

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011 (An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS 2022

CURRICULUM AND SYLLABUS (For Candidates admitted from 2022 - 2023 onwards)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (FULL TIME PROGRAMME)

B.E ELECTRONICS AND COMMUNICATION ENGINEERING (FULL TIME)

VISION

Strive continuously to develop Excellence in Technical Education and Research by producing technically competent Electronics and Communication Engineers to meet the growing demands of technology and socioeconomic needs.

MISSION

- To foster and achieve unmatched excellence in Electronics and Communication Engineering Domain.
- To pursue continuous improvement in infrastructure and state-of-the art laboratories.
- To establish and set best teaching and learning standards among top grade Engineering Departments across the nation.
- To encourage learning, research, creativity, innovation and professional activity by offering ambience and support.

PROGRAMME EDUCATIONAL OBJECTIVE (PEO'S)

- **PEO 1:**The graduates will utilize their expertise in Engineering to solve industry's technological problems.
- **PEO 2**: Analyze real life problems, design appropriate system to provide solutions that are technically sound, economically feasible and socially acceptable.
- **PEO 3**:Exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning.

PROGRAM OUTCOMES(PO'S)

- **PO 1**: An ability to apply knowledge of Mathematics, Science, and Engineering in the Electronic and Communication Engineering.
- PO 2: An ability to design and conduct experiments, as well as to analyze and interpret data.
- **PO 3**: An ability to design a System, or Process to meet desired needs within realistic constraints such as Economic, Environmental, Social, Ethical, Health care and Safety, Manufacturability, and Sustainability.
- **PO 4**: An ability to identify, formulate and solve complex problems in the area of Electronics and Communication Engineering.
- **PO 5**: An ability to use the techniques, skills, and modern Engineering tools necessary for Engineering practice.
- PO 6: Knowledge of contemporary issues relevant to professional Engineering practice.
- **PO 7**: The broad education necessary to understand the impact of Engineering solutions in Global, Economic, Environmental and Social context.
- PO 8: An understanding of Professional and Ethical responsibility.
- **PO 9**: An ability to function on multidisciplinary teams.
- PO 10: An ability to communicate effectively.
- **PO 11**: Recognition of the need for, and an ability to engage in research and to involve in lifelong learning.

PO 12: An ability to work as a leader in a team, to manage projects in Multidisciplinary Environments.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1:** To analyse, design and develop solutions for the real time problems and to apply the technical knowledge for developing quality products for Electronics and Communication based Industry.
- **PSO2:** To adapt to emerging Information and Communication technologies and to develop innovative ideas and solutions in RF & Communication, Networking, Embedded Systems, and VLSI.
- **PSO3:** An ability to make use of acquired technical knowledge to get employed in the field of Electronics and Communication and also to become successful Entrepreneur.

		SEMESTER 1	I							
S.	Course	Course Title	Cat.		Iour Wee		Credit	Μ	lax. Ma	arks
No.	Code			L	Т	Р	Cr	CA	FE	Total
1	22MC101	Induction Program	MC	-	-	-	0	-	-	-
		THEORY				-			-	
2	22EN101	Communicative English (Theory cum Practical)	HS	2	0	2	3	50	50	100
3	22MA101	Matrices, Calculus and Ordinary Differential Equations	BS	3	1	0	4	40	60	100
4	22PH102	Materials Science for Engineering	BS	2	1	0	3	40	60	100
5	22CY101	Engineering Chemistry	BS	3	1	0	4	40	60	100
6	22CS101	Problem Solving and C Programming	ES	3	0	0	3	40	60	100
7	22MC102	Heritage of Tamil/ தமிழர் மரபு	HS MC	1	0	0	1	100	-	100
		PRACTICAL	_							
8	22CS102	Computer Practice and C Programming Laboratory	ES	0	0	3	1.5	60	40	100
9	22ME102	Workshop Manufacturing Practices	ES	0	0	4	2	60	40	100
		TOTAL		14	3	9	21.5	430	370	800
		SEMESTER I	I			I		I	L	I
S.	Course	Course Title	Cat.		Iour Wee		Credit	Μ	lax. Ma	arks
No.	Code			L	Т	Р	Cr	CA	FE	Total
		THEORY				-			-	
1	22MA203	Linear Algebra, Partial Differential Equations and Vector Calculus	BS	3	1	0	4	40	60	100
2	22PH201	Physics- Electromagnetism	BS	2	1	0	3	40	60	100
3	22HS201	Universal Human Values	HS	2	1	0	3	40	60	100
4	22EE201	Principles of Electrical Engineering	ES	3	1	0	4	40	60	100
5	22ME101	Engineering Graphics and Design	ES	1	0	4	3	40	60	100
6	22MCIN01	Engineering Sprints	EE	0	0	2	1	100	-	100
7	22MC201	Tamils and Technology/ தமிழரும்தொழில் நுட்பமும்	HS MC	1	0	0	1	100	_	100
8	22NC201	NCC COURSE – I (only for NCC Students)	NC	3	0	0	3*	40	60	100
		PRACTICAL	1			1	1	1	1	1
9	22EN102	Professional Skills Laboratory	HS	0	0	2	1	60	40	100
10	22PH103	Physics Laboratory	BS	0	0	3	1.5	60	40	100
11	22CY102	Chemistry Laboratory	BS	0	0	3	1.5	60	40	100
12	22EE202	Principles of Electrical Engineering Laboratory	ES	0	0	3	1.5	60	40	100
		TOTAL		15	3	17	24.5	680	520	1100

B.E – ELECTRONICS AND COMMUNICATION ENGINEERING (FULL TIME)

*NCC credit course level I is offered for NCC students only. The grades earned by the students will be recorded in the Mark sheet, however the same shall not be considered for the computation of CGPA.

	ſ	SEMESTER I	I	r			1	1		
S.	Course		a (lour Wee		dit	Max. M		arks
No	Code	Course Title	Cat.	L	Т	Р	Credit	CA	FE	Total
	I	THEORY					1		тт	
1	22MA304	Fourier Series, Complex Variables and Transforms	BS	3	1	0	4	40	60	100
2	22EC301	Semiconductor Devices and Circuits	PC	3	0	0	3	40	60	100
3	22EC302	Digital System Design	PC	3	0	0	3	40	60	100
4	22EC303	Network Theory and Synthesis	PC	3	0	0	3	40	60	100
5	22EC304	Transmission Lines and Waveguides	PC	3	0	0	3	40	60	100
6	22EC305	Analog Communication	PC	3	0	0	3	40	60	100
7	22MC301	Indian Constitution	MC	2	0	0	0	100	-	100
8	22MCIN02	Innovation Sprints	EE	0	0	2	1	100	_	100
9	22NC301	NCC Course – II (Only for NCC Students)	NC	3	0	0	3*	40	60	100
		PRACTICAL	l							
10	22EC306	Semiconductor Devices and Circuits Laboratory	PC	0	0	4	2	60	40	100
11	22EC307	Digital System Design Laboratory	PC	0	0	4	2	60	40	100
		TOTAL		20	1	10	24	560	440	1100
		SEMESTER I	V							1
S.	Course				lour Wee		dit	N	/lax. M	arks
No	Code	Course Title	Cat.	L	Т	Р	Credit	CA	FE	Total
	I	THEORY								I
1	22MA402	Probability and Stochastic Processes	BS	3	1	0	4	40	60	100
2	22EC401	Analog Circuits	PC	3	0	0	3	40	60	100
3	22EC402	Microprocessors and Microcontrollers	PC	3	0	0	3	40	60	100
4	22EC403	Signals and Systems	PC	3	0	0	3	40	60	100
5	22EC404	Control Systems	PC	3	0	0	3	40	60	100
6	22EC405	Antenna and Wave Propagation	PC	3	0	0	3	40	60	100
7	22MCIN03	Design Sprints	EE	0	0	2	1	100	-	100
8	22CYMC01	Environmental Science	MC	2	0	1	0	100	-	100
	1	PRACTICAL								
9	22EN401	Placement and Soft Skills Laboratory	HS	0	0	4	2	60	40	100
10	22EC406	Analog Circuits Laboratory	PC	0	0	4	2	60	40	100
11	22EC407	Microprocessors and Microcontrollers Laboratory	PC	0	0	4	2	60	40	100

*NCC credit course level II is offered for NCC students only. The grades earned by the students will be recorded in the Mark sheet, however the same shall not be considered for the computation of CGPA

		SEMESTER	V								
S.	~ ~ .		Cat	Н	ours	/ W	eek	dit	M	ax. Ma	rks
No ·	Course Code	Course Title	•	Ι		Т	Р	Credit	CA	FE	Total
		THEORY		1	I		1				
1	22EC501	Digital Communication	PC	-	3	0	0	3	40	60	100
2	22EC502	Digital Signal Processing	PC	(*)	3	0	0	3	40	60	100
3	22EC503	Embedded Systems	PC		3	0	0	3	40	60	100
4	22ECMG501	Principles of Management	HS		3	0	0	3	40	60	100
5	22_OExx	Open Elective -1	OE		3	0	0	3	40	60	100
6	22MCIN04	Ideation Sprints	EE	()	0	2	1	100	-	100
		PRACTICA	L								
7	22EC505	Communication Systems Laboratory	PC	()	0	4	2	60	40	100
8	22EC506	Digital Signal Processing Laboratory	PC	()	0	4	2	60	40	100
		TOTAL		15	5	0	10	20	420	380	800
		SEMESTER VI (Regu	lar Str	ean	1)						
S. No	Course Code	Course Title	Ca	-+		lours Weel		Credit	M	ax. Ma	rks
•	Course Coue	Course The	Ci	al.	L	Т	Р	Cre	CA	FE	Total
		THEORY	•				1			L	
1	22ECPE6xx	Professional Elective – 1	Р	E	3	0	0	3	40	60	100
2	22ECPE6xx	Professional Elective – 2	Р	E	3	0	0	3	40	60	100
3	22ECPE6xx	Professional Elective – 3	Р	E	3	0	0	3	40	60	100
4	22_OExx	Open Elective – 2	0	E	3	0	0	3	40	60	100
5	22_OExx	Open Elective -3	0	E	3	0	0	3	40	60	100
6	22_OExx	Open Elective – 4	0	E	3	0	0	3	40	60	100
		PRACTICA	L								
7	22EC601	Mini Project	E	E	0	0	6	3	60	40	100
		TOTAL			18	0	6	21	300	400	700

		SEMESTER VI (Prot	osem St	tream)						
G				Hou	rs / V	Veek	lit	Μ	lax. M	arks
S. No.	Course Code	Course Title	Cat.	L	Т	Р	Credit	CA	FE	Total
		THEORY	ζ							
1	22PSPE01	Computational Hardware	PE	3	0	0	3	100	-	100
2	22PSPE02	Coding for Innovators	PE	3	0	0	3	100	-	100
3	22PSPE03	Industrial Automation	PE	3	0	0	3	100	-	100
4	22PSOE01	Applied Design Thinking	OE	3	0	0	3	100	-	100
5	22PSOE02	Startup Fundamentals	OE	3	0	0	3	100	-	100
6	22PSOE03	Prototype Development	OE	3	0	0	3	100	-	100
		PRACTICA	AL							
1	22PSEE01	Robotics	EE	3	0	0	3	100	-	100
		TOTAL		21	0	0	21	700	-	700
		SEMESTER	VII				1	1		
S.	Course Code	Course Title	Cat.		Iour Wee		dit	Μ	lax. M	arks
No	course coue	course rule	Cat.	L	Т	Р	Credit	CA	FE	Total
		THEORY	7							
1	22EC701	VLSI Design	PC	3	0	0	3	40	60	100
2	22EC702	Wireless and Mobile Communication	PC	3	0	0	3	40	60	100
3	22EC703	Optical Communication	PC	3	0	0	3	40	60	100
4	22EC704	Microwave Engineering	PC	3	0	0	3	40	60	100
~	22ECPE7xx	Professional Elective – 4 (Industry based)	PE	3	0	0	3	40	60	100
5		Uaseu)								
5		PRACTICA	AL		-	-				
5	22EC705	PRACTICA Optical and Microwave Engineering Laboratory	AL PC	0	0	4	2	60	40	100
_	22EC705 22EC706	PRACTICA Optical and Microwave Engineering		0	0	4	2	60 60	40 40	100 100

		SEMESTER	VIII																			
s.	Course Code	Course Title	Cat.	Hours / Week																Μ	ax. Ma	rks
No	course coue		Cuti	L	Т	Р	Credit	CA	FE	Total												
	THEORY																					
1	22ECPE8xx	Professional Elective - 5	PE	3	0	0	3	40	60	100												
2	22ECPE8xx	Professional Elective - 6	PE	3	0	0	3	40	60	100												
		PRACTIC	AL																			
3	22EC801	Project Work	EE	0	0	14	7	80	120	200												
		TOTAL		6	0	14	13	200	200	400												

Electronics and Communication Engineering Scheme of Credits: 169

PROFESSIONAL ELECTIVES (PE)

C N.	Course Code	Course Title	Cat		Hours/	Week			Max.Ma	Iarks	
S.No	Course Code	Course Title	Cat.	L	Т	Р	С	CA	FE	Total	
		SEN	MESTEI	R VI							
		PROFESSIO		1	VE - 1	I	1	1		_	
1.	22ECPE61	Electronic Measurements	PE	3	0	0	3	40	60	100	
2.	22ECPE62	Computer Architecture	PE	3	0	0	3	40	60	100	
3.	22ECPE63	Digital Image Processing	PE	3	0	0	3	40	60	100	
4.	22ECPE64	Machine Learning	PE	3	0	0	3	40	60	100	
		PROFESSIO	NAL E	LECTIV	VE - 2						
5.	22ECPE65	Modern Sensors and its Applications	PE	3	0	0	3	40	60	100	
6.	22ECPE66	Radar Communication	PE	3	0	0	3	40	60	100	
7.	22ECPE67	Internet of Things	PE	3	0	0	3	40	60	100	
8.	22ECPE68	Virtual Instrumentation	PE	3	0	0	3	40	60	100	
		PROFESSIO	NAL E	LECTIV	VE - 3						
9.	22ECPE69	Software Defined Radio	PE	3	0	0	3	40	60	100	
10.	22ECPE610	High Speed Networks	PE	3	0	0	3	40	60	100	
11.	22ECPE611	Robotics	PE	3	0	0	3	40	60	100	
12.	22ECPE612	Computer Networks	PE	3	0	0	3	40	60	100	
		SEN	IESTER	VII							
		PROFESSIO	NAL E	LECTIV	VE - 4						
13.	22ECPE71	Automotive Electronics	PE	3	0	0	3	40	60	100	
14.	22ECPE72	Embedded C	PE	3	0	0	3	40	60	100	
15.	22ECPE73	Wireless Sensor Networks	PE	3	0	0	3	40	60	100	
16.	22ECPE74	Telecommunication and Switching Networks	PE	3	0	0	3	40	60	100	
		SEM	IESTER	VIII							
		PROFESSIO	NAL E	LECTIV	VE - 5						
17.	22ECPE81	Multimedia Compression and Communication Techniques	PE	3	0	0	3	40	60	100	
18.	22ECPE82	VLSI Physical Design	PE	3	0	0	3	40	60	100	
19.	22ECPE83	RF & EMI/EMC Testing	PE	3	0	0	3	40	60	100	
20.	22ECPE84	Deep Learning	PE	3	0	0	3	40	60	100	
		PROFESSIO						10		4.0.0	
21.	22ECPE85	Network Security	PE	3	0	0	3	40	60	100	
22. 23.	22ECPE86	Satellite Communication Bio Medical Electronics	PE	3	0	0	3	40 40	60	100	
23. 24.	22ECPE87 22ECPE88	Cognitive Radio	PE PE	3	0	0	3	40	60 60	100 100	

LIST OF OPEN ELECTIVE COURSES

<i>a</i>	Course	~		Ho	ours/W	eek	lits	Maxi	mum N	Aarks
S.No.	Code	Course	Cat	L	Т	Р	Credits	CA	FE	Total
		COURSES OFFERED BY THE DEPAI	RTMEN	T OF N	ATH	EMAT	ICS			
1	22MAOE01	Sampling Theory	OE	3	0	0	3	40	60	100
2	22MAOE02	Numerical Methods	OE	3	0	0	3	40	60	100
3	22MAOE03	Probability and Queuing Theory	OE	3	0	0	3	40	60	100
	1	COURSES OFFERED BY THE DEPART	MENT ()F CIV	IL EN	GINE	ERING	l r		<u></u>
4	22CEOE01	Environmental Management	OE	3	0	0	3	40	60	100
5	22CEOE02	Disaster Mitigation and Management	OE	3	0	0	3	40	60	100
6	22CEOE03	Repair and Rehabilitation of Building Elements	OE	3	0	0	3	40	60	100
7	22CEOE04	Mechanics of Deformable bodies	OE	3	0	0	3	40	60	100
	COURSES	OFFERED BY THE DEPARTMENT OF (COMPU	TER S	CIENO	CE ANI	D ENG	INEER	ING	
8	22CSOE01	Object Oriented Programming Concepts	OE	3	0	0	3	40	60	100
9	22CSOE02	Operating Systems Principles	OE	3	0	0	3	40	60	100
10	22CSOE03	Computer Communications and Networks	OE	3	0	0	3	40	60	100
11	22CSOE04	Python Programming	OE	3	0	0	3	40	60	100
12	22CSOE05	Introduction to Programming in Java	OE	3	0	0	3	40	60	100
13	22CSOE06	Computer Organization	OE	3	0	0	3	40	60	100
14	22CSOE07	Data Structures using C++	OE	3	0	0	3	40	60	100
15	22CSOE08	Cloud Computing Fundamentals	OE	3	0	0	3	40	60	100
16	22CSOE09	Artificial Intelligence and Machine Learning	OE	3	0	0	3	40	60	100
CO	URSES OFFEI	RED BY THE DEPARTMENT OF ELECT	RONICS	S AND	COM	MUNIC	CATIO	N ENGI	INEER	ING
17	22ECOE01	Fundamentals of Electron Devices	OE	3	0	0	3	40	60	100
18	22ECOE02	Principles of Modern Communication Systems	OE	3	0	0	3	40	60	100
19	22ECOE03	Microcontrollers and its applications	OE	3	0	0	3	40	60	100
20	22ECOE04	Computer Networks	OE	3	0	0	3	40	60	100
21	22ECOE05	Basics of Embedded Systems	OE	3	0	0	3	40	60	100
22	22ECOE06	Basics of Internet of Things	OE	3	0	0	3	40	60	100
23	22ECOE07	Basics of Artificial Intelligence	OE	3	0	0	3	40	60	100
(COURSES OFI	FERED BY THE DEPARTMENT OF ELE	CTRICA	L AN	D ELE	CTRO	NICS	ENGINE	CERIN	6 7
24	22EEOE04	Renewable Energy Sources	OE	3	0	0	3	40	60	100
25	22EEOE05	Industrial Drives	OE	3	0	0	3	40	60	100
26	22EEOE06	Energy Conservation and Management	OE	3	0	0	3	40	60	100
27	22EEOE07	Electric Vehicles	OE	3	0	0	3	40	60	100

	COL	URSES OFFERED BY THE DEPARTMEN	T OF M	ЕСНА	NICAI	L ENG	INEEF	RING		
28	22MEOE01	Design of Machine Elements and Machining	OE	3	0	0	3	40	60	100
29	22MEOE02	Industrial Engineering	OE	3	0	0	3	40	60	100
30	22MEOE03	Industrial Robotics	OE	3	0	0	3	40	60	100
31	22MEOE04	Power plant Engineering	OE	3	0	0	3	40	60	100
32	22MEOE05	Principles of Management	OE	3	0	0	3	40	60	100
33	22MEOE06	Professional Ethics in Engineering	OE	3	0	0	3	40	60	100
34	22MEOE07	Renewable Sources of Energy	OE	3	0	0	3	40	60	100
35	22MEOE08	Robotic Process Automation	OE	3	0	0	3	40	60	100
36	22MEOE09	Total Quality Management	OE	3	0	0	3	40	60	100
	COUR	SES OFFERED BY THE DEPARTMENT	OF MET	TALLU	JRGIC	AL EN	GINE	ERING		
37	22MTOE01	Foundry and Welding Technology	OE	3	0	0	3	40	60	100
38	22MTOE02	Surface Engineering	OE	3	0	0	3	40	60	100
39	22MTOE03	Design and Selection of Materials	OE	3	0	0	3	40	60	100
40	22MTOE04	Nano Science and Technology	OE	3	0	0	3	40	60	100
41	22MTOE05	Materials for Automobile Components	OE	3	0	0	3	40	60	100

PROFESSIONAL ELECTIVE COURSES - VERTICALS FOR HONOURS

S.	Course Code	Course Title	Category]	Hrs/Wk&	Credits	
No.	Course Coue	Course Thie	Category	L	Т	Р	С
1.	22ECH101	VLSI technology	PE	3	0	0	3
2.	22ECH102	Analog CMOS IC design	PE	3	0	0	3
3.	22ECH103	Device modelling	PE	3	0	0	3
4.	22ECH104	Network on Chip	PE	3	0	0	3
5.	22ECH105	DSP Integrated Circuits	PE	3	0	0	3
6.	22ECH106	VLSI Signal Processing	PE	3	0	0	3
7.	22ECH107	Mixed signal VLSI design	PE	3	0	0	3
8.	22ECH108	VLSI for wireless communication	PE	3	0	0	3
9.	22ECH109	VLSI for IoT systems	PE	3	0	0	3
10.	22ECH110	VLSI for CAD Design	PE	3	0	0	3

VERTICAL 1: VLSI DESIGN

VERTICAL 2: NETWORKING

S.	Course Code	Course Title	Category]	Hrs/Wk&	Credits	
No.	Course Code	Course Thie	Category	L	Т	Р	С
1.	22ECH201	High Performance Networks	PE	3	0	0	3
2.	22ECH202	Optical Communication Networks	PE	3	0	0	3
3.	22ECH203	Network Security and Management	PE	3	0	0	3
4.	22ECH204	Artificial Neural Networks	PE	3	0	0	3
5.	22ECH205	5G Communication Networks	PE	3	0	0	3
6.	22ECH206	Wireless Adhoc and Sensor Networks	PE	3	0	0	3
7.	22ECH207	Software Defined Networks	PE	3	0	0	3
8.	22ECH208	Embedded System for Networking	PE	3	0	0	3
9.	22ECH209	Cognitive Radio Networking	PE	3	0	0	3
10.	22ECH210	Next Generation Networks	PE	3	0	0	3

VERTICAL 3: COMMUNICATION

S.	Course Code	Course Title	Category	H	Irs/Wk	& Credit	s
No.	Course Code	Course Thie	Category	L	Т	Р	С
1.	22ECH301	Statistical Theory of Communication	PE	3	0	0	3
2.	22ECH302	Information Theory and Coding	PE	3	0	0	3
3.	22ECH303	Millimeter Wave Communication	PE	3	0	0	3
4.	22ECH304	Spread Spectrum Communication	PE	3	0	0	3
5.	22ECH305	MIMO Communication	PE	3	0	0	3
6.	22ECH306	Smart Antennas	PE	3	0	0	3
7.	22ECH307	RF IC and Microwave MEMs	PE	3	0	0	3
8.	22ECH308	Cognitive Radio	PE	3	0	0	3
9.	22ECH309	Satellite Positioning and Navigation Systems	PE	3	0	0	3
10.	22ECH310	Remote Sensing	PE	3	0	0	3

VERTICAL 4: SIGNAL PROCESSING

S.	Course Code	Course Title	Category]	Hrs/Wk&	Credits	
No.	Course Coue	Course The	Category	L	Т	Р	С
1.	22ECH401	Advanced Digital Signal Processing	PE	3	0	0	3
2.	22ECH402	Speech Processing	PE	3	0	0	3
3.	22ECH403	Software Defined Radio	PE	3	0	0	3
4.	22ECH404	Wavelet Signal Processing	PE	3	0	0	3
5.	22ECH405	Pattern Recognition and Machine Learning	PE	3	0	0	3
6.	22ECH406	Adaptive/Array Signal Processing	PE	3	0	0	3
7.	22ECH407	Multimedia Processing	PE	3	0	0	3
8.	22ECH408	Biomedical Signal And Image Processing	PE	3	0	0	3
9.	22ECH409	VLSI Signal Processing	PE	3	0	0	3
10.	22ECH410	Radar Signal Processing	PE	3	0	0	3

MINOR DEGREE - VERTICALS

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes.

VERTICAL - I	VERTICAL - II	VERTICAL - III	VERTICAL - IV	VERTICAL - V	VERTICAL - VI
Civil Engineering	Computer Science and Engineering	Electronics and Communication Engineering	Electrical and Electronics Engineering	Mechanical Engineering	Metallurgical Engineering
22CEM01 Construction Materials	22CSM01 Programming in C++	22ECM01 Electron Devices	22EEM01 – Linear and Digital Electronics Circuits	22MEM01 Engineering Thermodynamics	22MTM01 Advanced Physical Metallurgy
22CEM02 Building Construction & Equipment	22CSM02 Advanced Data Structures and Algorithms	22ECM02 Digital Electronics	22EEM02 – Microprocessor and Microcontrollers	22MEM02 Fluid Mechanics and Machinery	22MTM02 Metallurgical Thermodynamics and kinetics
22CEM03 Concrete Technology	22CSM03 Computer Organization and Design	22ECM03 Electronic Circuits	22EEM03 – Control Systems	22MEM03 Manufacturing Processes	22MTM03 Mechanical Behaviour of Materials
22CEM04 Environmental Engineering	22CSM04 Advanced Operating Systems	22ECM04 Signal Processing	22EEM04 – Measurement and Instrumentation	22MEM04 Materials Engineering	22MTM04 Rate Processing in Metallurgy
22CEM05 Basics of Transportation Engineering	22CSM05 Data Communication and Computer Networks	22ECM05 Microprocessors and Microcontrollers	22EEM05 – Electrical Machines	22MEM05 Kinematics of Machinery	22MTM05 Corrosion and Surface Engineering
22CEM06 Repair and Rehabilitation Structures	22CSM06 Programming Essentials in Python	22ECM06 Analog and Digital Communication	22EEM06 – Electric Drives and Control	22MEM06 Hydraulics and Pneumatics	22MTM06 Characterization of Materials
22CEM07 Green Building Technology	22CSM07 Advanced Database System Concepts	22ECM07 Communication Networks	22EEM07 – Electric Vehicle and Control	22MEM07 Design of Machine Elements	22MTM07 Automotive, Aerospace and Defense Materials
	22CSM08 Virtualization and Cloud Computing	22ECM08 Fundamentals of IoT	22EEM08 – Electrical Energy Conservation and Auditing	22MEM08 Heat and Mass Transfer	
		22ECM09 Wireless Sensors and Networking	22EEM09 – SMPS and UPS	22MEM09 Metrology and Quality Control	
		22ECM10 Basics of Embedded Systems	22EEM10 –Utilization of Electrical Energy	22MEM10 Dynamics of Machinery	

LIST OF MINOR DEGREE - VERTICALS

a	Course	~	~	Ho	ours/W	eek	lits	Maxi	imum N	Marks
S.No.	Code	Course	Cat	L	Т	Р	Credits	CA	FE	Total
		CIVIL ENGIN	EERIN	G						
1	22CEM01	Construction Materials	OE	3	0	0	3	40	60	100
2	22CEM02	Building Construction & Equipment's	OE	3	0	0	3	40	60	100
3	22CEM03	Concrete Technology	OE	3	0	0	3	40	60	100
4	22CEM04	Environmental Engineering	OE	3	0	0	3	40	60	100
5	22CEM05	Basics of Transportation Engineering	OE	3	0	0	3	40	60	100
6	22CEM06	Repair and Rehabilitation of Structures	OE	3	0	0	3	40	60	100
7	22CEM07	Green Building Technology	OE	3	0	0	3	40	60	100
		COMPUTER SCIENCE A	ND EN	GINE	ERIN	G				
1	22CSM01	Programming in C++	OE	3	0	0	3	40	60	100
2	22CSM02	Advanced Data Structures and Algorithms	OE	3	0	0	3	40	60	100
3	22CSM03	Computer Organization and Design	OE	3	0	0	3	40	60	100
4	22CSM04	Advanced Operating Systems	OE	3	0	0	3	40	60	100
5	22CSM05	Data Communication and Computer Networks	OE	3	0	0	3	40	60	100
6	22CSM06	Programming Essentials in Python	OE	3	0	0	3	40	60	100
7	22CSM07	Advanced Database System Concepts	OE	3	0	0	3	40	60	100
8	22CSM08	Virtualization and Cloud Computing	OE	3	0	0	3	40	60	100
	I	ELECTRONICS AND COMMUN	ICATIO	ON EN	IGINE	ERIN	G			
1	22ECM01	Electron Devices	OE	3	0	0	3	40	60	100
2	22ECM02	Digital Electronics	OE	3	0	0	3	40	60	100
3	22ECM03	Electronic Circuits	OE	3	0	0	3	40	60	100
4	22ECM04	Signal Processing	OE	3	0	0	3	40	60	100
5	22ECM05	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100
6	22ECM06	Analog and Digital Communication	OE	3	0	0	3	40	60	100

7	22ECM07	Communication Networks	OE	3	0	0	3	40	60	100
8	22ECM08	Fundamentals of IoT	OE	3	0	0	3	40	60	100
9	22ECM09	Wireless sensors and networking	OE	3	0	0	3	40	60	100
10	22ECM10	Basics of Embedded systems	OE	3	0	0	3	40	60	100
		ELECTRICAL AND ELECTR	ONICS	ENGI	NEER	RING				
1	22EEM01	Linear and Digital Electronics Circuits	OE	3	0	0	3	40	60	100
2	22EEM02	Microprocessors and Microcontrollers	OE	3	0	0	3	40	60	100
3	22EEM03	Control Systems	OE	3	0	0	3	40	60	100
4	22EEM04	Measurements and Instrumentation	OE	3	0	0	3	40	60	100
5	22EEM05	Electrical Machines	OE	3	0	0	3	40	60	100
6	22EEM06	Electric Drives and Control	OE	3	0	0	3	40	60	100
7	22EEM07	Electric Vehicles and Control	OE	3	0	0	3	40	60	100
8	22EEM08	Electrical Energy Conservation and Auditing	OE	3	0	0	3	40	60	100
9	22EEM09	SMPS and UPS	OE	3	0	0	3	40	60	100
10	22EEM10	Utilization of Electrical Energy	OE	3	0	0	3	40	60	100
		MECHANICAL EN	IGINEE	RING						
1	22MEM01	Engineering Thermodynamics	OE	3	0	0	3	40	60	100
2	22MEM02	Fluid Mechanics and Machinery	OE	3	0	0	3	40	60	100
3	22MEM03	Manufacturing Processes	OE	3	0	0	3	40	60	100
4	22MEM04	Materials Engineering	OE	3	0	0	3	40	60	100
5	22MEM05	Kinematics of Machinery	OE	3	0	0	3	40	60	100
6	22MEM06	Hydraulics and Pneumatics	OE	3	0	0	3	40	60	100
7	22MEM07	Design of Machine Elements	OE	3	0	0	3	40	60	100
8	22MEM08	Heat and Mass Transfer	OE	3	0	0	3	40	60	100
9	22MEM09	Metrology and Quality Control	OE	3	0	0	3	40	60	100
10.	22MEM10	Dynamics of Machinery	OE	3	0	0	3	40	60	100
		METALLURGICAL	ENGIN	EEIN	G					

1	22MTM101	Advanced Physical Metallurgy	OE	3	0	0	3	40	60	100
2	22MTM102	Thermodynamics and Kinetics in Metallurgy	OE	3	0	0	3	40	60	100
3	22MTM103	Mechanical Behaviour of Materials	OE	3	0	0	3	40	60	100
4	22MTM104	Rate Processes in Metallurgy	OE	3	0	0	3	40	60	100
5	22MTM105	Corrosion and Surface Engineering	OE	3	0	0	3	40	60	100
6	22MTM106	Materials Characterization	OE	3	0	0	3	40	60	100
7	22MTM107	Automotive, Aerospace and Defence Materials	OE	3	0	0	3	40	60	100

SUMMARY

Course		Credits Per Semester										
component	Ι	II	III	IV	V	VI	VII	VIII	Credits			
HS	3	4		2	03				12			
ES	6.5	8.5							15			
BS	11	10	4	4					29			
PC			19	19	13		16		67			
PE						09	03	6	18			
OE					3	09			12			
EE		1	1	1	1	3		7	14			
MC/HSMC	1	1							02			
Total	21.5	24.5	24	26	20	21	19	13	169			

	Credits	Credits	Credits as	Credits %		
Course Category	as per	% as per	per Anna	as per	Credits	Credit %
	AICTE	AICTE	University	Anna University		
Humanities and Social Science/HSMC	15	9.37	12	7.41	14	8.28
Basic Science	23	14.37	25	15.43	29	17.15
Engineering Science	17	10.63	21	12.96	15	8.88
Program Core	61	38.13	58	35.80	67	39.64
Professional Electives	12	7.5	18	11.11	18	10.65
Open Electives	12	7.5	12	7.41	12	7.10
EEC	20	12.5	16	9.88	14	8.28
	160	100	162	100	169	100

ELECTRONICS AND COMMUNICATION ENGINEERING- FULL TIME

REGULATION 2022 – SYLLABUS

SEMESTER-I

22MC101	INDUCTION PROGRAM		S	emester	ſ	Ι
PREREQUI	SITES	Category	MC	Cre	dit	0
			L	Т	Р	TH
		Hours/Week	0	0	0	0
INDUCT	ION PROGRAM (MANDATORY) - 3 WEEKS D	URATION	II			I
LIST OF	EXPERIMENTS					
• Physi	ical activity.					
Creat	tive Arts.					
• Univ	ersal Human Values.					
 Litera 	ary.					
 Profi 	ciency Modules.					
• Lectu	ures by Eminent People.					
• Visits	s to local Areas.					
• Fami	liarization to Dept./Branch & Innovations.					
				Тс	otal = 2	1 Day

GCE, SALEM (Autonomous) - R2022 Syllabus

Basic language skills listening, speaking, reading and writing Hours/Week 1 2 0 2 COURSE OBJECTIVES 1. To develop the communicative skills of learners by engaging them in reading, writing and grammar learning activitie 2. 0 0 1. To inculcate learners' ability to read texts, summaries, articles and user manuals 3. To assist learners to acquire writing skills for academic, social and professional purposes 4. To improve learners' vocabulary and grammar to supplement their language use at different contexts UINT1 COMPREHENSION 6 0 6 12 Listening - Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weakne: tc.Reading ro detailed comprehension, specific information, Understanding notices, messages, timetables, gra clevant to technical contexts. Writing - Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Non-Pronoun agreement, Propositions and Articles. VIII 1 RECOMMENDATION 6 0 6 1 1 Listening - An interview about a production process, Telephone conversations, Making and changing appointments, Descrip onck, interview. Reading rechnical texts from journals, newspapers and technical bogs. Writing - Writing - Writing - Writing - Writing - W	22EN	N101	COMMUNICATIVE ENGLISI	H	SEN	IEST	ER	Ι
Basic language skills listening, speaking, reading and writing Hours/Weck Lourse Objectives To develop the communicative skills of learners by engaging them in reading, writing and grammar learning activitie To inculeate learners' ability to read texts, summaries, articles and user manuals To incruleate learners' ability to read texts, summaries, articles and user manuals To assist learners to acquire writing skills for academic, social and professional purposes To assist learners' vocabulary and grammar to supplement their language use at different contexts UNIT I COMPREHENSION 6 0 6 12 Listening – Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknes te: Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gre elevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English. Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION Listening – An interview Abat a production process, Telephone conversations, Making and changing appointments, Descrip of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview.Reading - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing checkl Recommendations. Grammar - Perfix and Listifix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Ph rerbs. Pronouns, Adverbs and Adjectives. UNIT III CONVERSATION 6 0 6 12 Listening - Onversation between two employees, Interview about change in job and corporate gift giving. Creating good tex presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team mer netrviewer and applicant, industrialist a	RERI	EQUIS	TIES	CATEGORY	HS	L T P 2 0 2 nmar learning activit intexts 6 0 6 1 g changes in a com trengths and weakn ssages, timetables, g of speech, Tenses, V es. 6 0 6 1 appointments, Descr cills, corporate cultur iting - Writing chec iting - Writing chec rbs, Modal verbs, P 6 1 6 0 6 1 ring, Creating good to leader and team me riting E-mails - Attee Grammar - Condit 6 0 6 1 ving an article. Read 2 g - Essay writing on on seminars, conference 3 3 6 0 6 1 ations, Radio intervence 4 4 g - Essay writing on on seminars, conference 4 4 at to technical cont 5 9 6 1 s. Speaking – Qua 4 1 1 at to technical cont 5 6 1	3	
Z Q Z COURSE OBJECTIVES I. To develop the communicative skills of learners by engaging them in reading, writing and grammar learning activitie 2. To inculcate learners' ability to read texts, summaries, articles and user manuals Image: Course of the communicative skills for academic, social and professional purposes 4. To improve learners' vocabulary and grammar to supplement their language use at different contexts CNIT I COMPREHENSION 6 0 6 1 Listening - Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknest exc. Reading - Reading to redicatel d comprehension, specific information, Understanding notices, messages, timetables, grey relevant to technical contexts. Writing - Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Commo errors in English. Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Artices. UNIT II RECOMMENDATION 6 0 6 12 Listening - An interview about a production process. Telephone conversations, Making and changing appointments, Descript Mine weaking exceeding - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing e-Kall Verting - Writing e-Kall 12 Listening - Conversation between two employees, Intervicw about	lasic la	anguage	skills listening, speaking, reading and writing	Hours/Week	L		TH	
1. To develop the communicative skills of learners by engaging them in reading, writing and grammar learning activitic 2. To inculcate learners' ability to read texts, summaries, articles and user manuals 3. To assist learners to acquire writing skills for academic, social and professional purposes 4. To improve learners' vocabulary and grammar to supplement their language use at different contexts UNIT I COMPREHENSION 6 0 6 12 Listening – Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Sealf-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknes to: Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gre clevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Sommon errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Artcles. UNIT II RECOMMENDATION 16 0 6 12 Listening - Chainers' wabuit a production process, Telephone conversations, Making and changing appointments, Descripting - Noriding instruction, Sulfary erbs, Modal verbs, Phrosonal interview Reading - Reading technical texts from journals, newspapers and technical bogs. Writing - Writing checkd Recommendations. Grammar - Prefix and suffix, Synonym					2	0	2	4
2. To inculcate learners' ability to read texts, summaries, articles and user manuals 3. To assist learners to acquire writing skills for academic, social and professional purposes 4. To improve learners' vocabulary and grammar to supplement their language use at different contexts UNITI 1 COMPREHENSION 6 0 6 12 Listening – Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknes the Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gra elevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Texes, Vo Sommon errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNITI II RECOMMENDATION 6 0 6 12 Listening – An interview about a production process, Telephone conversations, Making and changing appointments, Descrip flow a product is advertised. Speaking – Personal interview, dress code, body language, required skills, corporate culture mock interview. Reading - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing checkle a presh. Pronouns, Adverbs and Adjectives. Notal verbs, Prinouns, Adverbs and Adjectives. UNITI III CONVERSATION 6 0 6 12 Listening	COUR	SE OB.	JECTIVES	I			1	
3. To assist learners to acquire writing skills for academic, social and professional purposes 4. To improve learners' vocabulary and grammar to supplement their language use at different contexts UNIT I COMPREHENSION 6 0 6 12 Listening - Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknest c.Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gravelevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 6 12 Listening - An interview about a production process, Telephone conversations, Making and changing appointments. Descrip of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview.Reading - Reading technical texts from journals, newspapers and technical blogs.Writing - Writing checkly Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verb, Modal verbs, Phorebs, Pronouns, Adverbs and Adjectives. 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating oreading apresubmission for seminars and conferences, Arra	1.	To deve	elop the communicative skills of learners by engaging them in re-	eading, writing and gra	mmar le	earning	g activ	vities
4. To improve learners' vocabulary and grammar to supplement their language use at different contexts UNTI I COMPREHENSION 6 0 6 12 Listening – Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknes tex.Reading - Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gr elevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 6 12 Context is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview.Reading - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing checkle North III CONVERSATION 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good teat presentation. Speaking - Reading advertisements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Atten workshops, Paper subminisson for seminars and conferences, Arrang	2.	To incu	lcate learners' ability to read texts, summaries, articles and user	manuals				
UNIT I COMPREHENSION 6 0 6 12 Listening – Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknest etc.Reading - Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gr. common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 6 12 Listening – An interview about a production process, Telephone conversations, Making and changing appointments, Descriptor of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview. Reading - Reading technical texts from journals, newspapers and technical blogs. Writing – Writing checkl Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phnerets, Pronouns, Adverbs and Adjectives. 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving. Creating good tect 1 presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team mer 1 E-mails - Atten workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Grammar - Conditi statem	3.	To assis	t learners to acquire writing skills for academic, social and prof	essional purposes				
Listening – Interview with personal assistant, An interview with a business consultant, Describing changes in a comp Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknest tec.Reading - Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, grievelevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. Image: Common errors and the contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. Image: Common errors and technical texts from journals, newspapers and technical blogs.Writing - Writing checkly accommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phroenous, Adverbs and Adjectives. UNIT III CONVERSATION 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good text presentation. 5 6 0 6 12 Listening - Reading advertisements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Atten workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Gammar - Conditi tatements, Readundancies, Collocations and Meanings of individual words	4.	To imp	rove learners' vocabulary and grammar to supplement their lang	guage use at different c	ontexts			
Describing dimensions of products. Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknest ite.Reading - Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gr elevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 0 1 12 Listening - An interview about a production process, Telephone conversations, Making and changing appointments, Descrip of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview.Reading - Reading technical texts from journals, newspapers and technical blogs.Writing - Writing checkl Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Pha verbs, Pronouns, Adverbs and Adjectives. UNIT III CONVERSATION 6 0 6 12 Listening - Conversation between two employces, Interview about change in job and corporate gift giving, Creating good ter a presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team mern nerviewer and applicant, industrialist and candidate. Reading advertisements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Atten workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Grammar - Conditi tatements, Redundancies, Collocations and Meanings of individual words. UNIT IV REPORTING 6 0 6 12 Listening - Working in an international team, Statistical information, Interview with investor relations, Radio intervis Speaking – Giving a speech, Describing given data, Discussing company profiles. Writing - Essay writigo on so opics, Technical Report Writing - Status reports on projects, Feasibility reports and event reports o	INIT	I	COMPREHENSION		6	0	6	12
Speaking - Self-introduction, name, home background, study details, area of interest, hobbies, strengths and weaknester. Speaking - Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gr. relevant to technical contexts. Writing - Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 6 12 Listening - An interview about a production process, Telephone conversations, Making and changing appointments, Descrip of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview.Reading - Reading technical texts from journals, newspapers and technical blogs.Writing - Writing in checkl Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phrers, Pronouns, Adverbs and Adjectives. 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good text a presentation. Speaking - Rele play - examiner and candidate, customer and sales manager, team leader and team mern terview and applicant, industrialist and candidate. Reading a meeting. Grammar - Conditi statements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Atten workshosp, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Grammar - Conditi statements, Grammar - Conditi statem	istenin	ng – Inte	erview with personal assistant, An interview with a business	consultant, Describir	ng chan	ges in	a co	mpan
Reading - Reading for detailed comprehension, specific information, Understanding notices, messages, timetables, gravelevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Volumera to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Volumera in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 6 12 Listening - An interview about a production process, Telephone conversations, Making and changing appointments, Descrip of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview.Reading - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing checkl Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Pronouns, Adverbs and Adjectives. UNIT III CONVERSATION 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good text a presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team mern nerviewer and applicant, industrialist and candidate. Reading a neeting. Gammar - Conditions and Meanings of individual words. UNIT IV REPORTING 6 0 6 12 Listening - Giving a speech, Describing given data, Discussing company information, Summarizing an article. Reading longer technical texts, cau	escribi	ing dime	nsions of products.					
relevant to technical contexts. Writing – Dialogue writing in a business context. Grammar - Parts of speech, Tenses, Vo Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 6 12 Listening – An interview about a production process, Telephone conversations, Making and changing appointments, Descrip fow a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview. Reading - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing checkl Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phoreshs, Pronouns, Adverbs and Adjectives. UNIT III CONVERSATION 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good text presentation. Speaking - Reading advertisements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Atten workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Gammar - Conditi tatements, Collocations and Meanings of individual words. UNIT IV REPORTING 6 0 6 12 Listening - Working in an international team, Statistical information, Interview with investor relations, Radio intervie speaking - Giving a speech, Describing given data, Discussing company information, Summarizing an article. Readig aloging technical texts, cause and effect ess								
Common errors in English, Subject-Verb agreement, Noun-Pronoun agreement, Prepositions and Articles. UNIT II RECOMMENDATION 6 0 6 12 Listening – An interview about a production process, Telephone conversations, Making and changing appointments, Description ock interview. Reading technical texts from journals, newspapers and technical blogs. Writing - Writing corporate culture mock interview. Reading technical texts from journals, newspapers and technical blogs. Writing - Writing corporate culture mock interviews and Adjectives. UNIT III CONVERSATION 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good text presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team meri nterviewer and applicant, industrialist and candidate. Writing - Providing instruction, Writing E-mails - Attent workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. G 0 6 12 Listening - Working in an international team, Statistical information, Interview with investor relations, Radio intervie Speaking - Giving a speech, Describing given data, Discussing company information, Summarizing an article. Reading easing writing on seminars, conference completion, Negation in statements and questions. UNIT IV REPORTING 6 0 6 12 Listening - Working in an international team, Statistical information, Interview with inve		-	• • •	-	-			
UNIT II RECOMMENDATION 6 0 6 12 Listening – An interview about a production process, Telephone conversations, Making and changing appointments, Descrip f how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture mock interview.Reading - Reading technical texts from journals, newspapers and technical blogs.Writing - Writing checkl Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phorenouns, Adverbs and Adjectives. UNIT III CONVERSATION 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good teat presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team mern nerviewer and applicant, industrialist and candidate. Reading - Providing instruction, Writing E-mails - Atten workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Grammar - Conditi statements, Redundancies, Collocations and Meanings of individual words. UNIT IV REPORTING 6 0 6 12 Listening – Giving a speech, Describing given data, Discussing company information, Summarizing an article. Reading longer technical texts, cause and effect essays, newspaper articles, company profiles. Writing - Essay writing on so opics, Technical Report Writing – Status reports on projects, Feasibility reports and equestions. UNIT IV INTE					-	ch, Te	nses,	Voice
Listening – An interview about a production process, Telephone conversations, Making and changing appointments, Descrip of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview.Reading - Reading technical texts from journals, newspapers and technical blogs.Writing - Writing checkl Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phrerbs, Pronouns, Adverbs and Adjectives. UNIT III CONVERSATION I 6 0 6 12 Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good teat a presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team meri nterviewer and applicant, industrialist and candidate. Reading - Providing instruction, Writing E-mails - Atten workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Grammar - Conditi statements, Redundancies, Collocations and Meanings of individual words. UNIT IV REPORTING 6 0 6 12 Listening - Giving a speech, Describing given data, Discussing company information, Summarizing an article. Reading longer technical texts, cause and effect essays, newspaper articles, company profiles. Writing - Essay writing on sc opiecs, Feasibility reports and event reports on seminars, conferer neeting. Grammar - Compound words, Conjunctions, Sentence completion, Negation in statements and questions.				Prepositions and Artic			-	
of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture nock interview. Reading - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing checkle Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phyerbs, Pronouns, Adverbs and Adjectives. UNIT III CONVERSATION 6 0 6 12 1 (Listening - Conversation between two employees, Interview about change in job and corporate gift giving. Creating good tea presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team meri nterviewer and applicant, industrialist and candidate. Reading - Reading advertisements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Attent workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Grammar - Conditi statements, Redundancies, Collocations and Meanings of individual words. UNIT IV REPORTING 6 0 6 12 Listening – Giving a speech, Describing given data, Discussing company information, Summarizing an article. Reading longer technical texts, cause and effect essays, newspaper articles, company profiles. Writing - Essay writing on so opics, Technical Report Writing – Status reports on projects, Feasibility reports and event reports on seminars, conference in Grammar - Compound words, Conjunctions, Sentence completion, Negation in statements and questions. UNIT V INTERPRETATION 6 0 6 12 Listening – An interview with career advisor and recruitment agent, Feedbacks, Meeting extracts. Speaking – Quali equired for employability, Improving employee productivity, presentation on problem-solving skills, teamwork, creativity is eadership quality. Reading - Reading brochures, telephone messages, social media messages relevant to technical conter tatistical data, charts, graphs and tables. Grammar - One word substitution, Abbre					-			
Reading - Reading advertisements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Attenworkshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting. Grammar - Conditistatements, Redundancies, Collocations and Meanings of individual words. UNIT IV REPORTING 6 0 6 12 Listening – Working in an international team, Statistical information, Interview with investor relations, Radio intervies Speaking – Giving a speech, Describing given data, Discussing company information, Summarizing an article. Reading Reading longer technical texts, cause and effect essays, newspaper articles, company profiles. Writing - Essay writing on scopics, Technical Report Writing – Status reports on projects, Feasibility reports and event reports on seminars, conference ting. Grammar - Compound words, Conjunctions, Sentence completion, Negation in statements and questions. UNIT V INTERPRETATION 6 0 6 12 Listening – An interview with career advisor and recruitment agent, Feedbacks, Meeting extracts. Speaking – Quali equired for employability. Improving employee productivity, presentation on problem-solving skills, teamwork, creativity areadership quality. Reading - Reading brochures, telephone messages, social media messages relevant to technical context writing – Letter Writing – Formal Letters and Informal Letters - cover letter with resume, Mind maps, Charts - interpret statistical data, charts, graphs and tables. Grammar - One word substitution, Abbreviations and acronyms in technical context and technical vocabulary, Idioms.	istenin presen	ng - Con ntation. S	versation between two employees, Interview about change in jo Speaking - Role play - examiner and candidate, customer and		ving, C	reating	good	
Image: Constraint of the interview of the	eading orksho	g - Readi	ing advertisements, gadget reviews, user manuals. Writing - Prer submission for seminars and conferences, Arranging and conferences, Arranging and conferences.	•	-			
Speaking – Giving a speech, Describing given data, Discussing company information, Summarizing an article. Reading Reading longer technical texts, cause and effect essays, newspaper articles, company profiles. Writing - Essay writing on so opics, Technical Report Writing – Status reports on projects, Feasibility reports and event reports on seminars, conference eneeting. Grammar - Compound words, Conjunctions, Sentence completion, Negation in statements and questions.UNIT VINTERPRETATION60612Listening – An interview with career advisor and recruitment agent, Feedbacks, Meeting extracts. Speaking – Quality eadership quality. Reading - Reading brochures, telephone messages, social media messages relevant to technical contex Writing - Letter Writing – Formal Letters and Informal Letters - cover letter with resume, Mind maps, Charts - interpret statistical data, charts, graphs and tables. Grammar - One word substitution, Abbreviations and acronyms in technical contex and technical vocabulary, Idioms.	INIT I	IV	REPORTING		6	0	6	12
Listening – An interview with career advisor and recruitment agent, Feedbacks, Meeting extracts. Speaking – Quali required for employability, Improving employee productivity, presentation on problem-solving skills, teamwork, creativity a eadership quality. Reading - Reading brochures, telephone messages, social media messages relevant to technical contex Writing - Letter Writing – Formal Letters and Informal Letters - cover letter with resume, Mind maps, Charts - interpret statistical data, charts, graphs and tables. Grammar - One word substitution, Abbreviations and acronyms in technical contex and technical vocabulary, Idioms.	peakin eading opics, 7	ng – Giv g longer (Technica	ving a speech, Describing given data, Discussing company i technical texts, cause and effect essays, newspaper articles, con 1 Report Writing – Status reports on projects, Feasibility repo	nformation, Summariz npany profiles. Writin orts and event reports	ting an g - Essa on sen	article ay writ ninars,	e. Re ing o	ading n socia
required for employability, Improving employee productivity, presentation on problem-solving skills, teamwork, creativity a eadership quality. Reading - Reading brochures, telephone messages, social media messages relevant to technical contex Writing - Letter Writing – Formal Letters and Informal Letters - cover letter with resume, Mind maps, Charts - interpret statistical data, charts, graphs and tables. Grammar - One word substitution, Abbreviations and acronyms in technical contex and technical vocabulary, Idioms.	NIT	V	INTERPRETATION		6	0	6	12
Total $(30L + 30P) = 60$ Peri	istenin equired adersh Vriting	ng – An I for emp nip qualit g - Letter al data, c	interview with career advisor and recruitment agent, Feedboloyability, Improving employee productivity, presentation on pty. Reading - Reading brochures, telephone messages, social Writing – Formal Letters and Informal Letters - cover letter harts, graphs and tables. Grammar - One word substitution, A	problem-solving skills, media messages relev with resume, Mind ma bbreviations and acror	teamw ant to aps, Ch nyms in	ork, cr technic n arts - techni	eativ al co inter cal co	ualities ity and ntexts preting ontexts
				Total (3	60L + 3	50P) =	60 F	Period

KEFE	RENCE DUORS:
1.	Meenakshi Raman and Sangeeta Sharma. Professional English. Oxford University Press, New Delhi, 2019.
2.	Krishna Mohan, Meera Bannerji. Developing Communication Skills. Macmillan India Ltd, Delhi, 1990.
3.	Sanjay Kumar, Pushp Lata. English Language and Communication Skills for Engineers. Oxford University Press,
	2018.
E-RES	SOURCES:
1.	https://learnenglish.britishcouncil.org/

COURSE	E OU'	TCOMES:	Bloom's Taxonomy
Upon con	npleti	on of this course, the students will be able to:	Mapped
CO1	:	comprehend the main ideas, key details and inferred meanings of technical texts	Understanding
CO2	:	use language effectively at technical and professional contexts	Applying
CO3	:	apply the academic and functional writing skills in formal and informal communicative contexts	Applying
CO4	:	interpret pictorial representation of statistical data and charts	Applying

	COURSE ARTICULATION MATRIX														
COs /POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	-	-	-	1	-	-	-	-	1	3	-	1	-	-	1
CO2	-	-	-	1	-	-	-	-	1	3	-	2	-	-	2
CO3	-	-	-	2	-	-	-	-	1	3	-	1	-	-	1
CO4	-	-	-	3	-	-	-	-	1	3	-	1	-	-	1
Avg	-	-	-	1.75	-	-	-	-	1	3	-	1.25	-	-	1.25
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22M	A101	MATRICES, CALCULUS AND ORDINARY DIFFERENTIAL EQUAT		SE	MEST	ER	Ι
PRER	EQUIS	ITES	Category	BS	Cr	edit	4
Basic	12 th leve	el Matrices, Differential Calculus, Integral Calculus		L	Т	Р	ТН
and O		n matrices, Differential Calculus, Integral Calculus	Hours/Week	3	1	0	4
Cours	e Objec	tives		1			
1	To know	w the use of matrix algebra needed by engineers for practical a	applications.				
2	To unde	erstand effectively both the limit definition and rules of different	entiation.				
3	To fam	iliarize in solving maxima and minima problems in two variab	oles.				
4	To obta	in the knowledge of multiple integration and their related app	lications.				
5	To obta	in the knowledge to solve second order differential equations	with constant and y	variable	coeffic	ients.	
Un	it I	MATRICES		9	3	0	12
Hamilt	on theore	ar equations – Characteristic equation of a Matrix – Eigenternet (excluding proof) – Diagonalization of Matrices - Red	U		-		
Un	it II	DIFFERENTIAL CALCULUS		9	3	0	12
-		of functions - Limit of a function - Continuity - Derivatives - gle variable.	Differentiation rule	es -Max	kima and	d Minim	a of the
Uni	t III	FUNCTIONS OF SEVERAL VARIABLES		9	3	0	12
		ves – Euler's theorem for homogeneous functions – Total Method of Lagrangian multipliers – Taylor's series.	Derivatives –Jacol	oians –	Maxim	na, Mini	ma and
Uni	t IV	MULTIPLE INTEGRALS		9	3	0	12
-	-	uls- Double integrals – Change of order of integration in dou ation to Areas – Evaluation of Triple integrals – Application to	-	ange of	variabl	es (Cart	esian to
Un	it V	ORDINARY DIFFERENTIAL EQUATIONS		9	3	0	12
	lre's line	inear differential equations with constant and variable con ar equation - Method of variation of parameters –Simultar	•		-		•
			Τ	otal (4	5+15T) = 60 I	Periods
Tex	t Books	:					
1	Grewal.	B.S, "Higher Engineering Mathematics", 43 rd Edition, Khann	a Publications, Del	hi, 201	5.		
2	Jain R.F 2007.	K. and Iyengar S.R.K., "Advanced Engineering Mathematic	cs", 3 rd Edition, N	arosa F	Publicati	ons, Ne	w Delhi
Refe	rence B	ooks:					
1	James S	tewart, "Essential Calculus", 2nd edition, Cengage Learning, N	New Delhi, 2014.				
2		asamy, K. Thilagavathy and K. Gunavathy, "Engineering Mat d & Co. Ltd. New Delhi, 2010.	hematics (For I yea	ar B.E.,	B. Tecł	n)", 9 th E	Edition,

4	Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2007.
	Siva Ramakrishna Das.P, Ruknmangadachari.E. "Engineering Mathematics", 2 nd Edition, Pearson, Chennai & Delhi, 2013.

	Course Outcomes: Jpon completion of this course, the students will be able to:						
CO1	Learn the fundamental knowledge of Matrix theory.	Understanding					
CO2	Use both the limit definition and rules of differentiation to differentiable functions.	Applying					
CO3	Apply differentiation to solve maxima and minima problems.	Applying					
CO4	Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to a change of order and change of variables.	Applying					
CO5	Apply various techniques in solving differential equations.	Applying					

				C	OURS	E ART	ICULA	ATION	MATI	RIX					
COs/ POs	РО 1	PO 2	РО 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO4	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO5	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
Avg	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
	•	3/2	2/1 – ine	dicates	strengt	th of co	rrelatio	on (3- I	High, 2	Mediu	ım, 1- I	Low)		•	•

22P	H102	MATERIALS SCIENCE FOR ENGINE	ERING	5	Semest	er	Ι					
PRER	REQUIS	ITES	Category	BS	Cr	edit	3					
Basic	knowled	lge in engineering materials		L	Т	Р	ТН					
			Hours/Week	2	1	0	3					
Cours	se Objec	tives										
1	-	erstand the concept of classical free electron theory and band	theory of solids									
	 2 To gain knowledge in the basic concept of semiconductors. 											
3												
4		erstand the concept of magnetic nature of materials, supercond			ons							
5		aire knowledge in synthesis of metallic glasses, smart material	-	-								
	-			1		0	0					
UNIT		CONDUCTING MATERIALS		6	3	0	9					
conduc Fermi	ctivity – V distributi	metals - mobility and conductivity – Classical free elect Wiedemann Franz law – Lorentz number – drawbacks of cl on function - Effect of temperature on Fermi function – Der solids - distinction between conductors, semiconductors and i	assical free electro nsity of states – Ca	n theor	y – Qu	antum t	heory –					
UNIT	II	SEMICONDUCTING MATERIALS		6 3 0 9								
P-type determ level w	semicono ination in with tempo	miconductor - Bonds in semiconductors - Intrinsic semicon ductors - Carrier concentration in intrinsic semiconductors in intrinsic semiconductors - Carrier concentration in N-type erature and doping concentration - Compound semiconductor termination of Hall coefficient - Applications	derivation) –Electr semiconductor(de	ical cor	nductivi 1) – va	ty and b	and gap of Fermi					
UNIT		DIELECTRIC MATERIALS		6	3	0	9					
polariz (deriva	ation –	ptibility – Dielectric constant – Dielectric polarization – E frequency and temperature dependence of polarization – lielectric loss – dielectric breakdown – Uses of dielectric als.	Internal field - 0	Clausiu	s - N	lossotti	relation					
UNIT	IV	MAGNETIC AND SUPERCONDUCTING MATERIALS		6	3	0	9					
ferrom	agnetism	ials: Origin of magnetic moment – Bohr magneton – Dia, – Hysteresis – Hard and soft magnetic materials – Antiferro r ity: Properties – Type I & Type II superconductors - BCS theo	nagnetism.	•			•					
UNIT	V	MODERN ENGINEERING MATERIALS		6	3	0	9					
applica	ations. Na	s - Preparation, properties, applications – Shape memory a momaterials: Introduction – top down and bottom up approa ue – properties – applications – Carbon nanotubes – Propertie	ich – synthesis – E									
			Та	otal (30)L+157	Γ)= 45]	Periods					
Tex	t Books	:										

1	P.K.Palanisamy, 'Materials Science', Scitech Publications (India) pvt.ltd. Chennai, Second edition, 2009
2	M. Arumugam, 'Materials Science', Anuradha Publications, Kumbakonam, 2018.
3	Rajendran V and Marikani A, 'Materials Science', Tata McGraw Publications, New Delhi, 2012
4	Jayakumar S, 'Materials Science', RK Publishers, Coimbatore, 2011.
Refe	rence Books:
1	Charles Kittel, 'Introduction to Solid state Physics', John Wiley and Sons, 7th Edition, Singapore, 2019.
2	Charles P. Poole and Frank J. Ownen, 'Introduction to Nanotechnology', Wiley India, 2007.
3	M.S. Vijaya and G. Rangarajan, 'Materials Science', Tata McGraw Hill, New Delhi, 2012.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level			
C01	Uunderstand the concept of classical free electron theory and band theory of solids.	Understanding			
CO2	Gain knowledge in the basics of semiconductor and variation of Fermi level with respect to different parameters.	Remembering			
CO3	Analyze the various mechanism involved in dielectric polarization and its applications.	Analyzing			
CO4	Understand the concept of magnetic and super conducting materials.	Understanding			
CO5	Apply various techniques to synthesis modern engineering materials.	Evaluating			

					COUR	SE AR'	TICUL	ATIO	N MAT	RIX					
COs/ POs	РО 1	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	-	-	-	1	-	-	-	-	1	2	2	-
CO2	3	2	1	-	1	1	1	1	-	-	-	2	-	-	1
CO3	3	3	1	-	-	1	1	1	-	-	-	1	1		-
CO4	3	3	2	1	2	1	-	-	-	-	-	2	-	2	-
CO5	2	2	2	2	3	1	-	1	-	-	-	2	-	-	2
Avg	2.8	2.4	1.4	1.5	2	1	1	1	-	-	-	1.6	1.5	2	1.5
		3/2/	/1-indic	ates stre	ength of	correla	tion (3-	High,	2-Medi	um, 1- I	Low)	•		•	

	(101	ENGINEERING CHEMISTRY		S	emeste	r	Ι
PRERE	EQUIS	ITES	Category	BS	Cre	edit	4
Basic C	Chemist	ry	Hours/Week	L	Т	Р	ТН
				3	1	0	4
Course	Object	tives		0	-	v	•
	•						
		rinciples of Spectroscopy and their applications.		1.4	1		
		dge of different methods for water analysis and purification &		d its app	plication		
		adsorption techniques and basic knowledge of Phase equilibrium					
	-	es of electrochemistry, electrochemical cells, corrosion, and i		1. 64	. 1		
5	Basis of	f polymer preparations and applications and enhancement of t	he quantity and qua	ality of I	uels.	-	
Unit		SPECTROSCOPIC TECHNIQUES		9	3	0	12
		law (problem) -UV visible spectroscopy: Principle, Chro	-				
		(No applications). IR spectroscopy: Principles -instrumentat nciple -instrumentation -estimation of sodium by flame photo					
-	• •	-estimation of nickel by atomic absorption spectroscopy.	meter. Atomic aus	orption	specifics	сору-р	finciples
Unit		WATER TECHNOLOGY AND NANOTECHNOL	OGY	9	3	0	12
		er – types – expression of hardness – units – estimation of l		-	-	-	
		treatment of boiler feed water - Internal treatment (ph	-				-
		ternal treatment - Ion exchange process, zeolite process -					
	-	- preparations and properties of nanomaterials - nanorods - n	nanowires – nanotu	bes – ca	arbon na	no tube	s and the
applicati Unit		SURFACE CHEMISTRY AND PHASE EQUILIBI		9	3	0	12
		bes of adsorption – adsorption of gases on solids – adsorption		-			
-	• •	sorption isotherm – Langmuir's adsorption isotherm. Phase ru				-	
		system -water system - reduced phase rule - thermal analy					-
lead-silv	er syster	m – Pattinson process.				-	
Unit	IV	ELECTROCHEMISTRY		9	3	0	12
Unit Electrod	IV e Potent	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser		and app	lication	- Electr	ochemic
Unit Electrode cell, Cell	IV e Potent l potenti	ELECTROCHEMISTRY tial- Oxidation and Reduction Potentials - Electrochemical ser al, derivation of Nernst equation for single electrode potentia	l, numerical proble	and app ms on H	lication E, E_0, an	- Electr d E _{cell} -	ochemic numeric
Unit Electrod cell, Cell problems	IV e Potenti l potenti s. Electr	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potentia cochemical theory of corrosion with respect to iron. Factors	l, numerical proble influencing the co	and app ems on H rrosion	lication $E, E_0, an rate: physical rate ph$	- Electr d E _{cell} - ysical st	ochemic numeric tate of th
Unit Electrod cell, Cell problems metal, na	IV e Potenti l potenti s. Electr ature of	ELECTROCHEMISTRY tial- Oxidation and Reduction Potentials - Electrochemical ser al, derivation of Nernst equation for single electrode potentia	l, numerical proble influencing the con acture of the corros	and app ms on H rrosion sion pro	lication E, E_0 , an rate: phy duct. Ty	- Electr d E _{cell} - ysical st pes of	ochemic numeric tate of th corrosio
Unit Electrod cell, Cell problems metal, na galvanic	IV e Potenti l potenti s. Electri ature of series;	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potentia rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n	l, numerical proble influencing the con- ature of the corros on cell, (ii) Stress	and app ems on H rrosion sion pro	lication E, E_0 , an rate: phy duct. Ty sion- e:	- Electr d E _{cell} - ysical st pes of xplanati	ochemic numeric tate of th corrosio on-caust
Unit Electrode cell, Cell problems metal, na galvanic embrittle	IV e Potenti l potenti s. Electri ature of series; ement. (ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potentia rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration	l, numerical proble influencing the con- ature of the corros on cell, (ii) Stress	and app ems on H rrosion sion pro	lication E, E_0 , an rate: phy duct. Ty sion- e:	- Electr d E _{cell} - ysical st pes of xplanati	ochemic numeric tate of th corrosion on-caust
Unit Electrode cell, Cell problems metal, na galvanic embrittle	IV e Potenti l potenti s. Electri ature of series; ement. (-metal c	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potentia rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar	l, numerical proble influencing the con- ature of the corros on cell, (ii) Stress	and app ems on H rrosion sion pro	lication E, E_0 , an rate: phy duct. Ty sion- e:	- Electr d E _{cell} - ysical st pes of xplanati	ochemica numerica tate of the corrosion on-caust
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer	IV e Potenti l potenti s. Electri ature of series; ement. G -metal c t V	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical set al, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condense	l, numerical proble influencing the co- lature of the corros on cell, (ii) Stress node and impresse sation polymerizat	and app ms on I rrosion ion pro s corro d curre 9 ion – 1	lication E, E ₀ , an rate: phy duct. Ty sion- e: nt meth 3 free rad	- Electr d E_{cell} - ysical st $\gamma pes of$ xplanati ods i) 0 ical po	ochemica numerica tate of th corrosion on-caust Protectiv 12 lymeriza
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymers mechanis	IV e Potenti l potenti s. Electri ature of series; ement. C -metal c t V ts – def sm – pla	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical set al, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS inition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat	and app ms on F rrosion ion pro s corro d curre 9 ion – f pnate, p	lication $E_i E_0$, an rate: ph duct. Ty sion- e: nt meth 3 free rad objureth	- Electr d E _{cell} - ysical si ypes of xplanati ods i) 0 ical po ane, nyl	ochemic numeric tate of th corrosio on-caust Protectiv 12 lymeriza lon-6,6, l
Unit Electroda cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanis – Rubbe	IV e Potenti l potenti s. Electri ature of series; ement. 0 -metal c t V rs – def sm – pla er- vulca	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS inition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR –	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny	and app ms on I rrosion ion pro s corro d curre 9 ion – f jonate, p lon-2-N	lication $E_i = E_0$, and rate: phy- duct. Ty- sion- e: nt mether 3 free radial plyurether (ylon-6 = 1)	- Electr d E _{cell} - ysical st pes of xplanati ods i) 0 ical po ane, nyl and PH	ochemic numeric tate of th corrosio on-caust Protectiv 12 lymeriza lon-6,6, l BV. Fue
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanic – Rubbe classifica	IV e Potenti l potenti s. Electri ature of series; ement. G -metal c t V s – def sm – pla er- vulca ation wi	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), definition (H	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo	and app ms on I rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va	lication 3, E ₀ , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 ; lue of so	- Electr d E _{cell} - ysical st ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and	ochemic numeric tate of th corrosio on-caust Protectiv Ivmeriza lon-6,6, 1 BV. Fue I liquid f
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanis – Rubbe classifica using Bo	IV e Potenti l potenti s. Electri ature of series; ement. (-metal c t V t V t V ers – def sm – pla er- vulca ation wi pomb calo	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical set al, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo	and app ms on I rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va	lication 3, E ₀ , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 ; lue of so	- Electr d E _{cell} - ysical st ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and	ochemic numeric tate of th corrosio on-caust Protectiv Ivmeriza lon-6,6, 1 BV. Fue I liquid f
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanis – Rubbe classifica using Bo	IV e Potenti l potenti s. Electri ature of series; ement. (-metal c t V t V t V ers – def sm – pla er- vulca ation wi pomb calo	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), definition (H	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC	and app ems on F rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine,	lication E_i , E_0 , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 = lue of s its ill ef	- Electr d E _{cell} - ysical st ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an	ochemic numeric tate of th corrosio on-caust Protectiv Ivmeriza lon-6,6, 1 BV. Fue I liquid f d preven
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanis – Rubbe classifica using Bo	IV e Potenti l potenti s. Electri ature of series; ement. (-metal c t V t V t V ers – def sm – pla er- vulca ation wi pomb calo	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical set al, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC	and app ems on F rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine,	lication E_i , E_0 , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 = lue of s its ill ef	- Electr d E _{cell} - ysical st ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an	ochemic numeric tate of th corrosio on-caust Protectiv Ivmeriza lon-6,6, 1 BV. Fue I liquid f d preven
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanic – Rubbe classifica using Bo of knock	IV e Potenti l potenti s. Electri ature of series; ement. O -metal c t V ts – def sm – pla er- vulcai ation wi omb calo	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol.	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC	and app ems on F rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine,	lication E_i , E_0 , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 = lue of s its ill ef	- Electr d E _{cell} - ysical st ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an	ochemic numeric tate of th corrosio on-caust Protectiv Ivmeriza lon-6,6, 1 BV. Fue I liquid f d preven
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanic – Rubbe classifica using Bo of knock	IV e Potenti l potenti s. Electri ature of series; ement. (-metal c t V t V t V ers – def sm – pla er- vulca ation wi pomb calo	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol.	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC	and app ems on F rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine,	lication E_i , E_0 , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 = lue of s its ill ef	- Electr d E _{cell} - ysical st ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an	ochemic numeric tate of th corrosio on-caust Protectiv Ivmeriza lon-6,6, 1 BV. Fue I liquid f d preven
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanic – Rubbe classifica using Bo of knock	IV e Potenti l potenti s. Electri ature of series; ement. C -metal c t V t V t V cr- vulca ation wi omb calc cing. An t Books	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol.	l, numerical proble influencing the co- lature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC o	and app ms on F rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine, 5otal (4	lication E, E ₀ , an rate: ph duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 silue of so its ill ef 5L+15	- Electr d E_{cell} - ysical si ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an T = 60	ochemica numerica tate of the corrosion on-caust Protectiv 12 lymeriza lon-6,6, 1 BV. Fue l liquid for d preven) Period
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymers mechanis – Rubbe classifica using Bo of knock	IV e Potenti l potenti s. Electri ature of series; ement. G -metal c t V s – def sm – pla er- vulca ation wi omb calc cing. An t Books S. S.	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Tinition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol. s:	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC o T	and app and app ms on F rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine, Cotal (4	lication E, E ₀ , an rate: ph duct. Ty sion- e: nt meth 3 free rad olyureth ylon-6 lue of so its ill ef 5L+15 y LTD, 1	- Electr d E_{cell} - ysical st z_{pes} of $x_{planati}$ ods i) 0 ical po ane, nyl and PH olid and fects an T) = 6 New De	ochemic numeric tate of th corrosio on-caust Protectiv 12 lymeriza lon-6,6, l BV. Fue l liquid f d preven) Perioc
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanic – Rubbe classifica using Bo of knock	IV e Potenti l potenti s. Electri ature of series; ement. C -metal c t V tr V crs – def sm – pla er- vulca ation wi omb calc cing. An t Books S. S. P. C	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol. S: Dara and S. S. Umare, —A Textbook of Engineering Chemi	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC o Stry S. Chand & C Rai Publishing Com	and app and app ms on I rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine, Fotal (4 Company	lication E, E ₀ , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth ylon-6 lue of so its ill ef 5L+15 // LTD, 1) LTD, 7	- Electr d E_{cell} - ysical si ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an T = 60 New De	ochemic numeric tate of th corrosio on-caust Protectiv 12 lymeriza lon-6,6, 1 BV. Fue l liquid f d preven) Perioc lhi, 2015
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanis – Rubbe classifica using Bo of knock	IV e Potenti l potenti s. Electri ature of series; ement. C -metal c t V tr V crs – def sm – pla er- vulca ation wi omb calc cing. An t Books S. S. P. C	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and conden- astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol. S: Dara and S. S. Umare, —A Textbook of Engineering Chemi . Jain and Monika Jain, —Engineering Chemistry Dhanpat R airam, P. Kalyani and Suba Ramesh, —Engineering Chemistry	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC o Stry S. Chand & C Rai Publishing Com	and app and app ms on I rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine, Fotal (4 Company	lication E, E ₀ , an rate: phy duct. Ty sion- e: nt meth 3 free rad olyureth ylon-6 lue of so its ill ef 5L+15 // LTD, 1) LTD, 7	- Electr d E_{cell} - ysical si ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an T = 60 New De	ochemic numeric tate of th corrosio on-caust Protectiv International International Devenormation Dev
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymers mechanis – Rubbe classifica using Bo of knock Tex 1 2 3 Refe	IV e Potenti l potenti s. Electri ature of series; ement. C -metal c t V t V t V c s – def sm – pla er- vulca ation wi omb calc cing. An t Books S. S. P. C S. V rence B	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Tinition – polymerization – types – addition and condent astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol. s: Dara and S. S. Umare, —A Textbook of Engineering Chemi Jain and Monika Jain, —Engineering Chemistry Dhanpat F airam, P. Kalyani and Suba Ramesh, —Engineering Chemistra Books:	l, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC o stry S. Chand & C Rai Publishing Com ry Wiley India PV	and app and app ms on F rrosion ion pro s corro d curre 9 ion – f onate, p lon-2-N orific va engine, 5otal (4	lication E, E ₀ , an rate: ph duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 siller of siller of siller 5L+15 5L+15 (yLTD, 1))LTD, (ylon-6 siller of siller (ylon-6 siller of siller of siller (ylon-6 siller	- Electr d E_{cell} - ysical si ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an T = 60 New De	ochemic numeric tate of th corrosio on-caust Protectiv 12 lymeriza lon-6,6, 1 BV. Fue l liquid f d preven) Perioc lhi, 2015
Unit Electrode cell, Cell problems metal, na galvanic embrittle coatings- Unit Polymer mechanis – Rubbe classifica using Bo of knock	IV e Potenti l potenti s. Electri ature of series; ement. G -metal c t V s - def sm - pla er- vulca ation wi omb calc cing. An t Books S. S. P. C S. V rence B Fried	ELECTROCHEMISTRY ial- Oxidation and Reduction Potentials - Electrochemical ser ial, derivation of Nernst equation for single electrode potential rochemical theory of corrosion with respect to iron. Factors the metal, area effect, over voltage, pH, temperature, and n (i) Differential aeration corrosion- oxygen concentration Corrosion control by i) Cathodic protection- sacrificial ar oatings- galvanizing and tinning. POLYMERS AND FUELS Finition – polymerization – types – addition and conden- astics, classification – preparation, properties and uses of PVC nization of rubber, synthetic rubbers – butyl rubber, SBR – th examples, calorific value-classification (HCV & LCV), de primeter- Petroleum cracking -fluidized bed catalytic cracking ti-knocking agent: Leaded and unleaded petrol. S: Dara and S. S. Umare, —A Textbook of Engineering Chemi . Jain and Monika Jain, —Engineering Chemistry Dhanpat R airam, P. Kalyani and Suba Ramesh, —Engineering Chemistry	I, numerical proble influencing the co- nature of the corros on cell, (ii) Stress node and impresse sation polymerizat C, Teflon, polycarbo biopolymers – Ny etermination of calo g. Knocking in IC of Stry S. Chand & C Cai Publishing Com ry Wiley India PV nal PVT, LTD, Nev	and app and app ms on I rrosion ion pro s corro d curre 9 ion – 1 jonate, p lon-2-N orific va engine, 9 ion-2-N orific va engine, 1 5 5 5 1 1 1 1 1 1 1 1 1 1	lication E, E ₀ , an rate: ph duct. Ty sion- e: nt meth 3 free rad olyureth (ylon-6 siller of siller of siller 5L+15 5L+15 (yLTD, 1))LTD, (ylon-6 siller of siller (ylon-6 siller of siller of siller (ylon-6 siller	- Electr d E_{cell} - ysical si ypes of xplanati ods i) 0 ical po ane, nyl and PH olid and fects an T = 60 New De	ochemic numeric tate of th corrosio on-caust Protectiv 12 lymeriza lon-6,6, 1 BV. Fue l liquid f d preven) Perioc lhi, 2015

3	Shikha Agarwal, — Engineering Chemistry-Fundamentals and Applications Cambridge University Press, Delhi, 2015.								
E- R	E- References :								
1	www.onlinecourses.nptel.ac.in/								
2	www.ePathshala.nic.in								

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Recall the basic principles of spectroscopy and their applications	Remembering
CO2	Paraphrase the different methods for water analysis & purification and Nanomaterial & its applications	Understanding
CO3	Apply the various adsorption techniques and basic knowledge of Phase equilibria	Applying
CO4	Integrate the principles of electrochemistry, electrochemical cells, corrosion, and its control	Creating
CO5	Assess the basis of polymer preparations & applications and enhancement of the quantity & quality of fuels.	Evaluating

				CC	OURSE	ART	ICUL	ATIC	N MA	ATRIX					
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3	-	3	-	-	-	-	-	-	-	-	3	1	1
CO2	3	2	-	1	-	2	-	-	-	-	-	-	3	1	1
CO3	3	1	-	1	-	-	-	-	-	-	-	-	2	1	1
CO4	2	1	-	1	-	2	-	-	-	-	-	-	2	3	2
CO5	3	2	-	3	-	2	-	-	-	-	-	-	1	1	1
Avg	2.8	1.8	-	1.8	-	2	-	-	-	-	-	-	2.2	1.4	1.2
	•	3/2/1	l - ind	licates	strengt	th of c	orrela	tion (3-Higl	h,2- Me	dium,	1- Low)		

22CS101	PROBLEM SOLVING AND C PROGRA (Common to CSE, ECE, Civil, Mechanical and	SEM	(EST)	I			
PRERE	QUISITES	CATEGORY	ES	Crec	lit		3
NH		· · · ·	L	Т	Р	TH	[
NIL		Hours/week	3	0	0		3
Course (Objectives:						
	To use general problem-solving techniques to device solutions	-					
	To understand the input-output relations of software involve	ed in developing an	d conve	rting a	a C p	orogra	am to a
	executable code.	601					
	To provide complete knowledge about the programming conce				Г	<u> </u>	1
UNIT I	SYSTEM SOFTWARE, PROBLEM SOLVING, PROGRAMMING			9	0	0	9
-	el programming language – Machine level language – Role		e (Editor	r, Con	npiler	, Ass	sembler,
	oader, and Operating System) in developing and executing a C			D 1			
-	mming: Character Set – Case sensitivity – Identifiers – Keyw		• •				
	and their associated information– Formatted and unformatted s – Precedence and Associativity – Pre-processor directives (#i						ersion –
	problem-solving Techniques: Algorithm – Flow-chart – Pseud						volving
	ators and writing their equivalent C programs	beveloping	Solution	5 101 P	10010	1110 11	
UNIT I				9	0	0	9
General p	problem-solving Techniques: Representing Decision making:	if-else statement -	switch-ca	ase sta	iteme	nt – I	Looping
	s: for loop, while loop and do-while loop – Branching statem						
and Pseud	locode.						
-	mming: Decision Making: if-else statement - switch-case state	ement – Looping star	tements:	for loc	op, w	hile l	oop and
	loop - Branching statements: break and continue - Nesting						
-	ng solutions for problems involving control statements us	ing General probler	n-solving	g Tecl	hniqu	es ai	nd their
	t C programs						
UNIT II	·, · ·, · · ·			9	0	0	9
	ensional and two-dimensional Arrays: Declaration – Initi		-				
handling	ion - Processing - Relation between pointers and arrays - Stri	ings – String operatio	ns - CL	Jbrary	supp	ort IC	or String
-	ng solution for problems involving arrays, pointers and strings	using General probl	em_solv	ing Te	chnic	11166 6	nd their
-	it C programs	s using General probl		ing it	ching	ues a	ind then
UNIT IN				9	0	0	9
	– Library functions and user-defined functions – Function pro-	ototypes and function	n definiti	-			
	ms –Recursion – Storage classes – Working with multiple sour	•••					F
	ng solution for problems involving functions using General		chniques	and	their	equiv	alent C
programs							
UNIT V	STRUCTURES, UNIONS AND FILE			9	0	0	9
	declaration – definition –Structure within a structure – Pas	-			ay of	stru	ctures –
Pointers t	o structures - Union - File operations: reading and writing/app	bending to binary and			T)	47.1	1
			1 ota	al (45	L)=	45 I	Periods
Text I	Books:						
1 B	alagurusamy E, "Programming in ANSI C", Tata Mcgraw-Hill	l, 8 th Edition, 2022.					
1.							
	ashavant P. Kanetkar, "Let Us C", BPB Publications, 2016.						
	ence Books:						
	enugopal, "Mastering C", Second Edition, Tata McGraw-Hill						
	. G. Dromey, "How to solve it by computers", Prentice Hall, 2						
	reg Perry and Dean Miller, "C Programming Absolute Beginn					-	
4. B	rain W. Kernighan and Ritchie Dennis, "The C Program	ming Language", S	econd E	ditior	n, Pea	ırson	' ,

	1988.
E-R	Reference:
1.	https://www.learn-c.org/
2.	https://www.programiz.com/c-programming

	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the concepts of C programming and roles of system software in programming	Understanding
CO2	Use general problem-solving techniques to develop solutions to problems	Applying
CO3	Apply the concepts of C programming to develop solutions by writing C programs	Analyzing

				CO	URSE	ART	ICUL	ATIC	DN MA	ATRIX					
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	2	2	-	-	1	-	-	2	2	2	1	-
CO2	3	3	2	2	2	-	-	1	-	-	2	2	2	1	-
CO3	3	3	2	2	2	-	-	1	-	-	2	2	2	1	-
Avg	3	3	2	2	2	-	-	1	-	-	2	2	2	1	-
		3/2/1	- ind	icates s	strengt	h of c	orrela	tion (3-Hig	h,2- Me	edium	,1- Lov	v)		

	தமிழர் மரபு B.E (Common to all Branche	s)	S	emest	ter I	
முன்நிபந்தனைகள்:		Category	HSMC	Cr	edit	1
இலக்கணம் மற்றும் (இலக்கியத்தின் அடிப்படைகள்	Houng/Wook	L	Т	P	TH
		Hours/Week	1	0	0	1
பாடநெறி நோக்கங்க	ள்: மாணவர்களால்					
1. தமிழ் மொழி ம	ற்றும் இலக்கியம் பற்றிய அறிவைப் பெற முடியும்.					
2. பாரம்பரியம், பா முடியும்	றை ஒவியங்கள் முதல் நவீன ஒவியங்கள் மற்றுட	ம் சிற்பக் கலைகள்	பற்றி தெர	ரிந்து	கொ	ាំតា
3. நாட்டுப்புறக் க	லைகள் மற்றும் வீர விளையாட்டுகள் பற்றி அறிந்	து கொள்ள முடியு	'n			
4. தமிழர்களின் ஒ	ழுக்க நெறிமுறைகளைப் பற்றி தெரிந்து கொண்	டு அதன்படி நடந்த	ழ கொள்ள	ட முடி	பும்.	
	ிய தேசிய இயக்கம் பற்றியும், இந்திய மக்களின் கொள்ள முடியும்.	பன்பாட்டில் தமிழர்	களின் பங	ப்களிப்	טַר אַנ	ற்றியும்
அலகு I	மொழி மற்றும் இலக்கிய	فا	3	0	0	3
நாயன்மார்கள் –	ண பௌத்த சமயங்களின் தாக்கம் – ப சிற்றிலக்கியங்கள் – தமிழில் நவீன இல தியார் மற்றும் பாரதிதாசன் ஆகியோரில் 	க்கியத்தின் வள ன் பங்களிப்பு.	ர்ச்சி – த			_
	மரபு – பாறைஓவியங்கள்முதல்ந	வீன ஓவியங்க	गंग	3	0	0 3
அலகு II	வரைசிற்பக்கனை	0				
தயாரிக்கும் சை சிற்பங்கள் – நா கருவிகள் – மிருத	 வீன சிற்பங்கள் வரை – ஐம்பொன் வினைப் பொருட்கள், பொம்மைகள் rட்டுப்புறத் தெய்வங்கள்- குமரி முசை 5ங்கம், பறை, வீணை, யாழ், நாதஸ்வரட லகளின் பங்கு.	சிலைகள் – ப – தேர் செய்யு எயில் திருவள்(ம் கனை ளூவர் ச	ຎ _ ໄ <u></u>	சுடு - இ	மன் சைக்
தயாரிக்கும் சை சிற்பங்கள் – நா கருவிகள் – மிருத	வினைப் பொருட்கள், பொம்மைகள் rட்டுப்புறத் தெய்வங்கள்- குமரி முனை நங்கம், பறை, வீணை, யாழ், நாதஸ்வரட	சிலைகள் – ப – தேர் செய்யு எயில் திருவள்(ம் – தமிழர்களின்	ம் கனை ளூவர் செ ர் சமூக	ຎ _ ໄ <u></u>	சுடு - இ ருள	மன் சைக்
தயாரிக்கும் சை சிற்பங்கள் – நா கருவிகள் – மிருத வாழ்வில் கோவில அலகு III தெருக்கூத்து, கர	வினைப் பொருட்கள், பொம்மைகள் ஈட்டுப்புறத் தெய்வங்கள்- குமரி முனை நங்கம், பறை, வீணை, யாழ், நாதஸ்வரட லகளின் பங்கு. 1	சிலைகள் – ப – தேர் செய்யு எயில் திருவள்டு ம் – தமிழர்களின் விளையாட்டுக து, ஒயிலாட்டம்	ம் கனை ளூவர் ச ன் சமூக ள்	ல் _)லை பொ 3	சுடு - இ ருள 0	மன் சைக் ாதார 0 3
தயாரிக்கும் சை சிற்பங்கள் – நா கருவிகள் – மிருத வாழ்வில் கோவில அலகு III தெருக்கூத்து, கர	வினைப் பொருட்கள், பொம்மைகள் ரட்டுப்புறத் தெய்வங்கள்- குமரி முனை நங்கம், பறை, வீணை, யாழ், நாதஸ்வரட லகளின் பங்கு. நாட்டுப்புறக்கலைகள்மற்றும்வீர காட்டம், வில்லுப்பாட்டு, கணியான்கூத்	சிலைகள் – ப – தேர் செய்யு எயில் திருவள்ஞ ம் – தமிழர்களின் விளையாட்டுக து, ஒயிலாட்டம் ட்டுகள்.	ம் கனை ளூவர் ச ன் சமூக ள்	ல் _)லை பொ 3	சுடு - இ ருள 0 வக்ச	மன் சைக் ாதார 0 3
தயாரிக்கும் சை சிற்பங்கள் – நா கருவிகள் – மிருத வாழ்வில் கோவி அலகு III தெருக்கூத்து, கர சிலம்பாட்டம், வச அலகு IV தமிழகத்தின் தா அகம் மற்றும் பு தமிழகத்தில் எ(வினைப் பொருட்கள், பொம்மைகள் ரட்டுப்புறத் தெய்வங்கள்- குமரி முனை நங்கம், பறை, வீணை, யாழ், நாதஸ்வரட லகளின் பங்கு. நாட்டுப்புறக்கலைகள்மற்றும்வீர காட்டம், வில்லுப்பாட்டு, கணியான்கூத் ாரி, புலியாட்டம், தமிழர்களின்விளையா	சிலைகள் – ப – தேர் செய்யு எயில் திருவள்கு ம் – தமிழர்களின் விளையாட்டுக து, ஒயிலாட்டம் ட்டுகள். ட்பாடுகள் ப்பியம் மற்றும் ய அறக்கோட்ட நகரங்களும் த	ந் கன் ளூவர் ச ன் சமூக ள் , தோல்ட சங்க இ பாடு – ச துறை (ப	ல ஹை பொ 3 பாசை 3 இலக் நகங்	சுடு - இ ருள 0 வக்ச 0 கிய கால	மண் சைக் ாதார 0 3 நத்து, 0 3 த்தில் நம் –
தயாரிக்கும் சை சிற்பங்கள் – நா கருவிகள் – மிருத வாழ்வில் கோவில அலகு III தெருக்கூத்து, கர சிலம்பாட்டம், வன அலகு IV தமிழகத்தின் தா அகம் மற்றும் பு தமிழகத்தில் எ(வினைப் பொருட்கள், பொம்மைகள் ரட்டுப்புறத் தெய்வங்கள்- குமரி முனை நங்கம், பறை, வீணை, யாழ், நாதஸ்வரட லகளின் பங்கு. நாட்டுப்புறக்கலைகள்மற்றும்வீர காட்டம், வில்லுப்பாட்டு, கணியான்கூத் ாரி, புலியாட்டம், தமிழர்களின்விளையா தமிழர்களின் திணைக்கோ வரங்களும், விலங்குகளும் – தொல்கா றக்கோட்பாடுகள் – தமிழர்கள் போற்றி ழத்தறிவும், கல்வியும் – சங்ககால	சிலைகள் – ப – தேர் செய்யு எயில் திருவள்டு ம் – தமிழர்களில் விளையாட்டுக விளையாட்டுக விளையாட்டுக விளையாட்டுக விளையாட்டுக ப்பியம் மற்றும் ப்பியம் மற்றும் ப்பியம் மற்றும் ப்பியம் மற்றும் ப்பியம் மற்றும் த நாடுகளில் சே யபண்பாட்டிற்	ந் கன் ளூவர் ச ர் சமூக ள் , தோல்ட சங்க (பாடு – ச தறை (பு பாழர்கள்	ல ஹை பொ 3 பாசை 3 இலக் நகங்	சுடு - இ ருள 0 வக்ச 0 கால பகளு	மண் சைக் ாதார 0 3 நத்து, 0 3 த்தில் நம் –
தயாரிக்கும் சை சிற்பங்கள் – நா கருவிகள் – மிருத வாழ்வில் கோவி அலகு III தெருக்கூத்து, கர சிலம்பாட்டம், வச அலகு IV தமிழகத்தின் தா அகம் மற்றும் பு தமிழகத்தின் எர சங்ககாலத்தில் ஏ அலகு V இந்திய விடுதன தமிழ்ப்பண்பாட்ட	வினைப் பொருட்கள், பொம்மைகள் ரட்டுப்புறத் தெய்வங்கள்- குமரி முனை நங்கம், பறை, வீணை, யாழ், நாதஸ்வரட லகளின் பங்கு. நாட்டுப்புறக்கலைகள்மற்றும்வீர காட்டம், வில்லுப்பாட்டு, கணியான்கூத் ாரி, புலியாட்டம், தமிழர்களின்விளையா தமிழர்களின்திணைக்கோ வரங்களும், விலங்குகளும் – தொல்கா றக்கோட்பாடுகள் – தமிழர்கள் போற்றி ழத்தறிவும், கல்வியும் – சங்ககால ற்றுமதி மற்றும் இறக்குமதி – கடல் கடந்த	சிலைகள் – ப – தேர் செய்யு எயில் திருவள்கு ம் – தமிழர்களின் விளையாட்டுக து, ஒயிலாட்டம் ட்டுகள். ட்பாடுகள் ப்பியம் மற்றும் ப்பியம் மற்றும் ப்பியம் மற்றும் ப்பியம் மற்றும் ப்பியம் மற்றும் த நாடுகளில் சே யபண்பாட்டிற் ப்பு – இந்தியாவி 5ம் – இந்தியாவி	ந் கன் நூவர் சி நா சமூக எ் சங்க (நிறை (நிறை (நிறை (நிற்களி குத்த இத்த பின் பிழ பிருத்து	ல	சுடு - இ ருள 0 வக்ச 0 கால பகளு வற் 0 ததில்,	மன் சைக் ாதார 0 3 த்தில் நம் – றி. 0 3 களில் சித்த

Tex	xt Books:
1	தமிழக வரலாறு - மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியல் பணிகள் கழகம்)
2	கணினித் தமிழ் - முனைவா் இல.சுந்தரம் (விகடன் பிரசுரம்)
3	கீழடி - வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
4	பொருநை - ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)

பாட்டு	நறி முடிவுகள்: இந்தப் படிப்பு முடிந்ததும், மாணவர்களால்	Bloom's Taxonomy Mapped
CO1	இந்திய மொழிகள், இந்திய மொழிக் குடும்பங்கள் பற்றியும் மற்றும் இலக்கியம், இலக்கியதின் வளர்ச்சி, தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்புகளை பற்றியும் அறிந்து கொண்டனர்.	Understanding
CO2	சிற்பக் கலைகளில் அடங்கியுள்ள பாறை ஒவியங்கள் முதல் நவின ஒவியங்கள் வரை பற்றியும், தமிழர்களின் சமூக, பொருளாதார வாழ்வில் கோவில்களின் பங்கினை பற்றியும் தெரிந்து கொண்டனர்.	Understanding
CO3	தமிழர்களின் வாழ்வியல் முறைகளோடு ஒன்றிய நாட்டுபுறக் கலைகள் மற்றும் தமிழர்களின் வீர விளையாட்டுகளை பற்றி அறிந்து கொண்டனர்.	Understanding
CO4	சங்ககாலத்தில் தமிழா்கள் பின்பற்றிய தினைக் கோட்பாடுகள் பற்றி நடந்து கொண்டனர்.	Applying
CO5	இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்க்குத் தமிழர்களின் பங்கினை பற்றியும் அறிந்து கொண்டனா்.	Understanding

			CO	URSI	E ART	TCUL	ATIC)N M	ATRE	X					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3			2				1			2		
CO2			3			2				1			2		
CO3			3			2				1			2		
CO4			3			2				1			2		
CO5			3			2				1			2		
Avg			3			2				1			2		
		3/	2 /1 - i	ndica	tes str	ength	of co	relati	on (3-	High,	2- Medi	um, 1-	Low)		

22N	AC102	HERITAGE OF TAMILS		s	Semeste	er	Ι
PRE	REQUIS	ITES	Category	HS MC	Cre	edit	1
Basic	es of Tam	il Language and Literature		L	Т	Р	TH
			Hours/Week	1	0	0	1
1.	To Obta	in the knowledge of Tamil Language and Literature					
2.	To fami	liarize with painting and Sculpture					
3.	To Kno	w about the folks and martial arts					
4.	To unde	erstand the Thinai concept of Tamils					
5.	To know	w about the contribution of Tamils to Indian National Me	ovement and Indi	an Cul	ture.		
U	nit I	LANGUAGE AND LITERATURE		3	0	0	3
Natur and I	e of Sanga mpact of H	lies in India - Dravidian Languages – Tamil as a Classical La Im Literature – Distributive Justice in Sangam Literature - Ma Buddhism & Jainism in Tamil Land - Bakthi Literature Azh Modern literature in Tamil - Contribution of Bharathiyar and	anagement Principle wars and Nayanm	les in T	hirukura	ıl - Tam	il Epics
U	nit II	HERITAGE - ROCK ART PAINTINGS TO MO SCULPTURE	DERN ART –	3	0	0	3
sculpt	ures, Villa	odern sculpture - Bronze icons - Tribes and their handicrafts age deities, Thiruvalluvar Statue at Kanyakumari, Making of r aswaram - Role of Temples in Social and Economic Life of Ta	nusical instruments	-	-		
Ur	nit III	FOLK AND MARTIAL ARTS		3	0	0	3
		Caragattam, VilluPattu, KaniyanKoothu, Oyillattam, Leather	r puppetry, Silaml	oattam,	Valari,	Tiger	dance -
Ur	nit IV	THINAI CONCEPT OF TAMILS		3	0	0	3
- Edu	cation and	of Tamils & Aham and Puram Concept from Tholkappiyam Literacy during Sangam Age - Ancient Cities and Ports of S Conquest of Cholas.	-			-	
U	nit V	CONTRIBUTION OF TAMILS TO INDIAN N MOVEMENT AND INDIAN CULTUR		3	0	0	3
Respe		Tamils to Indian Freedom Struggle - The Cultural Influenc nent - Role of Siddha Medicine in Indigenous Systems of l Books.			-		
					Total	= 15 I	Periods
Te	xt Books	:					
1	Socia	l Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB	& ESC and RMRI	2 – (in p	orint)		
2		l Life of the Tamils - The Classical Period (Dr.S.Singarave				nstitute	of Tami

Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.

3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).

4 The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies)

5	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology&TamilNadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL)

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of this course, the students will be able to:	Mapped
CO1	Learn the knowledge of Tamil Language and Literature	Understanding
CO2	Familiarize about painting and Sculpture	Understanding
CO3	Acquire the knowledge about folks and Martial arts	Understanding
CO4	Learn the knowledge of Thinai concepts of Tamils	Applying
CO5	Acquire the knowledge about contribution of Tamils to Indian national movement and Indian culture	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3			2				1			2		
CO2			3			2				1			2		
CO3			3			2				1			2		
CO4			3			2				1			2		
CO5			3			2				1			2		
Avg			3			2				1			2		
		3	8/2/1-	- indic	ates st	rength	of co	rrelation	on (3-	High, 2	- Mediu	ım, 1- L	.ow)		

22CS102	COMPUTER PRACTICE AND C PROGRAM	Semester			I		
	(Common to CSE, ECE, EEE, Civil, Mechanical and	Metallurgy)					
PREREQUI		Category	ES	Cr	edit	1.5	
NIL			L	Т	Р	ТН	
		Hours/Week	0	0	3	3	
Course Obje	activos						
1 To pro	ovide basic knowledge to work with word processing applications						
2 To pro	ovide basic knowledge to work with spread sheet applications						
3 To pro	omote the programming ability to develop C applications						
EXPERIME	INTS						
1. Cre	eating and Formatting documents.						
2. Cre	ating Tables and Manipulation						
3. Usi	ng Equation Editor						
4. Inse	erting Pictures, Shapes and Charts						
5. Usi	ng Mail merge						
B. Sp	read Sheet						
	ating sheets, using built in functions and user-defined formulae						
7. Cre	eating different type of charts from data						
	nple C Programming						
	gram using different operators						
	gram using Control statements.						
	ogram using Loops, Array and Strings.						
	ogram using Functions and pointers						
12. Pr	ogram using Structures and Files.						
	For programming exercises Algorithm, Flow chart and pseu	do code are ess					
			Tota	al (45 P	P)= 45 1	Period	

Cour	Bloom's					
After t	After the successful completion of the practical session, the students will be able to					
		Mapped				
CO1	Demonstrate the usage of features supported by word processing applications.	Applying				
CO2	Demonstrate the usage of features supported by spread sheet applications.	Applying				
CO3	Apply general programming techniques to develop digital solutions to problems	Applying				
CO4	Implement solutions developed with general programming techniques in C programming	Applying				
	language.					

COURSE ARTICULATION MATRIX															
COs/POs	РО	РО	РО	РО	PO	PO	РО	PO	PO	PO	PO	PO 12	PSO 1	PSO 2	PSO 3
	1	2	3	4	5	6	7	8	9	10	11	14	1	4	
CO1	-	-	-	-	-	-	-	-	-	3	-	-	-	1	-
CO2	3	3	-	-	-	-	-	-	-	-	-	-	2	1	-
CO3	3	3	2	2	2	1	1	1	-	-	2	3	2	1	-
CO4	3	3	2	2	2	1	1	1	-	-	2	3	2	1	-
Avg	3	3	2	2	2	1	1	1	-	3	2	3	2	1	-
3/2/1 - indicates strength of correlation (3- High, 2- Medium, 1- Low)															

22ME	102 WORKSHOP MANUFACTURING	WORKSHOP MANUFACTURING PRACTICES						
PRE-F	REQUISITE	Category	ES	Cre	2			
			L	Т	Р	ТН		
		Hours/Week	0	0	4	4		
Course	e Objectives:							
1. 7	To understand the basics of safety measures taken in the lab	oratory.						
	To provide exposure to the students with hands-on expe Mechanical Engineering.	rience on various basic eng	ineering	practice	es in C	ivil and		
3.	To know about the various fitting joints and lathe operation.							
4.	To gain knowledge in welding and fitting operation.							
5.	To understand the fabrication of various models using sheet	metals.						
	LIST OF EXPE	RIMENTS						
1.	Introduction to Safety measures and First aid.							
2.	Study of Lathe, drilling machine -Welding methods and e	equipment- Casting process ar	nd tools-	Sheet n	netal an	d fittin		
	tools- Carpentry tools and joints.							
3.	Fitting: V-fitting, square fitting, Curve fitting.							
4.	Lathe: Facing, turning, taper turning and knurling.							
5.	Welding: BUTT, LAP and T- joints.							
6.	Foundry: Greensand preparation- mould making practice.							
7.	Sheet metal: Cone, tray, cylinder.							
8.	Carpentry: CROSS, T and DOVETAIL joints.							
0	Drilling, simple averaises							

9. Drilling: simple exercises.

Total = 60 Periods

Refe	rence Books:
1.	Bawa, H.S, "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
2.	Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
3.	Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd, 2006.
4.	Dr. P.kannan, Mr. T, Satheeskumar&Mr .K .Rajasekar, "Engineering practices laboratory" manual first edition 2017
5.	Dr. V. Rameshbabu "Engineering practices laboratory" VRB publication pvt ld.
E-Re	ference:
1.	https://archive.nptel.ac.in/noc/courses/noc18/SEM1/noc18-me14/
2.	https://nptel.ac.in/courses/112107083

COURS Upon co	Bloom's Taxonomy Mapped	
CO1	Familiarize the working of various equipment and safety measures.	Understanding
CO2	Prepare fitting of metal and wooden pieces using simple fitting and carpentry tools manually.	Applying
CO3	Fabrication of components using welding, lathe and drilling machine.	Analyzing
CO4	Make the model using sheet metal works.	Analyzing

	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	3	-	-	-	-	-	-	-	-	-
CO2	-	3	-	2	1	-	-	-	-	-	-	-	-	-	2
CO3	-	3	-	2	1	-	-	-	-	-	-	-	-	-	2
CO4	-	3	-	2	1	-	-	-	-	-	-	-	-	-	2
CO5	-	3	-	2	1	-	-	-	-	-	-	-	-	-	2
Avg	-	3	-	3	1	3	-	-	-	-	-	-	-	-	2
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

SEMESTER-II

22M	A203 LINEAR ALGEBRA, PARTIAL DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS B.E. (ECE)							п		
PRE	REQUI	BS		Crea	lit	4				
Basic	- 12 th le	vel knowledge of Matrices, Vector Algebra, PDE, ODE		L		Т	Р	TH		
	integral (3		1	0	4				
Cour	rse Obje	ectives:								
1.	To und	erstand the concepts of vector space and linear transformations.								
2.	To app	y the concept of inner product spaces in orthogonalization.								
3.	To und	erstand the procedure to solve partial differential equations.								
4.		the solutions of second order differential equation with constant		place tr	ansf	orm n	netho	ds.		
5.	To acqu	ire the knowledge of vector differentiation and integration and	its applications.							
UNI			9	3	0	12				
Vecto	Vector spaces - Subspaces - Linear independence and linear dependence - Bases and dimensions.Linear transformation - Null									
_		ges - Dimension theorem - Matrix representation of a linear tran	nsformations.							
UNI		NNER PRODUCT SPACES			9	3	0	12		
Inner	product,	norms - Gram Schmidt orthogonalization process - Adjoint of l	inear operations - L	east squ	iare	appro	oxima	tion.		
UNI	T III	PARTIAL DIFFERENTIAL EQUATIONS			9	3	0	12		
Form	ation – S	olutions of first order equations - Standard types and equations	reducible to standa	rd types	s - S	ingul	ar sol	utions –		
Lagra	nge's lin	ear equation - Integral surface passing through a given curve	- Classification of	partial	diffe	erentia	al equ	ations -		
Solut	ion of lin	ear equations of higher order with constant coefficients.								
UNI	T IV		9	3	0	12				
Lapla	ice Trans	form- Properties of Laplace transform - Laplace Transform	of periodic Function	ons – Fi	ndiı	ng inv	erse	Laplace		
		different methods, convolution theorem - Evaluation of integ		ansform	- so	lving	secor	d order		
differential equations with constant coefficients by Laplace transform method.										
UNI	TVV	VECTOR CALCULUS			9	3	0	12		
Vector differentiation- Gradient- Directional derivative - Divergence - Curl, Vector integration-										
Line integration- work done - Surface and Volume integrals - Green's theorem , Gauss divergence and Stokes theorem										
(without proof) – Simple applications involving cubes and rectangular parallelepipeds.										
	Total (45L+15T) = 60 Periods									

Text E	Books:						
1.	Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna publications, Delhi, 2015.						
2.	Friedberg, A.H., Insel, A.J. and Spence, L., "Linear Algebra", Prentice Hall of India, New Delhi, 2004.						
3.	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", 3 rd Edition, Narosa Publications, New D						
5.	2007.						
Refere	Reference Books:						
1.	James Stewart, "Essential Calculus", 2 nd Edition, Cengage Learning, New Delhi, 2013.						
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.						
3.	Kumaresan, S., "Linear Algebra – A Geometric Approach", Prentice-Hall of India, New Delhi, Reprint, 2010.						
4.	Gilbert Strang, "Linear Algebra and its Applications", 4th Edition, Cengage Learning, New Delhi, 2014.						

Course C)uto	Bloom's					
Upon con	Upon completion of this course, the students will be able to:						
CO1	:	Use the concepts of vector space and linear transformations.	Applying				
CO2	:	Illustrate the concept of inner product spaces in orthogonalization.	Understanding				
CO3	:	Solve various types of partial differential equations in engineering problems.	Applying				
CO4	:	Apply the knowledge of Laplace transforms method to solve second order differential equations.	Applying				
CO5	:	Use Gauss, Stokes and Green's theorems for the verification of line, surface and volume integrals.	Applying				

					С	OURSI	E ART	ICULA	TION	MATR	IX				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	2	-	3	-	-	-	-	-	-	-	-	2	-	-
CO3	3	1	-	2	-	-	-	-	-	-	-	-	2	-	-
CO4	3	1	-	3	-	-	-	-	-	-	-	-	3	-	-
CO5	3	1	-	2	-	-	-	-	-	-	-	-	2	-	-
Avg	3	1.4	-	2.4	-	-	-	-	-	-	-	-	2.2	-	-
	1	1	3/2/	1-indic	ates sti	rength	of corr	elation	(3- Hig	gh, 2-M	edium,	1- Low))	1	

PREREQUISITES CATEGORY BS Credit 3 Basic knowledge in vector calculus, electrostatics Hours/Week I T P TH 2 1 0 3 3 3 3 Course Objectives:								
Hours/Week Image: I								
Course Objectives: 1. To understand the the concept of electrostatics, electric potential and their application. 2. To obtain the knowledge of dielectrics, Capacitance, Poisson's and Laplace's equations. 3. To gain knowledge of Faraday's law, Ampere's Law, Maxwell's Equation and their application. 4. To acquire knowledge of Faraday's law, Ampere's Law, Maxwell's Equation and their application. 5. To obtain the knowledge of Electromagnetic waves, and Poynting vector. UNIT I ELECTROSTATICS IN VACUUM 6 a 3 0 9 Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge- infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge - electric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields. UNIT II ELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM 6 3 0 9 Classification of materials based on conductivity; Electric dostant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions of ampere's law - magnetic induction at point <i>P</i> due to a straight filamentary conductor; Ampere's circuit law - applications of ampere's law: inf								
2. To obtain the knowledge of dielectrics, Capacitance, Poisson's and Laplace's equations. 3. To gain knowledge of magnetostatics, magnetic fields in matter and their application. 4. To acquire knowledge of Faraday's law, Ampere's Law, Maxwell's Equation and their application. 5. To obtain the knowledge of Faraday's law, Ampere's Law, Maxwell's Equation and their application. 6 3 0 9 Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge-infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge- electric trotstatic fields. UNIT II ELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM 6 3 0 9 Classification of materials based on conductivity; Electric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions for Dielectric-Dielectric and Conductor-free Space. 6 3 0 9 Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor; Ampere's circuit law - applications of anward's law - magnetic induction at point P due to a straight filamentary conductor-free Space. 0 9 UNIT II MAGNETOSTATICS AND MAGNETIC FIELDS IN MATTER 6 3 0 9 Biot								
3. To gain knowledge of magnetostatics, magnetic fields in matter and their application. 4. To acquire knowledge of Faraday's law, Ampere's Law, Maxwell's Equation and their application. 5. To obtain the knowledge of Electromagnetic waves, and Poynting vector. UNIT I ELECTROSTATICS IN VACUUM 6 3 0 9 Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge-infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge - electric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields. UNIT II ELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM 6 3 0 9 Classification of materials based on conductivity; Electric dipole - electrostatic field and potential of a dipole; Dielectrics - induced dipoles - polarization in dielectrics - dielectric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions for Dielectric-Dielectric and Conductor-free Space. 0 9 UNIT III MAGNETOSTATICS AND MAGNETIC FIELDS IN MATTER 6 3 0 9 Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor, Ampere's circuit law - applications of ampere's law: infinit								
4. To acquire knowledge of Faraday's law, Ampere's Law, Maxwell's Equation and their application. 5. To obtain the knowledge of Electromagnetic waves, and Poynting vector. UNIT I ELECTROSTATICS IN VACUUM 6 3 0 9 Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge-infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge- electric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields. UNIT II ELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM 6 3 0 9 Classification of materials based on conductivity; Electric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions for Dielectric. Conductor-Dielectric and Conductor-free Space. 3 0 9 Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor, free Space. 6 3 0 9 Faraday's law in terms of emf produced by changing magnetic flux; Lorentz force- force on current carrying conductor - Magnetic Boundary conditions for Dielectric. Conductor-Dielectric, Conductor-Dielectric, Conductor-Dielectric and Conductor-free Space. 6 3 0 9								
5. To obtain the knowledge of Electromagnetic waves, and Poynting vector. UNIT I ELECTROSTATICS IN VACUUM 6 3 0 9 Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge-infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge - electric potential - energy density in electrostatic potential; Energy density in electrostatic rotential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic rotential energy ONTO THE ELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM 6 3 0 9 Classification of materials based on conductivity; Electric dipole - electrostatic field and potential of a dipole; Dielectrics - induced dipoles - polarization in dielectrics - dielectric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions for Dielectric. Conductor-Dielectric FIELDS IN MATTER 6 3 0 9 Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor; Ampere's circuit law - applications of ampere's law; infinite line current - infinite sheet of current; Magnetic Lorentz force- force on current carrying conductor - Magnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of t								
UNIT IELECTROSTATICS IN VACUUM6309Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge- infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge - electric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields.UNIT IIELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM6309Classification of materials based on conductivity; Electric dipole - electrostatic field and potential of a dipole; Dielectrics - induced dipoles - polarization in dielectrics - dielectric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions for Dielectric Dielectric, Conductor-Dielectric and Conductor-free Space.6309Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor; Ampere's circuit law - applications of ampere's law: infinite line current - infinite sheet of current; Magnetic Lorentz force on current carrying conductor - Magnetic Boundary conditions for Dielectric, Conductor-Dielectric, Conductor-Dielectric and Conductor-free Space.6309Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equations in vacuum and non-conducting medium. <td< td=""></td<>								
Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge- infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge - electric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields.UNIT IIELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM6309Classification of materials based on conductivity; Electric dipole - electrostatic field and potential of a dipole; Dielectrics - induced dipoles - polarization in dielectrics - dielectric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conductor-Dielectric and Conductor-free Space.6309WINT IIIMAGNETOSTATICS AND MAGNETIC FIELDS IN MATTER Magnetic locumdary conditions for Dielectric-Dielectric, Conductor-Dielectric, Conductor-Dielectric and Conductor-free Space.09UNIT IVFARADAY'S LAW AND MAXWELL'S EQUATIONS Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids;Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equations in vacuum and non-conducting								
infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge - electric potential - energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields.UNIT IIELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM6309Classification of materials based on conductivity; Electric dipole - electrostatic field and potential of a dipole; Dielectrics - induced dipoles - polarization in dielectrics - dielectric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions for Dielectric-Dielectric, Conductor-Dielectric and Conductor-free Space.6309Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor, Ampere's circuit law - applications of ampere's law: infinite line current - infinite sheet of current; Magnetic Lorentz force- force on current carrying conductor - Magnetic Boundary conditions for Dielectric-Dielectric, Conductor-Dielectric, Conductor-free Space.6309UNIT IVFARADAY'S LAW AND MAXWELL'S EQUATIONS6309Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equations in vacuum and non-conducting medium.6309								
Classification of materials based on conductivity; Electric dipole - electrostatic field and potential of a dipole; Dielectrics - induced dipoles - polarization in dielectrics - dielectric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic boundary conditions for Dielectric, Conductor-Dielectric and Conductor-free Space.6309Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor-free Space.UNIT IVFARADAY'S LAW AND MAXWELL'S EQUATIONS6309Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equations in vacuum and non-conducting medium.09								
induced dipoles - polarization in dielectrics - dielectric constant and strength; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Laplace's and Poisson's equations for electrostatic potential; Electrostatic burdary conditions for Dielectric-Dielectric, Conductor-Dielectric and Conductor-free Space.6309Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor-free Space.6309DIELECTROMAGNETIC FIELDS IN MATTER6309Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor; Ampere's circuit law - applications of ampere's law: infinite line current - infinite sheet of current; Magnetic Lorentz force- force on current carry conditions for Dielectric-Dielectric, Conductor-Dielectric and Conductor-free Space.6309Faraday's LAW AND MAXWELL'S EQUATIONS6309Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Hotional emf ; Electromagnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - worter's law; Maxwell's equations in vacuum and non-conducting medium.6309UNIT VELECTROMAGNETIC WAVES6309								
Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor; Ampere's circuit law - applications of ampere's law: infinite line current - infinite sheet of current; Magnetic Lorentz force- force on current carrying conductor - Magnetic Boundary conditions for Dielectric–Dielectric, Conductor-Dielectric and Conductor-free Space. UNIT IV FARADAY'S LAW AND MAXWELL'S EQUATIONS 6 3 0 9 Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance- self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equations in vacuum and non-conducting medium.								
of ampere's law: infinite line current - infinite sheet of current; Magnetic Lorentz force- force on current carrying conductor - Magnetic Boundary conditions for Dielectric-Dielectric, Conductor-Dielectric and Conductor-free Space. UNIT IV FARADAY'S LAW AND MAXWELL'S EQUATIONS 6 3 0 9 Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance- self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - working and non-conducting medium. Maxwell's exations in vacuum and non-conducting medium. UNIT V ELECTROMAGNETIC WAVES 6 3 0 9								
Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equations in vacuum and non-conducting medium.6309								
Electromagnetic breaking and its applications; Self Inductance - self inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equations in vacuum and non-conducting medium. UNIT V ELECTROMAGNETIC WAVES 6 3 0 9								
UNIT VELECTROMAGNETIC WAVES6309								
The wave equation- plane electromagnetic waves in vacuum and its transverse nature. Energy carried by electromagnetic waves								
Flow of energy and Poynting vector; Radiation pressure.								
Total (30L+15T)= 45 Periods								
Text Books:								
1. Mathew N. O.Sadiku, 'Elements of Electromagnetics', Oxford University Press, Third Edition, 2007.								
2. Halliday, Resnick, Walker, 'Fundamentals of Physics-Electricity and Magnetism', Wiley India Pvt. Ltd., 2015.								
3. Gangadhar K.A, Ramanthan P.M, 'Field Theory', Khanna Publications, 2002.								
Reference Books:								
 David J. Griffiths, 'Introduction to Electrodynamics', Prentice-Hall, Inc. 2020. Kraus and Fleish, 'Electromagnetics with Applications', McGrawHill International Editions, Fifth edition, 2010. 								
R - KALAPADOA								
E-Reference 1 https://nptel.ac.in/courses/115101004								

2	https://nptel.ac.in/courses/115101005
---	---------------------------------------

Course (Upon con		comes: etion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Understand the concepts of electrostatics, electrical potential, and their applications.	Understanding
CO2	:	Analyze the concepts of dielectric and capacitance.	Analyzing
CO3	:	Apply the concepts of magnetostatics, magnetic fields in matter and their application.	Applying
CO4	:	Apply the concepts of Faraday's laws, Ampere's Law, Maxwell's Equation.	Applying
CO5	:	Gain knowledge in the concepts of electromagnetic waves and Poynting vector.	Remembering

	COURSE ARTICULATION MATRIX														
COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	3	1	1	-	1	-	-	-	-	-	1	1	-	-
CO2	3	2	2	3	-	1	-	-	-	-	-	2	2	1	1
CO3	2	2	1	1	-	-	-	-	-	-	-	1	1	-	-
CO4	3	3	2	2	-	1	-	-	-	-	-	2	2	1	1
CO5	3	2	2	2	-	-	-	-	-	-	-	2	1	-	2
Avg	2.6	2.4	1.6	1.8	-	1	-	-	-	-	-	1.6	1.4	1	1.3
			3/2/1-ii	ndicates	s streng	th of co	rrelatio	on (3- H	ligh, 2-I	Medium	1, 1- Lov	w)			

22HS	5201	UNIVERSAL HUMAN VALUES		SE	MEST	ER	II		
PRE	-REQU	ISITE:	Category	HS	Cre	edit	3		
			Hours/Week	L	Т	Р	ТН		
			Hours/ Week	2	1	0	3		
Cou	rse Obj	ectives:							
1.		ppment of a holistic perspective based on self-exploration ab existence.	out themselves (hu	ıman be	ing), far	nily, so	ciety and		
2.	Unders	standing (or developing clarity) of the harmony in the human be	ing, family, society	and nat	ure/exist	ence.			
3. 4.		thening of self-reflection. opment of commitment and courage to act.							
	NIT I	BASIC CONCEPTS OF HUMAN VALUES		6	3	0	9		
recap Exper Aspir huma	itulation riential V ations. I n being	uction - Need, Basic Guidelines, Content and Process for Value from Universal Human Values-I. Self-Exploration–what is it? Validation- as the process for self-exploration Continuous F Right understanding, Relationship and Physical Facility- the bas with their correct priority. Understanding Happiness and Pro od to fulfil the above human aspirations- understanding and liv	P - Its content and p Happiness and Pros sic requirements for sperity correctly-	rocess; ⁶ sperity- fulfilme A critica	Natural A look ent of as l apprais	Accept at basi piration	ance' and c Human s of every		
UN	IT II	UNDERSTANDING HARMONY IN THE HUMAN	BEING	6	3	0	9		
'I' an Body harme	Understanding Harmony in the Human Being - Harmony in Myself! Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - happiness and physical facility. Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer) Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail Programs to ensure Sanyam and Health.								
UN	IT III	UNDER STANDING HARMONY IN THE F SOCIETY	FAMILY AND	6	3	0	9		
Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding values in human- human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship. Understanding the meaning of Trust; Difference between intention and competence. Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship. Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals. Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.									
UN	IT IV	UNDERSTANDING HARMONY IN THE N EXISTENCE	ATURE AND	6	3	0	9		
Natur Unde	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence. Understanding the harmony in the Nature. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence of mutually interacting units in all- pervasive space. Holistic perception of harmony at all levels of existence.								
UN	IT V	HOLISTIC UNDERSTANDING OF HARMONY		6	3	0	9		
Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in professional ethics, Strategy for transition from the present state to Universal Human Order.									
	Total (30L + 15T) = 45 Periods								
Refe	rence B	ooks:							
1.	Human	Values and Professional Ethics by R R Gaur, R Sangal, G P Ba	agaria, Excel Books	, New D	elhi, 20	10			
Refe	rence B	ooks:							

1.

2.

JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.

Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.

3.	The Story of Stuff (Book)
4.	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi
5.	Small is Beautiful - E. F Schumacher.
6.	Slow is Beautiful - Cecile Andrews
7.	Economy of Permanence - J C Kumarappa
8.	Bharat Mein Angreji Raj - PanditSunderlal
9.	Rediscovering India - by Dharampal
10.	Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi
11.	India Wins Freedom - Maulana Abdul Kalam Azad
12.	Vivekananda - Romain Rolland (English)
13.	Gandhi - Romain Rolland (English)

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Become more aware of themselves, and their surroundings (family, society, nature) and become more responsible in life	Evaluating
CO2	Handle problems with sustainable solutions, while keeping human relationships and human nature in mind	Applying
CO3	Become sensitive to their commitment towards what they have understood (human values, human relationship and human society)	Evaluating
CO4	Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.	Applying

	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	1	-	-	1	-	2	-	1	-	3	2	-	1
CO2	-	-	1	-	-	3	-	1	-	1	-	3	1	-	1
CO3	-	-	1	-	-	2	-	1	-	1	-	3	1	-	2
CO4	-	-	2	-	-	1	-	1	-	1	-	3	1	-	1
Avg	-	-	1.25	-	-	1.75	-	1.25	-	1	-	3	1.25	-	1.25
			3/2/1	l – indi	cates s	trength	of cor	relatio	n (3 – I	High, 2 -	- Mediu	m, 1 – L	ow)		

PREREQUISITESCATEGORYESCredit4Engine ringPhysicsI04Engine ringI04Course ringOur study the working principles of DC and AC machines3To understand the basic concepts of electric circuits, measurements techniques and instrumentsIn our derstand the components of Electrical installationsUNIT IDC CIRCUITS93012Electrical circuits with de excitation. Superposition, Thevenin, Norton and Maximum power transfor s' current and voltage and current sources, Ohm's f' current and voltage first-order RL and RC circuits.93012Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive reperter, and letta connections.93012Construction - Working principle - EMF equation - Ideal and Practical transformer - Transformer or Transformer - Transformer or Transformer - Tra	22E	E201	01 PRINCIPLES OF ELECTRICAL ENGINEERING SEMESTER II								
Hours/Week 3 1 0 4 Course Objectives: 1. To understand the basic concepts of electric circuits, measurements techniques and instruments 2. To study the working principles of DC and AC machines 3. To understand the components of Electrical installations UNIT I DC CIRCUITS 9 1 DC CIRCUITS 9 1 DC CIRCUITS 9 1 DC CIRCUITS 9 1 1 DC CIRCUITS 9 1 DC CIRCUITS 9 1 DC CIRCUITS 9 1 DC CIRCUITS 9 1 DC CIRCUITS 9	PRE	PREREQUISITESCATEGORYESCredit4									
3 I 0 4 Course Objectives: 1. To understand the basic concepts of electric circuits, measurements techniques and instruments 2. To study the working principles of DC and AC machines 3. To understand the components of Electrical installations UNIT I DC CIRCUITS 9 3 0 12 Electrical circuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff's current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin, Norton and Maximum power transfer theorems, Time-domain analysis of first-order RL and RC circuits. UNIT II AC CIRCUITS Q 3 0 12 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections. UNIT III TRANSFORMERS Q 3 0 12 Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses. UNIT IV ELECTRICAL MACHINES 9 3 0 12 Construction and working o	Engi										
1. To understand the basic concepts of electric circuits, measurements techniques and instruments 2. To study the working principles of DC and AC machines 3. To understand the components of Electrical installations UNIT I DC CIRCUITS Iso and erstand the components of Electrical installations UNIT I DC CIRCUITS Electrical circuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff's current and voltage laws, analysis of simple circuits with de excitation. Superposition, Thevenin, Norton and Maximum power transfer theorems, Time-domain analysis of first-order RL and RC circuits. UNIT I AC CIRCUITS 9 3 0 12 Representation of sinusoidal waveforms, peak and rms values, phasor representation, read power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections. UNIT II TRANSFORMERS 9 3 0 12 Construction - Working principle - EMF equation - Ideal and Practical transformer - Transformer on no-load - Transformer on load - Equivalent circuit - Losses and Efficiency of transformers - Regulation - Auto-transformer Sa	~				3		1	0	4		
2. To study the working principles of DC and AC machines 3. To understand the components of Electrical installations UNIT I DC CIRCUITS Electrical circuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff's current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin, Norton and Maximum power transfer theorems, Time-domain analysis of first-order RL and RC circuits. UNIT II AC CIRCUITS 9 3 0 12 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and letta), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections. UNIT II TRANSFORMERS 9 3 0 12 Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses. UNIT IV ELECTRICAL MACHINES 9 3 0 12 Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed c	Cour	rse Obj	ectives:								
3. To understand the components of Electrical installations UNIT I DC CIRCUITS 9 3 0 12 Electrical circuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff's current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin, Norton and Maximum power transfer theorems, Time-domain analysis of first-order RL and RC circuits. 9 3 0 12 UNIT II AC CIRCUITS 9 3 0 12 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections. 9 3 0 12 Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses. UNIT IV ELECTRICAL MACHINES 9 3 0 12 Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators. 9 3 0 12				niques and instrume	nts						
UNIT IDC CIRCUITS93012Electrical circuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff's current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin, Norton and Maximum power transfer theorems, Time-domain analysis of first-order RL and RC circuits.93012UNIT IIAC CIRCUITS93012Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections.93012UNIT IIITRANSFORMERS93012Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses.UNIT IVELECTRICAL MACHINES93012Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of three phase induction motor, Working of single phase induction motor, Working of single of startions, of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.											
Electrical circuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff's current and voltage laws, analysis of simple circuits with dc excitation. Superposition, Thevenin, Norton and Maximum power transfer theorems, Time-domain analysis of first-order RL and RC circuits. 9 3 0 12 UNIT II AC CIRCUITS 9 3 0 12 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections. 9 3 0 12 Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Corper, Uses. UNIT IV ELECTRICAL MACHINES 9 3 0 12 Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of DC shunt motor, Working of single phase induction motor and is applications, Construction and working of synchronous generators. 9 3 0 12 Construction working of synchronous generators. UNIT IV ELECTRICAL INSTALLATIONS <td< td=""><td>-</td><td colspan="9"></td></td<>	-										
of simple circuits with dc excitation. Superposition, Thevenin, Norton and Maximum power transfer theorems, Time-domain analysis of first-order RL and RC circuits. UNIT II AC CIRCUITS 9 3 0 12 Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, There-phase balanced circuits, voltage and current relations in star and delta connections. 9 3 0 12 UNIT III TRANSFORMERS 9 3 0 12 Construction - Working principle - EMF equation - Ideal and Practical transformer - Transformer on no-load - Transformer on load - Equivalent circuit - Losses and Efficiency of transformers - Regulation - Auto-transformer: Saving of Corper, Uses. 9 3 0 12 Construction - Working principle - EMF equation - Ideal and Practical transformer - Transformer on no-load - Transformer on load - Equivalent circuit - Losses and Efficiency of transformers - Regulation - Auto-transformer: Saving of Corper, Uses. 9 3 0 12 Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators. 9 3 0 12 Components of LT Switchgear: Swi							-	•			
analysis of first-order RL and RC circuits.93012UNIT IIAC CIRCUITS93012Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections.93012UNIT IIITRANSFORMERS93012Construction - Working principle - EMF equation - Ideal and Practical transformer - Transformer on no-load - Transformer on load - Equivalent circuit - Losses and Efficiency of transformers - Regulation - Auto-transformer: Saving of Copper, Uses.012UNIT IVELECTRICAL MACHINES93012Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.93012UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.12											
UNIT IIAC CIRCUITS93012Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections.93012UNIT IIITRANSFORMERS93012Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses.93012Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.93012UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.93012											
Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections. 9 3 0 12 Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses. UNIT IV ELECTRICAL MACHINES 9 3 0 12 Construction working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of three phase induction motor, Working of single phase induction motor and working of synchronous generators. UNIT V ELECTRICAL INSTALLATIONS 9 3 0 12 Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.											
power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combinations (series and parallel), resonance, Three-phase balanced circuits, voltage and current relations in star and delta connections.UNIT IIITRANSFORMERS93012Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses.UNIT IVELECTRICAL MACHINES93012Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.93012											
resonance, Tresonance, Survey of circuits, voltage and current relations in star and delta connections.UNIT IIITRANSFORMERS93012Construction - Working principle – EMF equation – Ideal and Practical transformer – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Survey of Current, UNIT IVELECTRICAL MACHINES93012Construction - Ketter Current, Survey of Current, Starting and speed control of DC shunt motor, Construction and working of a three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.93012Construction Working of Synchronous generators.UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Current, power factorof Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumitor, power factorimprovement and battery backup.											
UNIT IIITRANSFORMERS93012Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Surver of Corpert, Uses.Image: Construction - Corpert, UsesUNIT IVELECTRICAL MACHINES93012Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.93012UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.93012											
Construction – Working principle – EMF equation – Ideal and Practical transformer – Transformer on no-load – Transformer on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Saving of Copper, Uses. VIIT IV ELECTRICAL MACHINES 9 3 0 12 Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators. 9 3 0 12 Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup. 9 3 0 12				ind denta connection		9	3	0	12		
on load - Equivalent circuit - Losses and Efficiency of transformers – Regulation - Auto-transformer: Subject Subj				ormer – Transforme	r on no	-loa	ud – 7	- Fransf			
UNIT IVELECTRICAL MACHINES93012Construction, working and speed control of DC shunt motor, Construction and working of a three phase induction motor, Starting and speed control of three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.Image: Construction and working of synchronous generators.UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.93012											
Starting and speed control of three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.93012						_	1				
Starting and speed control of three phase induction motor, Working of single phase induction motor and its applications, Construction and working of synchronous generators.UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.93012	Const	truction,	working and speed control of DC shunt motor, Construction a	nd working of a th	ree pha	ise i	nduc	tion r	notor,		
UNIT VELECTRICAL INSTALLATIONS93012Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.93012											
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing, Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.	Const	truction a	and working of synchronous generators.						-		
of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.	UNI	ГV	ELECTRICAL INSTALLATIONS			9	3	0	12		
improvement and battery backup.											
				ions for energy c	onsumj	otior	n, po	ower	factor		
Total (45L+15T) = 60 Periods	impro	ovement	and battery backup.								
				Total	(45L+	15T	<u>(</u>) = (<u>50 Pe</u>	riods		

Text B	Text Books:								
1.	Basic Electrical Engineering - D.P. Kothari and I.J. Nagrath, 3 rd edition, Tata McGraw Hill, 2010.								
2.	Basic Electrical Engineering - D.C. Kulshreshtha, Tata McGraw Hill, 2019.								
Reference Books:									
1.	Fundamentals of Electrical Engineering, L.S. Bobrow, Oxford University Press, 2011								
2.	Electrical and Electronics Technology, E. Hughes, 10th Edition, Pearson, 2010								
3.	Electrical Engineering Fundamentals, Vincent Deltoro, Second Edition, Prentice Hall India, 1989								

Course O)utc	Bloom's Taxonomy	
Upon con	nple	Mapped	
CO1	:	Analyze DC and AC circuits.	Analyzing
CO2	:	Apply electrical circuit theorems to DC circuits.	Applying
CO3	:	Discuss the concepts and working of two-winding and auto-transformers.	Understanding
CO4	:	Explain the working principles of DC and AC Electrical Machines.	Understanding
CO5	:	To choose components of Low Voltage Electrical Installations	Evaluating

					COU	URSE A	ARTICUI	LATION	MAT	RIX					
COs/P Os	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO 11	PO12	PSO 1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	-	-	1	1	hon	1	1
CO2	2	2	1	-	-	-	-	-	-	-	1	1	1	1	1
CO3	2	1	1	-	-	-	-	-	-	-	1	1	1	1	1
CO4	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1
CO5	1	1	-	-	-	-	-	-	-	-	1	1	1	1	1
Avg	1.6	1.4	1	-	-	-	-	-	-	-	1	1	1	1	1
	•		3/2/1-ind	icates str	ength of o	correla	tion (3- H	ligh, 2-N	ledium	., 1- Lov	v)			•	•

22M	IE101	ENGINEERING GRAPHICS AND DE	ESIGN	S	Semeste	er	Π
PREF	REQUIS	ITES	Category	ES	Cr	edit	3
Studer	nts shoul	d know about the basics of drawings.		L	Т	Р	ТН
Studer	nts shoul	d be able to construct geometric shapes	Hours/Week	1	0	4	5
Cours	se Objec	tives					
1		art knowledge on graphical skills for communications of co provide exposure to design.	oncepts, ideas and c	lesign c	of engin	eering p	oroducts
2	To exp	ose them to existing national standards related to technical dra	awings.				
3	To und	erstand the basics of points, lines, planes and solids.					
4	To und	erstand the basics of the surface of an object.					
5	To exp	ose them to isometric and perspective views of simple solids.					
Ur	nit I	PROJECTION OF POINTS, LINES AND PLANE	SURFACES	3	0	12	15
in the f	first quad	es of orthographic projection- Projection of points, located in rant – Determination of true lengths and true inclinations – P reference planes.					
Un	nit II	PROJECTION OF SOLIDS		3	0	12	15
-		nple solids like prisms, pyramids, cylinder and cone when th one reference plane by change of position method.	e axis is perpendicu	ular to c	one refe	rence pl	ane and
Uni	it III	SECTION OF SOLIDS AND DEVELOPMENT OF	F SURFACES	3	0	12	15
other - Develo	 solids i opment of 	bove solids in a simple vertical position by cutting planes inc nclined position with cutting planes parallel to one refere lateral surfaces of simple and truncated solids – Prisms, pyra s with square and cylindrical cutouts, perpendicular to the axi	nce plane- Obtaini amids cylinders and	ing true	shape	of the	section.
Uni	it IV	ORTHOGRAPHIC AND ISOMETRIC PRO	JECTION	3	0	12	15
dimens	sional obj	ojection - Visualization concepts and Freehand sketching - ects - Layout of views - Freehand sketching of multiple vie tion – isometric scale - isometric projections of simple solids,	ews from pictorial	views o	f object	s. Princ	iples of
Un	nit V	PERSPECTIVE PROJECTION		3	0	12	15
Perspe	ctive proj	ection of prisms, pyramids and cylinders by visual ray and va	nishing point metho	ods.			
			Tot	tal (15)	L+60P)) = 75 P	Periods
	-4 D 1	:					
Tex	xt Books						
Te 2		, N.D., Panchal V M and Pramod R. Ingle, "Engineering D	Drawing", Charotar	Publis	hing H	ouse, 53	Brd Edit
	Bhatt 2014.	, N.D., Panchal V M and Pramod R. Ingle, "Engineering D			-	ouse, 53	Brd Edit
1	Bhatt 2014. Partha erence B	, N.D.,Panchal V M and Pramod R. Ingle, "Engineering D asarathy, N. S. and Vela Murali, "Engineering Drawing", Oxf ooks:	ford University Pres		-	ouse, 53	3rd Edit
1 2 Refe 1	Bhatt 2014. Partha erence B Agrawa	, N.D.,Panchal V M and Pramod R. Ingle, "Engineering D asarathy, N. S. and Vela Murali, "Engineering Drawing", Oxf ooks: l, B. and Agrawal C.M., "Engineering Drawing", Tata McGra	ford University Pres		-	ouse, 53	Brd Edit
1 2 Refe 1 2	Bhatt 2014. Partha erence B Agrawa Gopalal	, N.D.,Panchal V M and Pramod R. Ingle, "Engineering D asarathy, N. S. and Vela Murali, "Engineering Drawing", Oxf ooks: l, B. and Agrawal C.M., "Engineering Drawing", Tata McGra crishna, K. R., "Engineering Drawing", Subhas Stores, Banga	Ford University Pres aw, N.Delhi, 2008. lore, 2007.	ss, 2015			Brd Edit
1 2 Refe 1	Bhatt 2014. Partha erence B Agrawa Gopalal Nataraja	, N.D.,Panchal V M and Pramod R. Ingle, "Engineering D asarathy, N. S. and Vela Murali, "Engineering Drawing", Oxf ooks: l, B. and Agrawal C.M., "Engineering Drawing", Tata McGra	Ford University Pres aw, N.Delhi, 2008. lore, 2007. hanalakshmi Publis	ss, 2015			3rd Edi

https://nptel.ac.in/courses/112102304

E-References

1.

2.	https://home.iitk.ac.in/~anupams/ME251/EDP.pdf
3.	https://static.sdcpublications.com/pdfsample/978-1-58503-610-3-1.pdf

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Familiarize with the fundamentals and standards of engineering graphics.	Understanding
CO2	Ability to understand the fundamental concepts of projection of points, lines and planes.	Analyzing
CO3	Project the solids and section of solids.	Analyzing
CO4	Familiarize and develop the lateral surfaces of solids	Analyzing
CO5	Visualize and project the orthographic, isometric and perspective sections of simple solids.	Analyzing

				CO	OURSE	E ARTI	CULA	TION	MATR	IX					
COs/ POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PS O 1	PS O2	PS O 3
CO1	3	1	-	-	-	-	-	-	-	-	-	-	3	1	-
CO2	3	1	-	-	-	-	-	-	-	-	-	-	3	1	-
CO3	3	1	-	-	-	-	-	-	-	-	-	-	3	1	-
CO4	3	1	-	-	-	-	-	-	-	-	-	-	3	1	-
CO5	3	1	-	-	-	-	-	-	-	-	-	-	3	1	-
Avg	3	1	-	-	-	-	-	-	-	-	-	-	3	1	-
		3/2/	1 – ind	icates s	trengt	h of cor	relatio	n (3- H	ligh, 2-	Mediu	m, 1- I	low)		•	

22M	CIN01	ENGINEERING SPRINTS		S	Semest	er	II
PRER	REQUIS	ITES	Category	EE	Cr	edit	1
				L	Т	Р	ТН
			Hours/Week	0	2	0	2
Cours	se Learn	ing Objectives					<u> </u>
1	To Stre	ngthen conceptual understanding of fundamental engineering	concepts.				
2	To Spa	rk curiosity in students Minds.					
3	To focu	is on teaching through a problem-solving approach using Stree	et Fight Engineerin	g princi	ples pic	oneered.	
4	To fost	er the growth of functional independence and self-driven learn	ning habits.				
5	To max	ximize the interest levels towards learning - as students aspire	to create meaningfu	ıl chang	ges in th	e world.	
Ur	nit I	STREET FIGHTING ENGINEERING		0	6	0	6
•	-	engineering - How to street fight engineering - Decode dy - Derive actionable inferences - Perform data - driven insig	-			• •	tterns -
Un	it II	PROGRAMMING PARADIGM		0	6	0	6
Algori	thms - M	amming - Outside box thinking to solve problems- Need for emory Allocation - Conditions and loops - Creating effective mming languages & paradigms - Getting started with develop	functions - Case s	tudies -	· Visual	Program	nming -
Uni	it III	BRAINS OF MACHINES		0	6	0	6
- Brain	-	ry systems to Accelerate Innovation - Idea Hexagon - Exercise tal camera. MACHINES THAT MAKE-UP THE WORLD	e to think of new ir	1		g Idea H	-
				0	6		6
		ronics passive components - Need for sensors & Actuators - Basic Custom Hardware - Bootloader & its purposes.	Analyzing & Und	erstand	ing elec	tronic c	ircuits -
Un	nit V	ENGINEERING THE REAL WORLD		0	6	0	6
		ystems - Introducing to Systems Thinking - Stock and Flow ld of Systems.	Diagrams - Systen	n Traps	- Interv	vening c	ircuits -
					Tota	l = 30 I	Periods
Tex	t Books	:					
1	Sanjo	oy Mahajan - Street Fighting Mathematics					
2	Dona	ld Knuth - The Art of Computer Programming					
3	Thin	k like a programmer - An introduction to creative problem solv	ving				
4	Thin	king in Systems - A Primer					
Refe	rence B	ooks:					
1	Learn	ning to code : How to think like a programmer					
2	How	to find innovative ideas : Ramesh Raskar's note					
3	Case	Study ; How Tesla changed the auto industry					
4	Ultin	nate Guide : How to develop a new electronic hardware produc	ct				

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Apply street fight engineering concepts	L3: Applying
CO2	Construct Flowchart & block diagrams for algorithms	L3: Applying
CO3	Apply the idea Hexagon Tool to understand basic electronics for building basic hardware	L3: Applying
CO4	Examine real-world problems with a system view	L4: Analyzing

				CO	URSE	ARTI	CULA	TION	MAT	RIX					
COs/POs	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 0 1	PS O2	PS 0 3
CO1	2	3	2	2	2	-	-	-	-	-	-	-	2	2	2
CO2	3	3	3	2	3	-	-	1	-	-	-	-	3	3	2
CO3	1	2	2	1	1	-	-	-	-	-	-	-	2	2	2
CO4	3	3	3	2	2	-	-	1	-	-	-	-	3	3	3
CO5	2	3	3	3	3	-	-	-	-	-	-	-	3	3	3
Avg	2.2	2.8	2.6	2	2.2	-	-	-	-	-	-	-	2.6	2.6	2.4
		3/2/1	– indic	cates st	rength	of con	relatio	on (3-]	High, 2	2- Med	ium, 1	- Low)			

22N	AC201	தமிழரும் தொழில்நுட்பமும் B.E (Common to all Branches)		5	Semeste	er	II
முன்	டிபந்தனை		Category	HS MC	Cro	edit	1
இலக்	கணம் ம	ற்றும் இலக்கியத்தின் அடிப்படைகள்		L	Т	Р	ТН
			Hours/Week	1	0	0	1
பாட	நெறி நோ	க்கங்கள்: மாணவா்களால்	I				
1.		5 தொழிலின் நன்மைகள், அதன் பயன்கள், பானைத் ெ п முடியும்.	தாழில் நுட்பத்தை	5ப் பற்றி) நன்கு	5 அறிந்	து
2.	கட்டிடப்	் கட்டுதல் மற்றும் கட்டிடத் தொழிலுள்ள நுட்பங்கள் பற்	றி அறிந்து கொல	ர்ள மு	தயும் .		
3.		6 தொழில் நுட்பம், இரும்பு, உலோகம், கனிமம், தொழி <u>ர்</u> டுகளை வெளிப்படுத்த முடியும்.	ற்சாலைகள் பற்றி	அறிந்	து அவ	ற்றின்	
4.		ன்மை மற்றும் நீர் பாசன முறைகள், தொழில் நுட்பம், ஏர் ளைப் பற்றி தெரிந்து நடைமுறைப் படுத்த முடியும்.	ர் உழுதல் போன்ற) பண்6	டைய க	ால நெ	றி
5.		றய கால கட்டத்தில் உள்ளவாறு அறிவியல் வளர்ச்சி, க ப விரிவாக்க முடியும்.	ணினித் தமிழ் ப <u>ற்</u>	றி தொ	ரிந்து ெ	காண்(9
அ	லகு I	நெசவு மற்றும் பானை தொழில்நுட்பம்		3	0	0	3
		தில் நெசவுத் தொழில் - பானை தொழில் ந ல் கீறல் குறியீடுகள்	பட்பம் - கருப்	பு சில	սսսկ ւ	ாண்ட	ங்கள்-
ച	லகு II	வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்	பம்	3	0	0	3
வடிவ பற்றி பெரு கட்ட	பமைப்பு- ய விவர நங்கோயி கமைப்பு	தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & ச சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல் ங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களு ல்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள்- நா கள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆல வீடுகள் - பிரிட்டிஷ் காலத்தில் சென்னையில் இந்	லும்- சிலப்பதிக ம் - கோவில்கரு ாயக்கர் காலக் யம் மற்றம் திரு	ாரத்தி ளும் - கோ மலை	ல் மே சோழ யில்கவ நாயக்க	டை அ ஹர் கால ர் - கர் ம <u>வ</u>	மைப்பு லத்துப் மாதிரி
அல	க III	உற்பத்தித் தொழில் நுட்பம்		3	0	0	3
வரல உரு6	ாற்றுச் வாக்கம்	ம் கலை - உலோகவியல் - இரும்புத் தொழிற்சா சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் தொழிற்சாலைகள் - கல்மணிகள், கண்ணாடி ப லும்புத்துண்டுகள் - தொல்லியல் சான்றுகள் - சிலப்	ர் - நாணயங்க மணிகள் - சுடு	ள் அ)மண்	ச்சிடித் மணி	தல் - கள் -	மணி சங்கு
அ	ரை IV	வேளாண்மை மற்றும் நீா்ப்பாசனத் தொழில்	நுட்பம்	3	0	0	3
கால் செய	நடைகளு ல்பாடுக	குளங்கள், மதகு, - சோழர்காலக் குமுழித் தூம்பின் நக்காக வடிவமைக்கப்பட்ட கிணறுகள் - வேள ள் - கடல்சார் அறிவு - மீன்வளம் - முத்து மற்றும் றிவு - அறிவுசார் சமூகம்.	ாண்மை மற்றுட	ம் வே	ளாண்	തഥ ക	சார்ந்த
ූ	ю V	அறிவியல் தமிழ் மற்றும் கணித்தமிழ்		3	0	0	3
மென	ர் பொரு	பிழின் வளர்ச்சி - கணித்தமிழ் வளர்ச்சி - தமிழ் ட்கள் உருவாக்கம் - தமிழ் இணையக் கல்விக்கழச நிகள் - சொற்குவைத் திட்டம்.	•	-	-	-	
					Total	= 15 F	Periods

Tex	xt Books:
	தமிழக வரலாறு - மக்களும் பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியல் பணிகள் கழகம்)
2	கணினித் தமிழ் - முனைவா் இல.சுந்தரம் (விகடன் பிரசுரம்)
3	கீழடி - வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
4	பொருநை - ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)

பாடநெ	ஹி முடிவுகள் : இந்தப் படிப்பு முடிந்ததும், மாணவா்களால்	Bloom's Taxonomy
		Mapped
CO1	சங்காலத்தில் இருந்த நல்ல தொழில்களையும் கைவிணை கலைகளால் ஏற்படும்	Understanding
	நன்மைகளையும் பற்றி அறிந்து கொண்டனர்.	<u> </u>
CO2	கட்டிடங்கள் மற்றும் வீட்டுப்பொருட்களை வடிவமைப்பது, சங்காலத்தில் இருந்த	Understanding
	கோவில்களை பற்றி அறிந்து கொண்டனர்	<u> </u>
CO3	உலோகவியல், இரும்பு தொழிற்சாலைகள், தொல்லியல் சான்றுகள், உற்பத்தி	Applying
	தொழல் நுட்பத்தை பற்றி அறிந்து கொண்டனா்.	
CO4	பழங்காலத்தில் வோளண்மை, நீர்பாசனம், மீன் வளம், கால்நடை பராமரிப்பு,	Applying
	அறிவுசார் சமுகம் பற்றி அறிந்து கொண்டனர்.	
CO5	அறிவியல் தமிழன் வளர்ச்சி, கணித்தமிழ் வளர்ச்சி, மென்பொருள் உருவாக்கம்,	Understanding
	இணைய கல்வி கழகம், இணையத்தில் தமிழ் அகராதிகள் பற்றி அறிந்து	Ũ
	கொண்டனர்.	

CO./								ON MA	INIA					
COs/ 1 POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1			3			2						1	2	
CO2			3			2						1	2	
CO3			3			2						1	2	
CO4			3			2						1	2	
CO5			3			2						1	2	
Avg			3			2						1	2	

22N	IC201	TAMILS AND TECHNOLOGY		S	emest	er	II
PRE	REQUIS	ITES	Category	HS MC	Cr	edit	1
Basic	s of Tam	ils Language and Literature		L	Т	Р	ТН
			Hours/Week	1	0	0	1
1.	To Obta	in the knowledge of weaving and ceramic technology					
2.	To fami	liarize about design and construction technology during	sangam age and	British	period		
3.	To know	w about the manufacturing technologices					
4.	To obta	in the knowledge of agriculture and irrigation technolog	У				
5.	To know	w about the development of Scientific Tamil and Tamil	computing				
U	nit I	WEAVING AND CERAMIC TECHNOL	OGY	3	0	0	3
Weav	ing Indust	ry during Sangam Age – Ceramic technology – Black and Rec	d Ware Potteries (B	RW) –	Graffiti	on Pott	eries.
U	nit II	DESIGN AND CONSTRUCTION TECHNO	DLOGY	3	0	0	3
Hero Great	stones of S Temples	Structural construction House & Designs in household mater Sangam age – Details of Stage Constructions in Silappathikar of Cholas and other worship places - Temples of Nayaka Pe kar Mahal - Chetti Nadu Houses, Indo - Saracenic architectur	am - Sculptures an riod - Type study	d Temp (Madura	les of N ai Meer	Jamalla	puram -
Un	nit III	MANUFACTURING TECHNOLOG	Y	3	0	0	3
Mintin	ng of Coi	lding - Metallurgical studies - Iron industry - Iron smelting,s ins – Beads making-industries Stone beads -Glass beads vidences - Gem stone types described in Silappathikaram.					
Ur	nit IV	AGRICULTURE AND IRRIGATION TECH	NOLOGY	3	0	0	3
use - A	Agricultur	nds, Sluice, Significance of KumizhiThoompu of Chola Perio e and Agro Processing - Knowledge of Sea - Fisheries – Pearl cific Society.					
U	nit V	SCIENTIFIC TAMIL & TAMIL COMPU	TING	3	0	0	3
		f Scientific Tamil - Tamil computing – Digitalization of Ta cademy – Tamil Digital Library – Online Tamil Dictionaries		elopmer	t of Ta	umil Sof	tware –
					Total	= 15 1	Periods
Та	xt Books	-					
10		•					
1		Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB					6
2	Socia Studi	l Life of the Tamils - The Classical Period (Dr.S.Singarave es.	elu) (Published by:	Interna	tional I	nstitute	of Tam
3		rical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.I ute of Tamil Studies).	D. Thirunavukkaras	su) (Put	olished	by: Inte	ernationa
4		Contributions of the Tamils to Indian Culture (Dr.M.Valar l Studies)	mathi) (Published	by: Inte	ernatior	nal Insti	tute of
5		di - 'Sangam City Civilization on the banks of river Vaigai' (chaeology&TamilNadu Text Book and Educational Services C			rtment		
6	Studi	es in the History of India with Special Reference to Tamil Nat	du (Dr.K.K.Pillay)	(Publish	ned by:	The Au	thor)
7		nai Civilization (Jointly Published by: Department of Archaeo ces Corporation, Tamil Nadu)	logy & Tamil Nadı	ı Text B	ook an	d Educa	tional

8

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
C01	Obtain the knowledge about weaving and ceramic technology.	Understatnding
CO2	Familiarize about design and construction technology during sangam age and British period	Understatnding
CO3	Understanding about the manufacuturing technologies	Applying
CO4	Acquire the skills in agriculture and irrigation technology	Applying
CO5	Acquire the knowledge about the development of Scientific Tamils and Tamil computing.	Understatnding

	COURSE ARTICULATION MATRIX													
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1			3			2						1	2	
CO2			3			2						1	2	
CO3			3			2						1	2	
CO4			3			2						1	2	
CO5			3			2						1	2	
Avg			3			2						1	2	
		3/2/	/1 – indi	cates st	rength (of corre	lation (3	- High.	2- Medi	ium, 1- I	Low)	•	•	•

22N(C 201	NCC COURSE-I (Only for NCC Stud	lents)	5	Semeste	er	II
PRER	EQUIS	ITES	Category	NC	Cre	edit	3
NIL				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Objec	tives					
1	To ma	intain the unity and disciplines to the students					
Un	it I	NCC GENERAL & NATIONAL INTEGRATION AWARENESS	AND	9	0	0	9
Nationa	•	es and Org of NCC – Incentives to NCC cadets – Duties of ation: Importance and Necessity – Factors affecting Nation ty.					
Uni	it II	PERSONALITY DEVELOPMENT & LEADERSH DEVELOPMENT	HIP	9	0	0	9
Commu Time M Indicate	inication Aanagem ors, Mo	velopment Capsule -Self Awareness Empathy, Creative Skills - Group Discussion - Stress emotions, Change Your nents, Civil Sense - Career Counselling, SSB Procedures of tivation, Ethics & Honour code - Case Studies-Shivaji, APG an Majumdar, Jhansi Ki Rani, Narayan Murty, PrakashPaduko	Mindset, Inter Per & Interview Skills Abdul Kalam & D	rsonal I ; Leade Deepa N	Relations rship Ca Ialik, N	s& Teai apsule Iaharan	- Traits,
Unit	t III	DISASTER MANAGEMENT AND HEALTH & H	YGIENE	9	0	0	9
Fighting	g – Initia	ement Capsule- SochVichar, Types - Organisation, Capability ative Training, Organisation Skills, Do's and Don'ts – Natural st aid in Common Medical Emergencies, Treatment & Care o	Disasters, Man Ma	ade Disa	asters; H	ealth &	
Uni	t IV	PRINCIPLES OF FLIGHT & GENERAL SERVIC KNOWLEDGE	CE	9	0	0	9
– Stall -		– Glossary Terms – Bernoulli's Principle – Aerofoil – Forces Armed Forces & IAF Capsule – Modes of Entry in IAF, Civi	-		-	-	
Uni	it V	NAVIGATION, AEROENGINES, AIRCOMPAIG AIRMANSHIP	NS &	9	0	0	9
Engines	s – Turb	f Navigation – Glossary terms – Maps – Map Reading; Basic o Prop Engines; Indo Pak war 1971 – Operation Safed Sag of the Air – Circuit Procedures – ATC RT Procedures – Avia	gar – Famous Air	Heroes;		-	
					Total	= 45 1	Periods
	se Outc comple	omes: tion of this course, the students will be able to:			Tax	Bloon konomy	n's y Level
CO1		red knowledge about the history of NCC, its organization, incont NCC camps	entives of NCC, dut	ties,		Analyzi	ing
CO2	Unders	stand the concept of national integration and its importance			U	nderstar	nding
CO3	Unders	stand the importance disaster management and health and hyg	iene.		Uı	nderstar	nding
CO4	Unders	stand the importance principal of Flight and knowledge about	armed services.		U	nderstar	nding

22EN1()2	PROFESSIONAL SKILLS LABORATO	ORY	SEM	EST	ГER		II						
PRE-R	EQUI	SITE	CATEGORY	HS	C	redi	t	1						
	-		Hours/Week	L	T]	P	TH						
			Hours/ week	0	0)	2	2						
Course	Obje	ctives:												
1.	To en	able learners to improve their reading skills												
2.	To ma	ke learners show variations while reading												
3.	To as	sist learners to acquire speaking competency in English												
4.	To en	enable learners to strengthen their fluency in speaking 0 0 6 6												
UNIT I		0	0	6	6									
Speaking UNIT I	-	rating a story without any help of handouts. PRESENTATION			0	0	6	6						
poem.		ling a poem – learning the skill of reciting, appreciate rhyme and ver-point presentation on a general topic.	l music, change in tone	as per the	e em	otio	ı of	the						
UNIT I	II	SHORT SPEECH			0	0	6	6						
		ling newspaper article – learning vocabulary and language patter presentation on a topic from basic engineering pertained to thei		cation.										
UNIT I	V	ORGANIZING EVENTS			0	0	6	6						
		ling dialogue scripts – learning expression, tone, stress and co-op posing welcome address, vote of thanks and organizing events.	perative reading.											
UNIT V	V	DESCRIBING PROCESS			0	0	6	6						
Speaking	g – Des	ling technical descriptions of gadgets – learning the different par cribing a process – everyday technical activities like taking prin for meetings etc.,		pment for	a co	ompa	ny,							
			Т	Cotal (30	P) =	= 30	Per	riods						

Text B	ooks:
1.	Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book, Cambridge University Press,
	2014.
Refere	nce Books:
1.	Reading Fluency. Switzerland, MDPI AG, 2021.
2.	McJacobs, Wade. Dare to Read: Improving Your Reading Speed and skills. Sustralia, Friesen Press, 2021
3.	Hoge, A. J. Effortless English: Learn to Speak English Like a Native. United States, Effortless English LLC, 2014.
E-Refe	erences:
1.	https://www.talkenglish.com/
2.	https://www.readingrockets.org/

	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	To read passages fluently with good pronunciation	Remembering
CO2	To develop an expressive style of reading	Creating
CO3	To make effective oral presentations in technical and general contexts	Creating
CO4	To excel at professional oral communication	Evaluating

	COURSE ARTICULATION MATRIX														
CO/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	-	-	-	1	-	-	-	-	2	3	-	1	-	-	1
CO2	-	-	-	1	-	-	-	-	2	3	-	1	-	-	1
CO3	-	-	-	2	-	-	-	-	2	3	-	1	-	-	1
CO4	-	-	-	2	-	-	-	-	2	3	-	1	-	-	3
Avg	-	-	-	1.5	-	-	-	-	2	3	-	1	-	-	1.5
	3	/2/1	- indic	cates st	rength	of cor	relatio	on (3 –	High,	2 – Me	edium	, 1 – Lo	ow)		•

CATEGORY Hours/Week	BS L	Cr T	edit	1.5
Hours/Week		Т	n	
	•		P	TH
	0	0	3	3
on and to measure	the imp	ortant	t	
ns. n of Mercury lines. in Liquid. bar. article size using La				
ł	oar.	par.	par.	par.

Text B	Text Books:											
1.	C. S. Robinson, Dr. Ruby Das, ' A Textbook of Engineering Physics Practical', Laxmi Publication Pvt. Ltd., 2016.											
2.	2. S. Panigrahi, 'Engineering Practical Physics', Cengage Learning India, 2015.											
Refere	Reference Books:											
1.	M.N. Srinivasan, 'Text Book of Practical Physics', Sultan Chand & Sons, 2013											
2.	Singh Harman, 'B.Sc. Practical Physics', S Chand & Company Ltd, 2022.											

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
C01	Handle different measuring instruments and to measure different parameters.	Applying						
CO2	Calculate the important parameters and to arrive at the final result based on the experimental measurements.	Analyzing						

	COURSE ARTICULATION MATRIX														
CO/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	-	3	3	-	-	-	3	1	-	2	1	1	1
CO2	3	2	-	2	1	-	-	-	2	-	-	1	1	1	1
Avg	3	2	-	2.5	2	-	-	-	2.5	1	-	1.5	1	1	1
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22CY1	02 CHEMISTRY LABORATORY	Y	SEN	IEST	ER	II
PRE-R	REQUISITE	CATEGORY	BS	Cre	dit	1.5
NIL		Hours/Week	L	Т	P	ТН
			0	0	3	3
Course	e Objectives:					
	lm					
1.	To gain practical knowledge by applying theoretical principles and	l performing the following	g experi	ments.		
LIST (DF EXPERIMENTS					
1.	Estimation of hardness of Water by EDTA					
2.	Estimation of Copper in brass by EDTA					
3.	Estimation of Alkalinity in water					
4.	Estimation of Chloride in water sample (Iodimetry)					
5.	Estimation of Iron content in the given salt by using external indica	ator				
6.	Conductometric titration of Strong Acid and Strong Base					
7.	Conductometric titration of Mixture of acids and Strong base					
8.	Determination of strength of Iron by Potentiometric method					
9.	Estimation of Iron by Spectrophotometry					
	Estimation of Copper by Colorimeter					
	Determination of molecular weight and degree of Polymerization b	y Viscometry				
	Determination of pKa of the given weak acid by pH meter					
13.	Estimation of the amount of given HCl using pH meter					
		r	Fotal (4	5P) =	45 P	eriods

E-References:								
1.	www.scuolab.com/en/chemistry/							
2.	www.onlinelabs.in/chemistry							
3.	www.virtuallabs.merlot.org/vl_chemistry							

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To summarize the applicability of the practical skill gained in various fields.	Understanding
CO2	To calculate the composition of brass quantitatively and the molecular weight of polymers.	Applying
CO3	To understand the principle and applications of conductometric and pH titrations, spectrometer, and potentiometric titrations.	Understanding

	COURSE ARTICULATION MATRIX														
CO/													PSO	PSO	PSO
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	1	2	3
CO1	1	1	-	3	-	-	-	-	-	-	-	-	2	-	-
CO2	1	2	-	3	-	-	-	-	-	-	-	-	2	-	-
CO3	2	2	-	3	-	-	-	-	-	-	-	-	2	-	-
Avg	1.3	1.7	-	3	-	-	-	-	-	-	-	-	2	-	-
	•	3	/2/1	– indica	ates str	ength o	of corr	elation	(3 – Hi	gh , 2 – 1	Medium	, 1 – Lov	v)		

22F	PRINCIPLES O	PRINCIPLES OF ELECTRICAL ENGINEERING LABORATO						
PRE	REQUISITES		CATEGORY	ES	ES Credit		1.5	
Engi	neering Physics		Hours/Week	L	Т	Р	TH	
			Hours/ week	0	0	3	3	
Cou	rse Objectives:							
1.	To study hands-on experiment	related to electric circuits.						
2.		neasuring instruments and elect	rical machines.					
List	of Experiments:	~						
	Study of basic safety precaution	s, measuring instruments – volt	meter, ammeter, multi-meter, o	oscillos	cope	and Ele	ectrical	
	components.	C C						
2.	Verification of Kirchhoff's laws							
	Verification of Superposition th							
4.	Verification of Thevenin's theo	em.						
5.	Measurement of time constant of	f an R-C circuit.						
	Measurement of core loss and f		hase transformer.					
	Load test on a single phase tran							
8.	Sinusoidal steady state response differences between current and		edance calculation and verifica	tion. O	bserva	ation of	f phase	
9.	Series/Parallel Resonance in R-							
10.	Measurement of three-phase po	ver in three-phase circuits.						
	Demonstration of cut-out sectio		ction motor, and 3-phase altern	ator.				
		· •			45P)=	= 45 P	eriods	
				(,			

Refere	ence Books:
1.	Basic Electrical Engineering - D.P. Kothari and I.J. Nagrath, 3 rd edition, Tata McGraw Hill, 2010.
2.	Basic Electrical Engineering - D.C. Kulshreshtha, Tata McGraw Hill, 2019.

Course O	Course Outcomes:							
Upon con	Upon completion of this course, the students will be able to:							
CO1	:	Discuss the working of measuring instruments and electrical machines.	Understanding					
CO2	:	Apply fundamental laws and theorems to electric circuits.	Apply					
CO3	:	Estimate parameters in single phase and three phase AC circuits.	Evaluating					
CO4	:	Analyze resonance in single phase AC circuits.	Analyzing					
CO5	:	Judge the steady state responses of single phase AC circuits.	Evaluating					

	COURSE ARTICULATION MATRIX														
COs/ POs	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	-	-	-	-	-	-	-	-	1	1	1	-	1
CO2	1	1	-	-	-	-	-	-	-	-	1	1	1	-	1
CO3	1	1	-	-	-	-	-	-	-	-	1	1	1	-	1
CO4	1	1	-	-	-	-	-	-	-	-	1	1	1	-	1
CO5	1	1	-	-	-	-	-	-	-	-	1	1	1	-	1
Avg	1	1	-	-	-	-	-	-	-	-	1	1	1	-	1
	•	•	3/2	/1-indi	cates s	trengt	h of co	rrelati	on (3-]	High, 2	2-Medi	um, 1-	Low)	-	

SEMESTER III

	22MA	304	FOURIER SERIES, COMPLEX VARIAB TRANSFORMS	LES AND	SEN	1EST	ER	III
PRF	EREQU	ISITES		CATEGORY	BS	Cr	edit	4
			vledge of Taylor series, complec analysis, ODE and	Hours/Week	L	Т	Р	TH
Integ	gration.			HOULS/ WEEK	3	1	0	4
Cou	rse Ob	jectives:						
1.			concept of Fourier series.					
2.			th Fourier, transform of a function and its sine and cosine the					
3.			alytic functions with properties, construction of analytic fu					
4.			owledge of Cauchy's integral theorems, calculus of residu	es and complex inte	gration	aroun	d unit	circle
-		ni-circle.						
5.			to form difference equations and find its solution by using	Z-transform method			0	
Unit			ER SERIES		9	3	0	12
			- General Fourier series - Odd and even functions - Half	range sine series –	Half ran	ige co	sine se	eries –
			armonic Analysis.		-	1		1
Unit	t II	FOURI	ER TRANSFORM		9	3	0	12
			ntegral theorem - Fourier transform pair - Sine and Cos	sine transforms – Pr	roperties	s – Tr	ansfor	ms of
			volution theorem - Parseval's Identity.			T		T
Uni	t III	COMP	LEX DIFFERENTIATION		9	3	0	12
			variable – Analytic functions – Cauchy – Riemann equation					
			onal properties of analytic function - Construction of analy	ytic functions - Cont	formal n	nappir	ngs: w	= z +
c, c z	$z, 1/z, z^2$	and Biline	ear transformations.					
Unit	t IV	COMP	LEX INTEGRATION		9	3	0	12
Cauc	chy's int	egral theor	rem - Cauchy's integral formula - Taylor's and Laurent's	theorems (Statemen	ts only)	and e	expans	ions –
Pole	s and Re	esidues – C	Cauchy's Residue theorem - Contour integration: Circular	and semi-circle con	tours wi	th no	poles	on the
real a	axis.							
TT *	t V	Z -TRA	NCEODY AND DIFFEDENCE FOULTIONS		9	3	0	12
Uni	LV		NSFORM AND DIFFERENCE EQUATIONS		,	•	•	14
Z-tra	nsform	of simple f	Functions and properties – Inverse Z – transform –initial an e equations – Solution of difference equations using Z – tra		-	voluti	on the	

Tex	xt Books:							
1	Veerarajan T, "Engineering Mathematics (For Semester III)", 3 rd Edition, Tata McGraw Hill Education Pvt . Ltd., New							
1.	Delhi, 2009.							
2.	P. Kandasamy, K. Thilagavathy and K. Gunavathy, "Engineering Mathematics, Volume III", S. Chand & Company ltd.,							
2.	New Delhi, 1996.							
3.	Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publications, Delhi, 2015.							
4.	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3 rd Edition, 2007.							
Ref	ference Books:							
1.	Srimanta pal and Subath C. Bhumia, "Engineering Mathematics", Oxford university publications, New Delhi, 2015							
2.	Ewinkreyzig, "Advanced Engineering Mathematics", 9th edition, John Wiley & Sons, 2006.							
3.	Grewal, B.S., "Higher Engineering Mathematics", 43 rd Edition, Khanna Publishers, Delhi, 2014.							
4.	Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth Edition, McGraw-Hill, Inc., New York,							
	1995.							
5.	Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematicians", MacMillan,							
	New York, 1988.							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 : Acquire the knowledge about Fourier series.						
CO2	:	Apply the knowledge of Fourier transform in engineering problems.	Applying				
CO3	:	Familiar with the concept of Conformal and Bilinear transformations.	Understanding				
CO4	:	Acquire the knowledge of Contour integration over unit circle and semi-circle.	Understanding				

CO5	:	Use the effective mathematical tools for the solutions of partial differential	Applying
		equations by using Z transform techniques for discrete time systems.	

					COU	RSE AI	RTICU	LATIC	ON MA	TRIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO4	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO5	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
Avg	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
	1	1	3/2/1 -	indica	tes stro	ength o	f corre	lation (3-High	,2- Mee	dium,1	- Low)	1	1	L

22E	22EC301 SEMICONDUCTOR DEVICES AND CIRCUITS				AES	ΓER	III	
PRER	EQUIS	SITES	CATEGORY	PC	Cre	edit	3	
NIL				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Obje	ctives:						
1.	To un	derstand the fundamentals of electron devices and apply the knowle	dge in electronic circu	iits.				
2.	To des	sign and analyse single stage and multistage amplifier circuits.						
3.	3. To understand and classify different kinds of power and feedback amplifiers.							
Unit I		9	0	0	9			
Current Transiti	Semiconductors – Intrinsic Semiconductors – Doped Semiconductors – Current flow in semiconductors – PN junction diode – Current equations – Energy Band diagram – Diffusion and drift current densities – forward and reverse bias characteristics – Transition and Diffusion Capacitances – Switching Characteristics – Breakdown in PN Junction Diodes – Schottky barrier diode – Zener diode – Varactor diode – Tunnel diode – Photodiode.							
Unit I		DIODE APPLICATIONS AND POWER SUPPLY		9	0	0	9	
	L, L-C	mper circuits, Half-wave, full-wave and bridge rectifiers with resist and C-L-C filters. Voltage multipliers, Voltage Regulators – Zener						
Unit I		TRANSISTOR AMPLIFIERS		9	0	0	9	
MOSFI	ET-devi	on Transistor- device structure and physical operation – Current- ce structure and physical operation – Current-Voltage character as stability – various configurations (such as CE/CS, CB/CG, CC/CI	eristics – Biasing scl					
Unit I	V	FREQUENCY RESPONSE OF AMPLIFIERS		9	0	0	9	
Respon Frequen for free	se of E ncy Moo quency	Deration and models of MOSFET and BJT – general shape of freque Discrete-Circuit Common-Source and Common-Emitter Amplifier del of the MOSFET and the BJT – High-Frequency Response of t response of multistage amplifiers - Calculation of overall upper e cascade amplifier.	rs – Internal Capaciti he CS and CE Ampli	ve Effec fiers – G	ts an enera	d the 1 exp	High- ression	
Unit V	7	POWER AND FEEDBACK AMPLIFIERS		9	0	0	9	
power of shunt –	Power amplifiers-various classes of operation (Class A, Class B, Class AB, and Class C), their power-conversion efficiency and power dissipation calculations – cross-over distortion – Feedback topologies: Voltage series, current series, voltage shunt, current shunt – effect of feedback on gain, bandwidth etc., calculation with practical circuits – concept of stability, gain margin and phase margin.							
			1	Cotal (45	5L)=	45 P	eriods	
Text B	looks							

Text	Text Books:									
1.	1. A.S. Sedra and K.C. Smith, Microelectronic Circuits, 7 th edition, Oxford University Press, 2017.									
2.	2. S. Salivahanan and N. Suresh kumar, "Electronic Devices and Circuits", 4e, McGraw Hill Education, 201									
E-Re	E-References:									
1.	https://nptel.ac.in/courses/108108112									
2.	tps://nptel.ac.in/courses/117103063									
3.	http://www.electronics-tutorials.ws/									

	Course Outcomes: Jpon completion of this course, the students will be able to:					
CO1	:	Understand the characteristics of diodes and special semiconductor devices.	Understanding			
CO2	:	Design and analyze clipper, clamper and power supply circuits.	Analyzing			
CO3	:	Acquire knowledge on working principles, characteristics and applications of BJT and FET.	Remembering			
CO4	:	Analyse the frequency response characteristics of amplifiers.	Analyzing			
CO5	:	Design and analyze power and feedback amplifiers and derive their performance specifications.	Analyzing			

	COURSE ARTICULATION MATRIX														
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
/POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3	1	2	-	-	-	-	-	-	-	-	1	1	1
CO2	3	3	2	3	-	-	-	-	-	-	-	-	2	2	1
CO3	3	2	2	3	-	-	-	-	-	-	-	-	1	1	1
CO4	2	3	2	3	-	-	-	-	-	-	-	-	1	2	1
CO5	2	3	2	3	-	-	-	-	-	-	-	-	2	1	1
Avg	2.2	2.8	1.8	2.8	-	-	-	-	-	-	-	-	1.4	1.4	1
			3/2/1	- indic	ates str	ength o	of corre	lation (3-High,	2- Med	ium,1-	Low)			

22	EC302	DIGITAL SYSTEM DESIGN		SE	MES	TER	III
PRE	REQUIS	SITES	CATEGORY	РС	Cr	edit	3
				L	Т	Р	TH
			Hours/week	3	0	0	3
Cours	se Objecti	ives:					
1	To mak	e the student understand the number system, logic families and I	Boolean algebra	•			
2	To desig	gn combinational and sequential circuits using gates and flip flop	ps.				
3		the concept of Memories and Programmable Logic Devices an esign of Digital electronic circuits.	nd apply the know	wledge	of th	ese de	evice
Unit I	I NU	IMBER SYSTEMS AND LOGIC GATES		9	0	0	9
Karna gate –	ugh map - Specifica	Canonical forms – Conversion between canonical forms – Simple – Logic Gates: Implementations of Logic Functions using ations – Noise margin -Propagation delay - fan - in - fan - out	gates - Logic	Famili ECL.	es: T	TL N	ANI
Unit I		OMBINATIONAL CIRCUITS ure – Adders / Sub tractor – Serial adder/ Sub tractor - Parall		9	0	0	9
		BCD adder - Magnitude Comparator - Multiplexer / De-mult converters - Implementation of combinational logic using MU					
Unit I	II SE	QUENTIAL CIRCUITS		9	0	0	9
Unit I Design Moore counte	III SE n Procedu eand Mea er – Desi		of Flip-flop-Rea Synchronous	9 alization counter	$rac{1}{1}$ of $rac{1}{1}$ s -1	flip fl Modu	ops le o
Unit I Design Moore counte	III SE n Procedu eand Mea er – Desi ers.	QUENTIAL CIRCUITS ure- Flip flops: SR,JK,T,D and JK Master Slave–Triggering aly circuits–Counters: Asynchronous / Ripple counters –	of Flip-flop-Rea Synchronous	9 alization counter	$rac{1}{1}$ of $rac{1}{1}$ s -1	flip fl Modu	ops le of
Unit I Design Moore counte Counte Unit I Design state a	II SE n Procedu eand Mea er – Desi ers. V AS n of funct assignmen	QUENTIAL CIRCUITS ure- Flip flops: SR,JK,T,D and JK Master Slave–Triggering aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc	9 alization counter register 9 rimitive cles – R	n of f s – l r–Shi 0 e state aces –	flip fl Modu ft Re 0 e tabl	ops le or giste 9 e –
Unit I Design Moore counte Counte Unit I Design state a	II SE n Procedu eand Mea er – Desi ers. V AS n of func assignmen ign of Haz	QUENTIAL CIRCUITS ure- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EVNCHRONOUS SEQUENTIAL CIRCUITS damental mode circuits – Primitive state / flow table – Min tt – Excitation table – Excitation map - Problems in Asynchrono	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc	9 alization counter register 9 rimitive cles – R	n of f s – l r–Shi 0 e state aces –	flip fl Modu ft Re 0 e tabl	ops - le or giste 9 e –
Unit I Design Moord counte Unit I Design state a – Desi Unit V Classi Devic	IISEn Procedueand Meaer – Desiers.VASn of functionign of HazVMinimizedification constructiones:Program	QUENTIAL CIRCUITS ure- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EVNCHRONOUS SEQUENTIAL CIRCUITS damental mode circuits – Primitive state / flow table – Min at – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)-	9 alization counter register 9 rimitive cles – Ra cles –	n of f s – 1 r–Shi e state aces – ion. 0 mmate	flip fl Modu ft Re 0 e tabl - Haza 0 ble Lo tation	ops - le or giste 9 e - ards 9 ogic of
Unit I Design Moord counte Unit I Design state a – Desi Unit V Classi Devic	IISEn Procedueand Meaer – Desiers.VASn of functionign of HazVMinimizedification constructiones:Program	QUENTIAL CIRCUITS ure- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EVNCHRONOUS SEQUENTIAL CIRCUITS damental mode circuits – Primitive state / flow table – Min at – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar EMORY DEVICES of memories – RAM organization — ROM organization — Fl rammable Logic Array (PLA) - Programmable Array I	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)-	9 alization counter register 9 rimitive cles – R eliminat 9 Program	n of f s – 1 r–Shi e state aces – ion. 0 mmate	flip fl Modu ft Re 0 e tabl - Haza 0 ble Lo tation	ops le or giste 9 e – ards 9 ogic of
Unit I Design Moord counte Unit I Desig state a – Desi Unit V Classi Devic combi	IISEn Procedueand Meaer – Desiers.VASn of functionign of HazVMdification ofinational	QUENTIAL CIRCUITS ure- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EVNCHRONOUS SEQUENTIAL CIRCUITS damental mode circuits – Primitive state / flow table – Min at – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar EMORY DEVICES of memories – RAM organization — ROM organization — Fl rammable Logic Array (PLA) - Programmable Array I	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)-	9 alization counter register 9 rimitive cles – Ra cles –	n of f s – 1 r–Shi e state aces – ion. 0 mmate	flip fl Modu ft Re 0 e tabl - Haza 0 ble Lo tation	ops le o giste 9 e – urds 9 gic of
Unit I Design Moord counte Unit I Desig state a – Desi Unit V Classi Devic combi	IISEnProcedueandMeaer–Desiers.VASnof functassignmenign of HazVMIification ofres:ProgrinationalBooks:	QUENTIAL CIRCUITS Ire- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EVNCHRONOUS SEQUENTIAL CIRCUITS damental mode circuits – Primitive state / flow table – Min it – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar EMORY DEVICES of memories – RAM organization — ROM organization — Fl rammable Logic Array (PLA) - Programmable Array I logic using ROM,PA Land PLA.	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)-	9 alization counter registe: 9 rimitive cles – R eliminat 9 Progran - Imple otal(45)	n of f s -1 r-Shi 0 e state aces - ion. 0 mmate ement L) =4	flip fl Modu ft Re 0 e tabl - Haza 0 ble Lo tation 5 Peri	ops le or giste 9 e – ards 9 ogic of
Unit I Design Moore counte counte Unit I Desig state a – Desi Unit V Classi Devic combi	II SE n Procedu eand Mea er — Desi ers. Max V AS n of function of	QUENTIAL CIRCUITS Ire- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EVNCHRONOUS SEQUENTIAL CIRCUITS lamental mode circuits – Primitive state / flow table – Min at – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar EMORY DEVICES of memories – RAM organization — ROM organization — Fl rammable Logic Array (PLA) - Programmable Array I logic using ROM,PA Land PLA.	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)- To	9 alization counter registe: 9 rimitive cles – R eliminat 9 Progran - Imple otal(45)	n of f s -1 r-Shi 0 e state aces - ion. 0 mmate ement L) =4	flip fl Modu ft Re 0 e tabl - Haza 0 ble Lo tation 5 Peri	ops - le or giste 9 e - ards 9 ogic of
Unit I Design Moore counte counte Unit I Desig state a – Desi Unit V Classi Devic combi	II SE n Procedu eand Mea er — Desi ers. Max V AS n of function of	QUENTIAL CIRCUITS rre- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U PYNCHRONOUS SEQUENTIAL CIRCUITS lamental mode circuits – Primitive state / flow table – Min tt – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar EMORY DEVICES of memories – RAM organization — ROM organization — Fl rammable Logic Array (PLA) - Programmable Array I logic using ROM,PA Land PLA. ris Mano," Digital Design",4 th Edition, Pearson Education(Singa n," Modern digital Electronics", Tata McGraw Hill, 4 th Edition, 2	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)- To	9 alization counter registe: 9 rimitive cles – R eliminat 9 Progran - Imple otal(45)	n of f s -1 r-Shi 0 e state aces - ion. 0 mmate ement L) =4	flip fl Modu ft Re 0 e tabl - Haza 0 ble Lo tation 5 Peri	ops - le or giste 9 e - ards 9 ogic of
Unit I Design Moore counte Unit I Desig state a – Desi Unit V Classi Devic combi I 1. 2. Refere 1.	II SE n Procedu eand Mea er Desi ers. AS N of functions assignmentign of Haz W MI affication of res: Program inational Books: M. Morri R.P. Jain ence Bool W.H.God	QUENTIAL CIRCUITS Tre- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U YNCHRONOUS SEQUENTIAL CIRCUITS damental mode circuits – Primitive state / flow table – Min at – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar EMORY DEVICES of memories – RAM organization — ROM organization — Fl rammable Logic Array (PLA) - Programmable Array I logic using ROM,PA Land PLA. ris Mano," Digital Design",4 th Edition, Pearson Education(Singa n," Modern digital Electronics", Tata McGraw Hill, 4 th Edition, 2 ks: othmann,"Digital Electronics – An introduction to theory and pra	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)- To apore)Pvt. Ltd., 2 2009	9 alization counter registe: 9 rimitive cles – R eliminat 9 Progran - Imple otal(45)	n of f s -1 r-Shi 0 e state aces - ion. 0 mmate ement L) =4	flip fl Modu ft Re e tabl - Haza ole Lo tation 5 Peri	ops le or giste 9 e – ards 9 ogic of
Unit I Design Moord counte Unit I Desig state a – Desi Unit V Classi Devic combi I 1. 2. Refere 1. 2.	II SE n Procedu eand Mea er – Desi ers. V AS n of functor assignmentor ign of Haz V MI ification of tes: Program inational 1 Books: M. Morrison R.P. Jain ence Bool W.H.Gc	QUENTIAL CIRCUITS are- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EXAMPLE AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)- To apore)Pvt. Ltd., 2 2009	9 alization counter registe: 9 rimitive cles – R eliminat 9 Progran - Imple otal(45)	n of f s -1 r-Shi 0 e state aces - ion. 0 mmate ement L) =4	flip fl Modu ft Re e tabl - Haza ole Lo tation 5 Peri	ops le or giste 9 e – ards 9 ogic of
Unit I Design Moore counte Unit I Desig state a – Desi Unit V Classi Devic combi 1. 2. Refere 1.	II SE n Procedu eand Mea er — Desi ers. AS N of functions ign of functions MI ification of es: ification of Program inational MI Books: M. Morra R.P. Jain ence Bool W.H.Go D.V. Ha S.Saliva	QUENTIAL CIRCUITS Ire- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U YNCHRONOUS SEQUENTIAL CIRCUITS damental mode circuits – Primitive state / flow table – Min at – Excitation table – Excitation map - Problems in Asynchrono zard Free Switching Circuits: Static – Dynamic - Essential Hazar EMORY DEVICES of memories – RAM organization — ROM organization — Fl rammable Logic Array (PLA) - Programmable Array I logic using ROM,PA Land PLA. ris Mano," Digital Design",4 th Edition, Pearson Education(Singa n," Modern digital Electronics", Tata McGraw Hill, 4 th Edition, 2 ks: othmann,"Digital Electronics – An introduction to theory and pre- all," Digital Circuits and Systems", Tata McGraw Hill, 1989 thanan and S.Arivazhagan ," Digital Circuits and Design",	of Flip-flop-Rea Synchronous of Universal shift nimization of p ous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)- To apore)Pvt. Ltd., 2 2009	9 alization counter registe: 9 rimitive cles – R eliminat 9 Progran - Imple otal(45)	n of f s -1 r-Shi 0 e state aces - ion. 0 mmate ement L) =4	flip fl Modu ft Re e tabl - Haza ole Lo tation 5 Peri	ops le or giste 9 e – ards 9 ogic of
Unit I Design Moord counte Unit I Desig state a – Desi Unit V Classi Devic combi I 1. 2. Refere 1. 2.	II SE n Procedu eand Mea er – Desi ers. V AS n of functor assignmentign of Haz V MI ification of es: Program inational I Books: M. Mort R.P. Jain ence Bool W.H.Gc D.V. Ha S.Saliva 2ndediti	QUENTIAL CIRCUITS are- Flip flops: SR,JK,T,D and JK Master Slave–Triggering of aly circuits–Counters: Asynchronous / Ripple counters – ign of Synchronous counters – Register - Shift registers-:U EXAMPLE AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	of Flip-flop-Rea Synchronous of Universal shift nimization of p pous Circuits: Cyc rds and Hazard of lash Memory - Logic (PAL)- To apore)Pvt. Ltd., 2 2009	9 alization counter registe: 9 rimitive cles – R eliminat 9 Progran - Imple otal(451	n of f s -1 r-Shi 0 e state aces - ion. 0 mmate ement L) =4	flip fl Modu ft Re e tabl - Haza ole Lo tation 5 Peri	ops le o giste 9 e – urds 9 gic of

1.	http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01	
-		

3. https://nptel.ac.in/courses/117105080/12

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Analyzing					
CO2	:	Design and analyse combinational logic circuits and Logic gates.	Analyzing				
CO3	:	Design the sequential logic circuits using Flip flops	Analyzing				
CO4	:	Design and analyse asynchronous sequential logic circuits	Analyzing				
CO5	Understand the concepts of memories and PLDs and implementation of circuits						

	COURSE ARTICULATION MATRIX														
COs/	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO1	PO1	PSO	PSO	PSO
POs	1									10	1	2	1	2	3
CO1	3	2	2	2	3	2	3	2	-	-	-	-	2	1	-
CO2	3	3	2	2	3	3	2	1	1	-	-	-	3	2	-
CO3	2	2	3	3	2	1	2	1	1	-	-	-	2	2	-
CO4	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
CO5	2	1	2	1	3	2	1	2	-	-	-	-	3	2	-
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	1	-	-	-	2.4	1.6	-
			3/2/	1 - ind	icates s	trength	n of cor	relatio	n (<mark>3-H</mark> ig	gh,2- Me	dium,1-	Low)			

22EC	2303	NETWORK THEORY AND SYNTHES	IS	SE	EMES'	FER	III
PRE	REQUISIT	ES	CATEGORY	РС	Cr	edit	3
NIL				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cour	se objective	s:					L
1.	To impart	knowledge on solving circuits using network theorems.					
2.	To educat	e on obtaining the transient response of circuits and resonance	e in coupled circ	uits.			
3.	To impar	t knowledge on two-port networks and network synthesis.					
Unit	I NET	WORK ANALYSIS TECHNIQUES AND THEOREMS		9	0	0	9
– Sou	urce Transfo	n and Nodal Analysis - Comparison of Node and Mesh An rmation and Duality - Network theorems (for both DC and Maximum Power Transfer – Tellegen's theorem.					
Unit	II TRA	NSIENT ANALYSIS AND CIRCUIT ANALYSIS IN S -	DOMAIN	9	0	0	9
Sinus Unit Serie Impe Coeff	oidal responIIIMAs and paralldance of RIficient of coection – Idea	cy: Driving points and Transfer Functions - Poles and zero se from pole - zero locations - Convolution theorem. GNETIC RESONANCE CIRCUITS el resonance - Variation of impedance with frequency- Ba <i>C</i> circuit near resonance - Selectivity—Magnification- Sel pupling-Dot convention - Analysis of multi - winding co 1 transformer-Tuned circuits. DPORT NETWORKS	andwidth of RLC If - inductance –	C circu - Mutu – Seri	9 0 hit — 0 hal ind	0 2 fact luctan	9 or – ice -
		wo port networks $-Z$ parameters $-Y$ parameters $-h$	parameters –		•	-	-
		d Asymmetrical networks – Characteristic impedance.	I to the second		I		
Unit	V PAS	SIVE NETWORK SYNTHESIS		(9 0	0	9
and s	ufficient con	izability Theory: Stability - Hurwitz Polynomials - Positive ditions for a function to be positive real - Elements of circuit on thesis of RC and RL networks.	t synthesis - Fost	er and	Cauer	form	ns of
			Ί	otal(4	5L)=4	5 Per	lods
Text	Books:						
1.	S.K. Bhatt 2015.	acharya and Manpteet Singh, "Network analysis and Syn	thesis", 1 st editio	n, Pea	rson I	Public	ation,
2.	AbhijitCha	krabarthy, "Circuit Theory Analysis and Synthesis", Dhanpa	th Rai & Sons, N	ewDel	hi, 20	11.	
Refer	ence Books						
1.		C. and Sadiku M. N. O "Fundamentals of Electric Circuits",		ll, Nev	vDelh	, 201	3.
2.	Sudhakar A	A. and Shyammohan S. Pillai, "Circuits and Networks Analys	sis and				

Synthesis", McGrawHill, NewDelhi, 2015.

3. John .D. Ryder, "Networks Lines and Fields"-PHI 2ndedition, 2003.

4. VanValkenburg "Introduction to Modern Network Synthesis", New Age International Publisher, NewDelhi,2001.

E-References:

2. https://nptel.ac.in/courses/106105154/2

3. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-2/

		utcomes: pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Analyse the electric circuit using best suited network theorem	Analyzing
CO2	:	Apply the knowledge of Fourier Transform and Laplace Transform to analyse the circuit	Applying
CO3	:	Understand and analyse the resonance behaviour of circuit and apply the knowledge to design band limited circuits according to the application.	Analyzing
CO4	:	Analyse the linear network parameters, and their interaction with other networks.	Analyzing
CO5	:	Design RLC from a given differential equation and can say the feasibility of the design.	Creating

COURSE ARTICULATION MATRIX CO//P PO PO2 PO3 **PO4** PO5 PO6 PO7 **PO8 PO9 PO10** PO PO PSO PSO PSO 0 1 11 12 1 2 3 CO1 3 3 2 1 3 1 ---------**CO2** 2 3 3 1 3 1 ------_ --**CO3** 3 3 2 1 3 1 ---------**CO4** 3 3 2 1 3 1 -_ -_ -----CO5 3 1 1 2 1 3 1 _ _ ----_ -3 3 2 1 1 Avg 2.6 1 _ _ _ _ _ _ _ -3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)

22EC	304 TRANSMISSION LINES AND WAVEGUID	SEM	SEMESTER			
PREF	REQUISITES	CATEGORY	PC	Cre	dit	3
1.Phy	sics – Electromagnetism	Hours/Week	L	Т	Р	TH
		Hours/ Week	3	0	0	3
Cou	rse objectives:	1	1			
1.	To introduce the various types of transmission lines and to discuss the	losses.				
2.	To compute various parameters for loaded transmission lines using Si matching in Transmission Lines.	nith chart and acqu	ire knov	vledge	of stı	ıb
3.	To impart knowledge on different types of waveguides, planar transm	ission lines and w	aveguid	e resor	ators	5
Unit l			9	0	0	9
Introd	luction to Different types of transmission lines - Characteristic imped	ance and Propagat	tion Con	nstant -	– Ge	neral
	on of the transmission line - Input and Transfer Impedance-Open and					
	ity of Propagation - Waveform distortion - Distortion less transmissio	-			etho	ds of
	ng-Reflection on a line not terminated by Zo – Reflection coefficient –Re	flection factor and	-			
Unit l			9	0	0	9
	neters of open wire line and co-axial line at high frequencies - Input in					
	circuited line – Standing waves and standing wave ratio on a line – $\lambda/8$					
	plications of the Smith Chart - Solutions of problems using Smith chart	rt – single stub m	atching	and do	ouble	stub
match			0	0	•	0
Unit l			9	U	0	9
	s between parallel planes of perfect conductors – Transverse electric teristics of TE and TM Waves – Transverse Electromagnetic waves:			•		
	guides – Transverse Electric Waves in Rectangular Waveguides – Cha					
	length and phase velocity – Impossibility of TEM waves in waveguides					
	enuation of TE and TM modes in rectangular waveguides – Wave impede					Sarae
Unit l			9	0	0	9
	l functions – Solution of field equations in cylindrical co-ordinates – T	M and TE waves in	n circula	r guid	es – '	wave
	lances and characteristic impedance – Dominant mode in circular wave					
	es - rectangular cavity resonators - circular cavity resonator.	-				
Unit V	V PLANAR TRANSMISSION LINES		9	0	0	9
Introd	luction to planar transmission lines-strip lines, Micro strip lines-coupled	lines-slot line, cop	lanar wa	veguid	le (Cl	PW).
Micro	strip lines-filed distribution-design equations-losses in micro strip li	nes. Coaxial transr	nission	line (c	listrit	outed
param	neters)					
		Т	otal (45	(L) = 4	5 Pei	riods
Text	t Books:					
	J.D. Ryder "Networks, Lines and Fields", PHI, New Delhi, 2006.					
1. 2.	E.C. Jordan and K.G. Balmain "Electro Magnetic Waves and Radiating	System, PHL New	Delhi. 2	2010		
	erence Books:	~ j 200111, 1 111, 1 00 11	2 ••••••			
1.	David M.Pozar: "Microwave Engineering", 4th Edition ,John Wiley, 20	12				
	Annapurna Das and SisirK. Das, "Microwave Engineering", TMH, 200					
3.	Umesh Sinha, "Tranmission Lines & Networks" Sathya Prakashan publ					
4.	David K.Cheng, "Field and Waves in Electromagnetism", Pearson Edu					
	ferences:	,				
1.	https://www.youtube.com/watch?v=0OwmYAljz4A&list=PL0925FD10	048D004E				

- 2. https://nptel.ac.in/courses/117101056
- 3. https://link.springer.com/chapter/10.1007/978-1-4615-6459-1_28

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Analyse the propagation of signals through transmission lines.	Analyzing				
CO2	:	Calculate reflection and transmission coefficients, standing wave ratio and power for transmission lines using HF applications.	Evaluating				
CO3	:	Compute various parameters for loaded transmission lines using Smith chart and acquire knowledge of stub matching in Transmission Lines.	Evaluating				
CO4	:	Analyse the field components of different waveguides based on various modes of E and H filed.	Analyzing				
CO5	:	Understand the concept of planar transmission lines and analyse its field distribution.	Analyzing				

	COURSE ARTICULATION MATRIX														
CO//PO	PO	PO 2	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PS
	1		3	4	5	6	7	8	9	10	11	12	1	2	03
CO1	1	3	2	2	-	-	-	-	-	-	2	-	2	3	2
CO2	1	3	2	3	-	-	-	-	-	-	2	-	2	3	2
CO3	1	3	3	3	-	-	-	-	-	-	3	-	1	3	1
CO4	1	3	3	3	-	-	-	-	-	-	3	-	2	2	2
CO5	1	3	3	3	-	-	-	-	-	-	3	-	2	2	2
Avg	1	3	2.6	2.8	-	-	-	-	-	-	2.6	-	1.8	2.6	1.8
	-	3/2/	1 - ind	licates	stren	gth of o	correla	ation (.	3-High	,2- Med	ium,1-	Low)	•		<u> </u>

22E0	C305		ANALOG COMMUNICATION		SEN	1EST	ER	III
PRE	REQU	ISITES		CATEGORY	PC	Cr	edit	3
NIL				Hours/Week	L	Т	P	TH
				Hours/ week	3	0	0	3
Cou	-	ectives:						
1.	Famil	techniques.						
2.			sources of noise and its effects in Communication sys sence of noise.	tems and to analyze	e the pe	erform	ance o	of
3.	To stu	•	s set by Information Theory.					
Uni	t I	AMPLITU	JDE MODULATION		9	0	0	9
			ication systems – Need for modulation – Generation					
			tering of sidebands - Comparison of amplitude mod	ulation systems - I	Frequei	ncy tra	ınslati	on -
Freq	uency o	livision mult	iplexing - AM Super hetrodyne receiver.					
Unit	II	ANGLE M	IODULATION		9	0	0	9
			e and Frequency modulation - Narrowband and Widel					
			FM signal – Direct FM – Indirect FM - Demodulation		M stere	o mul	tiplex	ing -
PLL	– Nonl	inear model	and linear model of PLL - FM Super hetrodyne receiv	er.				
Unit	III	NOISE PE	RFORMANCE OF DSB, SSB RECEIVERS		9	0	0	9
			Noise figure - Noise temperature - Noise Equivalent					
			whand Noise in terms of In-phase and Quadrature	components - Rece	eiver M	Iodel	- Nois	se in
DSB Unit			se in SSB Receiver. RFORMANCE OF AM AND FM RECEIVERS		9	0	0	9
				of TM thread ald a	-	v	v	-
			Threshold effect - Noise in FM receivers: Capture effe and De-emphasis in FM – Comparing the performance		nect - I	FIVI UN	resnoi	a
Unit	V	INFORMA	ATION THEORY		9	0	0	9
			on and entropy - Rate of information - Joint Ent					
			emory less channel - Channel Capacity - Shannon's T		us Cha	nnel -	Shanr	10n -
Hart	ley The	orem - BW a	nd S/N Trade-off - Huffman and Shannon – Fanocode	es.				
				Te	otal (45	5L)=4	5 Per	riods
<u> </u>								
Text	Books:							

1.	Simon Haykin,"Communication Systems", 5th Edition,International Student Version, John Wiley & sons, NY,
	2010.
2.	R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995.
	•

Refe	Reference Books:							
1.	Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008							
2.	Roddy and Coolen, "Electronic communication", 4 th Edition, PHI, New Delhi, 2003.							
3.	Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5thEdition, McGraw-Hill Int., 2009.							
4.	Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006.							
E-F	References:							
1.	https://www.telecommunications-tutorials.com/							
2.	http://www.nptelvideos.in/2012/11/communication-engineering.html							
3.	https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Gain knowledge on the principles of AM and FM communication systems.	Remembering				
CO2	:	Ability to design AM and FM receiver.	Analyzing				
CO3	:	The exposure to the sources of noise and its effects in Communication systems.	Applying				
CO4	:	Ability to analyze the performance of receiver in the presence of noise.	Analyzing				
CO5	:	Ability to measure the capacity of a channel based on the information theory.	Applying				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO11	PO1	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	0		2			
CO1	2	1	3	-	-	-	-	-	-	-	-	-	1	1	1
CO2	2	1	3	-	-	-	-	-	-	-	-	-	1	2	1
CO3	2	2	2	1	-	-	-	-	-	-	-	-	1	2	1
CO4	2	2	2	1	-	-	-	-	-	-	-	-	1	2	1
CO5	3	1	1	-	-	-	-	-	-	-	-	-	1	2	1
Avg	2.2	1.4	2.2	1	-	-	-	-	-	-	-	-	1	1.8	1
		3/2	2/1 - i	ndica	tes sti	rengtl	ı of co	orrela	tion (3	3-High,	2- Mediu	1m, <mark>1- L</mark>	ow)		

22M	IC302	INDIAN CONSTITUTION		SEM	SEMESTER I				
PRER	EQU	ISITES	CATEGORY	MC	Cre	edit	0		
NIL									
			Hours/Week	2	0	0	2		
		(Common to all branches))						
Cours	e Obj	ectives:							
1. 1	learn	the salient features of the Indian Constitution							
2. 1	list th	e Fundamental Rights and Fundamental Duties							
3. p	presei	nt a systematic analysis of all dimensions of Indian Political S	System						
4. u	under	stand the power and functions of the Parliament, the Legislat	ure and the Judiciary						
UNIT	Ι	FUNDAMENTAL RIGHTS		6	0	0	6		
Union	and i	ts Territory – Citizenship–Fundamental Rights–Directive Prin	nciples of State Policy	–Funda	ament	al Du	ties		
UNIT	II	UNION AND TERRITORIES		6	0	0	6		
The U	nion-	The States–The Union Territories–The Panchayats – The Mu	nicipalities	•					
UNIT	III	FINANCE, TRADE AND COMMERCE		6	0	0	6		
The C	o-ope	rative Societies-The scheduled and Tribal Areas-Relations	between the Union	and the	State	es–Fir	nance,		
Proper	ty, Co	ontracts and Suits-Trade and Commerce within the territory of	of India						
UNIT	IV	ELECTIONS		6	0	0	6		
Service	es uno	der the Union, the States - Tribunals - Elections- Special Pro-	ovisions –Relating to c	certain (Classe	es			
UNIT	V	MISCELLANEOUS AMENDMENTS		6	0	0	6		
Langua	ages-	Emergency Provisions - Miscellaneous-Amendment of the C	Constitution						
	Total (6L) = 30 Periods								

Text	Text Books:									
1.	Subhash C.Kashyap, Our Constitution, National Book Trust, 2017									
2.	Durga Das Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.									
3.	M.V.Pylee, Constitutional History of India, S.Ch and publishing, 2010									
4.	Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, 1999									

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	:	Understand the emergence and evolution of the Indian Constitution							
CO2	:	Explain the key concepts of Indian Political System							
CO3	:	Describe the role of constitution in a democratic society.							
CO4	:	Present the structure and functions of the Central and State Governments, the Legislature and the Judiciary							

22M	CIN02	INNOVATION SPRINTS		S	Semeste	er	III			
PRER	REQUIS	ITES	Category	EE	Cre	edit	1			
				L	Т	Р	ТН			
			Hours/Week	0	0	2	2			
Cours	se Learn	ing Objectives								
1	1 To Understand the fundamentals of Design thinking & apply in ideating solutions for real world problems.									
2		solve challenges through problem curation, problem curation, problem validation and customer covery problems								
Ur	nit I		0	0	6	6				
		Design Thinking Principles - Design Thinking Values - In the design challenge.	Design Thinking	Method	ls - Cha	allenge	impact			
Un	it II	CUSTOMER - CENTRIC INNOVATI	ON	0	0	6	6			
		Customer needs - Empathy building techniques - gap a slating insights into innovation opportunities.	nalysis - adoption	n barrie	ers - obs	servatio	ons and			
Uni	it III	IDEA GENERATION		0	0	6	6			
	• • •	ns & gains - crafting value proposition - Ideation - Dive -Managing risks - Concept of minimum usable prototyp	0 0				ules of			
Uni	it IV	PRETOTYPING		0	0	6	6			
		ncepts - Palm Pilot Experiment - Fake it before make it Sesting the Prototypes	- Prototyping - Tl	ne Law	of Fail	ure - B	uilding			
Un	nit V	PITCH & PRESENTATION		0	0	6	6			
		rytelling - the blueprint for storytelling - Pitch Script - F itch - communication fundamentals.	Pitch Presentations	s - Best	t Practio	ces to c	reating			
					Total	= 30 I	Periods			
Tor	t Books									
Iex	I DOOKS									
1	Tim Brown(2019), "Change by Design : How design thinking transforms organizations and inspires innovation"									
2		hipchase& Simson Steinhardt (2013), "Hidden in Plain omorrow's Customers", Harper Business 2013.	Sight :How to Cr	eate Ex	xtraordi	nary P	roducts			
2	Chri	Christian Madshiarak Mikkal R. Basmusson (2014) : The Moment of Clarity" Herverd Rusiness Paview								

- 3 Christian Madsbjerg& Mikkel B. Rasmussen (2014), : The Moment of Clarity", Harvard Business Review Press.
- 4 Alexander Osterwalder, Value Proposition Design: How to Create Products and Services Customers Want(Strategyzer) - John Wiley & Sons, 2014.
 - 5 Idris Mootee(2013), Design Thinking for Strategic Innovation, Willey.

Reference Books:

1	Savoia.Alberto, 2009, The Pretotyping Manifesto - https://sites.google.com/a/pretotyping.org/www/the-pretotyping -manifesto-
2	Jazz Factory, All about Presentations - http://bog.jazzfactory.in/

3 Pretotyping Methodology - https://www.pretotyping.org/methodology.html

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped		
CO1	Identify real-world problems	Understanding		
CO2	Apply the challenge curation techniques to real-world problems.	Applying		
CO3	Analyze the problems and generate solutions to address the challenges	Analyzing		
CO4	Build solutions using pertotyping tools & techniques	Applying		
CO5	Develop an innovation pitch to effectively communicate the idea to solve the identified problem	Analyzing		

	COURSE ARTICULATION MATRIX														
CO/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	3	1	1	1	-	-	-	-	-	-	1	1	1	2
CO2	1	2	1	1	1	2			2	1		1	1	1	1
CO3	2	3	3	2	2	-	-	-	-	-	-	1	3	3	2
CO4	2	2	3	2	3	-	-	-	-	-	-	1	3	3	3
CO5	1	2	1	1	1	-	-	-	2	3	1	1	1	1	1
Avg	1.4	2.4	1.8	1.4	1.6	2	0	0	2	2	1	1	1.8	1.8	1.8
	•	3	/2/1	– indic	ates sti	rength	of corr	elatior	h (3 – H	ligh, 2	– Medi	ium, 1	– Low)		

22NC301	NCC COURSE-II (Only for NCC Stude	SEMESTER III										
PRE-REQUI	NC	Cre	edit	0								
		Hours/Week	L	Т	Р	TH						
		Hours/ Week	3	0	0	3						
Course Object	ctives:											
1. To maintain the unity and disciplines to the students												
UNIT I	SOCIAL SERVICE & COMMUNITY DEVEL	OPMENT	9	0	0	9						
Trafficking –	Basic of social service and it's need - Rural Development Program – NGOs Roles & Contribution – Drug abuse and Trafficking – Civic Responsibilities – Causes & prevention of AIDS/HIV – Counter Terrorism – Corruption – Social Evil – RTI & RTE – Traffic Control Organization – Anti Drunken Driving.											
UNIT II	GENERAL AWARENESS & ADVENTURE		9	0	0	9						
	vledge – Logical & Analytical Reasoning - Modes of Er Slithering – Rock climbing – Cycling and Trekking.	ntry to Army, CA	PF, Poli	ice – SS	SB Proc	edure;						
UNIT III	AEROENGINES & NAVIGATION		9	0	0	9						
Terminology -	Introduction to aero engines and its type – Components of aero engines – Principles of Propulsion – Basic Terminology – Jet engines – Brayton Cycle – Turbo prop engines and its types; Requirements of Navigation - Lines on Earth – Maps and its types - Symbols used in map – Scales of map – Map reading procedure and its aids.											
UNIT IV	AIRFRAME & METEOROLOGY		9	0	0	9						
	Aircraft Control – Primary and Secondary –Fuselage – Main Plain and Tail Plain – Ailerons, Elevators& Rudders – Landing Gear; Importance of METT in Aviation – Atmosphere – Clouds and Precipitation – Flying Hazards.											
UNIT V	UNIT VFLIGHT INSTRUMENTS & AEROMODELLING9009											
Airspeed Indicator – Altimeter – Artificial Horizon – Radar and Its Type – Instruments Battery Test, Compass; History of Aero Modeling – Basic Materials & Tools – Types of Aero Modelling – Flying/Building of Aero Models – General Safety Procedure.												
				Total	= 45 P	eriods						

COURS Upon co	Bloom's Taxonomy Mapped	
CO1	Acquired knowledge about social and legal responsibilities.	Understanding
CO2	Understand the adventure activities and verbal training on defense examinations.	Understanding
CO3	Understand the technical knowledge on aero engines and map reading.	Understanding
CO4	Understand the structure and control of an aircraft.	Understanding
CO5	Understand and learn the importance of avionic instruments on aircraft control.	Understanding

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO1 2	PSO1	PSO2	PSO3
CO1	3	1	-	-	-	-	-	-	-	-	-	-	3	1	1
CO2	3	3	2	3	-	-	-	-	-	-	-	-	3	2	1
CO3	3	2	3	1	-	2	-	-	-	-	-	-	3	2	1
CO4	3	2	2	2	-		-	-	-	-	-	-	3	2	1
CO5	3	-	-	-	-	1	-	-	-	-	-	-	3	3	1
Avg	3	2	2.3	2	-	1.5	-	-	-	-	-	-	3	2	1
3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)															

22EC3	S06 SEMICONDUCTOR DEVICES AND CIRCUITS LA	SEMESTER III					
PREREC	QUISITES	CATEGORY	РС	Credit		2	
NIL			L	Т	Р	ТН	
		Hours/Week	0	0	4	4	
Course	objectives:		U	U	4	4	
1. 7	To provide an insight into the characteristics of electron devices.						
2. 7	To design and analyse various amplifier circuits.						
3. 7	To study the operation of rectifiers and filters.						
EXPERI							
1. Cha	aracteristics of PN Junction Diode and Zener Diode.						
2. Cha	aracteristics of photodiode.						
3. Des	sign of Clippers and Clampers.						
4. Me	easurement of ripple factor of Rectifiers with and without capacitor	filter.					
5. Cha	aracteristics of CE/CB/CC configurations of Bipolar transistors.						
6. Cha	aracteristics of MOSFET.						
	equency response of BJT Amplifier using voltage divider bias (pacitor.	(self-bias) with and	withou	t emit	ter b	y pass	
8. Fre	equency response of Multi stage amplifiers.						
	termination of efficiency of Class A power amplifier.						
	servation of the output of Class B Complementary symmetry particular.	power amplifier wi	th and v	withou	t cro	ssover	
11. Des	sign and Analysis of Series feedback amplifiers.						
12. Des	sign and Analysis of Shunt feedback amplifiers.						
]	Fotal (60) P)= (50 Pe	riods	

Text Books

l ext B	ooks:
1.	A.S. Sedra and K.C. Smith, Microelectronic Circuits, 7th edition, Oxford University Press, 2017.
2.	S. Salivahanan and N. Suresh kumar, "Electronic Devices and Circuits", Fourth edition, McGraw Hill Education,
	2017.
Refere	nce Books:
1.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory" 11th edition, PHI, 2017.
2.	Ben G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2015.
3.	S.Poorna Chandra, B.Sasikala, "Electronics Laboratory Primer", S.Chand & Company Ltd, 2010.
4.	L.K. Maheshwari, M.M.S. Anand, "Laboratory Manual for Introductory Electronics Experiments", New age
	International (P) Limited Publishers, 2010.
E-Refe	erences:
1.	ttps://nptel.ac.in/courses/108108112
2.	https://nptel.ac.in/courses/108101091
3.	http://www.electronics-tutorials.ws/

	Course Outcomes: Upon completion of this course, the students will be able to:		
CO1	:	Analyze the characteristics of diodes and transistors.	Analyzing
CO2	:	Design electronic circuits such as rectifiers and analyse their performance.	Evaluating
CO3	:	Analyze the frequency response of small signal and power amplifiers using discrete components.	Evaluating
CO4	:	Design and analyze the frequency response of feedback amplifiers.	Evaluating
CO5	:	Implement electronic circuits and test their performance.	Creating

				С	OUR	SE AF	RTICU	LATIO)N MA	TRIX					
COs/ POs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	2	2	-	-	-	-	-	-	-	1	1	1
CO2	3	3	2	2	2	-	-	-	-	-	-	-	1	2	1
CO3	3	3	2	2	2	-	-	-	-	-	-	-	2	2	1
CO4	3	3	3	2	2	-	-	-	-	-	-	-	1	1	1
CO5	3	3	3	2	2	-	-	-	-	-	-	-	2	2	1
Avg	2.8	3	2.4	2	2	-	-	-	-	-	-	-	1.4	1.6	1
		3/2/	1 – ind	icates	streng	th of (correla	tion (3	– Hig	h, 2 – N	Aediun	n, 1 – I	Low)		

22	2EC307	DIGITAL SYSTEM DESIGN LAB S	SEME	STE		III		
PRER	EQUISITES	CATEG	ORY	PC	Cre	dit	2	
NIL								
		Hours/V	Veek	0	0	4	4	
Cour	se objectives						L	
1.	To underst	and the principles and methodology of digital logic design at the gate and s	witch	level.				
2.	To design an devices.	nd testing of combinational circuits, sequential circuits, digital logic familie	es and	progr	amma	ble l	ogic	
3.	To get prac	tical experience in design, realization and verification of memory devices.						
EXPE	RIMENTS							
1.	Study of Lo	gic Gates.						
2.	Implementa	ion of logic circuits using NAND gate and NOR gate.						
3.	Design and	construct Adders and sub tractors.						
4.	Design and	mplementation of Multiplexer and De multiplexer using logic gates and IC	274159	and	IC741	54.		
5.	Design and	construct encoder and decoder using logic gates and study of IC7445 and IG	C7414	7.				
6.	Study of Fli	p-Flops.						
7.	Construction	and verification of 4 bit ripple counter and Mod- N Ripple counters.						
8.	Design and	mplementation of 3-bit synchronous up/down counter.						
9.	Implementa	ion of SISO, SIPO, PISO and PIPO shift registers using Flip- flops.						
10.	Design and	mplementation of Hazard free circuits.						
11.	Implementa	ion of combinational logic circuits using Multiplexer and Decoder.						
12.	Implementa	ion of combinational logic functions using ROM, PLA and PAL.						
		Total ((60 P)	= 60 I	Period	s		

Text b	ooks:
1.	R.P. Jain, "Modern digital Electronics", 4th Edition, Tata McGraw Hill, 2009.
2.	M. Morris Mano, "Digital Design", 4th Edition, Pearson Education (Singapore) Pvt . Ltd., New Delhi, 2008.
Refere	nce Books:
1.	W.H.Gothmann,"DigitalElectronics-Anintroductiontotheoryandpractice", PHI, 2 nd edition,,2006.
2.	D.V. Hall," Digital Circuits and Systems", Tata McGraw Hill, 1989
3.	S.SalivahananandS.Arivazhagan,"Digital Circuits and Design", 2 nd edition, Vikas Publishing HousePvt.Ltd,NewDelhi,2004.
4.	Charles H. Roth. "Fundament also f Logic Design", Thomson Publication Company, 2003.
E-Refe	rences:
1.	https://nptel.ac.in/courses/117105080/24
2.	https://nptel.ac.in/courses/117106086/
3.	https://www.youtube.com/watch?v=CeD2L6KbtVM

		utcomes: apletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Demonstrate the truth table of various expressions and combinational circuits using logic gates.	Understanding
CO2	:	Design various combinational circuits such as adders, sub tractors, comparators, multiplexers and demultiplexers.	Analyzing
CO3	:	Design and Construct counters and shift registers.	Analyzing

CO4	:	Understand the concept of flip flops and Hazard free Circuit.	Understanding
CO5	:	Understand the concept ROM, PLA and PAL.	Analyzing

					C	OURSI	E ART	ICULA	TION	MATI	RIX				
CO//P O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	3	2	1	2	-	-	-	-	2	2	-
CO2	2	3	2	2	1	3	2	1	-	-	-	-	3	1	-
CO3	2	2	2	3	2	2	2	1	-	-	-	-	2	-	1
CO4	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
CO5	2	2	3	2	1	2	1	2	-	-	-	-	-	2	1
Avg	2.2	2	2.2	2	1.8	2.2	1.8	1.4	-	-	-	-	2.25	1.5	1
			3/2/1 -	indica	tes stre	ength o	f corre	lation (3-High	,2- Me	dium,1	- Low)	1		

SEMESTER IV

	SEMESTER			IV		
PREREQUI	SITES	CATEGORY	BS	Cre	edit	4
Basic12th lev	vel knowledge of probability and statistics.	Hours/Week	L	Т	Р	TH
		nours/ week	3	1	0	4
Course Obje	ectives:				•	
1. To lear	n the axioms of probability and use of Baye's theorem and it	ts applications.				
2. To lear	n the standard Probability distribution and its application.					_
3. To lear	n the two-dimensional random variables.					
	erstand the convergence of random sequences and the concepts and central limits.	pts of strong and we	ak laws	of la	rge	
	erstand effectively about the stochastic processes and the app andom process.	plications of correlat	ion, spe	ectral	densit	ies
Unit I	PROBABILITY AND ONE DIMENSIONAL RANDOM	I VARIBLE	9	3	0	12
	robability – Conditional probability – Total probability- Bay					
	on- Probability density function- Probability distribution					
functions and						ating
functions and Unit II	on- Probability density function- Probability distribution I their properties-Characteristic functions.	function- Moment	ts- mor 9	ment 3	gener 0	rating
functions and Unit II Binomial, Po	on- Probability density function- Probability distribution I their properties-Characteristic functions. STANDARD DISTRIBUTION	function- Moment	ts- mor 9	ment 3	gener 0	rating
functions and Unit II Binomial, Po Unit III	on- Probability density function- Probability distribution I their properties-Characteristic functions. STANDARD DISTRIBUTION isson, Geometric, Uniform, Normal Distributions and their p TWO DIMENSIONAL RANDOM VARIABLES	function- Moment	 s- mon 9 of a ra 9 	ment 3 ndom	gener 0 varia	rating
functions and Unit II Binomial, Po Unit III Joint Distribu	on- Probability density function- Probability distribution I their properties-Characteristic functions. STANDARD DISTRIBUTION isson, Geometric, Uniform, Normal Distributions and their p	function- Moment	 s- mon 9 of a ra 9 	ment 3 ndom	gener 0 varia	rating 12 ble. 12
functions and Unit II Binomial, Po Unit III Joint Distribu Unit IV Random sequ	on- Probability density function- Probability distribution I their properties-Characteristic functions. STANDARD DISTRIBUTION isson, Geometric, Uniform, Normal Distributions and their p TWO DIMENSIONAL RANDOM VARIABLES ition- Marginal and Conditional distributions- Markov, Cheb RANDOM PROCESSES uences and modes of convergence (everywhere, almost everywhere, almost e	function- Moment properties- Functions pyshev, Chern off bo rywhere, Probability	9 of a ra 9 unds. 9	$\frac{3}{n \text{dom}}$	gener 0 varia 0 0	rating 12 ble. 12 12 12 12
functions and Unit II Binomial, Po Unit III Joint Distribu Unit IV Random sequ square) – Stro	on- Probability density function- Probability distribution I their properties-Characteristic functions. STANDARD DISTRIBUTION isson, Geometric, Uniform, Normal Distributions and their p TWO DIMENSIONAL RANDOM VARIABLES ition- Marginal and Conditional distributions- Markov, Cheb RANDOM PROCESSES	function- Moment properties- Functions pyshev, Chern off bo rywhere, Probability	9 of a ra 9 unds. 9	$\frac{3}{n \text{dom}}$	gener 0 varia 0 0	rating 12 ble. 12 12 12 12
functions and Unit II Binomial, Po Unit III Joint Distribu Unit IV Random sequ square) – Stre Unit V	on- Probability density function- Probability distribution I their properties-Characteristic functions. STANDARD DISTRIBUTION isson, Geometric, Uniform, Normal Distributions and their p TWO DIMENSIONAL RANDOM VARIABLES ition- Marginal and Conditional distributions- Markov, Cheb RANDOM PROCESSES uences and modes of convergence (everywhere, almost eve ong and Weak laws of large numbers- Central limit theorem.	function- Moment properties- Functions pyshev, Chern off bo rywhere, Probability	 9 of a ra 9 unds. 9 / distribution 9 	ment 3 ndom 3 3 oution 3	gener varia 0 and 0	rating 12 ble. 12 12 mean 12
functions and Unit II Binomial, Po Unit III Joint Distribu Unit IV Random sequesquare) – Stree Unit V Classification	on- Probability density function- Probability distribution I their properties-Characteristic functions. STANDARD DISTRIBUTION isson, Geometric, Uniform, Normal Distributions and their p TWO DIMENSIONAL RANDOM VARIABLES ition- Marginal and Conditional distributions- Markov, Cheb RANDOM PROCESSES uences and modes of convergence (everywhere, almost eve ong and Weak laws of large numbers- Central limit theorem. CORRELATION AND SPECTRAL DENSITIES	function- Moment properties- Functions pyshev, Chern off bo rywhere, Probability odicity-Transmissio	 9 of a ra 9 unds. 9 / distribution 9 	ment 3 ndom 3 3 oution 3	gener varia 0 and 0	rating 12 ble. 12 12 mean 12

Tex	xt Books:
1.	Veerarajan.T, "Probability, Statistics and Random processes", Tata McGraw- Hill publications, second edition, New Delhi, 2002.
2.	Ross. S, "A First course in Probability", 5th Edition, Pearson Education, Delhi, 2002.
Ref	ference Books:
1.	H. Stark and John W. Woods, "Probability and Random processes with Applications to Signal processing", Pearson Education, Third Edition, Delhi 2002.
2.	Peebles Jr. P.Z. "Probability Random Variables and Random Signal Principles", Tata McGraw-Hill Publishers, 4th Edition, New Delhi 2002. (Chapter 6, 7 and 8)
3.	K.L. Chung, "Introduction to Probability theory with Stochastic processes", Springer International.
4.	Ochi, M. K, "Applied Probability and Stochastic process", John Wiley & sons, New York, 1990.
5.	Oliver C.Ibe, "Fundamentals of Applied Probability and Random Processes", Elsevier Publication, 2013

		utcomes: apletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Learn the fundamental knowledge of the Probability concepts	Understanding
CO2	:	Apply the standard distributions	Applying

CO3	:	Analyze the two-dimensional random variables	Analyzing
CO4	:	Understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.	Understanding
CO5	:	Acquire the knowledge of Random Processes and Spectral densities.	Understanding

	COURSE ARTICULATION MATRIX														
COs/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
Os	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO2	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO4	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO5	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
Avg	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
		3	8/2/1 -	indica	tes stre	ength	of cori	relatio	n (3-Hi	igh,2- N	ledium,	1- Low)	1	L

22EC40	1 ANALOG CIRCUITS	SEME	STE	R	IV	
PRERE	QUISITES	CATEGORY	PC	С	redit	3
NIL			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course (Objectives:					
1.	To give a comprehensive exposure to all types of discrete amplifiers and of for linear and digital integrated circuits.	oscillators. To dev	velop	a sti	rong t	asis
2	To understand the various linear and non-linear applications of op-amp.					
3	To understand the operation of the D/A &A/D converter types and its app	lications.				
Unit I	OSCILLATORS		9	0	0	9
and Twir	of Oscillator using Cascade connection of RC and LC filters: RC phase sh n - T oscillators - LC Oscillators: Colpitts — Hartley — Clapp- Mill t circuit of Crystal.					
Unit II	TUNED AMPLIFIERS AND MULTI VIBRATORS		9	0	0	9
of Class Bistable I Unit III Current r	of single tuned and synchronously tuned amplifiers- Class C tuned amplif C tuned Amplifier-Collector coupled and Emitter coupled Astable Multi Multivibrator-Triggering methods-Monostable and Astable Blocking Oscil OPERATIONAL AMPLIFIER DESIGN nirror: Basic topology and its variants - Differential amplifier: Basic so on of differential gain - Common Mode gain, CMRR - OP-AMP design: I	tivibrator –Mono lators using Emit tructure and prin	stable ter an 9 nciple	e Mu d ba 0 of	ultivit se tim 0 opera	orator- ning. 9 tion -
gain stage	es and output stages-compensation-DC and AC characteristics of OP-AM	Р.				
	APPLICATIONS OF OPERATIONAL AMPLIFIER		9	0	0	9
trigger an	and non-inverting amplifiers-Integrator and Differentiator -Summing a d its applications - Active filters: Low pass, high pass, band pass and ban tor-Multivibrator.	·				
	DATA CONVERTERS AND SPECIAL FUNCTIONICs		9	0	0	9
	-Analog converters (DAC): Weighted resistor - R-2R ladder - Analog to-I					slope
- Dual slo	ppe -Successive Approximation - Flash type - IC 555 timer and its applicat		<u> </u>	<u> </u>		
		Tot	al(45	L) =	=45Pe	riods
Text Boo	ks:					
	3.Visvesvara Rao,K.Raja Rajeswari,P.Chalam Raju Pantulu,K.Bhaskara R I",PearsonEducation,2012	ama Murthy,"Ele	ctron	icCi	rcuits	-
2. I	D.RoyChoudhry, Shail Jain, "Linear IntegratedCircuits", NewAge Internation	onal Pvt. Ltd.,201	1.			
Reference	ce Books:					
1. I	Willman J. And Taub H., "Pulse Digital and Switchingwaveform",3 rd Edition	on, McGraw-Hill	Inter	natio	onal, 2	2011.
2.	Sedera & Smith, "Micro ElectronicCircuits", 4 th Edition, Oxford University	Press, Chennai.				
	Michael Jacob, 'Applications and Design with Analog Integrated Circuits',		India	,199	6.	
4. J	K.R.Botkar, 'Integrated Circuits', 10 th edition, Khanna Publishers, 2010.					
E-Refere						
1. ł	http://nptel.ac.in/courses/117105080/40					
2. ł	http://freevideolectures.com/Course/2915/Linear-Integrated-Circuits					
						-

3. http://nptel.ac.in/courses/117108038/1

Course OUpon con		tcomes: letion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Analyze different types of oscillators.	Analyzing
CO2	:	Construct and analyse tuned amplifiers and multivibrators.	Creating
CO3	:	Understanding various stages in the design of Operational Amplifier.	Analyzing
CO4	:	Design of linear and non-linear application of Operational Amplifiers.	Analyzing
CO5	:	Understand A/D and D/A converter architectures and analyse special function ICs along with their applications.	Creating

0 CO1	PO1 2	PO2 3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
	_	3	3	2						0	1	2	1	2	3
CO2	•		5	2	1	2	2	2	-	-	-	-	2	2	1
	2	3	3	2	-	1	-	-	-	-	-	-	1	2	1
CO3	2	-	3	2	-	2	1	-	-	-	-	-	2	3	2
CO4	1	3	-	2	2	2	2	1	-	-	-	-	3	2	2
CO5	2	3	3	2	2	2	3	2	-	-	-	-	2	3	2
Avg 1	1.8	3	3	2	1.7	1.8	2	2	-	-	-	-	2	2.4	1.6
			3/2/1 -	indica	ates stro	ength o	f corre	lation (3-High	,2- Mee	dium,1	- Low)			

22EC	2402	MICROPROCESSORS AND MICROCONTR	OLLERS	SEMI	ESTE	R	IV
PREREC	QUISITES	СА	ATEGORY	PC	Cre	edit	3
				L	Т	Р	ТН
NIL		He	ours/Week	3	0	0	3
Course (Objectives:						
1.	To familiar	ise with 8086 and 8051 architectures.					
2.	To interfac	e 8086 microprocessor and 8051 microcontrollers with p	peripherals by p	rogramm	ing.		
3.	To gain bas	ic knowledge of PIC microcontrollers.					
Unit I	8086 M	ICROPROCESSOR ARCHITECTURE		9	0	0	9
		mputer systems-8086 Architecture – Pin Assignments mats- Directives and Operators-Assembly process.	s – Internal Ar	chitectur	re – 1	Addre	essing
Unit II	PROGI	RAMMING AND INTERFACING OF 8086		9	0	0	9
Maximu		siderations- Programmed I/O- Interrupt I/O- Basic 8 em Bus timing- I/O Interfaces-Peripheral Interfacing us RT.					
Unit III	8051 Al	RCHITECTURE		9	0	0	9
	nitecture - Re ssing modes	gisters in 8051 - Pin description - 8051 parallel I/O ports	s - memory orga	nization	- Inst	ructi	on set
Unit IV	PROGI	RAMMING AND INTERFACING OF 8051		9	0	0	9
		rogramming - 8051Timers - Serial Port Programming					
Keyboard Control.	1 Interfacing	- ADC, DAC and Sensor Interfacing - External Memo	ory Interface - I	RTC Inte	rfacir	1g - I	Motor
Unit V	PIC MI	CRO CONTROLLERS		9	0	0	9
		f PIC microcontrollers – PIC microcontroller families-M Data Memory - Instruction set and timers in PIC.	Memory-Program	n Memo	ry – 1	RAM	Data
			7	Cotal (45	L) = 4	45 pe	riods
Text Boo	ks:						
1.	Yu-Cheng L	iu, Glenn A. Gibson," Microcomputer Systems, The 808	86/8088 Family'	', Pearso	n, 2e,	2019).
2.		Ali Mazidi, Janice Gillispie Mazidi, Rolin D.McKi ystems using Assembly and C", 2e, 2022.	inlay, "The 80	051 Mici	rocon	trolle	er and
Referenc							
1.		li Mazidi, Janice GillispieMazidi, RolinMcKinlay, "Thing Assembly and C", 2 nd Edition, Pearson education, 2		controller	r and	Emb	edded

2.	Martin Bates ,"PIC Microcontrollers-An Introduction to Microelectronics", 3e	, Elsevier, 2011
----	--	------------------

3.	Mathur Sunil,"Microprocessor 8086 : Architecture, Programming and Interfacing",PHI Learning Pvt. Ltd.,2011.

4. Applications in Electronics", Springer, 2019.	4	Salvador	Pinillos	Gimenez,"	8051	Microcontrollers	Fundamental	Concepts,	Hardware,	Software	and
	4.	Application	ons in Ele	ctronics", S	oringe	r,2019.					

E-Refere	ences:
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon, 2020.
2.	https://nptel.ac.in/courses/108105102
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html

Course O Upon com		tion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Describe and analyse the architecture of 8086 microprocessor.	Analyzing
CO2	:	Develop assembly language programs and Interface peripherals with 8086.	Applying
CO3	:	Describe and analyze the architecture of 8051 micro controllers.	Analyzing
CO4	:	Develop assembly language programs and interface peripherals with 8051.	Applying
CO5	:	Associate appropriate PIC microcontroller for a given application.	Understanding

CO/ / PO	PO1	PO 2	PO3	PO 4	PO 5	PO6	PO 7	PO8	PO 9	PO 10	PO 11	PO12	PSO 1	PSO 2	PSO 3
CO1	2	2	-	-	-	-	-	-	-	-	2	-	1	-	-
CO2	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO3	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO4	2	2	2	2	-	-	-	-	-	-	-	-	2	2	2
CO5	2	2	-	2	-	-	-	-	-	-	-	-	2	2	-
Avg	2	2	2	2	-	-	-	-	-	-	2	-	1.8	2	2
	<u> </u>	<u> </u>	3/2/1 -	indic	ates st	rength	of cor	relation	(3-H i	gh,2-]	Mediu	m,1- Lov	v)	I	1

22E0	C 403	SIGNALS AND SYSTEMS	SE	MESTER IV								
PRERE	QUISITES		CATEGORY	PC	Cre	edit	3					
NIL			Hours/Week	L	Т	Р	ТН					
			Hours/ week	3	0	0	3					
Course O	bjectives:											
1.	To introdu	ce basics of signals and system.										
2.	To underst	and and perform Fourier analysis on continuous and dis	crete time signal an	d samp	ling	theor	em.					
3.	To introdu	introduce Laplace and Z transform in analysing signals and system										
Unit I	INTR	ODUCTION TO SIGNALS AND SYSTEM		9	0	0	9					
invariance response –	(DT) signals - Continuous and Discrete amplitude signal - System properties and representation: linearity - Time- invariance – Causality – Stability - Realizability Linear Time-Invariant (LTI) systems: Impulse response and step response – Convolution – Correlation - System representation through differential equations and difference equations.											
Unit II		IER ANALYSIS OF CONTINUOUS TIME SIGNA		9	0	0	9					
		ier Series (CTFS) - Properties of CTFS - Continuous 7 - Properties of CTFT - Frequency response of systems c										
Unit III	LAPL	ACE TRANSFORM AND CONTINUOUS-TIME L	TI SYSTEMS	9	0	0	9					
Transform		aplace Transforms of some Common Signals - Region place Transform - System Function - The Unilateral										
Unit IV		LING THEOREM AND Z-TRANSFORMS		9	0	0	9					
under sam Relationsh	pling (aliasir ip between nce – Propert	inuous time signals by its sample - Sampling theorem g) – Sampling techniques - Data Reconstruction - Samp z-transform and Fourier transform - Z-transform ies of ROC – Properties of Z-transform - Poles and Zero	oling of band pass s for discrete time	signals signals	- Z-t	ransf	orm -					
Unit V	FOUH	RIER ANALYSIS OF DISCRETE TIME SIGNALS		9	0	0	9					
DTFT - F	requency Re	Series (DTFS) - Properties of DTFS – Discrete Time F sponse of Discrete Time LTI Systems - Discrete For I - Direct form – II - Cascade and parallel forms.	urier Transform (E		Real	lizati	on of					
			10	ial (45)	L)= 4	is pe	rious					
Tort Dool												

Text Books	S.
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.
Reference	Books:
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010.
2.	Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons (Asia) Private Limited, 1998.
3.	Hsu.H.P, Rakesh Ranjan "Signals and Systems",2nd Edition Schaum's Outlines, Tata McGraw Hill, 2010.
4.	Krishnaveni.V, Rajeswari.A, "Signals and Systems", 1st Edition, Wiley India Pvt Ltd, 2012.
E-Reference	ces:
1.	https://www.youtube.com/watch?v=4GewDCPU5SQ&list=PLy3nfyfK6Yw6bQ-QXJdFrhzd37mgZzk0r
2.	https://www.edx.org/course/signals-systems-part-1-iitbombayx-ee210-1x-2
3.	http://nptel.ac.in/courses/117104074/

Course	Ot	itcomes:	Bloom's			
Upon co	Jpon completion of this course, the students will be able to:					
			Mapped			
CO1	CO1 : Understand and Analyse different types of signals and systems.					
CO2	•••	Represent continuous and discrete systems in time and frequency domain using	Evaluating			
		different transforms.				
CO3	:	Able to perform Fourier analysis of signals.	Analyzing			
CO4	:	Sample and reconstruct a signal.	Understanding			
CO5	CO5 : Realize various structures for discrete time systems					

	COURSE ARTICULATION MATRIX																								
CO/ /PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3										
CO	3	2	3	3	3	-	-	-	-	-	-	-	2	2	2										
CO	3	2	2	3	3	2	-	-	-	-	-	-	2	2	2										
CO	3	2	2	3	3	2	-	-	-	-	-	-	2	2	1										
CO	3	2	1	3	3	2	-	-	-	-	-	-	2	2	2										
CO	3	2	2	3	3	-	-	-	-	-	-	-	1	2	2										
Avg	3	2	2	3	3	2	-	-	-	-	-	-	1.8	2	1.8										
			3/2/1 -	indica	tes stro	ength o	f corre	lation (3-Hig	h,2- M	ledium	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)													

22EC4	04	CONTROL SYSTEMS		SE	EMES	TER	IV
PRER	EQUIS	SITES	CATEGORY	PC	Cre	dit	3
Louloo	• T	form Dorticl Differential Equation	Harry/Wash	L	Т	Р	TH
Laplace	e Trans	sform, Partial Differential Equation	Hours/Week	3	0	0	3
Course	e Obje	ctives:					
1.	To int	troduce the components and their representation of control syste	ems.				
2.	To lea syster	arn various methods for an alyzing the time response, frequency ns.	y response and stat	oility of	the		
3.	To int	troduce various methods for the state variable analysis.					
Unit I		MATHEMATICAL MODELS OF PHYSICAL SYSTEMS	5	9	0	0	9
Transfe	er func	tion - Modelling of Electrical systems - Translational and r		cal syst	ems –	- Ana	logy
Transfe Block c	er func diagran	n reduction Techniques - Signal flow graph – Mason' Gain For			1		0.
Block of Unit I	er func diagran II rd test	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response	mula. analysis of First a	9 nd seco	0 ond or	0 der sy	9 /stem
Transfe Block o Unit I Standar –Time	er func diagran II rd test domain	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat	mula. analysis of First a	9 nd seco	0 ond or	0 der sy	9 /stem
Transfe Block o Unit I Standar –Time	er func diagran II rd test domain o-effici	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat	mula. analysis of First a	9 nd seco	0 ond or	0 der sy	9 /stem
Transfe Block o Unit I Standar –Time error co Unit I Sinuso	er func diagran II rd test domain o-effici III oidal T	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat tent . FREQUENCY RESPONSE ANALYSIS Yransfer Functions and frequency Response - Frequency Domai	mula. analysis of First a te errors and error in specifications fo	9 nd secc constar 9 r secon	0 ond ore nts - 0 0 d orde	0 der sy Gener 0 er sys	9 vstem alize 9 tem ·
Transfe Block o Unit I Standar –Time error co Unit I Sinuso Freque	er func diagran II diagran rd test domain o-effici III domain oidal T ency re	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat tent . FREQUENCY RESPONSE ANALYSIS	mula. analysis of First a te errors and error in specifications fo	9 nd secc constar 9 r secon	0 ond ore nts - 0 0 d orde	0 der sy Gener 0 er sys	9 /stem ralize 9 tem -
Transfe Block o Unit I Standar –Time error co Unit I Sinuso Freque	er func diagran II diagran rd test domain o-effici III domain oidal T ency re Lag Cc	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat tent . FREQUENCY RESPONSE ANALYSIS Fransfer Functions and frequency Response - Frequency Domain esponse plots: Bode Plot - Polar Plot –Linear system design:	mula. analysis of First a te errors and error in specifications fo	9 nd secc constar 9 r secon	0 ond ore nts - 0 0 d orde	0 der sy Gener 0 er sys	9 /stem ralize 9 tem -
Transfe Block o Unit I Standar –Time error co Unit I Sinuso Freque Lead I Unit I Stabilit	er func diagran II diagran rd test domain o-effici III oidal T ency re Lag Co IV IV Re	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat tent . FREQUENCY RESPONSE ANALYSIS Transfer Functions and frequency Response - Frequency Domain esponse plots: Bode Plot - Polar Plot –Linear system design: pompensators.	mula. analysis of First a te errors and error in specifications fo : Types of comper tive Stability -	9 nd seco constar 9 or secon asators 9	0 ond or ots - 0 d orde - Lead	0 der sy Gener 0 er sys d, Lag	9 /stem calize 9 tem - g and 9
Transfe Block o Unit I Standar –Time error co Unit I Sinuso Freque Lead I Unit I Stabilit	er func diagran II rd test domain o-effici III oidal T ency re Lag Co IV IV	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat tent . FREQUENCY RESPONSE ANALYSIS Transfer Functions and frequency Response - Frequency Domai esponse plots: Bode Plot - Polar Plot –Linear system design: ompensators. STABILITY ANALYSIS outh-Hurwitz Criterion - Nyquist Stability Criterion - Rela	mula. analysis of First a te errors and error in specifications fo : Types of comper tive Stability -	9 nd seco constar 9 or secon asators 9	0 ond or ots - 0 d orde - Lead	0 der sy Gener 0 er sys d, Lag	9 ystem calize 9 tem - g and 9 iique
Transfe Block o Unit I Standar –Time error co Unit I Sinuso Freque Lead I Unit I Stabilit Constru Unit V Conce system	er func diagran II rd test domain o-effici III oidal T ency re Lag Co IV ty - Ro uction o V ept of s ns - s	n reduction Techniques - Signal flow graph – Mason' Gain For TIME RESPONSE ANALYSIS signals - Time response analysis - Impulse and Step Response n specifications - P, PI, PD and PID controllers - Steady stat tent . FREQUENCY RESPONSE ANALYSIS Transfer Functions and frequency Response - Frequency Domai esponse plots: Bode Plot - Polar Plot –Linear system design: <u>ompensators</u> . STABILITY ANALYSIS outh-Hurwitz Criterion - Nyquist Stability Criterion - Rela of Root Locus - Stability, Dominant Poles - Application of Root	mula. analysis of First a te errors and error in specifications fo : Types of comper ative Stability - ot Locus.	9 nd secc constar 9 or secon sators 9 Root L 9 uous ar	0 ond ordents - 0 0 d ordents - Leadent 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 der sy Gener 0 er sys 1, Lag 0 Fechn 0 crete	9 ystem alize 9 tem g anc 9 ique 9 Time

Text Boo	ks:
1.	A.Anand Kumar, "Control Systems", Prentice Hall of India, 2012
2.	A.Nagoorkani, "Control Systems" 2 nd Edition, RBA publications, 2009
Referenc	e Books:
1.	Norman SNise,"Control Systems Engineering', Seventhedition, Wiley Publications, 2015
2.	Benjamin.C.Kuo, Automatic Control Systems, 7thEdition, PHI, 2009.
3.	K.Ogata, "ModernControlEngineering", PHI, 5th Edition, 2012.
4.	I.J Nagrath and M. Gopal, "Control System Engineering", 5 th Edition, New Age International Edition, 2018.
E-Refere	nces:
1.	https://www.edx.org/course/introduction-control-system-design-first-mitx-6-302-0x
2.	https://onlinecourses.nptel.ac.in/noc17_ee12
3.	https://onlinecourses.nptel.ac.in/noc22_ee31/preview

Course Upon co		Bloom's Taxonomy Mapped					
CO1							
CO2	:	Analyse the time domain specification and calculate the steady state error	Applying				
CO3	:	Carryout the frequency response analysis of open loop and closed loop system and apply suitable compensation.	Applying				
CO4	:	Analyse the stability of the system using Routh and root locus techniques.	Analysing				
CO5	Applying						

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO 3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2	2	1	-	-	-	-	-	-	-	3	-	2
CO2	3	1	1	2	1	-	-	-	-	-	-	-	2	-	2
CO3	3	1	1	1	1	-	-	-	-	-	-	-	2	-	1
CO4	3	1	1	1	1	-	-	-	-	-	-	-	3	1	2
CO5	2	1	1	1	1	-	-	-	-	-	-	-	2	-	1
Avg	2.8	1.2	1.2	1.4	1	-	-	-	-	-	-	-	2.4	1	1.6
		3/2/	1 - inc	licates	streng	th of c	orrela	tion (3-	High,	2- Med	ium,1-	Low)			

22EC4	05	ANTENNA AND WAVE PROP	PAGATION	SEMESTER IV								
PRER	EQUISI	TES	CATEGORY	PC								
				L	Т	Р	TH					
NIL			Hours/Week	3	0	0	3					
	Objectiv											
1.		erstand the fundamental principles of Antenna theory tion of the basic concepts and equations.	, and wave propaga	ation wi	th a lu	cid						
2.		erstand the design and operation of various antenna ty	· 1									
3.		y the fundamental electromagnetic wave propagation	indifferent layers	of the a								
Unit I		NNA FUNDAMENTALS & WIRE ANTENNAS			9	-	0 9					
Antenna Power r Unit II Express array -	as, Friis ' adiated a A ion for e Method	as, Radiation Mechanism, Current distribution on the Transmission equation Fields associated with Her and radiation resistance of current element - Radiation NTENNA ARRAYS lectric field from two and N - element arrays - United of pattern multiplication - Binomial array - Folder	rtzian dipole - Alt a resistance of half- form linear array -	ernating wave d Broads	g curre ipole a 9 ide ar	ent el intenr 0 0 ray -	ement - na. 0 9 Endfire					
periodic	dipole a	-										
Helical travelin	ntennas: antenna g wave o	OOP, HELICAL AND REFLECTOR ANTENNA small loop and general case - Radiation resistant : Helical geometry – normal mode and axial-r on a wire - Rhombic antenna: Analysis & Design tor - Corner reflector – Paraboloid reflector - Feed	ce of loops – Dire node helical ante of Rhombic anten	nna -	of cir Radia	cular tion	from a					
Unit IV	A	PERTURE ANTENNAS			9	0	09					
Method design c Unit V Sky way refractio usable f verticall ray at th	of feedir concepts. We propag on - Refr frequency ly and ho he receiv	pple– Slot antennas - Pattern of slot antennas in fla and slot antennas - Field on the axis of an E-Plane sec AVE PROPAGATION gation: Structure of the ionosphere - Effective dielectric active index - Critical frequency - Skip distance - H y - Fading and Diversity reception - Space wave virizontally polarized waves - Reflection characteristic er - Duct propagation - Ground wave propagation: lculation of field strength at a distance.	ric constant of ioniz Effect of earth's m propagation - Re cs of earth - Result	zed regi agnetic eflection	m pyra 9 on - M field n from direct	0 0 1echa - Ma n gro and r	1 horns, 0 9 nism of aximum und for eflected					
				Tota	l(45L)	=45F	Periods					
Text Bo	oke											
1.		dan and Balmain," Electro Magnetic Waves and R	adiating Systems"	,PHI,19	968,Re	print2	2010.					
2.		Kraus and Ronalatory Marhefka,"Antennas", Tata Mo	cGraw – Hill Book	Compa	any,20	10.						
	ce Books											
1.		, F.E., "Radio Engineers Handbook", Tata McGraw -		0 1	012							
2.		tine A. Balan is, "Antenna Theory Analysis and Desi		z Sons,2	012.							
3. 4.		llins, 'Antennas and Radio Propagation ", McGraw - R.S., "Antenna theory and design", PHI, NewDelhi,19										
	erences:	, Antenna meory and design, PHI, NewDelm, 19	0.3.									
1.		/ww.youtube.com/watch?v=LF9kebBTWXo&list=Pl	AIII hhlufaisuuu	[Im_0]]	2040	Nn1I	RtM6					
1.	-	-				-						
2		mun vontuba com/motabor_: A 0 aT A 1D a 4 a 0-1: a DI C		[\ V7C	171 14	U~	MIGUE					
2. 3.	-	/ww.youtube.com/watch?v=jA8aTA1Pg4s&list=PLC nk.springer.com/chapter/10.1007/978-1-4615-6459-1	, ÷	LAX7C	IZLIA	Hgyl	N1oVS					

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	O1 : Understand and derive the behaviour of the antenna and its performance parameters.					
CO2	:	Design and analyse antenna arrays.	Analysing			
CO3	:	Design and analyse Loop, Helical and Reflector antenna.	Analysing			
CO4	:	Design and analyse aperture antennas.	Analysing			
CO5	:	Study radio wave propagation and its effects.	Understanding			

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO2	3	2	2	2	1	-	-	-	-	-	-	-	1	2	2
CO3	3	2	2	2	1	-	-	-	-	-	-	-	1	2	2
CO4	3	2	2	2	1	-	-	-	-	-	-	-	1	2	2
CO5	3	1	1	1	1	-	-	-	-	-	-	-	-	-	-
Avg	3	2	1.6	1.6	1	-	-	-	-	-	-	-	1	1.75	1.75
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22M	CIN03	DESIGN SPRINTS		S	IV						
PREF	REQUIS	SITES	Category	EE							
				L	Т	Р	TH				
			Hours/Week	0	0	2	2				
Cours	se Learı	ning Objectives		<u> </u>							
1		op key skill areas essential for a product designer from the exity and supports them with tools & techniques to protect		Jesign,	its inho	erent					
2	To ena	able the participants to visualize the experience for a user	r.								
3	To lea	rn the roles & responsibilities of a designer in creating a	nd shaping experi	ences f	for the u	user.					
4	The pa	articipants shall learn through the lenses of system thinki	ng of how existin	g prod	ucts wo	ork.					
5	Learn	to select & apply various practice tools to aid them in ra	pid prototyping								
Uı	nit I	DESIGN FUNDAMENTALS		0	0	6	6				
		o Visual Design, History and Modernism, Design Thinl lesign, principles of good design, designing a product and		, seve	n eleme	ents of	design,				
Un	nit II	SYSTEM THINKING AND REVERSE ENGINEE	RING	0	0	6	6				
Comp compl	olex Syste		•••	ponents	s - Re-	Engine	ering a				
	it III	USER INTERFACE & USER EXPERIENCE		0	0	6	6				
		o UI/UX, Human-Computer interface, user-centered Des low, Information Architecture, UI Components, need for				chnique	es, UX				
Un	it IV	MECHANICAL PROTOTYPING		0	0	6	6				
protot	yping m	otyping - Domains in prototyping - Difference between a ethods - Tools used in different domains - Introduction - nd classification - Laser Cutting and engraving - RD Wor	Working with Fu	usion 3	60 - 3D		-				
Un	nit V	ELECTRONIC & SOFTWARE PROTOTYPING		0	0	6	6				
Sourc	e code i	o Lumped Circuits - Electronic Prototyping - Tinker C management and version control - GitHub - GitHub A rvice - Heroku - Build Packs					-				
					Total	= 30 I	Periods				
Text B	Books:										
1.	Thi	nking in systems - Donella Meadows, 2015									
2.	-	bid Prototyping And Engineering Applications: A To Liou, 2007	olbox For Protot	ype D	evelop	ment	- Fran				
3.	-	bid Prototyping Technology: Selection And Application	- COOPER K. G,	2001							
Refere	ence Boo										
1.	_	os://thesystemsthinker.com/wp-content/uploads/2016/03/ S013Epk.pdf	Introduction-to S	ystems	-Thinki	ing-					

2.	https://formlabs.com/blog/ultimate-guide-to-prototyping-tools-for-hardware-and product-design/
3.	https://docs.kicad-pcb.org/
4.	https://www.tinkercad.com/learn/circuits
5.	https://docs.github.com/en/free-pro- team@latest/actions/guides

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
CO1	Understand the elements and principles of product and service design	Applying					
CO2	Apply system thinking concepts in reverse engineering	Applying					
CO3	Apply user research techniques to meet the UX needs of a customer and design a visual prototype	Applying					
CO4	Develop prototyping models using the tools from mechanical prototyping models	Applying					
CO5	Develop prototyping models using the tools from electrical and software prototyping methods	Applying					

	COURSE ARTICULATION MATRIX														
CO/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	1	3	1	1	-	-	-	-	-	-	-	3	2	2
CO2	2	3	3	2	2	-	-	-	-	-	-	-	3	3	3
CO3	2	2	3	1	3	-	-	-	-	1	-	-	3	2	2
CO4	3	2	3	1	3	-	-	-	-	-	-	-	3	3	3
CO5	3	2	3	2	3	-	-	-	-	-	-	-	3	3	3
Avg	2.4	2	3	1.4	2.4	-	-	-	-	1	-	-	3	2.6	2.6
			3 / 2 /	1 - ind	icates s	strengtl	n of co	rrelatio	n (3 – 1	High, 2	– Mediu	im, 1 – I	Low)		

22CY	YMC01	ENVIRONMENTAL SCI	ENCE	SEMI	R	IV	
PREF	REQUIST	ſIES	CATEGORY	MC	Cre	edit	0
				L	Т	Р	TH
NIL			Hours/Week	2	0	1	3
Cours	se Object	ives:			•		
1.	To learn t	the concept of non-conventional energy systems.					
2	To explo	re the environmental impact assessment and to	learn about the conseq	uence of	differ	ent ty	pes c
	pollutants						
		an ancient wisdom drawn from Vedas.					
4.	To acquir	re activity-based knowledge to preserve environn	ient.				
5.	To learn a	about conservation of water and its optimization.					
		ENTAL AWARENESS		30	0	0	30
		of traditional power PlantAdvantage and Disa					
		nergy sources Plants – Conventional vs. Non-					
		nergy sources - India's current energy resource	es and their long-term	viability	– Inc	lia's l	inerg
-		d management			1 5	cc ,	.1
		Basics- Solar Thermal Energy- Solar Photovoltai					
		nd safety. Wind turbine power and energy- In	idia's wind energy pote	ential- w	ina tu	rbine	type
		benefits and impacts of offshore wind energy.	in mallution ant ain mal	1			Wete
		Sources, effects, control, air quality standards, a ces and its remedy, Soil Pollution-Sources and its					
		in. Noise pollution reduction. Aspects of pollution	• •		Gleel	mouse	gase
		ENTAL ACTIVITIES	in nom various power pr		0	15	15
		on water management – Group discussion on	recycle of waste (AR's)	v	~		_
		event – Expert lecture on environmental aw					
	icity usage		areness imparting k	nowieuge		cuuci	
		and segregation of biodegradable and non-bio	degradable waste – C	ampus c	leanin	o acti	vitv
		ees in the college campus and local waste lands -					
		n the fans and ACs of the campus for an hour.		les of plu	into un	a then	ubug
Bild	ung uo m	in the fund the free of the build be for all nour.	Tot	al (30L+	15P) =	- 45 P	eriod
			100	ui (0011)	101)-	- 10 1	
T 4	Deslar						
Text	Books:	to of Environmental actions and Environmental		TT-11 -	ст. 1.	N	D.1
1.	2009.	nts of Environmental science and Engineering, I	P.Meenakshi, Prenitce –	– Hall o	f India	i, Nev	v Del
2.		book of Environmental Chemistry and Pollution d Edition, Dr. S.S. Dara, D.D. Mishra Published I		••		and S	lociet
Refe	rence Boo						
1.		e-Hall India, 3rd Edition, 2008.	ce, Gilbert M. Masters	; Wende	11 P. I	Ela Pu	ıblish
2.	Enviror Edition	nmental Science, F;ldren D. Enger, Bredley F.Sm	ith, WCD McGraw Hill	14"''			

Ζ.	•	Edition 2015.							
E-F	E-Reference								
1		www.onlinecourses.nptel.ac.in/							
2		www.ePathshala.nic.in							

		utcomes:	Bloom's Taxonomy
Upon c	om	pletion of this course, the students will be able to:	Mapped
CO1	:	To identify about the major renewable energy systems and will investigate the environmental impact of various energy sources as well as the consequences of various pollutants.	• •
CO2	:	Predict the methods to conserve energy and ways to make optimal use of the energy for the future.	Applying

	COURSE ARTICULATION MATRIX														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	-	1	3	-	-	3	1	1	-	-	-	1	2	-	1
CO2	-	1	3	-	-	3	1	1	-	-	-	1	2	-	1
Avg	-	1	3	-	-	3	1	1	-	-	-	1	2	-	1
	•	•	3/2	2/1-indi	cates s	strength	of cor	relatior	i (3- H	ligh, 2-M	edium,	1- Low	r)		

22EN401	PLACEMENT AND SOFT SKILL	S LABORATORY	S	EMEST	FER I	V
PREREQU	UISITES	CATEGORY	HS	Cre	edit	2
			L	Т	Р	ТН
NIL		Hours/Week	0	0	edit P 4 	4
1. B	asic knowledge in reading skill and writing skill					
2. B	asic ability in listening skill and speaking skill					
Course Ob	ojectives:					
1. T	o develop the students' confidence and help them	to attend interviews successful	ly			
2. T	o express opinions, illustrate with examples and co	onclude in group discussions				
3. T	o acquire knowledge to write error free letters and	prepare reports				
	o enhance the employability and soft skills of stud					
Unit I	WRITING SKILLS			12	+	0
	ing permission to go on industrial visit, Letter of	f invitation. Resume and cover	· letter.			-
	g, Report writing, progress in project work	i invitation, resulte and cover	i ietter,	soo upp	Jiicuii	л, с
Unit II	SPEAKING SKILLS			12	+	0
	address and vote of thanks, Analysing and presenti	ing husiness articles. Power poi	int nrese			-
	effectively, Group discussion, Participating in g					
storming th		ioup discussions, chaoistanan	15 510uj	y aynai	11105, I	Jium
Unit III	SOFT SKILLS			12	i	0
						v
· ·	bility and career skills, Self-introduction, Introd	0	e, intro	ducing	the to	opic,
	skills, Interview etiquette, Dress code, Body lang	uage, Attending job interviews				
Unit IV	VERBAL ABILITIES			12		0
Error Spott	ing, Listening Comprehension, Reading comprehe	ension, Rearranging Jumbled se	entences	, Vocal		v
		ension, Rearranging Jumbled se	entences		bulary.	v
Error Spott Unit V Series cor	ting, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod	ing, Blood relations, Seating A		, Vocal 12	bulary. +	0
Error Spott Unit V Series cor	ting, Listening Comprehension, Reading comprehe REASONING ABILITIES	ing, Blood relations, Seating A		, Vocal 12	bulary. +	0
Error Spott Unit V Series cor	ting, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod	ing, Blood relations, Seating A	Arrangei	, Vocal 12	bulary. + Directi	0 onal
Error Spott Unit V Series cor	Image: Listening Comprehension, Reading comprehensin, Reading comprehension, Reading comprehension, Readin	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe	Image: Listening Comprehension, Reading comprehensin, Reading comprehension, Reading comprehension, Readin	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove	Image: Listening Comprehension, Reading comprehensin, Reading comprehension, Reading comprehension, Readin	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette	Image: Listening Comprehension, Reading comprehensin, Reading comprehension, Reading comprehension, Readin	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo	Image: Listening Comprehension, Reading comprehensit, Reading comprehension, Reading comprehension, Readin	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo	Iting, Listening Comprehension, Reading comprehe REASONING ABILITIES Impletion, Analogy, Classification, Coding-Decod enn Diagram, Logical reasoning, Statements and C recises: er Letter and Resume er Writing il Writing ort Writing er point Presentation	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self-	In the second se	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I	Interview	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou	Interview Interview	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele	Interview Interview	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Weld 10) Vote	ing, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod enn Diagram, Logical reasoning, Statements and C ercises: er Letter and Resume er Writing il Writing ort Writing er point Presentation Introduction Interview up Discussion come Address e of Thanks	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele 10) Vote 11) Prese	Interview Interview	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Weld 10) Vote 11) Prese 12) Jumi	In the second se	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele 10) Vote 11) Prese 12) Jumi 13) Error	ing, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod en Diagram, Logical reasoning, Statements and C ercises: er Letter and Resume er Writing il Writing ort Writing er point Presentation Introduction Interview up Discussion come Address e of Thanks entation of Business Article bled Sentences r Spotting	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele 10) Vote 11) Press 12) Jum 13) Error 14) Read	ing, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod en Diagram, Logical reasoning, Statements and C ercises: er Letter and Resume er Writing il Writing ort Writing er point Presentation Introduction Interview up Discussion come Address e of Thanks entation of Business Article bled Sentences r Spotting ling Comprehension	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele 10) Vote 11) Prese 12) Jumi 13) Error 14) Read	In the second se	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wela 10) Vote 11) Press 12) Jumi 13) Erron 14) Read 15) Serie 16) Anal	In the second se	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele 10) Vote 11) Press 12) Jumi 13) Error 14) Read 15) Serie 16) Anal 17) Codi	ing, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod en Diagram, Logical reasoning, Statements and C ercises: er Letter and Resume er Writing il Writing ort Writing er point Presentation Introduction Interview up Discussion come Address e of Thanks entation of Business Article bled Sentences r Spotting ling Comprehension es completion logy ing-decoding	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele 10) Vote 11) Prese 12) Jumi 13) Error 14) Reac 15) Serie 16) Anal 17) Codi 18) Bloo	ing, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod en Diagram, Logical reasoning, Statements and C ercises: er Letter and Resume er Writing il Writing ort Writing er point Presentation Introduction Interview up Discussion come Address e of Thanks entation of Business Article bled Sentences r Spotting ling Comprehension es completion logy ing-decoding od relations	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal
Error Spott Unit V Series con Sense, Ve List of Exe 1) Cove 2) Lette 3) Ema 4) Repo 5) Powe 6) Self- 7) Job I 8) Grou 9) Wele 10) Vote 11) Press 12) Jumi 13) Error 14) Reac 15) Serie 16) Anal 17) Codi 18) Bloo 19) Seati	ing, Listening Comprehension, Reading comprehe REASONING ABILITIES mpletion, Analogy, Classification, Coding-Decod en Diagram, Logical reasoning, Statements and C ercises: er Letter and Resume er Writing il Writing ort Writing er point Presentation Introduction Interview up Discussion come Address e of Thanks entation of Business Article bled Sentences r Spotting ling Comprehension es completion logy ing-decoding	ing, Blood relations, Seating A	Arrangei	, Vocal 12 nents, 1	bulary. + Directi	0 onal

Refe	Reference Books:										
1.	Campus Recruitment Complete Reference, Praxis Groups (5th edition), Hyderabad, 2017.										
2.	John Seely, The Oxford Guide to Writing and Speaking, Oxford University Press, New Delhi, 2004.										
3.	R.S. Aggarwal. A Modern Approach to Verbal & Non-Verbal Reasoning. 2018 S Chand Publication, 2018										

E-Re	E-References:								
1.	https://prepinsta.com/								
2.	https://www.indiabix.com/								

	Course Outcomes: Jpon completion of this course, the students will be able to:								
CO1	CO1 : To participate in group discussion and interview confidently								
CO2	:	To develop adequate soft skills and career skills required for the workplace	Evaluating						
CO3	:	To make effective presentations on given topics	Evaluating						
CO4									

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PSO 2	PSO3
CO1	-	-	-	1	-	-	-	-	2	3	-	1	-	-	1
CO2	-	-	-	2	-	-	-	-	2	3	-	1	-	-	2
CO3	-	-	-	2	-	-	-	-	1	3	-	1	-	-	1
CO4	-	-	-	1	-	-	-	-	2	3	-	1	-	-	2
Avg	-	-	-	1.5	-	-	-	-	1.75	3	-	1	-	-	1.5
	•		8/2/1 - 1	indicate	es stre	ngth o	f corre	lation	(3-High	n,2- M	edium, 1	l-Low)		

22EC406		ANALOG CIRCUITS LABORATOR	SEM	IV				
PREREQU	UISITES		CATEGORY	PC	PC Cred		dit 2	
NIL			Hours/Week	L	Т	P	TH	
	0	0	4	4				
Course Ob	· ·							
1.	To unc	lerstand the analysis and design of LC and RC oscillate	ors, amplifiers and n	nulti vib	rators	•		
2	To app	bly operational amplifiers in Linear and Nonlinear App	lications.					
3	To use	es imulation tools for circuit design.						
EXPERIM	IENTS							
1.	Design	n of RC Phase shift oscillator and Wein Bridge oscillator	or.					
2.	Design	n of Hartley and Colpitts oscillator.						
3.	Design	n of Tuned Class C power Amplifier.						
4.	Design	n of Astable, Monostable and Bistable multivibrators us	sing BJ T.					
5.	Simula	ation of Astable, Monostable and Bistable multivibrato	rs.					
6.	Design	n and verification of basic Circuits using Op - amp 741.						
7.	Active	Low pass, High pass and Band pass filter using Op - a	mp 741.					
8.	Astabl	e, Mon stable multivibrators using Op-Amp.						
9.	Schmi	tt Trigger using op-amp.						
10.	Phase	shift and Wien bridge oscillator using op-amp.						
11.	Astabl	e and Monostable multivibrators using 555 Timer.						
12.	High v	voltage regulator using LM723.						
	L		r	Total(60)P)=6	0 Pe	riods	

Referen	References:											
1.	Analog Electronic circuits Laboratory Manual.2. David A.Bell," Electronic Devices and Circuits",5 th Edition,											
	Oxford University Press,											
2.	B.Sasikala,S.PoornachandraRao,"Handbook of experiments in Electronics and Communication											
	Engineering", Vikas Publishing, 2007.											
E-Refer	ences:											
1.	http://www.srmuniv.ac.in/sites/default/files/2017/15EI205L-manual-full.pdf											
2.	http://www.gopalancolleges.com/gcem/course-material/ece/manuals/sem-lll/analog-electronics-laboratory-											
	manual-10ESL37.pdf											
3	https://www.slideshare.net/vampec/ec-ii-lab-manual											

Cours Upon		Bloom's Taxonomy Mapped						
CO1	:	Design oscillators, multivibrators and power amplifiers for the variety of engineering applications.	Creating					
CO2	:	Design Filters Using Op amp and perform experiment and plot frequency Analysing response.						
CO3	:	Design and simulate multivibrators using simulation tool.	Analysing					
CO4	:	Design scillators and multivibrators using operational amplifiers	Creating					
CO5	:	Understand the concept of high voltage regulators	Understanding					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	3	3	-	-	-	-	-	-	1	1	1	2	-
CO2	2	3	3	3	-	-	-	-	-	-	1	1	-	2	-
CO3	2	2	-	-	3	-	-	-	-	-	-	-	1	-	2
CO4	2	2	-	3	3	-	-	-	-	-	-	-	-	3	-
CO5	2	-	2	2	3	-	-	-	-	-	1	1	2	-	1
Avg	2	2.5	2.7	2.75	3	-	-	-	-	-	1	1	1.3	2.3	1.5
		3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)													

22EC407	MICROPROCESSORS AND MICROCONTROLLERS	LABORATORY	SEM	ER	IV	
PREREQ	РС	PC Credit				
			L	Т	Р	ТН
NIL		Hours/Week	0	0	4	4
Course O	bjectives:					
1.	To introduce students with the architecture and operation of 8086	microprocessor and	8051 n	nicro	contro	oller.
2.	To familiarize the students with the programming and inter- microcontroller.	facing of 8086 mic	roproce	essor	and	8051
3.	To provide strong foundation for designing real world applicat microcontroller.	ions using 8086 mic	croproc	essoi	and	8051
EXPERIN	MENTS					
8086 Prog	grams					
1.	Kit Familiarization.					
2.	Implementation of Basic Arithmetic and Logic operations.					
3.	Implementation of Square, Square root and Cube Program.					
4.	Implementation of Code conversion and Matrix operations.					
5.	Implementation of String manipulation operations and Sorting an	d Searching.				
6.	Peripheral Interfacing of keyboard and display.					
7.	Implementation of Traffic light Control.					
8.	Implementation of Serial and Parallel Communication.					
9.	Design of programs for Digital clock and Stop watch.					
10.	Implementation of Stepper Motor Control.					
8051 Prog	grams					
11.	Implementation of basic arithmetic and Logical operations.					
12.	Implementation of finding Square and Cube, 2's complement of a	a number.				
13.	Implementation of programs on different addressing modes.					
14.	A/D and D/A interfacing.					
15.	Waveform generation using 8051.					
			otal (60	P)-	60 P-	riad

Referen	ces:
1.	"Microprocessors and Microcontrollers Lab Manual" prepared by ECE Department.
2.	https://www.studocu.com/in/document/anna-university/microprocessor-and-microcontroller/microprocessor- microcontroller-labaratory-manual-pdf/17250102

Course	e Oi	Bloom's T	Taxonomy				
Upon c	com	Mapped					
CO1	:	Perform basic operations in 8086 microprocessor and 8051 microcontroller.	Understa	nding			
CO2	:	Interface peripherals with 8086 microprocessor.					
CO3	:	Generate waveforms using Microcontroller.	Applyi	ng			
CO4	:	Develop assembly language programs for various applications using 8051 microcontroller	Applyi	ing			
CO5	:	Interface peripherals with 8051 microcontroller.	Applyi	ing			

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	-	-	-	-	-	-	-	-	-	-	2	2	-
CO2	2	3	-	2	2	-	-	-	-	-	-	-	2	3	-
CO3	2	3	-	2	2	-	-	-	-	-	-	-	2	2	-
CO4	2	3	-	2	2	-	-	-	-	-	-	-	2	3	2
CO5	2	3	-	2	2	-	-	-	-	-	-	-	2	2	-
Avg	2	3	-	2	2	-	-	-	-	-	-	-	2	2.4	2
			3/2/1 -	- indic	ates str	ength	of corre	elation	(3-Hig	sh,2- Me	dium,1-	Low)			

SEMESTER V												
22EC501 DIGITAL COMMUNICATION	SE	MEST	ER	V								
CATEGORY	PC	Cre	dit	3								
PREREQUISITES: Hours/Week	L	Т	Р	ТН								
	3	0	0	3								
1. Analog Communication												
Course Objectives:												
1. Understand the building blocks of digital communication system and to prepare math communication signal analysis.	nematica	l backş	groun	d for								
2. Express pass-band data transmission and comparison of Digital modulation systems.												
3. Analyze the error performance of a digital communication system in the prese interferences. Understand the concept of spread spectrum communication system.	ence of	noise	and	other								
Unit I DETECTION, ESTIMATION AND SAMPLING PROCESS	9	0	0	9								
signals – Detection of known signals in noise - Probability of error - Correlation receiver - Detection of signals with unknown phase in noise – Estimation: concepts and criteria - Sar sampling and reconstruction– PAM - Other forms of pulse modulation –TDM - Waveform c DPCM - Delta modulation – Adaptive Delta Modulation.	npling p oding te	rocess: chniqu	proc es: P	of for CM -								
Unit II BASEBAND TRANSMISSION OF DIGITAL SIGNALS	9	0	0	9								
Discrete PAM signals - Inter Symbol Interference - Nyquist's criterion for Distortion Transmission - Correlative level coding - Duo binary and modified duo binary signalling – Ey ary PAM Systems – Adaptive Equalization for data transmission.												
Unit III PASSBAND TRANSMISSION OF DIGITAL SIGNALS	9	0	0	9								
Digital Modulation Formats - Coherent Binary Modulation Techniques: Generation – D diagram - Bit error probability - Power spectra and waveforms of BPSK, BFSK, QPSK an Coherent Binary Modulation Techniques: BFSK, Differential phase shift keying – Com quaternary modulation techniques – Introduction to M – ary Modulation techniques – Sync symbol synchronization - Applications.	d MSK s parison	scheme of bi	es – É nary	Non and								
Unit IV ERROR CONTROL CODING	9	0	0	9								
Rationale for coding and types of codes - Discrete memory less channels – Linear block code redundancy check codes - Convolutional codes – Maximum likelihood decoding of cor Algorithm - Trellis coded Modulation - Maximum length and Gold codes.	-			-								
Unit V SPREAD SPECTRUM MODULATION AND MULTIPLE ACCESS TECHNIQUES	9	0	0	9								
Pseudo-Noise sequences – A notion of spread spectrum – Direct sequence spread spectrum with coherent binary phase shift keying – Signal space Dimensionality and processing gain –Probability of error – Frequency Hop Spread Spectrum (FHSS) - ApplicationsMultiple Access Techniques: TDMA , FDMA, CDMA and SDMA.												
	Total (4	5L)= 4	15 pe	riods								

Text B	Text Books:										
1.	Simon Haykins, "Digital Communications" John Wiley, 2017.										
2.	Theodore S.Rappaport, "Wireless Communications :Principles and Practice", 2 nd Edition.", Pearson,2012.										

Refe	rence Books:								
1.	Taub & Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.								
2.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013								
3.	Dennis Roddy, John Coolen,"Electronic Communications", 10th impression, Pearson Prentice Hall, 2013.								
4.	John G.Proakis, "Digital Communication", 3rd Edition, Tata McGraw-Hill, 1995.								
E-R	eferences:								
1.	http://www.nptelvideos.in/2012/11/communication-engineering.html								
2.	https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm								
3.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-2006/lecture-notes/								

Cours	se C	Bloom's Taxonomy	
Upon	con	Mapped	
CO1	:	Understand the concept of pulse code modulation and analyze the sampling	Understanding
		process and the performance of various estimation and filters technique	
CO2	:	Able to analyse the baseband system using eye patterns.	Applying
CO3	:	Able to analyse the pass band digital modulation schemes for particular	Applying
CO4	:	Design digital communication system for error free communication.	Analysing
CO5	:	Understand the concept of secured communication and multiple access techniques	Understanding

COURSE ARTICULATION MATRIX

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PSO	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	2	1		
CO1	2	2	2	2	1	-	-	-	-	-	-	-	2	-	2
CO2	2	1	1	2	1	-	-	-	-	-	-	-	1	-	2
CO3	1	1	1	1	1	-	-	-	-	-	-	-	1	-	1
CO4	2	1	1	1	1	-	-	-	-	-	-	-	2	2	2
CO5	2	1	1	1	1	-	-	-	-	-	-	-	2	-	1
Avg	1.8	1.2	1.2	1.4	1	-	-	-	-	-	-	-	1.6	2	1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC50	2 DIGITAL SIGNAL PROCESSING SEMESTER V											
		CATEGORY	PC	Cre	dit	3						
PREREC	QUISITES:		L	Т	Р	Т						
TREAL		Hours/Week	3	0	0	3						
1.	Signals and Systems											
	Dijectives:											
1.	To analyse the Discrete Fourier Transform, Fast Fourier Transform alg	orithms.										
2.	To design and realize IIR FIR filters to understand finite word length e		lters									
3.	To gain knowledge of DSP architecture, Programming and concepts of	÷		sing								
Unit I	DISCRETE FOURIER TRANSFORM	infutti futo signui	9	0 0	0	9						
Introduct	ion to DFT–Properties of DFT-Circular convolution -FFT algorithms–	Radix-2 FFT aloc	rithms	-	-	on in						
	Decimation in Frequency algorithms.		111111		main	<i><i>¹¹</i> ¹¹</i>						
Unit II	INFINITE IMPULSE RESPONSE FILTER DESIGN		9	0	0	9						
Character	istics of Analog Butterworth filter-Chebyshev filter-Low pass filter, Hi	gh pass filter, Ban	d pass	filter	and]	Band						
	r-Transformation of analog filters in to equivalent digital filters u	sing bilinear tran	sforma	ation	meth	od -						
Realizatio	on structure for IIR filters-Direct form-Cascade form-Parallel form.											
Unit III	Unit III FINITE IMPULSE RESPONSE FILTER DESIGN 9 0 0 9											
	phase response of FIR filter - FIR design using window method:											
	an Windows - Realization structures for FIR filters - Linear phase	structures and D	irect f	orm	struct	ure-						
	ison of FIR and IIR filters.		1			1						
Unit IV			9	0	0	9						
	tation of numbers-Quantization by truncation and rounding- Deriva											
	quantization error – Product quantization error – Round off noise p	ower - Limit cyc	le osc	illatio	ons di	ie to						
product r	ound off and over flow errors –scaling to prevent overflow.											
Unit V	DSP APPLICATIONS AND DIGITAL SIGNAL PROCESSO)R	9	0	0	9						
	tion to MultiRate signal processing: Decimation, Interpolation-Introduc	ction to DSP TMS	320C5	54X p	proces	sor:						
Archited	cture- Instruction set-Addressing modes – programming.											
		Tot	tal (45	L)= 4	45 pei	riods						
Text Bo												
1.	S.K.Mitra, "Digital Signal Processing, A Computer Based approach					= 1						
2.	2. John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", 5 th Edition, Pearson Education, 2022.											
Referen	ce Books:											
1.	1. Emmanuel C. I feacher, Barry W.Jervis, "Digital Signal Processing : A Practical Approach ",2 nd Edition,											
	Pearson Education, 2004.											
2.	2. A.V. Oppenheim, R.W.Schaferand J.R. Buck, "Discrete-TimeSignalProcessing", 3 rd EditionPrenticeHall,											
3.	L.R.Rabinerand B. Gold, "Theory and Application of Digital Signal		ntice H	[all, 1	992.							
4.	J.R.Johnson, "Introduction to Digital Signal Processing", Prentice H	Iall,1992.										
E-Refer												
1.	https://www.coursera.org/learn/dsp			1. https://www.coursera.org/learn/dsp								

	$\partial $
2.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/

3. www.nptelvideos.in/2012/12/digital-signal-processing.html

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.						
CO2	Design and realize IIR filters	Creating					
CO3	Design and realize FIR filters	Creating					
CO4	Analyse finite Word length effect on filters.	Analysing					
CO5	Apply the concepts of Multirate signal processing and gain the knowledge on DSP architecture and programming	Understanding					

				COUR	SE A	RTICU	JLAT	ION M	IATR	IX					
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	1	1	-	-	-	-	-	-	-	1	1	1
CO2	3	2	2	2	1	-	1	-	-	-	-	-	1	1	1
CO3	3	2	2	2	1	-	1	-	-	-	-	-	1	1	1
CO4	3	2	2	2	1	-	1	-	-	-	-	-	1	1	1
CO5	1	1	1	1	1	-		-	-	-	-	-	2	2	1
Avg	2.6	2	1.6	1.6	1	-	1	-	-	-	-	-	1.2	1.2	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC5	503	EMBEDDED SYSTEMS		SEM	IEST	ER	V		
	L		CATEGORY	PC	Cre	dit	3		
PRERI	EQU	ISITES:	Hours/Week	L	Т	Р	TH		
	_		HOULS/ WEEK	3	0	0	3		
1.	Mic	crocontrollers							
Course	Obj	ectives:							
1.	То	impart knowledge on embedded system architecture and embedded	l development stra	tegies.					
2.	2. To understand the bus communication in processors and peripheral interfacing.								
3.	To	understand basics of Real Time Operating Systems.							
Unit I		INTRODUCTION TO EMBEDDED SYSTEMS		9	0	0	9		
		to Embedded Systems -Structural units in Embedded process							
		IA – Memory management methods- Timer and Counting device	s, Watchdog Time	r, Real	Time	Clo	ck, In		
		ator, Target Hardware Debugging.							
Unit I		EMBEDDED NETWORKING		9	0	0	9		
		Networking: Introduction, I/O Device Ports & Buses- Serial Bus of							
		RS 485 - CAN Bus -Serial Peripheral Interface (SPI) - Inter In	tegrated Circuits (12C) —	need	tor d	evice		
	drivers.								
-	Unit IIIEMBEDDED FIRMWARE DEVELOPMENT ENVIRONMENT9009								
	Embedded Product Development Life Cycle- objectives, different phases of EDLC, Modelling of EDLC; issues in								
		oftware Co-design, Data Flow Graph, state machine model, sect oriented Model.	Sequential Program	n Mod	el, c	oncui	rent		
Unit I	V	RTOS BASED EMBEDDED SYSTEM DESIGN		9	0	0	9		
Introdu	ction	to basic concepts of RTOS- Task, process & threads, interrupt	routines in RTOS	5, Multi	iproce	essing	g and		
		, Preemptive and non-preemptive scheduling, Task communication	•	•	-	•			
^		munication – synchronization between processes-semaphores, M	lailbox, pipes, pric	ority inv	versio	n, pr	iority		
inherita	ince.								
Unit V		EMBEDDED SYSTEM APPLICATION AND DEVELOPM		9	0	0	9		
		ems - GPS Navigation System - Automotive Application - Smart ca	ard System Applic	ation-A	TM n	nachi	ne –		
Digita	l carr	iera.							
			Т	otal (45	$\mathbf{L} = 4$	15 ne	riods		
)		1045		
T (D									
Text Bo	-	kol "Embaddad system Dasign" John Wiley & Song 2010							
1. 2.	 Peckol, "Embedded system Design", John Wiley & Sons,2010 Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013 								
	•		2013						
Referen	-		2017						
1.		ibu. K.V, "Introduction to Embedded Systems", 2e, Mcgraw Hill,							
2.	Ra	j Kamal, 'Embedded System-Architecture, Programming, Design'	, McGraw Hill, 20	13					

3.	Tammy Noergaard, - Embedded Systems Architecturel, Newnes an Imprint of Elsevier, Massachusetts, 2006.
4.	Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.
E-Refer	rences:

1.	https://lecturenotes.in/subject/225/embedded-system-es
2.	https://nptel.ac.in/courses/108102045/19
3.	https://www.coursera.org/learn/introduction-embedded-systems

Course O Upon comp	utcomes: eletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the basics of embedded systems	Understanding
CO2	Study about the bus communication and peripheral interfacing	Remembering
CO3	Know about the embedded product development and modeling	Understanding
CO4	Acquire knowledge on Real time operating system	Understanding
CO5	Design and Analyze the real-time applications of embedded-systems	Applying

				С	OURSI	E ART	TCUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	1	2	2	-	-	-	-	-	-	-	1	-	-
CO2	2	-	2	2	2	-	-	-	-	-	-	-	2	-	2
CO3	2	1	3	3	2	-	-	-	2	-	-	-	2	1	2
CO4	2	-	3	2	3	-	-	-	-	-	-	-	1	1	1
CO5	2	2	3	3	3	2	2	-	2	-	-	-	2	2	2
Avg	2	1.5	2.4	2.4	2.4	2	2	-	2	-	-	-	1.6	1.3	1.75
		3/2	2/1 - ir	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	· Low)			

22ECMG501PRINCIPLES OF MANAGEMENTSEMESTER V										
PREREQUISI	TES	CATEGORY	HS	Cre	edit	3				
			L	Т	Р	ТН				
		Hours/Week	3	0	0	3				
Course Objecti	ves:									
1. To enable	the students to study the evolution of Management									
	he functions and principles of management									
	he application of the principles in an organization.									
	size the need for Data display recording and systems		1	1	r					
	TRODUCTION TO MANAGEMENT AND ORGANIZAT anagement – Science or Art – Manager Vs Entrepreneur - t		9	0	0	9				
organization - S and Environmer	n of Management – Scientific, human relations, system and c ole proprietorship, partnership, company-public and private at – Current trends and issues in Management.					ulture				
Unit II PL	ANNING		9	0	0	9				
	oose of planning – planning process – types of planning – o es – Strategic Management – Planning Tools and Techniques									
Unit III OR	GANISING		9	0	0	9				
and staff author Human Resour	bose – Formal and informal organization – organization char ity – departmentalization – delegation of authority – centraliz ce Management – HR Planning, Recruitment, selection, T areer planning and management.	zation and decentrali	ization	– Jo	b De	sign ·				
Unit IV DI	RECTING		9	0	0	9				
satisfaction - j	individual and group behaviour – motivation – motivation ob enrichment – leadership – types and theories of lea – barrier in communication – effective communication – com	dership – commun								
Unit V CO	NTROLLING		9	0	0	9				
System and pro	cess of controlling – budgetary and non-budgetary control ntrol – Productivity problems and management – control a		comp	uters	and	IT in				
System and pro Management co	cess of controlling – budgetary and non-budgetary control ntrol – Productivity problems and management – control a	and performance –	comp	uters and	and preve	IT in entive				

Text Books:								
1.	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.							
2.	Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.							
Reference Bo	Reference Books:							
1.	Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hill, 1998.							
2.	Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.							
3.	Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.							
4.	Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999							
E-References								
1.	https://nptel.ac.in/courses/122108038/							
2.	https://www.coursera.org/learn/fundamentals-of-management							
3.	https://www.digimat.in/nptel/courses/video/110107150/L01.html							

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	To have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management	Understanding				
CO2	To have same basic knowledge on international aspect of management.	Remembering				
CO3	To Gain Basic knowledge on international aspect of management.	Remembering				
CO4	To help the students to develop cognizance of the importance of management principles.	Understanding				
CO5	To enable them to analyze and understand the environment of the organization.	Analysing				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO 3
	1	2	3		5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	3	3	-	-	-	-	-	-	-	1	2	3
CO2	3	3	3	3	3	-	-	-	-	-	-	-	2	2	3
CO3	3	2	3	2	3	-	-	-	-	-	-	-	1	2	3
CO4	3	1	2	1	3	-	-	-	-	-	-	-	1	3	2
CO5	3	1	2	1	2	-	-	-	-	-	-	-	1	3	3
Avg	3	2	2.6	2	2.8	-	-	-	-	-	-	-	1.2	2.4	2.8
		3/	′2/1 - i	indicate	s streng	gth of o	correla	tion (3	8-High	,2- Med	ium,1-	Low)			

22MCIN04		IDEATION SPRINTS	ON SPRINTS SEMESTER V											
PRI	E-REQUIS	SITE:	Category	EE	Cre	edit	1							
			Hours/Week	L	Т	Р	ТН							
			Hours/ week	0	0	2	2							
Cou	ırse Objec	tives:												
1.	1. To offer a systematic and structured process to hack a solution using available tools & resources													
2.	2. To identify the challenge/opportunity, derive insights from the customer/user interviews, & build a solution and validate the technical feasibility of the solution													
3.	To build	the PoC for proposed solution & pitch to user/customer	for validation.											
U	NIT I	INNOVATION 101		0	0	6	6							
	Difference between a startup and a small business enterprise - Idea worth prototyping -Risk of innovations - Defining &validating hypothesis through Product Innovation Hypothesis (PIH) & Forge Innovation Rubric (FIR)													
U	UNIT IIPROBLEM VALIDATION & CUSTOMER DISCOVERY0066													
Inno inci	ovation: Co dence - Dis	chniques of the managed innovation process (iTO ustomer-centric design thinking and validate the pro- scover & identify the right buyer beneficiary/Customer ers of the solutions.	oblem scenario, its	signifi	cance,	severity	y, and							
UN	III TII	DESIGNING & CRAFTING VALUE PROP	POSITION	0	0	6	6							
			- Define & quantify	Value	Propos	ition -E	Build a							
UN	NIT IV	MUP SOLUTION CONCEPT EXPLORATIO GENERATION	N & DESIGN	0	0	6	6							
	Solution: Concept Generation, Concept Assessment, Solution, Capability, Usability, and Feasibility- MUP Design and Technology Block Diagrams- Bill of Materials Generation - BoM Optimization													
UNIT VPROOF OF CONCEPT DEVELOPMENT & DEMONSTRATION006														
				cal feas	ibility t	est deli	ver of							
				Tota	l (30P)	= 30 P	eriods							
	Understand Customer Jobs, Pains & gains - Design Product/Service - Define & quantify Value Proposition - Build a compelling value proposition. UNIT IV MUP SOLUTION CONCEPT EXPLORATION & DESIGN GENERATION 0 0 6 6 Solution: Concept Generation, Concept Assessment, Solution, Capability, Usability, and Feasibility- MUP Design and Technology Block Diagrams- Bill of Materials Generation - BoM Optimization 0 0 6 6													

Tex	t Books:										
1.	Tim Brown, Change by Design: How design thinking transforms organizations and inspires innovation – HarperCollins e-books, 2009										
2.	Alexander Osterwalder, Value Proposition Design: How to Create Products and Services Customers Want (Strategyzer) - John Wiley & Sons, 2014										
3.	Ulrich Karl and Eppinger Steven D, Product Design and Development - McGraw Hill, 5th edition, 2020										
4.	Blank Steve, Four Steps to Epiphany: Successful strategies for products that win, KS Ranch, 5th edition, 2013										
Ref	Reference Books:										
1.	Everything you need about value proposition: https://blog.forgeforward.in/everything-you-need-to-know-about-value-proposition-7247493c940c										
2.	Test your Value Proposition:http://businessmodelalchemist.com/2012/09/test-your-value-proposition-supercharge-lean-startup-and-custdev-principles.html										
3.	Valuation Risk versus Validation Risk in Product Innovations:https://blog.forgeforward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253ca8624										
4.	User Guide for Product Innovation Rubric:https://blog.forgeforward.in/user-guide-for-product-innovation-rubric-857181b253dd										

	5.	Innovation Risk Diagnostic - Product Innovation Rubric:https://blog.forgeforward.in/product-innovation-rubric-adf5ebdfd356
F	6.	Evaluating Product Innovations - proof, potential, & progress:https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e

COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
CO1	CO1 Apply a scientific method to understand the inherent risks of product innovation					
CO2	Apply innovation tools & techniques to validate the problem scenario and to assess the market potential of product innovation;	Applying				
CO3	Design solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit;	Creating				
CO4	Demonstrate technical skills by applying technology to build and demonstrate proof of concept for the solution proposed;	Creating				
CO5	Develop skills to articulate the solution concept into a proposal for grants.	Creating				

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	2	2	3
CO2	2	3	3	2	2	-	-	-	-	-	-	-	3	3	3
CO3	2	2	3	1	1	1	-	-	1	1	-	-	3	2	2
CO4	3	3	3	2	2	-	-	-	-	-	-	-	3	3	3
CO5	3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
Avg	2.4	2.8	2.8	1.8	1.8	1	-	-	1	1	-	-	2.8	2.6	2.8
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC5	505	COMMUNICATION SYSTEMS LABORATORY	SEM	CR V					
PRERE(QUISI	CATEGORY	PC	Cre	edit	2			
			L	Т	Р	TH			
		Hours/Week	0	0	4	4			
Course	object	tives:	·				<u>.</u>		
1.	To ma	ke the students to understand the basics of analog and digital mod	dulation technique	s					
2.	To dea	al with the different pulse modulation schemes.							
3.	To sin	nulate different modulation scheme using suitable tool.							
EXPERI	IMEN'	TS							
1.	Gener	ration and detection of AM signal							
2.	Gener	ration and detection of FM signal							
3.	Pulse	Amplitude Modulation							
4.	Pulse	Width Modulation							
5.	Pulse	Position Modulation							
6.	Samp	ling and reconstruction of signals							
7.	Digita	al Modulation Techniques: ASK, PSK, FSK, QPSK							
8.	Delta	and Adaptive Delta modulation							
9.	Pulse	Code Modulation							
10.	10. Time Division Multiplexing and De multiplexing								
11.	Simul	lation to generate various line codes							
12.	Simul	lation and performance analysis of analog and digital modulation	techniques .						
			Tota	al (601	P)= 60) Per	iods		

Text Bo	ooks:
1.	S.Poorna Chandra, B.Sasikala, "Electronics Laboratory Primer", S.Chand& Company Ltd, 2010.
2.	L.K. Maheshwari, M.M.S. Anand, "Laboratory Manual for Introductory Electronics Experiments", New age
	International (P) Limited Publishers, 2010.
3.	Simon Haykin S., "Digital Communications Systems", 3 rd Edition, John Wiley and Sons, 2013.
Referer	nce Books:
1.	Simon Haykins, "Digital Communications" John Wiley, 2017.
2.	Taub & Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.
3.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013
4.	Dennis Roddy, John Coolen,"Electronic Communications", 10 th impression, Pearson Prentice Hall, 2013.

E-Re	eferences:
	https://umairbfrend.files.wordpress.com/2015/01/analogue-digital-communication-manual_august-2015.pdf
2.	https://stannescet.ac.in/cms/staff/qbank/ECE/Lab Manual/EC8561- COMMUNICATION% 20 SYSTEM %20
	LABORATORY – 2062944779 – EC % 20 8461 % 20 communication % 20 systems % 20 manual.pdf
3.	www.vlab.co.in/ba-nptel-labs-electronics-and-communications

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	:	Generate and analyse analog modulated signals. Analysing							
CO2	:	Generate and analyse pulse modulated signals. Analysing							
CO3	:	Understand the concept of sampling of signals and can generate and reconstruct various digital modulated signals.	Applying						
CO4	:	Generate delta modulated waveforms and can Multiplex and de multiplex digital signals.	Applying						
CO5	:	Write codes for generating line codes and to generate various analog andApplyingdigital modulation schemes							

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PSO	PSO	PSO							
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
		_			_								-	_	-
CO1	1	2	2	1	2	-	-	-	-	-	-	1	2	2	2
CO2	1	2	2	1	2	-	-	-	-	-	-	1	1	2	2
CO3	1	2	2	1	2	-	-	-	-	-	-	1	2	2	2
CO4	1	2	2	1	2	-	-	-	-	-	-	1	1	2	2
CO5	2	2	2	1	2	-	-	-	-	-	-	1	2	2	2
Avg	1.2	2	2	1	2	-	-	-	-	-	-	1	1.6	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22E	C506	DIGITAL SIGNAL PROCESSING LABORATORY	SEMESTER V							
PRERI	EQUISI	TES	CATEGORY	PC Cre		edit	2			
							TH			
1.Signa	als and S	ystems	Hours/Week	0	0	4	4			
Cours	se object	tives:								
1.	To imp	plement basic signals operations using a software tool.								
2.	To dest	ign FFT algorithms, IIR and FIR filters.								
3.	To veri	ify the various basic signal processing technique.								
EXPEI	RIMEN	TS								
1.	Genera	ation of Signals								
2.	Discret	te-time convolution								
3.	Circula	ar convolution of two sequences								
4.	Sampli	ing and effect of aliasing								
5.	Spectru	um analysis using Discrete Fourier Transform								
6.	Calcula	ation of FFT of a signal using a) Decimation in time algorithm b) De	ecimation in frequ	ency a	lgori	thm				
7.	Design	of FIR filters using a)Windowing technique b)Frequency sampling	method							
8.	Design of IIR digital filter using Bilinear transformation									
9.	Design of IIR digital filter using Impulse invariant method									
10.	Verific	cation of BIBO stability of a system.								
	•		Tota	al (601	P)= 6	0 Pei	riods			

Text B	ooks:								
1.	Digital Signal Processing Using MATLAB, Vinay K.Ingle, John G.Proakis, Cent age learning, 3 rd Edition, 2012								
2.	Sanjit K. Mitra,"Digital Signal Processing",3 rd Edition, McGraw Hill Higher Education,2007.								
Refere	nce Books:								
1.	Simon Haykins, "Digital Communications" John Wiley, 2017.								
2.	Taub & Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.								
3.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013								
4.	Dennis Roddy, John Coolen, "Electronic Communications", 10th impression, Pearson Prentice Hall, 2013.								

E-Refe	E-References:							
1.	https://nptel.ac.in/courses/117102060/							
2.	Studentsfocus.com/notes/anna_university/ECE/5SEM/EC6511%20%20DSP%20Lab/EC%206511%20DIGITAL							
	%20SIGNAL%20PROCESSING%20LAB%20MANUAL_2013_regulation.pdf							
3.	vlab.co.in/ba_nptel_labs.ph p? id =1							

Cours	e Outcomes:	Bloom's Taxonomy
Upon co	ompletion of this course, the students will be able to:	Mapped
CO1	Generate and analyse various signal processing algorithms.	Analysing
CO2	Implement FFT algorithms, Linear/Circular convolution.	Analysing
CO3	Design FIR filters.	Creating
CO4	Design IIR filters.	Creating
CO5	Verify and understand system stability.	Analysing

				С	OURSI	E ART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	РО	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	1	3	-	-	1	-	1	-	-	1	1	1
CO2	3	3	1	1	3	-	-	1	-	1	-	-	1	1	1
CO3	3	3	2	2	3	-	-	1	-	1	-	-	1	1	1
CO4	3	3	2	2	3	-	-	1	-	1	-	-	1	1	1
CO5	3	3	2	2	3	-	-	1	-	1	-	-	1	1	1
Avg	3	3	1.6	1.6	3	-	-	1	-	1	-	-	1	1	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

PROTOSEM COURSES SYLLABUS

22PS	22PSPE01 COMPUTATIONAL HARDWARE Semester										
PRER	EQUIS	ITES	Category	PE	Cre	edit	3				
				L	Т	Р	ТН				
		Hours/Week	3	0	0	3					
9											
Cours	Course Learning Objectives										
1	¹ To learn basic concepts of Embedded Systems by familiarizing the functionalities of embedded platforms with development boards.										
	-	erstand the core concepts of GPIO Pins, Functionality of perip	herals Selection o	f I/O de	vices I	Isage					
2		nal functions, and Communication protocols.	incluis, beleetion o	1 1/0 uc	vices, c	suge					
2		iliarize the current technologies and protocols used in the Inte	rnet of Things (IoT) and to	learn th	ne Cloud	1				
3	services	S.		1	1	1	1				
Un	it I	BASICS OF EMBEDDED SYSTEM	[9	0	0	9				
schema	atics – To	Form: Architecture and working - Factors for Microcontroller polchain - Setup and Configuration - Input/Output Configurat mers, Interrupts - Pulse Width Modulation - Display: 7-segme	ions and Access -								
Un	it II	BASICS OF RASPBERRY PI		9	0	0	9				
Genera	1 Purpos	aspberry pi Board - Processor - Setup and Configuration - In e I/O Pins - Protocol Pins - GPIO Access - Pulse Width M witter Bot - Interfacing pi with camera modules.			-						
Uni	t III	SENSORS AND ACTUATORS		9	0	0	9				
Soil M	oisture Se	ensors and Actuators - Sensors: Introduction, Characteristics: ensor, LDR - Digital - PIR Sensor, Smoke Sensor, Infrared - S naracteristics and working with relay, DC motors, Servo motor	Sensor, Ultra- Sonio	c Sensor	. Actuat		sor,				
Uni	t IV	COMMUNICATION PROTOCOLS	5	9	0	0	9				
Comm	unication	ed: RS232 Standard - UART, SPI, I2C - Comparative study of protocols Wireless: Standards - Bluetooth, RF - Comparative Communication protocols.	-	-							
Un	it V	INTERNET OF THINGS		9	0	0	9				
Definition and Architecture of IoT, Building blocks of IoT, Programming with IoT protocols - MQTT, CoAP - Connecting embedded target board to Web, Basics networking in IoT: creating a web page - Creating a server on target board - Controlling I/O peripherals from the webpage, Embedded Application Development, Creating communication between different nodes - Cloud platforms for IoT, Cloud data logging and monitoring, Interfacing with web services.											
	Total = 45 Periods										
Теу	t Books	•									
1	Raj Kan	nal, "Embedded Systems - SoC, IoT, AI and Real-Time Syste	ems", 4th Edition, N	AcGraw	7 Hill, 20)20.					

2 Mohit Arora, "Embedded System Design", 1st Edition, Learning Bytes Publishing, 2016.

3 Elecia White, "Making Embedded Systems", 1st Edition, Shroff/ O' Reilly, 2012.

4 Jack Ganssle, "The Firmware Handbook", 1st Edition, Newnes, 2004.

Reference Books:

1	https://juniorfall.files.wordpress.com/2011/11/arduino-cookbook.pdf
2	https://drive.google.com/file/d/13s0m3lHPEFP2f2aCuVNRWeBZNKXWKTW5/view?ts=6231cab 3
3	https://ptolemy.berkeley.edu/books/leeseshia/releases/LeeSeshia_DigitalV2_2.pdf 4.
4	https://www.riverpublishers.com/pdf/ebook/RP9788793519046.pdf

	Course Outcomes: Upon completion of this course, the students will be able to:						
C01	Understand and implement the functions & Capabilities of embedded platforms for easy prototyping.	L2: Understanding					
CO2	Identify the type of sensors and actuators for required applications.	L3: Applying					
CO3	Develop communication between devices using different protocols.	L3: Applying					
CO4	Develop IoT based systems with wireless network connections and accessing devices over cloud.	L3: Applying					

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	3								3	2	2
CO2	3	3	2	2	2								3	2	2
CO3	3	2	3	2	3								3	3	3
CO4	3	2	3	2	3								3	3	3
AVG	3	2.25	2.75	2	2.75								3	2.5	2.5

22PS	SPE02	CODING FOR INNOVATORS		5	Semeste	er	VI			
PREF	REQUIS	ITES	Category	PE	Cre	edit	3			
				L	Т	Р	ТН			
			Hours/Week	3	0	0	3			
Cours	se Learn	ing Objectives								
1	To learn	n and express creativity using coding skills.								
2	To gain	knowledge of Python programming with hands-on experience	e.							
3	To dem	onstrate a problem solving using OOPs concepts.								
4	To learn	n basics of Linux by familiarizing the concepts of management	t and file structure.							
5	To prac	tise full stack development using cloud platform.								
Ur	nit I	PROGRAMMING PARADIGMS		9	0	0 9				
Algori	thms - Me	amming - Outside box thinking to solve problems - Need fo emory Allocation - Conditions and loops - Creating effective mming languages & paradigms - Getting started with develops	functions - Case s	studies -	Visual	Program	nming -			
Un	it II	BASIC OF PROGRAMMING		9	0	0	9			
operati	ions, trave	Python: statements, variables, functions, operators, modules, c ersing a list, slicing a list - Text Handling: Strings, string fur open, close, read, copy, word frequency, creating word histog	nctions, conversion	n functi						
Uni	it III	OOPS 5		9	0	0	9			
	•	OPS- verticals- implementation in python - Classes and Objec lymorphism, Abstraction, Encapsulation.	ts, Methods, Cons	tructors	and Dea	structors	5,			
Uni	it IV	SOFTWARE DEVELOPMENT TO DELIV	VERY	9	0	0	9			
Based Deplo	l) - Data byment(D	heering - Life Cycle (Tools), Agile Methodologies - Framew a Structures - Database Management System - A case 2D) - Source code management and version control - Gitl atform as service - Heroku - Build Packs AWS- Anaconda	study to exper	iment	from D	evelopn	nent to			
Un	nit V	OPERATING SYSTEMS		9	0	0	9			
calls -	File Sys	Linux - Process Management - Process Scheduling - Memor stem Structure - Multithreading - Multicore Programming Dockers - Kubernetes		-	-		-			
					Total	= 45 H	Periods			
Точ	t Books									
1 СЛ	1									
1	Zed A. S	Shaw, "Learn Python 3 the Hard Way", 3rd edition, Addison-V	Vesley Professiona	al, 2013	•					
2	Silbersc	Silberschatz Abraham, "Operating System Concepts", 9th edition, John Wiley & Sons Inc (Sea)Pte Ltd, 2016.								

- 3 Paul Barry, "Head-First Python", 2nd edition, O'Reilly Media, Inc, 2016.
- 4 Anton Spraul, "Think Like a Programmer", 1st edition, No Starch Press, 2012.

E-Re	E-References :						
1	https://www.geeksforgeeks.org/python-programming-language/						
2	https://www.guru99.com/python-tutorials.html						
3	https://www.tutorialspoint.com/python/python_tutorial.pdf						

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Understand the aspects of programming protocols	L2: Understanding				
CO2	Develop optimized code for real-world problems	L3: Applying				
CO3	Build full-stack development to deployment	L3: Applying				
CO4	Demonstrate problem solving and continuous development	L2: Understanding				

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO 3
CO1	2	2	2	1	3								2	1	1
CO2	3	3	3	2	3								3	2	2
CO3	3	2	3	1	3								3	2	2
CO4	2	3	2	1	2							3	2	1	1
AV G	2.5	2.5	2.5	1.25	2.75							3	2.5	1.5	1.5

22PS	SPE03	INDUSTRIAL AUTOMATION		5	VI		
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					<u> </u>
1		e conceptual knowledge in Industrial Controllers by scaling of ing with various I/O peripherals.	f on-board devices	and eml	bedded b	ooard	
2		PLC by working on internal features and also interfacing with A and standard communication protocols.	Sensors and actuate	ors alon	g HMI o	concept	using
3	To wor	k with FPGA boards and RT controllers for reprogrammable	embedded applicati	ons usi	ng LabV	IEW	
4	Underst	tand the concepts and design electronics circuits					
Un	nit I	INDUSTRIAL CONTROLLERS - I		9	0	0	9
onboar sensors	d devices	rollers - Introduction to RIO Controllers - Platform - Con- s - Module SOM - Interfacing with Input and Output device iring and Data Logging from sensors - Interfacing Actuat actions	s - Interfacing prot	ocol ba	sed Ana	alog and	l Digital
Un	it II	INDUSTRIAL CONTROLLERS - I	I	9	0	0	9
Program Interfac	mming & cing with	rollers - II - PLC - Introduction - Mode of Operation - c sequence control - Instruction set - Scan Time - Timers - C n Sensors - Interfacing with Actuators - Interfacing with I ty of PLC - SCADA	Counters - Interfaci	ng with	Input/C	Dutput d	levices -
Uni	it III	INDUSTRIAL COMMUNICATION PROT	OCOLS	9	0	0	9
Cloud	data logg	ication Protocols - I2C, SPI - Serial Field bus protocols CAN ing. Multi-sensor communication, Data parsing between Emb protocols - Implementation of Industrial Communication pr	bedded platforms. C				
Uni	it IV	FPGA AND RT CONTROLLER PROGRA	MMING	9	0	0	9
	nentation	FPGA - Architecture - Operations in FPGA program in myRIO - Introduction to RT controllers - Architecture - P	-	-	-		
Un	it V	INDUSTRIAL CIRCUIT BOARD DES	IGN	9	0	0	9
Design - Test p	rules, su	s circuits and to simulate in environment setup - Component pply & communication track rules - Component and footprin tion for measurement - PCB Layout,placement rules - Footpr tation	t editor -Understan	ding co	mponen enerating	t packag g GERE	ge types
Tev	t Books	:					
	1		2016				
1		ing, NI myRIO Project Essential Guide, National Instruments		-			
2		Bolton, Programmable Logic Controllers, 6th edition, Newne			0 011		
3	Richard Zurawski, Industrial Communication Technology Handbook, Second edition, CRC Press, 2014						

4	Simon Monk,	Make Your Own	n PCBs with EAGLE	, McGraw Hill Education	n, 2014.
---	-------------	---------------	-------------------	-------------------------	----------

References Books:

1	Jeffrey Travis, Jim Kring, LabVIEW for Everyone: Graphical Programming Made Easy and Fun,3rd edition, Prentice Hall
2	Mikell P. Groover, Automation, Production Systems, and Computer-integrated Manufacturing, Fourth edition, Pearson Education, 2016
3	Michael J. Hamill, Industrial Communications and Control Protocols, PDH centre, 2016
4	Ema Design Automation, The Hitchhiker's Guide to PCB Design, First edition, Blurb Publishers, December 2021

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the usage of controllers in an industrial environment	L2: Understanding
CO2	Build Real-Time systems for Industrial embedded monitoring and controlling deterministic applications	L3: Applying
CO3	Communicate between devices at different levels using industrial protocols	L3: Applying
CO4	Understand the process involved in PCB design using EDA tools and fabricate it	L2: Understanding

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	3								3	2	2
CO2	3	3	3	2	3								3	3	3
CO3	3	2	3	2	3								3	3	3
CO4	3	2	3	2	3								3	3	2
AVG	3	2.25	2.75	1.75	3								3	2.75	2.5

22PS	OE01	APPLIED DESIGN THINKING	22PSOE01 APPLIED DESIGN THINKING Semester									
PRER	EQUIS	ITES	Category	OE	Cr	edit	3					
				L	Т	Р	ТН					
			Hours/Week	3	0	0	3					
Cours	e Learn	ing Objectives			L		L					
1	The cou	urse enables product innovators and early-stage startup founde	ers to learn the custo	omer de	velopm	ent proc	ess					
2		iliarize with the tools & techniques & validate the inhere ion, customer-commitment & customer-acceptance.	ent risks by linkin	g their	progres	s to cu	stomer-					
3	To lear	n the system thinking concepts by reverse engineering techniq	ue.									
Un	nit I	DESIGN THINKING PRINCIPLES	6	9	0	0	9					
-	-	an – Centered Design – Understanding the innovation process ding techniques, Mitigate validate risk with FIR(Forge Innova	-	-	-	y, inter	viewing					
Un	it II	CUSTOMER-CENTRIC INNOVATIO	DN	9	0	0	9					
signific	cance and	customer-centric innovation – Problem Validation and of problem incidence- Customer Validation. Target user, Uspecess – Customer interviews and field visit.		•								
Uni	t III	9	0	0	9							
Design		imum Usable Prototype(MUP) – MUP challenge brief – Desig Festing Value Proposition: Design a compelling value proposi ign.					e					
Uni	it IV	CONCEPT GENERATION		9	0	0	9					
build th	ne right p	ation, Concepts Generation and MUP design – Conceptualize rototype: Assess capability, usability and feasibility. Systemat the solution concepts.	-	-								
Un	it V	SYSTEM THINKING & REVERSE ENGIN	EERING	9	0	0	9					
-		ng, Understanding Systems, Examples and Understandi lentify building blocks/Components – Re-Engineering a comp		/stems,	Revers	se Engi	neering					
					Total	= 45 F	Periods					
Tex	t Books	:										
1	Steve Bl	ank, (2013), The four steps to epiphany: Successful strategies	for products that w	vin, Wil	ey.							
2	Alexand	er Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith	, Trish Papadakos,	(2014),	Value							
3	Proposit	ion Design: How to Create Products and Services Customers	Want, Wiley									
4	Donella	H. Meadows, (2015), "Thinking in Systems -A Primer", Sust	ainability Institute.									
5		wn,(2012) "Change by Design: How Design Thinking Transf Business.	forms Organizations	s and In	spires I	nnovatic	on",					
Refe	rence B	ooks:										
1	https://w	ww.ideou.com/pages/design-thinking#process										
2	https://b	log.forgeforward.in/valuation-risk-versus-validation-risk-in-p	roduct-innovations	-49f253	ca8624							
3	https://blog.forgeforward.in/product-innovation-rubric-adf5ebdfd356											

4	https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e
5	https://blog.forgeforward.in/user-guide-for-product-innovation-rubric-857181b253dd6
6	https://blog.forgeforward.in/startup-failure-is-like-true-lie-7812cdfe9b85

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Define & treat various hypotheses to mitigate the inherent risks in product innovations	L1: Remembering
CO2	Design the solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit.	L6: Creating
CO3	Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching.	L3: Applying
CO4	Apply system thinking to reverse engineer a product/prototype and understand its internal correlations.	L3: Applying

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	3	2	1	1	1	1	1	1	1	2	2	3
CO2	2	2	3	2	2	1	1	1	1	1	1	1	3	3	2
CO3	1	2	2	1	1	3	1	1	3	3	1	1	1	1	1
CO4	2	3	3	3	3	2	2	1	2	2	1	1	3	3	3
AVG	1.75	2.5	2.5	2.25	2	1.75	1.25	1	1.75	1.75	1	1	2.25	2.25	2.25

22PS	OE02	STARTUP FUNDAMENTALS		Semester		VI	
PRER	REQUIS	ITES	Category	OE	Cre	edit	3
			TT ////	L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	Learn t	he science of to transforming an innovative idea into high-gro	wth enterprises.				
2	To und	erstand the basic concepts of IPR, and develop a patent draft f	or a potential IP		-		
Un	nit I	ENTREPRENEURIAL MINDSET & ME	ГНОД	9	0	0	9
		Innovation-led, tech-powered entrepreneurship - Underst Effectuation principles - Dealing with the unknowns - Case stu			ttributes	s of an	expert
Un	it II	IDEA TO ENTERPRISE		9	0	0	9
U		nning of Product Concept - Business Model - Business Planni and Revenue Planning	ng - Building Proof	f of Pro	duct and	l Value	Testing
Uni	Unit III MINIMUM VIABLE BUSINESS				0	0	9
		Minimum Viable Business - Disruptive Innovation - Theory o pusiness model - Demystifying Scalability - Funding Opportu	-	petitive	advanta	age - Bu	ilding
Uni	it IV	INTELLECTUAL PROPERTY		9	0	0	9
Secret		nd the need for Intellectual Property Rights - IPR Genesis an aphical Indicators - Industrial Designs - Types of Patent – Sa fees					
Un	it V	PRIOR ART SEARCH AND PATENT DRA	FTING	9	0	0	9
basmat The inv	i rice. vention a	a - IP Licensing – IP Commercialization - IP Infringement- Ca s a concept - Keywords formation - Structure of patent - Key Drafting complete specifications - Draft claims - Case studies	attributes in patent		•		
					Total	= 45 F	Periods
Tex	t Books	:					
1		Blank and Bob Dorf, (2012), The Startup Owner's Manual: Th y, K&S Ranch	ne Step-by-Step Gu	ide for 1	Building	g a Grea	t
2	Dr Saras series.	s Sarasvathy, (2008), Effectuation: Elements of Entrepreneuris	al Expertise, New F	Iorizon	s in Entr	repreneu	rship
3	Elizabet	h Verkey, (2005), Law of Patents, Eastern Book Company					
4	Prabudd 1st editi	ha Ganguli, (2017), Intellectual Property Rights: Unleashing on	the Knowledge Eco	onomy,	McGrav	v Hill Eo	lucation
Refe	rence B	ooks:					
		tellectual Property Handbook ww.wipo.int/edocs/pubdocs/en/intproperty/489/wipo_pub_489).pdf				
2 1	https://as	sets.entrepreneur.com/static/20220301113822-Marketing.pdf					
3 1	https://ww	ww.deluxe.com/blog/startup-fundamentals-guide/					
4 1	https://ww	ww.forbes.com/sites/allbusiness/2018/07/15/35-step-guide-en	trepreneurs-starting	-a-busi	ness/?sh	=69a60.	31e184b

	Course Outcomes: Upon completion of this course, the students will be able to:							
C01	Develop an entrepreneurial mindset to identify, assess, shape & act on opportunities.	L3: Applying						
CO2	Demonstrate the potential of an innovative idea to create economic value, as a startup	L2: Understanding						
CO3	Understand the scientific process to explore a viable business model	L2: Understanding						
CO4	Demonstrate knowledge on the fundamental concepts of Intellectual Property	L2: Understanding						

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	2	2	1	1	2	1	2	2	2	3	3	1	1	2
CO2	2	2	3	1	1	1	1	2	2	1	3	2	2	2	2
CO3	1	2	2	2	1	1	1	1	1	1	3	2	1	1	1
CO4	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1
AVG	1.25	1.75	2	1.25	1	1.25	1	2	1.5	1.25	2.5	2	1.25	1.25	1.5

22PS	OE03	PROTOTYPE DEVELOPMENT		S	Semest	er	VI	
PRER	EQUIS	ITES	Category	OE	Cr	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Learn	ing Objectives						
1	Learn to	o design a UI/UX design and develop an android application.						
2	Provide	working CAD model for prototype development.						
3	Knowle	edge in hardware, 3D Printers and Laser cutters.						
4	Acquire	basic knowledge in designing electrical circuits and fabricati	on of electronic de	vices.				
Un	it I	UI/UX		9	0	0	9	
Interfac	ce Desigr	ncepts in UI & UX - Tools - Fundamentals of design princ n - Layout and composition for Web, Mobile and Devices - process flow, wireframes, best practices in the industry -User	Typography - Inf	ormatio	n archit	ecture -		
Uni	it II	APP DEVELOPMENT		9	0	0	9	
Workin	ng with I	ction to App Development - Types of Apps - web Developm Databases - Introduction to API - Introduction to Cloud set loud - Embedding ML models to Apps - Deploying application	rvices - Cloud env	-				
				9 0 0 9				
	t III	INDUSTRIAL DESIGN	propert concretion				9	
Introdu to CAE	ction to I) tools - T	INDUSTRIAL DESIGN ndustrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing		Sketch	to CAD	- Introd	uction	
Introdu to CAE basics -	ction to I) tools - T	ndustrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat	ion - Assembly - Pr	Sketch	to CAD	- Introd	uction	
Introdu to CAD basics - Uni Need fo method	ction to I) tools - 7 - Dimensi t IV or prototy ls - Tools	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing	ion - Assembly - Pr NG anufacturing and p	Sketch roduct d 9 rototypi	to CAD lesign ar 0 ing - Ra	• - Introd nd rende • • • • • • • • • • • • • • • • • • •	uction ring 9 otyping	
Introdu to CAD basics - Uni Need fo method engravi	ction to I) tools - 7 - Dimensi t IV or prototy ls - Tools	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri	ion - Assembly - Pr NG hanufacturing and p nting and classifica	Sketch roduct d 9 rototypi	to CAD lesign ar 0 ing - Ra	• - Introd nd rende • • • • • • • • • • • • • • • • • • •	uction ring 9 otyping	
Introdu to CAE basics - Uni Need for method engravi Uni	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V conic Pro	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPE Pping - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing	ion - Assembly - Pr NG nanufacturing and p nting and classifica	9 rototypi tion - L	to CAD lesign at 0 ing - Ra aser Cu 0	O Introd nd rende O pid proto tting and O	uction ring 9 otyping 1	
Introdu to CAE basics - Uni Need for method engravi Uni	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V conic Pro	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN totyping: Basics of electronic circuit design - lumped circuit	ion - Assembly - Pr NG nanufacturing and p nting and classifica	9 rototypi tion - L	to CAD lesign at 0 ing - Ra aser Cu 0 - Workit	O Introd nd rende O pid proto tting and O	9 otyping 9	
Introdu to CAE basics - Uni Need fo method engravi Uni Electi simula	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V conic Pro	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN totyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA	ion - Assembly - Pr NG nanufacturing and p nting and classifica	9 rototypi tion - L	to CAD lesign at 0 ing - Ra aser Cu 0 - Workit	 P - Introdend rende O pid protecting and O ng with 	9 otyping 9	
Introdu to CAE basics - Uni Need fo method engravi Uni Electi simula	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V ronic Pro ation tool t Books	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN totyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA	ion - Assembly - Pr NG nanufacturing and p nting and classifica NG s - Electronic Proto	9 rototypi tion - L	to CAD lesign at 0 ing - Ra aser Cu 0 - Workit	 P - Introdend rende O pid protecting and O ng with 	9 btyping 9	
Introdu to CAE basics - Uni Need for method engravi Uni Electr simula	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V conic Pro ation tool t Books Peter Fie	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN totyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA	ion - Assembly - Pr NG nanufacturing and p nting and classifica NG s - Electronic Proto	9 rototypi tion - L	to CAD lesign at 0 ing - Ra aser Cu 0 - Workit	 P - Introdend rende O pid protecting and O ng with 	9 btyping 9	
Introdu to CAD basics - Uni Need fo method engravi Uni Electr simula	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V ronic Pro ation tool t Books Peter Fie Samar M	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN stotyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA Electronic Circuit design - lumped circuit - simple PCB design with EDA	ion - Assembly - Provide the second s	9 rototypi tion - L 9 typing -	to CAD lesign ar 0 ing - Ra aser Cu 0 - Workin	 Introdend rende Introdend rend Introdend rende Introdend ren	y otyping 9 Periods	
Introdu to CAE basics - Uni Need for method engravi Electr simula Tex 1 2 3	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V conic Pro ation tool t Books Peter Fie Samar M Steve Ku	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual mused in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN totyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA Ell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Malik, Autodesk Fusion 360 - The Master Guide. rug, Don't Make Me Think, Revisited: A Common Sense App	ion - Assembly - Provide the second s	9 rototypi tion - L 9 typing -	to CAD lesign ar 0 ing - Ra aser Cu 0 - Workin	 Introdend rende Introdend rend Introdend rende Introdend ren	y otyping 9 Periods	
Introdu to CAE basics - Uni Need for method engravi Electr simula Tex 1 2 3	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V conic Pro ation tool t Books Peter Fie Samar M Steve Ka (2014) Reference	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI Typing - Domains in prototyping - Difference between actual mused in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN totyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA Ell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Malik, Autodesk Fusion 360 - The Master Guide. rug, Don't Make Me Think, Revisited: A Common Sense App	ion - Assembly - Provide the second s	9 rototypi tion - L 9 typing -	to CAD lesign ar 0 ing - Ra aser Cu 0 - Workin	 Introd nd rende Introd red	y otyping 9 Periods	
Introdu to CAE basics - Uni Need fo method engravi Electr simula Tex 1 2 3 E - R	ction to I tools - 7 Dimensi t IV pr prototy ls - Tools ing - RD it V ronic Pro ation tool t Books Peter Fiel Samar M Steve Kr (2014) ceferenc https://w	Industrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPE rping - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN ototyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA Ell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Malik, Autodesk Fusion 360 - The Master Guide. rug, Don't Make Me Think, Revisited: A Common Sense App es:	ion - Assembly - Provide the second s	9 rototypi tion - L 9 typing -	to CAD lesign ar 0 ing - Ra aser Cu 0 - Workin	 Introd nd rende Introd red	y otyping 9 Periods	
Introdu to CAE basics - Uni Need for method engravi Electr simula Tex 1 2 3 E - R 1	ction to I tools - 7 Dimensi t IV or prototy ls - Tools ing - RD it V conic Pro ation tool t Books Peter Fid Samar M Steve Kr (2014) ceferenc https://w	ndustrial Design - Points, lines, and planes - Sketching and co Types of 3D modeling - Basic 3D Modeling Tools - Part creat ioning & Tolerancing MECHANICAL RAPID PROTOTYPI rping - Domains in prototyping - Difference between actual m used in different domains - Mechanical Prototyping: 3DPri Works - Additive manufacturing ELECTRICAL RAPID PROTOTYPIN Stotyping: Basics of electronic circuit design - lumped circuit - simple PCB design with EDA ell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Malik, Autodesk Fusion 360 - The Master Guide. rug, Don't Make Me Think, Revisited: A Common Sense App es: rww.adobe.com/products/xd/learn/get-started.html	ion - Assembly - Provide the second s	9 rototypi tion - L 9 typing -	to CAD lesign ar 0 ing - Ra aser Cu 0 - Workin	 Introd nd rende Introd red	y otyping 9 Periods	

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Create quick UI/UX prototypes for customer needs	L6: Creating					
CO2	Develop web application to test product traction / product feature	L3: Applying					
CO3	Develop 3D models for prototyping various product ideas	L3: Applying					
CO4	Built prototypes using Tools and Techniques in a quick iterative methodology	L3: Applying					

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	3				1	1			2	1	1
CO2	3	3	3	2	3				1	1			3	2	2
CO3	3	2	3	2	3				1	1			3	2	2
CO4	3	2	3	2	3				1	1			3	2	2
AVG	2.75	2.25	3	2	3				1	1			2.75	1.75	1.75

22PS	SEE01	ROBOTICS		S	Semest	er	VI
PRER	REQUIS	ITES	Category	EE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	0	0	6	3
Cours	se Learn	ing Objectives					1
1	Learn t	he fundamentals of ROS					
2	Unders	tand the requirements and choose the right sensors and actuato	rs for the application	on deve	lopmen	ıt	
3	Create	Bot in the virtual environment and simulate it to know the fund	ctionalities of the s	ystem d	levelop	ed	
4	Learn t	he basics of Robotics Vision System					
5	Integra	e ROS and Computer Vision to build systems for various use	cases				
Ur	nit I	INTRODUCTION TO ROBOT KINEMA	TICS	9	0	0	9
Kiner	natics - K	Robotics - Transformations - Forward Kinematics - Kinem inematic analysis - Numerical Inverse Kinematic Solutions - A	Analytical Inverse				Inverse
Un	it II	SELECTION OF SENSORS AND ACTUA	TORS	9	0	0	9
		ensors & Actuators - Types - Selection criteria - Design con and speed characteristics - Hardware Interface & Assembly	nsiderations: Moto	or sizing	g - Sele	ection of	i motors
Uni	it III	INTRODUCTION TO ROBOT OPERATING	SYSTEM	9	0	0	9
ROS p		ROS framework and prerequisites - Understanding communicating - ROS nodes, topics, messages - ROS services - ROS Tool Motion			-		
Uni	it IV	INTRODUCTION TO ROBOTICS VISION S	SYSTEM	9	0	0	9
Avera	aging, Ga	- Image Processing - Histograms - Gray scale, Color, Edussian, Median, Bilateral - Thresholding - Simple, Adaptive, Contours - Camera calibration					
Un	it V	INTEGRATION OF ROS AND COMPUTER	VISION	9	0	0	9
		nstallation - CV Bridge - Image publisher node - Image su orld applications	ıbscriber node - N	lodes b	uilding	and lau	
					Tota	= 45]	Periods
Теу	t Books	•					

Iexi	L DOOKS:
1	Introduction to Robotics: Mechanics and Control by John J Craig, Pearson Publishers.
2	Robot Operating System (ROS) for Absolute Beginners by Lentin Joseph, A press; Publishers (2018).
3	Learning OpenCV by Gary Bradski, Adrian Kaehler, O'Reilly Media, Inc.
Refer	rence Books:
1	https://www.intechopen.com/chapters/379
2	https://www.plantengineering.com/articles/eight-selection-criteria-for-actuation-components/
3	https://www.controleng.com/articles/tips-on-sensor-selection/
4	https://www.toptal.com/robotics/introduction-to-robot-operating-system
5	https://www.thomasnet.com/articles/automation-electronics/machine-vision-systems/

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	CO1 Understand kinematics considerations of robot							
CO2	Selection of sensors and actuators according to application	L3: Applying						
CO3	Utilize the ROS environment to simulate and communicate between robot	L3: Applying						
CO4	Develop algorithms to extract features and data from image	L3: Applying						
CO5	Utilize the open CV for robotic applications	L3: Applying						

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	1	2								3	3	2
CO2	3	3	2	1	2								3	3	3
CO3	3	2	3	2	3								3	3	3
CO4	3	3	3	2	3								3	3	2
AVG	3	2.5	2.75	1.5	2.5								3	3	2.5

SEMESTER VII

22F	EC701		VLSI DESIGN		SEN	/IES]	ER	VII
		I		CATEGOR	PC	Cre	edit	3
PRERE	QUISI	TES:		Hours/Week	L	Т	Р	TH
				Hours/ week	3	0	0	3
Course (Objecti	ives:						
1.	To u	nderstand	l the concepts of MOS transistors operations and thei	r AC and DC cha	aracteris	stics.		
2.	To u	nderstand	I the fabrication process of CMOS technology and its	layout design ru	ıles.			
3.	To d	esign Dat	ta path systems and Subsystems using Verilog HDL a	nd Learn FPGA	archite	ctures	5	
Unit I		MOS TE	RANSISTOR THEORY		9	0	0	9
NIMOG	DMOG	E.t.	The shall be the Delta offers	MOC desires		_		-
			ement transistor - Threshold voltage - Body effect					
			ion - Mobility variation - MOS models - Small sig					
			racteristics - Noise Margin - Rise time - Fall time -	Power dissipati	on Tran	smiss	sion g	gate –
Stick dia	-	-	-		-			
Unit II	Unit II CMOS TECHNOLOGY						0	9
An overv	view of	f Silicon	semiconductor technology - Basic CMOS technolog	zv: n-well - P w	ell - Tv	/in tu	b and	1 SOI
			ess enhancements: Interconnects - Circuit elements					
			ar transistors - Latch up and its prevention techniques		apartico	-		louij
Unit II		-	ATH SYSTEMS AND ARRAY OF SUBSYSTEM		9	0	0	9
			Addition/Subtraction - One/Zero Detectors – Com		,	v	v	-
			AM – DRAM - Read-Only Memory.	parators – Coun	1015 - N	iuiii	mcau	- 1011
Unit IV		VERILO	it IV VERILOG HARDWARE DESCRIPTION LANGUAGE				0	9
			JG HANDWARE DESCRIFTION LANGUAGE		9	0		
Basic Co	ncepts	: VLSI D	esign flow - Modules and ports - Switch level model	ling - Gate level		v	Data	ı flow
			esign flow - Modules and ports - Switch level model		modell	ing –		
modellin	g – Be	havioral			modell	ing –		
modellin	g – Be encoder	havioral r - D-flip	besign flow - Modules and ports - Switch level model modelling - Structural gate level description of deco		modell	ing –		
modellin Priority e Unit V	g – Be encoder	havioral r - D-flip CMOS (Design flow - Modules and ports - Switch level model modelling - Structural gate level description of deco flop - Half adder - Full adder - Ripple Carry Adder. CHIP DESIGN	oder - Equality c	modell letector 9	ing – – Co 0	mpai 0	ator - 9
modellin Priority e Unit V ASIC d	g – Be encoder esign f	havioral r - D-flip CMOS (low - CN	Pesign flow - Modules and ports - Switch level model modelling - Structural gate level description of deco flop - Half adder - Full adder - Ripple Carry Adder. CHIP DESIGN IOS chip design options: Full custom ASIC - Standar	oder - Equality c	modell letector 9 IC - Ga	ing – – Co 0 te Ar	mpar 0 ray b	ator - 9 ased
modellin Priority e Unit V ASIC d ASIC -	g – Be encoder esign f	havioral r - D-flip CMOS (low - CM nelled - C	 besign flow - Modules and ports - Switch level model modelling - Structural gate level description of decorrect flop - Half adder - Full adder - Ripple Carry Adder. CHIP DESIGN MOS chip design options: Full custom ASIC - Standar Channel less and structured GA - Programmable log 	oder - Equality c	modell letector 9 IC - Ga	ing – – Co 0 te Ar	mpar 0 ray b	ator - 9 ased
modellin Priority e Unit V ASIC d ASIC -	g – Be encoder esign f	havioral r - D-flip CMOS (low - CM nelled - C	Pesign flow - Modules and ports - Switch level model modelling - Structural gate level description of deco flop - Half adder - Full adder - Ripple Carry Adder. CHIP DESIGN IOS chip design options: Full custom ASIC - Standar	oder - Equality c rd Cell based AS ic structures; Pro	modell letector 9 IC - Ga	ing – – Co 0 te Ar	mpar 0 ray b of PA	eator - 9 ased Ls -

Text Bo	oks:
1.	Neil H. E. Weste & David Money Harris, "CMOS VLSI Design Circuits and System perspective ", 2nd Edition, Pearson Education, 2016
2.	Samir Palnitkar: "Verilog HDL" A Guide to Digital Design and Synthesis", 2nd Edition, Pearson Education, 2012.
Referen	ce Books:
1.	Douglas.A.Puchnell, Kamran Eshraghian, "Basics VLSI Design and Circuits", 3rd Edition, Prentice Hall India 2011.
2.	M.J.S .Smith, "Application - Specific Integrated Circuits", Pearson Education, 2009.
3.	V.G.Kirankumar, H.R.Nagesh, "Introduction to VLSI Design", Pearson Education, 2011
4.	Wayne Wolf, "Modern VLSI Design", Pearson Education, 2003.
E-Refer	ences:
1.	https://freevideolectures.com/Subject/VLSI-and-ASIC-Design 2. 3.
2.	https://www.tutorialspoint.com/vlsi_design/vlsi_design_useful_resources.html
3.	https://nptel.ac.in/courses/117101058

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand the concept of MOS transistors, use analytical methods and circuit analysis models in analysis of CMOS circuits.	Applying						
CO2	Understand the CMOS process technology and design layout diagrams.	Understanding						
CO3	Able to learn and design data path systems and array of subsystems.	Applying						
CO4	Model the digital system using Verilog Hardware Description Language and	Applying						
CO5	Learn FPGA architectures and need for CMOS testing.	Understanding						

				C	OURSE	EART	TCUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO2	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO4	2	1	-	2	3	-	-	-	-	-	-	-	1	2	1
CO5	-	-	2	2	-	-	-	-	-	-	-	-	-	2	1
Avg	1.75	1	2	2	3	-	-	-	-	-	-	-	1	2	1
		3/2	/1 - in	dicates	streng	th of c	orrela	tion (3	3-High	1,2- Med	ium,1	- Low)			

22E	EC702	ON	SEMESTER VII				
PRER	EQUISI	TES	CATEGORY	PC		edit	3
	-		Hours/Week	L	Т	Р	Т
1.	Digital	Communication	Hours, week	3	0	0	3
	e Object						
1.	To mak	te the students understand the basics of wireless and mobile comm	nunication				
2.		erstand the basics and design if cellular system.					
3.	To have	e an insight into the various propagation models and the speech co	oders used in mobi	ile con	nmun	icatio	n
Unit I		TRODUCTION AND MODERN WIRELESS COMMUNICA	ATION	9	0	0	9
commo commu networ	Introduction to wireless communications - History and evolution – Mobile radio system around the world – Examples of common wireless communication systems - Trends in cellular radio and personal communications - Modern wireless communication systems: 2G Cellular networks – 3G wireless networks - 4G mobile web access - 5G faster wireless network - Wireless network standards.						
Unit	IENTALS AND	9	0	0	9		
grade	of servic	e - Channel Assignment strategies - Handoff strategies - Interfere e - Improving coverage and capacity in cellular systems - Mod lation techniques: Mary PSK, M_ ary QAM, M_ ary FSK and C	ulation: Combine				
Unit		OBILE RADIO PROPAGATION:LARGE SCALE PATH LO		9	0	0	9
mode sectio	ls: reflec	o Radio wave propagation - Free-space propagation model - tion - Ground reflection model – Diffraction - Knife-edge diffra l - Practical Link budget design using path loss models - C odels	action model -Sca	ttering	– ra	dar cı	ross
Unit		OBILE RADIO PROPAGATION:SMALL-SCALE FADING ULTIPATH FADING	AND	9	0	0	9
multip	ath meas	ling: Small scale multipath propagation - Impulse response mod urements - Parameters of mobile multipath channels – Types of s r spread - Angular constriction - Azimuthal Direction of maximum	mall-scale fading-				
Unit		QUALISATION, DIVERSITY AND CHANNEL CODING		9	0	0	9
of equal Space	Equalisation: Fundamentals – Training a generic adaptive equalizer – Equalizers in a communication receiver -Survey of equalization - Linear equalizers - Nonlinear equalization - Algorithms for adaptive equalization – Diversity: Practical Space Diversity Considerations - Polarization diversity -Frequency diversity -Time diversity - RAKE receiver – coding: Speech coding – Vocoders - LPC-Choosing Speech Codecs for Mobile communication - GSM codec - USDC codec.						
			Tot	al (451	L) = 4	5 per	riods

Text Bo	oks:						
1.	Gerd Keiser, "Optical Fiber Communication" McGraw –Hill International, 3rd & 4th ed., 2012						
2.	S.C.Gupta, "Textbook on Optical Fiber Communication and its applications", PHI, 2nd edition, 2012.						
Reference Books:							
1.	J.Gower, "Optical Communication System", Prentice Hall of India, 2001.						
2.	John. M. Senior, "Optical Fiber Communications: Principles and Practice", Third Edition, Pearson, 2009.						
3.	Govind P.Agrawal, 'Fiber-Optic Communication Systems', 4th Ed., Wiley, 2010.						
4.	Djafar K.Mynbaev, Lowell L.Scheiner, 'Fiber-Optic Communications Technology', Pearson, 2001.						

E-Refere	ences:
1.	https://mrcet.com/downloads/digital_notes/ECE/III%20Year/FIBER %20 OPTICAL %20 COMMUNICATIONS.pdf
2.	https://www.stannescet.ac.in/cms/staff/qbank/ECE/Notes/EC8751- OPTICAL COMMUNICATION- 49686676 - EC8751 – OPTICAL %20 COMMUNICATION.pdf
3.	https://electrobian.files.wordpress.com/2016/07/ece-vii-optical-fiber- communication - 10 ec 72- notes_1449128210314_1449181382135_1449205363661.pdf

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Characterize a wireless channel and evolve the system design specifications and understand the difference between wireless compared to wired counterpart.	Understanding				
CO2	:	Design a cellular system, with improved coverage and capacity with the cell structure based on the resource availability and traffic demands and able to calculate interference.	Applying				
CO3	:	Identify various propagation effects and calculate large scale path loss.	Applying				
CO4	:	Analyze small scale and multipath fading in mobile environment.	Understanding				
CO5	:	Exploit multiple antenna techniques for capacity / performance gains and design equalizer.	Understanding				

				С	OURSI	E ART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	РО	PO	PO4	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	1	2	1	-	-	-	-	-	-	-	1	2	1
CO2	2	1	2	2	1	-	-	-	-	-	-	-	1	2	2
CO3	1	1	1	1	1	-	-	-	-	-	-	-	1	2	1
CO4	1	1	2	1	1	-	-	-	-	-	-	-	1	2	1
CO5	1	1	1	1	1	-	-	-	-	-	-	-	1	2	1
Avg	1.25	1	1.4	1.4	1	-	-	-	-	-	-	-	1	2	1.2
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	· Low)			

	3		SEMESTER VII				
PREREQU	TISIT	FS	CATEGORY	PC	Cre	edit	3
I KEKEQU	01511		Hours/Week	L	Т	Р	ТН
1. Dig	gital C	ommunication	nours/ week	3	0	0	3
Course Ob	ojectiv	es:					
1. To	learn	the basic elements of optical fiber transmission link, fiber me	odes, configurations	, and	the st	tructu	res.
2. To	under	stand the different kind of losses, signal distortion in optica	I wave guides and o	other si	gnal	degra	datio
		about the various optical source materials, LED structures, oing devices.	Quantum efficiency,	, LASE	R dio	odes a	nd
Unit I	INT	RODUCTION TO OPTICAL FIBERS		9	0	0	9
Propagatior fibers - Sin	n: Mo gle mo	on, Acceptance Angle, Numerical Aperture, Skew Rays - des in a Planar Guide, Phase and group velocity - Cylindr ode fibers: Cutoff wavelength.		ex fibe	rs, Gi	raded	inde
Unit II		SNAL DEGRADATION IN OPTICAL FIBERS orption losses - Scattering losses - Bending Losses - Core	1 (1 11' 1	9		0	9
	e Disp	al delay- intramodal dispersion-Factors contributing to dispe- ersion – Signal distortion in single mode fiber-Bending loss. ER OPTICAL SOURCES AND COUPLING		- Mat			9
	and r	modes and threshold conditions-rate equations—external adjustion patterns - temperature effects. Coupling: Laser die				equer	
	ted los	adiation patterns - temperature effects. Coupling: Laser die ses-end face preparation—LED coupling to single mode fibe	ode to fiber couplin ers-fiber splicing-op	g-fiber	to fi	equer ber jo	cies- oints-
Unit IV	ted los	adiation patterns - temperature effects. Coupling: Laser die ses-end face preparation—LED coupling to single mode fibe ER OPTICAL RECEIVERS AND DIGITAL TRANSMIS	ode to fiber couplin ers-fiber splicing-op SSION SYSTEM	g-fiber tical fil 9	to fi ber co	equer ber jo onnect	oints- cors.
Physical pr response tin Comparison amplifier-D	FIBI rincip me-Do n of Digital	adiation patterns - temperature effects. Coupling: Laser dia ses-end face preparation—LED coupling to single mode fibe ER OPTICAL RECEIVERS AND DIGITAL TRANSMI les of photodiodes-: PIN photo diode-Avalanche photo buble heterostructure photodiodes-structure for InGaAS AF photo diodes. Fundamental receiver operation: digital si receiver performance: Receiver sensitivity. Optical Amplifie	ode to fiber couplin ers-fiber splicing-op SSION SYSTEM diodes-Photodetect PDs-Temperature ef gnal transmission-e ers: Types- Erbium l	g-fiber tical fil 9 or nois fect on error s	to fiber co ber co 0 se-SN aval ource	equer ber jo onnect 0 IR-De anche s-fror	etecto bints- cors. 9 etecto gain at end
Physical pr response tin Comparison	FIBI rincip me-Do n of Digital	adiation patterns - temperature effects. Coupling: Laser dia ses-end face preparation—LED coupling to single mode fibe ER OPTICAL RECEIVERS AND DIGITAL TRANSMI les of photodiodes-: PIN photo diode-Avalanche photo puble heterostructure photodiodes-structure for InGaAS AF photo diodes. Fundamental receiver operation: digital si	ode to fiber couplin ers-fiber splicing-op SSION SYSTEM diodes-Photodetect PDs-Temperature ef gnal transmission-e ers: Types- Erbium l	g-fiber tical fil 9 or nois fect on error s	to fiber co ber co 0 se-SN aval ource	equer ber jo onnect 0 IR-De anche s-fror	etecto bints- cors. 9 etecto gain at end
Physical properties of the pro	FIBI rincip me-Do n of Digital OPT pplica : Intro	adiation patterns - temperature effects. Coupling: Laser dia ses-end face preparation—LED coupling to single mode fibe ER OPTICAL RECEIVERS AND DIGITAL TRANSMI les of photodiodes-: PIN photo diode-Avalanche photo buble heterostructure photodiodes-structure for InGaAS AF photo diodes. Fundamental receiver operation: digital si receiver performance: Receiver sensitivity. Optical Amplifie	bode to fiber couplin ers-fiber splicing-op SSION SYSTEM diodes-Photodetect PDs-Temperature ef gnal transmission-e ers: Types- Erbium l D MONITORING power measureme AN link-Optical net	g-fiber tical fil or noi fect on error so Doped 9 nts Tel	to fiber co 0 se-SN aval ource fiber a 0 lecom	equer ber jo onnect IR-De anche s-fror ampli 0	9 etecto gain fier. 9 cation
Physical properties of the pro	FIBI rincip me-Do n of Digital OPT pplica : Intro	adiation patterns - temperature effects. Coupling: Laser dia ses-end face preparation—LED coupling to single mode fibe ER OPTICAL RECEIVERS AND DIGITAL TRANSMI les of photodiodes-: PIN photo diode-Avalanche photo buble heterostructure photodiodes-structure for InGaAS AF photo diodes. Fundamental receiver operation: digital si receiver performance: Receiver sensitivity. Optical Amplifie TCAL FIBER NETWORK AND MEASUREMENT ANI tion :SONET/SDH-WDM- Basic test equipment-Optical pduction-Generations of optical fiber link-Optical fiber LA	bode to fiber couplin ers-fiber splicing-op SSION SYSTEM diodes-Photodetect PDs-Temperature ef gnal transmission-e ers: Types- Erbium l D MONITORING power measureme AN link-Optical net l fiber sensors.	g-fiber tical fil or noi fect on error so Doped 9 nts Tel	to fiber co 0 se-SN aval ource fiber a 0 lecom	equer ber jo onnect IR-De anche s-fror ampli 0 muni chnolo	9 etecto fier. 9 cation 29 cation 29 cation
Physical pr response tin Comparison amplifier-D Unit V Network aj application: enterprise –	ted los FIBI rincip me-Do n of Digital OPT oPT Pplica : Intro -Appli	adiation patterns - temperature effects. Coupling: Laser dia ses-end face preparation—LED coupling to single mode fibe ER OPTICAL RECEIVERS AND DIGITAL TRANSMI les of photodiodes-: PIN photo diode-Avalanche photo buble heterostructure photodiodes-structure for InGaAS AF photo diodes. Fundamental receiver operation: digital si receiver performance: Receiver sensitivity. Optical Amplifie TCAL FIBER NETWORK AND MEASUREMENT ANI tion :SONET/SDH-WDM- Basic test equipment-Optical pduction-Generations of optical fiber link-Optical fiber LA	bode to fiber couplin ers-fiber splicing-op SSION SYSTEM diodes-Photodetect PDs-Temperature ef gnal transmission-e ers: Types- Erbium l D MONITORING power measureme AN link-Optical net l fiber sensors.	g-fiber tical fil 9 or nois fect on error s Doped 9 nts Tel tworkir	to fiber co 0 se-SN aval ource fiber a 0 lecom	equer ber jo onnect IR-De anche s-fror ampli 0 muni chnolo	9 etecto gair fier. 9 cation ogy in
Physical properties of the pro	rincip me-Do n of Digital OPT pplica : Intro -Appli	adiation patterns - temperature effects. Coupling: Laser dia ses-end face preparation—LED coupling to single mode fibe ER OPTICAL RECEIVERS AND DIGITAL TRANSMI les of photodiodes-: PIN photo diode-Avalanche photo buble heterostructure photodiodes-structure for InGaAS AF photo diodes. Fundamental receiver operation: digital si receiver performance: Receiver sensitivity. Optical Amplifie TCAL FIBER NETWORK AND MEASUREMENT ANI tion :SONET/SDH-WDM- Basic test equipment-Optical pduction-Generations of optical fiber link-Optical fiber LA	SSION SYSTEM diodes-Photodetect PDs-Temperature ef gnal transmission-e ers: Types- Erbium I D MONITORING power measureme AN link-Optical net l fiber sensors.	g-fiber tical fil or noi fect on error so Doped 9 nts Tel tworkir	to fiber co 0 se-SN aval ource fiber a lecomn ng tec 5 L) =	equer ber jo onnect IR-De anche s-fror ampli 0 umuni chnolo	9 etector fier. 9 cation 29 cation 20 20 20 20 20 20 20 20 20 20 20 20 20

	Reference	e Books:
	1.	S.C.Gupta, "Textbook on Optical Fiber Communication and its applications", PHI, 2 nd edition, 2012.
Ī	2.	J.Gower, "Optical Communication System", Prentice Hall of India, 2001.
	3.	Govind P.Agrawal, 'Fiber-Optic Communication Systems', 4 th Ed., Wiley, 2010.
	4.	Djafar K.Mynbaev, Lowell L.Scheiner, 'Fiber-Optic Communications Technology', Pearson, 2001.

E-Refe	rences:
1.	https://mrcet.com/downloads/digital_notes/ECE/III%20Year/FIBER % 20 OPTICAL % 20
	COMMUNICATIONS
2.	https://www.stannescet.ac.in/cms/staff/qbank/ECE/Notes/EC8751- OPTICAL COMMUNICATION -
	49686676 -EC 8751 – OPTICAL %20 COMMUNICATION.pdf
3.	https://electrobian.files.wordpress.com/2016/07/ece- vii - optical - fiber - communication - 10 ec 72 -
	notes 1449128210314 1449181382135 1449205363661.pdf

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Discuss the various optical fiber modes, configurations, structure of the cable, manufacturing methods and the properties.	Understanding				
CO2	:	Calculate the degradation in the signal due to losses and dispersion.	Applying				
CO3	:	Explain the various optical sources and optical detectors and their use in the optical communication system.	Applying				
CO4	:	Analyze the digital transmission and its associated parameters on system Performance.	Understanding				
CO5	:	Have the idea of various applications of optical fiber.	Understanding				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	2	-	2	-	2	-	1	-	-	-	2	1
CO2	2	2	-	2	-	2	2	1	-	-	-	-	-	2	1
CO3	2	1	2	-	3	-	-	-	-	-	-	1		2	2
CO4	1	-	2	2	-	-	3	-	-	-	-	-	-	2	2
CO5	2	1	-	2	-	2		2	-	-	-	-	-	2	1
Avg	1.8	1.5	2.3	2	3	2	2.5	1.7	-	1	-	1	-	2	1.4
	-	3/2	/1 - in	dicates	streng	th of c	orrela	tion (3	8-High	,2- Med	lium,1	- Low)			

22E	22EC704 MICROWAVE ENGINEERING SEMEST											
			CATEGORY	PC	Cre	edit	3					
PRE	REQUIS	SITES:	Hours/Week	L	Τ	Р	TH					
				3	0	0	3					
<mark>1.</mark>	Transn	nission Lines and Waveguides										
Cour	rse Obje	ctives:										
1.	To unde	erstand and gain knowledge about various microwave components.										
2.	2. To study the microwave generation and amplification using microwave solid-state devices.											
3.	To stud	y the microwave generation and amplification using microwave tube	es.									
4.		le the student to understand the working concepts of RF passive and	l active componen	ts								
5.		erstand the working of RF amplifiers.										
Unit		MICROWAVE COMPONENTS		9	0	0	9					
		w frequency parameters: Z, Y and ABCD Parameters - Introduc										
	•	d Circuits - Waveguide Tees - Magic Tees (Hybrid Tees) - Hybrid	•				-					
		eds and Twists - Directional Couplers - Two-Hole Directional Coup plers - Circulators and Isolators.	iers - 5 Matrix of	a Dire	2000	u Co	upier					
Uni		SOLID STATE MICROWAVE DEVICES		9	0	0	9					
-	-	Gunn Effect Diodes - GaAs Diode - Ridley-Watkins - Hilsum (I	RWH) Theory - N	-	*		-					
		eneration and Amplification - Avalanche transit - Time devices –										
		PATT Diodes - BARITT Diodes - Parametric Devices.										
Uni	t III M	IICROWAVE TUBES		9	0	0	9					
		wo cavity Klystron Amplifiers - Reflex Klystrons - Velocity Modu										
		dmittance - Helix Traveling Wave Tubes (TWTs) - Slow Wave										
		Current - Axial Electric Field - Wave Modes - Gain Consideration	- Magnetron Os	cillator	:s - C	ylind	Irical					
-		Coaxial Magnetron.		1								
		RF PASSIVE& ACTIVE COMPONENTS	~	9	0	0	9					
		r of Passive Components: High Frequency Resistors, High Fr										
		miconductor properties, RF diodes- PIN, Schotky, Varactor, Gunn tenuator, phase shifter, detector BJTs, FET, MOSFETS, MESFETS		IIS OI	liode	s- sv	/IICII,					
mout	inator, at											
Uni	t V R	F AMPLIFIERS		9	0	0	9					
BJT a		Biasing, Impedance matching, Small Signal Amplifier Design, La	rge signal amplifi	er des	ign, N	Aulti						
ampli	ifier desi	gn.										
						-						
			Tot	al (45)	L)= 4	5 pe	riods					
Text	t Books:											

Text D	00065.											
1.	Samuel Y.Liao, "Microwave Devices and Circuits", 3rd Edition, Pearson education, 2008.											
2.	athew M. Radmanesh, "Radio Frequency & Microwave Electronics", Pearson Education Asia, Second											
Refere	ence Books:											
1.	R.E. Collin, "Foundations for Microwave Engineering", 2nd Edition, IEEE Press, 2002.											
2.	David M.Pozar, "Microwave Engineering", 2nd Edition, John Wiley & Sons, 2003											
3.	Reinhold Ludwig and Powel Bretchko," RF Circuit Design – Theory and Applications", Pearson Education Asia, First Edition.											
4.	Devendra K. Misra, "Radio Frequency and Microwave Communication Circuits – Analysis and Design", Wiley Student Edition, John Wiley & Sons, 2nd edition, July 2004.											

E-Refe	E-References:									
1.	https://nptel.ac.in/courses/108101112/									
2.	http://www.seas.ucla.edu/brweb/teaching.html									
3.	ttp://www.qsl.net/va3iul/Files/RF_courses_lectures.htm									

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Explain the active and passive microwave components used in microwave communication.	Remembering					
CO2	Have an in-depth knowledge of microwave generation and amplification.	Understanding					
CO3	Explain the performance of passive components at very high frequency.	Understanding					
CO4	Examine the behaviour of active components at very high frequency.	Analysing					
CO5	Analyze the performance parameters of RF amplifiers.	Applying					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	2	-	-	-	-	-	-	1	-	1	2	1
CO2	2	3	2	3	-	-	-	-	-	-	2	-	1	2	1
CO3	2	2	2	2	-	-	-	-	-	-	-	-	2	1	2
CO4	2	2	2	2	-	-	-	-	-	-	2	-	2	1	2
CO5	2	1	2	2	-	-	-	-	-	-	1	-	1	2	1
Avg	2	2	2	2.2	-	-	-	-	-	-	1.5	-	1.4	1.6	1.4
		3/2	/1 - in	dicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1	- Low)			

22EC705	OPTICAL AND MICROWAVE ENGINEERING	SEMESTER VII				
DDEDEAL	пстре	CATEGORY	PC	PC Credit		2
PREREQU	ISHES		L	Т	P	TH
1.	Communication systems Lab	- Hours/Week	0	0	4	4
Course Ob	jectives:	1			1 1	
1.	To Understand the working principle of microwave com	ponents.				
2.	To Practice microwave measurement procedures.					
3.	To Understand the working principle of optical sources,	detector, fibres and	microw	ave co	mpon	ents.
4.	To Develop and understand simple optical communicati	on link.				
5.	To Learn about the characteristics and measurements in	optical fibre.				
EXPERIM	ENTS:					
	OPTICAL COMMUNICATION					
1.	Determination of Numerical aperture for Fibers and Mea	asurement of Attenu	ation in	fibers	•	
2.	Mode Characteristics of Fibers – SM Fibers.					
3.	Coupling Fibers to Semi-Conductor Sources – Connector	ors & Splices.				
4.	Establish Fiber optic analog and digital communication	links.				
5.	LED & Photo Diode Characteristics.					
	MICROWAVE ENGINEERING					
6.	VSWR Measurements.					
7.	Determination of terminated impedance.					
8.	Determination of guide wavelength and frequency.					
9.	Radiation Pattern of Horn antenna.					
10.	Microwave Power Measurement.					
11.	Characteristics of Gunn diode Oscillator.					
12.	Mode Characteristics Reflex Klystron.					
13.	Dielectric constant measurements.					
14.	Study of Isolator, circulator and Hybrid Tee.					
	1		T	otal (6	0P)=6	60 Perio

Reference	References:										
1	Samuel Y.Liao, -Microwave Devices and Circuits, Pearson education, 3rd Edition, 2008.										
2	Gerd Keiser, —Optical Fiber Communication McGraw –Hill International, 3rd& 4th ed., 2012										
E-Referen	E-References:										
1	http://nptel.ac.in/courses/113104012/										
2	http://nptel.ac.in/courses/115102026/										
3	http://nptel.ac.in/courses/113106062/21										

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyze the performance of simple optical link.	Analysing
CO2	Gain knowledge on working of LED and photo detector.	Understanding
CO3	Gain knowledge on testing microwave components.	Applying
CO4	Analyze the radiation of pattern of antenna,	Applying
CO5	Measure a microwave link's impedance, VSWR, and frequency.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	1	3	3	3	-	-	2	-	-	-	2	-	3	2	2
CO2	2	3	3	3	-	-	2	-	-	-	2	-	3	2	2
CO3	2	3	3	3	-	-	2	-	-	-	2	-	3	2	2
CO4	1	3	3	3	-	-	2	-	-	-	2	-	3	2	2
CO5	1	3	3	3	-	-	2	-	-	-	2	-	2	2	2
Avg	1.4	3	3	3	-	-	2	-	-	-	2	-	2.8	2	2
		3/2	2/1 - in	ndicates	s streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1	- Low)			

22EC7	06 VLSI DESIGN AND EMBEDDED SYSTEMS LABO	ORATORY	SEMESTER VII					
		CATEGORY	PC	Credit		2		
PRERF	QUISITES	Hours/Week	L	Т	Р	T H		
1.	VLSI Design & Embedded Systems		0	0	4	4		
COURS	SE OBJECTIVES:							
1.	To design Digital system using Hardware Description Language.							
2.	To practically train the programming concepts using Verilog HD	L and implement i	n FPGA	۹.				
3.	Design the Building Blocks of Embedded Systems and simulatio	n tools.						
EXPER	RIMENTS:							
	VLSI DESIGN							
1.	Design and simulate Combinational circuits using Verilog HDL.							
2.	Design and simulate Sequential circuits using Verilog HDL.							
3.	Design Traffic light controller using Verilog HDL.							
4.	Design Pipelined parallel adder to add 8 number of size 12 bits ea	ach in 2's complem	nent.					
5.	Design 8 bit signed multiplication algorithm.							
6.	Study of FPGA Board.							
7.	Implementation of ALU/MAC unit in FPGA.							
8.	Implementation of Flip-Flops in FPGA.							
	EMBEDDED SYSTEMS							
9.	Embedded program for I/O interfacing using PIC controller.							
10.	Design a stepper motor controller using LCD and keys in PIC con	troller.						
11.	Generate 3-phase PWM signals and demonstrate the utility of PV 78.	WM with high brig	ght LEI) light	s usin	g RL		
12.	Measure room temperature and display the same in a LCD with ke	eyboard interaction	using l	RL 78				
13.	Design an embedded system to measure the unknown signal frequ	ency using timer/c	ounter	of RL7	/8.			
14.	Demonstrate the usage of watchdog timers and voltage detection f	acilities of RL78 in	n an apj	olicatio	on.			
15.	Interface ADC with embedded system trainer kit.							
16.	Interfacing 3 axis motion & vibration sensor with STM32 Nucleo	board.						
			Total (60P)=	60 Pe	riods		

Refere	nces:									
1	J.Bhaskar, "Verilog HDL Primer" 2nd Edition, 2004.									
2	Alexander G. Dean, "Embedded Systems Fundamentals with Arm Cortex M Based Microcontrollers: A									
	Practical Approach".									
E-Refe	erences:									
1	https://freevideolectures.com/Subject/VLSI-and-ASIC-Design 2. 3.									
2	https://www.tutorialspoint.com/vlsi_design/vlsi_design_useful_resources.html.									
3	https://nptel.ac.in/courses/117101058.									

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Creating					
CO2	Model a combinational circuit and sequential circuit using Verilog HDL.	Creating				
CO3	Import the logic modules into FPGA boards.	Evaluating				
CO4	Write, debug and compile embedded processors programs for a given Application.	Creating				
CO5	Implement interrupt control for a given embedded System.	Evaluating				

	COURSE ARTICULATION MATRIX																			
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO					
	1	2	3		5	6	7	8	9	10	11	12	1	2	3					
CO1	1	2	1	-	3	1	-	-	-	1	-	-	2	3	1					
CO2	1	2	1	-	3	1	-	-	-	1	-	-	2	3	1					
CO3	1	2	1	-	3	1	-	-	-	1	-	-	2	3	1					
CO4	1	2	1	-	3	1	-	-	-	1	-	-	2	3	1					
CO5	1	2	1	-	3	1	-	-	-	1	-	-	2	3	1					
Avg	1	2	1	-	3	1	-	-	-	1	-	-	2	3	1					
		3/2	2/1 - in	ndicates	s streng	th of c	orrela	tion (3	8-High	,2- Med	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)									

PROFESSIONAL ELECTIVES

22E0	CPE61	ELECTRONIC MEASUREMENTS		SE	MES	TER	VI
PRER	REQUIS	TES	CATEGORY	PE	Cre	dit	3
	-			L	Т	P	TH
1.	Electro	nic Devices	Hours/Week	3	0	0	3
Cours	se Object	ives:				1 1	
1.	To Kno	ow the basic measurement concepts, units, standards, various t	ypes of meters and	errors	•		
2.	Learn	to measure unknown value of components using bridges and	understand the cor	cept c	of var	ious	signal
	generat	for and analyzers.					
3.	To gain	h knowledge on Different types transducers and their usage in	the Data Acquisition	on syst	em		
4.	To emp	phasize the need for Data display recording and systems					
Uni	it I E	BASIC MEASUREMENTS		9	0	0	9
Introd	uction –	Characteristics of measurement systems - Static and Dynamic	c – Errors in Measu	iremer	nts –	Calit	oration
and St	tandards	- DC Ammeters and Voltmeters - AC Ammeters and Voltm	eters – Multi range	e – Oh	m m	eter:	series
Type,	Shunt Ty	pe - Electronic Multi meter.					
Unit	t II E	BRIDGE MEASUREMENT		9	0	0	9
Introd	uction -	DC Bridges and their Applications - Wheatstone Bridge -	Kelvin Bridge -	AC B	ridge	s and	l their
Applic	cations -	Maxwell's Bridge - Hay Bridge - Schering Bridge – We in Bridge	idge - Wagner grou	nd Co	nnect	tion.	
Unit	t III S	IGNAL GENERATOR & ANALYZERS		9	0	0	9
Signal	l Generat	ors: Sine wave generator, Frequency Synthesized Generator	, Sweep frequency	Gene	rator.	Puls	se and
square	e wave g	enerators. Function Generators Sweep Frequency Generat	tor - Pulse and squ	lare w	vave	genei	ator -
Functi		rators - Signal Analyzers: Wave Analyzers - Harmonic Distort	tion Analyzers - Sp	ectrun	n Ana	lyzei	
Unit	t IV 1	RANSDUCER & DATA ACQUISITION SYSTEMS		9	0	0	9
		of Transducers - Variable Resistive transducers - Strain gauge					
		VDT, RVDT - Variable Capacitive Transducers - Photo electronic ele					
– The	rmocoup	les - Thermistors - Smart / intelligent sensors, Data Acquis	sition System: Inte	rfacing	g trar	nsduc	ers to
Electro		ntrol and Measuring System.					
Uni		DATA DISPLAY RECORDING AND SYSTEMS		9	0	0	9
		O - Digital storage and Analog storage oscilloscope. Ana	0			-	
		nentation - Block diagram and architecture - Applications	in various fields.	Measu	reme	nt sy	stems
applie	d to Micı	o and Nanotechnology					
			То	tal (45	5L)=	45 P	eriods

Text	Books:
1.	Albert D.Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement
1.	Techniques", 5th Edition, PHI, 2011.
2.	A.K. Sawhney, "A Course in Electrical & Electronic Measurements & Instrumentation", Dhanpat Rai and
۷.	Co, 2010.
Refer	rence Books:
1.	John G. Webster, "Measurement, Instrumentation, and Sensors Handbook", CRC Press. 2014
2.	RobertA.Witte, "ElectronicTestInstruments, AnalogandDigitalMeasurements", 2ndEdition, PearsonEducation, 2
	004.
3.	K.LalKishore, "Electronic Measurements and Instrumentations", Pearson Education, 2005.
4.	Deoblin E.O. "Measurement Systems - Application and Design", McGraw Hill, 4th Edition, 2005

E-Ref	E-References:							
1.	https://nptel.ac.in/courses/108105153							
2.	http://bcas.du.ac.in/wp-content/uploads/2020/04/Study-Material-DrAvneesh-Mittal.pdf							
3.	http://www.academia.edu/8140873/A_K.Sawhney-							

Course Upon c	Bloom's Taxonomy Mapped						
CO1	CO1 Discuss about the principles of various measurement techniques and identify its errors						
CO2	Have knowledge on designing and to find the unknown elements in the measuring bridges.	Applying					
CO3	To categorize different instruments used for signal generation and analysis.	Understanding					
CO4	Analyze the transducers and its impact and to understand the function of Data acquisition systems.	Understanding					
CO5	To have knowledge on Data display and recording Systems.	Remembering					

	COURSE ARTICULATION MATRIX														
COs/PO s	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	-	1	-	-	-	-	-	-	-	1	-	2
CO2	3	_	2	2	1	-	-	-	-	-	-	-	1	1	2
CO3	3	1	-	1	2	-	-	-	-	-	-	-	1	1	2
CO4	3	-	1	2	-	-	-	-	-	-	-	-	1	-	1
CO5	3	2	1	-	1	-	-	-	-	-	-	-	1	2	2
Avg	3	1.7	1.25	1.7	1.25	-	-	-	-	-	-	-	1	1.3	1.8
		3,	/2/1 - in	dicates	streng	th of c	orrela	tion (3	3-High	n,2- Med	lium,1	- Low)			

22E0	CPE62	COMPUTER ARCHITECTURE		S	EMES	TER	VI				
PRE	REQUI	SITES	CATEGORY	PE	Crec	lit	3				
			Hours/Week	L	Т	Р	TH				
	HOURS/WEEK 3 0 0 3										
Cou	Course Objectives:										
1											
		pries, and networks.	• • • • •	1/							
2		derstand various design alternatives and make a compelling	ing quantitative and	d/or qua	litative a	argum	ent for				
3		ne design is superior to the other approaches. ustrate the fixed point and floating-point arithmetic of AI	Longrations								
Unit		UNDAMENTALS OF QUANTITATIVE DESIGN A	-	9	0	0	9				
		Classes of Computers- Defining Computer Architecture-			-	v					
		tegrated Circuits-Trends in Cost - Dependability -		0.							
		Quantitative Principles of Computer Design - Putting It									
	cies and		All Together. Fello	ormance	, Flice,	anu r	Ower				
Unit		COMPUTER ARITHMETIC		9	0	0	9				
		subtraction of signed numbers - Design of fast adders -	multiplication of		-	-					
		plication, Booth algorithm - Fast multiplication - Bit p									
		eger division - Floating point numbers - Arithmetic opera									
	uncation			Joint nui	noers	Ouure	1 0105				
Unit		PROCESSING UNITS		9	0	0	9				
		concepts - Execution of a complete Instruction - Mul									
	1 0	nmed control - Pipelining - Basic concepts - Data l					nce on				
		s – Data path and control consideration – Superscalar ope	eration – Performation	nce cons	ideratio	ns.					
Unit		EMORY SYSTEM		9	0	0	9				
		s - semiconductor RAMs, ROMs - Speed, size and co									
0		dvanced Optimizations of Cache Performance - Per					nory-				
		agement requirements - Secondary storage - CD-ROM -	DVD_ROM - DV	1		lrive.					
Unit		OOMAIN-SPECIFIC ARCHITECTURES		9	0	0	9				
	Introduction - Guidelines for DSAs - Example Domain: Deep Neural Networks - The Neurons of DNNs-Training										
	Versus Inference-Multilayer Perceptron - Convolutional Neural Network - Recurrent Neural Network - Batches -										
	Quantization-Google's Tensor Processing Unit, an Inference Data Center Accelerator -TPU Architecture - TPU										
Instru	ction Set	Architecture -TPU Micro architecture.									
				Total((45L) =	45 Pe	riods				

Text	Books:
1.	John Hennessy, David Patterson, "Computer Architecture A Quantitative Approach",6th Ed, Morgan
	Kaufmann Publishers,2019.
2.	Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization" 5th Ed, McGraw Hill, 2001.
Refe	rence Books:
1.	William Stallings, "Computer Organization and Architecture – Designing for Performance", 10th Edition,
	Pearson, 2016.
2.	David A. Patterson and John L.Hennessy, "Computer Organization and Design, the hardware / software
	interface", 5 th edition, Morgan Kaufmann, Elsevier, 2014.
3.	Caxton C. Foster, "Computer Architecture", 6th Edition, Van Nostrand Reinhold Company.
4.	Andrews .Tanenbaum , T odd Austin," Structured Computer Organization", 6th Edition, Pearson, 2013.
E-Re	eferences:
1.	http://nptel.ac.in/courses/106102062/
2.	https://www.coursera.org/learn/comparch/home/week/1
3.	https://nptel.ac.in/courses/106106134
E-Re 1. 2.	eferences: http://nptel.ac.in/courses/106102062/ https://www.coursera.org/learn/comparch/home/week/1

	Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Recognize the trends followed in designing architecture.	Understanding
CO2	Illustrate the fixed point and floating-point arithmetic for ALU operation.	Remembering
CO3	Analyse the pipeline performance considering the hazards by computing clock cycles.	Analysing
CO4	Differentiate the types of memory and use suitable type for architecture development	Applying
CO5	Understand domain-specific architectures like DNN and TPU for a new application	Applying

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	-	2	-	-	-	-	-	-	-	-	2	1	2
CO2	2	-	3	2	-	-	-	-	-	-	-	-	1	-	-
CO3	1	-	2	-	-	-	-	-	-	-	-	-	2	-	2
CO4	2	2	2	2	2	-	-	-	-	-	-	-	2	-	3
CO5	-	2	2	-	2	-	-	-	-	-	-	-	2	1	3
Avg	1.7	2	2.25	2	2	-	-	-	-	-	-	-	1.8	1	2.5
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22E	CPE63	DIGITAL IMAGE PROCESSING	SEMESTER V			VI							
PREI	REQUISI	TES	CATEGORY	PE	Cre	dit	3						
			/	L	Т	Р	TH						
1	Signals a	and Systems	Hours/Week	3	0	0	3						
Cour	se Object	ives:											
1	To become	me familiar with digital image fundamentals											
2													
3	To learn	concepts of degradation function and restoration techniques											
4													
5	5 To become familiar with image compression and recognition methods												
Unit	I D	DIGITAL IMAGE FUNDAMENTALS		9	0	0	9						
Steps	in Digital	I Image Processing - Components - Elements of Visual Perce	eption – Image Sei	nsing a	nd Aco	quisiti	on –						
0		g and Quantization - Relationships between pixels - Color i	mage fundamenta	ls - RO	GB, HS	SI moo	dels,						
Two-		nal mathematical preliminaries, 2D transforms - DFT, DCT.											
Unit		MAGE ENHANCEMENT		9	0	0	9						
		n: Gray level transformations - Histogram processing - Bas											
		atial Filtering, Frequency Domain: Introduction to Fourier											
^		ain filters – Ideal, Butterworth and Gaussian filters, Homomor	phic filtering, Col										
Unit		MAGE RESTORATION		9	0	0	9						
		on - degradation model, Properties, Noise models – Mean Fi rs – Band pass Filters – Notch Filters – Optimum Notch Filter											
Unit	IV IN	IAGE SEGMENTATION		9	0	0	9						
Edge	detection	, Edge linking via Hough transform – Thresholding - Region	based segmentati	on – R	egion	growi	ng –						
		g and merging - Morphological processing- erosion and d											
water	sheds – ba	asic concepts - Dam construction - Watershed segmentation a	lgorithm.										
Unit	V I	MAGE COMPRESSION AND RECOGNITION		9	0	0	9						
		ompression, Huffman, Run Length Encoding, Shift codes, A	0										
	v 1	entation, Boundary description, Fourier Descriptor, Regional attern classes - Recognition based on matching.	Descriptors – Top	pologic	al feat	ure, T	exture						
			7	Fotal(4	5I) -/	15 Por	inde						
				101a1(4	511)	5101	1005						

Tex	t Books:
1.	Rafael C. Gonzalez, Richard E. Woods, _Digital Image Processing', Pearson, Third Edition, 2010. Anil K. Jain,
	_Fundamentals of Digital Image Processing', Pearson, 2002.
2.	Anil K. Jain, _Fundamentals of Digital Image Processing', Pearson, 2002.
Ref	erence Books:
1.	Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, _Digital Image Processing using MATLAB', Pearson
	Education, Inc., 2011.
2.	Kenneth R. Castle man, Digital Image Processing', Pearson, 2006.
3.	William K. Pratt, Digital Image Processing', John Wiley, New York, 2002
4.	Milan Sonka et al _Image processing, analysis and machine vision', Brookes/Cole, Vikas Publishing House, 2nd
	edition, 1999.
E-R	eferences:
1.	https://www.tutorialspoint.com/dip/index.html
2.	https://www.youtube.com/watch?v=zDuJZDBsfto
3.	https://www.udemy.com/topic/image-processing/

Cour Upon c	Bloom's Taxonomy Mapped	
CO1	Know and understand the basics and fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms.	Understanding
CO2	Operate on images using the techniques of smoothing, sharpening and enhancement.	Applying
CO3	Understand the restoration concepts and filtering techniques.	Understanding
CO4	Learn the basics of segmentation and features extraction	Understanding
CO5	Apply compression and recognition methods for color models.	Applying

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO4	PO	PO	PSO	PSO	PSO						
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

	4 MACHINE LEARNING		SEME	STER	R VI
PREREQ	UISITES CATEGORY	PE	Cre	dit	3
x	Hours/Week	L	Т	Р	TH
		3	0	0	3
Course Ol					
	nderstand the concepts and mathematical foundations of machine learning and t	types of	f proble	ems ta	ckled by
	ine learning				
	xplore the different supervised learning techniques including ensemble methods				
	earn different aspects of unsupervised learning and reinforcement learning				
	earn the role of probabilistic methods for machine learning				
<u>5</u> To u Unit I	nderstand the basic concepts of neural networks and deep learning. INTRODUCTION AND MATHEMATICAL FOUNDATIONS	9	0	0	9
	chine Learning? Need –History – Definitions – Applications - Advantages, Di			, , , , , , , , , , , , , , , , , , ,	
Unit II	SUPERVISED LEARNING	9	0	0	9
Introduction	-Discriminative and Generative Models -Linear Regression - Least Squares -	Under-f	itting /	Over	fitting -
	-Discriminative and Generative Models -Linear Regression - Least Squares - ation – Lasso Regression- Classification - Logistic Regression- Gradient Lin				
Cross-Valid Machines –	ation – Lasso Regression- Classification - Logistic Regression- Gradient Lin- Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based	ear Mo l Metho	dels -S	uppor	t Vecto
Cross-Valid Machines –	ation - Lasso Regression- Classification - Logistic Regression- Gradient Lin	ear Mo l Metho	dels -S	uppor	t Vector
Cross-Valid Machines – ID3 – CAR	ation – Lasso Regression- Classification - Logistic Regression- Gradient Lin- Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based Γ - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm	ear Mo l Metho s	dels -S ds –De	uppor	t Vector Trees –
Cross-Valid Machines –	ation – Lasso Regression- Classification - Logistic Regression- Gradient Lin- Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based	ear Mo l Metho	dels -S	uppor	t Vector
Cross-Valid Machines – ID3 – CAR Unit III	ation – Lasso Regression- Classification - Logistic Regression- Gradient Lin- Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based Γ - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm	ear Mo l Metho s 9	dels -S ds –De	uppor cision	t Vector Trees - 9
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal O	ation – Lasso Regression- Classification - Logistic Regression- Gradient Lin Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based Γ - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcem	ear Mo l Metho s 9 y - Dima	dels -S ds –De 0 ensiona	uppor cision 0 llity R	t Vector Trees - 9 eduction
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal C Model based	ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based Γ - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer Learning – Temporal Difference Learning	ear Mo l Metho s 9 y - Diment Lo	dels -S ds –De 0 ensiona earning	uppor ecision 0 llity Re – Ele	y sector Trees - 9 eduction ements -
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal C Model based Unit IV	ation – Lasso Regression- Classification - Logistic Regression- Gradient Lin- Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based Γ - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer I Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING	ear Mo I Metho s 9 y - Dime ment La 9	dels -S ds –De 0 ensiona earning 0	uppor cision 0 llity Ro - Ele 0	t Vector Trees - 9 eductior ements - 9
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal O Model based Unit IV Introduction	 ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based T - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -B 	ear Mo l Metho s y - Diment Lo 9 ayesian	dels -S ds –De o ensiona earning <u>o</u> Belie	0 0 0 0 0 0 0 0 f Net	y vorks
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal C Model based Unit IV Introduction Probabilistic	ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based C - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING - Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -B c Modelling of Problems -Inference in Bayesian Belief Networks – Proba	ear Mo l Metho s y - Diment Lo 9 ayesian	dels -S ds –De o ensiona earning <u>o</u> Belie	0 0 0 0 0 0 0 0 f Net	y vector Trees - 9 eduction ements 9 works
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal O Model based Unit IV Introduction Probabilistic Sequence M	ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based C - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING - Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -B c Modelling of Problems -Inference in Bayesian Belief Networks – Proba odels – Markov Models – Hidden Markov Models	ear Mo I Metho s 9 y - Diment Lo nent Lo ayesian ibility I	dels -S ds –De 0 ensiona earning Density	0 0 0 0 0 0 0 f Net Estir	<pre>t Vector Trees - 9 eductior ements - 9 works - nation -</pre>
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal C Model based Unit IV Introduction Probabilistic Sequence M Unit V	 ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based F - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -B Modelling of Problems -Inference in Bayesian Belief Networks – Probatodels – Markov Models – Hidden Markov Models NEURAL NETWORK AND DEEP LEARNING 	ear Mo I Metho s 9 y - Dime ment Lo 9 ayesian bility I 9	dels -S ds –De ensiona earning Belie Density	0 lity Ro – Ele 0 f Net Estir	y eduction ements 9 works nation 9
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal O Model based Unit IV Introduction Probabilistic Sequence M Unit V Neural Network	 ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based F - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -B Modelling of Problems -Inference in Bayesian Belief Networks – Probatodels – Markov Models – Hidden Markov Models NEURAL NETWORK AND DEEP LEARNING works – Biological Motivation- Perceptron – Multi-layer Perceptron – Feed 	ear Mo I Metho s 9 y - Diment La ayesian bility I 9 I Forwa	dels -S ds –De 0 ensiona earning Belie Density 0 ard Ne	0 llity Rd – Ele 0 f Nett Estir 0 twork	y y eduction ements y works nation 9 - Back
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal C Model based Unit IV Introduction Probabilistic Sequence M Unit V Neural Netw Propagation	ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based T - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer I Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING - Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -B c Modelling of Problems -Inference in Bayesian Belief Networks – Proba odels – Markov Models – Hidden Markov Models NEURAL NETWORK AND DEEP LEARNING - Activation and Loss Functions- Limitations of Machine Learning – Deep Le	ear Mo I Metho s 9 y - Diment La ayesian bility I 9 I Forwa	dels -S ds –De 0 ensiona earning Belie Density 0 ard Ne	0 llity Rd – Ele 0 f Nett Estir 0 twork	 Vecto Trees - 9 eduction ements 9 works nation 9 - Back
Cross-Valid Machines – ID3 – CAR Unit III Introduction –Principal C Model based Unit IV Introduction Probabilistic Sequence M Unit V Neural Netw Propagation	 ation – Lasso Regression- Classification - Logistic Regression- Gradient Link Kernel Methods -Instance based Methods - K-Nearest Neighbours - Tree based F - Ensemble Methods –Random Forest - Evaluation of Classification Algorithm UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity Component Analysis – Recommendation Systems - EM algorithm. Reinforcer Learning – Temporal Difference Learning PROBABILISTIC METHODS FOR LEARNING -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -B Modelling of Problems -Inference in Bayesian Belief Networks – Probatodels – Markov Models – Hidden Markov Models NEURAL NETWORK AND DEEP LEARNING works – Biological Motivation- Perceptron – Multi-layer Perceptron – Feed 	ear Mo l Metho s 9 y - Dime ment La 9 ayesian ibility 1 9 l Forwa earning-	dels -S ds –De 0 ensiona earning Belie Density 0 ard Ne	0 llity Ro – Ele 0 f Net Estir 0 twork olutior	y eduction ements 9 works mation 9 – Bacl n Neura

Text	Books:
1.	Stephen Mars land, "Machine Learning: An Algorithmic Perspective", Chapman & Hall/CRC, 2nd Edition,
	2014.
2.	Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
Refer	rence Books:
1.	Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.
2.	Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008
3.	Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006
4.	Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
5.	Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012
E-Refe	erences:
1.	https://machinelearningmastery.com/
2.	https://ai.google/education/
3.	https://in.coursera.org/learn/machine-learning

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Understand the mathematical foundation for solving ML problems.	Understanding			
CO2	Apply various supervised learning technique to solve ML problem	Applying			
CO3	Apply various unsupervised and reinforcement learning technique to solve ML problems	Applying			
CO4	Understand various probabilistic methods of learning.	Applying			
CO5	Understand basic idea behind neural network and deep learning.	Applying			

				С	OURSI	E ART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	3	2	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	2.2	1.6	2	2	2
		3/2	2/1 - in	ndicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1-	Low)			

22E	CPE65	MODERN SENSORS AND ITS APPLI	CATIONS	S	SEME	STER	VI
PRE	REQUIS	PE	Cre	dit	3		
		L	Т	Р	TH		
		3	0	0	3		
	rse Objec						
1		v the various stimuli that are to be measured in real life					
2		t the right process or phenomena on which the sensor s	*				
3	Toa war	e of the various sensors available for measurement and	l control applications.				
Unit		INTRODUCTION TO SENSORS		9	0	0	9
		sensors and transducers. Need for sensors in the mod					
		rious schematics for active and passive sensors. Static					
and II sensor		sors – Response to impulse, step, ramp and sinusoidal	inputs. Environmental	l factor	rs and i	reliab	ility of
Unit		SENSORS FOR MECHANICAL SYSTEMS		9	0	0	9
-		chanical systems or mechanical sensors - Displacemen	t - acceleration and for	-	Ŷ	-	-
		ssure in fluids - stress in solids. Typical sensors - wi					
		gneto strictive accelerometers, potentio metric sensors,		8,			, 1
Unit	III	THERMAL AND OPTICAL SENSORS		9	0	0	9
		rs: temperature – temperature difference – heat qua					
		thermistors - color pyrometry. Optical sensors: lig					
-		stors, photodiode, photo transistor, CCD, CMOS set		tors: 1	adiatic	on int	ensity,
Unit		- Gieger Muller courter (gas based), Hallide radiation MAGNETIC AND ACOUSTIC SENSORS	detectors.	9	0	0	9
			• • • • • • •	-			-
		rs: magnetic field, magnetic flux density – magneto res					
	electric se	ic sensors: Intensity of sound, frequency of sound in variances	arious media, various i	orms (of micr	opnor	les,
*			aona	•	0		0
Unit		ELECTRICAL AND HIGH FREQUENCY SEN		9	0	0	9
		rs: conventional volt and ammeters, high current senso nsors. High frequency sensors like microwave frequ					
0	*	M based sensors.	iency sensors, wavele	ingth 1	neasur	ing se	ensors.
IVIL/IVI	s and will		Т	otal(4	5L) =4	5 Per	riods
L				Ň			
Tex	t Books:						

1.	Doebelin, "Measurement Systems: Application and Design", McGraw Hill Kogakusha Ltd, 1983.
2.	Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart
	Devices", New York: Wiley, 2001.
Refere	ence Books:
1.	Henry Bolte, "Sensors – A Comprehensive Sensors", John Wiley.
2.	Jocob Fraden," Handbook of Modern Sensors, Physics, Designs, and Applications", Springer, 2014
3.	Manabendra Bhuyan," Intelligent Instrumentation Principles and Applications", CRC Press, 2017
4.	Randy Frank," Understanding Smart Sensors", Second edition, Artech House, 2000.
E-Refer	ences:
1.	https://onlinecourses.nptel.ac.in/noc22_ee50/preview
2.	https://www.youtube.com/watch?v=1uPTyjxZzyo
3.	https://nptel.ac.in/courses/115107122

	Course Outcomes: Upon completion of this course, the students will be able to						
CO1	Appreciate the operation of various sensors and its characteristics, which they encounter in their respective fields.	Understanding					
CO2	Understand various mechanical sensors, which they encounter in their career.	Analysing					
CO3	Understand the principles of thermal and magnetic sensors.	Understanding					
CO4	Learn the various types of optical and acoustic sensors.	Understanding					
CO5	Know and understand the various electrical and high frequency sensors.	Analysing					

				С	OURSI	E ART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO 3	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2			5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	2	2	1	1	-	2	1	-	-	-	3	1	3	2	-
CO3	2	2	2	1	-	-	3	-	-	-	2	-	2	-	-
CO4	3	2	3	2	3	-		-	-	-	1	-	1	2	-
CO5	3	2	3	-	2	2	1	-	-	-	2	2	2	-	1
Avg	2.2	2	2.25	1.3	2.5	2	1	-	-	-	2	1.5	2	2	1
			3/2/1 - i	ndicates	s streng	th of c	correla	tion (3	8-High	,2- Med	ium,1-	- Low)			

22E0	CPE66	RADAR COMMUNICATION		5	SEME	STER	R VI
PREF	REQUIS	ITES	CATEGORY	PE	Cre	dit	3
			Hours/Week	L	Т	Р	TH
			Hours/ week	3	0	0	3
Cours	se Objec	tives:					
1	To intro	duce the students about various types of radar and its application	ıs.				
2	To enha	nce the knowledge on Doppler RADAR					
3	To enha	nce the knowledge on detection of RADAR signals.					
4	To enha	nce the knowledge on CFAR.					
5	Develop	an ability to gain knowledge on radar transmitters and receivers	8				
Uni	it I	RADAR AND RADAR EQUATION		9	0	0	9
Noise a Unit		ignal-to-Noise Ratio-Probability Density Functions- Probabilitie MTI AND PULSE DOPPLER RADAR	es of Detection and	d False	e Alarn 0	n. 0	9
Banks	- Digital	Doppler and MTI Radar- Delay –Line Cancellers- Staggered Pu MTI Processing - Moving Target Detector - Limitations to	MTI Performanc	e - M	TI froi	n a N	/lovin
		Γ) - Pulse Doppler Radar – Tracking with Radar – Mono puls		ical So	can and	i Seq	uentia
			n a the D and a c	A	- 11 - T	1	
•		ations to Tracking Accuracy - Low-Angle Tracking - Tracki	ng in Range - A	Autom	atic Ti	ackin	g wit
Surveil	lance Ra	dars (ADT).	ng in Range - A				-
Surveil Unit	lance Ra	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS		9	0	0	9
Surveil Unit Detecti	lance RadiusIIIIIIon strate	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS gies for multiple measurements, Introduction to optimal det	ection: Hypothesi	9 is testi	0 ing and	0	9
Surveil Unit Detecti	lance Ra III ' on strate n criterio	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS	ection: Hypothesi	9 is testi	0 ing and	0	9 7 mar
Surveil Unit Detecti Pearsor Unit	lance RadiusIIIon straten criterionIVC	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS regies for multiple measurements, Introduction to optimal det n, statistical models for noise and target RCS in radar, threshold	ection: Hypothesi detection of rada	9 is testi r signa 9	0 ing and ls. 0	0 1 Ney 0	9 7 mar 9
Surveil Unit Detecti Pearson Unit Overvie	lance RadiusIIIon straten criterionIVC	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS gies for multiple measurements, Introduction to optimal det n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detecto	ection: Hypothesi detection of rada	9 is testi r signa 9	0 ing and ls. 0	0 1 Ney 0	9 7 mar 9
Surveil Unit Detecti Pearson Unit Overvie	lance Ra III ' on strate n criterion IV C ew of det re CFARs	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors.	ection: Hypothesi detection of rada	9 is testi r signa 9 CFAF	0 ing and ls. 0	0 1 Ney 0	9 7 man 9
Surveil Unit Detecti Pearsor Unit Overvia adaptiv Unit	lance Ra III ' on strate n criterion IV C ew of det re CFARs t V	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal det n, statistical models for noise and target RCS in radar, threshold ONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detecto s. RADAR TRANSMITTERS AND RECEIVERS	ection: Hypothesi detection of radar rs, Cell averaging	9 is testi r signa 9 CFAF 9	0 ing and ls. 0 R, robu	0 i Ney 0 st CF	9 / mar 9 ARs, 9
Surveil Unit Detecti Pearson Unit Overvia adaptiv Unit Introdu	lance Radius III on strate n criterion IV Cew of det re CFARs t t t t	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors.	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed	9 is testi r signa 9 CFAF 9 Field	0 ing and ls. 0 R, robut	0 1 Ney 0 st CF	9 7 mar 9 ARs, 9 Rada
Surveil Unit Detecti Pearson Unit Overvia adaptiv Unit Introdu Receiva	lance Radius III on strate n criterion IV Cew of det re CFARs t t t t	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Ma Radar Receiver - Receiver noise Figure - Super heterodyne Rec	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers	9 is testi r signa 9 CFAF 9 Field and R	0 ing and ls. 0 R, robus Ampli Receive	0 1 Ney 0 st CF 5 t CF 0 fiers - r Prot	9 7 mar 9 ARs, 9 Rada ectors
Surveil Unit Detecti Pearson Unit Overvia adaptiv Unit Introdu Receiva	lance Rag III ' on strate n criterion IV C ew of det re CFARs t V laction -Lie ers: The	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Ma Radar Receiver - Receiver noise Figure - Super heterodyne Rec	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers	9 is testi r signa 9 CFAF 9 Field and R	0 ing and ls. 0 R, robut	0 1 Ney 0 st CF 5 t CF 0 fiers - r Prot	9 7 mar 9 ARs, 9 Rada ectors
Surveil Unit Detecti Pearson Unit Overvia adaptiv Unit Introdu Receiva	lance Rag III ' on strate n criterion IV C ew of det re CFARs t V laction -Lie ers: The	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Ma Radar Receiver - Receiver noise Figure - Super heterodyne Rec	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers	9 is testi r signa 9 CFAF 9 Field and R	0 ing and ls. 0 R, robus Ampli Receive	0 1 Ney 0 st CF 5 t CF 0 fiers - r Prot	9 7 mar 9 ARs, 9 Rada ectors
Surveil Unit Detecti Pearsor Unit Overvia adaptiv Unit Introdu Receiva Radar I	lance Ra III ' on strate n criterion IV C ew of det 'e CFARs t V 1 iction -L: ers: The Displays.	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Ma Radar Receiver - Receiver noise Figure - Super heterodyne Rec	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers	9 is testi r signa 9 CFAF 9 Field and R	0 ing and ls. 0 R, robus Ampli Receive	0 1 Ney 0 st CF 5 t CF 0 fiers - r Prot	9 7 mar 9 ARs, 9 Rada ectors
Surveil Unit Detecti Pearsor Unit Overvia adaptiv Unit Introdu Receiva Radar I	lance Rage III ' on strate n criterion IV C ew of det ve CFARs t V I laction -Li ers: The I Displays.	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS regies for multiple measurements, Introduction to optimal detennet n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Mag Radar Receiver - Receiver noise Figure - Super heterodyne Rec	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers	9 is testi r signa 9 CFAF 9 Field and R Fotal(4	0 ing and ls. 0 R, robus Ampli Receive	0 1 Ney 0 st CF 5 t CF 0 fiers - r Prot	9 7 mar 9 ARs, 9 Rada ectors
Surveil Unit Detecti Pearsor Unit Overvia adaptiv Unit Introdu Receiva Radar I	lance Ra III ' on strate n criterion IV C ew of det re CFARs t V I action -Li ers: The I Displays. Books: Mark A.	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal det n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detecto s. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Ma, Radar Receiver - Receiver noise Figure - Super heterodyne Rec Richards, "Fundamentals of Radar Signal Processing", Tata Mc	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers T Graw Hill, 1 st Edi	9 is testi r signa 9 CFAF 9 Field and R Fotal(4	0 ing and ls. 0 R, robus Ampli Receive	0 1 Ney 0 st CF 5 t CF 0 fiers - r Prot	9 7 mar 9 ARs, 9 Rada
Surveil Unit Detecti Pearsor Unit Overvia adaptiv Unit Introdu Receiva Radar I 1. 1. 2.	lance Rai III ' on strate n criterion IV C ew of det re CFARs t V I laction -L ers: The I Displays. Books: Mark A. Merrill I	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold ONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detecto s. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Mag Radar Receiver - Receiver noise Figure - Super heterodyne Rec Richards, "Fundamentals of Radar Signal Processing", Tata McGraw-Hill Science Science (Content of Content of Conte	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers T Graw Hill, 1 st Edi	9 is testi r signa 9 CFAF 9 Field and R Fotal(4	0 ing and ls. 0 R, robus Ampli Receive	0 1 Ney 0 st CF 5 t CF 0 fiers - r Prot	9 7 mar 9 ARs, 9 Rada
Surveil Unit Detecti Pearsor Unit Overvia adaptiv Unit Introdu Receiva Radar I I. 1. 2. Refer	lance Ra III ' on strate n criterion IV C ew of det ve CFARs t V I lction -Li ers: The I Displays. Books: Mark A. Merrill I rence Boo	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal det n, statistical models for noise and target RCS in radar, threshold CONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detectors. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Ma Radar Receiver - Receiver noise Figure - Super heterodyne Rec Richards, "Fundamentals of Radar Signal Processing", Tata Mc . Skolnik ," Introduction to Radar Systems", Tata McGraw-Hill bks:	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers 7 Graw Hill, 1 st Edi (3rd Edition) 200	9 is testi r signa 9 CFAF 9 Field and R Fotal(4 tion, 2 8.	0 ing and ls. 0 R, robus Ampli Receive (005.	0 i Ney o st CFA fiers - r Prot i5 Per	9 7 mar 9 ARs, 9 Rada ectors
Surveil Unit Detecti Pearsor Unit Overvia adaptiv Unit Introdu Receiva Radar I 1. 2. Refer 1.	lance Ra III ' on strate n criterion IV C ew of det re CFARs t V I action -Li ers: The I Displays. Books: Mark A. Merrill I rence Boo Mark A	dars (ADT). THRESHOLD DETECTION OF RADAR TARGETS egies for multiple measurements, Introduction to optimal dete n, statistical models for noise and target RCS in radar, threshold ONSTANT FALSE ALARM RATE DETECTORS rection theory, false alarm impact and sensitivity, CFAR detecto s. RADAR TRANSMITTERS AND RECEIVERS inear Beam Power Tubes - Solid State RF Power Sources - Mag Radar Receiver - Receiver noise Figure - Super heterodyne Rec Richards, "Fundamentals of Radar Signal Processing", Tata McGraw-Hill Science Science (Content of Content of Conte	ection: Hypothesi detection of radar rs, Cell averaging gnetron - Crossed ceiver - Duplexers 7 Graw Hill, 1 st Edi (3rd Edition) 200	9 is testi r signa 9 CFAF 9 Field and R Fotal(4 tion, 2 8.	0 ing and ls. 0 R, robus Ampli Receive (005.	0 i Ney o st CFA fiers - r Prot i5 Per	9 7 mar 9 ARs, 9 Rada ectors

2.	Nathan son, F.E.	"Radar Design Princ	iples, second edition,	McGraw-Hill. Ne	w York.1991.
				,	

Steven M.Kay, "Fundamentals of Statistical Signal Processing", Vol II Detection Theory, Prentice Hall Inc, 1998.
 Peyton Z. Peebles:, "Radar Principles", John wiley, 2004.

E-Re	eferences:
1.	http://www.radioelectronics.com/info/data/semicond/semiconductor/semiconductor-materials-types-list.php
2.	http://911electronic.com/
3	https://nptel.ac.in/courses/108105154

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Identify the concepts of radar measurements, radar functions and range equation.	Understanding					
CO2	Familiarize about MTI and pulse Doppler radar and detection of RADAR signals.	Understanding					
CO3	Analyze the principle behind, detecting the signals of radar communication.	Analysing					
CO4	Apply CFAR detector to improve the detection performance of Radar.	Applying					
CO5	Knowledge in RADAR systems and analyze the signal to noise ratio in the radar system.	Evaluating					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
C01	-	2	3	3	2	-	-	-	-	-	2	-	2	2	2
CO2	-	2	3	3	2	-	-	-	-	-	2	-	2	2	2
CO3	-	2	2	3	2	-	-	-	-	-	2	-	2	2	2
CO4	-	2	3	2	2	-	-	-	-	-	2	-	2	2	2
CO5	-	2	3	3	2	-	-	-	-	-	2	-	2	2	2
Avg	-	2	2.8	2.8	2	-	-	-	-	-	2	-	2	2	2
		3/2	2/1 - in	ndicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1-	- Low)			

22ECPE67	INTERNET OF THING	SEMESTER VI				
PREREQUIS		CATEGORY	PE	E Credit		3
		Hours/Week	L	Т	Р	TH
			3	0	0	3
Course Obje	ctives:	I				
v v	lerstand the vision of M2M to IOT.					
2 To gai	n an understanding of IOT market perspective.					
3 To acq	uire knowledge on IOT Technology Fundamentals	s and applications				
4 To bui	ld small system using Raspberry Pi.					
Unit I	M2M TO IOT – THE VISION		9	0	0	9
Introduction -	From M2M to IOT- M2M towards IOT: M2M	Communication - The	global	contex	t - A ı	use case
example – Diff	ering Characteristics.		-			
example Dill	ering Characteristics.					
Unit II	M2M TO IOT – A MARKET PERSPECTIVI	E	9	0	0	9
Unit II Introduction -	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Va	alue Chains - An emer	ging in	dustrial	structu	ire for
Unit II Introduction - IOT- Internatio	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Va onal driven global value chain and global informa	alue Chains - An emeration monopolies - M2	ging in M to IC	dustrial OT-An A	structu Archite	re for ectural
Unit II Introduction - IOT- Internatio Overview – Bu	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Va onal driven global value chain and global informa iilding an architecture - Main design principles and	alue Chains - An emeration monopolies - M2	ging in M to IC	dustrial OT-An A	structu Archite	re for ectural
Unit II Introduction - IOT- Internatic Overview – Bu - Standards cor	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Va onal driven global value chain and global informa ilding an architecture - Main design principles and siderations.	alue Chains - An emeration monopolies - M2	ging ind M to IO An IOT	dustrial OT-An A	structu Archite	re for ectural outline
Unit II Introduction - IOT- Internatic Overview – Bu - Standards cor Unit III	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Va onal driven global value chain and global informa hilding an architecture - Main design principles and hisiderations.	alue Chains - An emer ation monopolies - M2 d needed capabilities -	ging ind M to IO An IOT	dustrial OT-An A Carchite	structu Archite cture o	ure for ectural outline 9
Unit II Introduction - IOT- Internatic Overview – Bu - Standards cor Unit III IOT Enabling	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Va onal driven global value chain and global informa idding an architecture - Main design principles and nsiderations. IOT TECHNOLOGY FUNDAMENTALS technologies – IOT levels and deployment temp	alue Chains - An emer ation monopolies - M2 d needed capabilities - plates - Devices and ga	ging ino M to IO An IOT 9 Iteways	dustrial OT-An A Carchite	structu Archite cture o	ure for ectural outline 9
Unit II Introduction - IOT- Internatio Overview – Bu - Standards cor Unit III IOT Enabling Business proc	M2M TO IOT – A MARKET PERSPECTIVISome Definitions - M2M Value Chains - IOT Valueonal driven global value chain and global informatividing an architecture - Main design principles and asiderations.IOT TECHNOLOGY FUNDAMENTALStechnologies – IOT levels and deployment tempesses in IOT - Everything as a Service (XaaS) - M	alue Chains - An emer ation monopolies - M2 d needed capabilities - blates - Devices and ga 2M and IOT Analytics	ging ind M to IO An IOT 9 tteways	dustrial DT-An A archite 0 - Data	structu Archite cture o 0 manag	re for ectural putline 9 gement
Unit II Introduction - IOT- Internatio Overview – Bu - Standards cor Unit III IOT Enabling Business proc Unit IV	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Value onal driven global value chain and global informative iding an architecture - Main design principles and the temp isiderations. IOT TECHNOLOGY FUNDAMENTALS technologies – IOT levels and deployment temp esses in IOT - Everything as a Service (XaaS) - M BUILDING IOT WITH HARDWARE PLA	alue Chains - An emer ation monopolies - M2 d needed capabilities - plates - Devices and ga (2M and IOT Analytics ATFORMS	ging ind M to IC An IOT 9 tteways	dustrial DT-An A archite 0 - Data 0	structu Archite cture o 0 manag 0	re for ectural outline gement 9
Unit II Introduction - IOT- Internatic Overview – Bu - Standards cor Unit III IOT Enabling Business proc Unit IV IOT Systems-I	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Value anal driven global value chain and global informative aniding an architecture - Main design principles and the term asiderations. IOT TECHNOLOGY FUNDAMENTALS technologies – IOT levels and deployment temp esses in IOT - Everything as a Service (XaaS) - M BUILDING IOT WITH HARDWARE PLA Logical Design using Python –IOT Physical Device	alue Chains - An emer ation monopolies - M2 d needed capabilities - blates - Devices and ga (2M and IOT Analytics ATFORMS ces and End Points- IO	ging ind M to IC An IOT 9 tteways 9 OT Dev	dustrial DT-An A Carchite 0 S - Data 0 Vice - Ra	structu Archite cture o 0 manag 0 aspberr	re for ectural outline gement 9
Unit II Introduction - IOT- Internatio Overview – Bu - Standards cor Unit III IOT Enabling Business proc Unit IV IOT Systems-I Interfaces – Pro	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Value onal driven global value chain and global informative iding an architecture - Main design principles and asiderations. IOT TECHNOLOGY FUNDAMENTALS technologies – IOT levels and deployment temp esses in IOT - Everything as a Service (XaaS) - M BUILDING IOT WITH HARDWARE PLA Logical Design using Python –IOT Physical Device Ogramming – Other IOT devices - IOT Reference N	alue Chains - An emer ation monopolies - M2 d needed capabilities - blates - Devices and ga (2M and IOT Analytics ATFORMS ces and End Points- IO	ging ind M to IC An IOT 9 tteways 9 OT Dev esign Co	dustrial DT-An archite 0 5 - Data 0 rice - Ra onstrain	structu Archite cture o 0 manag 0 aspberr ts.	y Pi -
Unit II Introduction - IOT- Internatio Overview – Bu - Standards cor Unit III IOT Enabling Business proc Unit IV IOT Systems-I Interfaces – Pro Unit V	MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Value Some Definitions - M2M Value Chains - IOT Value In al driven global value chain and global informative iding an architecture - Main design principles and asiderations. IOT TECHNOLOGY FUNDAMENTALS technologies - IOT levels and deployment templesses in IOT - Everything as a Service (XaaS) - M BUILDING IOT WITH HARDWARE PLA Logical Design using Python -IOT Physical Device Ogramming - Other IOT devices - IOT Reference N IOT USE CASES AND APPLICATIONS	alue Chains - An emer ation monopolies - M2 d needed capabilities - plates - Devices and ga (2M and IOT Analytics ATFORMS ces and End Points- IO Model - Real World De	ging ind M to IC An IOT Iteways 9 OT Dev esign Co 9	dustrial DT-An archite 0 - Data 0 rice - Ra onstrain 0	structu Archite cture o manag 0 aspberr ts. 0	y Pi - 9
Unit II Introduction - IOT- Internatio Overview – Bu - Standards cor Unit III IOT Enabling Business proc Unit IV IOT Systems-I Interfaces – Pro Unit V Home automat	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Value Some Definitions - M2M Value Chains - IOT Value Ional driven global value chain and global informative iding an architecture - Main design principles and the siderations. IOT TECHNOLOGY FUNDAMENTALS technologies – IOT levels and deployment temp esses in IOT - Everything as a Service (XaaS) - M BUILDING IOT WITH HARDWARE PLA Logical Design using Python –IOT Physical Device ogramming – Other IOT devices - IOT Reference M IOT USE CASES AND APPLICATIONS ion-Automatic lighting-Home intrusion detection	alue Chains - An emer ation monopolies - M2 d needed capabilities - plates - Devices and ga (2M and IOT Analytics ATFORMS ces and End Points- IO Model - Real World De - Cities-Smart parking	ging ind M to IC An IOT uteways 9 OT Dev esign Co 9 - Env	dustrial DT-An archite 0 s - Data 0 rice - Ra onstrain 0 ironmer	structu Archite octure o manag 0 aspberr ts. 0 nt – Wo	y Pi - 9 9 9 9 9 9 9 9 9 9 9 9 9
Unit II Introduction - IOT- Internatio Overview – Bu - Standards cor Unit III IOT Enabling Business proc Unit IV IOT Systems-I Interfaces – Pro Unit V Home automat monitoring sys	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Value anal driven global value chain and global informative baiderations. IOT TECHNOLOGY FUNDAMENTALS technologies – IOT levels and deployment temp essess in IOT - Everything as a Service (XaaS) - M BUILDING IOT WITH HARDWARE PLA Logical Design using Python –IOT Physical Device ogramming – Other IOT devices - IOT Reference M IOT USE CASES AND APPLICATIONS ion-Automatic lighting-Home intrusion detection stem-Air pollution Monitoring-Forest Fire Detection	alue Chains - An emer ation monopolies - M2 d needed capabilities - blates - Devices and ga (2M and IOT Analytics ATFORMS ces and End Points- IO Model - Real World De - Cities-Smart parking ction- Agriculture- Sr	ging ind M to IO An IOT 9 tteways 9 OT Dev esign Co 9 – Env nart irr	dustrial DT-An archite 0 a - Data 0 vice - Ra onstrain 0 ironmer rigation.	structu Archite ccture o 0 manag 0 aspberr ts. 0 nt – We Comi	y Pi - 9 9 9 9 9 9 9 9 9 9 9 9 9
Unit II Introduction - IOT- Internatio Overview – Bu - Standards cor Unit III IOT Enabling Business proc Unit IV IOT Systems-I Interfaces – Pro Unit V Home automat monitoring sys	M2M TO IOT – A MARKET PERSPECTIVI Some Definitions - M2M Value Chains - IOT Value Some Definitions - M2M Value Chains - IOT Value Ional driven global value chain and global informative iding an architecture - Main design principles and the siderations. IOT TECHNOLOGY FUNDAMENTALS technologies – IOT levels and deployment temp esses in IOT - Everything as a Service (XaaS) - M BUILDING IOT WITH HARDWARE PLA Logical Design using Python –IOT Physical Device ogramming – Other IOT devices - IOT Reference M IOT USE CASES AND APPLICATIONS ion-Automatic lighting-Home intrusion detection	alue Chains - An emer ation monopolies - M2 d needed capabilities - blates - Devices and ga (2M and IOT Analytics ATFORMS ces and End Points- IO Model - Real World De - Cities-Smart parking ction- Agriculture- Sr	ging ind M to IO An IOT 9 tteways 9 OT Dev esign Co 9 – Env nart irr	dustrial DT-An archite 0 a - Data 0 vice - Ra onstrain 0 ironmer rigation.	structu Archite ccture o 0 manag 0 aspberr ts. 0 nt – We Comi	y Pi - 9 9 9 9 9 9 9 9 9 9 9 9 9

Text	Books:
1.	Jan Holler, Vlasios T siatsis, Catherine Mulligan, Stefan Aves and, Stamat is Karnouskos, David Boyle, "From
	Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition,
	Academic Press, 2014.
2.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015
Refe	rence Books:
1.	Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to the smart grid
	and building automation', John Wiley & amp; Sons, 2012.
2.	Francis da Costa, "Rethinking the Internet of Things : A Scalable Approach to Connecting
	Everything", 1 st Edition, A press Publications, 2013
3.	HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2010.
4.	Fabrice Theoleyr, Ai-Chun Pang, 'Internet of Things and M2M Communications', River Publishers, 2013.
E-Re	eferences:
1.	https://nptel.ac.in/courses/106105166
2.	https://onlineitguru.com/IoT-online-training.html
3.	https://onlinecourses.nptel.ac.in/noc22_cs53/preview

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the vision of IOT from a global context.	Understanding					
CO2	Determine the Market perspective of IOT.	Remembering					
CO3	Understand the IOT technology fundamentals.	Understanding					
CO4	Build small system using Raspberry Pi.	Applying					
CO5	CO5 Analyse applications of IOT and case studies						

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	-	-	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	2	2	2	-	-	-	-	-	-	1	1	-	-
CO3	2	2	2	2	2	-	-	-	-	-	-	1	1	-	-
CO4	2	2	2	2	2	-	-	-	-	-	2	2	2	-	-
CO5	2	2	2	2	2	-	-	-	-	-	2	-	2	-	2
Avg	2	1.8	2	2	2	-	-	-	-	-	2	1.3	1.5	-	2
		3/2	/1 - in	ndicates	streng	th of c	correla	tion (3	3-High	n,2- Mec	lium,1	- Low)			

22ECPE68	VIRTUAL INSTRUMENTATION	VIRTUAL INSTRUMENTATION									
PRE-REQUISI	TE:	CATEGORY	PE	Cre	edit	3					
1. Analog Integr	ated Circuits.	Hours/Week	L	Т	Р	TH					
		Hours/ week	3	0	0	3					
Course Objectives:											
	e graphical programming environment										
	ndamentals of virtual instrumentation programming										
	simple applications using VI		1	1							
	APHICAL PROGRAMMING ENVIRONMENT		9	0	0	9					
	al Instrumentation - Lab View and VI - Conventional and Grap										
	Components of LabView - Owned and Free Labels - Tools and Other Palettes - Arranging Objects- Pop-up menus -										
Color Coding - Code Debugging - Context Sensitive Help - Types of VI's - Creating Sub-Vis - Concepts of graphical											
programming Lab-view software.											
	NDAMENTALS OF VIRTUAL INSTRUMENTATION PH		9	0	0	9					
	Modular programming - Controlling Program execution with structure - Composite data arrays and clusters - Visual										
	Graphs and charts - Analog and digital - Shift registers and fee	dback nodes - Lo	cal and	l Gloł	oal va	riables					
	ng and File input and output operations.										
	TA ACQUISITION WITH LABVIEW		9	0	0	9					
	ual Instrumentation - PC based data acquisition - Typical on b										
	tiplexing of analog inputs – Single ended and differential inp										
	analog inputs - Concept of universal DAQ card - Use of ti	mer - counter and	analo	g out	tputs	on the					
	card - NI-DAQ mx Tasks										
	USTER OF INSTRUMENTS IN SYSTEM		9	0	0	9					
	ternal instruments to a PC RS232C - RS-422 - RS485 and US	B standards - IEEI	E488 st	anda	rd -IS	O-OSI					
	bus-introduction to bus protocols of MOD bus and CAN bus.		1	1	1	r					
	ALYSIS TOOLS AND SIMPLE APPLICATION IN VI		9	0	0	9					
	g and manipulation - Anti-aliasing Filter - Frequency_ Domai										
	Spectrum - Windowing - Practical Hints for Frequency Domain Analysis - Signal Processing Functions - Time Domain										
Analysis - Frequency Domain Analysis - Filters: Control design and simulation - Simulation of a simple second order											
system. Total (45L)= 45 Periods											
		1	otal (4	13L)=	= 45 P	eriods					

Text	Books:						
1.	Jovitha Jerome "Virtual Instrumentation using LabVIEW", PHI publication, 2010						
2.	Jeffrey Travis Jim Kring "LabVIEW for Everyone", 3rd Edition, Pearson education.						
Refe	Reference Books:						
1.	Robert H. Bishop "Learning with Lab-View", PreticeeHall,2009						
2.	Sanjay Gupta "Virtual Instrumentation, LABVIEW", , TMH, NewDelhi, 2003						
3.	Peter W Gofton,"Understanding Serial Communication", Sybes International, 2000						
4.	S.Gupta and J P Gupta, "PC Interfacing for Data Acquisition and Process Control", Instrument Society of America, 1994.						
E-Re	ferences:						
1.	http://www.ni.com/white-paper/4752/en/						
2.	http://sine.ni.com/tacs/app/fp/p/ap/ov/lang/en/pg/1/sn/n5:selfpacedonline/						
3.	https://www.virtualinstruments.com/training/						

	completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply structured programming concepts in developing VI programs and employ various debugging techniques.	Applying
CO2	Create applications that uses plug in DAQ boards and built in analysis functions to process the data.	Applying
CO3	Define and Describe acquisition methodologies.	Understanding
CO4	Design and analyze various applications using signal Processing tool kit	Analysing
CO5	Design and analyze various applications using control and simulation tool kit.	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	3	3	-	-	-	-	-	-	-	1	2	1
CO2	3	2	2	3	2	-	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	3	-	-	-	-	-	-	-	1	2	2
CO4	3	1	2	1	2	-	-	-	-	-	-	-	1	3	2
CO5	3	2	2	1	2	-	-	-	-	-	-	-	1	3	3
Avg	3	2	2	2	2.4	-	-	-	-	-	-	-	1.2	2.4	2
		3/2	2/1 - in	ndicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1·	· Low)			

22ECPE69	SEM	IESTER VI									
PREREQU	ISITES	CATEGORY	PE	Credit		3					
		Hours/Week	L	Т	Р	ТН					
Nil		nours/week	3	0	0	3					
Course Obj	ectives:										
	erstand the evolving software defined radio techniques and their e	ssential functional	lities.								
	y the basic architecture and standard for software defined radio.										
3. To unde	erstand the evolving cognitive radio techniques and their function	alities.									
4. To stud	y the basic architecture and standard for cognitive radio.										
5. To expo	ose the student to evolving applications and next generation wirele	ess network.									
Unit I	Unit I INTRODUCTION TO SOFTWARE-DEFINED RADIO 9 0 0 9										
	Software Defined Radio: goals, benefits, definitions, architectunologies, radio frequency spectrum and regulations.	res, relations with	n other	[.] radi	os, is	ssues,					
Unit II	SDR ARCHITECTURE		9	0	0	9					
	nctions of the software radio, basic SDR, hardware architecture hitecture, top level component interfaces, interface topologies and				resou	urces,					
	INTRODUCTION TO COGNITIVE RADIOS		9	0	0	9					
	io self-aware, cognitive techniques – position awareness, envir of radio resources, Artificial Intelligence Techniques.	onment awarenes	s in co	ogniti	ve ra	adios,					
Unit IV	COGNITIVE RADIO ARCHITECTURE		9	0	0	9					
	Cognition cycle – orient, plan, decide and act phases, Organization, SDR as a platform for Cognitive Radio – Hardware and Software Architectures, Overview of IEEE 802.22 standard for broadband wireless access in TV										
Unit V	Unit VNEXT GENERATION WIRELESS NETWORK9009										
	The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility, spectrum sharing, upper layer issues, cross – layer design.										
		Tot	al (45)	L)= 4	5 Pe	riods					

Text	Books:
1.	Joseph Mitola III,"Software Radio Architecture: Object-Oriented Approaches to Wireless System Engineering", John Wiley & Sons Ltd. 2000.
2.	Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio", John Wiley, 2003.
Refe	rence Books:
1.	Kwang-Cheng Chen, Ramjee Prasad, - Cognitive Radio Networks, John Wiley and Sons, 2009.
2.	Huseyin Arslan (Ed.), —Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, 2007.
3.	Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.
4.	Ian F. Akyildiz, Won – Yeol Lee, Mehmet C. Vuran, ShantidevMohanty, "Next generation / dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Computer Networks, May 2006.
E-Re	ferences:
1.	https://www.rcet.org.in/uploads/files/LectureNotes/ece/S7/cognitive%20radio/UNIT%201%20notes.pdf
2.	https://www.rcet.org.in/uploads/files/LectureNotes/ece/S7/cognitive%20radio/UNIT%201%20notes.pdf
3.	https://www.dsengg.ac.in/ece/EC6802%20Wireless%20Network.pdf

	e Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Gain knowledge on the design principles on software defined radio and cognitive radio	Understanding
CO2	An ability to make system-level decisions for software-defined radio technology and products	Applying
CO3	Gain knowledge and understanding of software defined radio architecture.	Remembering
CO4	Apply the knowledge of advanced features of cognitive radio for real world applications	Applying
CO5	Knowledge and development methods for wireless Network	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	1	2	-	-	-	1	-	-	-	-	1	-	-
CO2	-	1	-	-	-	2	-	-	-	-	-	-	-	2	-
CO3	2	-	-	1	-	-	-	-	-	-	-	-	1	-	-
CO4	-	-	-	-	-	-	2		-	-	-	-	2	1	1
CO5	2	-	1	-	-	1		2	-	-	-	-	1	-	-
Avg	1.7	1	1	1.5	-	1.5	2	1.5	-	-	-	-	1.25	1.5	1
		3/2	2/1 - in	ndicates	s streng	th of c	correla	tion (3	-High	,2- Med	ium,1-	Low)			

22ECPE610	HIGH SPEED NETWORKS		SEMESTER VI						
PREREQUISI	ΓES	CATEGORY	PE Cre		edit	3			
			L	Т	Р	ТН			
1. Comput	er Networks	Hours/Week	3	0	0	3			
Course Objecti	ves:								
1. To understa	and the packet switching, ATM and Frame relay networks.								
2. To know th	e techniques involved to support real-time traffic and congestion	on control.							
3. To be famil	iar with different levels of quality of service to different applic	ations.		-					
Unit I INT	TRODUCTION TO HIGH SPEED NETWORKS		9	0	0	9			
	protocol architecture - The TCP/IP protocol architecture - Inter-								
	- Frame Relay Networks - Asynchronous transfer mode: ATM Protocol Architecture, ATM logical Connections, ATM								
	vice Categories, AAL - High Speed LANs: Fast Ethernet, Gi	gabit Ethernet, Fibr	e Char	nnel -	- Wir	eless			
^	ons, requirements – Architecture of 802.11.		1	I					
	ONGESTION AND TRAFFIC MANAGEMENT		9	0	0	9			
	sis - Queuing Models - Single Server Queues - Effects of Co			ontrol	– T1	affic			
	Congestion Control in Packet Switching Networks – Frame Rel	ay Congestion Cont							
	P AND ATM CONGESTION CONTROL		9	0	0	9			
	rol – TCP Congestion Control – Retransmission – Timer Mar								
	thm - Window management - Performance of TCP over A								
	ements – Attributes – Traffic Management Frame work, Traffi		raffic	Mana	agem	ent –			
	l, RM cell formats, ABR Capacity allocations – GFR traffic ma	anagement.		•	•				
	TEGRATED AND DIFFERENTIATED SERVICES		9	0	0	9			
	ces Architecture – Approach, Components, Services – Queuin	g Discipline: FQ, P	S, BRI	FQ, C	iPS, V	WFQ			
- Random Early Detection - Differentiated Services.									
	OTOCOLS FOR QOS SUPPORT	1 1 2 1 1	9	0	0	9			
	RSVP - Goals and Characteristics, Data Flow, RSVP operations, Protocol Mechanisms - Multiprotocol Label								
Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP. Total (45L)= 45 Periods									
		Tot	al (45)	L)= 4	5 Pe	riods			

Edition, Jean Harcourt Asia
l Edition, 2002.
ch Featuring the Internet",
o Press, Volume 1 and 2,
unication Networks", CRC
k", Prentice Hall Of India,

	e Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped		
CO1	Compare ATM, Frame Relay and TCP/IP networks.	Analysing		
CO2	Understand the concepts of queuing mechanism and congestion control techniques in packet switching and frame relay networks.	Understanding		
CO3	Analyze the traffic management in TCP and ATM.	Analysing		
CO4	Be familiar with the integrated and differentiated service architecture.	Remembering		
CO5	Understand the protocols to support various levels of quality of service to different applications.	Understanding		

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	РО	PO	PO	PO6	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5		7	8	9	10	11	12	1	2	3
CO1	2	-	1	1	2	1	-	-	-	_	2	-	1	2	2
CO2	3	-	1	2	2	2	-	-	-	-	-	-	1	1	1
CO3	2	-	1	2	1	2	-	-	-	-	-	-	2	2	2
CO4	1	-	1	1	1	1	-	-	-	-	-	-	1	2	1
CO5	1	-	1	1	2	1	-	-	-	-	2	-	2	2	2
Avg	1.8	-	1	1.4	1.6	1.4	-	-	-	-	2	-	1.4	1.8	1.6
		3	8/2/1 -	indica	tes stre	ngth of	correl	ation (.	3-High	1,2- Med	ium,1-	Low)			

22ECPE611	ROBOTICS		SEMESTER VI			
PREREQUIS	ITES	CATEGORY	PE	Credit		3
		Hours/Week	L	Т	Р	ТН
	HOULS/ WEEK	3	0	0	3	
Course Object	tives:					
	stand the functions of the basic components of a Robot.					
	the use of various types of End of Effectors and Sensors					
	t knowledge in Robot Kinematics and Programming					
	Robot safety issues and economics.		-1	1	1	
	NDAMENTALS OF ROBOT		9	0	0	9
	nition - Robot Anatomy - Coordinate Systems, Wo					
•	Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay L	oad- Robot Parts an	d their	Func	ctions-	Need
	ferent Applications.					
Unit II R	OBOT DRIVE SYSTEMS AND END EFFECTORS		9	0	0	9
	ves-Hydraulic Drives-Mechanical Drives-Electrical Drives	-D.C. Servo Motors	s. Stepr	ber M	otors,	
Servo Motors	-Salient Features, Applications and Comparison of al	l these Drives, Ei	nd Eff	ector		
Servo Motors Mechanical Gr	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip	l these Drives, En pers, Vacuum Gripp	nd Eff pers; Ty	èctor wo Fi		
Servo Motors Mechanical Gr Three Fingered	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti	l these Drives, En pers, Vacuum Gripp	nd Eff pers; Ty	èctor wo Fi		
Servo Motors Mechanical Gr Three Fingered	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip	l these Drives, En pers, Vacuum Gripp	nd Eff pers; Ty	èctor wo Fi		
Servo Motors Mechanical Gr Three Fingered Unit III SE	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti	l these Drives, En pers, Vacuum Gripp on and Design Cons	nd Eff pers; Ty siderati 9	ector wo Fi ons. 0	ngere 0	d and
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION	these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P	nd Eff pers; Ty siderati 9 Position	ector wo Fi ons. 0 sens	ngere 0 ors -	d and 9 Piezo
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Senso	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip I Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following	these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range	nd Eff pers; Ty siderati 9 Position Sensor	ectors wo Fi ons. 0 sens s Tria	ngere 0 ors - angula	d and 9 Piezo ations
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Senso Principles, Str	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip I Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positio	these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range N	nd Eff pers; Ty siderati 9 Position Sensor Meters,	ectors wo Fi ons. 0 sens s Tria Tou	ngere 0 ors - angula ch Se	d and 9 Piezo ations
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Senso Principles, Str ,binary Sensor	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip I Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positio actured, Lighting Approach, Time of Flight, Range Find	these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range M , Slip Sensors, Ca	nd Eff pers; Ty siderati 9 Position Sensor Meters, mera,	ector wo Fi ons. 0 sens s Tria Tou Fram	ngere 0 ors - angula ch Se e Gra	d and 9 Piezo ations ensors
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Senso Principles, Str ,binary Sensor Sensing and D	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors	these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range M , Slip Sensors, Ca ighting Techniques	nd Eff pers; Ty siderati 9 osition Sensor Meters, mera, , Image	ector wo Fi ons. 0 sens s Tria Tou Fram e Proo	ngere 0 ors - angula ch Se e Gra cessin	d and 9 Piezo ations ensors abber g and
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Senso Principles, Str ,binary Sensor Sensing and D Analysis-Data	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip I Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positio actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I	these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range M , Slip Sensors, Ca ighting Techniques	nd Eff pers; Ty siderati 9 osition Sensor Meters, mera, , Image	ector wo Fi ons. 0 sens s Tria Tou Fram e Proo	ngere 0 ors - angula ch Se e Gra cessin	d and 9 Piezo ations ensors abber g and
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Senso Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip I Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Rec	I these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range N a, Slip Sensors, Ca ighting Techniques ognition, Other Alg	nd Eff pers; Ty siderati 9 osition Sensor Meters, mera, , Image	ector wo Fi ons. 0 sens s Tria Tou Fram e Proo	ngere 0 ors - angula ch Se e Gra cessin	d and 9 Piezo ations ensors abber g and
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Senso Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip I Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Rec ntification, Visual Serving and Navigation.	I these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range M , Slip Sensors, Ca ighting Techniques ognition, Other Alg	nd Eff pers; T siderati 9 Position Sensor Meters, mera, , Image gorithm	ector wo Fi ons. 0 sens s Tria Fram e Proo ns, Ap 0	ngere 0 ors - angula ch Se e Gra cessin oplica 0	d and 9 Piezo ations abber g and tions 9
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Rec ntification, Visual Serving and Navigation. BOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward	I these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range N , Slip Sensors, Ca ighting Techniques ognition, Other Alg	nd Eff pers; T- siderati 9 osition Sensor Meters, mera, , Image gorithm 9 Leverse	ector wo Fi ons. 0 sens s Tria Fram e Produs, Ap 0 Kin	ngere 0 ors - angula ch Se e Gra cessin oplica 0 ematic	d and Piezo ations abber g and tions 9 cs o
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine manipulators v	-Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip I Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Rec ntification, Visual Serving and Navigation. DBOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward with Two, Three Degrees of Freedom (in 2 Dimension), F	these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range N a, Slip Sensors, Ca ighting Techniques ognition, Other Alg Kinematics and R our Degrees of free	nd Eff pers; Tv siderati 9 osition Sensor Meters, mera, , Image gorithm everse edom (i	ector wo Fi ons. 0 sens s Tria Fram e Proc as, Ap 0 Kin in 3 I	ngere 0 ors - angula ch Se e Gra cessin oplica 0 ematio Dimer	d and Piezo ations abber g and tions 9 cs o nsion
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine manipulators v Jacobians, Vel	Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Rec ntification, Visual Serving and Navigation. BOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward with Two, Three Degrees of Freedom (in 2 Dimension), F ocity and Forces-Manipulator Dynamics, Trajectory Ge	I these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range N a, Slip Sensors, Ca ighting Techniques ognition, Other Alg Kinematics and R our Degrees of free merator, Manipulato	nd Eff pers; Tv siderati '9 'osition Sensor Meters, mera, , Image gorithm 9 teverse edom (i or Mec	ector: wo Fi ons. 0 sens s Tria Fram e Prod is, Ap 0 Kind in 3 I hanis	ngere 0 ors - angula ch Se e Gra cessin oplica 0 emation Dimer m De	d and Pieze ations abber g and tions 9 cs o nsion esign
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine manipulators v Jacobians, Vel Derivations and	Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Rec ntification, Visual Serving and Navigation. BOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward with Two, Three Degrees of Freedom (in 2 Dimension), F ocity and Forces-Manipulator Dynamics, Trajectory Ge d problems. Lead through Programming, Robot programm	I these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range M a, Slip Sensors, Ca ighting Techniques ognition, Other Alg Kinematics and R our Degrees of free nerator, Manipulato ing Languages-VAI	nd Eff pers; Tv siderati '9 'osition Sensor Meters, mera, , Image gorithm 9 teverse edom (i or Mec	ector: wo Fi ons. 0 sens s Tria Fram e Prod is, Ap 0 Kind in 3 I hanis	ngere 0 ors - angula ch Se e Gra cessin oplica 0 emation Dimer m De	d and Piezo ations abber g and tions 9 cs o nsion
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine manipulators v Jacobians, Vel Derivations and Commands, Se	 Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selectines, Internal Grippers and External Grippers; Selectines, Sorta and Applications of the following of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Position actured, Lighting Approach, Time of Flight, Range Finds, Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Recontification, Visual Serving and Navigation. DBOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward with Two, Three Degrees of Freedom (in 2 Dimension), Focity and Forces-Manipulator Dynamics, Trajectory Ge d problems. Lead through Programming, Robot programming. 	I these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range M a, Slip Sensors, Ca ighting Techniques ognition, Other Alg Kinematics and R our Degrees of free nerator, Manipulato ing Languages-VAI	nd Eff pers; Ty siderati 9 osition Sensor Meters, mera, Image gorithm 9 everse edom (i pr Mec 2 Progr	ector: wo Fi ons. 0 sens s Tria Fram e Prod is, Ap 0 Kind in 3 I hanis	ngere 0 ors - angula ch Se e Gra cessin oplica 0 emation Demation img-M	d and Piezo ations abber g and tions 9 cs o nsion esign Iotion
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine manipulators v Jacobians, Vel Derivations and Commands, Se Unit V IM	Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selecti NSORS AND MACHINE VISION of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Find s., Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Rec ntification, Visual Serving and Navigation. BOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward with Two, Three Degrees of Freedom (in 2 Dimension), F ocity and Forces-Manipulator Dynamics, Trajectory Ge d problems. Lead through Programming, Robot programm ensor Commands, End Effectors commands and simple Prog PLEMENTATION AND ROBOT ECONOMICS	I these Drives, Enpers, Vacuum Grippon and Design Conservation of sensors of sensors of sensors. Point Sensors, Range Mers, Laser Range Mers, Laser Range Mers, Slip Sensors, Calighting Techniques ognition, Other Alger Kinematics and Rour Degrees of freemerator, Manipulator ang Languages-VAI grams.	nd Eff pers; Tv siderati 9 Position Sensor Meters, mera, , Imago gorithm 9 Reverse edom (i or Mec 2 Progr 9	ector: wo Fi ons. 0 sens s Tria Tou Fram e Proo is, Ap 0 Kin- in 3 I hanis amm	ngere 0 ors - angula ch Se e Gra cessin oplica 0 emation Dimer m De ing-M	d and 9 Pieze ations abber g and tions 9 cs o nsion esign lotion 9
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine manipulators v Jacobians, Vel Derivations and Commands, Se Unit V IM RGV, AGV; IM	 Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selectines, Internal Grippers and External Grippers; Selectines, Sorta and Applications of the following of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Position actured, Lighting Approach, Time of Flight, Range Finds, Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Recontification, Visual Serving and Navigation. DBOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward with Two, Three Degrees of Freedom (in 2 Dimension), Focity and Forces-Manipulator Dynamics, Trajectory Ge d problems. Lead through Programming, Robot programming. 	I these Drives, Enpers, Vacuum Grippon and Design Conservation of sensors of sensors of sensors. Point Sensors, Range Mers, Laser Range Mers, Laser Range Mers, Slip Sensors, Calighting Techniques ognition, Other Alger Kinematics and Rour Degrees of freemerator, Manipulator ang Languages-VAI grams.	nd Eff pers; Tv siderati 9 Position Sensor Meters, mera, , Imago gorithm 9 Reverse edom (i or Mec 2 Progr 9	ector: wo Fi ons. 0 sens s Tria Tou Fram e Proo is, Ap 0 Kin- in 3 I hanis amm	ngere 0 ors - angula ch Se e Gra cessin oplica 0 emation Dimer m De ing-M	d and 9 Pieze ations abber g and tions 9 cs o nsion esign lotion 9
Servo Motors Mechanical Gr Three Fingered Unit III SE Requirements Electric Sensor Principles, Str ,binary Sensor Sensing and D Analysis-Data Inspection, Ide Unit IV RC Forward Kine manipulators v Jacobians, Vel Derivations and Commands, Se Unit V IM RGV, AGV; IM	 Salient Features, Applications and Comparison of al ippers, Pneumatic and Hydraulic- Grippers, Magnetic Grip Grippers; Internal Grippers and External Grippers; Selectine Comparison of a sensor, Principles and Applications of the following r, LVDT, Resolvers, Optical Encoders, pneumatic Positic actured, Lighting Approach, Time of Flight, Range Finds, Antilog Sensors, Wrist Sensors, Compliance Sensors igitizing Image Data- Signal Conversion, Image Storage, I Reduction, Segmentation, Feature Extraction, Object Recutification, Visual Serving and Navigation. DBOT KINEMATICS AND ROBOT PROGRAMMING matics, Inverse Kinematics and Difference; Forward with Two, Three Degrees of Freedom (in 2 Dimension), Focity and Forces-Manipulator Dynamics, Trajectory Ge d problems. Lead through Programming, Robot programmensor Commands, End Effectors commands and simple Programmensor Commands, End Effectors commands and simple Programmensor Various Steps; Safet Sensors (Sensors) (Sensors) (Sensors). 	I these Drives, Enpers, Vacuum Gripp on and Design Cons types of sensors- P on Sensors, Range lers, Laser Range N a, Slip Sensors, Ca ighting Techniques ognition, Other Alg Kinematics and R our Degrees of free nerator, Manipulato ing Languages-VAI grams.	nd Eff pers; Tv siderati 9 Position Sensor Meters, mera, , Imago gorithm 9 Reverse edom (i or Mec 2 Progr 9	ector: wo Fi ons. 0 sens s Tria Tou Fram e Proc as, Ap 0 Kin in 3 I hanis amm	ngere 0 ors - angula ch Se e Gra cessin pplica 0 emation Dimer m Deting-M 0 peration	d and Piezo ations abber g and tions tions (9 (otion) esign- lotion

Text	Books:
1.	Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integrated Approach", Prentice Hall, 2003.
2.	Groover M.P., "Industrial Robotics - Technology Programming and Applications", McGraw Hill, 2001.
Refe	rence Books:
1.	Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008
2.	Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.
3.	Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
4.	Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008
E-Re	ferences:
1.	https://nptel.ac.in/courses/112105249
2.	https://nptel.ac.in/courses/112105236
3.	https://www.youtube.com/watch?v=7Bahzh3rniw

	Outcomes: ompletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	The students can able to apply the basic engineering knowledge for the design of robotics.	Understanding
CO2	Apply the knowledge on robot drive systems and end effectors.	Analysing
CO3	Have the knowledge on Sensors and meters	Analysing
CO4	Able to apply the Robotic kinematic and VAL Programming	Evaluating
CO5	Implement the robotics on economics and safety.	Creating

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	1	1	1	-	-	-	-	-	-	-	1	-	-
CO2	2	1	2	2	1	-	1	-	-	-	-	1	2	1	-
CO3	2	2	1	2	2	-	1	-	-	-	-	1	2	2	2
CO4	2	3	2	3	3	1	2	1	-	-	-	2	2	2	-
CO5	3	3	2	3	3	1	2	2	1	1	3	3	3	2	3
Avg	2	2.2	1.6	2.2	2	1	1.5	1.5	1	1	3	1.75	2	1.75	2.5
		3/2	2/1 - ir	ndicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1·	- Low)			

22E	CPE612	COMPUTER NETWORKS	SEME	STER	R VI					
PRE	REQUISI	TES	CATEGORY	PE	Cr	edit	3			
Nil			Hours/Week	L	Т	Р	T H			
				3	0	0	3			
Cou										
1.		uce the basic concept in modern data communication and com								
2.		luce the students the functions of different layers and in-depth l	v		yer.					
3.	To make	students to get familiarized with different protocols and netwo	rk layer component	ts.						
4.	To introd	uce the basic functions of trans port layer and congestion in ne	tworks.							
5.	To unders	stand the concepts of various network Applications and Data se	ecurity.							
Unit	I NE	TWORK FUNDAMENTALS AND PHYSICAL LAYER		9	0	0	9			
	Components – networks – Topologies – The OSI reference model - layers and duties. TCP/IP reference model – layers and duties, Physical Layer: Transmission Media – Guided media & unguided media - EIA 232, SONET									
Unit	II DA	TA LINK LAYER		9	0	0	9			
acce and	ss layer: - l IEEE 80	ntrol Functions: - Framing, Flow control, Error control: CRC, Random access, Controlled access, Channelization - Wired LA 02.5. Internetworking, Interconnection issues, Interconne es and Gateways.	ANs: Éthernet IEEH	E 802.3	3, IE	EE 80	02.4,			
Unit		TWORK LAYER		9	0	0	9			
ICM	Switching-Circuit switching, packet switching, message switching. Internet protocols; IPV4, IPV6, ARP, RARP, ICMP, IGMP, VPN. Network Routing Algorithms - Unicast routing protocol: Distance Vector Routing – Link State Routing – Multicast Routing.									
Unit	9	0	0	9						
	Transport Services, Elements of Transport protocols, Connection management, – User Datagram Protocol (UDP) – Transmission Control Protocol (TCP) – Congestion Control and Quality of services (QoS) – Integrated Services									
Unit	V AP	PLICATION LAYER		9	0	0	9			
	Domain Name Space (DNS) – Electronic mail (SMTP, MIME, POP3, IMAP4) - Application protocols: WWW, HTTP, FTP and TELNET, Network management protocol: SNMP.									
			Tota	al (45L	L)= 4	5 Per	riods			

Text Books:									
1.	Behrouz A. Foruzan, "Data communication and Networking", TMH, 4th edition, 2014.								
2.	James. F. Kurouse& W. Ross, "Computer Networking: A Top down Approach Featuring", Pearson, 2020.								
Refer	Reference Books:								
1.	LarryL.Peterson&PeterS.Davie,"ComputerNetworks",HarcourtAsiaPvt.Ltd.,SecondEdition,2000.								
2.	AndrewS.Tanenbaum,"ComputerNetworks",PHI,FourthEdition,2003.								
3.	An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education, 2002.								
4.	AjitPal,"DataCommunicationandComputerNetworks",PHI,2014.								
E-Ref	ferences:								
1.	https://nptel.ac.in/courses/106105183								
2.	https://www.mbit.edu.in/wp-content/uploads/2020/05/Computer-Networks-5th-Edition.pdf								
3.	https://www.tutorialspoint.com/data_communication_computer_network/index.htm								

		itcomes: pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped				
CO1	:	Explain the basic concept in modern data communication and different level of layers in the protocol	Understanding				
CO2	:	Analyse the functions and services of data link layer	Analysing				
CO3	:	Categorize the functions and services of network layer	Understanding				
CO4	:	Examine the basic functions of transport layer and congestion in networks	Understanding				
CO5	CO5 : Analyse the concepts of various network applications and data security						

				С	OURSE	E ART	TCUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	1	2	-	1	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	-	-	-	-	-	-	-	-	-	3	1	2
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	-	2
CO5	2	1	1	-	1	-	-	-	-	-	-	-	1	1	1
Avg	2.2	1.2	1.2	-	1.25	-	-	-	-	-	-	-	2	1	1.4
		3/2	/1 - in	dicates	streng	th of c	orrela	tion (3	3-High	n,2- Med	lium,1	- Low)			

22EC	CPE71	AUTOMOTIVE ELECTRONICS		SEMESTER VII			VII
PRE-R	REQUISI	TE:	CATEGORY	PE	Cre	dit	3
			Hours/Week	L	Т	Р	TH
			Hours/ week	3	0	0	3
Course	e Objecti [*]	ves:					
1. 7	The stude	nt will come to know the various stimuli that are to be measured	d in real life instr	umentat	ion.		
2. I	He will be	e able to select the right process or phenomena on which the se	nsor should depen	d on			
3. <i>A</i>	Aware of	the various sensors available for measurement and control app	lications.				
Unit I	INT	RODUCTION		9	0	0	9
Evoluti	ion of ele	ctronics in automobiles - emission laws - introduction to Eu	ro I, Euro II, Euro	o III, Ei	ıro Γ	V, Eu	ro V
		livalent Bharat Standards. Charging systems: Working and		ing cire	cuit c	liagra	um –
Alterna		juirements of starting system - Starter motors and starter circu	its.				
Unit II	FUI	NDAMENTALS OF VIRTUAL INSTRUMENTATION		9	0	0	9
		PROGRAMMING		-	v	v	-
		s: Ignition fundamentals - Electronic ignition systems - Pr					
		ignition - Spark Plugs. Electronic fuel Control: Basics of co		e fuelli	ng ar	d exl	naust
		etronic control of carburetion – Petrol fuel injection – Diesel fu	el injection.	-			
Unit II		NSOR AND ACTUATORS		9	0	0	9
	• • •	ble and characteristics of Airflow rate, Engine crankshaft	v				
0		nre, exhaust gas oxygen sensors - study of fuel injector, exha	ust gas recirculati	on ac	tuato	s, ste	pper
		and vacuum operated actuator.		-		-	
Unit I		GINE CONTROL SYSTEMS		9	0	0	9
		for fuel control-engine control subsystems - ignition control n					
		agement - block diagram of the engine management syster	n. In vehicle netw	works:	CAN	stan	dard,
		standard – diagnostics systems in modern automobiles.					
Unit V		ASSIS AND SAFETY SYSTEMS		9	0	0	9
		system - Cruise control system - electronic control of aut					
-		onic suspension system – working of airbag and role of MEN	IS in airbag syste	ems – c	entra	lized	door
locking	g system -	- climate control of cars.					
			Το	otal (45)	L)= 4	5 Pei	riods

Text I	Books:
1.	Tom Denton, "Automobile Electrical and Electronics Systems", Edward Arnold Publishers, 2000.
2.	William B. Ribbens, "Understanding Automotive Electronics", 5th edition, Newnes Publishing, 2000.
Refer	ence Books:
1.	Barry Hollembeak, "Automotive Electricity, Electronics & Computer Controls", Delmar Publishers, 2001.
2.	"Fuel System and Emission controls", Check Chart Publication, 2000.
3.	Ronald. K. Jurgon, "Automotive Electronics Handbook", McGraw-Hill, 1999.
4.	S.Gupta and J P Gupta, "PC Interfacing for Data Acquisition and Process Control", Instrument Society of
	America,1994.
E-Ref	ferences:
1.	https://nptel.ac.in/courses/107106088
2.	https://www.youtube.com/watch?v=2IosZDDqctU
3.	https://www.renesas.com/in/en/application/automotive/chassis-safety
	https://www.youtube.com/watch?v=2IosZDDqctU

	Dutcomes: npletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Know the importance of emission standards in automobiles	Understanding
CO2	Understand the electronic fuel injection/ignition components and their function	Applying
CO3	Choose and use sensors and equipment for measuring mechanical quantities, temperature and appropriate actuators.	Applying
CO4	Diagnose electronic engine control systems problems with appropriate diagnostic tools.	Applying
CO5	Understand the safety measures in chassis and vehicle.	Applying

				С	OURSI	E ART	TCUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
		3/2	2/1 - in	ndicates	s streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	Low)			

22	ECPE72	EMBEDDED C		SEMESTER VII				
PR	EREQUI	SITE	CATEGORY	PE	Cre	edit	3	
1. (C Program	ming	Hours/Week	L	Т	Р	T H	
			Hours/ Week	3	0	0	3	
Co	urse Obje	ctives:						
1		e embedded programs using the C programming language.						
2		erstand and build skills in writing circuit and assembly-level co	ode.					
3		act knowledge on programming for real time problems.		1				
-		TRODUCTION TO EMBEDDED SYSTEMS		9	0	0	9	
Prog	gramming	Best Practices for Embedded Systems-Difference betwee Language- Operating system- Develop embedded software. t requirements- Clock-Memory-I/O pins and timers- Interrupt	8051 microcontrol	ler- Intr	oducti	on-ext	ternal	
U	nit II 🛛 EN	MBEDDED PROGRAMMING		9	0	0	9	
Run Basi	Introduction - Installing the Keil software and loading the project-Configuring the simulator- Building the target – Running the simulation – Dissecting the program – Aside: Building the hardware - Reading switches : Introduction – Basic techniques for reading from port pins – Example : Reading and writing bytes – bits- The need for pull-up resistors – Examples: Dealing with switch bounce – Reading switch inputs- counting goats							
Un	it III R	EAL TIME PROGRAMMING		9	0	0	9	
the cons Crea	Hello Em straints – (ating a port	I programming with C – The Project Header (Main.h)- The p bedded World' example – Restructuring the goat-counting ex Creating 'hardware delays' using Timer 0 and Timer 1- Ex able hardware delay- Creating loop timeouts and hardware time (BEDDED OS)	ample-Further example: Generating	nples- N	/leeting	g real-	time	
		bedded operating system-Basis of a simple embedded OS- Ir	straduaina «EOS		-	-		
1– A Mul Traf Con	Alternative ti state system fic light so troller for a	system architectures – Important design constraints when us stems and function sequences- Introduction – Implementing equencing and Animatronic dinosaur– Implementing a multi a washing machine.	sing sEOS- Examp g a multi-state syst	le-Milk em (tim ut / Tim	pasteu ed) -] ed) -]	rizatio Examp Examp	on - ole: ole:	
		TERFACE AND CASE STUDY	1 1	9	0	0	9	
Flow	v control -	terface- Introduction – RS-232- basic RS-232 protocol – Asyn- - The software architecture – Using the on-chip UART for I chitecture-Example-Data acquisition and Remote – control rol	RS-232 communica	tions- N truder al	lemor arm sy	y-Exai /stem.	nple-	
				Fotal(45	L) =4:	5 Peri	vas	
Te	xt Books:							
1.		J.Pont," Embedded C", Pearson Education, 2008.						
2.	Stepher	Oualline, "Bare Metal C Embedded Programming for the Re-	al World" , No Star	ch Press	,2022			
Re	ference Bo		,		/			
1.		egesmund, "Embedded C Programming Techniques and Appl						
			lications of C and P	IC MCU	JS", El	lsevier		
2.	Science					lsevier	•	

	O'Reilly Media, 2006.						
4.	LyLa B. Das, "Embedded Systems: An Integrated Approach", Pearson Education India, 2012.						
E-F	E-References:						
1.	https://www.cranesvarsity.com/courses/embedded-c-course/						
2.	https://www.udemy.com/course/embedded-c-programming-for-embedded-systems/						

	Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped						
CO1	Understand basics of embedded systems and 8051 microcontroller Understanding							
CO2	Develop basic embedded programs	Applying						
CO3	Develop advanced embedded programs	Applying						
CO4	Relate and write programs for embedded Operating System	Remembering						
CO5	Analyse the case study problems	Analysing						

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	-	-	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	2	2	2	-	-	-	-	-	-	1	1	-	-
CO3	2	2	2	2	2	-	-	-	-	-	-	1	1	-	-
CO4	2	2	2	2	2	-	-	-	-	-	2	2	2	-	-
CO5	2	2	2	2	2	-	-	-	-	-	2	-	2	-	2
Avg	2	1.8	2	2	2	-	-	-	-	-	2	1.3	1.5	-	2
		3/2/	/1 - in	dicates	streng	th of c	orrela	tion (.	3-High	n,2- Mea	lium,1	- Low))		

22ECPE73	WIRELESS SENSOR NETWORKS SEMESTER VII									
PRE-REQUISITE		CATEGORY	PE	Cre	edit	3				
1. Wireless networks		Hours/Week	L	Т	Р	TH				
		Hours/ week	3	0	0	3				
Course Objectives:										
1. Learn fundamen	tal of Ad hoc network and architecture									
2. Understand the	MAC and routing protocols.									
3. Have an in-dept	n knowledge on QoS, security and sensor network platform	ns								
Unit I ROUT	ING PROTOCOLS		9	0	0	9				
Elements of Ad hoc W	vireless Networks, Issues in Ad hoc wireless networks, Ex	ample commercial a	pplicat	ions	of Ac	l hoc				
	wireless Internet, Issues in Designing a Routing Pro-									
	ting Protocols, Table Driven Routing Protocols – Destina		ance V	'ector	(DS	DV),				
On–Demand Routing	protocols -Ad hoc On-Demand Distance Vector Routing	(AODV).								
Unit II ARCHI	Jnit IIARCHITECTURES OF WSN9009									
WSN application example	nples, Types of applications, Challenges for Wireless Sen	sor Networks, Enab	ling Te	echno	logie	s for				
Wireless Sensor Netw	orks, Single-Node Architecture: Hardware Components	, Energy Consumpt	ion of	Sens	or No	odes,				
Operating systems and	execution environments									
	Sensor Network Scenarios, Optimization goals and figu	res of merit, Desig	n princ	iples	of V	VSN,				
Service interfaces of V	VSNs, gateway concepts.									
Unit III INFRA	STRUCTURE ESTABLISHMENT		9	0	0	9				
				Ŭ	Ŭ	-				
	n – Introduction to the time synchronization problem									
	tocols based on receiver/ receiver synchronization - Lo									
	Mathematical basis for the iteration problem - Single-ho	op localization – Po	sitionir	ng in	mult	ı-hop				
	ct of anchor placement.			•	0	•				
-	TY OF SERVICE AND ADVANCED APPLICATION		9	0	0	9				
	verage and deployment, Reliable data transport, Single pa									
	ol - Advanced application support: Advanced in-netwo	rk processing, Secu	rity ar	d Ap	plica	tion-				
specific support.										
	R NETWORK PLATFORMS AND TOOLS		9	0	0	9				
	re – Berkeley Motes, Programming Challenges, Node-le									
	evel Simulators – NS2 and its extension to sensor net	works, COOJA, TO	DSSIM	Prog	gram	ming				
beyond individual nod	es – State centric programming.		1 (4 7 7	<u> </u>	<u> </u>	• •				
		Tot	al (45I	<i>.</i>) = 4	5 Pei	riods				

Text	Text Books:							
1.	C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education – 2008							
2.	Holger Karl and Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2007.							
Refer	Reference Books:							
1.	Feng Zhao and Leonides Guibas, "Wireless sensor networks ", Elsevier publication - 2004.							
2.	Charles E. Perkins, —Ad Hoc Networking, Addison Wesley, 2000.							
3.	William Stallings, "Wireless Communications and Networks ", Pearson Education – 2004							
4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer							
	Networks, Elsevier, 2002, 394 - 422.							

E-Re	E-References:							
1.	https://nptel.ac.in/courses/106105183							
2.	https://nptel.ac.in/courses/106105183							
3.	https://archive.nptel.ac.in/courses/106/105/106105160/							

	Course Outcomes: Upon completion of this course, the students will be able to								
CO1	Know the basics of Ad hoc networks and Wireless Sensor Networks	Understanding							
CO2	Have a knowledge on architecture of Wireless Sensor Networks	Applying							
CO3	Establish the infrastructure with the understanding of time synchoronization problem.	Applying							
CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	Understanding							
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	Remembering							

	COURSE ARTICULATION MATRIX														
COs/PO s	PO 1	PO2	PO3	PO4	PO5	PO 6	PO7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	I	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	I	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

L Digital communication L T P T 1. Digital communication Image: Course Objectives: Image: Course Objective: Image: Course Objective:	22ECPE74	TELECOMMUNICATION AND SWITCHING NETW	ORKS	SEI	MES	TER	VII	
Hours/Week Hours/Week 1 To understand the fundamentals and application of telecommunication networks. 2. To understand and design Modern digital telecommunication networks. 3. To understand and design Modern digital telecommunication switching and networks. 4. To understand recent topics like switching systems, time division switching and networks. 9. 0. 0. 6. 9. 0. 0. 7. 1. MULTPLEXING 9. 0. 0. 7. 1. DIGITAL SWITCHING 9. 0. 0. 0. 7. 1. DIGITAL SWITCHING 9. 0.	PRE-REQUIS	ТЕ С	CATEGORY	PE	Cre	edit	3	
Course Objectives:	1. Digital comm	unication	Hours/Week				TH	
1. To understand the fundamentals and application of telecommunication networks. 2. To understand recent topics like switching systems, time division switching systems, ISDN, voice data integratiand importance of telephone traffic analysis and telephone networks. 9 0 0 17 Unterstand recent topics like switching systems, time division switching systems, ISDN, voice data integratiand importance of telephone traffic analysis and telephone networks. 10 IVIII MULTPLEXING 9 0				3	0	0	3	
2. To understand and design Modern digital telecommunication switching and networks. 3. To understand recent topics like switching systems, time division switching systems, ISDN, voice data integrati and importance of telephone raffic analysis and telephone networks. 9 0<	l l		-					
3. To understand recent topics like switching systems, time division switching systems, ISDN, voice data integrati and importance of telephone traffic analysis and telephone networks. Unit I MULTIPLEXING 9 0 0 9 Transmission Systems, FDM Multiplexing and modulation, The Introduction to digits, Digital Transmission, Asynchronous and synchronous transmission, Line Coding, Binary N-Ze Substitution, Digital Biphase, Differential Encoding, error performance Time Division Multiplexing, Time Division Multiplex Loops and Rings. 9 0								
and importance of telephone traffic analysis and telephone networks. 9 0				•	1.4	• ,		
Unit I MULTIPLEXING 9 0 0 0 5 Transmission Systems, FDM Multiplexing and modulation, The Introduction to digits, Digital Transmission a Multiplexing: Pulse Transmission, Asynchronous and synchronous transmission, Line Coding, Binary N-Ze Substitution, Digital Biphase, Differential Encoding, error performance Time Division Multiplexing, Time Division Multiplexing, Time Division Multiplexing, Time Division Switching, two-dimensional Switching: STS Switching Functions, Space Division Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environmer Elements of SSN07 9 0 <td< td=""><td></td><td></td><td>systems, ISDN,</td><td>voice</td><td>data</td><td>integ</td><td>ratio</td></td<>			systems, ISDN,	voice	data	integ	ratio	
Transmission Systems, FDM Multiplexing and modulation, The Introduction to digits, Digital Transmission as Multiplexing: Pulse Transmission, Asynchronous and synchronous transmission, Line Coding, Binary N-Ze Substitution, Digital Biphase, Differential Encoding, error performance Time Division Multiplexing, Time Divisio Multiplex Loops and Rings. Unit II DIGITAL SWTTCHING 9 0		· · · · ·		9	0	0	9	
Multiplexing: Pulse Transmission, Asynchronous and synchronous transmission, Line Coding, Binary N-Ze Substitution, Digital Biphase, Differential Encoding, error performance Time Division Multiplex Loops and Rings. 9 0<			to digits Digi		-	-		
Switching Functions, Space Division Switching, Time Division Switching, two-dimensional Switching: STS Switching Striching: STS Switching TST Switching, No.4 ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environmet Elements of SSN07 signalling. Unit III NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT 9 0 0 9 Timing: Timing Recovery, Phase-Locked Loop, Clock Instability, Elastic Store, Jitter Measurements, Systematic Jitte Timing: Site Access, Asynchronous Multiplexing, Network Synchronization, U.S. Network Synchronizatio Network Control, Network Management. 9 0 0 9 Unit IV DIGITAL SUBSCRIBER ACCESS 9 0 0 9 ISDN: Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid FibCoax Systems, and Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satelli Services. Unit V TRAFFIC ANALYSIS 9 0 0 9 Pradic Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blockit Probabilities: End-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Exponential service Times, Consta 9 0 0 9 Tartal (45L) = 45 Perio Total (45L)	Substitution, D	gital Biphase, Differential Encoding, error performance Time D						
TST Switching, No.4 ÈSS Toll Switch, Digital Cross-Connect Systems, Digital Switching in an Analog Environmet Elements of SSN07 signalling. Unit III NETWORK SYNCHRONIZATION CONTROL AND MANAGEMENT 9 0 0 9 Timing: Timing Recovery, Phase-Locked Loop, Clock Instability, Elastic Store, Jitter Measurements, Systematic Jitt Timing: Timing Recovery, Phase-Locked Loop, Clock Instability, Elastic Store, Jitter Measurements, Systematic Jitt Timing: Timing Recovery, Phase-Locked Loop, Clock Instability, Elastic Store, Jitter Measurements, Systematic Jitt Timing: Timing Recovery, Phase-Locked Loop, Clock Instability, Elastic Store, Jitter Measurements, Systematic Jitt Wint IV DIGITAL SUBSCRIBER ACCESS 9 0 0 0 5 Storp: Asymmetric Digital Subscriber Line, VDSL, Digital Loop Carrier Systems: Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fib Coax Systems, and Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satelli Services. Unit V TRAFFIC ANALYSIS 9 0 0 0 5 Strice: Unit V TRAFFIC ANALYSIS 9 0 0 0 5 Service: Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blockin Probabilities: End-to-End Blocking Probabilitie	Unit II DI	JITAL SWITCHING		9	0	0	9	
Timing: Timing Recovery, Phase-Locked Loop, Clock Instability, Elastic Store, Jitter Measurements, Systematic Jitter Timing Inaccuracies: Slips, Asynchronous Multiplexing, Network Synchronization, U.S. Network Synchronization Network Control, Network Management. Unit IV DIGITAL SUBSCRIBER ACCESS ISDN: Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Subscriber Line, VDSL, Digital Loop Carrier Systems: Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fib Coarse Systems, and Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satelli Services. 9 0 0 9 Unit V TRAFFIC ANALYSIS 9 0 0 9 0 0 9 Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blockin Probabilities: End-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Exponential service Times, Consta Service Times, Finite Queues. Total (45L) = 45 Perio Total (45L) = 45 Perio Reference Books: 1 J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition. 2 2 0 2 2 JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson. Reference Books: 1 R.A.Thomson, "Telephone	Elements of SSI	· · ·	witching in an	Analo	og En	viron	men	
Timing Inaccuracies: Slips, Asynchronous Multiplexing, Network Synchronization, U.S. Network Synchronization Network Control, Network Management. DIGITAL SUBSCRIBER ACCESS 9 0 0 9 Unit IV DIGITAL SUBSCRIBER ACCESS 9 0 0 9 ISDN: Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Subscribt Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fib Coax Systems, and Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satelli Services. 9 0 0 0 9 Unit V TRAFFIC ANALYSIS 9 0 0 0 9 Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blockin Probabilities: End-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Exponential service Times, Consta Service Times, Finite Queues. Total (45L) = 45 Perio Total (45L) = 45 Perio Reference Books: 1 J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition. 2 JE Flood, "Telephone switching Systems", Artech House Publishers, 2000. 2 V. Stalli	Unit III NE	TWORK SYNCHRONIZATION CONTROL AND MANAGEM	MENT	9	0	0	9	
Loops: Asymmetric Digital Subscriber Line, VDSL, Digital Loop Carrier Systems: Universal Digital Loop Carri Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fib Coax Systems, and Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satelli Services. Unit V TRAFFIC ANALYSIS 9 0 0 0 9 Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blockin Probabilities: End-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Exponential service Times, Consta Service Times, Finite Queues. Total (45L) = 45 Perio Text Books: 1. J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition. 2. JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson. Reference Books: 1. R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. 2. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. 3. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science		-		9	0	0	9	
Traffic Characterization: Arrival Distributions, Holding Time Distributions, Loss Systems, Network Blockin Probabilities: End-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Exponential service Times, Consta Service Times, Finite Queues. Total (45L) = 45 Perio Text Books: 1. J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition. 2. JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson. Reference Books: 1. R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. 2. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. 3. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science	Loops: Asymm	etric Digital Subscriber Line, VDSL, Digital Loop Carrier Syste	ems: Universal	Digita	al Lo	op C	cribe	
Total (45L) = 45 Perio Text Books: 1. J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition. 2. JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson. Reference Books: 1. R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. 2. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. 3. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science	Coax Systems, Services.	and Voice band Modems: PCM Modems, Local Microwave E		vice, 1	Digita	al Sa	Fibe tellit	
Text Books: 1. J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition. 2. JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson. Reference Books: 1. R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. 2. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. 3. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science	Coax Systems, Services. Unit V TR Traffic Charac	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions,	Distribution Ser	vice, 1 9 5, Net	Digita 0 work	al Sa 0 Blo	Fibe tellit 9 ckin	
 J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition. JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson. Reference Books: R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science 	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: E	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems	Distribution Ser Loss Systems Exponential se	vice, 9 s, Net ervice	Digita 0 work Time	al Sa 0 Blo s, Cor	Fibe tellit 9 ckin nstar	
 JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson. Reference Books: R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science 	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: Ex Service Times, T	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems	Distribution Ser Loss Systems Exponential se	vice, 9 s, Net ervice	Digita 0 work Time	al Sa 0 Blo s, Cor	Fibe tellit 9 ckin nstar	
Reference Books: 1. R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. 2. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. 3. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: En Service Times, T Text Books:	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Finite Queues.	Distribution Ser Loss Systems Exponential se	vice, 9 s, Net ervice	Digita 0 work Time	al Sa 0 Blo s, Cor	Fibe tellit 9 ckin nstar	
 R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000. W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science 	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: E Service Times, T Text Books: 1. J. Bellar	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Finite Queues. Phy, "Digital Telephony", John Wiley, 2003, 3rd Edition.	Distribution Ser Loss Systems Exponential se	vice, 9 s, Net ervice	Digita 0 work Time	al Sa 0 Blo s, Cor	Fibe tellit 9 ckin nstar	
 W. Stalling, "Data and Computer Communications", Prentice Hall, 1993. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science 	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: Ex Service Times, T Service Times, T Text Books: 1. J. Bellar 2. JE Flood	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Finite Queues. hy, "Digital Telephony", John Wiley, 2003, 3rd Edition. , "Telecommunications Switching, Traffic and Networks", Pearson.	Distribution Ser Loss Systems Exponential se	vice, 9 s, Net ervice	Digita 0 work Time	al Sa 0 Blo s, Cor	Fibe tellit 9 ckin nstar	
3. T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: En Service Times, T Service Times, T <u>Text Books:</u> 1. J. Bellar 2. JE Flood Reference Boo	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Finite Queues. ty, "Digital Telephony", John Wiley, 2003, 3rd Edition. , "Telecommunications Switching, Traffic and Networks", Pearson. SS:	Distribution Ser Loss Systems Exponential se To	vice, 9 s, Net ervice	Digita 0 work Time	al Sa 0 Blo s, Cor	Fibe tellit 9 ckin nstar	
	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: En Service Times, Service Times, 1. J. Bellar 2. JE Flood Reference Boo 1. R.A. Thc	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Finite Queues. Py, "Digital Telephony", John Wiley, 2003, 3rd Edition. , "Telecommunications Switching, Traffic and Networks", Pearson. SE mson, "Telephone switching Systems", Artech House Publishers, 20	Distribution Ser Loss Systems Exponential se To	vice, 9 s, Net ervice	Digita 0 work Time	al Sa 0 Blo s, Cor	Fibe tellit 9 ckin	
	Coax Systems, Services. Unit V TR Traffic Charac Probabilities: En Service Times, T Service Times, T 1. J. Bellar 2. JE Flood Reference Boo 1. R.A.Thc 2. W. Stall	and Voice band Modems: PCM Modems, Local Microwave E AFFIC ANALYSIS erization: Arrival Distributions, Holding Time Distributions, id-to-End Blocking Probabilities, Overflow Traffic, Delay Systems: Finite Queues. Py, "Digital Telephony", John Wiley, 2003, 3rd Edition. , "Telecommunications Switching, Traffic and Networks", Pearson. ss: mson, "Telephone switching Systems", Artech House Publishers, 20 ng, "Data and Computer Communications", Prentice Hall, 1993.	Distribution Ser	9 s, Net ervice tal (45)	Digita 0 work Times L) =	al Sa 0 Blo s, Cor 45 Pe	Fibi telli 9 ckir nsta	

	Syed. R. Ali —Digital switching systems, McGraw Hill New York	1998
--	---	------

4 **E-References:** https://www.telecommunications-tutorials.com/ 1. 2. https://cosmolearning.org/video-lectures/sonetsdh-11113/ 3. https://ieeexplore.ieee.org/document/6770122

	Course Outcomes: Jpon completion of this course, the students will be able to							
CO1	Understand the concepts of Frequency and Time division multiplexing	Understanding						
CO2	Design the Space division switching and Time division switching	Applying						
CO3	Understand the concepts of network organization of telephone networks	Understanding						
CO4	To compare telephone network, data network and integrated service digital network.	Understanding						
CO5	Analyze traffic in telephone networks	Applying						

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	2	1
CO2	2	1	-	-	-	-	-	-	-	-	-	-	2	2	1
CO3	2	-	1	-	-	1	-	-	-	-	-	-	2	2	1
CO4	2	-	1	-	-	-	-	-	-	-	-	-	-	2	1
CO5	2	1	-	1	-	-	-	-	-	-	-	-	2	2	1
Avg	2	1	1	1	-	1	-	-	-	-	-	-	2	2	1
		3/2	2/1 - in	ndicates	s streng	th of c	correla	tion (3	8-High	,2- Med	ium,1·	Low)			

22ECPE81	CATION	SEMESTER VIII								
PRE-REQUIS	TE	CATEGORY	PE	Cre	edit	3				
1. Basic mathem	natical alysis skills and digital modulation techniques.	TT / T T	L	Т	Р	ТН				
		Hours/Week	3	0	0	3				
Course Object	ves:									
1. Highli	ght the features of data redundancy and various compression techr	iques involved.								
2. To unc	lerstand the various challenges involved in text and audio compres	ssion.								
3. To imp	art knowledge on various image and video compression technique	es.								
Unit I II	NTRODUCTION AND TEXT COMPRESSION		9	0	0	9				
	verview of information theory - Redundancy - Compression Tec									
	Measures of performance - Text compression: Shannon Fano					metic				
	ary techniques - LZW family algorithms - Entropy measures of p	erformance – Qua	lity me	easur	es.					
	UDIO COMPRESSION		9	0	0	9				
	bectral masking, Temporal masking, and Psychoacoustic model -									
	G.722 - Application to audio coding: MPEG audio - Prog	ressive encoding	for a	udio	- S	ilence				
	peech compression techniques- Vocoders.									
Unit III II	MAGE COMPRESSION AND VIDEO COMPRESSION		9	0	0	9				
	sion: Predictive techniques - PCM - DPCM - DM - Transform									
	andards - Study of EZW. Video compression: Video signal re									
	l based coding - The MPEG-1 Video Standard - The MPE	EG-2 Video Stand	lard:	H.262	2 - 1	TU-T				
Recommendation										
	IULTIMEDIA COMMUNICATIONS		9	0	0	9				
	Multimedia networks: Telephone - Data - Broadcast televisi									
	ltimedia applications: Interpersonal communications – Intera									
	pplications - Application and networking terminology: Media	 Communication 	mode	es –	Netw	ork –				
	erencing – Network QoS – Application QoS.		-							
	TANDARDS FOR MULTIMEDIA COMMUNICATIONS		9	0	0	9				
	Reference models: TCP/IP- Protocol basics - Standards relating t									
	- Packet switched networks - Electronic mail - Standards relation									
	ation browsing- Electronic commerce - Intermediate systems	- Java and JavaS	cript -	– Sta	ndar	ds for				
entertainment a	entertainment applications: Movie/Video on demand - Interactive television. Total (45L) = 45 Periods									
		Tot	al (45)	L) = (43 Pe	eriods				
Text Books.										

Text	Books:							
1.	Sayood Khaleed, - "Introduction to data compression", Morgan Kauffman, London, 2006.							
2.	Fred Halshall - "Multimedia communication - Applications, Networks, Protocols and Standards", Pearson Education, 2007.							
Refer	rence Books:							
1.	Watkinson J, "Compression in video and audio", Focal press, London, 1995.							
2.	Mark Nelson, — "Data compression book", BPB Publishers, New Delhi, 1998.							
3.	Jan Vozer,Video compression for multimedial, AP 83rofess, New York, 1995							
4.	Peter D. Johnson Jr., Greg A. Harris, D.C. Hankerson, "Introduction to Information Theory and Data Compression", 2 nd Edition, Chapman and Hall/CRC, February 26, 2003.							
E-Re	ferences:							
1.	http://freevideolectures.com/Course/2278/Data-Communication/30							
2.	http://nptel.ac.in/courses/106105082/30							
3.	https://www.google.co.in/books/edition/Multimedia_Communications_Applications_N/g_lECYMqrVwC?hl=en							
	<u>&gbpv=1&dq=Fred+Halsall,+%E 2% 80% 95 Multimedia + communication -+ Applications, + Networks, +</u>							
	Protocols + and + Standards % E 2% 80 % 96, + Pearson + education, + 2007 + pdf + download & printsec =							
	frontcover							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	To understand different coding techniques and apply various algorithms for compression.	Understanding					
CO2	To understand the quality and performance of various text and audio compression algorithms.	Understanding					
CO3	Apply various text and video compression algorithms for practical applications.	Applying					
CO4	Apply the compression concepts in multimedia communication.	Applying					
CO5	Able to configure multimedia communication network.	Analysing					

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	1	1	3	2	-	-	-	-	-	-	-	3	1	2
CO2	3	2	1	3	1	-	-	-	-	-	-	-	3	1	2
CO3	3	2	1	2	2	-	-	-	-	-	-	-	3	2	1
CO4	2	2	2	3	1	-	-	-	-	-	-	-	3	1	1
CO5	2	2	1	3	1	-	-	-	-	-	-	-	3	2	2
Avg	2.4	1.8	1.2	2.8	1.4	-	-	-	-	-	-	-	3	1.4	1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECPE82	SEN	SEMESTER VIII							
PRE-REQUI	SITE:	CATEGORY	PE	Cre	edit	3			
1 VI SI desig		Hours/Week	L	Т	Р	TH			
1. VLSI desig	11	Hours/ week	3	0	0	3			
Course Object	ctives:								
	nd the concepts of Physical Design Process such as partitioning, I	<u> </u>				ng.			
	he concepts of design optimization algorithms and their application		n auto	matio	n.				
	nd the concepts of simulation and synthesis in VLSI Design using algorithmic methods.	Automation Fo	rmula	te CA	D de	esign			
Unit I II	NTRODUCTION TO VLSI DESIGN AUTOMATION TOOL	.S	9	0	0	9			
	automation tools- algorithms and system design. Structural and verification methods. Design management tools.	d logic design. Tr	ansist	or lev	el de	sign.			
Unit II L	OGIC SYNTHESIS AND VERIFICATION		9	0	0	9			
•••	sis- gate level and switch level modeling and simulation. BDD principles, implementation, construction and manipulation.	ion. Introduction to Two level logic sy			onal	logic			
	AYOUT COMPACTION, PLACEMENT AND PARTITION		9	0	0	9			
methods. Alg	Layout compaction, placement and routing. Design rules, symbolic layout. Applications of compaction. Formulation methods. Algorithms for constrained graph compaction. Circuit representation. Wire length estimation. Placement algorithms. Partitioning algorithms.								
Unit IV F	LOOR PLANNING AND ROUTING		9	0	0	9			
	g and routing- floor planning concepts. Shape functions and flo anel routing, global routing and its algorithms.	or planning sizing.	Loca	al rou	ting.	Area			
Unit V T	IMING CLOSURE		9	0	0	9			
Overview of timing analysis – Delay parameters of combinational circuits, sequential circuits – Sequential circuits with clock skew and clock jitter – Setup and hold time check.									
	Total (45L)= 45 Periods								

Text	Books:						
1.	Sebastin smith, "ASIC", Wesley Longman, 1997.						
2.	Jan Rabiey, "Digital Integrated Circuits", Prentice Hall, 2003.						
Refe	Reference Books:						
1.	S.M. Sait, H. Youssef, "VLSI Physical Design Automation", Cambridge India, 2010.						
2.	M.Sarrafzadeh, "Introduction to VLSI Physical Design", McGraw Hill (IE), 1996.						
3.	Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw Hill, 2017						
4.	Andrew B. Kahng and Jens Lienig "VLSI Physical Design: From Graph Partitioning to Timing Closure", Springer, 2011						
E-Re	ferences:						
1.	https://nptel.ac.in/courses/106105161						
2.	https://www.vlsi-expert.com/p/physical-design.html						
3.	https://www.academia.edu/36687882/VLSI_Design_smd154_Physical_design_back_end						

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Know to place the blocks and to partition the blocks while designing the layout for IC.	Understanding					
CO2	Solve the performance issues in circuit layout.	Applying					
CO3	Analyze physical design problems and Employ appropriate automation algorithms for partitioning, floor planning, placement and routing	Analysing					
CO4	Decompose large mapping problem into pieces, including logic optimization with partitioning, placement and routing	Applying					
CO5	Students are able to analyze circuits using both analytical and CAD tools.	Applying					

				С	OURSI	E ART	TCUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	1	1	-	-	-	-	-	-	-	-	1	1	-
CO2	2	2	1	1	-	-	-	-	-	-	-	-	1	-	-
CO3	2	2	1	1	-	-	-	-	-	-	-	-	1	-	-
CO4	1	1	1	1	-	1	-	-	-	-	-	-	1	1	-
CO5	3	3	1	1	3	1	-	-	-	-	-	-	1	2	3
Avg	1.8	1.8	1	1	3	1	-	-	-	-	-	-	1	1.3	3
		3/2	2/1 - in	ndicates	s streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1·	· Low)			

22ECPE83	22ECPE83 RF&EMI/EMC TESTING									
PRE-REQU	ISITE	CATEGORY	PE	Cr	edit	3				
		Hours/Week	L	Т	Р	TH				
1. Physics f	for electromagnetism	Hours/ week	3	0	0	3				
Course Obje	ectives:									
	1. To know the RF equipment's needed for testing.									
-	in the concepts of EMI and EMC in electrical circuits and their ch	naracteristics.								
	duce the importance of measuring equipment's.									
	rt the knowledge on grounding and shielding measures and desigr	aspects.								
	se basic concepts of standards and regulations									
	RF EQUIPMENT FOR MEASUREMENT AND ANTENNA		9	0	0	9				
	MEASUREMENT		-	v	Ŷ	-				
	nalyzer- Principle, Measurement procedure, Network Analyz									
	Antenna Measurement: Reflection coefficient, Return loss of									
·	d Network Analyzer, Gain Measurement, Radiation pattern me	asurement in both	Indoo	r and	Aneo	choic				
chamber, Tes			-							
	EMC FUNDAMENTALS		9	0	0	9				
	f EMI and EMC, Sources and Simulators, Propagation Meth				•					
	, cross talk or near field coupling, EM coupling in Far field,	EM topology and	grou	nding	, Filte	ering,				
Shielding.						1				
	EMI FROM APPARATUS, CIRCUITS AND OPEN AREA T		9	0	0	9				
0	etic emissions, noise from relays and switches, nonlinearities in ci	· 1			-					
	pply lines, electromagnetic interference. Open area test sites	and measurements	s, ope	n-are	a test	site,				
	te attenuation, antenna factor measurement.									
	RADIATED AND CONDUCTED INTERFERENCE MEASU		9	0	0	9				
	amber, TEM cell, giga-Hertz TEM Cell, comparison of test f									
	ages, conducted EM noise on power lines, conducted EMI from	equipment, immun	ity to	cond	ucted	EMI,				
detectors and measurements.										
Unit V E	EMC STANDARDS		9	0	0	9				
Overview of	Overview of EMC Standards, Radiated and Conducted Emission (RE/CE) Standards, Radiated and Conducted									
Immunity (R	Immunity (RI/CI) Standards, Electrostatic Discharge (ESD) Standards.									
	Total (45L)= 45 Periods									

Text 1	Text Books:									
1.	IET Electrical Measurement Series, "Microwave Measurements" 3rd Edition.									
2.	Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009.									
Refer	Reference Books:									
1.	V.P. Kodali, Engineering Electromagnetic Compatibility, 2/e, Wiley-IEEE Press, 2001.									
2.	Dipak L. Sengupta and Valdis V. Liepa,"Applied Electromagnetics and Electromagnetic Compatibility", John									
	Wiley & Sons.									
3.	C. R. Paul, Introduction to Electromagnetic Compatibility, John Wiley and Sons, 2013.									
4.	EMI/EMC Tesing, Society of Applied Microwave Electronics Engineering and Research									
E-Re	eferences:									
1.	http://edocs.soco.agilent.com									
2.	https://archive.nptel.ac.in/courses/108/106/108106138/									
3.	https://courseware.cutm.ac.in/courses/electromagnetic-compatibility/									

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Explain the basics of RF measurement and Experience testing of RF components.	Analysing						
CO2	Find the source of Electromagnetic interference.	Analysing						
CO3	Predict the proper grounding, Shield and safety equipment's.	Applying						
CO4	Analyze the test conditions for the EUT.	Analysing						
CO5	Explain the measurements with help of testing procedures and explain the standards for EMI/EMC.	Understanding						

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	3	3	3	-	-	-	-	-	2	-	3	2	3
CO2	-	2	3	3	2	-	-	-	-	-	2	-	3	2	3
CO3	-	2	3	2	3	-	-	-	-	-	2	-	2	2	2
CO4	-	2	2	3	3	-	-	-	-	-	2	-	2	2	2
CO5	-	2	3	3	3	-	-	-	-	-	2	-	3	2	3
Avg	-	2	2.8	2.8	2.8	-	-	-	-	-	2	-	2.6	2	2.6
		3/2	2/1 - in	ndicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1·	- Low)			

22EC	22ECPE84 DEEP LEARNING											
PRE-R	EQUIS	ITE	CATEGORY	PE	Cr	edit	3					
			Hours/Week	L	Т	Р	TH					
			nours/ week	3	0	0	3					
Course	Course Objectives:											
1.	1. Understanding the basics concepts of deep learning											
2.	Emphas	sizing knowledge on various deep learning algorithms										
3.	Unders	anding of CNN and RNN to model for real world applications										
4.		anding the various challenges involved in designing deep learning a	lgorithms for vari	ied app	olica	tions.	-					
Unit	tI]	INTRODUCTON TO DEEP LEARNING		9	0	0	9					
	Introduction to Deep Learning: Basics: Biological Neuron, Idea of computational units, McCulloch-Pitts unit and											
	Thresholding logic, Linear Perceptron, Perceptron Learning Algorithm, Linear separability. Convergence theorem for											
		ning Algorithm.										
Unit		EEDFORWARD NETWORKS		9	0	0	9					
		Networks: Multilayer Perceptron, Gradient Descent, Back propa auto encoders.	igation, Empirica	l Risł	K Mi	nimiz	ation,					
Unit		CONVOLUTIONAL NETWORKS		9	0	0	9					
Convol	utional 1	Networks: The Convolution Operation - Variants of the Basic Conv	olution Function	- Stru	cture	d Out	puts -					
		ficient Convolution Algorithms - Random or Unsupervised Features										
Unit	IV F	ECURRENT NEURAL NETWORKS		9	0	0	9					
Recurre	ent Neur	al Networks: Bidirectional RNNs - Deep Recurrent Networks Re	ecursive Neural N	Netwo	rks -	• The	Long					
Short-T	Ferm Me	mory and Other Gated RNNs.										
Unit	Unit VDEEP GENERATIVE MODELS AND APPLICATIONS9009											
Deep C	Generativ	e Models: Boltzmann Machines - Restricted Boltzmann Machine	es - Introduction	to MC	CMC	and (Gibbs					
		ient computations in RBMs - Deep Belief Networks- Deep Boltz				ons: L	arge-					
Scale D	Deep Lea	rning - Computer - Speech Recognition - Natural Language Process	ing - Other Applic	cations	5.							
			Tot	al (45	L) =	45 Pe	riods					

Text Books:										
1.	Ian Good fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.									
2.	Bengio, Yoshua. "Learning deep architectures for AI." Boston Delft 2009									
Reference Books:										
1.	N.D.Lewis, "Deep Learning Made Easy with R: A Gentle Introduction for Data Science", January 2016.									
2.	Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence									
	Algorithms", O'Reilly publications.									
3.	Tariq Rashid, "Make your own neural network " Amazon Digital Services									
4.	Anirudh Koul, "Practical Deep Learning for Cloud, Mobile, and Edge", O'Reilly Media, 2019.									
E-Re	ferences:									
1.	https://machinelearningmastery.com/									
2.	https://ai.google/education/									
3.	https://in.coursera.org/learn/Deep-learning									

	e Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand basic idea behind deep learning.	Remembering
CO2	Develop concept of feed forward network and encoders	Applying
CO3	Apply concept of CNN in a real time application.	Applying
CO4	Apply concept of RNN for an application	Applying
CO5	Develop Deep Generative models	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PSO	PSO	PSO						
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	3	2	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	2.2	1.6	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECPI	E 85	NETWORK SECURITY		SEN	AESTE	ER V	III			
PRE-RE(QUISI	ГЕ	CATEGORY	PE	Cree	dit	3			
			Hours/Week	L	Т	Р	TH			
			nours/ week	3	0	0	3			
Course O	bjectiv	/es:								
		rstand Cryptography Theories, Algorithms and Systems.								
	o under etworks	rstand necessary Approaches and Techniques to build protections.	on mechanisms in	order to	secure	com	puter			
Unit I	[INTRODUCTON		9	0	0	9			
		- Legal, Ethical and Professional Aspects of Security, Need								
		of network security - Security attacks, services and mechanis								
		niques: substitution techniques, transposition techniques, s		Foundat	tions o	of mo	odern			
		rfect security – information theory – product cryptosystem – c	ryptanalysis.			1				
Unit I		SYMMETRIC CRYPTOGRAPHY		9	0	0	9			
		symmetric key cryptography: Algebraic structures - Modular								
		roups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPI								
		of DES – Differential and linear cryptanalysis - Block cipher			k ciphe	er mo	de of			
		uation criteria for AES – Advanced Encryption Standard - RC4	4 – Key distributio							
Unit II		PUBLIC KEY CRYPTOGRAPHY		9	0	0	9			
		asymmetric key cryptography: Primes – Primality Testing -								
		ler's Theorem - Chinese Remainder Theorem – Exponentiat								
		Cryptosystem – Key distribution – Key management – I Elliptic curve arithmetic-Elliptic curve cryptography.	Jille Heilman k	ey exch	ange -	EIC	Jamai			
Unit IV		MESSAGE AUTHENTICATION AND INTEGRITY		9	0	0	9			
		equirement – Authentication function – MAC – Hash function	n Socurity of h		-					
		gnature and authentication protocols – DSS- Entity Authent								
		ols- Authentication applications - Kerberos, X.509.	ication. Diometrix	.s, 1 ass	worus,	Chai	lenge			
Unit V		SECURITY PRACTICE AND SYSTEM SECURITY		9	0	0	9			
		security – PGP, S/MIME – IP security – Web Security - SY	STEM SECURIT		v	-	-			
		es – Firewalls.		1. 11110	acis	1,1411	01045			
			,	Fotal (4	5L) = 4	5 Pe	riods			
Text Boo	oks:									
1. V	William	Stallings, "Cryptography and Network Security: Principles ar	nd Practice". PHI	3rd Edit	ion. 200)6.				
		zA.Foruzan, "Cryptography and Network Security", Tata McG			, = •					
Reference										
$_{2}$ Cl	harlie	Kaufman, Radia Perlman, and Mike Speciner, "Network S World", Prentice Hall, ISBN 0-13-046019-2								
		10114 , 11011100 11011, 10101 0^{-1} 0^{-0} 10017^{-2}								

- 3. Cyber Security and Network Security Sabyasachi Pramanik , Debabrata Samanta, M. Vinay , Abhijit Guha Wiley Publication
- 4. Arthur Salmon, "Applied Network Security", Packt Publishing, 2017.
- E-References:

 1.
 https://geekflare.com/learn-network-security/

 2.
 https://www.checkpoint.com/cyber-hub/network-security/what-is-network-security/

 3.
 https://www.udemy.com/courses/it-and-software/network-and-security/

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand the fundamentals of networks security, security architecture, threats and vulnerabilities	Understanding						
CO2	Apply the different cryptographic operations of symmetric cryptographic algorithms	Applying						
CO3	Apply the different cryptographic operations of public key cryptography	Applying						
CO4	Apply the various Authentication schemes to simulate different applications.	Applying						
CO5	Understand various Security practices and System security standards	Applying						

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	3	2	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	2.2	1.6	2	2	2
		3/2	2/1 - ir	ndicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1-	Low)			

22ECPE	286	SATELLITE COMMUNICATION		SEM	IESTE	R VI	Π
PRERE	QUIS	ITES	CATEGORY	PE	Credi	it	3
			Hours/Week	L	Т		Ή
				3	0	0	3
Course (1.	•	tives: of the course is to introduce students to the fundamentals of satell	ite communication				
	0	de them with a sound understanding of how a satellite comm		success	fully t	ransfe	ers
		on from one earth station to another.	unication system	saccess	iuny e	unor	.10
		e them to examples of applications and tradeoffs that typically oc to apply the knowledge in design problems.	cur in engineering	system	design	, and	to
Unit I		VERVIEW OF SATELLITE SYSTEMS, ORBITS AND LAUI ETHODS	NCHING	9	0	0	9
Kepler's	First	Frequency Allocations for Satellite Services – INTELSAT – U Law – Kepler's Second Law – Kepler's Third Law – Definitions ats – Apogee and Perigee Heights – Orbital Perturbations - Local 1	of Terms for Earth	1 -orbiti	ing Sat	ellites	s –
Unit II	[G	EOSTATIONARY ORBIT & SPACE SEGMENT		9	0	0	9
		Antenna Look Angels – The Polar Mount Antenna – Limits of					
Keeping	– The	of Satellite – Sun Transit Outage – Launching Orbits - Powe rmal Control – TT&C Subsystem – Transponders - Antenna Sub vanced Tiros - N Spacecraft.					
Unit II	I EA	ARTH SEGMENT & SPACE LINK		9	0	0	9
Voise.		 Uplink – Down link - Effects of rain – Combined Uplink and T ATELLITE ACCESS 	Downlink C/N Rati	10 – Inte			n g
limited 7	ГWТ	 Preassigned FDMA - Demand-Assigned FDMA - SPADE samplifier operation - TDMA -On-board signal Processing for A - Code Division Multiple Access. 	•				
Unit V	DI	BS & SATELLITE MOBILE AND SPECIALIZED SERVIC	ES	9	0	0	9
Frequence	cies ar	ast Satellite (DBS) Television - Orbital Spacing - Power R ad Polarization -Transponder capacity - Bit rates for digital Te e Home Receiver Indoor Unit(IDU) – HDTV - Satellite Mobile S	levision -The Hom lervices – VSATs –	ne Rece	orbcon	utdoo nm.	or
Text Bo	oks:						
1.	1	nnis Roddy, "Satellite Communications", Tata McGraw-Hill Educ	ation Private Limit	ed, four	th edit	ion,	
2.	Bar	ry George Evans, "Satellite communication systems", 3rd Edition,	IETPublications 19	999			
Referen	ce Boo	oks:					
1.	Tin	nothy Pratt – Charles Bostian& Jeremy Allmuti, Satellite Commun Ltd, second edition 2014	ications, John Will	ly & So	ons (Asi	a)	
2.		bur L. Pritchars Henri G.SuyderHond Robert A.Nelson, Satellite rson Education Ltd., Second edition 2003	Communication Sy	stems E	Enginee	ring,	
3.	M.I	Richharia, Satellite Communication Systems (Design Principles),	Macmillan Press Lt	d. Seco	nd Edi	tion	
4.	Sate	ellite communication engineering By Michael O. Kolawole, CRC	Press, 2002.				
E-Refere	ences:						

I	1.	http://nptel.ac.in/courses/117105131/
	2.	http://nptel.ac.in/courses/106105082/33
	3.	https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite-engineering-fall-2003/lecture-

Cours	e O	utcomes:	Bloom's						
Upon	com	pletion of this course, the students will be able to:	Taxonomy						
CO1	:	Describe the motion of satellite in the orbit and understand orbital effects in	Understanding						
		communications system performance	-						
CO2	:	Calculate the received carrier power at the input of earth station receiver or satellite	Applying						
CO3	:	Compute the noise power and carrier to noise ratio at the input of earth station or	Applying						
CO4	:	Calculate losses and design both up-link and down link	Applying						
CO5	:	design domestic satellite system using small earth station	Understanding						

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	2	2	1	-	-	-	-	-	-	-	1	2	1
CO2	2	1	1	2	1	-	-	-	-	-	-	-	1	2	2
CO3	2	1	1	1	1	-	-	-	-	-	-	-	1	2	1
CO4	2	1	1	1	1	-	-	-	-	-	-	-	2	2	1
CO5	1	1	1	1	1	-	-	-	-	-	-	-	2	1	1
Avg	1.75	1.2	1.2	1.4	1	-	-	-	-	-	-	-	1.4	1.8	1.2
		3/2	2/1 - in	ndicates	streng	th of c	correla	tion (3	8-High	,2- Med	ium,1-	Low)			

22ECPE87 BIO MEDICAL ELECTRONICS	SEM	EST	ER V	III
PREREQUISITES CATEGORY	PE	Cre	edit	3
Analog Electronics Hours/Week	L	Т	Р	TH
Analog Electronics Hours/Week	3	0	0	3
Course Objectives:				
1. To gain knowledge about the various physiological parameters both electrical and non-electrical	l, the m	ethod	s of	
recording and also the method of transmitting these parameters.				
2. To study about various assist devices used in hospitals.				
Unit I ELECTRO-PHYSIOLOGY AND BIOPOTENTIAL RECORDING	9	0	0	9
The origin of Bio-potentials – Bio potential electrodes types - Bio amplifiers, ECG, EEG, EMG lead	system	s and	recon	rding
methods, typical waveforms and signal characteristics.	•			e
Unit II BIO-CHEMICAL AND NON-ELECTRICAL PARAMETER MEASUREMENT	9	0	0	9
Measurement of pH, PO2 and PCO2, colorimeter - Blood flow meter - Cardiac output - Respirate		meas	urem	ent -
Blood pressure measurement - Heart rate measurement - Pulse rate measurement - Blood cell cou	nters.	1		
Unit III MEDICAL IMAGING SYSTEM	9	0	0	9
Radiography - Computer tomography – Mammography – Magnetic Resonance Imaging – Positron E	mission	Tom	ograj	phy -
Ultrasonography - Thermography,				
Unit IV ASSIST DEVICES AND BIO-TELEMETRY	9	0	0	9
Cardiac pacemakers - DC Defibrillator - Hemodialyzer, Heart Lung Machine, Telemetry: principle	s, Frequ	ency	selec	ction,
Biotelemetry - Radio pill				
Unit V RECENT TRENDS IN MEDICAL INSTRUMENTATION	9	0	0	9
Endoscopy unit - Applications of Laser in medicine - Cryogenic application - Introduction to T	elemedi	cine,	Elect	trical
safety in medical environment				
T	otal (45	L)=4	5 Pei	riods

Text E	Books:
1.	Khandpur, R.S., Handbook of Biomedical Instrumentation, TATA McGraw-Hill, New Delhi, 2014
2.	John G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, 4th edn., 2009
Refere	ence Books:
1.	Joseph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Pearson
2.	Education, 2013.
3.	Leslie Cromwell, Fred J. Weibell, "Erich A. Pfeiffer, Biomedical Instrumentation and Measurements", Pearson
	Education India, 2nd Edition, 2015.
4.	Edward J. Bukstein, Medical electronics, Ungar Publications, 2002
E-Ref	erences:
1.	https://nptel.ac.in/courses/108108180
2.	https://biomedikal.in/2009/12/lecture-notes-on-biomedical-instrumentation/
3.	https://www.digimat.in/nptel/courses/video/108105101/L40.html

Course	Outcomes:	Bloom's	
Upon co	mpletion of this course, the students will be able to:	Taxonomy Mapped	
		**	
CO1	Acquire and analyze the various bio signals and vital parameters.	Analysing	
CO2	Measure biochemical and other physiological information.	Applying	
CO3	To understand the use of radiation for diagnostic and therapy	Understanding	
CO4	Explain the function and application of various diagnostic and therapeutic equipment.	Understanding	
CO5	Explain about the recent developments in the field of biomedical engineering and analyze the safety aspects of medical equipment.	Applying	

	COURSE ARTICULATION MATRIX														
COs/POs	PO	РО	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	-	-	-	-	-	-	-	3	-	2
CO2	3	2	2	1	2	-	-	-	-	-	-	-	3	1	2
CO3	3	1	3	1	1	-	-	-	-	-	-	-	3	1	2
CO4	3	2	2	1	-	-	-	-	-	-	-	-	3	2	1
CO5	3	2	3	1	1	-	-	-	-	-	-	-	3	2	2
Avg	3	1.8	2.4	1.2	1.25	-	-	-	-	-	-	-	3	1.5	1.8
		3/2	2/1 - in	ndicates	s streng	th of c	correla	tion (3	8-High	1,2- Med	ium,1-	- Low)			

22ECP	E88	COGNITIVE RADIO		SEME	STEI	R VI	I					
PRERE	EQUISIT	ES	CATEGORY	PE	Cre	dit	3					
			Hours/Week	L	Т	Р	ТН					
			Hours/ week	3	0	0	3					
Course	Objectiv	res										
1	1 To enable the student to understand the requirements in designing software defined radios and cognitive radio and its functionalities											
2	2 To enable the student to understand the evolving paradigm of cognitive radio communication and the enabling technologies for its implementation.											
3	To anal	yse the spectrum management functions using cognitive rad	io systems and cogn	itive radi	o netv	vork	5.					
Un	nit I		9	0	0	9						
	Marking radio self-aware, the cognition cycle, organization of congnition tasks, structuring knowledge for cognition tasks, Enabling location and environment awareness in cognitive radios –concepts, architecture, design considerations.											
Un	it II	INTRODUCTION TO SDR		9	0	0	9					
degrees	of progr e topolog	Radio: Evolution - essential functions of the Software Def rammability - top level component topology - computation ies among plug and play modules - architecture partitions	onal properties of f	functional	com	pone	ents -					
Uni	t III	COGNITIVE RADIO ARCHITECTURE		9	0	0	9					
	nce Hiera	o – functions, components and design rules, Cognition cy archy, Architecture maps, Building the Cognitive Radio										
Uni	it IV	COGNITIVE RADIO NETWORK SECURITY		9	0	0	9					
		E 802.22 standard for broadband wireless access in TV band IEEE 802.22 - security threats to the radio software.	·	ulation at	tacks	- sec	curity					
Un	it V	MAC AND NETWORK LAYER DESIGN FOR COGN	NITIVE RADIO	9	0	0	9					
	0	ve radios – Multichannel MAC - slotted ALOHA – CSMA, rol and error control techniques.	Network layer desi	gn – routi	ng in	cogi	nitive					
			Τα	otal (45 L) = 4	5 Pe	riods					

Text B	Books:									
1	Alexander M. Wyglinski, MaziarNekovee, and Thomas Hou Y, "Cognitive Radio Communications and Networks - Principles and Practice", Elsevier Inc., 2010									
2	Kwang-Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons Ltd, 2009									
Refere	Reference Books:									
1	Arslan H, "Cognitive Radio, Software Defined Radio and Adaptive Wireless Systems", University of South Florida, USA, Springer, 2007.									
2	Khattab, Ahmed, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks - From Theory to Practice", Springer Series: Analog Circuits and Signal Processing, 2009.									
3	Mitola J, "Cognitive Radio: An Integrated Agent Architecture for software defined radio", Doctor of Technology thesis, Royal Inst. Technology, Sweden 2000.									
4	E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, "Principles of Cognitive Radio", Cambridge University Press, 2013.									
E-Ref	erence:									
1	http://www.wirelessinnovation.org/Cognitive_Radio_Architecture									
2	http://www.xgtechnology.com/innovations/cognitive-radio-networks/									
3	http://www.radio-electronics.com/info/rf-technology-design/cognitive-radio-cr/technologytutorial.php									

	Outcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the concepts and design of cognitive radios.	Understanding
CO2	Study about the SDR architecture and analysis.	Remembering
CO3	Analyse the various cognitive radio network architectures.	Analysing
CO4	Analyse the various security threats to the radio software in cognitive radio network.	Analysing
CO5	To analyse the performance of MAC and network layer design for cognitive radio.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	2	2	1	-	2	-	1	-	1	1	2	-	1
CO2	-	2	2	1	2	-	1	-	1	-	1	1	2	1	1
CO3	-	1	3	1	1	-	1	-	1	-	1	1	2	1	1
CO4	-	2	2	1	-	-	2	-	1	-	1	1	2	2	1
CO5	-	2	3	1	1	-	1	-	1	-	1	1	2	2	1
Avg	-	1.8	2.4	1.2	1.25	-	1.4	-	1	-	1	1	2	1.5	1
		3/2	2/1 - in	ndicates	s streng	th of c	correla	tion (3	8-High	,2- Med	ium,1-	Low)			

OPEN ELECTIVES

22E	COE01	FUNDAMENTALS OF ELECTRON DEV	VICES	OPEN ELECTIV				
PRER	OE	Credit		3				
				L	Т	P	TH	
			Hours/Week	3	0	0	3	
Cours	e Objecti	ves:		•				
1.	To uno	lerstand the fundamentals of electron devices and apply the	he knowledge of thes	se devic	es in	elect	ronic	
2.		ign and analyse single stage and multistage amplifier circuits.	,					
3.	To und	erstand and classify different kinds of power and feedback an	nplifiers.					
Unit I	SE	MICONDUCTOR DIODE		9	0	0	9	
	teristics, '	de, Current equations, Energy Band diagram, Diffusion and c Transition and Diffusion Capacitances, Switching Characteris IPOLAR JUNCTION TRANSISTORS					9	
		erations-Early effect-Current equations — Input and Output content model, Multi Emitter Transistor.	haracteristics of CE, C	CB, CC	– Hybi	rid -p)	
Unit	III FI	ELD EFFECT TRANSISTORS		9	0	0	9	
		ain and Transfer characteristics,-Current equations-Pinch of - Threshold voltage, D-MOSFET, E-MOSFET- Characteristic						
Unit	IV SP	ECIAL SEMICONDUCTOR DEVICES		9	0	0	9	
		ductor Junction- MESFET, FINFET, PINFET, CNTFET, DU ractor diode –Tunnel diode, LASER diode.	AL GATE MOSFET,	Schottk	y barri	er di	ode-	
Unit	V PO	WER DEVICES AND DISPLAY DEVICES		9	0	0	9	
UJT, S cell, C		r, Triac, Power BJT- Power MOSFET- DMOS-VMOS, LED,	LCD, Photo transistor	r, Opto	Couple	er, So	lar	
,								

Text B	ooks:						
1.	Millman and Halkias, "Electronic Devices and Circuits", 4th Edition, McGraw Hill, 2015.						
2.	Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and circuits", Fourth Edition, Tata McGraw- Hill, 2016.						
Refere	Reference Books:						
1.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory" Pearson Prentice Hall, 11th Edition, 2014.						
2.	Bhattacharya and Sharma, "Solid State Electronic Devices", 2nd Edition, Oxford University Press, 2014.						
3.	R.S.Sedha, "A Textbook of Electronic Devices and Circuits", 2nd Edition, S.Chand Publications, 2008.						
4.	David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press, 2008.						

E-Refe	E-References:							
1.	https://archive.nptel.ac.in/courses/108/108/108108122/							
2.	https://www.youtube.com/watch?v=qqQ8wO-lNmI							
3.	https://slideplayer.com/slide/12438044/							

Course Ou Upon comp	tcomes: Interior of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Analyze the characteristics of semiconductor diodes.	Understanding
CO2	Describe the problems of Transistor circuits using model parameters.	Analysing
CO3	Analyze the knowledge of various types of FET.	Analysing
CO4	Gain a knowledge on special semiconductor devices	Understanding
CO5	Understand the knowledge on Power and Display devices.	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PSO	PSO	PSO						
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	1	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	3	1	2	-	-	-	-	-	-	-	-	2	-	-
CO3	2	3	1	3	-	-	-	-	-	-	-	-	3	-	-
CO4	1	2	1	-	-	-	1	-	-	-	1	3	3	-	1
CO5	1	3	1	1	1	-	1	-	-	-	2	3	3	1	2
Avg	1.6	2.8	1	2	2	-	2	-	-	-	1.5	3	2.4	1	1.5
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22E	COE02	OPE	IVE				
PRE	REQU	SITES	CATEGORY	OE	Cre	dit	3
			Hours/Week	L 3	Т	Р	TH
							3
Course Objectives:							
1.		e the knowledge of the basic concepts of AM, FM and PM.					
2.	U	n knowledge about different pulse modulation and digital modul	1				
3.	To gai	n knowledge about technical information on satellite communica	ation and wireless of	commu	nicatio	on	
Unit	Ι	FUNDAMENTALS OF ANALOG COMMUNICATION		9	0	0	9
Mod	ulation:	Introduction - Amplitude modulation: Modulator and demodula	ator with waveform	ns - An	gle M	odula	tion:
		odulation: Modulator and demodulator with waveforms - Phase					
		FM transmitters and receivers (Block diagram approach o	nly) - Compariso	on of	variou	s Ai	nalog
Com	municat	ion System (AM – FM – PM). BASICS OF DIGITAL COMMUNICATION AND PULSE					
Unit	II	MODULATION	2	9	0	0	9
Pulse	e Ampli	ude Modulation (PAM) – Pulse Width Modulation (PWM) – Pr	ulse code Modulati	on (PC	M)–D	iffere	ential
		Modulation - Pulse Position modulation: Generation and de	tection - Compari	son of	vario	us]	Pulse
Com	municat	ion System (PAM – PWM – PCM - PPM).					
Unit	III	DIGITAL MODULATION TECHNIQUES		9	0	0	9
		hift Keying (ASK) - Frequency Shift Keying (FSK) - Minin					
	• •	(BPSK) – QPSK – M- ary PSK- Comparison of various Digita	l Communication	System	(ASK	-F	SK –
PSK Unit	/	SATELLITE COMMUNICATION			•	•	0
				9	0	0	9
		atellites- Kepler's laws - Satellite Orbits-Geo synchrous Satelli					
		em link models: Uplink model and down link model - Multiple Access Schemes, various satellite		ues: 11	DMA	- FD	MA-
CDN	CDMA-SDMA - Comparison of Multiple Access Schemes - various satellite services.						
Unit	V		9	0	0	9	
Cellu	ular con	ept - Frequency reuse-Channel Assignment Strategy - Hand of	f mechanism - Bas	ic prop	agatio	n mo	dels:
	Reflection - diffraction and scattering - Bluetooth-WLAN-Global System for Mobile Communications (GSM) – GPRS.						
	Total (45L)= 45 Periods						

Text l	Books:				
1.	Rappaport T.S, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson Education, 2007				
2.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2010				
Refer	Reference Books:				
1.	Dennis Roddy, John Coolen, "Electronic Communications", Prentice Hall of India, 4th Edition., 2016				
2.	H.Taub, D L Schilling and G Saha, "Principles of Communication", 3 rd Edition, Pearson Education, 2007.				
3.	B. P.Lathi, "Modern Analog and Digital Communication Systems", 3 rd Edition, Oxford University Press, 2007.				
4.	AnokhSingh, "Principles of Communication Engineering", S.CHAND Publication, 2002				

E-R	E-References:						
1.	http://www.nptelvideos.in/2012/11/communication-engineering.html						
2.	https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm						
3.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-2006/lecture-notes/						

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Understand the need for modulation and how analog modulation takes place	Understanding				
CO2	Understand the features of digital communication and pulse modulation.	Understanding				
CO3	Analyse various digital modulation schemes.	Analysing				
CO4	Have the knowledge about satellite communication.	Remembering				
CO5	Have the basics of wireless and mobile communication.	Remembering				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	2	1	-	-	-	-	-	-	-	3	2	2
CO2	2	2	1	1	1	-	-	-	-	-	-	-	2	1	2
CO3	1	3	2	2	1	-	-	-	-	-	-	-	3	1	2
CO4	2	2	1	1	1	-	-	-	-	-	-	-	3	2	2
CO5	1	2	2	1	1	-	-	-	-	-	-	-	3	2	2
Avg	1.6	2.2	1.4	1.4	1	-	-	-	-	-	-	-	2.8	1.6	2
		3/2	2/1 - in	ndicates	s streng	th of c	correla	tion (3	-High	,2- Med	ium,1-	Low)			

22ECC	E03	MICROCONTROLLERS AND ITS APPLIC	AND ITS APPLICATIONS								
PREREQ	UISITE	CS CS	CATEGORY	OE	Cre	dit	3				
	Hours/Week —										
Course Objectives:											
1.	To lea	rn microcontroller basics and get exposure to 8051 archite	ectures								
2.	To em	bed and program with 8051 microcontrollers									
3.	To int	roduce the advanced features in microcontrollers and its a	pplications								
Unit I	INT	RODUCTION TO 8051 MICROCONTROLLER		9	0	0	9				
architectu	Introduction to the concepts of microprocessors, microcontrollers, RISC, CISC, Harvard and Von Neumann architectures. Selection of microcontrollers, variants of MCS-51 family and their features. Applications of microcontrollers. 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization										
Unit II		EMBLY LANGUAGE PROGRAMMING		9	0	0	9				
		ne language, assembly language, middle-level and high- assification, syntax and function of instructions, example p		51 Ad	dressi	ng n	nodes.				
Unit III	I/O	PORT AND INTERRUPTS PROGRAMMING		9	0	0	9				
buzzer, p	Features of I/O ports. Byte size I/O, bit addressability and configuring I/O ports, interface I/O devices such as LED, buzzer, push-button switch, relay, example programs with assembly. Polling & interrupt methods, executing an interrupt, different types, IE and IP registers, enabling, disabling and priority setting, example programs in assembly.										
Unit IV	PIC	9	0	0	9						
		cs of PIC microcontrollers – PIC microcontroller families ction word-Inside a PIC microcontroller.	s-12-bit instruction	word-1	4-bit	instru	uction				
Unit V	API	APPLICATIONS9009									
	Multiplexed seven-segment display, LCD module, ADC 0804, wave form generation using DAC 0808, DC motor- PWM for speed control, Stepper motor, appropriate program.										
			Т	otal (45	(L)= 4	45 Pe	eriods				

Text	Books:								
1.	A.Mazidi , J.C. Mazidi&R.D.McKinlay," The 8051 Microcontroller & Embedded systems using assembly and C" (2ndEdition)								
2.	Lucio Di Jasio et.al., "PIC Microcontrollers: Know It All", Elsevier Science,2007								
Refe	rence Books:								
1.	Microcontrollers & applications, Ramani Kalpathi, & Ganesh Raja								
2.	Embedded C - Michael .J.Pont - Pearson Education -2002								
3.	I. Scott MacKenzie, Raphael CW. Phan "The 8051 Microcontroller", Pearson/Prentice Hall Publishers, 2008.								
4.	M. Mahalakshmi, "8051 Microcontroller Architecture, Programming and Application", Laxmi Publications, 2008.								
E-Re	eferences:								
1.	https://nptel.ac.in/courses/108105102								
2.	https://www.youtube.com/playlist?list=PLm_MSClsnwm9hEIDpFfDnOEu-6kVnF4ug								
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html								

	Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped				
CO1	Understand the basics of microcontroller and 8051 architectures.	Understanding				
CO2	Develop programs for control applications using assembly language	Applying				
CO3	Illustrate the use of interrupts service routines	Applying				
CO4	Understand the PIC microcontroller architecture.	Understanding				
CO5	Design microcontroller based simple real-world applications	Applying				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
C01	1	2	-	2	-	2	-	-	-	-	-	-	3	-	2
CO2	1	2	-	-	-	2	-	-	-	-	-	-	-	-	1
CO3	2	2	-	3	-	1	-	-	-	-	-	-	2	-	3
CO4	1	3	-	2	-	2	-	-	-	-	-	-	2	-	1
CO5	2	3	-	1	-	2	-	-	-	-	-	-	2	-	2
Avg	1.4	2.4	-	2	-	1.8	-	-	-	-	-	-	2.25	-	1.8
		3/2	2/1 - in	ndicates	s streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	· Low)			

22ECOE04 COMPUTER NETWORKS OPEN ELECTIVE PREREQUISITES CATEGORY OE Credit 3 L Т Р TH Hours/Week 3 0 0 3 **Course Objectives:** To introduce the basic concept in modern data communication and computer networking. 1. 2. To introduce the students the functions of different layers and in - depth knowledge of data link layer. 3. To make students to get familiarized with different protocols and network layer components. 4. To introduce the basic functions of transport layer and congestion in networks. 5. To understand the concepts of various network Applications and Data security. NETWORK FUNDAMENTALS AND PHYSICAL LAYER Unit I 9 0 9 0 Components - networks - Topologies - The OSI reference model - layers and duties. TCP/IP reference model - layers and duties, Physical Layer: Transmission Media - Guided media & unguided media - EIA 232, SONET Unit II **DATA LINK LAYER** 0 0 9 Logical link control Functions: - Framing, Flow control, Error control: CRC, LLC protocols -HDLC, P to P- Medium access layer: - Random access, Controlled access, Channelization - Wired LANs: Ethernet IEEE 802.3, IEEE 802.4, and IEEE 802.5. Internetworking, Interconnection issues, Interconnection devices: - Repeaters, Hubs, Routers/switches and Gateways. Unit III NETWORK LAYER 9 0 9 0 Switching-Circuit switching, packet switching, message switching. Internet protocols; IPV4, IPV6, ARP, RARP, VPN. Network Routing Algorithms - Unicast routing protocol: Distance Vector Routing - Link State Routing. Unit IV TRANSPORT LAYER Q 0 9 0 Transport Services, Elements of Transport protocols, Connection management, - User Datagram Protocol (UDP) -Transmission Control Protocol (TCP) - Congestion Control and Quality of services (QoS) - Integrated Services APPLICATION LAYER Unit V 0 9 Domain Name Space (DNS) – Electronic mail (SMTP, MIME, POP3, IMAP4) - Application protocols: WWW, HTTP, FTP and TELNET, Network management protocol: SNMP. Total (45L)= 45 Periods

Text B	ooks:									
1.	Behrouz A. Foruzan, "Data communication and Networking", TMH, 4th edition, 2014.									
2.	James. F. Kurouse& W. Ross, "Computer Networking: A Top down Approach Featuring", Pearson, 2020.									
Refere	nce Books:									
1.	LarryL.Peterson&PeterS.Davie,"ComputerNetworks",HarcourtAsiaPvt.Ltd.,SecondEdition.									
2.	AndrewS.Tanenbaum,"ComputerNetworks",PHI,FourthEdition,2003.									
3.	An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education									
4.	AjitPal,"DataCommunicationandComputerNetworks",PHI,2014.									
E-Refe	erences:									
1.	https://nptel.ac.in/courses/106105183									
2.	https://www.mbit.edu.in/wp-content/uploads/2020/05/Computer-Networks-5th-Edition.pdf									
3.	https://www.tutorialspoint.com/data_communication_computer_network/index.htm									

		Putcomes: appletion of this course, the students will be able to:	Bloom's Taxonomy Mapped						
CO1	:	Explain the basic concept in modern data communication and different level of layers in the	Understanding						
		protocol							
CO2	:	Analyse the functions and services of data link layer	Analysing						
CO3	:	Categorize the functions and services of network layer	Understanding						
CO4	:	: Examine the basic functions of transport layer and congestion in networks							
CO5	:	: Analyse the concepts of various network applications and data security							

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	1	2	-	1	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	-	-	-	-	-	-	-	-	-	3	1	2
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	-	2
CO5	2	1	1	-	1	-	-	-	-	-	-	-	1	1	1
Avg	2.2	1.2	1.2	-	1.25	-	-	-	-	-	-	-	2	1	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECOE05	BASICS OF EMBEDDED SYSTEMS	5	OPEN ELECTIVE						
		CATEGORY	OE	Cre	dit	3			
PREREQUISITE	S	Hours/Week	L	Т	P	ТН			
		nours/ week	3	0	0	3			
Course Objective	s:								
	t knowledge on embedded system architecture and embedd	<u> </u>	rategies						
2. To under	stand the bus Communication in processors and peripheral	interfacing							
3. To under	stand basics of Real Time Operating System								
Unit I BA	9	0	0	9					
Introduction - Fundamental Components of Embedded Systems - Challenges for Embedded Systems - Examples - Programming Languages - Recent Trends in Embedded Systems - Architecture of Embedded Systems - Embedded Design Life Cycle - Selection Process - Hardware Software Partitioning - Development Environment.									
	EMORY MANAGEMENT AND INTERRUPTS	*	9	0	0	9			
Memory Access P	rocedure - Types of Memory - Memory Management Meth	nods - DMA – Men	nory Inte	rfaci	ng - F	olling			
	ypes of Interrupts - Interrupt Latency - Interrupt Priorit								
Interrupt Service F	Routines.			-					
Unit III CO	OMMUNICATION INTERFACES		9	0	0	9			
Interfacing Buses	- Serial Interfaces - RS232/UART - RS422/RS485 - I2C	Interface - SPI Ir	terface	- US	B – (CAN -			
IRDA - Ethernet -	IEEE 802.11 – Bluetooth								
Unit IV RE	CAL TIME OPERATING SYSTEMS		9	0	0	9			
Real-Time Concep	ots - Task Management - Task Scheduling - Classification	n of Scheduling Al	gorithms	- Cl	ock l	Driven			
Scheduling - Ever	nt Driven Scheduling - Resource Sharing - Priority Inheri	tance Protocol - Pr	riority C	eiling	g Prot	tocol -			
Inter Task Commu	inication - Mutex - Semaphores - Message Queues - Timer	s - Commercial RT	OS.						
Unit V VA	ALIDATION AND DEBUGGING		9	0	0	9			
Host and Target M	lachines - Validation Types and Methods - Host Testing - I	Host-Based Testing	g Setup -	Targ	et Te	sting -			
Remote Debugger	Remote Debuggers and Debug Kernels - ROM Emulator - Logical Analyzer – Background Debug Mode - InCircuit								
Emulator CASE S	TUDY: RFID Systems - GPS Navigation System – Develo	pment of Protocol	Converte	er.					
	Total (45L)= 45 Periods								

Text Bo	oks:							
1.	Sriram VIyer and Pankaj Gupta, —Embedded Real-time Systems Programming ^I , Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.							
2.	Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011.							
Referen	ce Books:							
1.	Prasad K V K K, —Embedded/Real-Time Systems: Concepts, Design and Programming – The Ultimate Reference, Himal Impressions, New Delhi, 2003							
2.	Heath, "Embedded Systems Design", Newnes an Imprint of Elsevier, Massachusetts, 2003.							
3.	Tammy Noergaard, "Embedded Systems Architecture", Newnes an Imprint of Elsevier, Massachusetts, 2006.							
4.	Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013							
E-Refer	ences:							
1.	https://lecturenotes.in/subject/225/embedded-system-es							
2.	https://nptel.ac.in/courses/108102045/19							
3.	https://www.coursera.org/learn/introduction-embedded-systems.							

Course Ou Upon comp	atcomes: Detion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Outline the concepts of embedded systems	Remembering
CO2	Understand the concept of memory management system and interrupts.	Understanding
CO3	Know the importance of interfaces.	Understanding

CO4	Understand real time operating system concepts.	Understanding
CO5	To realize the applications of validation and debugging.	Applying

				С	OURSI	EART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECOE06	BASICS OF INTERNET OF THING	8	OPEN ELECTIV				VE	
PREREQUISITES		CATEGORY	OE	•	Credi	it	3	
		Hours/Week	L		Т	Р	TH	
			3		0	0	3	
Course Objectives:								
	the vision of M2M to IOT.							
	derstanding of IOT market perspective.							
	owledge on Io T Technology Fundamentals and applica	ations						
	l system using Raspberry Pi.				1		Т	
	IOT – THE VISION			9	0	0	9	
	Introduction - From M2M to Io T- M2M towards Io T: M2M Communication - The global context - A use case example – Differing Characteristics.							
	IOT – A MARKET PERSPECTIVE			9	0	0	9	
Introduction - Some	Definitions - M2M Value Chains - Io T Value Chains	- An emerging in	dustria	al stru	icture	for	Io T-	
International driven g	global value chain and global information monopolies -	• M2M to Io T-Ar	Archi	itectu	ral O	verv	iew –	
Building an architect considerations.	ture - Main design principles and needed capabilities	- An Io T archit	ecture	outli	ne -	Stan	dards	
	HNOLOGY FUNDAMENTALS			9	0	0	9	
	ologies - Io T levels and deployment templates - D	evices and gatew	avs -]	Data	mana	agem	ient -	
Ũ	1 Io T - Everything as a Service (XaaS) - M2M and Io T	U	5			0		
Unit IV BUILDIN	G IOT WITH HARDWARE PLATFORMS	-		9	0	0	9	
Io T Systems-Logica	al Design using Python -Io T Physical Devices and E	End Points- Io T	Device	e - Ra	spbe	rry I	Pi -	
	ming – Other Io T devices – Io T Reference Model - Re	al World Design	Constra	aints.	-			
Unit V IOT USE	CASES AND APPLICATIONS			9	0	0	9	
Home automation-Au	Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment - Weather							
	ir pollution Monitoring-Forest Fire Detection- Agricul							
Automation – Introdu	Automation - Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) -							
Commercial building	automation in the future.							
			Tota	l (451	L)=4	5 Pe	riods	

Text	Books:
	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From
1.	Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition,
	Academic Press, 2014.
2.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015
Refe	erence Books:
1.	Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to the smart grid
	building automation', John Wiley & amp; Sons, 2012
2.	Francis daCosta, "Rethinking the Internet of Things : A Scalable Approach to Connecting Everything", 1st
	Edition, Apress Publications, 2013
3.	HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2010.
4.	FabriceTheoleyr, Ai-Chun Pang, 'Internet of Things and M2M Communications', River Publishers, 2013.
E-Re	eferences:
1.	https://nptel.ac.in/courses/106105166
2.	https://onlineitguru.com/IoT-online-training.html
3.	https://onlinecourses.nptel.ac.in/noc22_cs53/preview

		Putcomes: appletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Understand the vision of IoT from a global context.	Understanding
CO2	:	Determine the Market perspective of IoT.	Remembering
CO3	:	Understand the IoT technology fundamentals.	Understanding
CO4	:	Build small system using Raspberry Pi.	Applying
CO5	:	Analyse applications of IoT and case studies	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	-	-	2	-	-	-	-	-	-	-	-	-	-
CO2	2	2	2	2	2	-	-	-	-	-	-	1	1	-	-
CO3	2	2	2	2	2	-	-	-	-	-	-	1	1	-	-
CO4	2	2	2	2	2	-	-	-	-	-	2	2	2	-	-
CO5	2	2	2	2	2	-	-	-	-	-	2	-	2	-	2
Avg	2	1.8	2	2	2	-	-	-	-	-	2	1.3	1.5	-	2
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1·	· Low)			

PREF	REOU		22ECOE07 BASICS OF ARTIFICIAL INTELLIGENCE OPE								
	MLQU.	ISITES	CATEGORY	OE	Cre	lit	3				
			TT /TT / 1 -	L	Т	Р	TH				
			Hours/Week	3	0	0	3				
Cours	se Obj	ectives:									
		about uninformed and Heuristic search techniques.									
2. To Learn techniques for reasoning under uncertainty											
		uce Machine Learning and supervised learning algorithms									
		about ensemble and unsupervised learning algorithms.									
		the basics of deep learning using neural networks.									
Unit l		PROBLEM SOLVING			90	0	9				
		to AI - AI applications - problem solving agents - search alg									
		earch strategies - local search and optimization problems -adv	ersarial search -	- constr	aing s	satisf	actior				
	ems(CS					-					
Unit I		PROBABILISTIC REASONING		Ģ	v	0	9				
		r uncertainty – Bayesian inference – naïve bayes models. Probabilis	stic reasoning – B	ayesian	netwo	rks –	- exact				
		BN – approximate inference in BN – causal networks.				-					
Unit I		SUPERVISED LEARNING		9	-	0	9				
		to machine learning - Linear Regression Models: Least squares, si									
		gradient descent, Linear Classification Models: Discriminant funct									
		ression, Probabilistic generative model – Naive Bayes, Maximum n	nargin classifier –	Suppor	t vecto	r ma	.chine				
	ion Tre										
Unit l		ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNI		9	v	0	9				
	0	multiple learners: Model combination schemes, Voting, Ensemble	Learning - baggi	ng, boos	sting,	stack	ing,				
		d learning: K-means, Instance Based Learning: KNN									
Unit V		NEURAL NETWORKS		9	-	0	9				
		- Multilayer perceptron, activation functions, network training - g									
		cent, error backpropagation, from shallow networks to deep netw	vorks –Unit satur	ation (a	ka the	van	ishing				
gradie	ent pro	blem) –batch normalization, regularization, dropout.		T 4 1 4 4	-T)	47 D	• •				
				Total (4	5L)=	45 Pe	eriods				

Text I	Books:					
1.	Stuart Russell and Peter Norvig, "Artificial Intelligence – A Modern Approach", Fourth Edition, Pearson Education, 2021					
2						
2.	Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006					
Refer	ence Books:					
1.	Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.					
2.	Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008					
3.	Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006					
4.	Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.					
E-Ref	ferences:					
1.	https://machinelearningmastery.com/					
2.	https://ai.google/education/					
3.	https://in.coursera.org/learn/machine-learning					

Course	Course Outcomes:								
Upon con	npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped							
CO1	Use appropriate search algorithms for problem solving	Understanding							
CO2	Apply reasoning under uncertainty	Applying							
CO3	Build supervised learning models	Applying							
CO4	Build ensembling and unsupervised models	Applying							
CO5	CO5 Build deep learning neural network models Applying								
	COURSE ARTICULATION MATRIX								

COs/POs	PO	PO	PO	PO4	РО	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	3	2	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	2.2	1.6	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

PROFESSIONAL ELECTIVE COURSES: VERTICALS- Honours

22EC	CH101	VLSI TECHNOLOGY		S	emeste	er						
PRER	EQUIS	ITES	Category	PE	Cr	edit	3					
				L	Т	Р	ТН					
VLSI	Design		Hours/Week	3	0	0	3					
Cours	e Objec	tives										
1	<u> </u>	lerstand the concepts of wafer preparation, epitaxy and o	vidation									
2		dy the use of various deposition and diffusion.										
	3 To impart knowledge in ion implementation and VLSI process integration.											
	it I	CRYSTAL GROWTH, WAFER PREPARATIO	ç	9	0	0	9					
		AND OXIDATION de Silicon - Czochralski crystal growing - Silicon Shap	ing propaging	-		-						
		lecular Beam Epitaxy - Silicon on Insulators, Grow										
Oxidat	ion Tec	hniques and Systems, Oxide properties, Redistribution tion induced Defects.										
Unit I		LITHOGRAPHY AND RELATIVE PLASMA ETC	CHING	9	0	0	9					
Optica	1 Lithos	raphy, Electron Lithography, X-Ray Lithography, Ion I	Lithography, Plas	ma pro	operties	L s. Featu	re Size					
		isotropic Etch mechanism, relative Plasma Etching tech			perces	,, 1 cuta						
Unit I	II	DEPOSITION AND DIFFUSION		9	0	0	9					
		cess, Polysilicon, Silicon Dioxide- Silicon Nitride- plas s's one dimensional Diffusion Equation – Atomic Diffus										
Unit I	V	ION IMPLEMENTATION AND METALLIZATIO	DN	9	0	0	9					
		- Implant equipment. Annealing-Shallow junction – Metallization choices- Physical vapor deposition – Patter		nplanta	tion –	Metall	ization					
Unit V	7	VLSI PROCESS INTEGRATION AND PACKAGI DEVICES	NG OF VLSI	9	0	0	9					
		hnology – CMOS IC Technology – MOS Memory IC te	0, 1			0.						
Fabric techno		ackage types- banking design consideration - VLSI asse	mbly technology	– Pack	age fat	orication	n					
	10 <u>5</u> y.			Total	(45 L)	= 45 I	Periods					
Tex	t Books	:										
1	Sze, S.I	M., "VLSI Technology", Second Edition, McGraw-Hill,	New York, 1998									
2	Mukher Delhi, 2	ijee, Amar., "Introduction to NMOS and CMOS VLSI S	ystem Design", P	rentice	Hall Iı	ndia, No	ew					
Refe	rence B											
1		er, James D., Deal, Michael D. and Griffin, Peter B., "Si e and Modeling", Prentice Hall India, New Delhi, 2000.	licon VLSI Techr	nology:	Funda	mental	5					

³ Douglas A.Pucknell, "Basic VLSI Design", Third Edition, Mc Graw Hill Book Co., 2015.

2

⁴ Sorab K.Ghandhi., "VLSI Fabrication Principles: Silicon and Gallium Arsenide", 2nd Edition, John Wiley & Sons, 1994.

E-Ref	erence:
1	https://nptel.ac.in/courses/117106093
2	https://freevideolectures.com/course/3183/vlsi-technology-i
3	http://www.infocobuild.com/education/audio-video-courses/electronics/VLSITechnology-IIT- Madras/lecture-09.html

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Summarize the approach for wafer preparation, Epitaxy and Oxidation	Understanding
CO2	Distinguish the various methods for lithography and plasma etching	Analysing
CO3	Illustrate the various Deposition and diffusion process	Analysing
CO4	Infer the process of ion implantation and metallization	Understanding
CO5	Realize the various IC technology and Package types	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	-	2	1	1	-	-	-	-	-	1	1	1	2	-
CO2	3	-	2	1	1	-	-	-	-	-	2	1	2	2	-
CO3	3	-	2	1	2	-	2	-	-	-	2	1	2	3	-
CO4	3	1	2	1	2	-	2	-	-	-	1	2	2	3	-
CO5	3	2	2	3	3	1	2	2	1	1	3	3	3	3	3
Avg	3	1.5	2	1.4	1.8	1	2	2	1	1	1.8	1.6	2	2.6	3
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	· Low)			

DEDEOLUCY	ANALOG CMOS IC DESIGN		S	Semeste	er	
PREREQUISI	res	Category	PE	Cr	edit	3
VLSI Design			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Objecti	ves					
1 To c	lesign the fundamentals of analog circuits and MOS device	e models.				
2 To a	lesign high frequency amplifiers and analyse Operational a	amplifiers.				
3 To a	nalyse two stage amplifiers and design current sources and	d sinks.				
Unit I	SINGLE STAGE AMPLIFIERS		9	0	0	9
oad - Cascode	sics and equivalent circuits and models - CS, CG and Sou and Folded Cascode configurations with active load - des SR, noise, gain, BW, ICMR and power dissipation, voltage	sign of Differentia e swing, high gain	l and C	Cascode	e Ampl	
Unit II	HIGH FREQUENCY AND NOISE CHARACT AMPLIFIERS	TERISTICS OF	9	0	0	9
	association of poles with nodes - frequency response of plifier stages - statistical characteristics of noise - noise in			ollower	r - Cas	scode an
Unit III	FEEDBACK AND SINGLE STAGE O AMPLIFIERS	PERATIONAL	9	0	0	9
performance p	types of negative feedback circuits - effect of loading arameters - single stage Op Amps – Two stage Op Amps pply rejection - Noise in Op Amps.	s - input range lim				
Unit IV	STABILITY AND FREQUENCY COMPENSATI STAGE AMPLIFIER	ION OF TWO	9	0	0	9
Second Stage, N	 Yo Stage Op Amp – Two Stage Op Amp Single Stage Of Multipole Systems - Phase Margin - Frequency Compensation Stage Op Amps - Other Compensation Techniques. 			•	-	
Unit V	BANDGAP REFERENCES		9	0	0	9
design of high s	nd sources - current mirrors - Wilson current source - W wing cascode sink - current amplifiers - supply independent AT current generation - constant-gm biasing.					
			Tot	al (45]	L) = 4	5 Perio
Text Books:						
I	dRazavi, "Design Of Analog CMOS Integrated Circuits",	Tata Mcgraw Hill	, 2001.			
1 Behza	dRazavi, "Design Of Analog CMOS Integrated Circuits", M.C. Sansen, "Analog Design Essentials", Springer, 200	C .	, 2001.			

1	Grebene, "Bipolar And Me	osAnalog Integrated Circu	it Design", John	Wiley & Sons, Inc., 2003.
---	--------------------------	---------------------------	------------------	---------------------------

² Phillip E.Allen, Douglas R .Holberg, "CmosAnalog Circuit Design", Oxford University Press, 2nd Edition, 2002

3	Recorded Lecture Available at 6. Jacob Baker "CMOS: Circuit Design, Layout, And Simulation, Wiley IEEE Press, 3rd Edition, 2010.
4	Uyemura John P Uyemura "CMOS Logic Circuit Design", Kluwer Academic Publishers, 1999.
E-Refe	erences:
1	http://www.ee.iitm.ac.in/vlsi/courses/ee5320_2021/start
2	https://onlinecourses.nptel.ac.in/noc22_ee37/
3	https://archive.nptel.ac.in/courses/117/106/117106030/

Course C	Outcomes:	Bloom's
Upon con	npletion of this course, the students will be able to:	Taxonomy Level
CO1	Design MOS amplifiers to meet user specifications	Applying
CO2	Analyze the frequency and noise performance of MOS amplifiers	Analysing
CO3	Design and analyze feedback amplifiers and one stage op amps	Applying
CO4	Design and analyze two stage op amps	Applying
CO5	Design and analyze current mirrors and current sinks with MOS devices.	Applying

				С	OURSI	EART	TCUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	1	1	-	1	-	-	-	1	-	1	2	1
CO2	2	2	1	1	1	-	1	-	-	-	1	-	1	2	1
CO3	2	3	2	1	2	-	1	-	-	-	2	1	1	2	1
CO4	2	3	2	1	2	-	2	1	2	-	2	2	1	2	1
CO5	2	3	1	1	2	-	2	1	2	-	3	2	1	2	1
Avg	2	2.6	1.4	1	1.6	-	1.4	1	2	-	1.8	1.7	1	2	1
		3/2	2/1 - ir	ndicates	s streng	th of c	correla	tion (3	8-High	,2- Med	ium,1-	Low)			

22ECH103	DEVICE MODELING		S	emeste	er	
Prerequisite	s	Category	PE	Cr	edit	3
		II / I / -	L	Т	Р	ТН
Electronic D	evices and Circuits	Hours/Week	3	0	0	3
Course Obje	ectives					1
1	To study the MOS capacitors and to model MOS Transistors					
2	To understand the various CMOS design parameters and their i	impact on perfor	rmance	e of the	device	,
3	To study the device level characteristics of BJT transistors					
Unit I	MOS CAPACITORS		9	0	0	3
Band-to-Ban	kide Charge on Device Characteristics - High-Field Effects - Ind d Tunneling - Tunneling into and through Silicon Dioxide - ide - High-Field Effects in Gated Diodes - Dielectric Breakdown	Injection of He				
Unit II	MOSFET DEVICES		9	0	0	3
Capacitances Saturation a Degradation	as and Temperature Dependence of Threshold Voltage - and Inversion-Layer Capacitance Effect - Short-Channel M nd High-Field Transport Channel Length Modulation - Se and Breakdown at High Fields	IOSFETs - Sho	rt-Cha ries R	nnel E Resistan	ffect -	MOSFE
Capacitances Saturation a Degradation Unit III MOSFET Sc Voltage Requ Dopant Effect of the Effect	and Inversion-Layer Capacitance Effect - Short-Channel M nd High-Field Transport Channel Length Modulation - So and Breakdown at High Fields CMOS DEVICE DESIGN aling - Constant-Field Scaling - Generalized Scaling - Nonscal uirement - Channel Profile Design - Nonuniform Doping - Qua ets on Threshold Voltage - MOSFET Channel Length - Variou ve Channel Length - Physical Meaning of Effective Channel Length	IOSFETs - Sho ource–Drain Se ling Effects - Th antum Effect on as Definitions of	rt-Cha pries R 9 nreshol Thresh Chann	nnel E esistan d Volta nold Vo nel Len	ffect - ice - 1 0 age - T oltage - gth - F	MOSFE 3 hreshold Discret Extractio
Capacitances Saturation a Degradation Unit III MOSFET Sc Voltage Requ Dopant Effect of the Effect Measuremen	and Inversion-Layer Capacitance Effect - Short-Channel M nd High-Field Transport Channel Length Modulation - So and Breakdown at High Fields CMOS DEVICE DESIGN aling - Constant-Field Scaling - Generalized Scaling - Nonscal uirement - Channel Profile Design - Nonuniform Doping - Qua ets on Threshold Voltage - MOSFET Channel Length - Variou ve Channel Length - Physical Meaning of Effective Channel Length	IOSFETs - Sho ource–Drain Se ling Effects - Th antum Effect on as Definitions of	rt-Cha pries R 9 nreshol Thresh Chann	nnel E esistan d Volta nold Vo nel Len	ffect - ice - 1 0 age - T oltage - gth - F	MOSFE 3 hreshold Discret Extractio
Capacitances Saturation a Degradation Unit III MOSFET Sc Voltage Requ Dopant Effect of the Effect Measuremen Unit IV Basic CMOS Parasitic Ele Sensitivity of Width, Leng Sensitivity of Factors of A	and Inversion-Layer Capacitance Effect - Short-Channel M nd High-Field Transport Channel Length Modulation - So and Breakdown at High Fields CMOS DEVICE DESIGN aling - Constant-Field Scaling - Generalized Scaling - Nonscal uirement - Channel Profile Design - Nonuniform Doping - Qua cts on Threshold Voltage - MOSFET Channel Length - Variou ve Channel Length - Physical Meaning of Effective Channel Length	IOSFETs - Sho ource–Drain Se ling Effects - Th antum Effect on as Definitions of ength - Extraction NOR Gates - In Gate Resistance Delay Equation - ver-Supply Volta o-Way NAND at	rt-Cha rries R 9 rreshol- Thresh Chann on of C 9 verter ce - In Delay age and nd Bod	nnel E essistan d Volta nold Vo nel Len channel d and N and N stercom y Sensit d Thre by Effect	ffect - ce - d age - T bltage - gth - F Lengt 0 AND 1 nect R ivity to shold 7 ct - Per	MOSFE 3 hreshold Discret Extractio h by C–' 3 Layouts and C O Channe Voltage formanc
Capacitances Saturation a Degradation Unit III MOSFET Sc Voltage Requ Dopant Effect of the Effect Measuremen Unit IV Basic CMOS Parasitic Ele Sensitivity of Width, Leng Sensitivity of Factors of A Performance Unit V	and Inversion-Layer Capacitance Effect - Short-Channel M nd High-Field Transport Channel Length Modulation - Se and Breakdown at High Fields CMOS DEVICE DESIGN aling - Constant-Field Scaling - Generalized Scaling - Nonscal uirement - Channel Profile Design - Nonuniform Doping - Qua ets on Threshold Voltage - MOSFET Channel Length - Variou ve Channel Length - Physical Meaning of Effective Channel Length ts CMOS PERFORMANCE FACTORS Circuit Elements - CMOS Inverters - CMOS NAND and M ments - Source–Drain Resistance - Parasitic Capacitances - f CMOS Delay to Device Parameters - Propagation Delay and I th, and Gate Oxide Thickness - Sensitivity of Delay to Pow of Delay to Parasitic Resistance and Capacitance - Delay of Two Advanced CMOS Devices - MOSFETs in RF Circuits - 1	IOSFETs - Sho ource–Drain Se ling Effects - Th antum Effect on us Definitions of ength - Extraction NOR Gates - In Gate Resistance Delay Equation - ver-Supply Volta o-Way NAND ar Effect of Trans	rt-Cha rries R 9 mreshol- Thresh Chann on of C 9 verter 9 verter age an- nd Bod sport 1 9	nnel E essistan 0 d Volta nold Vo nel Len Channel 0 and N terconsit d Thre y Effec Parame 0	ffect - ice - <td>MOSFE 3 hreshold - Discrete Extraction h by C</td>	MOSFE 3 hreshold - Discrete Extraction h by C

 Text Books:

 1
 Donald A. Neamen , "Semiconductor Physics and Devices", University of New Mexico, 4th Edition, 2012.

2 J P Collinge, C A Collinge, "Physics of Semiconductor devices" Springer 2002 Edition.

Refer	ence Books:
1	Behzad Razavi, "Fundamentals of Microelectronics" Wiley Student Edition, 2nd Edition, 2013.
2	Yuan Taur and Tak H. Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, 2nd Edition, 2009.
3	A.S. Sedra and K.C. Smith, "Microelectronic Circuits", 7th edition, Oxford University Press, 2015.
4	Ben G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices", 7th edition, Pearson, 2014.
E-Refe	rences:
1.	http://www.nptelvideos.com/course.php?id=527
2.	https://www.digimat.in/nptel/courses/video/108105188/L28.html
3.	https://freevideolectures.com/course/4072/nptel-microelectronics

Course	Outcomes:	Bloom's Taxonomy Level
Upon c	ompletion of this course, the students will be able to:	
CO1	Design MOSFET and BJT devices to desired specifications.	Understanding
CO2	Model MOSFET and BJT devices to desired specifications.	Applying
CO3	Analyze the CMOS Parameters and performance.	Analysing
CO4	Apply the mathematical techniques for device simulations	Applying
CO5	Analyze concepts about Bipolar Devices.	Analysing

				CO	URSE	ARTI	CULA	TION	MAT	RIX					
COs/POs	PO	PO	PO	PO4	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	1	-	-	-	-	-	-	-	-	2	2	1
CO2	2	1	1	1	-	-	-	-	-	-	-	-	2	2	1
CO3	2	2	2	1	-	1	-	-	-	-	-	-	2	2	2
CO4	2	2	1	1	-	-	-	-	-	-	-	-	2	2	2
CO5	2	2	2	1	-	1	-	-	-	-	-	-	2	2	2
Avg	2	1.8	1.6	1	-	1	-	-	-	-	-	-	2	2	1.6
	•	3/2/1	- ind	icates s	trength	of con	rrelatio	on (3-I	High,2	- Mediu	m,1- I	.ow)	•		•

22EC	CH104	NETWORKS ON CHIP		S	emeste	r	
PREF	REQUI	SITES	Category	PE	Cr	edit	3
1.Con	nputer N	Jetworks		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	se Obje	ctives					
1	To un	derstand the concept of network - on - chip					
2	To lea	arn router architecture designs					
3	To stu	ady fault tolerance and three dimensional integration of	network - on - ch	iip			
Unit]	[INTRODUCTION TO NOC		9	0	0	3
		to NoC – OSI layer rules in NoC - Interconnection Net Techniques - Routing Strategies - Flow Control Protocol			•	ork Top	ologies
Unit l	I	ARCHITECTURE DESIGN		9	0	0	3
	•	echniques and Packet Format - Asynchronous FIFC outer Architecture Design - VC Router Architecture De	•	•			
Unit]	II	ROUTING ALGORITHM		9	0	0	3
Deadl	ock-Fre	g-Qos, congestion control and flow control – router e Tree-Based Multicast Routing Methods - Path-Ba ult-Tolerant Routing Algorithms - Reliable and Adapti	sed Multicast Ro	uting for			
Unit 1	IV	TEST AND FAULT TOLERANCE OF NOC		9	0	0	3
0		ity in Networks-on-Chips-Formal Verification of Conce for Networks-on-Chip Infrastructures-Monitoring Sector				Chips-T	est and
Unit V	V	THREE-DIMENSIONAL INTEGRATION OF CHIP	NETWORK-ON-	9	0	0	3
Comn	nunicati	sional Networks-on-Chips Architectures. – A Novel D on in 3D Architectures - Resource Allocation for QoS -Chip Processor Traffic Modeling for Networks-on-Chi	On-Chip Commu				
				Total (4	5L+07	C)= 45 I	Periods
Те	kt Book	s:					
		s. stomos Nicopoulos, Vijaykrishnan Narayanan, Chita R	Dec" Notworks	n Chin	" A roh	itaatum	
1	Holistic	e Design Exploration", Springer. 2009.		-			
-	• •	ebali, Haythamelmiligi, HqhahedWatheq E1-Kharashi ' cRC press, 2009.	"Networks-on-Chi	ps theor	ry and		
Refe	erence I	Books:					
1	Konsta	ntinos Tatas and Kostas Siozios "Designing 2D and 3D	Network-on-Chip	Archite	ectures'	2013	
2		Maurizio, Daneshtalab, Masoud "Routing Algorithms i		•			
5		Kundu, SantanuChattopadhyay "Network-on-Chip: The Integration", CRC Press, 2014.	e Next Generation	n of Sys	tem		
4	Sheng I	Ma, Libo, Mingche, Shi, Zhiying, "Networks-on-chip",	Morgan Kaufman	n, 2014	•		

E-I	References:
1.	https://archive.nptel.ac.in/courses/106/103/106103183/
2.	https://www.digimat.in/nptel/courses/video/108106149/L93.html
3.	https://slideplayer.com/slide/7253925/

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Discuss different routing algorithms	Understanding
CO2	Compare different architecture design	Understanding
CO3	Explain three dimensional networks - on-chip architectures	Applying
CO4	Analyze test and fault tolerance of Communications in NoC	Analysing
CO5	Apply the 3D Integration procedures in NoC	Applying

					CO	URSE	ARTI	CULA	TION	MATRI	Х				
COs/P Os	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	2	2	1	-	-	-	-	-	-	-	-	1	2	-
CO2	2	3	2	2	-	-	-	I	-	-	-	-	2	3	2
CO3	1	3	1	2	-	-	-	-	-	-	-	-	2	3	-
CO4	2	3	2	2	-	-	-	-	-	-	-	-	2	3	2
CO5	1	3	2	2	-	-	-	I	-	-	-	-	2	3	2
Avg	1.4	2.8	1.8	1.8	-	-	-	-	-	-	-	-	1.8	2.8	2
			3/2/2	l - indi	cates s	trengtl	n of co	rrelatio	on (3-H	ligh,2- N	/lediun	n,1- Lo	w)		

22ECH105	DSP INTEGRATED CIRCUIT	S	Se	emester		
PREREQUI	SITES	Category	PE	Cr	edit	3
1.Digital Sig	nal Processing		L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course Obje	ectives					
1 To fan	niliarize the concept of DSP and DSP algorithms.					
2 To int	roduce the Multirate systems and finite wordlength ef	ffects				
3 To kno	ow about the basic DSP processor architectures and th	e synthesis of the	processin	g eleme	ents	
Unit I	INTRODUCTION TO DSP INTEGRATED CIR	• · · ·	9	0	0	3
	to Digital signal processing - Sampling of analog si				, in the second se	
6	grated circuit design. DIGITAL FILTERS AND FINITE WORD LEN	GTH EFFECTS	9	0	0	3
Unit II FIR filters - I functions - N Sampling rat	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate sys te change with a ratio L/M - Multi rate filters. Finit	cations of IIR filter stems - Interpolati ite word length et	rs - Mapp on with ffects - F	oing of a an integ Parasitic	analog ger fac oscilla	tor L - ations -
Unit II FIR filters - I functions - N Sampling rat	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate sys	cations of IIR filter stems - Interpolati ite word length et	rs - Mapp on with ffects - F	oing of a an integ Parasitic	analog ger fac oscilla	transfer tor L ations
Unit II FIR filters - I functions - N Sampling rat Scaling of si	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate sys te change with a ratio L/M - Multi rate filters. Finit	cations of IIR filter stems - Interpolati ite word length et	rs - Mapp on with ffects - F	oing of a an integ Parasitic	analog ger fac oscilla	transfer tor L ations
Unit II FIR filters - I functions - N Sampling rat Scaling of si noise. Unit III DSP system	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate syste te change with a ratio L/M - Multi rate filters. Finil gnal levels - Round-off noise - Measuring round-off DSP ARCHITECTURES architectures - Standard DSP architecture-Harvard - Multiprocessors and multi computers - Systol	cations of IIR filter stems - Interpolati ite word length et f noise - Coefficie and Modified Ha	rs - Mapp on with ffects - F nt sensiti 9 urvard are	ping of a an integ Parasitic ivity - S 0 chitectu	unalog ger fac oscilla Sensitiv 0 re. Ide	transfer tor L ations ity and 3 al DSF
Unit II FIR filters - I functions - N Sampling rat Scaling of si noise. Unit III DSP system architectures	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate syste te change with a ratio L/M - Multi rate filters. Finil gnal levels - Round-off noise - Measuring round-off DSP ARCHITECTURES architectures - Standard DSP architecture-Harvard - Multiprocessors and multi computers - Systol	cations of IIR filter stems - Interpolati ite word length et f noise - Coefficie and Modified Ha	rs - Mapp on with ffects - F nt sensiti 9 urvard are	ping of a an integ Parasitic ivity - S 0 chitectu	unalog ger fac oscilla Sensitiv 0 re. Ide	transfer tor L ations ity and 3 al DSF
Unit II FIR filters - I functions - N Sampling rat Scaling of si noise. Unit III DSP system architectures architectures. Unit IV Synthesis: M architecture	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate syste te change with a ratio L/M - Multi rate filters. Finit gnal levels - Round-off noise - Measuring round-off DSP ARCHITECTURES architectures - Standard DSP architecture-Harvard - Multiprocessors and multi computers - Systol	cations of IIR filter atoms - Interpolati ite word length et f noise - Coefficie and Modified Ha lic and Wave fro	rs - Mapp on with ffects - F nt sensiti 9 urvard are ont array 9 complex 1	ping of a an integ Parasitic ivity - S 0 chitectu ys - Sh 0 PEs - S	unalog ger fac oscilla Sensitiv ensitiv re. Ide ared r	transfer tor L ations ity and al DSF nemory 3 nemory
Unit II FIR filters - I functions - N Sampling rat Scaling of si noise. Unit III DSP system architectures architectures. Unit IV Synthesis: M architecture	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate syste te change with a ratio L/M - Multi rate filters. Finil gnal levels - Round-off noise - Measuring round-off DSP ARCHITECTURES architectures - Standard DSP architecture-Harvard - Multiprocessors and multi computers - Systol SYNTHESIS OF DSP ARCHITECTURES (apping of DSP algorithms onto hardware - Impleme with Bit – serial PEs. Combinational & sequenti	ations of IIR filter terms - Interpolati ite word length et f noise - Coefficie and Modified Ha lic and Wave fro ntation based on c ial networks- Sto	rs - Mapp on with ffects - F nt sensiti 9 urvard are ont array 9 complex 1	ping of a an integ Parasitic ivity - S 0 chitectu ys - Sh 0 PEs - S	unalog ger fac oscilla Sensitiv ensitiv re. Ide ared r	transfe tor L ations vity and al DSI nemory 3 nemory
Unit II FIR filters - I functions - N Sampling rat Scaling of si noise. Unit III DSP system architectures architectures architectures Synthesis: M architecture synchronous Unit V Conventional arithmetic - I	DIGITAL FILTERS AND FINITE WORD LEN FIR filter structures - FIR chips - IIR filters - Specific Mapping of analog filter structures - Multi rate syste te change with a ratio L/M - Multi rate filters. Fining gnal levels - Round-off noise - Measuring round-off DSP ARCHITECTURES architectures - Standard DSP architecture-Harvard - Multiprocessors and multi computers - Systol SYNTHESIS OF DSP ARCHITECTURES Iapping of DSP algorithms onto hardware - Impleme with Bit – serial PEs. Combinational & sequenti systems - Asynchronous systems -FSM	eations of IIR filter attems - Interpolati ite word length et f noise - Coefficie and Modified Ha lic and Wave fro ntation based on c ial networks- Sto EMENTS due Number Syste shift accumulator	s - Mapp on with ffects - F nt sensiti 9 urvard ard ont array 9 complex l rage eler 9 em - Bit-j - Reduci	ping of a an integ Parasitic ivity - S o chitectu ys - Sh 0 PEs - Si ments -	unalog ger fac oscilla Sensitiv re. Ide ared r hared r - cloch and Bi	transfe tor L ations ity and al DSI nemory 3 nemory cing o

Text Books:							
1	Lars Wanhammer, "DSP Integrated Circuits", Academic press, New York, 1999.						
2	John J. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson Education, 2002.						
Refe	Reference Books:						

1	Keshab Parhi, "VLSI Digital Signal Processing Systems design & Implementation", John Wiley & Sons, 1999.							
2	B.Venkatramani, M.Bhaskar, "Digital Signal Processors", Tata McGraw-Hill, 2002.							
3	Avtar Singh and S. Srinivasan, "Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx", cengage Learning India Private Limited, Delhi 2012							
4	S.K. Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.							
E-R	eferences:							
1	http://www.nptelvideos.com/lecture.php?id=7678							
2	https://www.digimat.in/cgi-bin/search.cgi							
3	https://www.allaboutcircuits.com/video-tutorials/							

Cours	Bloom's Taxonomy	
Upon	completion of this course, the students will be able to:	Level
CO1	Get to know about the Digital Signal Processing concepts and its algorithms	Remembering
CO2	Get an idea about finite word length effects in digital filters	Understanding
CO3	Concept behind multi rate systems is understood.	Understanding
CO4	Get familiar with the DSP processor architectures	Understanding
CO5	Perform the synthesis of processing elements	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PSO	PSO	PSO							
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	1	-	-	-	-	-	-	-	-	2	2	2
CO2	2	-	1	1	-	-	-	-	-	-	-	-	1	2	1
CO3	3	-	1	1	-	-	-	-	-	-	-	-	2	-	1
CO4	1	-	1	1	-	-	-	-	-	-	-	-	2	2	1
CO5	2	2	2	1	-	-	-	-	-	-	-	-	1	2	1
Avg	1.8	2	1.4	1	-	-	-	-	-	_	-	-	1.6	2	1.2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

221	ECH10	5 VLSI SIGNAL PROCESSING	Ĵ	S			
PRF	EREQU	ISITES	Category	PE	Cr	edit	3
VLS	SI Desig	n		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cou	rse Obj	ectives					
1	To i	ntroduce fundamentals of VLSI signal processing and ex	pose them to example	nples of	applica	tions.	
2	Тос	esign and optimize VLSI architectures for basic DSP alg	gorithms.				
3	To i	mpart knowledge in asynchronous pipelining.					
Unit		PIPELINING AND PARALLEL PROCESSING OF FILTERS	DIGITAL	9	0	0	3
bour	nd - ite	to DSP systems – Typical DSP algorithms, Data flow ration bound - Longest path matrix algorithm - Pipel nd Parallel processing for low power.	1	0 1			
Unit	t II	ALGORITHMIC STRENGTH REDUCTION TECH	INIQUE I	9	0	0	3
perio para	od reduc llel FIF	definitions and properties - Unfolding – an algorithm fection and parallel processing application - Algorithmic statistics - 2-parallel fast FIR filter - DCT architectur - parallel rank-order filters.	strength reduction	in filter	s and th	ransform	ms - 2-
Unit	t III	ALGORITHIMIC STRENGTH REDUCTION -II		9	0	0	3
filter Clus	rs – Loo	ution – Cook-Toom algorithm - modified Cook-Toon ok-Ahead pipelining in first-order IIR filters - Look-Ah ok-ahead pipelining - Parallel processing of IIR filters -	ead pipelining wit	th power	of-2 de	ecompo	sition -
Unit	t IV	BIT-LEVEL ARITHMETIC ARCHITECTURES		9	0	0	3
mult CSD filter	tipliers -) multip rs.	thmetic architectures – parallel multipliers with sign e Design of Lyon"s bit-serial multipliers using Horner"s lication using Horner"s rule for precision improvement NUMERICAL STRENGTH REDUCTION,	rule - bit-serial FI	R filter - hmetic f	CSD r	epresen	itation - and FIR
Unit	t V	ASYNCHRONOUS PIPELINING		9	0	0	3
sync	hronous	trength reduction – subexpression elimination - multiple pipelining and clocking styles - clock skew in edge ave pipelining - Asynchronous pipelining bundled data	e-triggered single	phase of			
				Total	(45 L)	= 45 I	Periods
Text	Books						
1		o K. Parhi, "VLSI Digital Signal Processing Syst ience, 2010.	ems, Design and	d imple	ementat	ion",	Wiley,
2		yer – Baese, "Digital Signal Processing with Field I n, 2004	Programmable Ga	te Array	ys", Sp	ringer,	Second
Refe	rence E	ooks:					
1		A. Bayoumi, Magdy A. Bayoumi, E. Swartzlander, mic Publishers.October 1994.	"VLSI Signal Pro	ocessing	Techn	ology",	Kluwer
2	Isamai York,	l, Mohammed and Fiez, Terri, "Analog VLSI Signal ar 1994.	d Information Pro	ocessing	", McG	raw-Hi	ll, New

3 S.Y. Kuang, H.J. White House, T.Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1995.

4	Jose E. France, YannisTsividls, "Design of Analog Digital VLSI Circuits for Telecommunications and Signal Processing", Prentice Hall, 1994.						
5	Richard. J. Higgins, "Digital Signal Processing in VLSI", Prentice Hall, 1990.						
e-Re	e-Reference:						
1	https://nptel.ac.in/courses/108105157						
2	https://slideplayer.com/slide/8932417/						
3	https://www.youtube.com/watch?v=gIgNlhuqxWo						

Cours Upon	Bloom's Taxonomy Level	
CO1	Understand VLSI design methodology for signal processing systems.	Understanding
CO2	Perform the pipelining and parallel processing in FIR systems to achieve high speed and low power.	Analysing
CO3	Apply the algorithmic strength reduction using various techniques.	Analysing
CO4	Modify the existing or new DSP architectures suitable for VLSI.	Evaluating
CO5	Implement the strength reduction and asynchronous pipelining.	Creating

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO2	3	1	2	2	1	-	2	-	-	-	-	2	2	1	-
CO3	3	2	1	2	2	2	1	-	-	-	-	2	2	2	2
CO4	2	2	2	3	3	1	2	1	-	-	-	2	2	2	1
CO5	3	3	2	3	3	1	2	2	2	1	3	3	3	2	3
Avg	2.8	2	1.6	2.2	2	1.3	1.75	1.5	2	1	3	2.25	2.2	1.75	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC	CH107	MIXED SIGNAL VLSI DESIG	N	S			
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
VLSI	Design	L	Т	Р	ТН		
			Hours/Week	3	0	0	3
Cours	e Objec	tives	I I			1	1
1	To ana	lyze the characteristics of IC based CMOS filters.					
2	To des	ign various data converter architecture circuits.					
3	To des	ign oscillators and phase lock loop circuit.					
Un	nit I	INTRODUCTION		9	0	0	9
		Active Filters - Switched capacitor filters - Switched circuits – Integrator- Biquad	capacitor resistors	s - ampl	ifiers –	compa	rators -
Un	it II	INTEGRATOR BASED CMOS FILTERS		9	0	0	9
		lding Blocks - low pass filter - Active RC integrator ntegrators. Filtering Topologies: The Bilinear transfer					
Uni	it III	DATA CONVERTER ARCHITECTURES		9	0	0	9
and	Pipeline	ctures- Resistor string, R-2R ladder Networks, Curren DAC. ADC Architectures- Flash, Two-step flas pproximation ADC.					
Uni	it IV	DATA CONVERTER MODELING AND SNR		9	0	0	9
conver	rter SNI	Aliasing: A modeling approach, Impulse sampling, T R: An overview, Clock Jitter, Improving SNR us liter for DACs, Band pass and High pass sinc filters -	ing Averaging, D	ecimati	ng filte		
Un	it V	OSCILLATORS AND PLL		9	0	0	9
	cillators, d Loops.	Voltage Controlled Oscillators. Simple PLL, Charge	pumps PLLs, Nor	ideal e	ffects in	n PLLs	, Delay
				Total	(45 L)	= 45 I	Periods
Теч	t Books	•					
1		• S Mixed Signal Circuit Design by R.Jacob Baker, Wile	ev India IEEE Pre	ss repr	int 2008	3	

1	CMOS Mixed Signal Circuit Design by R.Jacob Baker, Wiley India, IEEE Press, reprint 2008.
2	CMOS Circuit Design, Layout and Simulation by R.Jacob Baker, Wiley India, IEEE Press, Second Edition, reprint 2009.
Refer	rence Books:
1	Design of Analog CMOS Integrated Circuits by Behzad Razavi, McGraw Hill, 33rd Re- print, 2016.
2	M.L.Bushnell & V.D.Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed signal VLSI Circuits", Kluwer Academic Publishers, 2004
3	N.K Jha and S.G Gupta, "Testing of Digital Systems", Cambridge University Press, 2003.
4	Laung-Terng Wang, Cheng-Wen Wu, Xiaoqing Wen, VLSI "Test Principles and Architectures", Morgan Kaufmann Publishers, 2006
E-Re	ference:

1	http://www.ee.iitm.ac.in/vlsi/courses/ee5320_2021/start
2	https://onlinecourses.nptel.ac.in/noc22_ee37/
3	https://archive.nptel.ac.in/courses/117/106/117106030/

Cours Upon	Bloom's Taxonomy Level	
CO1	Apply the concepts for mixed signal MOS circuit.	Understanding
CO2	Analyze the characteristics of IC based CMOS filters.	Understanding
CO3	Design of various data converter architecture circuits.	Applying
CO4	Analyze the signal to noise ratio and modeling of mixed signals.	Applying
CO5	Design of oscillators and phase lock loop circuit.	Analysing

COURSE ARTICULATION MATRIX																							
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO								
	1	2	3		5	6	7	8	9	10	11	12	1	2	3								
CO1	2	2	1	2	1	-	-	-	-	-	1	-	1	2	1								
CO2	3	2	2	2	1	-	-	-	-	-	1	-	2	2	1								
CO3	3	3	3	2	1	-	-	-	2	-	1	-	2	2	1								
CO4	2	2	2	3	2	-	2	-	2	-	2	1	2	2	1								
CO5	2	2	2	3	2	-	2	-	2	-	2	2	2	2	2								
Avg	2.4	2.2	2	2.4	1.4	-	2	-	2	_	1.4	1.5	1.8	2	1.2								
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	-High	,2- Med	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)												

22E(CH108	Semest	Semester									
PRE	REQU	JISITES		CATEGORY	PE	PE Credit						
1. W	ireless	Communi	cation	TT (TX ⁷)-	L	Т]	P	TH			
2. VI	LSI De	esign		Hours/Week	3	0	(0	3			
Cou	rse Ob	jectives										
1	To u	nderstand t	he concepts of basic wireless communicati	on concepts.								
2	To de	o design low noise amplifiers, mixers and various types of mixers designed for wireless communication										
3			and VCO and to understand the concepts o less communication.	f back end of the transmitt	ers and f	ont er	nd of	f the				
Unit	Ι	WIREI	ESS COMMUNICATION CONCEPTS		9)	0	0	9			
			Filter design – Non-idealities and Design Videband LNA design – Narrow band LNA									
			<u> </u>	design. Impedance match			•	1				
Unit		MIXERS	alitative Description of the Gilbert Mixer		-		0	0	9			
Activ Pract	ve Mix tical U	ker - Swit nbalanced	ching Mixer – Distortion, Conversion G Switching Mixer - Sampling Mixer - Con ing Mixer.	ain and Noise in Unbala	nced Sw	itchin	g M	lixer	- <u>-</u>			
Unit	IV	FREQU	ENCY SYNTHESIZERS)	0	0	9			
DI I		s and desig	- Dividers - Voltage Controlled Oscillato						ise			
Loop		fractional divider.										
Loop	ional d		gn approaches – A complete synthesizer d ////////////////////////////////////		-		0	0	wit			
Loop fracti Unit	ional d V	TRANS		VER AMPLIFIERS					wit			
Loop fracti Unit	ional d V	TRANS	AITTER ARCHITECTURES AND POV	VER AMPLIFIERS)	0	0	wit			
Loop fracti Unit	ional d V	TRANS	AITTER ARCHITECTURES AND POV	VER AMPLIFIERS	sign.)	0	0	wit			
Loop Tracti U nit Fran	ional d V	TRANS	AITTER ARCHITECTURES AND POV	VER AMPLIFIERS	sign.)	0	0	w			

1	Bosco H Leung "VLSI for Wireless Communication", Pearson Education, 2002
2	B.Razavi ,"RF Microelectronics", Prentice-Hall communication engineering and emerging technologies series,
_	2012.
Refer	ence Books:
1	Behzad Razavi, "Design of Analog CMOS Integrated Circuits" McGraw-Hill, 1999
2	Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI wireless design - Circuits & Systems", Kluwer
2	Academic Publishers, 2000.
3	Crols and M. Steyaert, "CMOS Wireless Transceiver Design," Boston, Kluwer Academic Pub., 1997
4	Thomas H.Lee, "The Design of CMOS Radio - Frequency Integrated Circuits", Cambridge University Press
-	,2003.
E-Ref	erence:
1	https://nptel.ac.in/courses/117104099/
2	http://www.nptelvideos.in/2012/12/wireless-communication.html
3	http://videos.gitam.edu/nptel/ece.html
3	http://videos.gitam.edu/nptel/ece.html

Course Outcomes: Upon completion of this course, the students will be able to					
CO1	Understand the fading concepts	Understanding			
CO2	Design Low Noise amplifier for wide band and narrow band.	Applying			
CO3	Design mixers with noise	Applying			
CO4	Evaluate the performance of Frequency synthesizers.	Evaluating			
CO5	Design and analyze Power amplifiers.	Applying			

COURSE ARTICULATION MATRIX															
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	2	2	1	2	2	1	1	-	-	-	2	2	2	-	2
CO2	1	2	2	2	1	1	2	-	-	-	1	2	1	-	2
CO3	2	1	2	1	1	2	1	-	-	-	2	1	2	-	1
CO4	1	1	2	2	1	1	2	-	-	-	1	1	1	-	2
CO5	2	1	2	1	2	2	1	-	-	-	2	2	1	-	1
Avg	1.6	1.4	1.8	1.6	1.4	1.4	1.4	-	-	-	1.6	1.6	1.4	-	1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22E	CH109	VLSI FOR IOT SYSTEMS		S	emester	r	
PRE	REQUIS	ITES	Category	PE	Cre	edit	3
VLS	I Design a	&IOT		L	Т	Р	TH
			Hours/Week	3	0	0	3
Cour	rse Objec	tives			•		
1	To ana	lyze the components of IOT and IC technology for IOT.					
2	To acq	uire the electronic system design for IOT.					
3	To imp	part the knowledge on System design for IOT and application	ions.				
U	nit I	INTRODUCTION		9	0	0	9
	-	.			•	eatures	of loT
U	nit II	COMPONENTS OF IOT		9	0	0	9
Conn sense	nectivity. ors proper	Sensors and Computing nodes. Sensors used in loT systeries for loT systems - Compute nodes of loT Connectivity	ems - Characterist	ics and	require	ments.	Types of
Ur	nit III	IC TECHNOLOGY FOR IOT		9	0	0	9
loT - mem Mana	Non Vo ories - P agement U	latile Memories (NVM). Embedded Non-Volatile Memor ower Management - Low Dropout Regulator - DC-to Jnits (PMUS) in IC's and Systems - Role of Field Program	ries - Anti-Fuse C -DC Converters	One Tim - Voltag stems.	e Progr ge Refe	ammal erences	ole (OTP) - Power
				-			
Powe preva Oper	er Supply ailing star ating con	Design for IoT systems - Mixed Signal challenges in h ndards - Component models & System Design - Feasibi ditions of IoT devices and impact on Electronic System	hardware systems lity and challenge	- Form es - Sys	Factor- tem Le	· Guide vel Int	elines and egration -
U	nit V	APPLICATIONS		9	0	0	9
Adde	er Circuits	s Using Clocked CMOS Adiabatic Logic (CCAL) for IoT	Applications -Bat	tery Ma	inageme	ent Tec	hnique to
	PREREQUISITES Category PE Credit 3 VLSI Design &IOT L T P TH Hours/Week 3 0 0 3 Course Objectives						
Tex			• • •	9	. ~ .	-	
1		č	uits to Integrated	Systems	s", Spri	nger P	ublications
2					r the lo	oT, and	Sub-1V &
Refe	erence Bo	oks:					
			with Particle Pho	ton and	Electro	n". Pac	ckt Publish

2	Shubakar Kalya, Muralidhar Kulkarni, Shivaprakasha, Advances in VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems, Springer, 2021.
	Ibrahim (Abe) M. Elfadel (Editor), Mohammed Ismail (Editor), TheIoT Physical Layer: Design and Implementation, Springer, 2018.
4	JyotiKandpal, Opportunity and Challenges for VLSI in IoT Application, DOI:10.4018/978-1-6684-3855- 8.ch0105Bosco H Leung "VLSI for Wireless Communication", PearsonEducation, 2002
E-Re	ference:
1	http://www.ee.iitm.ac.in/vlsi/courses/ee5320_2021/start
2	https://onlinecourses.nptel.ac.in/noc22_ee37/
3	https://archive.nptel.ac.in/courses/117/106/117106030/

	Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Level					
CO1							
CO2	Infer the components of IOT	Understanding					
CO3	Understand the IC technology for IOT	Understanding					
CO4	Acquire the electronic system design for IOT	Applying					
CO5	Infer the applications of IOT	Understanding					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	1	1	-	-	-	-	-	-	1	-	1	2	-
CO2	1	1	1	1	-	-	-	-	-	-	2	-	1	2	-
CO3	1	1	1	1	2		1	-	-	-	2	-	1	2	-
CO4	1	1	1	1	2	1	1	1	-	-	2	2	1	2	2
CO5	1	1	1	1	2	1	1	1	1	-	2	2	1	2	2
Avg	1	1	1	1	2	1	1	1	1	-	1.8	2	1	2	2
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	Low)			

22EC	CH110	CAD FOR VLSI DESIGN		S	emeste	r	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
VLSI	Design			L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Objec	tives					
1	To intr	oduce the VLSI design methodologies, data structures	s and algorithms re	equired	for VLS	SI desig	jn.
2	To stud	ly algorithms for partitioning, placement, floor planni	ng and routing.				
3	To stud	ly algorithms for modelling, simulation and synthesis.					
Un	it I	INTRODUCTION		9	0	0	9
		VLSI Design Methodologies – VLSI Design Cycle – - New Trends in Physical Design Cycle – Design Styl			•		•
Uni	it II	DATA STRUCTURES AND BASIC ALGORIT	HMS	9	0	0	9
		Data Structures and Algorithms – Algorithmic Gr Intractable Problems – General Purpose Methods for G	· ·	-		Comp	exity –
Uni	t III	ALGORITHMS FOR PARTITIONING AND P	LACEMENT	9	0	0	9
-		paction – Problem Formulation – Algorithms for C Placement Algorithms.	Constraint Graph	Compac	ction –	Partitio	oning –
Uni	t IV	ALGORITHMS FOR FLOORPLANNING ANI	D ROUTING	9	0	0	9
	lanning ed Routi	 Problem Formulation – Floorplanning Algorithms ng. 	– Routing – Area	Routin	ig – Glo	obal Ro	outing –
Un	it V	MODELLING, SIMULATION AND SYNTHES	SIS	9	0	0	9
		Gate Level Modeling and Simulation – Logic Synthesis	is and Verificatior	n – Bina	ry Deci	sion D	iagrams
				Tota	l (45 L)	= 45]	Periods
Tex	t Books						
1	1	H. Gerez, "Algorithms for VLSI Design Automation"	Second Edition	Wiley-I	ndia 20)17	
2		d a. Sherwani, "Algorithms for VLSI Physical Design		-			17
	rence Be				ii, opiiii	50 1, 20	17.
1		es J. Alpert, Dinesh P. Mehta and Sachin S Sapatneka nation, CRC Press, 1st Edition	r, "Handbook of A	Algorith	ms for l	Physica	l Desigr
2		herwani, "Algorithms for VLSI Physical Design Auto	mation", Kluwer	Academ	ic Publi	ishers, 2	2002.
3	Andre	w B Kahng and Jens Lienig, "VLSI Physical Design:	From Graph Parti	tioning t	to Timii	ng Clos	ure".
4	Rolf D	Drechsler, "Evolutionary Algorithms for VLSI CAD".					

•	
E-Re	ference:
1	https://archive.nptel.ac.in/courses/106/106/106106088/
2	https://gndec.ac.in/~librarian/web%20courses/IIT- MADRAS/CAD%20for%20VLSI%20DESIGN%20I/index1.html

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level			
CO1	Use various VLSI design methodologies	Understanding			
CO2	Understand different data structures and algorithms required for VLSI design.	Applying			
CO3	Develop algorithms for partitioning and placement.	Applying			
CO4	Develop algorithms for floorplanning and routing.	Applying			
CO5	Design algorithms for modelling, simulation and synthesis.	Analysing			

				C	OURSI					TDIV					
<u> </u>	DO	DO	DO	1		r			r		DO	DO	DCO	DCO	DCO
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	1	1	-	-	-	-	-	-	-	1	2	1
CO2	1	1	1	1	1	1	-	-	-	-	1	-	1	2	1
CO3	1	1	1	1	1	1	-	-	-	-	1	-	1	2	1
CO4	1	1	1	1	1	1	-	-	-	-	2	1	1	2	1
CO5	1	1	1	1	1	-	-	-	-	-	2	1	1	2	1
Avg	1.2	1.2	1	1	1	1	-	-	-	_	1.5	1	1	2	1
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	Low)			

22EC	H201	HIGH PERFORMANCE NETWOR	RKS	5	Semest	er	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Course	e Objec	tives		1			1
1	To Cor	npare and contrast high throughput and low latency network	working devices				
2	To intr	oduce the layered communication architectures of high	performance netw	vork.			
3	To app	ly various layer protocols and solve security issues					
UNIT	I	INTRODUCTION		9	0	0	9
ISDN-	BISDN	I, TCP/IP, Multiplexing, Modes of communication, S- - ATM-Features - Addressing signaling & Routing - ontrol - Interworking with ATM.	U	0			
UNIT	II	MULTIMEDIA NETWORKING APPLICATIONS	5	9	0	0	9
	•	ed audio and video-Best effort service -protocols for realing and policing mechanism integrated services - RSVF		. .		- Beyo	nd best
UNIT	III	ADVANCED NETWORKS CONCEPTS		9	0	0	9
site VI	PN - tu	nd performance - binary block codes - orthogonal - Bior nulling to PPP - security in VPN - MPLS-operation, MPLS based VPN - overlay networks - P2P connections					
UNIT	IV	TRAFFIC MODELLING		9	0	0	9
perform	nance e	m - Need for modeling - Poisson modeling and it valuation - Non-Markovian –Pollaczek-Khinchin form val model - Networks of Queues- Burke's theorem and J	ula and M/G/1,				
UNIT	V	NETWORK SECURITY AND MANAGEMENT		9	0	0	9
Auther	ntication	itecture - SNMP basics - SNMP naming and OIDs, MI applications- Kerberos, X.509 authentication service, E security overview, Firewalls- Firewall design principles	Electronic mail se				
				Tota	al (45L) = 45 1	Periods
Text	t Books	:					
1		re Defined Networks: A Comprehensive Approach by Pa Black, Morgan Kaufmann Publications, 2014	aul Goransson and	d			
2	SDN - S	Software Defined Networks by Thomas D. Nadeau & Ko	en Gray, O'Reilly	, 2013	3		
Refei	rence Bo	ooks:					
1	Softwa	re Defined Networking with OpenFlow by Siamak	Azodolmolky, I	Packt I	Publish	ning, 20	013

2 Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road to SDN: an intellectual history of programmable networks." ACM SIGCOMM Computer Communication Review 44.2 (2014): 87-98.

3	Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76								
4	Vivek Tiwari, —SDN and Open Flow for BeginnersI, Amazon Digital Services, Inc., 2013.								
E-R	E-Reference								
1	https://onlinecourses.nptel.ac.in/noc23_cs35/preview								
2	https://www.youtube.com/watch?v=d70RV20bJaY								

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Recognize and differentiate concepts of ATM, SONET and ISDN.	Understanding
CO2	Understand various multimedia networking applications and services.	Understanding
CO3	Apply advanced networks concepts	Applying
CO4	Perform traffic based on the various models and theorems	Applying
CO5	Solve various networks security issues and understand management concepts	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	-	2	-	-	-	-	-	-	-	-	3	-	2
CO2	-	2	-	2	-	-	-	-	-	-	-	-	3	-	3
CO3	2	2	2	2	-	-	-	-	-	-	-	2	2	-	1
CO4	2	2	2	2	-	-	-	-	-	-	-	2	1	-	1
CO5	2	2	3	2	-	-	-	-	-	-	-	2	2	-	2
Avg	2	2	2.3	2	-	-	-	-	-	-	-	2	2.2	-	1.8
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	B-High	,2- Med	ium,1-	Low)			

22ECH	H202	OPTICAL COMMUNICATION NETWO	ORKS	5			
PRERI	EQUIS	SITES	Category	PE	Cr	edit	3
			/	L	Т	P	ТН
			Hours/Week	3	0	0	3
Course	e Obje	ctives		•			·
1	To le	arn the basic elements of optical fiber transmission link, fib	er modes configu	rations	and str	ucture	s.
2	To le	arn the various optical source materials, LED structures, qu	antum efficiency	and La	ser dio	des and	l its uses.
3		inderstand the fiber optical network components, varie ational principles WDM.	ty of networking	g aspe	cts, SO	ONET/	SDH and
UNIT I	[OPTICAL FIBER COMMUNICATIONS		9	0	0	9
Ray the fibers - Fiber M	eory tr Grade Iateria	velopment - The general system - Advantages of optical fib ansmission - Modes in planar guide - Phase and group ve ad index fibers - Single mode fibers - Cutoff wavelength - N ls - Photonic crystal fibers.	elocity - Cylindri	cal fib ter - ef	er: Mo	des - S refract	Step index ive index.
UNIT I	II	TRANSMISSION CHARACTERISTICS		9	0	0	9
step ind splices	dex fib - Fiber	Attering losses - Fiber bend loss - Dispersion - Chromatic ber. Optical Fiber Connectors: Fiber alignment and joint lo r connectors: Cylindrical ferrule connectors - Duplex and M couplers - star couplers - Optical Isolators and Circulators.	ss - Fiber splices	: Fusic	on Splic	ces - N	Iechanical
UNIT	III	OPTICAL SOURCES		9	0	0	9
Modula Frequei	ation. I ncies. l	es: Light Emitting diodes: LED Structures - Light Source M Laser Diodes: Modes and Threshold conditions - Rate equa Photodetectors: Physical principles of Photodiodes - Photo ical Receiver Operation: Error sources. Front End Amplifie	tion - External Q detector noise - D	uantur Detector	n Effici r respoi	iency - nse tim	Resonant ne. Optical
UNIT I	IV	OPTICAL NETWORK ARCHITECTURES		9	0	0	9
Archite	ecture;	to Optical Networks; WDM networks - SONET / SD Broadcast and Select Networks- Topologies for Broadcast Routing Architecture. WOBAN and OTDM networks. Introd	Networks - Med	lia Acc			
UNIT	V	PACKET SWITCHING AND ACCESS NETWORKS		9	0	0	9
- Swite	ch-base	ket Switching – OTDM - Multiplexing and Demultiplexing ed networks; Access Networks – Network Architecture nitectures; Future Access Networks	•	M net	works;	Optica	
L							
1 0		ks: Ceiser, Optical Fiber Communication, 5th Edition, Mc C BN:1-25-900687-5.	Graw Hill Educa	tion (I	ndia) I	Private	Limited,

2 Rajiv Ramaswami and Kumar N. Sivarajan, "Optical Networks : A Practical Perspective", Harcourt Asia Pte Ltd., Second Edition 2004.

Reference Books:

1	Optical Communication systems by John Gowar, 2nd Edition							
2	Optical fiber Communications by John M. Senior, 3rd Edition							
3	Biswanath Mukherjee, "Optical Communication Networks", Mc-GrawHill ©1997, First Edition							
4	C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks : Concept, Design and Algorithms", Prentice Hall of India, Ist Edition, 2002.							
E-	Reference							
1	Optical Communications - Course (nptel.ac.in)							
2	https://opg.optica.org/jocn/home.cfm							

	Course Outcomes:									
Upon co	Upon completion of this course, the students will be able to:									
CO1	CO1 Recall the principles of operation of various optical fiber communication systems.									
CO2	Analyze the transmission characteristics of optical fiber and use	Applying								
CO3	Recognize the type of optical sources	Remembering								
CO4	Understand different types of optical network architectures and their applications	Understanding								
CO5	Relate aspects of algorithms to connectivity and packet switching and queuing.	Applying								

				С	OURSI	E ART	TCUL	ATIO	N MA	TRIX					
COs/POs	PO	РО	PO	PO4	РО	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	-	2	-	-	-	-	-	-	-	-	3	-	2
CO2	2	2	2	2	-	-	-	-	-	-	-	2	2	-	1
CO3	2	2	2	2	-	-	-	-	-	-	-	2	2	-	1
CO4	2	2	2	2	-	-	-	-	-	-	-	2	1	-	1
CO5	2	2	2	2	-	-	-	-	-	-	-	2	2	-	1
Avg	2	2	2	2	-	-	-	-	-	_	-	2	2	-	1.2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC	H203	NETWORK SECURITY AND MANAG	EMENT	5	Semest	er	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Objec	tives					
1	Unders	stand the need and concept of security					
2		derstand necessary Approaches and Techniques to builter networks.	ld protection med	chanisi	ms in c	order to	secure
3	To und	lerstand Cryptography Theories, Algorithms and System	IS				
Unit I		INTRODUCTION AND NUMBER THEORY		9	0	0	9
		Information Security, Computer Security & Network S ity Services and Mechanisms, and Techniques - Number	•		•	•	
Unit I	[SYMMETRIC AND ASYMMETRIC CRYPTOSY	STEMS	9	0	0	9
Congru Cipher	uence an rs –Subs	ry and Mathematics for Symmetric Cryptography- Finit nd Quadratic Congruence – Basics for Asymmetric-K titution Ciphers, Transposition Ciphers	Ley Cryptography	•			
Unit I	II	AUTHENTICATION, DIGITAL SIGNATURES A CERTIFICATES	ND	9	0	0	9
Function RSA (ons – Bi	grity & Message Authentication - Message Authent irthday Attacks, Digital Signatures - Digital Signature S (9.31) – Public Key Distribution – RSA schemes, Dig ment.	Standards (FIPS	186-2)	, DSA	(ANSI	X9.30),
Unit I	V	SECURITY AT LAYERS		9	0	0	9
		r Security - IPSec, Transport Layer Security- SSL/TI wall - Concepts, Architecture, Packet Filtering, Proxy Se				Security	–PGP,
Unit V	7	NETWORK MANAGEMENT AND SNMP PROTO MODEL	DCOL	9	0	0	9
manag manag	ement, l ement i	System management, Network management system pla Network management standards. SNMPV1, SNMPV2 nformation. SNMPV2 – MIB – SNMPV2 protocol, ased security model, access control RMON.	system architect	ure, S	NMPV	2, struc	cture of
				Tot	tal (451	L)= 45]	Periods
Tex	t Books	:					
1	Behrou	z A.Forouzan, "Cryptography and Network Security", S	pecial Edition, Ta	ata Mc	Graw H	Hill, 20	07
2	Mani S	ubramanian, "Network Management – Principles & Prac	ctice" – 2nd Editi	on Pre	ntice H	all, 201	2.

Reference Books:

-	William Stallings "Cryptography and Network Security: Principles and Practice", 3rd Edition, Pearson Education, 2002.
2	Bruce Scheneier, "Applied Cryptography", John Wiley & Sons, 1994.

3	Charlie Kaufmann, Radia Perlman, Mike Speciner, "Network Security", Second Edition,						
4	David M. Durton, "Elementary Number Theory", Tata Mcgraw Hill, Sixth Edition, 2009.						
E-R	eferences:						
1	https://onlinecourses.nptel.ac.in/noc21_cs16/preview						
2	https://nptel.ac.in/courses/106105031						
3	https://www.udemy.com/courses/it-and-software/network-and-security/						

Course Outcomes:							
Upon completion of this course, the students will be able to:							
		Level					
CO1	Apply a structed approach of number theory to identify the need of security in the networks.	Applying					
CO2	Able to apply the symmetric and asymmetric cryptosystems for the security issues in the network and resolve it.	Remembering					
CO3	Have the knowledge of authentication, DSAs and certificates for security issues.	Analysing					
CO4	Analyze the security at various layers in the networking	Evaluating					
CO5	Demonstrate various security applications, firewall, web security, Email security and malicious software, etc. and system management.	Analysing					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PSO	PSO	PSO						
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	1	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	3	2	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	3	2	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	2.2	1.6	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC	CH204	ARTIFICIAL NEURAL NETWO	RKS	S	emeste	r	
PRER	EQUIS	ITES	Category	PE	edit	3	
				L	Р	ТН	
			Hours/Week	3	0	0	3
Cours	e Objec	tives					
1	To unc	lerstand the biological neural network and to model ec	uivalent neuron m	nodels.			
2	To unc	lerstand the architecture, learning algorithms					
3	To kno	ow the issues of various feed forward and feedback new	ural networks.				
4	To exp	olore the Neuro dynamic models for various problems					
UNIT	Ι	INTRODUCTION		9	0	0	9
Netwo	ork Arch	A Neural Network, Human Brain, Models of a Neuror itectures, Knowledge Representation, Artificial Intellion Dearning, Memory Based Learning, Hebbian Learn	igence and Neural	Netwo	rks Lea	rning P	
UNIT	II	PERCEPTRONS		9	0	0	9
UNIT Back Netwo	III Propaga	eriment, Feature Detection BACK PROPAGATION Ition: Back Propagation and Differentiation, Hessi ing Techniques, Virtues and Limitations of Back Pro- arning					
UNIT		SELF-ORGANIZATION MAPS (SOM)		9	0	0	9
		eature Mapping Models, Self-Organization Map, S ulations, Learning Vector Quantization, Adaptive Patt	÷	Propert	ties of	Feature	e Map,
UNIT	V	NEURO DYNAMICS AND HOPFIELD MODEI	LS	9	0	0	9
Manip		ics: Dynamical Systems, Stability of Equilibrium S of Attractors as a Recurrent Network Paradigm Ho hine.					
				Tot	al (45L) = 45 I	Periods
Tex	t Books	:					
1	Artifici	al Neural Networks - B. Vegnanarayana Prentice Hall	of India P Ltd 200)5			
2	Introdu	ction to Artificial Neural Systems Jacek M. Zurada, JA	AICO Publishing H	House E	d. 2006		
Refe	rence B	ooks:					
1	Neural	Networks in Computer Inteligance, Li Min Fu T	MH 2003				

2	Neural Networks a Comprehensive Foundations, Simon S Haykin, PHI Ed.
3	Neural Networks -James A Freeman David M S Kapura Pearson Ed., 2004.
4	Joao Luis Garcia Rosa, Artificial Neural Networks Models and Applications, IntechOpen,2016
E-R	eference
1	https://in.coursera.org/learn/neural-networks-deep-learninghttps://in.coursera.org/learn/neural-networks-deep-learning
2	https://nptel.ac.in/courses/117105084
3	https://in.coursera.org/learn/machine-learning

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Understand the similarity of biological networks and Neural networks						
CO2	Perform the training of neural networks using various learning rules.	Applying					
CO3	Apply the concepts of forward and backward propagations.	Applying					
CO4	Recognize mapping models and self-organizing map	Remembering					
CO5	Understand and construct the Hopfield models.	Applying					

				С	OURSE	E ART	TICUL	ATIO	N MA	TRIX					
COs/POs	PO	РО	PO	PO4	PO	PO	PO	РО	РО	PO	PO	РО	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	-	2	-	-	-	-	-	-	-	-	3	-	2
CO2	2	2	3	2	-	-	-	-	-	-	-	2	2	-	3
CO3	2	2	2	2	-	-	-	-	-	-	-	2	2	-	1
CO4	2	2	2	2	-	-	-	-	-	-	-	2	-	-	-
CO5	-	2	3	2	-	-	-	-	-	-	-	2	2	-	2
Avg	2	2	2.5	2	-	-	-	-	-	_	-	2	2.25	-	2
		3/2	2/1 - ir	ndicates	s streng	th of c	orrela	tion (3	-High	,2- Med	ium,1-	Low)			

22EC	H205	5G COMMUNICATION NETWO	RKS	S	emeste	er	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Objec	tives	·				
1	To de	scribe the evolution of mobile communication leading	g to the introduction	n of 5G			
2	To id	entify the spectrum requirement					
3	To ex	plain the key innovations in radio and network					
Unit I		INTRODUCTION TO 5G		9	0	0	9
3G and	1 4G(LT	E) overview- Introduction to 5G – Use Cases – Evolv	ving LTE to 5G Ca	pability	- 5G N	R and 5	G core
		N) – 5G Standardization – 3GPP and IMT2020 – S d Applications	Spectrum for 5G –	- 5G de	eploym	ent – C	Options,
Unit I	[5G WIRELESS PROPAGATION CHANNELS A SPECTRUM	AND	9	0	0	9
mm W		ling requirements, propagation scenarios and challer MO Systems. Spectrum for 4G – Spectrum Challeng G.					
Unit I	II	TRANSMISSION AND DESIGN TECHNIQUES	FOR 5G	9	0	0	9
(OFD) filtered	M), gene l multi- MA), ge	hents of transmission over 5G, Modulation Technique eralized frequency division multiplexing (GFDM), fi carrier (UFMC), Multiple Accesses Techniques – or eneralized frequency division multiple accesses	lter bank multi-car thogonal frequenc	rriers (I y divis	FBMC) ion mu	and ur ltiple a	niversal ccesses
Unit I	V	DEVICE-TO-DEVICE (D2D) COMMUNICATIO	ONS	9	0	0	9
standa		ice (D2D) and machine-to-machine (M2M) type to 5G, radio resource management for mobile broatens.					
Unit V	7	MILLIMETER WAVE COMMUNICATIONS		9	0	0	9
technic Estima	ques - i ition in	ve Communications – spectrum regulations - deployn nterference and mobility management - Massive M Massive MIMO - Massive MIMO with Imperfer - Spatial Modulation (SM).	IIMO propagation	chann	el mod	lels - C	Channel
				Tot	al (451	L)= 45 I	Periods
Text B	ooks:						
1		sseiran, Jose.F.Monserrat, Patrick Marsch, "Fundan sity Press	nentals of 5G Mo	bile N	etworks	s", Ca	mbridge
2	Martin	Sauter "From GSM From GSM to LTE–Advanced P bile Broadband", Wiley-Blackwell	ro and 5G: An Intr	oductio	on to M	lobile N	letworks
Refe	rence B	•					

1	Athanasios G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopoulos, "New Directions in Wireless Communication Systems from Mobile to 5G", CRC Press.						
2	Theodore S.Rappaport, Robert W.Heath, Robert C.Danials, James N.Murdock "Millimeter Wave Wireless Communications", Prentice Hall Communications.						
3	Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", John Wiley & Sons.						
4	Amitabha Ghosh and Rapeepat Ratasuk "Essentials of LTE and LTE-A", Cambridge University Press.						
E-R	eferences:						
1	https://nptel.ac.in/courses/112104181/						
2	https://www.qualcomm.com						
3	https://5glab.de						

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the concepts and design of cognitive radios.	Understanding					
CO2	Study about the SDR architecture and analysis.	Remembering					
CO3	Analyse the various cognitive radio network architectures and network security.	Analysing					
CO4	To analyse the performance of MAC and network layer design for cognitive radio.	Analysing					
CO5	Able to improve the quality of video conferencing, improve the immersive learning experience and able to use AR and VR to design modules	Applying					

	COURSE ARTICULATION MATRIX														
Cos/ Pos	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO1 2	PSO 1	PSO 2	PSO3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
			3/2	2/1 - inc	dicates s	strength	of corre	elation ((3-High	,2- Med	ium,1-	Low)			

22ECH2	06 WIRELESS ADHOC AND SENSOR NET	WORKS	S	r		
PRERE(QUISITES	Category	PE	Cr	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course (Dbjectives	I			1	
1	To understand the basics of Ad-hoc & Sensor Networks.					
2	To learn various fundamental and emerging protocols of all lay	yers.				
3	To understand the nature and applications of Ad-hoc and sense	or networks.				
Unit I	MAC & TCP IN AD HOC NETWORKS		9	0	0	9
Wireless	ntals of WLANs – IEEE 802.11 Architecture – Self configur Networks – MAC Protocols for Ad-Hoc Wireless Networks – -TCP protocol overview – TCP and MANETs – Solutions for T	Contention Based Pro	otocols -			
Unit II	ROUTING IN AD HOC NETWORKS		9	0	0	9
– Forwar	ding strategies – Greedy packet forwarding – Restricted direct	tional flooding Hiera	rahiaal	Douting	T Iccuic	
Challenge Unit III Introduct principles	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver	ETWORKS design consideration Design consideration	9 s – Ener 1s – MA	0 rgy Effi C Laye	0 Icient D r Proto	9 esign cols –
Challenge Unit III Introduct principles IEEE 802	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols &	ETWORKS design consideration Design consideration Protocols – Mobile 1	9 s – Ener ns – MA Nodes a	0 rgy Effi .C Laye nd Mot	0 cient D r Proto bile Rol	9 esign cols – pots –
Challenge Unit III Introduct principles IEEE 802 Data Cen	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols &	ETWORKS design consideration Design consideration Protocols – Mobile 1	9 s – Ener ns – MA Nodes a	0 rgy Effi .C Laye nd Mot	0 cient D r Proto bile Rol	9 esign cols – pots –
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M	AAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & oport.	ETWORKS design consideration Design consideration Protocols – Mobile 1 QOS – Congestion C e Selection Protocols	9 s – Ener ns – MA Nodes a Control i 9 s – Time	0 rgy Effi C Laye nd Mob issues – 0 e synch	0 ccient D r Proto bile Rol - Applic 0 nronizat	9 eesign cols – cots – cation 9
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & oport. SENSOR MANAGEMENT Ianagement – Topology Control Protocols and Sensing Mode	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion C e Selection Protocols rogramming – Sensor	9 s – Ener ns – MA Nodes a Control i 9 s – Time	0 rgy Effi C Laye nd Mob issues – 0 e synch	0 ccient D r Proto bile Rol - Applic 0 nronizat	9 esign cols – cots – cation 9
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M Localizat Unit V Security i water ma	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & oport. SENSOR MANAGEMENT Management – Topology Control Protocols and Sensing Mode ion and positioning – Operating systems and Sensor Network pr	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion C e Selection Protocols rogramming – Sensor ement – Software base thoc routing protocols	9 s – Ener ns – MA Nodes a Control i 9 s – Time Network 9 ed Anti-	0 rgy Effi C Laye nd Mot issues – 0 e synch k Simul 0 tamper	0 ccient D r Proto bile Rol - Applid 0 nronizat ators. 0 technic	9 Pesign cols – cots – cation 9 ion – 9 yues –
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M Localizat Unit V Security i water ma	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & port. SENSOR MANAGEMENT Management – Topology Control Protocols and Sensing Mode ion and positioning – Operating systems and Sensor Network pr SECURITY IN AD HOC AND SENSOR NETWORKS in Ad-Hoc and Sensor networks – Key Distribution and Manage rking techniques – Defense against routing attacks – Secure Ad	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion C e Selection Protocols rogramming – Sensor ement – Software base thoc routing protocols	9 s – Ener ns – MA Nodes a Control i 9 s – Time Networl 9 ed Anti- s – Broa	0 rgy Effi C Laye nd Mot issues – 0 e synch k Simul 0 tamper	0 ccient D r Proto bile Rol - Applid 0 rronizat ators. 0 technic uthentid	9 esign cols – cots – cation 9 ion – 9 ues – cation
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M Localizat Unit V Security i water ma	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & port. SENSOR MANAGEMENT Management – Topology Control Protocols and Sensing Mode ion and positioning – Operating systems and Sensor Network pr SECURITY IN AD HOC AND SENSOR NETWORKS in Ad-Hoc and Sensor networks – Key Distribution and Manage rking techniques – Defense against routing attacks – Secure Ad	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion C e Selection Protocols rogramming – Sensor ement – Software base thoc routing protocols	9 s – Ener ns – MA Nodes a Control i 9 s – Time Networl 9 ed Anti- s – Broa	0 rgy Effi C Laye nd Mot issues – 0 e synch k Simul 0 tamper idcast a	0 ccient D r Proto bile Rol - Applid 0 rronizat ators. 0 technic uthentid	9 esign cols – cots – cation 9 ion – 9 ues – cation
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M Localizat Unit V Security i water ma	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network a for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & port. SENSOR MANAGEMENT Management – Topology Control Protocols and Sensing Mode ion and positioning – Operating systems and Sensor Network pr SECURITY IN AD HOC AND SENSOR NETWORKS in Ad-Hoc and Sensor networks – Key Distribution and Manage rking techniques – Defense against routing attacks – Secure Ac tocols – TESLA – Biba – Sensor Network Security Protocols –	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion C e Selection Protocols rogramming – Sensor ement – Software base thoc routing protocols	9 s – Ener ns – MA Nodes a Control i 9 s – Time Networl 9 ed Anti- s – Broa	0 rgy Effi C Laye nd Mot issues – 0 e synch k Simul 0 tamper idcast a	0 ccient D r Proto bile Rol - Applid 0 rronizat ators. 0 technic uthentid	9 vesign cols – cots – cation 9 ion – 9 ues – cation
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M Localizat Unit V Security i water ma WSN pro	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network a for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & port. SENSOR MANAGEMENT Management – Topology Control Protocols and Sensing Mode ion and positioning – Operating systems and Sensor Network pr SECURITY IN AD HOC AND SENSOR NETWORKS in Ad-Hoc and Sensor networks – Key Distribution and Manage rking techniques – Defense against routing attacks – Secure Ac tocols – TESLA – Biba – Sensor Network Security Protocols –	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion C e Selection Protocols rogramming – Sensor dhoc routing protocols SPINS.	9 s – Enerns – MA Nodes a Control i 9 s – Time Network 9 ed Anti- s – Broa	0 rgy Effi C Laye nd Mot issues – 0 e synch k Simul 0 tamper idcast a 1 (45L):	0 icient D r Proto bile Rol - Applid 0 nronizat ators. 0 technic uthentic	9 esign cols – cation 9 ion – 9 cues – cation riods
Challenge Unit III Introduct principles IEEE 802 Data Cen Layer sup Unit IV Sensor M Localizat Unit V Security i water ma WSN pro	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network is for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & oport. SENSOR MANAGEMENT Management – Topology Control Protocols and Sensing Mode ion and positioning – Operating systems and Sensor Network pr SECURITY IN AD HOC AND SENSOR NETWORKS in Ad-Hoc and Sensor networks – Key Distribution and Manager rking techniques – Defense against routing attacks – Secure Act tocols – TESLA – Biba – Sensor Network Security Protocols – mooks:	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion O e Selection Protocols rogramming – Sensor dhoc routing protocols SPINS. Wired and Wireless I	9 s – Ener ns – MA Nodes a Control i 9 s – Tim Network 9 ed Anti- s – Broa	0 rgy Effi C Laye nd Mot issues – 0 e synch k Simul 0 tamper idcast a 1 (45L): as", Spri	0 icient D r Proto bile Rol - Applid 0 aronizati ators. 0 technic uthentic = 45 Pe inger, 2	 9 besign cols – bots – cation 9 ion – 9 ion – 9 cation riods 006.
Challenge Unit III Introduct principles IEEE 802 Data ⊂en Layer sup Unit IV Sensor M Localizat Unit V Security is water ma WSN pro Text B 1 Ac 2 Ca Ec	es in providing QoS. MAC, ROUTING & QOS IN WIRELESS SENSOR NE ion – Architecture – Single node architecture – Sensor network a for WSNs – Protocols for WSN – Physical Layer : Transceiver 2.15.4 Zigbee – Link Layer and Error Control issues – Routing tric & Contention Based Networking – Transport Protocols & oport. SENSOR MANAGEMENT Ianagement – Topology Control Protocols and Sensing Mode ion and positioning – Operating systems and Sensor Network pr SECURITY IN AD HOC AND SENSOR NETWORKS in Ad-Hoc and Sensor networks – Key Distribution and Manage rking techniques – Defense against routing attacks – Secure Ac tocols – TESLA – Biba – Sensor Network Security Protocols – frian Perrig, J. D. Tygar, "Secure Broadcast Communication: In rlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc a	ETWORKS design consideration Design consideration Protocols – Mobile I QOS – Congestion O e Selection Protocols rogramming – Sensor dhoc routing protocols SPINS. Wired and Wireless I	9 s – Ener ns – MA Nodes a Control i 9 s – Tim Network 9 ed Anti- s – Broa	0 rgy Effi C Laye nd Mot issues – 0 e synch k Simul 0 tamper idcast a 1 (45L): as", Spri	0 icient D r Proto bile Rol - Applid 0 aronizati ators. 0 technic uthentic = 45 Pe inger, 2	 9 besign cols – bots – cation 9 ion – 9 ion – 9 cation riods 006.

- 2 C..K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002.
- 3 Erdal Çayırcı , Chunming Rong, "Security in Wireless Ad Hoc and Sensor Networks", John Wiley and Sons, 2009.

	Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks Theory and Practice", John Wiley and Sons, 2010.							
E-References:								
1	https://nptel.ac.in/courses/106105183							
2	https://archive.nptel.ac.in/noc/courses/noc18/SEM1/noc18-cs09/							
3	https://archive.nptel.ac.in/courses/106/105/106105160/							

Course O	outcomes:	Bloom's					
Upon com	Upon completion of this course, the students will be able to:						
CO1	Identify different issues in wireless ad hoc and sensor networks	Understanding					
CO2	To analyze protocols developed for ad hoc and sensor networks.	Analysing					
CO3	To design energy efficient Wireless Sensor Networks.	Understanding					
CO4	Establish a Sensor network environment for different type of applications	Applying					
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	Remembering					

	COURSE ARTICULATION MATRIX														
Cos/ Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECH20	7 SOFTWARE DEFINED NETWOR	RKS	Sem	ester		
		CATEGORY	PE	Cre	dit	3
		Hours/Week	L	T	Р	TH
			3	0	0	3
Course Ob	jectives:	I	I		<u> </u>	
1. To di	fferentiate between traditional networks and software defin	ned networks				
2. To le	arn advanced and emerging networking technologies					
3. To ob	tain skills to do advanced networking research and program	mming				
4. To le	arn to use software programs to perform varying and comp	lex networking task	58			
UNIT I	INTRODUCTION		9	0	0	9
SDN Origir The Genesis	s and Evolution – Introduction – Why SDN? – Centralizes of SDN	d and Distributed C	Control an	d Dat	a Pla	nes -
UNIT II	SDN ABSTRACTIONS		9	0	0	9
Nicira – V	Works – The Openflow Protocol – SDN Controllers: Int /mware/Nicira – OpenFlow-Related – Mininet – NC loodlight – Layer 3 Centric – Plexxi – Cisco OnePK					
UNIT III	PROGRAMMING SDN'S		9	0	0	9
Network Pr	ogrammability – Network Function Virtualization – NetAp	p Development, Ne	twork Sli	icing		
UNIT IV	SDN APPLICATIONS AND USE CASES		9	0	0	9
	be Data Center – SDN in Other Environments – SDN Apperating System	pplications – SDN	Use Cas	es –	The	Oper
	SDN'S FUTURE AND PERSPECTIVES		9	0	0	9
UNIT V						9
	Source – SDN Futures – Final Thoughts and Conclusions					9

Text B	Books:
1.	Software Defined Networks: A Comprehensive Approach by Paul Goransson and Chuck Black, Morgar Kaufmann Publications, 2014
2.	SDN – Software Defined Networks by Thomas D. Nadeau & Ken Gray, O'Reilly, 2013
Refere	ence Books:
1.	Software Defined Networking with OpenFlow by SiamakAzodolmolky, Packt Publishing, 2013
2.	Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road to SDN: an intellectual history of programmable networks." ACM SIGCOMM Computer Communication Review 44.2 (2014): 87-98.
3.	Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76
4.	Vivek Tiwari, -SDN and Open Flow for BeginnersI, Amazon Digital Services, Inc., 2013.
E-Refe	erence
1	https://www.youtube.com/watch?v=CaukSKg_sI0
2	https://in.coursera.org/learn/sdn
3	https://nptel.ac.in/courses/108107107

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	:	Differentiate between traditional networks and software defined networks	Understanding					
CO2	:	Understand advanced and emerging networking technologies	Understanding					
CO3	:	Obtain skills to do advanced networking research and programming	Applying					
CO4	:	Learn how to use software programs to perform varying and complex networking tasks	Remembering					
CO5	:	Expand upon the knowledge learned and apply it to solve real world problems	Applying					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PSO	PSO	PSO							
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	-	2	-	-	-	-	-	-	-	-	3	-	2
CO2	-	2	-	2	-	-	-	-	-	-	-	-	3	-	3
CO3	2	2	2	2	-	-	-	-	-	-	-	2	2	-	1
CO4	2	2	2	2	-	-	-	-	-	-	-	2	1	-	1
CO5	2	2	3	2	-	-	-	-	-	-	-	2	2	-	2
Avg	2	2	2.3	2	-	-	-	-	-	-	-	2	2.2	-	1.8
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22E	CH208	EMBEDDED SYSTEM FOR NETWO	RKING	Sei	neste	r	
			CATEGORY	PE	C	redit	С
				L	Т	P	ТН
			Hours/Week	3	0	0	3
Cour	se Obj	ectives:					
1.	To lea	rn embedded communication protocols and BUS					
2.	To ob	tain skillset in basic and embedded ethernet					
3.	To ob	tain skills to do advanced networking research and program	mming				
4.	To sp	ecify, design, implement, and debug an embedded system	project				
UNI	ΓI	EMBEDDED COMMUNICATION PROTOCOLS		9	0	0	9
stand	ard – F	Networking: Introduction – Serial/Parallel Communicat RS485 – Synchronous Serial Protocols -Serial Peripheral I port programming – ISA/PCI Bus protocols – Fire wire.			-		
UNIT	ΓII	USB AND CAN BUS		9	0	0	9
types Fram	–Enur es –Bi	ntroduction – Speed Identification on the bus – USB State neration –Descriptors –PIC 18 Microcontroller USB Inte t stuffing –Types of errors – Nominal Bit Timing – with CAN.	rface - C Program	s –CAN E	Bus –	Introc	luction –
UNIT	T III	ETHERNET BASICS		9	0	0	9
speed	l – De	a network – Inside Ethernet – Building a Network: Hard sign choices: Selecting components –Ethernet Control ions – Inside the Internet protocol.					
UNI	ΓIV	EMBEDDED ETHERNET		9	0	0	9
		messages using UDP and TCP – Serving web pages with t – Email for Embedded Systems – Using FTP – Keeping			o page	es that	respond
UNIT	ΓV	WIRELESS EMBEDDED NETWORKING		9	0	0	9
		sor networks – Introduction – Applications – Network To ient MAC protocols –SMAC – Energy efficient and robus				chroni	zation –
				Total	(45L) = 45	Periods
Text	Books			17 0			
1.		k Vahid, Tony Givargis, "Embedded Systems Design: A ey Publications, 2002	Unified Hardware	Software	Introc	luction	n", John &
2.		Axelson, "Parallel Port Complete: Programming, interfacilications, 1996.	ng and using the Po	Cs parallel	print	er por	t", Penrar
Refe	rence I						
1.		an Ibrahim, "Advanced PIC microcontroller projects in C: vier 2008.	from USB to RTO	S with the	PIC1	8F se	ries",
2.	Jan	Axelson, "Embedded Ethernet and Internet Complete", Pe	nram publications,	2003.			
3.		skar Krishnamachari", "Networking Wireless Sensors", C	ambridge press 200	5.			_
	ference http://		omboddod sometro	htm1			
1	nttps	s://www.cisco.com/c/en/us/solutions/internet-of-things/iot	-embeuded-services	s.numi			

2	https://in.coursera.org/courses?query=embedded%20systems
3	https://www.coursera.org/lecture/iot/lecture-3-2-basic-equipment-UMLzi

Course O Upon con		comes: tion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Understand different communication protocols	Understanding
CO2	:	Understand data flow in BUS and interfacing	Understanding
CO3	:	Obtain skills to use internet in local and wide communications	Applying
CO4	:	Differentiate UDP and TCP communication	Remembering
CO5	:	Expand upon the knowledge learned and apply it to solve real world problems	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	-	2	-	-	-	-	-	-	-	-	3	-	2
CO2	-	2	-	2	-	-	-	-	-	-	-	-	3	-	3
CO3	2	2	2	2	-	-	-	-	-	-	-	2	2	-	1
CO4	2	2	2	2	-	-	-	-	-	-	-	2	1	-	1
CO5	2	2	3	2	-	-	-	-	-	-	-	2	2	-	2
Avg	2	2	1.75	2	-	-	-	-	-	-	-	2	2.2	-	1.8
		3/2	2/1 - ind	licates	streng	th of c	orrela	tion (3	3-High	,2- Med	ium,1-	Low)			

22EC	CH209	COGNITIVE RADIO NETWOR	KS	S	emeste	r	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Objec	tives	I I				
1	Unde	rstand the concepts of cognitive radio					
2	Learn	spectrum sensing and dynamic spectrum access					
3	To in	troduce the student about fundamental concepts and a	pplications of cogr	nitive ra	dio net	works.	
Unit I		INTRODUCTION TO SOFTWARE-DEFINE COGNITIVE RADIO	D RADIO AND	9	0	0	9
		oftware Defined Radio and Cognitive radio: goals, b ssues - enabling technologies - radio frequency spectr			ectures,	, relatio	ns with
Unit I	0	0	9				
Inferen	nce Hier	io – functions, components and design rules, Cogniti archy - Architecture maps - Building the Cognitive Overview of IEEE 802.22 standard for broadband wir	Radio Architectur	e on So			
Unit I	II	SPECTRUM SENSING AND DYNAMIC SPECT	FRUM ACCESS	9	0	0	9
cooper spectru Spectru	ative de um sensi um Sha	Primary user detection techniques – energy detected etection - Bayesian Approach - Neyman Pearson ng - Kullback Leibler Divergence and other approach ring Models of Dynamic Spectrum Access - U Limits of Cognitive Radio.	fusion rule for sp es, Fundamental T	pectrum radeoff:	sensir s in spe	ng - O ectrum s	ptimum sensing,
Unit I	V	MAC AND NETWORK LAYER DESIGN FOR RADIO	COGNITIVE	9	0	0	9
		nitive radios – Multichannel MAC - slotted ALOHA s, flow control and error control techniques.	A – CSMA, Netwo	ork laye	r desig	gn – ro	uting in
Unit V	7	ADVANCED TOPICS IN COGNITIVE RADIO		9	0	0	9
techno	logies -	o for Internet of Things - Features and applications Data storage and analysis techniques – Requirement ive Radio – Power allocation algorithms.					
				Tot	al (451	L)= 45]	Periods
Tex	t Books					1	, 1 ••
1		der M. Wyglinski, Maziar Nekovee, Thomas Hou, "C nic Press, Elsevier, 2010.	ognitive Kadio Co	mmuni	cations	and Ne	works"

2 Bruce Fette, "Cognitive Radio Technology", Newnes, 2006

Reference Books:

- 1 Huseyin Arslan (Ed.), "Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, 2007.
- 2 Kwang-Cheng Chen, Ramjee Prasad, "Cognitive Radio Networks", John Wiley and Sons, 2009.

3	SShanmugavel, M.A.Bhagyaveni, R.Kalidoss, "Cognitive Radio-An Enabler for Internet of things", River Publishers, 2017.								
E-R	E-References:								
1	https://www.youtube.com/watch?v=FCDZV2U6xxE								
2	https://www.youtube.com/watch?v=oFon8h68RtM								
3	https://www.udemy.com/course/cognitive-radio-networks/								

Cours	se Outcomes:	Bloom's					
Upon	completion of this course, the students will be able to:	Taxonomy Level					
CO1	CO1 Able to understand the fundamental concept of cognitive radio networks						
CO2	Understand technologies to allow and efficient use of TV bands for radio communication based on two spectrum sharing business models	Understanding					
CO3	Understand the fundamental issues regarding dynamic spectrum access.	Understanding					
CO4	Develop the cognitive radio as well as techniques for spectrum holes detection that cognitive radio takes advantages in order to exploit it.	Applying					
CO5	Use the Cognitive Radio for IoT and MIMO systems.	Understanding					

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO1	PSO	PSO	PSO
POs										10	11	2	1	2	3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
			3/2/	'1 - ind	icates st	rength o	of corre	lation (3	B-High,2	2- Medi	um,1- L	.ow)			

22ECH	H210	NEXT GENERATION NETWOR	KS	S	emeste	er	
PRER	EQUI	SITES	Category	PE	Cı	redit	3
			TT (TT)	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Obje	ectives				•	
1	To le	arn Wireless technologies and Ad-hoc Network.					
2	To ex	plore NGN architecture and management activities.					
3	To ga	ain the knowledge of Cooperation for Next Generation V	Wireless Network	S			
Unit I		BASIC HISTORY OF MOBILE COMPUTING		9	0	0	9
compu	ting th	for mobile computing - Three tier architecture - design arough internet - Wireless network architecture – App ture Evolution of mobile computing.					
Unit I	[OVERVIEW OF WIRELESS NETWORK AND TI	ECHNOLOGIES	5 9	0	0	9
TCP co host, A	onnect Adhoc	to different generations – Bluetooth - RFID, Mobile ions, two level addressing, abstract mobility manageme networks – Mobile transport layer - Wireless network n for mobile communication - GSM architecture.	ent model, perform	nance is	sue, ro	uting in	mobile
Unit I	II	GENERAL PACKET RADIO SERVICE(GPRS)		9	0	0	9
	-	acket data network - GPRS network architecture – GPR of GPRS - Billing and charging in GPRS.	S network operat	ion - Da	ita serv	rices in (GPRS -
Unit I	V	INFRASTRUCTURE AND AD-HOC NETWORK		9	0	0	9
advant	ages -	itecture - Protocol Architecture - Medium Access Cont IEEE 802.11a - 802.11b standards -Wireless LAN Vireless LAN - Mobile ad hoc networks and sensor netw	architecture - 1	Mobility	in W		
Unit V	7	WIRELESS APPLICATION PROTOCOL(WAP APPLICATION CDMA AND 3G	P), MMS, GPR	S 9	0	0	9
Applic technol	ations logies	rum Technology – FHSS – DSSS - CDMA versus GSM in 3G Wireless LAN - WiFi v/s 3G Voice over Inte - Security issues in mobile Information security - S or mobile environment.	rnet protocol and	l convei	gence	- Conve	ergence
				To	tal (45)	L)= 45 I	Periods
Text	t Book	 <\$:					
1	-	ing Li Salina, Pascal Salina "Next Generation Netwo	orks-perspectives	and pot	entials	Wiley,	January
2	Madh	usanga Liyanage, Andrei Gurtov, Mika Ylianttila, "Soork Architecture", Wiley, June 2015.	oftware Defined	Mobile	Networ	ks beyo	ond LTE
Refer	rence	Books:					
	Marti 2013	n Sauter,"3G,4G and Beyond bringing networks, devi	ces and web tog	ether", V	Wiley,	Second	edition
		G Glisic," Advanced Wireless Networks- Technology a		els", Wi	ley, 3^{rd}	edition	- 2016
3	Jonatl	nan Rodriguez, "Fundamentals of 5G Mobile Networks"	', Wiley, 2015.				

4	Athanasios G. Kanatas, Konstantina S. Nikita, Panagiotis Takis Mathiopoulos, "New Directions in Wireless communications Systems: From Mobile to 5G", CRC Press, 2017.								
E-References:									
1.	https://nptel.ac.in/courses/106105183								
2.	https://www.coursera.org/lecture/smart-device-mobile-emerging-technologies/4-5-lte-advanced-part-2-A4XMD								
3.	https://www.coursera.org/lecture/network-transformation-101/yet-another-next-generation-yang-data-modeling-language-NXxPA								

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	To understand concept of mobile computing.	Understanding
CO2	Have the knowledge of different generation mobile communication systems.	Analysing
CO3	Analyze various protocols of all layers for mobile and adhoc wireless communication networks	Analysing
CO4	Analyze and examine new generation of mobile technology.	Analysing
CO5	Recognize and understand cellular technology using long term evolution.	Understanding

				С	OURSI	EART	ICUL	ATIO	N MA	TRIX					
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	1	2	1	-	-	-	-	-	-	-	1	2	1
CO2	2	1	2	2	1	-	-	-	-	-	-	-	1	2	2
CO3	1	1	1	1	1	-	-	-	-	-	-	-	1	2	1
CO4	1	1	2	1	1	-	-	-	-	-	-	-	1	2	1
CO5	1	1	1	1	1	-	-	-	-	-	-	-	1	2	1
Avg	1.25	1	1.4	1.4	1	-	-	-	-	-	-	-	1	2	1.2
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	Low)			

22EC	H301	STATISTICAL THEORY OF COMMUN	NICATION	S	emeste	r	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
			TT (XX/)	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Objec	tives					
1	To intr	oduce various decision making system, filtering techn	iques and statistic	al opera	tions.		
2	To imp	art knowledge on Estimation theory.					
3	To gaiı	n knowledge on Information theory.					
Unit I		INFORMATION MEASURE		9	0	0	9
entropi codes method	ies - Ent - Kraft- 1).	problem of Communication - Definition and properti- tropy in the continuous case - Noiseless coding: pro McMillan inequality - The noiseless coding theorem	blem of unique de	eciphera	bility -	instant	taneous fman's
Unit I	[NOISY CODING		9	0	0	9
Calcul		nemoryless channel - Mutual information and chack channel capacity - Decoding schemes - Shannon's funnel.					
Unit I	II	OPTIMIMUM LINEAR SYSTEMS		9	0	0	9
		nication in presence of additive white Gaussian no hite Gaussian noise - Linear estimation using least me					
Unit I	V	TESTING OF STATISTICAL HYPOTHESIS		9	0	0	9
		to tests - Bayes, Neyman Pearson and Mini-max te - Optimum reception of known binary signals in Gaus		of error	- Rece	viver op	erating
Unit V	7	PARAMETER ESTIMATION		9	0	0	9
- Block	k diagra	inknown parameters random and deterministic: ML, M m of a pulsed radar system - The radar equation detection detection of steady point targets.					
				Tot	al (45L	.)= 45 I	Periods
Tex	t Books	:					
1	Yuk Wi	ng Lee, Statistical Theory of Communication, Literar	y Licensing, LLC	2013			
2	S.P. Eu	gene Xavier, Statistical Theory of Communication, No.	ew Age Internation	nal, 199	7		
Refe	rence Bo	ooks:					
1	Willis V	W. Harman, Principles of the Statistical Theory of Cor	mmunication, McC	Braw-Hi	11, 1963	3	
2	Barbara	R. Levin, Statistical Communication Theory and Its	Applications, Imp	orted Pu	ublicati	on 1982	2
3	I. Ravi	Kumar, Compr. Statistical Theory of Communication,	, Firewall Media, 2	2001			
	I						

4	Yuk Wing Lee, Statistical Theory of Communication Hardcover – 1, John Wiley & Sons Inc 1960
E-R	eferences:
1	http://www.spec.gmu.edu/~pparis/classes/notes_630/handouts.pdf
2	https://archive.nptel.ac.in/noc/courses/noc20/SEM1/noc20-ee53/
3	http://drolet.segfaults.net/EE501/CourseNotesEE501.pdf

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Characterize and apply probabilistic techniques in modern decision systems.	Applying
CO2	Demonstrate and compare various Estimation techniques	Understanding
CO3	Apply various source coding techniques to data	Applying
CO4	Apply appropriate model for estimation and signal modeling for the given problem	Applying
CO5	Analyze non-parametric and parametric methods for parameter estimation	Analysing

					С	OURS	SE AR	TICU	LATIO	ON MA	ΓRIX				
COs/P	PO	PO	PO	PO	РО	РО	РО	РО	РО	PO	PO	PO	PSO1	PSO2	PSO3
Os	1	2	3	4	5	6	7	8	9	10	11	12	1301	F302	1303
CO1	3	2	1	2	1	-	-	-	-	-	-	-	3	-	2
CO2	3	1	1	2	1	-	-	-	-	-	-	-	3	1	2
CO3	3	1	2	2	2	-	-	-	-	-	-	-	3	1	2
CO4	3	2	2	1	1	-	-	-	-	-	-	-	3	-	1
CO5	3	1	2	2	1	-	-	-	-	-	-	-	3	2	2
Avg	3	1.4	1.6	1.8	1.2	-	-	-	-	-	-	-	3	1.3	1.8
			3/2	/1 - ino	dicates	s stren	gth of	correl	ation (3-High,	2- Med	ium,1-	Low)		

22EC	H302	INFORMATION THEORY AND CO	ODING	S	emester	r	
PRER	EQUIS	ITES	Category	PE	Cro	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Objec	tives			1		
1	To stuc	ly the basic concepts of information theory.					
2	To und	erstand the concepts of error control coding.					
3	To Lea	rn various applications of coding theory.					
Uni	it I	INFORMATION THEORY		9	0	0	9
theorem	n - Shai	Entropy, Information rate - classification of codes non-Fano coding - Huffman coding - Extended Huf ation - Discrete memoryless channels – BSC, BEC –	fman coding - Joi	nt and c	onditio	nal enti	
Uni	t II	BLOCK CODES		9	0	0	9
codes -		d Principles: Hamming weight - Hamming distance ing codes - Repetition codes - Linear block codes, Cy 2.			0		
Unit	t III	BCH CODES		9	0	0	9
Error c	orrectio	ve BCH codes, Decoding procedures, Implementation n. Non –binary BCH codes: q –ary Linear Block Co s, Decoding of Non –Binary BCH and RS codes: The	odes, Primitive BC	CH codes	s over C	GF (q),	
Unit	t IV	CONVOLUTIONAL CODES		9	0	0	9
	ng - So	Convolutional codes - Structural properties - Distance ft –output Viterbi Algorithm, Stack and Fano seq	1 1		0	0	
Uni	t V	CONCATENATED CODES		9	0	0	9
Concat	enated of	Concatenated codes - Multilevel Concatenated c coding schemes with Convolutional Inner codes - In sign of Turbo codes.					
				Tota	l (45 L)	= 45 I	Periods
Text	t Books						
1		&Daniel J. Costello, Jr. "Error Control Coding "Pear		ll, Secon	d Editio	on, 201	1.
2		"Information Theory, Coding and Cryptography", T	MH 2016.				
Refer	ence Bo	ooks:					
1	S. Grav	ano, "Introduction to Error Control Codes", Oxford U	University Press 20	007.			
2	Amitab	ha Bhattacharya, "Digital Communication", TMH 20	17.				
3		Haykin, "Digital Communication Systems", Wiley, 20					
4	Todd K	Moon, "Error Correction Coding", Wiley, Second Ed	dition, 2020.				

e-Re	ference:
1	https://nptel.ac.in/courses/117101053
2	https://nptel.ac.in/courses/108102117
3	https://nptel.ac.in/courses/117108097

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Use algebraic techniques to construct efficient codes	Applying
CO2	Identify the parameters of a given code	Analysing
CO3	State and prove the limits on achievable code performance	Understanding
CO4	Understand practical aspects of data compression and error-control coding	Understanding
CO5	Design the encoding and decoding circuits for block codes, convolutional codes, BCH and concatenated codes.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	-	-	2	1	-	-	-	-	-	-	-	2	1	1
CO2	2	-	-	2	1	-	-	-	-	-	-	-	1	1	1
CO3	3	-	-	3	1	-	-	-	-	-	-	-	2	1	1
CO4	3	-	-	2	1	-	-	-	-	-	-	-	2	2	1
CO5	2	-	-	2	1	-	-	-	-	-	-	-	1	1	-
Avg	2.6	-	-	2.2	1	-	-	-	-	-	-	-	1.6	1.2	1
		3/2	2/1 - in	ndicates	streng	th of c	orrela	tion (3	8-High	,2- Med	ium,1-	Low)			

22EC	CH303	MILLIMETER WAVE COMMUNI	CATION	Se	emester		
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
1.		g and Digital Communication,		L	Т	Р	ТН
2. 3.	•	System Design s and Systems	Hours/Week	3	0	0	3
Cours	e Objec	tives			1		
1	To und	lerstand the fundamentals of Millimeter wave device	es and circuits.				
2	To und	lerstand the various components of Millimeter wave	Communications	system.			
3	To kno	w the antenna design at Millimeter wave frequencie	es.				
Unit I		INTRODUCTION		9	0	0	9
for mn	n wave:	ve characteristics - millimeter wave wireless - impl Large scale propagation channel effects - small sca ging applications of millimeter wave communicatio	ale channel effects				
Unit I	I	MILLIMETER WAVE DEVICES AND CIRCU	UITS	9	0	0	9
- mode - VCC	els for m) – PLL	ve generation and amplification: Peniotrons – Ubitro m wave Transistors - transistor configurations - An - Metrics for analog mm wave devices - Consump less - ADC's and DAC's.	alog mm wave co	mponents	: Ampli	fiers –	Mixers
Unit I	II	MILLIMETER WAVE COMMUNICATION S	SYSTEMS	9	0	0	9
Transc	eiver ar	or millimeter wave communications: OOK, PSK, FS chitecture - Transceiver without mixer - Receiver w I manufacture - Millimeter wave design consideration	without Oscillator				•
Unit I	V	MILLIMETER WAVE MIMO SYSTEMS		9	0	0	9
Transc	eivers -	IO Communications - Spatial diversity of Ant Noise coupling in MIMO system - Potential benefic ersity - Dynamic spatial, frequency and modulation	its for mm wave s	-			-
Unit V	7	ANTENNAS FOR MM WAVE SYSTEMS		9	0	0	9
On-chi	ip and Ir ave in a	width – Polarization - Advanced beam steering and a package mm wave antennas - Techniques to impro daptive antenna arrays - Device to Device commun	ove gain of on-chip	o antennas	- Imple	ementat	tion for
				Tota	al (45L)) = 45 F	Periods
Tex	t Books	•					
1 Ro	bert W.	Heath, Robert C. Daniel, James N. Theodore S. Rap ation", Prentice Hall, 2014.	ppaport, Murdock,	"Millimet	er Wav	e Wirel	ess
2 K.C	C. Huang	g, Z. Wang, "Millimeter Wave Communication Syst	ems", Wiley-IEEE	E Press, M	arch 20	11.	
Refe	rence Bo	ooks:					
1 Xia	ang, W;	Zheng, K; Shen, X.S; "5G Mobile Communications	: Springer, 2016.				
2 Ma	nuel Ga	rcía Sanchez, "Millimeter-Wave (mmWave) Comm	unications", MDP	I Books, N	March 2	020.	
3 Joh	ın S. Sey	vold "Introduction to RF propagation," John Wiley	and Sons, 2005.			_	

4 Chia-Chin Chong, Kiyoshi Hamaguchi, Peter F. M. Smulders and Su-Khiong, "Millimeter – Wave Wireless Communication Systems: Theory and Applications," Hindawi Publishing Corporation, 2007.

E-References:

1 https://onlinecourses.nptel.ac.in/noc23_ee69/preview

2 https://onlinecourses.nptel.ac.in/noc22_ee102/preview

3 https://www.classcentral.com/course/swayam-millimeter-wave-technology-7903

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand wave propagation models for millimeter wave.	Understanding
CO2	Understand Millimeter devices and circuits.	Understanding
CO3	Understand Millimeter-wave based communication systems.	Understanding
CO4	Understand Millimeter-wave based MIMO systems	Understanding
CO5	Design antenna for Millimeter wave frequencies	Applying

	COURSE ARTICULATION MATRIX														
COs/P Os	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO2	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO3	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO4	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO5	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
Avg	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
			3/2	2/1 - in	dicate	s stren	gth of	correl	ation	(3-High,	2- Med	lium,1	- Low)		

22EC	CH304	S	r							
PRER	EQUIS	ITES	Category	PE	Cr	edit	3			
Analog	g and Di	gital Communication		L	Т	Р	ТН			
			Hours/Week	3	0	0	3			
Cours	e Objec	tives				1				
1	To und	lerstand the basics of spread spectrum communication	systems.							
2	To lear	rn about the performance of spread spectrum in multip	oath environment.							
3	To und	lerstand the performance analysis of spread spectrum	systems.							
Unit ISPREADING CODES9009										
Genera	ators-Ge	rithmetic- Sequence Generator Fundamentals-State neration and Properties of m-Sequences Gold Codes omplementary Code Keying - Walsh–Hadamard Sequ	- Kasami Seque							
Un	it II	SPREAD SPECTRUM SYSTEMS		9	0	0	9			
	-	ce Spread Spectrum (DSSS) - Processing Gain- Freq ent Slow FHSS – Coherent and Noncoherent Fast FHS	• • •	.			oherent			
Uni	t III	SYNCHRONIZATION IN SPREAD SPECTRU	9	0	0	9				
		covery - Carrier Synchronization - Code Synchro ceivers- Pseudonoise Tracking in Direct Sequence Rec		lonoise A	Acquisi	tion in	Direct			
Uni	t IV	SPREAD SPECTRUM IN MULTIPATH ENVI	RONMENT	9	0	0	9			
Perfor Optim	mance o	um Communication System Model - Performance of of Spread Spectrum Systems with Forward Error Co oding Rule-Calculation of Error Probability - Elemer Rate.	prrection: Elemen	tary Blo	ck Cod	ing Co	ncepts-			
Un	it V	PERFORMANCE ANALYSIS OF SPREAD SP SYSTEM	ECTRUM	9	0	0	9			
interfe	rences l	of spread spectrum system under AWGN - multi-u Low probability of intercept methods - Optimum or probability of DS-CDMA system under AWGN an	intercept receive	r for di	rect sea	quence				
				Tota	al (45L)) = 45 I	Periods			
Tor	t Books	-								
1 1 1		E. Ziemer, "Fundamentals of Spread Spectrum Modu	lation". Morgan &	& Clavpo	ol. Pub	lishers	series.			
1	2007.			• •						
2		l Sklar & Pabitra Kumar Ray, "Digital Communicatio , Pearson Education, Inc, 2021.	ns Fundamentals	and App	lication	s", Thii	rd			
Refe	rence B	ooks:								
1	Don To	rrieri, "Principles of Spread-Spectrum Communicatio	on Systems", Sprir	nger, 3 rd I	Edition,	2015.				
2		rson, R. E. Ziemer, and D. E. Borth, "Introduction to River, NJ: Prentice Hall, 1995	Spread Spectrum	Commu	nication	ıs", Upp	per			
3		imon, J.K. Omura, R.A. Scholtz, and B.K. Levitt, "Sp nic Edition, McGraw-Hill, 2002	read Spectrum Co	ommunic	ations I	Handbo	ok",			

4	Robert C.Dixon, "Spread Spectrum Systems with Commercial Applications", 3rd Edition, John Wiley & Sons, Ins, 1994
E-R	eference:
1	https://nptel.ac.in/courses/117105077/
2	http://www.rgcetpdy.ac.in/Notes/IT/III %20 YEAR/COMMUNICATION % 20 ENGINEERING -II / Unit % 202. pdf
3	https://www.tutorialspoint.com/digital_communication/digital_communication_spread_spectrum_modulation .htm

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand the spread spectrum codes.	Understanding						
CO2	Arrive at detailed specifications of the spread spectrum systems.	Remembering						
CO3	Design systems based on spread spectrum synchronization.	Applying						
CO4	Design the spread spectrum in multipath environment.	Applying						
CO5	Know the concept of Performance analysis of spread spectrum system.	Remembering						

	COURSE ARTICULATION MATRIX														
	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
COs/POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	2	2	1	-	-	-	-	-	-	-	1	-	1
CO2	2	-	2	2	1	-	-	-	-	-	-	-	2	-	1
CO3	2	-	2	2	1	-	-	-	-	-	-	-	2	1	1
CO4	2	-	2	2	1	-	-	-	-	-	-	-	2	1	1
CO5	2	-	2	2	1	-	-	-	-	-	-	-	2	1	1
Avg	2	-	2	2	1	-	-	-	-	-	-	-	1.8	1	1
		3/2/	1 - inc	licates	stren	gth of	correl	ation (3-Hig	h,2- Me	dium,1	- Low)		

22EC	CH305	Se	Semester				
PRER	EQUIS	ITES	Category	PE	Cı	redit	3
Analo	g and Di	gital Communication		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Objec	tives					
1	0	e comprehensive coverage of coding techniques for unication systems.	Multiple Input Mu	iltiple Out	put (M	IIMO)	
2	To ana	lyze about MIMO communication systems, Space-t	ime block codes, S	Space-time	e trellis	codes	
3	To gai	n knowledge on MIMO systems for frequency-selec	tive (FS) fading cl	nannels.			
Uı	nit I	FADING CHANNELS AND DIVERSITY TEC	HNIQUES	9	0	0	9
		nnels – Error/Outage probability over fading channed diversity – Multiple antennas in wireless communic	•	hniques –	Chan	nel codi	ng as a
Un	it II	CAPACITY AND INFORMATION RATES C CHANNELS	DF MIMO	9	0	0	9
·	•	Information rates of noisy, AWGN and fading chan MIMO channels – Constrained signalling for MIMO	· ·		hannel	s – Cap	acity of
Uni	t III	SPACE-TIME BLOCK AND TRELLIS COD	ES	9	0	0	9
codes Repres – Com	– Linea sentatior parison	rsity with two antennas: The Alamouti scheme – O r dispersion codes – Generic space-time trellis co n of space-time trellis codes for PSK constellation – of space-time block and trellis codes.	des – Basic space Performance anal	-time cod ysis for sp	e desig ace-tir	gn princ ne trelli	s codes
Uni	it IV	CONCATENATED CODES AND ITERATIV	E DECODING	9	0	0	9
		of concatenated codes – Concatenated codes for MIMO channels – Concatenated space-time block		MO char	nnels –	- Turbo	coded
Un	it V	SPACE-TIME CODING FOR FREQUENCY FADING CHANNELS	SELECTIVE	9	0	0	9
coding		ncy-selective channels – Capacity and Information annel detection for MIMO FS channels – challenge tems.					
				Tota	al (45L	.) = 45 I	Periods
Tex	t Books	:					
1	Sussex,	M. Duman and Ali Ghrayeb, "Coding for MIMO Co , England, 2007					s, West
2	Hoboke	ershman and N.D. Sidiropoulus, "Space-time proces en, NJ, USA, 2005.	ssing for MIMO co	ommunica	tions",	Wiley,	
Refe	rence B	ooks:					
1	E.G. La Press, 2	arsson and P. Stoica, "Space-time block coding for V 2003.	Wireless communio	cations", (Cambri	dge Un	iversity
2		K. Jagannatham, Principles of Modern Wireless Co ion, India, 2015.	mmunications Sys	tems, 1st	Edition	, McGr	aw-Hill
3	H. Jafa	rkhani, "Space-time coding: Theory & Practice", Ca	mbridge Universit	ty Press, 2	005.		

4 Huaibei Zhou" Advance MIMO systems" Scientific Research Publishing; 1st edition, 2009.

E-R	eference:
1	https://nptel.ac.in/noc/individual_course.php?id=noc17-cs37
2	https://nptel.ac.in/courses/117104115/34
3	https://nptel.ac.in/noc/individual_course.php?id=noc16-ec11

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the diversity techniques and design the MIMO channels.	Understanding
CO2	Understand the capacity of MIMO channels.	Remembering
CO3	Analyse the performance of Space time Trellis code.	Analysing
CO4	Design concatenated codes.	Applying
CO5	Understand Frequency selective channels to estimate the capacity of MIMO channels.	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO	РО	РО	PO	РО	РО	PO	РО	PO	РО	РО	РО	PSO	PSO	PSO
000,100	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	1	1	1	-	-	-	-	-	-	-	2	1	1
CO2	1	-	1	1	1	-	-	-	-	-	-	-	2	-	1
CO3	2	-	2	2	1	-	-	-	-	-	-	-	2	-	1
CO4	2	-	2	2	1	-	-	-	-	-	-	-	2	1	1
CO5	2	-	2	2	1	-	-	-	-	-	-	-	2	-	1
Avg	1.8	-	1.6	1.6	1	-	-	-	-	-	-	-	2	1	1
	•	3/2	/1 - ir	ndicate	es strer	ngth of	f corre	lation	(3-Hig	gh,2- Me	dium,1	- Low)	1	1

22EC	H306	SMART ANTENNAS		Semester				
PRER	EQUIS	ITES	Category	PE	Cr	edit	3	
	_	_		L	Т	Р	ТН	
Antenr	na and w	vave propagation	Hours/Week	3	0	0	3	
Course	e Objec	tives						
1	To gain	n basic knowledge on smart antennas.						
2	To und	erstand adaptive beam forming.						
3	To acq	uire insight about space-time processing.						
Unit I		INTRODUCTION TO SMART ANTENNAS		9	0	0	9	
Space	Divisio	t Antennas- Smart Antenna Configurations- Switche n Multiple Access (SDMA) - Architecture of a backs and Applications of Smart Antennas System.						
Unit I	[DOA ESTIMATION FUNDAMENTALS		9	0	0	9	
Conver	ntional d - Subs	se Vector, Received Signal Model - Subspace-H DOA Estimation Methods - Conventional Beamfo pace Approach to DOA Estimation - MUSIC Algor	orming Method -	Capon's	s Minii	mum V	ariance	
Unit I	II	BEAM FORMING FUNDAMENTALS		9	0	0	9	
Multip	le Sidel	n former - Statistically Optimum Beamforming Webbe Canceller and Maximum - SINR Beam former - on (DMI) - Linearly Constrained Minimum Variance	Minimum Mean S					
Unit I	V	INTEGRATION AND SIMULATION OF SMA	RT ANTENNAS	9	0	0	9	
Beam	forming ve Arra	n, Mutual Coupling - Adaptive Signal Processing and Diversity Combining for Rayleigh-Fading C ys - Smart Antenna Systems for Mobile Adhoc	Channel - Trellis-C	oded M	odulati	ion (TC	CM) for	
Unit V	7	SPACE-TIME PROCESSING		9	0	0	9	
	-	e-Time Channel and Signal Models, Space- Tim pace-Time Processing for DSCDMA, Capacity, and		•		ıd Co-C	Channel	
				Tot	tal (451	L)= 45 I	Periods	
Tex	t Books:							
1	Constar	ntine A. Balanis & Panayiotis I. Ioannides, "Introduc ers' series-2007	tion to Smart Anter	ınas", M	lorgan	& Clay _j	pool	
2	Joseph	C. Liberti Jr., Theodore S Rappaport, "Smart Antenr tion CDMA Applications", PTR – PH publishers, 1st		mmunic	ationsI	S-95 an	d Third	
Refei	rence Bo		,					
1	-	ppaport, "Smart Antennas Adaptive Arrays Algorithr TR – PH publishers 1999.	ns and Wireless Po	sition Lo	ocation	", IEEE	press	
2		and Godara, "Smart Antennas", CRC Press, LLC-20.						
3	Frank B	B. Gross, Smart Antennas with MATLAB®, 2nd Edi	tion, 2015 McGraw	-Hill Ec	lucation	a.		

4	T. K. Sarkar, Michael C. Wicks, Magdalena Salazar-Palma, Robert J. Bonneau, Smart Antennas: 143 (Wiley Series in Microwave and Optical Engineering), Wiley-IEEE Press; 1st edition (20 May 2003).									
E-References:										
1	https://onlinecourses.nptel.ac.in/noc20_ee20/preview									
2	https://nptel.ac.in/courses/108101092									
3	https://archive.nptel.ac.in/courses/117/107/117107035/									

Cours	e Outcomes:	Bloom's
Upon	completion of this course, the students will be able to:	Taxonomy Level
CO1	Understand various types of smart antenna and its configurations.	Understanding
CO2	Analyse various estimation methods.	Analysing
CO3	Understand and analyse beamforming in smart antennas.	Analysing
CO4	Integrate and simulate algorithms related to smart antennas.	Applying
CO5	Analyse and understand space-time processing techniques.	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO2	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO3	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO4	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO5	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
Avg	3	2	1	2	2	1	-	-	-	_	2	-	2	2	_
			3/2/	1 - ind	icates	streng	th of c	orrela	tion (3	-High,2	- Mediu	ım,1- l	Low)		

22EC	CH307	RF IC AND MICROWAVE MI	EMS	Se	mester	•	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
	nsmissio	n lines Engineering		L	Т	Р	ТН
2. MIC	IOwave	Engineering	Hours/Week	3	0	0	3
Cours	e Objec	tives					
1		arize the students with different types of MEMS dev MEMS devices.	vices and fabricatio	n method	s of pa	ssive ar	ıd
2	Design	micro machined passive components, Transmission	n lines and Antenna	as.			
3	Analys	e Packaging and reliability issues in MEMS structu	res.				
Unit I	1	INTRODUCTION		9	0	0	9
Model Applic elemen	s Biasin ations - nts - Mi	MMIC - Processing & Layers - Passive MMIC F g – Amplifiers - Introduction to MMICs Technolog Circuit basics - Fabrication Technology - MMIC crostrip elements - Introduction: RF MEMS for n lechanical modelling of MEMS devices - MEMS ma	gies: GaAs/Si/InP: components - Ac nicrowave applicat	MESFE tive devie ions - M	Γ ΗΕΜ ces - P EMS to	T BJT assive	HBT – lumped
Unit I	ſ	TRANSMISSION LINES AND ANTENNAS		9	0	0	9
transm	ission	Lines and Antennas: Micromachined transmissior lines - micromachined waveguide components mprove antenna performance - reconfigurable anten	- Micromachine				.
Unit I	II	RF FILTERS AND PHASE SHIFTERS		9	0	0	9
- micr		Phase Shifters: Modeling of mechanical filters - mi ed filters for millimeter wave frequencies - Vario					
Unit I	V	MEMs SWITCHES		9	0	0	9
Circuit		nes: Introduction to MEMS switches - Capacitive and electromagnetic modelling - Techniques of ME es.					
Unit V	7	INTEGRATION AND PACKAGING		9	0	0	9
•		d Packaging: Role of MEMS packages - types of N eliability issues.	/IEMS packages -	module p	ackagiı	ng - pao	ckaging
				Tot	al (451	L)= 45]	Periods
Tex	t Books	:					
1	Varada	n, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and	l their Applications	", John W	/iley &	Sons.	2002.
2	Rebeiz,	G.M., "MEMS: Theory Design and Technology", J	John Wiley & Sons	. 1999.		_	

GCE, SALEM (Autonomous) - R2022 Syllabus

3	Madou, M., "Fundamentals of Microfabrication", CRC Press. 1997.									
4	Sze, S.M., "Semiconductor Sensors", John Wiley & Sons. 1994.									
E-R	E-References:									
1	https://onlinecourses.nptel.ac.in/noc19_ee57/preview									
2	https://www.surrey.ac.uk/cpd-and-short-courses/microwave-circuits-and-systems									
3	RF and millimeter-Wave Circuit Design Coursera									

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify various types of MMIC and MEMS devices, fabrication methods and packaging standards.	Understanding
CO2	Design MEMS tuneable capacitors and switches using micromachining techniques.	Applying
CO3	Model MEMS filters and Phase shifters for various types of RF applications.	Applying
CO4	Design and analysis of Micro machined Transmission lines and Antennas for wireless applications	Applying
CO5	Analyse the reliability and design related issues in MEMS structures.	Analysing

					CC	DURS	EAR	FICUL	ATIO	N MAT	'RIX				
	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	F301	F302	1303
CO1	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO2	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO3	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO4	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
CO5	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
Avg	3	2	1	2	2	1	-	-	-	-	2	-	2	2	-
			3/2/	1 - ind	icates	streng	th of c	orrela	tion (3	-High,2	- Medi	um,1-	Low)		

22EC	CH308	COGNITIVE RADIO		S	emeste	r	
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Objec	tives	1				
1		ble the student to understand the requirements in de nd its functionalities	signing software de	fined rad	dios and	l cognit	tive
2		ble the student to understand the evolving paradigm ng technologies for its implementation	of cognitive radio of	commun	ication	and the	2
3	To ana	lyse the spectrum management functions using cog	nitive radio systems	and cog	nitive r	adio ne	tworks.
Unit I		INTRODUCTION TO COGNITIVE RADIOS		9	0	0	9
- com		nd, cognitive radio (CR) architecture - functions of o of cognitive radio - spectrum sensing - spectrum	•	-	•		
Unit I	I	SPECTRUM SENSING		9	0	0	9
-		sing - Detection of spectrum holes (TVWS) - consistent ng business models.	llaborative sensing	- geo-l	ocation	databa	ase and
Unit I	II	OPTIMIZATION TECHNIQUES OF DYNA ALLOCATION	MIC SPECTRUN	¹ 9	0	0	9
		mming - convex programming - non-linear pro and stochastic programming.	ogramming - integ	ger prog	grammi	ng - d	ynamic
Unit I	V	DYNAMIC SPECTRUM ACCESS AND MANA	AGEMENT	9	0	0	9
-	rum brol um acce	ker - cognitive radio architectures - centralized o ss.	lynamic spectrum	access -	- distril	outed d	ynamic
Unit V	/	SPECTRUM TRADING		9	0	0	9
		spectrum trading - classification to spectrum trad ories in DSA - classification of auctions (single auct					
				Tot	tal (45I	L)= 45]	Periods
Tex	t Books	:					
1		Hossain, DusitNiyato, Zhu Han, "Dynamic Spectrunks", Cambridge University Press 2009.	n Access and Mana	gement	in Cogı	nitive R	adio
2	•	ieri, A.J. Goldsmith., L.J. Greenstein, N.B. Manda dge University Press, 2013.	yam, H.V. Poor, "F	Principle	s of Co	ognitive	Radio"
Refe	rence B	ooks:					
1	Bruce I	Fette, "Cognitive radio technology", Elsevier, 2nd ec	lition, 2009.				
2	Cogniti Edition	ve Radio Hardbound by Budati Anil Kumar, Peter 2021	Ho Chiung Ching	, Shuich	i Torii	, CRC	Press 1st

3 Alexander M. Wyglinski, Maziar Nekovee, And Y. Thomas Hou, "Cognitive RadioCommunications And Networks - Principles And Practice", Elsevier Inc., 2010.

4	Handbook of Cognitive Radio Editor: Wei Zhang, Springer 2020							
E-Re	E-References:							
1	ttp://www.xgtechnology.com/innovations/cognitive-radio-networks/							
2	https://snscourseware.org/snscenew/notes.php?cw=CW_5d09f853e42f6							
3	https://www.techtarget.com/searchnetworking/definition/cognitive-radio							

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the fundamental concepts of cognitive radio networks	Understanding
CO2	Develop the cognitive radio, as well as techniques for spectrum holes detection that cognitive radio takes advantages in order to exploit it.	Applying
CO3	Understand technologies to allow an efficient use of TVWS for radio communications based on two spectrum sharing business models/policies.	Understanding
CO4	Understand fundamental issues regarding dynamic spectrum access, the radio-resource management and trading, as well as a number of optimisation techniques for better spectrum exploitation.	Understanding
CO5	Understanding of the applications of auction theory as an economic approach to enable the emerging cognitive radio systems very useful.	Understanding

	COURSE ARTICULATION MATRIX															
COs/POs	PO	РО	PO	РО	РО	РО	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3	
COS/FOS	1	2	3	4	5	6	7	8	9	10	11	12	1301	1302	F305	
CO1	2	2	2	2	2	1	-	-	-	-	-	-	3	3	-	
CO2	3	2	3	3	1	1	-	-	-	-	-	-	3	2	-	
CO3	3	2	2	3	1	1	-	-	-	-	-	-	2	3	3	
CO4	3	2	3	3	2	1	-	-	-	-	-	-	2	-	3	
CO5	3	3	3	3	1	1	-	-	-	-	-	-	2	-	3	
Avg	2.8	2.2	2.6	2.8	1.4	1	-	-	-	-	-	-	2.4	2.7	3	
			3/2/2	l - ind	icates	streng	th of c	orrela	tion (3	-High,2	- Medi	,1-	Low)			

22ECH30	9 SATELLITE POSITIONING AND NAVIGATION	S				
PREREQ	UISITES	Category	PE	Cr	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course O	bjectives					
1	To learn about the science behind the orbiting satellites and v	various multiplexi	ng schei	nes		
2	To impart knowledge on earth station parameters used for sat	tellite communica	tion.			
3	To gain knowledge of navigation systems especially GPS in	detail.				
Unit I	ORBITS, PROPAGATION IMPAIRMENTS AND S	PACE LINK	9	0	0	9
determinat (TT&C) - Antennas	on, Satellite orbits - Kepler 's three laws - Orbital Elements - l ion - Satellite subsystems: Attitude and Orbital Control Syste Power System - Communications System - Satellite transpor - Communication link design: Basic transmission theory – El reuse - System noise temperature G/T ratio - Noise figure and SATELLITE MULTIPLE ACCESSES: SATELLITE	m (AOCS) - Tele nder - Space Craf IRP - Completion Noise temperatur	emetry T It Anten Link d Ie.	Tracking nas - Fr esign w	and Correquence	ommand cy Reuse without
	SPECIALIZED SERVICES		9	0	0	9
(TDMA) Transmiss PURE AI Technolog Network.	Division Multiple Access (FDMA) – Intermodulation - Calci- Satellite Switched TDMA - Demand Assignment Multiple ion and Reception - Message Transmission by FDMA: M/G LOHA - Satellite Packet Switching - Slotted Aloha - Pa ies - Network Configurations - Polling VSAT Networks	e Access (DAMA /1 Queue - Mess acket Reservation	A) - CE age Tra n - Tre re Netw	DMA Sj nsmissi e Algo orks -	oread S on by T rithm CDMA	pectrum FDMA - VSAT MSAT
Unit III	EARTH STATION TECHNOLOGY		9	0	0	9
earth sta	ters, Receivers, Antennas - Tracking Systems – Transponders tion, Lower Orbit Considerations, Coverage and frequence n and Radio, Satellite Navigation.					
Unit IV	INTRODUCTION TO GLOBAL NAVIGATION SYSTEMS (GNSSs)	N SATELLITH	E 9	0	0	9
	ry of GPS, The Evolution of GPS - Development of NA on - Determining the receiver position in 2D or XY Plane, De				0 1	inciple - r X-Y-Z
Unit V	GPS ORBITS AND SATELLITE POSITION DETE	RMINATION	9	0	0	9
code - C/A GPS orbit	m segments - Space segment - Control segment - User segmed A code - P code Navigation data and Signal structure of G al parameters - description of receiver independent excha message data parameters - GPS position determination, least s	PS - Anti-spoofin nge format (RIN	ng (AS)	- selec	tive ava	ailability
			Tot	al (45 L	.) = 45	Periods
Text	Books:]
r		Edition William	2010			
1	Timothy Pratt, Jeremy Allnutt, "Satellite Communications", 3 ^{rc}	Edition, wiley, 2	2019.			
2	G S RAO, "Global Navigation Satellite Systems", McGraw-Hi	ll publications, N	ew Delh	i, 2010		

1	D.C.Agarwal. R Anand, "Satellite Communications", Khanna Publishers, 2021.									
2	M. Richcharia, "Satellite Communications: Design Principles" 2nd Ed., BSP, 2003.									
3	ames Ba, Yen Tsui, "Fundamentals of GPS receivers – A software approach", John Wiley & Sons, 2001.									
4	unter Seeber, "Satellite Geodesy Foundations-Methods and Applications", 2003.									
e-Re	eference:									
1	https://nptel.ac.in/courses/117105131									
2	https://www.youtube.com/watch?v=H00_PVX2bRw									
3	https://youtube.com/playlist?list=PLLy_2iUCG87A55NPtEwWoWPiKs0-9NNT1									

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Architect appropriate technologies for the implementation of specified satellite communication systems.	Applying
CO2	Understand the various multiple access techniques for satellite services.	Understanding
CO3	Analyze and evaluate a satellite link and suggest enhancements to improve the link performance.	Analysing
CO4	Summarize the working principle of GPS and its history.	Remembering
CO5	Develop new navigation solutions for determining accurate user position.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	1	1	1	1	-	-	I	-	-	2	1	1
CO2	1	-	1	1	1	1	1	-	-	I	-	-	1	-	1
CO3	2	-	2	1	1	1	1	-	-	-	-	-	2	1	1
CO4	1	-	1	1	1	1	-	-	-	-	-	-	1	-	1
CO5	2	-	2	1	1	1	1	-	-	-	-	-	2	2	1
Avg	1.4	-	1.6	1	1	1	1	-	-	-	-	-	1.6	1.3	1
		3/2	/1 - in	dicate	s strer	ngth of	corre	lation	(3-Hig	gh,2- Me	dium,1	- Low)		

Remote Sensing - Definition - Components - Electro Magnetic Spectrum – Basic wave theory – Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types –Absorption-Atmospheric window- Energy interaction with surface features – Spectral reflectance of vegetation, soil and water –atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit IIUnit IIREMOTE SENSING PLATFORMS9009Orbit elements – Types of orbits – Motions of planets and satellites – Launch of space vehicle – Orbit perturbation and maneuvers – escape velocity - Types and characteristics of different remote sensing platforms – sun synchronot and geo synchronous satellites.9009Classification of remote sensors – selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Panchromatic, multi spectral , thermal, hyperspectral scanners and microway sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IR WorldView, hyperion and hysis, ERS, ENVISAT, Sentinel.9009Unit IVDATA RECEPTION AND DATA PRODUCTS9009Ground segment organization – Data product generation – sources of errors in received data – referencing scheme data product output medium – Digital products – Super structure, Fast, GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products – ordering of data		REMOTE SENSING	S	emester						
Hours/Week 3 0 0 3 Course Objectives 1 To familiarize about the basic principles of remote sensing 1 To acquire knowledge about the motion of remote sensing satellites in the space 3 To expose the various types of sensors used for remote sensing 1 To expose the various types of sensors used for remote sensing 4 To gain knowledge about the generation of satellite data products 9 0 0 9 Remote Sensing - Definition - Components - Electro Magnetic Spectrum - Basic wave theory - Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types -Absorption-Atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits - Motions of planets and satellites - Launch of space vehicle - Orbit perturbation and maneuvers - escape velocity - Types and characteristics of different remote sensing platforms - sun synchronot and geo synchronous satellites. 9 0 0 9 Classification of remote sensors - selection of sensor parameters - resolution concept - Spectral, Radiometric art emporal resolution - Quality of images - imaging mode - photographic camera - opto-mechanical scanners subshorom and whiskbroom cameras - Panchromatic, multi spectral. 9 0 0 <t< th=""><th>PREREQUI</th><th>SITES Category</th><th>PE</th><th colspan="6">PE Credit</th></t<>	PREREQUI	SITES Category	PE	PE Credit						
Course Objectives 1 To familiarize about the basic principles of remote sensing 2 To acquire knowledge about the motion of remote sensing satellites in the space 3 To acquire knowledge about the generation of satellite data products 4 To gain knowledge about the generation of satellite data products Unit I PHYSICS OF REMOTE SENSING 9 0 0 9 Remote Sensing - Definition - Components - Electro Magnetic Spectrum - Basic wave theory - Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types -Absorption-Atmospheric window- Energy interaction with surface features - Spectral reflectance of vegetation, soil and water - atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits - Motions of planets and satellites - Launch of space vehicle - Orbit perturbation and maneuvers - escape velocity - Types and characteristics of different remote sensing platforms - sun synchronot and geo synchronous satellites. 9 0 0 9 Classification of remote sensors - selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution - Quality of images - imaging mode - photographic camera - opto-mechanical scanners and microwas sensors - geometric characteristics of scanner imagery - Operational Earth resource satellites - Landsat, SPOT, IR: WorldView, hyperion and hysi			L	L T P						
1 To familiarize about the basic principles of remote sensing 2 To acquire knowledge about the motion of remote sensing satellites in the space 3 To expose the various types of sensors used for remote sensing 4 To gain knowledge about the generation of satellite data products Unit I PHYSICS OF REMOTE SENSING 9 0 0 9 Remote Sensing - Definition - Components - Electro Magnetic Spectrum – Basic wave theory – Particle theory Stefan Boltzman Iaw - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types –Absorption-Atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits – Motions of planets and satellites – Launch of space vehicle – Orbit perturbation and maneuvers – escape velocity - Types and characteristics of different remote sensing platforms – sun synchronou and geo synchronous satellites. 9 0 0 9 Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Palchromatic, multi spectral , thermal, hyperspectral, scanners and microwav sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IR: WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel. <td colspan<="" th=""><th></th><th>Hours/Week</th><th>3</th><th>0</th><th>0</th><th>3</th></td>	<th></th> <th>Hours/Week</th> <th>3</th> <th>0</th> <th>0</th> <th>3</th>		Hours/Week	3	0	0	3			
2 To acquire knowledge about the motion of remote sensing satellites in the space 3 To expose the various types of sensors used for remote sensing 4 To gain knowledge about the generation of satellite data products Unit I PHYSICS OF REMOTE SENSING 9 0 0 9 Remote Sensing - Definition - Components - Electro Magnetic Spectrum - Basic wave theory - Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types - Absorption-Atmospheric window- Energy interaction with surface features - Spectral reflectance d vegetation, soil and water -atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits - Motions of planets and satellites - Launch of space vehicle - Orbit perturbatior and maneuvers - escape velocity - Types and characteristics of different remote sensing platforms - sun synchronot and geo synchronous satellites. 9 0 0 9 Unit II REMOTE SENSING SENSORS 9 0 0 9 0 0 9 Classification of remote sensors - selection of sensor parameters - resolution concept - Spectral, Radiometric arr temporal resolution - Quality of images - imaging mode - photographic camer	Course Obje	ctives								
3 To expose the various types of sensors used for remote sensing 4 To gain knowledge about the generation of satellite data products Unit I PHYSICS OF REMOTE SENSING 9 0 0 9 Remote Sensing - Definition - Components - Electro Magnetic Spectrum - Basic wave theory - Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types -Absorption-Atmospheric window- Energy interaction with surface features - Spectral reflectance or vegetation, soil and water - atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits - Motions of planets and satellites - Launch of space vehicle - Orbit perturbation and maneuvers - escape velocity - Types and characteristics of different remote sensing platforms - sun synchronot and geo synchronous satellites. 9 0 0 9 Unit III REMOTE SENSING SENSORS 9 0 0 9 0 0 9 Classification of remote sensors - selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution - Quality of images - imaging mode - photographic camera - opto-mechanical scanners pushbroom and whiskbroom cameras - Panchromatic, multi spectral , thermal.hyperspectral scanners and microwas sensors - geometric characteristics of scanner imagery - Operational Earth resource satellites - Landsat, SPOT, IR: WorldView, hyperion and hysis,	1 To	familiarize about the basic principles of remote sensing								
4 To gain knowledge about the generation of satellite data products 4 To gain knowledge about the generation of satellite data products Unit I PHYSICS OF REMOTE SENSING 9 0 0 9 Remote Sensing - Definition - Components - Electro Magnetic Spectrum – Basic wave theory – Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types – Absorption-Atmospheric window- Energy interaction with surface features – Spectral reflectance of vegetation, soil and water – atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits – Motions of planets and satellites – Launch of space vehicle – Orbit perturbation and maneuvers – escape velocity - Types and characteristics of different remote sensing platforms – sun synchronot and geo synchronous satellites. 9 0 0 9 Unit III REMOTE SENSING SENSORS 9 0 0 9 0 0 9 Classification of remote sensors – selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners and microwas sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IR: WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel. 9 0 <td>2 To</td> <td>acquire knowledge about the motion of remote sensing satellites in the sp</td> <td>ace</td> <td></td> <td></td> <td></td>	2 To	acquire knowledge about the motion of remote sensing satellites in the sp	ace							
Unit I PHYSICS OF REMOTE SENSING 9 0 0 9 Remote Sensing - Definition - Components - Electro Magnetic Spectrum – Basic wave theory – Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types – Absorption-Atmospheric window- Energy interaction with surface features – Spectral reflectance or vegetation, soil and water –atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits – Motions of planets and satellites – Launch of space vehicle – Orbit perturbation and maneuvers – escape velocity - Types and characteristics of different remote sensing platforms – sun synchronot and geo synchronous satellites. 9 0 0 9 Unit III REMOTE SENSING SENSORS 9 0 0 9 Classification of remote sensors – selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Panchromatic, multi spectral , thermal,hyperspectral scanners and microway sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IR: WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel. Unit IV DATA RECEPTION AND DATA PRODUCTS 9 0 0 9 0 </td <td>3 To</td> <td>expose the various types of sensors used for remote sensing</td> <td></td> <td></td> <td></td> <td></td>	3 To	expose the various types of sensors used for remote sensing								
Remote Sensing - Definition - Components - Electro Magnetic Spectrum – Basic wave theory – Particle theory Remote Sensing - Definition - Components - Electro Magnetic Spectrum – Basic wave theory – Particle theory Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types –Absorption-Atmospheric window- Energy interaction with surface features – Spectral reflectance of vegetation, soil and water –atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements – Types of orbits – Motions of planets and satellites – Launch of space vehicle – Orbit perturbation and maneuvers – escape velocity - Types and characteristics of different remote sensing platforms – sun synchronou and geo synchronous satellites. Unit III REMOTE SENSING SENSORS 9 0 9 Classification of remote sensors – selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Panchromatic, multi spectral , thermal, hyperspectral scanners and microway sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IR WorldView, hyperion and hysis, ERS, ENVISAT, Sentinel. 9 0 9 Unit IV DATA RECEPTION AND DATA PRODUCTS 9 0 <td< td=""><td>4 To</td><td>gain knowledge about the generation of satellite data products</td><td></td><td></td><td></td><td></td></td<>	4 To	gain knowledge about the generation of satellite data products								
Stefan Boltzman law - Wiens-Displacement Law - Radiometric quantities - Effects of Atmosphere- Scattering Different types -Absorption-Atmospheric window- Energy interaction with surface features - Spectral reflectance of vegetation, soil and water - atmospheric influence on spectral response patterns- multi concept in Remote sensing - Unit II REMOTE SENSING PLATFORMS 9 0 0 9 Orbit elements - Types of orbits - Motions of planets and satellites - Launch of space vehicle - Orbit perturbation and maneuvers - escape velocity - Types and characteristics of different remote sensing platforms - sun synchronou and geo synchronous satellites. 9 0 0 9 Unit II REMOTE SENSING SENSORS 9 0 0 9 Classification of remote sensors - selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution - Quality of images - imaging mode - photographic camera - opto-mechanical scanners pushbroom and whiskbroom cameras - Panchromatic, multi spectral , thermal,hyperspectral scanners and microway sensors - geometric characteristics of scanner imagery - Operational Earth resource satellites - Landsat, SPOT, IR3 WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel. Unit IV DATA RECEPTION AND DATA PRODUCTS 9 0 0 9 Ground segment organization - Data product generation - sources of errors in received data - referencing scheme data product output medium - Digital products - Super structure, Fast,GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products - ordering of data <td>Unit I</td> <td>PHYSICS OF REMOTE SENSING</td> <td>9</td> <td>0</td> <td>0</td> <td>9</td>	Unit I	PHYSICS OF REMOTE SENSING	9	0	0	9				
Orbit elements – Types of orbits – Motions of planets and satellites – Launch of space vehicle – Orbit perturbation and maneuvers – escape velocity - Types and characteristics of different remote sensing platforms – sun synchronou and geo synchronous satellites. Unit III REMOTE SENSING SENSORS 9 0 0 9 Classification of remote sensors – selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Panchromatic, multi spectral , thermal,hyperspectral scanners and microway sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IRS WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel. Unit IV DATA RECEPTION AND DATA PRODUCTS 9 0 0 9 Ground segment organization – Data product generation – sources of errors in received data – referencing scheme data product output medium – Digital products – Super structure, Fast,GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products – ordering of data 9 0 0 9 Data products and their characteristics – Elements of visual interpretation – interpretation keys – Digital image processing – Preprocessing – Image rectification – Image enhancement techniques – Image classification – Supervise classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybric classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	Different typ vegetation, so	es –Absorption-Atmospheric window- Energy interaction with surface fe il and water –atmospheric influence on spectral response patterns- multi c	atures – S oncept in	Spectral Remote	reflect sensir	ance or ng -				
and maneuvers – escape velocity - Types and characteristics of different remote sensing platforms – sun synchronous and geo synchronous satellites. 9 0 0 9 Unit III REMOTE SENSING SENSORS 9 0 0 9 Classification of remote sensors – selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Panchromatic, multi spectral , thermal,hyperspectral scanners and microwax sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IRS WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel. Unit IV DATA RECEPTION AND DATA PRODUCTS 9 0 0 9 Ground segment organization – Data product generation – sources of errors in received data – referencing scheme data product output medium – Digital products – Super structure, Fast,GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products – ordering of data 9 0 0 9 Data products and their characteristics – Elements of visual interpretation – interpretation keys – Digital image processing – Preprocessing – Image rectification – Image enhancement techniques– Image classification – Supervise and unsupervised classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybric classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	Unit II	REMOTE SENSING PLATFORMS	9	0	0	9				
Classification of remote sensors – selection of sensor parameters - resolution concept - Spectral, Radiometric ar temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Panchromatic, multi spectral , thermal,hyperspectral scanners and microwav sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IRS WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel.Unit IVDATA RECEPTION AND DATA PRODUCTS9009Ground segment organization – Data product generation – sources of errors in received data – referencing scheme data product output medium – Digital products – Super structure, Fast,GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products – ordering of data9009Data products and their characteristics – Elements of visual interpretation – interpretation keys – Digital image processing – Preprocessing – Image rectification – Image enhancement techniques– Image classification – Supervise and unsupervised classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybri classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	01:41		1 • 1	01.		1				
temporal resolution – Quality of images – imaging mode – photographic camera – opto-mechanical scanners pushbroom and whiskbroom cameras – Panchromatic, multi spectral , thermal,hyperspectral scanners and microway sensors – geometric characteristics of scanner imagery – Operational Earth resource satellites - Landsat, SPOT, IRS WorldView, hyperion and hysis, ERS, ENVISAT,Sentinel. Unit IV DATA RECEPTION AND DATA PRODUCTS 9 0 0 9 Ground segment organization – Data product generation – sources of errors in received data – referencing scheme data product output medium – Digital products – Super structure, Fast,GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products – ordering of data Unit V DATA ANALYSIS 9 0 0 9 Data products and their characteristics – Elements of visual interpretation – interpretation keys – Digital imag processing – Preprocessing – Image rectification – Image enhancement techniques– Image classification – Supervise and unsupervised classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybric classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	and maneuve	rs - escape velocity - Types and characteristics of different remote sensir			.					
Ground segment organization – Data product generation – sources of errors in received data – referencing scheme data product output medium – Digital products – Super structure, Fast,GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products – ordering of data Unit V DATA ANALYSIS 9 0 9 Data products and their characteristics – Elements of visual interpretation – interpretation keys – Digital image processing – Preprocessing – Image rectification – Image enhancement techniques– Image classification – Supervise and unsupervised classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybric classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	and maneuve and geo sync Unit III	rs – escape velocity - Types and characteristics of different remote sensir pronous satellites. REMOTE SENSING SENSORS	ng platfor	ms – sur	n synch	nronou: 9				
data product output medium – Digital products – Super structure, Fast,GeoTIFF, Hierarchical and HDF formats Indian and International Satellite Data Products – ordering of data Unit V DATA ANALYSIS Data products and their characteristics – Elements of visual interpretation – interpretation keys – Digital image processing – Preprocessing – Image rectification – Image enhancement techniques– Image classification – Supervise and unsupervised classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybric classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	and maneuve and geo sync Unit III Classification temporal res- pushbroom a sensors – geo	REMOTE SENSING SENSORS Image: only only only only only only only only	9 pt - Spec – opto-n pectral sca	ms – sum 0 etral, Ra nechanic anners a	0 diomet al scar nd mic	9 ric and nners - rowave				
Data products and their characteristics – Elements of visual interpretation – interpretation keys – Digital imag processing – Preprocessing – Image rectification – Image enhancement techniques– Image classification – Supervise and unsupervised classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybric classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	and maneuve and geo sync Unit III Classification temporal res- pushbroom a sensors – geo	rs – escape velocity - Types and characteristics of different remote sensir ronous satellites. REMOTE SENSING SENSORS of remote sensors – selection of sensor parameters - resolution conce blution – Quality of images – imaging mode – photographic camera and whiskbroom cameras – Panchromatic, multi spectral , thermal,hypersp metric characteristics of scanner imagery – Operational Earth resource s hyperion and hysis, ERS, ENVISAT,Sentinel.	g platfor 9 pt - Spec – opto-n bectral sca atellites -	ns – sur 0 etral, Ra nechanic anners a Landsa	diomet al scar nd mic t, SPO	ric and nners - rowave T, IRS				
processing – Preprocessing – Image rectification – Image enhancement techniques– Image classification – Supervise and unsupervised classification algorithms for multispectral and hyperspectral images – Accuracy assessment hybric classification techniques – Knowledge based classification, Neural Network Classification, Fuzzy Classification.	and maneuve and geo sync Unit III Classification temporal respushbroom a sensors – geo WorldView, Unit IV Ground segment data product	rs – escape velocity - Types and characteristics of different remote sensir ronous satellites. REMOTE SENSING SENSORS of remote sensors – selection of sensor parameters - resolution conce plution – Quality of images – imaging mode – photographic camera nd whiskbroom cameras – Panchromatic, multi spectral , thermal,hypersp metric characteristics of scanner imagery – Operational Earth resource s hyperion and hysis, ERS, ENVISAT,Sentinel. DATA RECEPTION AND DATA PRODUCTS ent organization – Data product generation – sources of errors in received output medium – Digital products – Super structure, Fast,GeoTIFF, Hit	9 pt - Spec – opto-n pectral sca atellites - 9 ed data –	0 etral, Ra nechanic anners a Landsa 0 reference	0 diomet al scan nd mic t, SPO 0 cing sc	9 ric and nners - rowave T, IRS 9 heme -				
Total (45L)= 45 Period	and maneuve and geo sync Unit III Classification temporal respushbroom a sensors – geo WorldView, Unit IV Ground segment data product	rs – escape velocity - Types and characteristics of different remote sensir ronous satellites. REMOTE SENSING SENSORS of remote sensors – selection of sensor parameters - resolution conce- blution – Quality of images – imaging mode – photographic camera ad whiskbroom cameras – Panchromatic, multi spectral , thermal,hypersp ometric characteristics of scanner imagery – Operational Earth resource s hyperion and hysis, ERS, ENVISAT,Sentinel. DATA RECEPTION AND DATA PRODUCTS ent organization – Data product generation – sources of errors in received output medium – Digital products – Super structure, Fast,GeoTIFF, Hi ternational Satellite Data Products – ordering of data	9 pt - Spec – opto-n bectral sca atellites - 9 ed data – ierarchica	ns – sur 0 etral, Ra nechanic anners a Landsa 0 reference 1 and H	0 diomet al scan nd mic t, SPO 0 cing sc DF for	ric and nners - rowave T, IRS 9 heme - mats -				
	and maneuve and geo sync Unit III Classification temporal rese pushbroom a sensors – geo WorldView, Unit IV Ground segm data product Indian and In Unit V Data product processing – and unsuperv	rs – escape velocity - Types and characteristics of different remote sensing pronous satellites. REMOTE SENSING SENSORS of remote sensors – selection of sensor parameters - resolution conceres of remote sensors – selection of sensor parameters - resolution conceres and whiskbroom cameras – Panchromatic, multi spectral , thermal, hyperspectral characteristics of scanner imagery – Operational Earth resource supperion and hysis, ERS, ENVISAT, Sentinel. DATA RECEPTION AND DATA PRODUCTS ent organization – Data product generation – sources of errors in receive output medium – Digital products – Super structure, Fast, GeoTIFF, Histernational Satellite Data Products – ordering of data DATA ANALYSIS s and their characteristics – Elements of visual interpretation – interpreprocessing – Image rectification – Image enhancement techniques – Imised classification algorithms for multispectral and hyperspectral images –	9 pt - Spec – opto-n bectral sca atellites - 9 ed data – ferarchica 9 pretation hage class – Accurac	o tral, Ra hechanica anners a Landsa 0 referend 1 and H 0 keys – ificatior cy assess	0 diomet al scan nd mic t, SPO 0 cing sc DF for 0 Digital n – Sup sment	9 ric and nners - rowave T, IRS 9 heme - rmats - 9 image ervised hybrid				

Text I	Books:
1	John R. Jensen, Introductory Digital Image Processing: A Remote Sensing Perspective, 4th Edition, 2017.
2	Lillesand T.M., and Kiefer, R.W. Remote Sensing and Image interpretation, VI edition of John Wiley & Sons-2015.
Refere	nce Books:

1	Beniamino Cipriani, Remote Sensing and Image Interpretation, Scitus, 2016									
2	John A.Richards, Springer – Verlag, Remate Sensing Digital Image Analysis 5th edition, 2013.									
3	George Joseph, Fundamentals of Remote Sensing, Third Edition, Universities Press (India) Pvt Ltd, Hyderabad, 2018									
4	Shunlin Liang, Jindi Wang, Acad Pr " Advanced Remote Sensing ", Acad Pr, 2nd Edition, 2019.									
E-Refe	rences:									
1	https://nptel.ac.in/courses/105108077									
2	https://ncert.nic.in/textbook/pdf/kegy307.pdf									
3	https://www.uotechnology.edu.iq/appsciences/Laser/Lacture_laser/thrid_class/Remote_Sensing/3- Remote_Sensing.pdf									

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the concepts and laws related to remote sensing	Understanding					
CO2	Acquire knowledge about various remote sensing platforms	Remembering					
CO3	Understand the characteristics of different types of remote sensors	Understanding					
CO4	Gain knowledge about reception, product generation, storage and ordering of satellite data	Remembering					
CO5	Understand the concept of different image processing techniques and interpretation of satellite data	Understanding					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
CO5/FO5	1	2	3	4	5	6	7	8	9	10	11	12	1301	F 502	1303
CO1	2	3	2	1	1	I	I	I	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
			3/2/1	- indi	cates s	trengt	h of co	orrelat	ion (3-	High,2-	Mediu	m,1- I	Low)		

22EC	CH401	ADVANCED DIGITAL SIGNAL PRO	DCESSING	S					
PRER	REQUIS	ITES	Category	PE	PE Credit				
				L	Т	Р	ТН		
Digita	l Signal	Processing	Hours/Week	3	0	0	3		
Cours	se Objec	tives		1					
1		rn and understand the concepts of stationary and terization of discrete-time random processes	non-stationary ra	ndom sig	gnals a	nd ana	lysis &		
2		inclate the significance of estimation of power spectr	ral density of rando	om proces	sses				
3	To intr	roduce the principles of optimum filters such as Wier	ner and Kalman fil	ters					
4	To intr	oduce the principles of adaptive filters and their app	lications to commu	inication	engine	ering			
5		oduce the concepts of multi-resolution analysis							
Ur	nit I	DISCRETE-TIME RANDOM PROCESSES		9	0	0	9		
randor AR, M	m proces IA, ARN	bles - ensemble averages - random processes - auto ss, white noise, filtering random processes, spectral t AA							
Un	it II	SPECTRUM ESTIMATION		9	0	0	9		
Uni Wiene		OPTIMUM FILTERS - FIR Wiener filter - discrete Wiener Hopf equation, causal and non-causal filters. Recursive estimators -		•	0 ear prec	0 liction.	9 IIR		
Uni	it IV	ADAPTIVE FILTERS		9	0	0	9		
		properties of adaptive filters - FIR adaptive filters. A ithm - convergence. Applications of adaptive filterin							
Un	it V	MULTIRESOLUTION ANALYSIS		9	0	0	9		
coding	g, the co	urier transform - Heisenberg uncertainty principle. I ontinuous and discrete wavelet transform - proper ge compression							
				Tota	l (45 L)	= 45 1	Periods		
Tex	t Books	:							
1	Monsor	• n H. Hayes, "Statistical digital signal processing and w York, Indian reprint 2008.	modeling", John V	Viley and	Sons				
2		aidyanathan, "Multirate systems and filter banks", Pr	rentice Hall Inc.						
Refe	rence B	ooks:							
	John G			1 11					
1		. Proakis & Dimitris G.Manolakis, "Digital Signal Prations", Fourth Edition, Pearson Education / Prentice		oles, Algo	orithms	&			

 3
 Simon Haykin, "Adaptive Filter Theory", Prentice Hall, 5th Edition, 2014.

 4
 S. Kay," Modern spectrum Estimation theory and application", Pearson India, 2009.

 E-Reference:
 1

 1
 https://ekeeda.com/degree-courses/electrical-engineering/advanced-digital-signal-processing

 2
 https://www.classcentral.com/course/youtube-advanced-digital-signal-processing-course-97386

 3
 https://nptel.ac.in/courses/117101001

Cours	Course Outcomes:					
Upon	completion of this course, the students will be able to:	Taxonomy Level				
CO1	Articulate and apply the concepts of special random processes in practical applications	Analysing				
CO2	Choose appropriate spectrum estimation techniques for a given random process	Applying				
CO3	Apply optimum filters appropriately for a given communication application	Understanding				
CO4	Apply appropriate adaptive algorithm for processing non-stationary signals	Applying				
CO5	Apply and analyse wavelet transforms for signal and image processing based applications	Applying				

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	2	2.4	1.4	1	-	-	-	-	_	1.4	-	2	2	2
		3/2	2/1 - in	ndicate	es strei	ngth of	f corre	lation	(3-Hig	gh,2- Me	dium,1	- Low)		

22EC	CH402	SPEECH PROCESSING		Semester				
PRER	REQUIS	ITES	Category	PE	Cr	edit	3	
DIGIT	TAL SIG	NAL PROCESSING		L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Objec	tives						
1	To und models	erstand the speech production mechanism and the variation	ious speech analys	sis techr	niques a	nd spee	ech	
2	To und	erstand the speech compression techniques						
3	To und	erstand the speech recognition techniques						
4	To kno	w the speaker recognition and text to speech synthesis	s techniques					
Un	nit I	SPEECH SIGNAL CHARACTERISTICS & ANA	ALYSIS	9	0	0	9	
in time Short-' Mel-Fr - Pitch	e and fro Time Au requency Percept	tion process - speech sounds and features Phonetic equency domains - Short-Time Analysis of Speech - atocorrelation Function - Short-Time Fourier Transfe Cepstrum Coefficients - Hearing and Auditory Perce ion	Short- Time Ener orm (STFT) - Sp	rgy and eech Sp	Zero-C bectrum	rossing - Cep	g Rate - strum -	
Un	it II	SPEECH COMPRESSION		9	0	0	9	
		Quantization of Speech (PCM) - Adaptive diff Linear predictive coding (LPC) - Code excited Linear				tion -	Vector	
Uni	it III	SPEECH RECOGNITION		9	0	0	9	
based	on HMI	h recognition- Hidden Markov Model (HMM)- train M- language models for large vocabulary speech reco - Context dependent subword units- Semantic post pro-	gnition – Overall	recogn	ition sy			
Uni	it IV	SPEAKER RECOGNITION		9	0	0	9	
		meters for speaker verification- Feature space for aker verification-Text independent speaker verification		on-simi	larity n	neasure	s- Text	
Un	it V	SPEAKER RECOGNITION AND TEXT SYNTHESIS	TO SPEECH	I 9	0	0	9	
	-	h synthesis(TTS)-Concatenative and waveform sy nd naturalness-role of prosody	nthesis methods	- sub-v	word u	nits fo	r TTS,	
				Tota	l (45 L)	= 45]	Periods	
Tex	t Books							
1		abiner and R. W. Schafer, Introduction to Digital Signation Signal Processing Vol. 1, Nos. 1–2 (2007) 1–194	al Processing, Fou	Indation	s and			
2		ld and Nelson Morgan "Speech and Audio signal proc ion of speech and music", John Wiley and sons 2006	essing- processing	g and				
Refe	rence B	A						

1	Lawrence Rabiner, Biiing and– Hwang Juang and B.Yegnanarayana "Fundamentals of Speech
_	Recognition", Pearson Education, 2009

2 Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999

3	Donglos O shanhnessy "Speech Communication: Human and Machine ", 2nd Ed. University press 2001.
4	Daniel Jurafsky and James H Martin, "Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education
E-R	eference:
1	https://www.udemy.com/course/speech-recognition-a-z-with-hands-on-learnkarts/
2	https://onlinecourses.nptel.ac.in/noc22_ee117/preview
3	https://archive.nptel.ac.in/courses/108/108/108185/

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Analyse the speech signal						
CO2	Design speech compression techniques	Analysing					
CO3	Configure speech recognition techniques	Applying					
CO4	Understand speaker recognition systems	Understanding					
CO5	Design text to speech synthesis systems	Applying					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	1	2	2	1	-	-	-	-	-	-	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
CO3	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
CO4	2	1	2	2	1	-	-	-	-	-	-	-	2	2	2
CO5	2	1	2	2	1	-	-	-	-	-	-	-	2	2	2
Avg	2	1	2	1.6	1	-	-	-	-	-	-	-	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECH	403	SOFTWARE DEFINED RADI	0	Se	emester		
PREREC	QUISI	TES	Category	PE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course (Object	ives					•
		erstand the evolving software defined radio and nalities	cognitive radio	technique	es and	their e	ssential
2 T	'o stud	y the basic architecture and standard for SDR					
3 T	'o unde	erstand the physical, MAC and Network layer design	n of SDR				
4 T	'o expo	ose the student to evolving applications and advance	d features of SDF	ł			
Unit I	INT	RODUCTION TO SOFTWARE DEFINED RAI	DIO	9	0	0	9
	•	SDR – Networking and SDR – RF architectures onments for SDR.	for SDR – Proce	essing arc	hitectur	res for	SDR –
Unit II	REG	CEIVE AND TRANSMIT TECHNIQUES FOR S	SDR	9	0	0	9
power an Transmit	d so fo techni	ques for SDR: Nyquist zones – Fixed point quantiza orth – Sigma-Delta Analog-Digital converters. iques for SDR: Analog reconstruction filters – DAC – Two Nyquist pulses.	C				
Unit III		DERSTANDING SDR HARDWARE		9	0	0	9
input/out Continuo	put de ous trai	communication system: Components of an SDR – A tails – MATLAB as an IIO client – Strategies for nsmit – Latency and data delays – Receive spectrum back with real data – Noise figure.	development in	MATLAI	3: Radi	o I/O b	asics –
Unit IV	OF	RTHOGONAL FREQUENCY DIVISION MULT	TIPLEXING	9	0	0	9
	– Pac	ICM: Dispersive channel environments – General cket detection – CFO estimation – Symbol timin					
Unit V	API	PLICATIONS FOR SOFTWARE DEFINED RA	DIO	9	0	0	9
U		o: Bumblebee behavioural model – Reinforcemen using SDR – Vehicular networking using SDR.	t model – Vehic	ular netw	orking	– Case	study:
				Tota	l (45 L)	= 45 I	Periods

Tex	t Books:
1	Travis F.Collins, Robin Getz, DI PU, Alexander M.Wyglinski, "Software-Defined Radio for Engineers", Mobile communication series, 2018.
2	Qasim Chaudhari, "Wireless communications from the ground up – An SDR Perspective", 2018.
Refe	rence Books:
1	Jeffrey H. Reed ,"Software Radio: A Modern Approach to Radio Engineering", Pearson Education Low Price Edition,2002
2	Kwang-Cheng Chen, Ramjee Prasad, "Cognitive Radio Networks", John Wiley and Sons, 2009.
3	Ezio Biglieri, Professor Andrea J. Goldsmith, Dr Larry J. Greenstein, Narayan B. Mandayam, H. Vincent Poor, "Principles of Cognitive Radio", Cambridge University Press, 2012.

4	Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski, "Software-Defined Radio for Engineers", mobile communication series, 2018.
E-R	eference:
1	https://onlinecourses.nptel.ac.in/noc22_ee78/preview
2	https://www.udemy.com/topic/software-defined-radio-sdr/
3	https://commtech-academy.com/sdr/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Gain knowledge about Software Defined Radio	Understanding
CO2	Understand the concepts of receiving and transmitting techniques for SDR	Understanding
CO3	Familiar with the available SDR hardware	Remembering
CO4	Understand the concept of Orthogonal Frequency Division Multiplexing in SDR perspective	Understanding
CO5	Know the various applications of SDR.	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	-	1	2	-	-	-	1	-	-	-	-	1	-	-
CO2	-	1	-	-	-	2	-	-	-	-	-	-	-	2	-
CO3	2	-	-	1	-	-	-	-	-	-	-	-	1	-	-
CO4	-	-	-	-	-	-	2		-	-	-	-	2	1	1
CO5	2	-	1	-	-	1	-	2	-	-	-	-	1	-	-
Avg	1.7	1	1	1.5	-	1.5	2	1.5	-	-	-	-	1.25	1.5	1
		3/	2/1 - i	indicat	tes stre	ength o	of corr	elation	n (3-H	igh,2- N	ledium,1	- Low)			

22EC	CH404	WAVELET SIGNAL PROCESSI	ELET SIGNAL PROCESSING					
PRER	EQUIS	ITES	Category	PE	Cre	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Objec	tives						
1	To stu	dy the basics of signal representation and Fourier the	eory					
2	To und	lerstand Multi Resolution Analysis and Wavelet conc	epts					
3	To stud	dy the wavelet transform in both continuous and disc	rete domain					
4	To und	lerstand the design of wavelets using Lifting scheme						
5	To und	lerstand the applications of Wavelet transform						
Un	it I	FUNDAMENTALS		9	0	0	9	
Betwe	en Vecto	 Properties- Dot Product – Basis – Dimension, O ors and Signals – Signal Spaces – Concept of Cor y: Fourier series expansion, Fourier transform, Short t 	vergence – Hilbe	ert Spaces	s for Er	nergy S	Signals-	
Uni	it II	MULTI RESOLUTION ANALYSIS		9	0	0	9	
Wavel	et Basis	Multi Resolution Analysis (MRA) – Haar Basis – for MRA – Continuous Time MRA Interpretation the DTWT – PRQMF Filter Banks.						
Uni	t III	CONTINUOUS WAVELET TRANSFORMS		9	0	0	9	
Wave	elet Tran	sform – Definition and Properties – Concept of Sca sform (CWT) – Scaling Function and Wavelet Fun Orthogonal)– Tiling of Time – Scale Plane for CWT.	ctions (Daubechi		•			
Uni	t IV	DISCRETE WAVELET TRANSFORMS		9	0	0	9	
Proper Mallat	ties of F 's Algor	d Sub Band Coding Principles – Wavelet Filters – Inv Filter Coefficients – Choice of Wavelet Function Coe rithm for DWT – Multi Band Wavelet Transform trix Factorization – Geometrical Foundations of Lifti	fficients – Deriva ns Lifting Scher	tions of D ne- Wave	aubech let Tra	ies Wav nsform	velets – Using	
Un	it V	APPLICATIONS	-	9	0	0	9	
Techni	iques: N	ods for signal processing- Image Compression Tech loise Estimation – Shrinkage Rules – Shrinkage Fu and Object Detection.						
				Total	(45 I)	- 15 1	Periods	
				1014	(4 5 L)	- 43 1	crious	
Tex	t Books	•						
1		• M and A S Bopardikar, "Wavelet Transforms Introduc	ction to theory an	d Applica	tions", l	Pearson	1	
2	L.Prasa	ion, Asia, 2000. Id & S.S.Iyengar, "Wavelet Analysis with Application	ns to Image Proce	ssing", Cl	RC			
Df	Press, 1							
Refe	rence B							
1		oswami and A. K. Chan, "Fundamentals of wavelets: nterscience Publication, John Wiley & Sons Inc., 1999		ms and Aj	oplicatio	ons"		
2	M. Vet	terli, J. Kovacevic, "Wavelets and subband coding" I	Prentice Hall Inc,	1995.				

3 Stephen G. Mallat, "A wavelet tour of signal processing" 2 nd Edition Academic Press, 2000.

4	Soman K P and Ramachandran K I, —Insight into Wavelets From Theory to practice, Prentice Hall, 2004.
E-R	eference:
1	https://ocw.mit.edu/courses/18-327-wavelets-filter-banks-and-applications-spring-2003/
2	https://nptel.ac.in/courses/108101093
3	https://archive.nptel.ac.in/courses/117/101/117101123/

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Use Fourier tools to analyse signals						
CO2	Gain knowledge about MRA and representation using wavelet bases	Understanding					
CO3	Acquire knowledge about continuous wavelet transforms	Understanding					
CO4	Acquire knowledge about discrete wavelet transforms	Evaluating					
CO5	Apply wavelet transform for various signal & image processing applications	Applying					

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
CO3	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
CO4	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
CO5	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
Avg	2	1	2	1	1	-	-	-	-	-	-	-	2	2	2
		3/2	2/1 - ii	ndicate	es strei	ngth of	f corre	lation	(3-Hig	sh,2- Me	dium,1	- Low)		

22EC	CH405	PATTERN RECOGNITION AND MACHIN	S	Semester				
PRER	EQUIS	ITES	Category	PE	Cro	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Objec	tives		L				
1	Unders Conce	stand the in-depth concept of Pattern Recognition, bts	Bayes Decision T	heory F	erceptio	on and	related	
2	To ena	ble the student to understand the working concepts o	of RF active compo	nents and	amplii	fiers		
3	Unders	stand the concept of ML Pattern Classification and the	he concept of DL P	attern R	ecogniti	on		
4	To Un applica	derstand the basics concepts of machine learnin tions.	ng, CNN and RN	IN to m	nodel fo	or real	world	
Un	it I	INTRODUCTION TO PATTERN RECOGNITI	ION	9	0	0	9	
		s, Applications, Fundamental problems in pattern R , Simple pattern recognition model.	Recognition system	design,	Design	concej	pts and	
Uni	it II	STATISTICAL DECISION MAKING		9	0	0	9	
cost o	f error,	Baye's theorem, Multiple features, Conditionally ind estimation of error rates, the leaving-one-out-te f populations.						
	t III	NON PARAMETRIC DECISION MAKING		9	0	0	9	
bounda		ernel and window estimation, nearest neighbour aptive discriminant functions, Minimum squared e						
	t IV	INTRODUCTION TO MACHINE LEARNING	G	9	0	0	9	
Percep	tron Lea	uron, Idea of computational units, McCulloch–Pitts arning Algorithm, Linear separability. Convergence t orks: Multilayer Perceptron, Backpropagation, Radia	heorem for Percep	tron Lea			· ·	
Un	it V	CONVOLUTIONAL AND RECURRENT NEU	RAL NETWORK	s 9	0	0	9	
Output AlexN	ts - Da et.Recu	Networks: The Convolution Operation - Variants ta Types - Efficient Convolution Algorithms - rent Neural Networks: Bidirectional RNNs - Deep F t-Term Memory and Gated RNNs, Autoencoders.	Random or Un	supervis s Recursi	ed Fea ve Neu	tures- ral Netv	LeNet,	
					. ,			
Tex	t Books	:						

1	Pattern Classification, 2nd Edition, Richard O. Duda, Peter E. Hart, and David G. Stork. Wiley, 2000
2	Ethem Alpaydin, "Introduction to Machine Learning", The MIT Press, September 2014, ISBN 978-0-262-02818-9
Refe	erence Books:
1	"Pattern Recognition and Machine Learning", Christopher M. Bishop. Springer, 2010
2	Practical Machine Learning and Image Processing, Himanshu Singh. Apress, 2019
3	MehryarMohri, AfshinRostamizadeh, AmeetTalwalkar, "Foundations of Machine Learning", MIT Press (MA) 2012.

	Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends in Machine Learning, now publishers Inc.,2009.
e-Re	ference:
1	https://www.geeksforgeeks.org/pattern-recognition-introduction/
2	https://viso.ai/deep-learning/pattern-recognition/
3	https://nptel.ac.in/courses/117108048

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Outline basic concepts of pattern recognition	Understanding
CO2	Classify decision-making algorithms in pattern recognition.	Understanding
CO3	Understand the concept of Non parametric decision making	Applying
CO4	Understand the basics of machine learning	Understanding
CO5	Apply the concept of CNN and RNN to model applications	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	РО	PO	РО	РО	PO	РО	РО	РО	PO	PO	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	2	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
		3/2	2/1 - ir	ndicate	es strer	ngth of	f corre	lation	(3-Hig	gh,2- Me	dium,1	- Low)		

22EC	CH406	ADAPTIVE/ARRAY SIGNAL PROC	ESSING	S	emeste	r					
PRER	EQUIS	ITES	Category	PE	Cr	edit	3				
				L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Cours	e Objec	tives	L								
1	To ana	lyze and to design signal processing algorithms both	n in the temporal an	d spatial	domaiı	ı					
2	2 To develop a mathematical theory of linear adaptive filters										
3	To des	ign optimum and linear filter									
Un	it I	INTRODUCTION		9	0	0	9				
(spatia	l filter)	ers - Single channel adaptive equalization (tempor Stochastic Processes - Stationary processes, Time av ra - Eigenvalue decomposition - Eigen filter.									
Un	it II	ADAPTIVE FILTERS		9	0	0	9				
MMSI Equati Square	E filterin ons-Stee e (LMS)	urface - MMSE (minimum mean-squared error) - C ng in case of linear Models - Generalized Sidelo epest descent algorithm - Stability of the algorith Algorithm - Recursive Least Squares (RLS) Algorit	be Canceler - Itera m - Optimization c hm	ative So	lution of	of the	Normal				
Uni	t III	HIGH-RESOLUTION PARAMETER ESTIMA	ATION	9	0	0	9				
Subspa	ace estir	DOA estimation) - Eigen decomposition of the s nates - Estimation of the model order - Spectral M ction matrices - Shift invariance property - Signal R	USIC-DOA estimat	ion – Pe	riodogi						
	t IV	TENSOR-BASED SIGNAL PROCESSING	•	9	0	0	9				
Higher	r Order	nd Motivation - Fundamental Concepts of Tensor SVD (HOSVD) - CANDECOMP / PARAFAC (C plications.									
	it V	MAXIMUM LIKELIHOOD ESTIMATORS		9	0	0	9				
		telihood Principle - The Fisher Information Matrix RLB for 1-D direction finding applications - Asymp		Rao Lov	ver Bou	ind (Cl	RLB) –				
				Tota	l (45 L) = 45 1	Periods				
	(D - 1										
Tex	t Books	:									
1		ayed, Fundamentals of Adaptive Filtering. John Wil	-			003.					

2	T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing.
Refe	rence Books:
1	S. Haykin, AdaptiveFilterTheory.Prentice-Hall, 4th edition, 2002.
2	H. L. V.Trees, OptimumArrayProcessing.John Wiley & Sons, Inc., New York, NY, 2002.
3	Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing, D. Manolakis, V. Ingle, S. Kogan, McGraw Hill, 1999.
4	Adaptive Filtering: Algorithms and Practical Implementation, P. Diniz, Kluwer, 1997.
E-R	eference:
1	https://nptel.ac.in/courses/117105075
2	http://www.infocobuild.com/education/audio-video-courses/electronics/AdaptiveSignalProcessing-IIT-Kharagpur/lecture-30.html

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level		
CO1	Understand the concepts of temporal and spatial filtering.	Understanding		
CO2	Designing, implementing, and analyzing adaptive filters applied to system identification	Analysing		
CO3	Identify tensors for selected signal processing application	Applying		
CO4	Apply various techniques to retrieve high resolution parameter estimation	Applying		
CO5	Understand the concepts of Maximum likelihood estimators	Understanding		

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	2	1	1	1	-	I	-	1	1	-	2	2	2
CO2	-	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	-	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	-	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	-	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	-	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
		3/2	2/1 - ir	ndicate	s stren	igth of	correl	ation	(3-Hig	h,2- Me	dium,1-	- Low)			

22ECH407 MULTIMEDIA PROCESSING Semester											
PRER	EQUIS	ITES	Category	PE	Cre	edit	3				
				L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Cours	e Objec	tives			_		I				
1	To get	familiarity with gamut of multimedia and its sign	ficance								
2	2 To acquire knowledge in multimedia components.										
3	3 To acquire knowledge about multimedia tools and authoring										
4	To acq	uire knowledge in the development of multimedia	applications.								
5	To exp	lore the latest trends and technologies in multimed	dia		_						
Un	it I	INTRODUCTION		9	0	0	9				
Multin Multin WWW	Introduction to Multimedia – Characteristics of Multimedia Presentation – Multimedia Components – Promotion of Multimedia Based Components – Digital Representation – Media and Data Streams – Multimedia Architecture – Multimedia Documents, Multimedia Tasks and Concerns, Production, sharing and distribution, Hypermedia, WWW and Internet, Authoring, Multimedia over wireless and mobile networks.										
Uni	it II	ELEMENTS OF MULTIMEDIA		9	0	0	9				
format interfa Anima	ces, color ces, 3D tion- Ke	ont, Unicode Standard, File Formats, Graphics models; video – color models in video, analog video and TV: Audio – Digitization, SNR, SQN ey Frames and Tweening, other Techniques, 2D an	g video, digital vid R, quantization, au	leo, file fo dio quality	ormats,	video	display MIDI;				
Uni	t III	MULTIMEDIA TOOLS		9	0	0	9				
Tools	– Cross	ols – Features and Types – Card and Page Based 7 9 Platform Authoring Tools – Editing Tools – 1 9 pls – Image Editing Tools – Sound Editing Tools –	Painting and Draw	ing Tools							
Uni	t IV	MULTIMEDIA SYSTEMS		9	0	0	9				
2000, 1 H.26X Time 1	basic au (– Mult Protocol	Types and Techniques: CODEC, Text Compression dio compression – ADPCM, MPEG Psychoacous timedia Database System – User Interfaces – OS s – Play Back Architectures – Synchronization – Design – Digital Copyrights, Content analysis.	tics, basic Video co 5 Multimedia Suppo - Document Archite	mpression ort – Harc ecture – H	technic lware S	ques – l upport	MPEG, – Real				
Un	it V	MULTIMEDIA APPLICATIONS FOR THE PLATFORMS	WEB AND MOBI	LE 9	0	0	9				
Report multin	ADDIE Model – Conceptualization – Content Collection – Storyboard–Script Authoring Metaphors – Testing – Report Writing – Documentation. Multimedia for the web and mobile platforms. Virtual Reality, Internet multimedia content distribution, Multimedia Information sharing – social media sharing, cloud computing for multimedia services, interactive cloud gaming. Multimedia information retrieval										
	Total (45 L) = 45 Periods										
Tex	t Books	:									
1	Li, Ze-]	Nian, Drew, Mark, Liu, Jiangchuan, "Fundamenta	ls of Multimedia", S	Springer, T	hird Ed	ition, 2	021.				

Refe	Reference Books:									
1	Gerald Friedland, Ramesh Jain, "Multimedia Computing", Cambridge University Press, 2018.									
2	Ranjan Parekh, "Principles of Multimedia", Second Edition, McGraw-Hill Education, 2017									
3	Multimedia Signal Processing - Theory And Applications In Speech, Music And Communications by Vaseghi, John Wiley And Sons									
4	Jan Vozer, "Video Compression for Multimedia", AP Press, New York, 1995.									
e-Re	eference:									
1	https://www.aonlinetraining.com/									
2	https://gb.coursera.org/lecture/android-programming-2/multimedia-part-1-NW4wT									
3	https://onlinecourses.nptel.ac.in									

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Handle the multimedia elements effectively.	Understanding
CO2	Articulate the concepts and techniques used in multimedia applications.	Understanding
CO3	Develop effective strategies to deliver Quality of Experience in multimedia applications	Applying
CO4	Design and implement algorithms and techniques applied to multimedia objects.	Evaluating
CO5	Design and develop multimedia applications following software engineering models.	Evaluating

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
		3/2	2/1 - in	ndicate	es strei	ngth of	f corre	lation	(3-Hig	gh,2- Me	dium,1	- Low)		

22EC	22ECH408 BIOMEDICAL SIGNAL AND IMAGE PROCESSING Semester										
PRER	EQUIS	ITES	Category	PE	Cr	edit	3				
				L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Cours	e Objec	tives									
1	To lear	n the image fundamentals and mathematical transfo	rms necessary for	signal an	d image	proces	sing.				
2	2 To study the various image enhancement techniques.										
3	3 To apply various image restoration procedures in medical images.										
4	To gai	n knowledge about the basic concepts of image com	pression procedure	es.							
5	To stue	dy about the various segmentation techniques applie	d to Medical Imag	ges.							
Un	it I	BIOMEDICAL SIGNALS AND IMAGES		9	0	0	9				
applica Speech vocode	CG: Cardiac electrophysiology, relation of electrocardiogram (ECG) components to cardiac events - clinical applications. Speech Signals: The source-filter model of speech production - spectrographic analysis of speech. Speech Coding: Analysis-synthesis systems - channel vocoders - linear prediction of speech - linear prediction vocoders- Imaging Modalities: Survey of major modalities for medical imaging: ultrasound - X-ray - CT - MRI - PET - and SPECT-MRI: Physics and signal processing for magnetic resonance imaging.										
	it II	FUNDAMENTALS OF DETERMINISTIC IMAGE PROCESSING		-	0	0	9				
Fourie proper signals Extens	r transfo ties- the s. Sampl sion of f	R and IIR filters - basic properties of discrete-time orm and its properties. FIR filter design using wind e fast Fourier transform (FFT) - the overlap-save ing Revisited: Sampling and aliasing in time and fi iltering and Fourier methods to 2-D signals and sy nods- edge detection- homomorphic filtering.	ows. DFT: The dis algorithm- digit requency- spectral	screte Fou al filterin l analysis	urier tran g of co . Image	nsform ontinuo proces	and its us-time sing- I:				
Uni	t III	IMAGE SEGMENTATION AND OBJECT RE	COGNITION	9	0	0	9				
thresh	olding - ns and p	n- Marr Hidreth edge detector - Canny edge de Basic Adaptive thresholding - Region Based segu pattern classes - Recognition based on decision th	mentation - Water	shed seg	mentatio	on algo	rithm -				
Uni	t IV	IMAGE COMPRESSION		9	0	0	9				
		ssion- Fundamentals - Image compression standard ansform- and Lossy- and lossless predictive coding.	ls- Coding: Run lo	ength H	Iuffman	- Arith	metic -				
	it V	MEDICAL IMAGES		DF 9	0	0	9				
recons		tion models - Algebraic approach to restoration - ir from projections - Radon transforms - Filter back									
				Tota	l (45 L)	= 45 H	Periods				

Text Books:

1 Rabiner. L. R., and R. W. Schafer. Digital Processing of Speech Signals. Upper Saddle River, NJ: Prentice-Hall, 1978. ISBN: 9780132136037.

2	Rafael C, Gonzalez and Richard E Woods, "Digital Image Processing", Pearson Education Asia, Third Edition, 2007.									
Refe	Reference Books:									
1	William K Pratt, "Digital Image Processing", John Wiley NJ, 4th Edition, 2007									
2	Albert Macouski, "Medical Imaging systems", Prentice Hall, New Jersey 2nd edition 1997.									
3	Lim, J. S. Two-Dimensional Signal and Image Processing. Upper Saddle River, NJ: Prentice Hall, 1989.									
4	Macovski, A. Medical Imaging Systems. Upper Saddle River, NJ: Prentice Hall, 1983.									
e-Re	eference:									
1	https://onlinecourses.nptel.ac.in/noc20_ee41									
2	https://onlinecourses.nptel.ac.in/noc21_bt50									
3	https://onlinecourses.nptel.ac.in/noc20_ee40									

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify the equipment used in the analysis of biomedical signal and image processing	Analysing
CO2	Understand the filtering concepts applied to signal and images.	Understanding
CO3	Understand how to apply the image processing techniques for various medical images.	Applying
CO4	Learn the fundamental concepts of medical image acquisition	Understanding
CO5	Understand the concepts of image compression and restoration	Understanding

	COURSE ARTICULATION MATRIX														
COs/PO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	-	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	-	1	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	-	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	-	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	-	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	-	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
		3	/2/1 -	indica	tes stre	ength	of cor	elation	n (3-H	igh,2- N	ledium	,1- Lo	w)		

22EC	CH409	VLSI SIGNAL PROCESSIN	IG	Se	mester						
PRER	REQUIS	ITES	Category	PE	Cr	edit	3				
VLSI	design			L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Cours	e Objec	tives	I								
1	To rev	iew VLSI design methods.									
2	To exp	lore VLSI architecture									
3	To implement DSP algorithms onto digital hardware										
4	Applic	ations of parallel processing and pipelining.									
Un	nit I	PIPELINING AND PARALLEL PROCESSIN	١G	9	0	0	9				
		Pipelining of FIR Digital Filters - Parallel Proces	0 1 0			•					
		ing: Introduction - Definition and Properties - Solv	ing System of Inec	jualities - I	Retimin	ig Tech	niques.				
	it II	FOLDING AND UNFOLDING	9	0	0	9					
		duction -Folding Transform – Register minimization folding of multirate systems Unfolding: Introduct									
		itical Path - Unfolding and Retiming – Application			orung	Tiopt					
Uni	t III	SYSTOLIC ARCHITECTURE DESIGN		9	0	0	9				
	ix Multi	- Systolic Array Design Methodology - FIR Sy- plication and 2D Systolic Array Design - Systo	•			•					
Uni	it IV	FAST CONVOLUTION		9	0	0	9				
		- Cook, Toom Algorithm - Winogard Algorithm	n - Iterated Conv	olution -	Cyclic	Convol	lution -				
Desig	gn of Fas	st Convolution Algorithm by Inspection.									
Un	it V	LOW POWER DESIGN		9	0	0	9				
Prog	rammabl	ower Consumption –Power Analysis - Power Redue DSP: Evaluation of Programmable Digital Signmunications - Processors for Multimedia Signal P	nal Processors - I								
				Tota	l (45 L) = 45]	Periods				
Tex	t Books	:									
1	Kesha	b K. Parhi. "VLSI Digital Signal Processing System	ms", Wilev-Inter S	ciences. 19	999						
2	2 Kung S. Y, H. J. While House, T. Kailath, "VLSI and Modern Signal processing", 1985, Prentice Hall.										
Refe	rence B	ooks:									
1	Moham	med Ismail, Terri, Fiez, "Analog VLSI Signal and	Information Proce	essing", Mo	Graw l	Hill, 19	94.				

2 Kung. S.Y., H.J. While house T.Kailath, "VLSI and Modern signal processing", Prentice Hall, 1985.

3 Jose E. France, Yannis Tsividls, "Design of Analog Digital VLSI Circuits for Telecommunications and Signal Processing", Prentice Hall, 1994.

4 Medisetti V. K, "VLSI Digital Signal Processing", 1995, IEEE Press (NY), USA.

E-R	leference:
1	https://archive.nptel.ac.in/courses/108/105/108105157/
2	https://www.classcentral.com/course/swayam-vlsi-signal-processing-17837
3	https://nptel.ac.in/courses/108106149

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand VLSI design methodology for signal processing systems.	Understanding
CO2	Design and analysis of FIR digital filters using pipelined and parallel processing architecture	Analysing
CO3	Be familiar with VLSI algorithms and architectures for DSP.	Understanding
CO4	Implementing Cook, Toom Algorithm, Winogard Algorithms.	Applying
CO5	Gain knowledge on DSP for mobile and wireless communication	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	1	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	1	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2.4	2	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
		3/	′2/1 - i	ndicat	es stre	ngth o	of corre	elation	(3-Hi	gh,2- M	edium,	l-Low	/)		

22EC	H410	RADAR SIGNAL PROCESSI	NG	Se							
PRER	EQUIS	ITES	Category	PE	Cr	edit	3				
Digital	signal l	Processing		L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Cours	e Objec	tives									
1	To stud	ly about different radar signal processing techniques	5								
2	To lear	n about radar signal model									
3	3 To study about radar signal detection										
Un	it I	INTRODUCTION TO RADAR SYSTEMS		9	0	0	9				
concep		pplication of radar - basic radar function - elemen operations - A preview of basic radar signal process ng.									
Uni	it II	SIGNAL MODELS		9	0	0	9				
		f a radar signal - amplitude models - types of cl uency models: the doppler shift - spatial models - sp		del and s	ignal-to	o noise	ratio -				
Uni	t III	R 9	0	0	9						
select	ing the	criteria for sampling radar signals - Sampling in t pulse repetition interval - sampling the doppler Quantization - I/Q Imbalance and Digital I/Q.									
Uni	t IV	RADAR WAVEFORMS		9	0	0	9				
pulse wave	burst v	- the waveform matched filter - Matched filtering vaveform - frequency-modulated pulse compression the stepped frequency waveform - Phase-modul odes.	on waveforms - R	Range side	elobe c	ontrol	for FM				
Uni	it V	DOPPLER PROCESSING:		9	0	0	9				
dwell	stagger	ns of the Doppler spectrum - moving target indicat - Pulse pair processing - additional Doppler proc r - MTI for moving platforms: adaptive displaced pl	cessing issues - cl	utter map	ping ar						
				Tota	al (45L)) = 45 I	Periods				
Tex	t Books	:									
1	Mark	A. Richards, "Fundamentals of Radar Signal Proces	sing", McGraw-H	ill, New Y	ork, 20	005					
2	France	ois Le Chevalier, "Principles of Radar and Sonar Sig	gnal Processing", A	Artech Ho	use						
Refe	rence Bo	ooks:									
1	Ramon	Nitzberg, "Radar Signal Processing and Adaptive S	ystems", Artech H	Iouse, 199	9.						
2	Michae	l O Kolawole, "Radar systems, Peak Detection and	Tracking",Elseve	ir, 2010.							
3											
4	4 Peyton Z. Peebles, "Radar Principles", Wiley India, 2009										

GCE, SALEM (Autonomous) - R2022 Syllabus

E-R	eference:
1	https://onlinecourses.nptel.ac.in/noc19_ee58/preview
2	https://nptel.ac.in/courses/108105154
3	https://abrarhashmi.files.wordpress.com/2020/02/lecture_1_make_radar-fundamentals_final.pdf

00011	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Demonstrate the basic operation of Radar concepts.	Understanding
CO2	Classify the various types of Radars.	Understanding
CO3	Design and analyze the radar signals and processing.	Analysing
CO4	Learn advanced signal processing technics for Radar applications	Remembering
CO5	Process the data received from radar.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	РО	РО	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO
C05/F05	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO2	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO3	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	2	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
		3/2	2/1 - ir	ndicate	es strei	ngth of	f corre	lation	(3-Hig	gh,2- Me	edium,1	- Low)		

22ECM01											
PREREQUISITES		CATEGORY	OE	Cre	dit	3					
		Hours/Week	L	Т	Р	ТН					
			3	0	0	3					
Course Objectives:											
1. To introduce components such as diodes, BJTs and FETs, their characteristics and applications											
	nalyse and design of simple diode and transistor circu										
3. To know the swi	tching characteristics of components and the concep	pt of rectifiers and	power sup	oplies							
	NSIC SEMICONDUCTOR AND PN JUCTIONS			9	-	09					
N and P type semiconductor and their energy band structures- Law of electrical neutrality-calculation of location of Fermi level and free electron and hole densities in extrinsic semiconductors-Mobility, drift current and conductivity-diffusion current-continuity equation- Hall effect and its applications. Band structure of PN junction – current component in a PN junction- derivation of diode equation-temperature dependence of diode characteristics and											
equivalent models.	HING CHARACTERISTICS OF PN JUNTION A	ND SDECIAL DI	IODES	9	0	09					
	ition and diffusion capacitance- varactor diode-cha										
	ode- mechanism of avalanche and Zener breakdo										
	iode-tunneling effect in thin barriers - tunnel diode-pl		.		Jieun						
	AR JUNCTION TRANSISTORS	8	0	9	0	09					
	and NPN transistors- BJT current components-emit	tter to collector an	d base to	collec	tor c	urrent					
	dulation CB, CE and CC characteristics-breakdown										
switching times- Pho	to translator.										
Unit IV FIELD	EFFECT TRANSISTORS			9	0	09					
Construction and cha	racteristics of JFET-relation between pinch off volta	ge and drain curre	nt derivat	ion. M	OSF	ETS -					
· · · · ·	eletion types. CMOS circuits. MOS capacitance, BICl	MOS, SOI CMOS.									
	FIERS AND POWER SUPPLIES			9	-	09					
	e and bridge rectifiers with resistive load. Analysis										
	Voltage multipliers Zener diode regulator. Electro	nically regulated	d.c powe	r supp	olies.	Line					
regulation, output res	istance and temperature coefficient.										
			Total (4	5L)=4	45 Pe	riods					
Text Books:											

ТСЛІ	DOORS.												
1.	JaconMillman& Christos C. Halkias, "Electronic Devices and Circuits" Tata McGraw-Hill, 1991.												
2	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory 8 th edition.", PHI,												
2.	2002												
Reference Books:													
1.	Donald A. Neaman. "Semiconductor Physics and Devices" 3rd Ed., Tata McGraw-Hill 2002												
2.	S. Salivahanan, N. Suresh kumar and A. Vallavaraj, Electronic Devices and Circuits, TMH, 1998.												
3.	Ben, G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, Pearson Education 2000												
4.	Floyd, "Electronic Devices", Sixth edition, Pearson Education, 2003.												
E-R	eferences:												
1.	https://archive.nptel.ac.in/courses/108/108/108108122/												
2.	https://www.youtube.com/watch?v=qqQ8wO-lNmI												
3.	https://slideplayer.com/slide/12438044/												

Course	Course Outcomes:								
Upon c	Upon completion of this course, the students will be able to:								
		Mapped							
CO1	Interpret various applications of diode.	Applying							
CO2	Classify various configurations and biasing technique of BJT	Applying							
CO3	Apply the knowledge of using special devices for various applications	Understanding							
CO4	Discuss operation, biasing and applications of JFET.	Analysing							

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	2	1	-	-	-	-	-	-	-	-	-	2	-	-
CO3	2	2	1	-	-	-	-	-	-	-	-	-	3	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	-	2	2	1
CO5	2	2	1	-	-	-	-	-	-	-	-	-	3	2	2
Avg	2	2	1	-	-	-	-	-	-	-	-	-	2.2	2	1.5
			3/2/1 -	indica	ates str	ength	of con	relatio	on (<mark>3-</mark> F	ligh,2- N	Mediun	1,1- Lo	ow)		

22E	CM02	DIGITAL ELECTRONICS						
PRE	REQU	JISITES	CATEGORY	OE	Cree	lit	-	3
			TT (XX /)	L	Т	P	5	ГН
			Hours/Week	3	0	0		3
Cou	rse Ob	jectives						
1	To in	troduce basic postulates of boolean algebra and show the con-	relation between	expressio	ons			
2	To In	troduce the methods for Simplifying Boolean expressions						
3	To O	utline the formal procedures for the analysis and design of co	ombinational circu	its and s	equent	ial ci	cui	its
4	To in	troduce the Concept of Memories and programmable logic d	evices					
5	To ill	ustrate the concept of synchronous and Asynchronous seque	ntial circuits					
Unit	Ι	NUMBER SYSTEMS AND LOGIC GATES			9	0	0	9
- Bo Simp Func	olean olificati	ystems - signed Binary numbers - Binary Arithmetic - Binary Algebra and Minimization Techniques - Canonical forms ions of Boolean expressions using Karnaugh map - LC using gates.	s – Conversion b	etween o	canoni	cal fo	orm	ns –
Unit	II	COMBINATIONAL CIRCUITS			9	0	0	9
		ocedure – Adders/Subtractor – Serial adder/ Subtractor // Demultiplexer - encoder / decoder – code converters.	- Parallel adder	/ Subtrac	ctor- H	BCD	ado	der-
Unit	III	SEQUENTIAL CIRCUITS			9	0	0	9
and	Mealy	cedure - Flip flops: SR, JK, T, D and JKMS – Triggering of – Counters: Asynchronous / Ripple counters – Synchronous Iniversal shift register.						
Unit	IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS			9	0	0	9
assig	gnment	fundamental mode circuits – primitive state / flow table – . Problems in Asynchronous Circuits: Cycles – Races – Haz fazards elimination						
		PLD AND MEMORY DEVICES			9	0	0	9
Logi		on of memories –RAM organization –ROM organization. F y (PLA) - Programmable Array Logic (PAL). Implementation LA.	· ·	al logic u	ising N	ÍŬX,	RC	DM,
				Total (45 L) =	= 45 1	eri	lods
<u> </u>								
Тех	t Bool	ζS:						
1		M. Morris Mano, Digital Design, 4.ed., Pearson Education (td., New	Delhi,	2008		
2		R.P.Jain, Modern Digital Electronics, 4 th edition, TMH, 201	10.					
Ref		e Books:						
1		S. Salivahanan and S. Arivazhagan, Digital Circuits and Des New Delhi, 2004			0	ise P	vt. l	Ltd,
2		Charles H.Roth. "Fundamentals of Logic Design", Thomso		ž ž				
3		Donald P.Leach and Albert Paul Malvino, Digital Principle	es and Application	ns, 5 ed.,	Tata M	lcGra	w]	Hill

E-Reference: 1 http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01

2	https://nptel.ac.in/courses/117105080/6
3	https://nptel.ac.in/courses/117105080/12

	Outcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Minimize Boolean expressions and implement using logic gates	Applying
CO2	Design and analyse combinational logic circuits.	Analysing
CO3	Design and analyse synchronous and asynchronous sequential logic circuits	Analysing
CO4	Understand the concepts of memories and PLDs	Understanding
CO5	Implement circuits using memory and PLDs.	Applying

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO4	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3		5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	2	3	2	-	-	-	-	2	1	-
CO2	3	3	2	2	3	3	2	1	1	-	-	-	3	2	-
CO3	2	2	3	3	2	1	2	1	1	-	-	-	2	2	-
CO4	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
CO5	2	1	2	1	3	2	1	2	-	-	-	-	3	2	-
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	1	-	-	-	2.4	1.6	-
		3/2	2/1 - ir	ndicates	streng	th of c	orrela	tion (3	-High	,2- Med	ium,1-	Low)			

22ECM03 ELECTRONIC CIRCUITS											
PREREQUISITES CATEGORY OF		Cred	it	3							
Electron Device L	,	Т	Р	TH							
Electron Devices Hours/Week 3		0	0	3							
Course Objectives	I										
1 To perform analysis on Small signal amplifiers and large signal amplifiers.											
2 To give a comprehensive exposure to all types of discrete amplifiers and oscillators.											
3 To understand the various linear and non-linear applications of op-amp											
Unit I MIDBAND ANALYSIS OF SMALL SIGNAL AMPLIFIERS	9	0	0	9							
BJT – Need for biasing - Fixed bias circuit - Load line and quiescent point. Different types of biasing circuits. Use of Self bias circuit as a constant current circuit. CE, CB and CC amplifiers. Method of drawing small-signal equivalent circuit. Mid-band analysis of various types of single stage amplifiers to obtain gain - input impedance and output impedance. Miller's theorem. Darlington connection using similar and Complementary transistors. Methods of increasing input impedance using Darlington connection and bootstrapping. CS, CG and CD (FET) amplifiers. Multistage amplifiers-Basic emitter coupled differential amplifier circuit. Differential gain - CMRR. Use of constant current circuit to improve CMRR.											
Unit II LARGE SIGNAL AMPLIFIERS	9	0	0	9							
Low frequency & High frequency analysis of amplifiers -Hybrid – pi equivalent circuit of equivalent circuit of FETs. Gain-bandwidth product of FETs. General expression for frequence amplifiers. Calculation of overall upper and lower cut off frequencies of multistage amplifiers. sag time and their relation to cut off frequencies. Classification of amplifiers (Class A, B, AB, C A, RC coupled and transformer-coupled power amplifiers. Class B complementary-sym amplifiers. Calculation of power output, efficiency and power dissipation. Crossover dis eliminating it. Calculation of actual power handling capacity of transistors with and without heat	y respo Ampl &D), I metry, tortion	onse ifier Effici pusl and	of m rise t iency h-pul met	ultistage ime and of class l power hods of							
Unit III OSCILLATORS	9	0	0	9							
Feedback Amplifier: Block diagram - Gain with feedback - Barkhausen Criterion - Mechanis and stabilization of amplitude - Analysis of Oscillator using Cascade connection of RC and Lu Oscillator - Wien bridge Oscillator and Twin-T Oscillators - Analysis of LC Oscillators: Col Miller and Pierce oscillators - Frequency range of RC Oscillators - Electrical equivalent circuit	C filter pitts –	s - R Hart	C ph	ase shift							
Unit IV TUNED AMPLIFIERS AND MULTIVIBRATORS	9	0	0	9							
Analysis of single tuned and synchronously tuned amplifiers - Class C tuned amplifiers Efficiency of Class C tuned Amplifier- Collector coupled and Emitter coupled Astable Multi Multi vibrator – Bistable Multi vibrator - Triggering methods – Mono stable and Astable Bl Emitter and base timing.	vibrat	or –	Mon	o stable							
Unit V OPERATIONAL AMPLIFIERS AND ITS APPLICATIONS											
	9	0	0	9							
Basic structure and principle of operation - Calculation of differential gain - Common Mode design - DC and AC characteristics of OP-AMP. Applications: Inverting and non-inverting ar Differentiator - Summing amplifier - Precision rectifier - Schmitt trigger and its applications - high pass, band pass and band stop filters - Sine wave oscillators – Comparator – Multi vibrator.	gain, C nplifier Active	CMR rs - I filte	R - C ntegr rs: Lo	P-AMP ator and							

Text	Books:
1	B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju Pantulu, K.Bhaskara Rama Murthy, "Electronic
	Circuits-II", Pearson Education, 2012
2	D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2011.
Refe	rence Books:
1	Millman J. and Taub H., "Pulse Digital and Switching waveform", 3rd Edition, McGraw-Hill

	International, 2011.
2	Sedera& Smith, "Micro Electronic Circuits", 4 th Edition, Oxford University Press, Chennai.
3	Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall of India, 1996.
4	K.R.Botkar, 'Integrated Circuits', 10th edition, Khanna Publishers, 2010.
e-Ref	rerence:
1	http://nptel.ac.in/courses/117105080/40
2	http://nptel.ac.in/courses/117108038/1
3	https://freevideolectures.com/course/2915/linear-integrated-circuits

0.000	rse Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy			
CO1	To analyze small signal amplifiers and Large signal Amplifiers.	Mapped			
CO1 CO2	Analyze the frequency response characteristics of amplifiers	Applying Applying			
CO3	Develop insight of on oscillator design.	Applying			
CO4	Construct and analyse tuned amplifiers and multivibrators.	Applying			
CO5	Develop competence in linear and nonlinear Op amp circuit analysis.	Applying			

	COURSE ARTICULATION MATRIX														
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
s	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	2	-	-	1	-	-	-	-	-	1	2	1
CO2	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO4	3	2	1	2	-	-	-	-	-	-	-	-	1	2	1
CO5	1	2	1	2	-	-	-	-	-	-	-	-	1	2	1
Avg	2.4	2	1	2	-	-	-	-	-	-	-	-	1	2	1
		3/	/2/1 -	indica	tes str	ength	of cor	relatio	n (3-H	ligh,2- N	/ledium	,1- Lo	w)		

	SIGNAL PROCESSING					
PREREQUISITES CATEGORY				Cre	dit	3
		TT (TT)	L	Т	Р	TI
		Hours/Week	3	0	0	3
Course Objecti	ves:					I
	nd and perform Fourier and Laplace analysis on signals	· · · · ·	ctively.			
	the Discrete Fourier Transform, Fast Fourier Transform	algorithms.				
3. To design a	nd realize IIR, FIR filters.					
Unit I INT	TRODUCTION TO SIGNALS AND SYSTEMS			9	0	0 9
	f Signals: Even and Odd Signal - Energy and power si	ignals - Continuor	is time ((
	Is - Continuous and Discrete amplitude signal Syste	0				
	– Causality – Stability - Realizability Linear Time-In					
	Convolution - Correlation - System representation th					
equations.		C	1			
	ALYSIS OF SIGNAL AND SYSTEMS			9	-	09
	Fourier Transform, Fourier Series, Relating the Laplace	Transform to Four	rier Trans	sform,	Frequ	iency
response of cont	inuous time systems. Introduction to z- Transform.					
	CRETE FOURIER TRANSFORM	ET algorithma D		9		0 9
	DFT – Properties of DFT - Circular convolution - Fl ime and Decimation in Frequency algorithms.	FI algorithms – R	adix-2 F	FI alg	gorith	ms -
Decimation III I	me and Decimation in Frequency argoritims.					
	INITE IMPULSE RESPONSE FILTER DESIGN			•		
UNITIV INF				9		09
		pass filter, High p	ass filter.			0 9 filte
Characteristics	of Analog Butterworth filter - Chebyshev filter - Low			Band	pass	filte
Characteristics of and Band stop		t digital filters usin		Band	pass	filte
Characteristics of and Band stop f method - Realiz	of Analog Butterworth filter - Chebyshev filter - Low filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form	t digital filters usin		Band	pass sform	filte atio
Characteristics of and Band stop to method - Realiz Unit V FIN	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN	t digital filters usin 1 - Parallel form.	ng bilinea	Band Bar trans	pass sform	filte nation
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met	t digital filters usin - Parallel form. thod: Rectangular,	ng bilinea	Band ar trans 9 ng, Ha	pass sform	filte ation 0 9 g and
Characteristics of and Band stop in method - Realiz Unit V FIN Linear phase re Blackmann Win	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN esponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures	t digital filters usin - Parallel form. thod: Rectangular,	ng bilinea	Band ar trans 9 ng, Ha	pass sform	filte ation 0 9 g and
Characteristics of and Band stop in method - Realiz Unit V FIN Linear phase re Blackmann Win	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met	t digital filters usin - Parallel form. thod: Rectangular,	ng bilinea Hammin inear pha	Band ar trans 9 ng, Ha ase stru	pass sform 0 nning cture	filtenation 0 9 g and s and
Characteristics of and Band stop in method - Realiz Unit V FIN Linear phase re Blackmann Win	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN esponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures	t digital filters usin - Parallel form. thod: Rectangular,	ng bilinea	Band ar trans 9 ng, Ha ase stru	pass sform 0 nning cture	filtenation 0 9 g and s and
Characteristics of and Band stop in method - Realiz Unit V FIN Linear phase re Blackmann Win	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN esponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures	t digital filters usin - Parallel form. thod: Rectangular,	ng bilinea Hammin inear pha	Band ar trans 9 ng, Ha ase stru	pass sform 0 nning cture	filte ation 0 9 g and es and
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Text Books:	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters.	t digital filters usin <u>- Parallel form.</u> thod: Rectangular, s for FIR filters - L	ng bilinea Hammin inear pha	Band ar trans 9 ng, Ha ase stru	pass sform 0 nning cture	filte ation 0 9 g and es and
Characteristics of and Band stop f method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Text Books: 1. A.Anand	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.	t digital filters usin - Parallel form. thod: Rectangular, s for FIR filters - L	ng biline: Hammin inear pha Total (4	Band ar trans 9 ng, Ha ase stru (5L)=4	pass sform 0 0 nning cture	filte ation g and s and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Text Books: 1. A.Anand 2 John G F	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri	t digital filters usin - Parallel form. thod: Rectangular, s for FIR filters - L	ng biline: Hammin inear pha Total (4	Band ar trans 9 ng, Ha ase stru (5L)=4	pass sform 0 0 nning cture	filte ation g and s and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Text Books: 1. A.Anand 2. John G F Edition, F	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN esponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- earson Education, 2009.	t digital filters usin - Parallel form. thod: Rectangular, s for FIR filters - L	ng biline: Hammin inear pha Total (4	Band ar trans 9 ng, Ha ase stru (5L)=4	pass sform 0 0 nning cture	filte ation g and s and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Text Books: 1. A.Anand 2. John G F Edition, F Reference Book	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN response of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- tearson Education, 2009. s:	t digital filters usin <u>- Parallel form.</u> thod: Rectangular, s for FIR filters - L inciples, Algorithr	Hammin inear pha Total (4	Band ar trans 9 ng, Ha ase stru (5L)=4	pass sform 0 nning cture 15 Pe tions	filte aation g and s and riod
Characteristics of and Band stop f method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru I. A.Anand 2. John G F Edition, P Reference Book 1. Alan V O	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- tearson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign	t digital filters usin <u>- Parallel form.</u> thod: Rectangular, s for FIR filters - L inciples, Algorithr	Hammin inear pha Total (4	Band ar trans 9 ng, Ha ase stru (5L)=4	pass sform 0 nning cture 15 Pe tions	filte aation g and s and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Text Books: 1. A.Anand 2. John G H Edition, F Reference Book 1. Alan V O Private Li	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN soponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems" , 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- earson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign mited, New Delhi, 2010.	t digital filters usin <u>a - Parallel form.</u> thod: Rectangular, s for FIR filters - L inciples, Algorithm als and Systems",	Hammin inear pha Total (4 ns and A 2nd editi	Band ar trans 9 ng, Ha ase stru 5L)= 4	pass sform 0 nning cture 15 Pe tions	filte aation g and s and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Direct form stru A.Anand 2. John G F Edition, F Reference Book 1. Alan V O Private Li 2. B.P. Lath	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN seponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- earson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign mited, New Delhi, 2010. , "Principles of Signal Processing and Linear Systems",	t digital filters usin <u>a</u> - Parallel form. thod: Rectangular, s for FIR filters - L inciples, Algorithr als and Systems", Oxford University	Hammin Hammin inear pha Total (4 ns and <i>A</i> 2nd editi Press, 20	Band ar trans 9 ng, Ha ase stru (5L)=4 (5L)=4 (009.	pass sform 0 nning cture 15 Pe tions ²	filte aation g and g and rioda ", 4t
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase ree Blackmann Win Direct form stru Direct form stru A.Anand 2. John G F Edition, P Reference Book 1. Alan V O Private Li 2. B.P. Lath 3. Emmanue	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- earson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign mited, New Delhi, 2010. , "Principles of Signal Processing and Linear Systems", I C. Ifeacher, Barry W. Jervis, "Digital Signal Proce	t digital filters usin <u>a</u> - Parallel form. thod: Rectangular, s for FIR filters - L inciples, Algorithr als and Systems", Oxford University	Hammin Hammin inear pha Total (4 ns and <i>A</i> 2nd editi Press, 20	Band ar trans 9 ng, Ha ase stru (5L)=4 (5L)=4 (009.	pass sform 0 nning cture 15 Pe tions ²	0 9 g and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase realize Blackmann Win Direct form strue Text Books: 1. A.Anand 2. John G Fin Edition, P Reference Book 1. Alan V O Private Li 2. B.P. Lath 3. Emmanue Pearson E	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- tearson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign mited, New Delhi, 2010. I, "Principles of Signal Processing and Linear Systems", el C. Ifeacher, Barry W. Jervis, "Digital Signal Proce ducation, 2004.	t digital filters usin - Parallel form. thod: Rectangular, s for FIR filters - L inciples, Algorithr als and Systems", Oxford University essing: A Practical	Hammin Hammin inear pha Total (4 ns and A 2nd editi Press, 20	Band ar trans 9 ng, Ha ase stru (5L)= 4 (5L)=	pass sform nning cture 15 Pe tions ³ II Lea	0 9 g and riod
Characteristics of and Band stop in method - Realiz Unit V FIN Linear phase realize Blackmann Win Direct form strue Fext Books: 1. A.Anand 2. John G F Edition, F Reference Book 1. Alan V O Private Li 2. B.P. Lathe 3. Emmanue Pearson E 4. S.K. Mitre	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- earson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign mited, New Delhi, 2010. , "Principles of Signal Processing and Linear Systems", I C. Ifeacher, Barry W. Jervis, "Digital Signal Proce	t digital filters usin - Parallel form. thod: Rectangular, s for FIR filters - L inciples, Algorithr als and Systems", Oxford University essing: A Practical	Hammin Hammin inear pha Total (4 ns and A 2nd editi Press, 20	Band ar trans 9 ng, Ha ase stru (5L)= 4 (5L)=	pass sform nning cture 15 Pe tions ³ II Lea	0 9 g and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Direct form stru A.Anand 2. John G F Edition, P Reference Book 1. Alan V O Private Li 2. B.P. Lath 3. Emmanue Pearson E 4. S.K. Mitri	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems", 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- tearson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign mited, New Delhi, 2010. I, "Principles of Signal Processing and Linear Systems", el C. Ifeacher, Barry W. Jervis, "Digital Signal Proce ducation, 2004.	t digital filters usin - Parallel form. thod: Rectangular, s for FIR filters - L inciples, Algorithr als and Systems", Oxford University essing: A Practical	Hammin Hammin inear pha Total (4 ns and A 2nd editi Press, 20	Band ar trans 9 ng, Ha ase stru (5L)= 4 (5L)=	pass sform nning cture 15 Pe tions ³ II Lea	0 9 g and riod
Characteristics of and Band stop if method - Realiz Unit V FIN Linear phase re Blackmann Win Direct form stru Direct form stru A.Anand 2. John G F Edition, P Reference Book 1. Alan V O Private Li 2. B.P. Lath 3. Emmanue Pearson E 4. S.K. Mitre E-References: 1. http://npte	of Analog Butterworth filter - Chebyshev filter - Low p filter - Transformation of analog filters in to equivalent ation structure for IIR filters-Direct form - Cascade form ITE IMPULSE RESPONSE FILTER DESIGN sesponse of FIR filter - FIR design using window met dows - Park-McClellan's method - Realization structures cture - Comparison of FIR and IIR filters. Kumar, "Signals and Systems" , 3rd Edition, PHI, 2013. Proakis and Manolakis, "Digital Signal Processing Pri- earson Education, 2009. s: ppenheim, Alan S Willsky and S Hamid Nawab, "Sign mited, New Delhi, 2010. I, "Principles of Signal Processing and Linear Systems", ed C. Ifeacher, Barry W. Jervis, "Digital Signal Proce ducation, 2004. a, "Digital Signal Processing, A Computer Based approa	t digital filters usin - Parallel form. thod: Rectangular, s for FIR filters - L inciples, Algorithr als and Systems", Oxford University essing: A Practical	Hammin Hammin inear pha Total (4 ns and A 2nd editi Press, 20	Band ar trans 9 ng, Ha ase stru (5L)= 4 (5L)=	pass sform nning cture 15 Pe tions ³ II Lea	0 9 g and riod

Course Outcomes:			
Upon completion of this course, the students will be able to:		Taxonomy	
		Mapped	
CO1	Analyse and understands different types of signals.	Analysing	
CO2	Represent continuous signals and systems in time and frequency domain using different	Analysing	
	transforms.		
CO3	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital	Analysing	
	signals & systems.		
CO4	Design and realize IIR filters.	Applying	
CO5	Design and realize FIR filters.	Applying	

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	3	3	-	-	-	-	-	-	-	2	2	2
CO2	3	2	2	3	3	2	-	-	-	-	-	-	2	2	2
CO3	3	2	2	2	1	-	1	-	-	-	-	-	1	1	1
CO4	3	2	2	2	1	-	1	-	-	-	-	-	1	1	1
CO5	1	1	1	1	1	-	-	-	-	-	-	-	2	2	1
Avg	2.6	1.8	2	2.2	1.8	2	1						1.6	1.6	1.4
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															

Interval <td <="" colspan="2" th=""><th>22ECM05</th><th>MICROPROCESSORS AND MICR</th><th>OCONTROLLERS</th><th></th><th></th><th></th><th></th></td>	<th>22ECM05</th> <th>MICROPROCESSORS AND MICR</th> <th>OCONTROLLERS</th> <th></th> <th></th> <th></th> <th></th>		22ECM05	MICROPROCESSORS AND MICR	OCONTROLLERS				
Hours/Week3003Course Objectives:30031.To familiarise with 8086 and 8051 architectures.2.To interface 8086 microprocessor and 8051 microcontrollers with peripherals by programming.3.3.To gain basic knowledge of PIC microcontrollers.909Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Addressi modes-Instruction Formats- Directives and Operators-Assembly process.Unit IPROGRAMMING AND INTERFACING OF 8086909Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mod Maximum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART.909Unit II8051 ARCHITECTURE9098051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction — Addressing modes909Unit IVPROGRAMMING AND INTERFACING OF 8051909Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control.Unit VPIC MICROCONTROLLERS909Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC909	PREREQUI	SITES	CATEGORY	OE	Cree	lit	3		
Solution 3 0 0 2 1. To familiarise with 8086 and 8051 architectures. . </th <th></th> <th></th> <th></th> <th>L</th> <th>Т</th> <th>Р</th> <th>TE</th>				L	Т	Р	TE		
1. To familiarise with 8086 and 8051 architectures. 2. To interface 8086 microprocessor and 8051 microcontrollers with peripherals by programming. 3. To gain basic knowledge of PIC microcontrollers. Unit I 8086 MICROPROCESSOR ARCHITECTURE 9 0 Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Addressi modes- Instruction Formats- Directives and Operators-Assembly process. Unit II PROGRAMMING AND INTERFACING OF 8086 9 0 9 0 9 0 9 0 9 0 Microconsiderations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mod Maximum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. Unit II 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction – Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 <th></th> <th></th> <th>Hours/Week</th> <th>3</th> <th>0</th> <th>0</th> <th>3</th>			Hours/Week	3	0	0	3		
2. To interface 8086 microprocessor and 8051 microcontrollers with peripherals by programming. 3. To gain basic knowledge of PIC microcontrollers. Unit I 8086 MICROPROCESSOR ARCHITECTURE 9 0 9 Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Addressimodes-Instruction Formats- Directives and Operators-Assembly process. 9 0 9 Unit II PROGRAMMING AND INTERFACING OF 8086 9 0 9 Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. Unit II 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction - Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. 9 0 9 Unit V PIC MICROCONTROLLERS 9 0 9 0 9 0 9 0 <t< td=""><td>Course Obje</td><th>ectives:</th><td></td><td></td><td></td><td></td><td></td></t<>	Course Obje	ectives:							
3. To gain basic knowledge of PIC microcontrollers. Unit I 8086 MICROPROCESSOR ARCHITECTURE 9 0 9 Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Address: modes- Instruction Formats- Directives and Operators-Assembly process. 9 0 9 Unit II PROGRAMMING AND INTERFACING OF 8086 9 0 9 Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mod Maximum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. 9 0 9 Unit III 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction — Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. 9 0 9 Unit V PIC MICROCONTROLLERS 9 0 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D	v								
Unit I 8086 MICROPROCESSOR ARCHITECTURE 9 0 9 Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Address: modes-Instruction Formats- Directives and Operators-Assembly process. 9 0 9 Unit II PROGRAMMING AND INTERFACING OF 8086 9 0 9 Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mod Maximum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. 9 0 9 Unit III 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction — Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Massembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. 9 0 9 Unit V PIC MICROCONTROLLERS 9 0 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC 9 0 9	2. To	o interface 8086 microprocessor and 8051 microc	ontrollers with peripherals b	y program	ming.				
Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Addressimodes- Instruction Formats- Directives and Operators-Assembly process. Unit II PROGRAMMING AND INTERFACING OF 8086 9 0 9 Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. 9 0 9 Unit III 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction — Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. Unit V PIC MICROCONTROLLERS 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC	3. To	o gain basic knowledge of PIC microcontrollers.							
Overview of Microcomputer systems-8086 Architecture – Pin Assignments – Internal Architecture – Addressimodes- Instruction Formats- Directives and Operators-Assembly process. Unit II PROGRAMMING AND INTERFACING OF 8086 9 0 9 Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. 9 0 9 Unit III 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction — Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. Unit V PIC MICROCONTROLLERS 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC									
modes- Instruction Formats- Directives and Operators-Assembly process. Unit II PROGRAMMING AND INTERFACING OF 8086 9 0 9 Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. Unit III 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction — Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. 9 0 9 Unit V PIC MICROCONTROLLERS 9 0 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC 9 0 9							9		
Unit IIPROGRAMMING AND INTERFACING OF 8086909Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mode Maximum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART.909Unit III8051 ARCHITECTURE9098051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction — Addressing modes909Unit IVPROGRAMMING AND INTERFACING OF 8051909Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control.909Unit VPIC MICROCONTROLLERS909Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC90				l Architec	ture –	Add	ressir		
Fundamental I/O considerations- Programmed I/O- Interrupt I/O- Basic 8086 Configurations- Minimum Mode-Maximum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. Unit III 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction - Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. 9 0 9 Unit V PIC MICROCONTROLLERS 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC		<u> </u>			0				
Maximum Mode-System Bus timing- I/O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboard/Disp controller - 8251 USART. Unit III 8051 ARCHITECTURE 9 0 9 8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction - Addressing modes 9 0 9 Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. 9 0 9 Unit V PIC MICROCONTROLLERS 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC						~			
8051 architecture - Registers in 8051 - Pin description - 8051 parallel I/O ports - memory organization - Instruction Addressing modes Unit IV PROGRAMMING AND INTERFACING OF 8051 9 0 9 Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. 9 0 9 Unit V PIC MICROCONTROLLERS 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC	controller - 82	251 USART.		11 - 0277	2		•		
— Addressing modes		J51 ARCHITECTURE			9	0	9		
Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD a Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. Unit V PIC MICROCONTROLLERS 9 0 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC		. .	parallel I/O ports - memory	organizati	on - In	struct	ion s		
Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control. Unit V PIC MICROCONTROLLERS 9 0 9 Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC	Unit IV P	ROGRAMMING AND INTERFACING OF 8	051		9	0	9		
Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM D Memory - Instruction set and timers in PIC				s Program	ming	- LC	D an		
Memory - Instruction set and timers in PIC	Unit V P	IC MICROCONTROLLERS			9	0	9		
Total $(L+T) = 45$ period			troller families-Memory-Pro	ogram Mei	nory –	RAN	∕I Da		
				Total	(L+T) =	= 45 p	period		
' L'emp La elses	Text Books:								

1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.
2.	Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.McKinlay, "The 8051 Microcontroller and Embedded
۷.	Systems using Assembly and C", 2e, 2022.
Refere	nce Books:
1.	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded
1.	Systems: Using Assembly and C", 2nd Edition, Pearson education, 2011.
2.	Martin Bates,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier, 2011.
3.	Mathur Sunil,"Microprocessor 8086: Architecture, Programming and Interfacing" PHI Learning Pvt. Ltd. 2011.
4	Salvador PinillosGimenez," 8051 Microcontrollers Fundamental Concepts, Hardware, Software and
4.	Applications in Electronics", Springer 2019.
E-Refe	erences:
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon 2020.
2.	https://nptel.ac.in/courses/108105102
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html

	rse Outcomes: a completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Describe and analyse the architecture of 8086 microprocessor and 8051	Remembering
	architectures.	
CO2	Develop assembly language programs and Interface peripherals with 8086.	Applying
CO3	Develop assembly language programs and Interface peripherals with 8051.	Applying
CO4	Determine application specific circuit for real-time applications.	Understanding
CO5	Associate appropriate PIC microcontroller for a given application.	Understanding

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	-	-	-	-	-	-	-	-	2	-	1	-	-
CO2	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO3	2	2	2	2	-	-	-	-	-	-	-	-	2	2	-
CO4	2	2	2	2	-	-	-	-	-	-	-	-	2	2	2
CO5	2	2	-	2	-	-	-	-	-	_	-	-	2	2	_
Avg	2	2	2	2	-	-	-	-	-	-	2	-	1.8	2	2

22EC	CM06	ANALOG AND DIGITAL COMMUNI					
PREF	REQUISI	TES	CATEGORY	OE	Cre	dit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Cours	se Object	ives:					
1.	Unders	tand analog and digital communication techniques.					
2.	Learn d	lata and pulse communication techniques.					
3.	Be fam	iliarized with source and Error control coding.					
Unit l	I I	NFORMATION THEORY				9 0	09
		formation and entropy – Source coding theorem – Shar annels – Mutual information – Channel capacity – Chan		Huffman	coding	g – D	viscrete
Unit l						9 0	09
Noise Modu Techn	: Source of Source of Source	ANALOG COMMUNICATION of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Compare M).	Iodulation – Evolution	on and D	inication escript	on Sy	stems of SSE
Noise Modu Techn (AM -	:: Source of ilation – 7 niques – 7 – FM – PM	of Noise – External Noise- Internal Noise- Noise Calcu Fypes – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparis M).	Iodulation – Evolution	on and D	inicatio escript nunicat	on Sy tion of tion S	of SSE System
Noise Modu Techn (AM - Unit I	: Source of ilation – T niques – T – FM – PM	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparis M). DIGITAL COMMUNICATION	Iodulation – Evolutio son of various Analo	on and D og Comn	inicatio escript nunicat	on Sy tion of tion S	of SSE System
Noise Modu Techn (AM - Unit I Ampli (PSK)	: Source c ilation – T niques – T – FM – P III itude Shif) – BPSK	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparis M). DIGITAL COMMUNICATION Et Keying (ASK) – Frequency Shift Keying (FSK) Mini- C – QPSK – 8 PSK – 16 PSK – Quadrature Amplitud	lodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM	on and D og Comm MSK) –P I) – 8 Qa	nication escript nunicat hase S AM –	on Sy ion S tion S 9 0 hift 1 16 Q	stems of SSE Systen 0 9 Keying
Noise Modu Techn (AM - Unit I Ampli (PSK)	: Source c ilation – T niques – T – FM – P III itude Shif) – BPSK	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparison M). DIGITAL COMMUNICATION ft Keying (ASK) – Frequency Shift Keying (FSK) Mini-	lodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM	on and D og Comm MSK) –P I) – 8 Qa	nication escript nunicat hase S AM –	on Sy ion S tion S 9 0 hift 1 16 Q	stems of SSE Systen 0 9 Keying
Noise Modu Techn (AM - Unit I Ampli (PSK) Bandy	: Source c ilation – T niques – T – FM – PM III itude Shif) – BPSK width Effi	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Compare M). DIGITAL COMMUNICATION Ft Keying (ASK) – Frequency Shift Keying (FSK) Mini- Calculation – Comparison of Various Digital Communication	Iodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM System (ASK – FSK	on and D og Comm MSK) –P I) – 8 Qa K – PSK –	inication escript nunication hase S AM – - QAM	on Sy ion S tion S 9 0 hift 1 16 Q	stems of SSE System 0 9 Keying QAM -
Noise Modu Techn (AM - Unit I Ampli (PSK) Bandy Unit I	: Source o ilation – T niques – T – FM – PM itude Shif) – BPSK width Effi	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparis M). DIGITAL COMMUNICATION Et Keying (ASK) – Frequency Shift Keying (FSK) Mini- C – QPSK – 8 PSK – 16 PSK – Quadrature Amplitud	Iodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM System (ASK – FSK CCESS TECHNIQU	on and D og Comm MSK) –P I) – 8 Q K – PSK – JES	inicatio escript nunicat hase S AM – - QAM	on Sy ion S iion S 9 0 hift I 16 Q I). 9 0	of SSE System 0 9 Xeying AM -
Noise Modu Techn (AM - Unit I Ampli (PSK) Bandy Unit I Pulse Modu	: Source of ilation – T niques – T – FM – PN itude Shif) – BPSK width Effi IV Communilation (PO	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparison M). DIGITAL COMMUNICATION To Keying (ASK) – Frequency Shift Keying (FSK) Mini- Calculation (FSK) – 16 PSK – Quadrature Amplitude Sciency– Comparison of various Digital Communication PULSE COMMUNICATION AND MULTIPLE AC	Iodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM System (ASK – FSK CCESS TECHNIQU Ilse Time Modulation	on and D og Comm MSK) –P I) – 8 QA K – PSK – JES ion (PTM	hase S AM – QAM	on Sy ion G ion S 9 0 hift I 16 Q I). 9 0 Pulse	of SSE System 0 9 Keying AM - 0 9 e code
Noise Modu Techn (AM - Unit I Ampli (PSK) Bandy Unit I Pulse Modu	: Source of ilation – T niques – T – FM – PM itude Shif) – BPSK width Effi IV Communilation (PO iques: FD)	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparis M). DIGITAL COMMUNICATION T Keying (ASK) – Frequency Shift Keying (FSK) Mini- C – QPSK – 8 PSK – 16 PSK – Quadrature Amplitude tciency– Comparison of various Digital Communication PULSE COMMUNICATION AND MULTIPLE AC nication: Pulse Amplitude Modulation (PAM) – P CM) – Comparison of various Pulse Communication S	Iodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM System (ASK – FSK CCESS TECHNIQU Ilse Time Modulation	on and D og Comm MSK) –P I) – 8 QA K – PSK – JES ion (PTM	hase S AM – QAM () –). Mul	on Sy ion G ion S 9 0 hift I 16 Q I). 9 0 Pulse	vstems of SSE System 0 9 Ceying 0 0 9 0 9 0 9 0 9 0 9 0 0 9 0 9
Noise Modu Techn (AM - Unit I Ampli (PSK) Bandy Unit I Pulse Modu techni Unit V Linear	:: Source of ilation – T niques – T – FM – P itude Shif) – BPSK width Effi IV Communilation (PC iques: FD V I r block co	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Compart M). DIGITAL COMMUNICATION A Comparison of Paral State (FSK) Mini- C A Comparison of Various Digital Communication PULSE COMMUNICATION AND MULTIPLE AC Inication: Pulse Amplitude Modulation (PAM) – P CM) – Comparison of Various Pulse Communication S MA, CDMA, TDMA, SDMA. ERROR CONTROL CODING odes - Cyclic codes - Convolution codes – Maximum	Iodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM System (ASK – FSK CCESS TECHNIQU alse Time Modulati System (PAM – PTM	on and D og Comm MSK) –P I) – 8 Qa K – PSK – JES ion (PTM I – PCM	inication escription nunication hase S AM – - QAM - QAM /) –). Mul	on Sy ion Sy ion S fion S 9 0 hift 1 16 C 1). 9 0 Pulse tiple 9 0	of SSE System 0 9 Xeying AM AM access access 0 9
Noise Modu Techn (AM - Unit I Ampli (PSK) Bandy Unit I Pulse Modu techni Unit V Linea	:: Source of ilation – T niques – T – FM – P itude Shif) – BPSK width Effi IV Communilation (PC iques: FD V I r block co	of Noise – External Noise- Internal Noise- Noise Calcu Types – Need for Modulation. Theory of Amplitude M Theory of Frequency and Phase Modulation – Comparis M). DIGITAL COMMUNICATION ft Keying (ASK) – Frequency Shift Keying (FSK) Minis (ACC) – 8 PSK – 16 PSK – Quadrature Amplitude iciency– Comparison of various Digital Communication PULSE COMMUNICATION AND MULTIPLE AC nication: Pulse Amplitude Modulation (PAM) – P CM) – Comparison of various Pulse Communication S MA, CDMA, TDMA, SDMA. ERROR CONTROL CODING	Iodulation – Evolutio son of various Analo mum Shift Keying (I e Modulation (QAM System (ASK – FSK CCESS TECHNIQU alse Time Modulati System (PAM – PTM	on and D og Comm MSK) –P I) – 8 Qa K – PSK – JES ion (PTM I – PCM	hase S AM – QAM). Mul	on Sy ion G ion S 9 0 hift 1 16 C I). 9 0 Pulse tiple 9 0 nal c	of SSE System 0 9 Ceying 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9

Text	Books:								
1.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2014.								
2.	J.G.Proakis, M.Salehi, -Fundamentals of Communication Systems, Pearson Education 2014.								
Reference Books:									
1.	B.P.Lathi, -Modern Digital and Analog Communication Systems, 4th Edition, Oxford University Press,								
2.	D.Roody, J.Coolen, —Electronic Communications, 4th edition PHI 2015.								
3.	B.Sklar, —Digital Communications Fundamentals and Applications, 5th Edition Pearson Education 2017								
4.	H P Hsu, Schaum Outline Series - —Analog and Digital Communications TMH, 5th edition 2006								
E-Re	ferences:								
1.	https://onlinecourses.nptel.ac.in/noc21_ee74/preview								
2.	https://nptel.ac.in/courses/117101051								
3.	https://www.digimat.in/nptel/courses/video/117105143/L51.html								

		Outcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO	:	Apply the concepts of Random Process to the design of Communication	Applying
CO	:	Apply analog and digital communication techniques.	Applying
CO	:	Understand the use of data and pulse communication techniques.	Understanding
CO	:	Analyze Source and Error control coding.	Analysing
CO	:	Design AM communication systems and Angle modulated communication	Applying

					COL	JRSE A	RTICU	LATIO	N MAT	RIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	3	2	1	1	-	-	-	-	-	-	-	3	-	-
CO2	3	2	2	1	1	-	-	-	-	-	-	-	3	2	1
CO3	2	2	2	3	1	-	-	-	-	-	-	-	3	2	-
CO4	1	1	2	1	2	-	-	-	-	-	-	-	2	3	-
CO5	1	1	2	2	2	-	-	-	-	-	-	-	2	3	1
Avg	1.8	1.8	2	1.6	1.4	-	-	-	-	-	-	-	2.6	2.5	1
			3/2/	'1 - ind	icates st	rength o	of corre	lation (3	3-High,2	2- Medi	um,1- L	.ow)			

22ECM07	COMMUNICATION NETWORKS	5				
PREREQUIS	TES	CATEGORY	OE	Cre	dit	3
		/	L	Т	P	TH
		Hours/Week	3	0	0	3
Course Object	ives:	1				
1. Understand	the division of network functionalities into layers.					
2. Be familiar	with the components required to build different types of no	etworks				
	to the required functionality at each layer					
4. Learn the f	low control and congestion control algorithms					
	NDAMENTALS & LINK LAYER			9	0	0 9
	ata Communications- Networks - Building Network and					
	Mode - Physical Layer - Overview of Data and Signals -	introduction to Dat	ta Link L	ayer -	Link	a laye
U	ror Detection and Correction					
	EDIA ACCESS & INTERNETWORKING			9	-	09
	ata link Control and Media access control - Ethernet (802.					
	uetooth Low Energy – WiFi – 6LowPAN–Zigbee - Netwo	rk layer services –	Packet S	witchi	ng –	IPV4
	vork layer protocols (IP, ICMP, Mobile IP)					
	DUTING			9		0 9
	ast Routing – Algorithms – Protocols – Multicast Routing a ptocols – Overview of IPv6 Addressing – Transition from I		erview of	Intrad	oma	in and
	ANSPORT LAYER			9	0	0 9
Introduction to	Transport layer – Protocols- User Datagram Protocols (UDI	P) and Transmiisio	n Control	Proto	cols	(TCP)
	eatures - TCP Connection - State Transition Diagram					
Congestion avo	idance (DECbit, RED) – QoS – Application requirements		-			
Unit V AF	PLICATION LAYER			9	0	0 9
	yer Paradigms - Client Server Programming - World Wi					
	IMAP, MIME) – Introduction to Peer to Peer Networks – I	Need forCryptograp	phy and l	Netwo	k Se	curity
– Firewalls.						
			Total (4	45L)=	45 P	eriods

Text]	Books:							
1.	Behrouz A Forouzan, Data Communications and Networking, 4th Edition, 2020							
2.	James F. Kurose, Keith W. Ross, Computer Networking - A Top-Down Approach Featuring the Internet,							
۷.	Seventh Edition, Pearson Education, 2016.							
Reference Books:								
1.	Nader. F. Mir," Computer and Communication Networks", Pearson Prentice Hall Publishers, 2nd Edition, 2014.							
2.	Alberto Leon-Garcia, IndraWidjajaCommunication Networks 2nd Edition McGraw-Hill Education, 2003							
3.	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw							
	Hill Publisher, 2011.							
4.	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan							
	Kaufmann Publishers, 2011.							
E-Ref	ferences:							
1.	https://onlinecourses.nptel.ac.in/noc22_ee61/preview							
2.	https://www.ee.iitb.ac.in/~sarva/courses/EE706/2012/EE706LecNotes.pdf							
3.	http://www.cs.kent.edu/~farrell/net01/lectures/							

	e Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the basic concept in modern data communication and different level of layers in the protocol	Understanding
CO2	Analyse the functions and services of data link layer	Analysing
CO3	Categorize the functions and services of network layer	Understanding
CO4	Examine the basic functions of transport layer and congestion in networks	Understanding
CO5	Analyse the concepts of various network applications and data security	Analysing

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO5	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4		6	7	8	9	10	11	12			
CO1	2	1	1	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	1	2	-	1	-	-	-	-	-	-	-	2	1	1
CO3	2	1	1	-	-	-	-	-	-	-	-	-	3	1	2
CO4	3	2	1	-	2	-	-	-	-	-	-	-	2	-	2
CO5	2	1	1	-	1	-	-	-	-	-	-	-	1	1	1
Avg	Avg 2.2 1.2 1.2 - 1.25 2 1 1.4														
			3/2/1	- indi	cates sti	rength	of cor	relatio	on (3-F	ligh,2- N	Medium	n,1- Lo	ow)		

UDT	CM08	INTERNET OF THIN		<u> </u>	C			
гкі	EREQUIS	DITES	CATEGORY	OE	Cr	edit		3
			Hours/Week	L 3		Г 0	P 0	TH 3
Cou	rse Obje	tives						
1	To under	stand Smart Objects and IoT Architectures						
2	To learn	about various IOT-related protocols						
3	To build	simple IoT Systems using Arduino and Raspl	berry Pi					
4	To under	stand data analytics and cloud in the context of	of IoT					
5		op IoT infrastructure for popular applications						
U	J nit I	FUNDAMENTALS OF IOT			9	0	0	9
Con		ud in IoT – Functional blocks of an IoT e nart Objects IoT PROTOCOLS	cosystem – Sensors, A		, Sma 9	ort C	0 0	s an
U De blo	nit III sign Meth	AP and MQTT DESIGN AND DEVELOPMENT odology - Embedded computing logic - Micr uino - Board details, IDE programming - Ras						
	nit IV	т						
			NG SERVICES		9	0	0	9
Data Ana	abases – I lytics – X	g. DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Hadoop Ecosystem – Apache Kafka, Apach ively Cloud for IoT, Python Web Applicati with NETCONF-YANG	Data in Rest – Role of M le Spark – Edge Stream	ning An	Learr	0 ning s and	d Ne	twor
Data Ana Man	abases – I lytics – X	DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Iadoop Ecosystem – Apache Kafka, Apach Ively Cloud for IoT, Python Web Applicati	Data in Rest – Role of M le Spark – Edge Stream on Framework – Djang	ning An	Learr	0 ning s and	– No d Ne	sQ twor
Data Ana Man Cisc – Pc	abases – I lytics – X nagement v U nit V to IoT syster ower Utility	DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Hadoop Ecosystem – Apache Kafka, Apach ively Cloud for IoT, Python Web Applicati with NETCONF-YANG	Data in Rest – Role of M le Spark – Edge Stream on Framework – Djang CATIONS uring - Converged Plantw - Smart and Connected	ning Ana o – AW vide Eth Cities: I	Learr alytics /S for 9 ernet Layere	0 ning s and t IoT 0 Mod ed an	- Nc d Ne T - S 0 lel (C	sQ twor yster 9 PwE ccture
Data Ana Man Cisc – Pc	abases – I lytics – X nagement v U nit V to IoT syster ower Utility	DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Hadoop Ecosystem – Apache Kafka, Apach Evely Cloud for IoT, Python Web Applicati with NETCONF-YANG CASE STUDIES/INDUSTRIAL APPLI Teem - IBM Watson IoT platform – Manufactu Evy Industry – Grid Blocks Reference Model	Data in Rest – Role of M le Spark – Edge Stream on Framework – Djang CATIONS uring - Converged Plantw - Smart and Connected	ning Ana o – AW	Learr alytics /S for 9 ernet Layere	0 ning s and t IoT 0 Mod ed an	- Nc d Ne T - S 0 lel (C	sQ twor yster 9 PwE ccture
Data Ana Man Cisc – Pc Sma	abases – I lytics – X nagement v U nit V to IoT syster ower Utility	DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Hadoop Ecosystem – Apache Kafka, Apach Evely Cloud for IoT, Python Web Applicati with NETCONF-YANG CASE STUDIES/INDUSTRIAL APPLI Teem - IBM Watson IoT platform – Manufactu Evy Industry – Grid Blocks Reference Model	Data in Rest – Role of M le Spark – Edge Stream on Framework – Djang CATIONS uring - Converged Plantw - Smart and Connected	ning Ana o – AW vide Eth Cities: I	Learr alytics /S for 9 ernet Layere	0 ning s and t IoT 0 Mod ed an	- Nc d Ne T - S 0 lel (C	o SQ twor yster 9 PwE ccture
Data Ana Man Cisc – Pc Sma	abases – I lytics – X hagement Unit V to IoT syst ower Utilit art Lightin t Books: David	DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Hadoop Ecosystem – Apache Kafka, Apach Evely Cloud for IoT, Python Web Applicati with NETCONF-YANG CASE STUDIES/INDUSTRIAL APPLI Teem - IBM Watson IoT platform – Manufactu Evy Industry – Grid Blocks Reference Model	Data in Rest – Role of M le Spark – Edge Stream on Framework – Djang CATIONS uring - Converged Plantw - Smart and Connected ffic Control	ning Ana o – AW vide Eth Cities: I Total	Learralytics /S for 9 ernet Layerc (45 L	0 ning s and to IoT 0 Mod ed ar	– No d Ne ` – S lel (C chite 45 P	9 SQ twor yster 9 PwE ccture eriod
Data Ana Man Cisc – Pc Sma	t Books: David Fundar 2017	DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Hadoop Ecosystem – Apache Kafka, Apach ively Cloud for IoT, Python Web Applicati with NETCONF-YANG CASE STUDIES/INDUSTRIAL APPLI eem - IBM Watson IoT platform – Manufactu y Industry – Grid Blocks Reference Model g, Smart Parking Architecture and Smart Traf	Data in Rest – Role of M e Spark – Edge Stream on Framework – Djang CATIONS rring - Converged Plantw - Smart and Connected ffic Control ssetete, Rob Barton a s and Use Cases for Inte	ning Ana o – AW vide Eth Cities: I Total and Jere	Learralytics VS for 9 ernet Layerd (45 L ome Thing	0 ning s and toT 0 Mod ed at (_) =	– No d Ne – S 0 lel (C cchite 45 P	 SQ twor yster 9 PwE ccture eriod —Io Press
Data Ana <u>Mar</u> Cisc – Pc <u>Sma</u> Tex 1	t Books: David Fundar 2017	DATA ANALYTICS AND SUPPORTIN Unstructured Data and Data in Motion Vs I Iadoop Ecosystem – Apache Kafka, Apach ively Cloud for IoT, Python Web Applicati with NETCONF-YANG CASE STUDIES/INDUSTRIAL APPLI em - IBM Watson IoT platform – Manufactu ty Industry – Grid Blocks Reference Model g, Smart Parking Architecture and Smart Traf Hanes, Gonzalo Salgueiro, Patrick Gross nentals: Networking Technologies, Protocols tepBahga, Vijay Madisetti, —Internet of Thin	Data in Rest – Role of M e Spark – Edge Stream on Framework – Djang CATIONS rring - Converged Plantw - Smart and Connected ffic Control ssetete, Rob Barton a s and Use Cases for Inte	ning Ana o – AW vide Eth Cities: I Total and Jere	Learralytics VS for 9 ernet Layerd (45 L ome Thing	0 ning s and toT 0 Mod ed at (_) =	– No d Ne – S 0 lel (C cchite 45 P	9 SQ two yste 9 Pwl cctur erio Pres

 1
 Onvier Hersent, David Boswartinck, Onlar Enounn , —The Internet of Things – Key applications and Protocols, Wiley, 2012 (for Unit 2).

 2
 Jan Ho" ller, VlasiosTsiatsis , Catherine Mulligan, Stamatis , Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.

3	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Thingsl, Springer, 2011.								
4	Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition, O'Reilly Media, 2011.								
E-References:									
1	https://online.stanford.edu/courses/xee100-introduction-internet-things								
2	https://www.udemy.com/topic/internet-of-things/								
3	https://www.netacad.com/courses/iot								

Course	Outcomes:	Bloom's
Upon co	mpletion of this course, the students will be able to:	Taxonomy Mapped
CO1	Explain the concept of IoT.	Understanding
CO2	Analyze various protocols for IoT.	Applying
CO3	Design a PoC of an IoT system using Rasperry Pi/Arduino	Applying
CO4	Apply data analytics and use cloud offerings related to IoT.	Applying
CO5	Analyze applications of IoT in real time scenario	Analysing

					COU	RSE A	ARTIC	ULAT	TION 1	MATRE	X				
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	2	1	1	-	1	-	-	I	1	-	2	2	2
CO2	2	1	2	1	1	-	1	-	-	I	1	-	2	2	2
CO3	2	2	3	2	1	-	1	-	-	I	2	-	2	2	2
CO4	2	2	2	1	1	-	-	-	-	-	1	-	2	2	2
CO5	2	2	3	2	1	-	-	-	-	-	2	-	2	2	2
Avg	2	1.6	2.4	1.4	1	-	-	-	-	-	1.4	-	2	2	2
		3/	/2/1 -	indica	tes str	ength	of cor	relatio	n (3-H	ligh,2- N	<i>l</i> edium	,1- Lo	w)		

22ECM09	WIRELESS SENSORS AND NET			T		
PREREQUISI	ſ E :	CATEGORY	OE	Cr	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
					•	
Course Objecti						
	indamental of Ad hoc network and architecture					
	and the MAC and routing protocols.	. 1 1 0				
	in-depth knowledge on QoS, security and sensor ne	etwork platforms		0		
	OUTING PROTOCOLS		• 1	9		0 9
	hoc Wireless Networks, Issues in Ad hoc wireless	-	-	-		
	, Ad hoc wireless Internet, Issues in Designing a					
	of Routing Protocols, Table Driven Routing Pro-		1	Distan	ice v	ecic
	emand Routing protocols –Ad hoc On–Demand Dis RCHITECTURES OF WSN	tance vector Kouting (AO	DV).	0		0 9
	n examples, Types of applications, Challenges for V	Vinalaga Canaan Naturalia	Enchling	9 Taaba	•	
	Networks, Single-Node Architecture: Hardware (U		0	
	ns and execution environments	components, Energy Cons	umption		501 1	oue
	ecture: Sensor Network Scenarios, Optimization go	vals and figures of marit I	Jacian pri	ncinla	s of V	WCN
	es of WSNs, gateway concepts.	als and figures of merit, I	lesign pri	neipie	5 01	10.01
	MAC PROTOCOLS AND ROUTING PROTOC			9	0	0
	ion: Predictive techniques – PCM – DPCM - DM		oduction			
	andards - Study of EZW. Video compression: Vid					
	based coding – The MPEG-1 Video Standard					
Recommendatio	-					
Unit IV	QUALITY OF SERVICE AND ADVANCED AP	PLICATION SUPPORT	1	9	0	0
Quality of Ser	vice: Coverage and deployment, Reliable data	transport, Single packet	delivery,	Block	del	iver
Congestion con	trol and rate control - Advanced application supp	ort: Advanced in-network	processi	ng, Se	curit	y an
Application-spe	cific support.		-	-		-
Unit V S	ENSOR NETWORK PLATFORMS AND TOO	LS		9	0	0
Sensor Node Ha	ardware – Berkeley Motes, Programming Challeng	ges, Node-level software p	latforms	– Tiny	vOS,	nes
CONTIKIOS, N	Node-level Simulators - NS2 and its extension to	sensor networks, COOJA	, TOSSII	M, Pro	ogram	ımin
beyond individu	al nodes – State centric programming.					
			Total (4	5L) =	45 Pe	eriod
Text Books:						
	am Murthy, and B. S. Manoj, "AdHoc Wireless net					
2. Holger K 2007.	arl and Andreas Willig, "Protocols And Architectur	es for Wireless Sensor Net	works", J	ohn W	'iley,	
Reference Bool						
1. Feng Zha	o and LeonidesGuibas, "Wireless sensor networks '	", Elsevier publication - 20	04.			
	E. Perkins, —Ad Hoc Networking, Addison Wesley					
2 337.11.			0.4			

3. William Stallings, "Wireless Communications and Networks ", Pearson Education – 2004

4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer
	Networks, Elsevier, 2002, 394 - 422.
F Dot	formage

E-References:

- 1. https://nptel.ac.in/courses/106105183
- 2. https://nptel.ac.in/courses/106105183
- 3. https://archive.nptel.ac.in/courses/106/105/106105160/

	Dutcomes : npletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Know the basics of Ad hoc networks and Wireless Sensor Networks	Understanding
CO2	Have a knowledge on architecture of Wireless Sensor Networks	Applying
CO3	Apply the knowledge to identify MAC and routing protocols	Applying
CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	Understanding
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	Remembering

					С	OURS	SE AR	TICU	LATI	ON M.	ATRIX	-			
COs/POs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2	-	-	-	3	3	3	-	2
CO2	3	3	2	3	3	3	2	-	-	I	3	3	3	-	2
CO3	3	3	3	3	3	3	2	-	-	-	3	3	3	-	2
CO4	3	3	2	3	3	3	2	-	-	-	2	3	3	-	2
CO5	3	3	2	3	3	3	2	-	-	-	3	3	3	-	2
Avg	3	3	2	3	3	3	2	-	-	-	2.8	3	3	-	2
			3/2/	1 - ind	licates	stren	gth of	correl	ation	(3-Hig	h,2- Me	edium, I	l-Low)		

22ECM10		BASICS OF EMBEDDED SYSTE	EMS				
PREREQU	JISITES		CATEGORY	OE	Cr	Credit	
Microproce	essors and N	Amicrocontrollers	Hours/Week	L	Т	Р	TH
•				3	0	0	3
Course Ob	•						
	•	ledge on embedded system architecture and embed		strategies			
		he bus Communication in processors and periphera	l interfacing				
		asics of Real Time Operating System					
UNIT I	BASICS	OF EMBEDDED SYSTEMS		ç	9	0 0	9
Design Life UNIT II Memory A Polling Vs	e Cycle - Se MEMOR ccess Proc Interrupts	ges - Recent Trends in Embedded Systems - Arc election Process - Hardware Software Partitioning - X MANAGEMENT AND INTERRUPTS edure - Types of Memory - Memory Manageme - Types of Interrupts - Interrupt Latency - I	• Development Env	ironment A – Mer	t.) nory]	0 (nterfa) g
Controllers UNIT III	<u>^</u>	Service Routines INICATION INTERFACES		()	0 () 9
•		erial Interfaces - RS232/UART - RS422/RS485 - E E 802.11 – Bluetooth	I2C Interface - SPI	Interfac	e - US	SB -	CAN
UNIT IV	REAL TI	ME OPERATING SYSTEMS		ç	Ð	0 ()
Scheduling	- Event Di	Task Management - Task Scheduling - Classificat riven Scheduling - Resource Sharing - Priority Inh ation - Mutex - Semaphores - Message Queues - Ti	eritance Protocol -	Priority			
UNIT V	VALIDA	TION AND DEBUGGING		Ģ)	0 () 9
Testing - R	emote Deb	hines - Validation Types and Methods - Host Touggers and Debug Kernels - ROM Emulator - Lo ASE STUDY: RFID Systems - GPS Navigation Systems - GPS	ogical Analyzer – H	Backgrou	nd De ocol C	bug N Conve	Aode ter.
Text Books	5:						
		and Pankaj Gupta, —Embedded Real-time Systems npany Limited, New Delhi, 2006.	s Programming , Ta	ta McGr	aw-Hi	11	
		er, —Embedded Systems Design - An Introduction Delhi, 2011.	to Processes, Tool	s and Teo	chniqu	es,	
Reference	Books:						
		K, —Embedded/Real-Time Systems: Concepts, De nal Impressions, New Delhi, 2003	sign and Programn	ning – Th	ne Ulti	mate	

2 Heath, "Embedded Systems Design", Newnes an Imprint of Elsevier, Massachusetts, 2003.

3 Tammy Noergaard, "Embedded Systems Architecturel, Newnes an Imprint of Elsevier, Massachusetts, 2006.

4 Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013

E-References: 1 https://lecturenotes.in/subject/225/embedded-system-es 2 https://nptel.ac.in/courses/108102045/19 3 https://www.coursera.org/learn/introduction-embedded-systems.

	Course Outcomes: Jpon completion of this course, the students will be able to								
CO1	Outline the concepts of embedded systems	Understanding							
CO2	Understand the concept of memory management system and interrupts.	Understanding							
CO3	Know the importance of interfaces.	Understanding							
CO4	Understand real time operating system concepts.	Understanding							
CO5	To realize the applications of validation and debugging.	Applying							

COs/POs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	-	-	-	-	-	-	3	3	3	-	2
CO2	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
CO3	3	3	3	3	-	-	-	-	-	-	3	3	3	-	2
CO4	3	3	2	3	-	-	-	-	-	-	2	3	3	-	2
CO5	3	3	2	3	-	-	-	-	-	-	3	3	3	-	2
Avg	3	3	2	3	-	-	-	-	-	-	2.8	3	3	-	2
		3/	2/1 - i	ndicat	es stre	ength o	of corr	elatior	n (3-H	igh,2- N	Medium	n,1- Lov	w)		