

GOVERNMENT COLLEGE OF ENGINEERING

SALEM - 636 011

(An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS 2023 CURRICULAM AND SYLLABUS

(For Candidates admitted from 2023 - 2024 onwards)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (PART TIME PROGRAMME)

B.E ELECTRONICS AND COMMUNICATION ENGINEERING (PART TIME)

VISION

• Strive continuously to develop Excellence in Technical Education and Research by producing technically competent Electronics and Communication Engineers to meet the growing demands of technology and socioeconomic needs.

MISSION

- To foster and achieve unmatched excellence in Electronics and Communication Engineering Domain.
- To pursue continuous improvement in infrastructure and state-of-the art laboratories.
- To establish and set best teaching and learning standards among top grade Engineering Departments across the nation.
- To encourage learning, research, creativity, innovation and professional activity by offering ambience and support.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO's)

- PEO1: The graduates will utilize their expertise in Engineering to solve industry's technological problems.
- **PEO2**: Analyze real life problems, design appropriate system to provide solutions that are technically sound, economically feasible and socially acceptable.
- **PEO3:** Exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning.

PROGRAM OUTCOMES (PO's)

- **PO1:** An ability to apply knowledge of Mathematics, Science, and Engineering in the Electronics and Communication Engineering.
- **PO2:** An ability to design and conduct experiments, as well as to analyze and interpret data.
- **PO3:** An ability to design a System, or Process to meet desired needs within realistic constraints such as Economic, Environmental, Social, Ethical, Health care and Safety, Manufacturability, and Sustainability.
- **PO4**: An ability to identify, formulate and solve complex problems in the area of Electronics and Communication Engineering.
- **PO5:** An ability to use the techniques, skills, and modern Engineering tools necessary for engineering practice.
- PO6: Knowledge of contemporary issues relevant to professional Engineering practice.
- **PO7:** The broad education necessary to understand the impact of engineering solutions in Global, Economic, Environmental and Social context.
- **PO8:** An understanding of Professional and Ethical responsibility.
- **PO9:** An ability to function on multidisciplinary teams.
- PO10: An ability to communicate effectively.

PO11: Recognition of the need for, and an ability to engage in research and to involve in life-long learning.

PO12: An ability to work as a leader in a team, to manage projects in Multidisciplinary environment.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1:** To analyse, design and develop solutions for the real time problems and to apply the technical Knowledge for developing quality products for Electronics and Communication based Industry.
- **PSO2:** To adapt to emerging Information and Communication technologies and to develop innovative ideas and solutions in RF & Communication, Networking, Embedded Systems, and VLSI.
- **PSO3:** An ability to make use of acquired technical knowledge to get employed in the field of Electronics and Communication and also to become successful Entrepreneur.

Regulations 2023 - Autonomous Courses (For Students Admitted from 2023-2024)

B.E ELECTRONICS AND COMMUNICATION ENGINEERING - PART TIME

~ -				Н	lours/We	ek		Maximum Marks				
Course code	Name of the Course	Cate.	Cont. periods	L	Т	Р	Credit	CA	FE	Total		
		S	SEMESTE	RI						•		
			THEORY	Y								
23PTMA101	Mathematics- I	BS	3	3	0	0	3	40	60	100		
23PTEC101	Semiconductor Devices and Circuits	PC	3	3	0	0	3	40	60	100		
23PTEC102	Digital System Design	PC	3	3	0	0	3	40	60	100		
23PTCY101	Environmental Science and Engineering	BS	3	3	0	0	3	40	60	100		
]	PRACTIC	AL								
23PTEC103	Semiconductor Devicesand Digital Electronics Laboratory	PC	3	0	0	3	1.5	60	40	100		
	TOTAL		15	12	0	3	13.5	220	280	500		
		S	EMESTE	RII								
			THEORY	Y								
23PTMA201	Mathematics- II	BS	3	3	0	0	3	40	60	100		
23PTEC201	Analog Circuits	PC	3	3	0	0	3	40	60	100		
23PTEC202	Electromagnetic Fields	PC	3	3	0	0	3	40	60	100		
23PTEC203	Signals and Systems	PC	3	3	0	0	3	40	60	100		
]	PRACTIC	AL								
23PTEC204	Analog Circuits Laboratory	PC	3	0	0	3	1.5	60	40	100		
	TOTAL		15	12	0	3	13.5	220	280	500		
		S	EMESTER	RIII								
			THEORY	Y								
23PTEC301	Analog Communication	PC	3	3	0	0	3	40	60	100		
23PTEC302	Control Systems	PC	3	3	0	0	3	40	60	100		
23PTEC303	Transmission Lines and Waveguides	PC	3	3	0	0	3	40	60	100		
23PTEC304	Microprocessor and Microcontrollers	PC	3	3	0	0	3	40	60	100		
]	PRACTIC	AL								
23PTEC305	Microprocessor and Microcontroller laboratory	PC	3	0	0	3	1.5	60	40	100		
	TOTAL		15	12	0	3	13.5	220	280	500		
		S	EMESTER	RIV				1	1	1		
			THEORY	Y								
23PTEC401	Digital Communication	PC	3	3	0	0	3	40	60	100		
23PTEC402	Digital Signal Processing	PC	3	3	0	0	3	40	60	100		
23PTEC403	Embedded Systems	PC	3	3	0	0	3	40	60	100		
23PTEC404	Antenna and Wave	BS	3	3	0	0	3	40	60	100		
231 1100404	propagation				U	0	5	40	00	100		
			PRACTIC	AL			I	1	1	1		
23PTEC405	Digital Signal Processing Laboratory	PC	3	0	0	3	1.5	60	40	100		
	TOTAL		15	12	0	3	13.5	220	280	500		

		S	EMESTEI	R V						
			THEORY	Y						
23PTEC501	VLSI Design	HS	3	3	0	0	3	40	60	100
23PTEC502	Optical and Microwave Engineering	PC	3	3	0	0	3	40	60	100
23PTEC503	Principle of Management	PC	3	3	0	0	3	40	60	100
23PTEC504	Electronic Measurements	PC	3	3	0	0	3	40	60	100
		P	RACTICA	L				_	_	
23PTEC505	VLSI Design and embedded systemsLaboratory	PC	3	0	0	3	1.5	60	40	100
	TOTAL		15	12	0	3	13.5	220	280	500
		SI	EMESTEF	R VI						
			THEORY	Y						
23PTEC601	Computer Networks	PC	3	3	0	0	3	40	60	100
23PTEC602	Satellite Communication	PC	3	3	0	0	3	40	60	100
23PTECE60X	Professional Elective -I	PC	3	3	0	0	3	40	60	100
23PTECE60X	Professional Elective -II	PC	3	3	0	0	3	40	60	100
			PRACTIC							
23PTEC603	Communication Systems	PC	3	0	0	3	1.5	60	40	100
251 120005	Laboratory	I.C.								
	TOTAL		15	12	0	3	13.5	220	280	500
		SE	EMESTER	VII						
			THEORY	Y						
23PTEC701	Wireless and Mobile Communication	PC	3	3	0	0	3	40	60	100
23PTEC702	High Speed Networks	PC	3	3	0	0	3	40	60	100
23PTECE70X	Professional Elective –III	PC	3	3	0	0	3	40	60	100
23PTECE70X	Professional Elective – IV	PC	3	3	0	0	3	40	60	100
			RACTICA					1	1	
23PTEC703	Mini project	EEC	3	3	0	0	2	60	40	100
	TOTAL		15	12	0	3	14	220	280	500
		SE	MESTER	VIII						
			THEORY	Y						
23PTECE80X	Professional Elective - V	PC	3	3	0	0	3	40	60	100
23PTEEC80X	Professional Elective - VI	PC	3	3	0	0	3	40	60	100
23PTECE80X	Professional Elective - VII	PC	3	3	0	0	3	40	60	100
		P	PRACTIC	AL		-			•	
23PTEC801	Project Work	EEC	6	0	0	6	3	120	80	200

Total No of Credits=107

PROFESSIONAL ELECTIVES (PE)

				Hou	rs/week	Max	ximum 1	Marks		
Sl.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
1.	23PTECE601	Computer Architecture	PE	3	0	0	3	40	60	100
2.	23PTECE602	Modern Sensors and its Applications	PE	3	0	0	3	40	60	100
3.	23PTECE603	Advanced Microcontroller	PE	3	0	0	3	40	60	100
4.	23PTECE604	Internet of Things	PE	3	0	0	3	40	60	100
5.	23PTECE605	Nano Electronics	PE	3	0	0	3	40	60	100
6.	23PTECE606	Artificial Intelligence and Machine Learning	PE	3	0	0	3	40	60	100
7.	23PTECE607	Artificial Neural Networks	PE	3	0	0	3	40	60	100
8.	23PTECE701	Digital Image Processing	PE	3	0	0	3	40	60	100
9.	23PTECE702	Software Defined Radio	PE	3	0	0	3	40	60	100
10.	23PTECE703	Robotics	PE	3	0	0	3	40	60	100
11.	23PTECE704	Wireless Networks	PE	3	0	0	3	40	60	100
12.	23PTECE705	Virtual Instrumentation	PE	3	0	0	3	40	60	100
13.	23PTECE706	Micro Electro Mechanical Systems	PE	3	0	0	3	40	60	100
14.	23PTECE707	Deep Learning	PE	3	0	0	3	40	60	100
15.	23PTECE801	Multimedia Compression and Communication Techniques	PE	3	0	0	3	40	60	100
16.	23PTECE802	Advanced Digital Signal Processing	PE	3	0	0	3	40	60	100
17.	23PTECE803	Bio Medical Electronics	PE	3	0	0	3	40	60	100
18.	23PTECE804	Radar and Navigational Aids	PE	3	0	0	3	40	60	100
19.	23PTECE805	Wireless Sensor Networks	PE	3	0	0	3	40	60	100
20.	23PTECE806	Network Security	PE	3	0	0	3	40	60	100
21.	23PTEC807	Electromagnetic Interference and Compatibility	PE	3	0	0	3	40	60	100
22.	23PTECE808	Mobile Ad-hoc Networks	PE	3	0	0	3	40	60	100
23.	23PTECE809	Speech Processing	PE	3	0	0	3	40	60	100
24.	23PTECE810	System on chip design	PE	3	0	0	3	40	60	100

2	23PTM	[A101	MATHEMATICS – I		SEN	MEST	ER I		
PRE	EREQU	JISTIES:		Category	BS	Cre	dit	3	
					L	Т	Р]	H
Basic	e 12 th le	vel knowled	ge of ODE, PDE, Vector algebra and Complex Analysis.	Hours/Week	3	0	0	3	6
Cou	rse Ob	jectives:							
1.		ake the stud	ent acquire sound knowledge of techniques in solving ordir lems.	ary differential ec	quation	s that n	nodel		
2.	To m	ake the stud	ent to understand the techniques in solving partial different	ial equations that	model e	enginee	ring p	oroble	ms.
3.	To a	equaint the s	tudent with the concepts of vector calculus, needed for solv	ing engineering p	roblem	s.			
4.	To u	nderstand th	e concept of analytic functions.						
5.	To o	btain the kno	owledge of complex integration						
UNI			RY DIFFERENTIAL EQUATIONS			9	0	0	9
		linear diffenter equation	rential equations with constant coefficients – Method ons.	f variation of pa	ramete	rs – C	auchy	's an	d
UNI	TI	PARTIA	L DIFFERENTIAL EQUATIONS			9	0	0	9
			erential equations by elimination of arbitrary constants a Linear partial differential equations of second order with co			- Lagra	inge's	linea	ar
UNI	T III	VECTO	DR CALCULUS			9	0	0	9
		0	curl – Directional derivative – Irrotational and solenoidal ve and Stokes theorem – Simple applications involving cubes			0		temer	t of
UNI	TIV	ANALY	FIC FUNCTIONS			9	0	0	9
(exclu	ding pr	oofs) – Pro	uriable – Analytic functions – Necessary conditions, Cauchy perties of analytic function – Harmonic conjugate – con $\frac{1}{2}$ and bilinear transformation.						
UNI	ΤV	COMPL	EX INTEGRATION			9	0	0	9
Lauren	nt's exp	ansions – Si	atement and applications of Cauchy's integral theorem and ngular points – residues – Residue theorem – Application rs (excluding poles on boundaries).	of residue theorer		aluate 1	real in	tegra	ls

Text	t Books:
1.	Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publications, Delhi, 2015.
2.	P. Kandasamy, K. Thilagavathy and K. Gunavathy, "Engineering Mathematics (For I year B. E, B. Tech)", Ninth Edition, S. Chand & Co. Ltd., New Delhi, 2010.
Refe	erence Books:
1.	James Stewart, "Calculus with Early Transcendental Functions", Cengage Learning, New Delhi, 2008.
2.	Veerarajan T., "Engineering Mathematics (For semester I and II)", 5th Edition, Tata McGraw Hill Education Pvt. Ltd.,
	New Delhi, 2009.
3.	Erwin Kreyszig, "Advanced Engineering Mathematics", 7th Edition, Wiley India, 2007.
4.	Jain R.K. and Iyengar S.R.K, "Advanced Engineering Mathematics", 3 rd Edition, Narosa Publishing House Pvt. Ltd.,
	2007.

Course Ou Upon comp		mes: n of this course, the students will be able to:	Bloom's Taxonomy Mapped			
CO1	CO1 : Find the techniques of solving ordinary differential equations that arise in engineering problems.					
CO2	CO2 : Find the techniques of solving partial differential equations that arise in engineering problems.					
CO3	:	Apply the concept of vector calculus and vector integration.	L3			
CO4	:	Understand analytic function and its properties.	L2			
CO5	:	Evaluate various integrals by using Cauchy's residue theorem.	L5			

	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
			3/2/1	-indica	ites strei	ngth of	correlat	ion (3-	High, 2	-Mediu	m, 1- Lo	ow)			

23PT	EC101	SEMICONDUCTOR DEVICES A	AND CIRCUITS	SEM	ESTEI	RI		
		1	Category	PC	Cre	edit		3
				L	Т	Р		TH
			Hours/Week	3	0	0		3
Cour	se Objectives:		I			1		
1	To understand	the fundamentals of electron devices and circuits.						
2	To design and	analyze single stage and multistage amplifier circ	uits.					
3	To understand	and classify different kinds of power and feedbac	k amplifiers.					
Unit	I SEMICO	ONDUCTOR DIODES			9	0	0	9
charact	eristics - Transit	rent equations – Energy Band diagram – Diffusio ion and Diffusion Capacitances – Switching Cl Zener diode – Varactor diode – Tunnel diode – Ph	haracteristics – Breakdow		Junctio			
Unit		APPLICATIONS AND POWER SUPPLY			9	0	0	9
with C,	L, L-C and C- (SMPS).	uits, Half-wave, full-wave and bridge rectifiers w L-C filters. Voltage multipliers, Voltage Regula				Aode I		
			C V II IIIII		-			
		stor-device structure and physical operation – re and physical operation – Current-Voltage chara						
		configurations (such as CE/CS, CB/CG, CC/CD)	e		i una i	DI ui	npn	ners
Unit	IV FREQU	ENCY RESPONSE OF AMPLIFIERS			9	0	0	9
Respon Frequen frequen	se of Discrete-C ncy Model of the cy response of m	nd models of MOSFET and BJT – general shap ircuit Common-Source and Common-Emitter A MOSFET and the BJT – High-Frequency Respon ultistage amplifiers - Calculation of overall upper	Amplifiers – Internal Cap use of the CS and CE Amp	acitive E lifiers – (Effects a General ultistage	and th exprese ampli	e H ssioi ifier	High- n for rs.
Unit	V POWE	R AND FEEDBACK AMPLIFIERS			9	0	0	9
power current	dissipation calcu	s classes of operation (Class A, Class B, Class AI lations – cross-over distortion – Feedback topo feedback on gain, bandwidth etc., calculation wi	ologies: Voltage series, cu	urrent se	ries, vo	ltage s	shur	nt,
				Total(45L) =	45 Pe	rio	ds
Text	Books:	KC Smith Microelectronic Circuits 7 th edition						

1.	This. Source and R.C. Shindi, Meroelectronic Chours, 7 Control Chiversky (1655, 2017).
2.	S. Salivahanan and N. Suresh kumar, "Electronic Devices and Circuits", Fourth edition, McGraw Hill Education, 2017.
Refer	rence Books:
1.	Donald A. Neamen. "Semiconductor Physics and Devices" 4th Edition, McGraw Hill Education 2017.
2.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory" 11th edition, PHI, 2017.
3.	Ben G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2015.
4.	David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education press, 5th Edition, 2010.
E-Re	ferences:
1.	https://nptel.ac.in/courses/108108112
2.	https://nptel.ac.in/courses/117103063
3.	http://www.electronics-tutorials.ws/

	Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped					
CO1	CO1 Understand the characteristics of diodes and special semiconductor devices.						
CO2	Design and analyze clipper, clamper and power supply circuits	L3					
CO3	Acquire knowledge on working principles, characteristics and applications of BJT and FET.	L1					
CO4	Analyze the frequency response characteristics of amplifiers.	L4					

CO5	Design and analyze power and feedback amplifiers and derive their performance specifications.	L3
-----	---	----

Γ

	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	3	1	2	1								1		1
CO2	3	3	2	3	2								2	1	2
CO3	3	2	2	3	3								1	1	1
CO4	2	3	2	3	3								2	2	2
CO5	2	3	2	3	3								2	1	2
Avg	2.2	2.8	1.8	2.8	2.4								1.6	1	1.6
			3/2/1	=indica	tes stre	ength of	f correl	ation (3	-High,	2-Mediu	um,1-L	ow)			

	23PTEC102	DIGITAL SYSTEM DESIGN		SEN	AEST	ER I	
			Category	PC	Cred	lit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Cou	rse Objectives:		I			1 1	
1	Understand the n	umber system, logic families and Boolean Algebra.					
2	Understand and o	lesign combinational and sequential circuits.					
3	Understand the c design Digital ele	oncept of Memories and Programmable Logic Devices and ectronic circuits.	apply the knowle	dge of	these d	evices	in
Unit	t I NUMBEI	R SYSTEMS AND LOGICGATES			9	0	09
forms-	-Conversion betwee mentations of Logic	exadecimal-Binary codes: BCD–Gray code-Boolean Alge en canonical forms–Simplifications of Boolean expres Functions using gates. NATIONALCIRCUITS					
		rs/Subtractor–Serialadder/Subtractor-Paralleladder/Subtrac	tor-Carry look	ahead	-	v	
		er-Encoder/Decoder–Implementation of combinational logi				JCDu	
Unit		INTIAL CIRCUITS	8		9	0	09
	ers–Synchronous co er.	ops: SR ,JK,T,D and JK Master Slave–Moore and Mea ounters–Modulo n counter–Design of Synchronous court					al shift
Unit		HRONOUS SEQUENTIAL CIRCUITS			9	0	09
Excita		nodel circuits-Primitive state/flow table-Minimization of tion map- Problems in Asynchronous Circuits: Cycles					
Unit	t V MEMOI	RY DEVICES			9	0	09
Progra		es –RAM organization – ROM organization – Flash M ay (PLA)-Programmable Array Logic (PAL) - Implement	tation of combina	tional l	ogic us	sing R	OM,
			Т	otal(45	5L) =4	5 Per	riods

Text	Books:
1.	M. Morris Mano, "DigitalDesign",4thEdition, Pearson Education (Singapore)Pvt. Ltd., NewDelhi,2008.
2.	R.P. Jain, "ModerndigitalElectronics", TataMcGrawHill, 4 th Edition,2009
Refer	rence Books:
1.	W.H. Gothmann, "DigitalElectronics-Anintroductiontotheoryandpractice", PHI, 2 nd edition,, 2006.
2.	D.V. Hall, "Digital Circuits and Systems" Tata McGraw Hill, 1989
3.	$S. Saliva han an and S. Arivazhagan, ``Digital Circuits and Design'', 2^{nd} edition, Vikas Publishing House Pvt. Ltd, New Delhi, 2004 and 2004 a$
4.	Charles H. Roth."Fundamentals of Logic Design", Thomson PublicationCompany,2003.
E-Re	ferences:
1.	http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01
2.	https://nptel.ac.in/courses/117105080/6
3.	https://nptel.ac.in/courses/117105080/12

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the number system and the functioning of logic gates with various logic families.	L2					
CO2	Design and analyze combinational logic circuits and Logic gates.	L4					
CO3	Design the sequential logic circuits using Flip flops.	L2					
CO4	Design and analyze asynchronous sequential logic circuits.	L4					

CO5	Understand the concepts of memories and PLDs and implementation of circuits using memory and PLDs.	L1
-----	--	----

	COURSE ARTICULATION MATRIX														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
/POs	FUI	FO2	FO3	r04	FUS	FU0	FO/	FUð	F09	0	1	2	1	2	F305
CO1	3	2	2	2	3	2	3	2					1	1	
CO2	3	3	2	2	3	3	2	1	1				1		2
CO3	2	2	3	3	2	1	2	1	1					2	
CO4	2	1	2	1	2	2	3	1					1		2
CO5	2	1	2	1	3	2	1	2					2	1	
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	0.4				1	0.8	0.8
			3/2/1=	=indica	tes stro	ength o	of corre	elation	(3-Hig	h,2-Me	dium,1	-Low)			

23PTCY101	ENVIRONMENTAL SCIENCE AND ENGIN	EERING	SEM			
PREREQUIST	IES	CATEGORY	BS	3		
			L	Т	Р	ТН
Nil		Hours/Week	3	0	0	3
Course Object	ves: To make the students conversant with the	I	I			
1. Principles	of environmental resources.					
	on of ecosystem and biodiversity.					
3. Principles	of environmental threats and pollution.					
4. Principles	of solid waste management.					
5. Environme	ental issues and ethics.					
UNIT I EI	IVIRONMENTAL RESOURCES		9	0	0	9
Forest resources	- importance, deforestation - water resources - hydrological	cycle – food resour	ces – e	ffects	of m	odern
agriculture, fertil	izers, pesticides – Land Resources- Land degradation-soil ero	osion- Mineral resou	irces –t	ypes -	– mir	ning -
environmental eff	ects of extracting and using mineral resources.					
	COSYSTEM AND BIODIVERSITY		9	0	0	9
	otic and abiotic components – Ecosystem – components – Energy	Partitioning in Food	-	-	ood V	
	ergy flow in ecosystem, ecological pyramids – ecological succ					
	pots of biodiversity, threat to biodiversity, endangered and ender					
situ and Ex-situ c	onservation.	-				
	IVIRONMENTAL POLLUTION		9	0	0	9
	assification of air pollutants - gaseous, particulates - sources, e					
	nd particulates - control methods - catalytic convertor, cyclone					
	metal ions pollutants - organic pollutants, oxygen demanding v					
	n (DO), BOD and COD - experimental determination of BOE		domest	ic and	l indu	ıstrial
	se pollution –decibel scale - sources, effects and control measures			•	0	
	NVIRONENTAL THREATS AND SOLID WASTE MA		9	0	0	9
	io amplification, acid rain, greenhouse effect and global warming					
	ement – origin, effects and management of earthquake and floo					
	gin, effects – treatment methods – composting, sanitary land	filling – destructive	method	1S - 11	nciner	ation,
	uce, reuse and recycling).		9	0	0	9
	OCIAL ISSUES AND ENVIRONMENTAL ETHICS		-	•	•	-
	le to sustainable development, objectives, and ways of achieving vater conservation and management, rainwater harvesting – w					
	numan population, exponential and logistic growth, population					
	ulation control methods – HIV and AIDS.	expression, populat	on pon	cy, 1a	unny	wenal
programme pop						
		10	tal (45)	(.) = 4	5 Pe	riods

Text Bo	ooks:
1.	Elements of Environmental science and Engineering, P.Meenakshi, Prenitce — Hall of India, New Delhi, 2009.
2.	A Textbook of Environmental Chemistry and Pollution Control: (With Energy, Ecology, Ethics and Society), Revise Edition, Dr. S.S. Dara, D.D. Mishra Published by S. Chand & Company Ltd, 20 14.
Reference	ee Books:
1.	Introduction to Environmental Engineering and Science, Gilbert M. Masters; Wendell P. Ela Publisher: Prentice-Hall India, 3rd Edition, 2008.
2.	Environmental Science, F;ldren D. Enger, Bredley F.Smith, WCD McGraw Hill 14"Edition 2015.
E-Refe	rence
1	www.onlinecourses.nptel.ac.in/
2	www.ePathshala.nic.in

	Course Outcomes: I Upon completion of this course, the students will be able to: I						
CO1	:	Play an important role in conservation of natural resources for future generation.	L5				
CO2	:	Paraphrase the importance of ecosystem and biodiversity.	L2				
CO3	:	Analyze the impact of pollution and hazardous waste in a global and social context.	L4				
CO4	:	Understand contemporary issues that result in environmental degradation that would attempt to provide solutions to overcome the problems.	L2				
CO5	:	Consider the issues of environment and human population in their professional undertakings.	L3				

					COUR	SE AR	TICU	LATIC	ON MA	TRIX					
COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	0	0	1	3	2	0	0	0	1	2	0	1
CO2	3	3	2	0	0	1	3	2	0	0	0	1	2	0	1
CO3	3	3	2	0	0	1	3	2	0	0	0	1	2	0	1
CO4	3	3	2	0	0	1	3	2	0	0	0	1	2	0	1
CO5	3	3	2	0	0	1	3	2	0	0	0	1	2	0	1
Avg	3	3	2	0	0	1	3	2	0	0	0	1	2	0	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

23PT	ГЕС103	SEMICONDUCTOR DEVICES AN ELECTRONICS LABORAT		SEMESTER I			
			Category	PC	Cre	1.5	
				L	Т	Р	TH
			Hours/Week	0	0	3	3
Course	Objectives:						
1 Т	To provide an i	nsight into the characteristics of electron devices.					
2 Т	Fo design and a	analyze various amplifier circuits.					
3 Т	To study the op	eration of combinational and sequential logic circu	uits.				
EXPER	IMENTS						
1.	Characteris	stics of PN Junction Diode and Zener Diode					
2.	Design of (Clippers and Clampers.					
3.	Measureme	ent of ripple factor of Rectifiers with and without c	apacitor filter.				
4.	Characteris	stics of CE/CB/CC configurations of Bipolar transis	stors.				
5.	Characteris	stics of MOSFET.					
6.	Frequency capacitor.	response of BJT Amplifier using voltage divider b	ias (self-bias) with an	nd witho	ut emi	tter byp	ass
7.	Frequency	response of Multi stage amplifiers.					
8.	Determinat	ion of efficiency of Class A power amplifier.					
9.	Design and	Analysis of Series feedback amplifiers.					
10.	Design and	Analysis of Shunt feedback amplifiers.					
11.	Study of L	ogic Gates, Study of Flip-Flops using Logic Gates					
12.	Design and	l implementation of Multiplexer and De-multiplexe	er using logic gates.				
13.	Design and	l implementation of encoder and decoder using log	ic gates				
14.	Constructio	on and verification of 4bit ripple counter and Mod-	10/Mod-12 Ripple co	ounters			
15.	Implement	ation of SISO, SIPO, PISO and PIPO shift registers	s using Flip- flops				
	•			Total(4	5P) =	45 Per	iods

Refe	rences:
1.	A.S. Sedra and K.C. Smith, Microelectronic Circuits, 7 th edition, Oxford University Press, 2017.
2.	S. Salivahanan and N. Suresh kumar, "Electronic Devices and Circuits", Fourth edition, McGraw Hill Education,
	2017.
Refe	rence Books:
1.	Robert L. Boylestad, Louis Nashelsky and Franz Monssen, "Electronic Devices and Circuit Theory Lab Manual",
	Pearson Prentice Hall, 2012.
2.	Ben G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2015.
3.	S.Poorna Chandra, B.Sasikala, "Electronics Laboratory Primer", S.Chand& Company Ltd, 2010.
4.	L.K. Maheshwari, M.M.S. Anand, "Laboratory Manual for Introductory Electronics Experiments", New age
	International (P) Limited Publishers, 2010.
E-Re	ferences:
1.	https://nptel.ac.in/courses/108108112
2.	https://nptel.ac.in/courses/108101091
3.	http://www.electronics-tutorials.ws/

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Analyze the characteristics of diodes and transistors.	L4					
CO2	Design electronic circuits such as rectifiers and analyse their performance.	L3					
CO3	Analyze the frequency response of small signal, power and feedback amplifiers using discrete components.	L4					
CO4	Design and Construct combinational and sequential logic circuits.	L3					
CO5	Implement electronic circuits and test their performance.	L5					

					COU	RSE AI	RTICU	LATI	ON MA	TRIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO3
CO1	2	3	2	2	2								1		1
CO2	3	3	2	2	2								2	1	1
CO3	3	3	2	2	2								2	1	2
CO4	3	3	3	2	2								1		1
CO5	3	3	3	2	2								2	2	2
Avg	2	3	2	2	2								1		1
			3/2/1=	=indica	tes stre	ength o	f corre	lation	(3-Hig	h,2-Me	dium,1	-Low)			

23PTMA201	MATHEMATICS – II		SEMESTER II				
PREREQUIST	TES	CATEGORY	BS	Cre	edit	3	
			L	Т	Р	TH	
Basic 12 th level ODE.	knowledge of Differential Calculus, Integral Calculus and	Hours/Week	3	0	0	3	
Course Object	ives:		•				
2.To unders3.To obtain transform4.To familia	the concept of Fourier series. tand the application of Fourier analysis in solving boundary van the knowledge of solving second order ODE using Laplace using convolution theorem. trize with Fourier, transform of a function and its sine and cosin e skills to form difference equations and find its solution by using the solution by using the solut	transform technique transforms.		l inve	orse L	aplac	
UNIT I FC	URIER SERIES		9	0	0	9	
– Parseval's Ider	tions – General Fourier series – Odd and even functions – Half tity.	range sine series –	- Hall ra	inge c	cosine	serie	
UNIT II BO	UNDARY VALUE PROBLEMS		9	0	0	9	
excluded) – Four	heat equation – Steady state solution of two-dimensional heat ier series solutions in Cartesian coordinates.		te plates		ulated	edge	
excluded) – Four UNIT III LA Laplace Transfo	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur	equation for infinit	te plates 9 operties	0 0 0 1 1	ulated 0 ransfo	edge 9 orm o	
excluded) – Four UNIT III LA Laplace Transfo derivatives and i	ier series solutions in Cartesian coordinates. PLACE TRANSFORM	equation for infinit	te plates 9 operties	0 0 0 1 1	ulated 0 ransfo	edge 9 orm o	
excluded) – Four UNIT III LA Laplace Transfo derivatives and i statement and ap	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period plication of convolution theorem.	equation for infinit	e plates 9 operties verse La	s (Insu 0 s – Tr place	ulated 0 ransfc Trans	edge 9 orm o sform	
excluded) – Four UNIT III LA Laplace Transfo derivatives and i statement and ap UNIT IV FO	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period	equation for infinit actions – Basic Productions – Inv	e plates 9 operties verse La 9	s (Insu 0 5 - Ti place 0	ulated 0 ransfo Trans	edge 9 orm o sform	
excluded) – Four UNIT III LA Laplace Transfo derivatives and i statement and ap UNIT IV FC Statement of For simple functions	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period plication of convolution theorem. URIER TRANSFORM rier integral theorem – Fourier transforms pair – Sine and Co – Parseval's Identity.	equation for infinit actions – Basic Productions – Inv	9 operties verse La 9 operties	(Insu 0 - Tr place 0 - Tr	0 ransfc Trans 0 ansfo	edge 9 orm o sform 9 rms o	
excluded) – FourUNIT IIILALaplaceTransforderivativesand isstatementand apUNIT IVFCStatement of Forsimple functionsUNIT VZ -Z-transformof statement	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period plication of convolution theorem. URIER TRANSFORM Irier integral theorem – Fourier transforms pair – Sine and Co	equation for infinit ections – Basic Pro dic Functions – Inv sine transforms Pro	9 operties verse La 9 operties 9	6 (Insu 0 - Tr place 0 - Tr 0	0 ransfo Trans 0 ansfo	edge 9 orm o sform 9 rms o 9	
excluded) – FourUNIT IIILALaplaceTransforderivativesand isstatementand apUNIT IVFCStatement of Forsimple functionsUNIT VZ -Z-transformof statement	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period plication of convolution theorem. URIER TRANSFORM urier integral theorem – Fourier transforms pair – Sine and Co – Parseval's Identity. TRANSFORM AND DIFFERENCE EQUATIONS imple functions and properties – Inverse Z – transform –init	equation for infinit actions – Basic Pro dic Functions – Inv sine transforms Pro ial and final value	9 operties verse La 9 operties 9	s (Insu 0 - Tr place 0 - Tr 0 cms- 0	0 ransfo Trans 0 ansfo Convo	edge 9 orm o sform 9 rms o 9 9 blutio	
excluded) – Four UNIT III LA Laplace Transforderivatives and i statement and ap UNIT IV FC Statement of Forsimple functions UNIT V Z - Z-transform of statement - Solution	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period plication of convolution theorem. URIER TRANSFORM urier integral theorem – Fourier transforms pair – Sine and Co – Parseval's Identity. TRANSFORM AND DIFFERENCE EQUATIONS imple functions and properties – Inverse Z – transform –init	equation for infinit actions – Basic Pro dic Functions – Inv sine transforms Pro ial and final value	9 operties verse La operties 9 operties 9 e theore	s (Insu 0 - Tr place 0 - Tr 0 cms- 0	0 ransfo Trans 0 ansfo Convo	edge 9 orm o sform 9 rms o 9 9 blutio	
excluded) – FourUNIT IIILALaplaceTransforderivativesand isstatementand apUNIT IVFCStatement of Forsimple functionsUNIT VZ -Z-transformof statement	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period plication of convolution theorem. URIER TRANSFORM urier integral theorem – Fourier transforms pair – Sine and Co – Parseval's Identity. TRANSFORM AND DIFFERENCE EQUATIONS imple functions and properties – Inverse Z – transform –init	equation for infinit actions – Basic Pro dic Functions – Inv sine transforms Pro ial and final value	9 operties verse La operties 9 operties 9 e theore	s (Insu 0 - Tr place 0 - Tr 0 cms- 0	0 ransfo Trans 0 ansfo Convo	edge 9 orm o sform 9 rms o 9 9 blutio	
excluded) – Four UNIT III LA Laplace Transforderivatives and i statement and ap UNIT IV FC Statement of For- simple functions UNIT V Z - Z-transform of state theorem - Solution Text Books: Veerara	ier series solutions in Cartesian coordinates. PLACE TRANSFORM rm- Conditions for existence – Transform of elementary fur ntegrals – Initial and Final value theorems- Transform of period plication of convolution theorem. URIER TRANSFORM urier integral theorem – Fourier transforms pair – Sine and Co – Parseval's Identity. TRANSFORM AND DIFFERENCE EQUATIONS imple functions and properties – Inverse Z – transform –init	equation for infinit ections – Basic Pro- dic Functions – Inv sine transforms Pro- ial and final value Tot	9 operties verse La 9 operties 9 e theore al (45]	s (Insu 0 - Ti place $0- Tr0- TrL) = 0$	0 ransfo Transfo ansfo Convo 45 Pe	edg 9 orm o sform 9 rms o 9 Dlutic	

Reference Books:

1.	Grewal, B.S., "Higher Engineering Mathematics", 43 rd Edition, Khanna Publishers, Delhi, 2014.						
2	Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth Edition, McGraw-Hill, Inc., New						
2.	York, 1995.						
2	Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematicians",						
5.	MacMillan, New York, 1988.						
4	Narayanan, S., Manicavachagom Pillai, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering						
4.	Students", Volumes II and III, S. Viswanathan (Printers and Publishers) Pvt. Ltd. Chennai, 2002.						

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1 : Acquire the knowledge about Fourier series.						
CO2	:	Appreciate the physical significance of Fourier series techniques in solving one- and two- dimensional heat flow problems and one-dimensional wave equations.	L3			
CO3	:	Apply the knowledge of Laplace transforms method to solve second order differential equations.	L3			
CO4	:	Apply the knowledge of Fourier transform in engineering problems.	L3			
CO5	:	Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.	L3			

	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
			3/2/1	-indica	tes strei	ngth of	correlat	ion (3-	High, 2	-Mediu	m, 1- Lo	ow)			

2	SEM	ESTE	RII									
				Category	PC	Cre	edit	3				
					L	Т	P	T	H			
				Hours/Week	3	0	0	3				
Cour	Course Objectives:											
1			nensive exposure to all types of discrete amplifiers and os	scillators.To develop	p astrong	basis f	for line	ear a	nd			
		tegrated of										
	2 To understand the various linear and non-linear applications of op-amp.											
-	3 To understand the operation of the D/A &A/D converter types and its applications.											
Unit			ATORS			9	0	0	9			
			ck diagram - Gain with feedback - Barkhausen Crite									
		-	-RC phase shift Oscillator - Wien bridge Oscillator and	Twin-TOscillators	- Analys	is of L	LC Osc	cillat	ors:			
-			oscillators.									
Unit			AMPLIFIERS AND MULTIVIBRATORS			9	0	0	9			
			nd synchronously tuned amplifiers - Class C tuned ampli									
			tor coupled and Emitter coupled Astable Multivibrator –	Monostable Multiv	ibrator –	Bistabl	le Mul	tivib	rator			
			Blocking Oscillators using Emitter timing. JTT FOR LINEARIC'S			9	•	•	9			
Unit					C		$\frac{0}{1}$	0	-			
		-	blogy and its variants - Differential amplifier: Basic stru	1 1	-							
	U		on Mode gain, CMRR - OP-AMP design -Design of D	offerential amplifie	r - Desig	n of g	ain sta	iges	and			
-		<u> </u>	ion - DC and AC characteristics of OP-AM - slew rate.				0	•	-			
Unit			CATIONS OF OPERATIONAL AMPLIFIER	1:C D : :		9	0	0	9			
			g amplifiers - Integrator and Differentiator - Summing a ve filters: Low pass, high pass, band pass and band stop									
Multivi		ons - Acu	ve mers. Low pass, mgn pass, band pass and band stop	Inters - Sine wave	oscillato	s - cc	mpara	101 -				
Unit		DATA (CONVERTERS AND SPECIAL FUNCTIONICs	1		9	0	0	9			
			ers (DAC): Weighted resistor - R-2R ladder - Analog		ters (AD				-			
-		-	imation - Flash type - IC 555 timer and its applications - I			<i>.)</i> . om	510 510	pe c	ruai			
stope -	Successiv	C Appilox	mation - rhash type - re 555 timer and its applications - r	C725 Voltage legul	Total(45L)-	45 Po	rind	s			
L					Total(1100	10			

Text B	Books:					
1.	B.VisvesvaraRao,K.RajaRajeswari,P.ChalamRajuPantulu,K.BhaskaraRamaMurthy,"ElectronicCircu					
	its-II",PearsonEducation,2012					
2.	D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits" New Age International Pvt.Ltd., 2011.					
Refere	nce Books:					
1.	Millman J. and TaubH., "Pulse Digital and Switchingwaveform", 3 rd Edition, McGraw-HillInternational, 2011.					
2.	Sedera & Smith, "Micro ElectronicCircuits",4thEdition, Oxford University Press, Chennai.					
3.	Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall ofIndia, 1996					
4.	K.R.Botkar, 'Integrated Circuits', 10thedition, KhannaPublishers, 2010.					
E-Refe	erences:					
1.	http://nptel.ac.in/courses/117105080/40					
2.	http://freevideolectures.com/Course/2915/Linear-Integrated-Circuits					
3.	http://nptel.ac.in/courses/117108038/1					

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyze different types of amplifier, oscillator and multivibrator circuits.	L4
CO2	Construct and analyze tuned amplifiers and multivibrators.	L4
CO3	Develop competence in linear and non linear Op amp circuit analysis.	L3
CO4	Understand the concepts of waveform generation and introduce somespecial function ICs	L2

CO5	Differentiate A/D and D/A converter ,understand their types and analyzetheir applications.	L1
-----	--	----

					COU	JRSE A	RTICU	LATIC	N MAT	FRIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	2		2		2					2	1	
CO2	2	3	3	2		2	2	1					2		1
CO3	2	3	3	2									1	2	
CO4	1			2			3						1		
CO5	2	3	3	2		2		2							2
Avg	1.8	2.4	2.4	2		1.2	1	1					1.2	0.6	0.6
3/2/1=	indicate	s streng	th of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTEC202	ELECTROMAGNETIC F	IELDS	SEM	SEMESTER II				
		Category	PC	Cre	edit	3	;	
			L	Т	Р]	ГH	
		Hours/Week	3	0	0	3	3	
Course Objectives:			1			I		
	owledge of static electric and magnetic field princ	ples and related laws go	verning T	hem				
2 To understand the Maxwell's equation	e coupling between electric and magnetic fields th ons	rough Faraday's law, dis	placemen	t currer	nt and			
3 To derive wave e	equations for Electromagnetic wave propagation in	free space and media					_	
Unit I STATIC	ELECTRIC FIELDS			9	0	0		
Coulomb's Law- Definit	ion of Electric Field Intensity - Electric Field d	ue to discrete charges,	continuou	is char	ge dist	ribut	ior	
charges distributed unifor	mly on an infinite and finite line – Electric Field	on the axis of a uniforml	y charged	l circula	ar disc.	Eleo	ctri	
Scalar Potential – Relation	nship between potential and electric field - Potent	al due to infinite uniform	nly charg	ed line	- Elec	tric I	Flu	
Density – Gauss Law								
					•	0		
Unit II STATIC	MAGNETIC FIELD			9	0	U		
The Biot- Savart Law – Ma	agnetic Field intensity due to a finite and infinite w			field in	tensity	on t	he	
The Biot- Savart Law – Ma axis of a circular and rec	agnetic Field intensity due to a finite and infinite wat $t_{\rm ctangular}$ loop carrying a current I – Ampere's	circuital law and simple	e applicat	field in tions. N	tensity Magnet	on t ic fl	he ux	
The Biot- Savart Law – Ma axis of a circular and rec density – The Lorentz for	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current $I - Ampere's$ rce equation for a moving charge and application	circuital law and simple	e applicat	field in tions. N	tensity Magnet	on t ic fl	he ux	
The Biot- Savart Law – Ma axis of a circular and rec density – The Lorentz for magnetic field – Magnetic	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current $I - Ampere's$ rce equation for a moving charge and application cover vector Potential.	circuital law and simple ns – Force on a wire ca	e applicat	field in tions. N current	tensity Magnet I place	on t ic fl ed ir	he ux 1 a	
The Biot- Savart Law – Maaxis of a circular and reddensity – The Lorentz formagnetic field – MagneticUnit IIIELECT	agnetic Field intensity due to a finite and infinite was ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT	circuital law and simple is – Force on a wire ca E RIALS	e applicat rrying a c	field in tions. N current 9	tensity Magnet I place	on t ic fl ed in	he ux 1 a	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric mate	agnetic Field intensity due to a finite and infinite was ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application c Vector Potential. RIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of	circuital law and simple ns – Force on awire ca ERIALS f various geometries– H	e applicat rrying a d Electrostat	field in tions. M current 9 tic ener	tensity Magnet I place	on t ic fl ed in 0 d end	he ux 1 a erg	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary cond	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm'	circuital law and simple as – Force on a wire ca ERIALS f various geometries– F s law – continuity equa	e applicat rrying a d Electrostat tion for	field in tions. N current 9 tic ener current	tensity Magnet I place 0 rgy and c. Defin	on t ic fl ed in 0 d ene	he ux 1 a erg	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance of	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's ree equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind	circuital law and simple as – Force on a wire ca ERIALS f various geometries– F s law – continuity equa	e applicat rrying a d Electrostat tion for	field in tions. N current 9 tic ener current	tensity Magnet I place 0 rgy and c. Defin	on t ic fl ed in 0 d ene	he ux 1 a erg	
The Biot- Savart Law – Maaxis of a circular and reddensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance offields – magnetic boundary	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application c Vector Potential. RIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance o ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions.	circuital law and simple ns – Force on a wire ca ERIALS f various geometries– H s law – continuity equa uctance – simple examp	e applicat rrying a d Electrostat tion for	field in tions. N current 9 tic ener current gy dens	tensity Magnet I place I place rgy and . Defin ity in 1	on t ic fl ed ir 0 d ene nition magr	ux n a erg n c neti	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance offields – magnetic boundaryUnit IVTIME V	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU	circuital law and simple as – Force on a wire ca ERIALS f various geometries– F s law – continuity equa actance – simple examp ATIONS	e applicat rrying a c Electrostat tion for les. Energ	field in tions. M current tic ener current gy dens 9	tensity Magnet I place rgy and Definity in 1	on t ic fl ed in 0 d ene nition magr 0	he ux n a erg n c neti	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance offields – magnetic boundarUnit IVTIME VFaraday's law – Maxwee	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's ree equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F	circuital law and simple as – Force on a wire ca ERIALS f various geometries– H s law – continuity equa uctance – simple examp ATIONS faraday's Law – Equa	e applicat rrying a c Electrostat ition for les. Energ	field in tions. M current tic ener current gy dens 9 essed	tensity Magnet I place rgy and Definity in 1 0 in poin	on t ic fl ed ir 0 d end nition magr 0 nt fo	he ux n a erg n c neti	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance offields – magnetic boundarUnit IVTIME VFaraday's law – MaxweDisplacement current – A	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's ree equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F Ampere's circuital law in integral form – Modif	circuital law and simple is – Force on a wire ca ERIALS f various geometries– H s law – continuity equa uctance – simple examp ATIONS faraday's Law – Equa ed form of Ampere's of	e applicat rrying a c Electrostat ition for les. Energ tion expr zircuital 1	field in tions. N current 9 tic ener current gy dens 9 ressed aw as 1	tensity Magnet I place rgy and . Defin ity in 1 0 in poi: Maxwee	on t ic fl ed ir d end nition magr 0 nt fo	he ux n a erg n c neti	
The Biot- Savart Law – Maaxis of a circular and red density – The Lorentz for magnetic field – MagneticUnit IIIELECTNature of dielectric mate density – Boundary cond Inductance – Inductance of fields – magnetic boundarUnit IVTIME VAFaraday's law – Maxwer Displacement current – A equation in integral form	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application vector Potential. RIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F Ampere's circuital law in integral form – Modif – Equation expressed in point form. Maxwell's	circuital law and simple is – Force on a wire ca ERIALS f various geometries– F s law – continuity equa actance – simple examp ATIONS faraday's Law – Equa ed form of Ampere's of four equations in integ	e applicat rrying a c Electrostat ition for les. Energ tion expr zircuital 1	field in tions. N current 9 tic ener current gy dens 9 ressed aw as 1	tensity Magnet I place rgy and . Defin ity in 1 0 in poi: Maxwee	on t ic fl ed ir d end nition magr 0 nt fo	ux a a erg n o net	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance offields – magnetic boundarUnit IVTIME VFaraday's law – MaxweDisplacement current – Aequation in integral formPoynting Vector and the form	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F Ampere's circuital law in integral form. Maxwell's low of power – Instantaneous Average and Compl	circuital law and simple is – Force on a wire ca ERIALS f various geometries– F s law – continuity equa actance – simple examp ATIONS faraday's Law – Equa ed form of Ampere's of four equations in integ	e applicat rrying a c Electrostat ition for les. Energ tion expr zircuital 1	field in tions. M current tic ener current gy dens essed aw as l and dif	tensity Magnet I place rgy and . Defin ity in 1 0 in poi: Maxwee	on t ic fl ed ir d end nition magr 0 nt fo	he ux a a erg n c netionn fir	
The Biot- Savart Law – Maaxis of a circular and recdensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance offields – magnetic boundarUnit IVTIME VFaraday's law – MaxweDisplacement current – Aequation in integral formPoynting Vector and the form	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application vector Potential. RIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F Ampere's circuital law in integral form – Modif – Equation expressed in point form. Maxwell's	circuital law and simple is – Force on a wire ca ERIALS f various geometries– F s law – continuity equa actance – simple examp ATIONS faraday's Law – Equa ed form of Ampere's of four equations in integ	e applicat rrying a c Electrostat ition for les. Energ tion expr zircuital 1	field in tions. N current 9 tic ener current gy dens 9 ressed aw as 1	tensity Magnet I place rgy and . Defin ity in 1 0 in poi: Maxwee	on t ic fl ed ir d end nition magr 0 nt fo	he ux n a erg n c neti	
The Biot- Savart Law – Ma axis of a circular and red density – The Lorentz for magnetic field – MagneticUnit IIIELECTNature of dielectric mate density – Boundary cond Inductance – Inductance of fields – magnetic boundarUnit IVTIME VFaraday's law – Maxwer Displacement current – A equation in integral form Poynting Vector and the f Unit VUnit VELECT	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's rce equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F Ampere's circuital law in integral form. Maxwell's low of power – Instantaneous Average and Compl	circuital law and simple is – Force on a wire ca ERIALS f various geometries– H s law – continuity equa uctance – simple examp ATIONS faraday's Law – Equa ed form of Ampere's of four equations in integ ex Poynting Vector.	e applicat rrying a c Electrostat ition for les. Energ tion expr zircuital l ral form	field in field in current gy dens gy d	tensity Magnet I place rgy and . Definity in 1 0 in poin Maxwe fferenti	on t ic flied ic flied in 0 d inition magr 0 nt fc cell's ial fc 0	he ux a a erg n c netionn fir	
The Biot- Savart Law – Maaxis of a circular and reddensity – The Lorentz formagnetic field – MagneticUnit IIIELECTNature of dielectric matedensity – Boundary condInductance – Inductance offields – magnetic boundaryUnit IVTIME VFaraday's law – MaxweDisplacement current – Aequation in integral formPoynting Vector and the fUnit VELECTDerivation of wave equal	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's ree equation for a moving charge and application c Vector Potential. 'RIC AND MAGNETIC FIELDS IN MAT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F Ampere's circuital law in integral form – Modif – Equation expressed in point form. Maxwell's low of power – Instantaneous Average and Compl ROMAGNETIC WAVES	circuital law and simple is – Force on a wire ca ERIALS f various geometries– H s law – continuity equa uctance – simple examp ATIONS Garaday's Law – Equa ded form of Ampere's of four equations in integ ex Poynting Vector.	e applicat rrying a c Electrostat tion for les. Energ tion expr tion expr tircuital l ral form a homog	field in field in current gurrent gy dens gy dens gessed aw as and dif genous	tensity Magnet I place rgy and Definity in 1 0 in poin Maxwe fferenti 0 materi	on t ic fl ic fl id end nition magr 0 0 0 ial for 0 al-W	he ux n a erg n c netionn fir	
The Biot- Savart Law – Ma axis of a circular and rec density – The Lorentz for magnetic field – Magnetic Unit IIIUnit IIIELECTNature of dielectric mate: density – Boundary cond Inductance – Inductance of fields – magnetic boundarUnit IVTIME VFaraday's law – Maxwer Displacement current – A equation in integral form Poynting Vector and the f Derivation of wave equ equation for a conducting	agnetic Field intensity due to a finite and infinite we ctangular loop carrying a current I – Ampere's ree equation for a moving charge and application c Vector Potential. TRIC AND MAGNETIC FIELDS IN MATT rials- Definition of Capacitance – Capacitance of ditions for electric fields – point form of ohm' of loops and solenoids – Definition of mutual ind y conditions. ARYING FIELDS AND MAXWELL EQU ell's Second Equation in integral form from F Ampere's circuital law in integral form. Maxwell's low of power – Instantaneous Average and Compl ROMAGNETIC WAVES lation – uniform plane waves –plane waves	circuital law and simple is – Force on a wire ca ERIALS f various geometries– F s law – continuity equa actance – simple examp ATIONS faraday's Law – Equa ed form of Ampere's of four equations in integ ex Poynting Vector.	e applicat rrying a c Electrostat tion for les. Energ tion expr circuital 1 ral form a homog nductors	field in field in tions. M current tic ener current gy dens gy dens genous genous – Skin	tensity Magnet I place I place rgy and . Defin ity in 1 0 in poi Maxwe fferenti 0 materia	on t ic fl ic fl id end nition magr 0 0 0 ial for 0 al-W	he ux n a erg n c neti	

Text	Books:					
1.	William H.Hayt& John Buck : "Engineering Electromagnetics" Tata McGraw-Hill 2006.					
2.	Joseph Edminister, Schaum's Outline of Electromagnetics, Tata McGraw Hill, 2013					
Refe	rence Books:					
1.	D.K. Cheng, "Field and Wave Electro Magnetics", Pearson (India), 2nd Edition, 1989.					
2.	Ramo, Whinnery and Van Duzer: "Fields and Waves in Communications Electronics" 3rd edition					
	John Wiley 2003					
3.	Mathew.N.O.Sadiku, "Elements of Electromagnetics", Oxford University Press, 6th Edition, 2015.					
4.	K.A. Gangadar and P.M. Ramanathan, "Field Theory" 15th Ed., Khanna Publications 2002.					
E-Re	ferences:					
1.	https://archive.nptel.ac.in/courses/108/106/108106073/					
2.	https://nptel.ac.in/courses/115101005					
3.	https://onlinecourses.nptel.ac.in/noc21_ee83/					

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Basic knowledge of static electric field principles and related laws	L2
CO2	Basic knowledge of static magnetic field principles and related laws	L2
CO3	Understand the EM wave propagation in a medium and throughboundaries	L3
CO4	Understand Maxwells equations and apply to solve electromagneticproblem	L5
CO5	Understand principles of propagation of uniform plane waves.	L4

					COU	RSE A	RTICU	LATI	ON MA	TRIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	1	1	2	2									1	1	1
CO2	1	1	2	2									1	1	1
CO3	2	2	2	2							2		1	2	1
CO4	2	3	3	2							2		2	2	2
CO5	2	2	2	2							2		2	2	2
Avg	1.6	1.8	2.2	2							1.2		1.4	1.6	1.4
	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

2	23PTEC203	SIGNALS AND SYSTEM	S	SEM	ESTE		
			Category	PC	Cre	dit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cour	se Objectives						
1	To introduce	basics of signals and system.					
2	To understan	and perform Fourier analysis on continuous and discre	te time signal and sa	mpling th	leorem		
3	To introduce	Laplace and Z transform in analysing signals and syster	n				
Unit	I INTRO	DUCTION TO SIGNALS AND SYSTEM			9	0	0 9
Classif	fication of Signa	s: Even and Odd Signal - Energy and power signals - C	Continuous time (CT) andDisc	rete tin	ne (DT	') signal
		crete amplitude signal - System properties and repres					
		v Linear Time-Invariant(LTI) systems: Impulse response	onse and step respor	ise Convo	olution	– Cor	relation
-		hrough differential equations and difference equations.			_		
Unit		IER ANALYSIS OF CONTINUOUS TIME SIG			9	-	0 9
		ier Series (CTFS) - Properties of CTFS - Continuous				– CTF	T of C
		rties of CTFT - Frequency response of systems character				0	
Unit		ACE TRANSFORM AND CONTINUOUS-TIN			9	v	0 9
		place Transforms of some Common Signals - Region o orm - System Function - The Unilateral Laplace Transfo					
Unit		LING THEOREM AND Z-TRANSFORMS	niii - Solving uniere	innai equa	9		0 9
		inuous time signals by its sample - Sampling theorem	m Nuquist note of	Complin	-		
-		ampling techniques - Data Reconstruction - Sampling	• 1		_		
-	0		1 0				-
		d Fourier transform - Z-transform for discrete timesign	als - Region of Conv	/ergence -	- Prope	erties o	IRUC
-		Form - Poles and Zeros - Inverse Z-transform .	TO		0	0	
Unit		IER ANALYSIS OF DISCRETE TIME SIGNA			9		0 9
		Series (DTFS) - Properties of DTFS – Discrete T				-	
		ponse of Discrete Time LTI Systems - Discrete Fourier	Fransform (DFT) - F	Realization	n struct	ures –	Direct
form I	- Direct form –	I - Cascade and parallel forms.		-			
				Total(4	5L)=4	5 Per	iods

Text	Books:						
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.						
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.						
Reference Books:							
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010						
2.	Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons (Asia) Private Limited, 1998.						
3.	Hsu.H.P, RakeshRanjan "Signals and Systems", 2nd Edition Schaum's Outlines, Tata McGraw Hill, 2010.						
4.	Krishnaveni.V, Rajeswari.A, "Signals and Systems", 1st Edition, Wiley India Pvt Ltd, 2012.						
E-Re	ferences:						
1.	https://www.youtube.com/watch?v=4GewDCPU5SQ&list=PLy3nfyfK6Yw6bQ-QXJdFrhzd37mgZzk0r						
2.	https://www.edx.org/course/signals-systems-part-1-iitbombayx-ee210-1x-2						
3.	http://nptel.ac.in/courses/117104074/						

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped						
CO1	Understand and Analyse different types of signals and systems. L2, L4							
CO2	Represent continuous and discrete systems in time and frequency domainusing different transforms.	L2						
CO3	Able to perform Fourier analysis of signals.	L4						
CO4	Sample and reconstruct a signal.	L2						

					COU	RSE A	RTICU	LATIC	ON MA	TRIX					
COs/	DO1	PO2	DO2		DO5	DOG	DO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
POs	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9	PO9	0	1	2	1	2	3						
CO1	3	2	3	3	3	-							2	2	2
CO2	3	3	2	3	3	2							2	2	2
CO3	3	2	2	3	3	2							2	2	2
CO4	3	2	1	3	3	2							2	2	2
CO5	3	2	2	3	3	-							2	2	2
Avg	3	2.2	1.8	3	3	1.2							2	2	2
3/2/1=	/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

,	23PTEC204	ANALOG CIRCUITS LABORATORY S	SEMESTER II				
		Category P	С	Cre	dit	1.5	
		I	[]	Т	Р	TH	
		Hours/Week)	0	3	3	
Cou	rse Objectives:						
1	To understand the ana	lysis and design of LC and RC oscillators, amplifiers and multi vibrators.					
2	To apply operational a	mplifiers in Linear and Non linear Applications.					
3	To use simulation tool	s for circuit design.					
EXP	PERIMENTS:						
1	Design of RC Phase sh	ift oscillator and Wein Bridge oscillator.					
2	Design of Hartley and	Colpitts oscillator.					
3	Design of Tuned Class	C Amplifier.					
4	Design of Astable, Me	ponostable and Bistable multi vibrators using BJT.					
5	Simulation of As table	e, Mono stable and Bistable multi vibrators.					
6	Design of basic Circui	ts using Op-amp 741.					
7	Active Low pass, High	n pass and Band pass filter.					
8	As table, Mono stable	multi vibrators using Op-Amp.					
9	Phase shift and Wien b	pridge oscillator using op-amp.					
10	A stable and Mono sta	ble multi vibrators using NE555 Timer.					
		Tot	al(4	15P) =	45 Pe	eriod	

Refere	ences:
1.	Analog Electronic circuits Laboratory Manual.
2.	B.Sasikala,S.PoornachandraRao,"Hand book of experiments in Electronics and Communication Engineering", Vikas
	Publishing,2007.
E-Ref	erences:
1.	http://www.srmuniv.ac.in/sites/default/files/2017/15EI205L-manual-full.pdf
2.	http://www.gopalancolleges.com/gcem/course-material/ece/manuals/sem-lll/analog-electronics-laboratory-manual-10ESL37.pdf
3.	https://www.slideshare.net/vampec/ec-ii-lab-manual

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Design oscillators, multi vibrators and power amplifiers for the variety of engineering applications.	L4						
CO2	Design Filters Using op amp and perform experiment on frequencyresponse.	L4						
CO3	Design and simulate multi vibrators using Simulation Tool.	L3						
CO4	Design Oscillators and multi vibrators using operational amplifiers	L3						
CO5	Understand the concept of high voltage regulators	L2						

					COU	RSE A	RTICU	LATIC	ON MA	TRIX					
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	FOI	FO2	FUS	F04	FUS	FU0	FO/	100 1	109	0	1	2	1	2	F305
CO1	2	3	3	3							1	1	2	1	
CO2	2	3	3	3							1	1		1	
CO3	2	2			3										2
CO4	2	2		3	3								2		
CO5	2		2	2	3						1	1		2	
Avg	2	2	1.6	2.2	1.8						0.6	0.6	0.8	0.8	0.4
	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23PTEC	301	ANALOG COMMUNICATION		SEI	EMESTER III						
			Category	PC	Cr	edit		3			
				L	Т	Р	Т	H			
			Hours/Week	3	0	0		3			
Course o	bjecti	ves:			1 1						
1. Familiarize the concepts of various analog modulation and demodulation techniques											
2.	To un	derstand the sources of noise and its effects in Communication syst	ems								
3.	To stu	dy the limits set by Information Theory.									
Unit I	Α	MPLITUDE MODULATION			9	0	0	9			
Introductio	on to co	ommunication systems - Need for modulation - Generation and der	nodulation of AM,	DSB-S	C, SS	B-SC	-				
0		tering of sidebands - Comparison of amplitude modulation systems	- Frequency transl	ation -	Frequ	ency					
		xing - AM Superhetrodyne receiver.						-			
Unit II		ANGLE MODULATION			9	0	0	9			
		on: Phase and Frequency modulation - Narrowband and Wideband									
		tion of FM signal – Direct FM – Indirect FM - Demodulation of FI	M signals - FM ster	eo mult	iplexi	ng -					
		r model - FM Superhetrodyne receiver.			-			T -			
Unit III		NOISE PERFORMANCE OF DSB, SSB RECEIVERS			9	0	0	9			
		loise - Noise figure - Noise temperature - Noise Equivalent Bandw									
		Narrowband Noise in terms of In-phase and Quadrature component	s - Receiver Model	l - Nois	e in D	SB-SO	2				
		1 SSB Receiver.			•	•					
Unit IV		NOISE PERFORMANCE OF AM AND FM RECEIVER			9	0	0	9			
		vers : Threshold effect - Noise in FM receivers: Capture effect - FM		FM thr	esholo	1					
		phasis and De-emphasis in FM – Comparing the performance of A	M and FM.		0	Δ	•	•			
Unit V		NFORMATION THEORY	1.4. 1.5.4		9	0	<u>0</u>				
		ormation and entropy - Rate of information - Joint Entropy and C									
		less channel - Channel Capacity - Shannon's Theorem - Continuo de-off - Huffman and Shannon - Fano codes.	us Channel - Shanr	1011 - Ha	aney	rneoi	em	-			
	11 110	ac-on - mumman and Shannon - Pano Coues.		Total(4	15L)-	- 4 5 P	eric	hde			

Text B	ooks:
1.	Simon Haykin, Communication Systems, International Student Version, 5th Edition John Wiley & sons, NY,
	2010.
2.	Dr .Sanjay Sharma," Communication Systems (Analog and Digital), S.K.Kataria&Sons, 6th Reprint, 2013.
Refere	nce Books:
1.	Taub and Schilling, Principles of communication systems, TMH, New Delhi, 2008.
2.	Roddy and Coolen, Electronic communication, PHI, New Delhi, 4th Edition, 2003.
3.	R.P. Singh &S.D.Spare, "Communication Systems, Analog &Digital", TataMcGraw Hill, 1995.
4.	Anokhsingh, Principles of Communication Engineering, S. Chand & Company Ltd. 2006.
E-Refe	rences:
1.	https://www.telecommunications-tutorials.com/
2.	http://www.nptelvideos.in/2012/11/communication-engineering.html
3.	https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm
	·

	Outcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped			
CO1	Gain knowledge on the principles of AM and FM communication systems.	L2			
CO2	Ability to design AM and FM receiver.	L2			
CO3	The exposure to the sources of noise and its effects in Communication systems.	L3			
CO4	Ability to analyze the performance of receiver in the presence of noise.	L3			
CO5	Ability to measure the capacity of a channel based on the information theory.	L3			

	COURSE ARTICULATION MATRIX														
COs	DO1	DOJ	DO2		DO5	DOG	DO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PU8	F09	0	1	2	1	2	3
CO1	2	1	3											1	2
CO2	2	1	3											1	2
CO3	2	2	2	1										1	2
CO4	2	2	2	1										1	2
CO5	3	1	1											1	2
Avg	2.2	1.4	2.2	0.4										1	2
			3/2/1=	-indica	tes stre	ength o	of corre	lation	(3-Higl	h,2-Me	dium,1	-Low)			

	23PTEC302	CONTROL SYSTE	MS	SEMESTER III					
PREF	REQUISITES		CATEGORY	PC	Cre	dit	,	3	
				L	Т	Р	Т	Ή	
1. Lap	lace Transform, Partial Differ	ential Equation	Hours/Week	3	0	0	,	3	
Cours	se Objectives:								
1.	To introduce the component	ts and their representation of control system	ms.						
2.	To learn various methods f	or analyzing the time response, frequency	response and stability	of the sy	stems.				
3.		ds for the state variable analysis.							
Unit I	9	0	0	9					
domaiı	rd test signals - Time respon n specifications - P, PI, PD	and PID controllers - Steady state errors			zed err	or co	-effic		
Unit	C - · · -	ESPONSE ANALYSIS			9	0	v	9	
	Plot - Polar Plot –Linear syste	nse - Frequency Domain specifications for m design: Types of compensators - Lead,			ors.	-			
Stabili	ty - Routh-Hurwitz Criterion	a - Nyquist Stability Criterion - Relative Poles - Application of Root Locus.	e Stability - Root Lo	ocus Tech	9 nnique	0 - Cor	0 nstruc	9 ction	
Unit					9	0	0	9	
	ns of State equations – 7	l state model - State space representation ransfer function from State Variable R		cepts of	Contro	ollabi	lity a	and	
				Total	(45L)	= 45	peri	iods	

Text I	Books:							
1.	I.J Nagrath and M. Gopal, "Control System Engineering", 5th Edition, New Age International Edition, 2018.							
2.	A. Nagoor kani, "Control Systems" 2 nd Edition, RBA publications, 2009							
Reference Books:								
1.	Norman S Nise,"Control Systems Engineering', Seventh edition, Wiley Publications, 2015							
2.	Benjamin.C.Kuo, Automatic Control Systems, 7thEdition, PHI, 2009.							
3.	K.Ogata, "Modern Control Engineering", PHI, 5th Edition, 2012.							
4.	A.Anand Kumar, "Control Systems", Prentice Hall of India, 2012							
E-Ref	erences:							
1.	https://www.edx.org/course/introduction-control-system-design-first-mitx-6-302-0x							
2.	https://onlinecourses.nptel.ac.in/noc17_ee12							
3.	https://onlinecourses.nptel.ac.in/noc22_ee31/preview							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Frame the transfer function of different physical systems	L2				
CO2	:	Analyse the time domain specification and calculate the steady state error	L3				
CO3	:	Illustrate the frequency response characteristics of open loop and closed loop system response.	L3				
CO4	:	Analyse the stability of the system using Routh and root locus techniques.	L4				
CO5	:	Test the controllability and observability of a physical system	L3				

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1								3		2
CO2	3	1	1	2	1								2		2
CO3	3	1	1	1	1								2		1
CO4	3	1	1	1	1								3	1	2
CO5	2	1	1	1	1								2		1
Avg	2.8	1.2	1.2	1.4	1								2.4	0.2	1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

23PTEC303	TRANSMISSION LINES AND WAVE	EGUIDES	SEM	ESTEI	ESTER III							
		Category	PC	Cre	dit	3						
			L	Т	Р	ТН						
		Hours/Week	3	0	0	3						
Course Objectives:		1 1		I I								
1. To introduce	the various types of transmission lines and to discuss the	losses associated.										
2. To compute various parameters for loaded transmission lines using Smith chart and acquire knowledge of stub matching												
in Transmission Lines												
3. To impart knowledge on guided waves, rectangular and circular waveguides and waveguide resonators												
Unit I TRANS	9	v	0	9								
	types of transmission lines - Definition of Characterist											
	on line - physical significance of the equation and the in											
	elength and velocity of propagation - Waveform distortion				e –Lo	ading	and					
	line not terminated by Zo – Reflection coefficient –Refle	ction factor and ref	flection 1		-							
	INE AT RADIO FREQUENCIES			9	-	0	9					
	the dissipation less lines – Input impedance of the dissipation											
	nencies- Input impedance of open and short circuited line $\frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2}$											
using Smith chart – singl	8 line – $\lambda/4$ line and $\lambda/2$ line- The Smith Chart – Applic	cations of the Smit	in Chart	-501000	ons of	probl	ems					
	DED WAVES			9	0	0	9					
	lanes of perfect conductors – Transverse electric waves -	transvarsa magnat	ia wava	-	-	-						
	erse Electromagnetic waves, properties of TEM wave – V						IE					
	ANGULAR WAVEGUIDES	ciocities of propag				0	9					
	ves in Rectangular Wave guides – Transverse Electric V	Naves in Rectangu	lar Waw		U	•	-					
	Cutoff wavelength and phase velocity – Impossibility of											
	Wave impedances – Excitation of modes.		uveguiu	.5 00	minun	t mou	c m					
	JLAR WAVE GUIDES AND RESONATORS			9	0	0	9					
Bessel functions - Solu	tion of field equations in cylindrical co-ordinates – T	TM and TE wave	s in circ	cular gu	ides -	- wav	'e					
impedances- Dominant	node in circular waveguide – excitation of modes – Mic	crowave cavities, F	lectangu	lar cavi	y reso	onator	s,					
circular cavity resonator												
			To	tal(451	L)=45	Peri	ods					

Text B	ooks:							
1.	J.D.Ryder "Networks, Lines and Fields", PHI, New Delhi, 2006.							
2.	E.C. Jordan and K.G.Balmain "Electro Magnetic Waves and Radiating System, PHI, New Delhi, 2010.							
Reference Books:								
1.	Umesh Sinha "Tranmission Lines & Networks" Sathya Prakashan publication, 2002							
2.	Annapurna Das and SisirK.Das: Microwave Engineering – TMH, 2000							
3.	David K.Cheng, Field and Waves in Electromagnetism, Pearson Education, 1989.							
E-Refe	erences:							
1.	https://nptel.ac.in/courses/117101056							
2.	https://www.youtube.com/watch?v=00wmYAljz4A&list=PL0925FD10648D664E							
3.	https://link.springer.com/chapter/10.1007/978-1-4615-6459-1 28							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Ability to discuss the propagation of signals through transmission lines.	L3					
CO2	Calculate reflection coefficients, standing wave ratio and power of transmission lines	L4					
CO3	Ability to compute various parameters for loaded transmission lines using Smith chart and acquire knowledge of stub matching in Transmission Lines	L5					
CO4	Ability to explain radio propagation in guided systems	L3					

CO5	Ability to utilize cavity resonators
-----	--------------------------------------

L2

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	POs PO1	FU2	FUS	F04	POS	FU0	PO/	rUo	109	0	1	2	1	2	F305
CO1		2	3	2							2		1	2	1
CO2		2	3	2							2		1	2	2
CO3		1	2	2							2		2	1	2
CO4		2	2	3							2		2	2	2
CO5		2	2	3									2	2	1
Avg		1.8	2.4	2.4							1.6		1.6	1.7	1.6
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTEC3	804	MICROPROCESSORS AND MICROCONTROL	LLERS	SEN	AES.	ſER	III					
			Category	PC	Cr	edit		3				
		-	TT / TT	L	Т	Р		ТН				
			Hours/Week	3	0	0		3				
Course Ol	bject	ives:										
1. To	fami	liarise with 8086 and 8051 architectures.										
	To interface 8086 microprocessor and 8051 microcontrollers with peripherals by programming.											
3. To	o gain basic knowledge of PIC microcontrollers.											
Unit I	808	6 MICROPROCESSOR ARCHITECTURE		9		0	0	9				
Overview of	f Mic	rocomputer systems-8086 Architecture – Pin Assignments – Interna	l Architecture –	Address	sing n	nodes	-					
Instruction I	Forma	ats- Directives and Operators-Assembly process.										
Unit II		OGRAMMING AND INTERFACING OF 8086		9		0	0	9				
		onsiderations- Programmed I/O- Interrupt I/O- Basic 8086 Configura										
		timing- I/O interfaces - Peripheral Interfacing using 8255 PPI - 8279	• Keyboard/Disp		trolle	:						
Unit III	-	051 ARCHITECTURE		9		0	0	9				
		- Registers in 8051 - Pin description - 8051 parallel I/O ports -	Memory organi	zation -	- Inst	ructio	n se	t —				
Addressing n												
Unit IV		OGRAMMING AND INTERFACING OF 8051		9		0	0	9				
		age programming.8051Timers - Serial Port Programming - Interrupt			nd Ko	eyboa	rd					
	-	C, DAC Interfacing - External Memory Interface - RTC Interfacing C MICROCONTROLLERS	- Motor Control	1								
Unit V		9		0	0	9						
		ics of PIC microcontrollers – PIC microcontroller families-Memory- Memory - Instruction set and timers in PIC	Program Memor	ry – RA	M Da	ata M	emo	ry				
				Total((45L)	=45	Per	iods				

Text	Books:							
1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.							
2.	Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.McKinlay, "The 8051 Microcontroller and Embedded Systems using Assembly and C", 2e, 2022.							
Refer	rence Books:							
1.	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", 2 nd Edition, Pearson education, 2011.							
2.	Martin Bates,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier, 2011.							
3.	Mathur Sunil, "Microprocessor 8086 : Architecture, Programming and Interfacing", PHI Learning Pvt. Ltd., 2011.							
4.	Salvador PinillosGimenez,"8051 Microcontrollers Fundamental Concepts, Hardware, Software and Applications in Electronics", Springer, 2019.							
E-Ref	ferences:							
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon, 2020.							
2.	https://nptel.ac.in/courses/108105102							

Course O Upon cor	Bloom's Taxonomy Mapped	
CO1	Describe and analyse the architecture of 8086 microprocessor and 8051 architectures.	L1,L4
CO2	Develop assembly language programs and Interface peripherals with 8086.	L6
CO3	Develop assembly language programs and Interface peripherals with 8051.	L6
CO4	Determine application specific circuit for real-time applications.	L3
CO5	Associate appropriate PIC microcontroller for a given application.	L2

	COURSE ARTICULATION MATRIX														
Cos/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
Pos	FUI	PO2	PO5	P04	POS	POo	PO/	PUð	F09	0	1	2	1	2	F305
CO1	2	2									2		1		
CO2	2	2	2	2									2	2	
CO3	2	2	2	2									2	2	
CO4	2	2	2	2									2	2	2
CO5	2	2		2									2	2	
Avg	2	2	1.2	1.6							0.4		1.8	1.6	0.4
3/2/1=	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

	23PTEC305	EC305 MICROPROCESSORS AND MICROCONTROLLERS LABORATORY								
		-	Category	PC	Credit		1.5			
				L	Т	Р	ТН			
			Hours/Week	0	0	3	3			
Cou	rse Objectives:									
1	To introduce stude	nts with the architecture and operation of	8086 microprocessor and 8051	microco	ontrol	ler.				
2	To familiarize the	students with the programming and interfa	acing of 8086 microprocessor a	nd 8051	micro	ocontro	ller.			
3	To provide strong t	Coundation for designing real world applic	cations using 8086 microproces	sor and	8051	microco	ontroller			
EXF	PERIMENTS:									
8086	6 Programs									
1	Kit Familiariza	ation.								
2	Basic Arithme	tic and Logic operations.								
3	Square, Square	Square, Square root and Cube Program.								
4	Code conversi	Code conversion and Matrix operations.								
5	String manipul	String manipulation operations and Sorting and Searching.								
6	Peripheral Inte	Peripheral Interfacing of keyboard and display.								
7	Traffic light C	Traffic light Control.								
8	Serial and Para	Serial and Parallel Communication.								
9	Programs for I	Programs for Digital clock and Stop watch.								
10	Stepper Motor	Control.								
8051	l Programs									
11	Basic arithmet	ic and Logical operations.								
12	Find Square at	Find Square and Cube, 2's complement of a number.								
13	Programs on d	Programs on different addressing modes.								
14	A/D and D/A	A/D and D/A interfacing.								
15	Waveform ger	eration using 8051.								
				Т	otal(45P)=4	5 Perio			

References:					
1.	"Microprocessor and Microcontrollers Lab Manual" prepared by ECE Department.				
2.	https://www.studocu.com/in/document/anna-university/microprocessor-and-microcontroller/microprocessor-				
	microcontroller-labaratory-manual-pdf/17250102				

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Perform basic operations in 8086 microprocessor and 8051 microcontroller.	L2
CO2	Interface peripherals with 8086 microprocessor.	L3
CO3	Generate waveforms using Microcontroller.	L3
CO4	Develop assembly language programs for various applications using 8051 microcontroller	L6
CO5	Interface peripherals with 8051 microcontroller.	L3

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
POs	FUI	FO2	FO5	r04	r05	rU0	FO/	108	FU9	0	1	2	1	2	3
CO1	2	3											2	2	
CO2	2	3		2	2								2	3	
CO3	2	3		2	2								2	2	
CO4	2	3		2	2								2	3	2
CO5	2	3		2	2								2	2	
Avg	2	3		1.6	1.6								2	2.4	0.4
3/2/1=	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

	23P'	ТЕС401	DIGITAL COMMUNICAT	ΓΙΟΝ	S	EMES	MESTER IV					
PREF	REQUI	SITES		CATEGORY	РС	Cree	lit		3			
	a				L	Т	Р	Т	Η			
Analog	g Comr	nunication		Hours/Week	3	0	0		3			
Cours	Course Objectives:											
1.	cal ba	ckgr	ound	for								
	1. Understand the building blocks of digital communication system and to prepare mathematical background for communication signal analysis .											
2.	Expre	ss pass-band data tra	nsmission and comparison of Digital modula	tion systems.								
3.			nance of a digital communication system in	the presence of no	ise and	other	inter	feren	ces.			
		stand the concept of	spread spectrum communication system.									
Unit I	[DETECTION AN	ND ESTIMATION & SAMPLING PR	OCESS		9	0	0	9			
			System - Gram-Schmidt orthogonalization pr									
			ise - Probability of error - Correlation rec									
			bise – Estimation: concepts and criteria Sar rm coding techniques: PCM - DPCM - Delta						s of			
-					puve De				•			
Unit			RANSMISSION OF DIGITAL SIGNA		1.D.	<u> </u>	U	0	9			
			bol Interference - Nyquist's criterion for Di ary and modified duo binary signalling – Ey									
		alization for data tran		ye patterns Dased		ury 17		ysten	10			
Unit			ANSMISSION OF DIGITAL SIGNAL	.S		9	0	0	9			
Digital	l Modul	ation Formats - Coh	nerent Binary Modulation Techniques: Gener	ation – Detection -	Signal	space d	liagra	am - 1	Bit			
			and waveforms of BPSK, BFSK, QPSK									
			ifferential phase shift keying – Comparison						les			
			n techniques – Synchronization: Carrier and s	symbol synchroniza	tion - A	pplica	tions	•				
Unit		ERROR CONTR		.		9	0	0	9			
			f codes - Discrete memory less channels - utional codes - Maximum likelihood decodin									
			num length and Gold codes.	ing of convolutional	coues-	viteri	л Аі	gonn	1111 -			
Unit			FRUM MODULATION AND MULTI	PLE ACCESS		9	0	0	9			
0	•	TECHNIQUES					v	Ū	-			
			on of spread spectrum – Direct sequence spr									
			lity and processing gain –Probability of erro		Spread	Spectr	um (FHS	S)-			
Applic	ations -	-Multiple Access Te	chniques: TDMA,FDMA,CDMA and SDMA	А.	TE 4	1 (4 - 7						
					Tota	l (45L)= 45	per	loas			

Text E	Books:										
1.	Simon Haykins, "Digital Communications" John Wiley, 2017.										
2.	Theodore S.Rappaport, "Wireless Communications: Principles and Practice", 2 nd Edition.", Pearson, 2012.										
Refere	Reference Books:										
1.	Taub& Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.										
2.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013										
3.	Dennis Roddy, John Coolen,"Electronic Communications", 10th impression, Pearson Prentice Hall, 2013.										
4.	John G.Proakis, "Digital Communication", 3rd Edition, Tata McGraw-Hill, 1995.										
E-Ref	erences:										
1.	http://www.nptelvideos.in/2012/11/communication-engineering.html										
2.	https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm										
3.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-										
	2006/lecture-notes/										

		tcomes: etion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Analyze the sampling process and the performance of a baseband and pass band digital communication system in terms of error rate	L2
CO2	:	Able to analyse the system using eye patterns	L3
CO3	:	Select the modulation schemes for particular applications .	L3
CO4	:	Perform the time and frequency domain analysis of the signals in a digital communication system and design error free communication.	L4
CO5	:	Understand the concept of secured communication and multiple access techniques	L2

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 11	PO12	PSO	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10			1		
CO1	2	2	2	2	1								2		2
CO2	2	1	1	2	1								1		2
CO3	1	1	1	1	1								1		1
CO4	2	1	1	1	1								2	2	2
CO5	2	1	1	1	1								2		1
Avg	1.8	1.2	1.2	1.4	1								1.6	0.4	1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

23EC	402	DIGITAL SIGNAL PROCESSING		SEM	EST	ER I	V				
PREF	REQUI	ISITES	CATEGORY	PC	С	redit		3			
	Hours/Week I										
	3										
Cours	se Obj	ectives:					1				
1	To an	alyse the Discrete Fourier Transform, Fast Fourier Transform alg	orithms.								
2	To de	esign and realize IIR, FIR filters and to understand finite word leng	gth effects on digital	filters.							
3	Gain	knowledge of DSP architecture, Programming, and concepts of M	ulti rate signal proce	essing.							
Unit]	ΙΙ	DISCRETE FOURIER TRANSFORM			9	0	0	9			
Introdu	uction to	DDFT-Properties of DFT-Circular convolution -FFT algorithms-	Radix-2 FFT algorit	hms Dec	imati	on in					
Time a		imation in Frequency algorithms.									
Unit l	Π	INFINITE IMPULSE RESPONSE FILTER DESIGN			9	0	0	9			
		s of Analog Butterworth filter-Chebyshev filter-Low pass filter, H					l sto	р			
		mation of analog filters in to equivalent digital filters using biline	ar transformation me	ethod -Re	ealiza	tion					
		IR filters-Direct form-Cascade form-Parallel form.			0	0	0				
Unit l		FINITE IMPULSE RESPONSE FILTER DESIGN			9	v	0	9			
		sponse of FIR filter - FIR design using window method: Rectangu									
		k-McClellan's method - Realization structures for FIR filters - Line FIR and IIR filters	ear phase structures	and Dire	ct for	m stru	ictur	:e-			
Unit 1		FINITE WORD LENGTH EFFECTS			9	0	0	9			
		n of numbers-Quantization by truncation and rounding– Derivation	n for quantization no	oise powe	-	Ŷ	•				
		rror – Product quantization error – Round off noise power - Limit									
		errors –scaling to prevent overflow.	, , , , , , , , , , , , , , , , , , ,	I							
Unit '		DSP APPLICATION SAND DIGITALSIGNAL PROCE	ESSOR		9	0	0	9			
Introdu	uction t	to Multi Rate signal processing: Decimation, Interpolation-Intr	oduction to DSPTN	AS320C5	54X 1	proces	sor:	;			
Archit	ecture-	Instruction set-Addressing modes			-						
			T	otal(45I	.)=45	5 Peri	iods	5			

Text	Books:
1.	S.K.Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.
2.	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications",
	4 th Edition,PearsonEducation,2009.
Refe	rence Books:
1.	Emmanuel C. I feacher, Barry W.Jervis, "Digital Signal Processing : A Practical Approach ",2 nd Edition, Pearson
	Education, 2004.
2.	A.V. Oppenheim, R.W.Schaferand J.R. Buck, "Discrete-TimeSignalProcessing", 3rdEditionPrenticeHall,
3.	L.R.Rabinerand B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.
4.	5.J.R.Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 1992.
E-Re	ferences:
1.	https://www.coursera.org/learn/dsp
2.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/
3.	www.nptelvideos.in/2012/12/digital-signal-processing.html

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped				
CO1	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.					
CO2	Design and realize IIR filters	L3				
CO3	Design and realize FIR filters	L3				

CO4	Analyze finite Word length effect on filters.	L4
CO5	Apply the concepts of Multi rate signal processing and Gain the knowledge on DSP architecture and programming	L2

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	3	3	1	1	1								1	1	1
CO2	3	2	2	2	1		1						1	1	1
CO3	3	2	2	2	1		1						1	1	1
CO4	3	2	2	2	1		1						1	1	1
CO5	1	1	1	1	1								2	2	1
Avg	2	2	1.6	1.6	1		0.6						1.2	1.2	1
3/2/1=	indicate	es streng	gth of c	orrelatio	on (3-H	igh,2-M	ledium,	1-Low)							

23PTE	EC40.	3	EMBI	EDDED SYSTEMS	S	EMES	STER	IV		
PRER	EQU	ISITES			CATEGORY	PC	Cr	edit		3
	Mi	crocontro	lare		Hours/Week	L	Т	Р]	ГН
					Hours/ Week	3	0	0		3
Prere										
Cour	1	ojectives								
	То	impart kı	owledge on embedded syste	em architecture and embedo	led development str	rategies.				
2	То	understa	d the bus communication in	n processors and peripheral	interfacing.					
3	То	understa	d basics of Real Time Oper	ating System.						
Unit	t I	INTRO	DUCTION TO EMBEI	DDED SYSTEMS			9	0	0	9
Intro	ductio	on to Emb	edded Systems –Structural u	units in Embedded processo	or, selection of prod	cessor an	d mem	ory de	vices	-
				and Counting devices, Wate	chdog Timer, Real	Time Clo	ock, In	circuit		
emul	lator, [rdware Debugging.							
Unit	t II	EMB	EDDED NETWORKING	G			9	0	0	9
				ice Ports and Buses- Serial						
			- RS 485 - CAN Bus -Serial	Peripheral Interface (SPI)	 Inter Integrated C 	Circuits (1	2C) –n	need fo	r	
-	vice dr									
Unit				DEVELOPMENT ENV			9		0	9
				ectives, different phases of						
		-design, l	Data Flow Graph, state mach	hine model, Sequential Prog	gram Model, concu	rrent Mo	del, obj	ject ori	entec	1
Mode		DECO							0	
Uni			BASED EMBEDDED S				9	•	0	9
Introd	uction	to basic	concepts of RTOS- Task, pr	cocess and threads, interrupt	routines in RTOS,	Multipro	ocessin	g and	T	
				heduling, Task communicat en processes-semaphores, N						
inheri		imumcai	on – synchronization betwe	en processes-semaphores, r	vianuox, pipes, pric	nity nive	rsion, j	JIIOIII	, ,	
Unit	1	EMB	DDED SYSTEM APPI	LICATION AND DEVE	LOPMENT		9	0	0	9
RFII) Syst			utomotive Application - Sr		Applicatio	on-ATI	M mac	hine	_
	tal car			Fr St	······································	r r				
8-						Total	(45L):	=45 P	erio	ds
L							(

Text	t Books:								
1.	Peckol, "Embedded system Design", Second Edition, John Wiley & Sons, 2019								
2.	Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013								
Reference Books:									
1.	Shibu. K.V, "Introduction to Embedded Systems", 2e, Mcgraw Hill, 2017.								
2.	Raj Kamal, 'Embedded System-Architecture, Programming, Design', 3e, McGraw Hill, 2017.								
3.	Tammy Noergaard, Embedded Systems Architecture, 2e, Newnes an Imprint of Elsevier, Massachusetts, 2013.								
4.	Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.								
E-R	eferences:								
1.	https://nptel.ac.in/courses/108102045								
2.	https://nptel.ac.in/courses/106105193								
3.	https://www.coursera.org/learn/introduction-embedded-systems								

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand and analyze Embedded systems	L2						
CO2	Know about the bus Communication and Peripheral interfacing	L1						
CO3	Know about the embedded product development and modeling	L2						
CO4	Acquire knowledge on Real time operating system	L2						
CO5	Design and Analyze the real-time applications of embedded-systems	L3						

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	2		1	2	2								1		
CO2	2		2	2	2								2		2
CO3	2	1	3	3	2				2				2	1	2
CO4	2		3	2	3								1	1	1
CO5	2	2	3	3	3	2	2		2				2	2	2
Avg	2	0.6	2.4	2.4	2.4	0.4	0.4		0.8				1.6	0.8	1.4
			3/2/1	1=indic	ates str	ength o	of corre	lation (3-High	,2-Med	ium,1-]	Low)			

23PT	'EC404	ANTENNA AND WAVE PRO	PAGATION	S	EMES	STER	IV
PREI	REQUISITES		CATEGORY	PC Credit		3	
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Co	urse Objective	s:		I			
1		the fundamental principles of Antenna theory, and wave	propagation with	a lucid ex	kplanat	ion of t	he basic
	concepts and						
2		the design and operation of various antenna types.					
3	· · · · ·	undamental electromagnetic wave propagation indifferen	t layers of the atmos	osphere.			
Un	it I RADIA	ATIONFIELDSOFWIRE ANTENNAS			9	0	0 9
		and electromagnetic field - Potential functions for si					
		Alternating current element - Power radiated and radiated					
		ntary dipole with linear current distribution-Current dist	ribution on a thin	wire ante	enna-R	adiatio	1 from
		Effective length-Effective area.			0		
		ENNA ARRAYS		-	9	0	0 9
		ic field from two and three element arrays- Uniform line					
		ultiplication - Binomial array - Use of the method of i	mages for antenna	as above	ground	1 –Foic	ea
		Uda antenna-Log periodic dipole array. P, HELICAL AND REFLECTOR ANTENNA			9	•	0 9
-			Dimentivity of the ai			Uliam	÷ -
		l loop and general case - Radiation resistance of loops – I -Helical antenna: Helical geometry – mono filar axial-r					
		ombic antenna: Analysis & Design of Rhombic antenna					
		al reflector-Feed systems.	as reflector unter	inus ii iut	Sheet	eneero	r conner
		TURE AND LENS ANTENNA			9	0	0 9
		lence theorems - Radiation from an elemental area of a p	lane wave (Huvge	n's Sour	e) -Ra	diation	
		xial line - Radiation from a rectangular aperture treated a					
		nas in flat sheets-Babinet's principle and complement					
		ot antennas -Field on the axis of an E-Plane sectoral horn					
		electric lens and metal plane lens antennas-Lumeberg len	s -Spherical waves	and Bic	onical a	intenna	•
-		EP ROPAGATION			9	0	0 9
		on: Structure of the ionosphere - Effective dielectric					
		ve index - Critical frequency - Skip distance - Effect					
		llisions-Maximum usable frequency-Fading and Diversi					
		vertically and horizontally polarized waves - Reflection or receiver -Duct propagation -Ground wave propagation					
		ion of field strength at a distance.	n. Attenuation ci	laracteris	lics 10	gioui	iu wave
prop	agation-Calculat	ion of field strength at a distance.		Tota	(45 1.)	-45 P	eriods
L				IUIA	(-3 L)		.11043
Te	xt Books:						
1.	E.C.Jordan ar	d Balmain, "ElectroMagneticWaves andRadiating System	ns".PHI.1968.Rep	int2010.			

1.	E.C.Jordan and Balmain, "ElectroMagnetic Waves and Radiating Systems", PHI, 1968, Reprint2010.
2.	John D. Krausand Ronalatory Marhefka, "Antennas", TataMcGraw-HillBookCompany, 2010.
Re	ference Books:
1.	Terman, F.E., "Radio EngineersHandbook", TataMcGraw-Hill, 1985.
2.	ConstantineA.Balanis, "AntennaTheoryAnalysis andDesign", JohnWiley&Sons, 2012.
3.	R.E.Collins, 'AntennasandRadioPropagation", McGraw-Hill, 1987.
4.	Elliot, R.S, "Antennatheoryanddesign", PHI, NewDelhi, 1985.
E-I	References:
1.	https://www.youtube.com/watch?v=LF9kebBTWXo&list=PLAULbhIvfai5yvvLIm-oIb89dGNp1BtM6
2.	https://www.youtube.com/watch?v=jA8aTA1Pg4s&list=PLCcWs0lpRgKcOu8LAX7GlZLIAHgyN1oVS
3.	https://link.springer.com/chapter/10.1007/978-1-4615-6459-1 28

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand and derive the behaviour of the antenna and its performance parameters.	L4						
CO2	Design and analyze antenna arrays.	L4						
CO3	Design and analyze Loop, Helical and Reflector antenna.	L4						
CO4	Design and analyze aperture and lens antennas.	L4						
CO5	Study radio wave propagation and its effects.	L2						

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	roi	r02	105	r04	105	100	107	100	10)	0	1	2	1	2	1303
CO1	3	3	1	1	1								2	2	1
CO2	3	2	2	2	1		1						1	1	1
CO3	3	2	2	2	1		1						1	1	1
CO4	3	2	2	2	1		1						1	1	1
CO5	3	1	1	1	1								0	0	0
Avg	3	2	1.6	1.6	5		0.6						1	1	0.8
			3/2/	1=indic	ates str	ength o	of corre	lation (3-High	,2-Med	ium,1-I	Low)			

23PTE	EC405	DIGITAL SIGNAL PROCESSING L	SEMESTER IV					
PRER	EQUISITES		CATEGORY	PC	Credit		1.5	
				L	Т	Р	TH	
			Hours/Week	0	0	3	3	
Cou	rse Objective	28:						
1	To impleme	nt basic signals operations using a software tool.						
2	To design F	FT algorithms,						
3	To design I	IR and FIR filters						
EXP	PERIMENTS	:						
1	Generat	ion of Signals						
2	Discrete	-time convolution						
3	Circular	convolution of two sequences						
4	Samplin	g and effect of aliasing						
5	Spectru	m analysis using Discrete Fourier Transform						
6	Calculat	ion of FFT of a signal using a) Decimation in time	algorithm b) Decimation	n in frequ	iency a	lgorith	ım	
7	Design	of FIR filters using a)Windowing technique b)Freq	uency sampling method					
8	Design	of IIR digital filter using Bilinear transformation						
9	Design	of IIR digital filter using Impulse invariant method						
10	Verifica	tion of BIBO stability of a system.						
				Tota	al(45P) =45	Period	

Refe	erences:
1.	Digital Signal Processing Using MATLAB, VinayK.Ingle John G.Proakis,Centage learning,3 rd Edition,2012
2.	SanjitK. Mitra, "DigitalSignalProcessing", 3rd Edition, McGrawHillHigherEducation, 2007.
E-R	eferences:
1.	https://nptel.ac.in/courses/117102060/
2.	studentsfocus.com/notes/anna_university/ECE/5SEM/EC6511%20%20DSP%20Lab/EC%206511%20DIGITAL%20S IGNAL%20PROCESSING%20LAB%20MANUAL_2013_regulation.pdf
3.	vlab.co.in/ba_nptel_labs.php?id=1

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Generate and analyze various signal processing algorithms.	L4						
CO2	Implement FFT algorithms, Linear/Circular convolution.	L4						
CO3	Design FIR filters.	L3						
CO4	Design IIR filters.	L3						

CO5	Verify and understand system stability.	L4
-----	---	----

COUF	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs										0	1	2	1	2	
CO1	3	3	1	1	3			1		1			1	1	1
CO2	3	3	1	1	3			1		1			1	1	1
CO3	3	3	2	2	3			1		1			1	1	1
CO4	3	3	2	2	3			1		1			1	1	1
CO5	3	3	2	2	3			1		1			1	1	1
Avg	3	3	1.6	1.6	3			1		1			1	1	1
			3/2/1	l=indic	ates str	ength o	of corre	lation (3-High	,2-Med	ium,1-	Low)			

23PTE	C501	VLSI DESIGN		SEMESTER V							
PRER	EQUISITE	S	CATEGORY	PC	Cr	edit	,	3			
			Hanna/Waala	L	Т	Р]	ГН			
			Hours/Week	3	0	0		3			
Cou	Course Objectives:										
1	1 Develop ability to understand the concepts of MOS transistors operations and their AC, DCcharacteristics.										
2	To unders	and the fabrication process of CMOS technology and its laye	out design rules								
3	Digital De	sign using Verilog HDL and understand CMOS chip design.									
Unit	Unit I MOS TRANSISTOR THEORY						0	9			
		OS, PMOS Enhancement transistor, Threshold voltage, Body									
		Mobility variation, MOS models, small signal AC character									
		ise Margin, Rise time, fall time, power dissipation, transmiss	sion gate – stick dia	agram – l			1				
Unit		DS TECHNOLOGY			9	0	0	9			
		con semiconductor technology - Basic CMOS technology: n									
		incements: Interconnects - circuit elements: Resistors, capac	itors, Electrically a	lterable I	ROMs,	bipolar					
Unit		p and its prevention techniques TA PATH SYSTEMS AND ARRAY OF SUBSYST	EMS		9	0	0	9			
		s, Addition/Subtraction, One/Zero Detectors, Comparators,		Logical		v	v				
-	•	V Subsystems, SRAM, DRAM, Read-Only Memory, Serial A		-	-						
Unit		DWARE DESCRIPTION LANGUAGE	Access Memories, v		<u>1001855</u>		0	<u>9</u>			
0		VLSI Design flow, modules and ports, switch level modeling	Gata laval modali	ng Doto		U	•	9			
		ing. Structural gate level description of decoder, equality det									
		Ripple Carry adder.	cetor, comparator,	priority	meduel	, D II,	man				
	Unit V CMOS CHIP DESIGN 9 0 9										
		n options: Full custom ASICs, Standard Cell based ASICs,	Gate Array based	ASICs	Channe	led. C	hann	el			
	less and structured GA, Programmable logic structures; Programming of PALs, Programmable Interconnect, ASIC										
	design flow, Need for CMOS testing										
		Total(45L)=45 Periods									

Text	Books:								
1.	N. H. E. Weste, D.F. Harris, "CMOS VLSI design", (4/e), Pearson, 2011								
2.	Samir Palnitkar: "Verilog HDL" A Guide to Digital Design and Synthesis Second Edition – SecondEdition, 2012.								
Refe	Reference Books:								
1.	M.J.S .Smith, - "Application - Specific Integrated Circuits" - Pearson Education, 2009								
2.	Douglas.A.Puchnell.,Kamran Eshraghian 'Basics VLSI Design and Circuits' Third edition PrenticeHall India 2011.								
3.	V.G.Kirankumar, H.R.Nagesh, "Introduction to VLSI Design", Pearson Education, 2011								
4.	Wayne Wolf, Modern VLSI Design, Pearson Education 2003								
E-Re	eferences:								
1.	https://freevideolectures.com/Subject/VLSI-and-ASIC-Design								
2.	https://www.tutorialspoint.com/vlsi_design/vlsi_design_useful_resources.html								
3.	https://nptel.ac.in/courses/117101058/								

Г

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Use analytical methods and circuit analysis models in analysis of CMOScircuits.	L2				
CO2	Gain knowledge to understand the CMOS process technology and todesign array of systems.	L3				
CO3	Design data path systems.	L3				
CO4	Model the digital system using Verilog Hardware Description Language.	L3				
CO5	Gain knowledge on chip design using programmable devices.	L2				

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	105	101	100	100	107	100	10/	0	1	2	1	2	1505
CO1	1		1										1	2	1
CO2			1										1	2	1
CO3	2		3										1	2	1
CO4	1	2	3	2	3								1	2	1
CO5			1										1	2	1
Avg	0.8	0.4	1.8	0.4	0.6								1	2	1
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

SPT	EC5	02	OP	FICAL	AND M	IICROV	WAVE ENG	GINEERIN	G	S	SEME	STER	R V	
PRER	REQ	UISIT	ES						CATEGORY	PC	Cr	edit		3
									Hours/Week	L	Т	Р	, r	ГН
									Hours/ week	3	0	0		3
Cou	ırse	Obje	tives:											
1	Т	'o unde	erstand a	id gain ki	nowledge	e about va	arious microv	wave compon	ents.					
2						n and am	plification us	ing microway	ve tubes and solid-s	atedevice	s and to	unde	rstand	l th
				lines and										
3	_						0	ion in optical	wave guides and ot	her signal	<u> </u>			
Uni						NENTS					9	0	0	9
									ings (Rat-Race Cir					
									- Review of low fre					
ABCI	D Pa	ramete	rs - Intr	oduction	to S par	rameters	- S Matrix o	of a Direction	nal Coupler - Hybr	id Couple	ers - Ci	rculat	ors a	nd
Isolate	ors.													
Uni	t II	S	OLID S	ГАТЕ М	AICRO	WAVE	DEVICES				9	0	0	(
r														
introd	luctio	on- Gi	inn Effe	t Diode	s - GaA			atkins - Hils	un (RWH) Theory	- Mode		-	m -	
						s Diode	- Ridely-Wa		un (RWH) Theory		s of O	peratic		_
Micro	owav	e Gene	ration a	d Amplif	rication -	s Diode Avalanc	- Ridely-Wa		un (RWH) Theory Introduction -Read		s of O	peratic		
Micro TRAF	owav PATT	e Gene Γ Diod	ration ai es -BAR	d Amplif TT Diod	ication - es - Para	s Diode Avalance metric De	- Ridely-Wa				s of Oj MPAT	peratic Diod	es -	-
Micro TRAF Unit	owav PATT t III	e Gene Γ Diod	ration a es -BAR /IICRO	d Amplif <u>TT Diod</u> WAVE	ication - es - Para TUBES	Avalance	- Ridely-Wa the transit - Ti Devices.	ime devices -	Introduction -Read	Diode -I	s of Oj MPATT	peratic Diod	.es - 0	ç
Micro TRAF Uni t Klystr	owav PAT t III rons	e Gene <u>F Diod</u> - Two	ration an es -BAR /IICRO cavity k	d Amplif <u>TT Diod</u> WAVE lystron A	ication - es - Para TUBES mplifier	Avalance metric Do s - Reflez	- Ridely-Wa the transit - Ti bevices. ex Klystrons -	ime devices - - Velocity Mo	Introduction -Read	Diode -I	s of O MPAT 9 Efficie	peratic Diod 0 ncy - 1	es - 0 Electi	<u>y</u> on
Micro TRAP Unit Klystr Admit	PAT PAT t III rons ttanc	e Gene <u> Diod</u> <u> N</u> - Two :e - He	ration an es -BAR MICRO cavity F lix Trave	d Amplif <u>TT Diod</u> WAVE lystron A ling - Wa	ication - es - Para TUBES mplifier	as Diode Avalanci metric De S s - Reflex s (TWTs)	- Ridely-Wa the transit - Ti Devices. • X Klystrons - •) - Slow-Way	ime devices - - Velocity Mo ye structures -	Introduction -Read	Diode -I	s of O MPAT 9 IEfficie vection	Deration Diod 0 ncy - 1 Curre	es - 0 Electi ent - A	<u>y</u> on
Micro TRAP Unit Klystr Admit Electr	PAT PAT t III rons ttanc ric Fi	e Gene <u> Diod</u> <u> Too</u> - Two e - He eld - V	ration an es -BAR /IICRO cavity k lix Trave /ave Mo	d Amplif <u>TT Diod</u> WAVE lystron A ling - Wa les - Gain	ication - es - Para TUBES mplifier we Tubes n Conside	s Diode Avalanci metric Do s s - Reflex s (TWTs) eration -	- Ridely-Wa the transit - Tr bevices. 	ime devices - - Velocity Mo ye structures - Oscillators - C	Introduction -Read	Diode -I	s of Oj MPATT IEfficie vection al Mag	0 Diod 0 ncy - 1 Curre	es - 0 Electr ent - A	on Axi
Micro TRAF Unit Klystr Admit Electr Unit	PAT PAT t III rons ttanc ric Fi t IV	e Gene <u> Diod</u> - Two - Two e - He eld - V SI	ration an es -BAR <u>MICRO</u> cavity k lix Trave Vave Mo GNAL	d Amplif <u>TT Diod</u> WAVE lystron A ling - Wa les - Gain DEGRA	ication - es - Para TUBES amplifier we Tubes a Conside DATIC	s Diode Avalanci metric Do s - Refle: s (TWTs) eration - DN IN O	- Ridely-Wa che transit - Tr Devices. ex Klystrons - .) - Slow-Waw Magnetron C DPTICAL F	ime devices - - Velocity Mo ye structures - Oscillators - C FIBERS	Introduction - Read odulation - Power C Amplification Proo ylindrical Magnetro	Diode -I Dutput and cess - Con on - Coaxi	s of Oj MPATT IEfficie vection al Magu 9	0 Diod 0 ncy - 1 Curre netron 0	es - 0 Electr ent - A 0	con Axia
Micro TRAF Unit Klystr Admit Electr Unit Atten	PAT <u>t III</u> rons ttanc <u>ric Fi</u> <u>t IV</u> uatio	e Gene <u> </u>	ration an es -BAR /IICRO cavity k lix Trave Vave Mo GNAL sorption	d Amplif TT Diod WAVE lystron A ling - Wa les - Gain DEGRA losses - S	Tication - es - Para TUBES Amplifier twe Tubes Conside ADATIC Scattering	s Diode Avalancl metric Do s - Reflex s (TWTs) eration - DN IN O g losses -	- Ridely-Wa the transit - Ti Devices. ex Klystrons -) - Slow-Waw Magnetron C DPTICAL F - Bending Lo	ime devices - - Velocity Mo ye structures - Oscillators - C FIBERS osses - Core a	- Introduction -Read odulation - Power C Amplification Proo ylindrical Magnetro nd Cladding losses	Diode -I Dutput and cess - Con n - Coaxi - Signal	s of O MPAT IEfficie vection al Mag 9 Distorti	0 0 0 0 0 0 0 0 0 0 0 0	es - 0 Electrent - A 0 Fiber	con Axi S -
Micro TRAF Unit Klystr Admit Electr Unit Attenu Intern	PAT t III rons ttanc ric Fi t IV uatio noda	e Gene <u> </u>	ration and es -BAR IICRO cavity k lix Trave Vave Mo GNAL sorption - Intran	d Amplif TT Diod WAVE lystron A ling - Wa les - Gain DEGRA losses - S odal disp	Tication - es - Para TUBES Amplifier twe Tubes Conside DATIC Scattering ersion - 1	s Diode Avalance metric Do s - Reflex s (TWTs) eration - DN IN O g losses - Factors c	- Ridely-Wa the transit - Ti Devices. - X Klystrons - - Slow-Wav Magnetron C DPTICAL F - Bending Lo contributing to	ime devices - - Velocity Mo ye structures - Oscillators - C FIBERS osses - Core a o dispersion -	- Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma	Diode -I Dutput and cess - Con on - Coaxi - Signal 1 terial Disp	s of O MPATT Efficie vection al Mag 9 Distorti persion	0 0 0 0 0 0 0 0 0 0 0 0 0 0	es - 0 Electri ent - A 0 Fiber re gui	y ron Axi S - de
Micro TRAF Unit Klystr Admit Electr Unit Attent Intern Dispe	ewav PAT t III rons ttanc ric Fi t IV uatio noda ersior	e Gene <u>F</u> Diod F Diodi F	ration and es -BAR MICRO cavity k lix Trave Vave Mo GNAL sorption - Intran	d Amplif TT Diod WAVE lystron A ling - Wa les - Gain DEGRA losses - S odal disp	Tication - es - Para TUBES Amplifier twe Tubes Conside DATIC Scattering ersion - 1	s Diode Avalance metric Do s - Reflex s (TWTs) eration - DN IN O g losses - Factors c	- Ridely-Wa the transit - Ti Devices. - X Klystrons - - Slow-Wav Magnetron C DPTICAL F - Bending Lo contributing to	ime devices - - Velocity Mo ye structures - Oscillators - C FIBERS osses - Core a o dispersion -	- Introduction -Read odulation - Power C Amplification Proo ylindrical Magnetro nd Cladding losses	Diode -I Dutput and cess - Con on - Coaxi - Signal 1 terial Disp	s of O MPATT Efficie vection al Mag 9 Distorti persion	0 0 0 0 0 0 0 0 0 0 0 0 0 0	es - 0 Electri ent - A 0 Fiber re gui	ron Axi S - de
Micro TRAF Unit Klystr Admit Electr Unit Attent Intern Dispe	ewav PAT t III rons ttanc ric Fi t IV uatio noda ersior	e Gene <u> </u>	ration and es -BAR MICRO cavity k lix Trave Vave Mo GNAL sorption - Intran	d Amplif TT Diod WAVE lystron A ling - Wa les - Gain DEGRA losses - S odal disp	Tication - es - Para TUBES Amplifier twe Tubes Conside DATIC Scattering ersion - 1	s Diode Avalance metric Do s - Reflex s (TWTs) eration - DN IN O g losses - Factors c	- Ridely-Wa the transit - Ti Devices. - X Klystrons - - Slow-Wav Magnetron C DPTICAL F - Bending Lo contributing to	ime devices - - Velocity Mo ye structures - Oscillators - C FIBERS osses - Core a o dispersion -	- Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma	Diode -I Dutput and cess - Con on - Coaxi - Signal 1 terial Disp	s of O MPATT Efficie vection al Mag 9 Distorti persion	0 0 0 0 0 0 0 0 0 0 0 0 0 0	es - 0 Electri ent - A 0 Fiber re gui	y coni Axia S - de
Micro TRAF Unit Klystr Admit Electr Unit Attenu Interm Dispe	PATT t III rons ttanc ric Fi t IV uatio noda ersior SER o	e Gene <u>F</u> Diod <u>F</u> Diod <u>F</u> Two e - He eld - V <u>SI</u> on - At l delay n - Bas diodes	ration and es -BAR <u>AICRO</u> cavity k lix Trave Vave Mo GNAL sorption - Intran	d Amplif TT Diod WAVE lystron A ling - Wa les - Gain DEGRA losses - S odal disp niconduc	Tecation - es - Para TUBES Amplifier twe Tubes Conside DATIC Scattering ersion - 1 tor physi	s Diode Avalance metric Do s - Reflex s (TWTs) eration - DN IN O g losses - Factors c ics – LEE	- Ridely-Wa the transit - Ti evices. - X Klystrons - - Slow-Wav Magnetron C DPTICAL F - Bending Lo contributing to D – Structures	ime devices - - Velocity Mo ye structures - Oscillators - C TIBERS osses - Core a o dispersion - s- Light source	- Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma ce materials - Quant	Diode -I Dutput and cess - Con on - Coaxi - Signal 1 terial Disp um efficio	s of O MPATT Efficie vection al Mag 9 Distorti persion	0 0 0 0 0 0 0 0 0 0 0 0 0 0	es - 0 Electri ent - A 0 Fiber re gui	s - de
Micro TRAF Unit Klystr Admit Electr Unit Attent Intern Disper - LAS Unit	PAT t III rons ttanc ric Fi t IV uatio noda ersior SER o t V	e Gene <u>F</u> Diod - Two e - He eld - V SI on - At l delay n - Bas diodes. F.	ration and solutions ration and rational r	d Amplif TT Diod WAVE lystron A ling - Wa des - Gain DEGRA losses - S odal disp niconduc	TUBES TUBES Amplifier twe Tubes n Conside DATIC Scattering tor physi	s Diode Avalance imetric Do S rs - Refle: s (TWTs) eration - DN IN O g losses - Factors c ics – LEE EIVERS	 Ridely-Watche transit - Tiplevices. ex Klystrons - Slow-Way Magnetron C OPTICAL F Bending Locontributing to D – Structures 	ime devices - - Velocity Mo /e structures - Oscillators - C FIBERS obsses - Core a o dispersion - s- Light source ITAL TRA	- Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma ce materials - Quant	Diode -I butput and cess - Con <u>n - Coaxi</u> - Signal 1 terial Disp um efficie STEM	s of O MPAT 9 Efficie vection al Mag 9 Distorti persion ency an 9	operation Diod Diod ncy - 1 Current netron 0 on in 1 - Waw d LEE	es - 0 Electrent - A 0 Fiber re gui 0 pow	y con Axia S - de ver
Micro TRAF Unit Klystr Admit Electr Unit Attenu Dispe - LAS Unit Physio	PAT PAT t III rons ttanc ric Fi t IV uatio noda ersior SER o t V cal p	e Gene <u>F</u> Diod <u>F</u> Diod <u>F</u> Two - Two - Two e - He eld - V SI SI SI Helay 1 delay 1 - Bas diodes <u>F</u> rincipl	ration and es -BAR MICRO cavity k lix Trave Vave Mo GNAL sorption - Intran ics of set BER C es of pho	d Amplif TT Diod WAVE lystron A ling - Wa des - Gain DEGRA losses - S odal disp niconduc PTICAI todiodes	TUBES TUBES Amplifier twe Tubes on Conside DATIC Scattering ersion - 1 tor physi L RECH - PIN ph	s Diode Avalance imetric Do S rs - Refle: s (TWTs) eration - ON IN O g losses - Factors c ics – LEE EIVERS hoto diod	 Ridely-Watche transit - Tiplevices. ex Klystrons - ex Slow-Waw Magnetron COPTICAL F Bending Locontributing to Contributing to Contributing	ime devices - - Velocity Mo ye structures - Oscillators - C - - IBERS - Sosses - Core a o dispersion - s- Light source - 	Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma ce materials - Quant NSMISSIONSYS es - Photodetector m	Diode -I Dutput and cess - Con n - Coaxi - Signal 1 terial Disp um efficio STEM oise - SN	s of O MPAT 9 Efficie vection al Mag 9 Distorti persion ency an 9 R-Dete	operation Diod Diod ncy - 1 Current netron 0 on in 1 - Waw d LEE 0 ctor re	es - 0 Electric ent - 4 0 Fiber re gui 0 pow 0 espon	s - de ger
Micro TRAF Unit Klystr Admit Electr Unit Attenu Dispe - LAS Unit Physic time -	PAT PAT rons ttanc ric Fi t IV uatio noda ersior SER o t V cal p - Dou	e Gene <u>r</u> Diod <u>r</u> Diodi <u>r</u> Diodi <u></u>	ration and es -BAR /IICRO cavity k lix Trave Vave Mo GNAL sorption - Intran ics of set BER C es of pho- tetero structure	d Amplif TT Diod WAVE lystron A ling - Wa des - Gain DEGRA losses - S odal disp niconduc PTICAI todiodes cture pho	TUBES TUBES Amplifier twe Tubes on Conside DATIO Scattering tor physi L RECH - PIN ph otodiodes	s Diode Avalance umetric Do s - Reflex s (TWTs) eration - DN IN O g losses - Factors c ics - LEE EIVERS hoto diod s - structu	 Ridely-Watche transit - Tiplevices. Ex Klystrons - Slow-Wawt Magnetron COPTICAL F Bending Locontributing to Contributing to Contrin	ime devices - - Velocity Mo ye structures - Oscillators - C IBERS o dispersion - s- Light source ITAL TRA ie photo dioda S APDs -Te	Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma ce materials - Quant NSMISSIONSYS es - Photodetector m nperature effect on	Diode -I Dutput and cess - Con n - Coaxi - Signal 1 terial Disp um efficio STEM oise - SN avalanche	s of O MPAT 9 Efficie vection al Mag 9 Distorti persion ency an 9 R-Dete e gain -	operation Diod Diod ncy - 1 Current netron 0 on in 1 - Wav d LEE 0 ctor ref Funda	es - 0 Electrent - A - 0 Fiber re gui 0 pow 0 espon amen	s - de ver
Micro TRAF Unit Klystr Admit Electr Unit Attent Intern Dispe - LAS Unit Physic time - receiv	vav <u>PAT</u> t III rons ttanc tic Fi t IV uatio noda ersior SER (t V cal p - Dou ver op	e Gene <u>F</u> Diod <u>F</u> Two - Two e - He eld - V SI on - Ab l delay n - Bas diodes F rincipl uble Ha peratio	ration and es -BAR /IICRO cavity k lix Trave /ave Mo GNAL sorption - Intran ics of set // BER C es of phy- etero strun n - Digi	d Amplif TT Diod WAVE lystron A ling - Wa des - Gain DEGRA losses - S odal disp niconduc PTICA todiodes cture pho al signal	TUBES TUBES TUBES Amplifier twe Tubes n Conside DATIO Scattering ersion - 1 tor physi tor physi L RECH - PIN physiodiodes transmis	s Diode Avalance imetric Do s - Reflex s (TWTs) eration - DN IN O g losses - Factors c ics - LEE EIVERS hoto diod s - structu ssion - Er	 Ridely-Watche transit - Tiplevices. Ex Klystrons - Slow-Wawt Magnetron Contributing to Contr	ime devices - - Velocity Mo /e structures - Oscillators - C TIBERS osses - Core a o dispersion - s- Light source ITAL TRA te photo diod S APDs -Te Front end an	Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma ce materials - Quant NSMISSIONSYS es - Photodetector m	Diode -I Dutput and cess - Con n - Coaxi - Signal 1 terial Disp um efficio STEM oise - SN avalanche	s of O MPAT 9 Efficie vection al Mag 9 Distorti persion ency an 9 R-Dete e gain -	operation Diod Diod ncy - 1 Current netron 0 on in 1 - Wav d LEE 0 ctor ref Funda	es - 0 Electrent - A - 0 Fiber re gui 0 pow 0 espon amen	s - de se tal
Micro TRAF Unit Klystr Admit Electr Unit Attent Intern Dispe - LAS Unit Physic time - receiv	vav <u>PAT</u> t III rons ttanc tic Fi t IV uatio noda ersior SER (t V cal p - Dou ver op	e Gene <u>F</u> Diod <u>F</u> Two - Two e - He eld - V SI on - Ab l delay n - Bas diodes F rincipl uble Ha peratio	ration and es -BAR /IICRO cavity k lix Trave /ave Mo GNAL sorption - Intran ics of set // BER C es of phy- etero strun n - Digi	d Amplif TT Diod WAVE lystron A ling - Wa des - Gain DEGRA losses - S odal disp niconduc PTICA todiodes cture pho al signal	TUBES TUBES TUBES Amplifier twe Tubes n Conside DATIO Scattering ersion - 1 tor physi tor physi L RECH - PIN physiodiodes transmis	s Diode Avalance imetric Do s - Reflex s (TWTs) eration - DN IN O g losses - Factors c ics - LEE EIVERS hoto diod s - structu ssion - Er	 Ridely-Watche transit - Tiplevices. Ex Klystrons - Slow-Wawt Magnetron COPTICAL F Bending Locontributing to Contributing to Contrin	ime devices - - Velocity Mo /e structures - Oscillators - C TIBERS osses - Core a o dispersion - s- Light source ITAL TRA te photo diod S APDs -Te Front end an	Introduction -Read odulation - Power C Amplification Pro- ylindrical Magnetro nd Cladding losses Group Delay - Ma ce materials - Quant NSMISSIONSYS es - Photodetector m nperature effect on	Diode -II Putput and cess - Con n - Coaxi - Signal 1 terial Disp um efficio STEM oise - SN avalanche ceiver per	s of O MPAT 9 Efficie vection al Mag 9 Distorti persion ency an 9 R-Dete e gain -	orratic Diod ncy - 1 Current on in 1 - Wav d LEI of LEI ctor re Funda ce - R	ess - 0 Electrit - 4 0 Fiber Fiber o pow 0 0 esspon amen ecciv	s - de ger ger ger ger

Text	Text Books:							
1.	Samuel Y.Liao, "Microwave Devices and Circuits", 3rd Edition, Pearson education, 2008.							
2.	Gerd Keiser, "Optical Fiber Communication", 3rd& 4th Edition, McGraw –Hill International, 2012							
Refe	rence Books:							
1.	R.E. Collin, "Foundations for Microwave Engineering", 2nd Edition, IEEE Press, 2002.							
2.	David M.Pozar, "Microwave Engineering", 2nd Edition, John Wiley & Sons, 2003							
3.	P.A.Rizzi, "Microwave Engineering Passive circuits", PHI							
4.	S.C.Gupta, "Textbook on Optical Fiber Communication and its applications", 2nd Edition, PHI,2012.							
E-Re	eferences:							
1.	https://nptel.ac.in/courses/108101112							
2.	http://nptel.ac.in/courses/113104012/							
3.	http://nptel.ac.in/courses/115102026/							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Explain the active and passive microwave components used in microwavecommunication.	L1					
CO2	Have an in-depth knowledge of microwave generation and amplification.	L2					
CO3	Calculate the degradation in the signal due to losses and dispersion.	L4					

CO4	Explain the various optical sources and optical detectors and their use in the optical communication system.	L5
CO5	Thorough knowledge about optical transmitter and receiver types and design	L3

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	FOI	FO2	105	r04	105	FOO	FO7	r Oo	109	0	1	2	1	2	1303
CO1		2	2	2							1		1	2	1
CO2		3	2	3							2		1	2	1
CO3		2	2	2									2	1	2
CO4		2	2	2							2		2	1	2
CO5		1	2	2							1		1	2	1
Avg		2	2	2.2							1.2		1.4	1.6	1.4
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTEC503	PRINCIPLES OF MANAGE	MENT	S	SEME	STER	V	
PREREQUISITES		CATEGORY	PC	Cr	edit		3
		Hours/Week	L	Т	Р	,	ГН
		Hours/ Week	3	0	0		3
Course Objective	s:						
1 Understand t	the managerial functions like planning, organizing, staffi	ng, leading and contr	olling				
2 Understand	international aspect of management						
3 Understand	the method of applying principles in various managerial	situations.					
Unit I HISTC	DRICAL DEVELOPMENT			9	0	0	9
	gement - Science or Art - Management and Admin						
5	ht - Contribution of Taylor and Fayol - Functions of	6 6		al and e	enviror	nmen	tal
	globally – Strategies to international business - Types of	Business Organizatio	on.				
	INING			9	0	0	9
	- Steps involved in Planning - Objectives - Setting C		of Mana	aging l	by Ob	jectiv	es
	d Planning Premises - Barriers to planning Forecasting -	 Decision-making 					
Unit III ORG	ANISING			9	0	0	9
	- Formal and informal organization - Organization						
	- Line and Staff authority - Benefits and Limitations						
	rocess - Techniques - HRD - ManagerialEffectiveness -	 performance apprais 	sal – Mai				
	CTING			9	0	0	9
	tors - Creativity and Innovation - Harmonizing Obj						
	hy of needs – Motivation theories – Motivational Techn						
	cation – Barriers and Breakdown – Effective Communic	ation – Electronic me	edia in C	ommun	ication	1 —	
Interpersonal Skills.					1 . 1		
	TROLLING			9	0	0	9
	of Controlling - Requirements for effective control -						
	trolling - Use of computers in handling the information						
	Performance - Direct and Preventive Control - Reporting						nd
Liberalization – Inte	rnational Management and Global theory of Managemen	t – Total quality man	agement	(TQM)	princi	ples.	
			Tota	l(45L)	<u>=45 F</u>	<u>erio</u>	ds
Text Books:							
	writz & Heinz Weihrich "Essentials of Management" Ta	ta McGraw Hill 201	5				

1 ext	Books:						
1.	Harold Kooritz& Heinz Weihrich, "Essentials of Management", Tata McGraw-Hill, 2015.						
2.	Joseph L Massie "Essentials of Management", 4th Edition, Prentice Hall of India, (Pearson), 2003						
Reference Books:							
1.	Tripathy PC and Reddy PN, "Principles of Management", Tata McGraw-Hill, 1999.						
2.	Decenzo David, Robbin Stephen A, "Personnel and Human Reasons Management", Prentice Hall ofIndia, 1996						
3.	AF Stomer, Freeman R. E and Daniel R Gilbert," Management,", 6th Edition, Pearson Education, 2004						
4.	Fraidoon Mazda, "Engineering Management", Addison Wesley,2000.						
E-R	eferences:						
1.	https://www.coursera.org/learn/fundamentals-of-management						
2.	https://nptel.ac.in/courses/122108038/						
3.	https://alison.com/course/an-introduction-to-the-principles-of-management						

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Apply the principles of management for all kinds of people in all kinds of organization	L2				
CO2	Understand the managerial functions like planning, organizing, staffing, leading and controlling	L2				
CO3	Gain Basic knowledge on international aspect of management	L2				
CO4	Understand basics of Total Quality Management	L2				
CO5	Improve interpersonal managerial skills	L2				

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	POs	FO2	FUS	104	FOS	100	FU/	FUð	F09	0	1	2	1	2	F305
CO1							2	2	2	-	-	2	1	2	2
CO2							2	3	2	-	2	2	1	2	2
CO3							2	2	2	-	-	2	1	2	2
CO4							2	-	2	-	1	2	1	2	2
CO5							2	3	2	3	2	2	1	2	2
Avg							2	2	2	0.6	1	2	1	2	2
3/2/1=	indicate	s streng	th of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTEC504 ELECTRONIC MEASUREMENTS SEMESTER V PREREOUISITES CATEGORY PC Credit 3 ТΗ L Т Р Hours/Week 3 0 0 3 **Course Objectives:** To Know the basic measurement concepts, units, standards, various types of meters and errors. 1 2 Learn to measure unknown value of components using bridges and understand the concept of various signal generator and analyzers. 3 To gain knowledge on Different types transducers and their usage in the Data Acquisitionsystem 4 To emphasize the need for Data display recording and systems 9 0 9 Unit I **BASIC MEASUREMENTS** 0 Introduction - Characteristics of measurement systems - Static and Dynamic - Errors in Measurements - Calibration and Standards - DC Ammeters and Voltmeters - AC Ammeters and Voltmeters - Multirange - Ohm meter: series Type, Shunt Type – Electronic Multimeter **BRIDGE MEASUREMENT** 9 Unit II 9 0 0 Introduction - DC Bridges and their Applications - Wheatstone Bridge - Kelvin Bridge - AC Bridges and their Applications -Maxwell's Bridge - Hay Bridge - Schering Bridge - Wein Bridge - Wagner ground Connection 9 SIGNAL GENERATOR & ANALYZERS 9 0 0 Unit III Signal Generators: Sine wave generator, Frequency Synthesized Generator, Sweep frequency Generator. Pulse and square wave generators. Function Generators. - Sweep Frequency Generator - Pulse and square wave generator - Function Generators - Signal Analyzers: Wave Analyzers - Harmonic Distortion Analyzers - Spectrum Analyzers. Unit IV TRANSDUCER & DATA ACQUISITION SYSTEMS 9 0 0 9 Classification of Transducers - Variable Resistive transducers - Strain gauges, Thermistor, RTD - Variable Inductive transducers - LVDT, RVDT - Variable Capacitive Transducers - Photo electric transducers, Piezo electric transducers - Thermocouples -Thermistors - Smart / intelligent sensors, Data Acquisition System: Interfacing transducers to Electronics Control and Measuring System. Unit V DATA DISPLAY RECORDING AND SYSTEMS 9 Dual trace CRO - Digital storage and Analog storage oscilloscope. Analog and Digital Recorders and printers. Virtual Instrumentation - Block diagram and architecture - Applications in various fields. Measurement systems applied to Micro and Nanotechnology. Total(45L) =45 Periods

Text	Books:
1.	Albert D.Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 5th
	Edition, PHI, 2011.
2.	A.K. Sawhney, "A Course in Electrical & Electronic Measurements & Instrumentation", Dhanpat Rai and Co, 2010.
Refe	rence Books:
1.	John G. Webster, "Measurement, Instrumentation, and Sensors Handbook", CRC Press. 2014
2.	Robert A.Witte, "Electronic Test Instruments, Analog and Digital Measurements", 2 nd Edition, Pearson Education, 2004.
3.	K. Lal Kishore, "Electronic Measurements and Instrumentations", Pearson Education, 2005.
4.	Deoblin E.O. "Measurement Systems - Application and Design", McGraw Hill, 4th Edition, 2005
E-Re	eferences:
1.	https://nptel.ac.in/courses/108105153
2.	http://bcas.du.ac.in/wp-content/uploads/2020/04/Study-Material-DrAvneesh-Mittal.pdf
3.	http://www.academia.edu/8140873/A_K.Sawhney-

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Discuss about the principles of various measurement techniques and identify its errors	L2						
CO2	Have knowledge on designing and to find the unknown elements in the measuring bridges.	L3						
CO3	To categorize different instruments used for signal generation and analysis.	L2						
CO4	Analyze the transducers and its impact and to understand the function of Data acquisition systems.	L2						
CO5	To have knowledge on Data display and recording Systems.	L1						

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	3	2	1		1								3		2
CO2	3		2	2	1								3	1	2
CO3	3	1		1	2								3	1	2
CO4	3		1	2									3		1
CO5	3	2	1		1								3	2	2
Avg	3	1	1	1	1								3	0.8	1.8
3/2/1=	indicate	es streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium, l	-Low)							

23P	TEC505	VLSI Design and Embedded Sy	stems Laboratory	\$	SEMF	ESTER	R V
PRF	EREQUISITE	S	CATEGORY	PC	Cr	edit	1.5
			Horreway	L	Т	Р	TH
			Hours/Week	0	0	3	3
Cou	rse Objectives						
1	Digital syste	n design using Hardware Description Langua	ge.				
2	To practical	y train the programming concepts using Verile	og HDL and implement in F	FPGA.			
3	Design the I	uilding Blocks of Embedded Systems and sin	nulation tools.				
EXP	PERIMENTS:						
1	Design and	imulate Combinational circuits using Verilog	HDL.				
2	Design and	imulate Sequential circuits using Verilog HD	L.				
3	Design Traf	ic light controller using Verilog HDL.					
4	Study of FP	GA Board.					
5	Implementa	on of ALU/MAC unit in FPGA.					
6	Implementa	on of Flip-Flops in FPGA.					
7	Embedded p	rogram for I/O interfacing using PIC controlle	er				
8	Design a ste	pper motor controller using LCD and keys in I	PIC controller.				
9	Generate 3-	hase PWM signals and demonstrate the utility	of PWM with high bright I	LED ligh	ts usin	g RL 78	3.
10	Measure room	temperature and display the same in a LCD v	with keyboard interaction us	ing RL 7	8		
11	Demonstrate	he usage of watchdog timers and voltage dete	ction facilities of RL78 in a	n applica	tion.		
12	Basic experin	ents using ARM cortex					
					Total (45P)=4	5 Perio

Refe	prences:
1.	Samir Palnitkar: "Verilog HDL" A Guide to Digital Design and Synthesis Second Edition, 2nd Edition, Pearson Education, 2012.
2.	J.Bhaskar, "Verilog HDL Primer" 2nd Edition, 2004.
E-	References:

1.

Course Outco Upon comple	omes: etion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Model a combinational circuit using Verilog HDL.	L2
CO2	Model sequential circuit using Verilog HDL.	L3
CO3	Import the logic modules into FPGA boards.	L3
CO4	Write, debug and compile embedded processors programs for a given Application.	L6
CO5	Implement interrupt control for a given embedded System.	L3

	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3											2	2	
CO2	2	3		2	2								2	3	
CO3	2	3		2	2								2	2	
CO4	2	3		2	2								2	3	2
CO5	2	3		2	2								2	2	
Avg	2	3		1.6	1.6								2	2.4	0.4
	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23PTE	EC601	COMPUTER NETWORKS		S	EMES	TER	VI	
PRER	EQUISITE	S	CATEGORY	PC	Cr	edit		3
			TT / TT I -	L	Т	Р		ТН
			Hours/Week	3	0	0		3
Cour	se Objectiv	es:						
1.	To introdu	e the basic concept in modern data communication and con	nputer networking.					
2.	To introdu	e the students the functions of different layers and in-depth	knowledge of data	ı link laye	er.			
3.	To make st	idents to get familiarized with different protocols and netwo	ork layer compone	nts.				
4.	To introdu	e the basic functions of transport layer and congestion in ne	etworks.					
5.	To underst	nd the concepts of various network Applications and Data	security.					
Unit	t I NETV	VORK FUNDAMENTALS AND PHYSICAL LAY	ER		9	0	0	9
		tworks - Topologies - The OSI reference model - layers			e mode	l – laye	ers a	nd
dutie		ayer: Transmission Media – Guided media & unguided	media - EIA 232,	SONET				
Unit		A LINK LAYER			9	0	0	9
		l Functions: - Framing, Flow control, Error control: CRC,						
-		cess, Controlled access, Channelization - Wired LANs: Eth					802.	5.
		terconnection issues, Interconnection devices: - Repeaters,	Hubs, Routers/swi	tches and		ays.	0	
Unit		WORK LAYER			9	0	0	9
		witching, packet switching, message switching. Internet pr						1P,
VPN. Routir		ting Algorithms - Unicast routing protocol: Distance Vect	tor Routing – Lini	kState Ro	uting –	Multic	ast	
Unit	<u> </u>	NSPORT LAYER			9	0	0	9
		Elements of Transport protocols, Connection management	_ User Datagram	Protocol	-	•	U	<u> </u>
		ol Protocol (TCP) –Congestion Control and Quality of ser						
Unit		LICATION LAYER	((()))	5	9	0	0	9
		ace (DNS) – Electronic mail (SMTP, MIME, POP3, IMA)	P4) - Application	orotocols	WWW	. HTT	• P. F	TP
		twork management protocol: SNMP.	/ II I			,	,	
				Tota	al(45L)	=45 P	erio	ds

Tex	t Books:
1.	Behrouz A. Foruzan, "Data communication and Networking", TMH, 4 th edition, 2014.
2.	James. F. Kurouse & W. Ross, "Computer Networking: A Top down Approach Featuring", Pearson, 2020.
Ref	erence Books:
1.	Larry L.Peterson& Peter S. Davie, "Computer Networks", Harcourt Asia Pvt. Ltd., Second Edition.
2.	Andrew S. Tanenbaum, "Computer Networks", PHI, Fourth Edition, 2003.
3.	An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education
4.	Ajit Pal, "Data Communication and Computer Networks", PHI, 2014.
E-R	leferences:
1.	https://nptel.ac.in/courses/106105183
2.	https://www.mbit.edu.in/wp-content/uploads/2020/05/Computer-Networks-5th-Edition.pdf

	Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the basic concept in modern data communication and different level of layers in the protocol	L2
CO2	Analyze the functions and services of data link layer	L4
CO3	Categorize the functions and services of network layer	L2
CO4	Examine the basic functions of transport layer and congestion in networks	L2
CO5	Analyze the concepts of various network applications and data security	L4

	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	2	1	1		1								2		1
CO2	2	1	2		1								2	1	1
CO3	2	1	1										3	1	2
CO4	3	2	1		2								2		2
CO5	2	1	1		1								1	1	1
Avg	2.2	1.2	1.2		1								2	0.6	1.4
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PT	EC602		SATELLITE COMMUNICATION	N	S	EME	STER	VI	
PREI	REQUI	SITES	:	CATEGORY	PC	Cr	edit		3
					L	Т	Р	r.	ГН
	Digit	tal Corr	munication	Hours/Week	3	0	0		3
Cou	rse Obj	jective							
1.	The go	oal of th	e course is to introduce students to the fundamentals of sa	tellite communication	tion				
2.			em with a sound understanding of how a satellite commune h station to another.	unication system s	uccessful	y trans	fers ir	form	ation
3.			em to examples of applications and tradeoffs that typical the knowledge in design problems.	lly occur in engine	ering sys	tem de	esign, a	and to) ask
Unit	Ι	OVE	RVIEW OF SATELLITE SYSTEMS, ORBITS A	ND LAUNCHIN	IG	9	0	0	9
		MET	HODS						I
First Apog	Law – K	Kepler's Perigee	nency Allocations for Satellite Services – INTELSAT – Second Law – Kepler's Third Law – Definitions of Term Heights – Orbital Perturbations - Local Mean Solar Time OSTATIONARY ORBIT & SPACE SEGMENT	s for Earth -orbitir	ig Satellit	es – Oi			
-	-		nna Look Angels – The Polar Mount Antenna – Limits	of Visibility No	er Coost	-		•	-
Eclip	se of Sa	tellite -	- Sun Transit Outage – Launching Orbits - Power Supply osystem – Transponders - Antenna Subsystem – Morelos	y – Attitude Contr	ol – Stat	ion Ke	eping	– The	ermal
-			TH SEGMENT & SPACE LINK	and Satinex3 – Al	IIK-Saten			0	9
Rece Statio Misa	ive_Only ons - Eq lignmen	y Home uivalen t Losse	e TV Systems – Master Antenna TV System – Communi t Isotropic Radiated Power – Transmission Losses : Free s – Fixed Atmospheric and Ionospheric Losses – Link P - Effects of rain – Combined Uplink and Downlink C/N R	e-Space Transmissi ower Budget Equa	ion – Fee tion – Ca	der Lo trrier-to	_Rece sses –	ive Ea	arth nna
Un	it IV	SATE	CLLITE ACCESS			9	0	0	9
TWT		er oper	assigned FDMA - Demand-Assigned FDMA - SPAD ation - TDMA -On-board signal Processing for TDMA / F						
Un	it V	DBS	& SATELLITE MOBILE AND SPECIALIZED	SERVICES		9	0	0	9
Polar	ization	-Transp	tellite (DBS) Television - Orbital Spacing - Power Ratin onder capacity - Bit rates for digital Television -The t(IDU) – HDTV - Satellite Mobile Services – VSATs – G	Home Receiver C	utdoor U	Jnit(OI	OU)-T	ne Ho	ome
					1	otal (4	5L)=4	is per	10 d S

Text	Books:
1.	Dennis Roddy, Satellite Communications, Tata McGraw-Hill Education Private Limited, fourth edition, 2009
2.	Barry George Evans, Satellite communication systems, 3rd Edition, IET Publications 1999
Refe	rence Books:
1.	Timothy Pratt – Charles Bostian& Jeremy Allmuti, Satellite Communications, John Willy & Sons (Asia) Pvt. Ltd,
2.	Wilbur L. Pritchars Henri G.SuyderHond Robert A.Nelson, Satellite Communication Systems Engineering, Pearson
3.	M.Richharia, Satellite Communication Systems (Design Principles), Macmillan Press Ltd. Second Edition 2003.
4.	Satellite communication engineering By Michael O. Kolawole, CRC Press, 2002.
E-Re	eferences:
1.	http://nptel.ac.in/courses/117105131/
2.	http://nptel.ac.in/courses/106105082/33
3.	https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite-engineering-fall-2003/lecture-notes/

		utcomes: pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped						
CO1	:	Describe the motion of satellite in the orbit and understand orbital effects in communications system	L2						
		erformance.							
CO2	:	Calculate the received carrier power at the input of earth station receiver or satellite transponder.	L3						
CO3	:	Compute the noise power and carrier to noise ratio at the input of earth station or satellite transponder	L3						
CO4	:	Calculate losses and design both up-link and down link	L3						
CO5	:	design domestic satellite system using small earth station	L2						

					(COUR	SE AI	RTICU	JLATI	ON MA	TRIX				
COs/POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO1	PSO2	PSO3
	1														
CO1		2	2	2	1								1	2	1
CO2	2	1	1	2	1								1	2	2
CO3	2	1	1	1	1								1	2	1
CO4	2	1	1	1	1								2	2	1
CO5	1	1	1	1	1								2	1	1
Avg	1.4	1.2	1.2	1.4	1								1.4	1.8	1.2
				3/2/1 -	indica	ates str	ength o	of corre	lation	(3-High,2	2- Mediun	n,1- Low)		

2	3PTEC603	COMMUNICATION SYSTEMS LABORATORY	SEM	ESTE	R VI		
PRER	REQUISITES		CATEGORY	PC	Cre	edit	1.5
				L	Т	Р	ТН
			Hours/Week	0	0	3	3
Cour	se objectives:						.1
	· · ·	ents to understand the basics of analog and digital modulation te	chniques				
2.	To deal with the d	lifferent pulse modulation schemes.					
3.	To simulate differ	rent modulation scheme using suitable tool.					
EXP	ERIMENTS						
1	Generation and de	etection of AM signal					
2.	Generation and de	etection of FM signal					
3.	Pulse Amplitude l	Modulation					
4.	Pulse Width Mod	ulation					
5.	Pulse Position Mo	odulation					
6.	Sampling and reco	onstruction of signals					
7.	Digital Modulatio	n Techniques: ASK,PSK,FSK,QPSK					
8.	Delta and Adaptiv	ve Delta modulation					
9.	Pulse Code Modu	lation					
10.	Time Division Mu	ultiplexing and De multiplexing					
11.	Generation of var	ious line codes.					
12.	Simulation and p	erformance analysis of analog and digital modulation technique	s.				

Total (45P)= 45 Periods

Text Books:

1.	S.Poorna Chandra, B.Sasikala, "Electronics Laboratory Primer", S.Chand& Company Ltd, 2010.
2.	L.K. Maheshwari, M.M.S. Anand, "Laboratory Manual for Introductory Electronics Experiments", New age International (P)
	Limited Publishers, 2010.
3.	Simon Haykin S., "Digital Communications Systems", 3 rd Edition, John Wiley and Sons, 2013.
Refe	rence Books:
1.	Simon Haykins, "Digital Communications" John Wiley, 2017.
2.	Taub& Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.
3.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013
4.	Dennis Roddy, John Coolen,"Electronic Communications", 10th impression, Pearson Prentice Hall, 2013.
E-Re	eferences:
1.	https://umairbfrend.files.wordpress.com/2015/01/analogue-digital-communication-manual august-2015.pdf
2.	https://stannescet.ac.in/cms/staff/qbank/ECE/Lab_Manual/EC8561- COMMUNICATION%20SYSTEM%20LABORATORY-
	2062944779-EC%208461%20communication%20systems%20manual.pdf
3.	www.vlab.co.in/ba-nptel-labs-electronics-and-communications

		Dutcomes: apletion of this course, the students will be able to:	Bloom's Taxonomy Mapped							
CO1	:	Generate and analyse analog and digital modulated signals.	L4							
CO2	:	Sample the given analog signal for various sampling frequency.								
CO3	:	Generate various line codes for digital signals.	L3							
CO4	:	Multiplex and demultiplex digital signals	L3							
CO5	:	Write codes for various analog and digital modulation schemes.	L3							

					CC	OURSE A	ARTICU	LATION	MATR	IX					
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
POs															
CO1	1	2	2	1	2							1	2	2	2
CO2	1	2	2	1	2							1	1	2	2
CO3	1	2	2	1	2							1	2	2	2
CO4	1	2	2	1	2							1	1	2	2
CO5	2	2	2	1	2							1	2	2	2
Avg	2.8	2	2	1	2							1	1.6	2	2
				3/2/1 - i	ndicates	strength	of correl	ation (3-	High,2-	Medium	,1- Low)				

	231	PTEC701	WIRELESS ANI	O MOBILE COMM	UNICATION	S	EMES	TER	VII				
PRER	EQUI	SITES			CATEGORY	PC	Cre	edit		3			
						L	Т	Р	Т	Ή			
Digital	Comm	unication			Hours/Week	3	0	0		3			
Cours	e Obje	ectives:											
1.	To m	ake the students unders	and the basics of wirele	ess and mobile commun	ication								
2.	To ur	derstand the basics and	design if cellular syste	m.									
3.			arious propagation mode		rs used in mobile co	ommuni	cation						
Unit I	nit I INTRODUCTION AND MODERN WIRELESS COMMUNICATION SYSTEMS												
Introdu	ction to	wireless communicat	ons - History and evolu	ition – Mobile radio sv	stem around the w	orld – H	Example	es of	comr	non			
			Trends in cellular rad										
systems	s: 2G		G wireless networks - 4				rk - Wi	reless	netw	/ork			
Unit	II		R CONCEPT:SYSTI		AMENTALS AN	ND	9	0	0	9			
		MODULATION	TECHNIQUES FOF	R MOBILE RADIO									
Freque	ncy reu	se - Channel Assignme	nt strategies - Handoff s	trategies - Interference	and system capacity	y -Trun	king an	d grad	e of				
			acity in cellular systems		ed linear and Const	ant env	elope n	nodula	tion				
techniq	ues: M	ary PSK,M_ary QAM,	M_ary FSK and OFDM	1.									
Unit			PROPAGATION:L				9			9			
			on - Free-space propaga										
			on - Knife-edge diffract			ion mo	del - I	Practic	al Li	nk			
_	_		- Outdoor propagation r							Τ.			
Unit			PROPAGATION:S			1 Const	9		v	9			
			path propagation - Imp multipath channels – T										
			thal Direction of maxim		ing- introduction to	shape i	actors.	Aligu	a				
-	-				9								
Unit		-	DIVERSITY AND (9		0	9			
			g a generic adaptive ec										
			linear equalization - Alg										
			n diversity -Frequency			er - coc	ling: Sp	beech	codin	<u>g</u> –			
vocode	ers - Lr	C-Choosing Speech C	decs for Mobile commu	inication - GSM codec	- USDC codec	-							
						10	tal (45)	L)= 43	peri	ods			
Text B	Books:												
1.		dore S.Rappaport, "W	reless Communications:	Principles and Practice	", 2 nd Edition.", Pe	arson,2)12.						
2.			munications" Student E	•									
Refere				~									
1.			Communications", 2 nd	Edition, 2010.									
2			Applications of GSM" 1										

- 3. V.K. Garg, "IS-95 CDMA and CDMA 2000", Pearson Edition.
- 4.
 S. Haykins, "Communication Systems", 5th Edition, John wiley, 2008.

 E-References:

 1.
 http://www.pdfsdownload.com/download-pdf-for-free/wireless+communication+rappaport
 - 2. https://www.oreilly.com/library/view/wireless-communications-principles/0130422320/
 - 3. <u>https://en.wikipedia.org/wiki/Adaptive_equalizer</u>

		utcomes: eletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Characterize a wireless channel and evolve the system design specifications and understand the difference between wireless compared to wired counterpart.	L2

CO2	:	Design a cellular system, with improved coverage and capacity with the cell structure based	L3
		on the resource availability and traffic demands and able to calculate interference .	
CO3	:	Identify various propagation effects and calculate large scale path loss.	L3
CO4	:	Analyze small scale and multipath fading in mobile environment.	L2
CO5	:	Exploit multiple antenna techniques for capacity/performance gains and design	L2

	COURSE ARTICULATION MATRIX														
COs/POs	PO	РО	PO	PO	РО	РО	РО	PO	PO	PO	PO 11	PO12	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10					
CO1		1	1	2	1								1	2	1
CO2	2	1	2	2	1								1	2	2
CO3	1	1	1	1	1								1	2	1
CO4	1	1	2	1	1								1	2	1
CO5	1	1	1	1	1								1	2	1
Avg	1	1	1.4	1.4	1								1	2	1.2
			3/2/1	- indi	cates s	trength	of cor	relation	1 (3-Hi	gh,2- Me	edium,1- I	Low)			

23	23PTEC702 HIGH SPEED NETWORKS SEMESTER V									
PR	EREQUI	SITES	CATEGORY	PE	Cr	edit	3			
1.	Compute	r Networks	Hours/Week	L	Т	Р	ТН			
	Hours/week 3									
Co	ırse Obje	ctives:								
1.	To under	stand the packet switching, ATM and Frame relay networks.								
2.	To know	the techniques involved to support real-time traffic and congestion contr	ol.							
3.	To be fan	niliar with different levels of quality of service to different applications.								
Uni	it I 🛛 I	NTRODUCTION TO HIGH SPEED NETWORKS			9	0	09			
Cate requ Uni	egories, A uirements – it II wing Analy	 Asynchronous transfer mode: ATM Protocol Architecture, ATM log AL – High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fibre Architecture of 802.11 . CONGESTION AND TRAFFIC MANAGEMENT ysis – Queuing Models – Single Server Queues – Effects of Congestion 	Channel – Wirele –Congestion Contr	ess LA	Ns: a	opplica	ations, 09			
		Control in Packet Switching Networks – Frame Relay Congestion Contro	ol.		0					
-		TCP AND ATM CONGESTION CONTROL			9		0 9			
Alg Attr AB	orithm – V ibutes –Tr R Capacity	http://tt	ongestion control in	n ATM	– Rec	uirem cell fo	ents – rmats,			
Unit IV INTEGRATED AND DIFFERENTIATED SERVICES							09			
	e	rvices Architecture – Approach, Components, Services – Queuing rly Detection – Differentiated Services.	g Discipline: FQ, 1	PS, BR	EFQ, O	GPS,	WFQ			
Uni	it V I	PROTOCOLS FOR QOS SUPPORT			9	0	09			
		s and Characteristics, Data Flow, RSVP operations, Protocol Mecha bel Stacking, Protocol details – RTP – Protocol Architecture, Data Trans			abel 3	Switch	ing –			
			Тс	otal (45	5L)=	45 Pe	riods			

Text	Books:
1.	Warland, Pravin Varaiya, "High performance communication networks", Second Edition, Jean Harcourt Asia Pvt. Ltd, 2001.
2.	William Stallings, "High speed networks and internets", Pearson Education, Second Edition, 2002.
Refe	rence Books:
1.	James F. Kurose, Keith W. Ross, "Computer Networking, A Top-Down Approach Featuring the Internet", Pearson Education, Third Edition, 2011
2.	IrvanPepelnjk, Jim Guichard, Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2, 2003.
3.	Abhijit S. Pandya, Ercan Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press, New York, 2004.
4.	Kaven Pahlavan And Prashant Krishnamoorthy, "Principles Of Wireless Network", Prentice Hall Of India, 2010.
E-R	eferences:
1.	http://freevideolectures.com/Course/2278/Data-Communication/30
2.	http://nptel.ac.in/courses/106105082/30
3.	https://nptel.ac.in/courses/106105183

	Course Outcomes: Upon completion of this course, the students will be able to:E T N				
CO1	Compare ATM, Frame Relay and TCP/IP networks.	L4			
CO2	Understand the concepts of queuing mechanism and congestion control techniques in packet switching and frame relay networks.	L2			
CO3	Analyze the traffic management in TCP and ATM.	L4			
CO4	Be familiar with the integrated and differentiated service architecture.	L1			
CO5	Understand the protocols to support various levels of quality of service to different applications.	L2			

				С	OURS	SE AR	TICU	LATIO	ON M.	ATRIX					
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9		11	12			
C01	2		1	1	2	1					2		1	2	2
CO2	3		1	2	2	2							1	1	1
CO3	2		1	2	1	2							2	2	2
CO4	1		1	1	1	1							1	2	1
CO5	1		1	1	2	1					2		2	2	2
Avg	1.8		1	1.4	1.6	1.4					0.8		1.4	1.8	1.6
		(**	3/2/1 -	indica	tes stre	ngth of	correl	ation (3-High	,2- Mediu	ım,1- L	ow)			

PROFESSIONAL ELECTIVES (PE)

23PTECE60	COMPUTER ARCHITECTURE		SEM	EST	ER V	[
PREREQUI	STIES:	Category	PE	Cr	edit	3
	L Hours/Week					
	3	0	0	3		
Course Obje	ctives:					
	cribe computer architecture concepts and mechanisms related to the	design of modern pro	cessors	men	nories,	and
netwo						
	lerstand various design alternatives and make a compelling quantitation	ive and/or qualitative	argume	nt fo	r why	one
	is superior to the other approaches.					
	strate the fixed point and floating-point arithmetic of ALU operation		r			
	UNDAMENTALS OF QUANTITATIVE DESIGN AND A			9	0 (-
	asses of Computers- Defining Computer Architecture- Trends in Tec					1
	uits-Trends in Cost - Dependability - Measuring, Reporting, and Sum			ntita	tive	
	omputer Design - Putting It All Together: Performance, Price, and Po	ower - Fallacies and F				1
	COMPUTER ARITHMETIC			9	0 (9
	ubtraction of signed numbers - Design of fast adders - multiplication					
	Booth algorithm - Fast multiplication - Bit pair recoding of the multi			Integ	ger	
	ing point numbers - Arithmetic operations on floating point numbers	- Guard bits and trun				
Unit III	PROCESSING UNITS			9	0 (9
	ncepts – Execution of a complete Instruction – Multiple bus organization					
	trol - Pipelining - Basic concepts - Data hazards - Instruction hazard	ds – Influence on Inst	truction	sets -	– Data	path
	ideration – Superscalar operation – Performance considerations.			-		
	MEMORY SYSTEM			9	0 (9
	- semiconductor RAMs, ROMs - Speed, size and cost - Cache mem					
	mizations of Cache Performance - Performance consideration - Virt		y Manag	geme	nt	
	Secondary storage - CD-ROM - DVD_ROM - DVD drive - Hard dr	ive				
	DOMAIN-SPECIFIC ARCHITECTURES			9	0 (
	Guidelines for DSAs - Example Domain: Deep Neural Networks					
	ayer Perceptron - Convolutional Neural Network -Recurrent Neural					
	ng Unit, an Inference Data Center Accelerator -TPU Architectur	re - TPU Instruction	n Set A	rchit	ecture	-ΤΡU
Microarchitectu	e	-	1/457	<u> </u>	- D ·	
		Tot	tal(45L) =4	5 Peri	ods

Text	Books:
1.	John Hennessy, David Patterson, "Computer Architecture A Quantitative Approach",6th Ed, Morgan Kaufmann
	Publishers,2019.
2.	Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization" 5th Ed, McGraw Hill, 2001.
Refer	rence Books:
1.	William Stallings, "Computer Organization and Architecture – Designing for Performance", 10th Edition, Pearson, 2016.
2.	David A. Patterson and John L.Hennessy, "Computer Organization and Design, the hardware / software interface", 5th
	edition, Morgan Kaufmann, Elsevier, 2014.
3.	Caxton C. Foster, "Computer Architecture", 6th Edition, Van Nostrand Reinhold Company.
4.	AndrewS.Tanenbaum,Todd Austin,"Structured Computer Organization", 6th Edition, Pearson, 2013.
E-Re	ferences:
1.	http://nptel.ac.in/courses/106102062/
2.	https://www.coursera.org/learn/comparch/home/week/1

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Recognize the trends followed in designing architecture.	L2
CO2	Illustrate the fixed point and floating-point arithmetic for ALU operation.	L1
CO3	Analyse the pipeline performance considering the hazards by computing clock cycles.	L4

CO4	Differentiate the types of memory and use suitable type for architecture development	L3
CO5	Recommend domain-specific architectures like DNN and TPU for a new application	L3

					COU	RSE A	RTICU	LATIO	N MA	ΓRIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1		2		2									2	1	2
CO2	2		3	2									1		
CO3	1		2										2		2
CO4	2	2	2	2	2								2		3
CO5		2	2		2								2	1	3
Avg	1	1.2	1.8	1.2	0.8								1.8	0.4	2
3/2/1=	/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23PTECE602 MODERN SENSORS AND ITS APPLICATIONS SEMESTER VI									
PREI	REQUISTIES	5:	Category	PE	Cre	edit	3		
				L T					
Hours/Week 3									
Course	e Objectives:								
1.	U U	ious stimuli that are to be measured in real life instrumenta	tion.						
2.	Able to selec	ct the right process or phenomena on which the sensor shou	ld depend on						
3.	Aware of the	e various sensors available for measurement and control ap	plications.						
UNIT	I INTRO	DUCTION TO SENSORS AND TRANSDUCERS	5		9	0	09		
Introdu	ction to sensors	and transducers- Need for sensors in the modern world. D	ifferent fields of sens	sors based	on the	stim	ıli		
		or active and passive sensors. Static and dynamic characteri			order a	sensor	:s —		
		tep, ramp and sinusoidal inputs. Environmental factors and	reliability of sensor	s.					
UNIT		HANICAL SENSORS			9	0	09		
		l systems or mechanical sensors - Displacement - accelerat							
		fluids - stress in solids. Typical sensors - wire and film str	ain gauges, anemom	eters, piez	o elect	ric			
and mag		ccelerometers, potentio metric sensors, LVDT RMAL AND OPTICAL SENSORS			9	0	09		
		nperature – temperature difference – heat quantity. Thermo		-:		0			
		ometry. Optical sensors : light intensity – wavelength and							
		CMOS sensors. Radiation detectors : radiation intensity,							
	Hallide radiatio			eger man	er cour	(8)			
UNIT		NETIC AND ACOUSTIC SENSORS			9	0	09		
		agnetic field, magnetic flux density – magneto resistors, Ha	ll sensors, super con	duction so	uids. A	Acous	tic or		
		y of sound, frequency of sound in various media, various for							
UNII	CV ELEC	TRICAL AND HIGH FREQUENCY SENSORS			9	0	09		
		ammeters, high current sensors, (current transformers), h					High		
frequen	cy sensors like	microwave frequency sensors, wavelength measuring sens							
			,	Total(45	L)=45	Peri	ods		
Text	Books:								
1.	Doebelin, "M	easurement Systems: Application and Design", McGraw H	ill Kogakusha Ltd.						
2.	Julian W. Ga Wiley, 2001	ardner, Vijay K. Varadan, Osama O. Awadelkarim "Micros	sensors, MEMS and	Smart Dev	vices",	New	York:		
Rofor	rence Books:	•							
1		"Sensors – A Comprehensive Sensors", John Wiley.							

-	,	1		,
2	Jocob Fraden."	Handbook of Modern Sens	sors, Physics, Designs,	and Applications", Springer.

1.	Then y Done, Sensors – A comprehensive Sensors , John whey.
2.	Jocob Fraden," Handbook of Modern Sensors, Physics, Designs, and Applications", Springe
3.	Manabendra Bhuyan," Intelligent Instrumentation Principles and Applications", CRC Press.
4.	Randy Frank," Understanding Smart Sensors", Second edition, Artech House.

4.	Randy Frank," Understanding Smart Sensors", Second edition, Artech House.
E-Re	ferences:
1.	https://onlinecourses.nptel.ac.in/noc22_ee50
2.	https://www.youtube.com/watch?v=hmP5CSIendo
3.	https://kanchiuniv.ac.in/wp-content/uploads/2021/05/BMTF183T60-SENSORS-AND-ACTUATORS-1.pdf

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Appreciate the operation of various measuring and control instruments which they encounter in their respective fields.	L2			
CO2	Visualize the sensors and the measuring systems when they have to work in areas of interdisciplinary nature and also think of sensors and sensors systems when for a new situation they encounter in their career	L3			
CO3	Identify and select the right process or phenomena on which the sensor should depend on.	L4			

CO4	Know various stimuli that are to be measured in real life instrumentation.	L3
CO5	Identify the sensors and its applications	L2

COURSE ARTICULATION MATRIX															
COs/	DO1	DOJ	DO2	DO 4	DOS	DOC	DO7	DOO	DOO	PO1	PO1	PO1	PSO	PSO	DCO2
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	PSO3
CO1		1	2	2							2		1	2	1
CO2		1	2	2							2		1	2	1
CO3		2	3	2							2		2	1	2
CO4		2	3	3							2		2	1	2
CO5		1	2	3							1		1	2	1
Avg		1.4	2.4	2.4							1.8		1.4	1.6	1.4
3/2/1 =	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23	PTECE	603	ADVANCED MICROCONTROLL	ADVANCED MICROCONTROLLER						
PRER	PREREQUISTIES: Category PE								3	
				Hours/Week	L	Т	Р		H	
					3	0	0		3	
Cours	se Objec	tives:								
1.	To lear	n microc	controller basics and get exposure to different types of archi	tecture						
2.	To emb	ped and p	program with ARM microcontrollers							
3.	To intr	oduce th	e advanced features in microprocessor and microcontrollers							
Unit l	Unit I HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM 9 0 0 9								9	
CPU A	Architectu	re- Bus (Dperations – Pipelining – Brach predication – floating point	unit- Operating M	odes –F	aging	; —			
Multit	asking – H	Exception	n and Interrupts – Instruction set – addressing modes – Prog	gramming the Penti	um proc	cessor				
Unit l	II H	IIGH P	ERFORMANCE RISC ARCHITECTURE – ARM			9	0	0	9	
			ms- RISC and ARM Design Philosophy–ARM Processor F			SW -				
Pipel	line - Exce	eptions, i	nterrupts and the vector table- ARM Processor Families - A	ARM instruction se	t					
Unit III PROGRAMMING WITH ARM						9	0	0	9	
		humb Ins	struction set – ARM Assembly Language Programming – C	programming – O	ptimizir	ng AR	Μ			
Assemb	oly Code.									
Unit l	IV A	RM ST	M32F4 and MOTOROLA 68HC11 MICROCONT	ROLLERS		9	0	0	9	
	STM32F4 Microcontroller- CPU- Memory- input and output ports – Modules- Assembly language – the STM32F4 Board.									
		C11 Inst	ruction set -addressing modes - operating modes- Interrupt	system- RTC-Seria	l Comn	nunica	ation			
Inter						9				
Unit V	it V PIC MICROCONTROLLER							0	9	
CPU A	Architectu	re – Inst	ruction set - interrupts- Timers- I2C Interfacing -UART-	A/D Converter –PV	VM and	intro	ductio	on to)	
C-Con	npilers.									

Total(45L)=45 Periods

Text	Books:					
1.	Andrew N.Sloss, Dominic Symes and Chris Wright "ARM System Developer"s Guide : Designing and Optimizing					
1.	System Software", First edition, Morgan Kaufmann Publishers, 2004.					
2.	Cem Unsalan, Huseyin Deniz Gurhan and Mehmet Erkin Yucel, ""Embedded system design with ARM Cortex-M					
۷.	Microcontrollers", Springer Nature Switzerland,2022.					
Refe	rence Books:					
1.	Steve Furber, "ARM System –On –Chip architecture", Addision Wesley, 2000.					
2.	Ying Bai, "Practical Microcontroller Engineering with ARM Technology", Wiley, 2015.					
3.	Nicolas K. Haddad, "Microcontroller System Design Using PIC18F Processors', IGI Global, 2017.					
4.	Gene .H.Miller, "Micro Computer Engineering", Pearson Education , 2004.					
E-Re	ferences:					
1.	https://www.mouser.in/new/semiconductors/embedded-processors-controllers/microcontrollers-mcu/n-a85i8					
2.	https://www.coursera.org/learn/embedded-software-hardware					

Course Ou Upon com	Bloom's Taxonomy Mapped	
CO1	L2	
CO2	Analyse the architecture of ARM STM32F4 and MOTOROLA 68HC11 Microcontrollers.	L4
CO3	Develop programs for ARM for performing a real world task.	L3
CO4	Use suitable addressing mode for a problem.	L3
CO5	Interface PIC microcontrollers with external peripherals	L3

					COU	JRSE A	RTICU	LATIC	N MA	FRIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1		2		2									3		2
CO2		2				1									1
CO3	2			3									2		3
CO4		3		2									2		1
CO5		3		1									2		2
Avg	0.4	2		1.6		0.2							1.8		1.8
3/2/1=	/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23PTECE604	INTERNET OF THINGS		SEME	STER	R VI		
PREREQUISTIES:		Category	PE	Cre	edit		3
		Hours/Week	L 3	T 0	P 0		C 3
Course Objectives:			3	U	U		<u> </u>
	he vision of M2M to IOT.						
2. To gain an unde	erstanding of IOT market perspective.						
0	wledge on IoT Technology Fundamentals and application	IS					
4. To build small	system using Raspberry Pi.						
Unit I M2M TO	loT – The Vision			9	0	0	9
Introduction - From M2	M to IoT- M2M towards IoT: M2M Communication - Th	e global context - A	use case	examp	ole –		
Differing Characteristics							
	oT – a Market Perspective			9	0	0	9
	nitions - M2M Value Chains - IoT Value Chains - An emo						
	l value chain and global information monopolies - M2M				-		
considerations.	Main design principles and needed capabilities - An IoT	architecture outline	e - Standar	as			
	nology Fundamentals			9	0	0	9
IoT Enabling technologie	s – IoT levels and deployment templates - Devices and ga	ateways - Data man	agement -	Busin	ess		
	ning as a Service (XaaS) - M2M and IoT Analytics.						
	oT with Hardware Platforms			9	0	0	9
	ign using Python -IoT Physical Devices and End Point		aspberry F	Pi - Int	erfac	es –	-
<u> </u>	devices - IoT Reference Model - Real World Design Co	nstraints.					
	Cases and Applications			9	0	0	9
	atic lighting-Home intrusion detection- Cities-Smart pa						
• •	nitoring-Forest Fire Detection- Agriculture- Smart irri	-		-			
Introduction - Case study	(Phase one) : Commercial building automation today - C	Case study (Phase ty	vo) - Con	nmercia	al bui	ildin	g
automation in the future.							
		r	Fotal(45)	L)=45	Per	iod	s

Text	Books:
	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David
1.	Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st
	Edition, Academic Press, 2014.
2.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015
Refe	rence Books:
1.	Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to the smart grid
	and building automation', John Wiley & amp; Sons, 2012.
2.	Francis daCosta, "Rethinking the Internet of Things : A Scalable Approach to Connecting Everything", 1st Edition,
	Apress Publications, 2013
3.	HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2010.
4.	FabriceTheoleyr, Ai-Chun Pang, 'Internet of Things and M2M Communications', River Publishers, 2013.
E-Re	ferences:
1.	https://nptel.ac.in/courses/106105166
2.	https://nptel.ac.in/courses/108108098
3.	https://onlineitguru.com/IoT-online-training.html

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the vision of IoT from a global context.	L2
CO2	Determine the Market perspective of IoT.	L1
CO3	Understand the IoT technology fundamentals.	L2

CO4	Build small system using Raspberry Pi.	L3
CO5	Analyse applications of IoT and case studies	L4

COUR	SE AR	FICUL	ATION	MATR	IX										
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	105	104	105	100	107	100	109	0	1	2	1	2	1305
CO1		1			2										
CO2	2	2	2	2	2							1	1		
CO3	2	2	2	2	2							1	1		
CO4	2	2	2	2	2						2	2	2		
CO5	2	2	2	2	2						2		2		2
Avg	1.6	1.8	1.6	1.6	2						0.8	0.8	1.2		0.4
3/2/1=	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23PTECE605	NANO ELECTRONICS		SE	MES	STER	VI
PREREQUISTIES:		Category	PE	Cr	edit	3
		Hours/Week	L	Т	Р	TH
		Hours/ week	3	0	0	3
Course Objectives	:					
1. To provide a	broad view of the nascent field of nanoscience and nanotechnol	ogy to undergraduates				
2. To explore th	e basics of nanomaterial synthesis and characterization					
3. To introduce	the applications of nanotechnology.					
Unit I INTRO	DUCTION TO NANO TECHNOLOGY		9	0	0	9
	rds biomolecule electronics - Particles and waves - Wave-par					
lattices: Bonding in	e mechanics of particles: Atoms and atomic orbitals Materials crystals- Electron energy bands- Semiconductor heterostru ganic-organic heterostructures.					
	AMENTALS OF NANOELECTRONICS		9	0	0	9
	devices Requirements - dynamic properties - threshold gates;	physical limits to con	nputat	ions;	conce	
	cations - two terminal devices - field effect devices - coulon					
	antum computing – DNA computer; performance of information			oinary	v opera	tions,
	e processing capability of biological neurons – performance est	mation for the human	brain.	0		0
	O PROPERTIES		<u>9</u>	0	0	9
Layered Structures-Or	cs-Electronic Properties and Quantum Effects-Magneto electr ganic Molecules – Electronic Structures, Properties, and Reac Circuit and System Design Analysis by Diffraction and Fluoresc	tions-Neurons – The N				
Unit IV NANO	STRUCTURE DEVICES		9	0	0	9
Electron transport in se	miconductors and nanostructures- Time and length scales of the	e electrons in solids- St	tatistic	s of t	he ele	ctrons
traditional Low-dimen	ctures- Density of states of electrons in nanostructures- Electrons in quantum wires- Electrons in quantum wires- Electrons in quand-effect transistors- Single-electron-transfer devices- Potentia	ntum dots- Nanostruct	ure de	vices	- Reso	onant-
	ECULAR ELECTRONICS		9	0	0	9
Electrodes & contacts	- functions - molecular electronic devices - first test systems	s-simulation and circu	uit des	ign -	- fabri	cation;
Future applications: M	EMS - robots - random access memory - mass storage devices.					
		Tota	al(451	L)= 4	5 Peri	iods
Text Books:		·	- ·		Ŧ	
	Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduct		: Scier	ice, l	lano	
	Engineering, and Applications", Cambridge University Press 201 "Lessons from Nano electronics: A New Perspective on Transp		2012			
Reference Books:	Lessons from Nano electronics. A New Perspective on Transp		2012.			
	anson, "Fundamentals of Nano electronics", Pearson 2009.					
Ū.	oli; Rosei, Federico (Eds.), "Nano electronics and Photonics", S	nringer 2008				
	oman, Daniela Dragoman, "Nano electronics: principles and dev	1 0				
	Peter Glösekötter, Jan Dienstuhl, "Nano electronics and Nano sy				ilar an	d
Quantum De	vices", Springer 2004		5 10 101		11a1 a11	u
E-References:	4	L				
-	kth.se/social/upload/54062f97f2765416cecdfd74/HT14-IM2655	-	to	0.01	tuoria	-
spring-2010/1	w.ups.edu.ec/courses/electrical-engineering-and-computer-scien readings/MIT6 701S10 notes.pdf	ce/o-/01-introduction-	io-nan	oelec	tronic	<u>8-</u>
3. <u>https://nanoh</u>	ub.org/resources/8340/supportingdocs					
Course Outcomes:				oom'		
	f this course, the students will be able to:			xono ippec		

		11140000
CO1	To understand the basics of nanotechnology and different fabrications methods.	L2
CO2	To understand the behaviour of nanomaterials and related structures.	L1
CO3	To analyze and design nanostructure devices and logic circuits.	L4

CO4	To discuss applications and specific properties of nanomaterials.	L3
CO5	To know nanoelectronics holds the capacity for mass production of high-quality nanodevices.	L2

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	FUI	r02	105	r04	105 100 107 10		r Uo	109	0	1	2	1	2	1303	
CO1	3	2	-	2	-	2		2					1		1
CO2			3	-		2		1						2	
CO3	2	3	3	2											2
CO4	1			-	2		3						1		
CO5	2	3	3	2		2		2							1
Avg															
3/2/1=	2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23	BPTE(CE606	ARTIFICIAL INTELLIGENCE AND M LEARNING	IACHINE	SEN	I				
PRER	EQUI	STIES:		Category	PE	Cre	dit	3	3	
				Hours/Week	L	Т	Р	TI	H	
				110015/ WEEK	3	0	0	3		
Cour	se Ob	jectives:								
1.	Тор	provide a str	ong foundation of fundamental concepts in Artificial Intel	lligence.						
2.	Тое	enable the st	udent to apply these techniques in applications which invo	olve perception, rea	asoning	and lea	rning.			
3.	Тое	enable Probl	em-solving through various searching techniques.							
Unit	Ι	INTROD	UCTION TO AI AND PRODUCTION SYSTEMS	5		9	0	0	9	
			em formulation - Problem Definition - Production syste							
			- Production system characteristics - Specialized prod							
			hing - Indexing and Heuristic functions - Hill Climbing		d Breath	n first	- Con	strain	its	
			orithms - Measure of performance and analysis of search	algorithms.			0	0		
Unit			SENTATION OF KNOWLEDGE			9	0	0	9	
			lge representation - Knowledge representation using Pred							
			cdicate calculus - Knowledge representation using other lo	ogic -Structured rep	oresenta		knowl	edge		
Unit			LEDGE INFERENCE			9	0	0	9	
			n - Production based system - Frame based system - Infer							
			Fuzzy reasoning - Certainty factors - Bayesian Theory - B	ayesian Network -	Dempst		ater th			
Unit			NG AND MACHINE LEARNING			9	0	0	9	
			stems - Strips - Advanced plan generation systems - K str	rips - Strategic expl	lanation	s- Why	, Why	not		
			Learning - Machine learning - Adaptive Learning.							
Unit	•		SYSTEMS			9	0	0	9	
-			ecture of expert systems - Roles of expert systems - I ert systems – MYCIN - DART - XOON - Expert systems	0 1	sition –	Meta	knowl	edge	-	
		v1 ···· ··· ··· ··· ··· ··· ··· ··· ···	,							

Total(45L) =45 Periods

Text	Books:
1.	Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, Pearson Education /
	Prentice Hall of India, 2010.
2.	Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 2010.
Refe	rence Books:
1.	Ethem Alpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine Learning series)", The MIT
	Press; Second edition, 2009.
2.	Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006.
3.	David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Agents", Cambridge
	University Press, 2010.
4.	"Machine Learning" by Rajiv Chopra, Khanna Publishing; First edition, 2018.
E-Re	ferences:
1.	https://www.coursera.org/learn/machine-learning
2.	https://www.coursera.org/courses?query=artificial%20intelligence
3.	https://www.udemy.com/machine-learning-course-with-python/

I

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	Provides a basic exposition to the goals and methods of Artificial Intelligence	L1							
CO2	Study of the design of intelligent computational agents	L2							
CO3	The knowledge acquired through learning can be used both for problem solving and for reasoning planning, natural language understanding, computer vision, automatic programming and machine learning.	L3							
CO4	Implement various expert system	L6							

CO5	To take of projects in the domain
-----	-----------------------------------

COURSE ARTICULATION MATRIX															
COs/	DO1	PO2	DO2	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	Ds PO1	PO2	PO3	P04	POS	PU0	rU/	108	P09	0	1	2	1	2	P305
CO1	2	1	1	-	-	-	-	-	-	-	-	-	2	1	1
CO2	2	2	1	2	-	-	-	-	-	-	-	-	2	2	1
CO3	2	3	1	2	3	-	-	-	-	-	-	-	2	3	1
CO4	2	-	2	2	3	2	-	-	-	-	-	-	2	-	2
CO5	2	-	2	2	3	2	-	-	-	-	-	-	2	-	2
Avg	2	1.2	1.4	1.6	1.8	0.8							2	1.2	1.4
3/2/1=	indicate	s streng	th of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

L6

ARTIFICIAL NEURAL NETWORK SEMESTER VI **23PTECE607 PREREQUISTIES:** Category 3 PE Credit L Т Р ΤН Hours/Week 3 0 0 3 **Course Objectives:** To provide a strong foundation of fundamental concepts in Artificial Neural Network 1. 2. To get into various applications in signal and image processing and pattern recognition. To understand testing, training, learning and various error functions. 3. Unit I **INTRODUCTION** 9 0 0 9 Human Brain, Models of a Neuron, Neural networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial Intelligence and Neural Networks. Learning process 1 - Error Correction learning, Memory based learning, Hebbian learning. LEARNING PROCESS AND SINGLE LAYER PERCEPTRONS 9 0 0 9 Unit II Learning process 2: Competitive, Boltzmann learning, Credit Assignment Problem, Memory, Adaption, Statistical nature of the learning process. SINGLE LAYER PERCEPTRONS – Adaptive filtering problem, Unconstrained Organization Techniques, Linear least square filters, least mean square algorithm, learning curves, Learning rate annealing techniques, perceptron, perceptron – convergence theorem, Relation between perceptron and Bayes classifier for a Gaussian Environment THE MULTILAYER PERCEPTRON 0 0 9 Unit III 9 Feed-forward network mappings, Threshold units, Sigmoidal units, weight-space symmetries, higher order networks, Kolmogorov's theorem, Error back propagation, The Jacobian matrix, The Hessian matrix. **RADIAL BASIS FUNCTIONS AND ERROR FUNCTIONS** 9 Unit IV 9 0 0 Radial Basis Functions - Exact interpolation, Radial basis function networks, Network training, Radial basis function networks for classification, Comparison with the multi-layer perceptron, Basis function optimization. Error Functions - Sumof-squares error, modelling conditional distributions, Estimating posterior probabilities, Sum-of-squares for classification. Unit V SELF ORGANIZATION MAPS Q 0 0 9 Two basic feature mapping models, Self-organization map, SOM algorithm, properties of feature map, computer simulations, learning vector quantization, Adaptive pattern classification, Hierarchical Vector quantizer, contextual Maps Total(45L)=45 Periods

Text	Text Books:								
1.	Simon Haykin, "Neural networks A comprehensive foundations", Pearson Education 2nd Edition 2004.								
2.	Cristopher M. Bishop, "Neural Networks for pattern recognition", Clarendon Press, Oxford, 2005.								
Reference Books:									
1.	B.Vegnanarayana," Artificial neural networks", Prentice Hall of India, 2006.								
2.	Simon Haykin, "Neural networks and learning systems", Pearson Education 3rd Edition 2016								
3.	James A Freeman, David M S Kapura," Neural networks" Pearson Education 2004								
4.	Kevin L. Priddy, Paul E.Keller, "Artificial neural networks an introduction", SPIE Press, 2005.								
E-Re	ferences:								
1.	https://towardsdatascience.com/an-introduction-to-artificial-neural-networks-5d2e108ff2c3								
2.	https://en.wikipedia.org/wiki/Artificial neural network								
3.	https://www.analyticsvidhya.com/blog/2021/07/understanding-the-basics-of-artificial-neural-network-ann/								

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	Understand the basic models of artificial neuron.	L2							
CO2	Gain knowledge on learning process in neural networks and design single layer perceptron.	L1							
CO3	Design multi-layer perceptron and back propagation networks.	L3							
CO4	Find solutions to complex problems using RBF networks and SOM	L3							

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	, POI	FO2	105	104	FUS	FU0	rU/	100	10)	0	1	2	1	2	1303
CO1	2	1	1	-	-	1	-	-	-	-	-	-	2	2	2
CO2	2	2	1	2	-	2	-	-	-	-	-	-	2	2	2
CO3	2	2	1	2	3	-	-	-	-	-	-	-	2	2	2
CO4	2	1	2	2	3	-	-	-	-	-	-	-	2	2	2
CO5	2	1	2	2	3	2	-	-	-	-	-	-	2	2	2
Avg	2	1.4	1.4	1.2	1.8	1	-	-	-	-	-	-	2	2	2
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

81

L3

23	SE	MES	STEI	R VI	ſ							
		STIES:	DIGITAL IMAGE PROCESSIN	Category	PE	T	Credi		3			
					L]		Р				
Digita	l Signal	Processing	5 2	Hours/Week	3	0)	0	3			
Cour	se Obj	ectives:										
1	1 To study the fundamentals and mathematical transforms necessary for image processing.											
2												
3	To st	tudy the im	age segmentation, representation and compression proced	ures.								
Unit 1	[]		9	0	0	9						
Two d	Two dimensional signals and systems - Mathematical preliminaries-Elements of Digital Image Processing System - Structure											
	of the human eye - Image formation and contrast sensitivity - Sampling and Quantization - Neighbours of pixel – Distance											
	measures – Image processing applications.											
Unit II IMAGE TRANSFORMS									9			
			ansform - Discrete Fourier transform - Properties of DFT		Islatio	ı, Pe	riodic	city,				
Rotati	on, Ave		- Discrete Cosine Transform - Properties - Haar Transfo	rm.								
Unit			ENHANCEMENT AND RESTORATION			9	0	0	9			
			main - Histogram Equalization technique - Spatial Filterin									
-	-		ncement in frequency domain - Homomorphic filtering - I	-	Degra	idati	on me	odel -				
Noise n			tering - Unconstrained and constrained Restoration method	ods.								
Unit	IV	IMAGE	SEGMENTATION AND REPRESENTATION			9	0	0	9			
			ctions - Gradient operators - Thresholding – Region-Orier									
scheme	s: chain	codes - Po	lygon approximation - Boundary descriptors: Simple desc	criptors - Shape nur	nbers H	Fouri	er					
descript												
Unit			COMPRESSION			9	0	0	9			
			sychovisual redundancies - Fidelity criteria - Image Con						ing –			
Bit plan	Bit plane coding – Lossless and Lossy Predictive coding – Transform coding techniques – Image compression standards.											
				Т	otal(4	5L)	=45	Perio	ods			

Text	Books:								
1.	Rafael C Gonzalez and Richard E Woods, Digital Image Processing, 4th Edition - Pearson, 2018.								
2.	Jayaraman S, Esakkirajan S and Veerakumar T, Digital Image Processing, Tata McGraw Hill, New Delhi, 2017.								
Reference Books:									
1.	Kenneth R Castleman, Digital Image Processing, Prentice Hall, New Delhi, 2008.								
2.	Sid Ahmed M A, Image Processing Theory, Algorithm and Architectures, McGraw-Hill, New Delhi, 1995								
3.	Rafael C Gonzalez, Richard E.woods and Steven L. Eddins, Digital Image Processing Using MATLAB, 2 nd Edition,								
	Tata McGraw Hill, New Delhi, 2017.								
4.	Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis, and Machine Vision, Brooks/Cole,								
	Singapore, 2008.								
E-Re	ferences:								
1.	https://nptel.ac.in/courses/117105135								
2.	https://nptel.ac.in/courses/117105079								
3.	https://www.youtube.com/watch?v=uvXTZxSzdMk								

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Know and understand the concepts of digital image processing.	L2					
CO2	Analyze various images transforms.	L4					
CO3	Demonstrate the understanding of image enhancement and restoration algorithms.	L3					
CO4	Interpret image segmentation and representation techniques.	L3					

	CO5	Categorize various compression techniques and Interpret Image compression standards.	L4
--	-----	--	----

	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O 3
CO1	2			1	2								1		1
CO2	3			2	2								2		1
CO3	3	2		3	2								2	1	1
CO4	3	2		3	2								1	1	1
CO5	3	2	2	3	2								2	1	1
Avg	2.8	1.2	0.4	2.4	2								1.6	0.6	1
3/2/1=ind	icates s	trength	of corre	lation (3-High.	2-Medi	um.1-L	ow)	•	•	•	•	•		

	23PTECE702	SOFTWARE DEFINED RADIO)	SEN	IEST	ESTER VII								
PRER	EQUISTIES:		Category	PE	Cre	Credit 3 F P 7								
				L T P										
			Hours/Week —		0	0	3							
Cours	se Objectives:													
1.	To understand the e	volving software defined radio and cognitive radio techni	ques and their esser	ntial fun	ctiona	lities								
2.	To study the basic a	rchitecture and standard for cognitive radio												
3.	To expose the stude	ent to evolving applications and advanced features of cogn	itive radio											
Unit l	I INTRODUC	TION TO SOFTWARE DEFINED RADIO		9 0 0 9										
coding		nation rate, classification of codes, Kraft McMillan inequa ended Huffman coding - Joint and conditional entropies, N pacity.												
Unit l	II SDR ARCH	ITECTURE			9 0	0	9							
		ftware radio, basic SDR, hardware architecture, Computationent interfaces, interface topologies among plug and play		sources,	softw	are								
Unit l	II INTRODU	CTION TO COGNITIVE RADIOS			9 0	0	9							
	g radio self-aware, cogr es, Artificial Intelligenc	itive techniques – position awareness, environment aware e Techniques.	eness in cognitive ra	adios, op	otimiz	ation o	f radio							
Unit l	IV COGNITIV	E RADIO ARCHITECTURE			9 0	0	9							
		components and design rules, Cognition cycle - orient, pl s, Building the Cognitive Radio Architecture on Software				nce								
Unit V	V ADVANCE	D TOPICS IN COGNITIVE RADIO		9	9 0 0 9									
		in cognitive radios, auction based spectrum markets in o to for Internet of Things.	cognitive radio net	works, p	oublic	safety	and							
	, . 8	0	Л	`ntal(4	5L)-4	15 Per	shoir							

Text B	Books:
1.	JosephMitolaIII,"Software Radio Architecture: Object-Oriented Approaches to Wireless System Engineering", John Wiley
	& Sons Ltd. 2000
2.	Huseyin Arslan (Ed.), -Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, 2007.
Refere	ence Books:
1.	HasariCelebi, HuseyinArslan, "Enabling Location and Environment Awareness in Cognitive Radios", Elsevier Computer
	Communications, Jan 2008.
2.	Markus Dillinger, KambizMadani, Nancy Alonistioti, "Software Defined Radio", John Wiley, 2003.
3.	Kwang-Cheng Chen, Ramjee Prasad, — Cognitive Radio Networksl, John Wiley and Sons, 2009.
4.	Alexander M. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio Communication and Networks", Elsevier,
	2010.
E-Refe	erences:
1.	https://www.rcet.org.in/uploads/files/LectureNotes/ece/S7/cognitive%20radio/UNIT%201%20notes.pdf
2.	https://www.rcet.org.in/uploads/files/LectureNotes/ece/S7/cognitive%20radio/UNIT%20II%20notes.pdf
3.	https://www.rcet.org.in/uploads/files/LectureNotes/ece/S7/cognitive%20radio/UNIT%20V%20notes.pdf

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Gain knowledge on the design principles on software defined radio and cognitive radio	L2					
CO2	Develop the ability to design and implement algorithms for cognitive radio spectrum sensing and dynamic spectrum access	L1					
CO3	Gain knowledge and understanding of software defined radio architecture.	L2					
CO4	Apply the knowledge of advanced features of cognitive radio for real world applications	L3					

					COU	JRSE A	RTICU	LATIO	N MAT	FRIX					
COs/	DO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	PO1	PO2	P05	P04	POS	PU0	P07	PU8	P09	0	1	2	1	2	P305
CO1	3		2	2	2	2		1					2	1	
CO2	3	3	3			2	2	1					1		2
CO3	2	3		2	2	3			2					2	
CO4	1			3	1		3						1		
CO5	3	3	2	2		1		3							1
Avg															
3/2/1=	indicate	s streng	th of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTECE703ROBOTICSSEMESTER VII											
PRERE	EQUISTIES:			Category	PE		Cree	dit	3		
				Hours/Week	L		Т	Р	TH		
				Hours/ week	3		0	0	3		
Course	Course Objectives:										
1.	To understand	l the b	asic concepts associated with the design, functioning, a	pplications and soci	al aspe	ects of	f rob	ots			
2.			electrical drive systems and sensors used in robotics for								
		ics, d	namics through different methodologies and study vari	ous design aspects	of robo	t arm	man	ipulat	or and		
	end-effector										
3.			ous motion planning techniques and the associated contr	ol architecture and	to impl	lemer	nt of .	AI and	1		
			epts of robotics								
Unit I			ON FOR BEGINNERS			9	0	0	9		
			inition, anatomy, types, classification, specification and								
			ms of the society, future of mankind and automation-et		nal scei	nario	local	and			
			obot research platform and industrial serial arm manipu	lator		0		•	0		
Unit I			BLOCKS OF A ROBOT	0 11 11 1		9	0	0	9		
			Servo, Stepper; specification, drives for motors - speed								
			, direct drives, non-traditional actuators; Sensors for loc l unknown environments – optical, inertial, thermal, che								
			and actuators for maze solving robot and self driving c		uller co		II SEI	18018,			
Unit I			CS, DYNAMICS AND DESIGN OF ROBOTS			9	0	0	9		
	EFFEC			a END-		,	U	v	,		
Robot ki			approach for 2R, 3R manipulators, homogenous transfor	mation using D_H	renrese	ntati	on ki	inema	tics of		
			for 2R robot dynamics; Mechanical design aspects of a								
	d design case stu		for 21010000 dynamics, meenaneur design aspeets of a	210 manipulation, +		ma e	11000	01 00			
Unit I			N, PATH PLANNING AND CONTROL ARC	HITECTURE		9	0	0	9		
Mapping			A, Path planning for serial manipulators; types of control		rtesian	cont	rol, F	Force			
			e control, Behaviour based control, application of Neur								
algorithn	algorithms for navigation problems, programming methodologies of a robot.										
Unit V			HER RESEARCH TRENDS IN ROBOTICS			9	0	0	9		
			ning - AI, Expert systems; Tele-robotics and Virtua	l Reality, Micro &	& Nan	orobo	ots, U	Jnmar	ined		
vehicle	s, Cognitive robo	otics, l	Evolutionary robotics, Humanoids								
					Total	(45L	.)=4	5 Peri	iods		

Text B	Books:
1.	Saeed. B. Niku, Introduction to Robotics, Analysis, system, Applications, Pearson educations, 2002
2.	Roland Siegwart, Illah Reza Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT Press, 2011
Refere	ence Books:
1.	Richard David Klafter, Thomas A. Chmielewski, Michael Negin, Robotic engineering: an integrated approach, Prentice Hall, 1989
2.	Craig, J. J., Introduction to Robotics: Mechanics and Control, 2nd Edition, Addison-Wesley, 1989.
3.	K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics: Control, Sensing, Vision and Intelligence, McGraw-Hill, 1987.
4.	Wesley E Snyder R, Industrial Robots, Computer Interfacing and Control, Prentice Hall International Edition, 1988.
E-Ref	erences:
1.	https://www.edx.org/learn/robotics
2.	https://www.learnrobotics.org/blog/learn-robotics-guide/
3.	https://www.javatpoint.com/robotics-tutorial

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the concepts of industrial robots in terms of classification, specifications and coordinate systems, along with the need and application of robots & automation	L1
CO2	Examine different sensors and actuators for applications like maze solving and self driving cars.	L4

CO3		Design a 2R robot & an end-effector and solve the kinematics and dynamics of motion for robots.								L6					
CO4		Explain navigation and path planning techniques along with the control architectures adopted for robot motion planning								for	L1				
CO5		Describe	e the impa	act and p	rogress i	n AI and	l other re	esearch t	rends in	the field	of robo	tics		L3	
					COU	JRSE A	RTICU	LATIC	N MAT	ΓRIX					
COs/ POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	2	1	1	-	1	1	-	-	-	-	-	-	2	2	2
CO2	2	2	1	2	2	2	-	-	-	-	-	-	2	2	2
CO3	2	2	1	2	3	-	-	-	-	-	-	-	2	2	2
CO4	3	1	2	2	3	-	-	-	-	-	-	-	2	2	2
CO5	3	1	2	2	3	2	-	-	-	-	-	-	2	2	2
Avg	2.4	1.4 1.4 1.6 2.4 1 2 2 2										2			
3/2/1=	indica	ites strer	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23P11	ECE704		WI	RELESS	S NETWO	ORKS		SEM	SEMESTER VII					
PREREQUI	STIES:						Category	PE	Cre	edit	3			
								L	Т	P	T	H		
							Hours/Week	3	0	0	3			
Course Obj	ectives:													
Ŭ	understand the	concept about V	Wireless net	works, pro	otocol stac	k and st	andards							
2 To	understand and	analyse the net	work layer s	solutions f	for Wireles	ss netwo	rks							
3 To	study about fun	damentals of 3	G Services,	its protoco	ols and app	plication	S							
4 To	have in depth k	nowledge on in	ternetworki	ng of WL	AN and W	WAN								
5 To	learn about evo	lution of 4G Ne	etworks, its a	architectu	re and app	lications	5							
Unit I	WIRELESS	LAN							9	0	0	(
Introduction-W	/LAN technolog	gies: - IEEE802	2.11: System	architect	ure, protoc	col archi	tecture, 802.11b,	802.11a -	Hiper I	LAN:				
	N, HiperLAN2	– Bluetooth: Ar	chitecture, V	WPAN – I	IEEE 802.	15.4, W	ireless USB, Zigl	ee, 6LoW	PAN, V	Virele	SS			
HART														
Unit II		NETWORK I								0	0	(
							lation, IPV6-Net			T				
internet- Mobil CoAP	le IP session ini	tiation protocol	- mobile ad	-hoc netw	ork: Rout	ing: Des	tination Sequenc	e distance	vector,	101:				
Unit III	3G OVER	7112337							0	0	0			
			notwork III	ITS Coro	natural	\ rabitaat	auro: 2CDD Archi	taatura Ua	-	v	-			
Overview of U	TMS Terrestria	l Radio access					ure: 3GPP Archi		er equi	pmen	-			
Overview of U CDMA2000 ov	TMS Terrestria verview- Radio	l Radio access and Network co	omponents,	Network	structure, I	Radio N	etwork, TD-CDN		er equi	pmen A.	t,			
Overview of U CDMA2000 ov Unit IV	TMS Terrestria verview- Radio INTERNET	l Radio access and Network co WORKING	omponents, BETWEE	Network : N WLAI	structure, H	Radio N WWAI	etwork, TD-CDN NS	1A, TD – S	er equip SCDMA 9	pmen A. 0	t, 0	(
Overview of U CDMA2000 ov Unit IV Internetworkin	TMS Terrestria verview- Radio INTERNET g objectives and	l Radio access and Network co WORKING d requirements,	BETWEE Schemes to	Network : N WLAN connect V	structure, H NS AND WLANS an	Radio N WWAI nd 3G N	etwork, TD-CDN	IA, TD – S Mobility,	er equi SCDMA 9 Interne	pmen A. 0 twork	t, 0	(
Overview of U CDMA2000 ov Unit IV Internetworkin Architecture for	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C	l Radio access and Network co WORKING d requirements,	BETWEE Schemes to	Network : N WLAN connect V	structure, H NS AND WLANS an	Radio N WWAI nd 3G N	etwork, TD-CDN NS fetworks, Session	IA, TD – S Mobility,	er equi SCDMA 9 Interne ultipoin	pmen A. 0 twork	t, 0	ļ		
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C ystem. 4G & Beyo	I Radio access and Network co WORKING I d requirements, BPRS, System I nd	omponents, BETWEE! Schemes to Description,	Network : N WLAN connect V Local Mu	structure, I NS AND WLANS an ltipoint Di	Radio No WWAI nd 3G N istributic	etwork, TD-CDM NS fetworks, Session on Service, Multi	IA, TD – S Mobility, channel M	er equip SCDMA 9 Interne ultipoin 9	pmen A. 0 twork t	t, 0 ting	ç		
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction -	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C /stem. 4G & Beyo - 4G vision - 4	I Radio access and Network of WORKING I requirements, JPRS, System I nd G features and	Description, Challenges -	Network : N WLAN connect V Local Mu - Applicat	structure, I NS AND WLANS an Itipoint Di ions of 4C	Radio N WWA1 nd 3G N istributio G - 4G T	etwork, TD-CDN NS fetworks, Session on Service, Multi fechnologies: Mu	IA, TD – S Mobility, channel Mu	er equip SCDMA 9 Interne ultipoin 9	pmen A. 0 twork t	t, 0 ting			
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction -	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C /stem. 4G & Beyo - 4G vision - 4	l Radio access and Network of WORKING d requirements, JPRS, System I nd G features and	Description, Challenges -	Network : N WLAN connect V Local Mu - Applicat	structure, I NS AND WLANS an Itipoint Di ions of 4C	Radio N WWA1 nd 3G N istributio G - 4G T	etwork, TD-CDM NS fetworks, Session on Service, Multi	IA, TD – S Mobility, channel Mu lticarrier M	er equi SCDMA 9 Interne ultipoin 9 Aodulat	pmen A. 0 twork t 0	t, 0 ting 0 Sma	<u>g</u> irt		
Overview of U CDMA2000 ov Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C ystem. 4G & Beyo - 4G vision – 4 iques, IMS Arc	l Radio access and Network of WORKING d requirements, JPRS, System I nd G features and	Description, Challenges -	Network : N WLAN connect V Local Mu - Applicat	structure, I NS AND WLANS an Itipoint Di ions of 4C	Radio N WWA1 nd 3G N istributio G - 4G T	etwork, TD-CDN NS fetworks, Session on Service, Multi fechnologies: Mu	IA, TD – S Mobility, channel Mu	er equi SCDMA 9 Interne ultipoin 9 Aodulat	pmen A. 0 twork t 0	t, 0 ting 0 Sma	ý urt		
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C /stem. 4G & Beyo - 4G vision – 4 iques, IMS Arc	l Radio access and Network co WORKING d requirements, SPRS, System I nd G features and chitecture, LTE,	omponents, BETWEEI Schemes to Description, challenges - Advanced I	Network : N WLAN connect V Local Mu - Applicat Broadban	structure, I NS AND WLANS an ltipoint Di ions of 4G d Wireless	Radio No WWAI nd 3G N istributio G – 4G T S Access	etwork, TD-CDM NS fetworks, Session on Service, Multi fechnologies: Mu and Services, M	IA, TD – S Mobility, channel Mu liticarrier M VNO Total(4	er equi SCDMA 9 Interne ultipoin 9 Aodulat	pmen A. 0 twork t 0	t, 0 ting 0 Sma	<u>g</u> irt		
Overview of U CDMA2000 ov Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C /stem. 4G & Beyo - 4G vision – 4 iques, IMS Arc : hen Schiller, "N	I Radio access and Network co WORKING I requirements, BRS, System I nd G features and hitecture, LTE, Mobile Commun	berton structure for the second structure stru	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed	structure, I NS AND WLANS at ltipoint Di ions of 4G d Wireless lition, Pear	Radio No WWAI nd 3G N istributic G – 4G T 5 Access rson Edu	etwork, TD-CDN VS fetworks, Session on Service, Multi Fechnologies: Mu and Services, M cation 2012.(Un	IA, TD – S Mobility, channel Mu ilticarrier M VNO Total(4	er equi SCDMA 9 Interne ultipoin 9 Aodulat	pmen A. 0 twork t 0	t, 0 ting 0 Sma	<u>g</u> irt		
Overview of U CDMA2000 ov Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc 2. Vija	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C vstem. 4G & Beyo - 4G vision – 4 iques, IMS Arc hen Schiller, "N y Garg, "Wirele	I Radio access and Network co WORKING I requirements, BRS, System I nd G features and hitecture, LTE, Mobile Commun	berton structure for the second structure stru	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed	structure, I NS AND WLANS at ltipoint Di ions of 4G d Wireless lition, Pear	Radio No WWAI nd 3G N istributic G – 4G T 5 Access rson Edu	etwork, TD-CDM NS fetworks, Session on Service, Multi fechnologies: Mu and Services, M	IA, TD – S Mobility, channel Mu ilticarrier M VNO Total(4	er equi SCDMA 9 Interne ultipoin 9 Aodulat	pmen A. 0 twork t 0	t, 0 ting 0 Sma	<u>g</u> irt		
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc 2. Vija Reference I	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C ystem. 4G & Beyo - 4G vision – 4 iques, IMS Arc : hen Schiller, "N y Garg, "Wirele Books:	I Radio access and Network co WORKING I requirements, BRS, System I nd G features and chitecture, LTE, Mobile Communica	omponents, BETWEEI Schemes to Description, challenges - Advanced I nications", S tions and ne	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed tworking'	structure, I NS AND ' WLANS at litipoint Di ions of 4C d Wireless lition, Pear ', First Edi	Radio No WWAN nd 3G N istributio G – 4G T S Access rson Edu	etwork, TD-CDN NS fetworks, Session on Service, Multi Fechnologies: Mu and Services, M fection 2012.(Un sevier 2007.(Unit	IA, TD – S Mobility, channel Mu ilticarrier M VNO Total(4 it I,II,III) IV,V)	er equip SCDMA 9 Interne ultipoin 9 Aodulat 5L)=4	pmen A. 0 twork t ion, S 5 Pe	0 ing 0 Sma rioc	y urt dls		
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc 2. Vija Reference H 1. Erit	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C ystem. 4G & Beyo - 4G vision – 4 iques, IMS Arc : hen Schiller, "N y Garg, "Wirele Books:	I Radio access and Network co WORKING I requirements, BRS, System I nd G features and hitecture, LTE, Mobile Communica fan Parkvall, Jo	bertween states and several se	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed tworking'	structure, I NS AND ' WLANS at litipoint Di ions of 4C d Wireless lition, Pear ', First Edi	Radio No WWAN nd 3G N istributio G – 4G T S Access rson Edu	etwork, TD-CDN VS fetworks, Session on Service, Multi Fechnologies: Mu and Services, M cation 2012.(Un	IA, TD – S Mobility, channel Mu ilticarrier M VNO Total(4 it I,II,III) IV,V)	er equi SCDMA 9 Interne ultipoin 9 Aodulat	pmen A. 0 twork t ion, S 5 Pe	0 ing 0 Sma rioc	urt dls		
Overview of U CDMA2000 ov Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc 2. Vija Reference H 1. Erii Sec	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C /stem. 4G & Beyo - 4G vision – 4 iques, IMS Arc - 4G vision – 4 iques, IMS Arc	I Radio access and Network co WORKING I d requirements, BRS, System I nd G features and chitecture, LTE, Mobile Communica fan Parkvall, Jo cademic Press,	omponents, BETWEEN Schemes to Description, challenges - Advanced I nications", S tions and ne han Skold a 2008.	Network : N WLAN connect V Local Mu - Applicat Broadband Gecond Ed tworking' nd Per Be	structure, I NS AND ' WLANS an litipoint Di ions of 4G d Wireless lition, Pear ', First Edi eming, "3G	Radio No WWAI nd 3G N istributio G – 4G T S Access rson Edu ition, Els G Evolut	etwork, TD-CDN NS fetworks, Session on Service, Multi Fechnologies: Mu and Services, M fection 2012.(Un sevier 2007.(Unit	AA, TD – S Mobility, channel Mu channel Mu ilticarrier M VNO Total(4 it I,II,III) IV,V) IE for 1	er equip SCDMA 9 Interne ultipoin 9 Aodulat 5L)=4	pmen A. 0 twork t ion, S 5 Pe	0 ing 0 Sma rioc	y urt dls		
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc 2. Vija; Reference H 1. Sec 2. Am 3. Sin	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C vstem. 4G & Beyo - 4G vision – 4 diques, IMS Arc - 4G vision – 4 diques, IMS Arc	I Radio access and Network co WORKING I requirements, BPRS, System I nd G features and chitecture, LTE, Mobile Communica fan Parkvall, Jo cademic Press, Manjunath, Joy	omponents, BETWEEI Schemes to Description, challenges - Advanced I nications", S tions and ne han Skold a 2008.	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed tworking' nd Per Be eless Netw	structure, F NS AND WLANS au litipoint Di ions of 4C d Wireless lition, Pear ', First Edi eming, "3C	Radio No WWA1 nd 3G N istributio G – 4G T S Access rson Edu ition, Els G Evolut First Edi	etwork, TD-CDN NS fetworks, Session on Service, Multi Fechnologies: Mu and Services, M fection 2012.(Un sevier 2007.(Unit	IA, TD – S Mobility, Channel Mu Ilticarrier M VNO Total(4 It I,II,III) IV,V) TE for 1	er equip SCDMA 9 Interne ultipoin 9 Aodulat 5L)=4	pmen A. 0 twork t ion, S 5 Pe	0 0 0 Sma rioc	y urt dls		
Overview of U CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc 2. Vija; Reference I 1. Sec 2. An 3. Sin	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C vstem. 4G & Beyo - 4G vision – 4 diques, IMS Arc - 4G vision – 4 diques, IMS Arc	I Radio access and Network co WORKING I requirements, BPRS, System I nd G features and chitecture, LTE, Mobile Communica fan Parkvall, Jo cademic Press, Manjunath, Joy	omponents, BETWEEI Schemes to Description, challenges - Advanced I nications", S tions and ne han Skold a 2008.	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed tworking' nd Per Be eless Netw	structure, F NS AND WLANS au litipoint Di ions of 4C d Wireless lition, Pear ', First Edi eming, "3C	Radio No WWA1 nd 3G N istributio G – 4G T S Access rson Edu ition, Els G Evolut First Edi	etwork, TD-CDN VS fetworks, Session on Service, Multi fechnologies: Mu and Services, M fecation 2012.(Un sevier 2007.(Unit fion HSPA and L tion, Elsevier 20	IA, TD – S Mobility, Channel Mu Ilticarrier M VNO Total(4 It I,II,III) IV,V) TE for 1	er equip SCDMA 9 Interne ultipoin 9 Aodulat 5L)=4	pmen A. 0 twork t ion, S 5 Pe	0 0 0 Sma rioc	urt dls		
Overview of U CDMA2000 or CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna techn Text Books 1. Joc 2. Vijay Reference H 1. Eril Sec 2. Ani 3. Sim Edu	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C vstem. 4G & Beyo - 4G vision – 4 diques, IMS Arc - 4G vision – 4 diques, IMS Arc	I Radio access and Network co WORKING I I requirements, BPRS, System I nd G features and chitecture, LTE, Mobile Communica fan Parkvall, Jo cademic Press, Manjunath, Joy ichael Moher, I	omponents, BETWEEN Schemes to Description, challenges - Advanced I nications", S tions and ne han Skold a 2008. v kuri, "Wire David Koilpi	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed tworking' nd Per Be eless Netw	structure, F NS AND WLANS au litipoint Di ions of 4C d Wireless lition, Pear ', First Edi eming, "3C	Radio No WWA1 nd 3G N istributio G – 4G T S Access rson Edu ition, Els G Evolut First Edi	etwork, TD-CDN VS fetworks, Session on Service, Multi fechnologies: Mu and Services, M fecation 2012.(Un sevier 2007.(Unit fion HSPA and L tion, Elsevier 20	IA, TD – S Mobility, Channel Mu Ilticarrier M VNO Total(4 It I,II,III) IV,V) TE for 1	er equip SCDMA 9 Interne ultipoin 9 Aodulat 5L)=4	pmen A. 0 twork t ion, S 5 Pe	0 0 0 Sma rioc	urt dls		
Overview of U CDMA2000 or CDMA2000 or Unit IV Internetworkin Architecture for Distribution Sy Unit V Introduction - antenna technic Text Books 1. Joc 2. Vija Reference H 1. Erii Sec 2. Ani 3. Sim Edu 1. http	TMS Terrestria verview- Radio INTERNET g objectives and or WLAN and C /stem. 4G & Beyo - 4G vision – 4 iques, IMS Arc - 4G vision – 4 iques, IMS Arc	l Radio access and Network co WORKING I d requirements, BPRS, System I nd G features and chitecture, LTE, Mobile Communica fan Parkvall, Jo cademic Press, Manjunath, Joy ichael Moher, I	omponents, BETWEEN Schemes to Description, challenges - Advanced I nications", S tions and ner han Skold a 2008. kuri, "Wire David Koilpi	Network : N WLAN connect V Local Mu - Applicat Broadband Second Ed tworking' nd Per Be eless Netw	structure, F NS AND WLANS au litipoint Di ions of 4C d Wireless lition, Pear ', First Edi eming, "3C	Radio No WWA1 nd 3G N istributio G – 4G T S Access rson Edu ition, Els G Evolut First Edi	etwork, TD-CDN VS fetworks, Session on Service, Multi fechnologies: Mu and Services, M fecation 2012.(Un sevier 2007.(Unit fion HSPA and L tion, Elsevier 20	IA, TD – S Mobility, Channel Mu Ilticarrier M VNO Total(4 It I,II,III) IV,V) TE for 1	er equip SCDMA 9 Interne ultipoin 9 Aodulat 5L)=4	pmen A. 0 twork t ion, S 5 Pe	0 0 0 Sma rioc	urt dls		

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand wireless network environment for any application using latest standards	L2					
CO2	Design and implement the environment using latest wireless protocols.	L2					
CO3	Conversant with the latest 3G networks and its architecture	L2					
CO4	Implement different type of applications for smart phones and mobile devices with latest network strategies	L2					

L2

					COU	JRSE A	RTICU	LATIO	N MAT	RIX					
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	105	104	105	100	107	100	10)	0	1	2	1	2	1505
CO1	3	3	1	3	3	3	2				3	3	3		2
CO2	3	3	2	3	3	3	2				3	3	3		2
CO3	3	3	3	3	3	3	2				3	3	3		2
CO4	3	3	2	3	3	3	2				2	3	3		2
CO5	3	3	2	3	3	3	2				3	3	3		2
Avg	3	3	2	3	3	3	2				2.8	3	3		2
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTECE705 VIRTUAL INSTRUMENTATION SEMESTER VI								
PRER	EQUISTIES	5:		Category	PE	C	redit	3
				Hours/Week	L	Т	Р	ТН
				Hours/ week	3	0	0	3
Cour	se Objective	es:						
1	To review b	ackgrou	nd information required for studying virtual instrumen	tation				
2	To study the	e basic b	uilding blocks of virtual instrumentation.					
3	To study the	e various	s techniques of interfacing of external instruments of P	C.				
4	To study the	e various	s graphical programming environment in virtual instru	nentation				
5			ications in virtual instrumentation.					
Unit			V OF VIRTUAL INSTRUMENTATION			9	0 (9
Histori	cal perspective	and tra	ditional bench-top instruments - General functional des	scription of a digital	instrume	ent- B	lock	
			nt – Physical quantities and analog interfaces- Hardwa					ntages
of Virtu	ual Instruments	s over co	onventional instruments – Architecture of a Virtual Inst	truments and its rela	ation to th	ie ope	erating	
system								
Unit			PROGRAMMING TOOLS			9	0 (9
			terfaces- controls and IndicatorsG' programming -					
			ng a Virtual Instrument –Graphical programming pale	ttes and tools - From	nt panel o	bject	s –	
	on and Librarie					-		
Unit			NAL OPERATIONS			9	0 (
			hift Registers, CASE structure, formula nodes-Sequen					
-			e – Bundle/Unbundle by name, graphs and charts – str	ring and file I/O – H	ligh level	and l	Low le	vel file
			d global variables.			~		
Unit			ION PROCESS			9	0 (-
			d Software - Concepts of Data Acquisition and termine					
-Config	guring the Hard	dware –	addressing the hardware in LabVIEW- Digital and An	alog I/O function –	Buffered	I/O-1	Real-ti	me
	cquisition							
Unit			L PROGRAMMING			9	0 (-
			Advanced concepts in LabVIEW- TCP/IP VI's, S			ement	s of V	Virtual
Instru	mentation – B	us exten	sions – PXI - Computer based instruments - Image acq	uisition–Motion Co				
					Total(4	15L):	=45 P	eriods

Text	Books:
1.	Garry M. Johnson, -LabVIEW Graphical Programming, Tata McGraw-Hill, Edition, 1996
2.	Lisa.K.Wills, -LabVIEW for Everyonel Prentice Hall of India, 1996
Refe	rence Books:
1.	Labview Basics I and II Manual, National Instruments,2003
2.	Barry Paton, -Sensor, Transducers and Lab VIEWI, Prentice Hall, 2000
3.	S. Sumathi, P. Surekha, LabVIEW based advanced instrumentation systems, Springer Publication
4.	Béla G. Lipták, Instrument Engineers' Handbook: Process control and optimization, ISA Press, 4th Edition.
E-Re	ferences:
1.	http://nptel.ac.in/courses/112104039/lecture13/13_8.html
2.	https://www.youtube.com/watch?v=7SAyVrgyCl4
3.	https://learn.ni.com/learn/article/labview-tutorial

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Understand the architecture and interfaces of VI.	L2			
CO2	Design and analyze various applications using signal Processing tool kit	L2			
CO3	Understand the concepts of conditional operators of VI	L2			
CO4	Create applications that uses plug in DAQ boards and built in analysis functions to process the data	L2			

CO5	Apply structured programming concepts in developing VI programs and employ various debugging techniques.	L2
-----	--	----

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	105	104	105	100	107	100	10)	0	1	2	1	2	1505
CO1	1	2	1	2	2	2	1				2	2	3	1	2
CO2	2	2	2	3	1	2	2				2	3	1	1	2
CO3	2	1	3	2	2	1	2				3	2	3	2	1
CO4	1	3	2	1	3	3	2				2	3	2	3	2
CO5	2	1	2	1	1	1	2				3	2	1	2	3
Avg	1.6	1.8	2	1.8	1.8	1.8	1.8	0	0	0	2.4	2.4	2	1.8	2
3/2/1=	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23P	TECE706	MICRO ELECTROMECHANICAL S	YSTEMS	SEMESTER VI				
PREREQ	UISTIES:		Category	PE	3			
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Course C	bjectives:							
1. To	understand the b	asics of MEMS and mechanics for MEMS Design.						
2. To	get knowledge a	bout the concepts of optical and RF MEMS and design of	of electrostatic.					
3. To	apply the basic l	nowledge of MEMS in different fields.						
Unit I	INTRODUC'	FION TO MEMS		9	0	0	9	
		iniaturization-Typical products-Micro sensors-Micro ad			ro actu	ators-l	Micro	
		idics-MEMS materials-Microfabrication-Wafer-level pr	ocesses – Pattern ti	ansfer.				
Unit II		CS FOR MEMS DESIGN		9	0	0	9	
-		material properties-Bending of thin plates-Spring co	-		flection	Mech	nanical	
		mechanics actuators-force and response time-Fracture a	and thin film mecha					
Unit III		STATIC DESIGN AND SYSTEM ISSUES		9	0	0	9	
		-electrostatic instability. Surface tension-gap and						
		y motors- inch worms-Electromagnetic actuators. bista	ble actuators. Elect	tronic I	nterface	s-Feed	lback	
	ise-Circuit and sy				0		0	
Unit IV	MEMS APP		1	9	0	0	9	
	-	elerometer-Piezo electric pressure sensor-Micro fluidic	es application-Mod	leling o	t MEM	lS sys	tems-	
CAD for M Unit V		TION TO OPTICAL AND RF MEMS		9	0		9	
				-	0	0	-	
		sign basics-Gaussian optics-matrix operations-resolutio cro mirror devices.RF Memsdesign basics-case study						
issues.	spiay-Digital Mil	in minor devices. Kr menisdesign basics-case study	Capacitive Kr M	LIND S	witch-p	CITOIN	lance	
155405.			r	Fotal(4	5L)=4	5 Per	iods	

Text	Books:							
1.	Stephen Santeria," Microsystems Design", Kluwe publishers, 2000.							
2.	N.P.Mahalik ,"MEMS", Tata McGrawhill,2007							
Refe	Reference Books:							
1.	Vijay. K.Varadan, K.J.Vinoy, K.A.Jose, "RF MEMS And Applications", JohnWiley&Sons,2003.							
2.	Nadim Maluf, "An Introduction to Micro Electro Mechanical System Design", Artech House,							
	2000. 3. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2000.							
3.	TaiRanHsu, "MEMS & Microsystems Design and Manufacture" Tata McGrawHill,							
	NewDelhi, 2002. 5. Liu,"MEMS", Pearson education, 2007.							
4.	L.L. Faulkner, 'Micro Electro Mechanical System Design', Taylor & Francis Group, 2005.							
E-Re	E-References:							
1.	https://www.digimat.in/nptel/courses/video/117105082/L28.html							
2.	https://nptel.ac.in/courses/108108113							
3.	http://www.nitttrc.edu.in/nptel/courses/video/117105082/L14.html							

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Knowledge on the basics of MEMS and mechanics for MEMS Design.	L2			
CO2	Understand the electrostatic design	L2			
CO3	Understand the concept of system issues and various applications of MEMS	L2			
CO4	Ability to apply the basic knowledge of MEMS in different fields	L3			

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	105	104	105	100	107	100	109	0	1	2	1	2	1305
CO1	3		2				2								
CO2	3	1	2	1											
CO3	2	1	2	1	3									1	
CO4	2		1	1	3		1	1			1			1	
CO5	2	1	1	1				1						2	1
Avg	3	0.6	1.6	0.8	1.2		0.6	0.4			0.2			0.8	0.2
3/2/1=	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

	23PTECE707	DEEP LEARNING		SEMESTER VII					
PRER	EQUISTIES:		Category	egory PE Credit					
			Hours/Week	L	,	Т	Р	TH	
			Hours, Week	3	(0	0	3	
Cour	se Objectives:								
1.	To gain insights or	machine learning basics and its challenges							
2.	To understand and	apply deep learning algorithms using keras and Tensor f	low						
3.	To perform object	localization, pre-process data and use generative models							
UNIT	I INTRODUC	TION			9	0	0	9	
Introdu	ction to deep learning	-Applied Math and Machine Learning Basics- Linear Al	gebra- Probability a	and In	form	ation	1 Theo	ory-	
		earning Algorithms- Capacity, Overfitting and Underfitti		s and	Vali	datio	n Sets	5-	
		d Learning Algortihms- Challenges and Motivation for D	eep learning						
UNIT		PRACTICAL DEEP NETWORKS			9	0	0	9	
		s- Regularization for Deep Learning- Optimization for T							
		n-Applications-Long Short Term Memory-Convolutiona	l Neural Network (CNN)) - Re	ecurr	ent		
-	Networks (RNN).				0	0	0		
UNIT		NVOLUTIONAL MODELS			9	0	0	9	
		calization, Landmark detection, YOLO Algorithm-NLP:							
		tations: word2vec, GloVe-Advanced word vector represe	entations- language	mode	els, so	oftma	ax, sin	gle	
		orks and back propagation for named entity recognition			0	0	•	0	
UNIT	•=	IVE MODELS			9	0	0	9	
		ines (RBMs)- Introduction to MCMC and Gibbs Samplin							
		Machines Recent trends :Variational Auto encoders -	Generative Advers	arial	Netw	orks	- Mul	t1-task	
	earning -Multi-view				0	0	0	0	
Unit V		ID APPLICATIONS			9	0	0	9	
		nsorflow-Deep learning for computer vision, Deep Learn						-	
		ning Models for Healthcare Applications- Semantic parsi	ng of Speech using	Recu	rrent	Net-	LST	М	
networ	k for sentiment analy	iis							
			T	'otal(45L))=45	5 Peri	ods	

Text	Books:
1.	Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
2.	Adam Gibson and Josh Patterson,"Deep Learning: A Practitioner's Approach", 1st Edition,O'Reilly Media,2017
Refe	rence Books:
1.	Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013
2.	Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.es of deep learning
	Technique
3.	Miguel Morales, Grokking Deep Reinforcement Learning,2020
4.	Stephan Raaijmakers,"Deep Learning for Natural Language Processing", Manning, 2022
E-Ref	erences:
1.	https://www.coursera.org/learn/convolutional-neural-networks
2.	http://neuralnetworksanddeeplearning.com/
3.	https://www.coursera.org/specializations/deep-learning

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Use deep learning algorithms for the specific use case.	L3				
CO2	Practically implement deep networks for suitable real world problems using DL tools	L3				
CO3	Perform object localization and efficiently pre-process data.	L2				
CO4	Apply generative models and optimize on real world problems.	L3				

CO5	Explore recent deep learning applications at Enterprise Scale and Healthcare.	L2
-----	---	----

					COU	JRSE A	RTICU	LATIO	N MAT	FRIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	2	2		2									2	1	2
CO2	2	3	3	2									2		2
CO3			2												2
CO4	2	2	2	2	2								3	2	2
CO5		2	2		2		2						3	2	2
Avg	1.2	1.8	1.8	1.2	0.8		0.4						2	1	2
3/2/1=	/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

23PT	ECE801	MULTIMEDIA COMPRESSION AND COMMUNICATION TECHNIQUES	SEMI	SEMESTER VIII						
PREF	REQUIS	ITES	CATEGORY	PE	Cr	edit	3			
Basic 1	mathemati	cal analysis skills and digital modulation techniques.		L	Т	Р	ТН			
			Hours/Week	3	0	0	3			
Cours	se Object	tives:	I		1					
1.	Highlig	ht the features of data redundancy and various compression technique	s involved.							
2.	To unde	erstand the various challenges involved in text and audio compression								
3.	To imp	art knowledge on various image and video compression techniques.								
Unit I INTRODUCTION AND TEXT COMPRESSION										
Introdu	uction: O	verview of information theory - Redundancy - Compression Te	echniques: Loss les	ss comp	ressio	n - 1	Lossy			
-		Measures of performance-Text compression: Shannon Fano codi		g – Arit	hmeti	c cod	ing -			
Diction	nary techn	iques - LZW family algorithms - Entropy measures of performance -	- Quality measures.							
Unit II AUDIO COMPRESSION							0 3 oding			
	ques– Voc	tion to audio coding: MPEG audio - Progressive encoding for audio oders.	bilence compressi	on spe	con c	ompre	000101			
Unit		IMAGE COMPRESSION AND VIDEO COMPRESSION			9	0	0 3			
		IMAGE COMPRESSION AND VIDEO COMPRESSION	g - Introduction to JF	PEG - JP	-	-				
Image	compress		0		EG-2	000 -	JBIC			
Image standar	compress rds - Stud	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin	Recommendation H.2		EG-2	000 -	JBIC			
Image standar	compress rds - Stud MPEG-1	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T	Recommendation H.2		EG-2	000 - ased c	JBIC			
Image standar – The Unit I	compress rds - Study MPEG-1	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Record	Recommendation H.2 mendation H.263.	61 – Mo	EG-2 del ba	000 - ised c	JBIC oding			
Image standar – The Unit I Introdu	compress rds - Stud MPEG-1 IV	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recom MULTIMEDIA COMMUNICATIONS	Recommendation H.2 mendation H.263. ISDN – Broadband	61 – Mo multiser	EG-2 del ba 9 vice	000 - 1sed c 0 0	JBIC oding 0 3 orks -			
Image standar – The I Unit I Introdu Multin Applic	compress rds - Stud MPEG-1 V uction – I nedia appl cation and	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recom MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – lications: Interpersonal communications – Interactive applications ov networking terminology: Media – Communication modes – Network	Recommendation H.2 amendation H.263. ISDN – Broadband ver the internet – Enter	61 – Mo multiser ertainme	EG-2 del ba 9 vice 1 nt app	000 - ased c 0 (netwo plicati	JBIC oding 0 3 orks - ons -			
Image standar – The I Unit I Introdu Multin Applic Applic	compress rds - Study MPEG-1 IV uction – I nedia appl cation and cation QoS	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T I Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recorr MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – lications: Interpersonal communications – Interactive applications ov networking terminology: Media – Communication modes – Network	Recommendation H.2 mendation H.263. ISDN – Broadband ver the internet – Enter k – Multipoint confer	61 – Mo multiser ertainme	EG-2 del ba 9 vice 1 nt app	000 - ased c 0 0 netwo plicati	JBIC oding orks - ons - QoS -			
Image standar – The Unit I Introdu Multin Applic Applic Unit	compress rds - Study MPEG-1 IV uction – I nedia appl cation and cation QoS	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T I Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recorn MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – lications: Interpersonal communications – Interactive applications ov networking terminology: Media – Communication modes – Network STANDARDS FOR MULTIMEDIA COMMUNICATIONS	Recommendation H.2 mendation H.263. ISDN – Broadband ver the internet – Enter k – Multipoint confer	61 – Mo multiser ertainme encing –	EG-2 del ba 9 vice 1 nt apj Netv 9	000 - ased c 0 (netwo plicati vork (0 (JBIC oding orks - ons - QoS - 0 3			
Image standar – The I Unit I Introdu Multin Applic Applic Unit V Introdu	compress rds - Study MPEG-1 IV uction – I nedia appl cation and cation QoS V	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T I Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recorr MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – lications: Interpersonal communications – Interactive applications ov networking terminology: Media – Communication modes – Network Standards FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to	Recommendation H.2 mendation H.263. ISDN – Broadband ver the internet – Enter k – Multipoint confer	61 – Mo multiser ertainme encing – unicatior	EG-2 del ba 9 vice nt app Netv 9 ns: Ci	000 - ased c 0 0 0 0 0 0 0	JBIC oding orks - ons - QoS - 0 3 mode			
Image standar – The I Unit I Introdu Multin Applic Applic Unit V Introdu networ	compress rds - Study MPEG-1 IV uction – I nedia appl cation and cation QoS V uction – I rks - Pack	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T I Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recorr MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – lications: Interpersonal communications – Interactive applications ov networking terminology: Media – Communication modes – Network S. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to et switched networks - Electronic mail - Standards relating to interaction	Recommendation H.2 mendation H.263. ISDN – Broadband ver the internet – Enter k – Multipoint confer interpersonal commu- tive applications over	61 – Mo multiser ertainme encing – unication the inter	EG-2 del ba yice = nt app Netv 9 ns: Ci rnet: I	000 - ased c netwo plicati vork (0 (rcuit nform	JBIC oding orks - ons - QoS - QoS - 0 3 mode natior			
Image standar – The I Unit I Introdu Multin Applic Applic Unit V Introdu networ browsi	compress rds - Study MPEG-1 IV uction – I nedia appl cation and cation QoS V uction – H rks - Packt ing- Elect	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T I Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recor MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – Lications: Interpersonal communications – Interactive applications ov networking terminology: Media – Communication modes – Network S. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to et switched networks - Electronic mail - Standards relating to interaction cronic commerce - Intermediate systems - Java and JavaScript	Recommendation H.2 mendation H.263. ISDN – Broadband ver the internet – Enter k – Multipoint confer interpersonal commu- tive applications over	61 – Mo multiser ertainme encing – unication the inter	EG-2 del ba yice = nt app Netv 9 ns: Ci rnet: I	000 - ased c netwo plicati vork (0 (rcuit nform	JBIC oding orks - ons - QoS - QoS - 0 3 mode natior			
Image standar – The I Unit I Introdu Applic Applic Unit V Introdu networ browsi	compress rds - Study MPEG-1 IV uction – I nedia appl cation and cation QoS V uction – H rks - Packt ing- Elect	IMAGE COMPRESSION AND VIDEO COMPRESSION ion: Predictive techniques – PCM – DPCM - DM - Transform codin y of EZW. Video compression: Video signal representation – ITU-T I Video Standard - The MPEG-2 Video Standard: H.262- ITU-T Recorr MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – lications: Interpersonal communications – Interactive applications ov networking terminology: Media – Communication modes – Network S. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to et switched networks - Electronic mail - Standards relating to interaction	Recommendation H.2 mendation H.263. ISDN – Broadband ver the internet – Enter k – Multipoint confer interpersonal commu- tive applications over – Standards for ent	61 – Mo multiser ertainme encing – unication the inter	EG-2 del ba vice 1 nt app Netw 9 ns: Ci met: I ent ap	000 - ased c 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JBIC oding orks - ons - QoS - QoS - 0 3 mode natior tions			

Text	Books:
1.	SayoodKhaleed, - "Introduction to data compression", Morgan Kauffman, London, 2006.
2.	Fred Halshall - "Multimedia communication - Applications, Networks, Protocols and Standards", Pearson Education, 2007.
Refe	rence Books:
1.	Watkinson J, "Compression in video and audio", Focal press, London, 1995.
2.	Mark Nelson, — "Data compression book", BPB Publishers, New Delhi, 1998.
3.	Jan Vozer,Video compression for multimedial, AP 83rofess, New York, 1995
4.	Peter D. Johnson Jr., Greg A. Harris, D.C. Hankerson, "Introduction to Information Theory and Data Compression", 2 nd Edition, Chapman and Hall/CRC, February 26, 2003.
E-Re	eferences:
1.	http://freevideolectures.com/Course/2278/Data-Communication/30
2.	http://nptel.ac.in/courses/106105082/30
3.	https://www.google.co.in/books/edition/Multimedia_Communications_Applications_N/g_lECYMqrVwC?hl=en&gbpv=1&
	dq=Fred+Halsall,+%E2%80%95Multimedia+communication-

	+ Applications, + Networks, + Protocols + and + Standards% E2% 80% 96, + Pearson + education, + 2007 + pdf + download& printsec = frictional standards% E2% 80% 96, + Pearson + education, + 2007 + pdf + download& printsec = frictional standards% E2% 80% 96, + Pearson + education, + 2007 + pdf + download& printsec = frictional standards% E2% 80% 96, + Pearson + education, + 2007 + pdf + download& printsec = frictional standards% E2% 80% 96, + Pearson + education, + 2007 + pdf + download& printsec = frictional standards% E2% 80% 96, + Pearson + educational standards% 80% 96, + Pearson + educational stan
	ontcover

	completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand different coding techniques and apply various algorithms for compression.	L2
CO2	Understand the quality and performance of various text and audio compression algorithms.	L2
CO3	Apply various text and video compression algorithms for practical applications.	L3
CO4	Apply the compression concepts in multimedia communication.	L3
CO5	Able to configure multimedia communication network.	L4

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO 12	PSO1	PSO2	PSO3
CO1	2	1	1	3	2								3	1	2
CO2	3	2	1	3	1								3	1	2
CO3	3	2	1	2	2								3	2	1
CO4	2	2	2	3	1								3	1	1
CO5	2	2	1	3	1								3	2	2
Avg	2.4	1.8	1.2	2.8	1.4								3	1.4	1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

23PTECE802	ADVANCED DIGITAL SIGNAL PRO	DCESSING	SEM	R VII	I			
PREREQUISTIES:		Category	PE	Cre	dit	3		
			L	Т	Р	TH		
		Hours/Week	3	0	0	3		
Course Objectives:	Course Objectives:							
1. The course emp	hasizes an intuitive understanding of signal processing te	chniques.						
2. Students will be	able to represent FIR adaptive filters analytically and vis	sualize them in the tin	ne domair	1.				
3. Students will b	able to specify and design any wavelet transform using	MATLAB.						
Unit I PARAME	TRIC METHODS FOR POWER SPECTRUM ESTIN	MATION		9 0	0	9		
Relationship between the	autocorrelation and the model parameters – The Yule-Wa	alker method for the A	AR Mode	l Paran	neters -	- The		
Burg Method for the AR	Model parameters - unconstrained least-squares method f	for the AR Model para	ameters –	sequei	ntial			
	e AR Model parameters – selection of AR Model order.							
Unit II ADAPTI	E SIGNAL PROCESSING			9 0	0	9		
	pest descent adaptive filter - LMS algorithm - converger		s – Appli	cation:	noise			
cancellation – channel eq	alization – adaptive recursive filters – recursive least squ	lares.						
Unit III MULTI	ATE SIGNAL PROCESSING			9 0	0	9		
Decimation by a factor D	- Interpolation by a factor I - Filter Design and impleme	ntation for sampling 1	ate conve	ersion:	Direct	form		
FIR filter structures – Po	phase filter structure.							
00	SIGNAL PROCESSING			9 0	v	9		
	signal : Mechanism of speech production - model for vo					;		
	essing of speech signal:- Pitch period estimation - using	autocorrelation funct	ion – Lin	ear pre	dictive			
	- autocorrelation method – Durbin recursive solution.				<u>т. т</u>			
	T TRANSFORMS			9 0	0	9		
	ower and Limitations - Short Time Fourier Transform -							
	cs - Continuous Wavelet Transform - Wavelet Transf			onstruc	ction F	ilter		
Banks and wavelets – Re	Banks and wavelets – Recursive multi-resolution decomposition – Haar Wavelet – Daubechies Wavelet.							
			Total(4	5L)=4	5 Peri	lods		

Text	Books:
1.	John G.Proakis, Dimitris G.Manobakis, Digital Signal Processing, Principles, Algorithms and Applications, fourth edition,
	Pearson Education, 2012.
2.	Monson H.Hayes – Statistical Digital Signal Processing and Modeling, Wiley, 2008
Refe	rence Books:
1.	L.R.Rabiner and R.W.Schaber, Digital Processing of Speech Signals, Pearson Education (1979).
2.	Roberto Crist, Modern Digital Signal Processing, Thomson Brooks/Cole (2004)
3.	John M Yarbrough "Digital Logic applications and Design" Thomson Learning, 2001
4.	S.K. Mithra, —Digital Signal Processing: A computer based Approachl, Tata McGraw Hill, New Delhi
E-Re	ferences:
1.	NPTEL : NOC:Digital Speech Processing (Electronics and Communication Engineering) (digimat.in)
2.	NPTEL :: Electrical Engineering - NOC:Multirate DSP
3.	NOC Introduction to Time-Frequency Analysis and Wavelet Transforms (nptel.ac.in)

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the parametric methods for power spectrum estimation	L2, L4					
CO2	Study about adaptive signal processing	L2, L4					
CO3	Study the multi-rate signal processing	L2, L4					
CO4	Study the speech signal processing	L2, L4					

99

	COURSE ARTICULATION MATRIX														
COs/	DO1	DOJ	DO 2	DO4	DOS	DOC	DO7		DOO	PO1	PO1	PO1	PSO	PSO	PSO
POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
CO1	3	3	1	1	1								2	2	2
CO2	3	2	2	2	1		1						2	2	2
CO3	3	2	2	2	1		1						2	2	2
CO4	3	2	2	2	1		1						2	2	2
CO5	1	1	1	1	1								2	2	2
Avg	2.6	2	1.2	1.2	1		0.6						2	2	2
3/2/1=	/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

L2, L4

23PT	ECE803	BI	O-MEDICAL ELECTRO	NICS	SEMI	ESTE	R VI	II
PREREQ	JISTIES:			Category	PE	Cr	edit	С
					L	Т	P	TH
				Hours/Week	3	0	0	3
COURSE	OBJECTIVE	S						
	1. To gain knowledge about the various physiological parameters both electrical and non electrical, the methods of recording and also the method of transmitting these parameters.							
2. To	study about vari	ous assist devices use	d in hospitals.					
	3. To gain knowledge about equipment used for physical medicine and various recently developed diagnostics and therapeutic techniques.							
Unit I ELECTRO-PHYSIOLOGY AND BIOPOTENTIAL RECORDING 9 0 0							0	9
			odes types - Bio amplifiers, I	ECG, EEG, EMG lead	systems	and r	ecord	ing
methods, typ		and signal characteris						
Unit II	BIO-CHEMI MEASUREN		NON-ELECTRICAL	A PARAMETH	ER 9	0	0	9
			r - Blood flow meter - Cardia		rate mea	surem	ent -	
			ment - Pulse ratemeasurement	- Blood cell counters.				
Unit III		IMAGING SYST			9	0	0	9
	 Computer to aphy - Thermogram 		ography – Magnetic Resonance	ce Imaging – Positron	Emissio	n Ton	nogra	phy -
Unit IV		VICES AND BIO-	TELEMETRY		9	0	0	9
			lialyzer, Heart Lung Machine	, Telemetry: principles	, Freque	ncv se	lectio	n,
	y - Radio pill				, I	5		,
Unit V	RECENT T	RENDS IN MEDI	CAL INSTRUMENTATIC	DN	9	0	0	9
		ns of Laser in medicir	ne - Cryogenic application - Int	troduction to Telemedic	cine, Elec	trical	safety	in
medical env	medical environment							
				T	otal(451	()=45	Perio	ods

Text	Text Books:							
1.	Khandpur, R.S., Handbook of Biomedical Instrumentation, TATA McGraw- Hill, New Delhi, 2014							
2.	John G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, 4th edn., 2009							
Refe	Reference Books:							
1	Joseph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Pearson							
1.	Education, 2013.							
2.	Leslie Cromwell, Fred J. Weibell, "Erich A. Pfeiffer, Biomedical Instrumentation and Measurements", Pearson							
۷.	Education India, 2nd Edition, 2015.							
3.	Edward J. Bukstein, Medical electronics, Ungar Publications, 2002							
4.	C.M. Smyth, Medical electronics, Iliffe Publication, 1999							
E-Re	eferences:							
1.	https://nptel.ac.in/courses/108108180							
2.	https://biomedikal.in/2009/12/lecture-notes-on-biomedical-instrumentation/							

	Outcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Acquire and analyze the various bio signals and vital parameters.	L4
CO2	Measure biochemical and other physiological information.	L3
CO3	To understand the use of radiation for diagnostic and therapy	L2
CO4	Explain the function and application of various diagnostic and therapeutic equipment.	L2

CO5	Explain about the recent developments in the field of biomedical engineering and analyze the safety aspects of medical equipment.	L3
-----	---	----

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	100	101	100	100	107	100	10/	0	1	2	1	2	1505
CO1	3	2	2	2	1								3		2
CO2	3	2	2	1	2								3	1	2
CO3	3	1	3	1	1								3	1	2
CO4	3	2	2	1									3	2	1
CO5	3	2	3	1	1								3	2	2
Avg	3	1.8	2.4	1.2	1.2								3	1.2	1.8
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTECE804	RADAR AND NAVIGATIONAL	AIDS	SEN	1EST	ER V	/III
PREREQUISTIES:		Category	PE	Cre	edit	3
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Objectives:						
1. To introduce the stu	dents about various types of radar and its applications.					
2. To enhance the kno	wledge on detection of RADAR signals.					
3. Develop the ability	to learn Navigation and its systems.					
UNIT I RADAR AN	D RADAR EQUATION		9	9 0	0	9
Introduction to Radar: Bas	c Radar – The simple form of the Radar Equation- F	Radar Block Diagr	am- Ra	dar Fi	equer	ncies –
Applications of Radar – Th	e Origins of Radar - The Radar Equation: Introduction	on- Detection of S	ignals i	n Nois	se- Re	eceiver
Noise and the Signal-to-Noi	se Ratio-Probability Density Functions- Probabilities of	of Detection and Fa	alse Ala	rm		
UNIT II MTI AND	PULSE DOPPLER RADAR		9	9 0	0	9
Introduction to Doppler an	d MTI Radar- Delay –Line Cancellers- Staggered Pu	alse Repetition Fre	equenci	es –De	oppler	· Filter
	sing - Moving Target Detector - Limitations to MTI I					
(AMIT) - Pulse Doppler	Radar – Tracking with Radar – Monopulse Tracking	g –Conical Scan	and Se	quenti	al Lo	bing -
	curacy - Low-Angle Tracking - Tracking in Range - A	utomatic Tracking	with S	urveill	ance	Radars
(ADT).						
	ON OF SIGNALS AND RADAR COMMUNIC			9 0	0	9
	se: Introduction - Matched -Filter Receiver -Detectio					
	-Alarm Rate Receivers - The Radar operator - Signal M					
	tandard propagation - Nonstandard Propagation - T					
	ed Array Antennas - Phase Shifters - Frequency-Scan					
	- Solid State RF Power Sources - Magnetron - Crosse					
	oise Figure - Superheterodyne Receiver - Duplexers and	nd Receiver Protec			- ·	
	INTALS OF NAVIGATION			9 0	v	9
	Four methods of Navigation -Radio Direction Finding					
	inder - The Goniometer - Errors in Direction Findi					
	uencies - Automatic Direction Finders - The Comm		ction F	inder ·	- Rang	ge and
	ers -Radio Range-Hyperbolic Systems of Navigation (I	Loran and Decca).				
	TION SYSTEMS		,	9 0	•	9
	Approach and Landing-Doppler Navigation- The Dop					
	ck Stabilization - Doppler Spectrum - Components o					
	of Doppler Navigation Systems-Inertial Navigation- P					
	nertial Navigation System - Earth Coordinate Mechani	zation - Strapped-I	Jown S	ystem	s - Ac	curacy
of Inertial Navigation Syste	ms-Satellite Navigation System					
		Тс	otal(45	L)=45	5 Per	iods

Text I	Books:							
1.	Merrill I. Skolnik," Introduction to Radar Systems", Tata McGraw-Hill (3rd Edition) 2008							
2.	N.S. Nagaraja, "Elements of Navigation Electronics", 2nd edition, TMH,2006							
Refer	eference Books:							
1.	Peyton Z. Peebles:, "Radar Principles", Johnwiley, 2004							
2.	Richards, Fundamentals of radar signal processing, 1st edition, tata mcgraw-hill education pvt. Ltd.							
3.	J.C Toomay, "Principles of Radar", 2nd Edition -PHI, 2004.							
4.	Pritchard, satellite communication systems engineering, 2nd Edition Pearson Education Pvt. Ltd							
E-Ref	erences:							
1.	http://www.radioelectronics.com/info/data/semicond/semiconductor/semiconductor-materials-types-list.php.							
2.	http://911electronic.com/							
3.	https://nptel.ac.in/courses/108105154							

	Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Gain knowledge in RADAR systems and analyze the signal to noise ratio in the radar system.	L3

CO2	Familiarize about MTI and pulse Doppler radar and detection of RADAR signals.	L2
CO3	Analyze the principle behind, detecting the signals of radar communication.	L3
CO4	Describe about the fundamentals of navigation.	L2
CO5	Explain the fundamentals of navigation systems.	L2

COUR	COURSE ARTICULATION MATRIX														
COs/	DO1	PO2	PO3		PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
POs	PO1	PO2	P05	PO4	POS	PU0	PO/	PU8	P09	0	1	2	1	2	3
CO1	2	1		1									1	2	1
CO2	2	1	1	1									1	2	1
CO3	2	1	1	1									1	2	1
CO4	2	1		1									1	2	1
CO5	2	1		1									1	2	1
Avg	2	1	0.4	1									1	2	1
3/2/1=	indicat	es stren	gth of c	correlati	ion (3-I	High,2-	Mediun	n,1-Lov	v)						

23	BPTECE805	WIRELESS SENSOR NETWO	RKS	SEN	III		
PRERE	QUISTIES		Category	PE	Cre	dit	3
			Hours/Week	L	Т	Р	TH
			Hours/ Week	3	0	0	3
Course	e Objectives:						
1.	Го obtain a broad un	derstanding of the technologies and applications of wire	less sensor networks				
2.	Fo design sensors us	ed for wireless sensor networks					
3.	To understand the to	ols used for wireless sensor networks					
UNIT-I	OVERVIEW	AND ARCHITECTURES		9) 0	0	9
		or Networks - Applications of sensor networks - Different					
		ogies for Wireless Sensor Networks. Single-Node Arch					
		s, Operating Systems and Execution Environments, Net	work Architecture -	Sensor N	Vetwor	k	
		s and Figures of Merit, Design principle of for WSNs.					
UNIT-I		ORKING CONCEPTS AND PROTOCOLS			9 0	0	9
		er Design Considerations in WSNs - MAC Protocols fo					
Protocol	otocols and Wakeup	Concepts – Contention Based Protocols – Schedule Bas	sed Protocols - IEEE	802.15.4	I MAC		
UNIT-I	II INFRASTR	UCTURE ESTABLISHMENT) ()	0	9
		uction to the time synchronization problem - Protocols	hased on sender / rec	1		v	-
		eceiver synchronization - Localization and Positioning:					
		nulti-hop environments – Impact of anchor placement.	roperies and possi	ore uppr	ouenes	Sing	ie nop
UNIT-I		Y CONTROL) 0	0	9
Motivatio	on and basic ideas –	Controlling topology in flat networks – power control –	Hierarchical networ	ks by do	minati	ng sets	
		tering - Combining hierarchical topologies and power				C	
UNIT-V	SENSOR N	ETWORK PLATFORMS AND TOOLS			9 0	0	9
		eley Motes - Sensor network programming challenges	s, Node-level softwar	re platfo	rms - l	Node-1	evel
Simulato	rs - State-centric pro	gramming					
			r	Fotal(4	5L)=4	5 Peri	iods

Text	Books:							
1.	Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.							
2.	Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.							
Refe	Reference Books:							
1.	Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007							
2.	Anna Hac, "Wireless Sensor Network Designs", John Wiley, 2003.							
3.	Bhaskar Krishnamachari, "Networking Wireless Sensors", Cambridge Press, 2005.							
4.	Mohammad Ilyas And Imad Mahgaob,"Handbook Of Sensor Networks: Compact Wireless And Wired Sensing Systems", CRC Press, 2005.							
E-Re	ferences:							
1.	https://archive.nptel.ac.in/courses/106/105/106105160/							
2.	https://www.digimat.in/nptel/courses/video/106105160/L01.html							
3.	http://www.digimat.in/nptel/courses/video/106105160/L22.html							

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Gain knowledge on some existing applications of wireless sensor networks.	L2				
CO2	Get exposure to elements of distributed computing and network protocol design and will learn to apply these principles in the context of wireless sensor networks.	L3				
CO3	Learn various hardware, software platforms that exist for sensor networks.	L2				

CO4	Gain knowledge on the various topologies available in wireless sensor networks	L2
CO5	Do research problems in wireless sensor networks.	L3

	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	105	101	100	100	107	100	10/	0	1	2	1	2	1505
CO1	3	2	2	2									2	2	2
CO2	3	1	1	1	1								2	2	2
CO3	2	2	3		2		1						3	1	2
CO4	2	2	2	2	1								1	2	1
CO5	2	2	3	3			1						3	2	2
Avg	2.4	1.8	2.2	1.6	0.8		0.4						2.2	1.8	1.8
3/2/1=	indicate	es streng	gth of co	orrelatio	on (3-H	igh,2-M	ledium,	1-Low)							

	TECE806	NETWORK SECURITY		SEN	AESTE	CR V	Π
PREREQ	UISTIES	<u>.</u>	Category	PE	Cree	Credit	
			Hours/Week	L	Т	Р	TH
			Hours/ week	3	0	0	3
Course C	Objectives:						
1. To	o understand net	work security, architecture, and algorithms.					
2. To	o study various e	ncryption and decryption standards for network security.					
3. To	o familiarize with	n necessary approaches and techniques to build protection	mechanisms to secu	ure com	puter ne	twork	s.
Unit I	INTRODUC		9	0	0	9	
Security Go	als - Services, M	echanisms and attacks - OSI security architecture - Model	l of network securit	y - Secu	rity trer	ıds -	
Legal, Ethic	cal and Profession	nal Aspects of Security - Need for Security at Multiple lev	vels – Mathematics	of Crypt	ography	y.	
Unit II	SYMMET	RIC CRYPTOGRAPHY		9	0	0	9
Encryption	and Decryption -	- substitution techniques - transposition techniques - Bloc	k ciphers - Data En	cryption	Standa	rd -	
	and Linear Cryp	tanalysis - Block Cipher model - Advanced Encryption St	andard -Triple DES	5 - RC5	- RC4 st	tream	
ciphers.							
TT				0			0
Unit III		XEY ENCRYPTION		9	0	0	9
Introduction	n to Number The	ory - Public Key cryptography - Rivest-Shamir-Adleman	Algorithm (RSA) -		v	v	-
Introduction Hellman key	n to Number The y exchange – Ell	ory - Public Key cryptography - Rivest-Shamir-Adleman A iptic curve cryptography.	Algorithm (RSA) -	key mar	nagemer	nt - Di	ffie-
Introduction Hellman key Unit IV	n to Number The y exchange – Ell MESSAGE	ory - Public Key cryptography - Rivest-Shamir-Adleman A iptic curve cryptography. AUTHENTICATION AND INTEGRITY		key mar	nagemer 0	nt - Di 0	ffie- 9
Introduction Hellman key Unit IV	n to Number The y exchange – Ell MESSAGE	ory - Public Key cryptography - Rivest-Shamir-Adleman A iptic curve cryptography.		key mar	nagemer 0	nt - Di 0	ffie- 9
Introduction Hellman key Unit IV Authenticati	n to Number The y exchange – Ell MESSAGE ion requirements	ory - Public Key cryptography - Rivest-Shamir-Adleman A iptic curve cryptography. AUTHENTICATION AND INTEGRITY	of hash functions	key mar	nagemer 0	nt - Di 0	ffie- 9
Introduction Hellman key Unit IV Authenticati	n to Number The y exchange – Ell MESSAGE ion requirements – Digital signatu	ory - Public Key cryptography - Rivest-Shamir-Adleman A iptic curve cryptography. AUTHENTICATION AND INTEGRITY s and functions – MAC – Hash functions – Security	of hash functions	key mar	nagemer 0	nt - Di 0	ffie- 9
Introduction Hellman key Unit IV Authenticati Algorithms Unit V	n to Number The y exchange – Ell MESSAGE ion requirements – Digital signatu NETWOR	ory - Public Key cryptography - Rivest-Shamir-Adleman A iptic curve cryptography. AUTHENTICATION AND INTEGRITY s and functions – MAC – Hash functions – Security re and authentication protocols – Digital Signature Standa	of hash functions ard.	key mar 9 and M 9	agemer 0 AC - S	nt - Di 0 Secure	ffie- 9 Has

Text	Books:								
1.	William Stallings, "Cryptography and Network Security: Principles and Practice", PHI, 7th Edition, 2017.								
2.	Atul Kahate, "Cryptography and Network security", 4th ed, Tata McGraw-Hill, 2019.								
Reference Books:									
1.	C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security, Wiley India Pvt.Ltd, 2011.								
2.	Behrouz A Forouson, "Cryptography & Network Security", 3 rd ed, Tata McGraw hill, 2015.								
3.	Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communication in a PUBLIC World,								
	Prentice Hall, 2 nd ed, 2002.								
4.	Roberta Bragg, Mark Phodes-Ousley, Keith Strassberg, "Network Security: The Complete Reference", Tata Mcgraw-Hill,								
	2004.								
E-Ref	erences:								
1.	https://nptel.ac.in/courses/106105162								
2.	https://nptel.ac.in/courses/106106178								
3.	https://nptel.ac.in/courses/106105031								

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the fundamentals of networks security, security architecture, threats and vulnerabilities	L2					
CO2	Apply the different cryptographic operations of symmetric cryptographic algorithms.	L3					
CO3	Acquire knowledge on the various public key cryptography techniques.	L2					
CO4	Apply the various authentication schemes to simulate different applications.	L3					
CO5	Understand various security practices and system security standards.	L2					

	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	2	1	1	1	2		2	1					1		
CO2	3	2	2	2	2								2		1
CO3	3	2	2	2	2								1		
CO4	3	2	2	2	2								2	2	2
CO5	2	1	2	2	2	2	2	1					2	1	1
Avg	2	1.6	1.8	1.8	2	0.4	0.8	0.4					1.6	0.6	0.8
3/2/1=	indicate	s streng	gth of co	orrelatio	n (3-Hi	gh,2-M	edium,1	-Low)							

23PTECE807 ELECTROMAGNETIC INTERFERENCE AND COMPATIBILITY	SEMESTER VIII										
PREREQUISTIES: Category	' PE	Cred	lit	3							
	L	Т	Р	TH							
PE	3	0	0	3							
COURSE OBJECTIVES											
1. To understand the basics of EMI and EMC											
2. To understand knowledge on the EMI coupling mechanism and its mitigation techniques											
3. To understand comprehensive insight about the current EMC standards and about various m	easuren	nent techi	niques								
UNIT I BASIC CONCEPTS	9	0	0	9							
Definition of EMI and EMC- Intra and Inter system EMI- Sources and victims of EMI, Conducted an	l Radia	ted EMI	emissi	on							
and susceptibility- Transient EMI& ESD- Case Histories- Radiation Hazards to humans.											
UNIT II COUPLING MECHANISM	9	0	0	9							
Common mode coupling- Differential mode coupling- Common impedance coupling- Ground loop co	upling-	Field to	cable								
coupling- Cable to cable coupling- Power mains and Power supply coupling.		I .									
UNIT III EMI MITIGATION TECHNIQUES	9	0	0	9							
Shielding – principle, choice of materials for H, E and free space fields, and thickness- EMI gaskets; I											
circuits, system and cable grounding; Filtering- Transient EMI control devices and applications- PCB	Zoning	, Compo	nent								
selection, mounting, trace routing. UNIT IV STANDARDS AND REGULATION	9	0	0	9							
Units of EMI- National and International EMI Standardizing Organizations – IEC, ANSI, FCC, CISP.		U	U								
standards- EN Emission and Susceptibility standards and specifications- MIL461E Standards.	х, ыз,	CENELI	EC- FC	.C							
UNIT V EMI TEST METHODS AND INSTRUMENTATION	9	0	0	9							
EMI test sites - Open area site- TEM cell- Shielded chamber- Shielded Anechoic chamber- EM	-	v	v	-							
Analyzer- Transient EMI Test wave Simulators- EMI coupling Networks - Line impedance Sta											
	through capacitors- Antennas and factors- Current probes and calibration factor- MIL-STD test methods- Civilian STD Test										
methods											
Total(45L)=45 Periods											

Text	Books:							
1.	V.P. Kodali, "Engineering EMC Principles, Measurements and Technologies", IEEE Press, Newyork, 2001							
2.	Henry W.Ott., "Noise Reduction Techniques in Electronic Systems", A Wiley Inter Science Publications, John Wiley and Sons, Newyork, 1988							
Reference Books:								
1.	S.Janani, R.Ramesh Kumar, "Electro Magnetic Interference and Compatibility" Sruthi Publishers							
2.	Bemhard Keiser, "Principles of Electromagnetic Compatibility", 3rd Ed, Artech house, Norwood, 1987.							
3.	Clayton R.Paul – Introduction to Electromagnetic compatibility – Wiley & Sons – 1992							
4.	Donwhite Consultant Incorporate – Handbook of EMI / EMC – Vol I – 1985							

	Dutcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Design an EMI free system	L3
CO2	Have Knowledge to reduce system level crosstalk	L2
CO3	Find solution to EMI Sources, EMI problems in PCB level / Subsystem and system level	L4
CO4	Design high speed printed circuit board with minimum interference	L3
CO5	Make our world free from unwanted electromagnetic environment	L3

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	102	105	104	105	100	107	100	109	0	1	2	1	2	1305
CO1	2	1	2										3	3	2
CO2	2	2											2	1	2
CO3	3	2		2	1						1		2	1	2
CO4	2	1	1		1						2		3	1	1
CO5	2	2	2										3	2	2
Avg	2.2	1.6	1	0.4	0.4						0.6		2.6	1.6	1.8
			3/2	2/1 = ind	icates st	rength o	of corre	lation (3	3-High,	2-Mediu	um,1-Lo	ow)			

	23РТ	ECE808	MOBILE AD-HOC NETWORKS		SEM	EST	FE	R VI	Í	
PRER	REQU	ISTIES:		Category	PE	Cr	ed	it	3	
				Hours/Week	L	Т		Р	TH	
				nours/ week	3	0		0	3	
Cour	rse O	ojectives:								
1.										
2.	То	obtain a knowled	lge on the security and energy management issues in Mobile	e Ad-hoc Networ	ks.					
Unit	I	9		0	0	9				
Introdu	iction	to Ad Hoc netwo	orks - Definition, cellular Vs Ad Hoc networks - Application	ns of Ad Hoc wir	eless ne	twor	ks ·	- Issu	ies	
in Ad I	Hoc w	reless networks	- Ad hoc wireless internet.							
Unit	II	MEDIUM A	CCESS PROTOCOLS		9) (0	0	9	
			s, goals and classification - Contention based protocols- Co							
		echanisms - Cor	ntention based protocols with scheduling algorithms – MAC	protocols that us	e direct	ional				
antenn							~ 1	-		
Unit			K PROTOCOLS		9		0	0	9	
	0	0	ues, classification - Table-driven routing protocols - On-der	nand routing prot	ocols -	Hybr	id 1	outir	ıg	
			ng protocols - Power aware routing protocols.							
Unit			ND DELIVERY AND SECURITY		9		0	0	9	
			s, goals and classification - TCP over Ad Hoc wireless netw			c wir	eles	SS -		
Netwo	rk secu	rity requirement	ts - Issues and challenges - Network security attacks - Security	re routing protoco	ls					
Unit	V	ENERGY M	IANAGEMENT		9) (0	0	9	
			tt - Classification of energy management schemes - Batte	ery management	scheme	s - T	ran	smis	sion	
power	manag	ement schemes	- System power management schemes.							
				Т	otal(45	5L)=	45	Peri	iods	

Total(45L)=45 Periods

Text	Books:
1.	C.Siva Ram Murthy and B.S.Manoj, Ad hoc Wireless Networks Architectures and protocols, 2nd edition, Pearson
	Education. 2007
2.	Charles E. Perkins, Ad hoc Networking, Addison – Wesley, 2000
Refe	rence Books:
1.	Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, Mobile ad hoc networking, Wiley-IEEE press, 2004.
2.	Mohammad Ilyas, The handbook of adhoc wireless networks, CRC press, 2002.
3.	Azzedine Boukerche, Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks, John Wiley & Sons, 2009.
4.	Jonathan Loo, Jaime Lloret Mauri, Jesus Hamilton Ortiz, Mobile Ad Hoc Networks current status and future trends, CRC
	Press, 2012.
E-Re	ferences:
1.	https://www.digimat.in/nptel/courses/video/106105160/L01.html
2.	http://www.nitttrc.edu.in/nptel/courses/video/106105160/L16.html
3.	https://archive.nptel.ac.in/courses/106/105/106105160/

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the concept of Mobile Ad-hoc Networks.	L2					
CO2	Describe the Medium Access protocols	L2					
CO3	Analyze the network protocols	L4					
CO4	Explain the concept of end to end delivery and security.	L2					
CO5	Gain knowledge on the energy management schemes	L1					

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	101	101	100	10.	105	100	107	100	107	0	1	2	1	2	1000
CO1	3	2	1	1									3	1	2
CO2	1	2	1	1	1								3	2	2
CO3	2	2	1	2									3	2	2
CO4	2	1	2	2	1								3	1	1
CO5	2	2	1	1									3	2	2
Avg	2	1.8	1.2	1.4	0.4								3	1.6	1.8
3/2/1=	3/2/1=indicates strength of correlation (3-High,2-Medium,1-Low)														

	SEN	IEST	ER V	III					
PREF	REQUISTIES:		Category	PE	Cre	dit	3		
Sign	1 Decocacing and have	mothematical analysis skills	Hours/Week	L	Т	Р	TH		
Signa	in Processing and basis	e mathematical analysis skills.	Hours/ week	3	0	0	3		
Cou	rse Objectives:								
1	To understand the	speech production mechanism and the various speech analy	ysis techniques ar	nd speec	h mode	els			
2	To understand the	speech compression techniques							
3	To understand the	speech recognition techniques							
4	To have in depth k	nowledge on internetworking of WLAN and WWAN							
5	To know the speak	er recognition and text to speech synthesis techniques							
Unit	I SPEECH SI	GNAL CHARACTERISTICS & ANALYSIS		9	0	0	9		
Speech	production process -	speech sounds and features Phonetic Representation of S	Speechrepresen	ting= sp	eech ii	n time	and		
		ime Analysis of Speech - Short-Time Energy and Zero-Cr					ion		
		er Transform (STFT) - Speech Spectrum - Cepstrum - Mel		trum Co	efficie	nts -			
		otion - Perception of Loudness - Critical Bands - Pitch Perception	ception	1					
Unit		OMPRESSION		9	0	0	9		
		of Speech (PCM) - Adaptive differential PCM - Delta Mod	ulation -Vector Q	Quantiza	tion- L	near			
		ode excited Linear predictive Coding(CELP)			-		-		
Unit		RECOGNITION		9	0	0	9		
		Hidden Markov Model (HMM)- training procedure for HI					1M-		
		cabulary speech recognition – Over all recognition system	based on subwor	rd units	- Conte	xt			
-		mantic post processor for speech recognition		0			0		
Unit			9	0	0	9			
	Acoustic parameters for speaker verification- Feature space for speaker recognition-similarity measures- Text dependent								
		lependent speaker verification techniques							
Unit		RECOGNITION AND TEXT TO SPEECH SYN		9	0	0	9		
		Γ S)-Concatenative and waveform synthesis methods, su	b-word units for	TTS, i	ntelligi	bility	and		
natura	ness-role of prosody								
			[fotal(4	5L)=4	5 Peri	iods		

Text	Books:
1.	L. R. Rabiner and R. W. Schafer, Introduction to Digital Signal Processing, Foundations and Trendsin Signal Processing
	Vol. 1, Nos. 1–2 (2007) 1–194
2.	Ben Gold and Nelson Morgan "Speech and Audio signal processing- processing and perception of speech and music",
	John Wiley and sons 2006
Refe	rence Books:
1.	Lawrence Rabiner, Biiing and- Hwang Juang and B.Yegnanarayana "Fundamentals of Speech Recognition", Pearson
	Education, 2009
2.	Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999
3.	Donglos O shanhnessy "Speech Communication: Human and Machine ", 2nd Ed. Universitypress 2001
E-Re	eferences:
1.	http://www.digimat.in/nptel/courses/video/117105145/L37.html
2.	https://www.youtube.com/watch?v=rC16fhvXZOo
3.	https://nptel.ac.in/courses/117105145

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Analyze the characteristics of speech signals	L2				
CO2	Design speech compression techniques	L2				
CO3	Configure speech recognition techniques	L2				
CO4	Design speaker recognition systems	L2				
CO5	Design text to speech synthesis systems	L2				

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	FUI	POI PO2	FUS	r04	FUS	100	FU/	FUð	F09	0	1	2	1	2	F305
CO1	1	1	-	1	2	1	1	-	-	-	3	1	2	1	2
CO2	2	2	-	1	2	2	2	-	-	-	3	1	3	2	1
CO3	1	1	-	1	1	2	1	-	-	-	3	1	3	2	1
CO4	2	2	-	1	2	2	2	-	-	-	3	1	2	2	2
CO5	1	1	-	1	2	1	1	-	-	-	3	1	3	1	1
Avg	1.4	1.4	-	1	1.8	1.6	1.4	-	-	-	3	1	2.6	1.6	1.4
			3/	2/1=ind	icates st	rength o	of corre	lation (3	3-High,2	2-Mediu	ım,1-Lo	ow)			

23PT	ECE810	SYSTEM ON CHIP DESIGN		SEN	1ES	TE	R VI	II				
PREREQU	PREREQUISTIES Category PI											
			Hours/Week	L	Т	1	Р	TH				
			110u15/ WEEK	3	0		0	3				
Course O	bjectives:											
1. To	know the Conce	pts and methodology of System on chip.										
2. То	design different	methodology for logic cores, memory cores and analog cores	5.									
3. Lea	arn design valida	tion and SOC testing.										
Unit I	INTRODUC	TION)	0	0	9				
System trade	offs and evolut	on of ASIC Technology - System on chip concepts and meth	nodology – SoC	design i	ssue	s – S	SoC					
challenges an	nd components.											
Unit II	DESIGN M	ETHODOLOGY FOR LOGIC CORES)	0	0	9				
		buses - Design process for hard cores - Soft and firm cores -	- Designing with	hard co	ores,	soft						
	and SoC design				-							
Unit III	DESIGN N	IETHODOLOGY FOR MEMORY AND ANALOG	CORES)	0	0	9				
		lation modes – Specification of analog circuits – A to D conv	erter $-D$ to A co	onvertei	– P	hase	-loca	ted				
loops – High												
Unit IV	DESIGN VA	ALIDATION)	0	0	9				
Core level va	alidation – Test l	enches- SoC design validation - Cosimulation - Hardware/s	oftware co-verif	ication.								
Unit V	SOC TEST	ING)	0	0	9				
	-	f digital logic cores - Cores with boundary scan - Test met	hodology for de	esign re	suse	– T	esting	g of				
microprocess	sor cores – Built	in self test method.										
			Г	Fotal(4	5L):	=45	Peri	ods				

Text	Books:
1.	RochitRajsuman, "System-on-a-chip: Design and Test", Artech House, London, 2000.
2.	Laung-Terng Wang, Charles E Stroud and Nur A Toubq, "System on Chip Test Architectures: Nanometer Design for
	Testability", Morgan Kaufmann, 2008
Refe	rence Books:
1.	WgelBadawy, Graham A Jullien, "System-on-Chip for Real-Time Applications", Kluwer Academic Press, 2003.
2.	Rajanish K Kamat, Santosh A Shinde, Vinod G Shelake, "Unleesh the System-on-Chip using FPGAs and Handle C,
	Spinger 2009.
3.	Steve Furber, "ARM System on Chip Architecture", 2nd Edition, Addison- Wesley Professional, Aug 2000
4.	Ricardo Reis, "Design of System on a Chip: Devices and Components" Springer 1st Edition, July 2004
E-Re	ferences:
1.	https://nptel.ac.in/courses/108102045/10
2.	https://freevideolectures.com/course/2341/embedded-systems/10
3.	https://www.elprocus.com/difference-between-soc-system-on-chip-single-board-computer/

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Understand the Concepts and methodology of System on chip.	L2				
CO2	Design different methodology for logic cores.	L4				
CO3	Design different methodology for memory and analog cores	L4				
CO4	Design SoC validation CO5: Test different logic cores.	L3				
CO5	Test different logic cores.	L5				

COUR	COURSE ARTICULATION MATRIX														
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
POs	FUI		r02 r03	F04	FUS	100	107	100	F09	0	1	2	1	2	F305
CO1		2	2	2							1		1	2	1
CO2		2	2	3							2		1	2	1
CO3		2	3	3									2	1	2
CO4		2	3	3							2		2	1	2
CO5		2	3	3							1		1	2	1
Avg		2	2.6	2.8							1.2		1.4	1.6	1.4
			3/2/	1=indic	ates str	ength o	of corre	lation (3-High	,2-Med	ium,1-l	Low)			