	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18F	EEM06	ELECTRICAL DRIVES AND CONTI	ROL	SEN	AEST	ER				
PRF	EREQU	PE	Cr	edit	3					
DC N	Machine	es and Transformers, Synchronous and Induction Machines, and	HoundWoolr	L	Т	Р	ТН			
Pow	er Elect	3	0	0	3					
Cou	Course Objectives:									
1.	1. To know about the operation analyse of chopper fed DC drive, both qualitatively and quantitatively.									
2.	To ur	nderstand the operation and performance of AC motor drives.								
UNI	IT I	DC MOTOR CHARACTERISTICS & CHOPPER FE	D DC DRIVES	9	0	0	9			
Revi	ew of t	orque-speed characteristics of separately excited dc motor, char	ige in torque-speed	curve w	ith arm	ature v	voltage,			
exan	nple loa	d torque-speed characteristics, operating point, armature voltage	e control for varying	g motor	speed.	Review	v of dc			
chop	per and	duty ratio control, chopper fed dc motor for speed control, stead	y state operation of	a choppe	er fed d	rive, ar	matu re			
curre	ent wave	eform and ripple, calculation of losses in dc motor and chopper.								
UN	IT II	MULTI-QUADRANT & CLOSED-LOOP CONTROL	OF DC DRIVE	9	0	0	9			
Revi	ew of F	our quadrant operation of dc machine; single-quadrant, two-quadr	ant and four-quadra	nt chopp	ers; Co	ntrol st	ructure			
of D	C drive	, inner current loop and outer speed loop, dynamic model of dc n	notor – dynamic equ	ations a	nd trans	sfer fur	nctions,			
mod	eling of	chopper as gain with switching delay, plant transfer function, c	current controller sp	ecificatio	on and	design	, speed			
contr	roller sp	becification and design.								
UNI	III TI	INDUCTION MOTOR CHARACTERISTICS		9	0	0	9			
Revi	ew of in	nduction motor equivalent circuit and torque-speed characteristic	, variation of torque	e-speed c	urve w	ith (i)	applied			
volta	age, (ii)	applied frequency and (iii) applied voltage and frequency. Review	of three-phase volta	ige sourc	e inver	ter, gen	eration			
of th	ree-pha	se PWM signals, constant V/f control of induction motor								
UNI	IT IV	CONTROL OF SLIP RING INDUCTION MOTOR		9	0	0	9			
Impa	act of ro	tor resistance of the induction motor torque-speed curve, operation	on of slip-ring induc	tion mot	or with	extern	al rotor			
resis	tance, s	tarting torque, power electronic based rotor side control of slip rin	ng motor, slip power	r recover	у					
UNI	IT V	CONTROL OF SRM AND BLDC MOTOR DRIVES.		9	0	0	9			
SRM	SRM construction - Principle of operation - SRM drive design factors-Torque controlled SRM- Block diagram of Instantaneous									
Torq	ue cont	rol using current controllers and flux controllers. Construction	and Principle of op	eration of	of BLD	C Mac	hine -			
Sensing and logic switching scheme,-Sinusoidal and trapezoidal type of Brushless dc motors - Block diagram of current										
controlledd Brushless dc motor drive										
			To	tal (45I	L+0T)=	= 45 P	eriods			
·										
Tex	t Book	s:								

1.	G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989.				
2.	R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall,2010				
3.	Bose B K, "Modern Power Electronics and AC Drives", Pearson Education New Delhi, 2010.				
Refere	Reference Books:				
1.	G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2012.				
2.	W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2001.				
E-Reference					
1	https://www.iith.ac.in/~ketan/drives.htmL				

Course O	Bloom's Taxonomy														
Upon comp	plet	ion of this course, the students will be able to:	Mapped												
CO1	:	Understand the characteristics of dc motors and induction motors.	L2: Understanding												
CO2	:	Summarize the operation of chopper fed DC drives.	L4: Analyzing												
CO3	:	Understand the principles of speed-control of dc motors and induction motors.	L2: Understanding												
CO4	:	Identify suitable power electronic converters used for dc motor and induction motor speed control.	L3: Applying												
COUR	COURSE ARTICULATION MATRIX														
-------------	---	---------	---------	---------	---------	---------	---------	---------	---------	----------	----------	----------	----------	----------	----------
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1	3			1	1					1	3	2	
CO2	3	3	1	3		1	1					1	3	2	
CO3	3	3	3	3	1	1	1					1	3	2	
CO4	1	3	3	2	1	1	1					1	3	2	
CO5	3	3	3	3	1	1	1					1	3	2	
Avg.	2.6	2.6	2.6	2.75	1	1	1	-	-	-	-	1	3	2	-
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18E	EM07	L	SEM	ESTI	ER			
PRE	REQU	ISTIES	CATEGORY	PE	Cre	dit	3	
El a ata		and control	Houng/Wools	L	Т	Р	TH	
Electr	ical driv	es and control	Hours/ week	3	0	0	3	
Cour	se Obj	ectives:						
1.	1. To provide knowledge on electric vehicle architecture and its configurations							
2.	To imp	part knowledge on vehicle control, use of energy storage systems and	l energy management	t in Ele	ctric V	/ehicl	e	
UNI	ГΙ		9	0	0	9		
Confi	guration	s of Electric Vehicles (EV), Performance of Electric Vehicles, Tra	active Effort in Norn	nal Dri	ving a	and E	nergy	
Consu	imption,	Hybrid Electric Vehicles (HEV): Classification, Series Hybrid El	ectric Drive Trains,	Paralle	l Hyb	rid El	ectric	
Drive	Trains							
PLUG-IN HYBRID ELECTRICVEHICLES (PHEV) AND FUEL CELL							0	
UNIT II ELECTRIC VEHICLES						U	9	
Funct	Functions and Benefits of PHEV, Components of PHEVs, Operating Principles of Plug-in Hybrid Vehicle, Control Strategy of							
PHEV	/, Fuel C	Cell: Operation and Types, Fuel Cell Electric Vehicle: Configuration	and Control Strategy	7				
UNI	ГШ	ELECTRIC PROPULSION SYSTEMS		9	0	0	9	
Typic	al electr	ic propulsion system, Classification of electric motor drives for EV a	and HEV, Multiquadr	ant Co	ntrol o	of Cho	pper-	
Fed D	C Moto	r Drives, Vector Control of Induction Motor drives, Permanent Mag	netic Brush-Less DC	Motor	Drive	s, Sw	itched	
Reluc	tance M	otor Drives for Electric Vehicles						
UNI	ΓIV	ENERGY STORAGE SYSTEM		9	0	0	9	
Status	of Bat	tery Systems for Automotive Applications, Battery Technologies	s: Nickel–Metal Hyd	dride (1	Ni-M	H) Ba	attery,	
Lithiu	m–Poly	mer (Li-P) Battery, Lithium-Ion (Li-Ion) Battery, Ultracapacit	ors: Features, opera	ation a	nd pe	erforn	nance,	
Ultrah	nigh-Spe	ed Flywheels, Hybridization of Energy Storages						
UNIT V ENERGY MANAGEMENT SYSTEM							9	
Energ	y Mana	gement System(EMS) in Electric Vehicle, Rule-based control strat	egy: Deterministic ru	ile-base	ed cor	ntrol,	Fuzzy	
logic-	based c	control, and Neural network-based control. Optimization based	control strategy: I	Dynami	c Pro	ogram	ming,	
Metał	Metaheuristic optimization methods and Model predictive control, Semi-active type Hybrid Energy Storage System-based EMS,							
Fully-	Fully-active type Hybrid Energy Storage System-based EMS							
	Total (45L+0T)= 45 Periods							

Text B	Books:
1.	Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, Taylor & Francis Group, Second
	Edition ,2011.
2.	Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, AliEmadi,, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles"
	CRC Press, 2016
Refere	ence Books:
Refere	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John
Refere 1.	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010
Refere 1. E-Refe	ence Books: Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010 erence:

Course	0ι	itcomes:	Bloom's Taxonomy
Upon co	mpl	etion of this course, the students will be able to:	Mapped
CO1	:	Recall the fundamentals of electric vehicle and its mechanics	L1: Remembering
CO2	:	Explain the architecture of different forms of hybrid electric vehicles.	L2: Understanding
CO3	:	Illustrate the four-quadrant operation of DC drive, induction motor drive and SRM drive for Electric Vehicles.	L4: Analyzing
CO4	:	Select an appropriate energy storage system for Electric vehicle	L4: Analyzing
CO5	:	Use the suitable energy management control strategy for hybrid electric vehicle	L3: Applying

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1		1	3	1		1					1	1	2	1
CO2	1	2	3	1			2					2	1	2	
CO3	1	1			2		3						1	1	1
CO4	3	1	2	1	2		1					2	1	2	1
CO5	1	2	1	2	1							1	1	2	1
Avg	1.4	1.5	1.75	1.75	1.5	-	1.75	-	-	-	-	1.5	1	1.8	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EI	E M08	D AUDITING	SEM							
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3			
Down	Conor	ation Transmission and Distribution System	HoundWoolr	L	Т	Р	TH			
Powe	er Gener	ation, Transmission and Distribution System	Hours/ week	3	0	0	3			
Cou	rse Obje	ectives:								
1.	1. To get knowledge about basics of energy and energy scenario of India.									
2.	To fam	iliarise the energy conservation methods.								
3.	To acqu	ire knowledge on energy auditing, energy efficiency and mode	rn energy efficient o	levices.						
UNI	ГΙ	ENERGY SCENARIO		9	0	0	9			
Com	nercial a	and non-commercial energy -Primary energy resources - C	commercial energy	productio	on - F	Final e	nergy			
consu	mption -	Energy needs of growing economy - Long term energy scen	ario - Energy pricin	g - Energ	gy sect	or refo	rms -			
Energ	gy and en	vironment - Energy security - Energy conservation and its impor	tance - Restructurin	g of the e	nergy s	upply s	sector			
- Ene	rgy strate	egy for the future, air pollution, climate change. Energy Conser-	vation Act-2001 and	l its featur	res.					
UNI	ГП		9	0	0	9				
Electr	Electricity tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy contents of fuel,									
tempe	erature ar	nd pressure, heat capacity, sensible and latent heat, evaporation	, condensation, steam	m, moist a	air and	humid	ity &			
heat t	ransfer, u	units and conversion.								
UNI	ГШ	ENERGY MANAGEMENT AND AUDIT		9	0	0	9			
Defin	ition - E	nergy audit – Need and types of energy audit. Energy managem	ent (audit) approach	understa	inding	energy	costs			
- Ben	ch marki	ng - Energy performance - Matching energy use to requiremen	t - Maximizing syste	em efficie	encies -	- Optin	nizing			
the in	put energ	gy requirements, fuel and energy substitution - Energy audit ins	struments. Material	and energ	gy bala	nce: Fa	cility			
as an	energy s	ystem - Methods for preparing process flow, material and energ	y balance diagrams							
UNI	ГIV	ENERGY EFFICIENCY		9	0	0	9			
Electr	rical syst	em: Electricity billing - Electrical load management and maxim	um demand control	-Power f	actor i	mprove	ement			
and it	s benefit	- Selection and location of capacitors - Performance assessment	nt of PF capacitors,	distributi	on and	transfo	ormer			
losses	s. Electri	c motors: Types - Losses in induction motors - Motor effic	iency - Factors affe	ecting mo	otor pe	rforma	nce -			
Rewi	Rewinding and motor replacement issues - Energy saving opportunities with energy efficient motors.									
UNI	ΓV	ENERGY EFFICIENT TECHNOLOGIES		9	0	0	9			
Maxi	mum der	nand controllers - Automatic power factor controllers - Energy	efficient motors –So	oft starter	s with o	energy	saver			
- Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors - Energy efficient lighting										
contro	controls - Energy saving potential of each technology.									
	Total (45 L+ 0 T) = 45 Periods									

Text	Books:
1.	Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015.
2,	Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991.
3.	Hossam A Gabbar, "Energy Conservation in Infrastructure Systems", Wiley-IEEE Press, New Jersey, 2018
Refe	rence Books:
1.	General Aspects of Energy Management and Energy Audit, Bureau of Energy Efficiency, New Delhi, 2015.
2,	Energy Efficiency in Electrical Utilities, Bureau of Energy Efficiency, New Delhi, 2015.

Course	Outcomes:	Bloom's Taxonomy		
Upon co	mpletion of this course, the students will be able to:	Mapped		
CO1	Identify the present energy scenario and future energy strategy.	L1: Understanding		
CO2	Recognize the various forms of energy.	L1: Understanding		
CO3	Interpret energy management methods and energy auditing.	L3: Applying		
CO4	Familiar in energy efficiency of electrical systems.	L4: Analysing		
CO5	Familiar with the advanced energy efficient technologies.	L4: Analysing		

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	2	3	2	2		3					1	2	2	1
CO2	1	2	2	2	2		3					1	2	2	1
CO3	2	2	2	3	2		3					1	1	3	1
CO4	2	3	2	2	3		3					1	3	3	1
CO5	2	2	3	1	2		3					1	3	2	1
Avg	1.6	2.2	2.4	2	2.2	-	3	-	-	-	-	1	2.2	2.4	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EEM0	SMPS AND UPS		SEN	AEST	ER			
PREREQ	JISITES	CATEGORY	PE	Cr	edit	3		
Dames Elas		Herry (Weels	L	Т	Р	TH		
Power Elect	onics	Hours/ week	3	0	0	3		
Course Ol	Course Objectives:							
1. To in	npart knowledge about modern power electronic converters and t	heir applications in J	power uti	lity.				
2. To in	part knowledge about Resonant converters and UPS.							
UNIT I		9	0	0	9			
Introduction	to SMPS - Non-isolated DC-DC converters: Cuk, SEPIC to	pologies, Z-source	converter	- Zet	a conv	erter -		
Analysis an	l state space modeling Concept of volt-second and charge bal	ance – High gain inj	put-parall	el outp	ut-serie	es DC-		
DC converte	r.							
UNIT II	UNIT IISWITCHED MODE POWER CONVERTERS9009							
Isolated DC	Isolated DC-DC converters: Analysis and state space modelling of fly back, Forward, Push pull, Luo, Half bridge and full bridge							
converters-	control circuits and PWM techniques - Bidirectional DC-DC cor	overters.						
UNIT III	RESONANT CONVERTERS		9	0	0	9		
Introduction	- classification- basic concepts- Resonant switch- Load Resonar	nt converters- ZVS,	Clamped	l voltag	ge topol	logies-		
DC link inv	erters with Zero Voltage Switching- Series and parallel Resonant	inverters- Voltage c	ontrol.					
UNIT IV	DC-AC CONVERTERS		9	0	0	9		
Introduction	- Multilevel concept - Types of multilevel inverters - Diode-c	lamped MLI – Flyin	g capacit	ors MI	I – Ca	scaded		
MLI – Case	aded MLI – Applications – Switching device currents – DC link	capacitor voltage b	alancing	– Featu	ires of	MLI –		
Comparison	s of MLI.							
UNIT V	NIT VPOWER CONDITIONERS, UPS, AND FILTERS9009							
Introduction	- Power line disturbances- Power conditioners -UPS: offline U	PS, Online UPS, A	pplication	ns – Fi	lters: V	'oltage		
filters, Serie	s-parallel resonant filters, filter without series capacitors, filter for	or PWM VSI, curren	t filter, D	C filter	s – De	sign of		
inductor and	inductor and transformer for power electronic applications – Selection of capacitors.							
	Total (45L+0T)= 45 Periods							

Text Books:							
Simon Ang, Alejandro Oliva," Power-Switching Converters", Third Edition, CRC Press, 2010.							
M.H. Rashid – Power Electronics handbook, Elsevier Publication, 2001.							
nce Books:							
Ned Mohan, Tore.M.Undeland, William.P.Robbins, "Power Electronics Converters, Applications and Design", 3rd							
Edition, John Wiley and Sons, 2006.							
M.H. Rashid, "Power Electronics circuits, devices and applications", 3 rd Edition, PHI, New Delhi, 2007.							
E-References:							
NPTEL Course: Power Electronics, IIT-B.							
www.cdeep.iitb.ac.in. (Electrical Engineering)							

Course O	uto	comes:	Bloom's Taxonomy
Upon com	Mapped		
CO1	:	Analyze the state space model for DC – DC converters.	L4: Analyzing
CO2	:	Acquire knowledge on switched mode power converters.	L2: Understanding
CO3	:	Outline the PWM techniques for DC-AC converters.	L1: Remembering
CO4	:	Discuss about modern power electronic converters and its applications in electric power utility.	L2: Understanding
CO5	:	Identify the filters and UPS.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	1	2	2			1					2	2	2	1
CO2	1	1	3	2			1					2	3	3	2
CO3	2	2	2	3			1					1	2	2	1
CO4	2	1	1	2			1					2	2	3	2
CO5	1	1	2	1			1					1	2	2	1
Avg.	1.6	1.2	2	2	-	-	1	-	-	-	-	1.6	2.2	2.4	1.4
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

18EEM10 UTILIZATION OF ELECTRICAL ENERGY SEMESTER									
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3		
El a at	ani a al Mara	him a Darman Seletana and Darman Electronian	Harry/Wash	L	Т	Р	ТН		
Elect	incal Mac	nines, Power System, and Power Electronics	Hours/ week	3	0	0	3		
Cour	rse Obje	ctives:			•				
1.	1. To understand the economics of power generation, tariff and energy conservation methods.								
2.	To impa	rt knowledge on principle and design of illumination systems.							
3.	To anal	yze the performance and different methods of electric heating a	and electric welding						
4.	To impa	rt knowledge on electric traction systems and their performance	ce.						
5.	To unde	rstand electric drives for various industrial applications.					-		
UNI	ГΙ	INTRODUCTION		9	0	0	9		
Econo	omics of g	generation – definitions – load duration curve – number and size	ze of generator units	s – Cost o	of elect	rical er	nergy –		
tariff	— availa	bility based Tariff- (ABT) - Battery Energy storage system ((BESS)- Frequency	based en	lergy n	neasure	ement -		
need	for electri	cal energy conservation - methods Introduction to energy au	dit						
UNI	UNIT II ILLUMINATION 9 0 0 9								
Introd	Introduction-nature of radiation – definition – laws of illumination – luminous efficacy-photometry – lighting calculations –								
design	n of illun	nination systems for residential, commercial, street lighting a	nd sports ground-	types of l	lamps -	-incano	lescent		
lamp-	- mercury	vapour fluorescent lamp-energy efficiency lamps types of l	lighting schemes – r	equireme	nts of g	good li	ghting		
UNI	ГШ	HEATING AND WELDING		9	0	0	9		
Introd	luction- c	lassification of methods of heating - requirements of a good	l heating material -	design of	of heati	ing eler	ment –		
tempe	erature co	ntrol of resistance furnace - electric arc furnace -induction	heating - dielectric	heating	 elect 	ric wel	lding –		
resista	ance weld	ing - electric arc welding-electrical properties of arc-application	ons of electric arc w	elding.					
UNI	ΓIV	ELECTRIC TRACTION		9	0	0	9		
Introd	luction –	requirements of an ideal traction system - supply systems - t	rain movement -me	chanism	of train	move	ment –		
tractio	on motors	and control -speed control of three phase induction motor-	multiple unit contro	l – braki	ng – re	cent tre	ends in		
electr	ic traction	1.							
UNI	ΓV	DRIVES AND THEIR INDUSTRIAL APPLICATIO	NS	9	0	0	9		
Electi	ric drive -	-advantages of electric drive-individual drive and group drive	e -factors affecting	selection	of mo	tor – ty	pes of		
loads	loads - steady state -transient characteristics -size of motor- load equalization - industrial applications - modern methods of								
speed	speed control of D.C drives-dynamic braking using thyristors-regenerative braking using thyristors.								
	Total (45L+0T)= 45 Periods								

Text B	Books:
1.	C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy", New Age International Pvt.Ltd, 2003.
2.	Eric Openshaw Taylor, "Utilisation of Electric Energy", English Universities Press Limited, 1937
3.	J.B. Gupta, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, 2002.
Refere	ence Books:
1.	G.C.Garg, S.K.Gridhar&S.M.Dhir, "A Course in Utilization of Electrical Energy", Khanna Publishers, Delhi, 2003.
2.	H. Partab, "Art and Science of Utilization of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2004.
E-Ref	erences:
1.	www.onlinecourses.nptel.ac.in
2.	www.class-central.com
3.	www.mooc-list.com

Course O	uto	comes:	Bloom's Taxonomy
Upon com	olet	ion of this course, the students will be able to:	Mapped
CO1	:	Understand the economics of power generation, tariff and energy conservation methods.	L2: Understanding
CO2	:	Interpret the concept behind illumination and design a suitable illumination system for a specific application.	L3: Applying
CO3	:	Design and choose an appropriate heating method for specific application and gain knowledge about electric welding system.	L4: Analyzing
CO4		Explain the concepts and recent trends of traction system.	L4: Analyzing
CO5	:	Discuss the concepts of electric drives and their characteristics.	L2: Understanding

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	1	1	1	1	2	1	2	2	1	1	1	2	2	3
CO2	2	3	2	3	1	1	2	1	1			1	3	3	2
CO3	3	3	1	3	1	1	2	1					2	2	3
CO4	1	2	2	3	3	1	2	1					2	3	2
CO5	3	1	1	2	1	1	2	1		1		1	2	2	3
CO6	1	3	3	3	3	1	2	2				1	3	3	2
Avg	2.17	2.17	1.67	2.5	1.67	1.17	1.83	1.33	1.5	1	1	1	2.33	2.5	2.5
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

MECHANICAL ENGINEEDING MINOD DECREE

		ENGINEERING THERMODYNAMICS	DEGREE							
18ME	M01	(Use of standard thermodynamic tables, Mollier diagram are pe	rmitted)							
PRE-I	REQUI	SITE: CA	FEGORY	PE	Cr	edit	3			
				L	Т	P	TH			
		Hot	urs/Week	3	0	0	3			
Cours	e Objec	tives:		I		1 1				
1.	1. To impart the knowledge on concepts of zeroth and first law of thermodynamics.									
2.	2. To make the learners to understand the third law of thermodynamics and analyze the various work and heat interactions in closed and open systems.									
3.	To tea	ch properties of pure substance.								
4.	To imp	part knowledge on the concepts of steam power cycle.								
5.	To der	ive thermodynamic relations for ideal and real gases.								
UNIT	I		9	0 0	9					
and heat various	at. First	aw of thermodynamics – application to closed and open systems, ste equipment.	ady flow pro	ocesses	with	refere	nce to			
UNIT	Ш	SECOND LAW AND ENTROPY			9	0 0	9			
Heat er of thes inequal	ngine – F se staten lity, Con	terrigerator – Heat Pump, Second law of thermodynamics – Kelvin's a nents their corollaries. Reversibility and irreversibility. Carnot cyc cept of entropy, principle of increase of entropy, T-s diagram, T-ds equ	and Clausius le, reversed uations, Entro	stateme Carnot opy.	ents-	Equiva le. Cla	alence ausius			
UNIT	Ш	PROPERTIES OF PURE SUBSTANCES			9	0 0	9			
Steam dryness Chart.	- format s fractior	ion and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagra . Calculation of work done and heat transfer in non-flow and flow pro-	ams. PVT successes using \$	urface. Steam 7	Dete Fable	rminat and N	ion of Iollier			
UNIT	Γ IV STEAM POWER CYCLE						9			
Basic 1 combin	Rankine nation cy	cycle, T-s & h-s diagrams - Performance Improvement - Reheat cles.	cycle, reger	nerative	cyc	le and	their			
UNIT	T V IDEAL AND REAL GASES AND THERMO DYNAMIC RELATIONS 9 0 0 9									
Properties of ideal and real gases, equation of state of ideal and real gases, Avogadro's law, Vander Waal's equation of states, Principle of corresponding states, reduced properties and compressibility chart. Exact differentials, Maxwell relations, Specific heat equations, Tds, relations, Clausius Clapeyron equations and Joule Thomson Coefficient.										
			To	tal (45	L)=	45 Pe	riods			

Text B	Text Books:						
1.	Nag. P.K, "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2017.						
2.	Sonntag, R.E., Borgnakke, C., and Van Wylen, G.J., Fundamentals of Thermodynamics, 6th ed., John Wiley, 2003.						
3.	Arora C.P, "Thermodynamics", Tata McGraw Hill, New Delhi, 2003.						
4.	Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.						

Reference Books:							
1.	Cengel, "Thermodynamics- An Engineering Approach", 3rd Edition, Tata McGraw Hill, 2015.						
2.	Merala C, Pother, Craig W and Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGrawHill, New Delhi, 2004.						

COUI Upon	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the concepts of zeroth, first and second law of thermodynamics.	Remember
<i>CO2</i>	Analyze the various work and heat interactions for different types of processes for closed and open systems	Evaluate
СО3	Evaluate the different properties of pure substances using steam tables and Mollier chart	Evaluate
<i>CO4</i>	Analyze the performance of steam power cycle.	Analyze
<i>C05</i>	Derive thermodynamic relations for ideal and real gases.	Analyze

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2			1					1	3	1	1
CO2	3	3	2	2			1					1	3	1	1
CO3	3	3	3	2		1	1					1	3	1	1
CO4	2	3	2	2		1	1					1	3	1	1
CO5	3	3	2	2		1						1	3	1	1
Avg	2.8	3	2.2	2		1	1					1	3	1	1
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

licates strength of correlation (3 – High, 2- Medium, 1- Low) 3/2/1

PRE-RE							
1	PRE-REQUISITE: CATEGORI FE						
I.Enginee	ering Pl	nysics		L	Т	Р	TH
2.Enginee	ering C	hemistry	Hours/Week	3	0	0	3
3.Enginee	3.Engineering Mathematics						
Course (Object	ives:					
1. To understand the basic concepts and properties of fluids.							
2. 7	To anal	yze the kinematic and dynamic concepts of fluid flow.					
3. Т	To und	erstand the various incompressible fluid flow through pipes ar	nd between parallel p	lates.			
4. Т	To appl	y the principles of fluid mechanics to design and operation of	hydraulic turbines.				
5. T	Го appl	y the principles of fluid mechanics to design and operation of	hydraulic pumps.				
UNIT I		INTRODUCTION AND FLUID STATICS			9	0	09
Basic con relative de Archimed	ncepts a ensity, les' prin	and units of measurement of physical quantities- Classificati vapour pressure, surface tension, Capillarity and viscosity. Flu nciple.	on of fluids - Prope id statics- hydrostati	erties of c pressu	fluid re, bu	s – d ioyai	lensity ncy and
UNIT II	TII FLUID KINEMATICS AND DYNAMICS						
streamline application dimension	e, pathl ons. Flonation	ine, streakline and timeline. Velocity potential function and uid dynamics - Bernoulli's equation and its applications. Dir nogeneity, similarity-laws and models.	rian description for f Stream function - co nensional analysis –	ontinuity Buckir	w - fio / equa ighan	ow p ation 1's th	atterns and its eorem
UNIT II	Ι	FLOW THROUGH PIPES AND PLATES			9	0	0 9
Incompress through pi energy lir transmissi separation	ssible i ipes an ne, hyc ion-Bo n.	fluid flow-Laminar flow- Hagen-Poiseuille equation, shear d flow between parallel plates. Turbulent flow – flow through hraulic gradient line, flow through pipes in series and par undary layer flows - Boundary layer thickness, momentum	stress, pressure grad pipes, friction factor allel- Moody's fric thickness, energy t	dient re rs in turl tion fac hicknes	lation oulent tor c s-bou	ship flov hart. ndar	- flow - tota Powe y laye
UNIT IV	V	HYDRAULIC TURBINES			9	0	0 9
Hydraulic curves for specific sp	e turbin r Pelto peed de	es classification-impulse and reaction turbines-Working Prin n, Francis and Kaplan turbines (Only descriptive) - Compar- gree of reaction -draft tubes.	ciple, work done-eff rison between impu	ïciency lse and	and preact	perfo ion t	rmance urbine
UNIT V		HYDRAULIC PUMPS			9	0	0 9
Classificat priming(C performan	Classification of hydraulic pumps- Centrifugal pumps - working principle, specific speed, performance curves and priming(Only descriptive) - Reciprocating pumps - classification, working principle, indicator diagram, air vessels and performance curves. Cavitation in pumps (Only descriptive) - Working principles of gear and vane pumps.						
Total (45L)= 45 Periods							

Text B	ooks:
1.	Bansal, R.K., "A Textbook of Fluid Mechanics and Hydraulic Machines, 9th Ed", Laxmi Publication Pvt Ltd, 2010.
2.	Rajput, R.K., "A Textbook of Fluid Mechanics and Hydraulic Mechanics", S.Chand and Company Ltd, 2011.
3.	Subramanya. K., "Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Publishing Company Ltd, 2011.

Refere	ence Books:
1.	White, "Fluid Mechanics, 8 Ed", McGraw Hill India, 2017.
2.	Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics 8 th Edition", Wiley, 2016.
3.	Yunuscengel, John. M.cimbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill, 2017.
4.	Som, S.K, Biswas.G and SumanChakraborty, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill India, 2011.
5.	Dr.P.N.Modi, Dr.S.M.Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard book house, 2018.
E-Refe	rences:
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on fluid mechanics.

COURS Upon co	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Understand the basic concepts and properties of fluids.	Remember					
<i>CO2</i>	Analyze the kinematic and dynamic concepts of fluid flow.	Analyze					
СО3	Understand the various incompressible fluid flow through pipes and between parallel plates.	Understand					
<i>CO4</i>	Apply the principles of fluid mechanics to design and operation of hydraulic turbines.	Apply					
<i>C05</i>	Apply the principles of fluid mechanics to design and operation of hydraulic pumps.	Apply					

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1				2				1		2	2	1
CO2	3	3	1		2								2	2	1
CO3	2	3	2	2	1								2	2	1
CO4	3	3	3	2	1	2	1						2	2	1
CO5	3	3	3	2	1	2	1						2	2	1
Avg	2.8	2.6	2	2	1.25	2	1.3				1		2	2	1
	•	3/2/	/1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	2- Meo	dium, 1-	- Low)	•	•

18MI	EM03											
PRE	REQUI	SITE:	CATEGORY	PE	Cre	edit	3					
1. 2.	Basic s Engine	cience, Engineering mathematics, Engineering Physics ering Materials	Hours/Week	L	Т	Р	ТН					
				3	0	0	3					
Course Objectives:												
1.	Image: To make the students familiarize with various manufacturing processes and fabrication techniques of metals and design of casting.											
2.	2. To develop design concepts of various manufacturing processes.											
3.	Gain kno	owledge to select appropriate manufacturing processes for variou	us parts.									
4.	To deve	op an entrepreneur skill among the students.										
5.	To evalu	ate and select plastic deformation processes for various parts.										
UNI	ΓI	CASTING			9	0	09					
Concepts of Manufacturing Process -Sand casting -Patterns – Design of Pattern, mould and cores- gating and risering design, solidification time calculation - Moulding machines - Core making. Special moulding processes – CO2 moulding; shell moulding, investment moulding, pressure die casting, centrifugal casting, casting defects.												
UNI	NIT II WELDING											
Classi subme beam	fication or erged arc v welding, l	f welding processes. Principles of Oxy-acetylene gas weldin welding, tungsten inert gas welding, metal inert gas welding, pla aser beam welding, defects in welding, Soldering and Brazing, A	g. Metal arc weld asma arc welding, t Adhesive Bonding.	ing, re hermit	sistan weldi	ce w ng, e	elding, lectron					
UNIT	T III	METAL FORMING			10	0	0 10					
Metal proces operat Princi	lurgical as sses, Hot v ions. Roll ple of rod	pects of metal forming, slip, twinning mechanics of plastic defor vorking and cold working of metals, Forging processes – open, ing of metals– Types of Rolling mill – Flat strip rolling – shape and wire drawing – Tube drawing – Principles of Extrusion – T	mation, load estima closed and impress rolling operations ypes.	ition of ion die – Defe	bulk forgi cts in	defor ng – 1 rolleo	mation forging d parts.					
UNI	T IV	SHAPING OF PLASTICS			8	0	0 8					
Types and ty Film princi	of plastic pical appl blowing - ples and ty	s - Characteristics of the forming and shaping processes – Mould ications of - Injection moulding – Plunger and screw machines - Extrusion - Typical industrial applications – Thermoformin /pical applications - Compression moulding – Transfer moulding	ling of Thermoplast – Blow moulding g – Processing of g.	ics – W – Rota Therm	Vorkin tional losets	ng pri mou – W	nciples lding – ⁷ orking					
UNI	Γ	SHEET METAL FORMING AND POWDER META	LLURGY		9	0	09					
Forma of pre compa	bility of S esses used acting tech	Sheet Metal, load estimation of sheet metal processes - Shearing , Super Plastic forming; Introduction to Powder Metallurgy- niques, Advantages, limitations and applications of powder met	g, Deep drawing, B - Principal steps in allurgy.	ending nvolvec	opera 1 – s	ations interi	- types ng and					
			Tot	al (45	L) =	45 P	eriods					
Text	Books:											
1.	Hajra Mumb	Choudhury, "Elements of Workshop Technology", Vol. I and II, ai, 2005.	Media Promoters a	nd Pub	lishe	rs Pvt	., Ltd.,					

2. NagendraParashar B.S. and Mittal R.K., "Elements of Manufacturing Processes", Prentice-Hall of India Private Limited, 2007.

Reference Books:

1.	Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials", 4/e, Pearson Education, Inc. 2007.								
2.	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001.								
3.	"H.M.T. "Production Technology – Handbook", Tata McGraw-Hill, 2000.								
4.	Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000.								
5.	Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.								
E-Refe	E-References:								
1.	https://fdocuments.in/document/production-technology-55844cac00bfc.html?page=40								

COUR Upon co	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Describe the operational features of various casting processes, design gate and riser and discover various defects in casting.	Understand
<i>CO2</i>	Explain various metal joining processes and compare them.	Understand
СОЗ	Summarize several types of metal forming processes and select suitable method for different applications.	Analyze
<i>CO4</i>	Analyze various manufacturing methods for plastics and their needs in industry.	Analyze
<i>C05</i>	Describe various sheet metal forming processes, load estimation calculation and principles of powder metallurgy	Understand

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1						1			1	2	1
CO2	2	1	2	1		1			1	1			1	2	1
CO3	1	1	1	1						1			1	1	1
CO4	1	1	1		1					1			1	1	1
CO5		1							1	1			1		1
Avg	1.5	1	1.5	1	1	1			1	1			1	1.5	1
	•	3/2/	′1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	, 2- Mee	dium, 1	- Low)		

18ME	M04									
PRE-F	REQU	SITE:	CATEGORY	PE	Cre	dit	3			
1.	Engin	eering Physics		L	Т	Р	ТН			
2.	Engin	eering Chemistry	Hours/Week	3	0	0	3			
Course	e Obje	ctives:			1		1			
1.	1. To impart concept on reactions, treatment, microstructure and mechanical behavior of engineering materials at different temperature.									
2.	To lea	rn basic principles in metallurgy and materials engineering.								
3.	To ide	entity and select suitable engineering materials based on their application	ons.							
UNIT		9	0	0	9					
Crystal structures, Phases, solid solution types, compounds, Hume- Rothery rules; Gibb's phase rule; Binary isomorphous alloy systems – Eutectic, Eutectoid, Peritectic systems. Lever rule, Equilibrium and non-equilibrium cooling, Fe-C Equilibrium diagram - effects of alloying elements – Ferrite and Austenite Stabilizers, TTT and CCT diagrams.										
UNIT	II		9	0	0	9				
Definition – Full annealing, stress relief, recrystallisation and spheroidizing –normalizing, hardening and Tempering of steel. Isothermal transformation diagrams – cooling curves superimposed on I.T. diagram CCR - Hardenability, Jominy end quench test – Austempering, martempering – case hardening, carburising, nitriding, cyaniding, carbo-nitriding – Flame and Induction hardening. Heat treatment of non-ferrous alloys - precipitation hardening. Heat treatment of HSS tools, gears, springs and gauges.										
UNIT	III	FERROUS AND NON FERROUS METALS		9	0	0	9			
Plain ca precipit alloys –	arbon st ation ha - Brass,	eels – Tool steels - maraging steels – HSLA steels .Stainless steels- ferr ardened stainless steels. Types of Cast Irons- Gray cast iron, white cast Bronze and Cupronickel, Aluminium alloys, Bearing alloys.	itic and Austenitic iron, malleable ca	, marte st iron,	nsitic, S.G.Ir	duple on. C	x and opper			
UNIT	IV	MECHANICAL PROPERTIES AND TESTING		9	0	0	9			
Mechan Fracture its effec	nical pro e - Type ets – tes	operties of engineering materials - Mechanisms of plastic deformation as of fracture – Testing of materials - tension, compression and shear lo ting for hardness (Brinell, Vickers and Rockwell) - Impact test - Izod a	n, slip and twinnin ads - fatigue and c nd Charpy.	ng – C reep te	reep, F sts – ha	atigu Irdnes	e and ss and			
UNIT	V	NON DESTRUCTIVE TESTING AND SURFACE ENGIN	IEERING	9	0	0	9			
Non De Inspecti method	estructi ion and s, high	ve Testing: Basic principles - Testing method - Radiographic testi Liquid Penetrant Inspections. Introduction to surface engineering - D and low energy beam methods, surface engineering charts, elastic conta	ng, Ultrasonic tes Definition, diffusio act mechanics.	sting, 1 n techr	Magnet niques,	tic Pa depo	article sition			
			Tot	al (45	L) = 4	5 Pe	riods			
Text B	ooks:									
1.	Ke	nneth G. Budinski and Michael K. Buinski, "Engineering Materials", P	rentice Hall of Ind	lia Ltd,	2002.					
2.	Ra	ghavan, V, "Materials Science and Engineering", Prentice Hall of India	a (P) Ltd., 1999.							
3.	As	vani.K.G, "A Text Book of Material Science", S.Chand and Co. Ltd., 1	New Delhi, 2001.							

4. Khanna O.P., "A Text Book of Materials Science and Metallurgy", DhanpatRai Sons, 2004. **Reference Books:**

Reference	
1.	William. D.Callsber, "Material Science and Engineering", John Wiley and Sons, 1997.
2.	Sydney.H.Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994.

COUR Upon co	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the formation of materials and their classification based on atomic structure.	Understand
<i>CO2</i>	Understand the principles of various heat treatment processes in fabrication industry.	Understand
СОЗ	Describe properties, applications and types of various ferrous and non-ferrous metals used in fabrication industry	Understand
<i>CO4</i>	Describe various types of failure and select methods for destructive testing	Understand
<i>C05</i>	Select methods for non destructive testing	Evaluate

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	1	1	1						2	3	1
CO2	1		2	1	1	2	1						2	3	1
CO3		1	1	1	1		1						3	2	1
CO4		2	2	1	1	1	1						2	3	1
CO5		2	2	2	1		1						2	2	1
Avg	1	1.5	1.8	1.4	1.0	1.3	1						2.2	2.6	1.0
	•	3/2/	/1 – in	dicat	es str	ength	of co	rrelati	on (3	– High,	, 2- Mee	dium, 1	- Low)	•	•

18MEM05 KINEMATICS OF MACHINERY												
PRE-F	REQUIS	SITE:	CATEGORY	PE	Cr	edit		3				
1. Engi	neering g	raphics. 2.Engineering Mechanics	Harry (Weals	L	Т	Р	r	ГН				
			Hours/ week	3	0	0		3				
Course	e Objec	tives:			•							
1.	To und	erstand the basic components and layout of linkages in the assem	bly of a system/ ma	chine.								
2.	2. To understand the principles in analyzing the assembly with respect to the displacement, velocity, and acceleration at any point in a link of a mechanism.											
3.	To und	erstand basics of cam profile and its displacement.										
4.	To und	erstand the basic concepts of toothed gearing and kinematics of g	ear trains.									
5.	5. Illustrate the effects of friction drives in transmission system.											
UNIT	I	BASICS OF MECHANISMS			9	0	0	9				
Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider-crank chains Limit positions- Mechanical advantage - Transmission angle- Description of some common mechanisms- Quick return mechanism, straight-line generators.												
UNIT	II	KINEMATIC ANALYSIS			9	0	0	9				
Displac centres of accel	ement, v - kinema leration i	elocity and acceleration analysis of simple mechanisms, graph tic analysis of simple mechanisms- slider-crank mechanism dynam ntroduction to linkage synthesis three Position graphical synthesis	ical velocity analy nics Coincident poi s for motion and pa	sis usi nts- Cc th gene	ng in prioli eratio	nstant s com on.	ane poi	ous nent				
UNIT	III	KINEMATICS OF CAM			9	0	0	9				
Classifi simple l pressure	cation of harmonic e angle a	cams and followers- Terminology and definitions- Displaceme and cycloidal motions- derivatives of follower motions- specifie and undercutting, sizing of cams, graphical method for cam profile	ent diagrams- Unifo ed contour cams cir e design.	orm ve cular a	locit nd ta	y, par ngent	abo ca	olic, .ms-				
UNIT	IV	GEARS AND GEAR TRAINS			9	0	0	9				
Involute ratio an	e and cyo d interfe	cloidal gear profiles, gear parameters, fundamental law of gearir rence / undercutting- helical, bevel, worm, rack & pinion gears, e	ng and conjugate a	ction, s r gear t	spur rain	gear o kinen	con nati	tact cs.				
UNIT	V	FRICTION IN MACHINE ELEMENTS			9	0	0	9				
Surface Clutche	contacts s- belt ar	- sliding and rolling friction- friction drives- friction in screw t ad rope drives.	hreads – bearings a	and lub	oricat	ion- f	fric	tion				
Total (45L) = 45 Periods												
Text B	ooks:											
1.	Rattan	S.S, "Theory of Machines", Tata McGraw Hill Publishing Compa	any Ltd., New Delh	i, 1998								

2.	Ghosh, A and Mallick, A.K, "Theory of Mechanisms and Machines", East-West Pvt. Ltd., New Delhi, 1988.
Refere	nce Books:
1.	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.
2.	Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.

3.	Erdman AG and Sandor G N, "Mechanism Design, Analysis and Synthesis", Vol.I, PHI Inc., 1997.
4.	Ambekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.
5.	John Hannah and Stephens R C, "Mechanisms of Machines", Viva Low Price Student Edition, New Delhi, 1999.
E-Refe	erences:
1.	https://archive.nptel.ac.in/courses/112/104/112104121/
2.	https://nptel.ac.in/courses/112106270
3.	http://velhightech.com/Documents/ME8492 Kinematics of Machinery.pdf

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Demonstrate and understand the concepts of various mechanisms and pairs.	Apply			
<i>CO2</i>	Analyze the velocity and acceleration of simple mechanisms.	Analyze			
СОЗ	Construct the cam profile for various motion.	Create			
<i>CO4</i>	Solve problems on gears and gear trains.	Evaluate			
<i>C05</i>	Evaluate the friction in transmission system	Evaluate			

COURSE A	ARTIO	CULA	TIO	N MA	TRIX	K									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1									3	1	
CO2	3	2	2	1									3	1	
CO3	3	2	2	1									3	1	
CO4	3	2	2	1									3	1	
CO5	3	2	2	1									3	1	
Avg	3	2	2	1									3	1	
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

PRE-REQUISITE: CATEGORY PE Credit 3 Iburs/Week L T P TH Hours/Week L T P TH 3 0 0 3 3 Course Objectives:	18MI	E M06	HYDRAULICS AND PNEUMATICS						
Hours/Week L T P TH 3 0 0 3 Course Objectives:	PRE-	REQUIS	SITE:	CATEGORY PE					
Hours/ week 3 0 0 3 Course Objectives: 1. To enable the students understand the basics of hydraulic and pneumatics . 2. Applying the working principles of hydraulic actuators and control components. . 3. Designing and develop hydraulic circuits and systems. . 4. Applying the working principles of pneumatic power system and its components. . 5. Solving problems and troubles in fluid power systems. . UNIT I FUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications – Fluid power systems – Types of fluids - Properties of Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Clinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems.				TT /XX / 1 -	L	Т	Р	ТН	
Course Objectives: 1. To enable the students understand the basics of hydraulics and pneumatics 2. Applying the working principles of hydraulic circuits and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems. Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 10 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic oncortol, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0				Hours/ week	3	0	0	3	
1. To enable the students understand the basics of hydraulics and pneumatics 2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems. Problems. Disdvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic notors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 9	Cour	se Objec	tives:		1				
2. Applying the working principles of hydraulic actuators and control components. 3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pncumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic solver, Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 4 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0	1.	To enabl	e the students understand the basics of hydraulics and pneumatic	CS					
3. Designing and develop hydraulic circuits and systems. 4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque – Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Operation – Accessorics; Reservoirs, Pressure Switches – Filters – types and selection - Application, E-Pluid Power ANSI Symbols – Problems. 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 Accumulators, Intensifier, Andustrial hydraulic circuits – Regenerative, Pump Unloading, D	2.	Applying	g the working principles of hydraulic actuators and control comp	oonents.					
4. Applying the working principles of pneumatic power system and its components. 5. Solving problems and troubles in fluid power systems. UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulic power, Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Ait-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0	3.	Designir	g and develop hydraulic circuits and systems.						
5. Solving problems and troubles in fluid power systems. 9 0 0 9 INTO I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power - Advantages and Applications - Fluid power systems - Types of fluids - Properties of Hydraulic power; Pumping Theory - Pump Classification - Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps - Fixed and Variable displacement pumps - Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic cushioning - Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves - Types, Construction and Operation - Accessories; Reservoirs, Pressure Switches - Filters - types and selection - Applications - Fluid Power ANSI Symbols - Problems. 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits - Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits - Servo and Proportional valves - Applications - Mechanical, hydraulic servo systems. 9 0 0 9 0 0	4.	Applyin	g the working principles of pneumatic power system and its com	ponents.					
UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS 9 0 0 9 Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power; Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT II HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 0 0 9 0	5.	Solving	problems and troubles in fluid power systems.						
Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque - Problems, Sources of Hydraulic power: Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems. UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Sthaust Valves, Pneumatic a	UNIT	ΓI	FLUID POWER PRINICIPLES AND HYDRAULIC	PUMPS		9	0	09	
UNIT II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 0 0 9 0 0 9 Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits roblems, Introduction to fluidies and pneumatic logic circuits. 9 <th>Proble Advar Proble</th> <th>ems, Sour ntages, D ems.</th> <th>ces of Hydraulic power; Pumping Theory – Pump Classifi isadvantages, Performance, Selection criteria of pumps – Fi</th> <th>ication – Construct xed and Variable</th> <th>ction, V displac</th> <th>Vorki emen</th> <th>ng, I t pu</th> <th>Design, mps –</th>	Proble Advar Proble	ems, Sour ntages, D ems.	ces of Hydraulic power; Pumping Theory – Pump Classifi isadvantages, Performance, Selection criteria of pumps – Fi	ication – Construct xed and Variable	ction, V displac	Vorki emen	ng, I t pu	Design, mps –	
Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary actuators - Hydraulic motors - Control Components : Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories; Reservoirs, Pressure Switches – Filters – types and selection - Applications – Fluid Power ANSI Symbols – Problems. UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification – single cylinder and multi cylinder circuits roblems, Introduction to fluidics and pneumatic logic circuits. 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 <	UNIT	T II	HYDRAULIC ACTUATORS AND CONTROL COM	IPONENTS		9	0	09	
UNIT III HYDRAULIC CIRCUITS AND SYSTEMS 9 0 0 9 0 0 9 Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. 9 0 0 9 UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9<	motor Opera Symbo	s - Contro tion – Acc ols – Prob	l Components : Direction Control, Flow control and pressure essories; Reservoirs, Pressure Switches – Filters – types and se lems.	control valves – '	Types, ons – F	Cons luid I	tructi Powe	on and ANSI	
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double - Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits – Servo and Proportional valves – Applications - Mechanical, hydraulic servo systems. UNIT IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS 9 0 0 9 Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, Iadder diagram, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatics components. A implementic circuits A implementic circuits	UNIT	T III	HYDRAULIC CIRCUITS AND SYSTEMS			9	0	09	
UNIT IVPNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS9009Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits.9009UNIT VDESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatics components.9009Total (45L) = 45 Periods	Accur Intens of hyd Mecha	nulators, ifier, Air-o Iraulic sys anical, hyc	Intensifiers, Industrial hydraulic circuits – Regenerative, Pun over oil, Sequence, Reciprocation, Synchronization, Fail - Safe, tems, Hydrostatic transmission, Electro hydraulic circuits – Ser raulic servo systems.	np Unloading, De Speed Control, Dec vo and Proportiona	ouble - celeration l valve	Pun on cir s – Aj	np, P cuits, pplica	ressure Sizing ations -	
Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits. UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits using hydraulic and pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components.	UNIT	T IV	PNEUMATIC AND ELECTRO PNEUMATIC SYST	EMS		9	0	09	
UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING 9 0 0 9 Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components. Total (45L) = 45 Periods	Proper Exhau - Casc proble	Properties of air – Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – classification - single cylinder and multi cylinder circuits - Cascade method – Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits problems, Introduction to fluidics and pneumatic logic circuits.							
Servo systems, Hydro mechanical servo systems, electro hydraulic servo systems and proportional Valves, Introduction to electro hydraulic pneumatic logic circuits, ladder diagrams, PLC applications in fluid power control. Fluid power circuits, failure and troubleshooting. Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low cost Automation – Hydraulic and Pneumatic power packs. Case studies: A simple sequence, synchronize circuits using hydraulic and pneumatics components. Total (45L) = 45 Periods	UNIT V DESIGN OF FLUID POWER CIRCUITS AND TROUBLESHOOTING						0	09	
Total (45L) = 45 Periods	Servo electro failure – Low using	systems, b hydraulic c and troub c cost Aut hydraulic	Hydro mechanical servo systems, electro hydraulic servo system c pneumatic logic circuits, ladder diagrams, PLC applications in eleshooting. Design of Pneumatic circuits for metal working, has comation – Hydraulic and Pneumatic power packs. Case studie and pneumatics components.	ns and proportiona n fluid power contr ndling, clamping co s: A simple sequer	l Valve ol. Flu ounter a	s, Int id pov and tin achro	roduc wer c mer c nize (tion to ircuits, ircuits. circuits	
Total (45L) = 45 Periods									
		Total (45L) = 45 Periods							

Text B	ooks:
1.	Manjumdar S.R, "Oil Hydraulics", Tata McGraw-Hill, December 2002.

2.	Anthony Esposito, "Fluid Power with Applications", Pearson Education 2013.
Refere	ence Books:
1.	Andrew Parr, "Hydraulic and Pneumatics", Jaico Publications House, 2005.
2.	Bolton W. "Pneumatic and hydraulic system", Butterworth-Heinemann 1997
3.	Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 2010
4.	Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006
5.	Srinivasan.R. "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008.
E-Refe	erences:
1.	http://www.fluidpowerjournal.com
2.	http://14.139.160.15/courses/112102011/2
3.	https://www.nfpa.com/home.htm

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Select the components as per the application	Evaluate			
<i>CO2</i>	Apply the working principles of hydraulic actuators and control components.	Apply			
СО3	Design and develop hydraulic circuits and systems.	Create			
<i>CO4</i>	Apply the working principles of pneumatic power system and its components.	Apply			
<i>C05</i>	Solve problems and troubles in fluid power systems.	Evaluate			

COURSE A	ARTI	CULA	TIO	N MA	TRIX	K									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1										1	1	1
CO2		2	2	1									1	1	1
CO3	1	2	3			1							1	2	1
CO4	1	1	3	2	2								2	1	1
CO5	1	1	2										1	1	1
Avg	1.25	1.4	2.2	1.5	2	1							1.2	1.2	1
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

18M	18MEM07 DESIGN OF MACHINE ELEMENTS						
PRE	REQUIS	SITE:	PE	Cre	edit	3	
1.	Student	should study engineering mechanics.	Houng/Wools	L	Т	Р	ТН
2.	Studen	should study kinematic of machinery.	Hours/ week	3	0	0	3
Cour	se Objec	tives:					
1.	Understa	nding of background in mechanics of materials and design of	of machine componen	nts.			
2.	An unde consider	erstanding of the origins, nature and applicability of eations	empirical design pri	inciples,	based	l on	safety
3.	An unde	rstanding the design of shafts and couplings.					
4.	Familiar	ze the design of energy storing elements and engine compo	nents.				
5.	An appr performa	eciation of the relationships between component level de	esign and overall ma	achine sy	rstem	desi	gn and
UNI	ſI	STEADY STRESSES AND VARIABLE STR MEMBERS	RESSES IN MA	CHINE	9	0	0 9
Introd based Calcu stress	luction to t on mecha lation of p concentrat	he design process – Product development cycle- factors inf nical properties - Preferred numbers– Direct, Bending and rinciple stresses for various load combinations, eccentric le ion – design for variable loading – Soderberg, Goodman and	luencing machine des Torsional stress – Ir oading – Factor of s d Gerber relations.	sign, sele npact and afety -the	ction l shoc cories	of m xk loa of fa	aterials ading – ailure –
UNI	ГП	DESIGN OF SHAFTS AND COUPLINGS			9	0	09
Desig rigid a	n of solid and flexible	and hollow shafts based on strength, rigidity and critical spe e couplings.	eed – Design of keys	and key	ways	- De	sign of
UNI	ГШ	DESIGN OF THREADED FASTENERS, RIV JOINTS	YETED AND WI	ELDED	9	0	0 9
Threa vessel	ded fasten s and struc	ers - Design of bolted joints including eccentric loading – E etures- theory of bonded joints.	Design of riveted and	welded j	oints	for p	ressure
UNI	UNIT IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS					0	09
Various types of springs, optimization of helical springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines- Connecting rods and crank shafts.			id arms				
UNIT VDESIGN OF BEARINGS900					09		
Slidin Conta	Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number - Selection of Rolling Contact bearings.						
			Т	otal (45	L) =	45 P	eriods

Text B	Text Books:					
1.	Bhandari V.B, "Design of Machine Elements", Tata McGraw Hill Book Co, 2020					
2.	Md.Jalaludeen.S, "A text book of Machine Design", Anuradha Publications, 2006					
Refere	ence Books:					
1.	Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.					
2.	Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.					

3.	Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.
4.	PSG Tech, "Design Data Handbook", M/s.DPV Printers, Coimbatore, 2009
E-Refe	erences:
1.	https://nptel.ac.in/courses/112105124
2.	Design of Machine Elements - V. B. Bhandari - Google Books
3.	A Textbook of Machine Design by R.S.Khurmi And J.K.Gupta [tortuka] 1490186411865.pdf DocDroid

COU On co	RSE OUTCOMES: ompletion of the course the student will be able to	Bloom's Taxonomy Mapped				
C01	<i>CO1</i> Understand the influence of steady and variable stresses in machine component design.					
<i>CO2</i>	Apply the concepts of design to shafts, keys and couplings.	Apply				
СОЗ	Familiarize the design of temporary and permanent joints.	Understand				
<i>CO4</i>	Design the various energy storing elements and engine components.	Analyse				
<i>C05</i>	Familiarize the design of various types of bearings.	Understand				

COURSE .	ARTI	CUL	ATIO	N MA	ATRI	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2		1	1				1		3	2	1
CO2	2	2	1	2		1	1				1		3	2	1
CO3	2	2	1	2		1	1				1		3	2	1
CO4	2	2	1	2		1	1				1		3	2	1
CO5	2	2	1	2		1	1				1		3	2	1
Avg	2.0	2.0	1.0	2.0		1.0	1.0				1.0		3.0	2.0	1.0
		3/2/	/1 – in	ndicat	es str	ength	of con	relati	on (3 -	– High,	2- Med	lium, 1-	Low)		

PREREQ 1.The laws 2. The conc COURSE 1. Un	and l cept c	ITES basic concepts of thermodynamics	CATEGORY	PE	Cre	edit	3				
1. The laws2. The concCOURSE1.Un	and l cept c	basic concepts of thermodynamics		REREQUISITES CATEGORY FE							
2. The concCOURSE1.	cept o	The laws and basic concepts of thermodynamics Hours/Week									
COURSE	OB	energy transfers and their conversion principles	Hours/Week	3	0	0	3				
1. Un		JECTIVES		11							
	nderst	anding the science behind conduction heat transfer and its applica	tions.								
2. Differentiating the concepts of forced and natural convection heat transfer.			ſ.								
3. De	escrib	ing the laws and concepts of radiation heat transfer.									
4. Ur	nderst	anding phase change processes and analyzing heat exchangers.									
5. Stu	. Studying the concept of mass transfer process and its modes.										
UNIT-J	9	0	0	9							
charts.	I	CONVECTION HEAT TRANSFER		9	0	0	9				
Conservation	on eq	uations, boundary layer concept – Forced convection: external flux	ow – flow over pl	ates, cy	linde	ers, sp	heres				
Free conve	ction	-flow over vertical plate, horizontal plate, inclined plate, cylinder	s and spheres.								
UNIT-II	Π	BOILING, CONDENSATION AND HEAT EXCHANG	FERS	9	0	0	9				
Regimes of Exchanger	f Pool types	boiling and Flow boiling, Nusselt's theory of condensation- corr - Overall Heat Transfer Co-efficient – Fouling Factors. LMTD a	elations in boiling nd NTU methods.	and con	dens	ation.	Heat				
UNIT-I	UNIT-IV RADIATION HEAT TRANSFER						9				
Radiation la	aws -	Black Body and Gray body Radiation - Shape Factor - Electrical	Analogy -Radiatio	n Shield	ls.						
UNIT-V	V	MASS TRANSFER		9	0	0	9				
Basic Conc diffusion. F	epts - Basic	- Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state Convective Mass Transfer Problems.	e Molecular Diffus	ion - Eq	uimo	olal co	unter				
			Tot	al(45L)) = 4	5 Pe	riods				

ТЕХТ	BOOKS:						
1	R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2017						
2	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, 2014.						
REFE	REFERENCE BOOKS:						
1	Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5 th Edition - 2013						
2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2017						
3	Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012						
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.						

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Analyze the mechanism of heat conduction under steady and transient conditions.	Apply
<i>CO2</i>	Develop solutions to problems involving convective heat transfer.	Create
СО3	Design a heat exchanger for any specific application.	Understand
<i>CO4</i>	Adopt the concept of radiation heat transfer in real time systems.	Understand
<i>C05</i>	Develop solutions to problems involving combined heat and mass transfer.	Apply

COURSE	ART	ICUL	ATIO	ON MA	ATRI	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2		1						3	3	1
CO2	3	3	3	3	2		1						3	3	1
CO3	3	3	3	3	2		1						3	3	1
CO4	3	3	3	3	2		1						3	2	1
CO5	2	2	2	2	1		1						3	1	
Avg	2.8	2.8	2.8	2.8	1.8		1						3	2.4	1
	•	3/2/	/1 – in	dicat	es str	ength	of con	rrelati	on (3	– High,	2- Med	lium, 1-	Low)	•	

18MEM09	METROLOGY AND QUALITY CONTR	OL					
PREREQUIS	ITES	CATEGORY	PE	Cr	edit		3
			L	Т	Р	,	ГН
		Horus/Week	3	0	0		3
COURSE OF	JECTIVES				I		
1.	Explaining the importance of measurements in engineering and compute measurement uncertainty	the factors affecting	g measu	Irem	ents a	and	to
2.	Applying the applications of linear and angular measuring instr	uments					
3.	Interpretation of various tolerance symbols.						
4.	Applying the SQC methods in manufacturing.						
5.	Applying the advances in measurements for quality control.						
UNIT-I		9	0	0	9		
system - mechai used terms, erro	nical loading – static characteristics of instruments – factors consider analysis and classification - sources of error. Measurement unce	rtainty.	instrum	ed n ents	- con	nmo	only
UNIT-II	CALIBRATION OF INSTRUMENTS AND QUALITY	Y STANDARDS		9	0	0	9
Calibration of r feeler gauges, d 9000 quality sta	neasuring instruments - principles of calibration, Calibration of lial indicator, surface plates, slip gauges, care of gauge blocks. Ge indards. Comparators- mechanical, electrical, optical and pneumat	Instruments - Verni eneral cares and rule ic.	er calij es in m	per, l easu	Micro reme	ome nt, 1	eter, ISO
UNIT-III	GEOMETRICAL MEASUREMENT AND MACHINE	E ELEMENTS		9	0	0	9
Angular measur principle, three measurement o errors, base pito Inspection of st	rement - optical protractors, sine bar, roundness measurement, li basic types of limit gauges, Tomlinson surface meter, compu f major, minor and effective diameters. Gear terminology; spur ch measurement. Principle of interferometry, laser interferometer raightness, flatness, roundness deviations.	mit gauge, design o tter controlled CM gear measurement, , Machine vision, I	of plug M. IS(checki Fundam	gau D me ng o enta	ge, T etric of con 1 of (`ayl thro npc GD	or's ead, osite &T.
UNIT-IV	STATISTICAL QUALITY CONTROL			9	0	0	9
Surface finish - Quality Control	 terminology and measurements – Optical measuring instruments Control charts - Sampling plans. 	Acceptance test f	for mac	hine	s. Sta	atist	ical
UNIT-V	SIX SIGMA			9	0	0	9
Six sigma: Defi Control chart, S Analysis, Hypo	ne measure, analyse, improve and control phases. Analyze phase t Scatter chart, Cause and effect diagram, Pareto analysis, interrel thesis Testing, ANOVA Multi variate analysis.	ools: CommonTool ations diagram. Sp	s: Histo ecial To	ograi pols:	m, Bo Reg	ox F ress	Plot, sion
		Tot	al(45L	.) =	45 P	eri	ods

TEXT	BOOKS:									
1	Gupta.I.C, —A text book of Engineering Metrology, Dhanpat Rai publications, New Delhi, 2018									
2	Beckwith.T.G, Roy D. Marangoni, John H. Lienhard, - Mechanical Measurements, Prentice Hall, 2006									
REFE	RENCE BOOKS:									
1	Jain.R.K, —Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1999.									
2	2 Holmen.J.P, —Experimental Methods for Engineersl, Tata McGraw Hill Publications Co Limited, 2017.									

3	Grant, E.L., Statistical Quality Control, Mc Graw-Hill, 2004. 3. Doeblin E.O., Measurement Systems, Mc Graw-Hill, 2004.							
4	Alan S Morris,Measurement and Instrumentation Principles, Butterworth, 2006.							
5	De Feo J A and Barnard W W, -Six Sigma: Break trough and BeyondG, Tata McGraw-Hill, New Delhi, 2005.							
E-REF	E-REFERENCES:							
1	https://nitsri.ac.in/Department/Mechanical%20Engineering/MEC_405_Book_2,_for_Unit_2B.pdf							
2	https://www.nist.gov/system/files/documents/srm/NIST-SRM-RM-Articlefinal.pdf							
3	https://www.researchgate.net/publication/319587859_Computer-Aided_Metrology-CAM							

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Explain the importance of measurements in engineering and the factors affecting measurements and to compute measurement uncertainty.	Understand
<i>CO2</i>	Apply the working principle and the applications of linear and angular measuring instruments.	Apply
СОЗ	Interpret of various tolerance symbols.	Apply
<i>CO4</i>	Apply the SQC methods in manufacturing.	Apply
<i>C05</i>	Apply the advances in measurements for quality control in manufacturing industries.	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1							2	1	2				2	1	
CO2							3	1	2				1	2	
CO3							2	1					2	1	
CO4				3			2		1				1	2	
CO5				2				3	1				2	1	
Avg				2.5			2.25	1.5	1.5				1.6	1.4	
		3/2/	/1 – in	dicat	es stro	ength	of co	rrelati	on (3 -	– High,	2- Med	lium, 1-	Low)		

18	BMEMI	10	DYNAMICS OF MACHINERY					
PR	EREQ	UISI	res	CATEGORY	PE	Cre	edit	3
Ene		M1	wing Wingson the of Machinese Strength of Materials	Hound Wools	L	Т	Р	ТН
Eng	gineering	Meci	fames, Kinematics of Machinery, Strength of Materials	Hours week	3	0	0	3
CO	URSE	OBJ	ECTIVES:					
1.	To imp	art sti	udents with the knowledge about motion, masses and forces in	machines and the F	Principl	e of V	irtual	Work.
2.	To faci	litate	the students, to understand the concept of balancing of rotating	g and reciprocating	masse	s.		
3.	To teac	ch con	cepts of free vibration analyses of one and two degree-of-free	dom rigid body sys	tems			
4.	To tea phenor	ch co nenor	ncepts of forced vibrations analyses of rigid body systems a of vibration and its effects.	and to give awar	eness to	o stuc	lents	on the
5.	To lear	n abo	ut the concept of various types of governors.		-			
UI	NIT I		9	0	0	9		
Moi Spe UN	ment Dia ed, Weig NIT II	agram ght of BA l	s and Fluctuation of Energy of reciprocating engine mechanis Flywheel Required. LANCING	ns, Coefficient of I	Fluctuat 9	ion of 0	Ener	gy and
Stat Eng	tic and dy gines - Pa	ynami artial l	c balancing - Balancing of rotating masses - Balancing a single balancing in locomotive Engines - Balancing linkages - balanc	e cylinder Engine - ing machines	Balanc	ing M	ulti-c	ylinder
UN		FR	EE VIBRATION	0	9	0	0	9
Bas Free Sys Tor	ic Featur quency b tem -Typ sional Sy	res of by En- pes of stem	Vibratory Systems – Types – Single Degree of Freedom System ergy Method, Dunkerly's Method - Critical Speed - Damped Damping – Free Vibration with Viscous Damping, Critically s: Natural Frequency of Two and Three Rotor Systems.	n – Transverse Vib l Free Vibration of y Damped System,	ration o Single Under	f Bea Degr Dam	ms – I ee Fr ped S	Vatural eedom ystem.
UN	IT IV	FO	RCED VIBRATION		9	0	0	9
Res Mag	ponse to gnificatio	Perio on Fac	odic Force – Harmonic Force – Force caused by Unbalance – ctor – Vibration Isolation and Transmissibility.	Support Motion -	Logari	thmic	Decr	ement-
UN	NIT V	GC	OVERNORS		9	0	0	9
Gov - Ef	vernors - ffect of fi	Type riction	s - Centrifugal governors - Gravity controlled and spring contro a - Controlling Force - other governor mechanisms.	olled centrifugal go	overnor	s – Cł	aract	eristics
				То	tal (45	L) =	45 P	eriods
_		_				_	_	_

TE	XT BOOKS:
1.	Design of Machinery, Fourth Edition, by R.L. Norton, McGraw Hill, 2007
2.	Mechanical Vibration, V.P.Singh, Dhanpatrai, Delhi
RE	FERENCE BOOKS:
1.	Ballaney, P.L., "Theory of Machines and Mechanisms", Khanna Publishers, New Delhi, 2002.
2.	Shigley, J.E. and Uicker, J.J., "Theory of Machines and Mechanisms", TMH ND, 1998.
3.	Amithabha Ghosh, and Ashok Kumar Malik., "Theory of Mechanisms and Machines", 2nd Ed., Affiliated East and West Press Limited, 1998.
4.	Prof.Nakara, IIT-Delhi Reference Books

E-R	E-REFERENCES:										
1.	www.university.youth4work.com/IIT_Kharagpur_Indian-Institute-of-Technology/study/1653-dynamics-of- Machinery-ebook										
2.	http://nptel.ac.in/courses/112104114/										

COU! On cor	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Apply basic principles of mechanisms in mechanical system.	Apply
<i>CO2</i>	Familiarize the static and dynamic analysis of simple mechanisms.	Understand
СО3	Analyze the mechanical systems subjected to free vibration.	Analyze
<i>CO4</i>	Analyze mechanical systems subjected to forced vibration.	Analyze
<i>C05</i>	Analyze the various types of governors and its speed control mechanism.	Analyze

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1					1		3	2	1	2
CO2	2	2	3	2	1					1		3	2	1	2
CO3	2	2	3	2						1		3	2	1	2
CO4	2	2	3	2	1					1		3	2	1	2
CO5	1	2	3	2						1		3	2	1	1
Avg	1.8	2.0	3.0	2.2	1					1.0		3.0	2.0	1.0	1.8
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)														

MINOR DEGREE: METALLURGICAL ENGINEEING

18N	MTM01	ADVANCED PHYSICAL METALL	URGY	S	emeste	r						
PREI	REQUISIT	ES	Category	OE	Cre	dit	3					
. .				L	Т	Р	ТН					
Engir	ieering phy	/SICS	Hours/Week	3	0	0	3					
Cour	se Learning											
1	To impar	t knowledge on the crystal structure, diffusion, phase	diagrams for varie	ous eng	gineerin	g mate	rials.					
τ	Unit I	CRYSTAL STRUCTURES		9	0	0	9					
Revie	w of atomic	c bonds, Lattice, unit cell, crystal systems and Bravai	s lattices; Princip	al crys	tal struc	ctures -	- BCC,					
FCC,	HCP and i	ts characteristics; Miller indices for crystallographic	c planes and dire	ctions,	interpl	anar sj	bacing;					
Volur	ne, planar a	and linear atomic density; Polymorphism and allotro	py; CsCl, NaCl,	Diamo	ond stru	ctures;	single					
crysta	and polyce	rystalline and amorphous materials; isotropy and anise	otropy; Simple pr	oblems	s in the	above t	opics					
U	J nit II	CRYSTALLINE IMPERFECTIONS		9	0	0	9					
Types	s of point de	efects, effect of temperature on vacancy concentratio	on, interstitial site	s-octah	edral a	nd tetra	ahedral					
sites; Line defects – dislocations – Edge, screw and mixed dislocations, Burger's vector, slip and twinning; Planar												
defect	ts – grain ł	ooundaries, tilt boundaries, small angle grain bound	laries; ASTM gra	ain size	e numb	er, gra	in size					
deterr	ninations; V	Volume defects; Simple problems in the above topics.										
U	nit III	ATOMIC DIFFUSION IN SOLIDS AND SOLII OF METAL	DIFICATION	9	0	0	9					
Diffu	sion mecha	nisms, steady state diffusion and non-steady state	diffusion-Fick's	first 1	aw and	secon	d law;					
Kirke	ndall effect	and Darken's equation; Factors affecting diffusion; I	Industrial applicat	ions of	f diffusi	on pro	cesses;					
Simpl	le problems	in the above topics; Basic principles of solidification	on of metals and	alloys;	Growt	h of cr	ystals–					
Plana	r growth, o	dendritic growth, Solidification time, dendrite size	; Cooling curves	s; Cast	t or In	got str	ucture,					
Solidi	ification de	fects - Control of casting structure; Directional so	lidification - sin	gle cry	ystal gr	owth;	Simple					
proble	ems in the a	bove topics.										
U	nit IV	PHASE DIAGRAMS		9	0	0	9					
Phase	s, solid solu	ution types, compounds, Hume- Rothery rules; Gibb	o's phase rule; Ph	ase dia	agram d	letermi	nation;					
Binar	y isomorpho	ous alloy systems - composition and amount of phases	, development of 1	nicrost	ructure	-equil	ibrium					
and n	on-equilibri	ium cooling- Coring and its effects, homogenization	n; Binary eutectic	system	m - cor	npositi	on and					
amou	nt of phases	, development of microstructure; Eutectoid, Peritectic	and monotectic re	action	Phase of	liagran	ns with					
intern	nediate phas	ses and compounds; Ternary phase diagrams. Simple	problems in the al	pove to	pics.							
Unit VIRON-CARBON PHASE DIAGRAM909												
Iron-c	carbon diagr	am, Phases in Fe-C system, Invariant reactions, Micro	structure of slowl	y coole	ed steels	, comp	osition					
and a	mount of pl	nases, Effect of Alloying elements on Fe-C system, T	ype, structure, pr	opertie	es and a	pplicat	ions of					
Plain	Carbon Ste	els and different types of Cast iron; IS Specification f	for Steels and Cas	st Irons	, Simpl	e probl	ems in					
above	topics.											
				Tota	al (45+0) = 45	Hours					

Text	t Books:
1	Donald R. Askeland,"The Science and Engineering of Materials", Thomson Learning, India Edition, 2007.
2	William D.Callister, "Materials Science and Engineering – An Introduction", 4th edition, JohnWiley & Sons, New York, USA, 1997.
Refei	rence Books:
1	Avner S H."An Introduction to Physical Metallurgy", McGraw Hill Book Co, New York, USA, 1997.
2	Donald R Askeland," Essentials of Material Science and Engineering ", Thomson Learning, India Edition, 2007
3	Raghavan V., "Physical Metallurgy – Principles and Practice", Prentice Hall of India Ltd., New Delhi, 199.
4	William F.Smith, "Foundations of Materials Science and Engineering", Second Edition, McGraw-Hill Inc, New York, 1993.

Cours Upon	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	:	Describe the basic crystal structure, orientation and their influence on macroscopic properties.	L2: Understanding					
CO2	:	Discuss the role of imperfections in strengthening the materials.	L2: Understanding					
CO3	:	Diagonise the diffusion mechanism in solidification of materials under different conditions.	L4:Analysing					
CO4	:	Apply the concept of phase diagrams in equilibrium transformation of materials phases.	L3:Applying					
CO5	:	Construct the Fe-Fe ₃ C phase diagram and discuss various properties of steel and cast iron.	L3:Applying					

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1		1	
CO2	1	1				1	1						1			1
CO3	1	1	1	1		1							1	1		
CO4	1	1		1	1								1			
CO5	1	1		1									1			1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-ir	idicates	strengt	h of co	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18MTM02	S												
PREREQUISIT	ES	Category	OE	Cr	edit	3							
D · · · 1			L	Т	Р	ТН							
Engineering ph	ysics and Engineering chemistry	Hours/Week	3	0	0	3							
Course Learning Objectives													
1 To learn	1 To learn the basic principles and concepts of thermodynamics in the field of Metallurgy and materials; and												
to learn about equations and their applications.													
Unit I	FUNDAMENTAL CONCEPT AND INTERNAL	LENERGY	9	0	0	9							
Introduction: System and surrounding, Classification of systems, Path and state properties, Thermodynamic processes, Thermodynamic equilibrium, Reversible and Irreversible processes. First law of thermodynamics: Heat and work, Internal energy, Heat capacity of materials, Cp-Cv relations, Nernst Equation, Enthalpy, Thermochemistry Hess's law, Kirchoff's law, Maximum flame temperature.													
Unit II		9	0	0	9								
Second law of th statement of first and Zeroth laws	ermodynamics: Carnot cycle, Entropy - Statistical inte and second laws, Thermodynamic functions - Maxwel of thermodynamics : Definition, concept and applicati	erpretation of entrop Il's relations, Gibbs ons	oy, Free Helmh	e ener oltz e	gy, Con quation	nbined . Third							
Unit III	THERMODYNAMIC POTENTIALS AND PHA EQUILIBRIA	SE	9	0	0	9							
Thermodynamic rule. Le Chateli Thermodynamic diagrams to the s	Thermodynamic potentials: Fugacity, Activity and Equilibrium constant. Clausius - Clayperon equation, Troutons rule. Le Chatelier's principle, Vant Hoff's equation. Equilibria in phase diagrams: Phase rule, Phase stability, Thermodynamics of surfaces, interfaces and defects, P-G-T diagrams, Application of free energy - composition diagrams to the study of alloy systems.												
Unit IV	THERMODYNAMICS OF SOLUTIONS		9	0	0	9							
Gibbs - Duhem e solutions, Activi functions, Regul	quation, Partial and integral molar quantities, chemica ty coefficient, Henry's law, Alternative standard state ar solutions, Applications of Gibbs - Duhem equation.	l potential, Ideal sol s, Sievert's law, Mi	utions xing fu	- Rao inctio	ult's lav	w, Real excess							
Unit V	THERMODYNAMICS OF REACTIONS AND I	KINETICS	9	0	0	9							
Electro chemical quantities using equation - activa	Electro chemical process: Cells, Interconversion of free energy and electrical work, Determination of thermodynamic quantities using reversible cells, Solid electrolytic cells. Kinetics: First, Second and third order reactions, Arrhenius equation - activation energy, Determination of order of the reaction.												
			Total	(45+() = 45	Hours							

Text	t Books:
1	Upadhyaya G S andDube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.
2	Ahindra Ghosh, Text book of Materials & MetallurgicalThermodynamics, Prentice Hall India, 2002
3	. David R Gaskell, "Introduction to the Thermodynamics of Materials", Fifth Edition, Taylor & Francis, 2008
Refer	rence Books:
1	David V Ragone, "Thermodynamics of Materials - Volume-1", John Wiley & Sons, Inc. 1995.
2	Dr S.K Dutta,Prof A.B.Lele – Metallurgical thermodynamics kinetics and numericals,S.Chand& co Ltd.,New Delhi 2011
3	Darken LS and Gurry R W,"Physical Chemistry of Metals", CBS publications and distributors, 2002.
4	Parker R H, "An introduction to chemical metallurgy", Pergamon press, New York, second edition, 1978.
5	Kapoor M.L., "Chemical and Metallurgical Thermodynamics Vol. I and II", Nem Chand, 1st Ed., 1981

Course Upon	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	:	Discuss the fundamental concepts of thermodynamics and internal energy	L2: Understanding						
CO2	:	State the thermodynamics entropy and auxilary functions.	L2: Understanding						
CO3	:	Identify the basic laws, chemical potential and phase equilibria.	L4:Analysing						
CO4	:	Describe the thermodynamics of the solution and various important equations.	L2: Understanding						
CO5	:	Apply to solve problems related to electrochemical processes and kinetics.	L3:Applying						

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1	1										1		1	
CO3	1	1		1	1								1			
CO4	1			1	1								1		1	1
CO5	1	1				1	1						1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-ir	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	ITM03	MECHANICAL BEHAVIOUR OF MAT	S					
PRER	REQUISIT	OE Ci		edit	3			
En ain		L	Т	Р	ТН			
Engin	leering pn	ysics	Hours/Week	3	0	0	3	
Cours	se Learnir							
1 To know the fundamental concepts of deformation behaviour for structural engineering applications.								
Unit IDISLOCATIONS AND PLASTIC DEFORMATION90							9	
disloca Climb disloca Disloca bands.	Strength of perfect crystal and need for dislocations; Characteristics of dislocations – Edge dislocation, Screw dislocation, Burger's vector, mixed dislocation, dislocation loops; Movement of dislocation – Pierls stress, Cross slip, Climb; Dislocations in FCC, HCP and BCC lattice; Stress fields and energies of dislocations, forces on and between dislocations; Dislocation density; Intersections of dislocations – Jogs and kinks; Dislocation multiplication; Dislocation pile-ups; Deformation by slip and twinning; Critical resolved shear stress; Deformation bands and kink							
U	nit II	STRENGTHENING MECHANISMS		9	0	0	9	
ageing coarse streng effect;	ageing; Precipitation hardening - Conditions for precipitation hardening, Ageing, Formation of precipitates, coarsening of precipitates, Mechanism of strengthening; Dispersion strengthening; Fiber strengthening; Martensite strengthening - examples for above strengthening mechanisms from ferrous and non-ferrous systems, Bauschinger effect; Preferred orientation; Sever plastic deformation.						, strann pitates, rtensite chinger	
Un	nit III	FRACTURE AND FRACTURE MECHANICS900						
Types factors cohesi introdu of KIC	Types of fracture – ductile and brittle fracture, Ductile to Brittle Transition Temperature (DBTT), Metallurgical factors affecting DBTT, determination of DBTT, Hydrogen embrittlement and other embrittlement, Theoretical cohesive strength of metals, Griffith's theory of brittle fracture, Orowan's modification. Fracture mechanics - introduction, modes of fracture, stress intensity factor, strain energy release rate, fracture toughness and determination of KIC, introduction to COD, J integral.							
Un	nit IV	9	0	0	9			
Fatigu fatigue crack	Fatigue: Stress cycles, S-N curves, effect of mean stress, factors affecting fatigue, structural changes accompanying fatigue, cumulative damage, HCF / LCF, thermo-mechanical fatigue, application of fracture mechanics to fatigue crack propagation, fatigue testing machines.							
U	Unit VCREEP BEHAVIOUR AND TESTS90							
Creep factors of extr	Creep curve, stages in creep curve and explanation, structural changes during creep, creep mechanisms, metallurgical factors affecting creep, high temperature alloys, stress rupture testing, creep testing machines, parametetric methods of extrapolation. Deformation Mechanism Maps							
				Tota	al (45+0) = 45	Hours	

Text	t Books:
1	George. E. Dieter, "Mechanical Metallurgy", 3rd Edition, McGraw-Hill Publications, New York, SI Edition, 2004
2	Marc Andr'e Meyers, Krishan Kumar Chawla, "Mechanical Behavior of Materials", Cambridge University Press, UK, 2009.
Refer	rence Books:
1	Reed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.
2	Davis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-Hill, 1982.
3	Wulff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.
4	Honeycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984

Cours Upon	Bloom's Taxonomy Mapped		
CO1	:	Discuss the mechanical behaviour of materials.	L2: Understanding
CO2	:	Discuss the strengthening mechanisms of materials.	L2: Understanding
CO3	:	List the various types of fractures and their mechanisms, fracture mechanics and various theories describing fracture mechanics.	L2: Understanding
CO4	:	Discuss the fatigue behaviour and the mechanism of fatigue, SN curve and fatigue testing machines.	L2: Understanding
CO5	:	Describe the creep behaviour and mechanism, factors affecting creep and creep testing machines.	L2: Understanding

COURSE ARTICULATION MATRIX																
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1	1								1	1		
CO3	1	1	1		1										1	1
CO4	1	1				1	1								1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	18MTM04 RATE PROCESSES IN METALLURGY							
PREREQUISITES						edit	3	
		L	Т	Р	TH			
Engin	eering ph	ysics	Hours/Week	3	0	0	3	
				5	U	U	5	
Course Learning Objectives								
1	1 To learn the basic principles and concepts of kinetics in the domain of metallurgy and materials; to learn about equations and their applications; And to appreciate that metallurgical kinetics as a Knowledge base with abundant applications.							
U	nit I	INTRODUCTION		9	0	0	9	
Introdu	uction: Re	ole of kinetics, heterogeneous and homogeneous ki	netics, Role of	heat a	ind ma	ss tran	sfer in	
metallu	urgical ki	netics, rate expression, Effect of Temperature and c	oncentration on	reactio	on kine	tics: ef	fect of	
temper	ature (Ar	rhenius Equation), Effect of concentration (order of a	reaction), signifi	cance	and det	ermina	tion of	
activat	ion energ	у.			n	[
Un	nit II	KINETICS OF SOLID-FLUID REACTION		9	0	0	9	
Kinetic	cs of solid	-fluid reaction: kinetic steps, rate controlling step, defini	tion of various re	sistanc	es in se	ries, sh	inking	
core m	odel, chei	nical reaction as rate controlling step, Product layer dif	fusion as rate co	ntrollir	ng step,	Mass t	ransfer	
throug	h external	fluid film as rate controlling step, heat transfer as the r	ate controlling st	ep, Co	ncentra	tion bo	undary	
layer,	definition	and significance of heat and mass transfer coeffic	ient, Theoretical	mode	els for	mass t	ransfer	
coefficients, Correlations for heat and mass transfer coefficients								
Unit IIILIQUID-SOLID PHASE TRANSFORMATION900						0	9	
Principles of Solidification in metals and alloys: thermodynamics involved, eutectic and peritectic Solidification						cation,		
Homogeneous and heterogeneous nucleation, Mechanisms of growth. Rapid Solidification Processing.								
Unit IV SOLID STATE PHASE TRANSFORMATIONS 9 0						0	9	
Nuclea	Nucleation and growth Kinetics, homogeneous and heterogeneous transformation, Precipitation: Coherency, age						ey, age	
harden	hardening, particle Coarsening. Ostwald ripening, Order-disorder transformation, spinodal decomposition, massive							
transfo	transformations							
Un	9	0	0	9				
Recons	Reconstructive and displacive transformations; Pearlitic transformation: mechanism and kinetics: Johnson-Mehl						n-Mehl	
equation, morphology of pearlite; Bainitic transformation: mechanism and kinetics; morphology of upper bainite and								
lower	lower bainite; Martensitic transformation: Mechanism- diffusionless displacive nature; morphology of high carbon							
and low carbon martensite.								
				Tota	al (45+0)) = 45	Hours	

Tex	t Books:
1.	Ahindra Ghosh and Sudipto Ghosh, A Text book of Metallurgical Kinetics, PHI learning Pvt. Ltd., New
	Delhi, 2014
2.	H.S. Ray, Kinetics of Metallurgical Reactions, International Science publisher, 1993.
3.	F. Habashi, Kinetics of Metallurgical Processes, Metallurgy Extractive Québec, 1999.
4.	Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon,
	1977.
Ref	erence Books:
1.	Phase transformations in metals and alloys- D.A. Potter and K.E. Easterling, CRC Press,
----	---
	1992. 2. Transformations in Metals, P.G. Shewmon, Mc-Graw Hill, 1969.
2.	Introduction to Physical Metallurgy – S. N. Avner, Tata McGraw Hill, 1997.
3.	Physical Metallurgy Principles, R. E. Reed-Hill and R. Abbaschian, 3rd ed, PWS-Kent
	Publishing, 1992.
4.	Modern Physical Metallurgy, R. E. Smallman, Butterworths, 1963

Cours Upon	e O con	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the thermodynamic aspects of phase changes.	L2: Understanding
CO2	:	Discuss the fundamentals of solid –fluid reactions.	L2: Understanding
CO3	:	Explain the eutectic and peritectic solidifications and rapid solidification processes.	L2: Understanding
CO4	:	Describe the fundamentals of solidification.	L1: Remembering
CO5	:	Apply the solid state phase transformations in steel.	L3:Applying

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1			1
CO2	1	1			1	1									1	1
CO3	1	1		1	1								1	1		
CO4	1	1		1	1									1		1
CO5	1		1			1	1								1	1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of cor	relation	(3- High,	, 2-Medi	um, 1- Lo	ow)		

PREREQUISITES OE Credit 3 Engineering chemistry Hours/Week I T P TH 1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion fatigue, hydrogen damage – Factors influencing corrosion 9 0 0 9 Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion – Modifications of corrosive environment –Inhibitors – Cathodic Protection – Special surfacing processes. Unit II CORROSION OF INDUSTRIAL COMPONENTS 9 0 9 Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes	18MTM05	CORROSION AND SURFACE ENGIN	EERING	S										
Engineering chemistry L T P TH 1 To understand the corrosion and surface engineering, with its application in engineering field. 1 1 To understand the corrosion and surface engineering, with its application in engineering field. 1 To understand the corrosion and surface engineering, with its application in engineering field. 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion fatigue, hydrogen damage –Factors influencing corrosion. 9 0 0 9 Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion-Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants. Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Init	PREREQUISI	TES		OE	Cre	edit	3							
Engineering Chemistry Hours/Week 3 0 0 3 Course Learning Objectives 1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 0 9 Diffusion coatings –Electro and Electrol	En sin sonin a sk			L	Т	Р	TH							
Course Learning Objectives 1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 0 9 0 0 9 0 9 0 9 0 9 0 9 0 9 <l< td=""><td>Engineering ch</td><td>lemistry</td><th>Hours/Week</th><td>3</td><td>0</td><td>0</td><td>3</td></l<>	Engineering ch	lemistry	Hours/Week	3	0	0	3							
1 To understand the corrosion and surface engineering, with its application in engineering field. Unit I MECHANISMS AND TYPES OF CORROSION 9 0 0 9 Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 9 0 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. 9 0 0 9 Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance. 9 0 0 9 Linit IVSURFACE ENGINEERING PROCESSES900 </td <td>Course Learni</td> <td>ng Objectives</td> <th></th> <td></td> <td></td> <td></td> <td></td>	Course Learni	ng Objectives												
Unit IMECHANISMS AND TYPES OF CORROSION9009Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform. Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosionUnit IITESTING AND PREVENTION OF CORROSION9009Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes.9009Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components.9009Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance.9009Lunit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coating.4009Linit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening –Effect of process variabl	1 To und	erstand the corrosion and surface engineering, with it	ts application in e	enginee	ering fie	eld.								
Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion Unit II TESTING AND PREVENTION OF CORROSION 0 0 9 0 9 0 9 Unit II TESTING AND PREVENTION OF CORROSION 9 0 9 Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. 9 0 0 9 Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processe	Unit I	MECHANISMS AND TYPES OF CORROSION	J	9	0	0	9							
Unit IITESTING AND PREVENTION OF CORROSION9009Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes.9009Unit IIICORROSION OF INDUSTRIAL COMPONENTS9009Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components.9009Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance.9009Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.409	Principles of d – Galvanic co Cavitations, C influencing co	Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion												
Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion – Modifications of corrosive environment – Inhibitors – Cathodic Protection – Special surfacing processes. Unit III CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance. 9 0 0 9 Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours	Unit II	TESTING AND PREVENTION OF CORROSIC	ON	9	0	0	9							
Contributing CORROSION OF INDUSTRIAL COMPONENTS 9 0 0 9 Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Image: Corrosion operation operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION P 9 0 0 9 Diffusion coatings -Electro and Electroless Plating -Hot dip coating -Hard facing-Metal spraying, Flame and Arc processes- Conversion coating -Selection of coating for wear and Corrosion resistance. 9 0 0 9 Laser and Electron Beam hardening -Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition - Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours	Hydrogen Indu against corrosi processes.	aced Cracking Test, Sulphide Stress Corrosion Crack on –Modifications of corrosive environment –Inhibito	king Test- Prever ors – Cathodic Pro	ntion o ptectior	f Corro n –Spec	osion-D ial surf	esign acing							
Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines- wear of industrial components. Unit IV SURFACE ENGINEERING FOR WEAR AND CORROSION RESISTANCE 9 0 0 9 Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance. 9 0 0 9 Unit V THIN LAYER ENGINEERING PROCESSES 9 0 0 9 Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours		CORROSION OF INDUSTRIAL COMPONEN	15	9	U	U	9							
Unit IVSURFACE ENGINEERING FOR WEAR AND CORROSION RESISTANCE9009Diffusion coatings -Electro and Electroless Plating -Hot dip coating -Hard facing-Metal spraying, Flame and Arc processes- Conversion coating -Selection of coating for wear and Corrosion resistance.Hard facing-Metal spraying, Flame and O 0Unit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening -Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition - Coating of tools, TiC, TiN, Al2O3 and Diamond coating-Properties and applications of thin coatings.Total (45+0) = 45 Hours	Corrosion in petroleum produ	fossil fuel power plants, Automotive industry, Ch action operations and refining, Corrosion of pipelines	emical processir - wear of industr	ng indu ial com	ustries, ponent	corros ts.	ion in							
Diffusion coating -Electro and Electroless Plating -Hot dip coating -Hard facing-Metal spraying, Flame and Arc processes- Conversion coating -Selection of coating for wear and Corrosion resistance.Unit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening -Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition - Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.Total (45+0) = 45 Hours	Unit IV	SURFACE ENGINEERING FOR WEAR AND RESISTANCE	CORROSION	9	0	0	9							
Unit VTHIN LAYER ENGINEERING PROCESSES9009Laser and Electron Beam hardening –Effect of process variables such as power and server and server deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition- Physical vaporCoating of tool, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thir coating- Total (45+0) = 45 Hours	Diffusion coat Arc processes-	ings –Electro and Electroless Plating –Hot dip coatin Conversion coating –Selection of coating for wear a	g –Hard facing-M nd Corrosion resi	Metal s istance	praying	g, Flam	e and							
Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings. Total (45+0) = 45 Hours	Unit V	THIN LAYER ENGINEERING PROCESSES		9	0	0	9							
Total (45+0) = 45 Hours	Laser and Elec deposition, Th Coating of too	Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating-Properties and applications of thin coatings.												
		Total (45+0) = 45 Hours												

Rei	terence Books:
1.	Fontana. G., Corrosion Engineering, McGraw Hill, 1985.
2.	Kenneth G. Budinski, Surface Engineering for Wear Resistance, Prenticehall, 1992.
3.	ASM Metals Hand Book – Vol. 5, Surface Engineering, 1996.
4.	Denny A Jones, "Principles and prevention of corrosion", 2 nd edition, Prentice Hall, New Jersey,1995.
5.	ASM International, Surface Engineering for Corrosion and Wear Resistance, 2005.
6.	Schweitzer. P.A., Corrosion Engineering Hand Book, 3rd Edition, Marcel Decker, 1996.

Course Upon	e O con	Bloom's Taxonomy Mapped	
CO1	:	Name the different types of corrosion and their mechanism.	L2: Understanding
CO2	:	Estimate corrosion resistance by different tests.	L4:Analysing
CO3	:	Explain the corrosion behavior of different metals in different industries.	L2: Understanding
CO4	:	Classify the different forms of processing techniques of surface engineering materials.	L1: Remembering
CO5	:	Select the type of deposition and spraying technique.	L3:Applying

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1		1		1							1	1		
CO3	1	1	1	1			1								1	1
CO4	1	1		1	1										1	1
CO5	1	1		1	1								1	1		
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
						3/2/1-in	dicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18N	ATM06	MATERIALS CHARACTERIZAT	ΓΙΟΝ	S										
PRE	REQUISI	TES		OE	Cre	edit	3							
Engi	nooming n	ave los		L	Т	Р	ТН							
Engi	neering pi	nysics	Hours/Week	3	0	0	3							
Cour	se Learni	ng Objectives												
1	To acqu	ire knowledge on various characterizations, chemica ents using its analysis tools	l and thermal ana	ılysis o	f metal	llurgica	ıl							
τ	Jnit I	OPTICAL MICROSCOPY		9	0	0	9							
Meta const depth techn	Metallographic specimen preparation. Macro-examination -applications. Metallurgical microscope - principle, construction and working, , Optic properties - magnification, numerical aperture, resolving power, depth of focus, depth of field, different light sources, lens aberrations and their remedial measures, Various illumination techniques-bright field , dark field, phase-contrast, polarized light illuminations, interference microscopy, high temperature microscopy: Quantitative metallography – Image analysis													
U	nit II	X-RAY DIFFRACTION	515.	9	0	0	9							
powd and c crysta	Characteristic X-ray spectrum, Bragg's Law, Diffraction methods - Laue method, rotating crystal method and powder method. Diffraction intensity – structure factor calculation. X-ray diffractometer -general features, filters and counters. Applications of X-ray diffraction in materials characterisation – Determination of crystallite size, crystal structure, precise lattice parameter, measurement of stress.													
U	nit III	ELECTRON MICROSCOPY		9	0	0	9							
Diffra prepa applie analy	ron beam action effe tration tech cations, Effections, effective	- specimen interactions. Construction and operation cts and image formation, various imaging modes, sele hniques. Scanning electron microscopy – principle lectron probe microanalyser (EPMA)- principle, in uction to HRTEM, FESEM, EBSD.	ected area diffract , equipment, var astrumentation, q	on Ele ion, ap ious o ualitat	plication peration peration	ons, spe g mod d quan	copy – ecimen es and titative							
U	nit IV	SPECTROSCOPIC TECHNIQUES		9	0	0	9							
X-ray spect emiss const	y spectrosc roscopy, X sion spect ruction, w	copy – EDS and WDS. Principle, instrumentation, w X-ray photoelectron spectroscopy and Secondary ion r roscopy, Atomic Absorption spectroscopy and X-r orking and applications. UV-Vis, FTIR and Raman s	vorking and appl mass spectroscop ray fluorescence pectroscopy.	ication y / ion spect	s of A microp roscop	uger E probe. (y - pri	lectron Optical nciple,							
U	nit V	THERMAL ANALYSIS AND CHARACTERIZATION TECHNIQUES	ADVANCED	9	0	0	9							
Thern gravi micro probe	Thermal Analysis: Principles of differential thermal analysis, differential scanning calorimetry and thermo- graviometric analysis – Instrumentation and applications. Advanced characterization techniques: Scanning probe microscopy - STM and AFM - principle, instrumentation and applications. Field ion microscopy including atom probe - principles, instrumentation and applications. Total (45+0) = 45 Hours													
Text	Books:													
1.	Cullity, B 1978	.D., Elements of X Ray Diffraction, Addison-Wesley	Publishing Com	npany I	inc, Phi	ilippine	es,							
2.	Brandon, England,	D. and W.D. Kaplan, Microstructural Characterizatio 2013.	on of Materials, J	ohn W	iley &	Sons L	.td,							

3.	Leng, Y., Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, John
	Wiley & Sons (Asia) Pte Ltd, Singapore, 2008

Re	teference Books:									
1.	ASM Handbook, Volume 10, Materials Characterization, ASM international, USA, 1986.									
2.	Vander Voort, G.F., Metallography: Principle and practice, ASM International, 1999.									
3.	Phillips V A, Modern Metallographic Techniques and their Applications, Wiley Eastern, 1971.									
4.	Angelo, P. C., Materials Characterization, Reed Elsevier India Pvt Ltd, Haryana, 2013.									

Cours Upon	e O cor	utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the principles of metallurgical microscope, optical properties and various illumination techniques.	L2: Understanding
CO2	:	Analyze the various diffraction methods, X-ray diffractometer and determination of crystal parameter.	L4:Analysing
CO3	:	Discuss the principles of TEM, SEM, EPMA.	L2: Understanding
CO4	:	Explain various spectroscopic techniques,	L2: Understanding
CO5	:	Discuss the chemical and thermal analysis using advanced methods.	L2: Understanding

COURS	COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	`1		1	1								1		1	
CO2	1	1	1	1		1							1			1
CO3	1		1			1	1					1	1			1
CO4	1	1		1	1							1	1			1
CO5	1	1		1	1								1		1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0					1.0	1.0		1.0	1.0
		<u>. </u>				3/2/1-in	idicates	strengt	h of coi	relation	(3- High	, 2-Medi	um, 1- Lo	ow)		

18M	ITM07	CE MATERIAL	S	er								
PRER	REQUISI	OE Credit		edit	3							
Engin			L	Т	Р	TH						
Engin	leering pr	lysics	Hours/Week	3	0	0	3					
Cours	se Learni											
1	To unde	stand the properties and applications various materials suitable for automobile, aircraft and										
	defnce industries and its components.											
U	nit I	SSION	9	0	0	9						
Materials selection for IC engines: Piston, piston rings, cylinder, Engine block, Connecting rod, Crank shaft, Fly												
wheels	wheels, Gear box, Gears, Splines, Clutches.											
Ur	nit II	MATERIALS FOR AUTOMOTIVE STRUCTU	RES	9	0	0	9					
Materi	ials select	ion for bearings, leaf springs, chasis & frames, Bur	per, shock absor	bers, v	vind sc	reens,	panels,					
brake	shoes, Dis	sc, wheels, differentials, damping and antifriction flui	ids, Tyres and tuł	bes. Ma	aterials	for ele	ctronic					
device	es meant f	or engine control, ABS, Steering, Suspension, Sensor	s, anti-collision, A	Anti-fo	g, Hea	d lamp	s.					
Un	it III	AEROSPACE METALS AND ALLOYS		9	0	0	9					
Types	of corros	sion - Effect of corrosion on mechanical propertie	es – Stress corro	sion c	racking	– Co	rrosion					
resista	nce mater	ials used for space vehicles. Heat treatment of carbon	steels – aluminiu	m alloy	/s, mag	nesium	alloys					
and tit	tanium all	oys - Effect of alloying treatment, heat resistance a	lloys – tool and	die ste	els, ma	gnetic	alloys,					
powde	er metallu	rgy- application of materials in Thermal protection sy	stems of Aerospa	ice veh	icles –	super a	alloys					
Un	it IV	9	0	0	9							
Introd	uction – p	hysical metallurgy – modern ceramic materials – cerm	et - cutting tools -	– glass	cerami	c –proc	luction					
of sen	ni-fabricat	ed forms - Plastics and rubber - Carbon/Carbon co	mposites, Fabrica	ation p	rocesse	s invol	lved in					
metal	matrix co	mposites - shape memory alloys - applications in aero	ospace vehicle de	sign.								
Uı	nit V	NUCLEAR WASTE AND RADIATION PROTE IRRADIATION EFEFCTS	WASTE AND RADIATION PROTECTION, YON EFEFCTS									
Introduction-unit of nuclear radiation-Types of waste –disposal –ICRP recommendations-radiation												
hazards and prevention –radiation dose units - Irradiation Examination of Fuels, Irradiation behaviour of metallic												
uranium – irradiation growth, thermal cycling, swelling, adjusted uranium, blistering in uranium rods. Irradiation												
effects in ceramic oxide and mixed oxide fuels, definition and units of burn up, main causes of fuel element failure												
in pow	in power reactors and remedies to avoid failures.											
				Tota	l (45+0) = 45	Hours					

Re	ference Books:
1.	ASM Handbook, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. USA, 1991.
2.	Materials Science and Engineering, Willium D. Callister, Jr. John Wiley & Sons publications Or Callister's Materials Science and Engineering Adapted By R. Balasubramaniam, Wiley India, Edition -2010.
3.	Material Science and Engineering, V. Raghavan, Prentice Hall of India, 4th Edition.
4.	Engineering Metallurgy Applied Physical Metallurgy, R. A. Higgins, 6th Edition

5.	Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.
6.	Charles J A and Crane. F A. A., "Selection and Use of Engineering Materials", 3rd
	Edition, Butterworths, London UK, 1996
7.	ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park
	Ohio.USA, 1997
8.	Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials",
	Taylor & Francis Group, London, 2006

Cours Upon	Bloom's Taxonomy Mapped		
CO1	:	Describe the materials selection criteria for engine and transmission systems.	L2: Understanding
CO2	:	Analyze the different materials used for automotive structures and Different electronic materials for automotive applications.	L4:Analysing
CO3	:	Explain various topics such as elements of aerospace materials and mechanical behaviour of materials,	L2: Understanding
CO4	:	Compare the ceramics and composites of aerospace materials	L4:Analysing
CO5	:	Examine the fuels for nuclear materials.	L3:Applying

COURSE ARTICULATION MATRIX																
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1	1								1	1		
CO2	1	1	1			1							1	1		
CO3	1			1	1								1		1	
CO4	1	1	1				1						1			1
CO5	1	1		1	1								1			1
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0						1.0	1.0	1.0	1.0
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)																