

GOVERNMENT COLLEGE OF ENGINEERING

SALEM 636011

(An Autonomous Institution Affiliated to Anna University, Chennai) (NBA Accredited)

B. E

ELECTRONICS AND COMMUNICATION ENGINEERING

REGULATION, CURRICULUM AND SYALLABUS (2018-19 ONWARDS)

2018 REGULATIONS FOR B.E DEGREE PROGRAMME

GOVERNMENT COLLEGE OF ENGINEERING AUTONOMOUS INSTITUTION

Accredited by NBA Affiliated to Anna University, Chennai Salem – 636011

GOVERNMENT COLLEGE OF ENGINEERING

SALEM - 636 011

(An Autonomous Institution affiliated to Anna University- Chennai)

Regulations 2018 - Autonomous Courses

(For Students Admitted from 2018 – 2019)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (Accredited by NBA)

REGULATIONS- CURRICULUM & SYLLABUS

(Choice Based Credit System)

B.E.ELECTRONICS AND COMMUNICATION ENGINEERING (F.T) (Accredited by NBA)

GOVERNMENT COLLEGE OF ENGINEERING, SALEM – 636 011

(An Autonomous Institution affiliated to Anna University- Chennai)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION

 Strive continuously to develop Excellence in Technical Education and Research by producing technically competent Electronics and Communication Engineers to meet the growing demands of technology and socioeconomic needs.

MISSION

- To foster and achieve unmatched excellence in Electronics and Communication Engineering Domain.
- To pursue continuous improvement in infrastructure and state-of-the art laboratories.
- To establish and set best teaching and learning standards among top grade Engineering Departments across the nation.
- To encourage learning, research, creativity, innovation and professional activity by offering ambience and support.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO's)

- **PEO1:** The graduates will utilize their expertise in Engineering to solve industry's technological problems.
- **PEO2**: Analyze real life problems, design appropriate system to provide solutions that are technically sound, economically feasible and socially acceptable.
- **PEO3:** Exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning.

PROGRAM OUTCOMES (PO's)

- **PO1:** An ability to apply knowledge of Mathematics, Science, and Engineering in the Electronics and Communication Engineering.
- PO2: An ability to design and conduct experiments, as well as to analyze and interpret data.
- **PO3:** An ability to design a System, or Process to meet desired needs within realistic constraints such as Economic, Environmental, Social, Ethical, Health care and Safety, Manufacturability, and Sustainability.
- PO4: An ability to identify, formulate and solve complex problems in the area of Electronics and

Communication Engineering.

- **PO5:** An ability to use the techniques, skills, and modern Engineering tools necessary for engineering practice.
- PO6: Knowledge of contemporary issues relevant to professional Engineering practice.
- **P07:** The broad education necessary to understand the impact of engineering solutions in Global, Economic, Environmental and Social context.
- PO8: An understanding of Professional and Ethical responsibility.
- PO9: An ability to function on multidisciplinary teams.
- PO10: An ability to communicate effectively.
- PO11: Recognition of the need for, and an ability to engage in research and to involve in life-long learning.
- PO12: An ability to work as a leader in a team, to manage projects in Multidisciplinary environment.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1:** To analyse, design and develop solutions for the real time problems and to apply the technical Knowledge for developing quality products for Electronics and Communication based Industry.
- **PSO2:** To adapt to emerging Information and Communication technologies and to develop innovative ideas and solutions in RF & Communication, Networking, Embedded Systems, and VLSI.
- **PSO3:** An ability to make use of acquired technical knowledge to get employed in the field of Electronics and Communication and also to become successful Entrepreneur.

GOVERNMENT COLLEGE OF ENGINEERING: SALEM 636011 (An Autonomous Institution Affiliated to Anna University, Chennai) (NAAC ACCREDITED) REGULATIONS 2018

CHOICE BASED CREDIT SYSTEM Common to all B.E. (FULL TIME) DEGREE PROGRAMME (For the students admitted to B.E Programme during the Academic year 2018-2019 and onwards)

1. DEFINITIONS AND NOMENCLATURE

In this regulation, unless the contest otherwise specifies

- (i) **"Programme"** means Degree Programme (i.e) B.E. Degree Programme.
- (ii) **"Course"** means a Theory or Practical subject that is normally studied in a semester, like Mathematics, Physics, Engineering Graphics, etc.,

2. ELIGIBILITY FOR ADMISSION

For admission to the Bachelor Degree Programme candidates will be required to satisfy the conditions of admission thereto prescribed by the Government of Tamilnadu and Anna University, Chennai. Provision is made for lateral entry candidates with Diploma in Engineering / Technology in the third semester of the programme of one of the branches of study and they will be required to satisfy the conditions of admissions thereto prescribed by the Government of Tamilnadu and Anna University, Chennai.

3. BRANCHES OF STUDY

Branches will be offered at the time of admission to the programme. The following are the branches offered in this college.

- B.E. Civil Engineering
- B.E. Computer Science and Engineering
- B.E. Electronics and Communication Engineering
- B.E. Electrical and Electronics Engineering
- B.E. Mechanical Engineering
- B.E. Metallurgical Engineering

4. DURATION AND STRUCTURE OF THE PROGARMME

4.1 The Minimum and Maximum period of the U.G. Full time programme are given below:

The total duration for completion of the programme shall not exceed the maximum duration irrespective of the period of break of study (vide clause 25) or prevention (vide clause 11.6) in order that the student may be eligible for the award of the degree (vide clause 23)

Programme	Minimum	Maximum
P.E. (Pagular Stream)	4 Years	7 Years
D.E. (Regular Stream)	(8 Semesters)	(14 Semesters)
R.E. (Lateral Entry)	3Years	6 Years
D.E. (Lateral Entry)	(6 Semesters)	(12 Semesters)

4.2 The duration of B.E. programme shall be 4 Years for Regular Stream and 3 Years for Lateral Entry. Each academic year will be divided into two semesters. The number of working days shall be 80 days or 540 periods (which includes the days for conducting periodical tests) each of 50 minutes duration. The number of working days shall exclude study holidays, Government holidays and end semester examination days.

4.3 Categorization of Courses

Every B.E. programme will have a curriculum with syllabi consisting of theory and practical courses that shall be categorized as follows:

- i. **Humanities and Social Sciences (HS)** courses include Technical English, Ethics and Human Values, Communication skills.
- ii. **Basic Sciences (BS)** courses include Mathematics, Physics, Chemistry, Biology, Physics laboratory, Chemistry laboratory, etc.
- Engineering Sciences (ES) courses include Engineering practices, Computer Practice, Engineering Graphics, Engineering Mechanics, Basics of Electrical / Electronics / Mechanical / Civil/ Computer Engineering etc.
- iv. Professional Core (PC) courses include the core courses relevant to the chosen specialization/ branch.
- v. **Professional Elective (PE)** courses include the elective courses relevant to the chosen specialization/ branch.
- vi. **Open Elective (OE)** courses include the courses relevant to the chosen specialization / branch which a student can choose from the curriculum of other B.E. programmes and courses offered by the Departments under the Faculty of Science and Humanities.
- vii. Project includes Project Work, Mini Project, Seminar, Internship and Industrial/Practical Training.
- viii. **Mandatory** Course includes Environmental Science, Constitution of India, Induction Programme/**NCC / NSS / SPORTS / YRC/Yoga** activities.
- **4.4** The courses of study shall be both theory and practical and shall be in accordance with the prescribed syllabi.
- **4.5** Each semester curriculum shall normally have a blend of lecture and practical courses not exceeding 9 courses. However Employability and Enhancement course(s) may be included as additional course.
- **4.6** A student who has passed all the courses prescribed in the curriculum for the award of the degree shall not be permitted to re-enroll to improve his/her marks in a course or the aggregate marks.
- **4.7** The medium of instruction, examination and project report shall be English, except for courses on language other than English.

4.8 Internship

The Industrial / Practical Training / Internship / Summer Project shall carry 100 marks and shall be evaluated through continuous assessment only. At the end of Industrial / Practical training / Internship / Summer Project, the student shall submit a detailed report on the training undergone and a certificate from the organization concerned. The evaluation will be made based on this report and Viva-voce Examination, conducted internally by a three member Departmental Committee constituted by the HOD. Certificates (issued by the Organization) submitted by the student shall be attached to the mark

list and sent to COE by the HOD with due recommendations. The training will appear in the list of Value Added Courses in the Grade Sheet with the credits (additional/extra credits) obtained.

4.9 Credit Assignment

Each course is assigned certain number of credits based on the following

Contact period per	CREDITS
week	
1 Lecture Period	1
1 Tutorial Periods	1
2 Practical Periods (Laboratory / Seminar / Project Work / Mini Project/ Internship etc.)	1

4.10 One Credit Courses

One credit courses shall be offered by a Department with the prior approval from the Board of Studies. The details of the syllabus must be approved by the Board of Studies. The credits earned through the one credit courses shall be over and above the total credit requirement prescribed in the curriculum for the award of the degree. They shall be allowed to take one credit courses offered in other Departments also with the permission of Head of the Department offering the course.

4.11 Online Courses / Self Study Courses

- **4.11.1** Students may be permitted to enroll for one Online Course or Self Study Course with the approval of respective Board of Studies.
- 4.11.2 The students can opt for Self Study Course from the list of Professional Electives provided, the students does not have any standing arrears and the CGPA should be 7.5 and above. The purpose of the course is to permit the student to study a course of the student's choice. The students shall study on their own under the guidance of a faculty member. No formal lectures need to be delivered. One Faculty member assigned by the HOD shall be responsible for the periodic monitoring and assessment of the student in that course.
- **4.11.3** The Self Study Course or online Course of 3 credits can be considered instead of one Professional Elective Course.

5 COURSE ENROLLMENT AND REGISTRATION

- **5.1** Each student, on admission shall be assigned to a Faculty Advisor (vide clause 6) who shall advise and counsel the student about the details of the academic programme and the choice of courses considering the student's academic background and career objectives.
- **5.2** Every student shall enroll for the course of the succeeding semester in the current semester. However, the students shall confirm the enrollment by registering for the courses within the first five working days after the commencement of the concerned semester.
- 5.3 No course shall be offered by a Department unless a minimum of 10 students register for that course.
- **5.4** After registering for a course, a student shall attend the classes, satisfy the attendance requirements, earn Continuous Assessment marks and appear for the End Semester Examinations.

- **5.5** Each student on admission shall register for **all the courses prescribed in the curriculum in** the student's **first Semester of study**.
- 5.6 The enrollment for the courses of the Semesters II to VIII will commence 10 working days prior to the last working day of the preceding semester. The student shall enroll for the courses with the guidance of the student's Faculty Advisor. If the student wishes, the student may drop or add courses (vide clause 5.7) within five working days after the commencement of the concerned semester and complete the registration process duly authorized by the Faculty Advisor.

5.7 Flexibility to Add or Drop courses

- 5.7.1 A student has to earn the total number of credits specified in the curriculum of the respective Programme of study in order to be eligible to obtain the degree. However, if the student wishes, then the student is permitted to earn more than the total number of credits prescribed in the curriculum of the student's programme.
- 5.7.2 From the III to VIII semesters, the student has the option of registering for additional courses or dropping existing courses. Total number of credits of such courses cannot exceed 6.
- 5.7.3 The student shall register for the project work in the respective semester only.

5.8 Fast Track System

- 5.8.1 Fast Track System is for meritorious B.E Full time students.
- 5.8.2 With the eligibility criteria he/she will be permitted to take up and complete an eight semester professional core/professional elective in the fifth semester, a professional elective in the sixth semester and a professional elective in the seventh semester under Fast track system.
- 5.8.3 Eligibility Criteria for opting Fast Track System: Students should have earned minimum CGPA of 7.5 up to previous semesters. There should not be any standing arrears up to IV semester for enrollment of a Professional Core/Professional elective in the V semester of study, up to V semester for enrollment of a Professional Elective in the VI semester of study and up to VI semester for enrollment of a Professional Elective in the VI semester of study.
- 5.8.4 If the eligibility is not satisfied at any point of time the candidate will not be permitted to continue in FAST TRACK SYSTEM and further he/she has to complete the course as per the regular system.
- 5.8.5 FAST TRACK SYSTEM is optional.

6 FACULTY ADVISOR

To help the students in planning their courses of study and for general advice on the academic programme, the Head of the Department of the students will attach a certain number of students to a teacher of the Department who shall function as Faculty Advisor for those students throughout their period of study. The Faculty Advisor shall advise the students in registering of courses, authorize the process, monitor their attendance and progress and counsel them periodically. If necessary, the Faculty Advisor may also discuss with or inform the parents about the progress / performance of the students concerned.

The responsibilities for the faculty advisor shall be:

To inform the students about the various facilities and activities available to enhance the student's curricular and co-curricular activities.

- > To guide student enrollment and registration of the courses.
- > To authorize the final registration of the courses at the beginning of each semester.
- To monitor the academic and general performance of the students including attendance and to counsel them accordingly.

7 SYSTEM OF EXAMINATION

Performance in each courses of study shall be evaluated based on (i) continuous internal assessment throughout the semester and (ii) an end – semester examination.

7.1 THEORY

End-semester Examination will be conducted in all theory courses at the end of each semester for all the programmes. The maximum marks of each course shall be 100, out of which the continuous internal assessment will carry 40 marks, while the end semester Examination will carry 60 marks.

7.2 PRACTICAL / MINI PROJECT

The practical classes for all the Practical/Laboratory component courses will be assessed continuously. The maximum marks for the Practical/Laboratory component courses shall be 100, out of which continuous internal assessment will carry 40 marks and the end semester practical examination will carry 60 marks. If any practical course contains Part A and B components, the maximum for each Part of the laboratory will be 50, out of which the continuous internal assessment will carry 20 marks, and the end semester practical examination will carry 30 marks. The end semester practical examination for award of marks shall be conducted by both Internal and External examiners.

7.3 PROJECT WORK AND VIVA – VOCE

For the project work and viva – voce examination, the maximum marks shall be 200, comprising 80 marks for internal assessment and 120 marks for the end semester examination. The end semester marks of 120 shall be awarded by both the Internal and External examiners, the project report shall carry a maximum of 40 marks (same mark must be awarded to every student of the project group) The viva-voce examination shall carry 80 marks (awarded to each student of the project group based on the individual performance in the viva-voce examination conducted by External examiner, and the Internal Examiner)

8 CLASS COMMITTEE

- 8.1 A Class Committee consists of teachers of the class concerned, student representatives and a chairperson selected from among the faculty who do not teach that class. It is like the 'Quality Circle' (more commonly used in industries) with the overall goal of improving the teaching-learning process. The functions of the class committee include
 - > Solving problems experienced by the students in the class room and in the laboratories.
 - Clarifying the regulations of the degree programme and the details of rules therein particularly clauses 10, 11, 12 and 13 which should be displayed in the college Web site.
 - Informing the student representatives the academic schedule including the dates of assessments and the syllabus coverage for each assessment.
 - Informing the student representatives the details of Regulations regarding weightage used for each assessment. In the case of practical courses (laboratory / drawing / Project work / seminar

etc.) the breakup of marks for each experiment / exercise / module of work, should be clearly discussed in the class committee meeting and informed to the students.

- Analyzing the performance of the students of the class after each test and finding the ways and means of improving the slow learners.
- Identifying slow learner students, if any, and requesting the teachers concerned to provide additional help or guidance or coaching to such students.
- **8.2** The class committee for a class under a particular branch is normally constituted by the head of the department. However, if students of different branches are mixed in a class (like the first semester which is generally common to all branches), the class committee is to be constituted by the Principal.
- **8.3** The class committee shall be constituted within the first week of each semester.
- 8.4 At least 4 student representatives (usually 2 boys and 2 girls) shall be included in the class committee.
- **8.5** The chairperson of the class committee may invite the Faculty adviser(s) and the Head of the department to the meeting of the class committee.
- **8.6** The Principal may participate in any class committee of the institution.
- 8.7 The chairperson is required to prepare the minutes of every meeting, submit the same to Principal within two days of the meeting and arrange to circulate it among the students and teachers concerned. If there are some points in the minutes requiring action by the Head of the Institution the same shall be brought to the notice of Head of the institution by the head of the Department/Chief Faculty advisor.
- 8.8 The first meeting of the class committee shall be held within fifteen days from the date of commencement of the semester, in order to inform the students about the nature and weightage of assessments with the framework of the regulations. Two or three subsequent meeting may be held in a semester at suitable intervals. The Class Committee Chairman shall put on the Notice Board the cumulative attendance particulars of each course of each student at the end of every such meeting to enable the students to know their attendance details to satisfy the clause 11 of this Regulation. During these meetings the student members representing the entire class, shall meaningfully interact and express the opinions and suggestions of the other students of the clause in order to improve the effectiveness of the teaching-learning process.

9 COURSE COMMITTEE FOR COMMON COURSES

Each common theory course offered to more than one discipline or group shall have a "**Course Committee**" comprising the entire faculty teaching the common course, with one of them nominated as Course Coordinator. The nomination of the course Coordinator shall be made by the Head of the Department / Principal depending upon whether all the teachers teaching the common course belong to a single department or to several departments. The 'Course committee' shall meet in order to arrive at a common scheme of evaluation for the test and shall ensure a uniform evaluation of the tests.

10 PROCEDURE FOR AWARD OF MARKS FOR INTERNAL ASSESSMENT

10.1 Theory Courses

10.1.1 Unit Tests [75% weightage]: Three tests, each carrying FIFTY (50) marks, shall be conducted by the Department / Institution. The total marks of three tests shall be reduced

to 75 marks. However, a re-test, at the discretion of the Head of Department and approved by the Head of Institution, may be conducted for candidates with genuine reasons.

- **10.1.2** Assignment [12.5% weightage]: The total marks of Three assignments carrying 10 Marks each shall be reduced to 12.5 marks.
- **10.1.3** Tutorial / Objective Test [12.5% weightage]: The total marks of Three Tutorial / Objective Test carrying 10 Marks each shall be reduced to 12.5 marks.

The total of 100 marks shall be reduced to 40 marks (rounded off to the nearest integer).

10.2 Practical Courses with Laboratory Component

Every Practical exercise / experiment shall be evaluated based on conduct of exercise / experiment and records maintained.

There shall be atleast one test. The criteria for arriving at the internal assessment marks are:

Experiment / Record / Practical classes Performance	: 60% Weightage
Practical Test	: 40% Weightage

The total of 100 marks shall be reduced to 40 marks (rounded off to the nearest integer).

10.3 Project Work

There shall be three assessments during the semester by a review committee. The students shall make a presentation on the progress of the project before the committee. The Head of the Department shall constitute the review committee consisting of HOD, Guide and a senior member of faculty. The criteria for arriving at the internal assessment marks for the Project Work evaluated for 80 marks are: Work assessed by the Project Guide : 50% Weightage

Work assessed by the Committee : 50% Weightage

The total of 100 marks shall be reduced to 80 marks (rounded off to the nearest integer).

10.4 Faculty incharge of the subject

Every teacher is required to maintain an 'ATTENDANCE AND ASSESSMENT RECORD' for every semester which consists of attendance marked in each theory / Laboratory / EEC class, the assessment marks and the record of class work (topics covered), for each course handled by the teacher. This should be submitted to the Head of the Department periodically (at least three times in a semester) for checking the syllabus coverage and the records of assessment marks and attendance. The Head of the Department will affix his/her signature and date after due verification. At the end of the semester, the record should be verified by the Head of the Department who shall keep this document in safe custody (for seven years). The records of attendance and assessment of both current and previous semesters should be available for inspection.

10.5 Assessment for Industrial / Practical Training / Internship / Summer Project

The Industrial / Practical Training / Internship / Summer Project shall carry 100 marks and shall be evaluated through Continuous Assessment only. At the end of Assessment for Industrial / Practical Training / Internship / Summer Project, the student shall submit a detailed report on the training undergone and a certificate from the organization concerned. The evaluation will be made based on this report and a Viva-voce Examination, conducted internally by a three member Departmental Committee constituted by the HOD. Certificates (issued by the Organization) submitted by the student shall be attached to the mark list and sent to COE by the HOD with due recommendations.

The training will appear in the list of value Added Courses in the grade sheet with the credits (additional / extra credits) obtained.

10.6 Assessment for Value Added one Credit Course

The Value Added One Credit Course shall carry 100 marks and shall be evaluated through **Continuous Assessment only.** Two assessments shall be conducted during the semester by the Department concerned. The total marks obtained in the tests shall be reduced to 100 marks and rounded to the nearest integer. The HOD may identify a faculty member as Coordinator for the course. A committee consisting of the HOD, staff handling the course (if available), Programme Coordinator and a Senior Faculty nominated by the HOD shall monitor the evaluation process.

10.7 Assessment for Online Course

Students may be permitted to earn Online Courses (which are provided with certificate) with the approval of Board of Studies and HOD subject to a minimum of three credits. This Online Course of 3 credits can be considered instead of one Elective Course. Respective Boards of Studies will take a decision on the evaluation methodology for the online course. The BOS can decide whether to evaluate through End Semester Examination only and the same way be conveyed to the COE, at the beginning of the semester whenever the course is offered. The students need to obtain certification or credit to become eligible for writing the End Semester Examination to be conducted by the Institution. The HOD may identify a Faculty member Coordinator for the course, who is responsible for the evaluation of Continuous Assessment.

10.8 Assessment for Self Study Course

The faculty members approved by the HOD shall be responsible for periodic monitoring and evaluation of the self study course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

10.9 Assessment for MOOC Courses

Students may be permitted to earn credits through MOOC Courses with the approval of Board of Studies and HOD subject to a maximum of six credits per semester. The credits earned from the MOOC courses can be transferrable subject to the approval of the respective Performance Analysis Committee and no additional assessment is required.

11 REQUIREMENTS FOR COMPLETION OF A SEMESTER

A candidate who fulfils the following conditions shall be deemed to have satisfied the requirements for completion of a semester.

- **11.1** He/She secures not less than 75% of attendance for each course with the total number of working hours specified in the respective curriculum.
- 11.2 Candidates representing University in State / National / International / Inter University Sports events, paper or project presentation in National / International Conference with prior permission from the Head of the Institution are given exemption upto 10% of the required attendance and such candidates shall be permitted to appear for the current semester examination on condonation (attendance 65% to 74%)

- 11.3 Candidates who could not attend classes continuously due to Trauma/Infectious diseases / Surgeries requiring continuous medical attention, on submission of a valid medical certificate in time, obtained from a Government doctor not below the rank of Assistant Surgeon, are given exemption upto 10% of the required attendance and shall be permitted to appear for the current semester examination on condonation (attendance 65% to 74%)
- **11.4** Permission mentioned in 11.2 and 11.3 can be allowed only twice during his/her entire course of study.
 - **11.4.1** Fees for 1st time condonation Rs.1000/- for one course and Rs. 300/- for every additional course
 - **11.4.2** Fees for 2nd time condonation Rs.5000/- for one course and Rs. 1000/- for every additional course
- **11.5** His/her conduct should be certified to be satisfactory by the Head of the Department concerned and Head of the Institution.
- 11.6 Candidate who does not secure 75% attendance in any one or more courses, will not be permitted to write the end semester examinations for that/those courses. However he will be permitted to move to the next semester and re-register for those courses in the next semester after earning attendance and internal marks from the course coordinator through contact hours.
- 11.7 Candidates who do not complete all the courses in that semester (as per clause 11.1, 11.2 and 11.3), will not be permitted to write the end-semester examination and are not permitted to move to next semester. However, they will be permitted to write the arrear examination, if any. They are required to repeat the incomplete semester in the next academic year getting the necessary permission from the authorities.

12 REQUIREMENTS FOR APPEARING FOR END SEMSTER EXAMINATION

A candidate shall normally be permitted to appear for the end semester examination of the current semester, if he/she has satisfied the semester completion requirements (subject to Clause 11.1 with 11.2 and 11.3) and has registered for examination in all courses of that semester. Registration is mandatory for arrear subjects along with current semester examinations, failing which the candidate will not be permitted to move to the higher semester.

12.1 Reappearance Registration

- **12.1.1** If a student fail in a theory course, the reappearance registration for that course in the subsequent semester is mandatory.
- **12.1.2** The student may attend the classes for the reappearance registration courses, if the student wishes. However, the attendance requirement (vide clause 11) is not compulsory for such courses.

13 END – SEMESTER EXAMINATION

- **13.1** There shall be one end semester examination of 3 hour duration in each lecture based course.
- **13.2** The Project report of B.E. programme will be evaluated based on the report and a viva-voce examination by an External Examiner and an Internal Examiner.
- **13.3** The following will be the weightage for different courses.
 - **13.3.1** Theory courses

- : Internal Assessment 40%
- : End-Semester Examination 60%

13.3.2 Laboratory based Courses	: Internal Assessment – 40%					
	: End-Semester Examination – 60%					
13.3.3 Project work [Maximum Marks: 200]	: Internal Assessment – 40%					
	: End-Semester Examination – 60%					
Internal Assessment – 80 marks	: [Supervisor: 40 marks, committee: 40 marks]					
End-Semester Examination – 120 Marks	: [evaluation for project report (by External Examiners):					
	40 Marks and Viva-Voce: 80 marks (Internal and					
	External Examiners]					

14 PASSING REQUIREMENTS

14.1 The minimum number of total credits to be earned through successful completion of the courses of study of the respective branch by a candidate to qualify for the award of degree in the various branches of study is provided below.

Branch of study	Minimum number of credits to be earned through successful completion of the courses of study of the respective branch, for the award of degree							
	For regular entry (entry at first Semester)	For lateral entry (entry at third semester)						
Civil Engineering	160	121						
Computer Science & Engineering	159	120						
Electronics & Communication Engineering	160	121						
Electrical & Electronics Engineering	157	118						
Mechanical Engineering	160	121						
Metallurgical Engineering	161 122							

- **14.2** For each theory and laboratory courses, examination will be conducted for 100 marks. A candidate who secures 50% marks and above in the end semester examination, and 50% in continuous assessment and end semester examination both put together, shall be declared to have passed the examination in that course.
- **14.3** A candidate who successfully completes the course requirements and passes all the prescribed examinations in all the eight semesters within a maximum period of 7 years (14 semesters), reckoned from the commencement of the first semester to which the candidate was admitted in regular stream and [six semesters within a maximum period of 6 years (12 semesters), reckoned from the commencement of the third semester to which the candidate was admitted for lateral entry], is eligible to get the degree.

15 REVALUATION

15.1 Copies of answer script for theory course(s) can be obtained from the Office of the Controller of

Examinations on payment of a prescribed fee specified for this purpose through proper application.

15.2 A candidate can apply for revaluation or photo copy cum revaluation of his/her semester examination answer paper in a theory course, within a week from the declaration of results, on payment of a prescribed fee through proper application to the Controller of Examinations, as per norms given by the chairman, Academic Council. Revaluation is not permitted for Practical Courses and for Project work.

16 CHALLENGING THE REVALUATION

Challenging the revaluation is permitted for those students who have applied for photocopy of answer script. The copy of the answer script is to be valued by a competent authority and the valued script should be submitted to COE's office along with prescribed fee for challenging the revaluation within 2 days after declaration of the revaluation results.

17 MALPRACTICE

If a student indulges in malpractice in any of the end-semester examinations, he/she shall be liable to face punitive action as prescribed by the Controller of Examination, Government College of Engineering, Salem.

18 PROCEDURE FOR USING SCRIBE

If a candidate is physically challenged / meets with accident or suffers from ill health at the time of examination, then he/she may be permitted to use a scribe to write the examination on payment of a prescribed fee through proper application to the Office of the Controller of Examinations. In such case, maximum one hour extra time will be permitted. The scribe shall be a non-engineering student/ graduate.

19 PROVISION FOR WITHDRAWAL FROM EXAMINATION

- **19.1** A candidate who satisfies Clause 12, may for valid reasons and on prior application, be granted permission to withdraw from appearing for the examination of any one course or consecutive examinations of more than one course in a semester examination.
- **19.2** Such withdrawal shall be permitted only ONCE during the entire period of study of the degree programme.
- **19.3** Withdrawal application is valid only it is made 10 days prior to the commencement of the examination in that course or courses and is recommended by the Head of the Department and approved by the Head of the Institution.
- **19.4** Notwithstanding the requirement of the mandatory TEN days notice, application of withdrawal for special case under extraordinary conditions will be considered on the merit of the case.
- **19.5** Withdrawal shall not be construed as an appearance for the eligibility of a candidate for First Class with Distinction. This provision is also applicable to those who seek withdrawal during VIII semester.
- **19.6** Withdrawal from the end semester examination is NOT applicable to arrear subjects of previous semesters.
- **19.7** The candidate shall reappear for the withdrawn courses during the examination conducted in the subsequent semester.

20 AWARD OF THE LETTER GRADES

20.1 The letter grade and the grade point are awarded based on percentage of marks secured by a candidate in individual course as detailed below:

Range of Total Marks	Letter Grade	Grade Points (GP)
90 to 100	S	10
80 to 89	A	9
70 to 79	В	8
60 to 69	С	7
55 to 59	D	6
50 to 54	E	5
0 to 49	RA	0
Incomplete	Ι	0
Withdrawal	W	0
Withheld	WH	0

"RA" denotes "reappearance" in the course.

"I" denotes "incomplete" as per clause 11.1 and hence prevention from writing End Semester Examination.

"W" denotes "withdrawal" from the course.

"WH" denotes "withheld" due to malpractice etc.

20.2 For the Co-curricular activities such as National Cadet Corps (NCC)/ National Service Scheme (NSS) / SPORTS / YRC, a satisfactory / not satisfactory grading will appear in the mark sheet. Every student shall put in a minimum of 75% attendance in the training and attend the camp compulsorily. The training and camp shall be completed during the first year of the programme. However, for valid reasons, the Head of the Institution may permit a student to complete this requirement before the completion of final semester. A satisfactory grade in the above co-curricular activities is compulsory for the award of degree.

20.3 For zero credit courses Excellent / Good / Satisfactory grading will appear in the grade sheet.

21 PROCEDURE FOR COMPLETING THE PROGRAMME

21.1 A candidate, who, for some reason has discontinued the programme can join the programme of study

in any semester only at the time of its normal commencement in the Institution for regular students, upon satisfying all the following conditions:

- (a) He / she should have completed the course of study of the previous semesters.
- (b) He / she should be eligible to register for the examinations and satisfy rule 11.1
- (c) He / she should have registered for all the examinations of the previous semesters.
- **21.2** A candidate will be permitted to proceed from one semester to the next higher semester only if he / she satisfies the regulation for eligibility to appear for the end-semester examination in the semester concerned, subject to the condition that the candidate should register for all the arrear courses in the lower semesters along with the current (higher) semester courses.
- 21.3 A candidate should have completed the B.E Degree course within a period of SEVEN consecutive academic years (14 semesters) for regular stream [SIX consecutive academic years (12 semesters) for lateral entry] from the date of admission to the course, even if the candidate discontinues and rejoins subsequently, to be eligible for the award of the degree.

22 ISSUE OF GRADE SHEETS AND GPA, CGPA CALCULATION

Individual Grade sheet for each semester will be issued through the Head of the Department concerned, after the publication of the results with following details.

- > The list of courses enrolled during the semester and the grade scored.
- > The Grade Point Average (GPA) for the semester and
- > The Cumulative Grade Point Average (CGPA) of all courses enrolled from first semester onwards.

GPA is the ratio of the sum of the products of the number of credits of courses registered and the points corresponding to the grades scored in those courses, taken for all the courses, to the sum of the number

of credits of all the courses in the semester.

$$GPA = \frac{Sum of [CXGP]}{Sum of C}$$

Where C – credit of a particular subject/Course

GP – grade point obtained by the student in the respective subject/Course.

CGPA will be calculated in a similar manner, considering all the courses enrolled from first semester. "RA", "I" and "W" grades will be excluded for calculating GPA and CGPA.

23 ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the B.E. Degree provided the candidate has

- Successfully completed the course requirements and has passed all the prescribed examinations in all the 8 semesters within a maximum period of 7 years for regular stream (6 semesters within a maximum period of 6 years for lateral Entry) from the commencement of first semester (third semester) to which the candidate was admitted.
- ii) No disciplinary action is pending against him/her.
- iii) Successfully completed NCC/NSS/SPORTS/YRC requirements.

24 CLASSIFICATION OF THE DEGREE AWARDED

24.1 FIRST CLASS WITH DISTINCTION

A candidate who qualifies for the Degree by passing the examinations in all courses of the entire programme, in first attempt, within a period of eight semesters for regular stream (six semesters for lateral entry) from the date of admission to the programme with CGPA not less than 8.50 for the entire programme shall be declared to have passed the examination for the degree in FIRST CLASS WITH DISTINCTION. For this purpose the withdrawal from examination will not be construed as an appearance. Further, the authorized break of study will not be counted for the purpose of classification.

24.2 A candidate transferred from other Institution, who qualifies for the degree by passing the examinations in all courses of the entire programme in first attempt, within a period of eight Semesters for regular stream and six semesters for Lateral Entry stream from the date of admission to the programme with CGPA not less than 8.50 for the entire programme shall be declared to have passed the examination for the degree in FIRST CLASS WITH DISTINCTION. For this purpose the withdrawal from examination will not be construed as an appearance. Further, the authorized break of study will not be counted for the purpose of classification.

24.3 FIRST CLASS

A candidate who qualifies for the award of the Degree, having passed the examinations in all the courses of the entire programme (first to eight semesters) within a maximum period of NINE consecutive semesters for regular stream (third to eight semesters) for lateral entry stream within a maximum period of SIX semesters, from the date of admission to the programme with CGPA not less than 7.00 for the entire programme, shall be declared to have passed the examination for the degree in FIRST CLASS. For this purpose, the authorized break of study will not be counted for the purpose of classification.

24.4 SECOND CLASS

All other successful candidates shall be declared to have passed the examinations for the Degree in SECOND CLASS.

24.5 A candidate who is absent for semester examination in a course / project work after having registered for the same shall be considered to have attempted that examination for the purpose of classification.

25 TEMPORARY BREAK OF STUDY FROM A PROGRAMME

- **25.1** Break of study shall be granted only ONCE for valid reasons for a maximum of one year during the entire period of study of the degree programme. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for break of study. If candidate intends to temporarily discontinue the programme in the middle of the semester for valid reasons, and to rejoin the programme in a subsequent year, permission may be granted based on the merits of the case provided he / she applies to the Head of the Institution (through Head of the Department) in advance, but not later than the last date for registering for the end semester examination of the semester in question, through the Principal of the Institution stating the reasons there for and the probable date of rejoining the programme.
- **25.2** The candidate permitted to rejoin the programme after the break shall be governed by the Curriculum and Regulations in force at the time of rejoining. If the Regulation is changed, then, those candidates may have to do additional courses as prescribed by the head of the department and approved by the Academic Council.
- **25.3** The authorized break of study (for a maximum of one year) will not be counted for the duration specified for passing all the courses for the purpose of classification. (vide clause 23). However, additional break of study granted will be counted for the purpose of classification.
- **25.4** The total period for completion of the Programme reckoned from, the commencement of the first semester to which the candidate was admitted shall not exceed the maximum period specified irrespective of the period of break of study (vide clause 4.1) in order that he/she may be eligible for award of the degree.
- 25.5 If any student is detained for want of requisite attendance, progress and good conduct, the period spent in that semester shall not be considered as permitted 'Break of Study' or 'Withdrawal' (clause 18 and 24) and is not applicable in this case.

26 DISCIPLINE

Every student is required to observe discipline and decorous behaviour both inside and outside the college and not to indulge in any activity which will tend to bring down the prestige of the college. In the event of an act indiscipline being reported, the Principal shall constitute a discipline committee consisting of three Heads of Department, of which one should be from the faculty of the student, to inquire into acts of indiscipline. The disciplinary action is subject to review by the University in case the student represents to the University. Any expulsion of the student from the college shall be with prior concurrence from Director of Technical Education / University.

27 RANK OF A STUDENT

A candidate who qualifies for the Degree by passing the examination in all courses of the entire programme in the first attempt within a period of EIGHT Semesters from the date of admission to the course can be given his/her position in the class as rank. The rank is determined from the I Semester to VIII Semester end semester examination mark percentage. Students transferred from other Institutions to Government College of Engineering, Salem and lateral entry students are not eligible for rank.

28 PERSONALITY AND CHARACTER DEVELOPMENT

All students shall enroll, on admission, in any one of the personality and character programmes (the NCC / NSS / SPORTS / YRC). The programme shall include classes on hygiene and health awareness and also training in first-aid.

National Cadet Corps (NCC) programme will have about 20 parades.

National Service Scheme (NSS) will have social service activities in and around college/institution. **SPORTS** Games, Drills, Physical exercises etc.

Youth Red Cross (YRC) will have activities related to social services in and around college/institution.

While the training activities will normally be during weekends, the camp will normally be during vacation period.

29 REVISION OF REGULATIONS CURRICULUM AND SYLLABI

The college may from time to time revise, amend or change the regulations, scheme of examinations and syllabus, if found necessary.

GOVERNMENT COLLEGE OF ENGINEERING

SALEM - 636 011

(An Autonomous Institution affiliated to Anna University- Chennai)

Regulations2018 - Autonomous Courses

(For Students Admitted from 2018 – 2019)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (Accredited by NBA)

CURRICULUM & SYLLABUS

(Choice Based Credit System)

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING (FT)

B.E.ELECTRONICS AND COMMUNICATION ENGINEERING (FT) (Accredited by NBA)

GOVERNMENT COLLEGE OF ENGINEERING SALEM – 636 011. Regulations 2018 - Autonomous Courses (For Students Admitted from 2018 – 2019)

B.E.ELECTRONICS AND COMMUNICATION ENGINEERING – FULL TIME

Course code	Name of the Course			Hou	rs/Week			Maximum Marks			
		Category	Contact periods	Lecture	Tutorial/ Demo*	Practical	Credit	CA	ЭJ	Total	
	SEMESTER I										
18EN101 Professional English HS 2 2 0 0 2 40 60 100											
18MA101	Matrices and Calculus	BS	<u> </u>	2	1	0	4	40	60	100	
18CY101	Chemistry	BS	4	3	1	0	4	40	60	100	
18CS101	Fundamentals of Problem Solving and C Programming	ES	3	3	0	0	3	40	60	100	
18MC101	Induction Program – 21 Days	MC					0				
			PRACTIC	CAL				1	I		
18EN102	Professional English Laboratory	HS	4	0	0	4	1	40	60	100	
18CS102	Computer Practice Laboratory	ES	4	0	0	4	2	40	60	100	
18ME102	Workshop Manufacturing	ES	4	0	0	4	3	40	60	100	
	Practices		05	44	0	40	40			700	
	TOTAL		25	11	2	12	19	-	-	700	
		:	SEMEST	ER II							
	1	1	THEOF	RY				1	1	r	
18MA203	Differential Equations and Laplace Transforms	BS	4	3	1	0	4	40	60	100	
18PH102	Physics – Electromagnetism	BS	4	3	1	0	4	40	60	100	
18EE201	Principles of Electrical Engineering	ES	4	3	1	0	4	40	60	100	
18ME101	Engineering Graphics & Design	ES	5	1	0	4	3	40	60	100	
18CYMC01	Environmental Science	MC	-	-			0				
			PRACTIC	CAL							
18PH103	Physics Laboratory	BS	3	0	0	3	1.5	40	60	100	
18CY102	Chemistry Laboratory	BS	3	0	0	3	1.5	40	60	100	
18EN103	Professional Communication Laboratory	HS	2	0	0	2	1	40	60	100	
18EE202	Principles of Electrical Engineering Laboratory	ES	2	0	0	2	1	40	60	100	
	TOTAL		27	10	3	14	20	-	-	800	

			SEMEST	ER III						
			THEO	RY						
18MA303	Linear Algebra and Numerical Methods	BS	3	3	1	0	4	40	60	100
18EC301	Semiconductor Physics and Devices	ES	3	3	0	0	3	40	60	100
18EC302	Digital System Design	PC	3	3	0	0	3	40	60	100
18EC303	Signals and Systems	PC	3	3	0	0	3	40	60	100
18EC304	Network Theory and Synthesis	PC	3	3	0	0	3	40	60	100
18EC305	Transmission Lines and Waveguides	PC	3	3	0	0	3	40	60	100
18MC301	Indian Constitution	MC	1	1	-	-	0	-	-	Grade
		•	PRACT	CAL	1			•		
18EC306	Electronic Devices and Circuits Laboratory	PC	3	0	0	3	1.5	40	60	100
18EC307	Digital System Design Laboratory	PC	3	0	0	3	1.5	40	60	100
	TOTAL		22	18	1	4	22	-	-	800
			SEMEST	ER IV	1			•		
			THEO	RY						
18MA402	Probability and Stochastic Process	BS	4	3	1	0	4	40	60	100
18EC401	Antenna and Wave Propagation	PC	3	3	0	0	3	40	60	100
18EC402	Analog Circuits	PC	3	3	0	0	3	40	60	100
18EC403	Microprocessor and Microcontroller	PC	3	3	0	0	3	40	60	100
18EC404	Analog Communication	PC	3	3	0	0	3	40	60	100
18EC405	Control Systems	PC	3	3	0	0	3	40	60	100
1050100			PRACI					1.40		1 400
18EC406	Analog Circuits Laboratory	PC	3	0	0	3	1.5	40	60	100
18EC407	Microcontroller Laboratory	PC	3	0	0	3	1.5	40	60	100
	TOTAL		22	15	1	6	22	-	-	800
			SEMEST	ER V						
			THEO	RY						
18EC501	Digital Communication	PC	3	3	0	0	3	40	60	100
18EC502	Computer Architecture	PC	3	3	0	0	3	40	60	100
18EC503	Digital Signal Processing	PC	3	3	0	0	3	40	60	100
18EC504	Computer Networks	PC	3	3	0	0	3	40	60	100
	Open Elective-1	OE	3	3	0	0	3	40	60	100
		I	PRACT		1	I	1	1	1	1
18EC505	Communication Systems	PC	3	0	0	3	1.5	40	60	100
18EC506	Digital Signal Processing	PC	3	0	0	3	1.5	40	60	100
	TOTAL		22	18	0	4	18	-	-	800
L		1	1	1	1	1	1		1	1

		:	SEMEST	ER VI						
			THEO	RY						
18EC601	VLSI Design	PC	3	3	0	0	3	40	60	100
18EC602	Embedded Systems	PC	3	3	0	0	3	40	60	100
	Program Elective- 1	PE	3	3	0	0	3	40	60	100
	Open Elective – 2	OE	3	3	0	0	3	40	60	100
	Open Elective - 3	OE	3	3	0	0	3	40	60	100
		1	PRACT	ICAL				1		
18EC603 VLSI Design Laboratory PC 3 0 0 3 1.5 40 60									100	
18EC604	Mini Project	EEC	5	0	0	5	2.5	40	60	100
18EN501	Communication Skills Laboratory	HS	4	0	0	4	2	40	60	100
	TOTAL		24	16	0	8	21	-	-	800
			SEMEST	ER VII						
			THEO	Rĭ						
18EC701	Optical and Microwave Engineering	PC	3	3	0	0	3	40	60	100
18ECM701	Principles of Management	HS	3	3	0	0	3	40	60	100
	Program Elective - 2	PE	3	3	0	0	3	40	60	100
	Program Elective- 3	PE	3	3	0	0	3	40	60	100
	Open Elective - 4	OE	3	3	0	0	3	40	60	100
			PRACT	ICAL		1	1			
18EC702	Optical and Microwave Engineering Laboratory	PC	3	0	0	3	1.5	40	60	100
18EC703	Embedded system Laboratory	PC	3	0	0	3	1.5			
	TOTAL		28	18	0	10	18	-	-	900
		S	SEMEST	ER VIII						
			THEO	RY	1	1	1	1	1	I
	Program Elective-4	PE	3	3	0	0	3	40	60	100
	Program Elective - 5	PE	3	3	0	0	3	40	60	100
	Program Elective-6	PE	3	3	0	0	3	40	60	100
4050004	Ductors(Mari		PRACT				40		400	000
18EC801		EEC	18	0	0	20	10	80	120	200
TOTAL 27 9 0 18 19 - - 500										500

Total number of credits = 159

Course work	Credits recommended by AICTE	Credit % for AICTE recommendation	Credits	Credit %
Humanities and Social Sciences	12	7.5	10	6.29
Basic Sciences	25	15.63	27	16.98
Engineering Science	24	15	18	11.32
Program Core	48	30	61.5	38.68
Program Electives	18	11.25	18	11.32
Open Electives	18	11.25	12	7.55
Employment Enhancement Courses	15	9.38	12.5	7.86
Mandatory Courses(Zero Credit)				
Total	160	100.00	159	100.00

Electronics and Communication Engineering Scheme of Credits:

HS	Humanities and Social Sciences
BS	Basic Sciences
ES	Engineering Sciences
PC	Program Core
PE	Program Elective
OE	Open Electives
EEC	Project Work

PROGRAM ELECTIVES (PE)

S			Hrs/Wk& Credits				
No.	Course Code	Course Title		т	Ρ	С	Preferred Semester
		PROGRAM ELECTI	VE-I				
1.	18ECPE601	Electronic Measurements	3	0	0	3	
2.	18ECPE602	Physics of Optoelectronics	3	0	0	3	1/1
3.	18ECPE603	Digital Image Processing	3	0	0	3	VI
4.	18ECPE604	Wireless Communication	3	0	0	3	
		PROGRAM ELECTI	VE-II				
5.	18ECPE701	FPGA based System Design	3	0	0	3	
6.	18ECPE702	Radar Communication	3	0	0	3	VII
7.	18ECPE703	Internet of Things	3	0	0	3	VII
8.	18ECPE704	Nano Electronics	3	0	0	3	
		PROGRAM ELECTI	/E-III	•	•		
9.	18ECPE705	VLSI Testing	3	0	0	3	
10.	18ECPE706	Advanced Radiating System	3	0	0	3	VII
11.	18ECPE707	High Speed Networks	3	0	0	3	VII
12.	18ECPE708	Virtual Instrumentation	3	0	0	3	
		PROGRAM ELECTI	/E-IV	•	•		
13.	18ECPE801	Low Power VLSI Design	3	0	0	3	
14.	18ECPE802	Multimedia Compression Techniques	3	0	0	3	\/III
15.	18ECPE803	Software Defined Radio	3	0	0	3	VIII
16.	18ECPE804	Pattern Recognition	3	0	0	3	
		PROGRAM ELECTIV	VE-V				
17.	18ECPE805	System on Chip Design	3	0	0	3	
18.	18ECPE806	Wireless Sensor Networks	3	0	0	3	VIII
19.	18ECPE807	Microwave ICs	3	0	0	3	
20.	18ECPE808	Physics of Sensors	3	0	0	3	
		PROGRAM ELECTI	/E-VI	•	•		
21.	18ECPE809	Network Security	3	0	0	3	
22.	18ECPE810	Satellite Communication	3	0	0	3	
23.	18ECPE811	Bio Medical Electronics	3	0	0	3	VIII
24.	18ECPE812	Artificial Intelligence and Machine Learning	3	0	0	3	

OPEN ELECTIVES (OE) [For other Departments]

S.	Course Code	Course Title		Hrs/Wk& Credits				
No.				Т	Р	С		
1.	18ECOE01	Fundamentals of Electron Devices	3	0	0	3		
2.	18ECOE02	Principles of Modern Communication Systems	3	0	0	3		
3.	18ECOE03	Microcontroller and its Applications	3	0	0	3		
4.	18ECOE04	Basic VLSI Design	3	0	0	3		
5.	18ECOE05	Basics of Embedded Systems	3	0	0	3		
6.	18ECOE06	Basics of Internet of Things	3	0	0	3		

SEMESTER I

	18EN101	PROFESSIONAL E	NGLISH	LT	Р	С	
2							
Course	Objectives:	n akilla awah an nhanian ward rang misi		of conto			
1.	Master basic readi	g skills such as phonics, word recogniti	on and meaningrul division	or sente	nces	•	
2.	Read fast, decode	ccurately and remove oral reading erro	ors that affect text meaning				
3.	Acquire and develo	writing skills for academic, social and	professional purposes				
4.	Gain skills in academic and functional writing tasks.						
1	Word Formation wi	Prefix and Suffix Synonyms and Ant	onyms Tenses Parts of S	neech (Comr	non	
	Errors in English	Subject –Verb Agreement, Noun-Pr	onoun Aareement. Prepa	sitions.	Artic	les.	
	Conditional statem	nts, Redundancies, Clichés etc), Voice	S	,		,	
2.	Email – Training Pr	gramme and related details, paper subr	nission for seminars and co	nference	s, Fix	king	
	an appointment, A	anging and Cancelling a meeting with	n team members, conferer	ice detai	ls, h	otel	
	accommodation, R	minder mails, Raising queries with tea	am members, Congratulato	ry mails	at w	эгк,	
3.	Letter Writing – Bu	ness and need based communication	– Formats of official, perso	hal and b	ousin	ess	
	letters, official lea	e and request applications (Bonafid	le certificate, course com	pletion,	cond	luct	
	certificate, permiss	on to arrange industrial visits) com	plaints, replies to queries	from b	pusin	ess	
	customers, inviting	lignitaries, accepting and declining invi	tations, placing orders, cov	er letter	for a	job	
4	Technical Report \	me. riting – status reports – Work Done i	n the Project Feasibility R	enorts c	n Of	fice	
ч.	Accommodation. Ir	roduction of New Products. Sales Prom	otion. Customers Feedbac	k. Startin	αaΝ	lew	
	Company, Event R	ports- Seminars, Conferences, Meeting	g, Recommendations and C	hecklist	5. S.		
5.	Charts- interpreting	pie charts, graphs etc.,	-				
READI	NG						
1.	Understanding not	es, messages, timetables, adverts, g	graphs, etc understandir	ng mear	ing	and	
	2 Gapped sente	.s. ces – Meanings, collocations and mea	nings of individual words				
3.	Reading passage v	th multiple choice questions – reading	for gist and reading for sp	ecific info	orma	tion	
	- skimming for gen	ral idea of and meaning and contents of	of the whole text.				
4.	Short reading pass	ge; gap-filling – Grammar, especially p	prepositions, articles, auxili	ary verb	s, mo	odal	
5 Sh	verbs, pronouns, re ort reading passage	alive pronouns and adverbs. : sentence matching – Scanning – abili	ty to nick out specific inform	nation in	а		
shc	short text						
METHO	DOLOGY						
Objectiv	e Type:						
	2 Collocations rela	ed to technical and business					
	3. Coherence in pa	agraphs – use of sequence clues.					
	4. Conversations a	d appropriate responses.					
	5. Tenses with time	makers.					
	6. Verbal phrases						
	7. Description of ot 8. Products and like	ects in a sentence of two					
	9. Tone. vocabular	expressions in formal and informal left	ters.				
	10. Email writing- to	ne, vocabulary, expressions, mail ID., c	creation, CC, BCC.				
Descript	tive Writing:					ľ	
	1. Skimming and so	anning to look for specific information.					
	2. Spotting Errors.	fferent work place/ profession based or	ontexts with hints				
	4. Letter writing in a	fferent business based contexts with hi	ints.			ľ	
	5. Report writing: fe	asibility report, progress in project report	rts, accident reports and				
	. 9		1				

event reports.

- 6. Checklists in business, office and profession based context.7. Recommendations in business, office and profession based context.
- 8. Resume and Cover letter.
- 9. Mind mapping visuals on social and environmental issues essay writing based on the given mind map visual.

Total (L)= 30 Periods

Cour	se C	utcomes:				
Upor	n cor	npletion of this course, the students will be able to:				
CO1	:	Read and summarize the main ideas, key details and inferred meanings from a passage				
CO2	:	Internalize the grammar items such as prepositions, articles, tenses, verbs, pronouns, and adverbs				
		adjectives through contexts and apply them to spot errors.				
CO3	:	Develop the ability to classify, check information and prepare reports.				
CO4	:	Apply the academic and functional writing skills in new contexts				
CO5	:	Interpret pictorial representation of data and statistic				
Text	Boo	KS:				
1	Nor	man Whitby. Business Benchmark – Pre - Intermediate to Intermediate, Students Book, Cambridge				
1.	Univ	/ersity Press, 2014				
Reco	mm	ended Readings and Reference sources:				
1.	1. M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill					
2.	. Farhathullah, T.M. Communication Skills for Technical Students					
3.	. Meenakshi Raman and Sangeetha Sharma, Technical Communication: Principles and Practice, Oxford					
	Univ	versity Press, New Delhi, 2004				
4.	Dav	id F. Beer and David McMurray, Guide to Writing as an Engineer, John Willey. New York, 2004				
5.	Coll	ins Cobuild- Student's Grammar: Self-Study Edition with Answers (Collins Cobuild Grammar)				
	pap	erback- 6 May 1991				
6.	Ess	ential English Grammar paperback Raymond Murphy CUP 2007				
7.	And	roid App for Grammar:				
	http	bs://play.google.com/store/apps/details?id=com.zayaninfotech.english.grammar				
	http	://www.onestopenglish.com/grammar/				
8.	Spe	ak Better Write Better English paperback – Nov 2012, Norman Lewis, Goyal Publishers and				
	Dist	ributors				
9.	Ess	ential English Grammar Paperback Raymond Murphy CUP 2007				
10	Eng	lish Reading Comprehension 2014 RPH Editorial Board				
11	Prof	iciency in Reading Comprehension Simplifying the 'Passage' for you, 2008 Ajay Singh.				

18MA101 MATRICES AND CALCULUS L T						
3 1 0						
COURSE	OBJECTIVE					
1	To know the us	e of matrix algebra needed by engineers for practical applicat	ions	j.		
2	To understand	effectively the geometrical application of differential calculus	and	d Be	eta,	Gamma
	functions.					
3	To familiarize w	vith partial differentiation concepts and its applications				
4	To obtain the k	nowledge of multiple integration and their related applications				
5	To acquire the knowledge of vector differentiation and integration and its applications					
	i o doquiro ino					
Unit I	MATRICES			9	-	3
Symmetr	ic Skew Symmet	ric and Orthogonal Matrices – Characteristic equation of a M	atrix			n values
and Fige	n vectors – Prope	erties – Cavley-Hamilton theorem (excluding proof) – Diagonal	izati	on c	of M	latrices -
Reductio	n of quadratic for	m to canonical form by orthogonal transformation		••••		
Unit II	CALCULUS		<u> </u>	9	+	3
Curvatur	e, Radius of Cur	vature (Cartesian coordinates) – Centre and Circle of curva	ture	- E	volu	utes and
Involutes	- Definite integral	s and their properties – Beta and Gamma functions and their	prop	ertie	es.	
	-	· ·	<u> </u>			
Unit III	MULTIVARIAB	LE CALCULUS (DIFFERENTIATION)		9	+	3
Partial de	erivatives – Euler	's theorem for homogenous functions – Total Derivatives –Ja	acob	ians	3 –	Maxima,
Minima a	nd Saddle point-	 Method of Lagrangian multipliers- Taylor's series 				
	1		r			
Unit IV	MULTIVARIAB	BLE CALCULUS (INTEGRATION)		9	+	3
Multiple i	ntegrals- Double i	ntegrals – Change of order of integration in double integrals –	Cha	nge	of v	/ariables
(Cartesia	n to Polar) – App	lication to Areas – Evaluation of Triple integrals – Application	to vo	olum	ies.	
11			<u> </u>	~		
		CULUS		9	+	J
	anereniiaiion- G	Surface and Volume integrals - Crean's theorem Ca	vec	lOI dive	Inte	-gration-
Stokes th	eorem (without n	roof) – Simple applications involving cubes and rectangular p	arall	alor	nye Nine	de anu
Olokes li		Tool) – Omple applications modifing cabes and rectangular p	aran	ciop	npe	u 3 .
Total (I +T)- 60 Periode						
Course	Dutcomes:		<u>(-</u> .	• /-		
Upon cor	npletion of this co	ourse, the students will be able to:				
CO1 :	Learn the funda	amental knowledge of Matrix theory.				
CO2 :	Familiar with th	e concept of the differentiation and integration and its applica	tions	3.		
CO3 :	Acquire skills ir	applications of Integral and Vector Calculus.				
Text Boo	oks:					
1.	Grewal. B.S, "H	ligher Engineering Mathematics", 43 rd Edition, Khanna Publica	tion	s, D	elhi	, (2015).
2	Veerarajan T.,	"Engineering mathematics for first year", Tata McGraw Hill	Educ	catio	on F	vt. Ltd.,
Ζ.	^{2.} New Delhi, 2009.					
Reference Books:						
1.	James Stewart	, "Essential Calculus", Cengage Learning, New Delhi, 2 nd ed	tion	, 20	13	
2.	P. Kandasamy	, K. Thilagavathy and K. Gunavathy," Engineering Mathemat	cs (For	l ye	ear B.E.,
	B.Tech)", Ninet	h Edition, S. Chand & Co. Ltd. New Delhi, 2010.				
3.	Srimanta pal a	nd Subath.C.Bhumia, "Engineering Mathematics", Oxford uni	vers	ity p	bubl	ications,
	New Delhi, 201	5			<u></u>	
4.	Ewinkreyzig, "A	Advanced Engineering Mathematics", 9" edition, John Wiley &	Sor	1S, 2	2006	
5.	Dolbi 2nd odition	auas.r, rukhmangauachan.e. Engineering Mathematics", F	ear	son,	, Ur	iennal &
	\perp Denn, Z \equiv euitio	11, 2013				

	18CY101 CHEMISTRY	L	TP		С
		3	1 0		4
COURS	EOBJECTIVE				
l echnol enable t	bgy is being increasingly based on the electronic, atomic and molecular level modification the students to:	ions.	The co	ours	se will
1	Analyze microscopic chemistry in terms of atomic and molecular orbitals.				
2	Rationalize periodic properties of elements and the knowledge of acids and bases.				
3	Analyze the stereo chemical aspects of organic molecules and chemical reactions synthesis of organic molecules	that	are u	sed	in the
4	Rationalize bulk properties and processes in thermodynamic aspects and its extens processes	ion in	electr	och	emical
5	Distinguish the ranges of the electromagnetic spectrum used for exciting different m in various spectroscopic techniques	olecu	lar ene	ergy	levels
Unit I	MOLECULAR STRUCTURE		9 +		3
Formatio	provide the second sec	. 02.	CO an	d N	-iq - Ol
Aromatic Crystal f propertie Band the	eity- Huckel rule - concept of aromaticity - aromatic, non-aromatic and anti-aromatic me eld theory - energy level diagrams for transition metal ions – octahedral and tetrahedral es; eory - band structure of solids- Fermi level - role of doping on band structures.	olecul geom	es; etries ·	- ma	agnetic
Effective –Aufbau electron Acids ar types- m	nuclear charge – shielding effect, penetration of orbitals - variations of s, p, d and f orl principle - electronic configuration of elements – periodic properties - atomic and ionic s affinity and electro negativity - anomalous properties of second period elements - dia d bases - Bronsted-Lowry concept - Lewis concept - pH and pKa – problems – HSA echanism of buffer action- Henderson–Hasselbalch equation- derivation and problems	oital e iize, io gonal \B - b 3.	nergie onizatio relatio uffer s	s of on e nsh olu	atoms energy, iip; tions –
Unit III	STEREOCHEMISTRY AND ORGANIC REACTIONS		9 +	3	6
Stereois optical a Ethane, Addition hydrobo Aliphatic benzene Eliminati	Stereoisomerism – geometrical isomerism – cis-trans and E-Z nomenclature – optical isomerism – symmetry, chirality, optical activity, enantiomer and diastereomers – absolute configuration - R-S notation - conformational analysis – Ethane, butane, cyclohexane; Addition reaction – hydrogenation, halogenations - Markovnikov rule – Kharasch effect - hydration, hydrohalogenation, hydroboration; Aliphatic nucleophilic substitution reaction –SN ₁ , SN ₂ and SN _i mechanism – electrophilic substitution reaction in benzene– mechanism - nitration, halogenations, sulfonation, alkylation and acylation; Elimination reaction –E ₁ , E ₂ and E ₁ CB- mechanism- Savtzeff rule – examples.				
Unit IV			<u>0</u> 1	3	2
Thermodynamic functions- internal energy, enthalpy, entropy and free energy- first and second law of thermodynamics - partial molar properties - Gibbs Duhem equation – variation of chemical potential with temperature and pressure – Third and Zeroth law of thermodynamics – definition only; Free energy and EMF relation - single electrode potential - electrochemical series and its significance cell potential and its measurement (Poggendorff method only) - Nernst equation-derivation and problems-Standard cell potential and equilibrium constant relation- problems.					
Unit V	SPECTROSCOPY TECHNIQUES AND APPLICATIONS		9 +	3	6
Vibrational spectroscopy – principle - selection rule - harmonic and unharmonic oscillators - number of vibrational modes of poly-atomic molecules – overtones - Fermi resonance - instrumentation (block diagram only); Rotational spectroscopy- rotational spectra of rigid and non rigid diatomic rotators, simple polyatomic molecules like CO ₂ , NH ₃ ,CH ₄ and H ₂ O; NMR - origin of NMR signal - chemical shift - factors affecting chemical shift and spin-spin coupling – application to ethanol, acetone and ethyl methyl ether					
			_\ -		
Cauras	Tot	al (L+	·ſ)= 6	0 P	eriods
	Outcomes: moletion of this course, the students will be able to:				
	Inpretion of this course, the students will be able to.) Acto			
	I onderstand in-depth knowledge of atomic and molecular orbitals based chemical as	50013			

CO2	:	Realize the nature of periodic properties of elements and the knowledge of acids and bases.						
CO3	:	Grasp the knowledge of 3D structural aspects of organic molecules and chemical reactions that are used						
		in the synthesis of organic molecules.						
CO4	:	Substantiate the various processes involved in thermodynamic considerations and its involvement in						
		electrochemical aspects.						
CO5	: Aware of spectroscopic techniques in the field of molecular identification of materials.							
Text E	Text Books:							
1		P.R. Puri, L.R.Sharma and Madan S. Pathania, "Principle of physical chemistry" 47th Vishal Publishing Co,						
1.		Jalandhar-8						
2		C. N. Banwell and E. M. Mccash, "Fundamentals of Molecular Spectroscopy", Tata McGraw-Hill Publishing						
۷.		Company Limited, New Delhi, 2009.						
3		Raj. K. Bansal – "A Text Book of Organic Chemistry" Revised 4th Ed.,(2005), New Age International						
0.		Publishers Ltd., New Delhi.						
4.		P.S. Kalsi – "Stereochemistry conformation and Mechanism", 6th Ed., (2005), New Age International						
		Publishers Ltd., New Delhi.						
5.		J.D. Lee – "A New Concise Inorganic Chemistry", 5th Edn., Oxford University Press, 2011.						
6.		Wahid Malik, G.D.Tuli and R.D.Madan, "Selected Topic in Inorganic Chemistry", S.Chand& Co., Ltd (2011).						
Refer	en	ce Books:						
1.		David.W.Ball, Physical Chemistry, Cengage Learning India Pvt. Ltd., New Delhi, 2009.						
2.		G.Aruldhas, Molecular structure and spectroscopy, second edition, PHI learning Pvt. Ltd., New Delhi, 2008.						
3.		Cotton and Wilkinson – "Advanced Inorganic Chemistry", 6th Ed., John Wiley & Sons, New York- 2004.						
4.		James E. Huheey, Ellen A. Keiter and Richard L. Keiter – "Inorganic Chemistry-Principles of Structure and						
		Reactivity", 4 thEdn., Pearson Education, 11 th Impression, 2011.						
5.		F.A. Carey and R.J. Sund berg – "Advanced organic chemistry" Vol. I and II– 3rd Ed.,(1984), Plenum						
		Publications.						
6.		Ernest. Eliel and Samuel H. Wilen – "Stereochemistry of Organic Compounds" – Wiley Student Ed., (2006).						
		John Wiley and Sons Pvt. Ltd., Singapore.						

r									
		18CS101	FUNDAMENTALS OF PROBLEM SOLVING AND C PROGRAMMING	L	Т	Ρ	С		
				3	0	0	3		
Cour	se O	bjectives:							
1.	To	express problem	solving through programming.						
2.	To	practice the basic	c concepts of C programming language.						
3.	3. To provide the basics knowledge about array and strings to solve simple applications.								
4.	4. To use pointers and functions in the simple applications.								
5. Unit		review the eleme	entary knowledge of structures and unions.	<u> </u>	0	. 1	•		
Probl	em fo	ormulation. Probl	lem Solving methods. Need for logical analysis and thinking – Algorithm	 – P	seu	do c	ode –		
Flow	Flow Chart- Need for computer languages, Generation and Classification of Computers- Basic Organization of a Computer.								
Unit		C Programmi	ing Basics and Control Statements		9	_	0		
C Ch	aract	er set- Identifies	and Keywords- Data Type- Declarations-Expressions-Statements and Sy	mbo	olic o	cons	tants-		
Oper	ators	- Arithmetic Op	erators - Unary operators - Relational and Logical Operators - Assign	mei	nt o	perat	ors –		
Cond	itiona	al operators- Mar	naging Input and Output operations- Decision Making-Branching and Loo	pin	g sta	atem	ents.		
Unit		Arrays and S	tringe	<u> </u>	0		0		
Pre-p	roce	ssor directives-S	torage classes-Arrays – Initialization – Declaration – one dimensional and	l tw	o di	mens	sional		
array	s. Sti	ings - String ope	erations – String handling functions-Simple programs-sorting-searching.		c				
		-							
Unit	IV	Functions an	d Pointers		9	+	0		
Func –Call	by re	- Library function eference – Recur	s and user-defined functions – Function prototypes and function definition rsion – Pointers - Definition – Initialization – Pointers arithmetic – Pointers	is – s ar	- Ca nd a	ll by rrays	value		
					_				
Unit	V	Structures, U	Inions and File		9	+	0		
– Pas	ssing	structures to fun	ictions – Array of structures – Pointers to structures-Union-basic file oper-	atio	nn a n.		icture		
Cour		uteemee	Total	(L))= 4	5 Pe	riods		
Cour	se U	utcomes:							
Upon	com	pletion of this co	burse, the students will be able to:						
001	:	Formulate and a	apply logic to solve basic problems.						
CO2		Apply the conce	and debug programs in C language.	l tir	no				
003		applications.	pis such as allays, decision making and looping statements to solve rea						
C04	:	Solve simple sci	ientific and statistical problems using functions and pointers.						
C05	:	Write programs	related to structures and unions for simple applications.						
Text	Bool	ks:			<i>.</i>	<u></u>			
1.	Anita Ltd.,	a Goel and Ajay N Pearson Educat	Mittal, "Computer Fundamentals and Programming in C", Dorling Kinders ion in South Asia, 2011. (Unit-I).	ley	(Inc	lia) F	°∨t.		
2.	E.Ba (Unit	llagurusamy, "Pro ∷II-V).	ogramming in ANSI C" fourth Edition, Tata McGraw-Hill, 2008.						
Refe	Reference Books:								
1.	Byro	n S Gottfried, "Pi	rogramming with C ^r , Schaum's Outlines, Second Edition, Tata McGraw-F	1111, 1111,	200	10. n. 20	06		
۷.	rein	ignan, d.vv and F	Alone, D. M, The C Frogramming language, Second Edition, Pearson Ed	JUC	auo	n, 20	00.		
3.	3. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.								

		18EN102	PROFESSIONAL ENGLISH LABORATORY	L	Т	Ρ	С
				0	0	2	1
Course	e Objec	ctives:					
1.	To a	cquire and develop liste	ning skills for academic, social and professional purposes.				
2.	Tou	nderstand short convers	ations or monologues				
3.	Iom	aster basic reading skil	lis such as phonics, word recognition, and fluency				
4.	Acqu	ire and develop pre-inte	ermediate level fluency in oral skills such as discourse man	agen	nent,	gra	mmar
	and	rocabulary, pronuncialio	in and interactive communication for academic, social and pro	ress	ionai	pur	Joses
5.	Addr	Address an audience and present a topic.					
6.	Express an opinion and justify it						
	Meth	odology - Listening					
	List c	of Audio files:					
	1.	Job Responsibilities					
	2.	Conversation betwee	en two employees on company culture				
	3.	Emails					
	4.	Description of gadge	ets				
	5.	Interview with a lead	ing industrialist				
	6.	Office procedures –	applying for permission, placing an order for office equipmen	t,			
	1.	Enquiries about orde	ers and deliveries				
	8.	Conversation betwee	en two people on general topics				
	9.	Telephone Message	S				
	10.	Acking for directions	gappointments				
	11.	Asking for directions					
	12.	Tones · Pude and P					
	14	Conversation : State	ments Discussions Debating Accepting Negotiating				
	15	Conferences · Anno	uncements about changes in schedules and sessions				
	16.	Motivational Speech					
	17.	TED Talk on Team V	Vork				
	18.	Describing charts an	d data				
	19.	Presentation at an o	ffice				
	20.	Short self-description	ns.				
	MET	HODOLOGY: - Speakin	g				
	1. Se	If-Introduction – Persona	al information –Name, Home background, study details, area o	of int	erest	t, hol	obies,
	stren	gths and weaknesses, p	projects and paper presentations if any, likes and dislikes in for	od, c	lothe	s, S	pecial
	featu	res of home town, Pers	onal role models in life, goals and dreams, favorite inspiratior	nal q	uote.		
	2. Si	tuational Role Play betw	veen Examiner and Candidate – Customer and Sales Manager and Candidate Interview	jer, l	Hotel	I Mai	nager
	Car	Driver and Client Indust	rialist and Candidate. Receptionist and Appointment Seeker 1	Vew	Fmn	plove	e and
	Mana	ager, Employee and Em	ployee, P.A. and Manager Schedule for training, Asking for	direc	tions	3, Se	eking
	help	with office equipment,	Clarifying an error in the bill, Quality of Products, Buying a	Pro	duct,	Sel	ling a
	Prod	uct, cancelling and fixing	g appointments, hotel accommodation, training facilities, dres	s coo	de, c	onfe	rence
	facilit	ies, faculty advisors and	t student, student and student, college Office personnel and	stude al (F	ent.		eriods
	~			~, (i	,- 0		
Course		omes:	a practical session, the students will be able to				
			relate routing, classroom-related conversation				
CO2		Use a range of comm	on vocabulary and context based idioms				
CO3		Comprehend native s	neakers when they speak quickly to one another although the	e stu	Ident	mia	ht still
	-	have trouble		5 510	aont	ing	in Jun
CO4		Identify the most impo	ortant words in a story/article				
CO5		Summarize the main	ideas key details and inferred meanings from listening has	sade	es of	un t	o five
			, , , , , , , , , , , , , , , , , , ,	90		I V	

CO6		:	Vocalize words without the aid of pictures		
CO7		•••	Make effective self-introductions		
CO8		:	Study options, compare and contrasts the options		
CO9		:	Exercise a choice, justify it by giving examples and illustrations.		
C010		•••	Construct a situation and to participate in conversations.		
Text B	ook	s:			
1.	No	orm	an Whitby. Business Benchmark - Pre - Intermediate to Intermediate, Students Book, Cambridge		
	Un	ive	ersity Press, 2014.		
Recom	mer	nde	d Reading and Reference Sources:		
1.	Sp	ok	en English: A Self-Learning Guide. V. Sasikumar and P V Dhamija.		
2.	En	glis	sh Conversation Practice: Grant Taylor Paperback 1976ely. Krishna Mohan, N P Singh		
3.	Discussions that Work. Penny Ur. CUP, 1981				
4.	htt	p://	www.onestopenglish.com/skills/speaking/speaking-matters/		
5.	Sp	eal	k Better Write Better English Paperback - November 2012 Norman Lewis, Goyal Publishers and		
	Dis	stril	outors.		

	18CS1	02	COMPUTER PRACTICE LABORATORY	L	Т	Ρ	С			
	0 0 4									
Course	Course Objectives:									
1.	To provide basic knowledge of creating Word documents and also producing mail merge.									
2.	To make use of basic functions, formulas and charts in Spread sheet.									
3.	To imp	lement prot	olem solving techniques.							
4.	To pro	mote the pr	ogramming ability to develop applications for real world problems.							
		(CISES								
	ment c	estion Tex	t manipulation with Scientific notations. Table creation. Table format	tina :	and	Con	version			
2 Letter	r prepa	ration using	Mail merge and Draw flow Charts using tools	ung d	ana	COIN	/0131011			
B. Spre	ad She	et	Mail morgo and Braw now onlarte doing toolo							
3. Chart	: - Line.	XY. Bar an	d Pie.							
4. Form	ula - fo	rmula editor	, Sorting and Import and Export features.							
5. Sprea	ad shee	et - inclusior	of object, Picture and graphics, protecting the document and sheet.	,						
C. Simp	ole C P	rogrammin	g							
6. Progr	am usi	ng Control s	tatements.							
7. Progr	am usi	ng Looping.								
8. Progr	am usi	ng Array.								
9. Progr	am usi	ng String.								
10. Prog	gram us	sing Functio	n.							
11. Prog	gram us	sing Structu	res.							
12. Prog	gram us	sing Pointer	3.							
13. Proc	gram us	sing Files.								
	* For p	orogrammir	g exercises Flow chart and pseudo code are essential							
Course	Outco	mes:								
Upon co	ompletio	on of this co	urse, the students will be able to:							
CO1	: Demonstrate the basic mechanics of Word documents and working knowledge of mail merge.									
CO2	:	Demonstr	ate the use of basic functions and formulas in Spread sheet.							
CO3	:	Apply goo	d programming methods for program development.							
CO4	:	Implemen	t C programs for simple applications.							

Course Objectives:

1.	To provide an exposure of basic engineering practices to the student.
2.	To provide exposure to the students with hands on experience on various basic engineering practices in
	Civil and Mechanical Engineering.

LIST OF EXERCISES

- 1. Introduction to Safety measures and First aid.
- 2. Study of Lathe -Welding methods and equipment's- Casting process and tools- Sheet metal and fitting tools- Carpentry tools and joints.
- 3. Fitting: V-fitting, Square fitting, Curve fitting.
- 4. Lathe: Facing, turning, taper turning and knurling.
- 5. Welding: BUTT, LAP and T- joints.
- 6. Foundry: Green sand preparation- mould making practice.
- 7. Sheet metal: Cone, tray, cylinder.
- 8. Carpentry: CROSS, T and DOVETAIL joints.
- 9. Drilling: simple exercises.

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1	•	Prepare fitting of metal and wooden pieces using simple fitting and carpentry tools manually			
CO2		Prepare simple lap, butt and tee joints using arc welding equipment.			
CO3	:	Prepare green sand moulding.			
CO4	:	Prepare sheet metal components.			
CO5	:	Prepare simple components using lathe and drilling machine.			
Referen	Reference Books:				
1.	1. Bawa, H.S, "Work shop Practice", Tata McGraw Hill Publishing Company Limited, 2007.				
2.	Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering Practices Laboratory",				
	Anuradha Publications, 2007.				
3.	Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab Manual", VikasPuplishing				
	Ho	use Pvt. Ltd, 2006.			

19	MA202	DIFFERENTIAL FOLIATIONS AND LARLACE TRANSFORM		T	D	C
10	IVIAZU3	DIFFERENTIAL EQUATIONS AND LAPLACE TRANSFORM	2	1	<u>г</u> 0	
1 To obtain the knowledge to solve second order differential equations with constant and variable coefficients						
2	To familiarize with formation and solutions of first order partial differential equation.					
2	To familiarize with the solutions of higher order partial differential equations					
3	To fund the colutions of accord order differential equation with constant coefficients by Lorless transform					
4	no find the solutions of second order differential equation with constant coefficients by Laplace transform methods.					
5	To obtain the knowledge of finding the numerical solutions to system of linear equations.					
Unit I ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER 9 + 3						
Legendre's linear equation - Method of variation of parameters –Simultaneous first order linear equations with constant coefficients.						
Unit II	PARTIAL DIF	FERENTIAL EQUATIONS - FIRST ORDER		9.	F 3	3
Formation of partial differential equations by elimination of arbitrary constants and functions – Solutions to first order partial						
differential equations – Standard types of first order linear and non-linear PDE- Lagrange's linear PDE.						
Unit III	PARTIAL DIF	FERENTIAL EQUATIONS		9.	F S	3
Solution to homogeneous and non-homogeneous linear partial differential equations of second and higher order by						
complementary function and particular integral method - Separation of variables method: simple problems in Cartesian						
coordinates, Laplace equation in Cartesian and polar coordinates, one dimensional diffusion equation, one dimensional						
wave equ	uation.					
Unit IV	LAPLACE TR	ANSFORM		9.	+ 3	3
Laplace Transform- Properties of Laplace transform – Laplace Transform of periodic Functions – Finding inverse Laplace						
Transform by different methods, convolution theorem – Evaluation of integrals by Laplace transform- solving second order						
differential equations with constant coefficients by Laplace transform method.						
Unit V	SOLUTION O	FEQUATIONS		9.	F 3	3
Solutions	of nonlinear ec	uations by iteration method and Newton Raphson method-Solutions of line	ar sys	stem	of equ	Jations
by Gauss Elimination, Gauss Jordan, Gauss Jacobi and Gauss Seidal methods-Inverse of a matrix by Gauss Jordan						
Methods.						
Total (L+T)= 60 Periods						
Course outcomes:						
Open completion of this course, the students will be able to:						
	in onginooring	iniques of solving ordinary and partial differential equations of second and	nigne			at anse
CO2 ·	Equiliar with t	problems.				
CO2		ne Laplace transforms memory to solve second order differential equations	Ind ni	imori	cally	
Text Books:						
1 Grewal B.S. "Higher Engineering Mathematics" 43rd Edition Khanna publications Delhi 2015						
2	Veeraraian T	"Engineering mathematics for first year" Tata McGraw Hill Education Put Lto	., 201 Nov	U. V Delh	i 2000	9
3	Kandasamy, P. Thilagayathy, K. Gunayathy, K. "Numerical Methods", S.Chand & Co., New Delhi, 2005					
Reference Books:						
1. James Stewart, "Essential Calculus". Cengage Learning. New Delhi, 2nd edition, 2013.						
2	P. Kandasam	y. K. Thilagayathy and K. Gunayathy, "Engineering Mathematics (For Lyca)	B.E	B.Te	ch)"	Nineth
	Edition. S. Ch	and & Co. Ltd. New Delhi, 2010.	2.2.	2.10	, ,	
3.	Ewinkrevzia.	Advanced Engineering Mathematics", 9th edition. John Wilev & Sons. 200	6.			
4.	Veeraraian. T	and Ramachandran, "Numerical methods with Programs in C and C++ "	Tata N	AcGr	aw Hi	II, New
 	Delhi,2006.	aman "Numorical Mothode", National Dublishing Company, 2000				
່ວ.	wi.r.venkalar	aman, Numencal Methous, National Publishing Company, 2000.				
18PH102

PHYSICS - ELECTROMAGNETISM

1 0

3

9

9

9 +

9

+

+

С

4

3

3

3

Pre requisite:

Basics of	Basics of vector calculus				
COURSE	COURSE OBJECTIVE				
1	The concept of electrostatics, electric potential and their application.				
2	The concept of dielectrics and boundary conditions for electrostatic field.				
3	The concept of magnetostatics, magnetic fields in matter and their application.				
4	The concept of Faraday's law, Ampere's Law, Maxwell's Equation and their application.				
5	The concept of Electromagnetic waves, and Poynting vector.				

ELECTROSTATICS IN VACUUM Unit I

Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line chargeinfinite sheet of charge- uniformly charged sphere; Electric potential - potential due to a point charge- electric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields.

ELECTROSTATICS IN A LINEAR DIELECTRIC MEDIUM Unit II

Classification of materials based on conductivity ; Electric dipole - electrostatic field and potential of a dipole; Dielectrics induced dipoles - polarization in dielectrics - dielectric constant and strength; Linear, isotropic, and homogeneous dielectrics; Capacitance - parallel plate capacitor - coaxial capacitor - spherical capacitor; Electric displacement; Laplace's and Poisson's equations for electrostatic potential.

Unit III MAGNETOSTATICS AND MAGNETIC FIELDS IN MATTER

Biot-Savart's Law - magnetic induction at point P due to a straight filamentary conductor; Ampere's circuit law - applications of ampere's law: infinite line current - infinite sheet of current; Magnetization and associated bound currents - auxiliary Field H - Ampere's law in magnetized materials; Magnetic susceptibility and permeability; Classification of magnetic materials - diamagnetic, paramagnetic and ferromagnetic materials - hysteresis loop.

FARADAY'S LAW AND MAXWELL'S EQUATION Unit IV

Faraday's law in terms of emf produced by changing magnetic flux; Lenz's law; Transformer emf; Motional emf ; Electromagnetic breaking and its applications; Self Inductance - self-inductance of a solenoid; Mutual Inductance - mutual Inductance of two tightly wound solenoids; Energy density in magnetic Fields; Displacement current - modified ampere's law; Maxwell's equation in vacuum and non-conducting medium.

ELECTROMAGNETIC WAVES Unit V

The wave equation- plane electromagnetic waves in vacuum, their transverse nature and polarization; Polarization by reflection- Brewster's law; Relation between electric and magnetic fields of an electromagnetic wave; Energy carried by electromagnetic waves; Flow of energy and Poynting vector; Variation of intensity of electromagnetic wave with distance; Radiation pressure.

	Total (L+T)= 60 Periods
se (Outcomes:
cor	npletion of this course, the students will be able to:
:	Understand the concepts of electrostatics, electrical potential, and their applications.
:	Interpret the concepts of dielectrics and boundary conditions for electrostatic field.
:	Apply the concepts of magneto statics, magnetic fields in matter and their application.
:	Apply the concepts of Faraday's law, Ampere's Law, Maxwell's Equation.
:	Interpret the concepts of electromagnetic waves and Poynting vector.
300	oks:
	Mathew N. O.Sadiku, 'Elements of Electromagnetics', Oxford University Press, Third Edition, 2001.
	Halliday, Resnick, Walker, 'Fundamentals of Physics-Electricity and Magnetism', Wiley India Pvt.Ltd., 2011.
	Gangadhar K.A, Ramanthan P.M, 'Field Theory', Khanna Publications, 2002.
enc	ce Books:
	David J. Griffiths, 'Introduction to Electrodynamics', Prentice-Hall, Inc., 1999.
	Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth edition, 2010.
	se (cor : : : : : : : : : : : : : : : : : : :

9

+

+

3

3

1	8	Ε	Ε	2	0	1
---	---	---	---	---	---	---

PRINCIPLES OF ELECTRICAL ENGINEERING

С

	3		4
COURS	SE OBJECTIVE		
1	To understand the basic concepts of electric circuits, measurements techniques and instru	ments.	
2	To study the working principles of DC and AC machines.		
3	To understand the components of Electrical installations.		
Unit I	D.C. CIRCUITS	9 +	3
Electric	cal circuit elements (R, L and C), voltage and current sources, Ohm's law, Kirchoff current ar	າd volta	ge law
analysi	is of simple circuits with dc excitation. Superposition, Thevenin, Norton and Maximum power tra	ansfer t	heorem
Time-d	Iomain analysis of first-order RL and RC circuits.		
Unit II	A.C. CIRCUITS) +	3
Repres	sentation of sinusoidal waveforms, peak and rms values, phasor representation, realpower,	reactive	e powe
appare	ent power, power factor, Analysis of single-phase ac circuits consisting of RL, RC, RLC combina	tions (s	eriesar
parallel	l), resonance. Three-phase balanced circuits, voltage and current relations in star and delta co	nnectio	ns.
Unit III	TRANSFORMERS) +	3
Magnet	tic materials, BH characteristics, ideal and practical transformer, equivalent circuit, losses i	n trans	former
regulat	tion and efficiency. Auto-transformer.		
			1
Unit IV	/ ELECTRICAL MACHINES) +	3
Constru	uction, working and speed control of DC shunt motor. Generation of rotating fields, construct	ion and	workir
of a thr	ree phase induction motor. Starting and speed control of three phase induction motor. Working	of sing	le phas
inductio	on motor and its applications. Construction and working of synchronous generators.		
		<u>) +</u>	3
Compo	onents of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and C	ables, E	arthin
lypes	of Batteries, Important Characteristics for Batteries. Elementary calculations for energy cons	umptior	n, powe
factor II	mprovement and battery backup.		
			Darias
Course	n Ottal (L+	i)= 60	Period
	e Outcomes.		
CO1	. To analyze be and Ac circuits.		
CO2	. To apply Electrical Circuit theorems to any electrical circuits.		
CO3	. To calculate the enciency of any transformer.		
CO5	. To understand and analyze basic Electric and Magnetic Circuits.		
005	. To study the working principles of Electrical Machines.		
	DOCKS:	. 1 1:11	
1.	Dasic Electrical Engineering - D.P. Kothan and I.J. Nagrath, 3rd edition 2010, Tata McGrav	v mili.	
<u>∠.</u>	Dasic Electrical Engineering - D.C. Nuisineshtha, 2009, Tata MicGraw Hill.		
J. Doforo	Fundamentals of Electrical Engineering, L.S. Bobrow, Oxford University Press, 2011.		
Refere	Floetrice and Electronice Technolomy E. Hushes, 40th Estition, Decreary, 0040		
Т.	Electrical and Electronics Lectrology, E. Hugnes, 10th Edition, Pearson, 2010.		

2. Electrical Engineering Fundamentals, Vincent Deltoro, Second Edition, Prentice Hall India, 1989.

18ME101	ENGINEERING GRAPHICS & DESIGN	L	Т	Ρ	С		
		3	1	0	4		
COURSE OBJECTIVE							
1 To impart knowl CAD Modelling.	edge on concepts, ideas and design of engineering products and to p	rovide	e an	expc	sure to		
2 Standards of Er instruments.	ngineering Drawing: Size, layout and folding of drawing sheets, lette	ring -	- Use	e of (drafting		
			0		2		
General principles of ortho	or POINTS, LINES AND PLANE SURFACES	oction	a of s	traia	bt lines		
located in first quadrant – Determination of true lengths and true inclinations – Projection of polygonal surface and circular lamina inclined to both reference planes.							
	OF SOLIDS		9.	+	3		
Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is perpendicular to one reference plane and also inclined to one reference plane by change of position method.							
Unit III SECTION OF S	OLIDS AND DEVELOPMENT OF SURFACES		9.	•	3		
Sectioning of above soli	ds in simple vertical position by cutting planes inclined to one	refere	ence	plai	ne and		
perpendicular to other – s shape of section.	solids inclined position with cutting planes parallel to one reference p	plane	- Ob	taini	ng true		
Development of lateral sur	faces of simple and truncated solids - Prisms, pyramids cylinders and	cone	es- D	evel	opment		
of lateral surfaces of solid	s with square and cylindrical cutouts, perpendicular to the axis.						
			0		<u>,</u>		
Dringiples of isometric pro	OJECTION	tod n			<u>3</u> romide		
cylinders and cones.	ection –isometric scale - isometric projections of simple solids, tranca	ieu p	1151113	s, ру	annus,		
Unit V PERSPECTIVE	PROJECTION		9 ·	+	3		
Perspective projection of	prisms, pyramids and cylinders by visual ray and vanishing point meth	nods.					
		<u>. // .</u>	T _	<u>60 E</u>	orioda		
Note: Study of drafting so	ftware Auto CAD Coordinate System (Absolute relative and pola		• 1)=				
figures like polygon Draw	ing a plan of residential building. Creation of 3-D Models of simple ob	iocte	and	obta	ining		
2-D multi view drawing fro	m 3-D model. (Internal Assessment only)	jecis	anu	obia	ming		
		2-D multi view drawing from 3-D model. (Internal Assessment only)					
Course Outcomes:							
Course Outcomes.							
Upon completion of this co	ourse, the students will be able to:						
Upon completion of this co CO1 : Understand the	purse, the students will be able to: conventions and the methods of engineering drawing.						
Upon completion of this co CO1 : Understand the CO2 : Understand the	ourse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection.						
Upon completion of this coCO1:Understand theCO2:Understand theCO3:Understand the	ourse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces.						
Upon completion of this coCO1:Understand theCO2:Understand theCO3:Understand theCO4:Develop the relation	purse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments.						
Upon completion of this completion of this completion of this completionCO1:Understand theCO2:Understand theCO3:Understand theCO4:Develop the relationCO5:Demonstrate completion	ourse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting.						
Upon completion of this completion of this completion of this completionCO1:Understand theCO2:Understand theCO3:Understand theCO4:Develop the relationCO5:Demonstrate completionText Books:	ourse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting.						
Upon completion of this completion of this completion of this completionCO1:Understand theCO2:Understand theCO3:Understand theCO4:Develop the relationCO5:Demonstrate complexityText Books:1.Bhatt N.D, "Eng	Durse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting. ineering Drawing", Charotar publishing House, 2003.						
Upon completion of this completion of this completion of this completionCO1:Understand theCO2:Understand theCO3:Understand theCO4:Develop the relationCO5:Demonstrate completionText Books:1.Bhatt N.D, "Eng2.Natarajan, K.V,	Durse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting. ineering Drawing", Charotar publishing House, 2003. "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 20	06.					
Upon completion of this completion of this completion of this completionCO1:Understand theCO2:Understand theCO3:Understand theCO4:Develop the relationCO5:Demonstrate completionText Books:1.Bhatt N.D, "Eng2.Natarajan, K.V,Reference Books:	Durse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting. ineering Drawing", Charotar publishing House, 2003. "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 20	06.					
Upon completion of this completion of this completion of this completionCO1:Understand theCO2:Understand theCO3:Understand theCO4:Develop the relationCO5:Demonstrate completeText Books:1.Bhatt N.D, "Eng2.Natarajan, K.V,Reference Books:1.Gopalakrishnan	Durse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting. ineering Drawing", Charotar publishing House, 2003. "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 20 a K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 199	06.					
Upon completion of this completion of this completion of this completion CO1 : Understand the CO2 : Understand the CO3 : Understand the CO4 : Develop the relation CO5 : Demonstrate completion Text Books: 1. Bhatt N.D, "Eng 2. Natarajan, K.V, Reference Books: 1. Gopalakrishnan 2. Dhananjay A. Je Company Limite	Durse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. attionships between 2D and 3D environments. mputer aided drafting. ineering Drawing", Charotar publishing House, 2003. "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 20 a K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1999 olhe, "Engineering Drawing with an Introduction to AutoCAD", Tata Med, 2008.	06. 9. cGrav	w Hil	I Puł	olishing		
Upon completion of this completion of this completion of this completion CO1 : Understand the CO2 : Understand the CO3 : Understand the CO4 : Develop the relation CO5 : Demonstrate complete Text Books: 1. Bhatt N.D, "Eng 2. Natarajan, K.V, Reference Books: 1. Gopalakrishnan 2. Dhananjay A. Jog Company Limite 3. Venugopal, K at	Durse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting. ineering Drawing", Charotar publishing House, 2003. "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 20 a K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1999 Dihe, "Engineering Drawing with an Introduction to AutoCAD", Tata Med, 2008. nd Prabhu Raja, V., "Engineering Graphics", New Age International (F	06. 9. cGrav	w Hil	Pul	olishing		
Upon completion of this completion of this completion of this completion CO1 : Understand the CO2 : Understand the CO3 : Understand the CO4 : Develop the relation CO5 : Demonstrate completion Text Books: 1. Bhatt N.D, "Eng 2. Natarajan, K.V, Reference Books: 1. Gompany Limite 3. Venugopal, K at 4.	Durse, the students will be able to: conventions and the methods of engineering drawing. fundamental concepts of theory of projection. development of different surfaces. ationships between 2D and 3D environments. mputer aided drafting. ineering Drawing", Charotar publishing House, 2003. "A Text book of Engineering Graphics", Dhanalakshmi Publishers, 20 a K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1999 olhe, "Engineering Drawing with an Introduction to AutoCAD", Tata Me ad, 2008. nd Prabhu Raja, V., "Engineering Graphics", New Age International (F eering Drawing-Geometrical Drawing", S.K Kataria and Sons, 2008.	06. 9. cGrav ?) Ltd	w Hil	Pul	olishing		

	18CYMC01	ENVIRONMENTAL SCIENCE	L	т	Ρ	С			
AIM			0	0	1	0			
To in envir	Fo impart awareness to the student that they are separate from the environment and should not control the environment.								
OBJ	ECTIVES								
1.	They are part of the	environment							
2.	To have an ancient	wisdom drawn from Vedas							
3.	Activities based kno	wledge to preserve environment							
4.	Conservation of wat	er and its optimization.							
Envi	ronmental Awarenes	is s							
1	. Group activity on v	vater management							
2	2. Group discussion	on recycle of waste (4R's)							
3	 Slogan making co 	ntest.							
2	 Poster making even 	ent.							
5	Expert lecture on e	environmental awareness.							
6	Imparting knowled	ge on reduction of electricity usage							
						6 hours			
Envi	ronmental activities								
1	. Identification and s	segregation of biodegradable and non biodegradable waste							
2	2. Campus cleaning	activity							
3	 Plantation of trees 	in the college campus and local waste lands.							
2	 Identification of value 	arieties of plants and their usage							
5	5. Shutting down the	tans and ACs of the campus for an hour							
6	Field work on grov	ving of kitchen garden for mess.							
						8 hours			
			TO	TAL	. 14	HOURS			

	18PH103	PHYSICS LABORATORY	L	Т	Ρ	С		
			0	0	3	1.5		
Cour	se Objectives:							
1.	To handle different r	neasuring instruments.						
2.	To understand the b	asic concepts of interference, diffraction, heat conduction and to mea	asur	e the	e imp	ortant		
	parameters.							
LIST	LIST OF EXERCISES							
1 2 3 4 5 6 7 7 8 9 9	 Newton's rings – Determination of radius of curvature of a Plano convex lens. Carey Foster's bridge – Determination of specific resistance of the material of the wire. Poiseuille's flow – Determination of Coefficient of viscosity of a liquid. Spectrometer – Grating – Normal incidence – Determination of Wavelength of Mercury lines. Lee's disc – Determination of thermal conductivity of a Bad conductor. Ultrasonic interferometer – Determination of velocity of Ultrasonic Waves in Liquid. Non-uniform bending – Determination of young's modulus of the material of the Bar. Determination of Band gap of a given semi conductor. Determination of Wavelength of laser using grating and determination of particle size using Laser. Determination of Acceptance angle and Numerical Aperture of fiber. 							
Cour	se Outcomes:							
Upor	n completion of this co	purse, the students will be able to:						
C01	: Handle different	measuring instruments and to measure different parameters.						
C02	: Calculate the im	portant parameters and to arrive at the final result based on the expe	ərime	enta	1			
	measurements.	· · · · · · · · · · · · · · · · · · ·						

CHEMISTRY LABORATORY

L	Т	Ρ	С
0	0	3	1.5

Course Objectives:

1. To gain practical knowledge by applying theoretical principles and performing the following experiments.

LIST OF EXERCISES

- 1. Estimation of hardness of Water by EDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Estimation of Alkalinity in water
- 4. Estimation of Chloride in water sample (lodimetry)
- 5. Conductometric titration of Strong Acid and Strong Base
- 6. Conductometric titration of Mixture of acids and Strong base
- 7. Determination of strength of Iron by Potentiometric method
- 8. Estimation of Iron by Spectrophotometry
- 9. Determination of molecular weight and degree of Polymerisation by Viscometry.

NOTE:

> All the nine experiments shall be offered.

Course Outcomes: Upon completion of this course, the students will be able to: C01 : To know the applicability of the practical skill gained in various fields. C02 : To know the composition of brass quantitatively and the molecular weight of polymers. C03 : To understand the principle and applications of conductometric titrations, spectrometer and potentiometric titrations.

	18EN103	PROFESSIONAL COMMUNICATION LABORATORY	L	Т	Ρ	С	
		(Common to All Branches)	0	0	2	1	
Course	Objectives:						
1.	Improve their readin	g skills.					
2.	Address an audienc	e and present a topic.					
3.	. Acquire speaking competency in English.						
4.	Strengthen their fluency in speaking						
EXPER	IMENTS						
	Methodology – Reading						
	1) Reading a story aloud with exact pronunciation, with intonation, and with expressing sense.						
	2) Reading poems f	or improving verbal skills, memory, and critical thinking.					
	3) Reading newspar	per articles for strengthening the vocabulary and writing skills.					
	4) Reading homoph	ones with exact pronunciation for expressing different meanings					
	Methodology – Spea	aking					
	1) Power point prese	entation – on general topics - for organising and structuring presenta	tion.				
2) Oral presentation -on basic technical ideas related to engineering.							
	3) Speaking on a give	ven topic – current affairs, expressing opinion on social issues.					
	4) Describing a proc	ess – booking Ticket online, survey for starting a new office, sending	j an	e-ma	ail, e	tc.	
	5) Organising official events -compering, presenting welcome address, proposing vote of thanks						

		Total (P)= 30 Periods
Course	Out	comes:
After th	ie su	ccessful completion of the practical session, the students will be able to
CO1	:	read short passages fluently, avoiding mispronunciation, substitution, omission and transposition of
		word-pairs
CO2	:	vocalize words without the aid of pictures.
CO3	:	develop a well-paced, expressive style of reading.
CO4	:	make effective oral presentations on technical and general contexts
CO5	:	describe a process with coherence and cohesion.
Text B	ooks	
1.	Nor	man Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book,
	Car	nbridge University Press, 2014
Recom	men	ded Reading and Reference Sources:
1.	Spo	ken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija
2.	Eng	lish Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh
3.	Dis	cussions that Work. Penny Ur.CUP, 1981.
4.	http	://www.onestopenglish.com/skills/speaking/speaking-matters/
5.	Spe	eak Better Write Better English Paperback – November 2012 Norman Lewis, Goyal Publishers and
	Dis	tributors

	18EE202	PRINCIPLES OF ELECTRICAL ENGINEERING LABORATORY	L	Т	Ρ	С
			0	0	2	1
LIS	T OF EXERCISES					
1.	Study of basic safet	y precautions, measuring instruments - voltmeter, ammeter, multi-me	eter,	osc	illos	cope and
	Electrical componen	ts.				-
2.	Study of transient tir	ne-response of R-L, R-C, and R-L-C circuits to a step change in voltage	ge.			
3.	Sinusoidal steady st	ate response of R-L, and R-C circuits - impedance calculation and ve	rifica	tion	. Ob	servation
	of phase differences	between current and voltage.				
4.	Resonance in R-L-C	circuits.				
5.	(Demonstration) Tra	nsformers: Observation of the no-load current waveform on an oscille	osco	pe (no s	inusoidal
	wave-shape due to I	B-H curve nonlinearity should be shown along with a discussion about	har	mon	ics)	
6.	Loading of a transfo	rmer: measurement of primary and secondary voltages and currents,	and	pow	er.	
7.	Measurement of three	ee-phase power in three-phase circuits.		-		
8.	Demonstration of cu	t-out sections of machines: dc machine (commutator-brush arrangeme	nt), ir	nduo	ctior	machine
	(squirrel cage rotor)	, synchronous machine (field winding - slip ring arrangement) and s	ingle	e-ph	ase	induction

Course Outcomes:

machine.

Upon completion of this course, the students will be able to:

•		
CO1	۰.	Get an exposure to common electrical components and their ratings.
CO2	••	Make electrical connections by wires of appropriate ratings.
CO3	•••	Understand the usage of common electrical measuring instruments.
C04	:	Understand the basic characteristics of transformers and electrical machines.

	18MA303	LINEAR ALGEBRA AND NUMERICAL METHODS	LTP
			3 1 0
Cou	rse Objectives:	the short the sector sector because the Property for the sector sec	
1.	linear maps.	age about the vector spaces, inverse of a linear transformation and	composition of
2.	To familiar with num	erical interpolation and to obtain the knowledge about the fitting of	curves by th
	method of least squa	res.	-
3.	To obtain the knowle	dge about numerical differentiation and integration.	
4.	To acquire the know	edge about numerical solution to initial value problems using single	step and mu
_	step methods.		
5.	To gain the knowledg	je of numerical solution to partial differential equations by using expli	cit and implici
	methods		
1.1		<u> </u>	
Voot	I VECTOR SPACE	5	
korn	of space - intear deper	ation, rank and nullity, Inverse of linear transformation, rank-nul	lity theorem
Com	inosition of linear mans	- Matrix associated with linear map	ity theorem
0011			
Uni			9 + 3
Inter	polation using Newton	s Forward and Backward formulae-Interpolation with unequal interva	IS: Newton's
	led difference and Lagr	ange's formulae - Curve fitting by the Method of Least Squares –Fitti	ing of straight
lines	, second degree parab		
Unit		IFFERENTIATION AND INTEGRATION	9 + 1
Num	erical Differentiation .N	lumerical Integration-Trapezoidal rule. Simpson's 1/3 rule and Simps	on's 3/8 rule.
Two	point and Three point	Gaussian quadrature formulae.	
Unit	IV NUMERICAL S	OLUTION FOR ORDINARY DIFFERENTIAL EQUATIONS	9 +
Num	erical methods for initia	اد value problems- Taylor's series method- Euler's and modified Eule	r's method-
Run	ge-Kutta method of fou	rth order, Multi-step method: Milne's predictor - corrector method- So	olution of
seco	ond order boundary value	le problems by finite difference method.	
Unit		ULITION FOR PARTIAL DIFFERENTIAL FOLIATION	
Part	al differential equations	S: Einite difference solution of two dimensional Laplace and Poisson	equations-
Impl	icit and Explicit method	s for one dimensional heat equation (Bender Schmidt and Crank-Nic	cholson
meth	nods) - Finite difference	explicit method for wave equation.	
	/	Total (L+1	Γ)= 60 Period
Cou	rse Outcomes:		
Upo	n completion of this cou	urse, the students will be able to:	
CO1	: Learn about the	vector spaces, linear transformation and composition of linear maps.	
CO2	: Obtain the knowl	edge about interpolation and fitting the curves by Least Square Meth	iod.
CO3	: Differentiate and	integrate numerically.	
CO4	: Solve the initial v	alue problems by using single-step and multi-step methods	- (11-
	Booker	al solution of partial differential equation by using Finite difference m	ethods.
1	Gilbort Strang, "Linog	Algebra and its applications" Congage Learning New Delhi 1th edi	tion 2006
1.	Kandasamy P. Thilag	Algebra and its applications, cengage Learning, New Denn, 4 equi	<u>1011, 2000.</u>
Z. Refe	rence Books:	availy.rx, Ounavaill.rx, Numerical Methods 5.0handa 60., New De	ani, 2005.
1	D Poole "Linear Algel	ora A Modern introduction" 2 nd edition Brooks 2005	
2.	V.Krishnamurthy, V.P.	Mainra and J.L.Arora, "An introduction to Linear Algebra". East-Wes	t press.
	Reprint 2005		,
3.	M.K.Venkataraman, "I	Numerical Methods", National Publishing Company,2000	
4.	Jain M.K.Iyengar, K &	Jain R.K., "Numerical Methods for Scientific and Engineering Comp	utation ", New
	Age International (P) I	td, Publishers 2003	
5.	Manish Goyal, "Nume	rical Methods and Statistical techniques Using "C" ", 1 st Edition,	
	Laxmi Publications (P) Ltd, 2009.	

18EC301	SEMICONDUCTOR PHYSICS AND DEVICES	L	ΤP	С				
		3	0 0	3				
Course Objectives:								
1. To understand	the fundamentals of electron devices and apply the knowledge of th	iese	device	s in				
2 To design and a	analyse single stage and multistage amplifier circuits							
3. To understand a	and classify different kinds of power and feedback amplifiers.							
Unit I SEMICOND	UCTOR DIODES		9 +	0				
PN junction diode - Curr	rent equations - Energy Band diagram - Diffusion and Drift current densitie	s - F	orward	and				
Reverse bias characteri	istics - Transition and Diffusion Capacitances - Switching Characteristics	- Bro	eakdow	vn in				
PN Junction Diodes - D	iode Applications - Clipper and Clamper circuits - Voltage doubler - Rect	fier o	circuits	with				
and without Capacitor fi	lter.							
		<u> </u>						
Unit II SPECIAL S		<u>O a h a</u>	9 +	0				
Metal Semiconductor Ju	JNCTION- MESFEI – FINFEI- PINFEI- CNIFEI- DUAL GATE MOSFEI-	Scho	тку ра	rrier				
diode - Zener diode - Va	aractor diode – I unnei diode- Gailium Arsenide device - LASER diode - L	JR.						
		<u> </u>	0 1					
Bipolar Junction Transis	tor AMF LITIENS	tice -	5 T	Moll				
Model - MOSEET-devic	e structure and physical operation - Current-Voltage characteristics - Bias	ina s	cheme	s for				
BIT and FET amplifier	s - Bias stability - Various configurations (such as CE/CS_CB/CG_C		and f	their				
features.		,00) and					
Unit IV FREQUEN	NCY RESPONSE OF AMPLIFIERS		9 +	0				
Small signal models of	BJT and MOSFET - Frequency response of amplifiers - Low Frequer	icy r	espons	e of				
Common Emitter and C	Common Source Amplifiers - Internal Capacitive Effects – High Frequer	icy M	lodel of	f the				
BJT and MOSFET- Hig	h Frequency Response of the CS and CE Amplifiers - General expression	on foi	r freque	ency				
response of multistage	e amplifiers - Calculation of overall upper and lower cut off frequencie	s of	multist	tage				
amplifiers - Cascode an	nplifier.							
		<u> </u>	•					
Dower emplifiere	ND FEEDDACK AIMFLIFIERS	n offi	9 +					
power dissipation calcu	lations - Cross-over distortion - Eeedback topologies: Voltage series -		ont sori					
voltage shunt - Current	shunt - Effect of feedback on gain bandwidth - Concept of stability - G	ain r	margin	and				
phase margin.			nargin	and				
	Total (L-	·T)= ·	45 Peri	ods				
Course Outcomes:	·							
Upon completion of this	course, the students will be able to:							
CO1 : Understand	I the characteristics of diodes and special semiconductor devices.							
CO2 : Acquire kno	owledge on working principles, characteristics and applications of BJT an	d FE	Т					
CO3 : Analyse the	e frequency response characteristics of amplifiers.							
CO4 : Design and	analyse power and feedback amplifiers.							
Text Books:								
1. A.S. Sedra and k	K.C. Smith, "Microelectronic Circuits", 7 th edition, Oxford University Press	<u>, 201</u>	<u>5.</u>					
2. S. Salivahanan a	and N. Suresh kumar, "Electronic Devices and Circuits", 4" edition, McGrav	v Hill	Educa	tion,				
2017.								
	on "Semiconductor Develop and Devices" 4th Edition McCrow Hill Educ	otion	2012					
2 Robert L Rovice	tad and Louis Nashelsky. "Electronic Devices and Circuit Theory" 11 th ad	<u>auon</u> ition	2012. DHI つ	012				
3 Ren C Streetma	an and S. K. Baneriee. "Solid State Electronic Devices" 7th edition. Pear	son	2014	013.				
4 Jacob Millman	Christos C. Halkias and Satvabrata lit "Electronic Devices and Circu	its "		tion				
McGraw Hill Edu	ication. 2015	1.3,		,				
E-References:								
1 http://www.radio-ele	E-References:							
	ectronics.com/info/data/semicond/semiconductor/semiconductor-materials-types-i	st.ph	<u>с</u>					
2. http://911electron	ectronics.com/info/data/semicond/semiconductor/semiconductor-materials-types-i ic.com/	<u>st.ph</u>	<u>D</u>					

	18EC302	DIGITAL SYSTEM DESIGN	L	Т	Ρ	С				
		3 0 0 3								
Course	e Objectives:									
1	Understand the fun	damentals of Boolean algebra.								
2	Understand and de	sign combinational and sequential circuits.								
3	Understand the cor	ncept of Memories and Programmable Logic Devices and apply the kno	wled	ge o	f th	ese				
	devices in design D	Digital electronic circuits.		-						
Unit I	NUMBER SYS	TEMS AND LOGIC GATES		9	+	0				
Binary	- Decimal - Octal -	Hexa decimal - Binary codes: BCD - Gray code - Boolean Algebra an	d Mi	nimiz	zati	on				
Techni	ques - Canonical for	rms – Conversion between canonical forms – Simplifications of Boolea	n ex	pres	sio	ns				
using K	(arnaugh map – Logi	c Gates: Implementations of Logic Functions using gates – Logic Famili	es: T	TLN	JAN	١D				
gate -	Specifications - Nois	e margin -Propagation delay - fan-in - fan-out Tristate TTL- ECL.								
				_						
Unit II		DNAL CIRCUITS		9	+	0				
Design	procedure – Adders	s/Subtractor – Serial adder/ Subtractor - Parallel adder/ Subtractor- Ca	rry Ic	ook a	he	ad				
adder-	BCD adder- Magnit	ude Comparator- Multiplexer/ Demultiplexer- Encoder / Decoder – Pa	arity	cnec	ке	· —				
Code c	converters - impleme	intation of combinational logic using MUX and Decoder.								
Linit III	SEQUENTIA			0		0				
Design	Procedure - Elin flor	ns: SP IK T D and IK Master Slave Triggering of Elin-flon - Pealize	tion	of fli	T n fl					
–Moore	and Mealy circuits	s = Counters: Asynchronous / Rinnle counters = Synchronous count	ers _	- Mo	dul	o n				
counte	r – Design of Synch	ronous counters – Register - Shift registers - Universal shift register	– Sh	ift R	eai	ster				
counte	rs.		•		- <u>g</u> .					
Unit IV	ASYNCHRO	NOUS SEQUENTIAL CIRCUITS		9	+	0				
Design	of fundamental mod	de circuits – Primitive state / flow table – Minimization of primitive stat	e tab	le –	sta	ate				
assignr	ment – Excitation tab	ole – Excitation map - Problems in Asynchronous Circuits. Cycles– Ra	ces -	- Ha	zar	ds				
- Desig	n of Hazard Free Sv	vitching Circuits: Static – Dynamic - Essential Hazards and Hazard elim	ninati	on.						
Unit V	MEMORY DE	VICES		9	+	0				
Classif	ication of memories	-RAM organization - ROM organization - Flash Memory - Progra	mma	ble	Lo	gic				
Device	s: Programmable Lo	gic Array (PLA) - Programmable Array Logic (PAL) - Implementation of	com	bina	tior	nal				
logic us	sing ROM, PAL and	PLA.	T)		<u></u>	. do				
Course	Quitaamaa	Total (L+	1)= 4	+3 F	eric	Jas				
Course	e Outcomes.									
Upon c	completion of this cou	urse, the students will be able to:								
CO1	: Minimize Bool	lean expressions and implement using logic gates								
CO2	: Design and ar	nalyse combinational logic circuits.								
CO3	: Design and a	nalyse synchronous and asynchronous sequential logic circuits								
CO4	: Understand th	ne concepts of memories and PLDs and implementation of circuits using	ng m	emo	ry a	and				
	PLDs.									
Text B	ooks:									
1.	M. Morris Mano, "D	Digital Design", 4" Edition, Pearson Education (Singapore) Pvt. Ltd., Ne	w De	elhi, i	200)8.				
2.	R.P. Jain, "Modern	digital Electronics", Tata McGraw Hill, 4" Edition, 2009								
Ketere				0000						
1.		Digital Electronics- An introduction to theory and practice", PHI, 2 nd edit	on, ,	2006	э.					
2.		niculis and Systems , rata MCGraw Hill, 1989 d.S. Arivozbogon, "Digital Circuita and Design" and addier. Miles Dub	الم ال	<u>~~ '</u>	10.1					
J.	S. Salivananan and	u S. Anvaznagan, Digital Circuits and Design, 2 ¹¹ edition, Vikas Pul	มเรทเ	ng F	100	se				
4	Charles U Dath "F	1, 2004. Undamentals of Logic Design" Thomson Dublication Company, 2002								
H. F-Rofo		undamentais or Logic Design , momson Fublication Company, 2003.								
1	http://potel.ac.in/po	c/individual_course.php?id=poc15-ec01								
2	https://nptel.ac.in/no	ourses/117105080/6								
3	https://nptel.ac.in/c	ourses/117105080/8								
0.										

	18EC	303	SIGNALS AND SYSTEMS			r	P C
D D.					3 (0	0 3
Pre-Re	quisit						
•	Basic	Calculus and	d Differential Equations				
Course	e Obje	ctives:					
1.	To ir	ntroduce basi	cs of signals and system				
2.		inderstand ar	d perform Fourier analysis on continuous and discrete time signal	l			
3.	101	ntroduce Lap	ace and Z transform in analysing signals and system				
	iontion	of Signala:	IUN TO SIGNALS AND STSTEM	mo (C		3	U
time (F		ol Signais. E	uous and Discrete amplitude signal - System properties and rep	me (C	1) and	u Di Line	Sciele
	varian	riais - Contin re – Causalit	uous and Disclete amplitude signal System properties and rep y – Stability - Realizability - Linear Tme-Invariant (LTI) systems: I	impuls		nong	se and
step re	sponse	e – Convolut	on – Correlation - System representation through differential equ	uations	and	diffe	erence
equation	ons.				ee.		
Unit II		FOURIER AI	ALYSIS OF CONTINUOUS TIME SIGNAL AND SYSTEMS		9		0
Contin	uous T	ime Fourier S	eries (CTFS) - Properties of CTFS - Continuous Time Fourier Trar	nsform	(CTF	T) –	CTFT
of CT p	periodic	signals - Pro	perties of CTFT - Frequency response of systems characterized by	/ differe	ential	equa	ations.
Unit III		LAPLACE T	RANSFORM AND CONTINUOUS-TIME LTI SYSTEMS		9		0
Laplac	e Trans	sform - Lapla	ce Transforms of some Common Signals - Region of Convergence	-Prope	erties	of La	aplace
Transf	orm- In	verse Laplac	e Transform - System Function - The Unilateral Laplace Transfor	m -So	lving	diffe	rential
equation	on of C	I system.					
Unit IV		SAMPLING	HEOREM AND Z-IRANSFORMS	<u> </u>	9		0
Repres	sentatio	on of continue	bus time signals by its sample - Sampling theorem – Nyquist rate of Sampling techniques – Deta Basangtruction – Sampling of h	ர samp	ling –		
transfo	sampii rm - Pi	ng (allasing)	- Sampling lectiniques - Data Reconstruction - Sampling of D	ariu pa	iss signal	gnai is - F	2 - 2
of Con	veraen	ce – Properti	es of ROC – Properties of 7-transform - Poles and Zeros - Inverse	∍ 7-trar	sform	3 - 1 n	(egion
Unit V	vergen	FOURIER A	VALYSIS OF DISCRETE TIME SIGNALS AND SYSTEMS	/	9	<u> </u>	0
Discret	te Time	e Fourier Seri	es (DTFS) - Properties of CTFS – Discrete Time Fourier Transform	m (DTF	-T) –	Pror	perties
of CTF	T - Fre	equency Res	ponse of Discrete Time LTI Systems - Discrete Fourier Transfor	m (DF	T) [´] - F	Real	ization
structu	res – C	Direct form I -	Direct form – II - Cascade and parallel forms.		,		
			То	tal (L+	T)= 4	5 Pe	eriods
Course	e Outc	omes:					
Upon c	complet	tion of this co	urse, the students will be able to:				
CO1	:	Analyse dif	erent types of signals.				
CO2	:	Represent	continuous and discrete systems in time and frequency domain usir	ng diffe	rent tr	rans	forms.
CO3	:	Analyse an	d Investigate system using Laplace transform and Z transform.				
CO4	:	Sampling a	nd reconstruction of a signal.				
I ext B	OOKS:						
1.	A.Ana	and Kumar,	Signals and Systems", 3 rd Edition, PHI, 2013.		0000		
Z.	B.P.I	Lathi, Princip	sies of Signal Processing and Linear Systems, Oxford University	Press,	2009.	<u> </u>	
Refere		V Opponhoin	Alan S Milleky and S Hamid Newah, "Signals and Systems" and	oditio			orning
1.	Priva	to Limited N	n, Alah Siyihasiyi ahu Sihamlu Nawab, "Siyihas ahu Systems", Ziri ww Delbi 2010	euitio	п, гп	II Le	aming
2	Simo	n Havkin Ba	rv van Veen "Signals and Systems" John Wiley and Sons (Asia)	Privat	- L imi	ited	1998
3	Hsul	HP Rakesh	Ranian "Signals and Systems" 2 nd Edition Schaum's Outlines Tat	a McG	raw H	lill (2010
4.	Krish	naveni.V. Ra	eswari, A. "Signals and Systems". 1 st Edition. Wilev India Pvt., Ltc	1. 2012		, 4	
E-Refe	erence	S:		, _ 2 . _			
1.	https:	//www.edx.o	g/course/signals-systems-part-1-iitbombayx-ee210-1x-2				
2.	http://	/nptel.ac.in/c	ourses/117104074/				
3.	https:	//www.tutoria	Ispoint.com/control systems/control systems introduction.htm				

	18EC304	NETWORK THEORY AND SYNTHESIS	L	Т	P (С		
<u> </u>	waa ahiaatiwaa		3	0	0 3	3		
	 To impart knowledge on solving circuits using network theorems. To educate on obtaining the transient response of circuits and resonance in coupled circuits. To impart knowledge on two port networks and network synthesis. 							
Uni Mes Tra	Unit INETWORK ANALYSIS TECHNIQUES AND THEOREMS9+0Mesh and Nodal Analysis - Comparison of Node and Mesh Analysis - Delta – Wye Transformation - Source Transformation and Duality - Network theorems: Superposition – Reciprocity - Thevenin's - Norton's - Maximum9+0							
Pov	ver Transfer – Comp	ensation - Substitution - Tellegen's theorem (for both DC and AC circu	iits).					
U Tra Cor - Si	nit II TRANSIEN nsient study in RL , I nplex frequency: Driv nusoidal response fre	FANALYSIS AND CIRCUIT ANALYSIS IN s – DOMAIN RC, and RLC networks : Response to Step, Impulse and Sinusoidal ving points and Transfer Functions - Poles and zeros of Immittance from pole-zero locations - Convolution theorem.	input: unctio	9 s - Co n – Pr	+ (ncept c opertie	D of Is		
Uni	t III MAGNETI	C RESONANCE CIRCUITS		9	+ (0		
Ser Imp Coe - Ide	ies and parallel reso edance of RLC circl efficient of coupling - eal transformer- Tune	pnance - Variation of impedance with frequency- Bandwidth of RLC uit near resonance - Selectivity – Magnification - Self-inductance – Dot convention - Analysis of multi-winding coupled circuits – Series and ed circuits.	circu Mutua gara	it – Q I indu Ilel coi	factor ctance nnectio	- n		
Uni	t IV TWO POR	TNETWORKS		9	+ (0		
One and	e port and Two port ne Asymmetrical netwo	etworks – Z parameters – Y parameters – h parameters – ABCD param orks – Characteristic impedance.	eters	– Sym	metrica	al		
Uni	t V PASSIVE N	ETWORK SYNTHESIS		9	+ (0		
Ele and of L	ments of Realizabilit sufficient conditions C Networks - Synthe	y Theory: Stability-Hurwitz Polynomials - Positive Real Functions : De for a function to be positive real - Elements of circuit synthesis - Fost esis of RC and RL networks.	efinitio	n - Ne d Cau	ecessar er form	y s		
		Total	(L+T)	= 45	Period	s		
Cοι	urse Outcomes:		<u> </u>					
Upc	on completion of this	course, the students will be able to:						
CO	1 : Analyse the e	electric circuit using best suited network theorem						
CO:	2 : Apply the kno 3 : Understand bandlimited of	and analyse the resonance behaviour of circuit, and apply the kr sircuits according to the application.	o ana owleo	lyse tr dge to	desig	n		
CO	4 : Analyse the network synt	inear network parameters, and its interaction with other network and nesis process.	to lea	ırn ele	mentar	y		
Тех	t Books:							
1.	S.K.Bhattacharya Publication,2015.	and Manpteet Singh, "Network analysis and Synthesis", 1 st	edit	ion,	Pearso	n		
2.	Abhijit Chakrabarth	y, "Circuit Theory Analysis and Synthesis", DhanpathRai & Sons, Nev	v Delh	i, 201	1.			
1	Alexander C and S	adiku M. N. O. "Eupdamentals of Electric Circuits." Tata McGraw H			hi 2013	2		
2.	Sudhakar A. and S New Delhi, 2015.	Shyammohan S. Pillai, — "Circuits and Networks Analysis and Synth	iesis",	McG	raw Hil	<u>).</u> ,		
3.	John. D. Ryder, "Ne	etworks Lines and Fields"- PHI 2 nd edition, 2003.						
4.	Van Valkenburg, — 2001.	"Introduction to Modern Network Synthesis", New Age International P	ublish	er, Ne	w Delh	i,		
E-R	eferences:	1400 4000 401						
1.	https://nptel.ac.in/co	urses/108102042/						
_∠. 3.	https://nptel.ac.in/co	urses/100105154/2 courses/electrical-engineering-and-computer-science/6-002-circuits-ar	nd-ele	ctronic	cs-			
	spring-2007/video-le	ectures/lecture-2/						

	18EC305	TRANSMISSION LINES AND WAVEGUIDES	L T	Ρ	С
			3 0	0	3
Cou	rse Objectives:				
1.	To introduce the va	arious types of transmission lines and to discuss the losses.			
2.	To compute various matching in Transm	s parameters for loaded transmission lines using Smith chart and acqu nission Lines.	iire kn	owled	dge of stub
3.	To impart knowledg	ge on guided waves, rectangular and circular waveguides and wavegu	ide res	sonat	ors
					1-
Unit			9	+	0
Intro of ca circu Tele coeff	duction to Different t iscaded T-Sections - ited lines - Wavelen phone cable – Induc icient –Reflection fa	ypes of transmission lines – Characteristic impedance and Propagatic General Solution of the transmission line – Input and Transfer imped igth and Velocity of Propagation - Waveform distortion – Distortion le stance loading of telephone cables - Reflection on a line not terminat ctor and reflection loss – T and π Section equivalent to lines.	n Con lance-(ss trai ed by	stant Open nsmis Zo –	 The line and Short ssion line - Reflection
Uni	ITHE LINE AT I	RADIO FREQUENCIES	9	+	0
Volta wire - Sta betw usino	age and current on th line and co-axial line nding waves and sta een VSWR and refle g Smith chart – singl	he dissipation less lines – Input impedance of the dissipation less line e at high frequencies - Input impedance of open and short circuited lin anding wave ratio on a line – $\lambda/8$ line – $\lambda/4$ line and impedance matchine ection co-efficient – The Smith Chart – Applications of the Smith Chart - e stub matching and double stub matching.	–Para ne – R ng – λ/ Soluti	imete eflec 2 line ons o	ers of open tion losses e- Relation f problems
Unit		/ES	9	+	0
Wav	es between parallel	planes of perfect conductors – Transverse electric waves - transver	se ma	aneti	c waves -
char prop	acteristics of TE and agation – Attenuatio	d TM Waves – Transverse Electromagnetic waves, properties of TEM n of TE and TM waves in parallel plane guides – Wave impedances.	1 wave	- V	elocities of
Unit			0		0
Tran	IV RECTANGUL	AR WAVEGUIDES		+ _	voquidos
Char wave wave	acteristic of TE and eguides – Dominan eguides – Wave imp	d TM Waves – Cutoff wavelength and phase velocity – Impossibil t mode in rectangular waveguide – Attenuation of TE and TM r edances – characteristic impedance – Excitation of modes.	lity of nodes	TEM in r	waves in ectangular
Unit		AVE GUIDES AND RESONATORS	9	4	0
Bess impe	el functions – Solutional Solution dances and characteries - Rectangular ca	on of field equations in cylindrical co-ordinates – TM and TE waves in or eristic impedance – Dominant mode in circular waveguide – excitation or vity resonators - circular cavity resonator.	circula of mod	r guio es –	les – wave Microwave
		Tota	al (L+	()= 4	5 Periods
Cοι	Irse Outcomes:			-	
Upo	on completion of this	course, the students will be able to:			
CO	1 : Anlyze the pro	ppagation of signals through transmission lines.			
CO	2 : Calculate reflecti applications.	on and transmission coefficients, standing wave ratio and power for transmiss	ion line	s usii	ng HF
CO	3 : Compute vario stub matching i	us parameters for loaded transmission lines using Smith chart and acc in Transmission Lines.	juire k	nowle	edge of
	: Determine para	ameters such as frequency, phase constant, velocity, attenuation and a	associ	ated	
CO	4 characteristic ir	npedance for different types of waveguides.			
Тех	t Books:				
1.	J.D.Ryder "Networks	s, Lines and Fields", PHI, New Delhi, 2006.	<u> </u>	0010	
2.	E.C. Jordan and K.C	5.Balmain "Electro Magnetic Waves and Radiating System, PHI, New	Delhi,	2010	
Ret	erence Books:	mission Lines & Networks" Cathors Deskash an muhlisstian, 2000			
1.	Uniesn Sinna, "Tran	mission Lines & Networks SatnyaPrakashan publication, 2002.			
<u>∠</u> .	Annapuna Das and	SISHT. Das, Microwave Englineering, INIA, 2000.			
J.	David K Chana "Fin	Advave Engineering, 2 "Euklon, John Wiley, 2000.			
4. E D	David K. Uneng, "Fie	au and waves in Electromagnetism, Pearson Education, 1989.			
□ □ − K	bttps://www.voutuba				
1.	https://www.youlube				
<u>Z</u> .	https://www.scribd.c	uni/uuuumeni/16/89694/1ransmission-Lines-and-Wave-Guides-EC-13	SUD		
J.	mups.//imk.springer.o	JUNI/UNAPLEI/ 10. 1007/970-1-4013-0439-1_20			

		18MC301	INDIAN CONSTITUTION	L	Т	Ρ	С		
		(Commo	n to all branches)	2	0	0	0		
Cou	rse (Objectives:							
1.	lea	rn the salient features of the Indian Co	onstitution						
2.	list	the Fundamental Rights and Fundam	ental Duties						
3.	pre	sent a systematic analysis of all dime	nsions of Indian Political System						
4.	un	derstand the power and functions of th	he Parliament, the Legislature and the Judiciary						
UNI	ΓΙ				6	+	0		
Unio Dutie	n an	d its Territory – Citizenship–Fundam	ental Rights-Directive Principles of State Polic	;y–Fi	unda	mei	ntal		
Duit									
UNI	TII				6	+	0		
The	Unio	n-The States-The Union Territories-	The Panchavats-The Municipalities						
UNI					6	+	0		
The	Co-c	pperative Societies-The scheduled a	nd Tribal Areas-Relations between the Union a	and t	the S	State	es-		
Fina	nce,	Property, Contracts and Suits–Trade	and Commerce within the territory of India			olali			
	,								
					6	+	0		
					Ŭ	•	Ŭ		
Serv	ices	under the Union, the States – Tribuna	Is – Elections– Special Provisions –Relating to	certa	in C	lass	es		
UNI	ΓV				6	+	0		
Land	inad	es-Emergency Provisions – Miscellan	eous-Amendment of the Constitution						
Lang	Juag		Total (L+	-T)=	30 P	Peric	ods		
Cou	rse (Dutcomes:							
On c	omp	letion of the course, students will:							
CO1	:	understand the emergence and evol	ution of the Indian Constitution						
CO2	:	explain the key concepts of Indian P	olitical System						
CO3	:	describe the role of constitution in a	democratic society.						
CO4	:	present the structure and functions c Judiciary	of the Central and State Governments, the Legis	latur	e an	d th	е		
Text	Boo	ks:							
1.	Sub	hashC.Kashyap, Our Constitution, Na	tional Book Trust, 2017						
2.	Dur	ga Das Basu, Introduction to the Cons	stitution of India, Lexis Nexis, 2015.						
3.	M.V	Pylee, Constitutional History of India.	S.Chand publishing, 2010						
4.	4. Granville Austin, <i>The Indian Constitution: Cornerstone of a Nation</i> , Oxford University Press, 1999								

	18E	C306	ELECTRONIC DEVICES AND CIRCUITS LABORATORY	L	Τ	Ρ	С
				0	0	3	1.5
Cours	e Obj	ectives:					
1.	To p	provide an insigh	nt into the characteristics of electron devices.				
2.	To design and analyse various amplifier circuits.						
3.	To s	tudy the operat	ion of rectifiers and filters.				
EXPE	RIME	NTS					
1.	Cha	racteristics of P	N Junction Diode and Zener Diode.				
2.	Cha	racteristics of sp	pecial diodes.				
3.	Clip	pers and Clamp	ers.				
4.	Rec	tifiers with and v	without capacitor filter.				
5.	Cha	racteristics of C	E/CB/CC configurations of Bipolar transistors.				
6.	Cha	racteristics of N	IOSFET.				
7.	Free	uency response	e of BJT Amplifier.				
8.	Free	uency response	e of Multi stage amplifiers.				
9.	Clas	s A power amp	lifier.				
10.	Clas	s B Compleme	ntary symmetry power amplifier.				
11.	Des	ign and Analysis	s of Series feedback amplifiers.				
12.	Des	ign and Analysis	s of Shunt feedback amplifiers.				
	-		Tot	al (P)= 3	0 Pe	riods
Cours	e Out	comes:					
Upon c	compl	etion of this cou	rse, the students will be able to :				
CO1		: Analyze the	characteristics of diodes and transistors.				
CO2		: Design elec	tronic circuits such as rectifiers and analyse their performance.				
CO3		: Analyze the	frequency response of small signal, power and feedback amplif	iers	usin	g dis	screte
		components). 				
CO4		: Test electro	nic circuits and their performance.				
Refere	ences						
1.		A.S. Sedra and	IK.C. Smith, "Microelectronic Circuits", 7 th edition, Oxford University	<u>/ Pre</u>	<u>SS, 2</u>	<u>2015</u>	<u>.</u>
2.		S. Salivahanar Education, 201	h and N. Suresh kumar, "Electronic Devices and Circuits", 4^m Eq. 7.	lition	, Мо	:Gra	w Hill
E-Refe	erence	es:					
1.		http://nptel.ac.i	n/courses/117105080/40				
2.		http://nptel.ac.i	n/courses/117108038/1				
3.		http://www.elec	tronics-tutorials.ws/				

	18EC307	DIGITAL SYSTEM DESIGN LAB	L	т	Ρ	С
			0	0	3	1.5
Cours	e Objectives:					
1.	The course intend	ts to provide an insight into the design				
2.	Implementation of	f combinational and sequential logic circuits.				
EXPE	RIMENTS:	· · · · ·				
1.	Study of Logic Ga	ates.				
2.	Implementation of	f logic circuits using NAND gate and NOR gate.				
3.	Design and const	ruct Adders and subtractors.				
4.	Design and imple	mentation of Multiplexer and Demultiplexer using logic gates and IC7415	59 a	and I	C74	154.
5.	Design and const	ruct encoder and decoder using logic gates and study of IC7445 and IC	741	47.		
6.	Study of Flip-Flop	S.				
7.	Construction and	verification of 4 bit ripple counter and Mod- N Ripple counters.				
8.	Design and imple	mentation of 3-bit synchronous up/down counter.				
9.	Implementation of	f SISO, SIPO, PISO and PIPO shift registers using Flip- flops.				
10.	Design and imple	mentation of Hazard free circuits.				
11.	Implementation of	f combinational logic circuits using Multiplexer and Decoder.				
12.	Implementation of	f combinational logic functions using ROM, PLA and PAL.				<u> </u>
		Tota	al (F)= 3	30 Pe	eriods
Cours	e Outcomes:					
Upon c	completion of this co	urse, the students will be able to :				
CO1	: Design and C	onstruct combinational logic circuits.				
CO2	: Design and C	onstruct counters and shift registers.				
CO3	: Understand th	ne concept of Hazard and construct Hazard free Circuit.				
CO4	: Understand th	ne concept ROM, PLA and PAL.				
Refere	ences:					
1.	R.P. Jain, "Modern	digital Electronics", 4 th Edition, Tata McGraw Hill, 2009.				
2.	M. Morris Mano, "D	Digital Design", 4th Edition, Pearson Education (Singapore) Pvt. Ltd., Nev	N D	elhi,	200	8.
E-Refe	erences:					
1.	https://nptel.ac.in/c	ourses/117105080/24				
2.	https://nptel.ac.in/c	ourses/117106086/				
3.	https://www.youtub	e.com/watch?v=CeD2L6KbtVM				

	SEMESTER IV							
18MA402	PROBABILITY AND STOCHASTIC PROCESSES	Τ	Ρ	С				
	3	0	0	3				
Course Objectives:								
1. To learn the axioms of	1. To learn the axioms of Probability and use of Baye's theorem and its applications							
2. To learn the standard P	robability Distribution and its Applications and two dimensional Rand	om V	ariał	oles.				
3 To understand the conv numbers and central lin	ergence of Random sequences and the concepts of strong and weal nits.	< laws	s of l	arge				
4. To understand effective densities of the Random	ly about the stochastic processes and the applications of correlation n process.	, spe	ctral					
	ONE DIMENSIONAL RANDOM VARIBLE	9	+	0				
Axioms of Probability – C	Conditional Probability – Total Probability- Baye's theorem- Ran	dom	varia	able-				
Probability mass function- I generating functions and the	Probability density function- Probability distribution function- Mom	ents-	Mor	nent				
			 1					
	RIBUTION	9	+	0				
Binomial, Poisson, Geometri variable.	c, Uniform, Normal Distributions and their properties- Functions of a	rando	5m					
	IAL RANDOM VARIABLES	٩		0				
Joint Distribution- Marginal a	nd Conditional distributions- Markov, Chebyshev, Chernoff bounds	3	т	U				
Unit IV RANDOM PROCE	SSES	9	+	0				
Random sequences and mo	des of convergence (everywhere, almost everywhere, probability d	stribu	ution	and				
mean square)- Strong and W	/eak laws of large numbers – Central limit theorem							
Unit V CORRELATION A	ND SPECTRAL DENSITIES	٩	_	0				
Classification – Stationary n	rocess – Mean and Covariance functions- Ergodicity – Transmissio	n of	Ran	dom				
process through LTI- Auto co	prrelation- Cross correlation- Properties- Power spectral density.			uom				
	Total (L+T)= 45	Per	iods				
Course Outcomes:		/						
After the successful complet	ion of the course, the students will be able to							
CO1 : Learn the fundame	ntal knowledge of the probability concepts							
CO2 : Understand and cha	aracterize phenomenon which evolve with respect to time in a proba	bilisti	C					
CO3 : Acquire the knowle	dge of Random Processes and Spectral Densities							
Text Books:	ž							
1. Veerarajan.T, "Probabiled ition, New Delhi, 200	ity, Statistics and Random process", Tata McGraw- Hill publications, 2.	seco	nd					
2. Ross.s, "A First course	in Probability", 5th Edition, Pearson Education, Delhi, 2002.							
Reference Books:								
1. H.Stark and John W.W Pearson Education, Th	oods "Probability and Random processes with Applications to Signa ird Edition, Delhi 2002	l proc	essi	ng",				
2. Peebles Jr.P.Z. "Proba Publishers. 4 th Edition.	bility Random Variables and Random Signal Principles", Tata McGra New Delhi 2002. (Chapter 6, 7 and 8)	w- H	ill					
3. K.L.Chung, "Introductio	n to Probability theory with Stochastic processes". Springer Internati	onal						
4. Ochi, M. K, "Applied Pr	obability and Stochastic process", John Wiley & sons, New York, 199	90						
5. Oliver C. Ibe, "Fundame	entals of Applied probability and Random Processes", Elsevier							
Publications, 2013								

1	I8EC401	ANTENNA AND WAVE PROPAGATION	L	Т	Ρ	С
			3	0	0	3
Course C	Objectives:					
1.	To understand the of the basic conce	fundamental principles of Antenna theory, and wave propagation was and equations.	th a lu	ucid e	explan	ation
2.	To understand the	design and operation of various antenna types.				
3.	To study the funda	mental electromagnetic wave propagation in different layers of the	atmos	spher	e.	
Unit I	RADIATIO	N FIELDS OF WIRE ANTENNAS		9	+	0
Potential	functions and elec	tromagnetic field - Potential functions for sinusoidal oscillations - F	ields	asso	ciated	with
Hertzian o	dipole - Alternating	current element - Power radiated and radiation resistance of currer	it eler	nent	- Radi	ation
resistance	e of elementary dip	ble with linear current distribution - Current distribution on a thin wire	anter	nnas	- Radi	ation
nomnan						
Unit II	ANTENNA	ARRAYS		9	+	0
Expressio	on for electric field f	rom two and three element arrays - Uniform linear array - Broadside	e arra	y - Er	ndfire	array
 Method dipole ant 	of pattern multiplic tenna - Yagi Uda a	ation - Binomial array - Use of method of images for antennas at ntenna - Log periodic dipole array.	ove (grour	nd - Fo	lded
Unit III	LOOP. HE	LICAL AND REFLECTOR ANTENNA		9	+	0
Loop Ante	ennas: small loop a	nd general case - Radiation resistance of loops - Directivity of circula	r loop	$-\lambda/1$	10 dian	neter
loop – λ/τ	τ diameter loop - ⊢	elical antenna: Helical geometry - monofilar axial-mode helical ant	enna	- Rac	diation	from
a travelin	g wave on a wire -	Rhombic antenna: Analysis & Design of Rhombic antennas - Ref	ector	ante	ennas:	Flat
sheet refle	ector - Corner refle	ector – Paraboloidal reflector - Feed systems.				
Unit IV	APERTUR	E AND LENS ANTENNA		9	+	0
Induction	and equivalence th	eorems - Radiation from an elemental area of a plane wave (Huygen	's Soi	urce)	- Radi	ation
from the o	open end of a coax	ial line - Radiation from a rectangular aperture treated as an array of	t Huy	gen's	s sourc	;es –
Slot anter	tennas - Pattern of Sid	t antennas in hat sneets - Babinet's principle and complementary and	tenna	IS - II . Pad	npeua liation	from
circular a	perture - Ream Wi	the and Effective area - Dielectric lens and metal plane lens antenr	nom - nas - I		bera l	ens -
Spherical	waves and Biconic	cal antenna.		_01110	bolgi	0110
Unit V	WAVE PRO	DPAGATION		9	+	0
Sky wave	e propagation: Stru	cture of the ionosphere - Effective dielectric constant of ionized re	gion	- Me	chanis	m of
refraction	- Refractive index	- Critical frequency - Skip distance - Effect of earth's magnetic field	d - Er	nergy	loss i	n the
ionosphei	re due to collisions	- Maximum usable frequency - Fading and Diversity reception - Spa	ace wa	ave p	propag	ation
- Reflecti	on from ground for	vertically and horizontally polarized waves - Reflection characteristic	CS Of e	earth	- Resu	iltant
for group	d wave propagation	The receiver - Duct propagation - Ground wave propagation: Atten	uation	n cha	racter	SUCS
Tor ground		Tota	al (L+	T)= 4	5 Peri	ods
Course	Outcomes:			-		
Upon co	mpletion of this cou	urse, the students will be able to:				
CO1	: Understand th	e behavior of antenna and its performance parameters.				
CO2	: Design and an	alyze antenna arrays.				
CO3	: Design and an	alyze aperture and lens antennas.				
Text Boo		ave propagation and its effects.				
1.	E.C.Jordan and Ba	almain, "Electro Magnetic Wayes and Radiating Systems", PHI 196	8. Re	print	2010.	
2.	John D.Kraus and	Ronalatory Marhefka, "Antennas", Tata McGraw-Hill Book Compan	v. 20 [°]	10.	2010.	
Referen	ce Books:		, , -	-		
1.	Terman, F.E., "Ra	dio Engineers Handbook", Tata McGraw-Hill, 1985.				
2.	Constantine A. Ba	anis, "Antenna Theory Analysis and Design", John Wiley & Sons, 2	012.			
3.	R.E.Collins, 'Anter	nas and Radio Propagation ", McGraw-Hill, 1987.				
4.	Elliot, R.S, "Anten	na theory and design", PHI, New Delhi, 1985.				
	ences:	oo com/watch?v_I EQ/cohDT/M/Valiet_DI ALII bhlyfaifsaad be alb00		1 D+1 4	16	
2	https://www.youtur	ve.com/watch?v=LF9KevD1VVA0&IISt=FLAULD11V1alD9VVLIM-01D89(илогир		0\/Q	
	https://link.springe	com/chapter/10/1007/978-1-4615-6459-1/28		gyini	010	
0.						

1	8EC402	ANALOG CIRCUITS	L	Т	Ρ	С
			3	0	0	3
Course (Objectives:			1		
1.	To give a comp basis for linear a	rehensive exposure to all types of discrete amplifiers and oscillators. To and digital integrated circuits.	dev	elop	a s	trong
2.	To understand t	he various linear and non-linear applications of op-amp.				
3.	To understand t	he operation of the D/A & A/D converter types and its applications.				
Unit I	OSCILLATORS			9	+	0
Feedback and stabi Oscillator and Pierc	k Amplifier: Block lization of amplitu r - Wien bridge Os ce oscillators - Fr	diagram - Gain with feedback - Barkhausen Criterion - Mechanism for ude - Analysis of Oscillator using Cascade connection of RC and LC filters scillator and Twin-T Oscillators - Analysis of LC Oscillators: Colpitts – Hartl equency range of RC Oscillators - Electrical equivalent circuit of Crystal.	star s - F ey –	t of c RC p Cla	bscil hase op -	lation is shift Miller
l Init II		EIERS AND MULTIVIBRATORS		9	Ŧ	0
Analysis Efficiency Multivibra and base	of single tuned of Class C tun ator - Bistable Mu e timing.	and synchronously tuned amplifiers - Class C tuned amplifiers and the ed Amplifier- Collector coupled and Emitter coupled Astable Multivibrational Itivibrator - Triggering methods - Monostable and Astable Blocking Oscilla	ieir tor - tors	appl Mo usir	icati onos Ig Ei	ons - stable mitter
l Init III				0		0
	mirror: Basis top	LINEAR IC S		9 of or	+	tion
Calculation of gain st	on of differential g ages and output	gain - Common Mode gain, CMRR - OP-AMP design -Design of Differential stages – compensation - DC and AC characteristics of OP-AM - slew rate	amp	olifie	r - D	esign
Unit IV	APPLICATIONS	DF OPERATIONAL AMPLIFIER		9	+	0
Inverting trigger ar – Compa	and non-inverting nd its applications rator - Multivibra	g amplifiers - Integrator and Differentiator - Summing amplifier - Precision - Active filters: Low pass, high pass, band pass and band stop filters - Sin tor.	rec e wa	tifier ave o	- So scil	hmitt lators
Unit V	DATA CONVER	RTERS AND SPECIAL FUNCTION ICs		9	+	0
Digital-to slope - c regulator	-Analog converte lual slope - Suo s.	ers (DAC) : Weighted resistor - R-2R ladder Analog to-Digital converte ccessive Approximation - Flash type - IC 555 timer and its applications Total (L	ers (; - ((+T) ;	(AD(C72: = 45	C): S 3 Vc Per	Single Itage
Course	Outcomes:		,	-	-	
Upon co	mpletion of this of	course, the students will be able to:				
CO1	: Develop fee	edback amplifiers.				
CO2	: Design LC	and RC oscillators, tuned amplifiers, multivibrators, power amplifier.				
CO3	: Develop co	mpetence in linear and nonlinear Opamp circuit analysis.				
CO4	: Differentiate	A/D and D/A converter, understand their types and analyze their applicate	ions	6.		
1 ext Boo 1.	oks: B.Visvesvara Ra II". Pearson Edu	ao, K.RajaRajeswari, P.ChalamRajuPantulu, K.Bhaskara Rama Murthy, "E Ication.2012	lect	ronio	: Cir	cuits-
2.	D.Roy Choudhr	y, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd.	, 20	11.		
Referen	ce Books:	-				
1.	Millman J. and T	Faub H., "Pulse Digital and Switching waveform", 3 rd Edition, McGraw-Hill	nter	natio	nal ,	2011.
2.	Sedera& Smith,	"Micro Electronic Circuits", 4th Edition, Oxford University Press, Chennai.				
3.	Michael Jacob,	Applications and Design with Analog Integrated Circuits', Prentice Hall of	India	a, 19	96.	
4.	K.R.Botkar, 'Inte	egrated Circuits', 10 th edition, Khanna Publishers, 2010.				
E-Refer	ences:					
1.	http://nptel.ac.in	/courses/117105080/40				
2.	http://freevideole	ectures.com/Course/2915/Linear-Integrated-Circuits				
3.	http://nptel.ac.in	<u>/courses/117108038/1</u>				

	18EC403	MICROPROCESSORS AND MICROCONTROLLERS	. T	Р	С					
			3 0	0	3					
Cours	e Objectives:	·								
1.	To develop an un	derstanding of the operations of microprocessors and micro controllers.								
2.	To understand an	d study the architecture, programming of microcontroller 8051.								
3	Knowledge on Microcontrollers	architecture and programming concepts of 8086 Microprocessor,	8051	and	PIC					
Unit I		MICROPROCESSOR ARCHITECTURE	9	+	0					
8085 - Archite	8085 – Architecture - Pin outs – Functional Blocks of Processor – Memory Organization – 8086 Microprocessor Architecture – Pin Assignments – Minimum/Maximum mode configuration - Memory and I/O interfacing - Bus cycles									
- 1 11111										
Unit II	8086 PROGF	RAMMING AND INTERFACING	9	+	0					
8086: Periph	Instruction set - Add eral Interfacing using	dressing Modes – Procedure - Assembler Directives - Assembly language g 8255 PPI - 8279 Keyboard/Display controller - 8251 USART.	; prog	Iramr	ning -					
				-						
Unit II	 	8051 ARCHITECTURE	9	+	0					
and RI Regist	SC processors: Har ers in 8051 - Pin des	vard and Von–Neumann Architecture - Commercial Microcontrollers - 80 scription - 8051 parallel I/O ports - memory organization.	51 ard	ers - chitec	ture -					
Linit IV	1			1.	0					
	notruction Sot Dro	0051 PROGRAMMING AND INTERFACING	9		0 Dand					
Keybo Contro	ard Interfacing - AD	C, DAC and Sensor Interfacing - External Memory Interface - RTC Int	ərfaci	ng - I	Motor					
				-						
		JUNI ROLLERS	9	+	0					
	action Instruction	Prview and teatures - PIC 16C6X/7X - ALU, CPU registers - PIN dia	jram oroco	- IVIE	emory					
organi	organization – Instruction Set - Addressing modes - 1/O ports - Introduction to PIC F8XX Flash microcontrollers.									
		Total (I	+T)=	45 Pe	eriods					
Cours	e Outcomes:		<u>· · · /-</u>	1010	11000					
After th	ne successful compl	etion of the course, the students will be able to								
CO1	: Understands	the internal architecture and organization of 8085,8086.								
CO2	: Understands programming	the interfacing techniques to 8086 and 8051 and can develop assembly I to design microprocessor/ micro controller based systems.	angua	ige						
CO3	: Illustrate how	the different peripherals (8255, 8253 etc.) are interfaced with Microproces	sor.							
CO4	: Design any a	pplication specific circuit for real-time applications.								
Text B	ooks:									
1.	Mohamed Ali Mazi Systems: Using As	idi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and l ssembly and C", 2 nd Edition, Pearson education, 2011.	Embe	dded						
2.	Ramesh S Gaonk	ar, "Microprocessor Architecture, Programming and application with 800 pal Publishing, New Delbi, 2011	35",	$5^{\text{th}} \overline{E}_{0}$	dition,					
Refere	nce Books:									
1.	Kenneth J-Ayala, 2003	"The Microcontroller Architecture-Programming & Applications" Pearso	n Int	ernat	ional,					
2.	Krishnakant, "Mic 8086- 8051- 8096"	roprocessors and Microcontrollers Architecture- programming and syste , PHI New Delhi, 2007,	m de	sign	8085-					
3.	Steve Furber "ARM	A System-on-chip-architecture ", 2 nd edition, Addison Wesley 2000.								
4	John Uffenbeck, Education, 2002.	"The 80x86 Family, Design, Programming and Interfacing", Third E	dition	, Pe	arson					
E-Refe	erences:									
1.	http://www.nptel.ac. BANG/Microproces	<u>in/courses/Webcourse-contents/IISc-</u> sors%20and%20Microcontrollers/New_index1.html								
2.	http://www.vssut.ac	.in/lecture_notes/lecture1423813120.pdf								
3.	https://onlinecourse	s.nptel.ac.in/noc19_ee11/preview								

1 To introduce the concepts of various analog modulation and demodulation techniques. 2. To understand the sources of noise and its effects in Communication systems and to analyse the performance of receiver in the presence of noise 3. To study the limits set by Information Theory. Unit 1 AMPLITUDE MODULATION 9 + 0 Generation and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebands - Comparison of maplitude modulation, systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit 1 ANGLE MODULATION 9 + 0 Angle modulation. Phase and Frequency modulation - Narrowband and Widehand FM - Transmission bandwidth of FM signals - Generation of FM signal - Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL - Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit II NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise - Shot Noise - Representation of Narrowband Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise in AM receivers : Threshold effect - Noise in FM - comparison of performance of AM and FM.		18EC404	ANALOG OMMUNICATION	L	Т	Ρ	С								
Output II To introduce the concepts of various analog modulation and demodulation techniques. 1. To inderstand the sources of noise and its effects in Communication systems and to analyse the performance of receiver in the presence of noise 3. To study the limits set by Information Theory. Unit I AMPLITUDE MODULATION 9 + 0 Generation and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebands - Comparison of amplitude modulation systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit II AMGLE MODULATION 9 + 0 Angle modulation. Phase and Frequency modulation - Narrowband and Wideband FM - Transmission andwidth of FM signals - Generation of FM signal - O Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL - Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise in DSB is Receiver. Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF DAM AND FM RECEIVERS 9 + 0 Noise in AM receivers: Threshold effect - Noise in TSB receiver - Noise in SSB Receiver. 9 + 0 Unit V NOISE PERFORMANCE OF DAM AND FM RECEIVERS 9 + 0 Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 +	Cou	urse Objectives:													
2. To understand the sources of noise and its effects in Communication systems and to analyse the performance of receiver in the presence of noise 3. To study the limits set by Information Theory. 4. Init I AMPLITUDE MODULATION 9 + 0 Generation and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebands - Comparison of amplitude modulation systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit II ANGLE MODULATION 9 + 0 Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Transmission bandwidth of FM signals - Generation of FM signals - Generation of FM signal - Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL - Nonlineer model and linear model and	1.	To introduce the	concepts of various analog modulation and demodulation techniques.												
performance of receiver in the presence of noise 3. To study the limits set by Information Theory. Unit I AMPLITUDE MODULATION 9 + 0 Generation and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebands - Comparison of amplitude modulation systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit II ANGLE MODULATION 9 + 0 Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Stransmission bandwidth of FM signals - Generation of FM signal - Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL - Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise in terms of envelope and phase components - Sine wave Plus Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise in AM receivers : Threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit IV INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less ch	2.	To understand th	ne sources of noise and its effects in Communication systems and to ana	lyse	the										
3. To study the limits set by Information Theory. 9 + 0 Contraction and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebands - Comparison of amplitude modulation systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit II ANGLE MODULATION 9 + 0 Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Transmission bandwidth of FM signals - Generation of FM signal – Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL – Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise in SM second Plus Systems - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Unit V INFORMATION THEORY 9 + 0 Unit V INFORMATION THEORY 9 + 0 Unit V INFORMATION THEORY 9		performance of r	receiver in the presence of noise	-											
Unit I AMPLITUDE MODULATION 9 + 0 Generation and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebands - Comparison of amplitude modulation systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit II ANGLE MODULATION 9 + 0 Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Transmission bandwidth of FM signals - Generation of FM signal - Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL - Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. 9 + 0 Noise is AM receivers: Threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - FM threshold refloct - Noise in FM receivers: Capture of effortional Entropy - Mdutali information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mdutali information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes.	3.	To study the limi	ts set by Information Theory.												
Unit I ANDEL MODULATION 9 + 0 Generation and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebands - Comparison of amplitude modulation systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit II ANGLE MODULATION 9 + 0 Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Transmission bandwidth of FM signals - Generation of FM signal - Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL - Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. 9 + 0 Noise in AM receivers: Threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - FM threshold effect - SM and FM receivers: 9 + 0 Unit V INFORMATION THEORY 9 + 0 0 0 0 0 0 0 0 0					•		•								
Generation and demodulation of AM, DSB-SC, SSB-SC - VSB signals - Filtering of sidebalas - Comparison of amplitude modulation systems - Frequency translation - Frequency division multiplexing - AM Superhetrodyne receiver. Unit II ANGLE MODULATION 9 + 0 Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Transmission bandwidth of FM signals - Generation of Narrowband Noise in Direct FM - Demodulation of FM signals - Start Noise : Shot Noise - Representation of Narrowband Noise in terms of envelope and phase components - Sine wave Plus Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise is Shot Noise - Thermal Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. 9 + 0 Noise is in AM receivers: Threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. CO2 1 Theat (L+T)= 45 Periods	Un		MODULATION		9	+	0								
Unit II ANGLE MODULATION 9 + 0 Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Transmission bandwidth of FM signals - Generation of FM signal - Direct FM - Indirect FM - Demodulation of FM signals - FM steree multiplexing - PLL - Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise - Representation of Narrowband Noise in terms of envelope and phase components - Sine wave Plus Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise in AM receivers : Threshold effect - Noise in FM receivers: Capture effect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. CO1 I. Knowledge on designing AM and FM communication systems CO1	amp rece	eration and democ plitude modulation s eiver.	systems - Frequency translation - Frequency division multiplexing - AM S	Cor Supe	npar erhet	rody	n of /ne								
Angle modulation: Phase and Frequency modulation - Narrowband and Wideband FM - Transmission bandwidth of FM signals - Generation of FM signal – Direct FM - Indirect FM - Demodulation of FM signals - FM stereo multiplexing - PLL - Nonlinear model and linear model of PLL - FM Superhetrodyne receiver. Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise ingure - Narrowband Noise in terms of envelope and phase components - Sine wave Plus Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. 9 + 0 Noise in AM receivers : Threshold effect - Noise in FM receivers: Capture effect - FM threshold ffect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. CO1 : [Nowledge on designing AM and FM communication systems CO2 : CO1 : [Nowledge on designing AM and FM communication systems : Simon Haykin, "Communication Systems", Sth Edition , International Student Version, John Wiley & sons, NY, 2010. . . 2.	Unit		DULATION		9	+	0								
Unit III NOISE PERFORMANCE OF DSB, SSB RECEIVERS 9 + 0 Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise - Representation of Narrowband Noise in terms of envelope and phase components - Sine wave Plus Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise in AM receivers : Threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. Total (L+T)= 45 Periods Course Outcomes: Upon completion of this course, the students will have: CO3 : Ability to analyze the performance of receiver in the presence of noise CO3 : Ability to measure the capacity of a channel Taub and Schilling, "Principles of communication systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. . 2. <td>Ang ban FM</td> <td>le modulation: P dwidth of FM signa stereo multiplexing</td> <td>hase and Frequency modulation - Narrowband and Wideband FM als - Generation of FM signal – Direct FM – Indirect FM - Demodulation - PLL – Nonlinear model and linear model of PLL - FM Superhetrodyne</td> <td>- Tr of F rec</td> <td>ansr M si eiver</td> <td>niss gna</td> <td>ion Is -</td>	Ang ban FM	le modulation: P dwidth of FM signa stereo multiplexing	hase and Frequency modulation - Narrowband and Wideband FM als - Generation of FM signal – Direct FM – Indirect FM - Demodulation - PLL – Nonlinear model and linear model of PLL - FM Superhetrodyne	- Tr of F rec	ansr M si eiver	niss gna	ion Is -								
Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise - Representation of Narrowband Noise in terms of envelope and phase components - Sine wave Plus Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver. Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise in AM receivers : Threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. Total (L+T)= 45 Periods Course Outcomes: Upon completion of this course, the students will have: CO2 : Mowledge on designing AM and FM communication systems CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : Ability to measure the capacity of a channel Teta Books: Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. Reference	Unit	t III NOISE PEF	RFORMANCE OF DSB, SSB RECEIVERS		9	+	0								
Unit IV NOISE PERFORMANCE OF AM AND FM RECEIVERS 9 + 0 Noise in AM receivers : Threshold effect - Noise in FM receivers: Capture effect - FM threshold effect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. Total (L+T)= 45 Periods Course Outcomes: Upon completion of this course, the students will have: Total (L+T)= 45 Periods CO3 I Knowledge on designing AM and FM communication systems CO3 CO3 I Ability to analyze the performance of receiver in the presence of noise CO4 O4 I Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. I Taub and Schilling, "Principles of communication systems", 5th Edition , PHI, New Delhi, 2008 Roddy and Coolen, "Electronic communication systems", 5th Edition , McGraw Hill, 1995. Reference Books: I Taub and Schilling, "Principles of communication systems", 5th Edition , McGraw-Hill Int., 2009. Anokhsingh, "Principles of Communication systems", 5th Edition , McGraw	Nois figu - Sir	Noise : Shot Noise - Thermal Noise - White Noise - Noise Equivalent Bandwidth - Noise temperature - Noise figure - Narrowband Noise - Representation of Narrowband Noise in terms of envelope and phase components - Sine wave Plus Narrowband Noise - Receiver Mode -, Noise in DSB-SC Receiver - Noise in SSB Receiver.													
Noise in AM receivers : Threshold effect - Noise in FM receivers: Capture effect - FM threshold reduction - Pre-emphasis and De-emphasis in FM - Comparison of performance of AM and FM. Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. Total (L+T)= 45 Periods Course Outcomes: Upon completion of this course, the students will have: CO1 : Knowledge on designing AM and FM communication systems CO2 : The exposure to the sources of noise and its effects in Communication systems CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : NY, 2010. : 2. R.P. Singh &S.D.Spare, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , PHI, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , McGraw-Hill Int. , 2009. 3. Bruce Carlson A, Paul B.Crilly, "Communication systems", 5th Edition , McGraw-Hill Int. , 200	Uni	t IV NOISE PEF	RFORMANCE OF AM AND FM RECEIVERS		9	+	0								
Unit V INFORMATION THEORY 9 + 0 Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. Total (L+T)= 45 Periods Course Outcomes: Upon completion of this course, the students will have: CO1 I Knowledge on designing AM and FM communication systems CO2 I The exposure to the sources of noise and its effects in Communication systems CO3 I Ability to analyze the performance of receiver in the presence of noise CO4 I Ability to analyze the capacity of a channel Text Books: 1 Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. R.P. Singh &S.D.Spare, "Communication Systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , McGraw Hill, 1995. Reference Books: I 1. Taub and Schilling, "Principles of communication systems", 5th Edition McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Systems", 5th Edition McGraw-Hi	Nois thre	se in AM receivers shold reduction - F	: Threshold effect - Noise in FM receivers: Capture effect - FM thresh Pre-emphasis and De-emphasis in FM - Comparison of performance of	old of A	effeo Mai	ct - nd F	FM ⁻ M.								
Uncertainty - Information and entropy - Rate of information - Joint Entropy and Conditional Entropy - Mutual information - Discrete memory less channel - Channel Capacity - Shannon's Theorem - Continuous Channel - Shannon - Hartley Theorem - BW and S/N Trade-off - Huffman and Shannon - Fano codes. Total (L+T)= 45 Periods Course Outcomes: Upon completion of this course, the students will have: CO1 : Knowledge on designing AM and FM communication systems CO2 : The exposure to the sources of noise and its effects in Communication systems CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : Ability to measure the capacity of a channel Text Books: Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995. Reference Books: 1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , PHI, New Delhi, 2003. 3. Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5th Edition , McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. https://www.telecommunications-tutorials.com/ 2. https://www.nptelvideos.in/2012/11/communication-engineering.html	Unit		ION THEORY		9	+	0								
Total (L+T)= 45 Periods Course Outcomes: Upon completion of this course, the students will have: CO1 : Knowledge on designing AM and FM communication systems CO2 : The exposure to the sources of noise and its effects in Communication systems CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : Ability to measure the capacity of a channel Text Books: 1. Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995. Reference Books: 1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , PHI, New Delhi, 2003. 3. Bruce Carlson A, Paul B.Crilly, "Communication systems", 5th Edition ,McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. https://www.nptelvideos.in/2012/11/communication-engineering.html	Unc info Sha	ertainty - Informat rmation - Discrete r nnon - Hartley The	tion and entropy - Rate of information - Joint Entropy and Conditional E memory less channel - Channel Capacity - Shannon's Theorem - Contin forem - BW and S/N Trade-off - Huffman and Shannon - Fano codes.	ntro uou:	py - s Ch	Mut ann	ual el -								
Course Outcomes: Upon completion of this course, the students will have: CO1 : Knowledge on designing AM and FM communication systems CO2 : The exposure to the sources of noise and its effects in Communication systems CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : Ability to measure the capacity of a channel Text Books: Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995. Reference Books: 1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , PHI, New Delhi, 2008 3. Bruce Carlson A, Paul B.Crilly, "Communication systems", 5th Edition ,McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. 1. https://www.telecommunications-tutorials.com/ 2. http://www.nptelvideos.in/2012/11/communication-engineering.html			Total (L+	T)=	45 P	erio	ods								
Open completion of this course, the students will have: CO1 : Knowledge on designing AM and FM communication systems CO2 : The exposure to the sources of noise and its effects in Communication systems CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : Ability to measure the capacity of a channel Text Books: Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995. Reference Books: 1. 1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , PHI, New Delhi, 2008 3. Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5th Edition , McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. 1. https://www.telecommunications-tutorials.com/ 2. http://www.nptelvideos.in/2012/11/communication-engineering.html	Cou	Irse Outcomes:	e encode the students will be use												
CO2 : The exposure to the sources of noise and its effects in Communication systems CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : Ability to measure the capacity of a channel Text Books:	CO2	1 · Knowledge (s course, the students will have.												
CO3 : Ability to analyze the performance of receiver in the presence of noise CO4 : Ability to measure the capacity of a channel Text Books: 1. Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995. Reference Books: 1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication systems", 5th Edition , PHI, New Delhi, 2003. 3. Bruce Carlson A, Paul B.Crilly, "Communication systems", 5th Edition ,McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. https://www.telecommunications-tutorials.com/ 2. http://www.nptelvideos.in/2012/11/communication-engineering.html	CO2	2 : The exposur	re to the sources of noise and its effects in Communication systems												
CO4 : Ability to measure the capacity of a channel Text Books:	CO	3 : Ability to ana	alyze the performance of receiver in the presence of noise												
Text Books: 1. Simon Haykin, "Communication Systems", 5th Edition , International Student Version, John Wiley & sons, NY, 2010. 2. R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995. Reference Books: 1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication", 4 th Edition , PHI, New Delhi, 2003. 3. Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5 th Edition ,McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. https://www.telecommunications-tutorials.com/ 2. https://www.nptelvideos.in/2012/11/communication-engineering.html	CO4	4 : Ability to me	asure the capacity of a channel												
 R.P. Singh &S.D.Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1995. Reference Books: Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 Roddy and Coolen, "Electronic communication", 4th Edition, PHI, New Delhi, 2003. Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5th Edition ,McGraw-Hill Int., 2009. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: https://www.telecommunications-tutorials.com/ http://www.nptelvideos.in/2012/11/communication-engineering.html 	Tex 1.	<u>t Books:</u> Simon Haykin, "C NY, 2010.	communication Systems", 5th Edition, International Student Version, Joh	n W	iley &	& so	ns,								
Reference Books: 1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication", 4 th Edition , PHI, New Delhi, 2003. 3. Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5 th Edition ,McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. https://www.telecommunications-tutorials.com/ 2. https://www.nptelvideos.in/2012/11/communication-engineering.html	2.	R.P. Singh &S.D.	Spare, "Communication Systems, Analog & Digital", Tata McGraw Hill, 1	995											
1. Taub and Schilling, "Principles of communication systems", TMH, New Delhi, 2008 2. Roddy and Coolen, "Electronic communication", 4 th Edition , PHI, New Delhi, 2003. 3. Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5 th Edition ,McGraw-Hill Int. , 2009. 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: 1. 1. https://www.telecommunications-tutorials.com/ 2. http://www.nptelvideos.in/2012/11/communication-engineering.html	Ref	erence Books:													
 Roddy and Coolen, "Electronic communication", 4th Edition, PHI, New Delhi, 2003. Bruce Carlson.A, Paul B.Crilly, "Communication systems", 5th Edition ,McGraw-Hill Int. , 2009. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: <u>https://www.telecommunications-tutorials.com/</u> <u>http://www.nptelvideos.in/2012/11/communication-engineering.html</u> 	1.	Taub and Schilling	g, "Principles of communication systems", TMH, New Delhi, 2008												
 4. Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006. E-References: <u>https://www.telecommunications-tutorials.com/</u> <u>http://www.nptelvideos.in/2012/11/communication-engineering.html</u> 	2.	Roddy and Coole	n, "Electronic communication", 4 th Edition , PHI, New Delhi, 2003. Paul B Crilly, "Communication systems", 5 th Edition, McGraw-Hill Int., 2	000											
E-References: <u>https://www.telecommunications-tutorials.com/</u> <u>http://www.nptelvideos.in/2012/11/communication-engineering.html</u>	J.	Anokhsingh "Prin	printee of Communication Engineering" S. Chand & Company Ltd. 2006	003	•										
1. <u>https://www.telecommunications-tutorials.com/</u> 2. <u>http://www.nptelvideos.in/2012/11/communication-engineering.html</u>	ч. Б.Р	oferences:	icipies of communication Engineering , C. Chand & Company Ed. 2000.												
2. http://www.nptelvideos.in/2012/11/communication-engineering.html	1	https://www.teleco	ommunications-tutorials.com/												
	1 ''	<u></u>													
3. https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm	2	http://www.notelvic	deos.in/2012/11/communication-engineering.html			http://www.nptelvideos.in/2012/11/communication-engineering.html									

	18	BEC405	CONTROL SYSTEMS	L	Т	Ρ	С	
				3	0	0	3	
Pre-R	equ	iste:						
	_							
1.		_aplace Transforr	m. Partial Differential Equation					
Cours	e O	biectives:	.,					
1		introduce the el	ements of control system and various modelling techniques					
2.	T	introduce meth	nods for analyzing the time response, the frequency response an	d the	e sta	bilitv	of	
	s	stems.		a un	5 010	Sinty	0.	
3.	T	o introduce the sta	ate variable analysis method.					
			·					
Unit I		CONTROL SYS	STEM MODELING		9	+	0	
Basic	Eler	nents of Control S	System – Open loop and Closed loop systems - Differential equation -	Tran	isfer f	unct	lion	
- Mod	elin	g of Electric syst	tems - Translational and rotational mechanical systems - Analogy	- Bl	ock c	liagr	am	
reduct	ion	Techniques - Sig	nal flow graph – Mason Gain Formula.			, 		
Unit II		TIME RESPON	SE ANALYSIS		9	+	0	
Time response analysis - First Order Systems - Impulse and Step Response analysis of second order systems -								
Stead	y sta I	ERECUENCY R	PD and PID Compensation - Analysis using Simulation tool.	—	0	. .	•	
Eroqui	1 000		A Blot Bolar Dist Nyquist Blot Fraguency Domain apositiontion	o fro	9 m the		to	
Sorios		rallel and series	s-parallel Compensators - Lead Lag and Lead Lag Compensators	s ΠΟι e Δr	n une Salvei	; piu e iie	is -	
Simula	, i o ati∩r	tool	s-parallel compensators - Lead, Lay and Lead Lay compensators	э, лі	101 y 31	5 U3	ing	
Unit IV	V		NALYSIS		9	+	0	
Stabili	tv -	Routh-Hurwitz (Criterion - Root Locus Technique - Construction of Root Locus - St	abilit	iv. Do	omin	ant	
Poles	- A	pplication of Roo	ot Locus Diagram - Nyquist Stability Criterion - Relative Stability	- Ar	alvsi	s us	sing	
Simula	atior	i tool.			,		Ŭ	
Unit V	1	STATE VARIA	BLE ANALYSIS		9	+	0	
States	spac	e representation	of Continuous Time systems - State equations - Transfer function fro	om S	tate \	/aria	ıble	
Repre	sen	ation – Solutions	of the state equations - Concepts of Controllability and Observability	/				
0	- 0		l otal (L	.+I)=	: 45 F	'eric	ds	
Cours		utcomes:	when the students will be able to:					
Upon (corr	Model the mee	urse, the students will be able to:					
	-	Nodel the mec	manical and electrical systems.					
CO2	•	Periorin time d	iomain and nequency domain analysis of control systems for stability	y ana	liysis	<u> </u>		
CO4	- ·	Design the con	ariable analysis for continuous time systems.					
Toyt F	200							
1	Na	arath and Gonal	"Control System Engineering" 6 th Edition New Age International I	Editic	<u>n 2</u>	018		
2		anand Kumar "Co	ontrol Systems" Prentice Hall of India 2012	_0110	<i>/</i> 1, <i>Z</i>	510.		
Refere	enc							
1	Be	niamin C Kuo, Au	Itomatic Control Systems 7 th Edition PHI 2009					
2	Sc	naum"s Outline S	Series "Feed back and Control Systems" Tata McGraw-Hill 2007					
3.	M	Gopal, "Control S	vstem – Principles and Design". 2 nd Edition Tata McGraw Hill. 2002					
E-Ref	erer	ices:	,,					
1.	htt	os://www.edx.ora	/course/introduction-control-system-design-first-mitx-6-302-0x					
2.	htt	os://onlinecourses	s.nptel.ac.in/noc17_ee12					

	18EC406	ANALOG CIRCUITS LABORATORY	L	Т	Р	С		
			0	0	3	1.5		
Course	Objectives:							
1.	To understand the	e analysis and design of LC and RC oscillators, amplifiers and m	ultivik	orato	rs.			
2	To Apply Operation	onal Amplifiers in Linear And Nonlinear Applications.						
3	To use simulation	tools for circuit design.						
EXPER	RIMENTS							
1.	Design of RC Pha	ase shift oscillator and Wein Bridge Oscillator .						
2.	Design of Hartley	and ColpittsOscillator .						
3.	Design of Tuned (Class C Amplifier.						
4.	4. Design of Astable, Monostable and Bistable multivibrators using BJT.							
5.	Simulation of Asta	able, Monostable and Bistable multivibrators.						
6.	Design of basic C	ircuits using Op-amp 741.						
7.	Active Low pass,	High pass and Band pass filter.						
8.	Astable, Monostal	ble multivibrators using Op-Amp.						
9.	Schmitt Trigger us	sing op-amp.						
10.	Phase shift and W	/ien bridge oscillator using op-amp.						
11.	Astable and Mono	ostable multivibrators using NE555 Timer.						
12.	High voltage regu	lator using LM723.						
		То	tal (P)= 30) Pe	riods		
Course	Outcomes:							
Upon c	completion of this cou	urse, the students will be able to :						
CO1	: Design oscillators	s, multivibrators and power amplifiers for the variety of engineerir	ng ap	plica	tions	<u>ئ</u> .		
CO2	: Design Filters Us	sing Opamp and Perform Experiment on Frequency Response.						
CO3	: Design and simu	late multivibrators using Simulation Tool.						
CO4	: Design analog ci	rcuits and test their performance						
Refere	nces:							
1. A	<i>nalog Electronic cir</i> hEdition, Oxford Uni	<i>rcuits Laboratory Manual</i> . 2. David A. Bell, " <i>Electronic</i> Devidiversity Press,	ces a	and	Circ	uits",		
2. B.	.Sasikala, S.Poorna ngineering", Vikas Pi	chandra Rao, "Handbook of experiments in Electronics an ublishing, 2007.	d Co	omm	unica	ation		
E-Refe	rences:							
1. htt	p://www.srmuniv.ac.i	in/sites/default/files/2017/15EI205L-manual-full.pdf						
2. htt	p://www.gopalancolle	eges.com/gcem/course-material/ece/manuals/sem-III/analog-elec	troni	cs-la	bora	tory-		
ma	manual-10ESL37.pdf							
3 htt	3 https://www.slideshare.net/vampec/ec-ii-lab-manual							

18EC407			MICROPROCESSORS AND MICROCONTROLLERS LABORATORY	L	т	Ρ	С				
				0	0	3	1.5				
Cou	se (Objectives:									
1.	То	introduce studen	ts with the architecture and operation of typical microprocessors a	ind							
	mi	crocontrollers.									
2.	То	familiarize the stu	udents with the programming and interfacing of microprocessors a	and							
	mi	crocontrollers.									
3.	То	provide strong fo	undation for designing real world applications using microprocess	ors a	nd						
	mi	crocontrollers.									
EXP	ERII	MENTS									
8085	/808	6 Programs									
1.	8/1	6 bit Arithmetic o	perations								
2.	So	Sorting and Searching									
3.	Str	ing manipulation	operations (Using 8086).								
4.	Int	erfacing and Prog	ramming of Stepper Motor and DC Motor control.								
5.	Int	erfacing and Prog	gramming 8259 and 8253.								
6.	Se		on between two MP Kits using 8251.								
1.	Parallel Communication between two MP Kits using 8255.										
Ö.	Pro	ograms for Digital	clock and Stop watch (Using 8086).								
0001	Discrete for 0 bit Arithmetic exceptions (Lleing 0054)										
9.	Dr	ograms for logical	and hit manipulation operations (Using 8051)								
10.	Pro	ograms for Sum o	and bit manipulation operations (Using 8051).								
12	Int	erfacing – DAC /A	ADC and 8051								
12.											
			Τα	otal (P)=	45 P	eriods				
Cou	se (Dutcomes:									
After	the	successful compl	etion of the practical session, the students will be able to								
CO1	:	Apply knowledg	e and demonstrate programming proficiency using the various add	dress	sing	mod	es and				
		data transfer ins	structions of the target microprocessor and microcontroller.								
CO2	:	Gain Knowledge	e to Interface different I/Os with processor								
CO3	:	Generate wavef	orms using Microprocessors								
CO4	:	Develop assemi	bly language programs for various applications using 8051 microc	ontro	oller						
Refe	rend	es:									
	Moł	named Ali Mazidi,	Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller	and	Emb	bedde	ed				
1.	Sys	tems: Using Asse	mbly and C", Second Edition, Pearson education, 2011.								
2.	Ran Pen	nesh S Gaonkar, ram International	Microprocessor Architecture, Programming and application wit Publishing, New Delhi, 2011.	h 80	85,	5 th E	Edition,				
E-References:											
1. ľ	ttp:/	/www.srmuniv.ac	.in/sites/default/files/files/2(5).pdf								
2. https://www.bitswgl.ac.in/ece/B.Tech%20Lab%20manuals/MPID%20MANUAL_%20IV-											
3 1	ttns	://studylib.net/doc	/10152660/microprocessor-and-microcontroller-lab-manual								
-											

	18EC502	COMPUTER ARCHITECTURE	L	Т	P C			
			3	0	0 3			
Pre-F	Requisite:							
1.	Digital Electronics							
Cour	se Objectives:							
1.	To understand the ev	volution of computer architecture and the factors influencing the des	ign of	har	dware			
	and software compor	nents.						
<u>∠</u> .	To understand variou	is computer anthmetic algorithms.	rolo					
J.			rais.	9	+ 0			
Func	tional units - Basic One	erational Concepts - Bus Structures - Software - Performance - Mult	inroce	3	rs and			
Multi	computer – Memory	v addresses – Memory operations – Instruction and instruction	sea	uenc	cina –			
Addre	essina modes – Assen	nbly language – Basic I/O operations – stacks and gueues.						
	J							
Unit	II COMPUTER AR	ITHMETIC		9	+ 0			
Addition and subtraction of signed numbers - Design of fast adders - multiplication of positive numbers - signed								
opera	and multiplication, Boo	oth algorithm - Fast multiplication - Bit pair recoding of the multipli	er - (Carry	/ save			
addit	ion - Integer division	- Floating point numbers - Arithmetic operations on floating point ne	umbe	rs -	Guard			
bits a	ind truncation.							
Unit		UNITS	معاديناه	9	+ 0			
Fund	amental concepts – E	Xecution of a complete instruction – Multiple bus organization – Hard	awire	CO D	ntrol —			
IVIICIC	programmed control	- Pipelining – Basic concepts – Data hazards – Instruction hazards		dore	tions			
msur	iction sets – Data patr	rand control consideration – Superscalar operation – Performance o	011510	Jera	uons.			
Unit IV MEMORY SYSTEM 9 + 0								
Basic	concepts – semicon	ductor RAMs_ROMs – Speed_size and cost – Cache memories	- Pe	rforr	mance			
consi	deration – Virtual me	emory- Memory Management requirements – Secondary storage	e - (D-F	ROM -			
DVD	ROM - DVD drive - H	ard drive,						
Unit	V I/O SYSTEM			9	+ 0			
Acce	ssing I/O devices – Ir	nterrupts – Direct Memory Access, - Bus arbitration – Buses: Syn	chror	ous	bus -			
Asyn	chronous bus – Interfa	ce Circuits: Serial port - Parallel port – Standard I/O Interfaces: PCI,	SCSI	, anc	USB.			
		Total (I +	T)- 4	5 n	ariods			
Cour	se Outcomes:		•)= ¬		chicas			
After	the successful comple	etion of the course, the students will be able to						
CO1	: Understand the c	design of hardware and software components in computer architectu	ire.					
CO2	: Illustrate the fixed	d point and floating-point arithmetic for ALU operation.						
CO3	: Discuss about im	plementation schemes of control unit and pipeline performance						
CO4	: Explain the conc	ept of various memories and Input / Output organization.						
Text	Books:							
1.	Carl Hamacher, Zvonl	koVranesic and SafwatZaky, "Computer Organization" 5 th Ed, McGra	aw Hi	II, 20	001.			
2.	Andrew S.Tanenbaum	n, Todd Austin, "Structured Computer Organization" , 6 th Edition, Pea	arson	<u>, 20</u>	13.			
Refe	rence Books:							
1.	William Stallings, "Co Pearson, 2016.	mputer Organization and Architecture – Designing for Performanc	e", 1() [™] E	dition,			
2.	David A. Patterson an interface". 5 th edition	nd John L.Hennessy, "Computer Organization and Design, the hard Morgan Kaufmann, Elsevier, 2014.	ware	/ so	ftware			
3.	Caxton C. Foster. "Co	mputer Architecture", 6 th Edition, Van Nostrand Reinhold Company.						
4.	M.Morris Mano. "Com	puter System Architecture", 3 rd s Edition, Pearson. 2007.						
E-Re	ferences:	· · · · · · · · · · · · · · · · · · ·						
1.	http://nptel.ac.in/cours	ses/106102062/						

			SEMESTER V						
		18EC501	DIGITAL COMMUNICATION	L	Т	P C			
				3	0	0 3			
Cou	rse	Objectives:							
1.	Ur fo	derstand the building blocks of communication signal analysis	digital communication system and to prepare mathems s .	atical I	back	ground			
2.	E×	press pass-band data transmis	ssion and comparison of Digital modulation systems.						
3.	3. Analyze the error performance of a digital communication system in the presence of noise and other interferences. Understand the concept of spread spectrum communication system.								
Uni	t I	DETECTION AND ESTIMATION			9	+ 0			
Model of Digital Communication System - Gram-Schmidt orthogonalization procedure – Geometric interpretation of signals - Detection: Maximum-likelihood detector - Probability of error - Correlation receiver - Matched filter receiver – Sampling process – PAM - Other forms of pulse modulation –TDM - Waveform coding techniques: PCM- Noise considerations in PCM Systems - Quantization noise and SNR – DPCM - Delta modulation – Adaptive Delta Modulation.									
Uni Disc for [bina	i t II crete Disto ry sig	BASEBAND TRANSMISSION (PAM signals - Power Spectra (rtion less Base band Binary T gnalling – Eye patterns – Baseb	DF DIGITAL SIGNALS of Discrete PAM signals – Inter Symbol Interference - I ransmission - Correlative level coding - Duo binary a band M-ary PAM Systems – Adaptive Equalization for c	Nyquis and m lata tra	9 st's c odifi ansm	+ 0 riterion ed duo nission.			
Unit	: 111	PASSBAND TRANSMISSION	OF DIGITAL SIGNALS		9	+ 0			
Digit Gen BFS usin sync	Digital Modulation Formats - Pass band Transmission model - Coherent Binary Modulation Techniques: Generation – Detection - Signal space diagram - Bit error probability - Power spectra and waveforms of BPSK, BFSK, QPSK and MSK schemes – Differential phase shift keying – Comparison of Digital modulation systems using a single carrier – Introduction to M-ary Modulation techniques - Synchronization: Carrier and symbol								
Unit	١V	FRROR CONTROL CODING			9	+ 0			
Rati	onal	a for coding and types of codes	s - Discrete memory less channels – Linear block code	s - Cv					
Cycl Vite	lic re rbi A	dundancy check codes - Conv Igorithm - Trellis coded Modula	olutional codes – Maximum likelihood decoding of cor ation - Turbo codes - Maximum length and Gold codes	ivoluti	onal	codes-			
Unit	v	SPREAD SPECTRUM MODUL	ATION		9	+ 0			
Pser bina Hop	udo- ry pł Spr	Noise sequences – A notion on nase shift keying – Signal space ead Spectrum (FHSS).	of spread spectrum – Direct sequence spread spectr e Dimensionality and processing gain –Probability of e	um wi error –	th co Fre	pherent quency			
			Total (L	.+T)=	45 P	eriods			
Cou	rse	Outcomes:							
Afte	r the	successful completion of the c	course, the students will be able to						
CO	1 :	Analyze the performance of error rate and spectral efficie	a baseband and pass band digital communication syncy.	vstem	in te	erms of			
CO2	2 :	Perform the time and frequen error free communication.	icy domain analysis of the signals in a digital communic	ation	syste	em and			
COS	3 :	Select the blocks in a design	of digital communication system.						
<u> </u>	4 : 1 :	Analyze Performance of spre	ead spectrum communication system.						
Tex	t Bo	DKS:							
1.	Sin	ion Haykins, "Communication S	Systems" John Wiley, 5 th Edition, 2016.						
2.	Sin	ion Haykins, "Digital Communic	cation systems" John Wiley, 2014.						
Refe	eren		it-I Communication" ooth and it. T. M. C	2044					
1.		ib& Schilling, "Principles of Dig	Jital Communication", 28" reprint, 1 ata McGraw-Hill, 2	2014.					
2.	R.N	I.Mutagi, "Digital Communicatio	on", 2 ¹¹⁴ Edition, Oxford University Press, 2013	1 201	2				
J. ⊿		n & Proakie "Digital Communi	ication" 3 rd Edition Tata McGraw Lill 1005	i, 201	υ.				
4. F-P	ofer	nces.							
1	E-REIEIEIIUES:								
2	2. https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm								
3.	https desi	://ocw.mit.edu/courses/electric	cal-engineering-and-computer-science/6-973-commun	catior	<u>-</u> 1-sys	tem-			
4.	http	://nptel.ac.in/courses/1061020	62/37 - https://youtu.be/4TzMyXmzL8M						
i	<u> </u>	-							

18EC503		DIGITAL SIGNAL PROCESSING	L	Т	Ρ	С			
			3	0	0	3			
Prerequisite:									
1. Signals and	Systems	3							
Course Objectives	:								
1. To analyse	the Discr	ete Fourier Transform, Fast Fourier Transform algorithms.							
2. To design a	and realize	e IIR, FIR filters and to understand finite word length effects on digitation	ıl filte	ers.					
3. Gain knowle	edge of D	OSP architecture, Programming and concepts of Multirate signal proc	essii	ng.					
Unit I DISCRE	TE FOU	RIER TRANSFORM		9	+	0			
Discrete systems at	tributes -	Analysis of LTI systems - Frequency Analysis - Introduction to DFT	– Pi	rope	rties	s of			
DFT - Crcular convo	olution - I	FFT algorithms – Radix-2 FFT algorithms – Decimation in Time and	ש ל	cima	atior	n in			
Frequency algorithm	าร.								
Unit II INFINITE	E IMPUL	SE RESPONSE FILTER DESIGN		9	+	0			
Characteristics of A	nalog Bu	tterworth filter - Chebyshev filter - Low pass filter, High pass filter, I	3and	l pas	ss fi	lter			
and Band stop filter	- Transf	ormation of analog filters in to equivalent digital filters using bilinear	tran	sfor	mat	ion			
method - Realization	∩ structur	e for IIR filters-Direct form - Cascade form - Parallel form.							
				_					
	MPULSE	RESPONSE FILTER DESIGN		9	+	0			
Linear phase response	nse of F	IR filter - FIR design using window method: Rectangular, Hamming	j, Ha	annii	ng a	and			
Blackmann Window	s - Park-	McClellan's method - Realization structures for FIR filters - Linear p	nase	stru	ictu	res			
and Direct form stru	cture - Co	omparison of FIR and IIR filters.							
				~					
Unit IV FINITE WORD LENGTH EFFECTS 9 + 0									
Representation of n	umbers -	Quantization by truncation and rounding – Derivation for quantization	1 noi	se p	owe	er –			
co-efficient quantiza	and even	r – Product quantization error – Round off holse power - Limit cycle	OSCII	iatio	ns c	ue			
	and over	now errors - scaling to prevent overnow.							
		ONS AND DIGITAL SIGNAL PROCESSOR		0	-	0			
Introduction to Mult	ti Rata s	ignal processing: Decimation Interpolation - Introduction to DSP	тм	S32		54X			
nrocessor: Architec	ture - Ins	truction set - Addressing modes	1 101	002		747			
		Total (L+	T)= 4	45 P	eric	ods			
Course Outcomes:		10101(21)	•			-40			
Lipon completion of	this cour	se the students will be able to:							
CO1 · Analyse	the need	d for Discrete Fourier Transform, Fast Fourier Transform algorithms i	n dic	uital o	sian	als			
& system	ms		n uig	nar	Jigii	ais			
CO2 · Design	and reali	ze IIR FIR filters and characterize finite Word length effect on filters							
CO3 · Gain the	e knowle	dae on DSP architecture and programming							
CO4 · Apply th		nts of Multirate signal processing in real time applications							
Text Books:									
1 SK Mitra "Dic	nital Sign	al Processing A Computer Based approach" 4th Edition McGraw-	- Hill (2	2010	1				
John G Proskie	s and Ma	nolakis "Digital Signal Processing Principles Algorithms and Applic	ation	s" /	th				
2. Edition Pearso	on Educa	tion 2009	ation	з, ч					
Reference Books									
Emmanuel C	lfeacher	Barry W Jervis "Digital Signal Processing: A Practical Approac	h" (ond F	diti	on			
Pearson Educa	ation. 200)4.	, 2		- 410	. ,			
A.V.Oppenheir	m. R.W 4	Schafer and J.R. Buck. "Discrete-Time Signal Processing" 3rd Editio	n Pr	entic	e H	lall			
I. R. Rabiner and B. Gold. "Theory and Application of Digital Signal Processing". Prentice Hall 1992									
5. J.R. Johnson, "Introduction to Digital Signal Processing" Prentice Hall 1992									
F-References:									
1 https://www.coursera.org/learn/dsp									
2 https://ocw.mit	2 https://www.coursera.org/reani/usp 2 https://ocw.mit.edu/resources/res_6_008_digital_signal_processing_spring_2011/								
3 www.notelvide	$\frac{1000}{000}$ in/201	2/12/digital-signal-processing html							

	18EC504	COMPUTER NETWORKS	L	Т	Ρ	С			
			3	0	0	3			
Cou	rse Objectives:								
1.	To introduce the basi	ic concept in modern data communication and computer networking							
2.	To have the knowled	lge about the functions of different layers and the protocols used in	vari	ous	laye	rs.			
3.	To familiarize the co	oncept of congestion in networks and QOS parameters.							
	·								
UNI	LI DATA COMMUNI	ICATIONS AND NETWORK MODELS		9	+	0			
Com	ponents – Networks	- Components and Categories - Topologies - Protocols and Star	ndar	ds –	The) OS			
mod	el – Addressing - Tra	nsmission Media – Guided media & unguided media - Dial-up M	odei	ms -	· EIA	1232			
Inter	facing sequence - Sw	vitching: Circuit switched networks - Packet switching: Datagram I	Netw	/orks	s - V	'irtua			
Circ	uit Networks.								
		/ED	—	0	· · · ·	0			
Erro	r detection and correct	IER ion : Plack anding Lincor block anding Cyclic andon Charkeym		9	+	U Flow			
Control and Error control - Noiseless channel - Noisy channel - HDLC - Wired LANs: Ethernet IEEE 802.3, IEEE 802.4 and IEEE 802.5 – Wireless LANs: IEEE 802.11 – Connecting devices - SONET.									
		YER		9	+	0			
IPV4	Addresses: Address s	pace - Notations - Classful addressing - Classeless addressing - NA	. - 	itern	etwo	rking			
- IPV	/4: datagram – Fragme Pouting Multicost P	entation – Checksum - IPV6 - Unicast routing protocol: Distance vec	tor	Routi	ing –	- Lini			
State	e Rouling – Mullicast R	coung.							
		AYER		9	+	0			
Mul	tiplexing – De multipl	lexing – Connectionless versus connection – Oriented service	Re	liab	le v	ersus			
Unre	eliable– User Datagran	n Protocol (UDP) – Transmission Control Protocol (TCP) – Conge	estio		ontro	and			
Qua	lity of services (QoS) -	Integrated Services							
UNI	FV APPLICATION L	LAYER		9	+	0			
Dom	ain Name Space (DNS	S) – Electronic mail- File Transfer Protocol - Hyper Text Transfer Pro	toco	- W	orld	Wide			
Web	 – Security: Principles 	s of Cryptography – Network security: Message Integrity, Message) Au	then	ticat	ion -			
Secu	urity in Internet: PGP, F	Firewalls.							
		Total (L+T)= 45	5 Pe	riods			
Cou	rse Outcomes:								
After	the successful comple	etion of the course, the students will be able to							
<u>CO1</u>	: Classify the avail	lable networks and the media used in the networking based on the s	tanc	lards	<u>.</u>				
002	: Design an error f	rree and controlled data communication.							
003	E : Find the efficient	route between source and destination							
CO4	: Analyzethe qual	lity service of the networks and Create a secured communication.							
I ext	BOOKS:	"Determined in the end Nutrie of Athen Pitter TNUL 0040							
1.	Benrouz A. Foruzan,	"Data communication and Networking", 4" edition, IMH, 2013.	-		040				
2.	James. F. Kurouse& V	W. Rouse, Computer Networking: A Top down Approach Featuring	, I IV	IH, 2	012	·			
Refe	erence Books:	ten C. Devie "Commuter Naturales" and Edition Hencevet Asia Dut H	<u> </u>	004					
1.	Larry L.Peterson& Pe	ter S. Davie, "Computer Networks", 2 nd Edition, Harcourt Asia PVt. L	ία.,	2011	<u>1.</u>				
∠.	Anurew 5. Tanenbaur	m, Computer Networks, 4" edition, PHI, 2010.	014						
ა. ⊿	Aiit Dal "Data Carara	ta and Computer Communication, 8" Edition, Pearson Education, 2	014.						
4.	Ajil Pai, Dala Commi	unication and Computer Networks, PHI, 2013.							
2-RE	https://oow.mit.odu/oo	surges/electrical angineering and computer esignes/6 820 computer	0.04	Norle		1			
1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-829-computer-networks-fall-									
2 http://pptel.ac.ip/courses/106105081/1									
2.	https://nptel.ac.in/cours	reae/106105183/							
З.	nups.//npiei.ac.in/cour	1909/100103103/							

	18EC505	COMMUNICATION SYSTEMS LABORATORY	L	Т	Ρ	С					
			0	0	3	1.5					
Cou	rse Objectives:										
1.	To make the studer	nts to understand the basics of analog and digital modulation te	chniqu	es							
2.	To deal with the diff	erent pulse modulation schemes.									
3.	To simulate differen	t modulation scheme using suitable tool.									
EXP	ERIMENTS:										
1.	Generation and dete	ection of AM signal									
2.	Generation and dete	ection of FM signal									
3.	Pulse Amplitude Modulation										
4.	Pulse Width Modulation										
5.	Pulse Position Mode	ulation									
6.	Sampling and recon	struction of signals									
7.	Digital Modulation T	echniques: ASK,PSK,FSK,QPSK									
8.	Delta and Adaptive	Delta modulation									
9.	Pulse Code Modulation										
10.	Time Division Multip	plexing and De multiplexing									
11.	Measurement of fre	quency components of various waveforms using Spectrum Anal	yzer.								
12	Simulation and per	formance analysis of analog and digital modulation techniques									
	-	Тс	otal (P)= 3	0 Pe	riods					
Cou	rse Outcomes:										
Upor	n completion of this co	burse, the students will be able to :									
CO1	: Generate and	analyse analog and digital I modulated signals.									
CO2	: Sample the giv	ren analog signal for various sampling frequency.									
CO3	: Generate vario	ous signals and analyse the frequency components using spectru	um an	alys	er.						
<u>CO4</u>	: Write codes for	r various analog and digital modulation schemes.									
Refe	erences :										
1.	S.Poorna Chandra, E	3.Sasikala, "Electronics Laboratory Primer", S.Chand& Compan	<u>y Ltd, 2</u>	2010). 						
2.	L.K. Maheshwari, M.	M.S. Anand, "Laboratory Manual for Introductory Electronics Exp	berime	nts"	, Nev	<i>N</i> age					
_	International (P) Limi	ted Publishers, 2010.									
3.	Simon Haykin S., "Di	gital Communications Systems", 3 rd Edition, John Wiley and Sor	ıs, 201	3.							
E-Re	eterences:		<u> </u>								
1.	https://umairbfrend.fil 2015.pdf	les.wordpress.com/2015/01/analogue-digital-communication-ma	<u>nual a</u>	ugu	<u>ist-</u>						
2.	Spread Spectrum An	alyzer: https://youtu.be/ABnqkyrQcUs, https://youtu.be/2jeBSCa	a2deA								
3.	www.vlab.co.in/ba-np	otel-labs-electronics-and-communications									

	18EC506	DIGITAL SIGNAL PROCESSING LAB	L	Т	Ρ	С			
			0	0	3	1.5			
Cou	rse Objectives:								
1.	To implement FFT al	gorithms, Linear/Circular convolution using software tool.							
2.	To design IIR and FI	R filters							
3.	To implement the DS	SP algorithms using TMS320C54X							
EXP	ERIMENTS:	· · ·							
USI	USING SOFTWARE TOOL:								
1.	Generation of Signal	S							
2.	Discrete time convolution								
3.	Circular convolution of two sequences								
4.	Sampling and effect of aliasing								
5.	Spectrum analysis us	sing Discrete Fourier Transform							
6.	Calculation of FFT of a signal using a)Decimation in time algorithm b)Decimation in frequency algorithm								
7.	Design of FIR filters	using a) Windowing technique b) Frequency sampling method							
8.	Design of IIR digital f	ilter using a)Bilinear transformation b)Impulse invariant metho	bd						
9.	Verification of BIBO	stability of a system.							
USI	NG TMS320C54X								
1.	Study of various add	ressing modes of DSP using simple programming examples an	id ge	nera	ation	of sine			
	waveform.								
2.	Sampling of input sig	nai and display							
3	Implementation of FI	R filter							
4.	Calculation of FFI								
		Т	stal (D_	20 D	ariada			
Cou	rea Outcomas:		nai (-)-	30 F	enous			
After	the successful comple	ation of the practical session, the students will be able to							
	· Generate andar	aluze various signal processing algorithms							
CO2	· · Implement FFT a	algorithms Linear/Circular convolution							
CO3	Design IIR and F	Ill filters							
CO4	Implement DSP	algorithms using TMS320C54X processor							
Refe	erences:								
1.	Digital Signal Proce	ssing Using MATLAB.Vinay K. Ingle John G. Proakis.Ce	ntage	e le	arnir	na. 3 rd			
	Edition ,2012					.9, -			
2.	Sanjit K. Mitra, "Digita	I Signal Processing", 3rd Edition, McGraw Hill Higher Education	n, 200)7.					
E-Re	eferences:		-						
1.	https://nptel.ac.in/cour	ses/117102060/							
2.	studentsfocus.com/nc	tes/anna university/ECE/5SEM/EC6511%20-							
	%20DSP%20Lab/EC%	%206511 ⁻ 20DIGITAL%20SIGNAL%20PROCESSING%20LAE	3%20	MA	NUA	L_201			
	3_regulation.pdf					-			
3.	vlab.co.in/ba_nptel_la	bs.php?id=1							

SEMESTER VI								
18EC601	VLSI DESIGN	L	Т	Ρ	С			
		3	0	0	3			
Prerequisite:								
1. Digital Electronics								
Course Objectives:	the second of MOC transistory an articles and their AC DC shares							
1. To understand t	he concepts of MOS transistors operations and their AC, DC charact	erist	ICS.					
2. To understand th	ne rabincation process of CMOS technology and its rayout design rul	es.	itoctu	iroc				
3. TO Design Data	pain systems and Subsystems using veniog HDL and Learn FPGA	arch	lieciu	ies.	<u>.</u>			
Unit I MOS TRANSIST	OR THEORY		9	+	0			
NMOS, PMOS Enhancem	pent transistor - Threshold voltage - Body effect - MOS device DC	Equa	ation:	Ba	sic			
DC equations - Channel le	ingth modulation - Mobility variation - MOS models - Small signal AC	C cha	aracte	eristi	ics			
- Complementary CMOS ir	nverter: DC characteristics - Noise Margin - Rise time - Fall time - Po	ower	dissi	pati	on			
- Transmission gate - Sticl	k diagram – Layout diagram.			•				
				<u> </u>	•			
An even view of Silicon som	LUGT	win t	9 ub ar	+				
Process CMOS process	anbancements: Interconnects - Circuit elements: Pesistors - Capacit			iu S trics				
Alterable ROMs - Bipolar t	ransistors - Latch up and its prevention techniques	015-	LIEC	1100	iny			
Unit III DATA PATH SY	STEMS AND ARRAY OF SUBSYSTEMS		9	+	0			
Datapath Subsystems: Ad	dition/Subtraction - One/Zero Detectors – Comparators – Counters	- Mu	Itiplic	atio	n -			
Array Subsystems: SRAM	– DRAM - Read-Only Memory.							
Unit IV VERILOG HAR	DWARE DESCRIPTION LANGUAGE		9	+	0			
Basic Concepts: VLSI Des	ign flow - Modules and ports - Switch level modelling - Gate level r	node	lling	- Da	ata			
flow modelling - Behavio	ral modelling - Structural gate level description of decoder - Equ	ality	dete	ctor	r —			
Comparator - Priority enc	oder - D-flip flop - Half adder - Full adder - Ripple Carry Adder.	_						
Unit V CMOS CHIP DES	SIGN		9	+	0			
ASIC design flow - CMOS	S chip design options: Full custom ASIC - Standard Cell based AS	IC -	Gate	Arr	ay			
based ASIC - Channelled	- Channel less and structured GA - Programmable logic structures;	Prog	ramm	ning	of			
PALS - Programmable Inte	rconnect - Reprogrammable GA - Need for UNOS testing.							
	Total (L+	·T)= ·	45 Pe	erio	ds			
Course Outcomes:								
Upon completion of this co	urse, the students will be able to:							
CO1 : Use analytical m	nethods and circuit analysis models in analysis of CMOS circuits.							
CO2 : Understand the	CMOS process technology and design layout diagrams.							
CO3 : Able to learn an	d design data path systems.							
CO4 : Model the dig	ital system using Verilog Hardware Description Language an	d le	arn	FPC	3A			
architectures.								
Text Books:								
1 Neil H. E. Weste &	David Money Harris, "CMOS VLSI Design Circuits and System pe	rspe	ctive	", 4	2 nd			
Ledition, Pearson Edu	cation, 2016							
2 Samir Palnitkar: "Veri	log HDL" A Guide to Digital Design and Synthesis", 2 nd Edition, Pea	rson	Educ	catio	on,			
2012.								
Reference Books:								
1. Douglas.A.Puchnell, Kamran Eshraghian, "Basics VLSI Design and Circuits", 3rd Edition, Prentice Hall								
2. M.J.S. Smith, "Application - Specific Integrated Circuits", Pearson Education, 2009.								
3. V.G.Kirankumar, H.R.Nagesh, "Introduction to VLSI Design", Pearson Education, 2011								
4. Wayne Wolf, "Modern VLSI Design", Pearson Education, 2003.								
E-Reterences:								
1. https://freevideole	ectures.com/Subject/VLSI-and-ASIC-Design							
2. https://www.tutori	alspoint.com/vlsi_design/vlsi_design_useful_resources.html							
3.1 https://nptel.ac.in	/courses/117101058/							

	18EC602	EMBEDDED SYSTEMS	L	Т	Ρ	С		
			3	0	0	3		
Prerec	Prereguisite:							
1.	Microcontrollers							
Cours	e Objectives:							
1.	To impart knowle	dge on embedded system architecture and embedded development S	Strate	gies	5			
2.	To understand th	e bus Communication in processors and peripheral interfacing		<u> </u>				
3.	To understand ba	asics of Real Time Operating System						
Unit I	INTRODUCTION	TO EMBEDDED SYSTEMS	9		+	0		
Introdu	uction to Embedded	Systems –Structural units in Embedded processor - Selection of	proc	esso	or a	and		
memo	ry devices - DMA – N	lemory management methods - Timer and Counting devices - Watchd	log T	ime	[.] - R	Real		
Time (Clock - In circuit emul	lato - Target Hardware Debugging.						
Unit	II EMBEDDED NE	ETWORKING	9		+	0		
Embe	dded Networking: Intr	oduction - I/O Device Ports and Buses – Serial Bus communication pr	otoc	ols:	RS	232		
standa	ard – RS422 – RS 48	5 - CAN Bus - Serial Peripheral Interface (SPI) – Inter Integrated Circu	lits (I	2C)	-Ne	eed		
for dev	lice drivers.							
11						•		
		FIRMIVARE DEVELOPMENT ENVIRONMENT	9	of	+			
	in Hardwara Softwa	ppmeni Life Cycle – Objectives - Different phases of EDLC - Model	Droc					
- Conc	Surrent Model - Obie	are Co-design - Data Flow Graph - State Machine Model - Sequential	FIQ	Jian	IVIC	Juei		
00110								
Unit I	/ RTOS BASE	D EMBEDDED SYSTEM DESIGN	9		+	0		
Introdu	iction to basic conc	cepts of RTOS ⁻ Task - Process and Threads - Interrupt routing	nes	in R	TO	s -		
Multip	rocessing and Multit	asking - Preemptive and non-preemptive scheduling - Task commu	nicat	tion	sha	red		
memo	ry - Message passing	g - Inter process Communication – Synchronization between processes	s - Se	emap	hoi	res,		
Mailbo	x – Pipes - Priority ii	nversion - Priority inheritance.						
-								
Unit V	EMBEDDED S	SYSTEM APPLICATION AND DEVELOPMENT	9		+	0		
RFID	Systems - GPS Nav	vigation System - Automotive Application - Smart card System Ap	plica	tion	- A	MΤ		
machi	ne – Digital camera.							
		Total (L+	T)=	45 P	erio	ods		
Cours	e Outcomes:							
Upon	completion of this cou	urse, the students will be able to:						
CO1	Ability to unde	erstand and analyze Embedded systems						
CO2	: Ability to study	about the bus Communication and Peripheral interfacing						
003	2 Ability to acqu	lire knowledge on Real time operating system						
	2 Design and Ar	nalyze the real-time applications of embedded-systems						
	Dooks:	austam Dasian" Jahn Wilay & Cana 2010						
1.	Peckol, Embedded	System Design , John Wiley & Sons,2010						
Z. Pofor	Lyla D Das, Ellibed	ided Systems-An integrated Approach, Pearson, 2015						
Aleicicic Duurs.								
1.	Onibu. N.V, Introduction to Embedded Systems, Ind Edition, McGraw Hill, 2017.							
2. Traj Namai, Embedded System-Architecture, Programming, Design, McGraw Hill, 2013								
4 Rajib Mall "Real-Time systems Theory and Practice" Pearson Education 2007								
E-References:								
1 https://lecturenotes.in/subject/225/embedded-system-es								
2	https://notel.ac.in/co	purses/108102045/19						
3	https://www.courser	a.org/learn/introduction-embedded-systems						
J.								

	18EC603	VLSI DESIGN LABORATORY	L	Т	Ρ	С		
			0	0	3	1.5		
Course Objectives:								
1.	To learn Hardware Description Language.							
2.	To explore the des	ign aspects of various combination circuits and sequential circuits.						
3.	To familiarize implementation of logical modules on FPGA.							
4.	To practically train	the programming concepts using Verilog HDL and implement in FF	'GA.					
Expe	eriments							
Desi	gn and simulation	using Verilog HDL						
1.	Multiplexer and De	multiplexer.						
2.	Encoder and Deco	der.						
3.	Ripple carry adder	and Serial Binary Adder.						
4.	Look Ahead Adder							
5.	4-bit binary counte	rs and BCD counters.						
6.	Code converters.	L						
1.	I rattic light control	ler.						
8.	Pipelined parallel a	adder to add 8 number of size 12 bits each in 2's complement.						
9.	8 bit signed multipl	ication algorithm.						
10.	Study of FPGA box							
11.	Implementation of	ALU/MAC UNIT FPGA.						
12.	Implementation of	Flip-Flops III FF GA.						
		Tot	<u>al (D</u>	<u>)_ 2</u>		riode		
C ov		101	ai (F)	j= 3	UFE	nous		
Cour	se Outcomes:	encourse the stude term Willie ship to						
Upor	completion of this c	course, the students will be able to:						
C01	: I o demonstrat	e a clear understanding in VeriLog HDL.						
CO2	: Model a combi	national circuit using Verilog HDL.						
CO3	: Model sequent	tial circuit using Verilog HDL.						
CO4	CO4 : Import the logic modules into FPGA boards.							
Refe	rences :							
1. Samir Palnitkar: "Verilog HDL" A Guide to Digital Design and Synthesis Second Edition . 2nd Edition.								
	Pearson Education , 2012.							
2.	2. J.Bhaskar, " Verilog HDL Primer" 2nd Edition, 2004.							
E-References:								
1.	https://www.tutoria	lspoint.com/vlsi_design/vlsi_design_verilog_introduction.htm						

	18E	N501	COMMUNICATION SKILLS LABORATORY	L	T	PC
				0	0	4 2
Cour	rse Ok	jectives: To e	enable the students to:		i	
1.	Com	municate effect	ctively with interviewers			
2.	Expr	ess opinions, i	Illustrate with examples, elucidate and conclude in group discussions			
3.	Write	e error free lett	ers and prepare reports			
4.	Spea	ak fluently and	avoid pitfalls in pronunciation and grammatical errors			
EXPE	ERIME	ENTS				
WRIT	FING \$	SKILLS		15 H	ours	
1	Lette	er seeking pern	nission to ao on industrial visit			
2	Lette	er of invitation				
3	Resu	ume and Cove	r Letter			
4	Repo	ort Writing – Pr	rogress in project work			
SPE/	AKING	SKILLŠ		15	Hours	5
13.	Weld	come Address	and Vote of Thanks			
14.	Anal	vsing and pres	senting business articles			
15.	Pow	er Point Prese	ntation			
16.	Grou	p Discussion				
SOF	T SKII	LLS		15 H	lours	
1	Psyc	hometric profil	le			
2	Self-	Introduction				
3	Inter	view skills				
4	Cond	ducting a board	d meeting			
VER	BAL A	BILITIES	<u>v</u>	15 I	lours	\$
1	Erro	r Spotting				
2	Liste	ning Compreh	ension			
3	Rear	rranging Jumbl	led sentences			
4	Voca	abulary				
LAB	RECO	ORD				
1	Grou	up Discussion -	- Literature survey			
2	Grou	up Discussion -	- Transcripts			
3	Grou	p Discussion -	- Assessment forms			
4	Inter	view Skills – P	sychometric profile			
5	Inter	<u>view Skills – S</u>	elf-introduction			
6	Inter	<u>view Skills – R</u>	lesume and Cover Letter			
7	Inter	<u>view Skills – T</u>	ranscription of interview			
8	Inter	<u>view Skills – A</u>	Assessment sheet signed by interview panel			
9	Pow	er Point Prese	ntation			
10	Erro	r spotting work	sheet			
11	Jum	bled sentences	s worksheet			
12	Weld	come Address				
13	Vote	of Thanks				
14	Lette	er seeking pern	nission to go on industrial visit			
15	Repo	ort Writing – Pi	rogress in project work			
16	Pres	entation of bus	siness articles - Transcription			
				_		
		-	Total (P)= (<u>50 Pe</u>	riods
Cour	se Ou	itcomes:				
Upon	<u>i comp</u>	pletion of this c	ourse, the students will be able to :			
<u>CO1</u>	1:1	Write error free	e letters and prepare reports			
		Deliver welcom	ne address and vote of thanks			
003	: 3	Speak coheren	in y with proper pronunciation and accent			
			ningianisms and grammatical errors			
005		An environment	one or passive vocabulary			
		Answer questio	Dris posed by interviewers confidently			
		-articipate in g	roup discussion effectively			
008	<u> : </u>	Undertake onli	ne psychometric and its test to understand their strengths and weaking	nesse	es	
Refe	rence	BOOKS:				
1.	Ande	rson, P.V, Tecl	nnical Communication, Thomason Wadsworth, Sixth Edition, New Del	nı, 20	JU7.	

2.	Prakash, P, Verbal and Non-Verbal Reasoning, Macmillan India Ltd., Second Edition, New Delhi, 2004.
3.	John Seely, The Oxford Guide to Writing and Speaking, Oxford University Press, New Delhi, 2004.
4.	Evans, D, Decision maker, Cambridge University Press, 1997.
5.	Thorpe, E, and Thorpe, S, Objective English, Pearson Education, Second Edition, New Delhi, 2007.
6.	Turton, N.D and Heaton, J.B, Dictionary of Common Errors, AddisionWesley Longman Ltd., Indian reprint
	1998.
7.	Ready, Steaady, Go. Deepak Mehra, Jaico Publishing House, Delhi, 2015
8.	Business English Certificate Materials, Cambridge University Press
E-R	Reference
1.	http://www.seemypersonality.com (Personality Test and IQ Test).
2.	http://www.humanmetrics.com/cgi-win/jtypes2.asp

	SEMESTER VII							
	18EC701 OPTICAL AND MICROWAVE ENGINEERING	L	Т	Ρ	С			
		3	0	0	3			
Cou	rse Objectives:							
1.	To understand and gain knowledge about various microwave components.							
2.	To study the microwave generation and amplification using microwave tubes and solid st	ate						
	devices and to understand the concepts of strip lines and MMIC.			1				
3.	I o understand the different kind of losses, signal distortion in optical wave guides and otil	ner s	signa	al				
Unif			9	+	0			
Hvb	rid Circuits - Waveguide Tees - Magic Tees (Hybrid Tees) - Hybrid Rings (Rat-Race Circuit	s) -V	Vave	auic	de			
Corr	ners - Bends and Twists - Directional Couplers - Two-Hole Directional Couplers - Review of	low	freq	ueno	CV			
para	meters: Z,Y and ABCD Parameters - Introduction to S parameters - S Matrix of a Directi	onal	Coi	upler	r -			
Hyb	rid Couplers - Circulators and Isolators.							
Uni	t II SOLID STATE MICROWAVE DEVICES		9	+	0			
Intro	duction-Gunn_Effect Diodes - GaAs Diode - Ridely-Watkins - Hilsun (RWH) Theory - Mode	es of	Ope	ratio	on			
- Mi	crowave Generation and Amplification - Avalanche transit - Time devices - Introduction -	Rea	ad D	iode	; -			
IMP	ATT Diodes - TRAPATT Diodes -BARITT Diodes - Parametric Devices.							
Unit	III MICROWAVE TUBES		9	+	0			
Klys	trons - Two cavity Klystron Amplifiers - Reflex Klystrons - Velocity Modulation - Powe	er C	utpu	it ar	nd			
Effic	iency - Electronic Admittance - Helix Traveling - Wave Tubes (TWTs) - Slow-Wav	e st	ructu	ures	-			
Amp	lification Process - Convection Current - Axial Electric Field - Wave Modes - Gain C	onsi	dera	ition	-			
Mag	netron Oscillators - Cylindrical Magnetron - Coaxial Magnetron.							
Unit	IV SIGNAL DEGRADATION IN OPTICAL FIBERS		9	+	0			
Atte	nuation - Absorption losses - Scattering losses - Bending Losses - Core and Cladding I	osse	es -	Sig	nal			
Dist	ortion in Fibers - Intermodal delay - Intramodal dispersion - Factors contributing to dispersion	n - G	Group	De De	lay			
- Ma	aterial Dispersion - Wave guide Dispersion - Basics of semiconductor physics – LED – St	ruct	ures	- Li	ght			
sour	ce materials - Quantum eniciency and LED power - LASER diodes.							
Unit	V FIBER OPTICAL RECEIVERS AND DIGITAL TRANSMISSION SYSTEM		9	+	0			
Phy	sical principles of photodiodes - PIN photo diode - Avalanche photo diodes - Photodetecto	or no	oise	- SN	IR-			
Dete	ector response time - Double Hetero structure photodiodes - structure for InGaAS APDs -Ter	nper	atur	e eff	ect			
on a	valanche gain - Fundamental receiver operation - Digital signal transmission - Error sour	ces	- Fro	ont e	end			
amp	lifier - Digital receiver performance - Receiver sensitivity - Optical Amplifiers – Types - Erbi	um	Dope	ed fil	ber			
amp	IIIIer. Total (I +	т_	15 P	orio	he			
Cou	rse Outcomes:	· <i>)</i> -	4J F	eno	us.			
Upo	n completion of this course, the students will be able to:							
CO1	Explain the active and passive microwave components used in microwave communic	catio	n					
CO2	2 : Have an in-depth knowledge of microwave generation and amplification							
CO3	B : Calculate the degradation in the signal due to losses and dispersion.							
CO4	Explain the various optical sources and optical detectors and their use in the optical communic	cation	n sys	tem.				
Tex	t Books:		-					
1.	Samuel Y.Liao, "Microwave Devices and Circuits", 3 rd Edition, Pearson education, 2008.							
2. Gerd Keiser, "Optical Fiber Communication", 3 rd & 4 th Edition, McGraw –Hill International, 2012								
Refe	erence Books:							
1.	R.E. Collin, Foundations for Microwave Engineering", 2 nd Edition, IEEE Press, 2002.							
2.	2. David M.Pozar, "Microwave Engineering", 2 ¹¹⁴ Edition, John Wiley & Sons, 2003							
4.	4. S.C. Gupta, Textbook on Optical Fiber Communication and its applications", 2 rd Edition, PHI, 2012.							
E-References:								
1. 2	http://potel.ac.in/courses/113104012/							
<u>2</u> . 3.	http://nptel.ac.in/courses/115102026/							
υ.								

1	8ECM701	PRINCIPLES OF MANAGEMENT	L	т	PC									
			3	0	0 3									
Prerequ	lisite													
1.	Professional E	thics												
Course	Course Objectives: The students will be able to													
1.	Linderstand the managerial functions like planning, organizing, staffing, leading and controlling													
2	Understand int	ernational aspect of management		9.										
3	Understand the	method of applying principles in various managerial situations												
0.	ondorotand inc													
Unit I	HISTORIC	AL DEVELOPMENT		9	+ 0									
Definitio	n of Managemen	t – Science or Art – Management and Administration – Role of managers	5 - De	evelo	pment									
of Mana	agement Thought	- Contribution of Taylor and Fayol - Functions of Management - Org	aniz	ation	al and									
environr	nental factors - N	lanaging globally – Strategies to international business - Types of Busine	ss Or	gani	zation.									
Unit II	PLANNING			9	+ 0									
Nature a	and Purpose – S	teps involved in Planning – Objectives – Setting Objectives – Process	of M	anag	jing by									
Objectiv	es – Strategies, I	Policies and Planning Premises - Barriers to planning Forecasting – Dec	sion	-mak	ung.									
Linit III		NG	—	0	. 0									
Naturo	and Purpose -	Formal and informal organization – Organization Chart – Structure	and	Pro										
Departm	and Fulpose –	rence strategies – Line and Staff authority – Benefits and Limitations – D	anu e-Ce	ntral	lization									
and Del	egation of Autho	rity – Staffing – Selection Process - Techniques – HRD – Managerial	Effe	ctive	ness -									
perform	ance appraisal –	Managing team conflict.												
	••													
Unit IV	DIRECTIN	G		9	+ 0									
Scope -	Human Factors	 Creativity and Innovation – Harmonizing Objectives – Leadership – Type 	es of	Leac	Jership									
Motivati	on – Hierarchy	of needs - Motivation theories - Motivational Techniques - Job	En	richm	nent –									
Commu	nication – Proces	ss of Communication – Barriers and Breakdown – Effective Communicat	ion –	- Ele	ctronic									
media ir	Communication	– Interpersonal Skills.												
Unit V	CONTROL			a	+ 0									
System	and process of	Controlling - Requirements for effective control - The Budget as Cont		9 echr										
Informat	tion Technology in	Controlling – Use of computers in handling the information – Productivity	- Pr	obler	ns and									
Manage	ment – Control	of Overall Performance – Direct and Preventive Control – Reporting	1	The	Global									
Environ	ment – Globaliza	tion and Liberalization – International Management and Global theory of	Mar	ager	ment –									
Total qu	ality managemen	t(TQM) principles.		_										
			T_	<u> 45 D</u>	oriodo									
Course	Outcomes:			+3 F	enous									
	moletion of this c	course, the students will be able to:												
CO1		principles of management for all kinds of people in all kinds of organization	<u></u>											
CO2	· Understand	ling of the managerial functions like planning organizing staffing leading	and											
002	controlling	ang of the managenar functions like planning, organizing, stannig, reading	and											
CO3	: Gain Basic	knowledge on international aspect of management												
CO4	: Understand	Total Quality Management												
Text Bo	oks:													
1.	Harold Kooritz&	Heinz Weihrich, "Essentials of Management", Tata McGraw-Hill, 2015.												
2.	Joseph L Massi	e "Essentials of Management", 4th Edition, Prentice Hall of India, (Pearsor	i), 20	03.										
Referen	ce Books:													
1.	Tripathy PC and	Reddy PN, "Principles of Management", Tata McGraw-Hill, '99.												
2.	Decenzo David, F	Robbin Stephen A, "Personnel and Human Reasons Management", Prentice Hall of	of Indi	a, 19	96									
3.	JAF Stomer, Fre	eeman R. E and Daniel R Gilbert," Management,", 6th Edition,Pearson Edu	ucatio	on, 2	2004.									
4. Fraidoon Mazda, "Engineering Management", Addison Wesley,2000.														
E-Refer	ences:													
1.	nttps://www.cou	rsera.org/learn/tundamentals-of-management												
Ζ.	nups://nptel.ac.l	1/COUISES/122108038/												
	1950	702	OF	PTICAL		MUNICA	ATION	AND M	IICRO	WAVE		–	Р	6
--------	---	----------------	-------------	-----------	------------	-------------	-----------	-----------	-----------	--------------	------------	----------	-------	----------------
				EN	NGINEE	ERING	LAB			Ŀ		F	C	
	<u></u>										0	0	3	1.5
1.		Inderstand ti	the work	ang prir	nciple of	f optical	source	es, dete	ector, fi	bres and	microwa	ve com	pone	nts
2.	IOL	Develop and	underst	tand sin	mple opt	tical con	mmuni	cation li	ink.					
3.	IOL	earn about t	the char	racterist	stics and	measu	iremen	ts in op	tical fit	ore.				
4.	IOF	Practice micro	rowave n	measur	rement p	procedu	ires.							
EXPER		15:		TION										
	OPI			ATION		<i>C</i> 1				6				
1.	Dete	ermination of	f Numeri	rical ape	erture fo	or fibers	and IV	leasure	ment	of Attenua	ation in F	lbers.		
2.	Mod	e Characteri	istics of	Fibers	S – SM FI	ubers.								
3.	Cou	pling Fibers	to Semi	i-Condu	uctor So	ources –	- Conn	ectors &	& Splic	es.				
4.	Esta	blish Fiber o	optic con	mmunic	cation lin	nks.								
5.	LED	, LD & Photo	o Diode	Charac	cteristics	S.								
	MIC	ROWAVE E	NGINE	ERING	i									
6.	VSV	/R Measure	ments											
7.	Dete	ermination of	f termina	ated im	npedance	e.								
8.	Dete	ermination of	f guide v	waveler	ngth anc	d freque	ency.							
9.	Rad	iation Patter	n of Hor	rn anter	nna.									
10.	Micr	owave Powe	er Measi	uremer	nt.									
11.	Cha	racteristics o	of Gunn	diode (Oscillato	or.								
12.	Mod	e Characteri	istics Re	eflex Kl	lystron.									
13.	Stud	ly of Isolator	r, circulat	ator and	d Hybrid	Tee.								
											Тс	otal (P)	=30 F	'eriods
Course	e Outc	omes:	-				-							
Upon c	complet	tion of this c	ourse, th	he stud	dents wil	II be able	le to :							
CO1	:	Analyze the	ne perfor	rmance	e of simp	ole optic	al link.							
CO2	:	Gain know	/ledge or	n testin	ng micro	wave ar	ind opti	cal com	nponer	nts.				
CO3	:	Analyze the	ne mode	charac	cteristics	s of fiber	er							
CO4	:	Analyze the	ne radiati	ion of p	pattern o	of anteni	ina, Me	easure I	mpeda	ance, VSV	VR and	Freque	ncy,	
		Measure m	nicrowav	ve powe	/er									
Refere	nce :													
1.	Samu	uel Y.Liao, –	-Microw	vave De	evices a	and Circu	uitsll, F	Pearson	educa	ation, 3rd	Edition,	2008.		
2.	Gerd	Keiser, -O	ptical Fil	iber Co	ommunic	cation II N	McGrav	w –Hill I	Interna	ational, 3rd	1& 4th e	d., 2012	2	
E-Refe	rence	S:												
1.	http://	/nptel.ac.in/c	courses/	/113104	4012/									
2.	http://	/nptel.ac.in/c	courses/	/115102	2026/									
3.	http://nptel.ac.in/courses/113106062/21													

	18EC703	EMBEDDED SYSTEMS LABORATORY	L	Т	Р	С		
			0	0	3	1.5		
Prereq	uiste:							
1.	Embedded system D	Design						
Course	Course Objectives:							
The stu	udent should be made	to						
1.	Learn programming	of various Microcontoller						
2.	Understand the Build	ding Blocks of Embedded Systems and simulation to	ools					
3.	Learn the concept o	f interfacing and interrupt performance						
EXPE	RIMENTS:							
1.	Study of Embedded	d system trainer kit with software debugger tool.						
2.	Embedded progran	n for I/O interfacing.						
3.	Design a stepper m	notor controller using LCD and keys.						
4.	Generate 3-phase	PWM signals and demonstrate the utility of PWM with	high br	ght LED) lights.			
5.	Measure room tem	perature and display the same in a LCD with keyboard	d interac	ction				
6.	Design a real time	clock using 7-segment displays and create keyboard i	interacti	on for th	e opera	tions		
7.	Create a Foregrour	nd-background application system using interrupt strue	cture of	RL78				
8.	Design an embedd	ed system to measure the unknown signal frequency	using tir	ner/cou	nter of R	L78.		
9.	Demonstrate the us	sage of watchdog timers and voltage detection facilitie	es of RL	78 in an	applicat	ion.		
10.	Interface DAC with	embedded system trainer kit.						
11.	Interface ADC with	embedded system trainer kit.						
12.	Basic experiments	using ARM cortex						
				Total	(P)= 30	Periods		
Course	e Outcomes:							
Upon c	completion of this cour	se, the students will be able to :						
CO1	: Write, debug a	nd compile embedded processors programs for a giv	ven App	lication.				
CO2	: Interface and	control stepper and DC motors .						
CO3	: Interface A/D a	nd D/A convertors with embedded system .						
CO4	: Implement inte	errupt control for a given embedded System.						
Refere	nces:							
1.	Peckol, "Embedded	system Design", John Wiley & Sons,2010						
2.	Lyla B Das," Embed	ded Systems-An Integrated Approach", Pearson, 201	3					
E-Refe	rences:							
1.	http://nptel.ac.in/cou	rses/108102045/						
2.	https://ocw.mit.edu/o	courses/electrical-engineering-and-computer-science/	6-111-ir	troducto	ory-digita	al-		
3	https://www.elprocus	s com/basics-and-structure-of-embedded-c-program-v	with-exa	mples-fr	or-begin	ners/		
5.		soom sasios and structure-or-embedded-o-program-v	mun exa	110103-10	, begin	1010/		

PROGRAM ELECTIVES (PE) ELECTRONIC MEASUREMENTS

L T P C 3 0 0 3

9

9 + 0

9 + 0

+ 0

Course Objectives:

1.	To understand the basics of measurement, different types of sensors and transducers.
2.	To learn the concepts of signal analyzers, digital instruments, data display and recording systems.
3	To understand and gain knowledge on Different types transducers and their usage in the Data Acquisition and its instrumentation

Unit I BASIC MEASUREMENTS

Performance characteristics of Instruments - Static characteristics - Accuracy – Resolution - Precision -Expected value - Types of Error: Gross Errors - Systematic Error - Random Error - Limiting errors(Quantitative analysis)-System of Units: International - Other systems - DC Ammeters - DC Voltmeters – Multi range – Ohm meter - Series Type - Shunt Type – Multi meter for Voltage - Current and resistance measurements.

Unit II SIGNAL GENERATOR & ANALYZERS

Signal Generation - Sine wave generator - Frequency Synthesized Generator - Frequency divider generator-Sweep Frequency Generator - Pulse and square wave generator - Function Generators – Audio frequency signal generation - Wave Analyzers - Harmonic Distortion Analyzers - Spectrum Analyzers.

Unit III OSCILLOSCOPE MEASUREMENTS

Principle of oscilloscope – Oscilloscope block diagram-Cathode Ray Tube circuits - Multiple Trace-Horizontal Deflection system - Oscilloscope techniques - Special Oscilloscopes: Storage oscilloscope - Sampling oscilloscope - Digital storage oscilloscope(DSO) - MSO - Measurement of amplitude and frequency - Lissajous method of frequency measurement - Standard specifications of CRO - Probes for CRO - Active and Passive - Attenuator type.

Unit IV BRIDGE MEASUREMENT

Introduction - Wheatstone bridge - Kelvin Bridge - Guarded Wheatstone Bridge - AC Bridges and their Applications - Maxwell's bridge-Hay Bridge - Schering Bridge-Unbalance Conditions - Wein Bridge - Errors and precautions in using bridges.

Unit V TRANSDUCER & DATA ACQUISITION SYSTEMS

Transducers – Classification - Selecting a transducer - Strain gauges - Displacement Transducers: LVDT -Piezo Electric transducers -Temperature measurements - Resistance Thermometers – Thermocouples – Thermistors - Sensistors - Photosensitive Devices- Optical and Digital transducers - Data acquisition systems: Interfacing transducers to electronic control and measuring systems - Multiplexing.

Total (L+T)= 45 Periods

Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Identify errors in different types of electrical measurements. CO2 : To categorize different instruments used for signal generation and analysis. CO3 : Have knowledge on digital instruments, data display and recording Systems. CO4 : To understand the function of Analog and Digital data acquisition systems. Text Books: 1. Albert D.Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 5th Edition, PHI, 2011. 2. H.S.Kalsi, "Electronic Instrumentation", 2nd Edition, Tata McGraw Hill, 2004. **Reference Books:** David A. Bell, "Electronic Instrumentation And Measurements", PHI, 2nd Edition, 2003. Robert A.Witte, "Electronic Test Instruments, Analog and Digital Measurements", 2nd Editon, Pearson Education, 2004. 3. K. Lal Kishore, "Electronic Measurements And Instrumentations", Pearson Education, 2005. 4. E.O. Doebelin, 'Measurement Systems - Application and Design', TMH 2003. **E-References:** 1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-071j 2. https://ocw.mit.edu/courses/biological-engineering/20-309

3. http://www.academia.edu/8140873/A K.Sawhney-

9 + 0

9 + 0

18ECPE602	PHYSICS OF OPTOELECTRONICS	LTPC
		3 0 0 3
Course Objectives:To gain	n knowledge on,	
1. Basic concepts of sem	niconductors and light semiconductor interaction.	
2. Principle, working, ma	terials and characteristics of LEDs and LCDs.	<u> </u>
3. Structure, materials ar	nd device characteristics of semiconductor laser, photo detectors,	opto electronics
modulators and solar o		
E-k diagram - Density of s	tates - Occupation probability - Fermi level and quasi - Fermi le	vel (variation by
carrier concentration and te	mperature) - P-N junction - Metal-semiconductor junction (Ohmic	and Schottky) -
Carrier transport – generat	tion and recombination - Semiconductor materials of interest for	or optoelectronic
devices - Band gap modif	ication - Hetero structures - Light semiconductor interaction:	Rates of optical
transitions - Joint density of	states and condition for optical amplification.	
	CTOR OPTICAL DIODES (LEDS AND LCDS)	9 + 0
Rate equations for carrier de	ensity - Radiative and non-radiative recombination mechanisms in	semiconductors
- LED: Device structure - 1	vialenais – Charactenstics and ligures of ment – LCD - Principi tro optic Effect Dovides (SEED)	e and working -
Optical switches – Sell Elec	aro optic Effect Devices (SEED).	
Unit III SEMICONDUCT	OR LASERS	9 + 0
Review of laser physics - I	Rate equations for carrier and photon density - Steady state So	olutions - Laser
dynamics - Relaxation osci	Illations - Input-output characteristics of lasers - Semiconductor la	aser: Structure –
Materials - Device characte	eristics - Figures of merit – DFB - DBR - Vertical_cavity surface	Emitting lasers
(VECSEL) - Tunable semice	onductor lasers.	-
Unit IV PHOTO DETECT	TORS	9 + 0
lypes of semiconductor pho	oto detectors - PN junction, PIN, Avalanche: Structure, materials, v	vorking principle,
and characteristics. Noise II	mits on performance; Photovoltaic effect - Solar cells – construct	ion, working and
Unit V OPTOELECT	RONIC MODULATOR	9 + 0
Introduction - Analog and	Digital Modulation - Electro-optic modulators - Magneto-Optic of	levices - Franz-
Keldysh and Stark effect ele	ectro absorption modulators - Acousto optic devices - Optical, Swi	tching and Logic
Devices.		
Course Outcomese	l otal (L·	+1)= 45 Periods
Lippon completion of this cou	irea, the students will be able to:	
CO1 Understand the	a physics behind the semiconductors devices	
CO2 · Gain knowledg	re on principle of working of optical semiconductor devices.	
CO3 : Gain knowledg	be on principle of working photo detectors.	
CO4 : Understand an	d design opto electronic modulators and other optical devices.	
Text Books:		
1 Pallab Bhattacharya, "S	emiconductor optoelectronic devices", Pearson Education publica	tions, New delhi,
1. 2002.		
2. S.M.Sze, "emiconducto	r Devices: Physics and Technology", wiley, 2008.	
Reference Books:		
1. David A.Bell, "Electron	IC Devices and Circuits", Oxford University press publications, Net	w Delhi, 2008.
2. Arumugam M, "Semicol	nductor Physics and Optoelectronics", Anuradha publications, Kum	ibakonam, 2006.
i 5. i Ohine Course: Semico	nductor Ontooloctronics" by M.D. Shanay an NDTEL	
4 Online course: "Ontoold	nductor Optoelectronics" by M R Shenoy on NPTEL	
4. Online course: "Optoele	onductor Optoelectronics" by M R Shenoy on NPTEL ectronic Materials and Devices" by Monica Katiyar and Deepak G	upta on NPTEL.
4. Online course: "Optoele E-References:	ectronic Optoelectronics" by M R Shenoy on NPTEL ectronic Materials and Devices" by Monica Katiyar and Deepak G	upta on NPTEL.
 4. Online course: "Optoele E-References: 1. <u>https://ocw.mit.edu/cou</u> 2. <u>https://olectrical.opcing</u> 	onductor Optoelectronics" by M R Shenoy on NPTEL ectronic Materials and Devices" by Monica Katiyar and Deepak G rses ering-and-computer-science	upta on NPTEL.
A. Online course: "Optoele E-References: <u>https://ocw.mit.edu/cou</u> <u>https://electrical-engine https://emiconductor.com https://emiconductor.com </u>	ectronic Materials and Devices" by MR Shenoy on NPTEL ectronic Materials and Devices" by Monica Katiyar and Deepak G rses ering-and-computer-science ptoelectronics-theory-and-design_foll=2002/	upta on NPTEL.

	18ECPE603	DIGITAL IMAGE PROCESSING	L	Т	Ρ	С			
			3	0	0	3			
Prer	equisite:								
1.	Digital Signal Proces	sing							
Course Objectives:									
1.	To study the fundamentals and mathematical transforms necessary for image processing								
2.	To study the image e	enhancement and restoration techniques							
3.	To study the image s	segmentation, representation and compression procedures.							
Unit		PROCESSING	<u> </u>	7		0			
Two Syste Neig	dimensional signals a em - Structure of the h hbours of pixel – Dista	and systems - Mathematical preliminaries - Elements of Digital Im numan eye - Image formation and contrast sensitivity - Sampling and nce measures – Image processing applications.	age d Qu	Proc antiz	ress zatio	ing n -			
Uni		FORMS	<u> </u>	7	+	0			
Intro – Pe	duction to Fourier tran riodicity – Rotation - A	sform - Discrete Fourier transform - Properties of DFT – Separabili verage Value – Discrete Cosine Transform – Properties - Haar Tran	ty – sforn	Trar n.	slat	ion			
Unit	III IMAGE ENHAN	ICEMENT AND RESTORATION		7	+	0			
Enha Medi Rest meth	ancement in spatial do ian filtering – Sharper oration - Degradation r ods.	omain - Histogram Equalization technique - Spatial Filtering – Low ning Filters - Enhancement in frequency domain - Homomorphic fi nodel - Noise models - Inverse Filtering - Unconstrained and constrai	pass Iterir ned I	s filte ng – Rest	erino Ima orat	g — age ion			
11			<u> </u>	0	-	•			
Doin	IV IMAGE SEGNE	ENTATION AND REPRESENTATION		b nont	+ atio	0			
Repr Shap	resentation schemes: (be numbers Fourier de	Chain codes - Polygon approximation - Boundary descriptors: Simp scriptors.	segi sle di	escr	iptor	'S -			
Unit	V IMAGE COMPR	ESSION		16	+	0			
Codi lengt com	ng - Inter pixel and Ps h coding - Bit plane co pression standards.	ychovisual redundancies - Fidelity criteria - Image Compressions m ding – Lossless and Lossy Predictive coding - Transform coding tech	odels iniqu	s - V es –	aria Ima	ble age			
_	•	Total (L+T)= 45 Periods							
Cou	rse Outcomes:								
Upor	n completion of this co	urse, the students will be able to:							
CO1	Conceptual unde	erstanding of digital image processing and analyze various images t	rans	form	IS.				
CO2	: Demonstrate the	understanding of image enhancement and restoration algorithms.							
CO3	: Interpret image s	segmentation and representation techniques.	arda						
Text	Books	us compression rechniques and interpret image compression standa	arus.						
1.	Rafael C Gonzalez ar	nd Richard E Woods, "Digital Image Processing" 4th Edition - Pearso	n, 20	18.					
2.	Jayaraman S, Esakkir	ajan S and Veerakumar T,"Digital Image Processing", Tata McGraw	Hill,	Nev	/ De	lhi,			
Refe	rence Books:								
1.	Kenneth R Castleman	n, "Digital Image Processing", Prentice Hall, New Delhi, 2008.							
2.	Sid Ahmed M A, "Imag	ge Processing Theory, Algorithm and Architecturesll", McGraw-Hill, N	<u>lew</u>	Delh	i, 19	995			
3.	Rafael C Gonzalez, R Tata McGraw Hill New	Richard E.woods and Steven L. Eddins, "Digital Image Processing L w Delhi, 2010.	Jsing	ј МА	TLA	∖B"			
4.	Milan Sonka, Vaclav	Havac and Roger Boyle, "Image Processing, Analysis, and M	achi	ne \	/isio	n",			
	Brooks/Cole, Singapo	ore, 2008.							
E-Re	eferences:								
1. ว	https://www.coursera.	org/learn							
<u>2</u> . 3.	https://www.voutube.c	com/watch?v=uvXTZxSzdMk							
	,								

18ECPE604 WIRELESS COMMUNICATION L T P C								
		3	0	0	3			
Prerequisite:								
1. Signals and system	n, Digital signal processing							
Course Objectives								
Course Objectives:								
1. To introduce wreless		1						
2. To have the knowledg	ge to improve the coverage and capacity and the propagation mode	eis.						
3. To gain the knowledge	e on modulation techniques, Multiple Access techniques and Coders	s use	d in	MC.	•			
Unit I WIRELESS FUNI	DAMENTALS		9	+	0			
Cellular concept - Path loss	s and shadowing - Radio Wave Propagation - Transmit and Receive	Sign	al M	odel	ls -			
Free-Space Path Loss - R	Ray Tracing - Empirical Path Loss Models - Simplified Path Loss M	lode	- S	had	low			
Fading - Combined Path Lo	oss and Shadowing.							
					-			
	NULTIPATH MODELS		9	+	0			
Lime -Varying Channel Imp	pulse Response - Narrowband Fading Models - Wideband Fading N	lodel	- Ca	apac				
Channel Side Information	ading Channels - Channel and system model - Channel Distribution in			n(Ci	DI)			
frequency selective fading	Channels - Time Invariant Channels - Time varving Channels	51 - 1	Japa	ucity	UI			
			- '		~			
Unit III MULTIPLE AC	CESS AND MODULATION TECHNIQUES		9	+	0			
Multiple Access Technique	es: FDMA – TDMA - SS Multiple Access – SDMA -Capacity of C	ellula	ar C		A -			
Capacity of CDMA with Mu	Intiple Cells - Capacity of SDMA - Constant Envelope Modulation: E	SFSK	. — IV Mad	IF SP	K —			
Techniques Performance	of Digital Modulation in Slow Elat Eading and Eroquancy Soloctive M	rum obilo		ulati	ion			
rechniques - renormance		obile			513.			
Unit IV SPATIAL DIVE	RSITY		9	+	0			
Transmit Diversity: Channe	l known at transmitter - Channel unknown at transmitter - Alamouti sc	hem	e - R	ecei	ive			
Diversity: Selection combin	ning - Equal Gain combining - Threshold Combining - Maximal Ra	tio C	omb	inin	g -			
Spatial Multiplexing in MI	MO - Moment Generating functions in diversity analysis - Rece	iver	stru	cture	es:			
Maximum Likelihood Rece	eiver - Zero forcing receiver - Minimum Mean Square Error Rece	ver	- V-I	3LA	SI			
Receiver.								
UNIT V SPEECH CODIN	NG AND WIRELESS SYSTEMS AND STANDARDS		9	+	0			
Speech Coding: Character	istics of speech signals – Vocoders - Linear Predictive Coders - C	noos	ing s	spee	ech			
Codecs for mobile commun	nication - GSM Codec - USDC Codec - Standards: AMPS – GSM -	CDN	ЛА -	Dig	ital			
Cellular Standard(IS-95) - (C12 - DEC1- PACS -PDC.							
	Total (L+	T)= 4	45 P	erio	ds			
Course Outcomes:	·							
Upon completion of this co	urse, the students will be able to:							
CO1 : Classify the avai	lable wireless communication systems and standards.							
CO2 : Analyse various	propagation mechanism models, small& large scale and multipath fa	ading	l mo	dels	s in			
mobile environm	ient.							
CO3 : Select the modu	lation techniques and multiple access techniques for mobile environ	nmer	nt.					
CO4 : Analyze the spee	ech signal parameters and identity Codecs for mobile communication	n.						
1 Theodore S Rappaport	"Wireless Communications: Principles and Practice" 2 nd Edition " Pearson	200	9					
2 Andrea Goldsmith "V	Vireless Communications" Cambridge University Press 2005	, 200	0.					
Reference Books:								
1. A.Molisch,Wiley, "Wire	eless Communications", 2 nd Edition, 2013							
2. V.K. Garg," IS-95 CDI	MA and CDMA 2000", Pearson, 2012							
3. Simon Haykin S., "Dig	gital Communication", Student Edition, John Wiley and Sons, 2010.							
4. W. Tomasi, "Advance	d Electronic Communication Systems", 6th Edition, Pearson Education	tion,	2003	3.				
E-References:								
1. http://www.pdfsdownloa	ad.com/download-pdf-for-free/wireless+communication+rappaport							
2. https://www.udemy.co	pm/topic/wireless-networking/							
I J. I NTEDS://NDTEL.2C.IN/COUL	ISES/11/TU2062/							

18ECPE701	FPGA BASED SYSTEM DESIGN	L	Т	P C				
		3	0	0 3				
Course Objectives:								
1. To study basic conce	epts of FPGA based systems.							
2. To design Combinat	2. To design Combinational and Sequential logics.							
3. To know the concept	ts of architecture and large scale systems.							
<u>.</u>	· · ·							
Unit I FPGA BASED SY	YSTEMS		9	+ 0				
Introduction – Basic Conce	epts - Digital Design and FPGA's - FPGA Based System Design - V	LSI 1	echi	nology				
Behind FPGA/CPLD - Mar	nufacturing Processes - CMOS Logic Gates – Wires - Registers and I	RAM	-Pac	kages				
and Pads.								
		<u> </u>	~					
		01.1	9	+ 0				
FPGA Fabrics - FPGA Arch	Architectures -SRAM Based FPGAs - Permanently Programmed FPGAs	-Cnip	1/0-	Circuit				
Design of FPGA Fabrics - 7		<u> </u>	0	. 0				
Combinational Logic The	VAL LOGIC Logic Design Process - Hardware Description Languages - Combin	ation	9 <u>a</u> N/	+ U				
Delay - Power and Energy	Optimization - Arithmetic Logic - Logic Implementation of EPGAs -	Dhve	ar in Cal F	Design				
of FPGAs -The Logic Desig	an Process	TIY 3		Jesign				
Unit IV SEQUENTIAL	MACHINES		9	+ 0				
Sequential Machines - Sec	quential Machine Design Process - Sequential Design Styles - Rule	s For	Clo	cking -				
Performance Analysis - Po	wer Optimization.			0				
	·							
Unit V ARCHITECTUR	E AND LARGE SCALE SYSTEMS		9	+ 0				
Architecture - Behavioural	Design - Design Methodologies - Design Example - Large Scale Sys	stem	s - Bi	usses-				
Platform FPGAs - Multi FP	GA Systems - Novel Architectures							
		_						
Course Outcomese	l otal (L+	· I)= 4	15 Pe	eriods				
Course Outcomes:	ures the students will be able to:							
Opon completion of this co	urse, the students will be able to:							
CO1 . Understand the	astional logic							
CO2 : Design Combin	national logic.							
CO4 : Know the conc	ents of architecture and large scale systems							
Text Books:								
1 Wolf EPGA – Based	System Design Wayne 1st Edition Prentice Hall PTR 2009							
2. Wayne Wolf, Modern	VLSI Design: System-on-Chip Design 4th Edition. Prentice hall . 20	08						
Reference Books:								
1. Stephen D. Brow	n, and ZvonkoVranesic, "Fundamentals of Digital Logic with Veri	log [Desig	n, 2 nd				
Edition," McGraw	Hill, June, 2007.	Ũ						
2. CemUnsalan and	Bora Tar, "Digital System Design with FPGA: Implementation Us	ing \	/erilo	g and				
VHDL", Digital Sy	stem Design with FPGA: Implementation Using Verilog and VHDL	.", M	cGra	w Hill,				
June, 2007								
3. Steve Kilts, "Adva	nced FPGA Design: Architecture Implementation and Optimisation",	Wil	әу					
interscience, 2017			0.5					
4. Justin Rajewski, "	Learning FPGAs: Digital Design for Beginners with Mojo and Lucid I	HDL"	, O'R	elly				
I Iviedia inc								
E Deferences								
E-References:	lio/Dooko/robot bolink org/Logio0/2005-d0/2000-signo//		adam	ontal				
E-References: 1. <u>https://theeye.eu/publ</u>	lic/Books/robot.bolink.org/Logic%20and%20Computer%20Design%2	20Fu	ndan	nental				
E-References: 1. https://theeye.eu/publ s%203e%20-%20Par	lic/Books/robot.bolink.org/Logic%20and%20Computer%20Design%2 t%20I%20By%20Mano%2CKime.pdf	20Fu	ndan	nental				
E-References: 1. https://theeye.eu/publ s%203e%20-%20Par 2. file:///C:/Users/admin/	lic/Books/robot.bolink.org/Logic%20and%20Computer%20Design%2 t%20I%20By%20Mano%2CKime.pdf /Downloads/FPGA-Based System Design Wayne Wolf SAmp.pdf	20Fu	ndan	nental				
E-References: 1. https://theeye.eu/publ s%203e%20-%20Par 2. file:///C:/Users/admin/ 3. http://ebook.pldworld. //Digital%20Systems%	lic/Books/robot.bolink.org/Logic%20and%20Computer%20Design%2 t%20I%20By%20Mano%2CKime.pdf Downloads/FPGA-Based System Design Wayne Wolf SAmp.pdf com/ eBook/FPGA%EF%BC%8FHDL/-Eng- 620Design%20Llsing%20/HDL%20(Charles%20Roth) pdf	<u>20Fu</u>	ndan	nental				

18ECPE702	RADAR COMMUNICATION	L	Т	Ρ	С			
		3	0	0	3			
Prereguisite:								
1. Analog and Digital Communication, Signal Processing.								
Course objective:								
1. To understand the technologies used in RADAR.								
2 To gain knowledge on different types of RADAR and its application								
3. To learn about RADA	R receivers.							
Unit I INTRODUCTIO	N TO RADAR		9	+	0			
Basics of RADAR - EM Way	ves and properties - Applications of RADAR - RADAR frequencies - F	RADA	R blo	ck dia	gram			
- RADAR Coordinates - R	ADAR equation for hard targets and the SNR-radar cross section	n of ta	argets	- RA	ĎAR			
Resolution Elements – Pu	Ilse, CW and FMCW RADAR - Configurations - Transmitter pov	wer-	Pulse	e repe	etition			
frequency - Duty Ratio - Pu	Ilse Compression – Coding - Detection of signals in noise and Rada	r sign	als.					
			0		1			
Unit II RADAR TRANS	SMITTER		9	+	0			
Introduction- Types of Trar	nsmitters - linear-beam power tubes- solid-state RF power sources-	mag	netror	n- Klys	stron,			
crossed-filed amplifier – R/	ADAR receiver - Receiver noise figure - Super Heterodyne receiver	·- Di	gital F	Receiv	vers -			
Duplexers and receiver pro	otectors - RADAR displays - Human Machine Interface (HMI).							
			_		_			
	VER		9	+	Ū			
RADAR receiver - Receive	er noise figure - Super Heterodyne receiver - Digital Receivers - D	uplex	ers ar	nd rec	eiver			
protectors - RADAR displa	ays - Human Machine Interface (HMI).							
	1414		•		•			
	NNA	II	9	+	U			
Functions of RADAR anten	ina - Antenna parameters - Antenna radiation pattern and aperture i	liumir	nation	- Rei	lector			
antennas - Electronically si	teered phased array antennas - Phase shifters – Frequency - Scan	array	S - Ar	cnited	tures			
for phased arrays - Radiat	fors for phased arrays - Mechanically steered planar array antenna	as - F	adiat	ion pa	attern			
synthesis - Effect of errors	on radiation patterns - Low side lobes antennas.							
			•		•			
		(9	+	0			
Introduction to Doppler and	I MIT RADAR - Delay – Line cancellers - Staggered pulse repetition	trequ	encies	s - Do	ppier			
MTD Tracking DADAD	Mana nules tracking Conical soon and accurately lobbing Con	uise	Doppi					
- MID - Hacking RADAR	- Mono pulse fracking - Conical scan and sequential lobbing - Con	npan	SON OI		kers -			
Padar Delarimetria PADA		ars - I	Joppie	ervve	amer			
Radar - Polanmetric RADA	R - Clear Air RADARS.							
	Tot	<u>əl /l_i</u>	T)_ /	15 Do	riode			
Course Outcomes:		ai (L+		БГС	nous			
Lipon completion of this co	urse the students will be able to:							
CO1 Completion of this co	urse, the students will be able to.							
CO2 : Analyze and desi	ign PADAR transmitter and receiver							
CO2 : Analyze and des								
CO3 . Design antenna i	or RADAN applications.	licatio	200					
	e off RADARS for larger detection and weather prediction based app	iicalii	JIIS.					
1 Morril Skolnik "Introc	Juction to BADAB Systems" McGrow Hill 2008							
1. Merrir Skollik, Introc	Ducion to RADAR Systems, McGlaw-Hill, 2000.	or Du	bliggti	000	1002			
2. Richard J Doviak and	Dusan 5 Zinic, Doppier RADAR and Weather Observations, Dov		uicali	0115,	1990.			
1 Bringi V N and Chand	Irasakar V. "Polarimatric Dopplar Weather PADAP" Combridge Uni	ivorci	hy Pro	<u>ee</u> 20	01			
2 Richards MA School	r 1 A and Holm W/A "Principles of Modern PADAP" Voc Doo Public	shina		33, ∠(td ⊃	012			
2. Principles of morden	DADAD by Mark A Dichards, James A Schoor Seitech Publishing	1 et or	lition /	(M_{OV})	10			
4 later batter (D)		131 80		ividy	10,			
4. Introduction to Radar	Systems by Internit I. Skolnik, Third Edition, Published August 2000 b	by Mc	Graw	·HIII.				
E-References:								
1. http://www.radio-electro	onics.com/info/data/semicond/semiconductor/semiconductor-materia	als-ty	pes-lis	st.php)			
2. http://911electronic.com	<u>n/</u>							
3. http://www.electronics	s-tutorials.ws/							

	18ECPE703	INTERNET OF THINGS	L	Т	Ρ	С		
			3	0	0	3		
Cou	rse Objectives:							
1.	To gain an understar	nding of IoT market perspective.						
2.	2. To familiarize the students about the state of the art – IoT architecture.							
3.	To acquire knowledg	e on the constraints in real world IoT design.						
		<u> </u>						
Unit	I M2M TO IOT – TH	HE VISION		9	+	0		
Intro	duction - From M2M	to IoT- M2M towards IoT - The global context - A use case exa	mple	- D	iffe	ring		
Cha	racteristics.		<u> </u>					
Uni		A MARKET PERSPECTIVE		9	+	0		
Intro	duction - Some Definit	ions - M2M Value Chains - JoT Value Chains - An emerging indust	rial s	truct	ure	for		
IoT	- linternational driven of	global value chain and global information monopolies - M2M to IoT-	An A	rchit	ecti	ural		
Ove	rview – Building an arch	nitecture - Main design principles and needed capabilities - An IoT arc	hitec	ture	out	line		
- Sta	andards considerations.					-		
Unit	III M2M AND IOT	TECHNOLOGY FUNDAMENTALS		9	+	0		
Dev	ices and gateways - Lo	ocal and wide area networking - Data management - Business pro	cess	ses i	n Ic	<u>л</u> т-		
Eve	rything as a Service(Xa	aS) - M2M and IoT Analytics - Knowledge Management.						
Unit		CTURE		9	+	0		
IoT	Architecture - State of	f the Art - Architecture Reference Model – Introduction - Refere	nce	Mod	י בו	and		
arch	itecture - IoT reference	e Model - IoT Reference Architecture - Real World Design Constrain	its	widu		and		
aror			.0.					
Uni	V IOT USE CASE	S		9	+	0		
Indu	strial Automation – Se	ervice oriented architecture based device integration - SOCRADES	S' Re	alizi	ina	the		
ente	erprise integrated Web c	of Things - IMC-AESOP: From the Web of Things to the Cloud of Thing	us - C	Comr	ner	cial		
Buil	ding Automation – Intro	oduction - Case study(Phase one): Commercial building automatic	on to	dav	- C	ase		
stud	y(Phase two) - Comme	ercial building automation in the future.		,				
		<u> </u>						
		Total (L-	+T)=	45 P	erio	ods		
Cou	irse Outcomes:							
Upo	n completion of this cou	urse, the students will be able to:						
CO	I : Understand the v	vision of IoT from a global context.						
CO2	2 : Determine the M	arket perspective of IoT.						
CO3	3 : Understand the I	oT technology fundamentals and build the state of the art architectu	re in	loT.				
CO4	1 : Apply the knowle	edge of IoT in Industrial and Commercial Building Automation and Re	al W	orld	Des	sign		
	Constraints.					U		
Tex	t Books:							
	Jan Holler, VlasiosTsia	atsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, Dav	/id B	oyle,	"Fr	om		
1.	Machine-to-Machine 1	to the Internet of Things: Introduction to a New Age of Intelligen	ce",	1 st E	Editi	ion,		
	Academic Press, 2014	4.						
2	Olivier Hersent, david	Boswarthick, Omar Elloumi, 'The Internet of Things Applications to	the	sma	art g	grid		
Ζ.	and building automation	on', John Wiley & Sons, 2012.						
Ref	erence Books:							
1.	Vijay Madisetti and Ar	shdeepBahga, "Internet of Things (A Hands-on-Approach)", 1 st Editio	א, V	Ρ Τ, 2	201	4.		
2.	Francis daCosta, "	Rethinking the Internet of Things: A Scalable Approach	to	Conr	nect	ling		
2	LokimoChoouchi (Th	n, Apress Fublications, 2013 a Internet of Things Connecting Objects' John Wilow & Sans 2010						
J. ⊿		e memer or mings connecting Objects, John Wiley & Sons, 2010.	aliah	ora (204	2		
4.	Fabrice i neoleyr, Al-C	nun Fang, internet of mings and MZM Communications, RIVER Pul	JIISD	31 S, 2	201	ა.		
⊏- R								
1.	https://nptel.ac.in/cour	<u>(Ses/100100100</u>						
2.	nttps://nptel.ac.in/cour							
3.	nttps://onlineitguru.com	<u>m/iot-online-training.html</u>						

	18ECPE704	NANO ELECTRONICS	L	Т	Р	С		
			3	0	0	3		
Prer	equisites:							
1. Semiconductor Devices, Microelectronics – VLSI, Quantum Physics								
Course objective:								
1.	To present the state of	of the art in the areas of semiconductor device physics and materials	s tech	nnolog	jy.			
2.	To impart knowledge of	on Nano scale structure design.						
3.	To introduce the challe	enges in Nano scale fabrication techniques.						
Unit				٥	-	0		
Intro	duction to Nanoelectro	nics – Classical and quantum systems – Current CMOS device tech	nolc	ory- In	ternati	onal		
Tecl	nology Roadmap for S	Semiconductor projections – Scaling principles – General scaling	Char	acteris	stic - S	cale		
leng	th – Limits to scaling	g – Quantum mechanics - Atomistic effects - Thermodynamic	c Eff	fects	- Prac	tical		
cons	iderations – Power cor	nstrained scaling limits.						
Un	it II PHYSICAL PRO	OPERTIES OF NANOSCALE STRUCTURES		9	+	0		
Ene	rgy sub-bands and Den	sity of States in nanoscale structures – Electron transport in a Two	Dime	ensior	al elec	tron		
gas	- Resistance of a ballis	stic semiconductor – Landauer formula – Transmission probability ca	alcula	ation -	- Resoi	nant		
tunn	elling effect – Coulomb	blockade – Quantization of thermal conductance in ballistic nanost	ructu	ires.				
Unit	III SINGLE ELECT	RON, SESO AND CNT DEVICES		9	+	0		
Intro	duction – Quantum Do	ot transistor – structure and fabrication – Single Electron and Singl	e Ho	ole Qu	antum	Dot		
tran	sistor – Artificial atom -	 Single Electron MOS Memory – structure and fabrication - SESC 	D Tra	ansisto	or – Se	ESO		
Men	nory – CNT transistor –	CNT based Field Emission devices – CNT based Microwave device	es.					
					1			
Unit	IV SPINTRONICS	AND MOLECULAR NANODEVICES		9	+	0		
Intro	duction – Spin filters – S	Spin diodes – Spin transistors – Spin based optoelectronic devices –	Elec	ctrical	conduc	ction		
ofm	olecules – Manipulation	n of single molecules – Molecular motors – Molecular nanoactuators -	- Mo	lecula	r electr	onic		
devi	ces – Molecular based	optic devices.						
11		TEOLINIQUEO		_				
Unit		IEGHNIQUES	~~~~	9	+	U		
Upti	cai iitnography – Electro	on beam innography – X_Ray innography - Focussed for beam innography	grapi	ny – IN		print		
tech	graphy – Puiseu laser	chanical Polishing	vvei	and	ary etc	ning		
1001	inques onerniearmee							
		Tota	l (Li	-T)= 4	15 Peri	ods		
Cou	rse Outcomes:			-/				
Upo	n completion of this cou	urse, the students will be able to:						
CO1	: Understand probl	lem to down scaling while moving to Nano electronics.						
CO2	2 : Gain knowledge o	on how physical properties of devices is exploited to build Nano elec	ctron	ics.				
COS	3 : Understand the fa	abrication technique.						
CO4	: Understand how	spinning properties of electrons are exploited to build Nano devices						
Tex	Books:							
	Mircea Dragoman and	d Daniela Dragoman, "Nanoelectronics Principles and Devices". A	rtech	hous	e, Bos	ston,		
1.	2006.			-		,		
2.	ShunriOda and David	Ferry, "SiliconNanoelectronics", Taylor & Francis, USA, 2006.						
Refe	erence Books:	· · · ·						
1.	W.R.Fahrner, "Nanote	echnology and Nanoelectronics: Materials, Devices, Measurement T	echr	niques	", Sprii	nger		
	(India), New Delhi, 20	11						
2.	Rainer Waser,"Nanoe	electronics and Information Technology: Advanced Electronic I	Mate	rials a	and N	ovel		
	Devices", Wiley – VCH	H, Germany, 2005.						
3.	George W. Hanson,"F	undamentals of Nanoelectronics", Pearson, New Delhi, 2012.						
4.	Krzysztof Iniewski,	,"Nano-Semiconductors: Devices and Technology ", CRC Pre-	ess, 2	24-00	t-201	1		
E-R	eferences:		,					
1.	http://ocw.mit.edu/cou	irses/electrical-engineering-and-computer-science/6-701-introductio	n-to-					
	nanoelectronics-spring	g-2010/readings/		•				
2.	http://nptel.ac.in/cours	ses/118102003/						
3.	https://www.edx.org/co	ourse/fundamentals-of-nanoelectronics-basic-concepts						
		· · · · · · · · · · · · · · · · · · ·						

	18ECPE705	VLSI TESTING	L T P C					
			3 0 0 3					
Cours	se Objectives:							
1.	To gain the Basic kn	owledge on fault modelling, testing and test generation in logic circuit ar	nd delay test.					
2.	. To get exposure on testability approaches and test vector generation algorithms for logic circuits							
3.	To understand the v	arious fault diagnosis methods in logic systems						
11								
Unit I		ESTABLE DESIGN OF DIGITAL SYSTEMS	9 + 0					
Fault	equivalence - Fault m	dominance – Logic simulation - Compiler driven Simulation - Event dri	ven Simulation -					
1 duit								
Unit I	I TESTING FOR	SINGLE STUCK AT - FAULTS	9 + 0					
Test g	generation algorithms	for combinational circuits - Fault oriented ATG – D algorithm – Examp	oles – PODEM –					
Fault	independent ATG - R	andom test generation – ATG for SSFs in sequential circuits.						
L								
Unit I			9 + 0					
Delay	test problem – Path	delay test – Transition faults – Delay test methodologies.						
Unit I	V SELF-TEST A	ND TEST ALGORITHMS	9 + 0					
Built-	In Self Test - Test pat	ttern generation for BIST - Circular BIST - BIST Architectures – Testable	Memory Design					
- Test	algorithms - Test ger	neration for Embedded RAMs. FAULT DIAGNOSIS	,					
Unit \	/ FAULT DIAGNO	DSIS	9 + 0					
Logic	Level Diagnosis - Di	agnosis by UUT reduction - Fault Diagnosis for Combinational Circuits	- Self checking					
desigi	n - System Level Dia	gnosis.						
		Total (I	T)- 45 Poriodo					
Cours	se Quitcomes:	Total (L-	+T)= 45 Periods					
Cours	se Outcomes:	Total (L-	+T)= 45 Periods					
Cours Upon CO1	se Outcomes: completion of this co	Total (L- urse, the students will be able to: wedge on fault modelling, testing and test generation in logic circuits.	+T)= 45 Periods					
Cours Upon CO1 CO2	se Outcomes: completion of this co : Have basic know : Understand the	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies.	+T)= 45 Periods					
Cours Upon CO1 CO2 CO3	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an	+T)= 45 Periods					
Cours Upon CO1 CO2 CO3 CO4	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems.	+T)= 45 Periods					
Cours Upon CO1 CO2 CO3 CO4 Text	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books:	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems.	+T)= 45 Periods					
Cours Upon CO1 CO2 CO3 CO4 Text 1.	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books: Abramovici M., Brev Publishing House, 2	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013.	+T)= 45 Periods d logic Circuits Jaico					
Cours Upon CO1 CO2 CO3 CO4 Text 1. 2.	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding of Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Me inger, 2002.	+T)= 45 Periods d logic Circuits Jaico emory and Mixed					
Cours Upon CO1 CO2 CO3 CO4 Text I 1. 2. Refer	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books:	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Me inger, 2002.	+T)= 45 Periods d logic Circuits Jaico emory and Mixed					
Cours Upon CO1 CO2 CO3 CO4 Text 1. 2. Refer 1.	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books: Stanley L Hurst "VL Engineers, 1998.	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Me inger, 2002. SI Testing : Digital and Mixed Analogue Digital Techniques", Institute of	+T)= 45 Periods d logic Circuits Jaico emory and Mixed Electrical					
Cours Upon CO1 CO2 CO3 CO4 Text I 1. 2. Refer 1. 2.	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books: Stanley L Hurst "VL Engineers, 1998. Xiaoqing Wen, Cher Testability", Morgan	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Me inger, 2002. SI Testing : Digital and Mixed Analogue Digital Techniques", Institute of ng Wen Wu and LaungTerng Wang "VLSI Test Principles and Architectu Kaufmann, 2011.	+T)= 45 Periods d logic Circuits Jaico emory and Mixed Electrical ures: Design for					
Cours Upon CO1 CO2 CO3 CO4 Text 1. 2. Refer 1. 2. 3	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding of Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books: Stanley L Hurst "VL Engineers, 1998. Xiaoqing Wen, Cher Testability", Morgan Parag K Lala, "Fault	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Meinger, 2002. SI Testing : Digital and Mixed Analogue Digital Techniques", Institute of ng Wen Wu and LaungTerng Wang "VLSI Test Principles and Architectu Kaufmann, 2011. t Tolerant and Fault Testable Hardware Design" BS Publications, 2002.	+T)= 45 Periods d logic Circuits Jaico emory and Mixed Electrical ures: Design for					
Cours Upon CO1 CO2 CO3 CO4 Text I 1. 2. Refer 1. 2. 3 4.	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books: Stanley L Hurst "VL Engineers, 1998. Xiaoqing Wen, Chel Testability", Morgan Parag K Lala, "Fault A.L. Crouch, "Desig Press. 2010	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Meinger, 2002. SI Testing : Digital and Mixed Analogue Digital Techniques", Institute of ng Wen Wu and LaungTerng Wang "VLSI Test Principles and Architectu Kaufmann, 2011. t Tolerant and Fault Testable Hardware Design" BS Publications, 2002. n Test for Digital IC's and Embedded Core Systems", Beijing China Electoric Core Systems and Core System and Core	+T)= 45 Periods d logic Circuits Jaico emory and Mixed Electrical ures: Design for					
Cours Upon CO1 CO2 CO3 CO4 Text I 1. 2. Refer 1. 2. 3 4. E-Refer	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books: Stanley L Hurst "VL Engineers, 1998. Xiaoqing Wen, Cher Testability", Morgan Parag K Lala, "Fault A.L. Crouch, "Desig Press, 2010. erences:	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Meinger, 2002. SI Testing : Digital and Mixed Analogue Digital Techniques", Institute of ng Wen Wu and LaungTerng Wang "VLSI Test Principles and Architectu Kaufmann, 2011. t Tolerant and Fault Testable Hardware Design" BS Publications, 2002. n Test for Digital IC's and Embedded Core Systems", Beijing China Electoric Core Systems and Core System and Core	+T)= 45 Periods d logic Circuits Jaico emory and Mixed Electrical ures: Design for ctric Power					
Cours Upon CO1 CO2 CO3 CO4 Text 1. 2. Refer 1. 2. 3 4. E-Ref 1.	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding c Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books: Stanley L Hurst "VL Engineers, 1998. Xiaoqing Wen, Cher Testability", Morgan Parag K Lala, "Fault A.L. Crouch, "Desig Press, 2010. erences: https://nptel.ac.in/	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Me inger, 2002. SI Testing : Digital and Mixed Analogue Digital Techniques", Institute of ng Wen Wu and LaungTerng Wang "VLSI Test Principles and Architectu Kaufmann, 2011. t Tolerant and Fault Testable Hardware Design" BS Publications, 2002. n Test for Digital IC's and Embedded Core Systems", Beijing China Elec /courses/106103116/handout/mod7.pdf	+T)= 45 Periods d logic Circuits Jaico emory and Mixed Electrical ures: Design for ctric Power					
Cours Upon CO1 CO2 CO3 CO4 Text I 1. 2. Refer 1. 2. 3 4. E-Refer 1. 2.	se Outcomes: completion of this co : Have basic know : Understand the : Exposure to test : Understanding of Books: Abramovici M., Brev Publishing House, 2 Michael L Bushnell a Signal Circuits", Spri ence Books: Stanley L Hurst "VL Engineers, 1998. Xiaoqing Wen, Cher Testability", Morgan Parag K Lala, "Fault A.L. Crouch, "Desig Press, 2010. erences: <u>https://nptel.ac.in.</u> <u>http://www.ee.nct</u>	Total (L- urse, the students will be able to: wledge on fault modelling, testing and test generation in logic circuits. delay test methodologies. tability approaches and test vector generation algorithms for memory an of the various fault diagnosis methods in logic systems. er A., and Friedman D., "Digital Systems Testing and Testable Design", 013. and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Meinger, 2002. SI Testing : Digital and Mixed Analogue Digital Techniques", Institute of ng Wen Wu and LaungTerng Wang "VLSI Test Principles and Architectu Kaufmann, 2011. t Tolerant and Fault Testable Hardware Design" BS Publications, 2002. n Test for Digital IC's and Embedded Core Systems", Beijing China Elector (courses/106103116/handout/mod7.pdf u.edu.tw/~jfli/soctest/lecture/ch03.pdf	+T)= 45 Periods d logic Circuits Jaico emory and Mixed Electrical ures: Design for ctric Power					

18ECPE706	ADVANCED RADIATING SYSTEM	L	Т	Ρ	С				
		3	0	0	3				
Course Objectives:									
1. To understand the fundamentals in antenna design									
2. To understand radiat	ion from apertures, array and microstrip antennas.								
3. To understand EMC and antenna measurement techniques.									
	DAMENTALS		9	+	0				
Antenna fundamental paran	neters Radiation integrals - Radiation from surface and line current	distribu	utions	: Dip	ole,				
Nionopole - Loop antenna	- Mobile phone antenna - Base station - Hand set antenna - R	eciproc	nty th	eore	m -				
techniques	matching techniques - Balance to unbalance transformer - Intro-	Juction	to n	umer	icai				
			Q	1	0				
Field aquivalance principle	Padiation from Poetangular and Circular aporturos Uniform an	orturo	dictrib						
an infinite ground plane -	Slot antenna - Horn antenna - Reflector antenna - Aperture h		a and	d dec	ian				
consideration		lockag		1 000	ngri				
Unit III ARRAY ANTI	ENNA		9	+	0				
Uniform array - Phased arr	ay, beam scanning - Grating lobe - feed network, Linear array sy	nthesis	tech	nique	es –				
Binomial and Chebyshev di	stributions – Super Directivity – Planar array- Circular array - Desig	gn prob	lems						
			0	Τ.	•				
Drift IV WICRO STRI	r ANTENNA: Excitation techniques : Microstrin dinale – Datah – Destangular pa	toh C	9 roulo	+	U				
and Ring antenna - Radia	ation analysis from cavity model - Input impedance of rectangula	ar and	circul	i pau ar ns	otch				
antenna - Microstrin array a	and feed network - Applications of Microstrip array antenna		uncui	ai pa					
	AND ANTENNA MEASUREMENTS		9	+	0				
Concept of EMC measuring	g antenna – Transmission and Receiving antenna factors - Log r	periodic	: dipc	le - I	Bi-				
conica - Ridge guide- Multi	turn loop - Antenna measurement and Instrumentation: Gain, Impe	dance	and a	inten	na				
factor measurement - Ante	nna test range Design.								
	Tota	il (L+T)	= 45	Peric	ods				
Course Outcomes:									
Upon completion of this cou	urse, the students will be able to:								
CO1 : Solve and desi	gn basic problems antennas								
CO2 : Analyse radiati	on from aperture, array and microstrip antennas								
CO3 : Understand EM	IC for any electronic equipments								
CO4 : Use measurem	nent techniques to study radiation pattern.								
Text Books:									
1. Balanis A, "Antenna I	heory Analysis and Design"II, John Wiley and Sons, New York, 20	09							
2. Robert S Elliot " Anter	nna Theory and Design", Wiley Publisher, 2015								
Reference Books:	anthe Milau and anna Mau Varla 2000								
1. Krauss J D, —Antenna	asii, John Wiley and sons, New York, 2009.								
2. Dani i J and Bhaitla P	, — Microsurp Antennasii, Anech House, Inc., 1960	1000	2						
A REColling "Antropy	as and Radio Propagation" McGraw-Hill 1987	., 1990) .						
F-References	as and madio Fiopayation, 10001aw-1111, 1907.								
1 https://onlinecourses.pr	otel ac in/noc18_ee13/preview								
2 https://www.edv.org/co	urse/electricity-and-magnetism-maxwelle-equations								
3 https://www.eux.org/cour	<u>arse/dictinaly-ana-maynelisin-maxwells-equalions</u>								

	18ECPE707	HIGH SPEED NETWORKS	LTPC
			3 0 0 3
Prei	requisite:		
1.	Computer Networks.		
Cou	ISTE ODJECTIVE:	ernes is to highlight the fact was of different to have been a involved	Lin Llink Oneed
1.	I he objective of this control of the control of th	ourse is to highlight the teatures of different technologies involved	a in High Speed
2	To import knowledge or	condestion control and traffic management in various protocol archi	tecture
2.	To impart knowledge of	a used to improve the quality of convises	
J.			
The	nood for a protocol arch	IU RIGH SPEED NEI WURKS	
netv	vorks Frame Relay Netv	mecture - The TCP/IP protocol architecture - Internetworking - in works - Asynchronous transfer mode - ATM Protocol Architectur	
Con	nection ATM Cell – ATM	A Service Categories – AAL - High Speed LANs East Ethernet - G	igabit Ethernet -
Fibe	er Channel – Wireless LA	ANs: Applications requirements – Architecture of 802.11	
Unit	t II CONGESTION AN	ND TRAFFIC MANAGEMENT	9 + 0
Que	uing Analysis - Queuing	g Models – Single Server Queues – Effects of Congestion – Cong	estion Control -
Traf	fic Management – Conge	stion Control in Packet Switching Networks – Frame Relay Congesti	on Control.
Unit		ONGESTION CONTROL	9 + 0
TCF	P Flow control – TCP Con	gestion Control – Retransmission – Timer Management – Exponentia	IRTO back off –
	RN's Algorithm – Window	management – Performance of TCP over ATM - Traffic and Cong	jestion control in
	/I – Requirements – Attrib	butes – I raffic Management Frame work - Traffic Control – ABR traffic	c Management –
АВР	rate control - RIVI cell for	mais - ABR Capacity allocations – GFR trainc management.	
Linit			
Unit	arotod Sonvigoo Arobitoot	ID DIFFERENTIATED SERVICE	
	VFO - Random Farly Dete	action - Differentiated Services	-3, DRFQ-6F3
- ••			
Unit	t V PROTOCOLS FO	R QOS SUPPORT	9 + 0
RS∖	/P – Goals and Characte	ristics - Data Flow - RSVP operations - Protocol Mechanisms - Mu	ultiprotocol Label
Swit	tching - Operations - Lab	el Stacking - Protocol details - RTP - Protocol Architecture - Data	Fransfer Protocol
- R	TCP.	-	
-			
	-	Total (L+	-T)= 45 Periods
Cou	Irse Outcomes:		
Upo	n completion of this cours	se, the students will be able to understand:	
CO1	1 : ATM Frame Relay	Network along with comparison of TCP/IP network model.	
CO2	2 : The techniques inv	volved to support real-time traffic andcongestion control.	
CO3	3 : The concept queui	ng mechanism in integrated and differentiated service architecture.	
CO4	4 : Different levels of c	quality of service (Q.S) to differentapplications.	
Tex	t Books		
	L DOORS.		
1 1	Warland, PravinVaraiya	, "High performance communication networks", SecondEdition , Jean	Harcourt Asia Pvt.
1.	Warland, PravinVaraiya Ltd., , 2001.	, "High performance communication networks", SecondEdition , Jean	Harcourt Asia Pvt.
1. 2.	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGF	i, "High performance communication networks", SecondEdition , Jean	Harcourt Asia Pvt. d Edition, 2002.
1. 2. Ref e	Warland, PravinVaraiya Ltd., 2001. William Stallings, "HIGF erence Books:	I, "High performance communication networks", SecondEdition , Jean	Harcourt Asia Pvt. d Edition, 2002.
1. 2. Ref e	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGF erence Books: James F. Kurose, Keith Pearson Education, Thi	n, "High performance communication networks", SecondEdition , Jean I SPEED NETWORKS AND INTERNET", PearsonEducation, Second h W. Ross, "Computer Networking, A Top-Down Approach Featuri rd Edition, 2011	Harcourt Asia Pvt. d Edition, 2002. ng the Internet",
1. 2. Refe 1. 2.	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGF erence Books: James F. Kurose, Keith Pearson Education, Thi IrvanPepelnjk, Jim Guid	n, "High performance communication networks", SecondEdition , Jean I SPEED NETWORKS AND INTERNET", PearsonEducation, Second h W. Ross, "Computer Networking, A Top-Down Approach Featuri rd Edition, 2011 chard, Jeff Apcar, "MPLS and VPN architecture", CiscoPress, Volume	Harcourt Asia Pvt. d Edition, 2002. ng the Internet", e 1 and 2, 2003.
1. 2. Ref 1. 2. 3.	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGF erence Books: James F. Kurose, Keith Pearson Education, Thi IrvanPepelnjk, Jim Guid Abhijit S. Pandya, Ercar	n, "High performance communication networks", SecondEdition, Jean I SPEED NETWORKS AND INTERNET", PearsonEducation, Second In W. Ross, "Computer Networking, A Top-Down Approach Featuri rd Edition, 2011 chard, Jeff Apcar, "MPLS and VPN architecture", CiscoPress, Volume In Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press	Harcourt Asia Pvt. d Edition, 2002. ng the Internet", e 1 and 2, 2003. , New York, 2004.
1. 2. Ref 1. 2. 3. 4	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGF erence Books: James F. Kurose, Keith Pearson Education, Thi IrvanPepelnjk, Jim Guid Abhijit S. Pandya, Ercar Behrouz A. Foruzan, "D	n, "High performance communication networks", SecondEdition , Jean I SPEED NETWORKS AND INTERNET", PearsonEducation, Second In W. Ross, "Computer Networking, A Top-Down Approach Featuri rd Edition, 2011 chard, Jeff Apcar, "MPLS and VPN architecture", CiscoPress, Volume In Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press Pata communication and Networking", 4 th edition, TMH, 2013.	Harcourt Asia Pvt. d Edition, 2002. ng the Internet", e 1 and 2, 2003. , New York, 2004.
1. 2. Ref 1. 2. 3. 4 E-R	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGF erence Books: James F. Kurose, Keith Pearson Education, Thi IrvanPepelnjk, Jim Guid Abhijit S. Pandya, Ercar Behrouz A. Foruzan, "D eferences:	High performance communication networks", SecondEdition , Jean SPEED NETWORKS AND INTERNET", PearsonEducation, Second Networking, A Top-Down Approach Featuri rd Edition, 2011 chard, Jeff Apcar, "MPLS and VPN architecture", CiscoPress, Volume on Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press rata communication and Networking", 4 th edition, TMH, 2013.	Harcourt Asia Pvt. d Edition, 2002. ng the Internet", e 1 and 2, 2003. , New York, 2004.
1. 2. Ref 1. 2. 3. 4 E-R 1.	Warland, PravinVaraiya Ltd., 2001. William Stallings, "HIGF erence Books: James F. Kurose, Keith Pearson Education, Thi IrvanPepelnjk, Jim Guid Abhijit S. Pandya, Ercar Behrouz A. Foruzan, "D eferences: <u>http://freevideolectures.</u>	High performance communication networks", SecondEdition , Jean SPEED NETWORKS AND INTERNET", PearsonEducation, Second h W. Ross, "Computer Networking, A Top-Down Approach Featuri rd Edition, 2011 chard, Jeff Apcar, "MPLS and VPN architecture", CiscoPress, Volume n Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press lata communication and Networking", 4 th edition, TMH, 2013. com/Course/2278/Data-Communication/30	Harcourt Asia Pvt. d Edition, 2002. ng the Internet", e 1 and 2, 2003. , New York, 2004.
1. 2. Ref (1. 2. 3. 4 E-R (1. 2.	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGF erence Books: James F. Kurose, Keith Pearson Education, Thi IrvanPepelnjk, Jim Guid Abhijit S. Pandya, Ercar Behrouz A. Foruzan, "D eferences: <u>http://freevideolectures.</u> <u>http://nptel.ac.in/courses/</u>	I, "High performance communication networks", SecondEdition , Jean I SPEED NETWORKS AND INTERNET", PearsonEducation, Second h W. Ross, "Computer Networking, A Top-Down Approach Featuri rd Edition, 2011 chard, Jeff Apcar, "MPLS and VPN architecture", CiscoPress, Volume n Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press Pata communication and Networking", 4 th edition, TMH, 2013. <u>com/Course/2278/Data-Communication/30</u> /106105082/30	Harcourt Asia Pvt. d Edition, 2002. ng the Internet", e 1 and 2, 2003. , New York, 2004.
1. 2. Ref (1. 2. 3. 4 E-R (1. 2. 3. 4	Warland, PravinVaraiya Ltd., , 2001. William Stallings, "HIGH erence Books: James F. Kurose, Keith Pearson Education, Thi IrvanPepelnjk, Jim Guid Abhijit S. Pandya, Ercar Behrouz A. Foruzan, "D eferences: <u>http://freevideolectures.</u> <u>http://nptel.ac.in/courses/</u>	High performance communication networks", SecondEdition, Jean SPEED NETWORKS AND INTERNET", PearsonEducation, Second h W. Ross, "Computer Networking, A Top-Down Approach Featuri rd Edition, 2011 chard, Jeff Apcar, "MPLS and VPN architecture", CiscoPress, Volume n Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press Pata communication and Networking", 4 th edition, TMH, 2013. <u>com/Course/2278/Data-Communication/30</u> /106105082/30 com/course/computer-networking-ud/36	Harcourt Asia Pvt. d Edition, 2002. ng the Internet", e 1 and 2, 2003. , New York, 2004.

	18ECPE708	VIRTUAL INSTRUMENTATION	L	Т	PC
Bro	Poquicitor		3	0	0 3
-re-	Apples Integrated Circuit				
1.	Analog Integrated Circuit	\$			
	objectives:	to bole the students			
1	To introduce graphical r	s, to help the students			
1.	To initiouuce graphical p	of virtual instrumentation programming			
3	To develop simple appli	cations using VI			
Unit				9	+ 0
His	tory of Virtual Instrumen	tation - Lab View and VI - Conventional and Graphical Prog	ramm	nina -	Future
Pers	spective - Components of	f LabView - Owned and Free Labels - Tools and Other Palettes - A	Arran	aina C	Dbiects-
Pop	-up menus - Color Codin	ng - Code Debugging - Context Sensitive Help - Types of VI's -	Creat	ting S	ub-Vis -
Con	cepts of graphical program	mming Lab-view software.		5	
Uni		OF VIRTUAL INSTRUMENTATION PROGRAMMING		9	+ 0
Moc	lular programming - Cor	ntrolling Program execution with structure - Composite data arra	avs a	and clu	usters -
Visu	al displays types - Grapl	hs and charts - Analog and digital - Shift registers and feedback r	nodes	s - Lo	cal and
Glo	pal variables - Exploring	string and File input and output operations.			
Unit	III DATA ACQUISITIO	DN WITH LABVIEW		9	+ 0
Con	cept of Virtual Instrumer	ntation - PC based data acquisition - Typical on board DAQ ca	rd Re	esoluti	on and
sam	pling frequency - Multiple	exing of analog inputs - Single_ended and differential inputs - Diffe	erent	strate	gies for
sam	pling of multi- channel ar	nalog inputs - Concept of universal DAQ card - Use of timer - co	ounte	er and	analog
outp	uts on the universal DAQ) card - NI-DAQ mx Tasks			
Unit		STRUMENTS IN SYSTEM		9	+ 0
Inte	facing of external instrum	nents to a PC RS232C - RS-422 - RS485 and USB standards - I	EEE4	188sta	indard -
ISO	-OSImodel for series bus-	-introduction to bus protocols of MOD bus and CAN bus.			
Unit	V ANALYSIS TOOLS	S AND SIMPLE APPLICATION IN VI		9	+ 0
Sigr	al Processing and manip	pulation - Anti-aliasing Filter - Frequency_ Domain Signal analysis	3 (DF	T and	1 FFT) -
Pow	er Spectrum - Windowir	ng - Practical Hints for Frequency Domain Analysis - Signal Proce	essin	g Fun	ctions -
lim	e Domain Analysis - Fre	equency Domain Analysis – Filters: Control design and simulation	i - Si	mulati	on of a
sim	ble second order system.				
		Total (L+T):	= 45 F	'eriods
Cou	irse Outcomes:				
Upo	n completion of this cours	se, the students will be able to:	<u> </u>		
CO	Apply structured p	programming concepts in developing VI programs and employ v	ariou	is det	bugging
00	techniques.	a that was alwa in DAO beards and built in analysis functions to a		a 4h a	data
	2 : Create applications	s that uses plug in DAQ boards and built in analysis functions to pl	oces	s the	uata.
		e various applications using signal Processing tool kit			
	Pooks:	e various applications using control and simulation tool kit.			
1	lovitha loroma "Virtual	Instrumentation using LabV/IEW/" DHI publication 2010			
1.	Jovina Jeronie Viitua	"Instrumentation using Labview, Phi publication, 2010			
2. D.(
Rete					
1.	Robert H. Bishop "Learn	hing with Lab-View", PreticeeHall,2009			
2.	Sanjay Gupta "Virtual In	Istrumentation, LABVIEW", , IMH, NewDeini, 2003			
3.	Peter W Gotton, Unders	standing Serial Communication, Sybes International, 2000			
4.	S.Gupta and J P Gupta	I, PC Interfacing for Data Acquisition and Process Control", Inst	rume	ent SO	ciety of
E.P	Antenca, 1994				
1	http://www.pi.com/white	-naner//752/en/			
· · ·	http://www.ni.com/white				
Ζ.	http://sine.ni.com/tac	cs/app/tp/p/ap/ov/lang/en/pg/1/sn/n5:selfpacedonline/			
3.	https://www.virtualin	nstruments.com/training/			

18ECPE801	LOW POWER VLSI DESIGN	L	Т	Ρ	С
		3	0	0	3
Course Objectives:					
1. Identify sources	of power dissipation in an IC.				
2. To understand si	imulation based power estimation and analysis.				
3. Design circuit at	low power and identify suitable techniques to reduce power.				
Unit I DEVICE AND	TECHNOLOGY IMPACT ON LOW POWER		9	+	0
Need for low power VI	SI chips - Sources of power dissipation on Digital Integrated circuits -	Em	ergir	ng L	ow
power approaches - Ph	nysics of power dissipation in CMOS devices - Dynamic dissipation in CM	IOS	- Tra	nsi	stor
sizing and Gate oxide	thickness - Impact of technology Scaling - Technology and Device innov	atio	n.		
Unit II SIMULATIO	N POWER ANALYSIS AND PROBABILISTIC POWER ANALYSIS		9	+	0
SPICE circuit simulator	rs - Gate level logic simulation - Capacitive power estimation - Static sta	te po	wer	- G	ate
level capacitance estin	nation - Architecture level analysis - Monte Carlo simulation - Random	ı log	ic sig	gna	ls -
probability and frequen	cy - probabilistic power analysis techniques - signal entropy.				
Onit III LOW POW	ER DESIGN		9	+	0
Circuit level: Power co	nsumption in circuits - Filp Flops and Latches design - High capacitan	ce n	odes	- L	wo
encoding - pre compute	ation logic level. Gate reorganization - signal gating - logic encouring -	- Sla	le m	aci	iine
Unit IV LOW POW	ER ARCHITECTURES AND CLOCK DISTRIBUTION		9	+	0
Power and Performance	ce management - switching activity reduction - Parallel architecture with ve	oltag	e rec	duc	tion
- Flow graph transforma	ation - Low power arithmetic components - Low power memory design - Po	ower	diss	ipa	tion
in clock distribution - S	Single driver versus Distributed buffers - Zero skew versus tolerable s	kew	- Ch	ip a	and
package co-design of c	clock network.				
			- 1		
	M AND ARCHITECTURAL LEVEL METHODOLOGIES		9	+	0
Introduction - Design 1	flow - Algorithmic level analysis and optimization - Architectural level	estii	matio	on a	and
Synthesis.					
	Total (I +	T_	15 P	oria	h
Course Outcomes:		• /=	101		245
Upon completion of this	s course, the students will be able to:				
CO1 : Identify source	ces of power dissipation in an IC.				
CO2 : Understand	simulation based power estimation and analysis.				
CO3 : Design circu	it at low power.				
CO4 : Identify suita	ble techniques to reduce power.				
Text Books:					
Gary K. Yeap	- Farid N. Najm, "Low power VLSI design and technology", World Scie	ntific	Pub	lish	ning
Ltd., 1996.					
2. Kaushik Roy	and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wile	ey-In	terso	cier	ice,
2000.					
1 DimitriosSoud	Iris, Christian Piquet, Costas Goutis, "Designing CMOS circuits for low	now	er"	Khr	wer
Academic Put	blishers,2002.	<u>po w</u>	<u> </u>	Nu.	
2. Chandrakasar 1995.	n, R. Brodersen,"CMOS Low Power Digital Design", Kluwer Academ	ic P	ublic	atic	ons.
3. Rabaey, M. P	edram, "Low Power Design Methodologies", Kluwer Academic Publicatio	ons,	1996	i.	
4. Christian Pigu	iet, "Low-power CMOS circuits: technology, logic design and CAD tools"	, CR	C Pr	ess	,
Taylor & Fran	cis Group, 2006.				
E-References:					
1. <u>file:///C:/Users</u> 20Gary%20Y	s/admin/Downloads/Practical%20low%20power%20digital%20VLSI%20deeap%20(1).pdf	desig	<u>n%2</u>	20b	<u>y%</u>
2. https://drive.org	oogle.com/file/d/0BzoKWH8M1BoTQI9CUUpOYIpuYiQ/view				
3. https://nptel.ac	c.in/courses/106105161/58				
<u></u>					

	18ECPE802	MULTIMEDIA COMPRESSION TECHNIQUES	L	Τ	P C					
			3	0	0 3					
Pre	requisite:									
1.	Signal Processing and	d basic mathematical analysis skills.								
Col	irse objective: Objecti	ive of this course is to,								
1.	Highlight the features	of data redundancy and various compression techniques involved.								
2.	 To understand the various challenges involved in text and audio compression. To impart knowledge on various image and video compression techniques. 									
J.		n various image and video compression techniques.		0	. 0					
	anview of information the	N early - Redundancy Taxonomy of compression techniques Ove	nviov	y of a						
cod	ing – Source models - (Compression Techniques: Loss less compression - Lossy Compress	ion -	- Mea	asures					
of p	performance - Scalar c	quantization - Vector quantization - Rate distortion theory - Struct	ure d	uant	tizes –					
Eva	luation techniques -Erro	or analysis and methodologies.								
	·									
Un	nit II TEXT COMPRE	SSION		9	+ 0					
Huf	fman coding – Arithmeti	c coding – Shannon_Fano coding and dictionary techniques – LZW fa	amily	algo	orithms					
– Ei	ntropy measures of perf	formance – Quality measures.								
		250010N		~						
Uni				9	+ 0					
Aud	lio compression technic	ques - Frequency domain and filtering - Basic sub_bands coding	- Ap	plica	tion to					
spe	ech couling - G.722 - Ap	Splication to audio coding - MPEG audio - Progressive encoding for	audi	0 – 3	siience					
COIL	ipression - Speech con									
Uni		RESION		9	+ 0					
Pre	dictive techniques – PC	CM – DPCM - DM - Transform coding - Introduction to JPEG - JPE	-G-2	000	- JBIG					
star	idards - Study of EZW	- SPIHT algorithms.		000	02.0					
Uni	t V VIDEO COMPR	ESSION		9	+ 0					
Vide	eo signal representatio	on – Video compression techniques – MPEG - Motion estimat	on t	echn	iques-					
Ove	erview of Wavelet based	d compression and DVI technology - Motion video compression – Pl	_V p	erfori	mance					
– D'	VI real time compressio	n.								
		Total ()	F \		orio do					
Car	urca Quitaamaci	i otai (L+	1) = 4	45 P(erioas					
	on completion of this co	urse the students will be able to:								
CO	1 · Represent the mi	ultimedia data in different formats for various applications								
00	2 : To understand di	fferent coding techniques and apply various algorithms for compress	sion							
CO	3 : To understand th	e quality and performance of various text and audio compression al	norith	nms						
CO	4 : Apply various ima	age and video compression algorithms for practical applications	90							
Tex	t Books:									
1.	SayoodKhaleed, — "I	ntroduction to data compression", Morgan Kauffman, London, 2006.								
2	Gibson J D, Berger T,	, Lookabaugh T, D. Lindbergh, and R. L. Baker, "Digital Compressio	n for							
Ζ.	Multimedia: Principles	and Standards", Morgan Kaufmann, 1998.								
Ref	erence Books:									
1.	Watkinson J, —"Com	pression in video and audio", Focal press, London,1995.								
2.	Mark Nelson, — "Data	a compression book", BPB Publishers, New Delhi, 1998.								
3.	Jan Vozer, —Video co	ompression for multimediall, AP 84rofess, NewYork, 1995		<u> </u>						
4.	Peter D. Johnson Jr.,	Greg A. Harris, D.C. Hankerson, "Introduction to Information Theory	and	Data	а					
	Compression", 2 nd Ed	ition, Unapman and Hall/URU, February 26, 2003.								
E-K										
4	eterences:	oc com/Cource/2278/Data Communication/20								
1.	http://freevideolecture	es.com/Course/2278/Data-Communication/30								
1. 2. 3	http://freevideolecture	es.com/Course/2278/Data-Communication/30 es/106105082/30		0. O+	mHU					

	18ECPE803	SOFTWARE DEFINED RADIO	L	Т	Ρ	С
			3	0	0	3
Cou	rse Objectives:					
1.	To introduce the con	cept of software in radio communication.				
2.	To deal with the deve	elopment of community radio systems.				
3	To gain knowledge	of SDR and to design communication systems				
0.	To gain knowledge	or obly and to design communication systems.				
UNIT		TO SOFTWARE RADIO		9	+	0
Brief	History - Networking a	and SDR – RF architectures – Processing Architectures - Software) Env	iron	mer	nt —
Sign	al representation – Sig	nal Metrics and Visualization – Receive techniques for SDR.				
-						
Unit	II RADIO FREQUE	ENCY TRANSLATION FOR SDR		9	+	0
Requ	uirements and Specific	ation – Receiver Design Considerations: Basic – Receiver Archite	ectur	es –	AC	PR
and I	NPR – Receiver Signal	Budget – Image Rejection – Filter function within the Receiver – Tra	nsmi	tter	Des	ian
Cons	siderations – Candidate	e Architectures for SDR.				0
Unit	III SDR HARDWA	RE AND TIMING SYNCHRONIZATION		9	+	0
Com	ponents of a Commu	nication System – Strategies for Development in MATLAB – Mat	ched	Filte	erin	a –
Timi	ng Error – Symbol Timi	ing Compensation – Alternative Error Detection and System Require	mon	te _ l	Duff	9 ina
thon	hig Error – Symbol Tim	ing compensation – Alternative Endr Detection and System Require	men	13 - 1	i uu	ing
uie p	neces logelher.					
11:0:4			— T	•		
Unit		KSIUN IN SUK		9	+	U
Impo	ortance of Data Conver	rters in SDR: ADCs for SDR base stations – ADCs for SDR Hands	sets -	- DP	ACS	TOF
SDR	Applications – Conv	/erter Architectures: Flash converters – Multistage Converters	· Si	gma	L_De	elta
Con	/erters – Digital to Ana	log Converters – Converter performance Impact on SDR.				
Unit	V APPLICATIONS	OF SDR		9	+	0
Cogr	nitive Radio :Functions	5 - Components and design rules - Cognition cycle : Orient - Plan -	Dec	ide a	and	act
phas	es - Inference Hierar	rchy - Architecture maps - Building the Cognitive Radio Architectu	ire o	n So	oftw	are
defin	ed Radio Architecture	 Vehicular Networking 				
		Total (L+	·T)= 4	45 P	eric	ods
Cou	rse Outcomes:					
After	the successful comple	etion of the course, the students will be able to				
CO1	: Define the princip	ples of Software defined Radio.				
CO2	: Study the princip	al Challenge of receiver design.				
CO3	: Perform hardwar	e implementation of Smart antennas.				
CO4	· Understand the T	Tradeoffs in using DSPs EPGAs and ASICs				
Tovt	Books:					
I CAL	Travis F Colline Poh	nin Getz. Di Pu, Alexander M. Wyalinski, "Software-Defined Padia	for	Engi	nee	re"
1.	mobile communication	n Geiz, Di Fu, Alexander M. Wyginiski, Soltware-Denned Radio		Lindii	nee	15,
	Leffrey H Reed "Soft	tware Radio: A Modern Annroach to Radio Engineering" Rearson	Edu	catic	n I	0.11
2.	Drice Edition 2002	tware Radio. A modern Approach to Radio Engineering, Fearson	Luu	can		.000
	Price Edition,2002					
Rete	rence Books:					
1.	implementing Softwa	ire Derined Radio, Springer",2012th Edition.				
<u>Z.</u>	JOUKOVANAKKA, "Digita	al Synthesizers and Transmitter for Software Radio", Springer, 2005	<u>.</u>			
3.	HuseyinArsian, "Cogn	nuve kadio, SUK and Adaptive System", Springer, 2007.			NI ¹	.1 -
4.	Dynamic Spectrum A	ccess and ivianagement in Cognitive Radio Networks", EkramHossa	an, D	vusitl	INIYa	ato,
	Znu Han, Cambridge					
E-KE	ererences:					
1.	https://onlinecourses.r	npter.ac.in/noc18_ecu1/				
<u>Z.</u>	https://nptel.ac.in/cour	ISES/10810/10//				
3.	nttps://nptel.ac.in/cour	rses/10810/10//5				

18ECPE804 PATTERN RECOGNITION L T						Ρ	С		
Prereguiste						0	0	3	
Prer	req	uist	е						
	•	Dig	ital Image Proc	essing					
Cou	irse	e Ob	jectives:						
1.	Т	o u	nderstand patte	rn and unsupervised classification.					
2.	Т	Го р	erform feature e	xtraction and selection.					
3.	Т	o u	nderstand struct	tural pattern recognition.					
			DATTERN			<u> </u>			
Unit	: 			I CLASSIFIER	otrio	9		0	
Max	im	ew C Im li	l pattern recog	inition – Discriminant functions – Supervised learning – Parame	MOL	estim = alac	allo	n –	
Proh	her	ກຣູນ	vith Raves ann	roach – Pattern classification by distance functions – Minimum	dist:	- aiyu ance	nat	tern	
clas	sifie	er.	nin Bayes app		alou		put		
Unit	: 11	-	UNSUPER	RVISED CLASSIFICATION		9	Γ	0	
Clus	ster	ing f	or unsupervised	l learning and classification – Clustering concept – C-means algorit	hm –	- Hier	arch	ical	
clus	teri	ng p	rocedures – Gr	aph theoretic approach to pattern clustering – Validity of clustering	solu	tions	<u>.</u>		
Unit	: 111		STRUCTU	JRAL PATTERN RECOGNITION		9		0	
Elen	ner	nts o	f formal gramma	ars – String generation as pattern description – Recognition of synt	actic	; desc	cript	ion	
- Pa	arsi	ng –	Stochastic grar	mmars and applications – Graph based structural representation.		<u> </u>			
Unit		. mi		EXTRACTION AND SELECTION	<u></u>	9	l	tion	
	opy nar	/ IIIII v fog	ature selection	nunen – Loeve transformation – Feature selection through functio	ns a	pprox	Ima	uon	
Unit	V N	y ied		ADVANCES		9	<u> </u>	0	
Neu	ral	netv	vork structures f	or Pattern Recognition – Neural network based Pattern associators	s – l	Jnsur	ervi	sed	
learn	ning	g in	neural Pattern	Recognition – Self-organizing networks – Fuzzy logic – Fuzzy pa	ttern	class	sifie	rs –	
Patt	ern	clas	ssification using	Genetic Algorithms.					
				Total (L	<u>.+T)=</u>	<u>= 45 F</u>	'eri	ods	
Cou	irse	e Ou	tcomes:	and the students of the shift to					
	n c	omp	Solution of this co	urse, the students will be able to:					
		•	Solve pattern a						
002	2	:	Perform feature	e extraction and selection.					
CO3) 1	+ ·		tular pattern recognition.					
Text	t R	ook							
ICA	R	ober	t J.Schalkoff."P	attern Recognition Statistical, Structural and Neural Approaches",	John	Wile	v &		
1.	S	ons	Inc., New York,	1992.			,		
2.	Т	ou a	nd Gonzales, "F	Pattern Recognition Principles", Wesley Publication Company, Lond	don,	1974			
Refe	ere	nce	Books:					-	
1.	D	uda	R.O., and Har F	P.E., "Pattern Classification and Scene Analysis", Wiley, New York,	197	3.			
2.	M	orto	n Nadier and Er	ic Smith P., Pattern Recognition Engineering", John Wiley & Sons,	Nev	<u>v Yorl</u>	<u>k, 19</u>	993	
3.		neoc	loridis Dr., Serg	ios, Konstantinos Koutroumbas , "Pattern Recognition ",4 th Edition,	Aca	adem	IC		
ED		ess	, o November 2	υυδ.					
	ere ht	there	www.geekefor	neeks org/pattern-recognition-introduction/					
2	111 1	tps./	//froovidoolog	yeeks.org/pattern=recognition=introduction/					
۷.	https://ireevideolectures.com/course/3194/pattern-recognition								

	18ECPE805	SYSTEM ON CHIP DESIGN	L	Т	Ρ	С
			3	0	0	3
Cours	se Objectives:					
1.	To know the Concepts	s and methodology of System on chip.				
2.	To design different me	ethodology for logic cores, memory cores and analog cores.				
3.	Learn design validatio	on and SOC testing.				
l Init I				0		Δ
Sveto	m trade offs and evolut	tion of ASIC Technology – System on chip concepts and methodolog	<u> </u>	9 002	+ aab	ian
issues	s – SoC challenges and	d components.	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ues	
Unit I		DOLOGY FOR LOGIC CORES		9	+	0
SoC D	Design Flow – On-chip	buses – Design process for hard cores – Soft and firm cores – Desi	ignin	ig wi	th h	ard
cores	, soft cores - Core and	d SoC design examples.	0	0		
Unit I	II DESIGN METHO	DDOLOGY FOR MEMORY AND ANALOG CORES		9	+	0
Embe	dded memories – Simu	ulation modes – Specification of analog circuits – A to D converter – I	D to	A co	nve	rter
– Pha	se-located loops – Hig	in speed I/O				
l Init I		ΔΤΙΟΝ		Q	-	0
Core	evel validation – Test b	penches- SoC design validation – Cosimulation – Hardware/software	• CO- '	verif	icati	on
00101					loan	0111
Unit \	/ SOC TESTING			9	+	0
SoC 7	Fest issues – Testing	of digital logic cores - Cores with boundary scan - Test methodo	logy	/ for	des	ign
resus	 – Testing of micropro 	pcessor cores – Built in self test method.				
		-				
Court		l otal (L+	I) = -	45 P	eric	ds
	completion of this court	rse, the students will be able to:				
CO1	· Understand the C	concents and methodology of System on chip				
CO2	: Design different m	nethodology for logic cores, memory cores and analog cores.				
CO3	: Design SOC valid	lation				
CO4	: Test different logic	c cores.				
Text	Books:					
1.	RochitRajsuman, "Sy	ystem-on-a-chip: Design and Test", Artech House, London, 2000.				
2.	Laung-Terng Wang,	Charles E Stroud and Nur A Toubq, "System on Chip Test Architec	ture	s:		
Defer	Nanometer Design fo	or Testability", Morgan Kaufmann, 2008				
Refer	WaalRadowy Crobo	m A Jullion "System on Chin for Bool Time Applications" Kluwer /	\ood	omi	_	
1.	Press 2003	In A Julien, System-on-Chip for Real-Time Applications, Riuwer A	Acau	enno		
2	Raianish K Kamat S	antosh A Shinde, Vinod G Shelake, "Unleesh the System-on-Chin	usin	a FP	GA	s
	and Handle C, Sping	jer 2009.		J	_ / «	-
3.	Steve Furber, "ARM	System on Chip Architecture", 2 nd Edition, Addison- Wesley Profes	ssion	al,	Aug	
	2000				_	
4.	Ricardo Reis, "Desig	gn of System on a Chip: Devices and Components" Springer 1 st Ec	lition	ı, Jul	ly 20)04
E-Ref	erences:	1400400045140				
1.	https://nptel.ac.in/co	ourses/108102045/10				
2.	https://freevideolec	tures.com/course/2341/embedded-systems/10				
3.	https://www.elprocu	us.com/difference-between-soc-system-on-chip-single-board-comp	uter/			

	18ECPE806	WIRELESS SENSOR NETWORKS	LTPC
			3 0 0 3
Pre-	Requisites:		
1.	Computer Network	S	
Cou	rse Objectives:		
1.	To obtain a broad	understanding of the sensor network architecture and design issues.	
2.	To understand and	I classify various topologies in wireless sensor networks	
3.	Have an exposure	to sensor network programming platforms and tools.	
Unit		ID ARCHITECTURES	9 + 0
Chal	lenges for Wireless	Sensor Networks - Characteristics requirements-required mechanis	ms - Difference
betw	een mobile ad-hoc a	and sensor networks - Applications of sensor networks - Enabling	Technologies for
Wire	less Sensor Networ	ks - Single-Node Architecture - Hardware Components - Energy	Consumption of
Sens	or Nodes - Operati	ng Systems and Execution Environments - Network Architecture -	Sensor Network
Scer	arios - Optimization	n Goals and Figures of Merit - Gateway Concepts.	
Unit		G OF SENSORS	9 + 0
Phys	ical Layer and I rans	sceiver Design Considerations - MAC Protocols for Wireless Sensor	Networks - Low
Duty	Cycle Protocols An	d Wakeup Concepts - S-MAC - The Mediation Device Protocol -	
	epts - Address and	ronhia Routing	tocols - Energy-
EIIIC	ent Routing - Geog		
Unit	III INFRASTRU	CTURE ESTABLISHMENT	9 + 0
Time	Synchronization – In	ntroduction to the time synchronization problem – Protocols based on	sender / receiver
sync	hronization - Protoc	cols based on receiver/ receiver synchronization - Localization ar	nd Positioning –
Prop	erties - possible ap	proaches – Mathematical basis for the iteration problem - Single-h	op localization –
Posit	ioning in multi-hop e	environments – Impact of anchor placement.	
Unit		CONTROL	9 + 0
IVIOU	Ation and basic idea	as – Flat network topologies – Hierarchical networks by dominating se	ests - Hierarchical
netw	orks by clustering –	Combining hierarchical topologies and power control – Adaptive hod	e activity – Data
ayyı	egalion – Dala Centi	ic storage.	
Unit	V SENSOR NET	WORK PLATFORMS AND TOOLS	9 + 0
Sens	or Node Hardware -	- Berkeley Motes - Programming Challenges - Node-level software p	latforms - Node-
level	Simulators - State-	centric programming.	
		Total (L	+T)= 45 Periods
Cou	rse Outcomes:		,
Upor	n completion of this c	course, the students will be able to:	
CO1	: Know the basic	cs of wireless sensor networks.	
CO2	: Identify suitable	e protocols for various layers of wireless sensor networks.	
CO3	: Gain knowledg	e on various topologies available in wireless sensor networks.	
CO4	: Be familiar with	n the platforms and tools for wireless sensor networks	
Text	Books:		
1.	Holger Karl and Andre	eas Willig, "Protocols And Architectures for Wireless Sensor Networks", John	Wiley, 2007.
2.	Feng ∠hao and Leonic	das Guibas, "Wireless Sensor Networks-An Information Processing Approach	1 ^{°°} , Elsevier, 2014.
Refe	rence BOOKS:	nial Minali, Talah Zhati (M/inalaan Orman Naturala Tarkardan	Drotocola Arci
1.	Applications" John	aniei winoli, raled∠nati, "Wireless Sensor Networks-rechnology, Wilow 2007	Protocols, And
2	MaltenagueDargia	Wiley, 2007. Christian Doellahauer "Eundamontale Of Miroloss Sonsor Networks	Theory And
∠ .	Practice" John Wile	w & Sons Publications 2010	THEOLY AND
3	RhaskarKrishnama	hari "Networking Wireless Sensors" Cambridge Press 2000	
4	Mohammad Ilvasar	ndlmad Mahqoub "Handbook Of Sensor Networks: Compact Wire	less And Wired
· · ·	Sensina Systems"	CRC Press. 2004.	
E-Re	eferences:	,	
1.	http://nptel.ac.in/cou	urses/106105160/21	
2.	http://nptel.ac.in/cou	urses/106105160/22	
3.	http://nptel.ac.in/cou	ırses/106105160/24	

18ECPE807 MICROWAVE INTEGRATED CIRCUITS						С			
	3	0	0	3					
PREREQ	UISITE								
Knowledg	ge on Microwa	ve Engineering,, Electromagnetic Theory, Transmission Lines.							
COURSE	OBJECTIVE								
1.	To study abo	out the technology of IC's and propagation of signals through Micro	ostrij	o Tra	ansm	iission			
2.	To understan	d how analyses of fields and microwave circuit design are performed	d.						
3. To learn coplanar MICs and design of microwave circuits like amplifiers, mixers etc.									
<u> </u>	re learn copi		.0.						
Unit I	TECHNOLO	GY OF HYBRID MICS & MONOLITHIC MICS		9	+	0			
Hybrid M	ICs: Dielectric	substrates - Thick film technology and materials - Thin film technology	odv a	and	nate	erials –			
Methods	of testing – E	Encapsulation of devices for MICs – Mounting of active devices -	MM	Cs:	Proc	esses			
involved	in fabrication	- Eitaxial growth of semiconductor layer - Growth of dielectric la	ver	– Di	ffusi	on ion			
implantat	ion – Electron	beam technology.	,			_			
•		••							
Unit II	MICROSTRI	P TRANSMISSION LINES		9	+	0			
Strip line	s- Formulas f	for propagation constant - Characteristic impedance and attenua	tion	- A	opro	kimate			
electrosta	atic solution - 3	Slot Lines and Coplanar waveguides - Static TEM parameters and d	esig	n of i	micr	ostrips			
- High fre	quency disper	sion effects in microstrips.	_			-			
Unit III	ANALYSIS OF	F PASSIVE RECIPROCAL AND NONRECIPROCAL MICROWAVE DEVIC	ES	9	+	0			
Passive r	eciprocal devi	ces: Methods of analysis of passive reciprocal microwave devices - E	ven	and	Odd	mode			
method a	nd the Eigen	value method - Applications to Microstrip directional couplers – Para	allel	coup	bled	lines -			
Coupled	micro strips de	esign - Branch line couplers - Lange couplers - Hybrid ring couplers	s and	d the	e Wil	kinson			
power div	viders/combine	ers - Passive Non-Reciprocal Components: Ferromagnetic substrates	s for	non	_reci	procal			
devices -	 Design of mid 	cro strip circulators – Latching circulators – Isolators – Phase shifter	S.						
Unit IV	COPLANAR	MICS		9	+	0			
Coplanar	waveguides -	transmission properties - Discontinuities - Introduction to Coplana	ar M	Cs -	Со	planar			
transistor	s and coplana	r switches - Coplanar microwave active filters - Coplanar microwave	e ac	tive a	amp	ifiers -			
Coplanar	Electronic circ	culators and Coplanar frequency doublers.							
•									
Unit V	MICROWAV	E CIRCUIT DESIGN		9	+	0			
Microwav	e amplifier De	esign – Two port power gain – Stability - Single stage transistor am	olifie	r des	sign	- Low			
noise am	plifier design -	Broad band amplifier design - Balanced and distributed amplifiers -	- De	sign	of c	lass A			
amplifiers	s - Microwave	Oscillator Design - Negative resistance oscillator - Ttransistor	oscil	lator	s de	sign -			
Delectric	resonator osc	illator design - Oscillator phase noise- Microwave mixer - Single e	nde	d dic	de r	nixer -			
FET mixe	er - Balanced r	nixer - Image reject mixer - Double balanced mixer.							
		Total	(L+1	⁻)= 4	15 Pe	eriods			
Course C	Dutcomes:								
Upon cor	npletion of this	course, the students will be able to:							
CO1 :	Analyse pass	sive and non-passive reciprocal microwave devices.							
CO2 :	Learn the var	rious coplanar MICs and their applications.							
CO3 :	Design variou	us microwave circuits like amplifiers, oscillators and mixers.							
CO4 :	Gain knowled	dge on Microwave fabrication technique and microwave transmission	ı line	es.					
Text Boo	oks:								
1. K.C.	Gupta,, and A	marjit singh, "Microwave Integrated Circuits", John Wiley and sons – Wile	y Eas	tern F	Reprir	it, 2004.			
2. Reir	mut K. Hoffm	ann, "Handbook of Microwave Integrated Circuits", Artech House, 19	87.						
Reference	e Books:								
1. Ingo	Wolff, "Copla	nar Microwave Integrated Circuits", John Wiley and Sons, 2006.							
2. Dav	vid M.Pozar, "N	Microwave Engineering", John Wiley and Sons, 2005.							
3. I. Kr	neppo, "Micro	wave Integrated Circuits", Springer, 1994.							
4. <u>Leo</u>	G. Maloratsky	<u>y</u> ," Passive RF and Microwave Integrated Circuits", Elsevier, 1999.							
EReferer	nces:								
1. <u>http</u> :	//www.microst	tripantenna.com/		_	_				
2. http:/	//nptel.ac.in/c	courses/117102012							
3. https	://onlinecour	ses.nptel.ac.in/noc16 ec02/preview							

18ECPE808	PHYSICS OF SENSORS	L	Т	PC
		3	0	0 3
Course Objectives	;; ;;			
1. To have k	nowledge of the different types of sensors commonly used on mobile robotic	platfo	rms	
2. understand	ding of the basic principles of operation of different types of sensors			
3. To discuss	s common practices and algorithms for processing raw sensor information			
			~	
Unit I INTROI	DUCTION AND DISPLACEMENT MEASUREMENT	horo	9	+ 0
sensors - Displacer	quilements of a sensors - Classification of sensors - Static and Dynamic c ment Sensors - Linear and Rotary displacement sensors – Potentiometer	. Can	aciti	ve and
Inductive type displ	lacement sensor - Position sensors - Optical encoder - Photoelectric sens	or -	Hall	Effec
Sensor.				
Unit II MEAS	UREMENT OF PROXIMITY, FORCE AND PRESSURE		9	+ 0
Eddy current proxim	nity sensor - Inductive Proximity sensor - Capacitive Proximity sensor - Pneu	umati	c Pro	oximity
sensors - Proximity	/ Switches - Contact and Noncontact type – Strain Gauge – Diaphragm P	ressu	re S	ensor
Tactile sensor	sensors - Bellows Pressure Sensor - Bourdon tube pressure sensor - Piezoe	electr	IC 56	ensor ·
Unit III MEAS	SUREMENT OF VELOCITY. FLOW AND LEVEL		9	+ 0
Tachogenerator - P	Pyroelectric sensors - Ultrasonic sensor - Resistive sensor - Pitot tube - O	rifice	olate	- flow
nozzle- Venturi tube	es - Rotameter - Electromagnetic flow meter - Float level sensor- Pressu	re le	vel s	ensor
Variable capacitance	e sensor.			
Unit IV MEAS	SUREMENT OF TEMPERATURE, MOTION AND LIGHT SENS		9	+ 0
Thermocouples - II	hermistors - Thermodiodes – Thermotransistors – BimetallicStrip - Resistan	ce le	empe	erature
Detector - Intrared	I nermography - Vibrometer and accelerometer - Seismic accelerometer -	Phote	oresi	stors -
Filotodiodes - Filot				
Unit V MICRO	O SENSORS AND ACTUATORS		9	+ 0
Unit V MICRO Micro Sensors: Prin	D SENSORS AND ACTUATORS ciples and examples - Force and pressure micro sensors - Position and spee	ed mi	9 cros	+ 0 ensors
Unit V MICRO Micro Sensors: Prin - Acceleration micro	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors	ed mie and	9 cro s flow	+ 0 ensors
Unit V MICRO Micro Sensors: Prin - Acceleration micro sensors - Micro Actu	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and p	ed mid and seudo	9 cro s flow	+ 0 ensors micro sticity
Unit VMICROMicro Sensors: Prim- Acceleration microsensors - Micro ActuTypes of micro actu	D SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and pr iators – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi	ed mid and seudo ples.	9 cro s flow o ela:	+ 0 ensors micro sticity
Unit V MICRO Micro Sensors: Prin - Acceleration micro sensors - Micro Actu Types of micro actu	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spece o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and per- iators – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi	ed mid and seudo ples.	9 cro s flow p elas	+ 0 ensors micro sticity
Unit V MICRO Micro Sensors: Prin - Acceleration micro sensors - Micro Actu Types of micro actu	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and pr iators – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L	ed mig and seudo ples. .+T)=	9 cro s flow b elas 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prim - - Acceleration micro sensors - Micro Actu Types of micro actu - Course Outcomest -	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and principles iators – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L	ed mic and seudo ples. .+T)=	9 cro s flow o ela: 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prim - Acceleration micro - Acceleration micro sensors - Micro Actu Types of micro actu	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and speed o sensors - Chemical sensors - Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and principle - Shape memory effects - One way, two way and principle - Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other principle Total (L : this course, the students will be able to:	ed mid and seudo ples. .+ T)=	9 cro s flow ela: 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prin - - Acceleration micro sensors - Micro Acturnation Types of micro acturnation - Course Outcomes: - Upon completion of - CO1 : Underst -	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and principles - Blectrostatic - Magnetic - Fluidic - Inverse piezo effect - Other principles Total (L : this course, the students will be able to: standthe basic principles of operation of different types of sensors	ed mic and seudo ples.	9 cro s flow ela: 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prin- - Acceleration micro sensors - Micro Acturnation Types of micro acturnation Course Outcomest Upon completion of CO1 : Underst CO2 : Discust	O SENSORS AND ACTUATORS iciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and principles interest – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L : this course, the students will be able to: standthe basic principles of operation of different types of sensors is common practices and algorithms for processing raw sensor information	ed mig and seudo ples. .+T)=	9 cro s flow b ela: 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Primero Acceleration micro - Acceleration micro sensors - Micro Acturnation Types of micro acturnation Types of micro acturnation Course Outcomes: Upon completion of CO1 : Unders CO2 : Discuss CO3 : Config	O SENSORS AND ACTUATORS	ed mig and seudo ples. .+T)=	9 cros flow ela: 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prime Acceleration micro - Acceleration micro sensors - Micro Acturnation Types of micro acturnation Types of micro Course Outcomes: Upon completion of CO1 : Unders CO2 : Discuss CO3 : Config CO4 : List the	O SENSORS AND ACTUATORS Inciples and examples - Force and pressure micro sensors - Position and speed o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and periators – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L : this course, the students will be able to: standthe basic principles of operation of different types of sensors ss common practices and algorithms for processing raw sensor information ure, calibrate and use modern sensors in the context of mobile robots e reasons about limitations and advantages of different sensors in different app	ed mig sand seudo ples. .+T)=	9 cro s flow ela 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prin- - Acceleration micro sensors - Micro Actur Types of micro actur Course Outcomes: Upon completion of CO1 : Unders CO2 : Discus CO3 : Course Books:	O SENSORS AND ACTUATORS	ed mid seudo ples. .+T)=	9 cro s flow ela: 45 P	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prime Acceleration micro - Acceleration micro sensors - Micro Acturnation Types of micro acturnation Types of micro Course Outcomes: Upon completion of CO1 : Unders CO2 : Discus CO3 : Config CO4 : List the Text Books: 1. Clarence N	O SENSORS AND ACTUATORS	ed mid seudo ples. .+T)=	9 cro s flow ela: 45 P on co	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Prime Acceleration micro - Acceleration micro sensors - Micro Acturn Types of micro acturn Types of micro acturn Course Outcomest Upon completion of CO1 : Underst CO2 : Discust CO3 : Config CO4 : List the 1. Clarence 2. O. N. Pan	O SENSORS AND ACTUATORS	ed mid seudo ples. .+T)=	9 cro s flow ela: 45 P on co	+ 0 ensors micro sticity eriods
Unit V MICRO Micro Sensors: Printer - Acceleration micro - Acceleration micro sensors - Micro Acturnation Types of micro acturnation Types of micro acturnation Course Outcomest Upon completion of CO1 : Underst CO2 : Discuss CO3 : Config CO4 : List the 1. Clarence 2. 0. N. Pan Reference Books: 1 Busch-Viet	O SENSORS AND ACTUATORS	ed mid seudo ples. .+T)=	9 cro s flow class of the second seco	+ 0 ensors micro sticity eriods ontexts
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Actur Types of micro acturTypes of micro acturUpon completion of CO1CO2Image: Discussion CO3CO3Config CO4CO4List the List the 2.Text Books: 1.Clarence No CO. N. Pan Reference Books: 1.1.Busch-Vish 21.Busch-Vish Colarence M	O SENSORS AND ACTUATORS inciples and examples - Force and pressure micro sensors - Position and speed o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and pre- nators – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L: this course, the students will be able to: standthe basic principles of operation of different types of sensors so common practices and algorithms for processing raw sensor information jure, calibrate and use modern sensors in the context of mobile robots te reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC idey, "Sensors and Instrumentation ', S.K. Kataria& Sons,2013 miac llene J, "Electromechanical Sensors and Actuators " Springer-Verlag New York I Pawlak "Sensors and Actuators in Mechatronics: Design and Applications" _ 1st Editi	ed mid seudo ples. .+T)= Dicati	9 cro s flow o ela: 45 P on co ss, 2 lew E ndle	+ 0 ensors r micro sticity eriods ontexts 007 dition
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Actur Types of micro acturTypes of micro acturUpon completion of CO1CO2:Upon completion of CO2CO3:Config CO4CO4:List the 2.O. N. Pan Reference Books:1.Busch-Vish 2.1.Busch-Vish 2.2.Andrzej M 2006	O SENSORS AND ACTUATORS Inciples and examples - Force and pressure micro sensors - Position and speed o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and preserve - Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L: this course, the students will be able to: standthe basic principles of operation of different types of sensors so common practices and algorithms for processing raw sensor information pure, calibrate and use modern sensors in the context of mobile robots e reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC idey, "Sensors and Instrumentation ', S.K. Kataria& Sons,2013 miac Ilene J, "Electromechanical Sensors and Actuators " Springer-Verlag New York I Pawlak,"Sensors and Actuators in Mechatronics: Design and Applications", 1st Editi	ed mid seudo ples. .+T)= Diicati	9 cro s flow ela: 45 P 45 P on co ss, 2 lew E ndle	+ 0 ensors r micro sticity eriods ontexts 007 dition Edition
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Actury Types of micro acturyCourse Outcomes: Upon completion of CO1CO2:Upon completion of CO2CO3:CO3:CO4:List the CO4Text Books:1.Clarence 2.0. N. Pan Reference Books:1.Busch-Vish 2.2.Andrzej M 20063.Rupitsch, S	O SENSORS AND ACTUATORS Inciples and examples - Force and pressure micro sensors - Position and speed o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and prince intervention of the students - Fluidic - Inverse piezo effect - Other prince Total (L: this course, the students will be able to: standthe basic principles of operation of different types of sensors se common practices and algorithms for processing raw sensor information pure, calibrate and use modern sensors in the context of mobile robots e reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC idey, "Sensors and Instrumentation ', S.K. Kataria& Sons,2013 miac llene J, "Electromechanical Sensors and Actuators " Springer-Verlag New York I Pawlak, "Sensors and Actuators in Mechatronics: Design and Applications", 1st Editi Stefan Johann," Piezoelectric Sensors and Actuators Fundamentals and Application	ed mid seudo ples. .+T)= Dicati C Pres nc., N on, Ki s", Sp	9 cro s flow ela: 45 P on cc ss, 2 lew E ndle	+ 0 ensors r micro sticity eriods entexts 007 dition Edition r,2019
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Actur Types of micro acturTypes of micro acturUpon completion of CO1CO2Discus CO3CO3Config CO4CO4List the List the 2.1.Clarence No 2.2.O. N. Pan Reference Books:1.Busch-Vish 2.3.Rupitsch, S 4	O SENSORS AND ACTUATORS Inciples and examples - Force and pressure micro sensors - Position and spece o sensors - Chemical sensors - Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and pre- lators - Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L : this course, the students will be able to: standthe basic principles of operation of different types of sensors se common practices and algorithms for processing raw sensor information pure, calibrate and use modern sensors in the context of mobile robots re reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC tdey, "Sensors and Instrumentation ', S.K. Kataria& Sons,2013 miac llene J, "Electromechanical Sensors and Actuators " Springer-Verlag New York I Pawlak, "Sensors and Actuators in Mechatronics: Design and Applications", 1st Editi Stefan Johann," Piezoelectric Sensors and Actuators Fundamentals and Application ya, E, Van Volkenburgh, Makoto Mizunami, Shûhei Nomura, "Bioinspired Actuators	ed mid seudo ples. .+T)= Dicati C Pres nc., N on, Ki s", Sp	9 cro s flow ela: 45 P on co ss, 2 ew E ndle rringe Sens	+ 0 ensors r micro sticity eriods ontexts 007 dition Edition r,2019 ors". 1 ^s
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Actury Types of micro acturyCourse Outcomes: Upon completion of CO1 : Unders CO2 : Discuss CO3 : Config CO4 : List the Text Books: 1. Clarence V 2. O. N. Pan Reference Books: 1. Busch-Vish 2. Andrzej M 2006 3. Rupitsch, S 4. Minoru Tay Edition, Kir	O SENSORS AND ACTUATORS Inciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors - Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and preserve - Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L: this course, the students will be able to: standthe basic principles of operation of different types of sensors as common practices and algorithms for processing raw sensor information pure, calibrate and use modern sensors in the context of mobile robots e reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC idey, "Sensors and Instrumentation ', S.K. Kataria& Sons,2013 miac llene J, "Electromechanical Sensors and Actuators " Springer-Verlag New York I Pawlak, "Sensors and Actuators in Mechatronics: Design and Applications", 1st Editi Stefan Johann," Piezoelectric Sensors and Actuators Fundamentals and Application ya, E. Van Volkenburgh , Makoto Mizunami , Shûhei Nomura, "Bioinspired Actuators	ed mid seudo ples. .+T)= Dicati	9 cro s flow ela: 45 P on co ss, 2 lew E ndle rringe	+ 0 ensors sticity eriods eriods ontexts 007 dition Edition r,2019 ors", 1°
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Acturypes of micro acturypes of micro acturypes of micro acturypesCourse Outcomes: Upon completion of CO1 : Unders CO2 : Discusyce CO3 : Configyce CO3 : Configyce CO3 : Configyce CO4 : List the Text Books: 1. Clarence Micro 2. O. N. Pan Reference Books: 1. Busch-Vish 2. Andrzej Micro 2006 3. Rupitsch, Signal 4. Minoru Tay Edition, Kir E-References:	O SENSORS AND ACTUATORS inciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and presore – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L : this course, the students will be able to: standthe basic principles of operation of different types of sensors ss common practices and algorithms for processing raw sensor information pure, calibrate and use modern sensors in the context of mobile robots e reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC idey, "Sensors and Actuators in Mechatronics: Design and Applications", 1st Editi Stefan Johann," Piezoelectric Sensors and Actuators Fundamentals and Application ya, E. Van Volkenburgh , Makoto Mizunami , Shûhei Nomura, "Bioinspired Actuators	ed mid seudo ples. .+T)= Diicati C Pres nc., N on, Ki s", Sp	9 flow b ela: 45 P 45 P on cc ss, 2 lew E ndle rringe Sens	+ 0 ensors r micro sticity eriods eriods 007 dition Edition r,2019 ors", 1 ^s
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Actury Types of micro acturyCourse Outcomes: Upon completion of CO1CO2Inderse Discusy CO3CO3Config CO4CO4List the List the 2.1.Clarence No 2.2.O. N. Pan Reference Books:1.Busch-Vish 2.2.Andrzej M 20063.Rupitsch, S Edition, Kir E-References:1.https://npt	O SENSORS AND ACTUATORS nciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and principles - Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L : this course, the students will be able to: standthe basic principles of operation of different types of sensors as common practices and algorithms for processing raw sensor information pure, calibrate and use modern sensors in the context of mobile robots e reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC idey, "Sensors and Instrumentation ', S.K. Kataria& Sons,2013 miac Ilene J, "Electromechanical Sensors and Actuators " Springer-Verlag New York I Pawlak,"Sensors and Actuators in Mechatronics: Design and Applications", 1st Editi Stefan Johann," Piezoelectric Sensors and Actuators Fundamentals and Application ya, E. Van Volkenburgh , Makoto Mizunami , Shûhei Nomura, "Bioinspired Actuators rdle Edition,2018 tel.ac.in/courses/112103174/3	ed mid seudo ples. .+T)= Dicati	9 cro s flow b ela: 45 P on cc ss, 2 ew E ndle Sens	+ 0 ensors r micro sticity eriods ontexts 007 dition Edition r,2019 ors", 1 ^s
Unit VMICROMicro Sensors: Prim - Acceleration micro sensors - Micro Actur Types of micro acturTypes of micro acturUpon completion of CO1CO2Discus CO3CO3Config CO4CO4List the List the 2.1.Clarence No 2.2.O. N. Pan Reference Books:1.Busch-Vish 2.3.Rupitsch, S Edition, Kir4.Minoru Tay Edition, Kir2.1.Andrzej M 20062.Andrzej M 20063.Rupitsch, S Edition, Kir2.https://npt 2.1.https://npt	O SENSORS AND ACTUATORS nciples and examples - Force and pressure micro sensors - Position and spee o sensors - Chemical sensors – Biosensors - Temperature micro sensors uators: Actuation principle - Shape memory effects - One way, two way and pi lators – Electrostatic - Magnetic - Fluidic - Inverse piezo effect - Other princi Total (L : this course, the students will be able to: standthe basic principles of operation of different types of sensors ss common practices and algorithms for processing raw sensor information pure, calibrate and use modern sensors in the context of mobile robots te reasons about limitations and advantages of different sensors in different app W De Silva, "Sensors and actuators-Control System Instrumentation", CRC idey, "Sensors and Actuators in Mechatronics: Design and Applications", 1st Editi Stefan Johann," Piezoelectric Sensors and Actuators Fundamentals and Application ya, E. Van Volkenburgh , Makoto Mizunami , Shûhei Nomura, "Bioinspired Actuators de Edition,2018 tel.ac.in/courses/112103174/3 tel.ac.in/course	ed mid seudo ples. .+T)= Dicati	9 cro s flow ela: 45 P on cc ss, 2 lew E ndle rringe Sens	+ 0 ensors r micro sticity eriods ontexts 007 dition Edition r,2019 ors", 1 ^s

	18ECPE809	NETWORK SECURITY	L	Т	P C
			3	0	0 3
Cou	rse Objectives:				
1.	To understand netwo	ork security, architecture and algorithms.			
2.	To study various enc	ryption and decryption standards for network security.			
3.	To familiarize with n	necessary approaches and techniques to build protection mechanis	sms	in o	rder to
	secure computer net	works.			
Unit	I INTRODUCTION			9	+ 0
Sec	urity Goals - Services,	Mechanisms and attacks - OSI security architecture - Model of ne	twor	k se	curity -
Sec	urity trends - Legal, Et	hical and Professional Aspects of Security - Need for Security at N	Aulti	ole le	evels -
Mat	nematics of Cryptograp	ny.			
Uni		RYPTOGRAPHY		9	+ 0
Enc	rvption and Decryption	n – Substitution techniques – Transposition techniques - Block	ciph	ers	- Data
Enc	ryption Standard - Diff ndard - Triple DES - RC	ferential and Linear Cryptanalysis - Block Cipher modes - Advar C5 - RC4 stream ciphers.	iced	Enc	ryption
Unit		INCRYPTION		9	+ 0
Intro man	duction to Number The agement - Diffie-Hellm	eory - Public Key cryptography – Rivest_Shamir_Adleman Algorith an key exchange – Elliptic curve cryptography.	nm (l	RSA) - Key
Unit				0	
Auth	antication requirement	te and functions MAC Hash functions Security of hash function		9 and	
Sec	ure Hash Algorithms - [Digital signature and authentication protocols – Digital Signature Sta	ndai	d'	
000			nau	u.	
Unit		D SYSTEM SECURITY		9	+ 0
Auth	nentication applications	- E-mail Security - IP security - Web security - Intruders - Malicious	Sof	ware	э-
Fire	walls.				
		-	-	<u> </u>	
Cou		l otal (L+	- (-	45 P	erioas
	o and of the course, th	a student should be able to:			
	le end of the course, th	le student should be able to.	vulr	oral	vilition
		unual envetographic operations of symmetric envetographic algorithms	ond		
002	cryptography		anu	pur	лс кеу
COS	Apply the various	s Authentication schemes to simulate different applications			
CO4	Understand vario	bus Security practices and System security standards.			
Tex	t Books:				
1.	William Stallings, "Cry	ptography and Network Security", 6th Edition, Principles and Practic	ce", F	PHI,	2013.
2.	AtulKahate, "Cryptogr	aphy and Network security", 3 rd Edition, Tata McGraw-Hill, 2017.			
Refe	erence Books:				
1.	C K Shyamala, N Har Pvt.Ltd, 2011.	rini and Dr. T R Padmanabhan, "Cryptography and Network Securi	ty",	Wile	y India
2.	Behrouz A Forouson,	"Cryptography & Network Security", 3rd Edition, Tata McGraw hill, 20	015.		
3.	Charlie Kaufman, Rac PUBLIC World", 2 nd E	dia Perlman, and Mike Speciner, "Network Security: PRIVATE Comm dition Prentice Hall, 2002.	nuni	catio	n in a
4.	Roberta Bragg, Mark Tata Mcgraw-Hill, 200	Phodes-Ousley, Keith Strassberg, "Network Security: The Comple	ete l	Refe	rence",
E-R	eferences:				
1.	https://nptel.ac.in/cours	ses/106105162/			
2.	https://nptel.ac.in/cours	ses/106106178/10			
3.	https://nptel.ac.in/cour	rses/106105031/39			
					-

	18ECPE810	SATELLITE COMMUNICATION	L	TF	, C					
			3	0 0) 3					
Cou	rse Objectives:		. <u> </u>							
1.	Know the different orbits based on geostationary	s based on various laws of Kepler and calculation of elevation and orbits.	azin	nuth a	ngle					
2.	2. Describe the various subsystems and outline the fundamental concepts of control mechanism and Calculate the power requirement in satellite communication for uplink and down link.									
3.	3. Have the knowledge of multiple access techniques, services provided by satellite communication.									
Unit	I OVERVIEW OF SA	TELLITE SYSTEMS, ORBITS AND LAUNCHING METHODS		9 +	F 0					
Introduction – Frequency Allocations for Satellite Services – INTELSAT – U.S.Domsats – Polar Orbiting Satellites. Kepler's First Law – Kepler's Second Law – Kepler's Third Law – Definitions of Terms for Earth - orbiting Satellites – Orbital Elements – Apogee and Perigee Heights – Orbital Perturbations - Local Mean Solar Time and Sun - Synchronous Orbits.										
Unit	II GEOSTATIONARY	ORBIT & SPACE SEGMENT		9 +	0					
Orbi – S Satr Unit Rec Trar Trar	ts – Earth Eclipse of Sate tation Keeping – Thermal nex5 – Anik-Satellites – III EARTH SEGMEN ceive_Only Home TV Sy nsmit_Receive Earth State nsmission – Feeder Losse	 Angels – The Polar Mount Antenna – Limits of Visibility – Nea ellite – Sun Transit Outage – Launching Orbits - Power Supply – Control – TT&C Subsystem – Transponders - Antenna Subsyster Advanced Tiros - N Spacecraft. IT & SPACE LINK ystems – Master Antenna TV System – Community Antenna ions - Equivalent Isotropic Radiated Power – Transmission Losse es – Antenna Misalignment Losses – Fixed Atmospheric and Iono 	n – M Attitu n – M TV ss : F sphe	9 4 System ree-Sp	onary ontrol s and - 0 m – bace sses					
– Li Upli	nk Power Budget Equation	on – Carrier-to-Noise Ratio – Uplink – Down link - Effects of ra tio – Inter modulation Noise.	in –	Comb	ined					
Unit	IV SATELLITE ACC	ESS		9 +	• 0					
Pow Sate	ple Access – Preassigned rer-limited TWT amplifier ellite switched TDMA - Co	operation - Demand-Assigned FDMA - SPADE System - Bandwi operation - TDMA -On-board signal Processing for TDMA / FD ode Division Multiple Access.	dth-II MA c	perati	and on -					
Unit	V SATELLITE TV, I	MOBILE AND SPECIALIZED SERVICES		9 +	- 0					
Dire Frec Outo	ect Broadcast Satellite (D quencies and Polarization door Unit(ODU)-The Hom	BS) Television - Orbital Spacing - Power Rating and Number of n -Transponder capacity - Bit rates for digital Television -The H ne Receiver Indoor Unit(IDU) – HDTV - Satellite Mobile Services –	Frans Iome VS/	sponde Rece Ts - C	ers - eiver PS.					
		Total (L-	⊦T)=	45 Pe	riods					
Cou	rse Outcomes:									
CO1	n completion of this cours	se, the students will be able to: bital laws and elements of satellite communication								
CO2	2 : Understand the co	ncept of geostationary orbit and the station keeping.								
CO3	B : Know the concept	of different earth segments and noise interference.								
CO4	L : Know the available	satellite access methods, direct satellite services and various ap	plica	tions.						
Tex	t Books:									
1.	Dennis Roddy, Satellite Co	ommunications, Tata McGraw-Hill Education Private Limited, fourth edition	n, 20	09						
2.	Barry George Evans, Sa	atellite communication systems, 3 rd Edition, IET Publicati	ons ²	1999						
Refe	erence Books:									
1.	Timothy Pratt – Charles Pvt. Ltd. 2004	Bostian& Jeremy Allmuti, Satellite Communications, John Willy &	، Sor	is (Asi	a)					
2.	Wilbur L. Pritchars Henr Engineering, Pearson E	ri G.SuyderHond Robert A.Nelson, Satellite Communication Syste ducation Ltd., Second edition 2003	ms							
3.	M.Richharia, Satellite Com	munication Systems (Design Principles Macmillan Press Ltd. Second Ec	lition	2003.						
4.	Satellite communication	engineering By Michael O. Kolawole, CRC Press, 2002.								
E-R	eferences:									
1.	http://nptel.ac.in/courses	s/117105131/								
2.	http://nptel.ac.in/courses	s/106105082/33								
3.	https://ocw.mit.edu/cour 2003/lecture-notes/	ses/aeronautics-and-astronautics/16-851-satellite-engineering-fa	-							

18E	CPE	811 BIO-MEDICAL ELECTRONICS	L	Т	Ρ	С					
			3	0	0	3					
Cou	rse C	Objectives:									
1.	То	gain knowledge about various physiological parameters and their measurements.									
2.	То	examine the internal organs through imaging techniques.									
3.	То	gain knowledge about equipment used for physical medicine and various recently dev	elop	ed							
	dia	gnostics and therapeutic techniques.									
				_		_					
Unit		BIOELECTRIC SIGNALS AND ELECTRODES		9	+	0					
Brie		duction to numan physiology - Origin of Bio electric signals- characteristics and its ty	pica	i wav	/erc	orm					
[⊑U of bi	J, ⊏⊏ ah ca	is, EMG, EOG, ERGJ - Recording electrodes, electrode lissue interface- contact impe-	uan	ce -	ene	CIS					
	gii cc	intact impedance- Types of electrodes- electrodes for ECG, EEG and EMG.									
Unit	II	NON ELECTRICAL PARAMETER MEASUREMENT AND PATIENT MONITORING		9	+	0					
Aud	iomet	er - Electromagnetic Flow meter - Ultrasonic Flow meters - Heart rate measureme	ent -	Puls	se r	ate					
mea	surer	nent- Transmission and Reflectance method - Respiration rate measurement -	Bloo	d pr	ess	ure					
mea	surer	nent: Direct and indirect method - microprocessor applications in patient monitoring.		•							
Unit		MEDICAL IMAGING SYSTEM		9	+	0					
Rad	iogra	phy - Computed Radiography - Computed Tomography – MRI - Nuclear medicine - Po	sitro	n En	niss	ion					
Tom	ogra	bhy.									
				-							
Unit		THERAPEUTIC AND PROSTHETIC DEVICES	P	9	+	0					
Caro		acemakers – Defibriliators – Haemodialysis – Ventilators - Infant Incubators - Drug De	live	y de	VIC	es -					
Surg	jicai i	nstruments - Therapeutic applications of LASER.									
Unit	V	PATIENT SAFETY AND CLINICAL LABORATORY INSTRUMENTATION		9	+	0					
Flee	tric S	book bazards - Leakage Currents - Safety codes and standards for electro medic	al e	auipi	mei	nt-					
elec	trical	safety analyser - testing of biomedical equipment – Spectrophotometry - Auton	nate	d ch	em	cal					
anal	ysers										
		Total (L+	T)=	45 P	eric	ods					
Cou	rse C	Dutcomes:									
Upo	n con	pletion of this course, the students will be able to:									
CO1	:	Know the human body electro- physiological parameters and recording of bio-potenti	als.								
CO2	2 :	Comprehend the non-electrical physiological parameters and their measurement – b	ody								
000		temperature, blood pressure, pulse, blood cell count, blood flow meter etc.									
		Examine the internal organs through imaging.									
1	Kha	ndour R.S. Handbook of Biomedical Instrumentation Third ed Tata McGraw-Hill 20)1⊿								
2	1. Khandpur, R.S., Handbook of Biomedical Instrumentation, Third ed, Tata McGraw-Hill, 2014										
Refe	Johr	G Webster Medical Instrumentation Application and Design John Wiley and Sons	4th	sd 2	2. John G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, 4th ed, 2010						
	Johr Prenc	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books:	4th	ed, 2		son					
1.	Johr erenc Jose	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: sph J.Carr and John M.Brown. Introduction to Biomedical equipment Technology. Fou	4th rth e	ed, 2 d. Pe	ears	Education 2001					
1.	Johr erenc Jose Edu	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: ph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001.	4th rth e	ed, 2 d, Pe	ears						
1. 2.	Johr Jose Jose Edu Kim	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: aph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001. E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of M	4th rth e /Iedi	ed, 2 d, Pe	ears						
1. 2.	Johr Jose Jose Edu Kim Phys	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: eph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001. E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of M siology, 24 th Ed, McGraw Hill, 2012.	4th rth e /ledi	ed, 2 d, Pe cal	ears						
1. 2. 3.	Johr Jose Edu Kim Phys	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: eph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001. E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of M siology, 24 th Ed, McGraw Hill, 2012. <i>M</i> ark Saltzman, Biomedical Engineering, Second ed, Cambridge University Press, 201	4th rth e /ledi 5.	ed, 2 d, Pe cal	ears						
1. 2. 3. 4.	Johr Jose Edu Kim Phys W. M C.Ra	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: aph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001. E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of M siology, 24 th Ed, McGraw Hill, 2012. Mark Saltzman, Biomedical Engineering, Second ed, Cambridge University Press, 201 aja Rao, S.K.Guha, Principles of Medical electronics and biomedical instrumentation,	4th rth e /ledi 5. Univ	ed, 2 d, Pe cal ersiti	ears						
1. 2. 3. 4.	Johr Jose Edu Kim Phys W. M C.Ra Pres	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: Ph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001. E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of M siology, 24 th Ed, McGraw Hill, 2012. Mark Saltzman, Biomedical Engineering, Second ed, Cambridge University Press, 201 aja Rao, S.K.Guha, Principles of Medical electronics and biomedical instrumentation, ss, 2001	4th rth e /ledi 5. Univ	ed, 2 d, Pe cal ersiti	ears						
1. 2. 3. 4. E-R (Johr Jose Edu Kim Phys W. N C.Ra Pres efere	 G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: eph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001. E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of N siology, 24th Ed, McGraw Hill, 2012. Mark Saltzman, Biomedical Engineering, Second ed, Cambridge University Press, 201 aja Rao, S.K.Guha, Principles of Medical electronics and biomedical instrumentation, ss, 2001 	4th rth e /ledi 5. Univ	ed, 2 d, Pe cal ersiti	es						
1. 2. 3. 4. E-R (1.	Johr Jose Edu Kim Phys W. N C.Ra Pres efere http:	n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, e Books: eph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001. E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of M siology, 24 th Ed, McGraw Hill, 2012. Mark Saltzman, Biomedical Engineering, Second ed, Cambridge University Press, 201 aja Rao, S.K.Guha, Principles of Medical electronics and biomedical instrumentation, is, 2001 nces: //nptel.ac.in/courses/117108037/15 ///nptel.ac.in/courses/117108037/15	4th rth e /ledi 5. Univ	ed, 2 d, Pe cal ersiti	es						
1. 2. 3. 4. E-R (1. 2.	Johr Jose Edu Kim Phys W. M C.R Pres efere http: http: 200	 <u>n G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons,</u> <u>e Books:</u> <u>eph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Fou cation, 2001.</u> E.Barrett, Susan M.Barman, Scott Boitano, HeddwenL.Brooks, Ganong's Review of Million Science and Medical Engineering, Second ed, Cambridge University Press, 201 <u>Mark Saltzman, Biomedical Engineering, Second ed, Cambridge University Press, 201</u> <u>aja Rao, S.K.Guha, Principles of Medical electronics and biomedical instrumentation, ss, 2001</u> <u>nces:</u> <u>//nptel.ac.in/courses/117108037/15</u> <u>S://ocw.mit.edu/courses/mechanical-engineering/2-996-biomedical-devices-design-lab</u> 	4th rth e /ledi 5. Univ	ed, 2 d, Pe cal ersiti	es all-						

18ECPE812

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

T P C

L

0

			-	-		
Prer	equiste					
Linear Algebra						
Cou	rse Objectives:					
1	To provide a strong foundation of fundamental concepts in Artificial Intelligence					
1. 0	To provide a strong roundation of rundamental concepts in Antificial Intelligence.	n rooco	nina	and		
Ζ.	learning.	n, reaso	ming	anu		
3.	To enable Problem-solving through various searching techniques.					
Unit	I INTRODUCTION TO AI AND PRODUCTION SYSTEMS	9		0		
Intro	duction to AI-Problem formulation - Problem Definition - Production systems - Control st	rategies	- Se	arch		
strat	egies - Problem characteristics - Production system characteristics - Specialized pro-	duction	syste	em -		
Prob	olem solving methods - Problem graphs – Matching - Indexing and Heuristic functions - Hill	Climbin	g - D	epth		
first	and Breath first - Constraints satisfaction - Related algorithms - Measure of performance	e and ar	alys	is of		
sear	ch algorithms.		-			
Unit	II REPRESENTATION OF KNOWLEDGE	9		0		
Gam	ne playing - Knowledge representation - Knowledge representation using Predicate logic	- Introc	uctio	on to		
pred	licate calculus – Resolution - Use of predicate calculus - Knowledge representation us	sing oth	er lo	gic -		
Stru	ctured representation of knowledge.					
Unit		9		0		
KNO	Wiedge representation - Production based system - Frame based system - Interence - Ba	ackward	cna	ining		
- FOI	rward chaining - Rule value approach - Fuzzy reasoning - Certainty factors - Bayesian T	neory - I	saye	esian		
llnit		0	-	0		
Baci	a plan concretion systems. String Advanced plan concretion systems. K string Strate		anat	tions		
Dasi	w Why not and how explanations - Learning Machine learning - Adaptive Learning	egic exp	ana	lions		
- vvi	V EXPERT SYSTEMS	0		0		
Evn	art systems - Architecture of expert systems - Poles of expert systems - Knowledge Av	caujeitio		Viota		
knov	vledge- Heuristics - Typical expert systems – MYCIN - DART - XOON - Expert system	s shells.	1 - 1	vieta		
	Total (L	.+T)= 45	Per	iods		
Cou	rse Outcomes:					
Upo	n completion of this course, the students will be able to:					
CO1	1.1 Provides a basic exposition to the goals and methods of Artificial Intelligence					
CO2						
000	Study of the design of intelligent computational agents					
CO3	 Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a 	and for r	easo	ning		
CO3	 Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm 	and for re ing and	easo mac	ning hine		
CO3	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. 	and for re ing and	easo mac	ning hine		
CO3	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. 	and for re ing and	easo mac	ning hine		
CO3 CO4 Text	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: 	and for ro ing and	easo mac	ning hine		
CO3 CO4 Text 1.	Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education (Brantice Hall of India, 2010.	and for re ing and Pearson	easo mac	ning hine		
CO3 CO4 Text 1.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. 	and for re ing and Pearson	easo mac	hine		
CO3 CO4 Text 1. 2.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. To enhance their knowledge in their Research works in future. Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 	and for ro ing and Pearson 010.	easo mac	hine		
CO3 CO4 Text 1. 2. Refe	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 	and for ro ing and Pearson 010.	easo mac	hine		
CO3 CO4 Text 1. 2. Refe 1.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press: Second edition, 2009 	and for re ing and Pearson 010. Learning		hing hine		
CO3 CO4 Text 1. 2. Refe	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H Winston, "Artificial Intelligence", Third edition, Pearson Edition, 2006. 	and for re ing and Pearson 010. Learning		hing hine		
CO3 CO4 Text 1. 2. 2. 3	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 Erence Books: EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006. 	Pearson		ning hine		
CO3 CO4 Text 1. 2. Refe 1. 2. 3.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 Erence Books: EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Cambridge University Press, 2010. 	and for re ing and Pearson 010. Learning		hine		
CO3 CO4 Text 1. 2. Refe 1. 2. 3. 4.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 erence Books: EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Cambridge University Press, 2010. Machine Learning by Rajiv Chopra Khanna Publishing; First edition, 2018. 	and for re ing and Pearson 010. Learning	easo mac	ning hine		
CO3 CO4 Text 1. 2. Refe 1. 3. 4. E-Re	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 erence Books: EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Cambridge University Press, 2010. Machine Learning by <u>Rajiv Chopra</u> Khanna Publishing; First edition, 2018. 	Pearson 010.		ning hine		
CO3 CO4 Text 1. 2. Refe 1. 3. 4. E-Re 1.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 erence Books: EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Cambridge University Press, 2010. Machine Learning by <u>Rajiv Chopra</u> Khanna Publishing; First edition, 2018. 	Pearson 010. Learning		ning hine		
CO3 CO4 Text 1. 2. Refe 1. 2. 3. 4. E-Re 1. 2.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 Prence Books: EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Cambridge University Press, 2010. Machine Learning by Rajiv Chopra Khanna Publishing; First edition, 2018. eferences: https://www.coursera.org/learn/machine-learning https://www.coursera.org/courses?guery=artificial%20intelligence 	and for re ing and Pearson 010. Learning	easo mac	ning hine		
CO3 CO4 Text 1. 2. Refe 1. 2. 3. 4. E-Re 1. 2. 3.	 Study of the design of intelligent computational agents Study of the design of intelligent computational agents The knowledge acquired through learning can be used both for problem solving a planning, natural language understanding, computer vision, automatic programm learning. To enhance their knowledge in their Research works in future. Books: Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, F Education / Prentice Hall of India, 2010. Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, Tata McGraw-Hill, 20 Prence Books: EthemAlpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine series)", The MIT Press; Second edition, 2009. Patrick H. Winston. "Artificial Intelligence", Third edition, Pearson Edition, 2006. David L. Poole, Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Cambridge University Press, 2010. Machine Learning by Rajiv Chopra Khanna Publishing; First edition, 2018. efferences: https://www.coursera.org/learn/machine-learning https://www.coursera.org/courses?query=artificial%20intelligence 	and for re ing and Pearson 010. Learning	easo mac	ning hine		

OPEN ELECTIVES (OE)

	18ECOE01	FUNDAMENTALS OF ELECTRON DEVICES		1	Ρ	C		
			3	0	0	3		
Οοι	Course Objectives:							
1.	To understand the fun	ndamentals of semiconductor diodes.						
2.	2. To acquaint with the construction, theory and operation of the basic electronic devices such as BJT and FET.							
3.	3. To study Power control devices and Opto-electronic devices.							
Uni	t I SEMICONDUCTO	R DIODES		9	+	0		
PN	junction diode - Curre	ent equations - Diffusion and drift current densities - Forward	and	rev	erse	bias		
cha	racteristics - Switching C	characteristics.						
	v							
Uni	t II BIPOLAR JUNCTI	ION TRANSISTORS		9	+	0		
NPI	N and PNP type - Early ef	fect-Current equations – Input and Output characteristics of CE, CB,	CC	con	figura	ations		
- Hy	/brid -π model - h-param	neter model - Ebers Moll Model - Gummel Poon-model.			U			
Uni	t III FIELD EFFECT TF	RANSISTORS		9	+	0		
JFE	Ts – Drain and Transfer	characteristics - Current equations - Pinch off voltage and its signifi	icand	ce -	MOS	SFET-		
Cha	aracteristics- Threshold v	oltage - Channel length modulation - D-MOSFET- E-MOSFET-						
Uni	t IV SPECIAL SEMIC	ONDUCTOR DEVICES		9	+	0		
Met	al - Semiconductor Junc	tion – MESFET - Schottky barrier diode - Zener diode - Varactor diod	de –	Tun	nel d	iode -		
Gal	lium Arsenide device - L	ASER diode - LDR.						
Uni	t V POWER DEVICES	SAND DISPLAY DEVICES		9	+	0		
UJT	- SCR – Diac – Triac - F	Power BJT- Power MOSFET- DMOS – VMOS – LED – LCD - Phot	to tra	ansis	stor -	Opto		
Cou	pler - Solar cell - CCD.							
		Total ((L+T)= 4	5 Pe	riods		
Со	urse Outcomes:		(/ -				
Upc	on completion of this cou	rse the students will be able to:						
CO	1 Understand the ch	paracteristics of diodes and special semiconductor devices						
CO	2 Describe the vario	bus configurations and equivalent circuits of Bipolar Junction Transis						
CO			CO2 : Describe the various configurations and equivalent circuits of Bipolar Junction Transistors.					
00	CO3 : Have in depth knowledge on working principles and characteristics of FET.							
CO	3 : Have in depth kno 4 · Acquire knowledg	owledge on working principles and characteristics of FET.	stors	.				
CO- Tex	3 : Have in depth knc 4 : Acquire knowledg at Books:	owledge on working principles and characteristics of FET. te on Power and display devices.	stors	6.				
CO- Tex	3 : Have in depth knc 4 : Acquire knowledg tt Books:	owledge on working principles and characteristics of FET. te on Power and display devices.	stors	5. 7				
CO Tex 1.	3 : Have in depth kno 4 : Acquire knowledg t Books: Donald A Neaman, "Se Robert L Boylestad an	owledge on working principles and characteristics of FET. ie on Power and display devices. emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 id Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edi	stors	5. 7. PH	1 20 ⁻	13		
CO- Tex 1. 2. Ref	3 : Have in depth kno 4 : Acquire knowledg t Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books:	owledge on working principles and characteristics of FET. The on Power and display devices. The miconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 The Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edi	stors 2017 ition,	5. 7. PH	I, 20 ⁻	13.		
CO. Tex 1. 2. Ref	3 : Have in depth kno 4 : Acquire knowledg t Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang "Fundamentals of	owledge on working principles and characteristics of FET. The on Power and display devices. Emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 The Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edition of Semiconductor devices". McGraw Hill International Edition, 1978.	2017	s. 7 <u>.</u> PH	I, 20 ⁻	13.		
CO Tex 1. 2. Ref 1.	3 : Have in depth kno 4 : Acquire knowledg it Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo	by b	2017 ition,	7. PH	I, 20 [°]	13.		
CO Tex 1. 2. Ref 1. 2.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "Se Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education 2015	by b	2017 ition,	s. 7. PH	I, 20 n, Mc	13. :Graw		
CO. Tex 1. 2. Ref 1. 2.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivabanan and N	weige on working principles and characteristics of FET. te on Power and display devices. emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edition of Semiconductor devices", McGraw Hill International Edition, 1978. as C. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th edition. McGr	2017 ition,	s. 7. PH litior	I, 20 ⁻	13. Graw		
CO. Tex 1. 2. Ref 1. 2. 3.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017	wedge on working principles and characteristics of FET. e on Power and display devices. emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 d Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. Is C. Halkias and SatyabrataJit, "Electronic Devices and Circuits", 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr	2017 ition, h Ed	<u>7.</u> PH litior	I, 20 n, Mc Educ	13. Graw		
CO- Tex 1. 2. Ref 1. 2. 3.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017.	by b	2017 ition, h Ec	ittior	I, 20 n, Mc Educ	13. Graw ation,		
CO- Tex 1. 2. Ref 1. 2. 3. 4. F-R	 3 : Have in depth knownedg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: 	weige on working principles and characteristics of FET. e on Power and display devices. emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. Is C. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGra S. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears	2017 ition, h Ed	5. 7. PH litior Hill I	I, 20 n, Mc Educ 4.	13. Graw ation,		
CO- Tex 1. 2. Ref 1. 2. 3. 4. E-R	3 : Have in depth knowledg 4 : Acquire knowledg tt Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences:	bewiedge on working principles and characteristics of FET. The on Power and display devices. Emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 and Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. Is C. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr IS. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears pics com/info/data/semicond/semiconductor/semiconductor-materia	2017 ition, h Ec raw I	5. 7. PH litior Hill I	I, 20 n, Mc Educ 4.	13. Graw ation,		
CO- Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: http://www.radio-electrop http://911electropic.com	bewiedge on working principles and characteristics of FET. The on Power and display devices. Emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. The Sec. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr S. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears <u>nics.com/info/data/semicond/semiconductor/semiconductor-materia</u>	2017 ition, h Ec raw I son, 2	5. PH litior Hill I 2014	I, 20 n, Mc Educ 4.	13. Graw ation, <u>ohp</u>		
CO- Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2. 3.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: http://911electronic.com http://911electronic.com	bewiedge on working principles and characteristics of FET. The on Power and display devices. Emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. The Sec. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr S. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears <u>nics.com/info/data/semicond/semiconductor/semiconductor-materia</u> <u>utorials ws/</u>	2017 2017 ition, ^h Ed raw I	3. PH litior Hill I 2014	I, 20 n, Mc Educ 4.	13. Graw ation,		
CO Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2. 3.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: http://911electronic.com http://911electronics-tu	weige on working principles and characteristics of FET. te on Power and display devices. emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. as C. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr d S. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears <u>nics.com/info/data/semicond/semiconductor/semiconductor-materia</u> <u>utorials.ws/</u>	2017 2017 ition, h Ec raw I	3. PH Hill I 2014	I, 20 n, Mc Educ 4.	13. Graw ation, <u>ohp</u>		
CO Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2. 3. 3.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and efferences: http://911electronic.com http://911electronics-tu	weige on working principles and characteristics of FET. The on Power and display devices. Emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. Is C. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr I S. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears nics.com/info/data/semicond/semiconductor/semiconductor-materia <u>utorials.ws/</u>	2017 2017 ition, raw I son, 2	5. PH litior Hill I 2014	I, 20 n, Mc Educ 4.	13. Graw ation,		
CO Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2. 3.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: http://911electronic.com http://911electronics-tu	by b	2017 2017 ition, h Ec raw I	5. PH litior Hill I 2014	I, 20 n, Mc Educ 4. <u>-list.</u>	13. Graw ation,		
CO Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2. 3.	3 : Have in depth knowledg 4 : Acquire knowledg t Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: http://911electronic.com http://911electronics-tu	by b	2017 2017 ition, h Ec raw I	5. PH litior Hill 1 2014	I, 20 n, Mc Educ 4.	13. Graw ation, <u>ohp</u>		
CO Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2. 3.	3 : Have in depth knownedg 4 : Acquire knowledg t Books: Donald A Neaman, "Se Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: http://911electronic.com http://911electronics-tu	bewiedge on working principles and characteristics of FET. te on Power and display devices. emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. Is C. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr IS. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears <u>nics.com/info/data/semicond/semiconductor/semiconductor-materia</u> <u>/</u> utorials.ws/	2017 2017 ition, h Ec raw I	5. PH litior Hill 1 2014 <u>pes</u>	I, 20 n, Md Educ 4. <u>-list.</u>	13. Graw ation, <u>ohp</u>		
CO Tex 1. 2. Ref 1. 2. 3. 4. E-R 1. 2. 3.	3 : Have in depth knownedg 4 : Acquire knowledg t Books: Donald A Neaman, "See Robert L. Boylestad an erence Books: Yang, "Fundamentals of Jacob Millman, Christo Hill Education, 2015 S. Salivahanan and N. 2017. Ben G. Streetman, and eferences: http://www.radio-electron http://911electronic.com http://www.electronics-tu	bewerdige on working principles and characteristics of FET. te on Power and display devices. emiconductor Physics and Devices", 4 th Edition, Tata McGraw Hill, 2 ad Louis Nashelsky, "Electronic Devices and Circuit Theory" 11 th edit of Semiconductor devices", McGraw Hill International Edition, 1978. Is C. Halkias and SatyabrataJit, "Electronic Devices and Circuits" 4 th Suresh kumar, "Electronic Devices and Circuits", 4 th edition, McGr I S. K. Banerjee, "Solid State Electronic Devices," 7 th edition, Pears nics.com/info/data/semicond/semiconductor/semiconductor-materia <u>/</u> utorials.ws/	2017 2017 ition, h Ec raw I	5. PH litior Hill I 2014	I, 20 n, Mc Educ 4.	13. Graw ation,		

18ECOE0	2 PRINCIPLES OF MODERN COMMUNICATION SYSTEMS	LTP	С			
		3 0 0	3			
Course Objecti	/es:					
1. To have the	e knowledge of the basic concepts of AM. FM and PM.					
2. To gain kr	owledge about different pulse modulation and digital modulation techniques.					
3. To gain kr	3. To gain knowledge about technical information on satellite communication and .wireless communication					
UNIT I FUNDA	MENTALS OF ANALOG COMMUNICATION	9 +	0			
Modulation: Intro	duction - Amplitude modulation: Modulator and demodulator with waveforms	- Angle Moc	dulation:			
Frequency mode	Ilation - Phase modulation - Equivalence between PM and FM - FM transr	nitters and re	eceivers			
(Block diagram a	pproach only) - Comparison of various Analog Communication System (AM	– FM – PM).				
UNIT II BASIO	S OF DIGITAL COMMUNICATION AND PULSE MODULATION	9 +	0			
Pulse Amplitude	Pulse Amplitude Modulation (PAM) – Pulse Width Modulation (PWM) – Pulse code Modulation (PCM)–Differential					
Pulse Code Mo	Julation - Pulse Position modulation: Generation and detection - Comparis	on of variou	s Pulse			
Communication	System (PAM – PWM – PCM -PPM).					
			0			
Amplitudo Shift I	AL MODULATION TECHNIQUES	Binony Dho	U CO Shift			
Koving (BBSK)	(NOK) – Frequency Shin Reying (FSK) - Minimum Shin Reying (NSK)	-Dinary Pria	diagram			
approach only) -	Comparison of various Digital Communication System (ASK – FSK – PSK –		Jiayiaiii			
		QAM).				
Unit IV SAT	ELLITE COMMUNICATION	9 +	0			
History of Satelli	es-Kepler's laws - Satellite Orbits-Geosynchrous Satellites - Satellite Classif	ication - Foo	tprints -			
Satellite system	link models: Uplink model and down link model - Muliple Access Techniq	Jes: TDMA -	FDMA-			
CDMA - Compar	ison of Multiple Access Schemes - various satellite services.					
			-			
Unit V CELL	JLAR MOBILE COMMUNICATION	9 +	0			
Cellular concept	- Frequency reuse-Channel Assignment Strategy - Hand off mechanism -	Example for v	wireless			
communication s	ystems Basic propagation models:Reflection - diffraction and scattering - Blu	ie Tooth-WLL	-Global			
System for woor	e Continunications (GSM) –GPRS.					
	Tot:		Pariode			
Course Outcom	es:	" (L+1 <i>)</i> = +31	crious			
Linon completion	of this course, the students will be able to:					
CO1 Under	stand the need for modulation and how analog modulation takes place					
CO2 : Know	the advantage of digital communication and digital modulation schemes.					
CO3 : Have	he knowledge about satellite communication.					
CO4 : Have	the basics of wireless and mobile communication.					
Text Books:						
1. Dennis Roo	ldy, John Coolen, "Electronic Communications", Prentice Hall of India, 4 th E	dition.,2016				
2. Simon Hay	kin, "Communication Systems", 4 th Edition, John Wiley & Sons, 2010					
Reference Boo	(S:					
1. Rappaport	T.S, "Wireless Communications: Principles and Practice", 2 nd Edition, Pears	on Education	, 2007			
2. H.Taub, D	<u>Schilling and G Saha, "Principles of Communication", 3rd Edition, Pearson</u>	Education, 20	007.			
3. B. P.Lathi,	'Modern Analog and Digital Communication Systems", 3 rd Edition, Oxford U	niversity Pres	SS,			
2007.	h "Principles of Communication Engineering" S CHAND _ Dublication 200	<u></u>				
	n, Ennoples of Communication Engineering ,S.CHAND Publication, 200	۷				
F-References:						
	notelvideos in/2012/11/communication-engineering html					
2. https://www.	tutorialspoint.com/analog_communication/analog_communication_introducti	on.htm				
3. https://ocw.r	nit.edu/courses/electrical-engineering-and-computer-science/6-973-commun	ication-system	n-			
design-sprin	g-2006/lecture-notes/					

	18ECOE03	MICROCONTROLLERS AND ITS APPLICATIONS	L	Т	Ρ	С			
			3	0	0	3			
Cou	Course Objectives:								
1. To Understand the basic architecture of 8051 microcontroller.									
2.	To Understand the	interrupt system of 8051 and the use of interrupts.							
3.	3. To develop skill in simple applications development with programming 8051.								
11									
	Microsoptrollor	JIURE 051 Architecture Registere Din diagram 1/0 parts functions	Intor	9	+	0			
orga	nization - External Me	emory (ROM & RAM) interfacing.	me	nai	wei	lory			
Unit	II 8051 INSTRUC	TION SET		9	+	0			
Add	essing Modes - Data	Transfer instructions - Arithmetic instructions - Logical instructions - B	ranch	n ins	truct	ions			
- Bi	- Bit manipulation instructions - Simple Assembly language program examples (without loops) to use these								
instr	uctions.								
				-					
Unit		ANGUAGE PROGRAMMING Of 8051	معاماته	9	+	0			
Asse - Arit	thmatical and Logical	Instructions.	Addre	ssin	g ivic	des			
11		AND OFRIAL BODT		•					
Unit	IV 8051 TIMERS	AND SERIAL PORT		9	+	0			
805	1 Timers and Counte	ers – Operation and Assembly language programming to generate a	LI, Bor	LZ,	L3 p	uise			
Data	Communication - R	S-232 standard - 9 pin RS232 signals - Simple Serial Port program	- Da: mina	in Δ	UI J	nhlv			
and	C to transmit a messa	age and to receive data serially	mig		3301	поту			
ana									
Unit	V 8051 INTERRU	IPTS AND INTERFACING APPLICATIONS		9	+	0			
8051	Interrupts - 8051 As	sembly language programming to generate an external interrupt usin	gas	witc	h - 8	8051			
C pr	ogramming to genera	te a square waveform on a port pin using a Timer interrupt - Interfac	ing 8	051	to A	DC-			
0804	 LCD and Stepper 	motor and their 8051 Assembly language interfacing programming.							
			. T)	45	Der	<u></u>			
Cou	rse Outcomes:	i otal (i	_++)=	: 45	Peri	ous			
Upo	a completion of this c	ourse the students will be able to:							
CO1	: Knowledge on a	architecture and programming concepts 8051 Microcontroller.							
CO2	: Knowledge on	peripheral interfacing concepts.							
CO3	: Classify and	understand assembly language instructions and skills for ass	semb	ly l	angu	age			
	programming.								
CO4	: Apply assembly	/ language programming to interface develop microcontroller applicat	ions.						
-	Dealer								
Iext	"Hooks: "The 9051 Microson	trailer and Embadded Systems		i M.		and			
1.	Ine ous i microcon	itolier and Embedded Systems – using assembly and C, Muhammi vidi and Rollin D. McKinlay: PHI 2006 / Pearson 2006	au Ai	I IVIč		anu			
2	"The 8051 Microcon	troller" Kenneth I Avala 3 rd Edition Thomson/Cengage Learning							
Refe	rence Books:								
1.	John Uffenbeck, The	80x86 Family, Design, Programming and Interfacing,3rd Edition. Pea	rson E	duca	tion, 2	2002.			
2.	A.K. Ray and K.M.B	urchandi, "Intel Microprocessors Architecture Programming and Inte	rfacir	ng",	McG	iraw			
	Hill International Edit	tion, 2000							
3.	Manish K Patel, "The	e 8051 Microcontroller Based Embedded Systems", McGraw Hill, 20	14, IS	BN:	978	-93-			
	329-0125-4.								
4.	Kaj Kamal,"Microcor	NTOHERS: Architecture, Programming, Interfacing and System Design", , Pearson Edu	cation	, 200	5				
1	http://www.potol.co.j	n/courses/Mabcourse-contents/IISc-							
1.	BANG/Microprocesso	prs%20and%20Microcontrollers/New_index1.html							
2	2 https://www.eit.edu.au/cms/resources/technical-resources/types-and-applications-of-microcontrollers								
3	https://www.edaefx.in	/8051-microcontroller-architecture/			<u> </u>				
L									

18ECOE04	BASIC VLSI DESIGN	L	Т	Ρ	С		
		3	0	0	3		
Course Objectives:							
1. To familiarize with t	he VLSI fabrication technology.						
2. To design MOS circ	2. To design MOS circuits.						
3. To get knowledge o	n FPGA and VHDL.						
Unit I VLSI FABRICAT	TION TECHNOLOGY		9	+	0		
Material Preparation – Fa	abrication processes - Fabrication process sequence for basic dev	ices	– Bi	CM	os		
process flow.							
		<u> </u>	•		0		
pMOS transistor Dorivat	ion of drain current channel length modulation threshold voltage	CM		+	U rtor		
- DC characteristics	ion of drain current – channel length modulation – theshold voltage -		531	ive	itei		
Unit III DATA PATH S	SYSTEMS		9	+	0		
			•	<u> </u>	•		
Datapath Subsystems - Ac	dition/Subtraction - One/Zero Detectors - Comparators - Counters -	Bool	ean l	_oq	ical		
Operations - Coding - Sh	hifters - Multiplication.			0			
Unit IV FPGA AND IT	S APPLICATIONS		9	+	0		
FPGA structural classifica	tion – FPGA classification on user programmable switch technologi	es –	logic	c bl	ock		
and routing techniques – F	FPGA design flow.						
Unit V INTRODUCTIO	N TO VHDL		9	+	0		
Introduction – VHDL versu	us conventional programming languages – The VHDL design flow - E	Basic	stru	ctur	е –		
entity declaration – archite	ecture body – VHDL signal and signal assignment – Basic statemel	nts –	Sim	ula	lion		
Versus synthesis – Functio	ons and procedures.						
	Total (La	-T)= (45 P	eric	ods		
Course Outcomes:		-/					
Upon completion of this co	ourse, the students will be able to:						
CO1 : Know the VLSI	fabrication technology.						
CO2 : Design MOS tra	ansistor circuits.						
CO3 : Analyze CMOS	circuits						
CO4 : Write simple pro	ograms in VHDL and know FPGA and its applications						
Text Books:	-						
1. Douglas A Pucknell,	Kamran Eshraghian, "Basic VLSI Design Principles and Applications	", P⊢	II, 20)06.			
2. V.G.Kirankumar, H.F	R.Nagesh, "Introduction to VLSI design", Pearson, 2011.						
Reference Books:							
1. Neil H.E.Weste, Dav	id Harris, Ayan Banerjee, "CMOS VLSI Design A Circuits and System	ns Pe	erspe	ectiv	/e",		
Pearson, 2012.							
2. K.Lal Kishore, VSV F	Prabnakar, "VLSI design", I.K. Int. Pub., 2010.						
3. M. Michael Val, "VLS	bi design , UKU press, 2001.						
4. PartnaPratimSahu, "	VLOI design, TMH, 2013.						
L-References:	as com/Subject/VI SI and ASIC Design						
<u>nup.//neevideolecture</u> <u>https://www.tutoriolog</u>	es.com/subject/vLSI-and-ASIC-Design						
2. <u>Intps://www.tutoffals</u>	00111.0011/0151_065001/0151_065001_056101_165001/065.11111 urcos/117101058/						
	uises/11/101030/						

	18ECOE05 BASICS OF EMBEDDED SYSTEMS L T P C							
			3	0	0	3		
Dro	roquisito: Microcontrol	lore	-	-	-			
Cou	equisite. Wilciocontrol							
COU	rse Objectives:							
1.	1. To impart knowledge on embedded system architecture and embedded development Strategies							
2.	2. To understand the bus Communication in processors and peripheral interfacing							
3.	3. To understand basics of Real Time Operating System							
Unit	BASICS OF EMB	EDDED SYSTEMS	8		+	0		
Intro	duction - Fundamenta	al Components of Embedded Systems - Challenges for Embed	ded	Sys	ten	ns -		
Exa	mples - Programming	Languages - Recent Trends in Embedded Systems - Architectur	e of	Emt	bed	ided		
Syst	ems - Embedded Desig	gn Life Cycle - Selection Process - Hardware Software Partitioning	- De	evelo	pn	nent		
Env	ronment.							
Un			0			0		
Mon		Tupos of Momory Momory Management Methods DMA Mem	9 On U	ntorf	+ 2001			
Polli	ng Vs Interrunts - Typ	- Types of Memory - Memory Management Methods - DMA - Mem	m ah	la Ir	aci	runt		
Con	trollers - Interrunt Servi	re Routines	mau		itei	ταρι		
0011								
Unit		ION INTERFACES	9		+	0		
Inte	facing Buses - Serial In	terfaces - RS232/UART - RS422/RS485 - I2C Interface - SPI Interfa	ce - l	JSB	- (CAN		
- IRI	DA - Ethernet - IEEE 80	02.11 – Bluetooth.						
Unit	IV REAL TIME OP	ERATING SYSTEMS	10)	+	0		
Rea	I-Time Concepts - Task	Management - Task Scheduling - Classification of Scheduling Alg	jorith	ms ·	- C	lock		
Driv	en Scheduling - Event D	Driven Scheduling - Resource Sharing - Priority Inheritance Protocol	- Pric	ority	Ce	iling		
Prot	ocol - Inter Task Comm	uunication - Mutex - Semaphores - Message Queues - Timers - Com	nmer	cial	RT	OS.		
Unit	V VALIDATION AN	ND DEBUGGING	9		+	0		
Hos	t and Target Machines -	 Validation Types and Methods - Host Testing - Host-Based Testing 	g Set	up -	Та	rget		
Test	ing - Remote Debugger	s and Debug Kernels - ROM Emulator - Logical Analyzer - Backgrou	nd D	ebug	зM	iode		
- In	Circuit Emulator CASE	STUDY: RFID Systems - GPS Navigation System - Developm	ent	of P	rot	ocol		
Con	verter	Total (L.T.) 45 Deviada						
Cou	ree Outeemeet	i otal (L+1)= 45 Periods						
Cou	rse Outcomes:							
Upo	n completion of this cou	urse, the students will be able to:						
CO1	: Outline the conce	epts of embedded systems.						
CO2	2 : Understand the c	concept of memory management system and interfaces.						
CO3	3 : Understand real t	time operating system						
CO	Contract I Design and Analy	yze the real-time applications of embedded-systems						
Tex	t Books:		. <u>-</u>					
1.	Arnold S Berger, —Er	mbedded Systems Design - An Introduction to Processes, Tools a	nd T	echr	niqu	ues,		
	Elsevier, New Delhi, 2	011.						
2.	Prasad K V K K, -Er	npeaded/Real-Lime Systems: Concepts, Design and Programming	-	ne U	Itin	nate		
Pof		125510115, INEW DEITH, 2003.						
	Sriram V Iver and Dr	ankai Gunta — Embedded Real-time Sustams Programming! To	ita N	lcCr	214	<u>- Hill</u>		
1.	Publishing Company I	imited New Delbi 2006	ila IV	1001	aw	-1 1111		
2	Steve HeathEmbe	added Systems Design Newnes an Imprint of Elsevier Massachus	ette	200	3			
3	Tammy Noergaard —	Embedded Systems Architecturel Newnes an Imprint of Elsevier	Mass	sach	U.S4	etts		
0.	2006		1103	Juon		<i>,</i> ,		
4	Rai Kamal 'Embedder	d System-Architecture, Programming, Design', McGraw Hill, 2013						
E-R	eferences:							
1	https://lecturenotes.in/	subject/225/embedded-system-es						
2	2 https://nptel.ac.in/courses/108102045/19							
3	https://www.coursera.co	pro/learn/introduction-embedded-systems.						
<u> </u>								

18ECOE06 BASICS OF INTERNET OF THINGS	LTPC				
	3 0 0 3				
Course Objectives:					
1 To gain knowledge on M2M and IoT design methodology					
2. To understand the various loT components.					
3. To Build small system using Raspberry Pi.					
UNIT I FUNDAMENTALS OF IOT	9 + 0				
Introduction-Definition and Characteristics of IoT- Physical design- IoT Protocols-Logic	cal design - IoT				
communication models, IoT Communication APIs- Enabling technologies – Wireless Sensor	Networks, Cloud				
Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels	and Templates -				
Domain specific IoTs.					
UNIT II M2M AND IOT DESIGN METHODOLOGY					
IoT and M2M- difference between IoT and M2M – Software defined networks. Network funct	ion virtualization-				
In The design methodology					
	9 + 0				
Sensors and actuators – Communication modules – Zighee- REID-Wi-Fi-Power sources					
UNIT IV BUILDING IOT WITH HARDWARE PLATFORMS	9 + 0				
IoT Systems-Logical Design using Python -IoT Physical Devices and End Points- IoT Devic	e - Raspberry Pi-				
Interfaces – Programming – Other IoT devices.	. ,				
· · ·					
Unit V REAL TIME APPLICATIONS	9 + 0				
Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking-Environ	ment-Weather				
monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation	•				
	T) (C Davia da				
Total (I	_+1)= 45 Periods				
Upon completion of this course, the students will be able to:					
CO1 Differentiate M2M and IoT design methodology					
CO2 : Describe the various IoT components					
CO3 · Design small system using Raspherry Pi					
CO4 : Discuss the various applications of IoT.					
Text Books:					
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie	s Press, 2015				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to	s Press, 2015 the smart grid				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012.	s Press, 2015) the smart grid				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books:	s Press, 2015 the smart grid				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: 1. Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014	s Press, 2015 the smart grid				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: 1. Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014 2. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publication	s Press, 2015 the smart grid ns, 2012.				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: 1. Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014 2. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publication 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key application	s Press, 2015 the smart grid ns, 2012. ions and				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: 1. 1. Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014 2. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publication 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applicated Protocols", Wiley Publications 2nd edition, 2013.	s Press, 2015 the smart grid ns, 2012. ions and				
Text Books: 1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie 2. Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: 1. Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014 2. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publication 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applicat Protocols", Wiley Publications 2nd edition, 2013. 4. HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2019	s Press, 2015 the smart grid ns, 2012. ions and).				
 Text Books: Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014 Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publication Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applicat Protocols", Wiley Publications 2nd edition, 2013. HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2010 	s Press, 2015 the smart grid ns, 2012. ions and).				
 Text Books: Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014 Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publication Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applicat Protocols", Wiley Publications 2nd edition, 2013. HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2019 E-References: Introduction to IoT NPTEL video lectures by Dr. Sudip Misra, IIT Kharagpur 2017. 	s Press, 2015 the smart grid ns, 2012. ions and D.				
 Text Books: Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universitie Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to and building automation', John Wiley & Sons, 2012. Reference Books: Marco Schwartz, — Internet of Things with the Arduino Yun, Packt Publishing, 2014 Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publication Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applicat Protocols", Wiley Publications 2nd edition, 2013. HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2014 Introduction to IoT NPTEL video lectures by Dr. Sudip Misra, IIT Kharagpur 2017. https://nptel.ac.in/courses/106105166 https://nptel.ac.in/courses/106105166	s Press, 2015 the smart grid ns, 2012. ions and 0.				