

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

REGULATIONS 2018

B.E. ELECTRICAL AND ELECTRONICS ENGINEERING (FULL TIME)

GOVERNMENT COLLEGE OF ENGINEERING: SALEM 636011

(An Autonomous Institution Affiliated to Anna University, Chennai) (NAAC ACCREDITED) REGULATIONS 2018

CHOICE BASED CREDIT SYSTEM Common to all B.E. (FULL TIME) DEGREE PROGRAMME

(For the students admitted to B.E Programme during the Academic year 2018-2019 and onwards)

1. DEFINITIONS AND NOMENCLATURE

In this regulation, unless the contest otherwise specifies

- (i) "Programme" means Degree Programme (i.e) B.E. Degree Programme.
- (ii) "Course" means a Theory or Practical subject that is normally studied in a semester, like Mathematics, Physics, Engineering Graphics, etc.,

2. ELIGIBILITY FOR ADMISSION

For admission to the Bachelor Degree Programme candidates will be required to satisfy the conditions of admission thereto prescribed by the Government of Tamilnadu and Anna University, Chennai. Provision is made for lateral entry candidates with Diploma in Engineering / Technology in the third semester of the programme of one of the branches of study and they will be required to satisfy the conditions of admissions thereto prescribed by the Government of Tamilnadu and Anna University, Chennai.

3. BRANCHES OF STUDY

Branches will be offered at the time of admission to the programme. The following are the branches offered in this college.

- **B.E. Civil Engineering**
- B.E. Computer Science and Engineering
- B.E. Electronics and Communication Engineering
- B.E. Electrical and Electronics Engineering
- **B.E.** Mechanical Engineering
- **B.E. Metallurgical Engineering**

4. DURATION AND STRUCTURE OF THE PROGARMME

4.1 The Minimum and Maximum period of the U.G. Full time programme are given below:

The total duration for completion of the programme shall not exceed the maximum duration irrespective of the period of break of study (vide clause 25) or prevention (vide clause 11.6) in order that the student may be eligible for the award of the degree (vide clause 23)

Programme	Minimum	Maximum
P.E. (Pogular Stream)	4 Years	7 Years
B.E. (Regular Stream)	(8 Semesters)	(14 Semesters)
	3Years	6 Years
B.E. (Lateral Entry)	(6 Semesters)	(12 Semesters)

4.2 The duration of B.E. programme shall be 4 Years for Regular Stream and 3 Years for Lateral Entry. Each academic year will be divided into two semesters. The number of working days shall be 80 days or 540 periods (which includes the days for conducting periodical tests) each of 50 minutes duration. The number of working days shall exclude study holidays, Government holidays and end semester examination days.

4.3 Categorization of Courses

Every B.E. programme will have a curriculum with syllabi consisting of theory and practical courses that shall be categorized as follows:

- i. **Humanities and Social Sciences (HS)** courses include Technical English, Ethics and Human Values, Communication skills.
- ii. **Basic Sciences (BS)** courses include Mathematics, Physics, Chemistry, Biology, Physics laboratory, Chemistry laboratory, etc.
- Engineering Sciences (ES) courses include Engineering practices, Computer Practice, Engineering Graphics, Engineering Mechanics, Basics of Electrical / Electronics / Mechanical / Civil/ Computer Engineering etc.
- iv. **Professional Core (PC)** courses include the core courses relevant to the chosen specialization/ branch.
- v. **Professional Elective (PE)** courses include the elective courses relevant to the chosen specialization/ branch.
- vi. **Open Elective (OE)** courses include the courses relevant to the chosen specialization / branch which a student can choose from the curriculum of other B.E. programmes and courses offered by the Departments under the Faculty of Science and Humanities.
- vii. **Project** includes Project Work, Mini Project, Seminar, Internship and Industrial/Practical Training.
- viii. **Mandatory** Course includes Environmental Science, Constitution of India, Induction Programme/**NCC / NSS / SPORTS / YRC/Yoga** activities.
- **4.4** The courses of study shall be both theory and practical and shall be in accordance with the prescribed syllabi.
- **4.5** Each semester curriculum shall normally have a blend of lecture and practical courses not exceeding 9 courses. However Employability and Enhancement course(s) may be included as additional course.

- **4.6** A student who has passed all the courses prescribed in the curriculum for the award of the degree shall not be permitted to re-enroll to improve his/her marks in a course or the aggregate marks.
- **4.7** The medium of instruction, examination and project report shall be English, except for courses on language other than English.

4.8 Internship

The Industrial / Practical Training / Internship / Summer Project shall carry 100 marks and shall be evaluated through continuous assessment only. At the end of Industrial / Practical training / Internship / Summer Project, the student shall submit a detailed report on the training undergone and a certificate from the organization concerned. The evaluation will be made based on this report and Viva-voce Examination, conducted internally by a three member Departmental Committee constituted by the HOD. Certificates (issued by the Organization) submitted by the student shall be attached to the mark list and sent to COE by the HOD with due recommendations. The training will appear in the list of Value Added Courses in the Grade Sheet with the credits (additional/extra credits) obtained.

4.9 Credit Assignment

Each course is assigned certain number of credits based on the following

Contact period per week	CREDITS
1 Lecture Period	1
1 Tutorial Periods	1
2 Practical Periods	1
(Laboratory / Seminar /	
Project Work / Mini	
Project/ Internship etc.)	

4.10 One Credit Courses

One credit courses shall be offered by a Department with the prior approval from the Board of Studies. The details of the syllabus must be approved by the Board of Studies. The credits earned through the one credit courses shall be over and above the total credit requirement prescribed in the curriculum for the award of the degree. They shall be allowed to take one credit courses offered in other Departments also with the permission of Head of the Department offering the course.

4.11 Online Courses / Self Study Courses

- **4.11.1** Students may be permitted to enroll for one Online Course or Self Study Course with the approval of respective Board of Studies.
- **4.11.2** The students can opt for Self Study Course from the list of Professional Electives provided, the students does not have any standing arrears and the CGPA should be 7.5 and above. The purpose of the course is to permit the student to study a course

of the student's choice. The students shall study on their own under the guidance of a faculty member. No formal lectures need to be delivered. One Faculty member assigned by the HOD shall be responsible for the periodic monitoring and assessment of the student in that course.

4.11.3 The Self Study Course or online Course of 3 credits can be considered instead of one Professional Elective Course.

5 COURSE ENROLLMENT AND REGISTRATION

- **5.1** Each student, on admission shall be assigned to a Faculty Advisor (vide clause 6) who shall advise and counsel the student about the details of the academic programme and the choice of courses considering the student's academic background and career objectives.
- **5.2** Every student shall enroll for the course of the succeeding semester in the current semester. However, the students shall confirm the enrollment by registering for the courses within the first five working days after the commencement of the concerned semester.
- **5.3** No course shall be offered by a Department unless a minimum of 10 students register for that course.
- **5.4** After registering for a course, a student shall attend the classes, satisfy the attendance requirements, earn Continuous Assessment marks and appear for the End Semester Examinations.
- **5.5** Each student on admission shall register for **all the courses prescribed in the curriculum in** the student's **first Semester of study.**
- **5.6** The enrollment for the courses of the Semesters II to VIII will commence 10 working days prior to the last working day of the preceding semester. The student shall enroll for the courses with the guidance of the student's Faculty Advisor. If the student wishes, the student may drop or add courses (vide clause 5.7) within **five** working days after the commencement of the concerned semester and complete the registration process duly authorized by the Faculty Advisor.
- 5.7 Flexibility to Add or Drop courses
 - 5.7.1 A student has to earn the total number of credits specified in the curriculum of the respective Programme of study in order to be eligible to obtain the degree. However, if the student wishes, then the student is permitted to earn more than the total number of credits prescribed in the curriculum of the student's programme.
 - 5.7.2 From the III to VIII semesters, the student has the option of registering for additional courses or dropping existing courses. Total number of credits of such courses cannot exceed 6.
 - 5.7.3 The student shall register for the project work in the respective semester only.

5.8 Fast Track System

5.8.1 Fast Track System is for meritorious B.E Full time students.

- 5.8.2 With the eligibility criteria he/she will be permitted to take up and complete an eight semester professional core/professional elective in the fifth semester, a professional elective in the sixth semester and a professional elective in the seventh semester under Fast track system.
- 5.8.3 Eligibility Criteria for opting Fast Track System: Students should have earned minimum CGPA of 7.5 up to previous semesters. There should not be any standing arrears up to IV semester for enrollment of a Professional Core/Professional elective in the V semester of study, up to V semester for enrollment of a Professional Elective in the VI semester of study and up to VI semester for enrollment of a Professional Elective in the VII semester of study.
- 5.8.4 If the eligibility is not satisfied at any point of time the candidate will not be permitted to continue in FAST TRACK SYSTEM and further he/she has to complete the course as per the regular system.
- 5.8.5 FAST TRACK SYSTEM is optional.

6 FACULTY ADVISOR

To help the students in planning their courses of study and for general advice on the academic programme, the Head of the Department of the students will attach a certain number of students to a teacher of the Department who shall function as Faculty Advisor for those students throughout their period of study. The Faculty Advisor shall advise the students in registering of courses, authorize the process, monitor their attendance and progress and counsel them periodically. If necessary, the Faculty Advisor may also discuss with or inform the parents about the progress / performance of the students concerned.

The responsibilities for the faculty advisor shall be:

- To inform the students about the various facilities and activities available to enhance the student's curricular and co-curricular activities.
- > To guide student enrollment and registration of the courses.
- > To authorize the final registration of the courses at the beginning of each semester.
- To monitor the academic and general performance of the students including attendance and to counsel them accordingly.

7 SYSTEM OF EXAMINATION

Performance in each courses of study shall be evaluated based on (i) continuous internal assessment throughout the semester and (ii) an end – semester examination.

7.1 THEORY

End-semester Examination will be conducted in all theory courses at the end of each semester for all the programmes. The maximum marks of each course shall be 100, out of which the

continuous internal assessment will carry 40 marks, while the end semester Examination will carry 60 marks.

7.2 PRACTICAL / MINI PROJECT

The practical classes for all the Practical/Laboratory component courses will be assessed continuously. The maximum marks for the Practical/Laboratory component courses shall be 100, out of which continuous internal assessment will carry 40 marks and the end semester practical examination will carry 60 marks. If any practical course contains Part A and B components, the maximum for each Part of the laboratory will be 50, out of which the continuous internal assessment will carry 20 marks, and the end semester practical examination will carry 30 marks. The end semester practical examination for award of marks shall be conducted by both Internal and External examiners.

7.3 PROJECT WORK AND VIVA - VOCE

For the project work and viva – voce examination, the maximum marks shall be 200, comprising 80 marks for internal assessment and 120 marks for the end semester examination. The end semester marks of 120 shall be awarded by both the Internal and External examiners, the project report shall carry a maximum of 40 marks (same mark must be awarded to every student of the project group) The viva-voce examination shall carry 80 marks (awarded to each student of the project group based on the individual performance in the viva-voce examination conducted by External examiner, and the Internal Examiner)

8 CLASS COMMITTEE

- 8.1 A Class Committee consists of teachers of the class concerned, student representatives and a chairperson selected from among the faculty who do not teach that class. It is like the 'Quality Circle' (more commonly used in industries) with the overall goal of improving the teaching-learning process. The functions of the class committee include
 - Solving problems experienced by the students in the class room and in the laboratories.
 - Clarifying the regulations of the degree programme and the details of rules therein particularly clauses 10, 11, 12 and 13 which should be displayed in the college Web site.
 - Informing the student representatives the academic schedule including the dates of assessments and the syllabus coverage for each assessment.
 - Informing the student representatives the details of Regulations regarding weightage used for each assessment. In the case of practical courses (laboratory / drawing / Project work / seminar etc.) the breakup of marks for each experiment / exercise / module of work, should be clearly discussed in the class committee meeting and informed to the students.
 - Analyzing the performance of the students of the class after each test and finding the ways and means of improving the slow learners.
 - Identifying slow learner students, if any, and requesting the teachers concerned to provide additional help or guidance or coaching to such students.

- **8.2** The class committee for a class under a particular branch is normally constituted by the head of the department. However, if students of different branches are mixed in a class (like the first semester which is generally common to all branches), the class committee is to be constituted by the Principal.
- **8.3** The class committee shall be constituted within the first week of each semester.
- **8.4** At least 4 student representatives (usually 2 boys and 2 girls) shall be included in the class committee.
- **8.5** The chairperson of the class committee may invite the Faculty adviser(s) and the Head of the department to the meeting of the class committee.
- **8.6** The Principal may participate in any class committee of the institution.
- **8.7** The chairperson is required to prepare the minutes of every meeting, submit the same to Principal within two days of the meeting and arrange to circulate it among the students and teachers concerned. If there are some points in the minutes requiring action by the Head of the Institution the same shall be brought to the notice of Head of the institution by the head of the Department/Chief Faculty advisor.
- 8.8 The first meeting of the class committee shall be held within fifteen days from the date of commencement of the semester, in order to inform the students about the nature and weightage of assessments with the framework of the regulations. Two or three subsequent meeting may be held in a semester at suitable intervals. The Class Committee Chairman shall put on the Notice Board the cumulative attendance particulars of each course of each student at the end of every such meeting to enable the students to know their attendance details to satisfy the clause 11 of this Regulation. During these meetings the student members representing the entire class, shall meaningfully interact and express the opinions and suggestions of the other students of the class in order to improve the effectiveness of the teaching-learning process.

9 COURSE COMMITTEE FOR COMMON COURSES

Each common theory course offered to more than one discipline or group shall have a "Course Committee" comprising the entire faculty teaching the common course, with one of them nominated as Course Coordinator. The nomination of the course Coordinator shall be made by the Head of the Department / Principal depending upon whether all the teachers teaching the common course belong to a single department or to several departments. The 'Course committee' shall meet in order to arrive at a common scheme of evaluation for the test and shall ensure a uniform evaluation of the tests.

10 PROCEDURE FOR AWARD OF MARKS FOR INTERNAL ASSESSMENT

10.1 Theory Courses

10.1.1 Unit Tests [75% weightage]: Three tests, each carrying FIFTY (50) marks, shall be conducted by the Department / Institution. The total marks of three tests shall be

reduced to 75 marks. However, a re-test, at the discretion of the Head of Department and approved by the Head of Institution, may be conducted for candidates with genuine reasons.

- 10.1.2 Assignment [12.5% weightage]: The total marks of Three assignments carrying 10 Marks each shall be reduced to 12.5 marks.
- 10.1.3 Tutorial / Objective Test [12.5% weightage]: The total marks of Three Tutorial / Objective Test carrying 10 Marks each shall be reduced to 12.5 marks.

The total of 100 marks shall be reduced to 40 marks (rounded off to the nearest integer).

10.2 Practical Courses with Laboratory Component

Every Practical exercise / experiment shall be evaluated based on conduct of exercise / experiment and records maintained.

There shall be atleast one test. The criteria for arriving at the internal assessment marks are:

Experiment / Record / Practical classes Performance	: 60% Weightage
Practical Test	: 40% Weightage

The total of 100 marks shall be reduced to 40 marks (rounded off to the nearest integer).

10.3 Project Work

There shall be three assessments during the semester by a review committee. The students shall make a presentation on the progress of the project before the committee. The Head of the Department shall constitute the review committee consisting of HOD, Guide and a senior member of faculty. The criteria for arriving at the internal assessment marks for the Project Work evaluated for 80 marks are:

Work assessed by the Project Guide : 50% Weightage

Work assessed by the Committee : 50% Weightage

The total of 100 marks shall be reduced to 80 marks (rounded off to the nearest integer).

10.4 Faculty incharge of the subject

Every teacher is required to maintain an 'ATTENDANCE AND ASSESSMENT RECORD' for every semester which consists of attendance marked in each theory / Laboratory / EEC class, the assessment marks and the record of class work (topics covered), for each course handled by the teacher. This should be submitted to the Head of the Department periodically (at least three times in a semester) for checking the syllabus coverage and the records of assessment marks and attendance. The Head of the Department will affix his/her signature and date after due verification. At the end of the semester, the record should be verified by the Head of the Department who shall keep this document in safe custody (for seven years). The records of attendance and assessment of both current and previous semesters should be available for inspection.

10.5 Assessment for Industrial / Practical Training / Internship / Summer Project

The Industrial / Practical Training / Internship / Summer Project shall carry 100 marks and shall be evaluated through Continuous Assessment only. At the end of Assessment for Industrial /

Practical Training / Internship / Summer Project, the student shall submit a detailed report on the training undergone and a certificate from the organization concerned. The evaluation will be made based on this report and a Viva-voce Examination, conducted internally by a three member Departmental Committee constituted by the HOD. Certificates (issued by the Organization) submitted by the student shall be attached to the mark list and sent to COE by the HOD with due recommendations. The training will appear in the list of value Added Courses in the grade sheet with the credits (additional / extra credits) obtained.

10.6 Assessment for Value Added one Credit Course

The Value Added One Credit Course shall carry 100 marks and shall be evaluated through **Continuous Assessment only.** Two assessments shall be conducted during the semester by the Department concerned. The total marks obtained in the tests shall be reduced to 100 marks and rounded to the nearest integer. The HOD may identify a faculty member as Coordinator for the course. A committee consisting of the HOD, staff handling the course (if available), Programme Coordinator and a Senior Faculty nominated by the HOD shall monitor the evaluation process.

10.7 Assessment for Online Course

Students may be permitted to earn Online Courses (which are provided with certificate) with the approval of Board of Studies and HOD subject to a minimum of three credits. This Online Course of 3 credits can be considered instead of one Elective Course. Respective Boards of Studies will take a decision on the evaluation methodology for the online course. The BOS can decide whether to evaluate through End Semester Examination only and the same way be conveyed to the COE, at the beginning of the semester whenever the course is offered. The students need to obtain certification or credit to become eligible for writing the End Semester Examination to be conducted by the Institution. The HOD may identify a Faculty member Coordinator for the course, who is responsible for the evaluation of Continuous Assessment.

10.8 Assessment for Self Study Course

The faculty members approved by the HOD shall be responsible for periodic monitoring and evaluation of the self study course. The course shall be evaluated through continuous assessment and end semester examination. The evaluation methodology shall be the same as that of a theory course.

10.9 Assessment for MOOC Courses

Students may be permitted to earn credits through MOOC Courses with the approval of Board of Studies and HOD subject to a maximum of six credits per semester. The credits earned from the MOOC courses can be transferrable subject to the approval of the respective Performance Analysis Committee and no additional assessment is required.

11 REQUIREMENTS FOR COMPLETION OF A SEMESTER

A candidate who fulfils the following conditions shall be deemed to have satisfied the requirements for completion of a semester.

- **11.1** He/She secures not less than 75% of attendance for each course with the total number of working hours specified in the respective curriculum.
- **11.2** Candidates representing University in State / National / International / Inter University Sports events, paper or project presentation in National / International Conference with prior permission from the Head of the Institution are given exemption upto 10% of the required attendance and such candidates shall be permitted to appear for the current semester examination on condonation (attendance 65% to 74%)
- 11.3 Candidates who could not attend classes continuously due to Trauma/Infectious diseases / Surgeries requiring continuous medical attention, on submission of a valid medical certificate in time, obtained from a Government doctor not below the rank of Assistant Surgeon, are given exemption upto 10% of the required attendance and shall be permitted to appear for the current semester examination on condonation (attendance 65% to 74%)
- **11.4** Permission mentioned in 11.2 and 11.3 can be allowed only twice during his/her entire course of study.
 - **11.4.1** Fees for 1st time condonation Rs.1000/- for one course and Rs. 300/- for every additional course
 - **11.4.2** Fees for 2nd time condonation Rs.5000/- for one course and Rs. 1000/- for every additional course
- **11.5** His/her conduct should be certified to be satisfactory by the Head of the Department concerned and Head of the Institution.
- **11.6** Candidate who does not secure 75% attendance in any one or more courses, will not be permitted to write the end semester examinations for that/those courses. However he will be permitted to move to the next semester and re-register for those courses in the next semester after earning attendance and internal marks from the course coordinator through contact hours.
- 11.7 Candidates who do not complete all the courses in that semester (as per clause 11.1, 11.2 and 11.3), will not be permitted to write the end-semester examination and are not permitted to move to next semester. However, they will be permitted to write the arrear examination, if any. They are required to repeat the incomplete semester in the next academic year getting the necessary permission from the authorities.

12 REQUIREMENTS FOR APPEARING FOR END SEMSTER EXAMINATION

A candidate shall normally be permitted to appear for the end semester examination of the current semester, if he/she has satisfied the semester completion requirements (subject to Clause 11.1 with 11.2 and 11.3) and has registered for examination in all courses of that semester. Registration is mandatory for arrear subjects along with current semester examinations, failing which the candidate will not be permitted to move to the higher semester.

12.1 Reappearance Registration

- **12.1.1** If a student fail in a theory course, the reappearance registration for that course in the subsequent semester is mandatory.
- **12.1.2** The student may attend the classes for the reappearance registration courses, if the student wishes. However, the attendance requirement (vide clause 11) is not compulsory for such courses.

13 END – SEMESTER EXAMINATION

- **13.1** There shall be one end semester examination of 3 hour duration in each lecture based course.
- **13.2** The Project report of B.E. programme will be evaluated based on the report and a viva-voce examination by an External Examiner and an Internal Examiner.
- **13.3** The following will be the weightage for different courses.

13.3.1 Theory courses	: Internal Assessment – 40%							
	: End-Semester Examination – 60%							
13.3.2 Laboratory based Courses	: Internal Assessment – 40%							
	: End-Semester Examination – 60%							
13.3.3 Project work [Maximum Marks: 200]	: Internal Assessment – 40%							
	: End-Semester Examination – 60%							
Internal Assessment – 80 marks	: End-Semester Examination – 120 Marks							
[Supervisor: 40 marks, committee: 40 marks]	: [evaluation for project report (by External							
	Examiners): 40 Marks and Viva-Voce: 80 marks							
	(Internal and External Examiners]							

14 PASSING REQUIREMENTS

14.1 The minimum number of total credits to be earned through successful completion of the courses of study of the respective branch by a candidate to qualify for the award of degree in the various branches of study is provided below.

Branch of study	Minimum number of credits to be earned through successful completion of the courses of study of the respective branch, for the award of degree						
	For regular entry	For lateral entry					
	(entry at first Semester)	(entry at third semester)					
Civil Engineering	160	121					
Computer Science & Engineering	159	120					
Electronics & Communication Engineering	160	121					
Electrical & Electronics Engineering	157	118					
Mechanical Engineering	160	121					
Metallurgical Engineering	161	122					

- **14.2** For each theory and laboratory courses, examination will be conducted for 100 marks. A candidate who secures 50% marks and above in the end semester examination, and 50% in continuous assessment and end semester examination both put together, shall be declared to have passed the examination in that course.
- **14.3** A candidate who successfully completes the course requirements and passes all the prescribed examinations in all the eight semesters within a maximum period of 7 years (14 semesters), reckoned from the commencement of the first semester to which the candidate was admitted in regular stream and [six semesters within a maximum period of 6 years (12 semesters), reckoned from the commencement of the third semester to which the candidate was admitted for lateral entry], is eligible to get the degree.

15 REVALUATION

- 15.1 Copies of answer script for theory course(s) can be obtained from the Office of the Controller of Examinations on payment of a prescribed fee specified for this purpose through proper application.
- 15.2 A candidate can apply for revaluation or photo copy cum revaluation of his/her semester examination answer paper in a theory course, within a week from the declaration of results, on payment of a prescribed fee through proper application to the Controller of Examinations, as per norms given by the chairman, Academic Council. Revaluation is not permitted for Practical Courses and for Project work.

16 CHALLENGING THE REVALUATION

Challenging the revaluation is permitted for those students who have applied for photocopy of answer script. The copy of the answer script is to be valued by a competent authority and the valued script should be submitted to COE's office along with prescribed fee for challenging the revaluation within 2 days after declaration of the revaluation results.

17 MALPRACTICE

If a student indulges in malpractice in any of the end-semester examinations, he/she shall be liable to face punitive action as prescribed by the Controller of Examination, Government College of Engineering, Salem.

18 PROCEDURE FOR USING SCRIBE

If a candidate is physically challenged / meets with accident or suffers from ill health at the time of examination, then he/she may be permitted to use a scribe to write the examination on payment of a prescribed fee through proper application to the Office of the Controller of Examinations. In such case, maximum one hour extra time will be permitted. The scribe shall be a non-engineering student/ graduate.

19 PROVISION FOR WITHDRAWAL FROM EXAMINATION

- **19.1** A candidate who satisfies Clause 12, may for valid reasons and on prior application, be granted permission to withdraw from appearing for the examination of any one course or consecutive examinations of more than one course in a semester examination.
- **19.2** Such withdrawal shall be permitted only ONCE during the entire period of study of the degree programme.
- **19.3** Withdrawal application is valid only it is made 10 days prior to the commencement of the examination in that course or courses and is recommended by the Head of the Department and approved by the Head of the Institution.
- **19.4** Notwithstanding the requirement of the mandatory TEN days notice, application of withdrawal for special case under extraordinary conditions will be considered on the merit of the case.
- **19.5** Withdrawal shall not be construed as an appearance for the eligibility of a candidate for First Class with Distinction. This provision is also applicable to those who seek withdrawal during VIII semester.
- **19.6** Withdrawal from the end semester examination is NOT applicable to arrear subjects of previous semesters.
- **19.7** The candidate shall reappear for the withdrawn courses during the examination conducted in the subsequent semester.

20 AWARD OF THE LETTER GRADES

20.1 The letter grade and the grade point are awarded based on percentage of marks secured by a candidate in individual course as detailed below:

Range of Total Marks	Letter Grade	Grade Points (GP)
90 to 100	S	10
80 to 89	А	9
70 to 79	В	8
60 to 69	С	7
55 to 59	D	6
50 to 54	E	5
0 to 49	RA	0
Incomplete	I	0
Withdrawal	W	0
Withheld	WH	0

"RA" denotes "reappearance" in the course.

- "I" denotes "incomplete" as per clause 11.1 and hence prevention from writing End Semester Examination.
- "W" denotes "withdrawal" from the course.

"WH" denotes "withheld" due to malpractice etc.

- 20.2 For the Co-curricular activities such as National Cadet Corps (NCC)/ National Service Scheme (NSS) / SPORTS / YRC, a satisfactory / not satisfactory grading will appear in the mark sheet. Every student shall put in a minimum of 75% attendance in the training and attend the camp compulsorily. The training and camp shall be completed during the first year of the programme. However, for valid reasons, the Head of the Institution may permit a student to complete this requirement before the completion of final semester. A satisfactory grade in the above co-curricular activities is compulsory for the award of degree.
- **20.3** For zero credit courses Excellent / Good / Satisfactory grading will appear in the grade sheet.

21 PROCEDURE FOR COMPLETING THE PROGRAMME

- **21.1** A candidate, who, for some reason has discontinued the programme can join the programme of study in any semester only at the time of its normal commencement in the Institution for regular students, upon satisfying all the following conditions:
 - (a) He / she should have completed the course of study of the previous semesters.
 - (b) He / she should be eligible to register for the examinations and satisfy rule 11.1
 - (c) He / she should have registered for all the examinations of the previous semesters.
- **21.2** A candidate will be permitted to proceed from one semester to the next higher semester only if he / she satisfies the regulation for eligibility to appear for the end-semester examination in the semester concerned, subject to the condition that the candidate should register for all the arrear courses in the lower semesters along with the current (higher) semester courses.
- 21.3 A candidate should have completed the B.E Degree course within a period of SEVEN consecutive academic years (14 semesters) for regular stream [SIX consecutive academic years (12 semesters) for lateral entry] from the date of admission to the course, even if the candidate discontinues and rejoins subsequently, to be eligible for the award of the degree.

22 ISSUE OF GRADE SHEETS AND GPA, CGPA CALCULATION

Individual Grade sheet for each semester will be issued through the Head of the Department concerned, after the publication of the results with following details.

- > The list of courses enrolled during the semester and the grade scored.
- > The Grade Point Average (GPA) for the semester and
- The Cumulative Grade Point Average (CGPA) of all courses enrolled from first semester onwards.

GPA is the ratio of the sum of the products of the number of credits of courses registered and the points corresponding to the grades scored in those courses, taken for all the courses, to the sum of

the number of credits of all the courses in the semester. $GPA = \frac{Sum \text{ of } [CXGP]}{Sum \text{ of } C}$

Where C – credit of a particular subject/Course

GP - grade point obtained by the student in

the respective subject/Course.

CGPA will be calculated in a similar manner, considering all the courses enrolled from first semester. "RA", "I" and "W" grades will be excluded for calculating GPA and CGPA.

23 ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared to be eligible for the award of the B.E. Degree provided the candidate has

- i) Successfully completed the course requirements and has passed all the prescribed examinations in all the 8 semesters within a maximum period of 7 years for regular stream (6 semesters within a maximum period of 6 years for lateral Entry) from the commencement of first semester (third semester) to which the candidate was admitted.
- ii) No disciplinary action is pending against him/her.
- iii) Successfully completed NCC/NSS/SPORTS/YRC requirements.

24 CLASSIFICATION OF THE DEGREE AWARDED

24.1 FIRST CLASS WITH DISTINCTION

A candidate who qualifies for the Degree by passing the examinations in all courses of the entire programme, in first attempt, within a period of eight semesters for regular stream (six semesters for lateral entry) from the date of admission to the programme with CGPA not less than 8.50 for the entire programme shall be declared to have passed the examination for the degree in FIRST CLASS WITH DISTINCTION. For this purpose the withdrawal from examination will not be construed as an appearance. Further, the authorized break of study will not be counted for the purpose of classification.

24.2 A candidate transferred from other Institution, who qualifies for the degree by passing the examinations in all courses of the entire programme in first attempt, within a period of eight Semesters for regular stream and six semesters for Lateral Entry stream from the date of admission to the programme with CGPA not less than 8.50 for the entire programme shall be declared to have passed the examination for the degree in FIRST CLASS WITH DISTINCTION. For this purpose the withdrawal from examination will not be construed as an appearance. Further, the authorized break of study will not be counted for the purpose of classification.

24.3 FIRST CLASS

A candidate who qualifies for the award of the Degree, having passed the examinations in all the courses of the entire programme (first to eight semesters) within a maximum period of NINE consecutive semesters for regular stream (third to eight semesters) for lateral entry stream within a maximum period of SIX semesters, from the date of admission to the programme with CGPA not less than 7.00 for the entire programme, shall be declared to have passed the

examination for the degree in FIRST CLASS. For this purpose, the authorized break of study will not be counted for the purpose of classification.

24.4 SECOND CLASS

All other successful candidates shall be declared to have passed the examinations for the Degree in SECOND CLASS.

24.5 A candidate who is absent for semester examination in a course / project work after having registered for the same shall be considered to have attempted that examination for the purpose of classification.

25 TEMPORARY BREAK OF STUDY FROM A PROGRAMME

- **25.1** Break of study shall be granted only ONCE for valid reasons for a maximum of one year during the entire period of study of the degree programme. However, in extraordinary situation the candidate may apply for additional break of study not exceeding another one year by paying prescribed fee for break of study. If candidate intends to temporarily discontinue the programme in the middle of the semester for valid reasons, and to rejoin the programme in a subsequent year, permission may be granted based on the merits of the case provided he / she applies to the Head of the Institution (through Head of the Department) in advance, but not later than the last date for registering for the end semester examination of the semester in question, through the Principal of the Institution stating the reasons there for and the probable date of rejoining the programme.
- **25.2** The candidate permitted to rejoin the programme after the break shall be governed by the Curriculum and Regulations in force at the time of rejoining. If the Regulation is changed, then, those candidates may have to do additional courses as prescribed by the head of the department and approved by the Academic Council.
- **25.3** The authorized break of study (for a maximum of one year) will not be counted for the duration specified for passing all the courses for the purpose of classification. (vide clause 23). However, additional break of study granted will be counted for the purpose of classification.
- **25.4** The total period for completion of the Programme reckoned from, the commencement of the first semester to which the candidate was admitted shall not exceed the maximum period specified irrespective of the period of break of study (vide clause 4.1) in order that he/she may be eligible for award of the degree.
- **25.5** If any student is detained for want of requisite attendance, progress and good conduct, the period spent in that semester shall not be considered as permitted 'Break of Study' or 'Withdrawal' (clause 18 and 24) and is not applicable in this case.

26 DISCIPLINE

Every student is required to observe discipline and decorous behaviour both inside and outside the college and not to indulge in any activity which will tend to bring down the prestige of the college. In

the event of an act indiscipline being reported, the Principal shall constitute a discipline committee consisting of three Heads of Department, of which one should be from the faculty of the student, to inquire into acts of indiscipline. The disciplinary action is subject to review by the University in case the student represents to the University. Any expulsion of the student from the college shall be with prior concurrence from Director of Technical Education / University.

27 RANK OF A STUDENT

A candidate who qualifies for the Degree by passing the examination in all courses of the entire programme in the first attempt within a period of EIGHT Semesters from the date of admission to the course can be given his/her position in the class as rank. The rank is determined from the I Semester to VIII Semester end semester examination mark percentage. Students transferred from other Institutions to Government College of Engineering, Salem and lateral entry students are not eligible for rank.

28 PERSONALITY AND CHARACTER DEVELOPMENT

All students shall enroll, on admission, in any one of the personality and character programmes (the NCC / NSS / SPORTS / YRC). The programme shall include classes on hygiene and health awareness and also training in first-aid.

National Cadet Corps (NCC) programme will have about 20 parades.

National Service Scheme (NSS) will have social service activities in and around college/institution. SPORTS Games, Drills, Physical exercises etc.

Youth Red Cross (YRC) will have activities related to social services in and around college/institution. While the training activities will normally be during weekends, the camp will normally be during vacation period.

29 REVISION OF REGULATIONS CURRICULUM AND SYLLABI

The college may from time to time revise, amend or change the regulations, scheme of examinations and syllabus, if found necessary.

VISION OF THE DEPARTMENT:

To make ethically and emotionally strong Electrical Engineers of high caliber capable of meeting the national and global technological challenges for the well being of the Society.

MISSION OF THE DEPARTMENT:

- To Impart state of the art Knowledge in Electrical Science and Technology through under-graduate and graduate programmes
- To develop the Electrical Engineering Department as a centre of Excellence in Power Electronics and Industrial Drives.
- To provide Knowledge base and Consultancy services to the society at large and in particular for the upliftment and well being of the rural and tribal communities.

VISION AND MISSION OF THE INSTITUTION:

Vision

- We envision our students as excellent Engineers not only in the field of Science and Technology, but also in good citizenship and discipline.
- •
- Our commitment lies in producing comprehensive knowledge seekers and humane individuals, capable of building a strong and developed nation.

Mission

- To impart update technical education and knowledge.
- To groom our young students to become professionally and morally sound engineers.
- To teach global standards in production and value based living through honest and scientific approach.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- **PEO1:** Graduates will be employed electrical engineering profession as experts in solving electrical engineering problems by their depth of understanding in core electrical knowledge and/or completed/pursuing post graduate study or research.
- **PEO 2:** Graduates will have awareness for lifelong learning and continued professional development
- **PEO 3:** Graduates will demonstrate creativity in their engineering practices including entrepreneurial and collaborative ventures with strategic thinking, planning and execution

- **PEO 4** Graduates will communicate effectively, recognize and incorporate societal needs and constraints in their professional endeavors and practice their profession with high regard to legal and ethical responsibilities
- **PEO 5:** Graduates will have necessary foundation on computational platforms and software applications related to the field of electrical and electronics engineering

PROGRAM OUTCOMES (POs):

Engineering Graduates will be able to

- **PO1** Apply knowledge of mathematics and engineering sciences to the solution of complex electrical engineering problems
- **PO2** Identify, formulate, and solve complex engineering problems using multidisciplinary knowledge.
- **PO3** Design solutions for complex engineering problems and system design to meet the needs of public considering the health, safety, cultural, societal, and environmental factors.
- **PO4** Apply research-based knowledge and research methods to complex problems including design, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Create, select, and apply appropriate techniques, simulation tools for prediction and modeling of engineering activities with their limitations.
- **PO6** Assess societal, health, safety, legal and cultural issues relevant to the electrical engineering profession.
- **P07** Provide the electrical engineering solutions for sustainable development.
- **PO8** Apply ethical principles and responsibilities for electrical engineering practice.
- **PO9** Function effectively as an individual member or leader in diverse teams, and in multidisciplinary projects.
- **PO10** Communicate effectively with the engineering community and with society at large, such as, write effective reports and design documentation, and make effective presentations.
- **PO11** Apply engineering and management principles to one's own work, or in a team, to manage projects in multidisciplinary environments.
- **PO12** Recognize the need of lifelong learning for professional development and personnel growth.

PROGRAM SPECIFIC OUTCOMES (PSOs):

Electrical and Electronics Engineering Graduates will be able to

Apply knowledge of mathematics, engineering sciences and multidisciplinary knowledge to the solution of electrical and electronics engineering problems

- **PSO2:** Apply research-based knowledge, appropriate techniques, IT tools to complex Electrical and Electronics Engineering problems including design, analysis, interpretation of data, and synthesis of the information to provide valid conclusions.
- **PSO3:** Apply ethical principles, management skills and responsibilities for electrical and electronics engineering profession.
- **PSO4:** Recognize the need of independent and lifelong learning for professional development and personnel growth

GOVERNMENT COLLEGE OF ENGINEERING: : SALEM – 636011 (NAAC Accredited)

Regulations 2018-Autonomous Courses (For Students Admitted from 2018-2019) B.E. Electrical and Electronics Engineering- Full Time

Course Code	Course Title	~			Hour	rs/weel	k	Maximum Marks			
		Category	Contact periods	L	Т	Ρ	С	CA	FE	Total	
		FIR	ST SEME	STER							
			THEOR	Y							
18EN101	Professional English	HS	2	2	0	0	2	40	60	100	
18MA102	Matrices, Calculus and Differential Equations	BS	4	3	1	0	4	40	60	100	
18CY101	Chemistry	BS	4	3	1	0	4	40	60	100	
18CS101	Fundamentals of Problem Solving and C Programming	ES	3	3	0	0	3	40	60	100	
			PRACTIC	AL							
18EN102	Professional English Laboratory	HS	2	0	0	2	1	40	60	100	
18CS102	Computer Practice Laboratory	ES	4	0	0	4	2	40	60	100	
18ME102	Workshop/Manufacturing Practices	ES	5	1	0	4	3	40	60	100	
18MC102	Induction Programme	MC					0	100	-	100	
		SEC	OND SEM	ESTE	R						
			THEOR	Y							
18MA204	Fourier Series and Transforms	BS	4	3	1	0	4	40	60	100	
18PH202	Physics- Waves & Optics and Quantum Mechanics	BS	4	3	1	0	4	40	60	100	
18ME101	Engineering Graphics and Design	ES	5	1	0	4	3	40	60	100	
18CM201	Basic Civil and Mechanical Engineering	ES	4	4	0	0	4	40	60	100	
			PRACTIC	AL							
18PH103	Physics Laboratory	BS	3	0	0	3	1.5	40	60	100	
18CY102	Chemistry Laboratory	BS	3	0	0	3	1.5	40	60	100	

18EN103	Professional Communication Laboratory	HS	2	0	0	2	1	40	60	100
18CE201	Basic Civil Engineering Laboratory	ES	2	0	0	2	1	40	60	100
		тні	RD SEME	ESTER						
			THEOR	Y						
18MA302	Statistics and Numerical Methods	BS	4	3	1	0	4	40	60	100
18EE301	Electric Circuit Analysis	PC	4	3	1	0	4	40	60	100
18EE302	Electromagnetic Fields	PC	4	3	1	0	4	40	60	100
18EE303	DC Machines and Transformers	PC	3	3	0	0	3	40	60	100
18EE304	Electron Devices and Circuits	PC	4	3	1	0	4	40	60	100
			PRACTIC	AL						
18EE305	DC Machines and Transformers Laboratory	PC	3	0	0	3	1.5	40	60	100
18EE306	Electron Devices and Circuits Laboratory	PC	3	0	0	3	1.5	40	60	100
18CYMC01	Environmental Science	MC	1	0	0	1	0	100	-	100
		FOUI	RTH SEM	IESTEI	र					
			THEOR							
18EE401	Signals and Systems	PC	3	2	1	0	3	40	60	100
18EE402	Synchronous and Induction Machines	PC	3	3	0	0	3	40	60	100
18EE403	Measurements and Instrumentation	PC	3	3	0	0	3	40	60	100
18EE404	Analog and Digital Integrated Circuits	PC	3	3	0	0	3	40	60	100
18ME408	Engineering Mechanics	ES	3	2	1	0	3	40	60	100
		1	PRACTIC	AL						
18EE405	Synchronous and Induction Machines Laboratory	PC	3	0	0	3	1.5	40	60	100
18EE406	Measurements and Instrumentation Laboratory	PC	3	0	0	3	1.5	40	60	100
18EE407	Analog and Digital Integrated Circuits Laboratory	PC	3	0	0	3	1.5	40	60	100

18MC301	Indian Constitution	MC	1	1	0	0	0	100	-	100
		FIF	TH SEME	STER						
			THEOR	Y						
18EE501	Power Generation, Transmission and Distribution System	PC	3	3	0	0	3	40	60	100
18EE502	Control Systems	PC	4	3	1	0	4	40	60	100
18EE503	Power Electronics	PC	3	3	0	0	3	40	60	100
18EE504	Microprocessor and Microcontroller	PC	3	3	0	0	3	40	60	100
18EEPXX	Program Elective – 1	PE	3	3	0	0	3	40	60	100
18EE0EXX	Open Elective-1	OE	3	3	0	0	3	40	60	100
		F	PRACTIC	AL						
18EE505	Control System Laboratory	PC	3	0	0	3	1.5	40	60	100
18EE506	Power Electronics Laboratory	PC	3	0	0	3	1.5	40	60	100
18EE507	Microprocessor and Microcontroller Laboratory	PC	3	0	0	3	1.5	40	60	100
		SIX	TH SEME	ESTER						
			THEOR	Y						
18EE601	Power System Analysis and Stability	PC	3	3	0	0	3	40	60	100
18EE602	Electrical Drives and Control	PC	3	3	0	0	3	40	60	100
18EE603	Professional Ethics and Human Values	HS	3	3	0	0	3	40	60	100
18EEPXX	Program Elective – 2	PE	3	3	0	0	3	40	60	100
18EEPXX	Program Elective – 3	PE	3	3	0	0	3	40	60	100
18EE0EXX	Open Elective-2	OE	3	3	0	0	3	40	60	100
		F	PRACTIC	AL						
18EE604	Mini Project	EEC	4	0	0	4	2	40	60	100
18EN501	Communication Skills Laboratory	HS	2	0	0	2	1	40	60	100
18EE605	Summer Internship	MC					0	100	-	100

		SEVE	NTH SEN	IESTE	R					
			THEOR	Y						
18EE701	Power System Protection and Switch Gear	PC	3	3	0	0	3	40	60	100
18EE702	Industrial Management and Economics	HS	3	3	0	0	3	40	60	100
18EEPXX	Program Elective – 4	PE	3	3	0	0	3	40	60	100
18EE0EXX	Open Elective-3	OE	3	3	0	0	3	40	60	100
18EE0EXX	Open Elective-4	OE	3	3	0	0	3	40	60	100
		F	PRACTIC	AL						
18EE703	Power Systems Laboratory	PC	3	0	0	3	1.5	40	60	100
18EE704	Electrical Drives and Control Laboratory	PC	3	0	0	3	1.5	40	60	100
		EIGH	ITH SEM	ESTER	R					
			THEOR	Y						
18EEPXX	Program Elective – 5	PE	3	3	0	0	3	40	60	100
18EEPXX	Program Elective –6	PE	3	3	0	0	3	40	60	100
		F	PRACTIC	AL						
18EE801	Project Work	EEC	16	0	0	16	8	40	60	100
	Total Numb	er of Cr	edits			1 1			157	

			Prog	ramme E	Electiv	es						
S.N	Course	Course Title	eg	ıta	Hou	rs/weeł	< & Cr	edits	Maxim	ium Ma	arks	Preferred
0	Code		Categ ory	Conta ct	L	Т	Ρ	С	CA	FE	Total	Semester
1	18EEP01	Electrical Machine Design	PE	3	3	0	0	3	40	60	100	V
2	18EEP02	Biology for Electrical Engineers	PE	3	3	0	0	3	40	60	100	V
3	18EEP03	Digital Signal Processing	PE	3	3	0	0	3	40	60	100	V
4	18EEP04	Discrete Control Systems	PE	3	3	0	0	3	40	60	100	V
5	18EEP05	High Voltage Engineering	PE	3	3	0	0	3	40	60	100	VI
6	18EEP06	HVDC Transmission Systems	PE	3	3	0	0	3	40	60	100	VI
7	18EEP07	EHVAC Transmission Systems	PE	3	3	0	0	3	40	60	100	VI
8	18EEP08	FACTS Controllers	PE	3	3	0	0	3	40	60	100	VI
9	18EEP09	Power Quality	PE	3	3	0	0	3	40	60	100	VI
10	18EEP10	Utilization of Electrical Energy	PE	3	3	0	0	3	40	60	100	VI
11	18EEP11	Electrical Energy Conservation and Auditing	PE	3	3	0	0	3	40	60	100	VI
12	18EEP12	Power System Operation and Control	PE	3	3	0	0	3	40	60	100	VI
13	18EEP13	Distributed Generation and Micro Grid	PE	3	3	0	0	3	40	60	100	VII
14	18EEP14	Wind and Solar Energy Systems	PE	3	3	0	0	3	40	60	100	VII
15	18EEP15	Electrical and Hybrid Vehicles	PE	3	3	0	0	3	40	60	100	VII
16	18EEP16	Soft Computing and Machine Learning	PE	3	3	0	0	3	40	60	100	VII
17	18EEP17	Advanced Electric Drives	PE	3	3	0	0	3	40	60	100	VIII
18	18EEP18	Computational Electromagnetics	PE	3	3	0	0	3	40	60	100	VIII

B.E. Electrical and Electronics Engineering - Full Time Programme Electives

19	18EEP19	Special Electrical	PE	3	3	0	0	3	40	60	100	VIII
		Machines										
20	18EEP20	Electrical Wiring	PE	3	3	0	0	3	40	60	100	VIII
		Estimation and Costing										
21	18EEP21	Total Quality	PE	3	3	0	0	3	40	60	100	VIII
		Management										
22	18EEP22	Restructured Power	PE	3	3	0	0	3	40	60	100	VIII
		System										
23	18EEP23	Industrial Electrical	PE	3	3	0	0	3	40	60	100	VIII
		Systems										
24	18EEP24	Smart Grid	PE	3	3	0	0	3	40	60	100	VIII

S.N o	Course Code	Course Title	Category	Contact Hrs	Hou Cre		ek &		Maxim	um Mar	'ks
			Cat	Cor Hrs	L	Т	Р	С	CA	FE	Total
1	18EEOE1	Renewable Energy Sources	PE	3	3	0	0	3	40	60	100
2	18EEOE2	Smart Grid Technology	PE	3	3	0	0	3	40	60	100
3	18EEOE3	Energy Conservation and Management	PE	3	3	0	0	3	40	60	100
4	18EEOE4	Electric Vehicles	PE	3	3	0	0	3	40	60	100

B.E. Electrical and Electronics Engineering - Full Time Open Electives

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING GOVERNMENT COLLEGE OF ENGINEERING: : SALEM – 636011

(An Autonomous Institution Affiliated to Anna University) Degree: B.E. Branch: Electrical and Electronics Engineering SUMMARY

Course Work	Credits recommended by AICTE	Credits % for AICTE recommendation	Credits	% Credits
Humanities and Social Sciences (HS)	12	7.59	11	7.00
Basic Sciences (BS)	26	16.45	23	14.64
Engineering Sciences (ES)	20	12.65	19	12.10
Program Core (PC)	53	33.54	64	40.76
Program Electives (PE)	18	11.39	18	11.46
Open Electives (OE)	18	11.39	12	7.64
Employment Enhancement Course (EEC)	11	6.96	10	6.36
Mandatory Courses (Zero Credit)	0	0	0	0
Total Credits	158	100	157	100

HS-Humanities and Social Sciences

BS-Basic Sciences

ES-Engineering Sciences

PC-Program Core

PE-Program Electives

OE-Open Electives

EEC-Employment Enhancement Course

18EN10	1 PROFESSIONAL ENGLISH	L	Τ	Ρ	С
		2	0	0	2
Course	Objectives:				
1.	Master basic reading skills such as phonics, word recognition and meaningful divis	ion d	of se	enter	ices.
2.	Read fast, decode accurately and remove oral reading errors that affect text meani	ng.			
3.	Acquire and develop writing skills for academic, social and professional purposes.				
4.	Gain skills in academic and functional writing tasks.				
Writing	Nord Formation with Drafin and Cuffin Concerns and Antonima Tanaga Darts of	0	h	Car	
	Word Formation with Prefix and Suffix, Synonyms and Antonyms, Tenses, Parts of 3 Errors in English (Subject –Verb Agreement, Noun-Pronoun Agreement, Prep				
	Conditional statements, Redundancies, Clichés etc), Voices.	0510	0115,	AI	licies
	Email – Training Programme and related details, paper submission for seminars and co	onfo	ronc	ا ءم	Fiving
	an appointment, Arranging and Cancelling a meeting with team members, conference				
	accommodation, Reminder mails, Raising queries with team members, Congratulate				
	arranging for a meeting with a foreign client, personal emails.	Jiyi	nanc	5 01	work
	Letter Writing – Business and need based communication – Formats of official, perso	onal	and	bus	sines
	etters, official leave and request applications (Bonafide certificate, course completion, c				
	permission to arrange industrial visits) complaints, replies to queries from business c				
	dignitaries, accepting and declining invitations, placing orders, cover letter for a jo				
	resume.		•		
4.	Technical Report Writing – status reports – Work Done in the Project, Feasibility	Rep	orts	on	Offic
	Accommodation, Introduction of New Products, Sales Promotion, Customers Feedbac	ck, S	Starti	ng a	Nev
(Company, Event Reports- Seminars, Conferences, Meeting, Recommendations and C	hecł	dists	s	
5. (Charts- interpreting pie charts, graphs etc.,				
READIN					
	Understanding notices, messages, timetables, adverts, graphs, etc understanding means of short texts	anin	g an	d pu	rpose
	Gapped sentences – Meanings, collocations and meanings of individual words.				
3. I	Reading passage with multiple choice questions – reading for gist and reading for spe	cific	info	orma	tion -
	skimming for general idea of and meaning and contents of the whole text.				
	Short reading passage; gap-filling – Grammar, especially prepositions, articles, auxi	liarv	ver	bs, r	noda
	verbs, pronouns, relative pronouns and adverbs.	J	-	/	
	Short reading passages; sentence matching – Scanning – ability to pick out specific info	orma	ation	in a	shor
	iext.				
METHO	DOLOGY:				
(Objective Type:				
	/ocabulary of business communication.				
	Collocations related to technical and business.				
3. (Coherence in paragraphs – use of sequence clues.				
	Conversations and appropriate responses.				
5. 1	Fenses with time makers.				
6. \	/erbal phrases				
7. [Description of objects in a sentence or two				
	Products and likely slogans				
	Fone, vocabulary, expressions in formal and informal letters.				
	Email writing- tone, vocabulary, expressions, mail ID., creation, CC, BCC.				
	Descriptive Writing:				
	Skimming and scanning to look for specific information.				
	Spotting Errors.				
	Email writing in different work place/ profession based contexts with hints.				
	Letter writing in different business based contexts with hints.	-			
5. F	Report writing: feasibility report, progress in project reports, accident reports and event	repo	orts.		

- 6. Checklists in business, office and profession based context.
- 7. Recommendations in business, office and profession based context.
- 8. Resume and Cover letter.
- 9. Mind mapping visuals on social and environmental issues essay writing based on the given mind map visual.

Total (30+0)=30 Periods Course Outcomes: Upon completion of this course, the students will be able to CO1 Read and summarize the main ideas, key details and inferred meanings from a passage. CO2 Internalize the grammar items such as prepositions, articles, tenses, verbs, pronouns, and adverbs : adjectives through contexts and apply them to spot errors. CO3 Develop the ability to classify, check information and prepare reports. · Apply the academic and functional writing skills in new contexts. CO4 CO5 Interpret pictorial representation of data and statistic. : **Text Books:** Norman Whitby. Business Benchmark -- Pre - Intermediate to Intermediate, Students Book, Cambridge 1. University Press, 2014. **Reference Books:**

1	M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill.2017, 2 nd edition
2	Farhathullah, T.M. Communication Skills for Technical Students.2002
3	Meenakshi Raman and Sangeetha Sharma, Technical Communication: Principles and Practice, Oxford University Press, New Delhi, 2015,3 rd edition.
4	David F. Beer and David McMurray, Guide to Writing as an Engineer, John Willey. New York, 2019.
5	Collins Cobuild- Student's Grammar: Self-Study Edition with Answers (Collins Cobuild Grammar) paperback- 6 May 1991.
6	. Essential English Grammar paperback Raymond Murphy CUP 2015,3rd edition.
7	Speak Better Write Better English paperback – Nov 2012, Norman Lewis, Goyal Publishers and Distributors. Essential English Grammar Paperback Raymond Murphy CUP 2019.
8	English Reading Comprehension RPH Editorial Board.2020
9	Proficiency in Reading Comprehension Simplifying the 'Passage' for you, 2020 Ajay Singh.6
E-Refer	ence
1	https://play.google.com/store/apps/details?id=com.zayaninfotech.english.grammar.
2	http://www.onestopenglish.com/grammar/

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1		3		1		1	2	3	1	2
CO2		2		2				1	1	3	2	3
CO3		1		1		1		1	2	3	1	2
CO4		1		2		1		1		3	1	2
CO5		2		3				1	1	3	1	3

Course (Objectives:	3	1	0	4
1.	To know the use of matrix algebra needed by engineers for practical applications	2			
2.	To understand effectively the geometrical application of differential calculus and		calo	nilue	
3.	To familiarize the solutions of ordinary differential equations of higher order.	integra	car	Juius	••
4.	To obtain the knowledge of solving partial differential equations of higher order v	vith con	stan	t	
••	coefficients.		otan	•	
5.	To acquire the knowledge of vector differentiation and integration and its applica	tions			
Jnit I	MATRICES		9	+	3
	ic, Skew Symmetric and Orthogonal Matrices - Characteristic equation of a Matrix	x – Eia	en v	alue	-
	ctors - Properties - Cayley-Hamilton theorem (excluding proof) - Diagonalization of				
	atic form to canonical form by orthogonal transformation.				
Jnit II	MULTI VARIABLE CALCULUS		9	-	3
	Minima and Saddle point- – Method of Lagrangian multipliers- Multiple integrals- Doub	nle inter	•	_ Cr	
of order	of integration in double integrals – Change of variables (Cartesian to Polar) – A on of Triple integrals – Application to volumes.				
Jnit III	ORDINARY DIFFERENTIAL EQUATIONS OF HIGHER ORDER		9	+	3
	order linear differential equations with constant and variable coefficients -Cauch	v-Euler	equ	atior	
	Legendre's linear equation - Method of variation of parameters -Simultaneous first of				
	stant coefficients			•	
Unit III	PARTIAL DIFFERENTIAL EQUATIONS		9	+	3
		unctions	-	+ Solut	
Formatio	n of partial differential equations by elimination of arbitrary constants and arbitrary f		s – S		ion
Formatio standard	n of partial differential equations by elimination of arbitrary constants and arbitrary f types of first order partial differential equations – Lagrange's linear equation – Lin		s – S		ion (
Formatio standard	n of partial differential equations by elimination of arbitrary constants and arbitrary f		s – S		ion d
Formatio standard	n of partial differential equations by elimination of arbitrary constants and arbitrary f types of first order partial differential equations – Lagrange's linear equation – Lin		s – S		ion d
Formatio standard equations Unit V	n of partial differential equations by elimination of arbitrary constants and arbitrary f types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients.	ear par	s – S tial o 9	differ +	ion o entia
Formatio standard equations Unit V Vector Line integ	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di	Vector	s – s tial o 9	differ + itegra	ion o rentia 3 atior
Formatio standard equations Unit V Vector Line integ	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl ,	Vector	s – s tial o 9	differ + itegra	ion o entia 3 atior
Formatio standard equations Jnit V Jector Line integ	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds	ear par Vector vergeno	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio standard equations Jnit V /ector Line integ heorem	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota	Vector	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio standard equations Jnit V Vector Line integ heorem	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes:	ear par Vector vergeno	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio standard equations Jnit V /ector Line integ heorem Course (Jpon cor	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to	ear par Vector vergeno	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory.	Vector Vector vergences.	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor CO1 CO2	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its application	Vector Vector vergences.	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio standard equations Unit V Vector Line integ theorem Course (Upon cor CO1 CO2	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory.	Vector Vector vergences.	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio standard equations Unit V Vector Line integ theorem Course (Upon cor CO1 CO2 CO3	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus.	Vector Vector vergences.	s – S tial o 9 c ir ce ai	differ + ntegra	ion o entia 3 atior toke
Formatio standard equations Unit V Vector Line integ theorem Course (Upon cor CO1 CO2 CO3 Text Boc	n of partial differential equations by elimination of arbitrary constants and arbitrary for types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus.	vector vergend s. I (45+1! ons.	9 5 – S tial (9 - ir ce al 5)=6	+ Itegra Itegra D Pe	ion (entia atior toke
Formatio standard equations Unit V Vector Line integ theorem Course (Upon cor CO1 CO2 CO3	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication	vector vergends. I (45+1! ons.	5 – 5 tial (9 · ir ce an 5)=6	ttegradies (1997) (19977) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (1	ion central ce
Formatio standard equations Unit V Vector Line integ theorem Course (Upon cor CO1 CO2 CO3 Text Boc	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa	vector vergends. I (45+1! ons.	5 – 5 tial (9 · ir ce an 5)=6	ttegradies (1997) (19977) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (1	ion central ce
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor CO1 CO2 CO3 Fext Boo 1.	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication	vector vergends. I (45+1! ons.	5 – 5 tial (9 · ir ce an 5)=6	ttegradies (1997) (19977) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (1	ion (entia 3 atior toke riod
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor CO1 CO2 CO3 Fext Boo 1. 2.	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009	vector vergends. I (45+1! ons.	5 – 5 tial (9 · ir ce an 5)=6	ttegradies (1997) (19977) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (1	ion (entia 3 atior toke riod
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor CO1 CO2 CO3 Fext Boo 1. 2. Reference	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009	vector vergends. I (45+1! ons.	5 – 5 tial (9 · ir ce al 5)=6	ttegradies (1997) (19977) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (1	ion (entia 3 atior toke riod
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor CO1 CO2 CO3 Fext Boo 1. 2. Reference 1	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009	vector vergend s. I (45+1! ons. <u>I (45+1!</u> ons.	5 – 5 tial (9 · ir ce al 5)=6	1., Ne	ion (entia 3 atior toke riod
Formatio Standard equations Jnit V Vector Line integ heorem Course (Jpon cor CO1 CO2 CO3 Fext Boo 1. 2. Reference	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publicatio Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009 ce Books: James Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2 nd editior P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (F	vector vergend s. I (45+1! ons. <u>I (45+1!</u> ons.	5 – 5 tial (9 · ir ce al 5)=6	1., Ne	ion (entia 3 atior toke riod
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor CO1 CO2 CO3 Fext Boo 1. 2. Reference 1 2	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publication Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009 Ce Books: James Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2 nd editior P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (F B.Tech)", Nineth Edition, S. Chand & Co. Ltd. New Delhi, 2010.	vector vergends. I (45+1: ons. ns, Dell tion Pvt	s – € tial (9 . ir ce an 5)=60	differ + ttegra 0 Pe 0 15) ., Ne E.,	ion (entia ation toke riod
Formatio Standard equations Jnit V /ector Line integ heorem Course (Jpon cor CO1 CO2 CO3 Fext Boo 1. 2. Reference 1	n of partial differential equations by elimination of arbitrary constants and arbitrary fr types of first order partial differential equations – Lagrange's linear equation – Lin s of second and higher order with constant coefficients. VECTOR CALCULUS differentiation- Gradient- Directional derivative - Divergence - Curl , gration- work done – Surface and Volume integrals - Green's theorem , Gauss di (without proof) – Simple applications involving cubes and rectangular parallelopipeds Tota Dutcomes: mpletion of this course, the students will be able to : Learn the fundamental knowledge of Matrix theory. : Familiar with the concept of the differentiation and integration and its applicati : Acquire skills in applications of Vector Calculus. bks: Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publicatio Veerarajan T., "Engineering mathematics for first year", Tata McGraw Hill Educa Delhi, 2009 ce Books: James Stewart, "Essential Calculus", Cengage Learning, New Delhi, 2 nd editior P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (F	vector vergends. I (45+1: ons. ns, Dell tion Pvt	s – € tial (9 . ir ce an 5)=60	differ + ttegra 0 Pe 0 15) ., Ne E.,	ion central entral atior toke riod

5	Sivaramakrishnadas.P, Ruknmangadachari.E. "Engineering Mathematics", Pearson, Chennai &
	Delhi, 2 nd edition, 2013

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	1	2	1	1	1	1	1
CO2	3	2	2	2	1	1	2	1	2	1	1	2
CO3	3	2	2	2	1	1	2	1	1	1	1	2

18CY101	CHEMISTRY	L	Τ	Ρ	С
		3	1	0	4
Course Ol					
1	Analyze microscopic chemistry in terms of atomic and molecular orbitals.				
2	Rationalize periodic properties of elements and the knowledge of acids and bases				<u></u>
3	Analyze the stereo chemical aspects of organic molecules and chemical reactions	that	t are	use	din
4	the synthesis of organic molecules Rationalize bulk properties and processes in thermodynamic aspects and its exter		. :		
4	electrochemical processes.	ISIO	1 111		
5	Distinguish the ranges of the electromagnetic spectrum used for exciting different	mol	acul	or or	orav
5	levels in various spectroscopic techniques	mole	Sour		leigy
Unit I	MOLECULAR STRUCTURE		9	+	3
	of molecular orbitals of diatomic molecules - energy level diagrams of – H2, He2, N2	, 02	, CC) and	NO-
	, bond length, bond energy, magnetic behavior and relative stability;				
	r- Huckel rule - concept of aromaticity - aromatic, non-aromatic and anti-aro	mati	c m	olec	ules-
	, non-benzenoid and annulenes only;		- 1-1	ار مر م	
	d theory – postulates-d-orbital splitting in octahedral and tetrahedral complexes-stro s-spectrochemical series-high spin and low spin complexes-magnetic properties of o				
	zation energy(CFSE) and its calculations for octahedral and tetrahedral complexes	,0111	piex	62-0	ysiai
Unit II	PERIODIC PROPERTIES & ACID-BASE CONCEPTS		9	+	3
Effective n	uclear charge – shielding effect, penetration of orbitals - variations of s, p, d and f	orbit	al er	hergi	es of
	Ifbau principle - electronic configuration of elements - periodic properties - atom				
ionization	energy, electron affinity and electro negativity - anomalous properties of second	peric	od e	leme	ents -
diagonal re					
	bases - Bronsted-Lowry concept - Lewis concept - pH and pKa – problems – HSAB		uffer	solu	itions
 – types- m 	echanism of buffer action- Henderson–Hasselbalch equation- derivation and proble	ns.			
	STETEROCHEMISTRY & ORGANIC REACTIONS		9	+	3
	nerism – geometrical isomerism – cis-trans and E-Z nomenclature – optical isome				
	otical activity, enantiomer and diastereomers – absolute configuration - R-S notation	1 - C	onfo	rma	tional
	Ethane, butane, cyclohexane;	faat	ı	avdr	otion
	eaction – hydrogenation, halogenations - Markovnikov rule – Kharasch ef jenation, hydroboration;	ect	- 1	iyun	ation,
	ucleophilic substitution reaction $-SN_1$, SN_2 and SN_i mechanism – electrophilic subst	ituti	on re	eacti	on in
	mechanism - nitration, halogenations, sulfonation, alkylation and acylation;	nun		caol	
	reaction $-E_1$, E_2 and E_1CB - mechanism- Saytzeff rule – examples.				
			0		
	USE OF FREE ENERGY IN CHEMICAL EQUILIBRIA		9	+	3
	namic functions- internal energy, enthalpy, entropy and free energy- first and				
	amics - partial molar properties - Gibbs Duhem equation - variation of chemi	cal	pote	ntial	with
	e and pressure – Third and Zeroth law of thermodynamics – definition only;				
	gy and EMF relation - single electrode potential - electrochemical series and its				
	nd its measurement (Poggendorff method only) - Nernst equation-derivation and pr	ODIE	ems-	Star	idard
cen potenti	al and equilibrium constant relation- problems.				
Unit V	SPECTROSCOPY TECHNIQUES & APPLICATIONS		9	+	3
	ert's law (problem)- UV visible spectroscopy: principle, chromophores, auxoch	non	-	-	
	and instrumentation (no application);		, .	2.50	
	scopy: principles-instrumentation and applications of IR in H_2O,CO_2 and NH_3 ;				
	tometry-principle-instrumentation-estimation of sodium by flame photometer;				
	bsorption spectroscopy-principles-instrumentation-estimation of nickel by at	omia	c a	bsoi	ption
spectrosco	ру.				

	Total (45+15)=60 Periods
Course	Dutcomes:
	npletion of this course, the students will be able to
CO1	: Understand in-depth knowledge of atomic and molecular orbitals based chemical aspects.
CO2	: Realize the nature of periodic properties of elements and the knowledge of acids and bases.
CO3	Grasp the knowledge of 3D structural aspects of organic molecules and chemical reactions that are used in the synthesis of organic molecules.
CO4	: Substantiate the various processes involved in thermodynamic considerations and its involvement in electrochemical aspects.
CO5	: Aware of spectroscopic techniques in the field of molecular identification of materials.
Text Bo	oks:
1.	P.R. Puri, L.R.Sharma and Madan S. Pathania, "Principle of physical chemistry" 47 th Vishal Publishing Co, Jalandhar-8
2.	C. N. Banwell and E. M. Mccash, "Fundamentals of Molecular Spectroscopy", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2009.
3	Raj. K. Bansal – "A Text Book of Organic Chemistry" Revised 4th Ed.,(2005), New Age International Publishers Ltd., New Delhi.
4	P.S. Kalsi – "Stereochemistry conformation and Mechanism", 6th Ed., (2005), New Age International Publishers Ltd., New Delhi.
5	J.D. Lee – "A New Concise Inorganic Chemistry", 5th Edn., Oxford University Press, 2011.
6	Wahid Malik, G.D.Tuli and R.D.Madan, "Selected Topic in Inorganic Chemistry", S.Chand& Co., Ltd (2011).
Referen	ce Books:
1	David.W.Ball, Physical Chemistry, Cengage Learning India Pvt. Ltd., New Delhi, 2009.
2	G.Aruldhas, Molecular structure and spectroscopy, second edition, PHI learning Pvt. Ltd., New Delhi, 2008.
3	Cotton and Wilkinson – "Advanced Inorganic Chemistry", 6th Ed., John Wiley & Sons, New York- 2004.
4	James E. Huheey, Ellen A. Keiter and Richard L. Keiter – "Inorganic Chemistry-Principles of Structure and Reactivity", 4 thEdn., Pearson Education, 11 th Impression, 2011.
5	F.A. Carey and R.J. Sund berg – "Advanced organic chemistry" Vol. I and II– 3rd Ed.,(1984), Plenum Publications.
6	Ernest. Eliel and Samuel H. Wilen – "Stereochemistry of Organic Compounds" – Wiley Student Ed., (2006). John Wiley and Sons Pvt. Ltd., Singapore.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3							2			
CO2	3	3							2			
CO3	3	3								2		
CO4	3	3										
CO5	3	3			2					2		

	FUNDAMENTALS OF PROBLEM SOLVING AND C PROGRAMMING	L	T	P	С
		3	0	0	3
Course Ob	ojectives:				
1.	To express problem solving through programming.				
2.	To practice the basic concepts of C programming language.				
3.	To provide the basics knowledge about array and strings to solve simple applic	atio	ns.		
4.	To use pointers and functions in the simple applications.				
5.	To review the elementary knowledge of structures and unions.		_	1	-
Unit I	Introduction to Computer and Problem Solving		9	+	0
code – Flo	rmulation, Problem Solving methods, Need for logical analysis and thinking – Algow Chart- Need for computer languages, Generation and Classification of Con of a Computer.				
Unit II	C Bragramming Basics and Cantral Statements		9		0
	C Programming Basics and Control Statements er set- Identifies and Keywords- Data Type- Declarations-Expressions-Statemer	ato o		+	-
	Operators – Arithmetic Operators – Unary operators – Relational and Log				
	t operators – Conditional operators- Managing Input and Output operations- I				
	and Looping statements.				
Unit III	Arrays and Strings		9	+	0
Pre-proces	sor directives-Storage classes-Arrays - Initialization - Declaration - one dime				
dimensiona	al arrays. Strings - String operations – String handling functions-Simple p	rogr	ams	s-soi	ting
searching.					
				1	
Unit IV	Functions and Pointers		9	+	0
	Library functions and user-defined functions – Function prototypes and function				
•	Call by reference – Recursion – Pointers - Definition – Initialization – Pointers arith	nme	tic –	Poil	nter
and arrays					
Unit V					
	Structures, Unions and File		0		Δ
	Structures, Unions and File	Struc	9	+	0
Introduction	n - need for structure data type - structure definition - Structure declaration - S		ture		nin
Introduction structure –			ture		nin
Introduction structure –	n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures	s-Un	ture ion-l	oasi	nin c fil
Introduction structure – operation.	n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (45	s-Un	ture ion-l	oasi	nin c fil
Introduction structure – operation. Course Ou Upon comp	n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to:	s-Un	ture ion-l	oasi	nin c fil
Introduction structure – operation. Course Ou Upon comp	n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (45 Itcomes:	s-Un	ture ion-l	oasi	nin c fil
Introduction structure – operation. Course Ou Upon comp	n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language.	s-Un 5 +0) =	ture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2	 n – need for structure data type – structure definition – Structure declaration – Structures to functions – Array of structures – Pointers to structures Total (45 atcomes: bletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. 	s-Un 5 +0) =	ture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3	 n – need for structure data type – structure definition – Structure declaration – Structures to functions – Array of structures – Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. 	s-Un 5 +0) =	ture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4	 n – need for structure data type – structure definition – Structure declaration – Structures to functions – Array of structures – Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. 	s-Un 5 +0) =	ture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4	 n – need for structure data type – structure definition – Structure declaration – Structures to functions – Array of structures – Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. 	s-Un 5 +0) =	ture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5	 n – need for structure data type – structure definition – Structure declaration – Structures for structures to functions – Array of structures – Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. 	s-Un 5 +0) =	ture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book	 n - need for structure data type - structure definition - Structure declaration - Structures for structures to functions - Array of structures - Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. 	s-Un +0) = to s	eture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5	 n - need for structure data type - structure definition - Structure declaration - Structures for structures to functions - Array of structures - Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. s: Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", I 	s-Un +0) = to s	eture ion-l = 45	Per	nin c fil iod
Introduction structure – operation. Upon comp CO1 CO2 CO3 CO4 CO5 Text Book	 n - need for structure data type - structure definition - Structure declaration - Structures for structures to functions - Array of structures - Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. 	s-Un (i+0) = to s	eture ion-l e 45 olve	Per	iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	 n – need for structure data type – structure definition – Structure declaration – Structures to functions – Array of structures – Pointers to structures Total (45 Itcomes: Deletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. s: Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", I Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011. (Unit-I). E.Balagurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2 	s-Un (i+0) = to s	eture ion-l e 45 olve	Per	iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference	 n – need for structure data type – structure definition – Structure declaration – Structures declaration – Structures to functions – Array of structures – Pointers to structures Total (45 itcomes: i Formulate and apply logic to solve basic problems. : Write, compile and debug programs in C language. : Apply the concepts such as arrays, decision making and looping statements time applications. : Solve simple scientific and statistical problems using functions and pointers. : Write programs related to structures and unions for simple applications. structures and Ajay Mittal, "Computer Fundamentals and Programming in C", I Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011. (Unit-I). E.Balagurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2 	s-Un +0)= to s	e 45 olve	Per Per	iod iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1.	 n – need for structure data type – structure definition – Structure declaration – S Passing structures to functions – Array of structures – Pointers to structures Total (45 itcomes: bletion of this course, the students will be able to: Formulate and apply logic to solve basic problems. Write, compile and debug programs in C language. Apply the concepts such as arrays, decision making and looping statements time applications. Solve simple scientific and statistical problems using functions and pointers. Write programs related to structures and unions for simple applications. s: Anita Goel and Ajay Mittal, "Computer Fundamentals and Programming in C", I Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011. (Unit-I). E.Balagurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2 Books: Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGraw-Hill, 2 	s-Un +0)= to s	e 45 olve	Per Per	iod iod
Introduction structure – operation. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference	 n – need for structure data type – structure definition – Structure declaration – Structures declaration – Structures to functions – Array of structures – Pointers to structures Total (45 itcomes: i Formulate and apply logic to solve basic problems. : Write, compile and debug programs in C language. : Apply the concepts such as arrays, decision making and looping statements time applications. : Solve simple scientific and statistical problems using functions and pointers. : Write programs related to structures and unions for simple applications. structures and Ajay Mittal, "Computer Fundamentals and Programming in C", I Kindersley (India) Pvt. Ltd., Pearson Education in South Asia, 2011. (Unit-I). E.Balagurusamy, "Programming in ANSI C" fourth Edition, Tata McGraw-Hill, 2 	s-Un +0) to s Dorli 008 Tata	eture ion-l = 45 olve	Per Per	iod iod

3. Yashavant P. Kanetkar. "Let Us C", BPB Publications, 2011.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	1	1	3	3
CO2	3	3	3	3	3	2	2	1	1	1	3	3
CO3	3	3	3	3	3	2	2	1	1	1	3	3
CO4	3	3	3	3	3	2	2	1	1	1	3	3
CO5	3	3	3	3	3	2	2	1	1	1	3	3

10EN102	PROFESSIONAL ENGLISH LABORATORY		т	Р	6
18EN102		0	0	Р 2	C 1
• • • •		U	U	2	-
Course Ob	jectives:				
1.	To acquire and develop listening skills for academic, social and professional purpo	ses.			
2.	To understand short conversations or monologues				
3.	To master basic reading skills such as phonics, word recognition, and fluency				
4.	Acquire and develop pre-intermediate level fluency in oral skills such as discourse	mar	nage	men	t,
	grammar and vocabulary, pronunciation and interactive communication for acaden	nic, s	socia	ıl an	d
	professional purposes				
5.	Address an audience and present a topic.				
6.	Express an opinion and justify it				
Exercises					
	gy - Listening				
	Responsibilities				
	nversation between two employees on company culture				
3. Em					
	scription of gadgets				
	rview with a leading industrialist				
	ce procedures – applying for permission, placing an order for office equipment,				
	quiries about orders and deliveries				
	nversation between two people on general topics ephone Messages				
	ng and Cancelling appointments				
	ring for directions				
	scheduling a travel plan				
	nes : Rude and Polite				
	oversation : Statements, Discussions, Debating, Accepting, Negotiating				
	nferences ; Announcements about changes in schedules andsessions				
	tivational Speech				
17. TEI	D Talk on Team Work				
18. Des	scribing charts and data				
19. Pre	sentation at an office				
	ort self-descriptions				
	LOGY: - Speaking				
	f-Introduction – Personal information –Name, Home background, study details, area				
	bies, strengths and weaknesses, projects and paper presentations if any, likes and			n fo	od,
	hes, Special features of home town, Personal role models in life, goals and dreams,	favo	orite		
	pirational quote.		- 4 - 1		
	ational Role Play between Examiner and Candidate – Customer and Sales Manage				~ -
	nager and Organiser, Team Leader and Team member, Bank Manager and Candida I Applicant, Car Driver and Client, Industrialist and Candidate, Receptionist and App				
	w Employee and Manager, Employee and Employee, P.A. and Manager Schedule for				Kei
	ting for directions, Seeking help with office equipment, Clarifying an error in the bill, (
	ducts, Buying a Product, Selling a Product, cancelling and fixing appointments, hote		ity O		
	ommodation, training facilities, dress code, conference facilities, faculty advisors and		Iden	ł	
	dent and student, college Office personnel and student.			-,	
0.00	Total (0-	-30):	= 30	Per	iods
Course Ou					
	letion of this course, the students will be able to:				
CO1 :	Infer, interpret and correlate routine, classroom-related conversation.				
CO2 :	Use a range of common vocabulary and context based idioms.				
CO3 :		ne st	ude	nt m	ight
	still have trouble.				_
CO4 :	Identify the most important words in a story/article.				

CO5	:	Summarize the main ideas, key details, and inferred meanings from listening passages of up to
		five minutes.
CO6	:	Vocalize words without the aid of pictures
C07	:	Make effective self-introductions.
CO8	:	Study options, compare and contrasts the options.
CO9	:	Exercise a choice, justify it by giving examples and illustrations.
CO10	:	Construct a situation and to participate in conversations
Text Bo 1.	N	orman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Students book,Cambridge niversity Press, 2014.
Referen	ce E	Books:
1		poken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija
2	E	nglish Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N P Singh
3	D	iscussions that Work. Penny Ur.CUP, 1981.
4		peak Better Write Better English Paperback – November 2012 Norman Lewis, GoyalPublishers nd Distributors.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		3		3		1		1	2	3	1	2
CO2		2		2				1	1	3	2	3
CO3		1		1		1		1	2	3	1	2
CO4		1		2		1		1		3	1	2
CO5		2		3				1	1	3	1	3
CO6		1		1		1		2		3	1	3
C07		2		1						3	2	3
CO8		2		2		1			1	3		2
CO9		1		1		2		1	2	3		3
CO10		3		1					3	3	1	3

18CS102	COMPUTER PRACTICE LABORATORY	L	Т	Ρ	С
		0	0	4	2
Course O	bjectives:				
1.	To provide basic knowledge of creating Word documents and also producing mail	mer	ge.		
2.	To make use of basic functions, formulas and charts in Spread sheet.				
3.	To implement problem solving techniques.				
4.	To promote the programming ability to develop applications for real world problem	S.			
List of ex	periments				
	Word Processing				
A	1. Document creation, Text manipulation with Scientific notations, Table creation, and Conversion	Tabl	e fc	rmati	ing
	2. Letter preparation using Mail merge and Draw flow Charts using tools				
В	 Spread Sheet 3. Chart - Line, XY, Bar and Pie. 4. Formula - formula editor, Sorting and Import and Export features. 5. Spread sheet - inclusion of object, Picture and graphics, protecting the docume 	nt an	d s	heet.	
	Simple C Programming 6. Program using Control statements.				
	7. Program using Looping.				
	8. Program using Array.				
0	9. Program using String.				
С	10. Program using Function.				
	11. Program using Structures.				
	12. Program using Pointers.				
	13. Program using Files.				
	* For programming exercises Flow chart and pseudo code are essential				
	Total (0-	-60)=	:60	Peric	d
Course O					
	pletion of this course, the students will be able to:				
CO1 :	Demonstrate the basic mechanics of Word documents and working knowledge of	mail	me	rge.	
CO2 :	Demonstrate the use of basic functions and formulas in Spread sheet.				
CO3 :	Apply good programming methods for program development.				
CO4 :	Implement C programs for simple applications.				

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3	2	2	1	1	1	3	3
CO2	3	3	3	3	3	2	2	1	1	1	3	3
CO3	3	3	3	3	3	2	2	1	1	1	3	3
CO4	3	3	3	3	3	2	2	1	1	1	3	3

1 8ME102	WORKSHOP MANUFACTURING PRACTICES	L	Т	Ρ	С
		1	0	4	3
Course of	ojectives:				
1.	To provide an exposure of basic engineering practices to the student				
2.	To provide exposure to the students with hands on experience on various basic er	ngine	ering		
	practices in Civil and Mechanical Engineering				
Experime	nts				
1.	Introduction to Safety measures and First aid.				
2.	Study of Lathe -Welding methods and equipment's- Casting process and tools- Sh	eet i	metal	anc	k
	fitting tools- Carpentry tools and joints.				
3.	Fitting: V-fitting, Square fitting, Curve fitting.				
4.	Lathe: Facing, turning, taper turning and knurling.				
5.	Welding: BUTT, LAP and T- joints.				
6.	Foundry: Green sand preparation- mould making practice.				
7.	Sheet metal: Cone, tray, cylinder.				
8.	Carpentry: CROSS, T and DOVETAIL joints.				
9.	Drilling: simple exercises.				
	Total (15+	60)=	:75 P€	erio	ds
Course ou	itcomes.				
	pletion of this course, the students will be able to:				
CO1 :	Prepare fitting of metal and wooden pieces using simple fitting and carpentry tools	mar	nually		
CO2 :	Prepare simple lap, butt and tee joints using arc welding equipment.	mai	raany.		
CO3 :	Prepare green sand moulding.				
CO4 :	Prepare sheet metal components.				
CO5 :	Prepare simple components using lathe and drilling machine.				
I					
Reference	e books:				
1.	Bawa, H.S, "Work shop Practice", Tata McGraw Hill Publishing Company Limited, 2				
2.	Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering	Prac	ctices		_
۷.	Laboratory", Anuradha Publications, 2007.				
3.	Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab	Manu	ual",		
5.	VikasPuplishing House Pvt. Ltd, 2006.				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2							1		2
CO2	1		2			2						2
CO3	2	1	2			2						1
CO4	1		1			2						1
CO5	1	1				1						1

18MA204	FOURIER SERIES AND TRANSFORMS	L	Т	Р	С
		3	1	0	4
Course Ob	iactivas:				
1.	To obtain the knowledge with expansion of a function as a Fourier series.				
2.	To impact analytical skills in the areas of boundary value problems and transform				
3.	To familiarize with the techniques of Laplace transform for solving second order di	ittere	entia	l	
	equations.				
4.	To understand the concepts of Fourier transform and its applications				
5.	To obtain the solution of difference equation by Z-transform technique.		•	1	•
Unit I	FOURIER SERIES		9	+	3
	onditions – General Fourier series – Odd and even functions – Half range sine serie	s –			
Half range	cosine series – Parseval's Identity – Harmonic Analysis.				
Unit II	BOUNDARY VALUE PROBLEMS		9		3
	on of second order quasi linear partial differential equations – Solutions of one	dimo	-		
	One dimensional heat equation – Steady state solution of twodimensionalheat e				
	ided) – Fourier series solutions in Cartesian coordinates	quai		(IIIS	lated
euges excit					
Unit III	LAPLACE TRANSFORM		9	+	3
	Insform- Conditions for existence – Transform of elementary functions – Basic Prop	ertie	-	-	
	es and integrals – Initial and Final value theorems- Transform of periodic Functions				
	solutions of linear ODE of second order with constant coefficients using Lapla				
	statement and application of convolution theorem		- and		latio
Unit IV	FOURIER TRANSFORM		9	+	3
Statement	of Fourier integral theorem – Fourier transform pair – Sine and Cosine transforr	ns -	- Pr	oper	ties -
	of simple functions – Convolution theorem - Parseval's Identity			•	
Unit V	Z -TRANSFORM AND DIFFERENCE EQUATIONS		9	+	3
	of simple functions and properties - Inverse Z - transform -initial and final				
	theorem -Formation of difference equations - Solution of difference equations us	sing	Z –	tran	sforn
technique.					
	Total (45	+15)= 6	0 Pe	riod
Course Ou					
	letion of this course, the students will be able to:				
CO1					
CO2	: Acquire the knowledge about Fourier series.				
	Acquire the knowledge about Fourier series.Learn the techniques of solving boundary value problems				
CO3	: Acquire the knowledge about Fourier series.				
	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. 				
CO3 Text Books	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. 				
Text Books	Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Mo	cGra	aw		
	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. 				
Text Books 1.	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Familiar T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volu 			S.	
Text Books	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. 			S.	
Text Books 1. 2.	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volu Chand & Company Itd., New Delhi, 1996.			S.	
Text Books 1. 2. Reference	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volu Chand & Company Itd., New Delhi, 1996. Books: 	me	III",		
Text Books 1. 2. Reference 1.	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volu Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers 	me	III", Illi,2		
Text Books 1. 2. Reference	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volu Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth E 	me	III", Illi,2		
Text Books 1. 2. Reference 1. 2.	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volu Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth E McGraw-Hill, Inc., New York, 1995. 	me s, De	III", Illi,2		
Text Books 1. 2. Reference 1.	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Sector Sector Sector <	me s, De	III", Illi,2		
Text Books1.2.Reference1.2.3.	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Familiar with the transform techniques. Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata Me Hill Education Pvt.Ltd., New Delhi, 2009. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Engineering Mathematics, Volu Chand & Company Itd., New Delhi, 1996. Books: Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth E McGraw-Hill, Inc., New York, 1995. Srimanta pal and Subath.C.Bhumia, "Engineering Mathematics", Oxford university publications, New Delhi, 2015 	me s, De ditic	III", elhi,2 on,	2014	
Text Books 1. 2. Reference 1. 2.	 Acquire the knowledge about Fourier series. Learn the techniques of solving boundary value problems Familiar with the transform techniques. Sector Sector Sector <	me s, De ditic	III", elhi,2 on, 006	2014	

Engineering Students", Volumes II and III, S. Viswanathan (Printers and Publishers) Pvt.Ltd.
Chennai,2002.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	1	1	2	1	2
CO2	3	3	2	2	2	1	1	1	1	2	1	1
CO3	3	3	2	2	2	1	1	1	1	2	1	2

	2 PHYSICS – WAVE & OPTICS AND QUANTUM MECHANICS	L	Τ	Ρ	С
_		3	1	0	4
	Objectives:				
1.	To make the students to understand Simple harmonic motion and Waves				
2.	To understand the Propagation of light				
3.	To get clear idea of wave optics				
4.	To understand the Principle and working of laser with applications				
5.	To know the basic concepts of quantum Mechanics and Matter Waves				
Unit I	SIMPLE HARMONIC OSCILLATION AND WAVES		9	+	3
	armonic motion ; Damped Simple harmonic motion ; Forced vibrations – resonance				
	acteristics - velocity of a transverse wave along a stretched string -frequency c				
harmoni	es and overtones - progressive waves & stationary waves – wave equation for progr	essive a	nd S	tation	ary
waves					
Unit II	THE PROPAGATION OF LIGHT AND GEOMETRIC OPTICS		9	.	3
	Principle - laws of reflection and refraction ; Mirage effect ; Total internal reflection	on · Ma	-	+	
	by a spherical refracting surface - imaging by a coaxial optical system; Optical Inst				
	id microscope - astronomical telescope.	liumenta	5 - 31		anu
Unit III	WAVE OPTICS		9		3
	Principle ; Principle of superposition ; Interference of Light – Youngs double slit e				
	xperimental arrangement to determine the wavelength of sodium light; Miche				
	er diffraction from a single slit; Diffraction grating -determination of wavelength c	of light a	nd di	spers	sive
power;	Polarisation - Polarisation by reflection - Brewsters Law				
Unit IV	LASERS		9	.	3
	s of Laser beams - monochromacity, coherence, directionality and brightness; Eins	tiona th	•		
		suens in			
		numn	nam	othor	
Different	interaction and A&B coefficients - amplification of light by population inversion				ds;
	types of laser - Ruby , Nd-YAG , He-Ne, CO2 laser - Energy level diagrams ; App				ds;
					ds;
science	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine.		s of	asers	ds ; s in
science Unit V	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine.	olication	s of 9	asers	ds ; s in 3
science Unit V Introduct	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom	son exp	s of 9 erime	asers	ds ; s in <u>3</u> ime
Unit V Introduct	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S	son exp	s of 9 erime	asers	ds ; s in <u>3</u> ime
Science Unit V Introduct independ	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
Science Unit V Introduct independ for Partic	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total Dutcomes: mpletion of this course, the students will be able to:	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Dutcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
Science Unit V Introduct independ for Partic Course Upon co CO1 CO2	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Dutcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Know various experimental techniques in wave optics.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
Science Unit V Introduct independ for Partic Course Upon co CO1 CO2	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Dutcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3 CO4 CO5	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Understand the concept of laser and its applications. : Gain knowledge in the basics of quantum mechanics.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Know various experimental techniques in wave optics. : Understand the concept of laser and its applications. : Gain knowledge in the basics of quantum mechanics.	son exp	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1.	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Understand the concept of laser and its applications. : Gain knowledge in the basics of quantum mechanics.	son exp chroedii (45+15)	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Understand the concept of laser and its applications. : Gain knowledge in the basics of quantum mechanics.	son exp chroedii (45+15)	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Understand the concept of laser and its applications. : Gain knowledge in the basics of quantum mechanics.	son exp chroedii (45+15)	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3 Referen	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Understand the concept of laser and its applications. : Gain knowledge in the basics of quantum mechanics.	son exp chroedii (45+15)	s of 9 erime nger	asers + ent; Ti equat	ds ; s in 3 ime tion
science Unit V Introduct independ for Partic Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3	types of laser - Ruby , Nd-YAG , He-Ne,CO ₂ laser - Energy level diagrams ; Appengineering and medicine. QUANTUM MECHANICS ion - matter waves - Debroglie's equation - Davisson-Germer experiment-G.P.Thom lent and dependent Schroedinger equation; Wave packet; Uncertainity Principle; S le in a one dimensional box; Physical Significance of wavefunction. Total (Outcomes: mpletion of this course, the students will be able to: : Understand Simple harmonic oscillation and propagation of waves. : Apply matrix method to analyse system of reflecting and refracting surfaces. : Understand the concept of laser and its applications. : Gain knowledge in the basics of quantum mechanics.	son exp chroedii (45+15)	s of 9 erime nger	asers + ent; Ti equat	ds ; s in <u>3</u> ime tion

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	3	3	2			1		3	2
CO2	3	2	1	2	3	1	2		2		3	1
CO3	2	3	1	3	2	2	1		2		2	1
CO4	3	2	1	3	3	1	1		2		3	1
CO5	3	3	1	2	3	1	1		2		3	1

18ME101	ENGINEERING GRAPHICS AND DESIGN	L	Т	Ρ	С
		1	0	4	3
Course o	bjectives:				
	-	to pr	a vid	<u> </u>	
1.	To impart knowledge on concepts, ideas and design of engineering products and exposure to CAD Modelling.	•			
2.	Standards of Engineering Drawing: Size, layout and folding of drawing sheets, lett drafting instruments	ering	- U	se	of
	PROJECTION OF POINTS, LINES AND PLANE SURFACES		3	· .	12
	rinciples of orthographic projection- Projection of points, located in all quadrants – Proj	octio	-	+	
	ted in first quadrant – Determination of true lengths and true inclinations – Project				
	nd circular lamina inclined to both reference planes.		n p	Jiyg	5110
UNIT II	PROJECTION OF SOLIDS		3	+	12
	n of simple solids like prisms, pyramids, cylinder and cone when the axis is perpe	endic	ula	to to	one
reference	plane and also inclined to one reference plane by change of position method.				
UNIT III	SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES		3	+	12
Sectionin	g of above solids in simple vertical position by cutting planes inclined to one refer	ence	pla	ane	and
	cular to other - solids inclined position with cutting planes parallel to one reference				
true shap	e of section.				
Developm	nent of lateral surfaces of simple and truncated solids - Prisms, pyramids cylind	lers	and	со	nes
Developm	nent of lateral surfaces of solids with square and cylindrical cutouts, perpendicular to	the a	ixis.		
UNIT IV	ISOMETRIC PROJECTION		3	+	12
	of isometric projection -isometric scale - isometric projections of simple solids, tr	unca	ted	pris	sms
pyramids.	cylinders and cones.				
UNIT V	PERSPECTIVE PROJECTION		3	+	12
	ve projection of prisms, pyramids and cylinders by visual ray and vanishing point me	hods	-	T	14
1 0100000		inouc			
	Total (15+		60	Peri	ods
	dy of drafting software – Auto CAD – Coordinate System (Absolute, relative and pola				
	of simple figures like polygon, Drawing a plan of residential building, Creation of 3-D				
of simple	objects and obtaining 2-D multi view drawing from 3-D model. (Internal Assessmen	t onl	y)		
Course o	utcomes:				
	appletion of this course, the students will be able to:				
CO1 :	Understand the conventions and the methods of engineering drawing.				
CO2 :	Understand the fundamental concepts of theory of projection.				
CO3	Understand the development of different surfaces.				
CO4 :	Develop the relationships between 2D and 3D environments.				
CO5 :	Demonstrate computer aided drafting.				
					_
Text boo					
1.	Bhatt N.D, "Engineering Drawing", Charotar publishing House, 2003				
2.	Natarajan, K.V, "A Text book of Engineering Graphics", Dhanalakshmi Publishers,	200	ö.		
	1				
Referenc					
1.	Gopalakrishnana K.R, "Engineering Drawing", Vol. I and II, Subhas Publications, 1				
2.	Dhananjay A. Jolhe, "Engineering Drawing with an Introduction to AutoCAD", Tata	McC	Grav	v Hi	I
	Publishing Company Limited, 2008.				

3.	Venugopal, K and Prabhu Raja, V., "Engineering Graphics", New Age International (P) Ltd, 2008.
4.	Gill, P.S, "Engineering Drawing-Geometrical Drawing", S.K Kataria and Sons, 2008.
5.	CAD Software Theory and User Manuals

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			2					1		
CO2	2	1			2							
CO3	3	2		2	2							1
CO4	2	2		1	1					2		1
CO5	2	2		1	1					1		2

18CM 201	BASIC CIVIL AND MECHANICAL ENGINEERING	L	T	P	C
		4	0	0	4
Course Ob	jectives:				
1.	The objective of the course is to impart knowledge on different fields of c various materials used for construction	ivil engineer	ing a	and	
Unit I	CIVIL ENGINEERING MATERIALS AND SURVEYING		12	+	0
	: Mechanical properties of materials - Stress - Strain - Types of stresse	es and strain	s –	Elast	ticity -
Civil Engine	w – stress strain curve of ductile material. Beering Materials : Bricks – Stones – Sand - Cement – Concrete – Steel Surv Stion – Measurement of Distances	eying : Obje	cts -	- Prir	nciples
Unit II	BUILDING COMPONENTS AND STRUCTURES		12	+	0
Columns -	 Functions of foundation – Types Superstructure : Brick Masonry – Lintels – Roofing – Flooring – Plastering.Dams : Types of Dams – crost duction to Green Building Concept 				
UNIT III	BOILERS, TURBINES AND PUMPS		12	+	0
Description boiler only) Reaction tu UNIT IV	assification of boilers- Working Principle of various types of boilers – Horizo of: Lancashire boiler, Locomotive boiler, Babcock andWilcox boiler, Coc - Boiler Mountings and Accessories. Turbines- Classification- Working Irbines, Pumps-working principle of reciprocating (single and double acting) INTERNAL COMBUSTION ENGINES n, terminologies, classification and components – working principles of p	hran boiler, Principle c) and centrift	sim f Im ugal 12	ole v ipuls pum +	ertica e and ps. 0
	o of four stroke and two stroke cycle engines – applications of IC engines.		5301	cing	1103
				1	1
UNIT V Definition c	REFRIGERATION AND AIR CONDITIONING SYSTEM of refrigeration and air conditioning – terminology; refrigerants – definit		12 catio	+ n, w	0 orking
Definition of	of refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window	ion, classific	atio type	n, w e roc	orkiną om ai
Definition c principle of conditioner.	of refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – windov	ion, classific w and split	atio type	n, w e roc	orkiną om ai
Definition of principle of conditioner.	of refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – windov	ion, classific w and split Total (60+	atio type	n, w e roc	orkiną om ai
Definition c principle of conditioner. Course Ou Upon comp CO1	of refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – windov 	ion, classific w and split Total (60+	atio type	n, w e roc	orking om ai
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2	f refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window terms: letion of this course, the students will be able to : Students will acquire the basic knowledge in different fields of civil eng : Materials used in construction.	ion, classific w and split Total (60+	atio type	n, w e roc	orking om ai
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3	f refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window terminology terminology; refrigerants – definit approximate and vapour absorption system – window terminology; refrigerants – definit approximate and vapour absorption system – window terminology; refrigerants – definit approximate and vapour absorption system – window approximate and vapour absorption system - window	ion, classific w and split Total (60+ gineering.	atio type 0)=(n, w e roc	orkiną om ai
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2	f refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window terms: letion of this course, the students will be able to : Students will acquire the basic knowledge in different fields of civil eng : Materials used in construction.	ion, classific w and split Total (60+ gineering.	atio type 0)=(n, w e roc 60 Pe	orking om ai
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5	f refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window terms: detion of this course, the students will be able to Students will acquire the basic knowledge in different fields of civil eng Materials used in construction. Understand the different parts of the buildings Gain the knowledge about the working of IC engine, its components a Gain the knowledge about various types of boilers, turbines and demonstrate the working of Refrigeration and Air conditioning.	ion, classific w and split Total (60+ gineering.	atio type 0)=(n, w e roc 60 Pe	orking om ai
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5	 bit refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window. atcomes: bletion of this course, the students will be able to Students will acquire the basic knowledge in different fields of civil engine. Materials used in construction. Understand the different parts of the buildings Gain the knowledge about the working of IC engine, its components and demonstrate the working of Refrigeration and Air conditioning. s: Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engine) 	ion, classific w and split Total (60+ gineering. nd its applica pumps and	atio type 0)=e	n, w e roc 60 Pe	ble to
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Books 1.	 bit refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window. atcomes: bletion of this course, the students will be able to Students will acquire the basic knowledge in different fields of civil engine. Materials used in construction. Understand the different parts of the buildings Gain the knowledge about the working of IC engine, its components and demonstrate the working of Refrigeration and Air conditioning. standard G and Palanichamy M S, "Basic Civil and Mechanical Engine Co., New Delhi, (1996). 	ion, classific w and split Total (60+ gineering. nd its applica pumps and neering", TM	atio type 0)=6	n, w e roo 60 Pe	ble to
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Books	 bit refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window. atcomes: bletion of this course, the students will be able to Students will acquire the basic knowledge in different fields of civil engine. Materials used in construction. Understand the different parts of the buildings Gain the knowledge about the working of IC engine, its components and demonstrate the working of Refrigeration and Air conditioning. s: Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engine) 	ion, classific w and split Total (60+ gineering. nd its applica pumps and neering", TM	catio type 0)= ation 1 als 11H P 9999	n, w roo 60 Pe 60 Pe	ble to
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Books 1. 2.	 bit refrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window. bit comes: bit	ion, classific w and split Total (60+ gineering. nd its applica pumps and neering", TM (P) Ltd (1 pering", TMH	catio type 0)= ation 1 als 11H P 9999	n, w roo 60 Pe 60 Pe	ble to
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Books 1. 2. 3. 4.	 be frefrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window. intromes: betion of this course, the students will be able to Students will acquire the basic knowledge in different fields of civil engine; Materials used in construction. Understand the different parts of the buildings Gain the knowledge about the working of IC engine, its components and demonstrate the working of Refrigeration and Air conditioning. st: Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engine Co., New Delhi, (1996). Ramamrutham. S, "Basic Civil Engineering", Dhanpat Rai Publishing Co. Shanmugam G and Palanisamy M S, "Basic Civil and Mechanical Engine New Delhi, 1996. 	ion, classific w and split Total (60+ gineering. nd its applica pumps and neering", TM (P) Ltd (1 pering", TMH	catio type 0)= ation 1 als 11H P 9999	n, w roo 60 Pe 60 Pe	ble to
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Books 1. 2. 3. 4. Reference	 be frefrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window. betion of this course, the students will be able to Students will acquire the basic knowledge in different fields of civil engine; Materials used in construction. Understand the different parts of the buildings Gain the knowledge about the working of IC engine, its components a demonstrate the working of Refrigeration and Air conditioning. s: Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engine Co., New Delhi, (1996). Ramamrutham. S, "Basic Civil Engineering", Dhanpat Rai Publishing Co. Shanmugam G and Palanisamy M S, "Basic Civil and Mechanical Engine New Delhi, 1996. Ramamrutham. S, "Basic Civil Engineering", DhanpatRai publishing Co.(p Books:	ion, classific w and split Total (60+ gineering. nd its applica pumps and neering", TM (P) Ltd (1 pering", TMH	catio type 0)= ation 1 als 11H P 9999	n, w roo 60 Pe 60 Pe	ble to
Definition c principle of conditioner. Course Ou Upon comp CO1 CO2 CO3 CO4 CO5 Text Books 1. 2. 3. 4.	 be frefrigeration and air conditioning – terminology; refrigerants – definit f vapour compression system and vapour absorption system – window. intromes: betion of this course, the students will be able to Students will acquire the basic knowledge in different fields of civil engine; Materials used in construction. Understand the different parts of the buildings Gain the knowledge about the working of IC engine, its components and demonstrate the working of Refrigeration and Air conditioning. st: Shanmugam G and Palanichamy M S, "Basic Civil and Mechanical Engine Co., New Delhi, (1996). Ramamrutham. S, "Basic Civil Engineering", Dhanpat Rai Publishing Co. Shanmugam G and Palanisamy M S, "Basic Civil and Mechanical Engine New Delhi, 1996. 	ion, classific w and split Total (60+ gineering. nd its applica pumps and neering", TM (P) Ltd (1 eering", TMH) Ltd.1999.	ation ation I als 999 pub	n, w roo 60 Pe 60 Pe	ble to

4	Seetharaman S, , "Basic Civil Engineering", Anuradha Agencies, (2005).
5	Venugopal K and Prabu Raja V, "Basic Civil Engineering",Anuradha publishers, Kumbakonam,2000.
6	Shantha Kumar S R J, "Basic Civil Engineering", Hi-tech publications, Mayiladuthurai, 2000.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2		2								
CO2			2	2								
CO3		2	2	2								
CO4												
CO5												

18PH103	PHYSICS LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course O	bjectives:				
1.	To handle different measuring instruments.				
2.	To understand the basic concepts of interference, diffraction, heat conduction the important parameters	and	to m	eas	Jre
Experime	nts				
1	Newton's rings – Determination of radius of curvature of a Plano convex lens.				
2	Carey Foster's bridge – Determination of specific resistance of the material of	the	wire.		
3	Poiseuille's flow – Determination of Coefficient of viscosity of a liquid.				
4	Spectrometer – Grating – Normal incidence – Determination of Wavelength of	f Mei	cury	line	s.
5	Lee's disc – Determination of thermal conductivity of a Bad conductor.				
6	Ultrasonic interferometer - Determination of velocity of Ultrasonic Waves in Li	quid			
7	Non-uniform bending – Determination of young's modulus of the material of the	ne Ba	ar.		
8	Determination of Band gap of a given semi conductor				
9	Determination of Wavelength of laser using grating and determination of partic Laser	cle s	ize u	sing	
10	Determination of Acceptance angle and Numerical Aperture of fiber.				
	Total (0+4	5)=45	5 Pe	riods
Course O	utcomes:	-			·
Upon com	pletion of this course, the students will be able to:				
CO1	: Handle different measuring instruments and to measure different parameters.				
CO2	: Calculate the important parameters and to arrive at the final result based on the measurements.	ne ex	cperir	nen	tal

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		2	3	1	1		3	2	3	3
CO2	3	3		2	3	1	1		3	2	3	3

18CY102	CHEMISTRY LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course	Objectives:				
1.	To gain practical knowledge by applying theoretical principles and performing the followinexperiments				
Experim	ents				
1	Estimation of hardness of Water by EDTA				
2	Estimation of Copper in brass by EDTA				
3	Estimation of Alkalinity in water				
4	Estimation of Chloride in water sample (lodimetry)				
5	Conductometric titration of Strong Acid and Strong Base				
6	Conductometric titration of Mixture of acids and Strong base				
7	Determination of strength of Iron by Potentiometric method				
8	Estimation of Iron by Spectrophotometry				
9	Determination of molecular weight and degree of Polymerisation by Viscometry				
	Total (0-	+45)	=45	Per	iods
Course	Dutcomes:	,			
Upon co	npletion of this course, the students will be able to:				
CO1	To know the applicability of the practical skill gained in various fields.				
CO2	: To know the composition of brass quantitatively and the molecular weight of polyr	ners			
CO3	To understand the principle and applications of conductometric titrations, spectror	mete	r ar	d	
	potentiometric titrations				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1									
CO2	3	3	1									
CO3	3	3	1									

18EN103	PROFESSIONAL COMMUNICATION LABORATORY	L	Т	Р	С
		0	0	2	1
Course Ob	jectives:				
1.	To improve their reading skills.				
2	To address an audience and present a topic				
3	To acquire speaking competency in English.				
4	To strengthen their fluency in speaking.				
List of exp	eriments				
	Methodology – Reading				
	1) Reading a story aloud with exact pronunciation, with intonation, and with expres	sina	sen	se.	
1	2) Reading poems for improving verbal skills, memory, and critical thinking.	5			
	3) Reading newspaper articles for strengthening the vocabulary and writing skills.				
	4) Reading homophones with exact pronunciation for expressing different meaning				
	Methodology – Speaking				
	1) Power point presentation - on general topics - for organising and structuring pre	sent	atio	n.	
	2) Oral presentation -on basic technical ideas related to engineering.				
2	3) Speaking on a given topic - current affairs, expressing opinion on social issues.				
	4) Describing a process - booking Ticket online, survey for starting a new office, se	endir	ng a	n e-	
	mail, etc.		-		
	5) Organising official events -compering, presenting welcome address, proposing v	ote	of th	anks	s.
	Total (0+	20)-	20 5	Oorio	de
Course Ou		50)-	<u> 30 r</u>	enc	us
	pletion of this course, the students will be able to:				
CO1	: Read short passages fluently, avoiding mispronunciation, substitution, omission	and			
	transposition of word-pairs.				
CO2	: Vocalize words without the aid of pictures.				
CO3	: Develop a well-paced, expressive style of reading.				
CO4	: Make effective oral presentations on technical and general contexts.				
CO5	: Describe a process with coherence and cohesion.				
Text Book					
1.	Norman Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Student	s bo	ok,		
	Cambridge University Press, 2014.				
Reference	Books				
1	Spoken English: A Self-Learning Guide. V.Sasikumar and P V Dhamija				
2	English Conversation Practice: Grant Taylor Paperback 1976ly. Krishna Mohan, N	P Si	ngh		
3	Discussions that Work. Penny Ur.CUP, 1981.				
4	Speak Better Write Better English Paperback – November 2012 Norman Lewis, Ge	oyal	Publ	ishei	S
	and Distributors.				
E-Referen					
1	http://www.onestopenglish.com/skills/speaking/speaking-matters/				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2				1		2	2	3	2	2
CO2	1	1		2					1	3	1	3
CO3		3		2		1			2	3		2
CO4		2		1		1		1		3	2	3
CO5		2		2				1	1	3	1	3

18CE201	BASIC CIVIL ENGINEERING LABORATORY	L	Т	Ρ	С
	•	0	0	2	1
Course Ol	bjectives:				
1.	To understand the fundamental concept on visual inspection and standard paraterials used in the field of civil engineering	arameters	abo	ut th	е
2.	To obtain basic knowledge in testing of the materials widely used for construct	ction			
EXPERIM	ENTS				
1	Cement Tests a) Visual inspection b) Consistency c) Initial and final setting time				
2	Bricks Test a) Visual examination b) Crushing strength test				
3	Aggregate Test a) Specific gravity of fine aggregate b) Specific gravity of coarse aggregate				
4	Concrete – Compression strength Test				
5	Steel – Tension Test				
Course O		al (0+30):	=30 I	Perio	bds
	pletion of this course, the students will be able to:				
CO1 :	Testing the basic materials used in the field of civil engineering				
CO2 :	n-depth knowledge about their standard specifications and applications				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2		2								
CO2		2		2								

18MA302	STATISTICS AND NUMERICAL METHODS	L	Т	Ρ	С
		3	1	0	4
Course o	bjectives:				
1	To understand the statistical averages and fitting of curves.				
2	To gain the knowledge of significance test for large and small samples				
3	To obtain the knowledge about numerical interpolation, differentiation and i	nteg	ratic	n	
4	To acquire knowledge of numerical solution to first order ordinary different	entia	l eq	uatio	ons
	using single step and multi step methods.				
5	To gain the knowledge of numerical solution to second order partial difference by using explicit and implicit methods	entia	al eq	uatio	ns
Unit I	BASIC STATISTICS		9	+	3
Measures	of Central tendency: Moments, Skewness and Kurtosis, Curve fitting by the I	Meth		ofle	
	Fitting of straight lines, second degree parabolas and curves reducible to line				
Unit II	TEST OF HYPOTHESIS		9	+	3
Test of si	gnificance: Large Sample tests for Single proportion, difference of proportior	าร. ร		e me	
	ence of means- Small Sample test for single mean, difference of means it, test for ratio of variances - Chi-square test for goodness of fit and in				
			-	т —	
Unit III	INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEGRATIO		9	+	3
	f Algebraic and Transcendental equations by Newton-Raphson method- Solut				
	by Gauss Elimination and Gauss Seidal iterative methods - Interpolation				
	nd Backward formulae. Interpolation with unequal intervals: Newton's divided				
	s formulae Numerical Differentiation and Integration: Trapezoidal rule and Sim	ipso	n's 1	1/3 rı	Jle,
Simpson's	3/8 rule.				
	· · · · · · · · · · · · · · · · · · ·		1	·	1
Unit IV	NUMERICAL SOLUTION FOR ORDINARY DIFFERENTIAL EQUATIONS		9	+	3
method o	differential equations: Taylor series method- Euler and modified Euler's methor f fourth order for solving first and second order differential equations- Milne				
Direction -	orrector methods. NUMERICAL SOLUTION FOR PARTIAL DIFFERENTIAL EQUATION		•	Γ.	<u> </u>
			9	+	3
equations	ferential equations: Finite difference solution of two dimensional Laplac - Implicit and Explicit methods for one dimensional heat equation (Bender Sch methods) - Finite difference explicit method for wave equation.				
	Total (45+	15)=	:60 F	Peric	ods
-					
Course C	utcomes:				
<u>Upon co</u> m	pletion of this course, the students will be able to				
CO1 :	Learn about statistical averages and fitting the curves by Least Square Met	hod			
CO2 :	Acquire the techniques of interpolation.				
CO3 :	Familiar with the numerical differentiation and integration				
CO4 :	Solve the initial value problems for ordinary differential equations.				
CO5 :	Find the numerical solution of partial differential equation by using Finite diff	erer	nce r	neth	od.
I					

Text Boo	oks:
1.	Veerarajan T, "Probability and Random Process (With Queuing theory)", 4 th Edition, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2016.
2.	Kandasamy.P, Thilagavathy.K, Gunavathi.K, "Numerical Methods" S.Chand& Co., New Delhi, 2005.
3	Gupta, S.C. and Kapur, V.K., "Fundamentals of Mathematical Statistics", S.Chand and Sons, New Delhi, 11 th Edition 2014
Reference	ce Books:
1.	Fruend John, E. and Miller Irwin, "Probability and Statistics for Engineers", 8 th Edition, Prentice Hall India (P) Ltd, 2010.
2	Gerald, C. F. and Wheatley, P.O., "Applied Numerical Analysis", Sixth Edition, Pearson Education Asia, New Delhi – 2002
3	M.K.Venkataraman, "Numerical Methods", National Publishing Company,2000
4	Jain M.K.Iyengar, K & Jain R.K., "Numerical Methods for Scientific and Engineering Computation", New Age International (P) Ltd, Publishers 2003
5	Manish Goyal, "Numerical Methods and Statistical techniques Using "C" ", 1 st Edition, Laxmi Publications (P) Ltd, 2009.
E-Refere	ence :
1.	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2	2	1	1	2	2	1	2	2
CO2	3	3	1	1	1	1	1	1	1	1	1	1
CO3	3	3	1	2	1	1	1	2	2	1	2	2
CO4	3	3	2	2	1	1	1	2	2	1	1	1
CO5	3	3	2	2	2	1	1	1	1	1	1	1

18EE301	ELECTRIC CIRCUIT ANALYSIS	L	Т	Ρ	С
		3	1	0	4
Course O	bjectives:				
To expose	basic circuit concepts, circuit modelling and methods of circuit analysis in time domair	n an	d fre	quei	ncy
domain for	r solving simple and multi dimensional circuits including coupled circuits			-	-
Unit I	BASIC CIRCUITS ANALYSIS		9	+	3
Ohm's Lav	w – Kirchoffs laws – DC and AC Circuits – Resistors in series and parallel circuits –Me	esh	curr	ent a	anc
	ge method of analysis for DC and AC Circuits – Sinusoidal voltage and current – instar				
	nd effective values – form factor and peak factor (derivations for sine wave) – pure res				
	citive circuits – RL, RC, RLC series circuits – impedance – phase angle – phasor diagra				
	tor – power triangle – apparent power, active and reactive power – parallel circuits (two ance, susceptance and admittance	DDIa	none	35 01	пy
00110000					
Unit II	NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND A	AC	•		_
	CIRCUITS		9	+	3
	reduction: voltage and current division, source transformation- star and delta				
	tion Theorem - Thevenin's and Norton's Theorem — Maximum power transfer theorem	em –	Rec	ipro	city
I neorem -	- substitution theorem-Millman's theorem.				
11	RESONANCE AND COUPLED CIRCUITS		•		•
Unit III	RESUNANCE AND COUPLED CIRCUITS		9	+	3
Sariaa an			it		
	d parallel resonance – frequency response - Effects of varying inductance and				
Selectivity	d parallel resonance – frequency response - Effects of varying inductance and - 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S	Self	and	mut	ua
Selectivity inductance	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit	Self	and	mut	ua
Selectivity inductance	d parallel resonance – frequency response - Effects of varying inductance and - 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S	Self	and	mut	ua
Selectivity inductance parallel – ⁻ Unit IV	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS	Self ts in	and ser 9	mut ies a	ua anc 3
Selectivity inductance parallel – ⁻ Unit IV	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits.	Self ts in	and ser 9	mut ies a	ua anc 3
Selectivity inductance parallel – ⁻ Unit IV	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS	Self ts in	and ser 9	mut ies a	ua anc 3
Selectivity inductance parallel – ⁻ Unit IV	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS	Self ts in	and ser 9	mut ies a	ual and 3
Selectivity inductance parallel – ⁻ Unit IV Transient Unit V	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si	Self ts in	and ser 9 soida 9	mut ies a + Il inp	ua anc 3 ut.
Selectivity inductance parallel – ⁻ Unit IV Transient Unit V Significant balanced/	 d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC s THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit 	Self ts in sinus ad-T its w	and ser 9 soida 9 hree vith s	mut ies a + Il inp + e pha	ua anc 3 ut. 3 ase
Selectivity inductance parallel – ⁻ Unit IV Transient Unit V Significant balanced/ delta conn	 d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit ected with balanced and unbalanced loads – phasor diagrams of voltages and curre 	Self ts in sinus ad-T its w	and ser 9 soida 9 hree vith s	mut ies a + Il inp + e pha	ua anc 3 ut. 3 ase
Selectivity inductance parallel – ⁻ Unit IV Transient Unit V Significant balanced/ delta conn	 d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC s THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit 	Self ts in sinus ad-T its w	and ser 9 soida 9 hree vith s	mut ies a + Il inp + e pha	ua anc 3 ut. 3 ase
Selectivity inductance parallel – ⁻ Unit IV Transient Unit V Significant balanced/ delta conn	 d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit ected with balanced and unbalanced loads – phasor diagrams of voltages and curre 	Self ts in sinus ad-T its w	and ser 9 soida 9 hree vith s	mut ies a + Il inp + e pha	ua anc 3 ut. 3 ase
Selectivity inductance parallel – ⁻ Unit IV Transient Unit V Significant balanced/ delta conn	 d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit ected with balanced and unbalanced loads – phasor diagrams of voltages and curre 	Self ts in inus ad-T its w ents	and ser 9 soida 9 hree rith s –pov	mut ies a + Il inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc
Selectivity inductance parallel – ⁻ Unit IV Transient Unit V Significant balanced/ delta conn	 d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit ected with balanced and unbalanced loads – phasor diagrams of voltages and curre tor measurements in three phase circuits 	Self ts in inus ad-T its w ents	and ser 9 soida 9 hree rith s –pov	mut ies a + Il inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc
Selectivity inductance parallel – [–] Unit IV Transient I Unit V Significance balanced/ delta conn power fact	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit tor measurements in three phase circuits Total (45+1 utcomes:	Self ts in inus ad-T its w ents	and ser 9 soida 9 hree rith s –pov	mut ies a + Il inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc
Selectivity inductance parallel – ⁻ Unit IV Transient I Unit V Significance balanced/ delta conn power fact Course O Upon com	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit tor measurements in three phase circuits Total (45+1 utcomes: pletion of this course, the students will be able to	Self ts in inus ad-T its w ents 5) =	and ser 9 coida 9 hree rith s –pov	muti ies a + I inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc anc
Selectivity inductance parallel – – Unit IV Transient Unit V Significand balanced/ delta conn power fact Course O Upon com	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit iected with balanced and unbalanced loads – phasor diagrams of voltages and curre tor measurements in three phase circuits Total (45+1 utcomes: pletion of this course, the students will be able to : Understand the basic concept of circuit elements, circuit laws and network reduction	Self ts in inus ad-T its w ents - 5) =	and ser 9 coida 9 hree rith s -pov	muti ies a + I inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc anc
Selectivity inductance parallel – – Unit IV Transient – Unit V Significand balanced/ delta conn power fact Course O Upon com CO1 CO2	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit ected with balanced and unbalanced loads – phasor diagrams of voltages and curre tor measurements in three phase circuits Total (45+1 utcomes: pletion of this course, the students will be able to : Understand the basic concept of circuit elements, circuit laws and network reductio : Solve the electrical network using mesh, nodal analysis and applying network theo	Self ts in inus ad-T its w ents - 5) =	and ser 9 coida 9 hree rith s -pov	muti ies a + I inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc anc
Selectivity inductance parallel – [–] Unit IV Transient I Unit V Significand balanced/ delta conn power fact Course O Upon com CO1 CO2 CO3	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si UNDER CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit eeted with balanced and unbalanced loads – phasor diagrams of voltages and curre tor measurements in three phase circuits Total (45+1 Utomes: pletion of this course, the students will be able to : Understand the basic concept of circuit elements, circuit laws and network reduction is Solve the electrical network using mesh, nodal analysis and applying network theo : Understand the resonance in series and parallel circuits.	Self ts in inus ad-T its w ents - 5) =	and ser 9 coida 9 hree rith s -pov	muti ies a + I inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc anc ods
Selectivity inductance parallel – Unit IV Transient Unit V Significand balanced/ delta conn power fact Course O Upon com CO1 CO2 CO3 CO4	d parallel resonance – frequency response - Effects of varying inductance and - 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si THREE PHASE CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit tected with balanced and unbalanced loads – phasor diagrams of voltages and curre tor measurements in three phase circuits Total (45+1) utcomes: pletion of this course, the students will be able to : Understand the basic concept of circuit elements, circuit laws and network reduction : Solve the electrical network using mesh, nodal analysis and applying network theo : Understand the resonance in series and parallel circuits. : Analyze the coupled circuits.	Self ts in inus ad-T its w ents - 5) =	and ser 9 coida 9 hree rith s -pov	muti ies a + I inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc anc
Selectivity inductance parallel – [–] Unit IV Transient I Unit V Significand balanced/ delta conn power fact Course O Upon com CO1 CO2 CO3	d parallel resonance – frequency response - Effects of varying inductance and – 'Q' factor – Resonance Frequency – Bandwidth – Half power frequencies. S e – Coefficient of coupling – dot rule – analysis of coupled circuits – coupled circuit Tuned circuits – analysis of Single and double tuned circuits. TRANSIENT RESPONSE ANALYSIS response of RL, RC and RLC Circuits using Laplace transform for DC input and AC si UNDER CIRCUITS ce of 3 phase circuits – Star, Delta connections – Phase sequence – Balanced loa unbalanced voltage sources – analysis of three phase three wire and four wire circuit eeted with balanced and unbalanced loads – phasor diagrams of voltages and curre tor measurements in three phase circuits Total (45+1 Utomes: pletion of this course, the students will be able to : Understand the basic concept of circuit elements, circuit laws and network reduction is Solve the electrical network using mesh, nodal analysis and applying network theo : Understand the resonance in series and parallel circuits.	Self ts in inus ad-T its w ents - 5) =	and ser 9 coida 9 hree rith s -pov	muti ies a + I inp + e pha tar a wer a	ua anc 3 ut. 3 ase anc anc

Text Bo	oks:
1.	William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuit Analysis", Seventh Edition, TMH publishers, New Delhi, 2013
2.	Sudhakar. A., and Shyammohan. S. Palli, 'Circuits & Networks Analysis and Synthesis', Fourth Edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2015.
Referen	ce Books:
1.	A. Chakrabarti, 'Circuit Theory Analysis and Synthesis', Seventh Revised Edition, Dhanpat Rai & Co., New Delhi, 2018
2	Dr. M. Arumugam & N. Premkumar, " Electric circuit theory", Khanna Publishers, New Delhi,1991.
3	Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2013.
4	Mahmood Nahvi& Joseph Edminister, "Electric Circuits", Schaum's Outline Series, McGraw Hill Publications, Seventh Edition,2018
E-Refer	ence :
1.	NPTEL Courses on Basic Electrical Circuits, IIT Madras

2 NPTEL Courses on Circuit theory, IIT Delhi

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	2			1					
CO2	2	3	1	2			1					
CO3	3	1	2				1					
CO4	3	1	2				1					
CO5	1	3	2		3		1					
CO6	1	2	1	1	3		1					

18EE302		ELECTROMAGNETIC FIELDS	<u>L</u>	T	Г	4
			3	1	0	4
Course O)bje	ctives:				
1.		o introduce the basic mathematical concepts related to electromagnetic vector field				
2.		o impart knowledge on the concepts of Electrostatic fields, electrical potential, ener	gу	dens	sity a	anc
۷.		neir applications.				
3.		o impart knowledge on the concepts of Magneto static fields, magnetic flux density, v	/eci	tor p	oten	tia
	a	nd its applications.				117
4.		o impart knowledge on the concepts of Different methods of emf generation	anc	I IVIA	axwe	
5.		quations. o impart knowledge on the concepts of Electromagnetic waves and characterizing	nai	ame	ters	
0.			pui	anne		<u>.</u>
Jnit I		LECTROSTATICS – I		9	+	3
		effects of electromagnetic fields – Coordinate Systems – Vector fields – Gradient, Di				
		nd applications - Coulomb's Law – Electric field intensity – Field due to discrete a	Ind	con	tinuo	bus
charges -	Ga	uss's law and applications.				
1						2
Jnit II		LECTROSTATICS – II	- oti	9 00 f	+	3
		ntial – Electric field and equipotential plots, Uniform and Non-Uniform field, Utiliz				
		n free space, conductors, dielectrics - Dielectric polarization- Dielectric strength -				
	lieleo	ctrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, E	nei	gy d	lens	πу
\ m m li n n ti n						
Applicatio	ns.					
				0		2
Unit III	M	AGNETOSTATICS		9	+	3
	M Drce	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o		to		gh
Unit III Lorentz fo	M Drce, s, c	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa	ce,	to cor	nduc	gh tor
Unit III _orentz fo conductor magnetic	M Drce s, c mate	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca	ce, alar	to cor	nduc	gh tor
Unit III _orentz fo conductor magnetic	M Drce s, c mate	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa	ce, alar	to cor	nduc	gh tor
Unit III Lorentz fo conductor magnetic potential,	M prce, s, c mate Pois	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications	ce, alar	to cor and	nduc	gh tor to
Unit III Lorentz fo conductor magnetic potential, Unit IV	M Drce, rs, c mate Pois	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications	ce, alar	to cor anc 9	duc l vec	gh tor to
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic	M Drce, s, c mate Pois L Circ	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre	ce, alar	to cor and 9 - Ma	iduc I vec + axwe	gh tor to 3
Unit III _orentz fo conductor magnetic potential, Unit IV Magnetic	M Drce, s, c mate Pois L Circ	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications	ce, alar	to cor and 9 - Ma	iduc I vec + axwe	gh tor to
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations	M Drce rs, c Material Pois L Circ (diff	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H o ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App	ce, alar	e to cor and 9 - Ma ation	iduc I vec + axwe	gh tor to 3
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V	M Drce, rs, c Pois Pois Circ (diff	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES	ce, alar nt - olica	e to cor and 9 - Ma ation 9	H H H H H H H H H H H H H H H H H H H	gh tor to 3
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma	M Drce, rs, c Pois E Circ (diff (diff	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa- erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES tic wave generation and equations – Wave parameters; velocity, intrinsic impedance	ce, alar nt olica	9 - Ma ation	H vec + axwe s. + agat	gh tor to 3
Jnit III orentz fo conductor magnetic potential, Jnit IV Magnetic equations Jnit V Electroma constant -	Morce, rs, c Pois Circe (diff (diff E agne - Wa	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa- erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca- sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement currer ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES stic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting	ce, alar nt olica	9 - Ma ation	H vec + axwe s. + agat	gh tor tor to 3
Jnit III orentz fo conductor magnetic potential, Jnit IV Magnetic equations Jnit V Electroma constant -	Morce, rs, c Pois Circe (diff (diff E agne - Wa	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa- erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES tic wave generation and equations – Wave parameters; velocity, intrinsic impedance	ce, alar nt olica	9 - Ma ation	hduc l vec + axwe s. + agat	gh tor tor to 3
Jnit III orentz fo conductor magnetic potential, Jnit IV Magnetic equations Jnit V Electroma constant -	Morce, rs, c Pois Circe (diff (diff E agne - Wa	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa- erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca- sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES etic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction.	ce, alar	9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0	iduc I vec I vec s. s. + agat - Pla	gh tor to 3 ell': ior
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle	Morce, rs, c mate Pois E Circe (diff B agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free span erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES etic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15)	ce, alar	9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0	iduc I vec I vec s. s. + agat - Pla	gh tor to 3 ell': ior
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free span erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES etic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15)	ce, alar	9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0	iduc I vec I vec s. s. + agat - Pla	gh tor to 3 ell': ior
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa- erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca- sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES tic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15) omes: tion of this course, the students will be able to:	ce, alar	9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0	iduc I vec I vec s. s. + agat - Pla	gh tor to 3 ell': ior
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle Course O Jpon com CO1	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa- erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca- sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES etic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15) omes: tion of this course, the students will be able to: Understand the basic mathematical concepts related to electromagnetic vector field	ce, alar nt blica	9 9 9 - Ma ation 9 0 0 0 0 0 0 5.	educ I vec I vec s. + agat - Pla	gh tor tor 3 ior and od:
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle Course O Upon com	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, scates on's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES etic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15 omes: tion of this course, the students will be able to: Understand the basic mathematical concepts related to electromagnetic vector field Understand the basic concepts about electrostatic fields, electrical potential, en their applications.	ce, alar nt blica e, p veo	9 9 9 - Ma ation 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Huck Huck Huck Huck Huck Huck Huck Huck	gh tor tor to 3 ior ane ods
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle Course O Upon com CO1	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, scatson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS Cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES etic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15) omes: tion of this course, the students will be able to: Understand the basic mathematical concepts related to electromagnetic vector field Understand the basic concepts about electrostatic fields, electrical potential, en	ce, alar nt blica e, p veo	9 9 9 - Ma ation 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Huck Huck Huck Huck Huck Huck Huck Huck	gh tor tor to 3 ior ane ods
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle Course O Upon com CO1 CO2 CO3	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca ason's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS Cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES tetic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15) omes: tion of this course, the students will be able to: Understand the basic mathematical concepts related to electromagnetic vector fiele Understand the basic concepts about electrostatic fields, electrical potential, en their applications. Apply knowledge in magneto static fields, magnetic flux density, vector papplications.	ce, alar nt blica e, p veo	9 9 9 - Ma ation 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Huck Huck Huck Huck Huck Huck Huck Huck	gh tor tor to 3 ior ane ods
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle Course O Upon com CO1 CO2 CO3 CO3	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES to wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15 omes: tion of this course, the students will be able to: Understand the basic mathematical concepts related to electromagnetic vector fiel Understand the basic concepts about electrostatic fields, electrical potential, en their applications. Apply knowledge in magneto static fields, magnetic flux density, vector p applications. Understand the different methods of emf generation and Maxwell's equations	ce, alar Int Int Int Int Vec	9 9 - Ma ation 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Huck Huck Huck Huck Huck Huck Huck Huck	gh tor tor to 3 ior ane ods
Unit III Lorentz fo conductor magnetic potential, Unit IV Magnetic equations Unit V Electroma constant – wave refle Course O Upon com CO1 CO2 CO3	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spaterials – Magnetization, Magnetic field in multiple media – Boundary conditions, scasson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS Cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES etic wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15) omes: tion of this course, the students will be able to: Understand the basic mathematical concepts related to electromagnetic vector field Understand the basic concepts about electrostatic fields, electrical potential, en their applications. Apply knowledge in magneto static fields, magnetic flux density, vector p applications. Understand the different methods of emf generation and Maxwell's equations Apply knowledge in concepts of electromagnetic waves and characterizing param	ce, alar nt blica ie, p veo	9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0	ensit	gh tor tor to and y a nd
Unit III Lorentz fc conductor magnetic botential, Unit IV Magnetic equations Unit V Electroma constant – wave refle Course O Upon com CO1 CO2 CO3 CO4	M Drce, s, c mature Pois E Circe (diffination E agne - Wa ectio	, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H of ircular loop, infinite sheet of current, Magnetic flux density (B) – B in free spa erials – Magnetization, Magnetic field in multiple media – Boundary conditions, sca sson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications LECTRODYNAMIC FIELDS cuits - Faraday's law – Transformer and motional EMF – Displacement curre ferential and integral form) – Relation between field theory and circuit theory – App LECTROMAGNETIC WAVES to wave generation and equations – Wave parameters; velocity, intrinsic impedance aves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting in and refraction. Total (45+15 omes: tion of this course, the students will be able to: Understand the basic mathematical concepts related to electromagnetic vector fiel Understand the basic concepts about electrostatic fields, electrical potential, en their applications. Apply knowledge in magneto static fields, magnetic flux density, vector p applications. Understand the different methods of emf generation and Maxwell's equations	ce, alar nt blica ie, p veo	9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0	ensit	gh tor tor tor dior and y a nd

Text Bo	oks:
1.	Mathew N. O. Sadiku, 'Principles of Electromagnetics', 6th Edition, Oxford University Press Inc. Asian edition, 2015.
2.	William H. Hayt and John A. Buck, 'Engineering Electromagnetics', McGraw Hill Special Indian edition, 2014.
3.	Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 2010.
Referen	ce Books:
1.	V.V.Sarwate, 'Electromagnetic fields and waves', First Edition, Newage Publishers, 1993.
2.	J.P.Tewari, 'Engineering Electromagnetics - Theory, Problems and Applications', Second Edition,

۷.	Khanna Publishers.2013
3.	Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline
э.	Series), McGraw Hill, 2013,4 th edition.
4.	S.P.Ghosh, Lipika Datta, 'Electromagnetic Field Theory', First Edition, McGraw Hill Education(India)
4.	Private Limited, 2012.
5.	K A Gangadhar, 'Electromagnetic Field Theory', Khanna Publishers; Eighth Reprint : 2015.
E-Referen	ce :
1.	www.onlinecourses.nptel.ac.in
2	www.class-central.com

www.mooc-list.com

2 3

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	1	1	1	1	1	1	1
CO2	1	3	2	2	2	1	1	1	1	1	1	1
CO3	1	3	2	2	2	1	1	1	1	1	1	1
CO4	1	1	3	3	2	2	1	1	1	1	1	1
CO5	1	1	1	3	3	2	2	1	1	1	1	1
CO6	1	1	3	2	2	2	1	1	1	1	1	1

18EE30		-
Course	3 0 0 Objectives: 0 0	3
1.	To understand the concepts of electromechanical energy conversion and to gain the knowledge of single and multiply-excited magnetic systems.	วท
2.	To gain the knowledge on construction and principles of operation of DC machines ar transformers.	nd
3.	To analyze the performance characteristics of different types of DC machines and transformers.	
4.	To appreciate the applications of DC machines and transformers.	
5.	To analyze the performance of DC machines and transformers by conducting various tests.	
Unit I	ELECTROMECHANICAL ENERGY CONVERSION 9 +	0
	c circuits – Magnetically induced EMF and force – AC operation of magnetic circuits – Energy	in
	c systems - Field energy & mechanical force - Single and Multiply-excited magnetic field system	
Unit II	DC GENERATORS 9 +	0
excitatio	ctional features of DC machine – Principle of operation of DC generator – EMF equation – Types n – No load and load characteristics of DC generators – Commutation - Armature reaction – Parall n of DC generators - Applications.	
Unit III	DC MOTORS 9 +	0
Principle Torque	e of operation of DC motors - Back EMF – Torque equation – Types of DC motors - Speed characteristics of DC motors – Starting of DC motors: 3- point starter, 4- point starter – Speed contro	<u> </u>
Field CC	ontrol, Armature voltage control – Applications.	
Unit IV		0
Unit IV Principle No- load		on
Unit IV Principle No- load transform	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase transformers.	on
Unit IV Principle No- load transform Unit V Losses	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All data	on se 0 nd
Unit IV Principle No- load transform Unit V Losses Hopkins	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All dary.	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficienc	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All dary. Total (45+0)= 45 Period	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficience	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All dates y. Total (45+0)= 45 Period Outcomes:	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficience	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of a and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All dary. Total (45+0)= 45 Period Outcomes: mpletion of this course, the students will be able to:	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Course Upon cc	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All dates y. Total (45+0)= 45 Period Outcomes:	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Course Upon cc CO1	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All da y. Total (45+0)= 45 Period Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles.	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Upon co CO1 CO2	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All da y. Total (45+0)= 45 Period Outcomes: Impletion of this course, the students will be able to: Impletion of this course, the students will be able to: Understand the concepts of electromechanical energy conversion principles. Impletion of the basic concepts of DC machines and transformers.	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Course Upon cc CO1 CO2 CO3	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day. Total (45+0)= 45 Period Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers.	on se 0 nd ay
Unit IV Principle No- load transforr Unit V Losses Hopkins efficience Course Upon co CO1 CO2 CO3 CO4 CO5	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of d and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. Testing of poc MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All da y. 9 + Total (45+0)= 45 Period Outcomes: impletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing.	on se 0 nd ay
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Course Upon cc CO1 CO2 CO3 CO4	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of d and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. Testing of poc MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All da y. 9 + Total (45+0)= 45 Period Outcomes: impletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing.	on se 0 nd ay ds
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Course Upon cc CO1 CO2 CO3 CO4 CO5 Text Bo	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phasemer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test aron's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All day. Total (45+0)= 45 Period Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing. oks: D.P. Kothari, I.J. Nagrath, "Electric Machines", 3rd edition, Tata McGraw-Hill Company Ltd., Negrath.	on se nd ay ds
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Course Upon cc CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2.	TRANSFORMERS 9 e of operation – Constructional features of single phase transformers – EMF equation – Transformer of and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. TESTING OF DC MACHINES AND TRANSFORMERS 9 and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All da y. Total (45+0)= 45 Period Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the pasic concepts of DC machines and transformers. : Conduct various tests on DC machines. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing. oks: D.P. Kothari, I.J. Nagrath, "Electric Machines", 3rd edition, Tata McGraw-Hill Company Ltd., Ne Delhi, 2017,5 th edition. Dr. P.S. Bimbhra, "Electrical Machinery", Khanna Publishers, Delhi, 2021,2 nd edition. ce Books:	on se 0 nd ay ds
Unit IV Principle No- load transform Unit V Losses Hopkins efficience Course Upon cc CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2.	TRANSFORMERS 9 + e of operation – Constructional features of single phase transformers – EMF equation – Transformer of d and Load – Phasor diagrams Equivalent circuit – Regulation - Auto transformers - Three phase mer connections. 9 + TESTING OF DC MACHINES AND TRANSFORMERS 9 + and efficiency – Condition for maximum efficiency – Testing of DC machines: Swinburne's test ar on's test - Testing of transformer: open circuit and short circuit tests, Sumpner's test – All da y. 9 + Total (45+0)= 45 Period Outcomes: mpletion of this course, the students will be able to: : Understand the concepts of electromechanical energy conversion principles. : Understand the basic concepts of DC machines and transformers. : Evaluate the performance characteristics of DC machines and transformers. : Conduct various tests on DC machines. : Apply the concepts of transformers for testing. oks: D.P. Kothari, I.J. Nagrath, "Electric Machines", 3rd edition, Tata McGraw-Hill Company Ltd., Ne Delhi, 2017,5 th edition. Dr. P.S. Bimbhra, "Electrical Machinery", Khanna Publishers, Delhi, 2021,2 nd edition.	on se 0 nd ay ds

3.	Dr. K. Murugesh Kumar, "DC Machines & Transformers", Vikas Publishing House Pvt Ltd., 2nd edition, 2003.
E-Referen	ces:
1.	www.onlinecourses.nptel.ac.in
2.	www.class-central.com
3.	www.mooc-list.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	1	3	1	1	1	1	2
CO2	3	2	2	2	1	2	3	1	1	2	1	2
CO3	1	2	2	2	2	1	1	1	1	3	1	1
CO4	2	2	2	2	1	1	2	2	1	2	2	2
CO5	2	2	2	2	1	1	2	3	1	2	2	2

Course Objectives: 1. To understand the characteristics of diode. and transistors. 2. To understand the characteristics of transistors. 3. To design amplifier circuits 4. To design the oscillator circuits. Unit I DIODES 9 + Structure – Equilibrium conditions – Energy Band Concepts – Zero bias – Forward Bias – Reverse bias Junction capacitances – one sided and Non- uniformly doped junctions – Ideal PN junction current, P-N junct diode, V-I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits Unit II TRANSISTORS 9 + Bipolar Junction Transistor - structure, JFET characteristics and Biasing, Input and output characteristics of CE, na CC comfigurations – Transistor hybrid model – Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit II AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET structure and Difference mode analysis - FET in stages – Single tuned amplifier – Gain and frequency response – High frequency analysis 9 + Unit V MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier – Gain and frequency response – Neutralization methods, power amplifier Types (Qualitative analysis). 9 +	18EE304	ELECTRON DEVICES AND CIRCUITS	L 3			C 4	
1. To understand the characteristics of diode. and transistors. 2. To understand the characteristics of transistors. 3. To design amplifier circuits 4. To design the oscillator circuits. Unit I DIODES Structure – Equilibrium conditions – Energy Band Concepts – Zero bias – Forward Bias – Reverse bias Junction capacitances – one sided and Non- uniformly doped junctions – Ideal PN junction current, P-N junct diode, v1 characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits Unit II TRANSISTORS Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transitor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT - structure and characteristics Unit II AMPLIFIER CIRCUITS Method Source follower – Gain and frequency response – MOSFET structure anglifter, Differential amplifier – Common mode and Difference mode analysis – FET ling: Types (Qualitative analysis). Unit IV MULTISTAGE AMPLIFIERS AND OSCILLATORS Method Source to the students will be able to: Course Outcomes: Upon completion of this course, the students will be able to: Coures Outcomes: <td colspa<="" td=""><td>Course Ol</td><td>piectives:</td><td>3</td><td></td><td></td><td>4</td></td>	<td>Course Ol</td> <td>piectives:</td> <td>3</td> <td></td> <td></td> <td>4</td>	Course Ol	piectives:	3			4
2. To understand the characteristics of transistors. 3. To design amplifier circuits 4. To design the oscillator circuits. Unit I DIODES Structure – Equilibrium conditions – Energy Band Concepts – Zero bias – Forward Bias – Reverse bias Junction capacitances – one sided and Non - uniformly doped junctions – Ideal PN junction current, P-N junct diode, V-I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit II AMENLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response – High frequency analysis Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
3. To design amplifier circuits 4. To design the oscillator circuits. Unit I DIODES 9 Structure – Equilibrium conditions – Energy Band Concepts – Zero bias – Forward Bias – Reverse bias Junction capacitances – one sided and Non- uniformly doped junctions – Ideal PN junction current, P-N junct diode, V-I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics - UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CS, CB, CC amplifiers- Gain and frequency response - MOSFET structure analysis of CS and Source follower – Gain and frequency response - High frequency analysis 9 + BIT Small signal model – Analysis of CS and Source follower – Gain and frequency response - High frequency analysis 9 + BIT Small signal model – Analysis of CS and Source follower – Gain and frequency response - High frequency analysis 9 + BIT Small signal model – Mathysis of CS and Source follower / Commo mode and Difference mode analysis – FET in stages – Single tuned amplifiers <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
4. To design the oscillator circuits. Unit I DIODES 9 + Structure – Equilibrium conditions – Energy Band Concepts – Zero bias – Forward Bias – Reverse bias Junction capacitances – one sided and Non- uniformly doped junctions – Ideal PN junction current, P-N junct diode, V-I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits 9 + Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response- High frequency analysis 9 + Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis. 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. COL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Unit I DIODES 9 + Structure – Equilibrium conditions – Energy Band Concepts – Zero bias – Forward Bias – Reverse bias Junction capacitances – one sided and Non - uniformly doped junctions – Ideal PN junction current, P-N junct diode, V-I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction filed effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics: -UJT- structure and characteristics of LS and Source follower – Gain and frequency response – MOSFET structure analysis of CS and Source follower – Gain and frequency response – High frequency analysis Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier, Types (Qualitative analysis). 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shif – Wien bridge, Hartley, Colpitts and Crystal oscillators. 9 + CO1 1 Underst							
Structure Equilibrium conditions Energy Band Concepts Zero bias Forward Bias Reverse bias Junction capacitances - one sided and Non- uniformly doped junctions - Ideal PN junction current, P-N junction Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations Transistor structure, JFET and CC configurations Transistor structure and V-I characteristics: UI + structure and characteristics Bard CC configurations Transistor Structure 9 + BAT small signal model - Analysis of CE, CB, CC amplifiers- Gain and frequency response - MOSFET sm signal model 9 + BIM IN MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier - Common mode and Difference mode analysis - FET in stages - Single tuned amplifiers - Gain and frequency response - Neutralization methods, power amplifiers Types (Qualitative analysis). Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback - voltage / current, series, Shunt feedback - positive feedback - Condition oscillations, phase shift - Wien bridge, Hartley, Colpitts and Crystal oscillators. Condition coscillations, phase shift - Wien bridge, Hartley, Colpitts and Crystal							
Junction capacitances – one sided and Non [®] uniformly doped junctions – Ideal PN junction current, P-N junct diode, V-I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics: UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response – HOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response – HOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response – HOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response – HOS FET in stages – Single tuned amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. CO				-		3	
diode, V-I characteristics of a diode, review of half-wave and full-wave rectifiers, Zener diodes, voltage regula using zener diode, clamping and clipping circuits Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET sm signal model– Analysis of CS and Source follower – Gain and frequency response –High frequency analysis 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier Types (Qualitative analysis). 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 :							
using zener diode, clamping and clipping circuits Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit II AMPLIFIER CIRCUITS 9 + J + BIJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response – Migh frequency analysis Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier Types (Qualitative analysis). Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overiew of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Editio 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuits", 1999.							
Unit II TRANSISTORS 9 + Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET sm signal model – Analysis of CS and Source follower – Gain and frequency response – High frequency analysis 9 + BIMOS cascade amplifier, Differential amplifier – Commo mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier. Types (Qualitative analysis). 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio CO1 1 Understand overview of power semiconductor switches. CO2 1 Analyse the fundamentals and characteristics of BJT and UJT. CO3 1 Analyse the fundamentals and characteristics of FET andMOSFET. CO4 1 Design and analyze the amplifiers CO5 1 Design and analyze the oscil			voltage	e regu	lat	0	
Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response- High frequency analysis 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier: Types (Qualitative analysis). 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio CO1 1 Understand overview of power semiconductor switches. CO2 CO2 1 Analyse the fundamentals and characteristics of BJT and UJT. CO3 CO3 1 Design and analyze the differential amplifiers CO4 CO4 1 Design and analyze the differential amplifiers CO5 1 Design and analyze the oscillator circuits "Oxford University P	using zene	r diode, clamping and clipping circuits					
Bipolar Junction Transistor-structure, V-I characteristics and Biasing, Input and output characteristics of CE, and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET sr signal model – Analysis of CS and Source follower – Gain and frequency response- High frequency analysis 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier: Types (Qualitative analysis). 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio CO1 1 Understand overview of power semiconductor switches. CO2 CO2 1 Analyse the fundamentals and characteristics of BJT and UJT. CO3 CO3 1 Design and analyze the differential amplifiers CO4 CO4 1 Design and analyze the differential amplifiers CO5 1 Design and analyze the oscillator circuits "Oxford University P	Unit II	TRANSISTORS		9 +		3	
and CC configurations – Transistor hybrid model - Junction field effect transistor – structure, JFET characteristics and Biasing - MOSFET structure and V-I characteristics- UJT- structure and characteristics Unit III AMPLIFIER CIRCUITS 9 + BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET sm signal model – Analysis of CS and Source follower – Gain and frequency response – High frequency analysis Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in BIMOS cascade amplifiers – Gain and frequency response – Neutralization methods, power amplifier Types (Qualitative analysis). Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edition 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	Bipolar Jur	ction Transistor-structure, V-I characteristics and Biasing, Input and output character	ristics	of CE	., C	E	
BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET sm signal model – Analysis of CS and Source follower – Gain and frequency response – High frequency analysis Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier. Yet + Very Coulitative analysis). MUL Y FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO2 Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits "Oxford University Press, 2017,7th edition 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Editi 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5	and CC c	onfigurations – Transistor hybrid model - Junction field effect transistor – stru	icture,	JFET	Г٧		
signal model – Analysis of CS and Source follower – Gain and frequency response - High frequency analysis Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET ing stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers Types (Qualitative analysis). Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits "Oxford University Press, 2017,7 th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Editio 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.						3	
Unit IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER 9 + BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifier: Types (Qualitative analysis). 9 + Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. 9 + Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : CO3 : Analyse the dindamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO6 : Design and analyze the oscillator circuits * Oxford University Press, 2017,7th edition 2 2008. . . Robert LBoylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edititize008. . 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999. . . <td>BJT small</td> <td>signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response</td> <td>-MOS</td> <td>FET :</td> <td>sma</td> <td>al</td>	BJT small	signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response	-MOS	FET :	sma	al	
BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET in stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers Types (Qualitative analysis). Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. 9 + Course Outcomes: Total (45+15)= 60 Perio CO1 : Understand overview of power semiconductor switches. CO2 CO1 : Understand overview of power semiconductor switches. CO3 CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 CO3 : Design and analyze the amplifiers CO4 : Design and analyze the differential amplifiers CO5 : Design and analyze the oscillator circuits Text Books: 1 Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. 2008. 3 Robert L.Boylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Editi 2008. 3 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. 2008. <td>signal mod</td> <td>el- Analysis of CS and Source follower – Gain and frequency response- High frequ</td> <td>ency a</td> <td>inalys</td> <td>is.</td> <td></td>	signal mod	el- Analysis of CS and Source follower – Gain and frequency response- High frequ	ency a	inalys	is.		
stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers Types (Qualitative analysis). Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. 9 + Course Outcomes: Total (45+15)= 60 Period Upon completion of this course, the students will be able to: CO CO1 I Understand overview of power semiconductor switches. CO2 I Analyse the fundamentals and characteristics of BJT and UJT. CO3 I Analyse the fundamentals and characteristics of FET andMOSFET. CO4 I Design and analyze the amplifiers CO5 I Design and analyze the oscillator circuits Text Books: I Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 2. David A. Bell, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: I Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	Unit IV	MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER		9 +		3	
stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers Types (Qualitative analysis). Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. 9 + Course Outcomes: Total (45+15)= 60 Period Upon completion of this course, the students will be able to: CO2 : CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the oscillator circuits Text Books:	BIMOS ca	scade amplifier, Differential amplifier - Common mode and Difference mode anal	ysis –	FET	inp	u	
Types (Qualitative analysis). 9 Unit V FEEDBACK AMPLIFIERS AND OSCILLATORS 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. 9 + Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits" Oxford University Press, 2017,7 th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Editid 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edit							
Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.				•			
Advantages of negative feedback – voltage / current, series, Shunt feedback – positive feedback – Condition oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.							
oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators. Total (45+15)= 60 Perio Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits 1 Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edition 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	Unit V	FEEDBACK AMPLIFIERS AND OSCILLATORS		9 +		3	
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Edition 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.			∶k – Cc	nditic	n f	0	
Course Outcomes: Upon completion of this course, the students will be able to: CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Edition 2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.		Total (45+	15)= 6	0 Per	ioc	ls	
CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	Course O		<u>, .</u>	••••		-	
CO1 : Understand overview of power semiconductor switches. CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.							
CO2 : Analyse the fundamentals and characteristics of BJT and UJT. CO3 : Analyse the fundamentals and characteristics of FET andMOSFET. CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.							
CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	CO2 :						
CO4 : Design and analyze the amplifiers CO5 : Design and analyze the differential amplifiers CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	CO3 :	Analyse the fundamentals and characteristics of FET and MOSFET.					
CO6 : Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	CO4 :	Design and analyze the amplifiers					
CO6 Design and analyze the oscillator circuits Text Books: 1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7 th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5 th Edition 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	CO5 :	Design and analyze the differential amplifiers					
1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	CO6 :						
1. Sedra and smith, "Microelectronic Circuits " Oxford University Press, 2017,7th edition 2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	Taxt Book	e.					
2. David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University Press, 5th Edition 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.			ion				
2. 2008. 3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10 th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.		David A Bell "Electronic Devices and Circuits" New Delhi: Oxford University P	ress f	5 th Ed	itio	n	
3. Robert L.Boylestad, "Electronic Devices and Circuit theory", 2014,10th edition. Reference Books: 1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	2.		, 000, 0		illo	•••	
1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	3.					_	
1. Rashid, "Micro Electronic Circuits" Thomson publications, 1999.	Poforonco	Books					
2. Donald L.Schilling and Charles Belove, 'Electronic Circuits' 3 Edition Tata McGraw Hill 2010	2.	Donald L.Schilling and Charles Belove, 'Electronic Circuits', 3 Edition, Tata McGra	w Hill	2010			
3. Jacob Millman, Christos C.Halkias, 'Electronic Devices and circuits ', Tata McGraw Hill, 2003					<u>.</u>	—	
			,				

E –References					
1.	https://electronicsforum.com/resources/electronic-devices-and-circuit-theory				
2.	https://nptel.ac.in/courses/117103063/				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	3	1	1	1	1	
CO2	2	3	3	3	2	1	2	1	1	1	1	
CO3	3	2	2	3	2	1	2	1	1	1	1	
CO4	2	3	2	3	3	1	2	1	1	1	1	
CO5	2	2	3	3	3	1	2	1	1	1	1	
CO6	2	3	3	3	2	1	2	1	1	1	1	

18EE305	DC MACHINES AND TRANSFORMERS LABORATORY	L	Τ	Ρ	С
		0	0	3	1.5
Course	Dbjectives:				
1.	To understand the performance characteristics of DC machines and transformers	5			
2.	To gain knowledge on experimental skill of testing different types of DC machines	s and	trar	nsfoi	mers.
3.	Rig up circuits for testing a given machine.				
Experim					
1	Open circuit and load characteristics of separately excited DC generator.				
2	Open circuit and load characteristics of DC shunt generator.				
3	Load characteristics of DC long shunt and short shunt compound generator w	ith c	umu	lativ	e and
	differential connections.				
4	Load test on DC shunt motor.				
5	Load test on DC series motor.				
6	Swinburne's test on DC machines.				
7	Speed control of DC shunt motor.				
8	Hopkinson's test on two identical DC machines.				
9	Load test on single-phase transformer.				
10	Equivalent circuit of a single-phase transformer.				
11	Sumpner's test on transformers.				
12	Study of DC motor starters and 3-phase transformer connections.				
Course	Total (Dutcomes:	0+45)= 4	5 Pe	riods
	npletion of this course, the students will be able to:				
CO1	Detain the performance characteristics of DC generators.				
CO1					
CO2 CO3	Detain the load characteristics of DC compound generator.				
	Acquire knowledge on performance characteristics of DC shunt and series motor				
CO4	 Acquire knowledge on performance characteristics of DC machines using methods. 				
CO5	: Acquire knowledge on performance characteristics of transformers using direct an	d ind	irect	me	thods
Referen	e Books:				
1.	G.P. Chhalotra, 'Experiments in Electrical Engineering', 3rd Ed., Khanna Publishe	rs, D	elhi.	200	94.
2.	C.S. Indulkar, 'Laboratory Experiments in Electrical Power', 3 rd Ed., Khanna Publ				
3.	DC machines and transformers laboratory manual prepared by the department.		, _ •	,	
E-Refere					
1.	www.onlinecourses.nptel.ac.in				
2.	www.class-central.com				
3.	www.mooc-list.com				

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	1	3	1	2	1	1	2
CO2	3	3	3	3	2	2	3	1	1	2	1	1
CO3	3	3	3	2	2	1	1	2	1	3	1	1
CO4	3	3	3	1	1	1	2	2	1	2	2	2
CO5	2	3	2	3	1	1	1	3	1	2	2	2

18EE30	6	ELECTRON DEVICES AND CIRCUITS LABORATORY	L 0	Т 0	Р 3	C 1.5
Course	Ob	jectives:	0	U	5	1.5
1.		To design analog electronic circuits using Diode, BJT and MOSFET				
2.		To design amplifiers and oscillators.				
Evnorin		40.				
Experin 1	ien	Static characteristics of semiconductor diode, zener diode and study of simpl		togo	rog	ulata
I		circuits.		lage	reg	Jiato
2		Single phase half wave and full wave rectifiers with inductive and capacitive filt				
3		Static Characteristics of BJT under CE, CB, CC and determination of hybrid pa	irame	eters		
4		Static characteristics of JFET.				
5		Static and Switching Characteristics of MOSFET				
6		Static characteristics of UJT.				
7		Frequency response of CB/CE/CC amplifiers.				
8		Frequency response of CD/CS amplifiers.				
9		Differential amplifiers using FET.				
10		Design of RC Phase shift oscillators.				
11		Design of Wien bridge oscillators.				
12		Design of Hartley/Colpitts oscillators.				
Course	<u></u>	tcomes: Total (0+45)= 45	5 Pe	riods
	mp	letion of this course, the students will be able to:				
CO1	:	To design analog electronic circuits using Diode				
CO2	:	To design analog electronic circuits using BJT				
CO3	:	To design analog electronic circuits using MOSFET				
CO4	:	To design analog electronic circuits using FET				
CO5	:	To design oscillator circuits				
CO6	:	To design Wave generating circuits				
Referen	се	Books:				
1		David A. Bell, "Electronic Devices and Circuits", New Delhi: Oxford University	Pres	ss. 5	th Ec	dition
		2008.				
2		Jacob Millman, Christos C.Halkias, 'Integrated Electronics - Analog a	nd E	Digita	l ci	rcuits
		system',Tata McGraw Hill, 2003.				
3		Robert L.Boylestad, "Electronic Devices and Circuit theory", 2002.				
E –Refe	ron					
<u> – Reie</u> 1	100	https://electronicsforu.com/resources/electronic-devices-and-circuit-theory				

1	https://electronicsforu.com/resources/electronic-devices-and-circuit-theory
2	https://nptel.ac.in/courses/117103063/

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	1	1	1	3	1	1	1	1	
CO2	2	3	3	3	2	1	3	1	1	1	1	
CO3	3	2	2	3	2	1	3	1	1	1	1	
CO4	2	3	2	3	3	1	3	1	1	1	1	
CO5	2	2	3	3	3	1	3	1	1	1	1	
CO6	2	3	3	3	2	1	2	1	1	1	1	

Course object 1 2 3 Experiments 1 2 1 2 3 Control of the second s	tives: They are part of the environment To have an ancient wisdom drawn from Vedas Activities based knowledge to preserve environment, Conservation optimization. Environmental Awareness Group activity on water management Group discussion on recycle of waste (4R's)	0 of w		1 and	0 its
1 2 3 Experiments	They are part of the environment To have an ancient wisdom drawn from Vedas Activities based knowledge to preserve environment, Conservation optimization. Environmental Awareness Group activity on water management	of w		and	its
2 3 Experiments	To have an ancient wisdom drawn from Vedas Activities based knowledge to preserve environment, Conservation optimization. Environmental Awareness Group activity on water management	of w		and	its
3 Experiments	Activities based knowledge to preserve environment, Conservation optimization. Environmental Awareness Group activity on water management	of w		and	its
Experiments	optimization. Environmental Awareness Group activity on water management	of w		and	its
1	Environmental Awareness Group activity on water management				
1	Group activity on water management				
	Group activity on water management				
			6 ł	nours	<u>ن</u>
2	Group discussion on recycle of waste (4R's)				
3	Slogan making contest.				
4	Poster making event.				
5	Expert lecture on environmental awareness.				
6	Imparting knowledge on reduction of electricity usage				
	Environmental activities		8	nours	5
1	Identification and segregation of biodegradable and non biodegradable	waste	;		
2	Campus cleaning activity				
3	Plantation of trees in the college campus and local waste lands.				
4	Identification of varieties of plants and their usage				
5	Shutting down the fans and ACs of the campus for an hour				
6	Field work on growing of kitchen garden for mess.				
	Total	(14+	0)= 1	4 Pe	riods
Course Outco					
	on of this course, the students will be able to:				
CO1 : CO2 :	Use and save water effectively				
	Reuse the waste effectively				
CO3 :	Save electricity for future generation				
CO4 :	Classify biodegradable and non biodegradable waste				
CO5 :	Plant trees in the college campus and local waste lands.				
Reference Bo	oks:				
1	D K Asthana "A Text book on Environmental studies", S.Chand Publicatio	ns. 5 ^t	th Edi	tion. 2	2010

2

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						2						
CO2						2						
CO3							2	3				
CO4					1							
CO5			3									

Rajesh Gopinath," Environmental Science and Engineering", Cengage, 2011.

18EE401			T	D	<u>^</u>
	SIGNALS AND SYSTEMS	L 2	1	P 0	С 3
		2	I	U	ა
Course ob	ectives:				
1.	Understand the concepts of continuous time and discrete time systems.				
2.	Analyze systems in complex frequency domain.				
3.	Understand sampling theorem and its implications.				
UNIT I	INTRODUCTION TO SIGNALS AND SYSTEMS		6	+	3
	d systems- Signal properties: periodicity, absolute integrability, deterministic	and	sto	chas	
	Some special signals of importance: the unit step, the unit impulse, the sinuso				
	, Classification of signals - Continuous time (CT) and Discrete Time (DT) sigr				
	ignals, Deterministic & Random signals, Energy & Power signals. System prop				
	d homogeneity, shift-invariance, causality, stability, realizability, Examples.				
•					
UNIT II	CONTINUOUS AND DISCRETE-TIME LTI SYSTEMS		6	+	3
Impulse re	sponse and step response, convolution, input-output behavior with aperiodic cor	nverg	ent	inpu	uts,
	erconnections. Characterization of causality and stability of LTI systems. System				
	erential equations and difference equations. State-space Representation of system				
	ulti-input, multi-output representation. State Transition Matrix and its Role. Periodic				
	notion of a frequency response and its relation to the impulse response.	•			
UNIT III	FOURIER AND LAPLACE TRANSFORMS		6	+	3
Fourier ser	es representation of periodic signals, Waveform Symmetries, Calculation of Four	ier C	oeff	icier	nts.
	nsform, convolution/multiplication and their effect in the frequency domain, magni				
	Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the I				
	(DFT). Parseval's Theorem. Review of the Laplace Transform for continuous til				
	stem functions, poles and zeros of system functions and signals, Laplace domain a				
	al equations and system behavior.				
UNIT IV	Z- TRANSFORMS		6	+	3
Z-transform	and its properties, inverse z-transforms; difference equation - Solution by z transf	orm,	app	licat	ion
to discrete	systems - Stability analysis, frequency response – Convolution.				
UNIT V	SAMPLING AND RECONSTRUCTION		6	Ŧ	3
The Samp	ng Theorem and its implications. Spectra of sampled signals. Reconstruction: id		U	-	
		eal ir	-	oolat	or,
zero-order			nterp		
	hold, first-order hold. Aliasing and its effects. Relation between continuous an		nterp		
systems. Ir			nterp		
systems. Ir	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation		nterp		
systems. Ir	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation	d dis	nterp	te ti	me
systems. Ir	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation ication, filtering, feedback control systems.	d dis	nterp	te ti	me
systems. Ir for commu Course Ou	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation ication, filtering, feedback control systems.	d dis	nterp	te ti	me
systems. Ir for commu Course Ou Upon comp	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation <u>ication, filtering, feedback control systems.</u> Total (30+1 tcomes: letion of this course, the students will be able to:	d dis	nterp	te ti	me
Systems. Ir for commu Course Ou Upon comp CO1 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation ication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable	d dis	nterp	te ti	me
Systems. Ir for commu Course Ou Upon comp CO1 : CO2 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation lication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signal	d dis	nterp	te ti	me
Systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation lication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain	d dis	nterp	te ti	me
Systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation ication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain Compute the output of an LTI system in the time and frequency domains	d dis	nterp	te ti	me
systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation ication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain Compute the output of an LTI system in the time and frequency domains Capable of determining the frequency response of discrete system using Z transfo	d dis	nterp	te ti	me
systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation ication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain Compute the output of an LTI system in the time and frequency domains	d dis	nterp	te ti	me
systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : CO6 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation lication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain Compute the output of an LTI system in the time and frequency domains Capable of determining the frequency response of discrete system using Z transfo Understand the concepts and importance of sampling	d dis	nterp	te ti	me
systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : CO6 : CO6 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation iication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain Compute the output of an LTI system in the time and frequency domains Capable of determining the frequency response of discrete system using Z transfo Understand the concepts and importance of sampling	d dis	45 P	te ti	me
systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : CO6 : Text Book 1.	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation lication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain Compute the output of an LTI system in the time and frequency domains Capable of determining the frequency response of discrete system using Z transfo Understand the concepts and importance of sampling S: Allan V.Oppenheim, S.Wilsky and S.H.Nawab, —Signals and SystemsII, Pearson,	d dis	45 P	te ti	me
systems. Ir for commu Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : CO6 : CO6 :	hold, first-order hold. Aliasing and its effects. Relation between continuous an troduction to the applications of signal and system theory: modulation iication, filtering, feedback control systems. Total (30+1 tcomes: letion of this course, the students will be able to: Determine if a given system is linear/causal/stable Capable of determining the frequency components present in a deterministic signa Capable of characterizing LTI systems in the time domain and frequency domain Compute the output of an LTI system in the time and frequency domains Capable of determining the frequency response of discrete system using Z transfo Understand the concepts and importance of sampling	d dis	45 P	te ti	me

3.	B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.									
4.	A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.									
Reference Books:										
1.	H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.									
2.	S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.									
3.	M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.									
4.	R.E.Zeimer, W.H.Tranter and R.D.Fannin, —Signals & Systems - Continuous and Discretell,									
	Pearson, 2007.									
E -Referer	nces									
1	https://nptel.ac.in/courses/117104074/									

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1	1	1	1	2	1	1	1	1	
CO2	2	3	1	1	2	1	2	1	1	1	1	
CO3	2	3	2	3	2	1	3	1	1	1	1	
CO4	2	3	2	3	3	1	3	1	1	1	1	
CO5	2	3	3	3	3	1	3	1	1	1	1	
CO6	2	3	3	3	2	1	2	1	1	1	1	

18EE40	2	SYNCHRONOUS AND INDUCTION MACHINES	L	Т	Ρ	С
			3	0	0	3
Course	Obj	ectives:				
	ating	provides understanding of AC machinery fundamentals, machine parts and helps AC machines, and equips students to analyze the equivalent circuits of Induction				
Unit I		ALTERNATOR		•	+	0
reaction, Synchro	S <u>y</u> nou	, types, practical rating of synchronous generators, winding factors, production vnchronous reactance, phasor diagram, Methods of pre-determination of s impedance, ampere turn, Potier triangle methods. Two reaction theory–Slip te excitation and mechanical input	volt	age	reg	gulation
Unit II		SYNCHRONOUS MOTOR		•	+	0
Theory of	acto	peration–phasor diagrams, Torque equation – Operation on infinite bus bars, va with excitation. Hunting and its suppression, V and inverted V curves, Synd			curr	ent an
Unit III		THREE PHASE INDUCTION MACHINES)	+	0
Construction	n me	al details, types, production of rotating magnetic field-principle of operation a otors. Need for starting – Types of starters – DOL, Rotor resistance and Auto ction: self-excitation, operation, and applications.	nd pi	actio	al r	ating c
Unit IV		ANALYSIS AND TESTING OF THREE PHASE INDUCTION MOTORS)	+	0
		ram, equivalent circuit, Torque equation-starting and maximum-torque, maxi				
		utput, Torque-slip characteristics, losses and efficiency. Testing-no load and	DIOC	кеа	roto	or tests
equivale	nt C	rcuit parameters, circle diagram.				
Unit V		SINGLE PHASE INDUCTION MOTOR)	+	0
	Star	al details of single-phase induction motor – Double field revolving theory and opting methods of single-phase induction motors – Capacitor-start capacitor run Ind n motor.				
			(45+	0) =	45 I	Period
Course	Out	comes:				
Upon co	mpl	etion of this course, the students will be able to:				
CO1	:	Familiarize with construction, working principle, synchronizing techniques Synchronous Generator.	and	perfo	orma	ance c
CO2	:	Understand the working principle, torque equation, and excitation control for Sy	nchro	nou	s Mo	otor.
CO3	:	Operate three phase Induction machine as motor and as a generator.				
CO4	:	Analyze the performance of three phase induction motor with testing.				
CO5	:	Know double field revolving theory and starting mechanisms for single-phase in		on m	oto	rs
CO6	:	Use synchronous and induction motors in practical domain with specified rating	S.			
Text Bo	oks					
1.		D.P. Kothari, I.J. Nagrath, "Electric Machines", 5th edition, Tata McGraw-Hill Delhi, 2017.	Con	ipan	y Lt	d., Nev
2.		Dr.P.S.Bimbhra, "Electrical Machinery", Khanna Publishers, Delhi, 2021,2 nd edit				
			-			
3.		A.E. Fitzgerald, Charles Kingsley, Stephen. D.Umans, 'Electric Machinery' Publishing Company Ltd, 2017,5 th edition.	, Ia	ta N	lcG	raw Hi
3. Referen	ce F	Publishing Company Ltd, 2017,5 th edition.	, Ia	ta №	lcGi	raw H

2.	Alexander S. Langsdorf, Theory of Alternating-Current Machinery, Tata McGraw Hill Publications, 2009.
E-Reference	ce

1 <u>www.nptel.ac.in</u>

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1					2					2
CO2		1			2							1
CO3	3						2				1	
CO4	2			3		1			2			
CO5					1					2		2
CO6			2	3							2	

18EE403	3	MEASUREMENTS AND INSTRUMENTATION	∟ 3	T 0	Р 0	С 3
Course O	bje	ectives:	3	0	U	3
1.		To introduce the basic functional elements of instrumentation				
2.		To introduce the fundamentals of electrical and electronic instruments				
3.		To educate on the various magnetic measurement techniques				
4.						
		To be familiarized with the various bridge circuits for measurement of R, L, C				
5.		To introduce various transducers and the data acquisition systems.				
Unit I		ANALOG INSTRUMENTS		9	+	0
 Dynamic construction 	c C ona	a Generalized Measurement System- Measurement System performance – Static haracteristics – Classification of Analog instruments – Principle of operation – op al details – types of control systems – types of damping systems. Operation – tore errors – extension range of – PMMC – MI – Electrodynamometer – induction type	erati que e	ng f equa	orce ation	s –
Unit II		MEASUREMENT OF POWER AND ENERGY		9	+	0
induction to of high por	type wer	t of power in DC circuits, power in AC circuit- single and three phase- electrie watt meters – Construction, operation – torque equation for deflection – errors using instrument power transformer – measurement of energy for AC circuits- ind – construction theory and operation – torque equation – adjustment in energy met	- mea	asui	eme	nts
Unit III		MAGNETIC MEASUREMENTS		9	+	0
		t of flux density – magnetizing force – magnetic potentiometer- testing of				
determina – testing c testing var	tior of b	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating o g with form factor and frequency – wattmeter method of iron loss measurements	ethod currer	of i nt m od.	rever	sal etic
determina – testing of testing van Unit IV Balance e inductance potentiom	tior of b ryin equa e ca ete	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating c	ethod currer <u>meth</u> dge - ien's pote	of i od. <u>9</u> bric	rever hagno + axwe lge. mete	sal etic 0 ell's DC
determina – testing var Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog	tior of b ryin equa e ca ete tiom Are ene	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of ag with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance brid apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type	ethod currer meth dge - ien's pote arse ucers ansdu fangu thern	of int mod. 9 - Ma bricontio n ty 9 s, Ir uce ular noc	rever hagno + axwe lge. mete pe. duct rs us velo ouplo	sal etic 0 ell's DC er – 0 ive ing city
determina – testing var Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog	tior of b ryin equa e ca ete tiom Are ene	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of ag with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance brid apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type heter– Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES n of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive tra- ea of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of erator – Photoelectric tachometerMeasurement of temperature – hermistor –	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –
determina – testing var Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog pyrometer	tior of b ryin equa e ca ete tion tion ers Are ene	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of g with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance brid apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type heter– Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive tra- ea of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of erator – Photoelectric tachometerMeasurement of temperature – hermistor – Measurement of flow – hot wire anemometers – turbine meters – electromagnetic Total (45 -	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –
determina – testing var Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog pyrometer Course O	tior of b ryin equa ete ete ior tion ers Are ene · – I	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of g with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance brid apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type heter– Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive tra- ea of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of erator – Photoelectric tachometerMeasurement of temperature – hermistor – Measurement of flow – hot wire anemometers – turbine meters – electromagnetic Total (45 -	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –
determina – testing of testing van Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog pyrometer Course O Upon com	tior of b ryin equa ete ete ior tion ers Are ene · – I	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of g with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance brid apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type heter– Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive tra- ea of Plates. Photoelectric transducers, Piezoeletric transducers – Measurement of erator – Photoelectric tachometerMeasurement of temperature – hermistor – Measurement of flow – hot wire anemometers – turbine meters – electromagnetic Total (45- Comes: tetion of this course, the students will be able to:	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –
determina – testing of testing van Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog pyrometer Course O Upon com CO1	tior of b ryin equa ete ete ior tion ers Are ene · – I	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of ag with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance bridg apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type heter– Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive tra- ea of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of erator – Photoelectric tachometer/Measurement of temperature – hermistor – Measurement of flow – hot wire anemometers – turbine meters – electromagnetic Total (45- Comes: tion of this course, the students will be able to: Measure current and voltage in AC and DC circuits	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –
determina – testing of testing van Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog pyrometer Course O Upon com	tior of b ryin equa e ca ete cior tion ers Are ene · - I	n of B-H curve –determination of hermistor loop by step by step method and metar specimens – Hopkinson permeameters – Illiovici permeameters – alternating or gwith form factor and frequency – wattmeter method of iron loss measurements in MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance bridge and Wir – lab type hermist's potentiometer, Duo range potentiometer – precision type heter – Drysdale polar potentiometer - Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES n of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive trase of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of flow – hot wire anemometers – turbine meters – electromagnetic Total (45- Comes: tion of this course, the students will be able to: Measure current and voltage in AC and DC circuits and magnetic measurements.	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –
determina – testing var Unit IV Balance e inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog pyrometer Course O Upon com CO1 CO2	tior of b ryin equa e ca ete cior tion ers Are ene · - I	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of ag with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance bridg apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type heter– Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive tra- ea of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of erator – Photoelectric tachometer/Measurement of temperature – hermistor – Measurement of flow – hot wire anemometers – turbine meters – electromagnetic Total (45- Comes: tion of this course, the students will be able to: Measure current and voltage in AC and DC circuits	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –
determina – testing variation Unit IV Balance et inductance potentiom AC potent Unit V Classificat Transduce change in – Tachog pyrometer Course O Upon com CO1 CO2 CO3	tior of b ryin equa e ca ete cior tion ers Are ene · - I	n of B-H curve –determination of hermistor loop by step by step method and me ar specimens – Hopkinson permeameters – Illiovici permeameters – alternating of g with form factor and frequency – wattmeter method of iron loss measurements MEASUREMNT OF R, L, C AND POTENTIOMETERS ations – Wheatstone bridge – Kelvin double Bridge – Maxwell's inductance brid apacitance bridge – Hay's bridge – Anderson's bridge – Schering bridge and Wi r – lab type hermist's potentiometer, Duo range potentiometer – precision type heter – Drysdale polar potentiometer- Gall Tinsley co-ordinate type - Campbell – L MEASUREMENT OF NON-ELECTRICAL QUANTITIES n of transducers – factor influencing the choice of transducers. Resistive transd – potentiometers. Linear Variable Differential Transformer – RVDT – Capacitive tra- ea of Plates. Photoelectric transducers, Piezoeletrci transducers – Measurement of reator – Photoelectric tachometerMeasurement of temperature – hermistor – Measurement of flow – hot wire anemometers – turbine meters – electromagnetic Total (45- Comes: totion of this course, the students will be able to: Measure current and voltage in AC and DC circuits Measure Power and energy AC and DC circuits and magnetic measurements. Calculate R,L,C using various bridges	ethod currer meth dge - ien's pote arse ucers ansdu thern flow	of int m od. 9 - Ma bricontioo n ty 9 3, Ir uce ular noc me	rever hagno + axwee dge. mete pe. + nduct rs us velo ouple ters.	sal etic 0 eff's DC er – ive ing city e –

Text Books:	
1.	A.K. Sawhney, 'A Course in Electrical & Electronics Measurement & Instrumentation', Dhanpat Rai and Co, 2015
2.	E.O. Doebelin, 'Measurements Systems- Application and Design', Tata McGraw Hill publishing company, 2015.

Reference Books:

1.	D.V.S. Moorthy, 'Transducers and Instrumentation', Prentice Hall of India Pvt. Ltd, 2010.
2.	H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw Hill, 2017,3rd edition.
3.	Martin Reissland, 'Electrical Measurements', New Age International(P) Ltd., Delhi, 2011.
4.	J.B. Gupta, 'A Course in Electronic and Electrical Measurements', S.K. Kataria& Sons, Delhi, 2015
E Reference	es:

E References:

1	https://nptel.ac.in/courses/108105064/
2	https://nptel.ac.in/courses/108106074/

CO/PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2		2	1		2	1	1		1	1
CO2	1	2		2	1		2	1	1		1	1
CO3	1	2		2	1		2	1	1		1	1
CO4	1	2		2	1		2	1	1		1	1
CO5	2	2	2	3	2	2	1	2	1	3	3	3
CO6	2	2	2	3	2	2	1	2	1	3	3	3

18EE404	ANALOG AND DIGITAL INTEGRATED CIRCUITS	3		>)	<u>C</u> 3
Course C)bjectives:	3		<u> </u>	3
1.	To study the characteristics and applications of Operation Amplifier.				
2.	To gain knowledge about functional diagram and applications of linear lcs				
3.	To simplify the switching functions.				
4.	To design combinational logic circuits.				
5.	To design of sequential logic circuits				
Unit I	CHARACTERISTICS OF OP-AMP		9 -	-	0
	AMP: characteristics-Inverting and non-inverting amplifier- voltage follower – differ		-	fier	-
DC chara	acteristics – AC characteristics. Basic applications: summer- multiplier- divider- c -instrumentation amplifier – V/I and I/V converters				
Unit II	APPLICATIONS OP-AMP AND LINEAR Ics)	- 1	0
Applicatio second or Functiona	ns of OP-AMP: comparators – multivibrators – Peak detector- Sample and Hold or der low pass and high pass active filters. Il block diagram and Applications of Linear Ics: IC 555 Timer – IC 566 Voltage contr hase-locked loops – IC LM317 voltage regulators.	circuit -	- firs	t a	nd
Unit III	COMBINATIONAL LOGIC CIRCUITS)		0
	tation of logic functions: SOP and POS forms – Simplification of switching functions				-
	e McCluskey (Tabulation) method. \dder – Subtractor – 2 bit Magnitude Comparator – Multiplexer- Demultiplexer- El	ncoder	– P	ri∩r	itv
Encoder - Decoder.	 Decoder – Code Converters. Implementation of combinational logic circuits using 				
		multipl			
Decoder. Unit IV Flip-flops:	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous cou	multipl	exers	s ai • //ea	nd 0 aly
Decoder. Unit IV Flip-flops: models –	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter.	nultipl 100re a nters –	exers	s ai Aea vers	nd 0 aly
Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous cou	multipl 10ore a nters – /witho Design	exers und M Univ	s ai Aea vers ing adu	nd 0 aly sal 0 of ire
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Interview of the synchronous sequential of the synchronous circuits with //without using of SR latches – Problems in asynchronous second s	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Interview of asynchronous sequential circuits = Problems in asynchronous sequences = Hazards. Total (L+Dutcomes:	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Interview of asynchronous sequential circuits = Problems in asynchronous sequences = Hazards. Total (L+Dutcomes: d of the course the student will be able to	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal 0 of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Interview of the state of the state of the state assignment of the state of the state state assignment of the state state assignment of the state state state assignment and the state	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal 0 of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 :	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Intronous circuits with /without using of SR latches – Problems in asynchronous second se	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal 0 of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 :	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Intronous circuits with /without using of SR latches – Problems in asynchronous secaces – Hazards. Total (L+ Outcomes: d of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear Ics. Utilize K-map and Tabulation methods to simplify the switching functions	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 : CO4 :	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Intervention of the course with /without using of SR latches – Problems in asynchronous second s	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal 0 of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 : CO4 : CO5 :	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Intronous circuits with /without using of SR latches – Problems in asynchronous secaces – Hazards. Total (L+ Outcomes: d of the course the student will be able to Explain the OP-AMP characteristics Understand the applications of OP-AMP and other linear Ics. Utilize K-map and Tabulation methods to simplify the switching functions	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal 0 of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 : CO4 :	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Intal mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Intervention of the course with /without using of SR latches – Problems in asynchronous second s	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal 0 of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 1 CO2 1 CO3 1 CO3 1 CO3 1 CO4 1 CO5 1 CO6 1	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with /without using of SR latches – Problems in asynchronous secaces – Hazards. Ital mode and pulse mode circuits with /without using of SR latches – Problems in asynchronous secaces – Hazards. Ital mode and pulse mode circuits and flow table – state assignment – D Ital mode and pulse mode circuits Ital mode and pulse mode circuits Ital mode and pulse mode circuits of OP-AMP and other linear lcs. Ital (L+ Ital the opplications of OP-AMP and other linear lcs. Ital mode and implement of combinational logic circuits Analysis and design of synchronous sequential logic circuits Analysis and design of asynchronous sequential logic circuits	multipl 10ore a nters – /witho Design l quentia	exers and N Univ Univ Proce al cir	s ai Mea vers	0 aly sal of ts:
Decoder. Unit IV Flip-flops: models – shift regis Unit V fundamer SR latche of asynch cycles – F Course C At the end CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Boo	SYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS SR, D, JK and T – Conversion of flip-flops; Classification of sequential circuits: M Analysis and design of synchronous sequential circuits – Design of synchronous couter. ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with s- primitive state / flow table – Reduction of state and flow table – state assignment – D Ital mode and pulse mode circuits , Analysis procedure of asynchronous circuits with /without using of SR latches – Problems in asynchronous secaces – Hazards. Ital mode and pulse mode circuits with /without using of SR latches – Problems in asynchronous secaces – Hazards. Ital mode and pulse mode circuits and flow table – state assignment – D Ital mode and pulse mode circuits Ital mode and pulse mode circuits Ital mode and pulse mode circuits of OP-AMP and other linear lcs. Ital (L+ Ital the opplications of OP-AMP and other linear lcs. Ital mode and implement of combinational logic circuits Analysis and design of synchronous sequential logic circuits Analysis and design of asynchronous sequential logic circuits	multipl	exers and N Univ D 4 Univ D Proce al cir D Per	s an	0 aly aly sal of ire ts: ds

3.	S. Salivahanan and S. Arivazhagan, "Digital Circuits and Design", Third Edition, Vikas Publishing House Pvt. Ltd, New Delhi, 2011.
Referer	nce Books:
1.	Ramakant A Gayakward, "Op-Amps and Linear Integrated Circuits", Fourth Edition, Pearson Education, 2003.
2	Jacob Millman, Christos C.Halkias, "Integrated Electronics- Analog and Digital circuits system", Tata McGraw Hill 2003.
3	R.P.Jain, "Modern Digital Electronics", Third Edition, Tata McGraw–Hill Publishing company limited, New Delhi, 2011.
4.	Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2015
5.	Donald P.Leach and Albert Paul Malvino, "Digital Principles and Applications", Fifth Edition, Tata McGraw Hill Publishing Company Limited, New Delhi, 2012.
E-Refer	ence
1	NPTEL courses on Analog Integrated Circuits, IIT Madras- web: http://nptel.ac.in/courses/108106068/
2	NPTEL courses on Analog Circuits, IIT Bombay https://nptel.ac.in/courses/108/101/108101094/
3	NPTEL courses on Digital Electronic Circuits, IIT Kharagpur. Web:https://nptel.ac.in/courses/108/105/108105132/
4	NPTEL courses on Digital Circuits, IIT Kharagpur. Web: https://nptel.ac.in/courses/108/105/108105113/

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	3	2	1	1								
CO3	3	2			2							
CO4	3	2			2							
CO5	3	2			2							
CO6	3	2			2							

18ME408	ENGINEERING MECHANICS	L	T	P	C
Course Ok	piectives:	2	1	0	3
	To develop capacity to predict the effect of force and motion in the course of carryin	τα οι	ut the	e des	sian
1.	functions of engineering.	.9 -			
2.	To analyze the force systems, friction and to study the dynamics of particles, impul-	se a	nd		
Ζ.	momentum.				
<u> </u>				1	-
UNIT I	STATICS OF PARTICLES	ما فينا م	6	+	3
forces – Ve product – C	n – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram an ectorial representation of forces – Vector operations of forces -additions, subtraction, Coplanar Forces – rectangular components – Equilibrium of a particle – Forces in spa n space – Equivalent systems of forces – Principle of transmissibility.	dot	prod	luct,	cross
	EQUILIBRIUM OF RIGID BODIES		6	· .	3
	diagram – Types of supports and their reactions – requirements of stable equilibriu	m _	-	nont	-
Couples – Scalar com	Moment of a force about a point and about an axis – Vectorial representation of mom ponents of a moment – Varignon's theorem – Equilibrium of Rigid bodies in two dimen dies in three dimensions – Examples	ents	and	coup	oles –
	PROPERTIES OF SURFACES AND SOLIDS		6	+	3
-	simple figures from first principle, centroid of composite sections; Centre of Gravity a	nd it	•	•	-
Area mome	ent of inertia- Definition, Moment of inertia of plane sections from first principles, The Aoment of inertia of standard sections and composite sections.				
					_
	EDICTION		6		3
	FRICTION		-	-	-
Types of fr	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack.	es, \	-	-	-
Types of fr	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi	es, v	-	-	-
Types of fr screw jack UNIT V Equations equation-C	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Impl oblique central impact. Plane motion- Absolute motion- Relative motion- work and er	nciple	e-wo	ge fri + ork-E ect c	ction, 3 nergy entra
Types of fr screw jack UNIT V Equations equation-C impact and	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Impl oblique central impact. Plane motion- Absolute motion- Relative motion- work and er	nciple pact- nergy	e-wo	ye fri + prk-E ect c puls	3 nergy entra e anc
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Impl l oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 utcomes:	nciple pact- nergy	e-wo	ye fri + prk-E ect c puls	3 nergy entra e anc
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 utcomes: oletion of this course, the students will be able to:	nciple pact- nergy	e-wo	ye fri + prk-E ect c puls	3 nergy entra e anc
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 :	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Itcomes: Deletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments	nciple pact- nergy	e-wo	ye fri + prk-E ect c puls	3 nergy entra e anc
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 :	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple l oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 utcomes: oletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium	nciple pact- nergy	e-wo	ye fri + prk-E ect c puls	3 nergy entra e anc
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO3 :	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple l oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 utcomes: Deletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids	nciple pact- nergy	e-wo	ye fri + prk-E ect c puls	3 nergy entra e anc
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO3 :	Initial screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Print conservative forces and principle of conservation of energy-Impulse- momentum- Imple oblique central impact. Plane motion- Absolute motion- Relative motion- work and er Image: Conservation of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids Determine the friction and the effects by the laws of friction	nciple bact- nergy +15)	6 	ge fri + rk-E ect c puls 5 Pe	3 nergy entra e and
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 :	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple l oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 utcomes: Deletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids	nciple bact- nergy +15)	6 	ge fri + rk-E ect c puls 5 Pe	3 nergy entra e and
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Impl oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Internet impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Internet impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Internet impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Internet impact. Plane motion- Absolute motion- Relative motion- work and er n. Internet impact. Plane motion- Absolute motion- Relative motion- work and er n. Internet impact. Plane motion- Absolute motion- Relative motion- work and er Internet impact. Plane motion- Absolute motion- Relative motion- Motion and scalar representation of forces and moments Analyze the rigid body in equilibrium	nciple bact- nergy +15)	6 	ge fri + rk-E ect c puls 5 Pe	3 nergy entra e and
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO4 : CO5 :	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imp l oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Itcomes: Deletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids Determine the friction and the effects by the laws of friction Apply fundamental concepts of kinematics and kinetics of particles to the analysis of problems ks: A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications, 2015,5t educed to the station of the stations of the statics of the statics of particles to the statics of problems	+15)	6 	ge fri + rk-E ect c puls 5 Pe	3 nergy entra e and
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO4 : CO5 :	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imp l oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Itcomes: Deletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids Determine the friction and the effects by the laws of friction Apply fundamental concepts of kinematics and kinetics of particles to the analysis of problems ks:	+15)	6 	ge fri + rk-E ect c puls 5 Pe	3 nergy entra e and
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : Text Boo 1.	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Juttomes: Deletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids Determine the friction and the effects by the laws of friction Apply fundamental concepts of kinematics and kinetics of particles to the analysis of problems ks: A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications, 2015,5t ed Engineering Mechanics, R.S. Khurmi, S.Chand Publishing, 2018.	+15)	6 	ge fri + rk-E ect c puls 5 Pe	3 nergy entra e and
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2.	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Itermine the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids Determine the friction and the effects by the laws of friction Apply fundamental concepts of kinematics and kinetics of particles to the analysis of problems ks: A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications, 2015,5t ed Engineering Mechanics, R.S. Khurmi, S.Chand Publishing, 2018. e Books:	+15)	6 	ge fri + rk-E ect c puls 5 Pe	3 nergy entra e and
Types of fr screw jack UNIT V Equations equation-C impact and momentum Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 : Text Boo 1. 2. Referenc	iction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodi & differential screw jack. KINETICS OF PARTICLES AND RIGID BODIES of motion- Rectilinear motion-curvilinear motion- Relative motion- D'Alembert's Prir conservative forces and principle of conservation of energy-Impulse- momentum- Imple oblique central impact. Plane motion- Absolute motion- Relative motion- work and er n. Total (30 Juttomes: Deletion of this course, the students will be able to: Illustrate the vectorial and scalar representation of forces and moments Analyze the rigid body in equilibrium Evaluate the properties of surfaces and solids Determine the friction and the effects by the laws of friction Apply fundamental concepts of kinematics and kinetics of particles to the analysis of problems ks: A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications, 2015,5t ed Engineering Mechanics, R.S. Khurmi, S.Chand Publishing, 2018.	hciple bact- hergy +15)	6 	s Pe	stical stical stical

4.	ngineering Mechanics, DP Sharma, Pearson, 2010.										
5.	F. P. Beer and E. R. Johnston, Vector Mechanics for Engineers, Vol I – Statics, Vol II, –										
0.	Dynamics, 12 th Ed, Tata McGraw Hill, 2019.										
	E-Referencce										
E-Reference	cce										
E-Reference 1	ce www.onlinecourses.nptel.ac.in										
E-Reference 1 2											

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1					2		
CO2	2	1	1	0	1					2		
CO3	2	1	1	0	0							
CO4	1	1	1	1	0							
CO5	2	2	1	1	0							

18EE40	5	SYNCHRONOUS AND INDUCTION MACHINES LABORATORY	L	Τ	Ρ	С
			0	0	3	1.5
Course	Ob	jectives:				
1		To expose the students to operate of synchronous machines and induction mexperimental skill.	otors	s and	l stre	ngth their
Experim	nen	ts:				
1 2 3 4 5 6 7 8 9 10 11		Predetermination of Voltage Regulation of three-phase alternator by EMF and Predetermination of Voltage Regulation of three-phase alternator by ZPF meth Slip test on three-phase salient pole alternator. V and inverted V curves of synchronous motors Load test on three-phase induction motor. Circle diagram for three phase induction motor with No load and blocked rotor Three Phase Induction Generator action with self-excitation. Synchronization of three-phase alternator Separation of losses in three phase induction motor. Load test on single-phase induction motor. Equivalent circuit and pre-determination of performance characteristics of motor. Separation of losses in single phase transformer using alternator	hod. test	data		
				(o) (-	<u></u>
Course			otal	(0+4	5)= 4	5Periods
		letion of this course, the students will be able to:				
CO1	:	Analyze the voltage regulation of a given alternator using different methodolog	ies			
CO2	:	Analyze the performance of a given synchronous motor under various excitati Conditions				
CO3	:	Analyze the characteristics of a induction motor under various load conditions				
CO4	:	Analyze the load sharing capability of given alternators				
CO5	:	Develop the equivalent circuit and analyze the characteristics of single-phase	indu	ction	mot	or
CO6	:	Do loss analysis in AC machines.				

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2			1		2				2	
CO2		2			2							1
CO3	3			2							1	
CO4	2				3		2		2			
CO5				1	1					2		2
CO6		2	2	3							2	

18EE406	MEASUREMENTS AND INSTRUMENTATION LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course Ol	ojectives:				
1.	To study the use of Transducer.				
2.	To measure the resistance, capacitance and inductance using bridges.				
3.	To calibrate voltage and current using measuring equipment.				
4.	To calibrate the efficiency of PV modules.				
Experime	nts:				
1	Measurement of displacement using transducers.				
2	Measurement of pressure using transducers.				
3	Measurement of inductance by Maxwell's bridge.				
4	Measurement of inductance by Anderson's bridge				
5	Measurement of resistance by Wheatstone bridge.				
6	Measurement of capacitance, Inductance by schering bridge.				
7	Study of Instrumentation amplifiers.				
8	A/D converters.				
9	D/A converters.				
10	Study of transients.				
11	Calibration of single phase and three phase energy meter.				
12	Calibration of AC, DC voltmeter and Ammeter.				
13	Calibration of current transformer and potential transformer.				
14	Measurement of three phase power and power factor.				
15	Calibration and Voltage – Current Measurement of solar light.				
16	Study of PLC.				
17	Calibration of series and parallel connection of PV modules.				
18	Calculation of efficiency for PV system modules, Battery and Inverter.				
		2Total(0+45	5)= 4	5Period
Course O					
	pletion of this course, the students will be able to:				
CO1 :	Explain analog instruments.				
CO2 :	Measure power in AC and DC circuits				
CO3 :	Calculate R,L,C using various bridges.				
CO4 :	Know about basic of PLC.				
CO5 :	Measure the efficiency of PV modules				
CO6 :	Calibrate ammeter, voltmeter, energy meter and transformers.				

RO CO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	1	2		2	1		2	1	1		1	1
CO2	1	2		2	2		2	1	1		2	1
CO3	1	2		2	1		2	2	1		1	1
CO4	1	2		2	1		2	1	1		1	1
CO5	1	2		2	1		2	1	2		1	1
CO6	1	3		3	1		3	1	1		1	1

18EE407	ANALOG AND DIGITAL INTEGRATED CIRCUITS LABORATORY
	0 0 3 1.5
Course Ob	jectives:
1.	To Expose the characteristics and applications of Linear Ics.
2.	To study various digital electronics circuits used in simple system configuration
List of Exp	eriments: (Any 10 Experiments)
1	Verification of IC 741 characteristics: inverting and non-inverting amplifier – voltage follower.
2	Verification of IC 741 Applications circuits: summer, differentiator and integrator.
3	Design of zero crossing detector and Schmitt trigger circuit using OP-AMP.
4	Design and testing of first order Low Pass and High Pass Active filters.
5	Design of Wien bridge oscillator and RC phase shift oscillator using OP-AMP.
6	Design of astable and monostable multivibrator circuits using NE/SE 555 timer.
7	Design of Voltage controlled oscillator using NE/SE 566.
8	Design of Voltage regulator using IC723.
9	Design of +5V, 1A regulated Power supply using IC 7805.
10	Design of variable power supply using IC LM317.
11	Design of dual power supply using LM 320 / LM340.
12	Realize the switching functions using minimum number of NAND/NOR gates.
13	Design of code converter circuits.
14	Study of different types of Flip-Flops.
15	Design of 3-bit synchronous counters.
16	Implementation of multipliexers and demultiplexers – encoders and decoders
17	Design of 4-Bit shift registers using flip-flop.
18	Testing of asynchronous counters using flip-flops.
Course Ou	Total (0+45)= 45 Period
	letion of this course, the students will be able to:
CO1	: Study the characteristics and mathematical applications of op-amp
CO2	: Design and verify waveform generator circuits and filter circuits using op-amp.
CO3	: Design voltage regulator and power supply circuits using Linear Ics.
CO4	: Realize the switching function using universal gates.
CO5	Realize the various types of combinational logic circuits

Reference Books:

1.	Department Integrated Circuits Laboratory Manual
2.	Roy Choudhury. D and Shail. B. Jain, "Linear Integrated Circuits", New Age International 4th
	Edition, 2011.
3	Gayakwad. R.A, "Op-amps & Linear Integrated Circuits", Pearson education, 4th Edition, 2015

een e map												
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			3	3	2		1		3			
CO2			3	3	2		1		3			
CO3			3	3	2		1		3			
CO4			3	3	2		1		3			
CO5			3	3	2		1		3			
CO6			3	3	2		1		3			

18MC301	INDIAN CONSTITUTION		T	Ρ	C
		1	0	0	0
Course Ob	iectives:				
1.	Learn the salient features of the Indian Constitution				
2.	List the fundamental rights and fundamental duties				
3.	Present a systematic analysis of all dimensions of the Indian political Systems				
4.	Understand the power functions of Parliament, the legislature and Judiciary.				
Unit I			3	+	0
Union and i	ts Territory – Citizenship – Fundamental Rights – Directive Principles of State Poli	cy – F	unda	amei	nta
Duties.					
Unit II			3	+	0
The Union -	- The States – The Union Territories – The Panchayats – the Municipalities				
	1			1	
Unit III			3	+	0
The Co-ope	rative Societies – The Scheduled and Tribal Areas – Relations between the Unior	n and t	he S	State	s -
	operty, Contracts and Suits – Trade and Commerce within the territory of India.				
Unit IV			3	+	•
Unit IV	ler the Union, the States – Tribunals –Elections –Special provisions –Relating to c	ertain	•	-	•
Unit IV Service und		ertain	clas	ses	
Unit IV Service und Unit V	er the Union, the States – Tribunals –Elections –Special provisions –Relating to c	ertain	•	-	•
Unit IV Service und Unit V		ertain	clas	ses	
Unit IV Service und Unit V	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c		clas 2	+	0
Unit IV Service und Unit V	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14		clas 2	+	0
Unit IV Service und Unit V Languages Course Ou	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14		clas 2	+	0
Unit IV Service und Unit V Languages Course Ou	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14		clas 2	+	0
Unit IV Service und Unit V Languages Course Ou Upon comp CO1	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1/ tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution.		clas 2	+	0
Unit IV Service unc Unit V Languages Course Ou Upon comp CO1 CO2	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1/ tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System		clas 2	+	0
Unit IV Service und Unit V Languages Course Ou Upon comp CO1 CO2 CO3	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1/ tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution.		clas 2	+	0
Unit IV Service unc Unit V Languages Course Ou Upon comp CO1 CO2	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1/ tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System	4+0)=	2 14 F	+ Peric	0 ods
Unit IV Service unc Unit V Languages Course Ou Upon comp CO1 CO2 CO3	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1/ tcomes: letion of this course, the students will be able to: Understand the emergence and evolution of the Indian Constitution. Explain the key concepts of Indian Political System Describe the role of Constitution in a democratic society Present the structure and functions of the central and state Governments, the	4+0)=	2 14 F	+ Peric	0 ods
Unit IV Service und Unit V Languages Course Ou Upon comp CO1 CO2 CO3	der the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society	4+0)=	2 14 F	+ Peric	0 ods
Unit IV Service und Unit V Languages Course Ou Upon comp CO1 CO2 CO3	ler the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1- tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society : Present the structure and functions of the central and state Governments, the Judiciary.	4+0)=	2 14 F	+ Peric	0 ods
Unit IV Service und Unit V Languages Course Ou Upon comp CO1 CO2 CO3 CO4	ler the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1- tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society : Present the structure and functions of the central and state Governments, the Judiciary.	4+0)=	2 14 F	+ Peric	0 ods
Unit IV Service und Unit V Languages Course Ou Upon comp CO1 CO2 CO3 CO4 Reference	ler the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (1- tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society : Present the structure and functions of the central and state Governments, the Judiciary. Books:	4+0)=	2 14 F	+ Peric	0 ods
Unit IV Service und Unit V Languages Course Ou Upon comp CO1 CO2 CO3 CO4 Reference 1.	ler the Union, the States – Tribunals –Elections –Special provisions –Relating to c - Emergency provisions –Miscellaneous – Amendment of the Constitution. Total (14 tcomes: letion of this course, the students will be able to: : Understand the emergence and evolution of the Indian Constitution. : Explain the key concepts of Indian Political System : Describe the role of Constitution in a democratic society : Present the structure and functions of the central and state Governments, the Judiciary. Books: Subhash C. Kashyap , Our Constitution , national Book trust, 2017	4+0)=	2 14 F	+ Peric	0 ods

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1									1	1		1
CO2									1	1		1
CO3									1	1		1
CO4									1	1		1

Course Obj		· · · · ·	0	0	3
		3	U	U	3
4					
1.	To study the characteristics of load curve, power tariff methods and the various systems.	s pov	ver	gene	eratin
2.	To become familiar with the different components used in Transmission and Di power systems and modeling of these components	strib	utio	n lev	els c
L. L					
Unit I	POWER GENERATION SYSTEMS		9	+	0
load duratior	electric power system: Various levels such as generation, transmission and distrik n curve - tariff- types of tariff- Power generating Station: layout- selection of site of Th c power plant and Nuclear power plants - major power stations in India.				
Unit II	TRANSMISSION LINE PARAMETERS		9	+	0
	nce- Inductance and capacitance calculations of single phase and 3- phase trans	emie	_	line	-
single and d	ouble circuits – Inductance of composite conductors- Effect of bundling and earth proximity effects-Inductive interference between power and communication lines.				
Unit III	MODELING AND PERFORMANCE OF TRANSMISSION LINES		9	+	0
	ion of Lines-Performance of Short line, medium line and long line; equivaler	nt cir	-	s. pl	-
	ransmission efficiency and voltage regulation and ABCD constants-surge-impedar				
Diagrams tr					
			00.0	51	
	n capability-Ferranti effect and corona loss.			51	
transmission	OVERHEAD LINE INS		9	+	0
transmissior Unit IV	OVERHEAD LINE INS ULATORS AND CABLES		9	+	0
transmission Unit IV Insulators: T	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of	of str	9 ing	+ effici	0 ency
transmission Unit IV Insulators: T Underground	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a	of str	9 ing - co	+ effici re ca	0 ency ables
transmission Unit IV Insulators: T Underground	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of	of str	9 ing - co	+ effici re ca	0 ency ables
transmission Unit IV Insulators: T Underground dielectric stru	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si	of str	9 ing - co	+ effici re ca e cat	0 ency ables ole.
transmission Unit IV Insulators: T Underground dielectric stru Unit V	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM	of str Ind 3 ngle	9 ing - co core 9	+ effici re ca e cat	0 ency ables ole. 0
transmission Unit IV Insulators: T Underground dielectric stru Unit V Substation: (OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively	of str ind 3 ngle	9 - co core 9 unde	+ effici re ca e cat + ed sy	0 ency ables ble. 0 /ster
transmission Unit IV Insulators: T Underground dielectric stru Unit V Substation: 0 Underground	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution system	of str ind 3 ngle	9 - co core 9 unde	+ effici re ca e cat + ed sy	0 ency ables ble. 0 /ster
transmission Unit IV Insulators: T Underground dielectric stru Unit V Substation: 0 Underground	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively	of str ind 3 ngle	9 - co core 9 unde	+ effici re ca e cat + ed sy	0 ency ables ble. 0 /ster
transmission Unit IV Insulators: T Underground dielectric stru Unit V Substation: 0 Underground	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution system	of str ind 3 ngle grou n: Ra	9 ing - co core 9 unde	+ effici re ca e cat + ed sy I and	0 ency ables ble. 0 /ster
transmission Unit IV Insulators: T Underground dielectric stro Unit V Substation: (Underground main distribu	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution system ution systems-Methods of solving AC distributed problems. Total (4)	of str ind 3 ngle grou n: Ra	9 ing - co core 9 unde	+ effici re ca e cat + ed sy I and	0 ency ables ble. 0 /sten d ring
transmission Unit IV Insulators: T Underground dielectric stra Unit V Substation: (Underground main distribu	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution system ution systems-Methods of solving AC distributed problems. Total (4)	of str ind 3 ngle grou n: Ra	9 ing - co core 9 unde	+ effici re ca e cat + ed sy I and	0 ency ables ble. 0 /sten d ring
transmission Unit IV Insulators: T Underground dielectric stro Unit V Substation: (Underground main distribu	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ution systems-Methods of solving AC distributed problems. Total (4 comes:	of str nd 3 ngle grou n: Ra	9 ing - core 9 unde adia	+ effici re cat e cat + ed sy I and	0 ency ables ble. 0 vsten d ring
transmission Unit IV Insulators: T Underground dielectric stro Unit V Substation: 0 Underground main distribu Course Out Upon comple CO1 : CO2 :	OVERHEAD LINE INS ULATORS AND CABLES ypes, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution system station systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines.	of str nd 3 ngle grou n: Ra	9 ing - core 9 unde adia	+ effici re cat e cat + ed sy I and	0 ency ables ble. 0 vsten d ring
transmission Unit IV Insulators: T Underground dielectric stra Unit V Substation: (Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 :	In capability-Ferranti effect and corona loss. OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ution systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits.	of str nd 3 ngle grou n: R 5+0	9 ing - co cord 9 unde adia) = 4	+ effici re cat e cat ed sy l and l5 Pe	0 encyables ble. 0 vsten d ring erioc
transmission Unit IV Insulators: T Underground dielectric stru Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 :	In capability-Ferranti effect and corona loss. OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ution systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to implemental parameters of the string.	of str nd 3 ngle grou n: R 5+0	9 ing - co cord 9 unde adia) = 4	+ effici re cat e cat ed sy l and l5 Pe	0 ency ables ble. 0 vsten d ring erioc
transmission Unit IV Insulators: T Underground dielectric stru Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 : CO5 :	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d systemResonant grounding- Methods of neutral grounding-Distribution system ition systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to improvement of the substation components and grounding techniques.	of str nd 3 ngle grou n: R 5+0	9 ing - co cord 9 unde adia) = 4	+ effici re cat e cat ed sy l and l5 Pe	0 ency ables ble. 0 vsten d rino eriod
transmission Unit IV Insulators: T Underground dielectric stru Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 :	In capability-Ferranti effect and corona loss. OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ution systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to implemental parameters of the string.	of str nd 3 ngle grou n: R 5+0	9 ing - co cord 9 unde adia) = 4	+ effici re cat e cat ed sy l and l5 Pe	0 encyables ble. 0 vsten d ring erioc
transmission Unit IV Insulators: T Underground dielectric stru- Unit V Substation: 0 Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 : CO5 : CO6 :	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ution systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to imp Comprehend the substation components and grounding techniques.	of str nd 3 ngle grou n: R 5+0	9 ing - co cord 9 unde adia) = 4	+ effici re cat e cat ed sy l and l5 Pe	0 ency ables ble. 0 vsten d rino eriod
transmission Unit IV Insulators: T Underground dielectric stru- Unit V Substation: 0 Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 : CO5 : CO6 :	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ation systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to imp Comprehend the substation components and grounding techniques. Grasp the different distribution system	f str nd 3 ngle grou n: R 5 +0 Hydr	9 ing ← - core 9 unde adia) = 4 ro, n → the	+ effici re ca e cab e cab e cab l and l and l 5 Pe	0 ency ables ble. 0 ysten d rino eriod ar, ne.
transmission Unit IV Insulators: T Underground dielectric stru- Unit V Substation: 0 Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 : CO5 : CO6 :	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ution systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to imp Comprehend the substation components and grounding techniques. Grasp the different distribution system	f str nd 3 ngle grou n: R 5 +0 Hydr	9 ing ← - core 9 unde adia) = 4 ro, n → the	+ effici re ca e cab e cab e cab l and l and l 5 Pe	0 ency ables ble. 0 ysten d rino eriod ar, ne.
transmission Unit IV Insulators: T Underground dielectric structure Substation: C Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 : CO5 : CO6 : Text Books 1.	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ation systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to imj Comprehend the substation components and grounding techniques. Grasp the different distribution system : M.L. Soni, P.V. Gupta, V.S. Bhatnagar, A. Chakrabarti, 'A Text Book on Power Sy DhanpatRai& Co., 2013.	f str nd 3 ngle grou n: R 5 +0 Hydr	9 ing ← - core 9 unde adia) = 4 ro, n → the	+ effici re ca e cab e cab e cab l and l and l 5 Pe	0 ency ables ole. 0 ysten d ring eriod ar, ne.
transmission Unit IV Insulators: T Underground dielectric stru Underground main distribu Course Out Upon comple CO1 : CO2 : CO3 : CO4 : CO5 : CO6 :	OVERHEAD LINE INS ULATORS AND CABLES Types, Potential distribution over a string of suspension insulators- improvement of d cables: Constructional features of LT and HT cables, capacitance of single core a ess in a single core cable- grading of cables, thermal resistance of dielectric of a si SUBSTATION, GROUNDING SYSTEM AND DISTRIBUTION SYSTEM Classification-bus-bar arrangements in sub stations- Neutral grounding: Effectively d system –Resonant grounding- Methods of neutral grounding-Distribution syster ution systems-Methods of solving AC distributed problems. Total (4 comes: etion of this course, the students will be able to: Design the layout of various types of power generating systems such as thermal, diesel and MHD. Develop expression for computation of fundamental parameters off lines. Categorize the lines into different classes and develop equivalent circuits. Analyze the voltage distribution in insulator strings and cables and methods to imp Comprehend the substation components and grounding techniques. Grasp the different distribution system	orove	9 ing (- core 9 unde adia) = 4 () = 6 () = 6	+ effici re cat e cat e cat e cat so f Pe ucles sar	0 ency ables ble. 0 ysten d ring eriod ar, ne. ering

Reference	e Books:
1.	Ray, "Electrical Power systems: Concepts, Theory and Practice", PHI Pvt.Ltd., New Delhi,2014,2 nd edition.
2.	V.K. Mehta, Rohit Mehta, "Principles of Power System", S.Chand& Company Ltd., New Delhi, 2012
3.	Dr. S.L.UPPAL, 'ELECTRICAL POWER', Khanna publishers, New Delhi, 1987.
E-Referer	
1	www.onlinecourses.nptel.ac.in/noc18_ee41
2	www.class-central.com
3	www.mooc-list.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	2	1	2	3	1	1	1	1	2
CO2	2	3	3	3	2	1	1	1	1	1	1	1
CO3	2	2	2	2	2	1	1	1	1	1	1	1
CO4	2	2	2	2	2	1	1	1	1	1	1	2
CO5	1	1	2	2	1	1	1	1	1	1	1	1
CO6	2	1	1	1	1	1	1	1	1	1	1	2

18EE502	CONTROL SYSTEMS	LT	Ρ	С
		3 1	0	4
Course Obj		(
<u>1.</u> 2.	To understand the methods of representation of systems and getting their transfer			
<u> </u>	To provide adequate knowledge in the time response of systems and steady state To give basic knowledge in obtaining the open loop and closed loop frequency resp			
<u> </u>	To understand the concept of stability of control system and methods of stability a		syster	115.
5.	To study the three ways of designing compensators for a control system.	naiysis.		
5.				
Unit I	SYSTEMS AND THEIR REPRESENTATION	9	+	3
	nts in control systems – Open and closed loop systems – Mathematical model and E			
	al systems – Transfer function – Synchro – AC and DC servo-motors – Block di	agram r	educt	ion
techniques -	Signal flow graphs.			
Unit II	TIME RESPONSE ANALYSIS	9	+	3
	t signals – Time response of first order and second order systems – Steady-state	-		
	Types of control systems – Effect of adding poles and zeros to transfer functions – F			
	ID controllers.		•	,
Unit III	FREQUENCY RESPONSE ANALYSIS	9	+	3
	between time and frequency response: Second order systems - Polar plots			
	of Gain Margin and Phase Margin - Frequency domain specifications - Constant M	/I and N	circle	s –
Nichols char				
Unit IV	STABILITY OF CONTROL SYSTEM	9		3
	- Necessary conditions for stability – Routh-Hurwitz stability criterion – Root locus of the stability of	-	• •	
	truction of Root loci – Nyquist stability criterion – Assessment of relative stability			
criterion.		ty using	ivyqu	JISC
Unit V	COMPENSATOR DESIGN	9	+	3
Need for cor	pensation – Types of compensators – Electric network realization and frequency of	characte	ristics	s of
basic compe	nsators: Lag, lead and lag-lead compensators - Cascade compensation in frequen	cy doma	lin.	
		(5) 00	<u>.</u>	
Course Out	Total (45+	15)= 60	Peric	ds
Upon comple	tion of this course, the students will be able to:			
CO1	: Derive the transfer function models of any electrical and mechanical systems.			
CO2	: Develop the time response and steady state error analysis of the control system	ns.		
CO3	: Analyze the frequency response of the systems.			
CO4	: Analyze the stability of closed loop control systems.			
CO5	: Construct the root locus plot and analyze system stability.			
CO6	: Design the compensators using conventional techniques.			
Taxt Deale				
Text Books	A Anand Kumar "Control Systems" DHI Learning Dut Ltd. Now Dolhi 2nd Editio	n 2015		
1.	A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition			lhi
	I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International P		s, De	lhi,
1.			s, De	lhi,
1.	I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International F 5 th Edition, 2015.		s, De	lhi,
1. 2.	I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International F 5 th Edition, 2015.		s, De	lhi,
1. 2. Reference E	I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International F 5 th Edition, 2015.	Publishei	s, De	lhi,
1. 2. Reference E 1. 2.	I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International F 5 th Edition, 2015. ooks: K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010. M. Gopal, "Control Systems: Principles and Design", TMH, New Delhi, 4 th Edition,	Publishei	s, De	lhi,
1. 2. Reference E 1.	I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International F 5 th Edition, 2015. ooks: K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010. M. Gopal, "Control Systems: Principles and Design", TMH, New Delhi, 4 th Edition,	Publishei	s, De	lhi,

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	2	1	1	1	1	1	2
CO2	3	3	2	2	1	2	1	1	1	2	1	2
CO3	3	3	1	1	2	1	1	1	1	2	1	1
CO4	3	3	2	1	1	1	2	2	1	2	2	2
CO5	3	1	2	2	1	1	2	3	1	2	2	2
CO6	3	1	2	2	1	1	2	3	1	2	2	2

18EE503	POWER ELECTRONICS	L		P	C
		3	0	0	3
Course O	bjectives:				
1.	To study an overview of power semiconductor devices, principles of cont	rolled	d rec	tifier	s, DC-D
1.	converters, inverters, AC voltage controller circuits and their analysis.				
11 14 1			_		
Unit I	POWER SEMICONDUCTOR DEVICES of power electronics- Structure, Operation, Static and Switching characteristics	of no	9	+	0
	Power Diode, SCR, MOSFET, IGBT, IGCT Thyristor ratings and protection				
	and IGBT, Switching and Conduction losses in a generic power semiconductor d				
Unit II	PHASE CONTROLLED RECTIFIERS		9	+	0
	ase and three phase fully controlled rectifiers - Power circuit, Operation, V				
	ce parameters – Effect of source and load inductance –Single phase and Three on to PWM rectifiers	e pha	se di	ual c	onverter
minoduciio					
Unit III	DC TO DC CONVERTER		9	+	0
	y chopper with an active switch and diode, concepts of duty ratio and average vo	oltage		ntrol	-
	cuit and steady state analysis of Buck converter, Boost converter, Buck – boo				
converter-	Design of inductor and capacitors for DC-DC converters.				
	1			1	1
Unit IV	INVERTERS		9	+	0
Power circ	cuit of single-phase voltage source inverter, square wave operation of the inver				
	modulation, modulation index and output voltage, Power circuit of a three-phase	e volta	age s	ourc	e inverte
sinusoidal					
sinusoidal operation,	switch states, instantaneous output voltages, three-phase sinusoidal mo				
sinusoidal operation,	switch states, instantaneous output voltages, three-phase sinusoidal mo				
sinusoidal operation, modulatior Unit V	switch states, instantaneous output voltages, three-phase sinusoidal mo	dulat	ion - 9	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage control	dulat	ion - 9	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio	switch states, instantaneous output voltages, three-phase sinusoidal mo	dulat	ion - 9	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage control pplications of AC Voltage Controllers–Introduction to Matrix converters.	lers -	ion 9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage control pplications of AC Voltage Controllers–Introduction to Matrix converters.	lers -	ion 9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. To utcomes:	lers -	ion 9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage control pplications of AC Voltage Controllers–Introduction to Matrix converters. Tutcomes: pletion of this course, the students will be able to:	lers -	ion 9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1	switch states, instantaneous output voltages, three-phase sinusoidal mo AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Tutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics.	lers -	ion 9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Tutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier.	lers -	ion 9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits	lers -	ion 9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers—Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Select the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques.	odulat	9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits	odulat	9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Tutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Select the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix control techniques.	odulat	9 - Mult	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Book	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Tutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix cores.	otal (9 - Mult (45+0	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO3 CO4 CO5	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Treatments pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix cor	otal (9 - Mult (45+0	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Bool 1.	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers—Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Select the prover Semiconductor Devices based on Characteristics. Select the performance of phase-controlled rectifier. Select the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix cor	otal (9 - Mult (45+0	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Book	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Treatments pletion of this course, the students will be able to: Select the Power Semiconductor Devices based on Characteristics. Evaluate the performance of phase-controlled rectifier. Design and analyze the DC/DC converter circuits Analyze the inverter operation and its control techniques. Know the operation and applications of AC voltage controller and matrix cor	otal (9 - Mult (45+0	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Bool 1. 2.	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers-Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix cor KS: M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson New Delhi, 2014. P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018.	otal (9 - Mult (45+0	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Bool 1. 2. Reference	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controlled pplications of AC Voltage Controllers—Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix cor cs: M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson New Delhi, 2014. P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018.	otal (9 - Mult (45+0 ers	-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Bool 1. 2.	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers-Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix cor KS: M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson New Delhi, 2014. P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018.	otal (9 - Mult (45+0 ers	-Spa	ce vect
sinusoidal operation, modulation Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2. Reference 1.	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix cor cs: M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson New Delhi, 2014. P .S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018. Books: Ned Mohan, Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Co Design', John Wiley and sons, 2007. R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics", Sprid	onver	9 - Mult (45+(-Spa	ce vect
sinusoidal operation, modulatior Unit V Introductio control –A Course O Upon com CO1 CO2 CO3 CO4 CO5 Text Bool 1. 2. Reference	switch states, instantaneous output voltages, three-phase sinusoidal mon AC TO AC CONVERTERS on and principle of operation of Single phase and Three phase AC voltage controll pplications of AC Voltage Controllers–Introduction to Matrix converters. Trutcomes: pletion of this course, the students will be able to: : Select the Power Semiconductor Devices based on Characteristics. : Evaluate the performance of phase-controlled rectifier. : Design and analyze the DC/DC converter circuits : Analyze the inverter operation and its control techniques. : Know the operation and applications of AC voltage controller and matrix cor cs: M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson New Delhi, 2014. P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2018. Books: Ned Mohan, Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Comparison of the context of the co	otal (9 - Mult (45+(-Spa	ce vect

1	www.onlinecourses.nptel.ac.in/
2	www.class-central.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			1	3		2				1		1
CO2	2			1	2			1				
CO3	1	2					2					
CO4	1	2		3		1	2					
CO5			1		2				2		2	2

18EE504	MICROPROCESSOR AND MICROCONTROLLER	L	Т	Р	C	
		3	0	0	3	
Course Ob	ioctivos:	•				
	-					
1.	A thorough understanding in establishing a digital control system					
2	Learn different digital communications and their applications					
3	Get ideas to apply digital controls for different electrical applications					
Unit I	8085 8 BIT MICROPROCESSOR		9	+	0	
	als of microprocessors - Architecture of 8085 - Groups of Instructions - Address	ingm	nodes	– Ba	sic tim	in
	Drganization and addressing of Memory and I/O systems –Interrupt structure –					
Simple 808	5 based system design and programming.					
Unit II	8051 8 BIT MICROCONTROLLER		9	+	0	
	als of microcontrollers – Architecture of 8051 – Groups of Instructions - Addressin	na m	-	-	-	io
	systems – I/O Ports – Timers/Counters – Serial Port - Interrupt structure – Simple					
	mblers and Compliers		gram	miy	00100	Pu
Unit III	INTERFACING WITH 8051 MICROCONTROLLER		9	+	0	
Need and re	equirements of interfacing – Interfacing – LED, 7 segment and LCD Displays –	Tac	tile sv	vitche	es, Ma	tri
keyboard -	Parallel ADC – DAC – Interfacing of Current, Voltage, RTD and Hall Sensors.					
				1	-	
Unit IV	EXTERNAL COMMUNICATION INTERFACE		9	+	0	
	us and Asynchronous Communication. RS232, RS 485, SPI, I2C. Introducti	on a	and	Intert	acing	t
protocols lik	ke Blue-tooth and Zig-bee.					
Unit V	APPLICATIONS OF MICROCONTROLLERS		9	+	0	
	ptor interfacing, DC Motor interfacing, Data Acquisition System, Measurement	t of F	-		-	201
	I State Relays		_100011	010	wci, i	01
		otal	(45+0)= 45	5 Perio	d
Course Ou	tcomes:					
Upon comp	letion of this course, the students will be able to:					
CO1	: Understand any other types of modern microprocessor and microcontroller					
CO2	: Select appropriate digital system based on applications	,				
CO3	: Design simple controls using software programs					
CO4	: Design and interface communications between digital systems					
CO5	: Apply the digital concepts to measure and control simple electrical systems	3				
Text Books						
1.	R. S. Gaonkar, ", Microprocessor Architecture: Programming and Applicat i	ons	with	the		
	8085", Penram International Publishing, 2013, 6th edition.					
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning,2004.					
3.	M. A.Mazidi, J. G. Mazidi and R. D. McKinlay, "The8051Microcontroller	and	Embe	eddeo	b	
0.	Systems: Using Assembly and C",Pearson Education, 2007.					
D. (
Reference						
1. 2	R. Kamal, "Embedded System", McGraw Hill Education, 2017					
2.	D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education, 20	CU				
E-Reference	ce de la constante de la const					
1	www.onlinecourses.nptel.ac.in/					
2	www.class-central.com					
						_

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1		1	1		1	1	1
CO2	1	1	1	1	1		1	1		1	1	1
CO3	1	1	1	1	1		1	1		1	1	1
CO4	1	1	1	1	1		1	1		1	1	1
CO5	1	1	1	1	1		1	1		1	1	1

18EE505	5	CONTROL SYSTEMS LABORATORY	L	Т	Ρ	С
	-		0	0	3	1.5
Course	Obj					
1.		To provide a platform for understanding the basic concepts of linear control theory	and	its a	pplic	cation
		to practical systems.				
Experim	ent					
1		Transfer function of separately excited DC generator.				
2		Transfer function of self-excited DC generator.				
3		Transfer function of armature-controlled DCmotor.				
4		Transfer function of field-controlled DC motor.				
5		Transfer function of AC servo-motor.				
6		Frequency response of Lag, Lead and Lag-lead networks.				
7		Study of Synchros.				
8		Study of Stepper motor.				
9		Ward Leonard method of speed control of DC motor.				
10		Study of DC position control system.				
11		Study of P, PI and PID controllers (First-order).				
		Total (0)+45)= 4	5 Pe	riods
Course	Out	comes:				
Upon co	mpl	etion of this course, the students will be able to:				
CO1	:	Design the transfer function of DC and AC machines.				
CO2	:	Design compensators for control system.				
CO3	:	Gain knowledge about Synchros.				
CO4	:	Gain knowledge about Stepper motor.				
CO5	:	Design controllers for control systems.				
Referen	ce	Books:				
1.		A. Anand Kumar, "Control Systems", PHI Learning Pvt. Ltd., New Delhi, 2 nd Edition	on. 2	015		
		I.J. Nagrath& M. Gopal, "Control Systems Engineering", New Age International Pu				hi 5 th
2.		Edition, 2015.		1010	, 00	, O
3.		K. Ogata, "Modern Control Engineering", Pearson Education, New Delhi, 2010.				
F-Refere	enc	PC.				
E-Refere	enc	es: www.onlinecourses.nptel.ac.in/				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	1	1	3	1	2	1	1	2
CO2	3	3	3	3	2	2	3	1	2	2	1	1
CO3	3	3	3	2	2	1	1	2	1	3	1	1
CO4	3	3	3	1	1	1	2	2	1	2	2	2
CO5	2	3	2	3	1	2	1	3	1	2	2	2

18EE506	POWER ELECTRONICS LABORATORY	L	T	P	C
		0	0	3	1.5
Course Ob	jectives:				
1	To simulate and analyze the performance of different power electronic conv	erter	circu	uits.	
Experimen	ts:				
1	V-I Characteristics of power diode and SCR				
2	Static and Switching Characteristics of Power MOSFET and IGBT				
3	Single phase AC to DC fully controlled converter				
4	Single phase PWM rectifiers				
5	Buck and Boost Converters				
6	MOSFET based single-phase PWM inverter				
7	IGBT based three-phase PWM inverter				
8	Single phase AC voltage controller				
9	Simulation for Single phase and three phase dual converters				
10	Simulation of Buck – boost converter and SEPIC converter				
11	Simulation of three phase voltage source inverters with sinusoidal modulation	n			
12	Simulation of Matrix converter				
	Total	0+45) = 4	5 Pe	riods
Course Ou	tcomes:				
Upon comp	letion of this course, the students will be able to:				
CO1	: Analyze the characteristics of MOSFET, SCR and IGBT.				
CO2	: Evaluate the performance of DC-DC Converters and inviters.				
CO3	: Design and control of inverters with different modulations.				
CO4	: Analyze the performance of power converters with simulation studies				
CO5	: Demonstrate the operation of power converters				
Text Book	5.				
1.	M.H.Rashid, 'Power Electronics: Circuits, Devices and Applications', Pearson E PHI Third Edition, New Delhi, 2009.	Educa	ation	,	
2.	P.S.Bimbra "Power Electronics" Khanna Publishers, New Delhi 2016.				
Reference	Books:				
4	Ned Mohan, Tore. M. Undel and, William. P. Robbins, 'Power Electronics: Co	nver	ters,	Appl	icatio
1.	and Design', John Wiley and sons, 2007.			•••	
0	R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics", Spri	nger			
2.	Science & Business Media, 2007.	0			
3.	M.D. Singh and K.B. Khanchandani, "Power Electronics," McGraw Hill India, 20	013.			
E-Reference	ces:				
1.	www.onlinecourses.nptel.ac.in/				
2.	www.class-central.com				
CO/PO N	apping				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		2		3		2			1			1
CO2	2		3	1			2				1	
CO3		1	2		2		2			2		
CO4	1			3		1					2	
CO5					2			1	2			2

18EE507	MICROPROCESSOR AND MICROCONTROLLER LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course O	bjectives:				
1.	Able to write own programs for different applications				
2.	Interface and program for interconnected digital systems				
Experime					
1	Simple arithmetic operations: addition / subtraction / multiplication / division	n.			
2	Programming with control instructions:	_			
	a. Ascending / Descending order, Maximum / Minimum of nu	Imbei	s		
	b. Programs using Rotate instructions				
3	c. Hex / ASCII / BCD code conversions. Interface Experiments: with 8085				
3	a. A/D Interfacing. & D/A Interfacing.				
4	Traffic light controller.				
5	I/O Port / Serial communication				
6	Programming Practices with Simulators/Emulators/open source				
7	Keyboard interfacing				
8	LCD interfacing 4bit/8bit mode				
9	Demonstration of basic instructions with 8051 Micro controller execution, in	nclud	ing:		
	a. Conditional jumps, looping				
	b. Calling subroutines.				
10	Programming I/O Port 8051				
	a. Interface with external A/D & D/A				
	b. Interface with stepper motor				
11 12	Interrupt programming with external sensors/ devices Programming for communication using Zigbee protocol.				
12	Total	0.45)_ 4	5 Do	riode
Course O		0743	<u>)- +</u>	JFC	nous
CO1	pletion of this course, the students will be able to: : Write coding to implement different types of algorithms				
CO2	Original implement simple controllers				
CO3	: Use simulators and emulators for debugging and verifying codes				
CO4	: Write efficient codes using interrupts for time critical applications				
CO5	: Interface any application module to microprocessor/microcontroller.				
Text Book					_
1.	R. S. Gaonkar, ", Microprocessor Architecture: Programming and Applic	at ior	ns w	/ith 1	the
	8085", Penram International Publishing, 1996				
2.	K. J. Ayala, "8051 Microcontroller", Delmar Cengage Learning,2004.				
3.	M. A.Mazidi, J. G. Mazidi and R. D. McKinlay, "The8051Microcontrolle	er ar	id E	mbe	dded
	Systems: Using Assembly and C",Pearson Education, 2007.				
Reference	Books				
1.	R. Kamal, "Embedded System", McGraw Hill Education,2009				
2.	D. V. Hall, "Microprocessors & Interfacing", McGraw Hill Higher Education,	199	1		
<u> </u>		100			
E-Referen					
1.	www.onlinecourses.nptel.ac.in/				
2.	www.class-central.com				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	0	1	1	1	1	0	1
CO2	1	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	0	1	1	1	1	0	1
CO4	1	1	1	1	1	0	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

18EE601	POWER SYSTEM ANALYSIS AND STABILITY	L T 3 0	P 0	C 3
Course Obie	otivos			
Course Obje				
<u> </u>	To model the power system under steady state operating condition			
2	To apply efficient numerical methods to solve the power flow problem			
3.	To model and analyze the power systems under abnormal (or) fault conditions		6 . 11	
4.	To model and analyse the transient behaviour of power system when it is subject	ted to a	fault.	
Unit I	POWER SYSTEM OVERVIEW AND MODELLING	9	+	0
Basic compor	nents of modern power system - Per-phase analysis: Generator model - Synchrono	us moto	or moo	del-
	e transformer model - Three-winding transformer model - Line model- per unit quant per-unit quantities - representation of load impedance - Single line diagram - grams.			
Unit II	POWER FLOW ANALYSIS	9	-	0
	tion – Bus admittance matrix Formulation: Direct inspection method and Singula	-	ormot	-
method -Deve	elopment of power flow model - solution of load flow equations: Gauss Seidel m hod- Fast decoupled method – flowcharts – Comparison of the three power flow so	ethod -	New	ton
Unit III	FAULT ANALYSIS - BALANCED FAULT	9	+	0
	Balanced three phase fault – Short circuit capacity - Algorithm for formation of the	-	pedar	-
	matic fault analysis using Bus Impedance matrix -Selection of circuit breakers.		p o a.o	
Unit IV	FAULT ANALYSIS - UNBALANCED FAULT	9	+	0
Fundamental	s of symmetrical components – Sequence impedances – Construction of seque	nce ne	twork	s –
Unsymmetrica	al faults on power system: Single line-ground fault, line-line fault – Double lir ault analysis using bus impedance matrix.			
Unit V	STABILITY STUDIES	9	+	0
Importance of Inertia consta step-by-step r	STABILITY STUDIES stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem	angle e ing equ Critical	quati	on- by
Importance of Inertia consta step-by-step r	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion –	angle e ring equ Critical nent.	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improver Total (45-	angle e ring equ Critical nent.	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- omes: tion of this course, the students will be able to:	angle e ring equ Critical nent.	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 :	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- omes: tion of this course, the students will be able to: Develop the single line diagram for the power system.	angle e ring equ Critical nent.	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet	stability studies – Classification of power system stability – Stability limits – Power int- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- Total (45- Omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix	angle e ring equ Critical nent.	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 :	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- Total (45- Omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix	angle e ing equ Critical nent. •0)= 45	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 : CO2 :	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system	angle e ing equ Critical nent. •0)= 45	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 : CO2 : CO3 :	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- Total (45- Omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix	angle e ing equ Critical nent. •0)= 45	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 : CO2 : CO3 : CO3 :	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system	angle e ing equ Critical nent. •0)= 45	equation lation clear	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 : CO2 : CO3 : CO4 : CO5 :	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (454 omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies.	angle e ing equ Critical hent. •0)= 45	Peric	on- by ing
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 CO2 CO3 CO4 CO5 Text Books:	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system	angle e ing equ Critical hent. •0)= 45	Peric	on- by ing ods
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 : CO2 : CO3 : CO4 : CO5 : Text Books: 1. 2.	stability studies – Classification of power system stability – Stability limits – Power nt- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (454 omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies.	angle e ing equ Critical hent. •0)= 45	Peric	on- by ing ods
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 : CO2 : CO3 : CO4 : CO5 : Text Books: 1.	stability studies – Classification of power system stability – Stability limits – Power int- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (45- Omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies. Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi, 2 D.P.Kothari, and I.J.Nagrath, "Modern Power System Analysis", Tata McGraw Hill Publishers, New Delhi, 5 private limited, New Delhi, Fourth Edition, 2011. poks: John J. Grainger and W.D. Stevenson Jr., "Power System Analysis", McGraw Hill	angle e ing equ Critical nent. •0)= 45	Peric	on- by ing ods
Importance of Inertia consta step-by-step r angle and tim Course Outc Upon complet CO1 : CO2 : CO3 : CO4 : CO5 : Text Books: 1. 2. Reference Bo	stability studies – Classification of power system stability – Stability limits – Power int- Swing equation of single-machine connected to infinite bus – Solution of Sw nethod-II – Modified Euler's method – Runge-Kutta method – Equal area criterion – e -Factors affecting transient stability – Techniques for transient stability improvem Total (454 omes: tion of this course, the students will be able to: Develop the single line diagram for the power system. Perform and analyze load flow computations using bus admittance matrix Perform and analyze balanced fault using bus impedance matrix Develop computational models for unsymmetrical fault analysis in power system Understand the transient stability studies. Hadi Saadat, "Power System Analysis", Tata McGraw Hill Publishers, New Delhi, 2 D.P.Kothari, and I.J.Nagrath, "Modern Power System Analysis", Tata McGraw Private limited, New Delhi, Fourth Edition, 2011.	angle e ing equ Critical nent. •0)= 45 •0)= 45 s 21 st repi v Hill E Inc., Ne	rint 20 ducat	on- by ing ods ods

	E-References	
Ī	1.	https://onlinecourses.nptel.ac.in/, for power system analysis course, IIT Kharagpur
	2.	NPTEL courses on Power System Generation, Transmission and Distribution, IIT Delhi.

PO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	2	1	3	1	3		1					
CO2	2	2	3	2	3		1					
CO3	2	2	3	2	3		1					
CO4	2	2	3	2	3		1					
CO5	2	2	3	2	3		1					

18EE602	ELECTRICAL DRIVES AND CONTROL	L	Т	Ρ	С
		3	0	0	3
Course Obje	ectives:				
1.	To know about the Analyze the operation of the chopper fed dc drive, both quali quantitatively.	itativ	ely a	and	
2.	To understand the Operation and performance of AC motor drives.				
	DC MOTOR CHARACTERISTICS & CHOPPER FED DC DRIVES		9	+	0
armature vo varying moto	orque-speed characteristics of separately excited dc motor, change in torque-sp tage, exampleload torque-speed characteristics, operating point, armature volt rspeed. Review of dc chopper and duty ratio control, chopper fed dc motor for speed on of a chopper fed drive, armature current waveform and ripple, calculation of los	tage d con	cor trol,	ntrol stea	for ady
	MULTI-QUADRANT & CLOSED-LOOP CONTROL OF DC DRIVE		9	+	0
Review of Fo Control struc equations ar	ture of DC drive, inner current loop and outer speed loop, dynamic model of dc m d transfer functions, modeling of chopper as gain with switching delay, plant tr oller specification and design, speed controller specification and design.	notor	— d	lyna	ers; mic
	INDUCTION MOTOR CHARACTERISTICS		9	+	0
with (i) applie	duction motor equivalent circuit and torque-speed characteristic, variation of torq d voltage, (ii) applied frequency and (iii) applied voltage and frequency, typical torquimp loads, operating point, constant flux operation, flux weakening operation.				
UNIT IV	SCALAR CONTROL OR CONSTANT V/F CONTROL OF INDUCTION MOTOR ee-phase voltage source inverter, generation of three-phase PWM signals, sinuso		9	+ ulati	0
space vector	theory, conventional space vector modulation; constant V/f control of induction mot analysis based on equivalent circuit, speed drop with loading, slip regulation.				
UNIT V	CONTROL OF SLIP RING INDUCTION MOTOR		9	+	0
	or resistance of the induction motor torque-speed curve, operation of slip-ring indu resistance, starting torque, power electronic based rotor side control of slip ring m				
Course out	Total (45+	-0)=	45 F	Perio	ods
Course outo					
	tion of this course, the students will be able to:				
CO1 :	Understand the characteristics of dc motors and induction motors.				
CO2 : CO3 :	Understand the principles of speed-control of dc motors and induction motors.				
.	Understand the power electronic converters used for dc motor and induction mc	otor s	pee	d	
	control.	otor s	pee	d	
CO4 : CO5 :		otor s	pee	d	
CO4 :	control.Gain knowledge on the Scalar control or constant V/f control of induction motor	otor s	pee	d	
CO4 : CO5 :	control.Gain knowledge on the Scalar control or constant V/f control of induction motor	otor s	pee	d	
CO4 : CO5 : Text Books:	control. Gain knowledge on the Scalar control or constant V/f control of induction motor Gain knowledge on chopper fed DC drives.				
CO4 : CO5 : Text Books: 1.	control. Gain knowledge on the Scalar control or constant V/f control of induction motor Gain knowledge on chopper fed DC drives. G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989. R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall ooks:				
CO4 : CO5 : Text Books: : 1. : 2. : Reference B 1.	control. Gain knowledge on the Scalar control or constant V/f control of induction motor Gain knowledge on chopper fed DC drives. G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989. R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice H ooks: G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2010.	lall,2	015		
CO4 : CO5 : Text Books: : 1. : 2. : Reference B :	control. Gain knowledge on the Scalar control or constant V/f control of induction motor Gain knowledge on chopper fed DC drives. G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989. R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice Hall ooks:	lall,2	015		
CO4 : CO5 : Text Books: : 1. : 2. : Reference B 1.	control. Gain knowledge on the Scalar control or constant V/f control of induction motor Gain knowledge on chopper fed DC drives. G. K. Dubey, "Power Semiconductor Controlled Drives", Prentice Hall, 1989. R. Krishnan, "Electric Motor Drives: Modeling, Analysis and Control", Prentice H ooks: G. K. Dubey, "Fundamentals of Electrical Drives", CRC Press, 2010. W. Leonhard, "Control of Electric Drives", Springer Science & Business Media, 2	lall,2	015		

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3			2	1	1			1	2
CO2	3	3	1	3		1	1	1				1
CO3	3	3	3	3	3	1	1	1				1
CO4	1	3	3	2	3	1	1	1				1
CO5	3	3	3	3	3	1	1	1			1	1

	PROFESSIONAL ETHICS AND HUMAN VALUES	L 1 3 (Γ <u>Ρ</u>	(
Course Ol	piectives:	3 (0	
1.	To create awareness on Engineering Ethics and providing basic knowledge about e Ethics, Variety of moral issues and Professional Ideals.	ngineer	ing	
2.	To provide basic familiarity about Engineers as responsible Experimenters, Codes of Industrial Standards.	of Ethics	З,	
3.	To inculcate knowledge and exposure on Safety and Risk, Risk Benefit Analysis.			
			-	
UNIT I	HUMAN VALUES	g		(
Living Pea	lues and Ethics – Integrity – Work Ethic – Service Learning – Civic Virtue – Respect f cefully – caring – Sharing – Honesty – Courage – Valuing Time – Co-operation – Con Self-Confidence – Character – Spirituality.			
	ENGINEERING ETHICS	g		
Senses of Kohlberg's	'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - mo theory - Gilligan's theory - consensus and controversy – Models of Professional Role action – Self-interest- customs and religion - uses of ethical theories.	ral auto	nomy	
	ENGINEERING AS SOCIAL EXPERIMENTATION	g	-	
	g as experimentation - engineers as responsible experimenters - codes of ethics - a b			
	le challenger case study.	alanoo	a out	00
	SAFETY, RESPONSIBILITIES AND RIGHTS risk - assessment of safety and risk - risk benefit analysis and reducing risk - the three	9	-	0
	rimination			
× • •	GLOBAL ISSUES	g	+	(
UNIT V Multination managers Ethics like	GLOBAL ISSUES al corporations - Environmental ethics - computer ethics - weapons development - en consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India.	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution o	GLOBAL ISSUES al corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45:	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution of Course Ou	GLOBAL ISSUES al corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- utcomes:	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution of Course Ou Upon comp	GLOBAL ISSUES nal corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- utcomes: pletion of this course, the students will be able to:	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution of Course Ou Upon com CO1 :	GLOBAL ISSUES val corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Utcomes: oletion of this course, the students will be able to: Understand the importance of ethics and values in life and society.	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution of Course Ou Upon com CO1 : CO2 :	GLOBAL ISSUES ial corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Junction of this course, the students will be able to: Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer.	igineers sample agemer	as code t,	of
managers Ethics like Institution of Course Ou Upon comp CO1 CO2 CO3	GLOBAL ISSUES val corporations - Environmental ethics - computer ethics - weapons development - en consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Total (45- Understand the students will be able to: Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values.	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution of Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO4 :	GLOBAL ISSUES ial corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Junction of this course, the students will be able to: Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer.	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution of Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO4 :	GLOBAL ISSUES rail corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Understand telecommunication engineers (IETE),India. Understand telecommunication engineers (IETE),India. Intel (45- Understand telecommunication engineers (IETE),India. Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems	igineers sample agemer	as code t,	of
UNIT V Multination managers Ethics like Institution of Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 :	GLOBAL ISSUES rail corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Understand telecommunication engineers (IETE),India. Understand telecommunication engineers (IETE),India. Intel (45- Understand telecommunication engineers (IETE),India. Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems	gineers sample agemer +0) = 4!	5 as code t, 5 Peri	of
UNIT V Multination managers Ethics like Institution of Course Out Upon comp CO1 CO2 CO3 CO4 CO5 Text Book	GLOBAL ISSUES val corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Understand telecommunication engineers (IETE),India. Total (45- Understand the importance of ethics and values in life and society. Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems Social problems	gineers sample agemer +0) = 4!	5 AS code t, 5 Peri	of
UNIT V Multination managers Ethics like Institution of Ourse Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO3 : CO5 : Text Book 1.	GLOBAL ISSUES al corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Item is course, the students will be able to: Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems (s: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New Yor Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha Delhi, 2004. Books:	gineers sample agemer +0) = 4!	5 AS code t, 5 Peri	of
UNIT V Multination managers Ethics like Institution of Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : Text Book 1. 2.	GLOBAL ISSUES al corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Uters Deletion of this course, the students will be able to: Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha Delhi, 2004. Books: Tripathi A N, "Human values", New Age international Pvt. Ltd., New Delhi, 2002.	gineers sample agemer +0) = 4 +0) = 4 	5 Per i	of
UNIT V Multination managers Ethics like Institution of Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : Text Book 1. 2. Reference	GLOBAL ISSUES al corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Item is course, the students will be able to: Understand the importance of ethics and values in life and society. Understood the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems (s: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New Yor Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha Delhi, 2004. Books:	gineers sample agemer +0) = 4 +0) = 4 	5 Per i	of
UNIT V Multination managers Ethics like Institution of Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO4 : CO5 : Text Book 1. 2. Reference 1.	GLOBAL ISSUES al corporations - Environmental ethics - computer ethics - weapons development - er consulting engineers-engineers as expert witnesses and advisors -moral leadership-s ASME,ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Mana of electronics and telecommunication engineers (IETE),India. Total (45- Total (45- Understand telecommunication engineers (IETE),India. Total (45- Understand the importance of ethics and values in life and society. Understand the importance of ethics and values in life and society. Understand the core values that shape the ethical behavior of an engineer. Expose awareness on professional ethics and human values. Analyse a person based on human value concepts Analyse our responsibility and rights to social problems S: Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New You Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall, Delhi, 2004. Books: Tripathi A N, "Human values", New Age international Pvt. Ltd., New Delhi, 2002. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, N <td>gineers sample agemen +0) = 4!</td> <td>5 Peri</td> <td>of</td>	gineers sample agemen +0) = 4!	5 Peri	of

CO PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1			2			3		3	2			3
CO2			2			3		3	1			2
CO3			2			2		3				2
CO4			2			3		3	1	1		2
CO5			2			2		2		1		2

18EN501	COMMUNICATION SKILLS LABORATORY	L	Т	Ρ	(
		0	0	2	
Course Obj					
<u>1.</u> 2.	Communicate effectively with interviewers Express opinions, illustrate with examples, elucidate and conclude in group of	licouccio	ne		
3	Write error free letters and prepare reports	liscussic	115		
4	Speak fluently and avoid pitfalls in pronunciation and grammatical errors				
<u> </u>	opean nachay and avera phane in prononciation and grammation of the				
WRITING S	KILLS	(1	5 ho	urs)	_
 Letter 	er seeking permission to go on industrial visit	-			
 Letter 	er of invitation				
 Res 	ume and Cover Letter				
 Rep 	ort Writing – Progress in project work				
SPEAKING		(15	i ho	urs)	
-	come Address and Vote of Thanks				
	lysing and presenting business articles				
	er Point Presentation				
• Gro	up Discussion				
SOFT SKIL		(1	5 ho	urs)	
•	chometric profile				
	rview skills				
• Con	ducting a board meeting				
	BILITIES	(1	5 ho	urs)	
	r Spotting	(ui 0)	
	ening Comprehension				
	rranging Jumbled sentences				
	abulary				
- 100					
Lab Record					
1. G	roup Discussion - Literature survey				
2. G	roup Discussion - Transcripts				
	roup Discussion - Assessment forms				
	terview Skills – Psychometric profile				
	terview Skills - Self-introduction				
	terview Skills – Resume and Cover Letter				
	terview Skills - Transcription of interview				
	terview Skills - Assessment sheet signed by interview panel				
-	ower Point Presentation				
	ror spotting worksheet Imbled sentences worksheet				
	elcome Address				
	ote of Thanks				
	etter seeking permission to go on industrial visit				
	eport Writing – Progress in project work				
	esentation of business articles - Transcription				
					_
	Total	(0+30)=	30 F	Perio)(

Course C	Course Outcomes:								
Upon con	nple	ation of this course, the students will be able to:							
CO1	:	Write error free letters and prepare reports							
CO2	:	Deliver welcome address and vote of thanks							
CO3	:	Speak coherently with proper pronunciation and accent							
CO4	:	Avoid common Indianisms and grammatical errors							
CO5	:	Improve repertoire of passive vocabulary							
CO6	:	Answer questions posed by interviewers confidently							
C07	:	Participate in group discussion effectively							
CO8	:	Undertake online psychometric and IQ test to understand their strengths and weaknesses							

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1		1				2		1	3	3	1	2
CO2	1	3		1				1	1	3	1	3
CO3		1		3		1		2	1	3	1	2
CO4		1		1		2			1	3		3
CO5				2				1		3	2	3
CO6		1		1		1		1	1	3	1	2
CO7				1		1		2	2	3	1	2
CO8	1	2		2		1				3		2

18EE701	POWER SYSTEM PROTECTION AND SWITCHGEAR L T P C 3 0 0 3
Course Ob	
1.	To know about the power system protection and switchgear components.
2.	To understand the concepts of various protection schemes.
3.	To know about numerical protection schemes.
Unit I	PROTECTIVE RELAYS 9 + 0
Instantanec relay – Dire	characteristics of a protective relay – Operating principles of relays - Over current relays – bus and time over current relays - Definite time and inverse time characteristics - Direct over current actional overcurrent relay - Universal torque equation - Performance characteristics of distance ferential relays - Under frequency and over frequency relays - Translay scheme - HRC fuses for
Unit II	CIRCUIT BREAKERS 9 + 0
Arc in oil - A Air blast circuit breal	Arc interruption – Current chopping - Bulk oil and minimum oil circuit breaker – Air circuit breakers - cuit breakers - Vacuum circuit breakers- SF6 circuit breakers - Rating of circuit breakers - Testing of kers – Autoreclosure. HVDC circuit breakers - Energy consideration in breaking. HVDC system - ng principle - Control of di/dt and dv/dt - Surge suppression - Main circuit breakers for HVDC
Unit III	EQUIPMENT PROTECTION SCHEMES 9 + 0
percentage protection -	otection - Distance protection – Alternator protection - Short circuit protection of stator windings by differential relays - Protection against turn to turn faults in stator winding - Field ground fault Protection of stator windings by overvoltage relays - Protection against stator open circuits, loss of n, loss of excitation, rotor overheating - Protection of transformers - Typical schemes.
	STATIC RELAYS9+0• - Advantages of static relays - Basic construction - Phase and amplitude comparators - Static relay - Directional overcurrent relay - Static differential relays and differential protective schemes.9+0
Unit V	NUMERICAL PROTECTION 9 + 0
Introduction	 Block diagram – Sampling theorem – Fourier analysis of analogue signals – Least error squared Digital filtering – Over current protection – Differential protection – Distance protection.
	Total (45+0)= 45 Periods
Course Ou	tcomes:
Upon comp	letion of this course, the students will be able to:
CO1 :	Understand the concepts and applications of protective relays.
CO2 :	Acquire knowledge about different types of circuit breakers
CO3 :	Understand the protection schemes of various power components.
CO4 :	Understand numerical protection schemes.
CO5 :	Design protection scheme for any electrical system
Text Books	
1.	Badri Ram and Vishwakarma, "Power System Protection and Switchgear", Tata McGraw Hill, 2017,2 nd edition.
2.	Arun Ingole, "Switchgear and Protection", Pearson India, 2018.
Reference 1.	Rao, T. S. M, "Power System Protection Static Relays with Microprocessor Applications", Tata McGraw-Hill, 2017,2 nd edition.
2.	Paithankar, Y. G and Bhide, S. R, "Fundamentals of Power System Protection", Prentice Hall, 2013.

3.	Uppal, S.L, "Electrical Power", Khanna Publishers, New Delhi, 2019.
4.	Ravindranath. B and Chander, N, "Power System Protection and Switchgear", New Age
	International, 2018 ,2 nd edition.
E-Referenc	es:
E-Referenc	es: NPTEL Course: Power System Protection - Prof. S.A. Soman, IIT-B.

3. www.cdeep.iitb.ac.in. (Electrical Engineering)

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	2	1	2	3	2	1	2	3	2
CO2	1	1	3	2	2	1	3	2	2	2	2	2
CO3	2	2	2	3	1	2	3	3	1	2	3	1
CO4	2	1	1	2	3	1	3	2	3	2	2	2
CO5	1	1	2	1	2	2	3	3	2	3	2	1

18EE702	INDUSTRIAL MANAGEMENT AND ECONOMICS	ΙΙΤ	Р	С
		3 0	0	3
Course O	bjectives:	II		
1	To understand the concept of management, economics and Indian financial system	m		
Unit I	MODERN CONCEPT OF MANAGEMENT	9	+	0
Scientific				
	cating- Co-ordinating- Controlling-Organisational structures- Line, Line and stat	ff and	Func	tional
relationshi	ps- Span of control- Delegation- Management by Objectives.			
Unit II	PERSONNEL MANAGEMENT	9	+	0
	s and functions of personnel management- Recruitment-Selection and training of wo		abou	ſ
	ndustrial Fatigue- Industrial disputes-Trade Unions- Quality circles. Formation of com			
Proprietory	y-Partnership-Joint stock companies- Public sector- Joint sector and Co-operative se	ctor.		
11			-	•
Unit III Pricing - Pr	MARKETING MANAGEMENT romotion- Channels of distribution- Market research-Advertising. Production Manag	9	+ Batel	0
mass prod	luction- Inventory control- EOQ-Project planning by PERT/CPM- Construction of Nei	twork (B	asic	ideas
only).				
Unit IV	BASICS OF ECONOMICS	9	+	0
Theory of	demand and supply- Price mechanism- Factors of production- Land, labour, capital	and or	aniz	ation-
	come- Difficulties in estimation- Taxation- Direct and indirect taxes- Progressive and			
money- Inf	flation-Causes and consequences.			
Unit V	INDIAN FINANCIAL SYSTEM	9	+	0
	pank of India: Functions- Commercial banking system-Development financial institu	-		-
	BI- NABARD- Investment institutions-UTI- Insurance companies- Indian capital marl			
	Role of the public sector- Privatisation- Multinational corporations and their imp	act on	the I	ndian
economy				
	Total	45+0)=4	5 Pe	riods
Course O		+010/-1		1005
Linon com	pletion of this course, the students will be able to			
CO1 :	Understand the conceptsof managment			
CO2 :	Understand various types of managment.			
CO3 :	Understand the Indian economics			
CO4 :	Manage an organization efficiently for its upliftment			
CO5	Apply marketing concept to any organization to earn more profit.			
Text Book				
1.	s. O P Khanna , "Industrial Management" , Dhanpat Rai Publications,4 th edition, 1980)		
	Philip Kotler, Kevin Lane Keller, SweeHoon Ang, Chin Tiong Tan, Siew Meng Leor		ketin	a
2.	Management: An Asian Perspective" Pearson Education Limited, 7th Edition, 2017			-
3	A. N. Agrawal, "Indian Economy", Vikas Publishing House PVT, 4 th edition, 1978.			
Deferre	Peeke.			
Reference				
2	K. K. Ahuja, "Industrial management" Khanna Publishers, 1978. K.K Dewett, Shyam Lal, "Modern economic theory" S Chand and Company Limit	ed 2009	3	
۷	Tran Dewett, Siryam Lai, modern economic theory 3 Chand and Company Limit	5u, 2000	,	

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1			1			2	1		3	2	3	2
CO2			1			2	1		3	2	3	2
CO3				1		1		2				1
CO4			1			2		1	3	2	3	2
CO5			1			2		1	3	2	3	2

18EE703	POWER SYSTEMS LABORATORY	L	Т	Ρ	С
		0	0	3	1.5
Course Obje	ctives:				
1.	Hands - on and computational experiments related to various power syste	em p	roble	ems	
2.	Programming of numerical methods for solution of various power syst control problems.	em	oper	atior	n and
Experiments					
1.	Formation of bus admittance matrix.				
2.	Bus impedance matrix formulation.				
3.	Load flow analysis using Gauss Seidel method.				
4.	Power flow analysis using Newton Raphson method.				
5.	Transient stability analysis: Single machine infinite bus system.				
6.	Transient stability analysis of multi machine power systems.				
7.	Load frequency control of single area and two area power systems.				
8.	Economic dispatch by lambda iteration method.				
9.	Solution to combined economic emission dispatch problems.				
10.	Thermal unit commitment using priority list method.				

		Total (0+4	5) = 45 Periods
Course O	utc	comes:	•
Upon com	plet	tion of this course, the students will be able to	
CO1	:	Formulate power system network matrices.	
CO2	:	Get knowledge about power flow analyses.	
CO3	:	Analyse power system stability problems.	
CO4	:	Formulate and solve power system operational problems.	
CO5	:	Allocate system load to various generators in the system economically	
Defenses			

Reference Books:

1.	Hadi Saadat, "Power System Analysis", Tata McGraw Hill, 2010.
2.	Kothari D.P and Dhillon J.S, "Power System Optimization", Prentice Hall of India, New Delhi,
	2004.

E-References:

1.	NPTEL Course: Power Systems Engineering – Prof. Debapriya Das, IIT-K.
2.	NPTEL Course: Computer Aided Power System Analysis – Prof. Biswarup Das, IIT-R.
3.	www.cdeep.iitb.ac.in. (Electrical Engineering)

PO CO	PO1	PO2	PO3	PO 4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	1	2	2	1	1	1	2	1	1	1	2	2
CO2	1	2	1	1	1	1	1	1	1	1	2	2
CO3	1	2	2	2	1	1	1	1	2	2	1	2
CO4	1	2	2	2	1	1	2	1	1	2	2	2
CO5	1	2	2	2	1	1	2	1	1	2	2	2

18EE70)4		E	LECTRI	CAL DF	RIVES A	ND CON	ITROL L	ABOR	ATORY		L		P
												0	0	3 1
Course (Ohie	ctive	<i>.</i>											
<u>1.</u>				owledae	e on Per	formanc	e of the	fundame	ental cor	ntrol prac	ctices asso	ciate	d wit	n AC
											power elec			
2.				dustry o			j ,	3, 133		,				
3.							ed analy	sis tool	s to revie	ew the m	ajor class	es of	mac	nines
				ysical ba				,						
Experim														
1		Stud	y of thy	sistor co	ntrolled	DC Driv	e using I	PSPICE	/ MATL	AB / PSI	M Softwar	е		
2							g PSPĬC							
3							ed cont							
4											ATLAB / P	SIM S	Softw	are
5		VSI /	CSI fee	d Inducti	on moto	r Drive a	analysis	using M	ATLAB/I	DSPICE,	PSIM Sof	tware		
6											CE / MATL			1
		Softv	vare											
7											verter usi		ftwar	e
8											g software	;		
9		Reg	enerativ	/e / Dyna	amic bra	iking ope	eration o	f AC mo	tor - Stu	dy using	software			
											Total (0-	⊦45) =	= 45 I	Perio
Course (Outc	ome	S:											
Jpon cor	mple	tion o	of this c	ourse, th	ne stude	nts will b	be able to	0:						
CO1	•	Set	in contr	ol strate	aies to s	vnthesiz	e the vo	ltages ir	dc and	ac moto	or drives			
202											lge in elec	tronic	م ماد	octric
502											able logic			
03														
		Use standard methods to determine accurate modeling/simulation parameters for various general-purpose electrical machines and power electronics devices required for												
							related				01000109	uncu	101	
204										t to elec	trical Drive	s with	nra	rtical
-00				xperime		1-00300	Simulati	011 10013	relevan			.5 witi	i più	Stical
205						motor u	using any	/ simulat	tion soft	ware.				
-			<u> </u>							- M				
Text Boo												-		
1.			3					1	, -		ey & Sons	, Ltd.,	, 201	1.
2.							s and Dri					_		
3										nance C	ontrol of A	C Driv	ves v	/ith
Ũ		Matla	ab/Simu	ilink Moo	tels"Joh	n Wiley	& Sons,	Ltd., 20	12.					
	P	l												
Reference				abord "C	Control	f Electri	cal Drive	o" Sprin	dor 200	16				
				maiù, C				s ,opin	yei, 200	0.				
O/PO Ma	appi	ng												
RO														
	PC	21	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	11	PO

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	2	2	1	1				1	1
CO2	1	2	2	2	2	1	1				1	1
CO3	1	2	2	2	2	1	1				1	1
CO4		1	2	2	2	1	1				1	1
CO5		1	2	2	2	1	1				1	1

PROGRAMME ELECTIVES

18EEP0	1	ELECTRICAL MACHINE DESIGN	L	Т	Ρ	С
			3	0	0	3
Course	Obj	ectives:				
1.		To Study mmf calculation and thermal rating of various types of electrical machine	s			
2.		To Design armature and field systems for D.C. machines.				
3.		To Design core, yoke, windings and cooling systems of transformers.				
4.		To Design stator and rotor of induction machines.				
5.		To Design stator and rotor of synchronous machines and study their thermal beha	viou	r		
UNIT I		INTRODUCTION		9	+	0
Heat flow	v in t	derations – Limitations – Electrical Engineering Materials – Space factor – tempera two dimensions – thermal resistivity of winding – Temperature gradient in conductors nachines – Eddy current losses in conductors – Standard specification				
		DC MACHINES	0		Τ.	•
-		cuit calculations – Net length of Iron –Real & Apparent flux densities – Design of rot	9	~ ~	+	0
– D.C ma	achi	ines output equations – Main dimensions-Selection of number of poles – Armature of tor and brushes-Design of slot, air gap, field coils.				
		TRANSFORMERS	9		Τ.	0
		for single and three phase transformers – Window space factor – Overall dimension	-	_	1 -	-
characte without c	risti cooli	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chol	of T	an		٦ð
characte without c	risti cooli	cs - Regulation - No load current - Temperature rise of Transformers- Design	of T	an		٦ Å
characte without c welding UNIT IV Output e squirrel c	risti cooli Trar qua cage	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chol nsformers – Design of CTs &PTs.	of T (es - 9 ig roto	- D - D otor r-O	esigr	n & n of 0 s of
characte without c welding UNIT IV Output e squirrel c characte	risti cooli Trar qua cage	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholors insformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p	of T ces - 9 ng rc roto	- D - D otor r-O	esigr	n & n of 0 s of
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c	ristic cooli Trar qua cage ristic y sp cuit of ro	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholors insformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting machines– Design of rotor bars & slots – Design of end rings – Design of wound	of T (es) 9 ng rc roto oowe 9 ole r	- an - D otor r-O er fa ma	esign	n & n of 0 s of ing 0 s – th–
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c	ristic cooli Trar qua cage ristic y sp cuit of ro	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholors formers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES peed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of ptor –Design of damper winding – Determination of full load field mmf – Design of	of T (es 9 ng rc roto 00we 9 ole 1 air (field	Tan - D otor r-O er fa gap d w	esign	n & n of 0 s of ing g –
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c Introduct	ristic cooli Trar equa cage ristic y sp cuit of ro ion	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholo insformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selectin the machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+6)	of T (es 9 ng rc roto 00we 9 ole 1 air (field	Tan - D otor r-O er fa gap d w	esign	n & n of 0 s of ing g -
characte without of welding UNIT IV Output e squirrel of characte UNIT V Runaway Short circo Design of Introduct	ristic cooli Trar equa cage ristic y sp cuit of ro ion	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholo insformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selectin the machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES Deed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+0)	of T (es 9 ng rc roto 00we 9 ole 1 air (field	Tan - D otor r-O er fa gap d w	esign	n & n of 0 s of ing g -
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c Introduct Upon col CO1	ristic cooli Trar equa cage ristic y sp cuit of ro ion	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholo insformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selectin e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+6) comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines.	of T (es 9 g rc roto powe 1 9 ole i field 0)= 4	Tan - D otor r-O er fa gap d w 	esign	n & n of 0 s of ing g -
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c Introduct Upon con CO1 CO2	ristii cooli Trar qua cage ristii y sp cuit of ro ion Out	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholo insformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selectin e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+6) comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma	of T (es 9 g rc roto powe 1 9 ole i field 0)= 4	Tan - D otor r-O er fa gap d w 	esign	n & n of 0 s of ing g -
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c Introduct Upon col CO1 CO2 CO3	ristii cooli Trar qua cage ristii y sp cuit of ro ion Out	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholo hisformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+0) Comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines.	of T (es 9 g rc roto powe 1 9 ole i field 0)= 4	Tan - D otor r-O er fa gap d w 	esign	n & n of 0 s of ing g –
characte without c welding ⁻ Output e squirrel c characte UNIT V Runaway Short circ Design c Introduct Course C Upon col CO1 CO2 CO3 CO4	ristii cooli Trar qua cage ristii y sp cuit of ro ion Out	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chol- hsformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selectin e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient p- ratio – shape of pole face – Armature design – Armature parameters – Estimation of for –Design of damper winding – Determination of full load field mmf – Design of to computer aided design – Program to design main dimensions of Alternators. Total (45+(comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines. Design core, windings and cooling system of transformers.	of T (es 9 g rc roto powe 1 9 ole i field 0)= 4	Tan - D otor r-O er fa gap d w 	esign	n & n of 0 s of ing g -
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c Introduct Course (Upon con CO1 CO2 CO3 CO4 CO5	ristic cooli Trar qua cage ristic y sp cuit of ro ion Out	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of cholo hisformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+0) Comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines.	of T (es 9 g rc roto powe 1 9 ole i field 0)= 4	Tan - D otor r-O er fa gap d w 	esign	n 8 n 0 s of ing g -
characte without of welding UNIT IV Output e squirrel of characte UNIT V Runaway Short circo Design of Introduct	ristic cooli Trar qua cage ristic y sp cuit of ro ion Out sion	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chol- hsformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selectin e machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient p- ratio – shape of pole face – Armature design – Armature parameters – Estimation of for –Design of damper winding – Determination of full load field mmf – Design of to computer aided design – Program to design main dimensions of Alternators. Total (45+(comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines. Design core, windings and cooling system of transformers.	of T (es 9 g rc roto powe 1 9 ole i field 0)= 4	Tan - D otor r-O er fa gap d w 	esign	n 8 n 0 0 s 0 ing g -
characte without c welding UNIT IV Output e squirrel c characte UNIT V Runaway Short circ Design c Introduct Course C Upon con CO1 CO2 CO3 CO4 CO5	ristic cooli Trar qua cage ristic y sp cuit of ro ion Out	cs – Regulation – No load current – Temperature rise of Transformers– Design ing tubes – Thermal rating – Methods of cooling of Transformers – Design of chol- hsformers – Design of CTs &PTs. INDUCTION MOTORS ation of Induction motor – Main dimensions –Length of air gap- Rules for selecting a machines– Design of rotor bars & slots – Design of end rings – Design of wound cs –Short circuit current –Dispersion co efficient – relation between D & L for best p SYNCHRONOUS MACHINES beed – construction – output equations – choice of loadings – Design of salient pr ratio – shape of pole face – Armature design – Armature parameters – Estimation of to computer aided design – Program to design main dimensions of Alternators. Total (45+6) Comes: etion of this course, the students will be able to: Know the philosophy of design and thermal rating of Electrical machines. Remember for the component of magnetic and electrical loading of AC and DC Ma Design Armature and Field Systems for DC Machines. Design core, windings and cooling system of transformers. Design Stator and rotor of Induction Machines. Design Rotor of synchronous machines and understand their thermal behaviour.	of T (es 9 g rc roto powe 1 9 ole i field 0)= 4	Tan - D otor r-O er fa gap d w 	esign	n & n of 0 s of ing g -

2.	Sen.,S.K., 'PrinciplesofElectricalMachineDesignswithComputerProgrammes', OxfordandIBHPublishingCo.Pvt.Ltd.NewDelhi,2014,3 rd edition.
Reference	Books:
1.	R.K.Agarwal, Principles of Electrical Machine design, S.K. Kataria and Sons, Delhi 2014 5 th edition.
2.	V.N. Mittle, 'Design of Electrical Machines', Standard Publications and Distributors, Delhi, 2002.
E- Reference 1	ces http://cusp.umn.edu/machine_design.php

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	1	1	1				1
CO2	3	3	3	3	3	1	1	1				1
CO3	3	3	3	3	3	1	1	1				
CO4	3	3	3	3	3	1	1	1				1
CO5	3	3	3	3	3	1	1	1				1
CO6	3	3	3	3	3	1	1	1				1

	BIOLOGY FOR ELECTRICAL ENGINEERS	LT	Ρ	С
•		3 0	0	3
The purpo a multi – c the course	bjectives: se of this course is to provide a basic and easy understanding of modern biology to en isciplinary field. It emphasis on the basic engineering principles of bimedicalequipment is expected to encourage the engineering students to think about solving biological	its. In a	additi	on,
	g tools. These will be gained by the following:		<u> </u>	
1.	An understanding of biological mechanisms of living organisms from the perspective	e of en	ginee	ers.
2.	To Understand the principles of Biomedical Equipments.	<u> </u>	<u> </u>	
3.	An understanding of the function and regulation of human system and acquire known biological problems that requires engineering expertise to solve them.	owledg	je ab	out
4.	An Understanding of the basics of molecular biology and genetics.			
5.	To know about the radiation safety instruments and X Ray examinations.			
6.	To evaluate the kinetics and thermodynamics of enzymatic process.			
Unit I	BIOMOLECULES AND METABOLISM	9		0
	ates- classification - Glycolysis- definition- flow chart- steps involved in glycolysis- prep	-		-
and pay of	off phase- kinds of reactions in glycolysis. Photosynthesis- definition- significance p ypes- structure of pigments factors affecting photosynthesis- external and internal fact	hotos		
Unit II	BASICS OF ENZYMES, MACROMOLECULES AND NUCLEIC ACIDS	9	+	0
secondary synthesis.	n - Enzymes – Proteases and amylases. Proteins- classification- structure of prot , tertiary and quaternary structure- properties of proteins- physical and chemical prop Types-Structural components of nucleic acids- acid, pentose sugar and nitrogenous ba	perties se- nu	: prot cleos	ein ide
	le and its functions - single and double helical structure of DNA-comparison between E NA -mRNA, tRNA and rRNA and their function.	JNA ar		NA-
Unit III	X RAY EXAMINATIONS	9	+	0
thermome	counter – Electron microscope – radiation detectors – photo meters and colorim ter – audio meters – X-ray tube – X-ray machine – Radiography and fluoroscopy – ima uphy – applications of X-ray examination.			
Unit IV	HUMAN PHYSIOLOGY	9	+	0
electric po - nervous	their structure – Transport of ions through the cell membrane – resting and action p tential. Physiology of Human body- Brain, heart, lungs - Cardiovascular system - Resp system. Design of medical instruments components of biomedical instrument systems dle, surface electrode - transducers.	biratory	/ syst	
Linit V				s –
diathermy of differen Radiation shock – e techniques	BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS ers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diathermy – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range and a t diathermy techniques – Ventilators – oxymeters. safety instrumentation – physiological effects due to 50 Hz current passage – Micro she electrical accidents in hospitals – Devices to protect against electrical hazards. Nu s – computer tomography – thermography – ultrasonic imaging system – Magnetic reso emission tomography – digital subs traction angiography.	irea of ock an iclear	+ ort wa irritat d ma imag	s – 0 ave ion cro ing
Pacemake diathermy of differen Radiation shock – e techniques	BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS ers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diathermy – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range and a t diathermy techniques – Ventilators – oxymeters. safety instrumentation – physiological effects due to 50 Hz current passage – Micro she electrical accidents in hospitals – Devices to protect against electrical hazards. Nu s – computer tomography – thermography – ultrasonic imaging system – Magnetic reso emission tomography – digital subs traction angiography. Total (45+0	y – sho area of ock an uclear nance	+ prt wa irritat id ma imag imag	s – 0 ave ion cro ing ing
Pacemake diathermy of differen Radiation shock – e techniques – Positron	BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS ers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diathermy – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range and a t diathermy techniques – Ventilators – oxymeters. safety instrumentation – physiological effects due to 50 Hz current passage – Micro she electrical accidents in hospitals – Devices to protect against electrical hazards. Nu s – computer tomography – thermography – ultrasonic imaging system – Magnetic reso emission tomography – digital subs traction angiography. Total (45+0	y – sho area of ock an uclear nance	+ prt wa irritat id ma imag imag	s – 0 ave ion cro ing ing
Pacemake diathermy of differen Radiation shock – e techniques – Positron	BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS ers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diathermy – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range and a t diathermy techniques – Ventilators – oxymeters. safety instrumentation – physiological effects due to 50 Hz current passage – Micro she electrical accidents in hospitals – Devices to protect against electrical hazards. Nu s – computer tomography – thermography – ultrasonic imaging system – Magnetic reso emission tomography – digital subs traction angiography. Total (45+0 utcomes: pletion of this course, the students will be able to:	y – sho area of ock an uclear nance	+ prt wa irritat id ma imag imag	s – 0 ave ion cro ing ing
Pacemake diathermy of differen Radiation shock – e technique – Positron Course O Upon com	BIOMEDICAL EQUIPMENTS AND RADIATION SAFETY INSTRUMENTS ers – Pacemaker batteries – Defibrillators – heart lung machine. Surgical diathermy – microwave diathermy – ultrasonic diathermy – therapeutic effect of heat – range and a t diathermy techniques – Ventilators – oxymeters. safety instrumentation – physiological effects due to 50 Hz current passage – Micro she electrical accidents in hospitals – Devices to protect against electrical hazards. Nu s – computer tomography – thermography – ultrasonic imaging system – Magnetic reso emission tomography – digital subs traction angiography. Total (45+0 utcomes:	- sho irea of ock an iclear nance	+ prt wa irritat imag imag Peric	s – 0 ave ion cro ing ods

CO4		Explain human physiological systems.
CO5	:	Share knowledge in genetics and molecular biology.
CO6	:	Know about the applications and implementation of medical equipments as it is a challenging
		interdisciplinary process
Text B	ooks	
1.		FJ.L.Jain, Sanjay jain and Nitin jain- "Fundamentals of Biochemistry" - Sixth edition, S.Chand and company Ltd., Ram nagar, 2005.
2.		Dr.A.V.S.S.Rama Rao-" Text book of Biochemistry"- Text book of Biochemistry- First edition- UBS Publishers' Distributors Pvt. Ltd., 2019
3.		U. Satyanarayana – "Biochemistry"-5th edition – Sri Padmavathi Publications Ltd., 2017.
4.		N. A. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach", Pearson Education Ltd, 2014.
5.		Dr.M.Arumugam, 'Bio-Medical Instrumentation', Anuradha Agencies, 2012.
6.		Leslie Cromwell, Fred J.Weibell, Erich A.Pfeiffer, 'Bio-Medical Instrumentation
0.		andMeasurements', II edition, Pearson Education, 2011 / PHI.
	nce	Books:
1.		Stent, G. S.; and Calender-" Molecular Genetics"- Second edition - R. W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher
2.		By Nelson, D. L.; and Cox- "Principles of Biochemistry"- V Edition- M. M.W.H. Freeman and Company
3.		Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H-" Outlines of Biochemistry"- John Wiley and Sons
4.		Quillin, Allison Scott Freeman, Kim Quillin and Lizabeth Allison, 'Biological Science', Pearson Education India, 2016.
5.		Reinhard Renneberg, Viola Berkling and Vanya Loroch, 'Biotechnology for Beginner's', Academic Press, 2017.
6.		S Balaji, S Lakshminarayanan, "Conceptual comparison of metabolic pathways with electronic circuits", Journal of Bionics Engineering, Vol 1, Issue 3, pg 175-182, 2004
7.		R.S.Khandpur, 'Hand Book of Bio-Medical instrumentation', Tata McGraw Hill Publishing Co Ltd.,2012.
8.		L.A. Geddes and L.E.Baker, 'Principles of Applied Bio-Medical Instrumentation', John Wiley & Sons, 2011.
9.		C.Rajarao, 'Medical Instrumentation', John Wiley & Sons,2013.
10.		C.Rajarao and S.K. Guha, 'Principles of Medical Electronics and Bio-medical
		Instrumentation', Universities press (India) Ltd, Orient Longman ltd, 2012.
E-Refe	renc	
1		www.onlinecourses.nptel.ac.in/
O/PO I	lanı	

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	1	1	1	1	1	1	1
CO2	3	1	1	3	1	1	1	1	1	1	1	1
CO3	1	2	2	1	1	1	1	1	1	1	1	1
CO4	3	1	1	3	2	1	1	1	1	1	1	1
CO5	2	1	1	2	1	1	2	1	1	1	1	1
CO6	2	2	1	1	1	1	1	1	1	1	1	1

18EEP03	DIGITAL SIGNAL PROCESSING	L T 3 0	P 0	C 3
Course Obj	ectives:	ວ 0	U	3
1.	To classify signals and systems & their mathematical representation.			
2.	To analyze the discrete time systems.			
3.	To study various transformation techniques & their computation.			
4	To study about filters and their design for digital implementation.			
5	To study about a programmable digital signal processor & quantization effects.			
	INTRODUCTION TO SIGNALS AND SYSTEMS	9	+	0
Classification classification	n of systems: Continuous, discrete, linear, causal, stable, dynamic, recursive, n of signals: continuous and discrete, energy and power; mathematical representa sity; sampling techniques, quantization, quantization error, Nyquist rate, aliasing ef	ation of		
	DISCRETE TIME SYSTEM ANALYSIS	9	+	0
	and its properties, inverse z-transforms; difference equation - Solution by z transfo	orm, ap	olicat	ion
discrete sys	tems - Stability analysis, frequency response –Convolution – Discrete TimeF nd phase representation.			
Unit III	DISCRETE FOURIER TRANSFORM & COMPUTATION	9	+	0
Discrete Fou	urier Transform- properties, magnitude and phase representation - Computation of DIT &DIF using radix 2 FFT – Butterfly structure.	of DFT	using	j Fl
			-	
Unit IV	DESIGN OF DIGITAL FILTERS er realization – Parallel & cascade forms. FIR design: Windowing Techniques – N	9	+	0
	inear phase characteristics. Analog filter design – Butterworth and Chebyshev and design using impulse invariant and bilinear transformation - mWarping, pre warpi			0, 0
	- Architecture - Features - Addressing Formats - Functional modes - Introduction	-	nmer	-
	Total (45+	0)= 45	Perio	ods
Course Out	comes:			
Upon comple	etion of this course, the students will be able to:			
CO1 :	Understand the types of systems and signals.			
CO2 :	Solve problems in digital system using Z transform.			
CO3 :	Apply Fourier transforms for processing of digital signals.			
CO4 :	Analyze digital systems using Fast Fourier transform.			
CO5 :	Design digital filters algorithms in digital signal processor platforms			
CO6 :	Gain knowledge about DSP processors.			
Text Books				
1.	J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithr Applications', Pearson Education, New Delhi, 2007.	ns and		
2.	S.K. Mitra, 'Digital Signal Processing – A Computer Based Approach', McGraw	Hill Edu	. 201	3.
3.	Robert Schilling & Sandra L.Harris, "Introduction to Digital Signal Processing Cengage Learning, 2014.			
Reference E	Books:			
<u>1.</u>	Poorna Chandra S, Sasikala. B ,Digital Signal Processing, Vijay Nicole/TMH,20	13.		
2.	B.P.Lathi, 'Principles of Signal Processing and Linear Systems', Oxford Univers		s. 20	10
3.	Taan S. ElAli, 'Discrete Systems and Digital Signal Processing with Mat Lab', CF			
4.	Sen M.kuo, woonsengs.gan, "Digital Signal Processors, Architecture, Imp Applications, Pearson,2013.			
	/ / ppiloaliono, i caloui, 2010.		92	

E -References

1 https://nptel.ac.in/courses/108105055/34

2 https://books.google.co.in/books/isbn=8131710009

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	2	1	1	1	1	
CO2	3	3	2	1	2	1	2	1	1	1	1	
CO3	3	3	3	3	2	1	3	1	1	1	1	
CO4	3	3	3	3	3	1	3	1	1	1	1	
CO5	2	3	3	3	3	1	3	1	1	1	1	
CO6	1	1	1	3	2	1	3	1	1	1	1	

Review of fre controllers - o compensator Unit II Need for digi discrete-time Reconstruction bilinear trans Unit III Differential data contro concepts: F models – El Unit IV Introduction - using frequent	To understand the digital signal processing. To study the design of sampled data control systems in state space. To impart knowledge on digital control algorithms and stability study. INTRODUCTION equency and time response analysis and specifications of continuous time systems continuous time compensations - continues time PI, PD, PID controllers, Realizations rs: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL ital control – Configuration of basic digital control scheme – Principles of signal control signals – Time domain and frequency domain models for discrete-time systems on of analog signals – Practical aspects of the choice of sampling rate – Discret	on of convertems etizati	9 9 rsior - A on k 9 npleo iable jable	t + 1 – E lliasin pase + d 2 + t - - - - - - - - - - - - -	ng - d oi 0 0 esigi
1. 2. 3. Unit I Review of free controllers - or compensator Unit II Need for digit discrete-time Reconstruction bilinear trans Unit III Inferential data contron concepts: Fermodels – El Unit IV Introduction - using frequent	To understand the digital signal processing. To study the design of sampled data control systems in state space. To impart knowledge on digital control algorithms and stability study. INTRODUCTION equency and time response analysis and specifications of continuous time systems continuous time compensations - continues time PI, PD, PID controllers, Realization rs: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL ital control – Configuration of basic digital control scheme – Principles of signal c a signals – Time domain and frequency domain models for discrete-time syst on of analog signals – Practical aspects of the choice of sampling rate – Discret formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description– Z-transform analysis of a systems –Jury's stability test – Routh stability criterion on the r-plane – State First companion – Second companion – Jordan canonical models – Discrete state lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con ncy response plots - Digital lead lag compensator design using Root locus plots –	s - ne on of convei tems etizati	9 ed fi basi 9 rsior - A on k 9 nplec iable iable 9	+ or c + liasi pase + d e e + d	0 0 3asi ng . d oi 0 0
1. 2. 3. Unit I Review of free controllers - or compensator Unit II Need for digit discrete-time Reconstruction bilinear trans Unit III Inferential data contron concepts: F models – E Unit IV Introduction - using frequent	To understand the digital signal processing. To study the design of sampled data control systems in state space. To impart knowledge on digital control algorithms and stability study. INTRODUCTION equency and time response analysis and specifications of continuous time systems continuous time compensations - continues time PI, PD, PID controllers, Realization rs: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL ital control – Configuration of basic digital control scheme – Principles of signal c a signals – Time domain and frequency domain models for discrete-time syst on of analog signals – Practical aspects of the choice of sampling rate – Discret formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description– Z-transform analysis of a systems –Jury's stability test – Routh stability criterion on the r-plane – State First companion – Second companion – Jordan canonical models – Discrete state lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con ncy response plots - Digital lead lag compensator design using Root locus plots –	on of convertems etizati	9 9 9 7 7 8 9 9 9 9 9	t + 1 – E lliasin pase + d 2 + t - - - - - - - - - - - - -	0 Basii ng d oi 0 0 esigi
2. 3. Unit I Review of frecontrollers - of compensator Unit II Need for digidiscrete-time Reconstructive bilinear trans Unit III Differential data contro concepts: F models - E Unit IV Introduction - using frequent	To study the design of sampled data control systems in state space. To impart knowledge on digital control algorithms and stability study. INTRODUCTION equency and time response analysis and specifications of continuous time systems continuous time compensations - continues time PI, PD, PID controllers, Realization rs: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL ital control – Configuration of basic digital control scheme – Principles of signal control analog signals – Practical aspects of the choice of sampling rate – Discret formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description– Z-transform analysis of systems –Jury's stability test – Routh stability criterion on the r-plane – State First companion – Second companion – Jordan canonical models – Discrete state lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con- ncy response plots - Digital lead lag compensator design using Root locus plots –	on of convertems etizati	9 9 9 7 7 8 9 9 9 9 9	t + 1 – E lliasin pase + d 2 + t - - - - - - - - - - - - -	0 Basii ng d oi 0 0 esigi
3. Unit I Review of frecontrollers - of compensator Unit II Need for digit discrete-time Reconstructive bilinear trans Unit III Differential data contro concepts: F models – El Unit IV Introduction - using frequent	To impart knowledge on digital control algorithms and stability study. INTRODUCTION equency and time response analysis and specifications of continuous time systems continuous time compensations - continues time PI, PD, PID controllers, Realization rs: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL ital control – Configuration of basic digital control scheme – Principles of signal c e signals – Time domain and frequency domain models for discrete-time syst on of analog signals – Practical aspects of the choice of sampling rate – Discret formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description– Z-transform analysis of systems –Jury's stability test – Routh stability criterion on the r-plane – State irst companion – Second companion – Jordan canonical models – Discrete stat lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con ncy response plots - Digital lead lag compensator design using Root locus plots –	on of convertems etizati	9 9 9 7 7 8 9 9 9 9 9	t + 1 – E lliasin pase + d 2 + t - - - - - - - - - - - - -	0 Basii ng d oi 0 0
Unit I Review of fre controllers - o compensator Unit II Need for digi discrete-time Reconstructiv bilinear trans Unit III Differential data contro concepts: F models – E Unit IV Introduction using frequent	INTRODUCTION equency and time response analysis and specifications of continuous time systems continuous time compensations - continues time PI, PD, PID controllers, Realization rs: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL ital control – Configuration of basic digital control scheme – Principles of signal c e signals – Time domain and frequency domain models for discrete-time syst on of analog signals – Practical aspects of the choice of sampling rate – Discre- formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description– Z-transform analysis o I systems –Jury's stability test – Routh stability criterion on the r-plane – State first companion – Second companion – Jordan canonical models – Discrete stat lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead co ncy response plots - Digital lead lag compensator design using Root locus plots –	on of convertems etizati	9 9 9 7 7 8 9 9 9 9 9	t + 1 – E lliasin pase + d 2 + t - - - - - - - - - - - - -	0 Basii ng d oi 0 0
Review of fre controllers - o compensator Unit II Need for digi discrete-time Reconstruction bilinear trans Unit III Differential data contro concepts: F models – El Unit IV Introduction - using frequent	 Acquency and time response analysis and specifications of continuous time systems continuous time compensations - continues time PI, PD, PID controllers, Realization res: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL SIGNAL PROCESSING IN DIGITAL CONTROL Actionary and the problem of basic digital control scheme – Principles of signal control – Configuration of basic digital control scheme – Principles of signal control analog signals – Practical aspects of the choice of sampling rate – Discret of analog signals – Practical aspects of the choice of sampling rate – Discret formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description – Z-transform analysis of a systems –Jury's stability test – Routh stability criterion on the r-plane – State tementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead concy response plots - Digital lead lag compensator design using Root locus plots – 	on of convertems etizati	9 9 9 7 7 8 9 9 9 9 9	t + 1 – E lliasin pase + d 2 + t - - - - - - - - - - - - -	0 Basii ng d oi 0 0 esigi
controllers - compensator Unit II Need for digit discrete-time Reconstruction bilinear trans Unit III Inferential data contron concepts: F models - E Unit IV Introduction - using frequent	 continuous time compensations - continues time PI, PD, PID controllers, Realizations: Lag, Lead and Lag-Lead compensation schemes - problems. SIGNAL PROCESSING IN DIGITAL CONTROL ital control – Configuration of basic digital control scheme – Principles of signal casignals – Time domain and frequency domain models for discrete-time system of analog signals – Practical aspects of the choice of sampling rate – Discrete formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description – Z-transform analysis of systems –Jury's stability test – Routh stability criterion on the r-plane – State Tirst companion – Second companion – Jordan canonical models – Discrete state lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead concy response plots - Digital lead lag compensator design using Root locus plots – 	on of convertems etizati	9 9 rsior - A on k 9 npleo iable jable	t + 1 – E lliasin pase + d 2 + t - - - - - - - - - - - - -	Basi ng - id or 0 0 0 esigi
Need for digitial discrete-time Reconstruction bilinear transmission of the second sec	 ital control – Configuration of basic digital control scheme – Principles of signal c e signals – Time domain and frequency domain models for discrete-time syst on of analog signals – Practical aspects of the choice of sampling rate – Discre- formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description – Z-transform analysis of systems –Jury's stability test – Routh stability criterion on the r-plane – State First companion – Second companion – Jordan canonical models – Discrete stat lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con ncy response plots - Digital lead lag compensator design using Root locus plots – 	tems etizati of sam e var e var	sior - A on k 9 nplec iable iable 9	liasi base + d e e e e	Basi ng . id or 0
Need for digitialization of the seconstruction of the seconstant of the seconstruction o	 ital control – Configuration of basic digital control scheme – Principles of signal c e signals – Time domain and frequency domain models for discrete-time syst on of analog signals – Practical aspects of the choice of sampling rate – Discre- formation. MODELING AND ANALYSIS OF SAMPLED DATA CONTROL SYSTEM equation description – Z-transform method of description – Z-transform analysis of systems –Jury's stability test – Routh stability criterion on the r-plane – State First companion – Second companion – Jordan canonical models – Discrete stat lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con ncy response plots - Digital lead lag compensator design using Root locus plots – 	tems etizati of sam e var e var	sior - A on k 9 nplec iable iable 9	liasi base + d e e e e	Basii ng - ed oi 0
Differential data contro concepts: F models – El Unit IV Introduction - using frequer	equation description – Z-transform method of description– Z-transform analysis o I systems –Jury's stability test – Routh stability criterion on the r-plane – State First companion – Second companion – Jordan canonical models – Discrete state lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con ncy response plots - Digital lead lag compensator design using Root locus plots –	e var æ var	npleo iable iable 9	e e +	0 esigi
Differential data contro concepts: F models – El Unit IV Introduction - using frequer	equation description – Z-transform method of description– Z-transform analysis o I systems –Jury's stability test – Routh stability criterion on the r-plane – State First companion – Second companion – Jordan canonical models – Discrete state lementary principles. DESIGN OF DIGITAL CONTROL ALGORITHMS – z-plane specifications of control system design –Digital lead , lag and lag-lead con ncy response plots - Digital lead lag compensator design using Root locus plots –	e var æ var	npleo iable iable 9	e e +	0 esigi
Introduction - using freque	 z-plane specifications of control system design –Digital lead , lag and lag-lead concerned provide the system of the system design using Root locus plots – 		nsate	or de	esigi
Introduction - using freque	 z-plane specifications of control system design –Digital lead , lag and lag-lead concerned provide the system of the system design using Root locus plots – 		nsate	or de	esigi
using freque	ncy response plots - Digital lead lag compensator design using Root locus plots -				
Unit V	PRACTICAL ASPECTS OF DIGITAL CONTROL ALGORITHMS		9	+	0
Developmen temperature position/spee	t and implementation of digital PID control algorithms – Tunable PID cont control system: Control algorithm – Digital position control system: Digital measu ed, control algorithm – Stepping motors and their controls: Torque-speed curve ors to microprocessors	ureme	s - ent c	Digi of sh	ital aft
	Total (45-	+0)= 4	15 P	erio	ds
Course Out	•	,			
Upon comple	etion of this course, the students will be able to:				
CO1 :	Get knowledge about digital control scheme.				
CO2 :	Get knowledge about sampling techniques.				
CO3 :	Design the various digital control algorithms.				
CO4 :	Design the various types of digital controllers.				
CO5 :	Design the various types of digital compensators.				
CO6 :	Get knowledge about applications of digital control.				
Text Books:		D - "		200	Ond
1.	M.Gopal, "Digital Control and Static Variable Methods", Tata McGraw Hill, New edition.	Delh	1, 20	JU3,2	Zna
2.	I.J.Nagrath&M.Gopal, "Control Systems Engineering", New Age International F Delhi, 2009,5 th edition.	Publis	hers	5, Ne	эw
Poforonce D					
Reference B					
1.	B.C.Kuo, Digital Control Systems, Oxford University Press, 2nd Edition, 2007.				

3.	Kenneth J. Ayala, "The 8051 Microcontroller- Architecture, Programming and Applications", Penram International, 2nd Edition, 1996.
E -Referen	ces
1	https://nptel.ac.in/courses/108103008/
2	https://www.sciencedirect.com/topics/engineering/digital-control-system

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	2	1	1	1	1	
CO2	3	3	2	1	2	1	2	1	1	1	1	
CO3	3	3	3	3	2	1	3	1	1	1	1	
CO4	3	3	3	3	3	1	3	1	1	1	1	
CO5	2	3	3	3	3	1	3	1	1	1	1	
CO6	1	1	1	3	2	1	3	1	1	1	1	

Course Objectives: 1. To expose the various types of over voltage transients and their effect on power system. 2. To introduce the concept of insulation co-ordination technique. 3. To provide an overview of solid, liquid and gaseous dielectrics breakdown mechanism 4. To show how to generate over voltages in the HV testing laboratory 5. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION 9 + Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + Properties of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields – corona discharg – Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III Generation of High VOLTAGES AND HIGH CURRENTS 9 + + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High Avoltages: cascaded transformer, resonant transformer and tesla coil- Generation of High impul		HIGH VOLTAGE ENGINEERING	L	I	Ρ	C
1. To expose the various types of over voltage transients and their effect on power system. 2. To introduce the concept of insulation co-ordination technique. 3. To provide an overview of solid, liquid and gaseous dielectrics breakdown mechanism 4. To show how to generate over voltages in the HV testing laboratory 5. To show how to measure of high voltage and current quantity in HV testing laboratory 6. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION OVER voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on His voltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + 1 Properties of Dielectric markerials- Gaseous breakdown in uniform and non-uniform fields – corona discharg - Vacuum breakdown - conduction and breakdown in uniform and non-uniform fields – corona discharg Vacuum breakdown - conduction and therasformer and tesla coil- Generation of High INC voltages: Cascaded transformer, resonant transformer and tesla			3	0	0	3
1. To expose the various types of over voltage transients and their effect on power system. 2. To introduce the concept of insulation co-ordination technique. 3. To provide an overview of solid, liquid and gaseous dielectrics breakdown mechanism 4. To show how to generate over voltages in the HV testing laboratory 5. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on His voltage and Extra high voltage power systems. Unit II LECETRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + I Properties of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields - corona discharg - Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics - breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III Generation of High VOLTAGES AND HIGH CURRENTS 9 + I Control of impulse equarktow resonant transformer and tesla coil- Generation of High inpulse voltage and current quest		ie of iven				
2. To introduce the concept of insulation co-ordination technique. 3. To provide an overview of solid, liquid and gaseous dielectrics breakdown mechanism 4. To show how to generate over voltages in the HV testing laboratory 5. To show how to measure of high voltage and current quantity in HV testing laboratory 6. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION Q introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltage = Anewley lattice diagram-protection agains to ver voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics - breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + <td><u> </u></td> <td></td> <td>tom</td> <td></td> <td></td> <td></td>	<u> </u>		tom			
3. To provide an overview of solid, liquid and gaseous dielectrics breakdown mechanism 4. To show how to generate over voltages in the HV testing laboratory 5. To show how to measure of high voltage and current quantity in HV testing laboratory 6. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION 9 + Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 - Vacuum breakdown - conduction and breakdown in uniform and non-uniform fields – corona discharge - Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdo mechanisms in solid and composite dielectrics - Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impulse - digital techniques in impulse voltage and current measurements. 9 +			sterr	1.		
4. To show how to generate over voltages in the HV testing laboratory 5. To show how to measure of high voltage and current quantity in HV testing laboratory 6. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION 9 Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 Properties of Dielectric materials- Gaseous breakdown in pure and commercial liquids dielectrics – breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of high Impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of high Impulse voltage and control of impulse generators. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages - Measurements.			-m			
5. To show how to measure of high voltage and current quantity in HV testing laboratory 6. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION 9 + Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. 9 + Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + Properties of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields – corona discharg – Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrica = eupiments. Unit II GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Qeneration of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High AC voltages: cascaded transformer, resonant transformer and tesla coil- Generation of High impulse voltages ingle and multistage Marx circuits - Generation of switching voltages - Generation of High impulse voltages ingle and multistage Marx circuits - Generation of subartory test procedure: multi-level method, Up and Dox Method - HW Testing of Insulators and Gurrent measurements. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS			5111			
6. To introduce testing procedure of HV power apparatus. Unit I OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION 9 + Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. 9 + Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + Properties of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields – corona discharg > + Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdo mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. 9 + Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High lipulse voltage single and multistage Marx circuits - Generation of high currents: Direct, Alternating and Impul - digital techniques in impulse voltage and current measurements. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 +			r\/			
Unit 1 OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS AND INSULATION CO- ORDINATION 9 + Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + Properties of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields – corona discharg – Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High AC voltages: cascaded transformer, resonant transformer and tesla coil- Generation of High Dc voltage generators. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impulse – digital techniques in impulse voltage and current measurements. 9 + Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dov			лy			
ORDINATION 9 + Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages and Extra high voltage power systems. Perview 101 Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + Properties of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields – corona discharg - vacuum breakdown - conduction and breakdown in uniform and non-uniform fields – corona discharg Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High and varice generators. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. 9 + Unit V MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + + Measurement of high DC, AC, impulse voltage and current measurements. 9 + + Overviews of International and Indian standards- lab	0.	To introduce testing procedure of TTV power apparatus.				
Causes of over voltages and its effect on power system – Lightning, switching surges and temporary ov voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hi voltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + Properties of Dielectric materials: Gaseous breakdown in uniform and non-uniform fields – corona discharg - Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High inpulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of impulse currents. Trippi and control of impulse generators. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages - Measurement of high currents: Direct, Alternating and Impul - digital techniques in impulse voltage and current measurements. 9 + Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers,	Unit I			9	+	(
voltages – Bewley lattice diagram-protection against over voltages; Principle of Insulation Coordination on Hisvoltage and Extra high voltage power systems. Unit II ELECTRICAL BREAKDOWN IN GASES, LIQUIDS AND SOLIDS DIELECTRICS 9 + - Properties of Dielectric materials- Gaseous breakdown in uniform and non-uniform fields – corona discharg - vacuum breakdown - conduction and breakdown in uniform and non-uniform fields – corona discharg Unit III CENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of of upplice currents. 9 + AC voltages: cascaded transformer, resonant transformer and tesla coil- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High impulse currents. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impulse - digital techniques in impulse voltage and current measurements. 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Sur Arresters, Power capacitors and Cables. 9 +	Causes of		em	oora	arv o	ve
Properties of Dielectric materials- Gaseous breakdown in pure and commercial liquids dielectrics – breakdow – Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High impulse voltage and control of impulse generators. 9 + + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + + Measurement of high DC, AC, impulse voltage and current measurements. 9 + + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. 9 + + Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of A ing voltage breakdown phenomena in insulating materials. CO3 : Understand high voltag	voltages -	Bewley lattice diagram-protection against over voltages; Principle of Insulation Coord				
Properties of Dielectric materials- Gaseous breakdown in pure and commercial liquids dielectrics – breakdow – Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdow mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High impulse voltage and control of impulse generators. 9 + + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + + Measurement of high DC, AC, impulse voltage and current measurements. 9 + + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Perior CO1 : Understand various types of over voltages and its effect on power system. CO2 CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO5 <td< td=""><td>l Init II</td><td>ELECTRICAL BREAKDOWN IN GASES LIQUIDS AND SOLIDS DIELECTRICS</td><td></td><td>٩</td><td>-</td><td>C</td></td<>	l Init II	ELECTRICAL BREAKDOWN IN GASES LIQUIDS AND SOLIDS DIELECTRICS		٩	-	C
 Vacuum breakdown - conduction and breakdown in pure and commercial liquids dielectrics – breakdown mechanisms in solid and composite dielectrics - Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High CV oltages: cascade transformer, resonant transformer and tesla coil- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of High Impulse voltage generators. Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages in HV testing laboratories. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Understand various types of over voltages in HV testing laboratories. CO4 : Comprehend the test procedures as per the Indian standards. Text Books: 1. MS. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013. 		•	าทล	-	-	
mechanisms in solid and composite dielectrics- Application of insulating materials in electrical equipments. Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High CV voltages: cascaded transformer, resonant transformer and tesla coil- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of impulse currents. Trippi and control of impulse generators. Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. 9 + Overviews of International and Indian standards - laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period CO1 : Understand various types of over voltages and its effect on power system. CO2 : CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : CO3 : Understand high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO3 : Know me						
Unit III GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High Mage Control of Seneration of Seneration of Seneration of Seneration of High impulse voltage Single and multistage Marx circuits - Generation of switching voltages - Generation of Impulse currents. Trippin and control of impulse generators. 9 + Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages - Measurement of high currents: Direct, Alternating and Impul - digital techniques in impulse voltage and current measurements. 9 + Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surresters, Power capacitors and Cables. Total (45+0)=45Period C01 : Understand various types of over voltages and its effect on power system. CO2 C02 : Know measurement of high current DC, AC and impulse quantities. CO3 : Know measurement of high current DC, AC and impulse quantities. CO4 : Understand high voltage DC, AC and impulse quantities. CO5 : Understand high voltage DC and impu						
Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High CV voltages: cascaded transformer, resonant transformer and tesla coil- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of impulse currents. Trippi and control of impulse generators. Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. 9 + Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. 9 + Course Outcomes: Upon completion of this course, the students will be able to CO2 1 Understand various types of over voltages and its effect on power system. CO2 2 Know measurement of high voltage DC, AC and impulse quantities. CO4 2 Know measurement of high voltage DC, AC and impulse quantities. CO5 2 Comprehend the test procedures as per the Indian standards. CO3 : Know measurement of high voltage breakdown phenomena in insulating materials. CO6 CO6 Comprehend the te			<u></u>			
Generation of High DC voltages: Rectifiers, voltage multipliers and Vande Graff generator- Generation of High AC voltages: cascaded transformer, resonant transformer and tesla coil- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of impulse currents. Trippi and control of impulse generators. Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 Verviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high voltage breakdown phenomena in insulating materials. CO5 : Understand high voltage breakdown phenom	Unit III	GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS		9	+	(
AC voltages: cascaded transformer, resonant transformer and tesla coil- Generation of High impulse voltage single and multistage Marx circuits - Generation of switching voltages - Generation of impulse currents. Trippi and control of impulse generators. Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages - Measurement of high currents: Direct, Alternating and Impul - digital techniques in impulse voltage and current measurements. 9 + Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. 9 + Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high voltage DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Generation		era	tion	of ⊢	lia
single and multistage Marx circuits - Generation of switching voltages - Generation of impulse currents. Trippil and control of impulse generators. Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 + Measurement of high DC, AC, impulse voltages - Measurement of high currents: Direct, Alternating and Impul - digital techniques in impulse voltage and current measurements. 9 + Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high current DC, AC and impulse quantities. CO4 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. CO4 : M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013. Ltd, New Delhi ,Fifth Edition, 2013. Co13						
and control of impulse generators. 9 Unit IV MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS 9 Measurement of high DC, AC, impulse voltage and current measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. 9 Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various over voltages and its effect on power system. CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO3 : Know measurement of high current DC, AC and impulse quantities. CO4 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards.						
Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO2 : Know generation of various over voltages and its effect on power system. CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.					• •	
Measurement of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternating and Impul – digital techniques in impulse voltage and current measurements. Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO2 : Know generation of various over voltages and its effect on power system. CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.						
- digital techniques in impulse voltage and current measurements. Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO2 : Know generation of various over voltages and its effect on power system. CO2 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Unit IV	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS				
Unit V HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS 9 + Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Dow method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Understand high voltage breakdown phenomena in insulating materials. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013. High Voltage Engineering', Tata McGraw Hill Publishing Compa	•	MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS		9	+	(
Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Downethod - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, SurgArresters, Power capacitors and Cables. Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Understand high voltage breakdown phenomena in insulating materials. CO4 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa	Measurem	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternati	ng a	-	+ Ιmpι	
Overviews of International and Indian standards- laboratory test procedure: multi-level method, Up and Downethod - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, SurgArresters, Power capacitors and Cables. Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Understand high voltage breakdown phenomena in insulating materials. CO4 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa	Measurem	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternati	ng a	-	ι + Ιmpι	
method - HV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transformers, Surg Arresters, Power capacitors and Cables. Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO2 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements.	ng a	and	+ Impu	ils
Arresters, Power capacitors and Cables. Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements.	-	and 9	+	ils
Total (45+0)=45Period Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method,	, Up	and 9	+ d Do	
Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf	, Up	and 9	+ d Do	
Course Outcomes: Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf	, Up	and 9	+ d Do	
Upon completion of this course, the students will be able to CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables.	, Up form	and 9 o an	+ d Do s, Su	uls () w rg
CO1 : Understand various types of over voltages and its effect on power system. CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45-	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
CO2 : Know generation of various over voltages in HV testing laboratories. CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45-	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
CO3 : Know measurement of high voltage DC, AC and impulse quantities. CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- utcomes:	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
CO4 : Know measurement of high current DC, AC and impulse quantities. CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
CO5 : Understand high voltage breakdown phenomena in insulating materials. CO6 : Comprehend the test procedures as per the Indian standards. Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 :	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system.	, Up form	and 9 o an	+ d Do s, Su	uls (w rg
CO6 : Comprehend the test procedures as per the Indian standards. Text Books:	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 :	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- utcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories.	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
CO6 : Comprehend the test procedures as per the Indian standards. Text Books:	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO3 :	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities.	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
Text Books: 1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa 1. Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO3 : CO3 :	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities. Know measurement of high current DC, AC and impulse quantities.	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
1. M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publishing Compa Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO4 : CO5 :	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternations in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transference capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities. Understand high voltage breakdown phenomena in insulating materials.	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
Ltd, New Delhi ,Fifth Edition, 2013.	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 :	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities. Know measurement of high current DC, AC and impulse quantities. Understand high voltage breakdown phenomena in insulating materials. Comprehend the test procedures as per the Indian standards.	, Up form	and 9 o an	+ d Do s, Su	ils (ww rg
	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 :	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transf Power capacitors and Cables. Total (45- itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities. Know measurement of high current DC, AC and impulse quantities. Understand high voltage breakdown phenomena in insulating materials. Comprehend the test procedures as per the Indian standards. s:	• Up form •0)=	9 and and aners	+ d Do s, Su Perio	rg
	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transfer Power capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities. Know measurement of high current DC, AC and impulse quantities. Understand high voltage breakdown phenomena in insulating materials. Comprehend the test procedures as per the Indian standards. s: M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publis	• Up form •0)=	9 and and aners	+ d Do s, Su Perio	
1. E. Kuffel W.S. Zaengl, and J.Kuffel, 'High Voltage Engineering Fundamentals', Newn	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book 1.	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, IV Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transfer Power capacitors and Cables. Total (45- Itcomes: Deletion of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high current DC, AC and impulse quantities. Understand high voltage breakdown phenomena in insulating materials. Comprehend the test procedures as per the Indian standards. S: M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publis Ltd, New Delhi ,Fifth Edition, 2013.	• Up form •0)=	9 and and aners	+ d Do s, Su Perio	
 E. Kuffel W.S. Zaengl, and J.Kuffel , 'High Voltage Engineering Fundamentals', Newn Publishers, second Edition, Elsevier, New Delhi,2005. 	Measurem – digital teo Unit V Overviews method - H Arresters, I Course Ou Upon comp CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Book 1. Reference	ent of high DC, AC, impulse voltages – Measurement of high currents: Direct, Alternation chniques in impulse voltage and current measurements. HIGH VOLTAGE TESTING OF ELECTRICAL POWER APPARATUS of International and Indian standards- laboratory test procedure: multi-level method, V Testing of Insulators and Bushings, Isolators and Circuit Breakers, Power transference Total (45- Total (45- Internation of this course, the students will be able to Understand various types of over voltages and its effect on power system. Know generation of various over voltages in HV testing laboratories. Know measurement of high voltage DC, AC and impulse quantities. Understand high voltage breakdown phenomena in insulating materials. Comprehend the test procedures as per the Indian standards. S: M.S. Naidu and V. Kamaraju, 'High Voltage Engineering', Tata McGraw Hill Publis Ltd, New Delhi ,Fifth Edition, 2013. Books:	, Up form +0)=	9 and and and and and and and and and and	Perid	an

2.	C.L. Wadhwa, 'High Voltage Engineering', New Age International (P) Ltd Publishers, Third Edition, 2012
3.	Rakosh Das Begamudre, 'Extra High Voltage AC Transmission Engineering', New Age International (P) Ltd Publishers, 4 th Edition, 2011.
E-referen	
1	www.onlinecourses.nptel.ac.in/noc18_ee41
2	NPTEL courses on High Voltage Engineering, IIT Kanpur.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3		2				1					
CO2	3	2	2	1		1						
CO3	3	2	3		1							
CO4	3	2	3		1							
CO5	3		2		1		1					
CO6	3	2	3	2	1	1	2		1		1	

18EEP06	HVDC TRANSMISSION SYSTEMS	L	T	Ρ	<u>C</u>
0	19	3	0	0	3
Course O	bjectives:	4L A	~		
1.	To understand the concept, planning of DC power transmission and comparison with	ith A		pov	er
	transmission.				
2.	To analyze HVDC converters.				
3.	To study about the HVDC system control.				
4.	To analyze harmonics and design of filters.				
5.	To model and analysis the DC system under steady state.				
Unit I	INTRODUCTION		9	+	0
DC Power	transmission technology - Comparison of AC and DC transmission-Application of D	C tra	ansm	nissio	n –
Description	n of DC transmission system– Planning for HVDC transmission–Modern trends in HV	DC 1	tech	nolo	ју –
DC breake	ers – Operating problems– HVDC transmission based on VSC –Types and applic	atio	ns o	f M	DC
systems.					
Unit II	ANALYSIS OF HVDC CONVERTERS		9	-	0
	nutated converter-Analysis of Graetz circuit with and without overlap-Pulse num	her.	-		
	configuration–Converter bridge characteristics–Analysis of 12 pulse converters –Ar				
	and firing schemes	laryc			0
10pologico					
Unit III	CONVERTER AND HVDC SYSTEM CONTROL		9	-	0
	of DC link control–Converter control characteristics–System control hierarchy– Firin	a ar	-	cont	-
Current an	a extinction angle control_Starting and stopping of D(* link_Power control_Higher is	וםענ	cont		rc_
	nd extinction angle control–Starting and stopping of DC link–Power control –Higher le	evel	cont	rolle	rs –
	nd extinction angle control-Starting and stopping of DC link-Power control -Higher le VSC based HVDC link	evel	cont	rolle	rs –
Control of	VSC based HVDC link	evel		rolle	
Control of Unit IV	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL		9	+	0
Control of Unit IV Reactive p	VSC based HVDC link		9	+	0
Control of Unit IV Reactive p harmonics	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCON -Design of AC and DC filters –Active filters		9 iene	+ ratio	0 n of
Control of Unit IV Reactive p harmonics Unit V	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCON -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS	M–G	9 iene 9	+ ratio	0 n of 0
Control of Unit IV Reactive p harmonics Unit V	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL ower requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS rstem for DC quantities–DC system model –Inclusion of constraints –Power flow analysis	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR POWER FLOW ANALYSIS IN AC/DC SYSTEMS rstem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS rstem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS rstem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to:	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied.	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in state power state in the st	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in steady state–Sources of reactive power–SVC and STATCOR power requirements in state of the s	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO4 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS rstem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management.	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS rstem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics.	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO4 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS rstem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management.	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOI -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system.	M–G /sis-	9 iene 9 -Cas	+ ratio +	0 n of 0 udy.
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Bool	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOR -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system.	/sis- /sis- 0) =	9 Beene 9 -Cas : 45	+ ratio	0 n of udy. ods
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 :	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOI -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. cs: Padiyar,K.R., "HVDCpower transmission system",NewAg eInternational(P) Ltd., Ne Edition, 2015	/sis- •0) =	9 iene 9 -Cas : 45	+ ratio	0 n of udy. ods
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Bool	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOI -Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system.	/sis- •0) =	9 iene 9 -Cas : 45	+ ratio	0 n of udy. ods
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Bool 1. 2.	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI comes: Pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system.	/sis- •0) =	9 iene 9 -Cas : 45	+ ratio	0 n of udy ods
Control of Unit IV Reactive pharmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 : CO6 : Text Bool 1. 2. Reference	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOI Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45+ utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. stem Stem Wilson Kimbark, "DirectCurrent Transmission", Vol.I, Wiley Interscience, Net London, Sydney, 1971	w D	9 Gene -Cas -Cas -Cas -Cas -Cas -Cas -Cas -Cas	+ se str Peri	0 ady. ods
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 : Text Bool 1. 2.	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI cower requirements in steady state–Sources of reactive power–SVC and STATCOI comes: Pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system.	w D	9 Gene -Cas -Cas -Cas -Cas -Cas -Cas -Cas -Cas	+ se str Peri	
Control of Unit IV Reactive p harmonics Unit V Per unit sy Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 : CO6 : Text Bool 1. 2. Reference	VSC based HVDC link REACTIVE POWER AND HARMONICS CONTROL power requirements in steady state–Sources of reactive power–SVC and STATCOI Design of AC and DC filters –Active filters POWER FLOW ANALYSIS IN AC/DC SYSTEMS stem for DC quantities–DC system model –Inclusion of constraints –Power flow analy Total (45-4 utcomes: pletion of this course, the students will be able to: Basic principles and types of HVDC system are studied. Analyze the converters used in HVDC system are studied. Familiarize with the HVDC control. Gain knowledge about the reactive power management. Design the filters to overcome harmonics. Familiarize with the power flow analysis of HVDC system. (s: Padiyar,K.R., "HVDCpower transmission system",NewAg eInternational(P) Ltd., Ne Edition, 2015 Edward Wilson Kimbark, "DirectCurrent Transmission", Vol.I, Wiley Interscience, Ne London, Sydney,1971 Books: Colin Adamson and HingoraniNG, "High Voltage Direct Current Power Transmission	W-G //sis- 0) = w D w D	9 elhi, , Ga	+ ratio Peri Sec	

E- Refere	nce:
1	www.onlinecourses.nptel.ac.in/noc18_ee41

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	1	1	1	1	1	1	2
CO2	1	2	3	2	2	1	1	1	1	1	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	2
CO4	2	2	2	2	2	1	1	1	1	1	1	1
CO5	2	3	3	2	2	1	1	1	1	1	1	1
CO6	2	2	1	1	1	1	1	1	1	1	1	1

18EEP07	EHVAC TRANSMISSION SYSTEMS	L	Т	Ρ	С
		3	0	0	3
Course Ol	ojectives:				
1.	To understand the concept and planning of HVAC power transmission.				
2.	Evaluate EHVAC transmission system with all parameters				
3.	Understand electrostatic effects in EHVAC transmission				
4.	Understand effects of Corona in EHVAC transmission				
5.	Select a suitable voltage controller for an EHVAC transmission system				
Unit I	INTRODUCTION		9	+	0
mechanica	of EHV AC transmission, advantages and problems, power handling capacity a I considerations, resistance of conductors, temperature rise of conductors and c roperties of bundled conductors – problems.				
Unit II	LINE AND GROUND REACTIVE PARAMETERS		9	+	0
	of EHV line configurations, line capacitance calculation, sequence inductances and	capa	acita	ance	S,
line parame	eters for modes of propagation, resistance and inductance of ground return.				
Unit III	VOLTAGE GRADIENTS OF CONDUCTORS		9		0
	ics, field of sphere gap, field of line changes and properties, charge – potential relations	ation	_	r m	-
conductors	blines, surface voltage gradient on conductors, distribution of voltage gradient on sul ect of high electro static field on Humans, animals and plants.				
Unit IV	CORONA EFFECTS		9	-	0
	and corona loss, corona-loss formulae, charge-voltage (q–V) diagram and corona lo	222	-	nuat	-
	g waves due to corona loss, audible noise: generation and characteristics, limits for a				
	surement and meters, formulae for audible noise and its use in design, relation betwee				
	bhase AN levels example.	711 3 11	ngid	5-pri	130
				1	1
Unit V	POWER FREQUENCY VOLTAGE CONTROL		9	+	0
and series	e diagram and its use - voltage control using synchronous condensers - cascade con compensation - sub synchronous resonance in series capacitor - compensated lin ing system.	necti es -	on sta	of sh tic V	unt AR
	Total (45+0	<u>) – /</u>	15 1	Dorid	vde
Course Ou		<u> </u>		ent	<i>u</i> 3
Upon com	pletion of this course, the students will be able to:				
CO1 :	Learn about the trends in EHV AC Transmission and calculate Line inductance an of bundled conductors.	d ca	pac	itan	ces
CO2 :	Calculate voltage gradient of bundled conductors				
CO2 :	Understand the effects of corona like Audible noise				
CO3 :	Understand the effect of Radio Interference and analyze travelling waves				
CO4 :	Calculate electrostatic field of EHV AC lines				
CO5 :	Analyze compensated devices for voltage control.				
	Analyze compensated devices for voltage control.				
Text Book	s:				
1.	R. D. Begamudre, "EHVAC Transmission Engineering" New Age Internation Edition, 2014.	al(P)	Ltd	., TI	hird
2.	S. Rao, "HVAC and DC Transmission 7 practice", Khanna Publishers, Delhi, Third E	ditio	n, 1	993	
Reference	Books:				
	Shobhit Gupta and Deepak Gupta, "EHV AC/DC Transmission", Engineering Boo	ks F	ub	ishe	rs.
1.	2014.				- 1
				10	~

E- Referen	ices:
1	www.onlinecourses.nptel.ac.in
2	www.electrical-engineering-portal.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	2	1	1	1	1	1	1	2
CO2	2	3	2	2	2	1	1	1	1	1	1	1
CO3	2	2	2	2	2	1	1	1	1	1	1	1
CO4	2	2	2	2	2	1	1	1	1	1	1	1
CO5	2	3	3	2	2	1	1	1	1	1	1	1
CO6	2	2	3	3	2	1	1	1	1	1	1	1

	FACTS CONTROLLERS		T	P ^	С 3
		3	0	0	
Course O	-				
1.	To Introduce the Reactive Power Control Techniques.				
2.	To Educate on Static VAR Compensators and Their Applications				
3.	To Provide Knowledge on Thyristor Controlled Series Capacitors				
4.	To Educate on STATCOM Devices				
5.	To Provide Knowledge on FACTS Controllers				
Unit I	INTRODUCTION		9	+	C
Reactive F Compensa	Power Control in Electrical Power Transmission Lines -Uncompensated Transmission ation – Basic Concepts of Static Var Compensator (SVC) – Thyristor Controlled S Unified Power Flow Controller (UPFC).		ne -		ie
Unit II	STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS		9	+	0
Voltage -	ontrol by SVC – Advantages of Slope in Dynamic Characteristics – Influence of S Design of SVC Voltage Regulator –Modelling of SVC for Power Flow and Fast Transes: Enhancement of Transient Stability – Steady State Power Transfer – Enhancement	nsien	t Sta	ability	у-
Unit III	THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATION	S	9	+	(
Oneration				/lode) -
Modelling	of The TCSC – Different Modes of Operation – Modelling of TCSC – Variable Rea for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping			Limi	
Modelling Enhancerr Unit IV Static Syn	for Power Flow and Stability Studies. Applications: Improvement of the System ent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic	Stab	ility 9 pplic	+ catio	t - 0 ns
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller	for Power Flow and Stability Studies. Applications: Improvement of the System ent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using	Stab	9 pplic ility. ent \$ 9	+ catio SSS Stabi	t ns SC lit
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller	for Power Flow and Stability Studies. Applications: Improvement of the System ent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS	Stab	9 pplic ility. ent \$ 9	+ catio SSS Stabi	t ns SC lit
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller Technique	for Power Flow and Stability Studies. Applications: Improvement of the System ent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms.	Stab	9 pplic ility. ent \$ 9 ear	+ SSS Stabi	t ns SC lit
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller	for Power Flow and Stability Studies. Applications: Improvement of the System ent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms.	Stab	9 pplic ility. ent \$ 9 ear	+ SSS Stabi	t ns SC lit tro
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O	for Power Flow and Stability Studies. Applications: Improvement of the System ent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms.	Stab	9 pplic ility. ent \$ 9 ear	+ SSS Stabi	t - ns SC lity tro
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com	for Power Flow and Stability Studies. Applications: Improvement of the System lent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to:	Stab	9 pplic ility. ent \$ 9 ear	+ SSS Stabi	t - ns SC lity trc
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection.	Stab cs. A stab ansid g Lin	9 pplid lity. ent \$ 9 ear 45 F	+ SSS Stabi	t - ns SC lity tro
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 :	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system application	Stab cs. A stab ansid g Lin	9 pplid lity. ent \$ 9 ear 45 F	+ SSS Stabi	t - ns SC lity tro
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 :	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applied Apply knowledge in load compensation techniques.	Stab cs. A stab ansid g Lin	9 pplid lity. ent \$ 9 ear 45 F	+ SSS Stabi	t - ns SC lity trc
Modelling Enhancerr Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 : CO4 :	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applied Apply knowledge in load compensation techniques. Analyze the performance of steady state and transients of facts controllers.	Stab cs. A stab ansid g Lin	9 pplid lity. ent \$ 9 ear 45 F	+ SSS Stabi	t - ns SC lity trc
Modelling Enhancerr Unit IV Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 :	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applied Apply knowledge in load compensation techniques.	Stab cs. A stab ansid g Lin	9 pplid lity. ent \$ 9 ear 45 F	+ SSS Stabi	t - ns SC lity tro
Modelling Enhancerr Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 : CO3 :	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applie Apply knowledge in load compensation techniques. Analyze the performance of steady state and transients of facts controllers. Apply knowledge in advanced FACTS controllers.	Stab cs. A stab ansid g Lin	9 pplid lity. ent \$ 9 ear 45 F	+ SSS Stabi	t - ns SC lity trc
Modelling Enhancerr Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 : CO3 :	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applie Apply knowledge in load compensation techniques. Analyze the performance of steady state and transients of facts controllers. Apply knowledge in advanced FACTS controllers.	Stab	9 pplid lity. ent \$ 9 ear 45 F	+ SSS Stabi	
Modelling Enhancerr Static Syn Steady Sta Operation Studies. Unit V Controller Technique Course O Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 :	for Power Flow and Stability Studies. Applications: Improvement of the System tent of System Damping VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS chronous Compensator (STATCOM) – Principle of Operation – V-I Characteristic ate Power Transfer-Enhancement of Transient Stability – Prevention of Voltage In of SSSC and the Control of Power Flow –Modelling of SSSC In Load Flow and Tr CO-ORDINATION OF FACTS CONTROLLERS Interactions – SVC – SVC Interaction – Co-Ordination of Multiple Controllers Using s – Control Coordination Using Genetic Algorithms. Total (45+ utcomes: pletion of this course, the students will be able to: Analyze Power System Operation, Stability, Control and Protection. Analyze and develop analytical model of FACTS controller for power system applic Apply knowledge in load compensation techniques. Analyze the performance of steady state and transients of facts controllers. Apply knowledge in advanced FACTS controllers. (S: R.Mohan Mathur, Rajiv K.Varma, "Thyristor – Based Facts Controllers For Electric	Stab	9 pplid lity. ent \$ 9 ear 45 F	+ Stabi Con Perio	

Reference	e Books:
1.	A.T.John, "Flexible A.C. Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 2019.
2.	V.K.Sood,"HVDC And FACTS Controllers – Applications of Static Converters in Power System", APRIL 2004, Kluwer Academic Publishers, 2004.
3.	Xiao – Ping Zang, Christian Rehtanz And Bikash Pal, "Flexible AC Transmission System: Modelling and Control" Springer, 2012.
E-Referer	nce:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	3	1	1	1	1	1	1	1
CO2	1	3	2	2	2	1	1	1	1	1	1	1
CO3	3	1	1	3	2	1	1	1	1	1	1	1
CO4	2	1	1	3	2	2	1	1	1	1	1	1
CO5	1	1	1	3	1	1	2	1	1	1	1	1

	POWER QUALITY	L	T	P	С
		3	0	0	3
Course O	bjectives:				
1.	Introduce the power quality terms and definitions				
2.	Understand the sources and issues of various power quality problems.				
3.	Gain in-depth knowledge of the mitigation/ suppression techniques of voltages sa	gs, ir	nter	rupti	ons
	and harmonics.				
4.	Introduce the computer tools for transient's analysis.				
5.	Expose the various methods of power quality monitoring.				
Unit I	INTRODUCTION TO POWER QUALITY		9	+	0
	definitions of Power quality, General classes of power quality problems: transient	s- loi	-		-
	riations- short duration voltage variations, voltage Imbalance, waveform distortion, vo				
	juency variations-International standard of power quality-CBEMA and ITI curves.				
Unit II	VOLTAGE SAGS AND LONG DURATION VOLTAGE VARIATIONS		9	+	0
	f sags and interruptions, estimating voltage sag performance, fundamental principle				
	-voltage sag mitigation solution at the End-User level- Evaluating the economics	of dif	fer	ent r	ide-
	ernatives –Motor Starting sags.				
	ation voltage variations: Principles of regulating the voltage – devices for voltage				
	gulator application- capacitor for voltage regulation- End user capacitor application tion techniques.	FIICK	er:	sour	ces
anu muya					
Unit III	TRANSIENT OVERVOLTAGE		9	+	0
	transientover voltage- Principles of overvoltage Protection- Devices for mitigation of		-		-
	acitor-switching transients – Utility system lightning protection - Managing Ferro resor				
	problems with loads - computer tools for transients analysis: PSCAD and EMTP.	lance		witoi	inig
transients					
Unit IV	HARMONICS		9	+	0
	tals of Harmonics: Harmonic Distortion, voltage versus current distortion, Ha	rmon	-	ver	-
	harmonics phase sequences- triplen harmonics -harmonic indices, harmonic				
	al and industrial loads. Locating harmonic sources - power system response charact				
	ics Distortion –Interharmonics - harmonic distortion evaluations, Principles and devic				
harmonic	distortion, IEEE and IEC standards on harmonics.				
Unit V	POWER QUALITY MONITORING AND DISTRIBUTED GENERATION		9	+	0
Monitoring	considerations - power quality measurement equipment: disturbance analyser		ectr		and
Monitoring harmonics	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitor		ectr		and
Monitoring harmonics	considerations - power quality measurement equipment: disturbance analyser		ectr		and
Monitoring harmonics	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality moniton perspectives - DG technologies - power quality issues by DG - operating conflicts	oring	ectr Dis	stribu	and
Monitoring harmonics	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality moniton perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45-	oring	ectr Dis	stribu	and
Monitoring harmonics Generation	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitons perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes:	oring	ectr Dis	stribu	anc
Monitoring harmonics Generation	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitons perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes: pletion of this course, the students will be able to:	oring	ectr Dis	stribu	and
Monitoring harmonics Generation Course O Upon com	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitons perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes:	• 0)=	ectr Dis 45	estribu Perio	and
Monitoring harmonics Generation Course O Upon com CO1 :	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitons perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues.	h 0)=	ectr Dis 45	estribu Perio	and
Monitoring harmonics Generation Course O Upon com CO1 : CO2 :	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitons perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and its control of the sources of sag & long duration voltage variations and the sources of sag & long duration voltage variations and the sources of sag & long duration voltage variations and the sources of sag & long duration voltage variations and the sources of sag & long duration voltage variations and the sources of sag & long duration voltage variations and the sources of sag & long duration voltage	netho	ectr Dis 45	estribu Perio	anc
Monitoring harmonics Generation Course O Upon com CO1 : CO2 : CO3 :	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monito perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control of Comprehend the sources of transient overvoltage and principle of control methods	netho	ectr Dis 45	estribu Perio	anc
Monitoring harmonics Generation Course O Upon com CO1 : CO2 : CO3 : CO3 :	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitor perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control is Comprehend the sources of transient overvoltage and principle of control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution	netho	ectr Dis 45	estribu Perio	anc
Monitoring harmonics Generation Course O Upon com CO1 : CO2 : CO3 : CO3 : CO4 : CO5 : CO6 :	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitons perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control of Comprehend the sources of transient overvoltage and principle of control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution Understand the operation and application of power quality measuring equipment. Know PQ issues by Distributed Generation integration with grid.	netho	ectr Dis 45	estribu Perio	anc
Monitoring harmonics Generation Course O Upon com CO1 : CO2 : CO3 : CO4 : CO5 :	considerations - power quality measurement equipment: disturbance analyser analysers, flicker meters, applications of Intelligent system for power quality monitons perspectives - DG technologies - power quality issues by DG - operating conflicts Total (45- utcomes: pletion of this course, the students will be able to: Understand the definitions and characterization of various power quality issues. Comprehend the sources of sag & long duration voltage variations and its control of Comprehend the sources of transient overvoltage and principle of control methods Analyse harmonics problem and apply filters to suppress harmonics in distribution Understand the operation and application of power quality measuring equipment. Know PQ issues by Distributed Generation integration with grid.	netho	45	Peri	anc

Reference	e Books:
1.	C. Sankaran ,"Power quality", CRC Press, First Indian Edition, 2019.
2.	G.T.Heydt, "Electric power quality", Stars in a Circle publishers, Second Edition, 1994.
3.	Arindam Ghosh and Gerald Led wich , "Power Quality Enhancement Using Custom Power Devices", Springer-Verlag Publishers, New York Inc., Second Edition.2009.
E-Referer	
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1		1			1				1	
CO2	3	2	1	1			1				1	
CO3	3	1	1	1			1				1	
CO4	3	1	2	1		2	2				1	
CO5	3	1	2	1		2	2				1	
CO6	3	1	2	1		1	3				1	

18EEP10	UTILIZATION OF ELECTRICAL ENERGY	L 7 3 (Г Р) 0	C 3
Course O	ojectives			<u> </u>
1.	To understand the generation of electrical power by conventional and non-conven	tional n	nethod	s.
2.	To impart knowledge on principle and design of illumination systems.			
3.	To analyze the performance and different methods of electric heating and electric	welding	j .	
4.	To impart knowledge on electric traction systems and their performance.			
5.	To understand electric drives for various industrial applications.			
Unit I	INTRODUCTION	g) +	0
	of electrical power by conventional & non-conventional methods – a brief review of			
	r, geothermal power, solar energy, hydro station, steam and nuclearpower plants.	•		
	s of generation – definitions – load duration curve – number and size ofgenerator un	its – Co	ost of	
electrical e	nergy – tariff – need for electrical energy conservation –methods.			
110:411				0
Unit II	LLUMINATION n-nature of radiation – definition – laws of illumination – luminous efficacy-photomet	9 rv lig		0
	s – design of illumination systems for residential, commercial, street lightingand spo			
	mps –incandescent lamp- mercury vapour –fluorescent lamp-energyefficiency lamp			
	nemes – requirements of good lighting	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	· · · · · ·			
Unit III	HEATING AND WELDING	9		0
	n- classification of methods of heating – requirements of a good heating material – of			
	ement – temperature control of resistance furnace – electric arc furnace –induction h			
	eating – electric welding – resistance welding – electric arcwelding-electrical proper s of electric arc welding.	ties of a	arc-	
application				
Unit IV	ELECTRIC TRACTION	g) +	0
	n – requirements of an ideal traction system – supply systems – train movement -m			
	ment – traction motors and control –speedcontrol of three phase induction motor- m			
	raking – recent trends in electric traction.	•		
				_
Unit V	DRIVES AND THEIR INDUSTRIAL APPLICATIONS	g		0
	ve –advantages of electric drive-individual drive and group drive –factors affecting s			
	f loads – steady state –transient characteristics –size of motor– load equaliza s – modern methods of speed control of D.C drives-dynamic braking using thyrist			
	ing thyristors.	ors reg	chiciai	IVC
Jordaning de				
	Total (45	+0)= 45	5 Peric	ds
Course O	utcomes:			
Upon com	pletion of this course, the students will be able to:			
CO1 :	Understand the concept of generation of electrical power from conventional and no	າກ-ດດກ	ventior	al
	energy resources.		Vention	
CO2 :	Understand the economic aspects connected with power system.			
CO3 :	Understand the concept behind illumination and design a suitable illumination syst	em for	а	
	specific application.			
CO4 :	Design and choose an appropriate heating method for specific application and gai	n		
0.05	knowledge about electric welding system.			
CO5 : CO6 :	Understand the concepts and recent trends of traction system. Understand the concepts of electric drives and their characteristics.			
Text Bool	IS:			
	C.L. Wadhwa, "Generation, Distribution and Utilization of Electrical Energy	/", Ne	<i>N</i> Aqe	,
1.	International Pvt.Ltd, 2015.	,		
			106	

2.	Eric Openshaw Taylor, "Utilisation of Electric Energy", English Universities Press Limited, 2009
3.	J.B. Gupta, "Utilization of Electric Power and Electric Traction", S.K.Kataria and Sons, 2013.
Reference	Books:
1.	G.C.Garg, S.K.Gridhar&S.M.Dhir, "A Course in Utilization of Electrical Energy", Khanna
	Publishers, Delhi, 2003.
2.	H. Partab, "Art and Science of Utilization of Electrical Energy", Dhanpat Rai and Co, New Delhi,
	2004.
E-Referen	ce
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	1	2	1	2	2	1	1	1
CO2	2	3	2	3	1	1	2	1	1			1
CO3	3	3	1	3	1	1	2	1				
CO4	1	2	2	3	3	1	2	1				
CO5	3	1	1	2	1	1	2	1		1		1
CO6	1	3	3	3	3	1	2	2				1

18EEP11	ELECTRICAL ENERGY CONSERVATION AND AUDITING L T P C 3 0 0 3
Course O	bjectives:
1.	To get knowledge about basics of energy and energy scenario on India.
2.	To understand the energy conservation concepts.
3.	To know about energy auditing.
Unit I	ENERGY SCENARIO 9 + 0
	al and Non-commercial energy -Primary energy resources - Commercial energy production - Final
	nsumption - Energy needs of growing economy - Long term energy scenario - Energy pricing - Energy
sector ref	orms -Energy and environment - Energy security - Energy conservation and its importance -
	ring of the energy supply sector - Energy strategy for the future, air pollution, climate change. Energy
Conservat	tion Act-2001 and its features.
Unit II	ENERGY SOURCES 9 + 0
	tariff - Load management and maximum demand control - Thermal Basics-fuels - Thermal energy
	of fuel, temperature and pressure, heat capacity, sensible and latent heat, evaporation, condensation,
	bist air and humidity & heat transfer, units and conversion.
Unit III	ENERGY MANAGEMENT AND AUDIT 9 + 0
	- Energy audit – Need and types of energy audit. Energy management (audit) approach understanding
	sts - Bench marking - Energy performance - Matching energy use to requirement - Maximizing system
	s - Optimizing the input energy requirements, fuel and energy substitution - Energy audit instruments.
	nd energy balance: Facility as an energy system - Methods for preparing process flow, material and
	lance diagrams.
Unit IV	ENERGY EFFICIENCY 9 + 0
	system: Electricity billing - Electrical load management and maximum demand control -Power factor
	ent and its benefit - Selection and location of capacitors - Performance assessment of PF capacitors,
	n and transformer losses. Electric motors: Types - Losses in induction motors - Motor efficiency - fecting motor performance - Rewinding and motor replacement issues - Energy saving opportunities
	y efficient motors.
with onorg	
Unit V	ENERGY EFFICIENT TECHNOLOGIES 9 + 0
	demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with
	ver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors -
Energy ef	ficient lighting controls - Energy saving potential of each technology.
	Total (45+0)= 45 Periods
Course O	utcomes:
Upon com	pletion of this course, the students will be able to:
CO1 :	Understand the present energy scenario.
CO2 :	Get fundamental knowledge about energy and its various forms.
CO3 :	Understand the process of energy management and energy auditing.
CO4 :	Understand the methods improving energy efficiency and energy efficient devices.
CO5 :	Conduct Energy Audit in industry.
Text Boo	ks:
1.	Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2017.
2.	Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991.
	108

Reference	ce Books:
1.	General Aspects of Energy Management and Energy Audit, Bureau of Energy Efficiency, New Delhi, 2015.
2.	Energy Efficiency in Electrical Utilities, Bureau of Energy Efficiency, New Delhi, 2015.
E-Refere	nces:
1.	www.bee-india.nic.in
2.	NPTEL Course: Non-Conventional Energy Resources – Prof. PrathapHaridoss, IIT-M.
3.	NPTEL Course: Energy Management Systems and SCADA, 2015 organised by IIT-M.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	2	2	1	3	2	2	2	2	2
CO2	1	1	2	2	1	1	3	2	1	1	2	2
CO3	2	2	2	3	1	1	3	2	2	2	1	2
CO4	2	1	2	2	1	1	3	2	1	2	2	2
CO5	2	2	3	1	2	1	3	1	2	1	2	1

18EEP12	2 POWER SYSTEM OPERATION AND CONTROL	3 0	0	3
Course O	Objectives:	- I	1	
<u>000136 0</u> 1	To get an overview of system operation and control.			
2	To understand and model power-frequency dynamics and to design power-frequ		trolle	r
3	To understand and model power-requercy dynamics and to design power-requ	-		
0	maintaining voltage profile against varying system load.		111101	10
4	To study the economic operation of power system			
5	To teach about SCADA and its application for real time operation and control of	power sy	stem	S
Unit I	OVERVIEW OF POWER SYSTEM OPERATION AND CONTROL	9	+	(
load facto system op	ad variation: System load characteristics, load curves -daily, weekly and annual, loa or, diversity factor - Reserve requirements: Installed, spinning , cold and hot reser- peration: Load forecasting, unit commitment, load dispatching. Overview of system of FC, EDC, AVR, system voltage control, security control.	ves. Ove	rview	0
Unit II	REAL POWER - FREQUENCY CONTROL	9	<u> </u>	0
Fundame between t Static and modeling:	ntals of speed governing mechanism and modeling: Speed-load characteristics two synchronous machines in parallel; concept of control area, LFC control of a sin d dynamic analysis of uncontrolled and controlled cases; Multi-area systems: 1 static analysis, uncontrolled case, tie-line with frequency bias control; state variable n nic dispatch control with LFC.	 Load gle-area wo-area 	syste syst	em en
11014 111				
Typical e absorption	REACTIVE POWER-VOLTAGE CONTROL xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n	nethod o	f volta	ind
absorption control: In generator	xcitation system, modeling, static and dynamic analysis, stability compensation;	genera nethod o evel cont	f volta rol us	inc
Typical e absorption control: In generator capacitors Unit IV	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System le voltage magnitude setting, tap setting of OLTC transformer and MVAR injec s to maintain acceptable voltage profile and to minimize transmission loss.	genera nethod o evel cont tion of s	f volta rol us switch	ing ing ing iec
Typical e absorption control: In generator capacitors Unit IV Increment iteration n controller Statemen constraint Priority-lis	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System le voltage magnitude setting, tap setting of OLTC transformer and MVAR injects to maintain acceptable voltage profile and to minimize transmission loss.	genera nethod o evel cont tion of s 9 od and L conomic rve- ther olution r	f volta rol us switch + ambo dispa mal netho	ige inco iec la tch uni ds
Typical ei absorption control: In generator capacitors Unit IV Increment iteration n controller Statemen constraint Priority-lis using full-	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System le voltage magnitude setting, tap setting of OLTC transformer and MVAR injects to maintain acceptable voltage profile and to minimize transmission loss. ECONOMIC DISPATCH AND UNIT COMMITMENT tal cost curve, co-ordination equations with and without loss, solution by direct meth nethod (No derivation of loss coefficients.)- Base point and participation factors- Ec added to LFC control. t of Unit Commitment problem- Constraints in Unit Commitment: spinning reser- ies- hydro constraints- fuel constraints and other constraints; Unit Commitment s at methods, forward dynamic programming approach, numerical problems only in pr load average production cost.	genera nethod o evel cont tion of s 9 od and L conomic rve- ther olution r	f volta rol us switch + ambo dispa mal netho	la la la la la
Typical e absorption control: In generator capacitors Unit IV Increment iteration n controller Statemen constraint Priority-lis using full- Unit V EMS func levels - So topology o	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System la voltage magnitude setting, tap setting of OLTC transformer and MVAR injects to maintain acceptable voltage profile and to minimize transmission loss. ECONOMIC DISPATCH AND UNIT COMMITMENT tal cost curve, co-ordination equations with and without loss, solution by direct meth nethod (No derivation of loss coefficients.)- Base point and participation factors- Ec added to LFC control. t of Unit Commitment problem- Constraints in Unit Commitment: spinning reser- se hydro constraints- fuel constraints and other constraints; Unit Commitment s at methods, forward dynamic programming approach, numerical problems only in pr load average production cost. COMPUTER CONTROL OF POWER SYSTEMSIN tions - Energy control centre functions: Monitoring, data acquisition and control, ener CADA: system hardware configuration –master station-remote terminal units- and fu determination- state estimation, security analysis and control - Various operating state cy, extremis and restorative; State transition diagram showing various state transit.	generation of sevel contribution of sevel contribution of sevel contribution of sevel contribution of sevel conomic conomic conomic conomic conomic contribution respective. The sevel contribution of sevel contributions contrebutions contributions contributions contributing contribu	f volta rol us switch + ambo dispa mal dispa mal metho metho l cer Netw ial, al d con	la la la la la tcl or erf
Typical e absorption control: In generator capacitors Unit IV Increment iteration n controller Statemen constraint Priority-lis using full- Unit V EMS func levels - So topology o emergeno	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System le voltage magnitude setting, tap setting of OLTC transformer and MVAR injects to maintain acceptable voltage profile and to minimize transmission loss. ECONOMIC DISPATCH AND UNIT COMMITMENT tal cost curve, co-ordination equations with and without loss, solution by direct meth nethod (No derivation of loss coefficients.)- Base point and participation factors- Ec added to LFC control. t of Unit Commitment problem- Constraints in Unit Commitment: spinning reser s- hydro constraints- fuel constraints and other constraints; Unit Commitment s at methods, forward dynamic programming approach, numerical problems only in pr load average production cost. COMPUTER CONTROL OF POWER SYSTEMSIN tions - Energy control centre functions: Monitoring, data acquisition and control, energy CADA: system hardware configuration –master station-remote terminal units- and fu determination- state estimation, security analysis and control - Various operating state cy, extremis and restorative; State transition diagram showing various state transite	generation of sevel contribution of sevel contribution of sevel contribution of sevel contribution of sevel conomic conomic conomic conomic conomic contribution respective. The sevel contribution of sevel contributions contrebutions contributions contributions contributing contribu	f volta rol us switch + ambo dispa mal dispa mal metho metho l cer Netw ial, al d con	0 1 1 1 1 1 1 1 1 1 1 1 1 1
Typical e absorption control: In generator capacitors Unit IV Increment iteration n controller Statemen constraint Priority-lis using full- Unit V EMS func levels - So topology o emergenc strategies	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System la voltage magnitude setting, tap setting of OLTC transformer and MVAR injects to maintain acceptable voltage profile and to minimize transmission loss. ECONOMIC DISPATCH AND UNIT COMMITMENT tal cost curve, co-ordination equations with and without loss, solution by direct meth nethod (No derivation of loss coefficients.)- Base point and participation factors- Ec added to LFC control. t of Unit Commitment problem- Constraints in Unit Commitment: spinning reser- se hydro constraints- fuel constraints and other constraints; Unit Commitment s at methods, forward dynamic programming approach, numerical problems only in pr load average production cost. COMPUTER CONTROL OF POWER SYSTEMSIN tions - Energy control centre functions: Monitoring, data acquisition and control, ener CADA: system hardware configuration –master station-remote terminal units- and fu determination- state estimation, security analysis and control - Various operating state cy, extremis and restorative; State transition diagram showing various state transit.	generation of sevel contribution of sevel contribution of sevel contribution of sevel contribution of sevel conomic conomic conomic conomic conomic contribution respective. The sevel contribution of sevel contributions contrebutions contributions contributions contributing contribu	f volta rol us switch + ambo dispa mal dispa mal metho metho l cer Netw ial, al d con	la la la la tcl or or or or or or tro
Typical ei absorption control: In generator capacitors Unit IV Increment iteration n controller Statemen constraint Priority-lis using full- Unit V EMS func levels - So topology of emergenc strategies Course O	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System la voltage magnitude setting, tap setting of OLTC transformer and MVAR injects to maintain acceptable voltage profile and to minimize transmission loss. ECONOMIC DISPATCH AND UNIT COMMITMENT tal cost curve, co-ordination equations with and without loss, solution by direct meth nethod (No derivation of loss coefficients.)- Base point and participation factors- Ec added to LFC control. t of Unit Commitment problem- Constraints in Unit Commitment: spinning reser s- hydro constraints- fuel constraints and other constraints; Unit Commitment s at methods, forward dynamic programming approach, numerical problems only in pr load average production cost. COMPUTER CONTROL OF POWER SYSTEMSIN tions - Energy control centre functions: Monitoring, data acquisition and control, ener CADA: system hardware configuration –master station-remote terminal units- and fu determination- state estimation, security analysis and control - Various operating stat cy, extremis and restorative; State transition diagram showing various state transit. Total (45	generation of sevel contribution of sevel contribution of sevel contribution of sevel contribution of sevel conomic conomic conomic conomic conomic contribution respective. The sevel contribution of sevel contributions contrebutions contributions contributions contributing contribu	f volta rol us switch + ambo dispa mal dispa mal metho metho l cer Netw ial, al d con	la la la la tcl or or or or or or tro
Typical ei absorption control: In generator capacitors Unit IV Increment iteration n controller Statemen constraint Priority-lis using full- Unit V EMS func levels - So topology of emergenc strategies Course O	xcitation system, modeling, static and dynamic analysis, stability compensation; n of reactive power: Relation between voltage, power and reactive power at a node; n jection of reactive power, Tap-changing transformer, numerical problems - System la voltage magnitude setting, tap setting of OLTC transformer and MVAR injects to maintain acceptable voltage profile and to minimize transmission loss. ECONOMIC DISPATCH AND UNIT COMMITMENT tal cost curve, co-ordination equations with and without loss, solution by direct meth nethod (No derivation of loss coefficients.)- Base point and participation factors- Ec added to LFC control. t of Unit Commitment problem- Constraints in Unit Commitment: spinning reser s- hydro constraints- fuel constraints and other constraints; Unit Commitment s t methods, forward dynamic programming approach, numerical problems only in pr load average production cost. COMPUTER CONTROL OF POWER SYSTEMSIN tions - Energy control centre functions: Monitoring, data acquisition and control, ener CADA: system hardware configuration –master station-remote terminal units- and fu determination- state estimation, security analysis and control - Various operating stat cy, extremis and restorative; State transition diagram showing various state transi 	generation of sevel contribution of sevel contribution of sevel contribution of sevel contribution of sevel conomic conomic conomic conomic conomic contribution respective. The sevel contribution of sevel contributions contrebutions contributions contributions contributing contribu	f volta rol us switch + ambo dispa mal dispa mal metho metho l cer Netw ial, al d con	la la la la tcl or or or or or or tro

:	Understand reactive power control methods for maintaining voltage profile against varying system load.
:	Formulate the optimal scheduling problems in power system.
:	Get the knowledge about the computer control of power systems.
ks	:
	Allen J. Wood and Bruce F.Wollenberg, "Power Generation, Operation and Control", Wiley India Ltd, New Delhi, Second Edition, Reprint 2016.
	Olle. I. Elgerd, 'Electric Energy Systems Theory – An Introduction', Tata McGraw Hill Publishing Company Ltd, New Delhi, 34 th reprint 2010.
	P. Kundur, 'Power System Stability & Control', Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10 th reprint 2011.
e E	Books:
	D.P. Kothari and I.J. Nagrath, 'Modern Power System Analysis', Fourth, Tata McGraw Hill Education Pvt., Limited, New Delhi, 2011.
	L.L. Grigsby, 'The Electric Power Engineering, Hand Book', CRC Press & IEEE Press, 2012
nc	e
	NPTEL courses on Power System Operation and Control, IIT, Bombay.
	NPTEL courses on Power System Generation, Transmission And Distribution, IIT Delhi.
	e I

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	1				1	1
CO2	2	2	2	2	2	2	2				2	2
CO3	1	1	1	1	1	1	1				1	1
CO4	2	2	2	2	2	2	2				2	2
CO5	2	2	2	2	2						1	1

18EEP1	B DISTRIBUTED GENERATION AND MICROGRID	L	Т	Ρ	С
		3	0	0	3
	Objectives:				
1.	To understand the concept of microgrid		<u> </u>		
<u>2.</u> 3.	To impart knowledge about distributed generation technologies, their interconnection	ion ir	n grio	k	
З.	To understand relevance of power electronics in DG,				
Unit I			9	+	0
	onal power generation: advantages and disadvantages, Energy crises, No	n-	J	•	0
conventi	onal energy (NCE) resources: review of Solar PV, Wind Energy systems, Fuel Ce and tidal sources	lls, r	nicro	o-turl	bine
Unit II	DISTRIBUTED GENERATIONS (DG		9	+	0
	of distributed generations, topologies, selection of sources, regulatory standards/ fran	newo	-		-
	onnecting Distributed resources to electric power systems: IEEE 1547. DG installation DG implementations. Energy storage elements: Batteries, ultra-capacitors, flywheels				
Unit III	IMPACT OF GRID INTEGRATION		9	+	0
	nents for grid interconnection, limits on operational parameters,: voltage, frequency,	THE	-	-	-
grid abno	ormal operating conditions, islanding issues. Impact of grid integration with NCE source reliability, stability and power quality issues.				
	BASICS OF A MICROGRID		9	+	0
Concept structure	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa		ogric	ds, t	/pic
Concept structure microgrid	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID		ogric	ds, t	/pic
Concept structure microgrid Unit V Modes o reactive techniqu	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa	nmur	ogric in D 9	ds, ty C an +	/pic d A 0
Concept structure microgrid Unit V Modes o reactive techniqu Microgrid	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total	nmur	ogric in D 9 nicati	ds, ty C an +	/pic d A 0
Concept structure microgrid Unit V Modes o reactive techniqu Microgrid Course	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total Outcomes:	nmur	ogric in D 9 nicati	ds, ty C an +	/pic. d A 0
Concept structure microgrid Unit V Modes o reactive techniqu Microgrid Course	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total (Dutcomes: mpletion of this course, the students will be able to	nmur	ogric in D 9 nicati	ds, ty C an +	/pic. d A 0
Concept structure microgrid Unit V Modes o reactive techniqu Microgrid Course	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total (Dutcomes: mpletion of this course, the students will be able to Explain various distributed generation systems	nmur	ogric in D 9 nicati	ds, ty C an +	/pic. d A 0
Concept structure microgrid Modes o reactive techniqu Microgrid Course	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total (Dutcomes: mpletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration.	nmur	ogric in D 9 nicati	ds, ty C an +	/pic. d A 0
Concept structure microgrid Unit V Modes o reactive techniqu Microgrid Microgrid Course Upon co CO1 CO2 CO3	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and comes, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total Outcomes: mpletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration. Understand the microgrids and their control schemes.	nmur	ogric in D 9 nicati	ds, ty C an +	/pic d A 0
Concept structure microgrid Modes o reactive techniqu Microgrid Microgrid Course Upon co CO1 CO2 CO3 CO4	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total (Dutcomes: mpletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration.	nmur	ogric in D 9 nicati	ds, ty C an +	/pic d A 0
Concept structure microgrid Modes o reactive techniqu Microgrid Course Upon co CO1 CO2 CO3 CO4 CO5	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa ds CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total (Dutcomes: Understand various distributed generation systems Understand various developments happening in the field of Grid integration. Understand the microgrids and their control schemes. Implement distributed generation in a hilly or remote place Configure a microgrid for a group of energy sources	nmur	ogric in D 9 nicati	ds, ty C an +	/pic. d A 0
structure microgrid Unit V Modes o reactive techniqu Microgrid Course	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa is CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total Outcomes: mpletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration. Understand the microgrids and their control schemes. Implement distributed generation in a hilly or remote place Configure a microgrid for a group of energy sources oks: H. Lee Willis, Walter G. Scott , 'Distributed Power Generation – Planning and Eval Decker Press, 2018, 1 st edition.	ces	9 hicati D)=4	is, ty is, ty ion k stanc	pase ard: riod
Concept structure microgrid Modes o reactive techniqu Microgrid Course Upon co CO1 CO2 CO3 CO4 CO5	and definition of microgrid, microgrid drivers and benefits, review of sources of and configuration of a microgrid, AC and DC microgrids, Power Electronics interfa s CONTROL AND OPERATION OF MICROGRID f operation and control of microgrid: grid connected and islanded mode, Active and power control, protection issues, anti-islanding schemes: passive, active and com es, microgrid communication infrastructure, Power quality issues in microgrids, reg d economics, Introduction to smart microgrids. Total (Dutcomes: mpletion of this course, the students will be able to Explain various distributed generation systems Understand various developments happening in the field of Grid integration. Understand the microgrids and their control schemes. Implement distributed generation in a hilly or remote place Configure a microgrid for a group of energy sources M. Lee Willis, Walter G. Scott, 'Distributed Power Generation – Planning and Eval	ces	9 hicati D)=4	is, ty is, ty ion k stanc	pic d A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Referen	ce Books:
1	John Twidell and Tony Weir, "Renewable Energy Resources" Tyalor and Francis Publications, 2015, 3 rd edition
2	DorinNeacsu, "Power Switching Converters: Medium and High Power", CRC Press, Taylor & Francis, 2006.
3	AmirnaserYezdani, and Reza Iravani, "Voltage Source Converters in Power Systems: Modeling, Control and Applications", IEEE John Wiley Publications, 2009
4	F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.
5	Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson, 'Facility Microgrids', General Electric Global Research Center, Niskayuna, New York, Subcontract report, May 2005
E-Refere	nce
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	2	1	2	1				2
CO2	1	2	2	2	2	1	2	1				2
CO3	1	2	2	2	2	1	2	1				2
CO4	1	2	2	2	2	1	2	1				2
CO5	1	2	2	2	2	1	2	1				2

18EEP	14	WIND AND SOLAR ENERGY SYSTEMS	L	Т	Ρ	С
	<u></u>		3	0	0	3
	Obj	ectives:				
<u>1.</u> 2.		Understand the concepts of power generation through Wind and Solar Power Learn optimal extraction of renewable power and their integration to grid				
۷.						
Unit I		PHYSICS OF WIND POWER		9	+	0
		ind power, Indian and Global statistics, Wind physics, Betz limit, Tip speed ratio, s				
and pito function		ntrol, Wind speed statistics-probability distributions, Wind speed and power-cumul	ative	dist	ribu	ior
Unit II		WIND GENERATOR TOPOLOGIES		9	+	0
Review	of	modern wind turbine technologies, Fixed and Variable speed wind turb	ines,	In	duct	ior
		Doubly-Fed Induction Generators and their characteristics, Permanent-Magr				
		Power electronics converters. Generator-Converter configurations, Converter C				
Unit III		THE SOLAR RESOURCE		9	+	0
		, solar radiation spectra, solar geometry, Earth Sun angles, observer Sun ar	ngles,	sc	olar (day
length,	Estin	nation of solar energy availability.				
Unit IV		SOLAR PHOTOVOLTAIC		9	+	0
	logie	s-Amorphous, monocrystalline, polycrystalline; V-I characteristics of a PV cel		-	Ŧ	U
		ay, Power Electronic Converters for Solar Systems, Maximum Power Point T			(MP	- т
	,			19	(~ .
	ms.C			Ŭ		21
Sigonan	ms.C	Converter Control.		0		
0	ms.C			9	+	0
Unit V		Converter Control. GRID INTEGRATION ISSUES		0	+	
Unit V Overvie	w of	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and read	ctive	9	1	0
Unit V Overvie power	w of regu	Converter Control. GRID INTEGRATION ISSUES	ctive	9 dur	ing g	Qria
Unit V Overvie power disturba	w of regu	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and read ulation, voltage and frequency operating limits, solar PV and wind farm beha	ctive	9 dur	ing g	O grid
Unit V Overvie power disturba	w of regu	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and read lation, voltage and frequency operating limits, solar PV and wind farm beha s. Power quality issues. Power system interconnection experiences in the w rations of solar PV and wind systems.	ctive avior orld.	9 dur Hyt	ing g orid a	O gric
Unit V Overvie power disturba isolated	w of regu ince: ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the warations of solar PV and wind systems. Total (45-	ctive avior orld.	9 dur Hyt	ing g orid a	O gric
Unit V Overvie power disturba isolated	w of regu inces ope	GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the warations of solar PV and wind systems. Total (45-comes:	ctive avior orld.	9 dur Hyt	ing g orid a	O gric
Unit V Overvie power disturba isolated Course Upon co	w of regu inces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the wrations of solar PV and wind systems. Total (45- Total (45- tecomes: etion of this course, the students will be able to:	ctive avior orld.	9 dur Hyt	ing g orid a	O grid and
Unit V Overvie power disturba isolated Course Upon co CO1	w of regu inces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the wrations of solar PV and wind systems. Total (45- Total (45- comes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation	ctive avior orld.	9 dur Hyt	ing g orid a	O grid and
Unit V Overvie power disturba isolated Course Upon co	w of regu inces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the wrations of solar PV and wind systems. Total (45- Total (45- tecomes: etion of this course, the students will be able to:	ctive avior orld.	9 dur Hyt	ing g orid a	O grid and
Unit V Overvie power disturba isolated Course Upon co CO1 CO2	ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the warations of solar PV and wind systems. Total (45- Total (45- tocomes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation	ctive avior orld. ⊦0)= 4	9 dur Hyt	ing g orid a	O grid and
Unit V Overvie power disturba isolated Course Upon co CO1 CO2 CO3 CO4	ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behase. Power quality issues. Power system interconnection experiences in the warations of solar PV and wind systems. Total (45- Converse: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization	ctive avior orld. ⊦0)= 4	9 dur Hyt	ing g orid a	O grid and
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5	w of regunces ope Out Dmpl	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the warations of solar PV and wind systems. Total (45- Total (45- Comes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems.	ctive avior orld. ⊦0)= 4	9 dur Hyt	ing g orid a	O grid and
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5	w of regunces ope Out Dmpl	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behase. Power quality issues. Power system interconnection experiences in the warations of solar PV and wind systems. Total (45- Converse: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems.	ctive avior orld. +0)=	9 dur Hyt 45 F	Perio	grid and
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5	w of regunces ope Out Dmpl	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the wirations of solar PV and wind systems. Total (45- Comes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems. Converters, Application and Design", Wiley In	ctive avior orld. +0)=	9 dur Hyt 45 F	Perio	grid and
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5 Text Bo	w of regunces ope Out Dmpl	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behase. Power quality issues. Power system interconnection experiences in the warations of solar PV and wind systems. Total (45- Converse: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems.	ctive avior orld. +0)=	9 dur Hyt 45 F	Perio	gric and
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2.	W of regunces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the wirations of solar PV and wind systems. Total (45- Comes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems. : Mohan, Net al. "Power Electronics: Converters, Application and Design", Wiley In Delhi, 2008. Bimbhra, P.S, "Power Electronics ", Khanna Publishers, New Delhi, 4thEdition, 20	ctive avior orld. +0)=	9 dur Hyt 45 F	Perio	grid and
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2.	W of regunces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the work rations of solar PV and wind systems. Total (45- rcomes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems. : Mohan, Net al. "Power Electronics: Converters, Application and Design", Wiley In Delhi, 2008. Bimbhra, P.S, "Power Electronics ", Khanna Publishers, New Delhi, 4thEdition, 20	ctive avior orld. +0)= dia (F	9 dur Hyt 45 I	td, N	grid and
Unit V Overvie power disturba isolated Course Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. Referen 1.	W of regunces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the wirations of solar PV and wind systems. Total (45- Converse: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems. E Mohan, Net al. "Power Electronics: Converters, Application and Design", Wiley In Delhi, 2008. Bimbhra, P.S, "Power Electronics ", Khanna Publishers, New Delhi, 4 th Edition, 20 Books: T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2012	ctive avior orld. +0)= 4 dia (F	9 dur Hyt 45 F	td, N	
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. Referen 1. 2.	W of regunces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. Power quality issues. Power system interconnection experiences in the wrations of solar PV and wind systems. Total (45- Comes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems. Converters, Application and Design", Wiley In Delhi, 2008. Bimbhra, P.S, "Power Electronics ", Khanna Publishers, New Delhi, 4 th Edition, 20 Books: T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2012 G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and	ctive avior orld. +0)= 4 dia (F	9 dur Hyt 45 F	ing g prid a Perid td, N ion. 2013	
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. Referen 1.	W of regunces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behas. s. Power quality issues. Power system interconnection experiences in the wrations of solar PV and wind systems. Total (45- Total (45- Comes: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems. : Mohan, Net al. "Power Electronics: Converters, Application and Design", Wiley In Delhi, 2008. Bimbhra, P.S, "Power Electronics ", Khanna Publishers, New Delhi, 4 th Edition, 20 Books: T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2012 G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley an S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", Mor H. Siegfried and R. Waddington, "Grid integration of wind energy conversion system	dia (F	9 dur Hyt 45 f 	td, N 2013	
Unit V Overvie power disturba isolated Upon co CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. Referer 1. 2. 3.	W of regunces ope	Converter Control. GRID INTEGRATION ISSUES grid code technical requirements. Fault ride-through for wind farms – real and readulation, voltage and frequency operating limits, solar PV and wind farm behases. Power quality issues. Power system interconnection experiences in the with rations of solar PV and wind systems. Total (45- Cornees: etion of this course, the students will be able to: Understand the physics behind the wind and solar power generation Implementation of optimal extraction techniques in renewable power generation Apply power electronics to renewable power optimization Understand integration techniques used, power quality issues and their mitigation Device methods to create an approximate energy conversion systems. : Mohan, Net al. "Power Electronics: Converters, Application and Design", Wiley In Delhi, 2008. Bimbhra, P.S, "Power Electronics ", Khanna Publishers, New Delhi, 4th Edition, 20 Books: T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2012 G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sorage", Model Systems, Solar Energy: Principles of Thermal Collection and Storage", Model Systems, Model Storage, Model Systems	dia (F	9 dur Hyt 45 I	td, N 2013 I, 2013	

6.	J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons, 2013, 4 th edition
7.	Rashid M.H., "Power Electronics: Circuits, Devices and Applications ", Pearson, 3 rd Edition, 2013.
E-Refere	nce
E-Refere	nce www.onlinecourses.nptel.ac.in

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1	1	1	0	1	1	1
CO2	1	1	1	1	1	1	1	1	0	1	1	1
CO3	1	1	1	1	1	1	1	1	0	1	1	1
CO4	1	1	1	1	1	1	1	1	0	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

	5 ELECTRICAL AND HYBRID VEHICLES	L	Т	Ρ	С
		3	0	0	3
	Objectives:				
To und	stand the operation and need of electrical vehicles, hybrid vehicles with its energy	storage	techr	nolog	ies
					-
Unit I			9	+	0
-	ations of Electric Vehicles (EV), Performance of Electric Vehicles: Traction M		aract	erist	ICS,
Iractive	Effort and Transmission Requirement, Vehicle Performance, Energy Consumptio	n			
Unit II	HYBRID ELECTRIC VEHICLES		9	+	0
	of Hybrid Electric Vehicle (HEV) Trains, Architectures of Hybrid Electric Drive	Trains S			
	Drive Trains and Parallel Hybrid Electric Drive Trains, Torque-Coupling Parallel			-	
	peed-Coupling Parallel Hybrid Electric Drive Trains, Torque-Coupling and Spe	•			
	ectric Drive Trains				
Unit III	ELECTRIC PROPULSION SYSTEMS		9	+	0
Functio	al block diagram of a typical electric propulsion system, Classification of electric	motor c	Irives	for	EV
	applications, Multiquadrant Control of Chopper-Fed DC Motor Drives, Perfor		-		
Control	f BLDC Machines, Switched Reluctance Motor Drives, SRM Drive Converter,	Generat	ing N	Node	e of
Operati	n, Vibration and Acoustic Noise in SRM				
			-1	1	1
Unit IV	ENERGY STORAGES		9	+	0
Battery	echnologies: Lead-Acid Batteries, Nickel-based Batteries, Lithium-Based Batteri				
	-		•		
	, Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig		•		
	-		•		
Operati	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahign and Power Capacity		d Fly	whe	els,
Operati	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES	gh-Speed	9	whe	els, 0
Operati Unit V Fuel ce	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Ve	gh-Speed	9	whe	els, 0
Operati Unit V Fuel ce	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy	gh-Speed	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel ce and cor	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota	gh-Speed	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel certain and cortain Course	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Ver rol strategy Total Dutcomes:	gh-Speed	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel cer and corr Course Upon c	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Total Dutcomes: npletion of this course, the students will be able to:	gh-Speed ehicle – d I (45+0)=	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel certain and cortain Course	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Total Dutcomes: npletion of this course, the students will be able to:	gh-Speed ehicle – d I (45+0)=	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel cer and corr Course Upon c CO1 CO2	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Total Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics.	gh-Speed ehicle – d I (45+0)=	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel cert and correct Course Upon c CO1	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn	gh-Speed ehicle – d I (45+0)=	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel cer and correct Course Upon c CO1 CO2 CO3	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Total Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives	gh-Speed ehicle – d I (45+0)=	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel cert and correct Course Upon c CO1 CO2 CO3 CO4	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Total Outcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's.	gh-Speed ehicle – d I (45+0)=	9 Sonfig	whee + gurat	els, 0 tion
Operation Unit V Fuel cert and correct Course Upon c CO1 CO2 CO3 CO4	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle	gh-Speed ehicle – d I (45+0)=	9 9 config 45 I	+ gurat	els, 0 tion
Operation Unit V Fuel cer and correct Course Upon c CO1 CO2 CO3 CO4 CO5 Text Bo	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle bks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric	gh-Speed ehicle – d I (45+0)= ologies.	9 9 config • 45 I	when the second	els, 0 iion ods
Operati Unit V Fuel ce and cor Course Upon c CO1 CO2 CO3 CO4 CO5	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig n and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New York	gh-Speed ehicle – d I (45+0)= ologies.	9 9 config • 45 I	when the second	els, ion ods
Operation Unit V Fuel cert and correct Course Upon c CO1 CO2 CO3 CO4 CO5 Text Bo	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle bks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric	gh-Speed ehicle – d I (45+0)= ologies.	9 9 config • 45 I	when the second	els, ion ods
Operation Unit V Fuel cer and correct Course Upon c CO1 CO2 CO3 CO4 CO5 Text Br 1.	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New Y 2016	gh-Speed ehicle – d I (45+0)= ologies.	9 9 config • 45 I	when the second	els, 0 iion ods
Operati Unit V Fuel ce and cor Course Upon c CO1 CO2 CO3 CO4 CO5 Text Bo 1. Refere	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle wks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New Y 2016 Store	gh-Speed ehicle – d I (45+0)= ologies.	9 config : 45 I	when gurat Peric	els, 0 iion ods
Operation Unit V Fuel cer and correct Course Upon c CO1 CO2 CO3 CO4 CO5 Text Br 1.	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahigh and Power Capacity FUEL CELL VEHICLES - Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Tota Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle oks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New Y 2016	gh-Speed ehicle – d I (45+0)= ologies.	9 config : 45 I	when gurat Peric	els, 0 iion ods
Operati Unit V Fuel ce and cor Course Upon c CO1 CO2 CO3 CO4 CO5 Text Bo 1. Refere	Basic Principles and its Performance, Ultracapacitor Technologies- Ultrahig n and Power Capacity FUEL CELL VEHICLES – Characteristics- Types – hydrogen Storage Systems and Fuel cell Electric Verol strategy Total Dutcomes: npletion of this course, the students will be able to: Understand the operation of Electrical Vehicles and its energy storage techn Know Fuel cell, types and characteristics. Operate the vehicle with BLDC and SRM motor drives Design the EV's and HEV's. Choose the energy storage technology for electric vehicle bks: Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi, 'Modern Electric Fuel Cell Vehicles Fundamentals, Theory, and Design', CRC PRESS, New Y 2016 EeBooks: Iqbal Hussain , "Electric and Hybrid Vehicles: Design Fundamentals" , CRC F	gh-Speed ehicle – d I (45+0)= ologies. ologies.	9 Sconfig 451 Elect d edi yylor	whee gurat Peric	els, 0 tion

E-Referenc	e
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1			2		1	1			1
CO2		2		1	3		2				1	
CO3				2	2					2		
CO4	1		3	3		2			3		2	
CO5		3					3	1				2

18EEP	16	SOFT COMPUTING AND MACHINE LEARNING	L 3	<u>Т</u> 0	P 0	C 3
Course	e Objec	ctives:	5	•	U	J
1	T	provide adequate knowledge about neural network and fuzzy systems				
2		p provide adequate knowledge of genetic algorithms and its application to econom	ic d	ispa	atch	and
		nit commitment problems		-1		
3		o expose the students to the concepts of machine learning				
Unit I	B	ASIC CIRCUITS ANALYSIS		9	+	0
	layer -	Biological neuron – Artificial neuron – Neuron model – Supervised and unsur - Multi layer feed forward network – Learning algorithm- Back propagation ne				
Unit II		ETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC		9	+	0
functior	n – Kno	 Fuzzy sets – Fuzzy relations – Fuzzification – Defuzzification – Fuzzy rules – N owledge base – Decision-making logic – Introduction to neuro fuzzy system- Adap / logic control: Home heating system – fuzzy PID control, Fuzzy based motor cont 	tive			
Unit III	G	ENETIC ALGORITHMS		9	+	0
		gradient Search – Non-gradient search – Genetic Algorithms: binary and re	al r	-	- sen	-
method	ls – apj	ection methods, crossover and mutation operators for binary and real coding – co plications to economic dispatch and unit commitment problems.				1
Unit IV	M	ACHINE LEARNING MODELS		9	+	0
					•	-
Genera	tive mo	odels: Definition and characteristics, probabilistic graphical models, density estima	tior	in I	earn	ing
			itior		1	
Unit V	М	ACHINE LEARNING CLASSFIERS		9	+	0
Unit V Combir	M Ming cla	ACHINE LEARNING CLASSFIERS Issifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec		9	+	0
Unit V Combir	M Ming cla	ACHINE LEARNING CLASSFIERS		9	+	0
Unit V Combir	M Ming cla	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies.	ial t	9 opic	+ s su	0 ch
Unit V Combir as man	M ning cla ifold le	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4	ial t	9 opic	+ s su	0 ch
Unit V Combir as man Course	M hing cla ifold le Outco	ACHINE LEARNING CLASSFIERS issifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 pmes:	ial t	9 opic	+ s su	0 ch
Unit V Combir as man Course	M hing cla ifold le Outco omplet	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 pmes: ion of this course, the students will be able to	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course	M hing cla ifold le e Outco omplet : Abili	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course Upon c CO1	M ining cla ifold le e Outco omplet : Abili theo	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems.	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course Upon co CO1 CO2	M ning cla ifold le e Outco omplet : Abili theo : To u	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems.	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course Upon c CO1 CO2 CO2 CO3	M ning cla ifold le e Outco omplet : Abili theo : To u : To u	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems.	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course Upon c CO1 CO2 CO2 CO3 CO4	M ning cla ifold le e Outco omplet : Abili theo : To u : To u : Solv	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. /e economic dispatch and unit commitment problem using genetic algorithm	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course Upon c CO1 CO2 CO2 CO3 CO4	M ning cla ifold le e Outco omplet : Abili theo : To u : To u : Solv	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems.	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course Upon co CO1 CO2 CO2 CO3 CO4 CO5	M ning cla ifold le e Outco e Outco : Abili theo : To u : To u : Solv : Des	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. /e economic dispatch and unit commitment problem using genetic algorithm	ial ti 5+0	9 opic)=4	+ s su 5 Pe	0 ch
Unit V Combir as man Course Upon c CO1 CO2 CO2 CO3 CO4 CO5 Text Be	M ning cla ifold le e Outco omplet : Abili theo : To u : Solv : Des ooks:	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. // e economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system	ial tr	9 opic)=4: 7 cor	5 Pe	0 ch riod
Unit V Combir as man Course Upon c CO1 CO2 CO3 CO4 CO3 CO4 CO5 Text Bo 1. La	M ning cla ifold le e Outco omplet : Abili theo : To u : Solv : Des ooks: aurance	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. ve economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system	eory	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch riod
Unit V Combir as man Course Upon c CO1 CO2 CO3 CO4 CO3 CO4 CO5 Text Bo 1. La 2. S.	M ning cla ifold le e Outco omplet : Abili theo : To u : To u : Solv : Des ooks: aurance N.Siva	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. //e economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system eFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E	eory	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch riod
Unit V Combir as man Course Upon c CO1 CO2 CO3 CO4 CO3 CO4 CO5 Text Bo 1. La 2. S. 3 Ti	M ning cla ifold le e Outco omplet : Abili theo : To u : To u : Solv : Des ooks: aurance N.Siva mothy	ACHINE LEARNING CLASSFIERS Issifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 Domes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the Dry and apply them to electrical engineering problems. Understand and apply computing platform and software for engineering problems. Understand machine learning concepts and apply for engineering problems. Understand machine learning concepts and apply for engineering problems. Understand machine learning concepts and apply for engineering problems. DeFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks',Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997.	5+0	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch riod
Unit V Combir as man Course Upon c CO1 CO2 CO3 CO4 CO3 CO4 CO5 Text Bo 1. La 2. S. 3 Ti	M ning cla ifold le e Outco omplet : Abili theo : To u : To u : Solv : Des ooks: aurance N.Siva mothy	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. //e economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system eFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks',Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E	5+0	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch riod
Unit V Combir as man Course Upon c CO1 CO2 CO3 CO4 CO3 CO4 CO5 Text Bo 1. La 2. S. 3 Ti	M ning cla ifold le e Outco omplet : Abili theo : To u : Solv : Des ooks: aurance N.Siva mothy Marsla	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. // e economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system eFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks',Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997. and, 'Machine Learning: An Algorithmic Perspective', Chapman & Hall/CRC, 2009	5+0	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch riod
Unit V Combination as man Course Upon c CO1 CO2 CO3 CO4 CO5 Text Ba 1. 2. 3. 4. S. 3. 4. Sin	M ning cla ifold le e Outco omplet : Abili theo : To u : To u : To u : Solv : Des ooks: aurance N.Siva mothy Marsla	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. re economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system eFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks',Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997. and, 'Machine Learning: An Algorithmic Perspective', Chapman & Hall/CRC, 2009 boks: hykin, 'Neural Networks', Pearson Education, 2009, 3 rd edition.	5+0	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch riod
Unit V Combinasina as man Course Upon c CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3 4 5. 3 4 5. 2 Hag	M ning cla ifold le e Outco omplet : Abili thec : To u : To u : To u : Solv : Des ooks: aurance N.Siva mothy Marsla mothy Marsla	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. ve economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system eFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997. and, 'Machine Learning: An Algorithmic Perspective', Chapman & Hall/CRC, 2009 poks: hykin, 'Neural Networks', Pearson Education, 2009, 3 rd edition. emuth, Beale, " Neural Network Design", Cengage Learning, 2012.	5+0	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch riod
Unit V Combinasion as man Course Upon c CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3 4 5. 3 4 5. 2 Hag	M ning cla ifold le e Outco omplet : Abili thec : To u : To u : To u : Solv : Des ooks: aurance N.Siva mothy Marsla mothy Marsla	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. re economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system eFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks',Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997. and, 'Machine Learning: An Algorithmic Perspective', Chapman & Hall/CRC, 2009 boks: hykin, 'Neural Networks', Pearson Education, 2009, 3 rd edition.	5+0	9 opic)=4: 7 cor	+ s su 5 Pe	0 ch rioc
Unit V Combination as man Course Upon c CO1 CO2 CO3 CO4 CO5 Text Bo 1. 2. 3. 14 2. 1 2 1 2 3 1 2 3 1 2 3 N.F	M ning cla ifold le e Outco omplet : Abili theo : To u : Solv : To u : Solv : Des ooks: aurance N.Siva mothy Marsla mothy Marsla	ACHINE LEARNING CLASSFIERS assifiers: Advantages, boosting, hierarchical classifiers, and issues; Selected spec arning and case studies. Total (4 omes: ion of this course, the students will be able to ity to understand and apply basic science, circuit theory, Electro-magnetic field the ory and apply them to electrical engineering problems. understand and apply computing platform and software for engineering problems. understand machine learning concepts and apply for engineering problems. ve economic dispatch and unit commitment problem using genetic algorithm ign a fuzzy controller based home heating system eFausett, Englewood cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Edu nandam and S.N.Deepa,' Principles of Soft computing, Wiley India Edition, 2nd E J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997. and, 'Machine Learning: An Algorithmic Perspective', Chapman & Hall/CRC, 2009 poks: hykin, 'Neural Networks', Pearson Education, 2009, 3 rd edition. emuth, Beale, " Neural Network Design", Cengage Learning, 2012.	cation	9 opic)=4: 7 cor	+ s su 5 Pe 2010 013	0 ch rioc

E-References:

1 www.onlinecourses.nptel.ac.in

2 www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2	2						2
CO2	1	2	3	3	3	2						2
CO3	1	2	2	2	2	2						2
CO4	1	2	2	2	2	2						2
CO5	1	2	3	3	3	2						2

18EEP17	ADVANCED ELECTRIC DRIVES	L	Т	Р	С
		3	0	0	3
Course ob	ojectives:				
1.	To know about the overview of Electrical drives.				
2.	To know about the Vector control strategies for AC motor drives.				
3.	To understand the concepts of various DSP based control.				
-					
UNIT I	POWER CONVERTERS FOR AC DRIVES		9	+	0
	rol of inverter, selected harmonic elimination, space vector modulation, current con				
	er, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper,				
as line side	e rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridg	e as	a 4-	Q dr	ive.
			•	<u> </u>	
UNIT II	INDUCTION MOTOR DRIVES	0.00	9	+ invo	0 rtor
	ansformations and reference frame theory, modeling of induction machines, volt control, vector control, direct torque and flux control(DTC).	aye	ieu	mve	ner
CONTION					
UNIT III	SYNCHRONOUS MOTOR DRIVES		9	+	0
	of synchronous machines, open loop v/f control, vector control, direct torque control,	CSI	-	· ·	Ţ
	us motor drives.				
UNIT IV	PERMANENT MAGNET MOTOR AND SWITCHED RELUCTANCE MOTOR DRIVES		9	+	0
Modelina	of synchronous machines, open loop v/f control, vector control, direct torque	contr	ol. (CSI	fed
	us motor drives. Various topologies for SRM drives, comparison, Closed loop sp				
control of S	SRM.				-
					1
UNIT V	DSP BASED MOTION CONTROL		9	+	0
	SPs in motion control, various DSPs available, realization of some basic blo	cks	in D	SP	for
Implement	ation of DSP based motion control.				
	Total (45	r0)-	<u>/5 F</u>	Dorid	h
Course O		<u></u>	-01		245
	bletion of this course, the students will be able to:				
CO1 :	Explain DSP based motion control.				
CO1 :	Understand the basics of Permanent magnet motor and Switched reluctance motor	or driv	/es		
	Learn the concepts of Synchronous motor drives.	i un			
CO4 :	Gain knowledge of Induction motor drives.				
CO5 :	Apply Power converters for AC drives.				
Text Book					
1.	B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia,				
2.	P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery ar	ld Dr	ive		
<u> </u>	Systems", John Wiley & Sons, 2013.				
Reference	Books				
1.	H. A. Taliyat and S. G. Campbell, " DSP based Electromechanical Motion Control	CE	20		
1.	press, 2013.	, 01			
2.	R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor Drives", (CRC			
	Press, 2010,1 st edition.				
E-Referen	Ces				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3	2	2	1	1	1			1	1
CO2	3	3	3	3	3	1	1	1			1	1
CO3	1	3	3	3	3	1	1	1				
CO4	1	3	3	3	3	1	1	1				1
CO5	3	3	3	3	3	1	1	1			1	1

	COMPUTATIONAL ELECTROMAGNETICS	L -	Г Р) (0	C 3
Course Ol	ojectives:	3	0 0	3
1.	To study the fundamental concepts and analytical methods.			
2.	To give basic knowledge on finite difference methods.			
3.	To understand the concept of variable methods.			
4.	To provide adequate knowledge on moment methods.			
5.	To gain knowledge on finite element method.			
Unit I	FUNDAMENTAL CONCEPTS AND ANALYTICAL METHODS) +	0
Separation	EM theory – Classification of EM problems – Superposition principle – Unique of variables in three coordinate systems – Series expansion – Practical application phere, scattering cross sections.			
Unit II	FINITE DIFFERENCE METHODS	g) +	0
stability of	rence schemes – Finite differencing of Parabolic, Hyperbolic and Elliptic PDEs FD solutions – Practical applications: Transmission lines, Yee's finite difference al g for non-rectangular systems – Numerical integration: Euler's rule, Trapezoidal rule,	lgorithr	n – F	inite
Unit III	VARIABLE METHODS	ç	-	0
method -	in linear spaces – Calculus of variations – Construction of functional from PDEs Weighted Residual method – Collocation method: Subdomain method, Galerkin ethod – Eigen value problems.			
Unit IV	MOMENT METHODS	9) +	0
Differentia	equations - Integral equations - Green's functions - Applications: Quasi-static prob	lems, S	Scatt	ering
by conduct human boo	ing cylinder, Hallen's IE, Pocklington's IE, Expansion and weighting functions, EM a ly.	absorpt	ion i	ו the
Unit V	FINITE ELEMENT METHOD	9) +	0
Solution of mesh gene	Laplace's equation – Solution of Poisson's equation – Solution of the wave equateration: Rectangular domains, Arbitrary domains – Bandwidth reduction – Higher of ensional elements – Infinite element method – Finite-element time-domain method.	tion – /	Autor	natio
	Total (45-	+0)= 45	5 Per	iods
Course O		+0)= 4	5 Per	iods
		+0)= 4	5 Per	iods
	bletion of this course, the students will be able to:	+0)= 45	5 Per	iods
Upon com	itcomes:	+0)= 45	5 Per	iods
Upon com CO1 :	Itcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods.	+0)= 45	5 Per	iods
Upon com CO1 : CO2 :	utcomes:	+0)= 45	5 Per	iods
Upon com CO1 : CO2 : CO3 :	Itcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications.	+0)= 45	i Per	iods
Upon com CO1 : CO2 : CO3 : CO4 :	utcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method.	+0)= 45	5 Per	iods
Upon com CO1 : CO2 : CO3 : CO4 : CO5 :	utcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method.			
Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Book	utcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. s: Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pr	ress, 4		
Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Book 1.	utcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. s: Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pr 2018. Matthew N.O. Sadiku, "Elements of Electromagnetics", CRC Press, 7 th Edition, 202	ress, 4		
Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Book 1. 2.	utcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. s: Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pr 2018. Matthew N.O. Sadiku, "Elements of Electromagnetics", CRC Press, 7 th Edition, 202	ress, 4 21.	th Ed	ition
Upon com CO1 : CO2 : CO3 : CO4 : CO5 : Text Book 1. 2. Reference	utcomes: Deletion of this course, the students will be able to: Understand the fundamental concepts of field theory and analytical methods. Understand the finite difference methods and applications. Analyze the Variable methods of electromagnetics. Analyze the concepts of Moment methods. Gain knowledge on the concept of finite element method. s: Matthew N.O. Sadiku, "Computational Electromagnetics with MATLAB", CRC Pr 2018. Matthew N.O. Sadiku, "Elements of Electromagnetics", CRC Press, 7 th Edition, 202 Books: Thomas Rylander, Par Ingelstorm, "Computational Electromagnetics", Springer Pu	ress, 4 21.	th Ed	ition

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	1	2	1	1	2	1	1	2
CO2	3	3	3	2	1	2	1	1	2	2	1	2
CO3	3	3	1	1	2	1	2	1	1	2	1	1
CO4	3	3	2	1	1	1	2	2	1	2	2	2
CO5	3	3	2	2	1	1	2	3	1	2	2	2

18EEP1	9 SPECIAL ELECTRICAL MACHINES		т	Р	С
TOLLF		3	0	0	3
Course	Objectives:			_ <u> </u>	
1	Learn the fundamental concepts of special electric machines				
2	Learn proper selection of special machines based on applications				
Unit I	SYNCHRONOUS RELUCTANCE MOTORS		9	+	0
	ctional features – Types – Axial and radial air gap motors – Operating principle – Re - Characteristics – Vernier motor	luctand	ce –	Pha	sor
				Ι.	
Unit II	PERMANENT MAGNET BRUSHLESS D.C. MOTORS of operation – Types – Magnetic circuit analysis – EMF and torque equations – Power	contro	9	+ M	0
	ristics and control.	control		- 1010	5101
11			•	T.	0
Unit III Bringiple	PERMANENT MAGNET SYNCHRONOUS MOTORS of operation – EMF and torque equations – Reactance – Phasor diagram – Power con	trollore	9	+	0
	ppere requirements – Torque speed characteristics - Microprocessor based control.	lioners	- 0	Jiive	ner
Unit IV	SWITCHED RELUCTANCE MOTORS		9	+	0
	tional features – Principle of operation – Torque prediction – Power controllers – No	n-linea	ir an	alysi	-
	cessor based control - Characteristics – Computer control.			,	
				-	
Unit V	STEPPING MOTORS		9	+	0
	ctional features – Principle of operation – Variable reluctance motor – Hybrid motor – Sir ations – Theory of torque predictions – Linear and non-linear analysis – Characteristics				
conngui				ound	,
	Total (15+0)=	45	Perio	ods
Course	Outcomes:				
Upon co	mpletion of this course, the students will be able to:				
CO1	: Understand the principles behind the principle of operation of different special made	hines			
CO2	: Apply the electromagnetic concepts in development of EMF and Torque in machin	es			
CO3	: Select the control structure in terms of hardware to control the special machines				
CO4	: Select appropriate control techniques for efficient control of special machines				
CO5	Develop strategy and methods to implement suitable application-based projects				
Taxt Da					
Text Bo	T.J.E. Miller, "Brushless Permanent Magnet and Reluctance Motor Drives", Claren	don Pr	000	Ovfo	ord
1	1989. 2 nd edition			OXIC	лu,
2.	P.P. Acarnley, "Stepping Motors – A Guide to Motor Theory and Practice", Peter Pe	rengrin	nus,	Lond	on,
	1982.				
3	R. Krishnan, "Switched reluctance motor drives", CRC Press, 2017.				
4	R. Krishnan , "Permanent Magnet Synchronous and Brushless DC Motor Drives",	CRC F	Pres	s, 20	10
E-Refer	ences:				
1	www.onlinecourses.nptel.ac.in				
2	www.class-central.com				
3	www.mooc-list.com				

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	0	1	1	0	1	1	1
CO2	1	1	1	1	1	0	1	1	0	1	1	1
CO3	1	1	1	1	1	1	1	1	0	1	1	1
CO4	1	1	1	1	1	1	1	1	0	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

18EEP20	ELECTRICAL WIRING, ESTIMATION AND COSTING	- T	Р	С
IOEEFZU	ELECTRICAL WIRING, ESTIMATION AND COSTING		Г 0	3
Course Ob		/ 0	v	Ŭ
<u></u>	Knowledge of I.E rules for different types of electrical installations.			
2.	Planning and preparation of different installation projects			
3.	Knowledge on the costing and estimates of different installations.			
4.	Knowledge on repairs and maintenance of electrical equipment.			
				_
Unit I	ELECTRICAL WIRING AND INDIAN ELECTRICITY RULES	9	+	0
precautions termination,	ymbols, need of electrical symbols, examples of wiring and schematic diagram, El is in handling the tools, wiring system, sizes of wires, stranded wires, types of wires, wir , difference between neutral and earth wire, domestic and industrial panel wiring. tricity rules for wiring, Installation of earth electrode as per I.E rule. Indian Electricity A	e spli Testir	cing and to	and
110:411	ESTIMATION AND COSTING OF DOMESTIC AND INDUSTRIAL WIRING	0	T .	•
Unit II	ESTIMATION AND COSTING OF DOMESTIC AND INDUSTRIAL WIRING inciples of estimation - Electrical Schedule of rates, catalogues, Survey and sour	9	+	0
of appropria	estimates Quantity and cost of material required. Purchase system, Purchase enquiry ate purchase mode, Comparative statement, Purchase orders, Payment of bills. Industrial wiring : layout, load calculation, cable selection, earthing, selection of switc and costing.			
		-	-	
Unit III	ESTIMATION OF OVERHEAD TRANSMISSION LINES onents of overhead lines, Line supports, Factors governing height of pole, Conductor r	9	+	0
configuratio	r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate	rs, cor rials	ightr	ors
configuratio arrestors, e conductor fr Unit IV	or for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, or rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM	rs, cor rials I Cleara	ightr	ors
configuratio arrestors, e conductor fr Unit IV	or for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS	rs, cor rials Cleara s. 9	ightr ince:	ors ing of 0
configuratio arrestors, e conductor fr Unit IV	or for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, or rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM	rs, cor rials Cleara s. 9 equire system	ightr ince: + d for n, ty	the
configuratio arrestors, e conductor fr Unit IV J Overhead d overhead di of service co to overhead	or for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. rule lines and service connection.	s, cor rials Cleara s. 9 equire system les pe	ightr inces + d for m, ty ertair	the pessions
configuratio arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of	or for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru	rs, cor rials Cleara s. 9 quire system les per ons, g diagra	ightr inces + d for n, ty ertair raph am,	tors ing of 0 the pes ing ical key
configuratio arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs	or for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	s, cor rials Cleara s. 9 equire system les pe ons, g diagra on au	ightr inces + d for n, ty ertair raph am,	tors ing of 0 the pes ing ical key
configuratio arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs	r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. On of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	rs, cor rials Cleara s. 9 quire system les per ons, g diagra	ightr inces + d for n, ty ertair raph am,	the pessing in g
configuratio arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation	or for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate prection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS distribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	s, cor rials Cleara s. 9 equire syste les pe ons, g diagr on au 9 on of cost	ightr inces + d for m, ty ertair raph am, ixilia 	the pessing in a second
configuratio arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation	r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing. ESTIMATING AND COSTING OF REPAIRS AND MAINTENANCE OF ELECTRICAL DEVICES AND EQUIPMENT er, small motor, automatic electric iron, table/ceiling fan, ICDP/ICTP Switch, preparati rk of the product, preparation of material quantity sheet for the product, materials and ance work, estimation of repairing cost and overall cost, tools used for repairs &main of cost schedule for repair and maintenance of automatic electric iron, single phase transformer, mixer grinder, D.O.L. Starter.	s, cor rials Cleara s. 9 equire system les per ons, g diagro on au on au 9 on of cost tenan	ightr ince: + d for m, ty ertair raph am, i viiia + deta requi ce w	ing of the pessing ical key ries 0 iled rork
configuratio arrestors, e conductor fr Unit IV I Overhead di of service ca to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starta drawing wor for maintena Preparation electric fan,	r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	s, cor rials Cleara s. 9 equire system les per ons, g diagro on au on au 9 on of cost tenan	ightr ince: + d for m, ty ertair raph am, i viiia + deta requi ce w	ing of the pessing ical key ries 0 iled rork
configuratio arrestors, e conductor fr Unit IV I Overhead d overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation electric fan,	r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	s, cor rials Cleara s. 9 equire system les per ons, g diagro on au on au 9 on of cost tenan	ightr ince: + d for m, ty ertair raph am, i viiia + deta requi ce w	ing of the pessing ical key ries 0 iled rork
configuratio arrestors, e conductor fr Unit IV I Overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing woo for maintena Preparation electric fan, Course Out	r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay on spacing and clearances, span lengths, overhead line insulators, insulator mate rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. On of substation, selection and location of site for substation, main electrical connection r various types of apparatus and circuit elements on substation, main connection typical sub stations, equipment for substation and switchgear installations, substati station earthing. ESTIMATING AND COSTING OF REPAIRS AND MAINTENANCE OF ELECTRICAL DEVICES AND EQUIPMENT er, small motor, automatic electric iron, table/ceiling fan, ICDP/ICTP Switch, preparati rk of the product, preparation of material quantity sheet for the product, materials and ance work, estimation of repairing cost and overall cost, tools used for repairs &main of cost schedule for repair and maintenance of automatic electric iron, single phase transformer, mixer grinder, D.O.L. Starter.	s, cor rials Cleara s. 9 equire system les per ons, g diagro on au on au 9 on of cost tenan	ightr ince: + d for m, ty ertair raph am, i viiia + deta requi ce w	ing of the pessing ical key ries 0 iled rork
configuratio arrestors, e conductor fr Unit IV I Overhead d overhead di of service co to overhead Classificatio symbols for diagram of supply, subs Unit V D.O.L. starte drawing wor for maintena Preparation electric fan,	r for overhead transmission line, cross arms, pole brackets and clamps, guys and stay in spacing and clearances, span lengths, overhead line insulators, insulator mate rection of supports, setting of stays, earthing of lines, Guarding of overhead lines, G rom ground, Spacing between conductors, I.E rules pertaining to LV transmission line ESTIMATION OF OVERHEAD AND UNDERGROUND DISTRIBUTIONSYSTEM AND SUBSTATION INSTALLATIONS listribution system and underground distribution system : materials and accessories re- istribution system, estimate for 440V/3-phase/ 4 wires or 3 wires overhead distribution onnections, method of installation of service connection(1-phase and 3-phase), I.E. ru d lines and service connection. on of substation, selection and location of site for substation, main electrical connection typical sub stations, equipment for substation and switchgear installations, substati station earthing.	s, cor rials Cleara s. 9 equire system les per ons, g diagro on au on au 9 on of cost tenan	ightr ince: + d for m, ty ertair raph am, i viiia + deta requi ce w	ing ing ing ing ical key ries 0 ilec

CO4	:	To prepare detail estimate and costing of overhead transmission line, overhead and underground
		distribution projects following IE rules.
CO5	:	To comprehend the estimation of substations.
CO6	:	To prepare estimates for repairs and maintenance of electrical devices and equipment
Text Bo	oks	
4		Raina K. B. and Bhattacharya S.K. " Electrical Design, estimating & Costing", New Age
1.		International (p) Limited, New Delhi,2017 2 nd edition.
2.		Gupta J.B., "Electrical Installation Estimating & Costing", S. K. Kataria& Sons, New Delhi,2015.
3.		Uppal S.L. "Electrical Estimating & Costing", New Age International (p) Limited, New Delhi ,2018
Referen	се	Books:
1.		SurjithSingh, "Electrical Estimating and Costing", Danpat Rai &Co2016.
2.		CEA Regulations 2019
3.		I.E rules for wiring and supply act manuals.
E-Refer	enc	e:
1		www.onlinecourses.nptel.ac.in

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	3	1	1	1					1
CO2	3	2	2	2	1	1	1			1		
CO3	3	1	1	1	2	2	1	1				1
CO4	3	3	2	2	2	3	1	1	1	1	1	
CO5	3	3	2	2	2	1	1					
CO6	2	2	3	2	1	3	2	1	1	1	1	

18EEF	P21	TOTAL QUALITY MANAGEMENT	I	Т	Р	С
IULLI	21		3	0	0	3
			5	U	U	5
Cours	<u>م</u>	bjectives:				
1.		To understand the statistical approach for quality control.				
2.		To Learn about the TQM principle.				
<u> </u>						
		To introduce the concept of statistical process control				
4.		To provide awareness on TQM standards		- !		
5.		To create an awareness about the ISO and QS certification process and its need for	or th	e ind	JUST	les
11		INTRODUCTION				•
Unit I	1. ¹	INTRODUCTION		9	+	0
		of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techni				
		asic concepts of Total Quality Management, Historical Review, Principles of TQN				
		, Role of Senior Management, Quality Council, Quality Statements, Strategic Pla	anni	ng,	Dem	ning
Philos	opr	y, Barriers to TQM Implementation.				
110:4 1	1					•
Unit I				9	+	0
		satisfaction - Customer Perception of Quality, Customer Complaints, Service Qu				
		, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Rewa				
		Benefits, Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, H				
		ip – Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship	D	evel	opm	ent,
Perfor	ma	nce Measures – Basic Concepts, Strategy, Performance Measure.				
					r —	-
Unit I		STATISTICAL PROCESS CONTROL (SPC)		9	+	0
		tools of quality, Statistical Fundamentals – Measures of central Tendency and Disper				
		le, Normal Curve, Control Charts for variables and attributes, Process capability, Conc	ept	of six	k sig	ma,
New s	eve	n Management tools.				
11					<u> </u>	
Unit I				9		0
		arking – Reasons to Benchmark, Benchmarking Process, Quality Function Deplo				
		Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Mai	nter	anco	e (11	-IVI)
- Con	cep	t, Improvement Needs, FMEA – Stages of FMEA.				
11	,					•
Unit V		QUALITY SYSTEMS		9	+	0
		SO 9000 and Other Quality Systems, ISO 9000:2000 Quality System - Elements, In				
Qualit	y 5	vstem, Documentation, Quality Auditing, QS 9000, ISO 14000 – Concept, Requireme	nts a	and	sene	ents
		T-(-!//P	0)	45.1	<u>.</u>	
•		Total (45-	+0)=	45	Perio	bas
Cours	sec	utcomes:				
Upon	con	pletion of this course, the students will be able to:				
CO1	•	Understand the importance of quality, leadership and motivation in TQM				
CO2	•	Understand the problem of customers and continuous process improvement in supp	lior	nart	nore	hin
002	•	selection and rating	ner	part	1013	mp,
CO3		Recall the seven traditional tools, management tools and sigma concepts in TQM				
CO4	·	Identify the TQM tools and know the performance measures, quality control in TQM				
	·					
CO5		Understand the need for various quality control systems and quality auditing				
CO6		Perform the case study on ISO 9000 and 14000.				
Toyt F	200	ka				
Text E	500				01 0	07
1.		Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education, Inc. 2018) IS	NIDC	01-2	97-
		0260-6.2018				

Referenc	e Books:
1.	James R.Evans& William M.Lidsay, "The Management and Control of Quality", (5th Edition), South-
	Western (Thomson Learning), 2002 (ISBN 0-324-06680-5).
2.	Feigenbaum.A.V. "Total Quality Management, McGraw Hill, 2004.
3.	Oakland.J.S. "Total Quality Management Butterworth "Hcinemann Ltd., Oxford. 1989.
4.	Narayana V. and Sreenivasan, N.S. "Quality Management - Concepts and Tasks", New Age
	International 1996.
5.	Zeiri. "Total Quality Management for Engineers", Wood Head Publishers, 1991.
E-Refere	nces:
1	http://textofvideo.nptel.ac.in/video.php?courseId=110104080
2	https://nptel.ac.in/courses/110104085/

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		2			2		3	3	3	3	2
CO2	1		2			2		3	3	3	3	2
CO3	1		1			1		1	1	1	1	1
CO4	1		2			2		2	2	2	2	2
CO5	1		2			2		3	3	3	3	2
CO6	1		1			1		1	1	1	1	1

18EEP22	RESTRUCTURED POWER SYSTEM	L -	Г)	<u>Р</u> 0	С 3
Course Ob	ojectives:	5	,	0	5
1	Know about the implementation of power Systems based on applications				
2	Learn various safety equipment and their installations				
3	Get a clear awareness about automation in power Systems				
Unit I	POWER SYSTEM RESTRUCTURING	ç		+	0
Participant	n –Deregulation - Need for deregulation – Power system restructure models - E s – GENCOS- DISCOS- TO- ISO- PX- SC - trading arrangements - Operational Pla ectricity Market Participants - Causes of restructuring- types and effects of restructur	anning	Â	ctivit	ies
Unit II	ELECTRICAL UTILITY	g)	+	0
	tility restructuring Power System Operation in competitive environment –Electricity	-			-
environme - wholesale	ilateral- hybrid)- Components of restructured system - Power Sector restructuring a nt - Functions and responsibilities of PX- ISO- RTO and ITP - Electric Utility Market - e electricity market characteristic – Electricity Market types (energy- ancillary service al time) – Market power evaluation and mitigation	- Mark	et l	Mod	els
					_
Unit III	EVALUATION OF TRANSMISSION SYSTEM pricing and Transmission pricing in a restructured market - Congestion management	g		+	0
	ulation – ATC calculation with sensitivity analysis method - Tagging Electricity Transa mplementation- Curtailment and cancellation of transaction - Availability Based Tari		- 1	agg	ing
process – Unit IV Introduction Market Pa allocation-		ff g s with I mode) Ele	+ ectric	0 City
Direction Unit IV Introduction Market Pa allocation- Mechanisn	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n – Approaches to OPF – Application of OPF analysis in Electricity and Power Market rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ed and transmission issues in the new market environment.	ff g s with I mode) Ele	+ ectric	0 Dity
Diricess – I Unit IV Introduction Market Pa allocation- Mechanisn Unit V	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n – Approaches to OPF – Application of OPF analysis in Electricity and Power Market rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ee and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM	ff s with I mode conom	Eleeel (+ ectrie of le issu	0 city oss es-
Direction Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n – Approaches to OPF – Application of OPF analysis in Electricity and Power Market rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ed and transmission issues in the new market environment.	ff s with I mode conom	Ele el o ic i gra	+ of lo issu + am a	0 city oss es- 0 and ad-
process – Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Spac Frequency Generation	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT In – Approaches to OPF – Application of OPF analysis in Electricity and Power Market rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ed and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM In – Traditional Vs Restructured Scenario –AGC in New market environment - Blo ce representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM).	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es- 0 anc ad- V)-
process – Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation	mplementation - Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market rticipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Edit and transmission issues in the new market environment. Methodology of graph theory - Edit AGC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo ce representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM).	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es es and ad
process – I Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Ou Upon comp	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT In – Approaches to OPF – Application of OPF analysis in Electricity and Power Market rticipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ed and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM In – Traditional Vs Restructured Scenario –AGC in New market environment - Blo ce representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM).	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad
process – I Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Ou Upon comp	mplementation - Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market rticipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Edit and transmission issues in the new market environment. Methodology of graph theory - Edit AGC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo ce representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM).	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad W)
process – Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Ou Upon comp CO1 :	mplementation - Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market tricipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Edit and transmission issues in the new market environment. MACE IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo erepresentation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM). Total (45- Itcomes: Deletion of this course, the students will be able to:	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad W)
process – Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 :	mplementation - Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market rticipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Edit and transmission issues in the new market environment. MACC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo be representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM). Total (45- Select appropriate electrical utility based on applications	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad W)
process – Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 :	mplementation - Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market rticipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Edit and transmission issues in the new market environment. Methodology of graph theory - Edit AGC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM). Total (454 Select appropriate electrical utility based on applications Design power system according to requirements	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad W)
process – I Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Upon comp CO1 : CO2 : CO3 : CO4 :	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market rticipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - En and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM). Total (45- Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad
process – I Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 : CO4 : CO5 :	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market tricipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - En and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM). Total (45- Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model Understand proper selection of automation in power systems Design load frequency control scheme for two area interconnected systems.	ff s with I mode conom ck diagonmen n Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad
process – Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Or Upon comp CO1 : CO2 : CO3 : CO4 : CO5 :	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market tricipants – Power Flow Tracing – current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - Ec and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario –AGC in New market environment - Blo the representation of a two-area interconnected power system in deregulated environ Control (LFC) dynamics and Bilateral Contacts – Modelling- DISCO Participation Participation Matrix (GPM). Total (454 ttcomes: Deletion of this course, the students will be able to: Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model Understand proper selection of automation in power systems Design load frequency control scheme for two area interconnected systems. s:	ff s with l mode conom ck dia onmen Matri	Ele el (ic i gra t – x (+ ectric of lo issu + am a - Lo (DPI	0 city oss es 0 and ad
process – I Unit IV Introduction Market Pa allocation- Mechanism Unit V Introduction State Space Frequency Generation Course Ou Upon comp CO1 : CO2 : CO3 : CO5 :	mplementation- Curtailment and cancellation of transaction - Availability Based Tari OPTIMUM POWER FLOW (OPF) ANALYSIS IN MARKET ENVIRONMENT n - Approaches to OPF - Application of OPF analysis in Electricity and Power Market tricipants - Power Flow Tracing - current decomposition axioms- Mathematica usage sharing problem on transmission facilities - Methodology of graph theory - En and transmission issues in the new market environment. AGC IN RESTRUCTURED POWER SYSTEM n - Traditional Vs Restructured Scenario -AGC in New market environment - Blo re representation of a two-area interconnected power system in deregulated enviro Control (LFC) dynamics and Bilateral Contacts - Modelling- DISCO Participation Participation Matrix (GPM). Total (45- Select appropriate electrical utility based on applications Design power system according to requirements Design an electrical market model Understand proper selection of automation in power systems Design load frequency control scheme for two area interconnected systems.	ff s with l mode conom ck dia onmen n Matri -0)= 45	Eleel (ic i j j gra t – x (+ am a - Lo (DPI	0 city oss es 0 and ad VI)

Reference	e Books:
1	Xi Fan,Wang, Yonghua Song, Malcolm Irving, "Modern Power System Analysis", Springer, 2008
2	Das D, "Electrical Power Systems", New Age International (P) Ltd, New Delh, - 2008.
3	liic M, Galiana F, Fink L, "Power Systems Restructuring" Norwell MA Kluwer 1998
4	Philipson. L, Willis H.Le, "Understanding Electric Utilities and de-regulation", Marcel Dekker Inc
	Publishers, New York, 2006
E-Refere	nce
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	3								1	2
CO2	1	2	3	2	2		2					2
CO3	1	2	3	2	2		2					2
CO4	1	2	2								1	2
CO5	1	2	3	2	2		2					2

	INDUSTRIAL ELECTRICAL SYSTEMS	L	Т	Ρ	С
		3	aracteris ic shock 9 + allation, thing sys- nps, eart 9 + ncy, spe- s illumina hergy sa emises, f 9 + g of mo ion - k' eakers, N 9 + ontrol sys-	0	3
Course Ol	vjectives:				
1	Know about the implementation of Electrical Systems based on applications				
2	Learn various safety equipment and their installations				
3	Get a clear awareness about automation in Electrical Systems				_
Unit I			0		0
		neteri	-	+ ste	_
	t a clear awareness about automation in Electrical Systems ECTRICAL SYSTEM COMPONENTS ing components, select ion of cables, wires, switches, distribution box, metering system, , protection components- Fuse, MCB, MCCB, ELCB, RCCB inverse current characteristics, line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and / practices SIDENTIAL AND COMMERCIAL ELECTRICAL SYSTEMS 9 / ential and commercial wiring systems, general rules and guidelines for installation, load sizing of wire, rating of main switch, distribution board and protection devices, earthing system quirements of commercial installation, deciding lighting scheme and number of lamps, earthing nstallation, selection and sizing of components. UMINATION SYSTEMS yarous terms regarding light, lumen, intensity, candle power, lamp efficiency, specific glare, space to height ratio, waste light factor, depreciation factor, various illumination ndescent lamps and modern luminaries like CFL, LED and their operation, energy saving systems, design of a lighting scheme for a residential and commercial premises, flood Switchgear selection, Lightning Protection, Earthing design, Power factor correction - kVAR pe of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB anel components.				
		ar awareness about automation in Electrical Systems CAL SYSTEM COMPONENTS 9 + 0 mponents, select ion of cables, wires, switches, distribution box, metering system, clion components- Fuse, MCB, MCCB, ELCB, RCCB inverse current characteristics, iagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and ces TIAL AND COMMERCIAL ELECTRICAL SYSTEMS 9 + 0 and commercial wiring systems, general rules and guidelines for installation, load of wire, rating of main switch, distribution board and protection devices, earthing system ents of commercial installation, deciding lighting scheme and number of lamps, earthing ion, selection and sizing of components. 9 + 0 ATION SYSTEMS 9 + 0 us terms regarding light, lumen, intensity, candle power, lamp efficiency, specific space to height ratio, waste light factor, depreciation factor, various illumination ent lamps and modern luminaries like CFL, LED and their operation, energy saving ms, design of a lighting scheme for a residential and commercial premises, flood IAL ELECTRICAL SYSTEM 9 + 0 strial substation, Transformer selection, Industrial loads, motors, starting of motors, hegar selection, Lightning Protection, Earthing design, Power factor correction – kVAR compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB mponents. IAL ELECTRICAL SYSTEM AUTOMATION 9 + 0 Role of in automation, advantages of process automation, PLC based control system			
	afety practices		0.100		
			-		_
<u>Unit II</u>			-		-
		lamp	os, ea	rtrii	Пį
Unit III	ILLUMINATION SYSTEMS		9	+	C
Understan		icien	cv. sr	beci	fi
lighting.			,		
Unit IV	INDUSTRIAL ELECTRICAL SYSTEM		-	-	
		Brea	akers,	M)
and other l	T panel components.				
11014 \/			•		_
Unit V Study of th	INDUSTRIAL ELECTRICAL SYSTEM AUTOMATION	con	•	•	
Study of b	asic PLC, Role of in automation, advantages of process automation, PLC based	con	•	•	
Study of b		con	•	•	
Study of b design, Pa	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45-		trol s	yste	en
Study of b design, Pa Course O	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- Itcomes:		trol s	yste	en
Study of b design, Pa Course O Upon com	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- Itcomes: Deletion of this course, the students will be able to:		trol s	yste	en
Study of b design, Pa Course Or Upon com CO1 :	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- Itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications		trol s	yste	en
Study of b design, Pa Course O Upon com CO1 : CO2 :	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- Itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements		trol s	yste	en
Study of b design, Pa Course Or Upon com CO1 CO2 CO3	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- Itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions		trol s	yste	en
Study of b design, Pa Course Of Upon com CO1 : CO2 : CO3 : CO3 :	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems		trol s	yste	en
Study of b design, Pa Course Or Upon com CO1 CO2 CO3	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- Itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions		trol s	yste	en
Study of b design, Pa Course Of Upon com CO1 : CO2 : CO3 : CO4 : CO5 :	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects.		trol s	yste	en
Study of b design, Pa Course Of Upon com CO1 : CO2 : CO3 : CO3 :	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects.	+0)= ·	45 Pe	erio	en
Study of b design, Pa Course Or Upon com CO1 CO2 CO3 CO4 CO5 Text Book	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- atcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects. s: S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publis K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007	+0) = √	45 Pe	erio	
Study of b design, Pa Course Or Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects. s: S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publis K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007 S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 5	+0) = √	45 Pe	erio	d
Study of b design, Pa Course Or Upon com CO1 CO2 CO3 CO4 CO5 1.	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- atcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects. s: S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publis K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007	+0) = √	45 Pe	erio	d
Study of b design, Pa Course Or Upon com CO1 CO2 CO3 CO4 CO5 Text Book 1. 2.	asic PLC, Role of in automation, advantages of process automation, PLC based nel Metering and Introduction to SCADA system for distribution automation. Total (45- itcomes: Deletion of this course, the students will be able to: Select appropriate switchgears based on applications Design electrical wiring system according to requirements Design an illumination system for different types of constructions Understand proper selection of automation in electrical systems Develop need based projects. s: S.L. Uppal and G.C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publis K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007 S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 5	shers 7. 2010	, 200	erio	

E-Referen	ces:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com

RO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	0	1	1	1	1	0	0	0	1
CO2	1	1	1	1	1	1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	1	1	1	1	1	1
CO4	1	1	1	1	1	1	1	1	1	1	1	1
CO5	1	1	1	1	1	1	1	1	1	1	1	1

18EEP24					SMA	RT GRIE)				L	TF	<u> </u>
											3	0 0	3
Course O	bjectives	:											
1							advan	ced Me	etering	infrastruc	ture	and	high
I	perform	nance c	omputin	g for Sm	nart Grid	•							
11		DUCTI											
Unit I Definitions			ON TO S			otrio Cri	d voreu	s Smart	Crid k		9	+ Smort	
	ent, Smar												Gin
developin	chi, Omar		Childela					ponenta	, chanci	iges and	Derien		
Unit II	COMN		TION TE		OGIES						9	+	0
Communi							02 archi	tecture	and, co	mmunicat	ion te	chnolo	aie
specified													
metering,													
and usage				.,					.,	,			
0													
Unit III	CONT	ROL AN	ID AUTO	OMATIC	ON TECH	INOLOG	GIES				9	+	. 0
Smart me													
	Demand-												
equipmen	t: archited	cture, co	omponei	nts and	functio	ns, Intel	ligent e	lectronic	device	es (IED),	Relay	IED,	Ba
controller.			•				0						
Unit IV	TRAN	SMISSI	ON AND	DISTR	IBUTIO	N MANA	GEMEN	IT SYTS	SEMS		9	+	. 0
Structure	of Energ	y mana	agemen	t syster	ns- Pha	asor me	easurem	ent uni	ts- Wid	le-Area N	leasu	remen	t fo
transmiss													
Control ar									0			•	
Unit V			RAGES								9	+	-
	Energy Sto									ery - Fuel c	cell and	d hydr	oger
electrolyse	er - Super	conducti	ing magi	netic ene	ergy sto	rage sys	stems - S	Superca	pacitors				
										Total (45-	+0) = 4	45 Per	iods
Course O	utcomes												
Upon com	nlation of	this cou	rsa tha	studente	e will ha	able to:							
CO1 :							present	develor	ments				
CO2 :					resource			uevelop	mento.				
CO2 :							nfrastruc	oturo					
CO3 :							ation wit		Gride				
CO4 . CO5 :													
Text Boo		y Suitabl	e comm	unicatio	ii netwol	NO 101 SI	mart gric	applica	10115				
		N 4 a una a la	"ON 4 A D				<u></u>						
1.	James					ontala -	st 1 100000			10/ilov 00	10		
										Wiley, 20		Values	
2.	Janaka	a Ekan	ayake,	Nick J	enkins,	Kithsiri	Liyanage	e, Jian		<u>Wiley, 20</u> Wu, Akil		Yokoy	ama
2.	Janaka "Smart	a Ekan :Grid: Te	ayake, echnolog	Nick J	enkins, pplicatio	Kithsiri ns", Wile	Liyanage ey, 2012	e, Jian: 	zhong	Wu, Akil	niko `		
3.	Janaka "Smart Mini S.	a Ekan :Grid: Te	ayake, echnolog	Nick J	enkins, pplicatio	Kithsiri ns", Wile	Liyanage ey, 2012	e, Jian: 	zhong		niko `		
3.	Janaka "Smart	a Ekan :Grid: Te	ayake, echnolog	Nick J	enkins, pplicatio	Kithsiri ns", Wile	Liyanage ey, 2012	e, Jian: 	zhong	Wu, Akil	niko `		
3. CO/PO	Janaka "Smart Mini S. Mapping	a Ekan : <u>Grid: Te</u> . Thoma	ayake, echnolog s, John	Nick J ly and A D McDo	enkins, pplicatio nald, 'Po	Kithsiri ns", Wild ower Sys	Liyanage ey, 2012 stem SC	e, Jian: 2. ADA an	zhong d Smar	Wu, Akil t Grids', C	niko ` RC Pr	ess, 2	015
3. CO/PO	Janaka "Smart Mini S.	a Ekan :Grid: Te	ayake, echnolog	Nick J	enkins, pplicatio	Kithsiri ns", Wile	Liyanage ey, 2012	e, Jian: 	zhong	Wu, Akil	niko `	ess, 2	015
3. CO/PO	Janaka "Smart Mini S. Mapping	a Ekan : <u>Grid: Te</u> . Thoma	ayake, echnolog s, John	Nick J ly and A D McDo	enkins, pplicatio nald, 'Po	Kithsiri ns", Wild ower Sys	Liyanage ey, 2012 stem SC	e, Jian: 2. ADA an	zhong d Smar	Wu, Akil t Grids', C	niko ` RC Pr	ess, 2	

CO1				3		2	1		1			1
CO2		2	3	1				1			1	
CO3			2		2					2		
CO4	2				3	1	3				2	
CO5		3		2				1	2			2

OPEN ELECTIVES

18EEOE	1 RENEWABLE ENERGY SOURCES	L	T	Ρ	С
		3	0	0	3
Course (Objectives:				
1.	To impart knowledge on the Awareness about renewable Energy Sources				
2.	To impart knowledge on the Recognize current and possible future role of	renewable	ener	ЗУ	
Ζ.	sources.				
11			•	1	•
Unit I			9	+	0
	ergy Use – Reserves of Energy Resources – Environmental Aspects of Energ Scenario in Tamil Nadu, India and around the World – Potentials – Achie				
	cs of Renewable Energy Systems.	vernents /	лμμ	ncau	0113 -
Unit II	SOLAR ENERGY		9	+	0
Thermal	diation – Measurements of Solar Radiation – Flat Plate and Concentrating Applications – Solar Thermal Power Generation – Fundamentals of Solar Pl IIs – Solar PV Power Generation – Solar PV Applications.				
Unit III	WIND ENERGY		9		0
Wind Dat	ta and Energy Estimation – Types of Wind Energy Systems – Performance – bine Generator – Safety and Environmental Aspects.	Site Selecti	•	- Det	-
Unit IV	BIO – ENERGY		9	+	0
	Direct Combustion – Biomass Gasifiers – Biogas Plants – Digesters – Ethanol	Production	•	io Di	-
	ation – Biomass Applications.		_		
Unit V	OTHER RENEWABLE ENERGY SOURCES		9	+	0
	ergy – Wave Energy – Open and Closed Ocean Thermal Energy Conversion(OT nal Energy – Hydrogen and Storage – Fuel Cell Systems – Hybrid Systems.	EC) Cycles	– Sr	nall I	Hydro
		Total (45+0) = 4	15 Pe	eriode
Course (Dutcomes:		/		
Upon cor	npletion of this course, the students will be able to:				
CO1	: Create awareness about renewable Energy Sources and technologies.				
CO2	: Apply knowledge in solar energy.				
CO3	: Understand basics about biomass energy.				
CO4	: Apply adequate inputs on a variety of issues in harnessing renewable Energy				
005					
CO5	: Apply knowledge to recognize current and possible future role of renewable				~~
CO5 CO6	Apply knowledge to recognize current and possible future role of renewable Apply knowledge in various renewable energy resources and technologies				ns.
CO6	: Apply knowledge in various renewable energy resources and technologies				ns.
	 Apply knowledge in various renewable energy resources and technologies bks: 	and their a	pplic		ns.
CO6	: Apply knowledge in various renewable energy resources and technologies	and their a Delhi, 2011.	pplic		ns.
CO6 Text Boo 1. 2.	 Apply knowledge in various renewable energy resources and technologies ks: Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New E Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK 	and their a Delhi, 2011.	pplio		ns.
CO6 Text Boo 1. 2. Reference	Apply knowledge in various renewable energy resources and technologies ks: Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New E	and their a Delhi, 2011. (, 2009.	pplid	catio	
CO6 Text Boo 1. 2.	Apply knowledge in various renewable energy resources and technologies Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New E Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK Books:	and their a Delhi, 2011. (, 2009.	pplid	catio	
CO6 Text Boo 1. 2. Reference	 Apply knowledge in various renewable energy resources and technologies Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New E Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., Uk Books: Sukhatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company edition. Godfrey Boyle, "Renewable Energy, Power for A Sustainable Future", Oxfor 2012. 3rd edition. 	and their a Delhi, 2011. (, 2009. Ltd., New ord Univers	Dell	ni, 20)09,3 ^{,,}
CO6 Text Boo 1. 2. Reference 1.	 Apply knowledge in various renewable energy resources and technologies Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New E Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., Uk Books: Sukhatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company edition. Godfrey Boyle, "Renewable Energy, Power for A Sustainable Future", Oxfor 	and their a Delhi, 2011. (, 2009. Ltd., New ord Univers	Dell	ni, 20)09,3 ^{rr} , U.K.
CO6 Text Boo 1. 2. Reference 1. 2.	 Apply knowledge in various renewable energy resources and technologies Rai. G.D., "Non-Conventional Energy Sources", Khanna Publishers, New E Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK Books: Sukhatme. S.P., "Solar Energy", Tata McGraw Hill Publishing Company edition. Godfrey Boyle, "Renewable Energy, Power for A Sustainable Future", Oxfor 2012. 3rd edition. Tiwari. G.N., Solar Energy – "Fundamentals Design, Modelling & Application" 	and their a Delhi, 2011. (, 2009. Ltd., New ord Univers	Dell	ni, 20)09,3 ^r , U.K.

6.	David M. Mousdale – "Introduction to Biofuels", CRC Press, Taylor & Francis Group, USA 2010
7.	Chetan Singh Solanki, Solar Photovoltaics, "Fundamentals, Technologies and Applications", PHI
1.	Learning Private Limited, New Delhi, 2009.
E-Referen	ces:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	1	1	1	1	1	1	1
CO2	3	1	1	3	1	1	1	1	1	1	1	1
CO3	1	2	2	1	1	1	1	1	1	1	1	1
CO4	3	1	1	3	2	1	1	1	1	1	1	1
CO5	2	1	1	2	1	1	2	1	1	1	1	1
CO6	2	2	1	1	1	1	1	1	1	1	1	1

18EEOE2	2			SM	ART G	RID TEC	HNOLO	GY			<u> </u>	Τ	Ρ	C
											3	0	0	;
Course C	Objectiv	es:												
1.	То	introduce	e comm	unicatio	n techn	ologies,	infrastr	ucture a	nd high	perform	ance co	mput	ing	fc
		art Grid.				0,			0	•		•	Ŭ	
Unit I		RODUC									9		+	(
Definition							Grid dev	velopme	nt, Sma	rt Grid arc	hitectur	ə, Fur	nctic	n
of Smart	Grid Co	mponen	ts, challe	enges a	nd bene	fits.								
11				TECHN									-	(
Unit II Commun							002 or	obitootu	ro and	oommuni	g cotion t		+	
specified														
metering.				255 LAN	is, ziyde	ee anu c		in, ziyd	ee com	nunicatio	n netwo	IK IUI	511	a
metering.														
Unit III		ΓΟΜΑΤΙ			GIES						9		–	(
Smart me						onents	and one	ration o	ommuni	cations a	-		r sm	_
metering,													. 5.71	-
	J				,	, ,	,							
Unit IV	ENI	ERGY N	IANAGE	EMENT	SYTSE	MS					9)	+	(
6	Structur	e of En			ent svste	ems- Ph	asor me	easurem	ent unit	s - Supe	rvisorv	Contr	ol A	
			ergy ma	anageme		ems- Ph	asor me	easurem	ent unit	s - Supe	rvisory	Contr	ol A	
			ergy ma	anageme		ems- Ph	asor me	easurem	ent unit	s - Supe	rvisory	Contr	ol A	
Data Acq	uisition-		ergy ma ier inforr	anageme mation s	ystem	ems- Ph	asor me	easurem	ent unit	s - Supe	rvisory		ol A	n
Data Acq Unit V	uisition-	Custom	ergy ma er inforr TORAG	anageme mation s E SYST	EMS					s - Supe	9)	+	.n
Data Acq Unit V N	uisition-	Custom	ergy ma ber inforr TORAG Storage	anageme mation s E SYST for the s	EXISTEM EMS Smart gr	id- Ene	rgy stora	age tech		-	9)	+	.n
Data Acq Unit V N	uisition-	Custom	ergy ma her inforr TORAG Storage	anageme mation s E SYST for the s	EXISTEM EMS Smart gr	id- Ene	rgy stora	age tech		s - Flow I	9 Dattery -	Fue	+ el ce	
Data Acq Unit V N Supercor	uisition- ENI eed of I aducting	Custom ERGY S Energy S magnet	ergy ma her inforr TORAG Storage	anageme mation s E SYST for the s	EXISTEM EMS Smart gr	id- Ene	rgy stora	age tech		s - Flow I	9	Fue	+ el ce	(n)
Data Acq Unit V N Supercor	uisition- ENI eed of I aducting	Custom ERGY S Energy S magnet	ergy ma her inforr TORAG Storage	anageme mation s E SYST for the s	EXISTEM EMS Smart gr	id- Ene	rgy stora	age tech		s - Flow I	9 Dattery -	Fue	+ el ce	
Data Acq Unit V N Supercor Course C	Uisition- ENI eed of I nducting	Custom ERGY S Energy S magnet es:	ergy ma her inforr TORAG Storage ic energ	anageme mation s E SYST for the s y storag	EMS Smart gr je syster	id- Ene ms - Su	rgy stora percapa	age tech		s - Flow I	9 Dattery -	Fue	+ el ce	
Data Acq Unit V N Supercor Course C	uisition- ENI eed of l nducting Dutcom	Custom ERGY S Energy S magnet es: of this c	ergy ma ner inforr TORAG Storage ic energ course, t	anageme mation s E SYST for the s y storag he stude	EMS Smart gr se syster	id- Ene ms - Suj be able	rgy stora percapa to:	age tech citors	nnologie	s - Flow I Total (9 Dattery -	Fue	+ el ce	
Data Acq Unit V Supercor Course C Upon con	Uisition- ENI eed of I nducting Dutcom	Custom ERGY S Energy S magnet es: of this c Indersta	ergy ma ner inforr TORAG Storage ic energ course, the nd the c	anageme mation s E SYST for the s y storag he stude oncepts	EMS Smart gr se syster ents will of Sma	id- Ene ms - Su be able rt Grid a	rgy stora percapa to: nd its pro	age tech citors	nnologie	s - Flow I Total (9 Dattery -	Fue	+ el ce	
Data Acq Unit V Supercor Course C Upon con CO1	Uisition- ENI eed of I nducting Dutcom npletion : L : C	Custom RGY S Energy S magnet es: of this c Indersta Get acqui	ergy ma her inforr TORAG Storage ic energ course, the nd the c ainted w	anageme mation s E SYST for the s y storag he stude oncepts rith the s	EMS smart gr sents will of Sma smart res	id- Ene ns - Su be able rt Grid a sources	rgy stora percapa to: nd its pro and dev	age tech citors esent de	nnologie	s - Flow I Total (9 Dattery -	Fue	+ el ce	
Data Acq Unit V Supercon Course C Upon con CO1 CO2	Uisition- ENI eed of I nducting Dutcom npletion : U : C : A	Custom RGY S Energy S magnet es: of this c Inderstal Set acquire k	ergy ma her inforr TORAG Storage ic energ course, the nd the c ainted w nowledg	nageme mation s <u>E SYST</u> for the s y storag <u>he stude</u> oncepts yith the s ge of aut	EMS smart gr je syster ents will of Sma smart res tomation	id- Ene ms - Su be able rt Grid a sources a and cor	rgy stora percapa to: nd its pro and dev ntrol infra	age tech citors esent de ices astructu	nnologie evelopm re.	s - Flow I Total (ents.	9 Dattery -	Fue	+ el ce	
Data Acq Unit V Ni Supercon Course C Upon con CO1 CO2 CO3	Uisition- ENI eed of I nducting Dutcom npletion : U : C : A : S	Custom RGY S Energy S magnet es: of this c Inderstan Set acquire k select an	ergy ma ner inforr TORAG Storage ic energ course, the nd the c ainted w nowledg energy	Anageme mation s E SYST for the s y storag he stude oncepts vith the s ge of aut storage	EMS smart gr je syster ents will of Sma smart res tomation system	id- Ene ns - Su be able rt Grid a sources	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio	age tech citors esent de ices astructu on with \$	nnologie evelopm re. Smart G	s - Flow I Total (ents.	9 Dattery -	Fue	+ el ce	(n)
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4	Uisition- ENI eed of I nducting Dutcom npletion : U : C : A : S	Custom RGY S Energy S magnet es: of this c Inderstan Set acquire k select an	ergy ma ner inforr TORAG Storage ic energ course, the nd the c ainted w nowledg energy	Anageme mation s E SYST for the s y storag he stude oncepts vith the s ge of aut storage	EMS smart gr je syster ents will of Sma smart res tomation system	id- Ene ms - Su be able rt Grid a sources and cor and its i	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio	age tech citors esent de ices astructu on with \$	nnologie evelopm re. Smart G	s - Flow I Total (ents.	9 Dattery -	Fue	+ el ce	(n)
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4 CO5	uisition- eed of I aducting Dutcom npletion : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	Custom RGY S Energy S magnet es: of this c Inderstan Set acquire k select an	ergy ma ner inforr TORAG Storage ic energ course, the nd the c ainted w nowledg energy	Anageme mation s E SYST for the s y storag he stude oncepts vith the s ge of aut storage	EMS smart gr je syster ents will of Sma smart res tomation system	id- Ene ms - Su be able rt Grid a sources and cor and its i	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio	age tech citors esent de ices astructu on with \$	nnologie evelopm re. Smart G	s - Flow I Total (ents.	9 Dattery -	Fue	+ el ce	(n
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4	Uisition- eed of I aducting Dutcom Dutcom : U : C : A : S : Io ks:	Custom RGY S Energy S magnet es: of this c Inderstal Set acquire select an dentify su	ergy ma ber inforr TORAG Storage ic energ ic energy course, the not the c ainted w nowledg energy uitable c	Anageme mation s E SYST for the s y storag he stude oncepts vith the s ge of aut storage communi	EMS Smart gr smart gr ents will of Sma smart res tomation system ication n	id- Ene ms - Su be able rt Grid a sources and con and its i networks	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio for sma	age tech citors esent de ices astructu on with s rt grid a	evelopm re. Smart G pplicatio	s - Flow I Total (ents.	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Fue	+ el ce	(n)
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4 CO5 Text Boo 1.	Uisition- ENI eed of I nducting Dutcom npletion : U : C : A : S : In oks: Jam	Custom RGY S anergy S magnet es: of this c Inderstal Set acquire cquire k select an dentify su magnet	ergy ma ber inforr TORAG Storage ic energ ic energy ainted w nowledg energy uitable c	Anageme mation s E SYST for the s y storag he stude oncepts ith the s ge of aut storage communi	EMS smart gr je syster ents will of Sma smart res tomation system ication n	id- Ene ms - Su be able rt Grid a sources and cor and its i aetworks	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio for sma	age tech citors esent de ices astructu on with s rt grid a	evelopm re. Smart G pplicatio	s - Flow I Total (ents.	9 battery - 45+0) = 2015.	45 P	+ erio	
Data Acq Unit V Ni Supercon Course C Upon con CO1 CO2 CO3 CO4 CO5 Text Boc	Uisition- ENI eed of I nducting Dutcom npletion : U : C : A : S : Iu bks: Jam Jan	Custom RGY S Energy S magnet es: of this c Indersta Set acquire k select an dentify su magnet set acquire k select an dentify su magnet set acquire k select an dentify su	ergy ma ber inforr TORAG Storage ic energ ic energy witable c ioh "SM/ anayake	Anageme mation s E SYST for the s y storag he stude oncepts ith the s ge of aut storage communi ART GR	EMS smart gr je syster ents will of Sma smart res tomation system ication n	id- Ene ms - Su be able rt Grid a sources and cor and its i aetworks	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio for sma ls of Des siriLiyan	age tech citors esent de ices astructu on with s rt grid a sign and age, Ji	evelopm re. Smart G pplicatio	s - Flow I Total (ents.	9 battery - 45+0) = 2015.	45 P	+ erio	
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4 CO5 Text Boo 1.	Uisition- eed of I nducting Dutcom npletion : U : Q : Q : Q : Q : Q : Q : Q : Q : Q : Q	Custom RGY S Energy S magnet es: of this c Indersta Set acquire k select an dentify su nes Mom aka Ek artGrid:	ergy ma ber inforr TORAG Storage ic energ course, the nd the c ainted w nowledg energy uitable c anayake Techno	ART GR by storage	EMS smart gr je syster ents will of Sma smart res comation system ication n cation n	id- Ene ms - Su be able rt Grid a sources and cor and its i aetworks damenta is, Kiths ations", V	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio for sma ls of Des siriLiyan Wiley, 20	age tech citors esent de ices astructu on with S rt grid a sign and age, Ji)12.	evelopm re. Smart G pplicatio Analysi anzhong	s - Flow I Total (ents.	9 2015. 4kihiko	45 P	+ erio	() () () () () () () () () () () () () (
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4 CO5 Text Boc 1. 2. 3.	Uisition- ENI eed of I nducting Dutcom npletion : U : C : A : S : Io Sks: Jam Jan "Sm Min	Custom RGY S Energy S magnet es: of this c Indersta Set acquire k select an dentify su nes Mom aka Ek artGrid:	ergy ma ber inforr TORAG Storage ic energ course, the nd the c ainted w nowledg energy uitable c anayake Techno	ART GR by storage	EMS smart gr je syster ents will of Sma smart res comation system ication n cation n	id- Ene ms - Su be able rt Grid a sources and cor and its i aetworks damenta is, Kiths ations", V	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio for sma ls of Des siriLiyan Wiley, 20	age tech citors esent de ices astructu on with S rt grid a sign and age, Ji)12.	evelopm re. Smart G pplicatio Analysi anzhong	s - Flow I Total (ents. rids ns s", Wiley, g Wu, A	9 2015. 4kihiko	45 P	+ erio	
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2. 3. CO/PO Ma	Uisition- eed of I aducting Dutcom npletion : U : Q : A : S : I : I Jam Jan "Sm Jan "Sm Min apping	Custom RGY S Energy S magnet es: of this c Indersta Get acquire k ielect an dentify su maka Ek artGrid: S. Thor	ergy ma ner inforr TORAG Storage ic energ course, the nd the course, the ainted we nowledg energy uitable course ooh "SM/ anayake Techno mas, Joh	Anageme mation s E SYST for the s y storag he stude oncepts vith the s ge of aut storage communi ART GR e, Nick logy and nn D Mc	EMS smart gr je syster ents will of Sma smart res tomation system ication n d Applica Donald,	id- Ene ms - Su be able rt Grid a sources and cor and its i aetworks lamenta is, Kiths ations", V 'Power	rgy stora percapa to: nd its pro- ntrol infra ntegration for sma ls of Des siriLiyan Viley, 20 System	age tech citors esent de ices astructu on with s rt grid a sign and age, Ji)12. SCADA	evelopm re. Smart G pplicatio Analysi anzhong and Sm	s - Flow I Total (ents. rids ns s", Wiley, g Wu, A	9 2015. 2015. Akihiko	45 P 45 P	+ cerio	
Data Acq Unit V Supercor Course C Upon con CO1 CO2 CO3 CO4 CO5 Text Boc 1. 2. 3.	Uisition- ENI eed of I nducting Dutcom npletion : U : C : A : S : Io Sks: Jam Jan "Sm Min	Custom RGY S Energy S magnet es: of this c Indersta Set acquire k select an dentify su nes Mom aka Ek artGrid:	ergy ma ber inforr TORAG Storage ic energ course, the nd the c ainted w nowledg energy uitable c anayake Techno	ART GR by storage	EMS smart gr je syster ents will of Sma smart res comation system ication n cation n	id- Ene ms - Su be able rt Grid a sources and cor and its i aetworks damenta is, Kiths ations", V	rgy stora percapa to: nd its pro and dev ntrol infra ntegratio for sma ls of Des siriLiyan Wiley, 20	age tech citors esent de ices astructu on with S rt grid a sign and age, Ji)12.	evelopm re. Smart G pplicatio Analysi anzhong	s - Flow I Total (ents. rids ns s", Wiley, g Wu, A	9 2015. 4kihiko	45 P 45 P	+ erio	() () () () () () () () () () () () () (

co	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3		2	1		1			1
CO2		2	3	1				1			1	
CO3			2		2					2		
CO4	2				3	1	3				2	
CO5		3		2				1	2			2

18EEOE	3 ENERGY CONSERVATION AND MANAGEMENT L T P 3 0 0
Course	Dbjectives:
1.	To get knowledge about basics of energy and energy scenario on India.
2.	To understand the energy conservation concepts.
3.	To know about electrical energy management.
Unit I	ENERGY SCENARIO 9
	enario of India – Present non-renewable energy scenario – Gross domestic product- Energy intensi
	energy production and pricing - Energy security - Energy strategy for the future, air pollution, climat
change.	Energy Conservation Act-2001 and its features.
Unit II	BASICS OF ENERGY 9 +
	on – Work, power and energy – Electricity basics – Thermal energy basics – Energy units an
	ns – Energy performance – Matching energy usage to requirement.
Unit III	ENERGY CONSERVATION APPROACHES
	aving opportunities in electric motors, Benefits of Power factor improvement and its techniques-Shu
	Synchronous Condenser etc., Energy conservation by industrial drives, Methods and techniques of a
	onservation in ventilation and air conditioners, compressors pumps, fans and blowers. Energy
	ion in electric furnaces, ovens and boilers., lighting techniques – Natural, CFL, LED lighting source
and fitting	
Unit IV	ENERGY MANAGEMENT 9 + 0
	side management (DSM)– DSM planning – DSM Techniques – Load management as a DSM saterg
_ onorau	as no envision to with antional for DCM. En avery availte in atrum ante for an avery availte. En avery availte
	conservation – tarrif options for DSM - Energy audit – instruments for energy audit – Energy audit fo
	n, distribution and utilization systems – economic analysis.
generatio	n, distribution and utilization systems – economic analysis.
generatio	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0
generation	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with
generation Unit V Maximun energy si	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters withver - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors
generation	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with
generation	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with over - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology.
generation Unit V Maximun energy s Energy e	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with over - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period
generation Unit V Maximun energy s Energy e	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with over - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology.
generation Unit V Maximun energy sizenergy e Energy e Course (n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 o demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with over - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Outcomes:
generation Unit V Maximun energy se Energy e Course (Upon cor	Impletion of this course, the students will be able to:
generation Unit V Maximun energy si Energy e Course (Upon cor CO1	Impletion of this course, the students will be able to:
generation Unit V Maximun energy sizenergy e Course (Upon cor CO1 CO2	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 o demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with over - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Outcomes: npletion of this course, the students will be able to: Understand the present energy scenario. Get fundamental knowledge about energy and its various forms.
generation Unit V Maximun energy sizenergy e Course (Upon cor CO1 CO2 CO3	Impletion of this course, the students will be able to: Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing.
generation Unit V Maximum energy size Energy e Course (Upon cor CO1 CO2 CO3 CO4	Implementation Imple
generation Unit V Maximum energy sizenergy e Course (Upon cor CO1 CO2 CO3	Impletion of this course, the students will be able to: Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing.
generation Unit V Maximum energy sizenergy e Course (Upon cor CO1 CO2 CO3 CO4 CO5	Image: constraint of the process of energy scenario. 9 + 0 Image: constraint of the process of energy management and energy auditing. Understand the methods improving energy efficient devices in energy auditing. 1
generation Unit V Maximun energy sizenergy e Course O Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo	Image: constraint of this course, the students will be able to: Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation
generation Unit V Maximun energy sizenergy e Course (Upon cor CO1 CO2 CO3 CO4 CO5	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 I demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with over - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Outcomes: Impletion of this course, the students will be able to: Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation ks: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015.
generation Unit V Maximun energy sizenergy e Course (CO Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1.	Image: constraint of this course, the students will be able to: Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation
generation Unit V Maximun energy sizenergy e Course (CO Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2.	n, distribution and utilization systems – economic analysis. ENERGY EFFICIENT TECHNOLOGIES 9 + 0 I demand controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with over - Variable speed drives - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology. Total (45+0)= 45 Period Outcomes: Impletion of this course, the students will be able to: Understand the present energy scenario. Get fundamental knowledge about energy and its various forms. Understand the process of energy management and energy auditing. Understand the methods improving energy efficiency and energy efficient devices. Familiarize the role of energy efficient devices in energy conservation ks: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015.
generation Unit V Maximun energy sizenergy e Course (CO Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2.	Impletion and utilization systems – economic analysis. Impletion and controllers - Automatic power factor controllers - Energy efficient motors -Softstarters with transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology. Impletion and the present energy saving potential of each technology. Impletion of this course, the students will be able to: Impletion of this course, the students will be able to: Impletion of the present energy scenario. Get fundamental knowledge about energy and its various forms. Impletion devices of energy management and energy auditing. Impletion devices of energy efficient devices in energy conservation ks: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991. e Books:
generation Unit V Maximum energy size Energy e Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2. Reference	Impletion and utilization systems – economic analysis. Impletion of this course - Energy efficient transformers - Electronic ballast - Occupancy sensors ficient lighting controls - Energy saving potential of each technology. Impletion of this course, the students will be able to: Impletion of this course, the students will be able to: Impletion of this course, the students will be able to: Impletion of the present energy scenario. Get fundamental knowledge about energy and its various forms. Impletion devices of energy management and energy auditing. Impletion devices in energy efficient devices. Familiarize the role of energy efficient devices in energy conservation ks: Sonal Desai, "Handbook of Energy Audit", McGraw Hill, 2015. Tripathy, S. C, "Utilization of Electrical Energy and Conservation", McGraw Hill, 1991.
generation Unit V Maximum energy size Energy e Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2. Reference	Implementation Implementation Implementation Implementa
generation Unit V Maximun energy size Energy e Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boot 1. 2. Reference 1.	Implement Implement Implement
generation Unit V Maximun energy size Energy e Course (Upon cor CO1 CO2 CO3 CO4 CO5 Text Boo 1. 2. Reference 1.	Implement Implement Implement

E-Referen	ces:
1.	www.bee-india.nic.in
2.	NPTEL Course: Non-Conventional Energy Resources – Prof. PrathapHaridoss, IIT-M.
3.	NPTEL Course: Energy Management Systems and SCADA, 2015 organised by IIT-M.

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	2	2	1	3	2	2	2	2	2
CO2	1	1	2	2	1	1	3	2	1	1	2	2
CO3	2	2	2	3	1	1	3	2	2	2	1	2
CO4	2	1	2	2	1	1	3	2	1	2	2	2
CO5	2	2	3	1	2	1	3	1	2	1	2	1

	4	ELECTRIC VEHICLES	L	Т	Ρ	С
			3	0	0	3
Course	Obj					
1.		To understand the components of Electric Vehicle and its global and Indian scenari	0.			
2.		To understand the types of Electric Vehicle and its architectural design.				
3.		To analyze the performance of different types of motor and its electrical an connections.	d ı	meo	chan	ical
4.		To analyse the energy storage performance and battery management systems.				
5.		To understand the types of charging stations and its components.				
Unit I		INTRODUCTION TO ELECTRIC VEHICLES		9	+	0
•		s of Electric Vehicle, Comparison with Internal combustion Engine : Technology, Cor				ith
		bustion Engine: Benefits and Challenges, EV classification and their electrification le				
	logy	v, Global and Indian Scenario: Technology Scenario, Market scenario, Policies and R	eg	ulat	ions	,
Unit II		ELECTRIC VEHICLE ARCHITECTURE DESIGN		9	+	0
•••		ectric Vehicle and components, Electrical protection and system requirement, Photov				
		esign, Battery Electric vehicle (BEV), Hybrid electric vehicle (HEV), Plug-in hybrid ve				
		ctric vehicle (FCEV), Electrification Level of EV, Comparison of fuel Vs electric and s	ola	r po	ower	,
		r operated Electric vehicles.				•
Unit III		ELECTRIC DRIVE AND CONTROLLER		9	+	0
	C N A	tana Oalastian and sizing of Matan DDM and Tanguna salaulatian of matan Matan Oa				
• •		otors, Selection and sizing of Motor, RPM and Torque calculation of motor, Motor Con	ntro	oller	s,	
Compon	ent	sizing.	ntro	oller	S,	
Compon Physical	ent	sizing. ations, Mechanical connection of motor, Electrical connection of motor.	ntro		T	0
Compon Physical Unit IV	lent loc	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM		9	+	0
Compon Physical Unit IV Cell Typ	lent loc: es (sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and	siz	9	+	0
Compon Physical Unit IV Cell Typ Battery I	ient loca es (ay c	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection	siz	9 crite	+ , eria.	0
Compon Physical Unit IV Cell Typ Battery I Need of	ent loca es (ay c BM	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup	siz	9 crite	+ , eria.	0
Compon Physical Unit IV Cell Typ Battery I Need of	ent loca es (ay c BM	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features.	siz	9 crite viso	+ , eria.	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V	ent loca es (ay c BM Mod	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION	siz on o erv	9 crite viso 9	+ , eria. ry +	<u> </u>
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of	Ioca es (ay c BM Mod Cha	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup te of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station	siz on o erv	9 crite viso 9	+ , eria. ry +	<u> </u>
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of	Ioca es (ay c BM Mod Cha	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of	I loca es (ay c BM Mod Cha Iram	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag	ent loca es (ay c BM Mod Cha ram Out	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag	ent loca es (ay c BM Mod Cha ram Out	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0 accomes:	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag Course Upon co	ent loca es (ay c BM Mod Cha ram Out	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0 accomes: etion of this course, the students will be able to:	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag Course Upon co CO1	ent loc: es (ay c BM Mod Cha ram Out	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0 accomes: etion of this course, the students will be able to: Understand the concept of Electric Vehicle technology	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag Course Upon co CO1 CO2	ent loc es (ay c BM Mod Cha ram Out	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION reging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0) tetion of this course, the students will be able to: Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics.	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag Course Upon co CO1 CO2 CO3	ent loc es (ay c BM Mod Cha ram Out	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0 comes: etion of this course, the students will be able to: Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller.	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag Course Upon co CO1 CO2 CO3 CO4	ent loca es (ay c BM Mod Cha ram Out	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup le of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0 comes: etion of this course, the students will be able to: Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller. Analyse and interpret the battery calculations and configurations.	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag Course Upon co CO1 CO2 CO3 CO4 CO5 CO6	ent loc: es (ay c BM Mod Cha ram Out s i i i i i i i i i i i i i	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0 total (45+0 total (45+0 total the concept of Electric Vehicle technology Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller. Analyse and interpret the battery calculations and configurations. Understand the control of battery management system Understand and analyse the sizing of charging station	siz on (erv	9 ing crite /iso 9 Sir	+ , eria. ry + ngle	0
Compon Physical Unit IV Cell Typ Battery I Need of control, I Unit V Type of line diag Course Upon co CO1 CO2 CO3 CO4 CO5	ent loc: es (ay c BM Mod Cha ram Out s i i i i i i i i i i i i i	sizing. ations, Mechanical connection of motor, Electrical connection of motor. ENERGY STORAGE SOLUTIONS AND BATTERY MANAGEMENT SYSTEM Lead Acid/Li/NiMH),Battery charging and discharging calculation, Cell Selection and buting design, Battery Pack Configuration, Battery Pack Construction, Battery selection S, Rule based control and optimization based control, Software-based high level sup de of power, Behavior of motor, Advance Features. ELECTRIC VEHICLES CHARGING STATION arging station, Selection and Sizing of charging station, Components of charging station of charging station. Total (45+0 total (45+0 total (45+0 total the concept of Electric Vehicle technology Understand the concept of Electric Vehicle technology Understand the types of EV and analyse their characteristics. Analyse the selection and sizing of drive and controller. Analyse and interpret the battery calculations and configurations. Understand the control of battery management system Understand and analyse the sizing of charging station		9 crite viso 9 Sir 45 I	+ ry + ngle Perio	ods

2.	Iqbal Hussain "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, Taylor & Francis Group, Second Edition (2011).
Reference	Books:
1.	Ali Emadi, Mehrdad Ehsani, John M.Miller ,"Vehicular Electric Power Systems", Ali Emadi, Mehrdad Ehsani, John M.Miller, Special Indian Edition, Marcel dekker, Inc 2010
2.	Standards. IEC IEC 60068-2 (1,2,14,30),IEC 61683,IEC 60227,IEC 60502 IEC 60947 part I,II, III ,IEC 61215
E-Referenc	es:
1	www.onlinecourses.nptel.ac.in
2	www.class-central.com
3	www.mooc-list.com

CO PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	3	1	1	1	1			1	1
CO2	2	3	3	2	1	1	2	1	1			1
CO3	1	3	3	3	1	1	2	2		1	1	
CO4	1	2	2	3	3	1	2	1		1	1	
CO5	1	1	3	2	3	1	2	2		1	1	1
CO6	1	3	3	3	3	1	2	2	1		1	1