

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011 (An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS 2022 CURRICULAM AND SYLLABUS

(For Candidates admitted from 2022 - 2023 onwards)

M.E- COMPUTER AIDED DESIGN (FULL TIME PROGRAMME)

M.E COMPUTER AIDED DESIGN (FULL TIME)

A serene and tranquil 'MECH' atmosphere helps the dynamic professionals to kindle their innovative minds. The enduring efforts of faculties have enhanced the students with omnipotent skills, with considerable research work being done in the department.

VISION

The department of mechanical engineering is committed to blossom into a center of excellence, dedicated and competent engineers by providing global quality interactive technical education to cater the needs of the industries and nation into a technologically, socially and culturally advanced one.

MISSION

Constantly updating the departmental resources, faculty and other infrastructure by acquiring the state of the art equipments and by imparting constant in-service training to the faculty and supporting staff.

Promoting skilled and employable graduates to meet the challenges in emerging fields of engineering.

To prepare the students for prosperous career in entrepreneurship with leader ship qualities, ethics and human values.

The department executes life-long learning skills and provides engineering services for sustainable development of the society.

PG - COMPUTER AIDED DESIGN: PROGRAMME EDUCATIONAL OBJECTIVES (**PEOs**)

- **PEO 1**: To deliver competent CAD engineers to make progress in their current position or pursue doctoral studies.
- **PEO 2**: To attain and apply technical skills creatively in the design process to identify, analyze and solve real world problems and issues related to R&D in mechanical engineering and allied areas.
- **PEO 3**: To possess and exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning.

PG - COMPUTER AIDED DESIGN: PROGRAMME OUTCOMES (POs)

- **PO1**: Ability to apply acquired theoretical and practical technical know how to solve real world engineering problems.
- **PO2**: Ability to analyze complex engineering problems and formulate them for conducting research activities.
- **PO3**: Ability to design mechanical systems, meeting varied needs of industry with appropriate consideration for public health and safety and environment.
- **PO4**: An ability to design and conduct experiments for complex problems involving multiphasic as well as to analyze and interpret data.
- **PO5**: An ability to apply the knowledge adapting to current techniques, software skills, and modern tools for mechanical engineering domain.
- **PO6**: An ability to function effectively individually and on teams, including diverse and multidisciplinary, to accomplish a common goal.
- **PO7**: An understanding of engineering and management principles and apply these for effective project implementation.
- **PO8**: Ability to communicate effectively with a range of audiences and write technical report for knowledge transfer meeting global standards.
- **PO9**: Recognition of the need for and an ability to engage in continuing professional development through lifelong learning
- **PO10**: An understanding of professional, ethical, legal, security and social issues and responsibilities.
- **PO11**: Ability to observe and examine critically and learn independently from mistakes without depending on external feedback.

PG - COMPUTER AIDED DESIGN: PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO 1**: Design products, select materials and process, perform simulation and analysis in the field of automobile, consumer goods, machine tools and allied industries.
- **PSO 2**: Extend and implement new thoughts on product design and development with the aids of modern CAD/CAM tools, while ensuring best manufacturing practices.
- **PSO 3**: Fruitfully apply the values of design, analysis and execution of mechanical systems/processes which have been fed as a part of the curriculum.

Regulations -2022 M.E Computer Aided Design – Full Time

			tter Aided Modeling andPC300ced Mechanics of MaterialsPC300cional Elective-IPE300cional Elective-IIPE300ch Methodology and IPRMC300PRACTICALModeling and Drafting toryPC0042002Course - 1AC200THEORYElement Methods in DesignPC30Oreeform ManufacturingPC300cional Elective-IIIPE300cional Elective-IVPE300		ζ.		Maxi	Aarks		
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
		SEMEST	TER I							
		THEO	RY							
1.	22CDC11	Concepts of Engineering Design	PC	3	0	0	3	40	60	100
2.	22CDC12	Computer Aided Modeling and Design	PC	3	0	0	3	40	60	100
3.	22CDC13	Advanced Mechanics of Materials	PC	3	0	0	3	40	60	100
4.	22CDE1X	Professional Elective-I	PE	3	0	0	3	40	60	100
5.	22CDE2X	Professional Elective-II	PE	3	0	0	3	40	60	100
6.	22MLC01	Research Methodology and IPR	MC	3	0	0	3	40	60	100
		PRACTI	[CAL							
7.	22CDC14	CAD Modeling and Drafting Laboratory	PC	0	0	4	2	60	40	100
8.	22CDC15	Technical Seminar-I	EEC	0	0	2	1	100	0	100
9.	22AC XX	Audit Course – 1	AC	2	0	0	0	100	0	100
		TOTAL		20	0	6	21	500	400	900
		SEMEST	ER II							
		THEO	RY							
1.	22CDC21	Finite Element Methods in Design	PC	3	0	0	3	40	60	100
2.	22CDC22	Mechanical Vibrations and Acoustics	PC	3	0	0	3	40	60	100
3.	22CDC23	Solid Freeform Manufacturing	PC	3	0	0	3	40	60	100
4.	22CDE3X	Professional Elective-III	PE	3	0	0	3	40	60	100
5.	22CDE4X	Professional Elective-IV	PE	3	0	0	3	40	60	100
		PRACT	ICAL	T	-		T	1		
6.	22CDC24	Finite Element Analysis Laboratory	PC	0	0	4	2	60	40	100
7.	22CDC25	CAM and Robotics Laboratory	PC	0	0	4	2	60	40	100
8.	22CDC26	Technical Seminar-II	EEC	0	0	2	1	100 0 100		
9.	22AC XX	Audit Course-2	AC	2	0	0	0	100	0	100
		TOTAL		17	0	10	20	520	380	900

				Hour	s/Week	Ι.		Maxi	mum 1	Marks
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	H 60 60 60 80	Total
		SEMESTER	RIII							
		THEORY	Y		-		-	-		
1.	22CDE5X	Professional Elective-V	PE	3	0	0	3	40	60	100
2.	22CDE6X	Professional Elective-VI	PE	3	0	0	3	40	60	100
3.	22CDE7X	Professional Elective-VII	PE	3	0	0	3	40	60	100
		PRACTIC	AL							
4.	22CDC31	Dissertation Phase – I	EEC	0	0	20	6	120	80	200
		TOTAL		9	0	20	15	240	260	500
		SEMESTER	RIV							
		PRACTIC	AL							
1.	22CDC41	Dissertation Phase – II	EEC	0	0	32	14	240	160	400
		TOTAL				32	14	240	160	400

Total Credits for the Programme = 21 + 20 + 15 + 14 = 70

LIST OF ELECTIVES FOR M.E COMPUTER AIDED DESIGN

Professional Electives (PE)

				Hou	ırs/We	ek		Maxi	mum N	Marks
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
	I	Elective - 1	[1			1	1		
1.	22CDE11	Advanced Mathematical Methods in Engineering	PE	3	0	0	3	40	60	100
2.	22CDE12	Advanced Composite Materials	PE	3	0	0	3	40	60	100
3.	22CDE13	Product Lifecycle Management	PE	3	0	0	3	40	60	100
4.	22CDE14	Advanced Engineering Materials	PE	3	0	0	3	40	60	100
5.	22CDE15	Experimental Stress Analysis	PE	3	0	0	3	40	60	100
		Elective - I	I							
6.	22CDE21	Advanced Kinematics of Mechanisms	PE	3	0	0	3	40	60	100
7.	22CDE22	Advanced Tool Design	PE	3	0	0	3	40	60	100
8.	22CDE23	Industry 4.0	PE	3	0	0	3	40	60	100
9.	22CDE24	Mechanics of Fracture	PE	3	0	0	3	40	60	100
10.	22CDE25	Design for Manufacturing, Assembly	PE	3	0	0	3	40	60	100
		Elective - Il	Ι							
11.	22CDE31	Productivity Management and Re- engineering	PE	3	0	0	3	40	60	100
12.	22CDE32	Theory of Plates and Shells	PE	3	0	0	3	40	60	100
13.	22CDE33	Optimization Techniques in Design	PE	3	0	0	3	40	60	100
14.	22CDE34	Computational Fluid Dynamics	PE	3	0	0	3	40	60	100
15.	22CDE35	Supply Chain Management	PE	3	0	0	3	40	60	100
		Elective - Г	V							
16.	22CDE41	Experimental Techniques and Data analysis	PE	3	0	0	3	40	60	100
17.	22CDE42	CAD/CAM tools	PE	3	0	0	3	40	60	100
18.	22CDE43	Contact Mechanics	PE	3	0	0	3	40	60	100
19.	22CDE44	Advanced Automotive Systems	PE	3	0	0	3	40	60	100
20.	22CDE45	Design of Material Handling Equipment	PE	3	0	0	3	40	60	100
		Elective - V	7							
21.	22CDE51	MEMS & NEMS Technology	PE	3	0	0	3	40	60	100

22.	22CDE52	Enterprise Resource Planning	PE	3	0	0	3	40	60	100
23.	22CDE53	Mechatronics System Design	PE	3	0	0	3	40	60	100
24.	22CDE54	Failure Analysis	PE	3	0	0	3	40	60	100
25.	22CDE55	Maintenance Engineering	PE	3	0	0	3	40	60	100
	•	Elective - V	Ί							
26.	22CDE61	Integrated Product and Processes Development	PE	3	0	0	3	40	60	100
27.	22CDE62	Industrial Safety Management	PE	3	0	0	3	40	60	100
28.	22CDE63	Reliability in Engineering Systems	PE	3	0	0	3	40	60	100
29.	22CDE64	Mechanical Measurement and Analysis	PE	3	0	0	3	40	60	100
30.	22CDE65	Ergonomics in Manufacturing	PE	3	0	0	3	40	60	100
		Elective - V	II							
31.	22CDE71	Quality concepts in design	PE	3	0	0	3	40	60	100
32.	22CDE72	Design of Pressure Vessels	PE	3	0	0	3	40	60	100
33.	22CDE73	Plasticity and Metal Forming	PE	3	0	0	3	40	60	100
34.	22CDE74	Nano Materials Technology	PE	3	0	0	3	40	60	100
35.	22CDE75	Tribology in design	PE	3	0	0	3	40	60	100

Audit Courses (AC)

				Hou	rs/Wee	k		Maxi	mum	Marks
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
1.	22AC01	English for Research Paper Writing	PE	2	0	0	0	100	0	100
2.	22AC02	Disaster Management	PE	2	0	0	0	100	0	100
3.	22AC03	Sanskrit for Technical Knowledge	PE	2	0	0	0	100	0	100
4.	22AC04	Value Education	PE	2	0	0	0	100	0	100
5.	22AC05	Constitution of India	PE	2	0	0	0	100	0	100
6.	22AC06	Pedagogy Studies	PE	2	0	0	0	100	0	100
7.	22AC07	Stress Management by Yoga	PE	2	0	0	0	100	0	100
8.	22AC08	Personality Development through Life Enlightenment Skills	PE	2	0	0	0	100	0	100

	<u>SEMESTER - I</u>					
22CDC11	CONCEPTS OF ENGINEERING DES	IGN	SEM	IEST	ER I	
PREREQU	ISITES	CATEGORY	PC	Cro	edit	3
		Hours/Week	L	Т	Р	TH
		Hours/ Week	3	0	0	3
COURSE O	BJECTIVES					
1. To learn	the engineering codes and standards to design the product					
2. To desig	n the customer-oriented product with the concern of ergonomics a	aspect as well as enviro	onmenta	al frie	ndly.	
	the various design methods to create the complicated engineering	g product.				
	e materials based on various design methodology.					
	hize the design based on quality and reliability.				0	0
UNIT-I	DESIGN FUNDAMENTALS		9		0	9
Designing to	ss – Consideration of good design - Morphology of design - codes and Standards – Concurrent Engineering – Product life – Competition Bench marking – Systems Engineering – Life C	e cycle – Technologie	cal For	ecasti	ing – I	Market
UNIT-II	CUSTOMER - ORIENTED DESIGN & SOCIETAL CONSIDERATIONS		9	0	0	9
Human Facto intellectual pr	of customer needs- customer requirements- Quality Function rs in Design –Ergonomics and Aesthetics, Societal considerati operty – Legal and ethical domains – Codes of ethics - Ethical co action of engineering with society.	on - Contracts - Prod	luct lia	bility	- Prot	tecting
UNIT-III	DESIGN METHODS		9	0	0	9
Decision Mal	d problem solving–Creativity methods – TRIZ: Theory of Inv cing - Evaluation methods - Embodiment Design - Product Ar of models in Engineering design - Mathematical Modeling – Simu	chitecture - Configura				
UNIT-IV	MATERIALS SELECTION		9	0	0	9
design - Econ in material se	ction process - Performance characteristics of materials _ Materia omics - Material Performance indices - Decision Matrices - Pugh election - Design with materials - Design for Manufacturing chining, Metal forming	method and weighted	propert	y Ind	ex - rec	cycling
UNIT-V	RELIABILITY AND QUALITY ENGINEERING		9	0	0	9
for Safety - F	eory – Design for Reliability – Failure Mode and Effect Analys Reliability centered Maintenance - Total Quality Concept – Qua uchi Method – Robust Design – Optimization methods.					
		Т	otal(4	5L) =	= 45 Pe	eriods
	CE BOOKS:					
	George E, "Engineering Design - A Materials and Process s, Singapore, 2000.	sing Approach", Mc	Graw	Hill	Interna	tional
	Ulrich and Steven D. Eppinger, "Product Design and Devel	opment", 4th Edition	n, McG	aw l	Hill, 2	008.

3 Pahl, G, and Beitz, W.," Engineering Design", Springer – Verlag, NY. 2007
4 Suh, N.P., "The principles of Design", Oxford University Press, NY.1990

5 Ray M.S., "Elements of Engineering Design", Prentice Hall Inc. 1985.

6 A.K. Govil, "Reliability Engineering", Tata McGraw-Hill Publishing Co. Ltd., 1983.

	RSE OUTCOMES: completion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply the design principles for quality products to create economically viable products.	Apply
CO2	Create a customer-oriented quality product that adheres to the environmental and ethical standards	Create
CO3	Identify the various design methods suitable to improve the quality of the product.	Understand
CO4	Synthesize the principles of design for machinability, accessibility, and assembly.	Understand
CO5	Apply the reliability engineering parameters and optimization techniques to develop quality of the product.	Apply

COURSE	ARTIC	CULAT	TION N	MATR	IX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO2	2	-	-	-	-	2	2	2	2	2	3	2	2	2
CO3	-	-	3	-	3	-	-	-	-	-	-	2	2	2
CO4	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO5	-	-	-	-	-	-	-	-	2	2	3	2	2	2
Avg	2	2	2.3	2	2	2	2	2	2	2	3	2.0	2.0	2.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDC12	COMPUTER AIDED MODELING AND D	ESIGN	SEM	IEST	ER]	[
PREREQUIS	ITES	CATEGORY	PC	Cre	edit	3
		Horne (Woole	L	Т	Р	ТН
		Hours/Week	3	0	0	3
COURSE OB	JECTIVES:					
	indamental concepts of computer graphics and its tools in a gener	ic framework.				
	and the designing of synthetic surfaces and solid modelling.					
	bout advanced aspects of enabling computer aided technologies u					~ . ~
4. To create system.	strong skills of assembly modelling and prepare the student to	be an effective user	of a st	andar	ds in	CAD
	clear understanding of CAD systems for 3D modelling and view	ing.			I	1
	NTRODUCTION TO COMPUTER GRAPHICS		9	0	0	9
	AD Tools - Types of system - functional areas of CAD - Graph					
	ne Drawing Algorithm - DDA, Bresenham's and Parallel Lin					
	e Algorithm - 2-D & 3-D transformation (translation, scaling, r	otating) - windowing	- view	port	s - cl	ıppıng
transformation.			0	•	•	•
	URVES AND SURFACES		9	0	0	9
	nd Parametric representation of analytical and synthetic curve	s - Hermite cubic spl	ines, B	lezier	curv	es, B-
Splines, rational					a	
	surfaces- Analytical surfaces – plane, ruled surface, surface of		ated cy	linde	r, Syı	nthetic
	te, Bi-cubic, Bezier and B-Spline surface, COONs surface, Surface	e manipulation,				
UNIT III N	URBS AND SOLID MODELING		9	0	0	9
	, curves, lines, circle, arcs and bi linear surfaces. Fundamentals active Solid Geometry (CSG) and other methods – Sweep represented and the statemetric structure of the statemetric structure of the structure structu			y Rej	presei	ntation
UNIT IV D	RAFTING AND ASSEMBLY		9	0	0	9
aids and tools -	s - Customization, 3D sketches, Feature manipulation, Datum fea Generalized views, Presentation of dimensioning / tolerances/sy mbly - Associatively, Parent child relationship - Parametric design	mbols & annotation.	Differe	nt ap		
UNIT V V	ISUAL REALISM		9	0	0	9
Hidden line rem	Assembly and Behavioral modeling - Conceptual Design - Top- oval – Hidden Surface removal - Algorithms for shading and Rer tion, Design by features, Assembly and Tolerance Modeling, To I in Design.	dering. Parametric and	l Varia	tional	mod	eling -
		Tot	al(451	L) = 4	45 Pe	eriods
REFERENCE	ROOKS.					
	id B Sivasubramanian "CAD/CAM Theory and Practice" McG	raw Hill international	2007			

1	Torunnin Zera, Rostvasaoranianian, "Orib) er niv Theory and Trachee , Median Thir International 2007
2	Anupam Saxena, Birendrasahay, "Computer Aided Engineering and Design", Springer, 2005.

- 3 P.N. Rao, "CAD / CAM Principles and Applications", TMH, 2nd Edition, 2008.
- 4 Martenson, E. Micheal, Geometric Modelling, John Wiley & Sons, 1995.
- 5 Foley, Van Dam, Feiner and Hughes, Computer Graphics Principles and Practice, second edition, Addison–Wesley, 2000.
 6 Hill Jr, F.S., Computer Graphics using Open GL, Pearson Education, 2003.
- 7 M.P. Groover and E.W. Zimmers, "CAD/CAM", PHI, 1st Edition, 1995.

	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Solve 2D and 3D transformations for the basic entities like line and circle.	Apply
CO2	Formulate the basic mathematics fundamental to CAD system.	Create
CO3	Apply basic concepts to develop construction techniques and solid modelling concepts.	Apply
CO4	Use computer and CAD software for design and modelling.	Apply
CO5	Create geometric models through animation and transform them into real world systems	Create

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	3	-	3	-	1	-	1	-	-	2	2	3
CO2	3	2	-	2	3	-	-	-	1	-	-	2	3	2
CO3	3	3	2	2	2	2	1	-	1	-	-	2	2	2
CO4	1	2	2	2	2	-	1	1	1	-	-	2	2	2
CO5	1	2	2	2	2	-	1	1	1	-	-	3	2	3
Avg	1.8	2.2	2.25	2	2.4	2	1	1	1	0.0	0.0	2.2	2.2	2.4
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22	2CDC13	ADVANCED MECHANICS OF MATERIA	ALS	SEM	EST	ER I	I
PRI	EREQUISIT	TES	CATEGORY	PC	Cre	dit	3
			Hourse/Wools	L	Т	Р	ТН
			Hours/Week	3	0	0	3
	URSE OBJE			•			
$\frac{1.}{2.}$		e concepts of the theory of elasticity in three-dimensional stress syst e shear-Centre of various cross-sections and deflections in beams su		trical b	endin	σ	
3.		e stresses on flat plates and curved members.	to unsymme	uneur o	cildin	5.	
4.	To study th	e torsional stress of non-circular sections.					
5.		out the contact stresses and finite element method.					1
UN	IT-I ELA	ASTICITY		9	90	0	9
equi	librium - com	ons and general equations of elasticity in Cartesian, Polar and curvi patibility - boundary conditions - Representation of three-dimension principle - plane stress - Airy's stress function - Energy methods.					
UN	IT-II SHI	EAR CENTRE AND UNSYMMETRICAL BENDING		9	90	0	9
		-Centre for various thin sections, curved beams - shear flows. Enmetrical loading-kern of a section.	Bending stresses and	Deflee	ctions	in t	eams
UN	IT-III STH	RESSES IN FLAT PLATES AND CURVED MEMBERS		9	90	0	9
close	ed ring subject	ses in curved beams - circumference and radial stresses – deflecti ted to concentrated load and uniform load - chain links and crane ho RSION OF NON-CIRCULAR SECTIONS			0	0	9
		gular cross section - St.Venants theory, semi inverse method – pransional stress in hollow thin walled tubes.	ndtl's elastic membr	ane ana	alogy	- Pra	ndtl's
UN	IT-V CO	NTACT STRESSES AND FINITE ELEMENT METHOD		9	90	0	9
		ating contact stress-deflection of bodies in point and line Contact a ar rectangle – Linear Isoparametric quadrilateral – plane frame elem		ement	Meth	od –	Plane
			Tota	al(45L) = 4	5 Pe	riods
DEI		DOOVS.					
1	FERENCE I	resi, Richard J.Schmidt, "Advanced Mechanics of Materials", Wiley	India Pyt I td 2000)			
2		, "Advanced Mechanics of Solids", Tata McGraw Hill, 2009.	⁷ mula 1 vi.Liu., 2005	· .			
3		C., "Mechanics of Materials", Prentice-Hall, 2018.					
4		ok, Warren C.Young, "Advanced Mechanics of Materials", Prentice	e Hall, 1999.				
5		and Goodier, "Theory of Elasticity", Tata McGraw Hill, 2010.					
		COMES.			B	loon	1' s
	URSE OUT	of the course the student will be able to				xono Iapp	•
CO	1 Apply th	he concepts of the theory of elasticity to a three-dimensional s	tress system.		A	Appl	у
CO	2 Determi	ine the shear center of various cross-sections and deflections	in beams subjecte	d to	Ev	alua	ite

COURSE	ARTIC	CULAT	TION N	IATRI	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO2	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO3	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO4	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO5	3	3	3	3	3	-	-	-	-	-	-	3	1	1
Avg	3	3	3	3.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	3.0	1.0	1.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22MLC01	RESEARCH METHODOLOGY AND IPH	R	SEME	ESTE	RI	
PREREQU	ISITES	CATEGORY	MC	Cr	edit	3
		Hours/Week	L	Т	Р	ТН
		nours/ week	3	0	0	3
COURSE O	BJECTIVES:					
2. To e thou 3. To in 4. To g	evelop the subject of the research. ncourage the formation of higher level of trained intellectual ability ght. nitiate individual judgement and skill in the application of research th ain knowledge to file patents. evelop skills required in writing research proposals, reports and disse	eory and methods	igor and	indep	pendend	ce of
UNIT I	INTRODUCTION TO RESEARCH		9	0	0	9
selecting a res	research problem, Sources of research problem, Criteria Character search problem, Scope and objectives of the research problem, Appro- collection, analysis, interpretation, Necessary instrumentations.					
UNIT II	EFFECTIVE LITERATURE STUDIES APPROACHES	, ANALYSIS	9	0	0	9
research appr	ne theoretical framework of research - Developing operational state oach - Hypotheses: Parametric and non-parametric testing- Establish ew and experiments – documentation, Plagiarism, Research ethics.	ing the reliability				
UNIT III	EFFECTIVE TECHNICAL WRITING AND PROPOSAL	RESEARCH	9	0	0	9
Developing a	Research Proposal, Format of research proposal, a presentation and a	assessment by a rev	view com	mitte	e	
UNIT IV	NATURE OF INTELLECTUAL PROPERTY		9	0	0	9
patenting, de	gns, Trade and Copyright, The process of Patenting and Deve velopment. International Scenario: International cooperation on I ting under PCT.					
UNIT V	PATENT RIGHTS AND IPR		9	0	0	9
developments	ent Rights. Licensing and transfer of technology. Patent information in IPR; Administration of Patents System. IPR of Biological S ase Studies, IPR and IITs.					
					4	
			Total(4	5L) =	= 45 P	eriods

REF	ERENCE BOOKS:
1	Kothari.C.R, Research Methodology – Methods and Techniques, New age Publications, New Delhi, 2009.
2	Stuart Melville and Wayne Goddard, "Research methodology: An introduction for science & Engineering students"
3	Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
4	Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
5	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
6	Mayall, "Industrial Design", McGraw Hill, 1992.
7	Niebel, "Product Design", McGraw Hill, 1974.
8	Asimov, "Introduction to Design", Prentice Hall, 1962.
9	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in the New Technological Age", 2016.
10	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

	SE OUTCOMES: completion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understand research problem formulation	Understand
CO2	Analysis research related information	Analysis
CO3	Follow research ethics	Remembering
CO4	Understand that today's world is controlled by computer, Information technology, but tomorrow's world is ruled by ideas, concepts and creativity.	Understand
CO5	Understand that IPR production provides an incentive to inventors for further research work and investment in R&D, which leads to creation of new and better products, and in turn brings about economic growth and social benefits.	Understand

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3							
CO1	2	2	1	3	1	-	-	-	-	-	1	2	1	-							
CO2	-	3	2	2	1	1	-	3	-	1	-	2	1	-							
CO3	-	-	2	-	-	1	1	1	-	3	1	-	-	-							
CO4	-	-	-	2	1	-	-	-	-	2	1	-	-	2							
CO5	-	-	-	-	2	1	-	1	-	-	1	-	-	3							
Avg	2	2.5	1.6	2.3	1.25	1	1	1.6	0.0	2	1	2	1	2.5							
			3/2/1	-indica	tes stre	ength o	f corre	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDC14	CAD MODELING AND DRAFTING LABO	ORATORY	S	EMES	STER	I
PREREQUISI	ГЕS	CATEGORY	PC	Cre	edit	2
			L	Т	Р	TH
		Hours/Week	0	0	4	4
COURSE OBJ	ECTIVES:					
1. To impart ki	nowledge on the commercially available computer-aided drafti	ng software's and the	ir featur	es.		
	modeling of 2D part drawings.					
	e 3D mechanical components.					
	the 3D parts and drafting it using software assistance.					
	part drawings from the assembly.					
MODULE I	LIST OF SOLID EDGE EXPERIMENTS		0	0	30	30
	machine elements					
	machine elements					
	lrawing of machine elements					
	g of machine elements					
MODULE II	LIST OF CATIA EXPERIMENTS		0	0	30	30
i. Sketcher exerci	Ses					
ii. Part design						
	wing of machine element					
iv. Sheet metal de						
					(0 D	• •
		'	Fotal(60	JP) = (60 Pe	riods

	RSE OUTCOMES: completion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Use the modern engineering tools for engineering practice.	Apply
CO2	Draw 2D part drawings, sectional views, and assembly drawings as per standards.	Analysis
CO3	Model the 3D mechanical components with dimensioning	Create
CO4	Generate Assembly drawing of a given mechanical component using software assistance.	Create
CO5	Convert 3D solid models into 2D drawings and prepare different views, sections, and dimensioning of part models.	Analysis

COURS	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	-	1	2	3	-	1	3	-	1	1	-	1	2	3	
CO2	-	2	3	3	-	2	3	-	2	1	-	2	1	3	
CO3	-	2	3	3	-	2	3	-	2	2	-	3	2	-	
CO4	-	2	3	3	-	2	3	-	3	2	-	1	3	-	
CO5	-	2	3	3	-	2	3	-	3	2	-	2	1	-	
Avg	0.0	1.8	2.8	3	0.0	1.8	3.0	0.0	2.2	1.6	0.0	1.8	1.8	3	
			3 / 2 /	/ 1 -indi	cates st	rength o	of corre	ction (3	-High, 2	2-Mediun	n, 1-Low)				

22CDC15	TECHNICAL SEMINAR - I		SE	ME	STER	Ι
PREREQUIS	ITES	CATEGORY	EEC	Cr	edit	1
			L	Т	Р	ТН
		Hours/Week	0	0	2	2
COURSE OB	JECTIVES:					
1. To work	on a specific technical topic in Engineering design related topics to	o acquire the skills of	f oral pre	sentat	ion.	
2. To acqui	re technical writing abilities for seminars and conferences.					
3. To Identi	fy and compare technical and practical issues related to the area of	course specializatio	n.			
4. To Outlin	he annotated bibliography of research demonstrating scholarly skill	s.				
5. Demonst	rate the ability to describe, interpret and analyze technical issues an	nd develop competer	nce in pre	sentii	ıg.	
MODULE			0	0	30	30
 They w paper/w A brief Similar the tecl They w Evalua 	dents will work for two hours per week guided by a group of staff vill be asked to talk on any topic of their choice related to En white paper on the selected topics for presentation and to engage in copy of their talk also should be submitted. ly, the students will have to present a seminar of not less than fifte unical topic along with the journal reference copy. vill also answer the queries on the topic. The students as the audien tion will be based on the technical presentation and their port and a cific rubrics.	gineering design, an dialogue with the au en minutes and not r ce also should intera	idience. nore than ct.	thirt	y minu	tes on

Total(30P) = 30 Periods

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Generate motivation for any topic of interest and develop a thought process for technical presentation.	Create
CO2	Express communicative skills (e.g. speaking, listening, reading, and/ or writing).	Remembering
CO3	Make use of new and recent technology for creating technical reports	Apply
CO4	Organize a detailed literature survey and build a document with respect to technical publications.	Understand
CO5	Analyse and comprehend the proof-of-concept and related data.	Analysis

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	1	3	3	1	1	-	3	-	-	
CO2	-	-	-	-	-	-	3	2	2	3	-	-	-	3	
CO3	-	-	-	-	1	-	3	1	2	2	-	-	2	-	
CO4	-	-	-	-	-	-	3	3	3	2	-	2	-	-	
CO5	-	1	-	3	-	-	3	-	3	2	-	-	-	2	
Avg	0.0	1	0.0	3	1	1	3	2.25	2.2	2.0	0.0	2.5	2	2.5	
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)														

SEMESTER-II

22CDC21	FINITE ELEMENT METHODS IN DESI	SEMESTER II				
PREREQUISITE	S	CATEGORY	PC	Credit		3
		-	L	Т	Р	ТН
		Hours/Week	3	0	0	3
COURSE OBJEC	TIVES:					
	orough understanding of the advanced finite element analysis tech					
	rectively use the tools of the analysis for solving practical problem		ering de	sign.		
	and solve the Finite Element 1-D structural and 2-D structural pro	olems.				
	understand the dynamic problems in structures owledge of FEM for heat transfer analysis and flow analysis					
	ODUCTION		9	0	0	9
linear, etc., Historica the starting point for Elements, Local and	blems – Dimensionality, time dependence, Boundary Value pr al Perspective of FEM and applicability to mechanical engineeries or FEM, steps in finite element method, discretization, types Global coordinates, Coordinate transformation and Gauss- Lege Compatibility conditions, Assembly and boundary considerations	ng design problems of elements used, ndre scheme of nur	s. Differ Shape	rential functi	equations,	tion as Linear
UNIT II ONE	DIMENSIONAL PROBLEMS		9	0	0	9
	with one dimensional geometry. Formulation of stiffness m		1			
involving hand calcu UNIT III TWO	ation for beam elements and formulation of FE characteristics, Pla lations. Algorithmic approach for developing computer codes inv DIMENSIONAL PROBLEMS	olving 1-D element	es. 9	0	0	9
for plane stress plan parametric, Isoparan	dimensions, natural coordinates, Isoparametric representation, Co ne strain and axi-symmetric problems; Triangular and Quadrila netric and super-parametric elements. General considerations i on plate bending elements and shell elements.	iteral elements, hig	gher or	ler ele	ement	s, sub-
UNIT IV DYNA	AMIC ANALYSIS		9	0	0	9
dynamic equations of	mamic problems in structures using Lagrangian Method, Consist of motion and introduction to the solution procedures. Modellin fodel analysis, Mode superposition methods and reduction technic	ng of structural dar				
UNIT V FEM	IN HEAT TRANSFER & FLUID MECHANICS		9	0	0	9
and simple numerica	on for one dimensional heat conduction with convective bound l problems. Formulation for 2-D and 3-D heat conduction proble ntact problems. Finite element applications in potential flows; I ign case studies	ms with convective	e bound	laries.	Introd	luction
]	fotal(4	5L) =	:45 Pe	eriods
REFERENCE BC	OKS.					
	ite Element Procedures, Prentice-Hall of India Private Limited, N	ew Delhi 1006				
	Γ. J. R. Hughes, Computational Inelasticity, Springer-Verlag New		ork 19	98		
	ert Davis et al, "Concepts and Applications of Finite Element A				ey and	Sons,
	Applied Finite Element Analysis", 2 nd Edition, John Wiley, 1984.					
	wicz and R. I. Taylor Einite Element Method: Volume 2 So		fth Edi	tion 1	Ruttor	worth

3. O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mechanics, Fifth Edition, Butterworth-Heinemann, Oxford,

4. D. R. J. Owen and E. Hinton, Finite Elements in Plasticity: Theory and Practice, Pineridge Press Ltd

5.	T. Belytschko and W. K. Liu and B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons Ltd.,
	England

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understand the concept of finite element method for soling design problems.	Understand
CO2	Formulate and solve manually problems in 1-D structural systems involving bars, trusses, beams and frames.	Create
CO3	Develop 2-D FE formulations involving triangular, quadrilateral elements and higher order elements	Create
CO4	Apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	Apply
CO5	Apply the knowledge of FEM for heat transfer analysis and flow analysis	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	3	1	-	-	-	1	1	-	-	1	2	-
CO2	3	1	3	3	3	-	-	1	1	-	-	-	-	3
CO3	3	1	3	3	2	-	-	1	1	-	-	-	-	-
CO4	3	2	3	3	2	-	2	2	1	-	-	1	2	-
CO5	3	1	1	1	1	-	-	-	1	-	-	1	1	-
Avg	3.0	1.2	2.6	2.2	2	0.0	2	1.25	1.0	0.0	0.0	1	1.6	3
			3/2	/ 1 -indi	icates str	ength of	correcti	on (3-Hi	gh, 2-M	edium, 1-	Low)			

22CDC22	SE	R II									
PREREQUIS	ITES	CATEGORY	PC	Cre	edit	3					
		Houng/W/ools	L	Т	Р	ТН					
		Hours/Week	3	0	0	3					
COURSE OB											
1. To understa	and the fundamentals of vibration and its practical applications										
2. To understa	and the working principle and operations of various vibration measurin	ng instruments.									
3. To be creat	ive problem solvers whilst dealing with machinery involving periodic	phenomena.									
	and the working principle and operations of various vibration measuring	ng instruments.									
	ledge about the basic of sound waves and noise and its propagation				I	r					
UNIT I V	IBRATION FUNDAMENTALS		9	0	0	9					
elastically coup	Single degree freedom free vibration systems – Damped vibrations – led viscous dampers- System Identification from frequency respon- toration of spring-coupled system – mass coupled system – Forced Vibr	se-Support motion	– Two	-degr	ee fr						
UNIT II M	IULTI DEGREE FREEDOM SYSTEM		9	0	0	9					
Multi Degree Freedom System-Free Vibration equation of motion- Influence Coefficient - Stiffness Coefficient- Flexibility Coefficient- Generalized coordinates- and Coordinate couplings. Lagrange's Equations- Matrix Method- Eigen Values - Eigen Vector problems. Modal Analysis- Forced Vibrations of undamped system and modal analysis. Multi Degree System Numerical Methods-Raleigh's Method- Rayleigh-Ritz Method- Holzer's Method- Methods of Matrix iterations- Transfer Matrix Method- Impulse response and frequency response-functions.											
UNIT III C	ONTINUOUS SYSTEM AND TRANSIENT- RANDOM VI	BRATIONS	9	0	0	9					
vibrations- Resp impulse respons	tem - vibrations of String- Bars- Shafts and beams- free and forced bonse of a single degree of freedom system to step and any arbitrary e e functions. Random Vibrations- Expected values auto and cross corre wide band and narrow band processes.	excitation - convolution	on (Duh	amel	's) in	tegral-					
UNIT IV V	IBRATION CONTROL AND VIBRATION MEASUREME	NT	9	0	0	9					
Introduction of	tating machine- Whirling of rotating shafts-Balancing of reciprocal damping- vibration isolation and vibration absorbers. Vibration Mea Dynamic Testing of Machines and structures- Experimental modal	surement- FFT analy	yzer- vi	ibratio	on ex	citers-					
UNIT V N	OISE AND ACOUSTICS		9	0	0	9					
Sound waves- governing equation and its propagation- Plane acoustic waves, Sound speed, characteristic acoustic impedance of elastic media-Fundamentals of Noise - Decibel- Sound Pressure level- Sound Intensity- Sound fields- reflection- absorption and transmission. Noise measurement - Sound meter - Allowed exposure levels and time limit by B.I.S Octave Band analysis of sound- Fundamentals of Noise control- source control- path control - enclosures-noise absorbers- noise control at receiver.											
Total(45L) =45 Periods											
REFERENCE	E BOOKS:										
1 Rao, S.S.	"Mechanical Vibrations," Addison Wesley Longman, 2005.										
2 Thomson	, W.T "Theory of Vibration with Applications", CBS Publishers and	d Distributors, New D	Delhi, 2	000.							
3 Ramamu											

- 4 A.H.Church, "Mechanical Vibrations", 2ndEdition, John Wiley & Sons Inc, 1973.
- 5 Srinivasan, "Mechanical Vibration Analysis", 2ndEdition,-McGraw Hill, 1982.
- 6 Kewal Pujara, "Vibration and Noise for Engineers", Dhanpat Rai & Co

	COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Understand the effects of vibration in mechanical systems and their classification.	Understand				
CO2	Develop schematic models for physical systems and formulate governing equations of motion.	Create				
CO3	Determine a complete solution to mechanical vibration problems using mathematical or numerical techniques.	Apply				
CO4	Identify the various vibration measuring instruments, vibration control and analysis techniques	Understand				
CO5	Analysis noise and acoustics to control and reduce vibration effects in machinery.	Apply				

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	3	1	1	1	1	-	-	-	-	-	1	-	-	1	
CO2	1	3	1	1	2	2	-	-	-	-	1	-	-	-	
CO3	2	1	2	1	-	1	1	-	-	-	1	1	2	-	
CO4	1	3	2	1	1	-	-	-	-	-	1	-	-	-	
CO5	1	1	2	1	1	-	-	-	-	-	-	1	1	-	
Avg	1.6	1.8	1.6	1.0	1.25	1.5	1	0.0	0.0	0.0	1	1	1.5	1	
			3/2/1	3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)											

22CDC23	SOLID FREEFORM MANUFACTUR	ING	SEMESTER II								
PREREQUISITES	i	CATEGORY	PC	Cre	edit	3					
		Houng (Woole	L	Т	Р	ТН					
		Hours/Week	3	0	0	3					
COURSE OBJECT	ΓIVES:										
•	students with the evolution of Solid Freeform Manufacturing (S	,			<i>.</i>						
2. To gain knowled parts.	lge on Design for Additive Manufacturing (DFAM) and its im	portance in quality i	mprove	ement o	of fabi	ricated					
	polymerization and sheet lamination processes and their appli	cations.									
	material extrusion and powder bed fusion processes.										
	ge on jetting and direct energy deposition processes and their a	pplications.	0	0							
	DUCTION		9	0	0	9					
	of SFM systems – Hierarchical structure of SFM - SFM proces ating- Food Printing- Electronics printing – Rapid Tooling - B ct- Operative aspect.					nomics					
UNIT II DESIG	IN FOR ADDITIVE MANUFACTURING		9	0	0	9					
DFAM for Part Quali Interfacing - Part Orie Design Requirements	ives - AM Unique Capabilities - Part Consolidation - Topo ty Improvement - CAD Modeling - Model Reconstruction - I entation - Support Structure Design and Support Structure Gene of Additive Manufacturing: For Part Production, For Mass Pro	Data Processing for A eration - Model Slicin duction, For Series F	AM - D ng - Too Producti	ata For ol Path on. Ca	rmats Gene se Stu	- Data tration.					
UNIT III VAT P	OLYMERIZATION AND SHEET LAMINATION P	ROCESSES	9	0	0	9					
Build Processes - Par Digital Light Process Working Principles -	paratus (SLA): Principles – Photo Polymerization of SL Resin t Quality and Process Planning, Recoating Issues - Materials ing (DLP) - Materials - Process - Advantages and Application Process - Materials, Advantages, Limitations and Applications - Applications. Case Studies.	- Advantages - Limons. Laminated Obje	itations ct Man	and Aufactur	Applic ring (I	ations. LOM):					
UNIT IV MATE	RIAL EXTRUSION AND POWDER BED FUSION	PROCESSES	9	0	0	9					
Fused deposition Mod Laser Sintering (SLS Accuracy - Applicati	deling (FDM): Working Principles - Process - Materials and A): Principles - Process - Indirect and Direct SLS - Powder S ons. MultiJet Fusion. Selective Laser Melting (SLM) and – Advantages - Limitations and Applications. Case Studies.	Applications. Design Structure – Materials	s - Surf	face D	eviatio	on and					
UNIT V JETTI	NG AND DIRECT ENERGY DEPOSITION PROCE	SSES	9	0	0	9					
Drop on Demand mo (MJM) - Principles -	dimensional Printing (3DP): Principles – Process - Physics of de - Process – Materials - Advantages - Limitations - Appli Process - Materials - Advantages and Limitations. Laser s - Limitations and Applications. Case Studies.	cations. Material Jet Engineered Net Sha	ting: M ping (l	lulti Je LENS)	et Moo : Proc	delling cesses-					
		ŗ	rotal(4	15L) =	45 Pe	eriods					
REFERENCE BO			13.6								
publications Mu	dt and Jan-Steffen Hotter, "Additive Manufacturing: 3D Printin nchen, Germany, 2015. ISBN: 978-1-56990-582-1.										
	Brian Garret, Filemon Schöffer, and Tony Fadel, "The 3D Pri D Hubs B.V., Netherland, 2017. ISBN-13: 978- 9082748505.	nting Handbook: Te	chnolog	gies, D	esign	and					

- 3 Ian Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer New York, USA, 2nd Edition, 2015. ISBN13: 978-1493921126.
- 4 Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 1st Edition, 2007 FL, USA. ISBN- 9780849334092.

5 Milan Brandt. "Laser Additive Manufacturing 1st Edition Materials, Design, Technologies, and Applications", Woodhead Publishing, UK, 2016. ISBN- 9780081004333.

	COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Recognize the importance in the evolution of SFM/AM, proliferation into the various fields and its effects on supply chain.	Understand				
CO2	Evaluate the design for AM and its importance in the quality of fabricated parts.	Evaluate				
CO3	Acquire knowledge on principles and applications of polymerization and sheet lamination processes with case studies.	Understand				
CO4	Acquire knowledge on principles of material extrusion and powder bed fusion processes and design guidelines.	Understand				
CO5	Perceive jetting and direct energy deposition processes and their applications.	Apply				

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	1	3	3	2	-	-	-	2	-	2	-	-
CO2	3	2	3	3	3	2	1	2	-	-	-	3	3	-
CO3	3	3	2	3	1	3	1	-	-	-	-	-	-	-
CO4	3	3	2	3	2	1	-	-	-	-	-	-	-	-
CO5	3	3	2	3	1	1	-	-	-	2	-	3	-	1
Avg	2.8	2.8	2.0	3	2.0	1.8	1	2	0.0	2	0.0	2.6	3	1
	3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDC	SEMESTER II											
PREREC	QUISITES	CATEGORY	PC	Cre	dit	2						
		Hours/Week	L	Т	Р	ТН						
		Hours/ week	0	0	4	4						
COURSE	•	•										
1. To in	npart knowledge of Finite Element method using Analysis Software											
2. To so	olve simple static structural analysis and calculating stresses											
3. To kr	now the Steady-state Thermal Analysis of different shapes											
4. To ur	nderstand the Transient state of Thermal Analysis											
5. To re	ecognize the CFD/ Coupled field analysis.											
LIST OF	FEXPERIMENTS		0	0	60	60						
FE Analys	sis using ANSYS Package for different structures that can be Discred	ited with 1-D, 2-D & 3-1	D elem	ents to	perfor	m the						
following	analysis:				1							
1. F	orce and Stress analysis using link elements in Trusses, cables etc.											
	tress and deflection analysis in beams with different support condition	S.										
	tress analysis of flat plates and simple shells.											
	tress analysis of axisymmetric components.											
	analysis of bracket using ANSYS.											
	suckling analysis of linear materials using ANSYS.											
	ibration analysis of spring-mass systems.											
	Iodal analysis of Beams.											
	hermal stress and heat transfer analysis of plates.											
	hermal stress analysis of cylindrical shells.											
	11. Thermal analysis of temperature distribution in a 2-D fin cooled electronic components.											
	12. Temperature distribution in a 3-D fin cooled electronic component.											
	13. Heat flux analysis of a composite slab.											
	14. Heat flux analysis of a cylindrical rod.											
	15. CFD Analysis of a circular tube.											
10. C	coupieu structurai / Thermai analysis.		16. Coupled structural / Thermal analysis.									

Total(60P) = 60 Periods

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply the concept of FEM for solving static structural problems.	Apply
CO2	Apply the concept of FEM for modal analysis.	Apply
CO3	Apply the FEM technology for Thermal stress analysis.	Apply
CO4	Apply the FEM technology for Fluid Flow Analysis.	Apply
CO5	Solve the coupled field analysis problems using FEA software.	Apply

COURSE A	RTICU	ULATI	ON M	ATRIX										COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3														
CO1	1	2	1	3	-	2	-	-	1	-	-	1	2	1														
CO2	3	1	2	1	-	2	-	-	2	1	-	1	2	3														
CO3	3	2	1	2	3	2	-	-	2	1	-	2	2	3														
CO4	3	1	1	1	3	2	-	-	2	2	-	3	2	1														
CO5	3	1	1	1	3	2	-	-	2	2	-	3	2	1														
Avg	2.6	1.4	1.2	1.6	3	2.0	0.0	0.0	1.8	1.5	0.0	2.0	2.0	1.8														
			3/2/1	-indica	tes stre	ngth of c	orrectio	on (3-Hig	gh, 2-M	edium, 1	-Low)																	

22CDC25	CAM AND ROBOTICS LABORATORY		SEM	EST	'ER II	
PREREQUIS	TES	CATEGORY	PC	Cr	edit	2
		Hours/Week	L	Т	Р	TH
		Hours/ week	0	0	4	4
COURSE OB	JECTIVES:					
1. To underst	and Features and Selection of CNC machines.					
2. To learn C	NC programming for a variety of products using APT language.					
3. To impart	CNC part programming skills for turning and milling applications.					
4. To give a g	ood exposure of CAM software in order to perform Simulation and to	generate CL data.				
5. To learn ro	bot programming and simulation of machining processes.					
MODULE I	LIST OF CNC EXPERIMENTS		0	0	30	30
Features and s	lection of CNC Turning and Milling centers.					
	programming and operation of CNC turning machines, subroutine tech	niques and use of c	vcles m	entio	ned bel	ow:
CNC Turning		1	5			
1. Facing	Cycle					
2. Turnin	Cycle					
3. Drillin	Cycle					
4. Groovi						
	Surning Cycle					
	rning Cycle					
CNC Milling						
	& circular interpolation					
2. Mirror						
	r pocketing					
4. Rotatio	1 0					
5. Rectan	gular pocketing					
	e in CNC lathe & Milling					
	iven stock as per the component specification drawing using CNC lath	ie.				
	iven stock as per the component specification drawing using CNC Mil					
MODULE II	LIST OF ROBOTICS EXPERIMENTS	0	0	0	30	30
	ot programming and its languages		•			
	es: Introduction to online programming.					
	es: Motion control					
	s: Pick & Place					
	es: Interface with external equipment					
	1 1	г	otal(6) P) -	- 60 Pa	rinde
		1	Utai (U	J J –	- 00 1 0	11043

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Identify the features and selection of CNC machines.	Understand
CO2	Apply the basic concepts in NC technology for turning and milling applications.	Apply
CO3	Make familiar with the use of CAE and CAM Software.	Create
CO4	Practice in part programming and operating a machining center.	Remember
CO5	Program and control robot path for industrial applications.	Apply

COURSE	ARTIC	CULAT	TION N	IATRI	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	2	1	3	-	2	-	-	1	-	-	1	2	1
CO2	1	1	2	1	-	2	-	-	2	-	-	1	2	3
CO3	-	2	1	2	1	2	-	-	2	-	-	2	1	3
CO4	-	1	1	1	1	2	-	-	2	-	-	3	2	1
CO5	CO5 - 1 1 1 1 2 - 2 - 3 1 1													
Avg	1	1.4	1.2	1.6	0.6	2.0	0.0	0.0	1.8	0.0	0.0	2.0	1.6	1.8
			3 / 2 /	/1 -indi	cates st	rength o	f correc	tion (3-H	ligh, 2-	Medium,	1-Low)			

220	CDC26	TECHNICAL SEMINAR - II		SE	EME	STER	Π
PRE	REQUISI	TES	CATEGORY	EEC	Cr	edit	1
			TT (XX /)	L	Т	Р	TH
			Hours/Week	0	0	2	2
COU	RSE OB.	IECTIVES:		1			
1. 7	To work on	a specific technical topic in Engineering design related topics	to acquire the skills o	f oral pre	sentat	ion.	
2. 1	To acquire	technical writing abilities for seminars and conferences.					
3. 1	To identify	and compare technical and practical issues related to the area	of course specializatio	n.			
4.]	To outline a	annotated bibliography of research demonstrating scholarly ski	ills.				
5. I	Demonstrat	e the ability to describe, interpret and analyze technical issues	and develop competer	nce in pre	sentir	ıg.	
MO	DULE			0	0	30	30
• • • •	They w with the A brief Similarl the tech They w Evaluat	dents will work for two hours per week, guided by a group of s ill be asked to talk on any topic of their choice related to engine audience.copy of their talk also should be submitted.y, the students will have to present a seminar of not less than f nical topic.ill also answer the queries on the topic. The students, as the au ion will be based on the technical presentation and their port artific rubrics.	eering design topics a fifteen minutes and no dience, should also int	t more that	an thi	rty min	utes of

Total(30P) = 30 Periods

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Generate motivation for any topic of interest and develop a thought process for technical presentation.	Create
CO2	Express communicative skills (e.g. speaking, listening, reading, and/ or writing).	Understand
CO3	Make use of new and recent technology for creating technical reports	Create
CO4	Organize a detailed literature survey and build a document with respect to technical publications.	Understand
CO5	Analyse and comprehend the proof-of-concept and related data.	Analysis

COURSE	ARTIC	CULAT	FION N	AATR	IX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	1	3	3	1	1	-	3	-	-
CO2	-	-	-	-	-	-	3	2	2	3	-	-	-	3
CO3	-	-	-	-	1	-	3	1	2	2	-	-	2	-
CO4	-	-	-	-	-	-	3	3	3	2	-	2	-	-
CO5	-	1	-	3	-	-	3	-	3	2	-	-	-	2
Avg	0.0	1	0.0	3	1	1	3.0	2.25	2.2	2.0	0.0	2.5	2	2.5
			3/2/1	l -indica	ates stre	ength of	correc	tion (3-	High, 2-	Medium	, 1-Low)			

SEMESTER-III

22CDC31	DISSERTATION PHASE – I SEMESTER III												
PREREQUISI	ſES	CATEGORY	EEC	Credit		6							
		Hours/Week	L	Т	Р	ТН							
Hours/ week 0 0 10													
COURSE OBJ	COURSE OBJECTIVES:												
1. To develop the ability to solve a specific problem right from its identification and literature review until the successful solution of the same.													
2. To train the	2. To train the students in preparing project reports and to face reviews and viva voce examination												
CONTENTS:													
 scientific rest the individual The seminar instructions The examin review. The preliminar instructions 	Work will start in semester III and should preferably be a proble search, design, generation/collection and analysis of data, detern al contribution. • should be based on the area in which the candidate has underta for all branches of M. E. ation shall consist of the preparation of a report consisting of mary results (if available) of the problem may also be discussed	mining solution and aken the dissertation a detailed problem	l must pr n work a statemer	eferat s per nt and	oly brin the con d a liter	ng out nmon rature							
• The candida	front of the examiner's panel set by Head and PG coordinator.The candidate has to be in regular contact with his guide and the topic of the dissertation must be mutually decided by the guide and student.												
		Т	otal(150)) = 1	150 Pe	riods							

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	Understand
CO2	Students will be able to use different experimental techniques.	Remember
CO3	Students will be able to use different software/ computational/analytical tools.	Remember
CO4	Students will be able to design and develop an experimental set up/ equipment/test rig.	Create
CO5	Students will be able to conduct tests on existing setups/equipment and draw logical conclusions from the results after analyzing them.	Analysis

COURSE	ARTI	CULAT	FION N	ATR	IX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	1	-	-	-	3	1	-	1	1	1	3	-
CO2	1	3	3	1	1	1	1	1	2	1	1	-	-	-
CO3	-	1	1	-	-	-	3	1	-	1	-	-	-	1
CO4	2	-	1	2	-	1	-	1	2	1	1	-	-	1
CO5	CO5 2 2 - 1 - 1													1
Avg	1.5	1.6	1.5	1.5	1	1.	2.25	1	1.6	1	1	1	3	1
			3/2/1	l -indica	ates stre	ength of	correc	tion (3-	High, 2-	Medium	, 1-Low)			

SEMESTER IV

22CDC41	DISSERTATION PHASE - II		SE	MES	STER	IV						
PREREQUISI	TES	CATEGORY	EEC	Cr	edit	14						
			L	TH								
		Hours/Week	0	0	28	28						
COURSE OBJE	CTIVES:					1						
1. To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.												
2. To train the students in preparing project reports and to face reviews and viva voce examination												
CONTENTS:												
involve preferab • The sem common	• The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.											
review.	mination shall consist of the preparation of a report consisting	-										
	iminary results (if available) of the problem may also be discu of the examiner's panel set by Head and PG coordinator.	issed in the report. Th	ne work h	as to	be pres	sented						
	didate has to be in regular contact with his guide and the topic e and student.	of the dissertation m	ust be mu	ituall	y decid	led by						
		Т	Cotal(420)) = 4	120 Pe	riods						

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Students will learn to survey the relevant literature such as books, national / international refereed journals and contact resource persons for the selected topic of research.	Understand
CO2	Students will be able to use different experimental techniques.	Remember
CO3	Students will be able to use different software / computational / analytical tools.	Remember
CO4	Students will be able to design and develop an experimental set up / equipment / test rig.	Create
CO5	Students will be able to conduct tests on existing set ups /equipment and draw logical conclusions from the results after analyzing them.	Analysis

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	1	-	-	-	3	1	-	1	1	1	3	-
CO2	1	3	3	1	1	1	1	1	2	1	1	-	-	-
CO3	-	1	1	-	-	-	3	1	-	1	-	-	-	1
CO4	2	-	1	2	-	1	-	1	2	1	1	-	-	1
CO5	-	-	-	-	-	2	2	-	1	-	1	-	-	1
Avg	1.5	1.6	1.5	1.5	1	1.3	2.25	1	1.6	1	1	1	3	1
			3/2/1	1 -indica	ates stre	ength of	correc	tion (3-1	High, 2-	Medium	, 1-Low)			

PROFESSIONAL ELECTIVE-I

22CDE11	ADVANCED MATHEMATICAL METHODS IN H	ENGINEERING	SE	EME	STE	RI
PREREQUI	SITES	CATEGORY	PE	Cre	edit	3
		Hours/Week	L	Т	Р	ТН
		Hours/ week	3	0	0	3
COURSE O	BJECTIVES:					
	nent the knowledge about the vector spaces, inverse of a linear transf	ormation and composit	ion of	linear	map	s.
	the solution of wave equation by method of Eigen function.					
	ate the solutions of diffusion and wave equations by using techniques	of Laplace and Fourier	[•] transf	orms.		
	ne the significance of central limit theorem and testing of hypothesis.					
	e the variance of factors by one way and two-way classification and s	some standard design o				-
UNIT I	LINEAR ALGEBRA		9	0	0	9
	Linear dependence of vectors, basis and dimension- Linear transfor- rank and nullity- Inverse of linear transformation- rank-nullity the linear map.					
UNIT II	PARTIAL DIFFERENTIAL EQUATIONS		9	0	0	9
equation in cy	of second order PDE- Solution of PDE by separation of variables- S lindrical and spherical co-ordinates- Initial and Boundary value prol Eigen function- D-Alembert's solution for the wave equation.					
UNIT III	FOURIER AND LAPLACE TRANSFORMS		9	0	0	9
	nimum principle for Elliptic equations- Solution of diffusion equati lution of Diffusion equation, wave equation and Laplace equation by			aplace	e tran	sform
UNIT IV	STANDARD DISTRIBUTIONS AND TESTING OF HYPOTH	IESIS	9	0	0	9
	bles- Standard discrete and continuous distributions (Binomial, Po heorem and its significance- Testing a statistical hypothesis Sample					
UNIT V	ANALYSIS OF VARIANCE AND DESIGN OF EXPERIM	MENTS	9	0	0	9
	riance –One way and Two-way classifications- Principles of Des andomized Design, Randomized Block design and Latin square desig		some s	standa	ard de	esigns
		Tot	al(451	L) =4	5 Pe	riods

RE	FERENCE BOOKS:
1	Gilbert Strang, "Linear Algebra and its applications", Cengage Learning, New Delhi, 4th edition, 2006.
2	K.Sankara Rao, "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.
3	Veerarajan.T, "Probability, Statistics and Random process", Tata McGraw- Hill publications, second edition, New Delhi,
	2002.
4	V. Krishnamurthy, V. P. Mainra and J. L. Arora, "An introduction to Linear Algebra", East-West press Reprint 2005
5	Grewal, B.S., "Higher Engineering Mathematics", 43 rd edition, Khanna Publishers, New Delhi 2014.
6	J.B.Joshi, "Differential equations for Scientists and Engineers", Narosa Publications, 2010.
7	Gupta, S.C. and Kapur, V.K., "Fundamentals of Mathematical Statistics", S.Chand and Sons, New Delhi, 11th Edition 2014
8	Devore, Jay L., "Probability and Statistics for Engineering and the Sciences", 5th Edition, Brooks- Cole, 1999.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Demonstrate the vector spaces and linear transformations.	Understand
CO2	Analyze the solution of wave equation by method of Eigen function.	Analysis
CO3	Implement the Laplace and Fourier transform techniques for the solutions of diffusion and wave equation involved in engineering problems.	Apply

CO4	Experiment various tests of statistics for the samples.	Analysis
CO5	Analyze the variance of factors by one way and two-way classification and some standard design of	Analysis
	experiments.	

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0
Avg	3.0	2.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0
			3/2/	1 -indio	cates str	ength o	f correc	tion (3-1	High, 2-	Medium,	1-Low)			

22CDE12	ADVANCED COMPOSITE MATERIA	SI	EMES	TER	Ι				
PREREQUISI	TES	CATEGORY	PE	Cre	edit	3			
			L	L T P					
	Hours/Week	3	0	0	3				
2. To develop 3. To understa 4. To understa 5. To understa UNIT I IN IN Definition and C C boron, carbon, cardon,	nd composite material, reinforcements, and their selection. and processing of metal- matrix, ceramic -matrix and carbon- car nd engineering mechanics, analysis and design, micro mechanics nd and analyze the properties and performance of composite nd the basics of nano-composite materials. TRODUCTION Classification of Composites, MMC, PMC, CMC. Reinforcing eramic glass, aramids etc. Particulate fillers-importance of partic g matrix resins. Coupling agents-surface treatment of fillers an ious fibre reinforced composites, critical fibre length, and anisotre ROPERTIES AND PERFORMANCE nicrostructure of high-strength fiber materials (glass, carbon, ceramic, and carbon matrices). Specific strength and stiffness of	and fabrication techn fibres- Natural fibres cle shape and size. M d fibres, significance opic behaviour. polymer, ceramic fil	9 s (cellulo Aatrix res of interf 9 bers) and	0 ose, jut sins-the face in 0 1 matr	0 e, coi ermop comp 0 ix ma	9 nterials			
	ECHANICS AND MANUFACTURING		9	0	0	9			
stiffness/strength	chanics- analysis and design- concepts of Isotropy vs. Ani predictions, load-transfer mechanisms), Classical Lamination ent winding, prepreg technology, injection and compression me moulding.	Plate Theory (CLP)	Г). Fabri	cation	techr	iques-			
5	ILURE CRITERIA AND APPLICATIONS		9	0	0	9			
	esses, bending of composite plates, analysis of sandwich plates, esses, First Order Shear Deformation Theory (FSDT). Applicatio								
UNIT V NA	ANO COMPOSITIES		9	0	0	9			
	ypes of Nano-composites (i.e., metal oxide, ceramic, glass and er hard nano-composite - Synthesis and applications.	l polymer based) - C	Core-She	ll struc	tured	nano-			
			Total(4	5L) =	45 Pe	eriods			
REFERENCE	BOOKS:								
	K., "Fiber-Reinforced Composites: Materials - Manufacturing and		kker Inc,	1993.					
	Chawla, Composite Materials, Science and Engineering, Springe onaldson, ASM Handbook Composites Volume 21, 2001.	r, 2001.							
5 SIEVEILLD	onaidson, ASIM Handbook Composites Volume 21, 2001.								
4 Nanocomp	osite Science and Technology – P.M. Ajayan, L.S. Schadler, P.V.	Braun, Wilev. New Y	ork. 200)3.					

5	Suresh G. Advani, E. Murat Sozer	, Process Modelling in (Composites Manufacturing, 2 nd	Ed. CRC Press, 2009.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Choose and select the suitable composite material and their reinforcements	Evaluate
CO2	Select constituent materials glass, carbon, aramid, ceramic fibers and resins	Evaluate
CO3	Apply engineering mechanics, analysis and design and micro mechanics to fabricate the FRP composites in different manufacturing techniques.	Apply
CO4	Analyze thermo-mechanical behavior and evaluate the residual stresses in different types of laminates.	Analysis

Apply

COURSE A	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	-	2	-	1	2	1	2	2	1
CO2	3	2	2	2	2	-	2	-	1	-	1	2	2	2
CO3	1	1	1	1	1	1	1	-	1	-	1	2	2	3
CO4	1	2	2	2	2	-	-	-	2	-	-	2	2	2
CO5	3	1	1	1	1	-	-	-	1	2	3	3	2	3
Avg	2.2	1.6	1.6	1.6	1.6	1	1.6	0.0	1.2	2	1.5	2.2	2.0	2.2
			3/2/1	-indica	tes stre	ngth of	correcti	on (<mark>3-H</mark>	igh, 2-N	ledium, 1	1-Low)			

22CDE13	PRODUCT LIFECYCLE MANAGEMENT	[SEMESTER I						
PREREQUISI	ΓΕS	CATEGORY	PE	Cr	edit	3			
			L	ТН					
		Hours/Week	3	0	0	3			
COURSE OBJ	ECTIVES:								
	nd history, concepts, and terminology of PLM.								
	ctions and features of PLM/PDM.								
	ferent modules offered in commercial PLM/PDM tools. M/PDM implementation approaches.								
	egration of PLM/PDM with other applications.								
	STORY, CONCEPTS AND TERMINOLOGY OF PLM		9	0	0	9			
Involvement, The (PDM), Collabor – Network and C	PLM, Need for PLM, Components / Elements of PLM, Emergence reads of PLM- Computer aided design (CAD), Engineering Data Ma ative Product Definition Management (CPDM), Collaborative Product communications, Data Management, Heterogeneous data sources and ap	nagement (EDM), t Commerce (CPC).	Produc PLM/l	t data PDM	mana	gement ructure			
UNIT II PR	ODUCT LIFE CYCLE ENVIRONMENT		9	0	0	9			
Product Data and (2tier/3tier/4tier e	d Product Workflow, The Link between Product Data and Product Product Workflow, Developing a PLM strategy, Strategy identificat tc). Concept of cloud PLM.		PLM S			itecture			
UNIT III RO	DLE OF PLM IN INDUSTRIES		9	0	0	9			
strategy, PLM f	PLM selection and implementation (like auto, aero, electronic) - ot easibility study, change management for PLM, financial justificati to PLM, benefits of PLM for-business, organization, users, product o	on of PLM, barrier	s to PL	M im					
UNIT IV PR	ODUCT DATA MANAGEMENT (PDM)		9	0	0	9			
	anagement (PDM) Concepts, Benefits and Terminology, reason f DM, barriers to PDM implementation.	for implementing a	a PDM	l syst	æm, fi	nancial			
UNIT V CU	STOMISATION / INTEGRATION OF PDM/PLM SOFTV	VARE	9	0	0	9			
	ion, use of EAI technology (Middleware), Integration with legacy on top few commercial PLM/PDM tools.	data base, CAD, Sl	LM and	d ER	P, Case	e study			
		Т	'otal(4	5L) :	= 45 P	eriods			
REFERENCE	BOOKS:								
	vuori and Ansel miImmonen, "Product Lifecycle Management", Sprin								
	wic, Ulf Asklund and Annita Persson Dahlqvist, "Implementing re Configuration Management", Artech House Publishers, 2003.	and Integrating Pr	oduct	Data	Mana	gement			
	, "Global Product: Strategy, Product Lifecycle Management and	the Billion Custo	mer Q	uesti	on", S	pringer			
	"Product Lifecycle Management: 21st Century Paradigm for Pro-	oduct Realization",	Spring	ger P	ublishe	er (2nd			
,									

- 5 Michael Grieves (2006), "Product Life Cycle Management", Tata McGraw Hill, 2006.
- 6 International Journal of Product Lifecycle Management, Inderscience Publishers.
- 7 Fabio Giudice, Guido La Rosa, "Product Design for the environment-A life cycle approach", Taylor & Francis, 2006.

	COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Realize the history, concepts, and terminology of PLM.	Remembering				
CO2	Analyse the product life cycle environment.	Analysis				
CO3	Apply PLM/PDM implementation approaches in industry.	Apply				
CO4	Integrate PLM/PDM with other lifetime applications.	Apply				
CO5	Analyze the case studies.	Analysis				

COURSE	ARTIC	CULAT	ION M	IATRE	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	-	1	-	-	-	1	-	1	1	-	1	2	1
CO2	2	-	3	1	-	1	2	-	2	-	1	1	2	-
CO3	2	3	1	2	1	-	3	-	1	-	1	2	2	2
CO4	-	1	2	-	1	-	2	-	3	1	-	1	1	1
CO5	2	2	2	2	1	-	-	-	-	-	-	2	2	1
Avg	1.75	2	1.5	1.6	1	1	2	0.0	1.75	1	1	1.4	1.8	1.25
			3/2/	1 -indic	ates str	ength o	f correc	tion (3-	High, 2-	Medium	, 1-Low)			

22CDE14	ADVANCED ENGINEERING MATER	RIALS	S	SEME	STEI	RI
PREREQUIS	ITES	CATEGORY	PE	Cre	dit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
COURSE (DBJECTIVES:		1			
1. To identif	y fundamental issues and establish directions for investigation of materials					
2. To familia	arize various types of characterization tools used in material study.					
3. To unders	stand structure-properties properties relationships.					
4. To impart	knowledge about the fundamentals of micro/Nano, smart materials, device	es and electronics, i	n partic	cular th	ose re	lated
to the dev	velopment of smart structures and products.					
	se the skills, knowledge and motivation in the design, analysis and manufac	cturing of smart stru				
UNIT I	INTRODUCTION		9	0	0	9
	advanced metallic materials - ceramic materials and polymeric materials characteristics – applications - effects of processing on their subseque					
UNIT II	CHARACTERIZATION OF MATERIALS		9	0	0	9
& diffraction	terial interactions & wave / material interactions-the experimental process . Instrumentation- vacuum systems- electron sources and detectors etc with face analysis techniques and ion beam techniques - Aspects of sample prep	the techniques of				
UNIT III	HIGH STRENGTH, LOW AND TEMPERATURE MATERIA	LS	9	0	0	9
materials - A	strengthening of alloys - Materials available for high strength application pplications of high strength materials. Properties required for low and high materials availability for low and high Temperature applications.					
UNIT IV	SMART MATERIALS		9	0	0	9
Materials -N	Smart Materials - Physical Properties - Piezoelectric Materials - Electro Aagneto-electric Materials –Magneto-rheological Fluids – Electro-rheological s - Smart Actuators.					
UNIT V	NANOMATERIALS		9	0	0	9
	Fypes of nanomaterials, nanocomposites – Synthesis methods of nano mate of nanomaterials.	rials - Physical and	mecha	nical p	ropert	ies -
		То	otal(45	$(\mathbf{L}) = 4$	5 Per	riods
REFEREN	CE BOOKS:					

K	EFERENCE BOOKS:
1	D. R. Askeland and P. P. Phule, "The Science and Engineering of Materials", Thomson Publication, 2015.
2	Gregory Tirp, "Nano Technology", Springer Publication 2012.
3	Van Vlack, "Elements Of Material Science And Engineering", Pearson Education India 1989.
4	A.V. Srinivasan, "Smart Structures Analysis and Design", Cambridge University Press, Cambridge, 2001.
5	V.D. Kodgire, "Material science and Metallurgy", Everest Publishing House 2002.

COURSE OUTCOMES: On completion of the course the student will be able to							
CO1	Identify fundamental issues and establish directions for selection of materials.						
CO2	CO2 Describe the characterization techniques for materials.						
CO3	Prepare high strength materials and Suggest materials for low and high temperature applications.	Apply					
CO4	Integrate knowledge of different types of advanced engineering materials.	Understand					
CO5	CO5 Analyse problem and find appropriate solution for use of materials.						

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	-	1	-	2	1	-	-	-	1	-	-	-
CO2	2	1	-	1	2	1	-	1	2	1	-	-	-	1
CO3	1	2	3	1	1	1	2	-	1	-	1	-	1	1
CO4	-	-	2	1	-	2	1	-	2	-	1	1	2	1
CO5	1	1	1	1	-	-	2	-	-	1	1	1	2	-
Avg	1.25	1.25	2	1	1.5	1.5	1.5	1.5	1	1.6	1	1	1.6	1
	3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE			s	EMI	ESTE	RI				
PRFRF((Use of approved Data Book and Charts may be permi DUISITES	CATEGORY	PE	C	redit	3				
		Hours/Week	L 3	T 0	P 0	TH 3				
COURSI	E OBJECTIVES:		5	U	U	5				
	se indicial notation to represent the compatibility, equilibrium, and constituti	ve equations of mecl	nanics.							
	se alternate definitions of strain to solve problems involving large deformation									
3. To c	ompute bending stresses in circular plate									
-	erform stress calculations in thick walled cylinders and rotating disk		-							
UNIT	I THEORY OF ELASTICITY		9	0	0	9				
dimensior stress - St	of stress – Analysis of stain - Elasticity problems in two dimension and al stresses - Stress tensor - Airy's stress function in rectangular and polar of rain and deflection - The three theorem's - Theorem of virtual work - Theorem Ritz method - Galerkin's method - Elastic behaviour of anisotropic materials	coordinates - Energy prem of least work -	metho Castigl	d for iano's	analy	sis of				
UNIT I	I THEORY OF TORSION		9	0	0	9				
and electr	f prismatic bars of solid section and thin walled section - Analogies for torsic ical analogy - Torsion of conical shaft, bar of variable diameter - Thin wall ions are prevented from warping - Torsion of noncircular shaft.									
UNIT I	II UNSYMMETRICAL BENDING		9	0	0	9				
	If shear centre in symmetrical and unsymmetrical bending - Stress and defle Shear centre for thin wall beam cross section - Open section with one as tion. PLATE BENDING									
				v	v					
directions	of plate to cylindrical surface - Bending of a long uniformly loaded rectangul - Bending of circular plates loaded symmetrically w.r.t center - Bendin late with circular hole at centre symmetrically loaded and load distributed alo	g of circular plates	of vari							
UNIT V	PRESSURIZED CYLINDERS AND ROTATING DISCS		9	0	0	9				
Stresses in	g equations - Stress in thick walled cylinder under internal and external n rotating flat solid disc - Flat disc with central hole -Disc with variable th hick walled cylinders and rotating disc.	1			•					
		Tot	al(451	.) =4	5 Per	riods				
REFERF	ENCE BOOKS:									
	oshenko and Goodier, "Theory of Elasticity", McGraw Hill, 1970.									
	oshenko, "Advanced Strength of Materials", Vol. 1, 2, CBS publishers, 2004									
	Harteg, "Advanced Strength of Materials", Dover Publications Inc., 1987.	-								
-	y & Riley, "Experimental Stress Analysis", McGraw-Hill College, 1991.									
	oshenko, "Theory of Plates and Shells", McGraw Hill, 1964.									
LI										
COUDS	E OUTCOMES:				Bloo	m's				
	letion of the course the student will be able to				'axor Map	iomy ned				
CO1 7	o explain the concept of elasticity and analysis of stress-strain in various me	thods.			Inder	-				
	o study about the torsion in various solids.				Jnder					
CO3 7	o understand the concepts of symmetrical and unsymmetrical bending.			J	Jnder	stand				
CO4 A										

COURSE A	1			1								DGG4	200	Dage
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	-	1	-	-	1	-	-	-	-	2	1	2
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1
CO3	3	3	1	1	3	-	1	-	-	-	-	3	-	1
CO4	3	2	1	2	2	-	1	-	-	-	-	3	2	1
CO5	2	3	-	3	1	-	1	-	-	-	-	3	-	1
Avg	2.2	2.6	1	1.6	2	0.0	1.0	0.0	0.0	0.0	0.0	2.6	1.5	1.2
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

PROFESSIONAL ELECTIVE-II

220	CDE21	ADVANCED KINEMATICS OF MACHANISMS		SEMESTE							
PR	EREQUI	ISITES CATEGOR	Y PI	C	redit	3					
		Hours/Wee	L	Т	P	TH					
		Hours/ wee	к 3	0	0	3					
CO		BJECTIVES		•		•					
1.	1. Analyze the motion of mechanisms, the design of mechanisms to produce motion and the forces in machines										
2.		me familiar with a variety of complex mechanisms involving motion in complex curvature									
3.	•	nesize four-bar and slider crank mechanisms.									
4.	•	ze the spatial mechanism related to motion of robots.									
5.		/ the coupler curve theory.			—						
-	I-TIN	INTRODUCTION	9	0	0	9					
mec anal	hanisms -	ts - Definitions and assumptions - planar and spatial mechanisms - kinematic pairs - De Kinematic Analysis of Planar Mechanisms. Review of graphical and analytical methods nematically simple mechanism - analysis of complex mechanisms by the normal account	of velo	city an	d acce	leration					
UN	IIT-II	CURVATURE THEORY	9	0	0	9					
		oving centrodes - inflection circle - Euler-Savary equation - Bobillier constructions, cu Applications in dwell mechanisms.	oic of st	ationa	ry curv	vature -					
UN	IT-III	SYNTHESIS OF MECHANISMS	9	0	0	9					
four accu	bar and strate point	esis-degrees of freedom of planar kinematic chains, dimensional synthesis graphical meth slider crank mechanism - design of slider crank and four bar mechanism, analytical met s - function generation by mechanism - Freudenstein equation for four bar slider crank ch r position guidance - body guidance - Bloch's method - cognate linkages.	hod Che	byshe	v's spa	cing of					
UN	IT-IV	SPATIAL MECHANISMS AND KINEMATICS OF ROBOT	9	0	0	9					
para	meters -	 Mobility - Position analysis - Velocity analysis - Acceleration analysis - Eulerian - Kinematic analysis of spatial RSSR mechanism- Forward and inverse kinematics of robo- nism using simulation software packages. 									
UN	NIT-V	COUPLER CURVES	9	0	0	9					
	r bar linka oximate a	ge - Equation of coupler curve - double points and symmetry - Robert-Chebyshev theorem and exact.	n - straig	t line	e mech	anism -					
			Fotal(4	5L) =	45 Pe	riods					

RE	REFERENCE BOOKS:								
1	R.L. Norton, "Design of Machinery", Tata McGraw Hill, 2004								
2	J. J.Uicker, G. R. Pennock & J.E.Shigley, "Theory of Machines and Mechanisms", Oxford University Press, New York, 2003								
3	R.S. Hartenberg and J. Denavit, "Kinematic Synthesis of Linkages", McGraw-Hill, New York, 1980.								
4	J. Kenneth, Waldron, L.Gary&Kinzel, "Kinematics, Dynamics and Design of machinery", John Wiley& Sons, 2003.								
5	J.S. Rao, "The Theory of Machines Through Solved Problems", New Age International Publishers, 2006								
6	N.G. Sandor& G.A. Erdman, "Advanced Mechanism Design", Volume-I, Prentice Hall India Pvt. Ltd, 2001								
7	Michael J.Rider,"Design and analysis of Mechanism", John Wiley & Sons,2015								
	· · · · · · · · · · · · · · · · · · ·								

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Create a graphical and analytical method for analyzing the velocity and acceleration of complex Mechanisms.	Create
CO2	Interpret the curvature theory of complex kinematic mechanism	Understand
CO3	Develop the various approaches for generating the kinematic mechanism.	Create
CO4	Analyze simple spatial mechanisms such as RSSR for robotic manipulators.	Analysis
CO5	Create a coupler curve equation for four bar linkages.	Create

COURSE A	DURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	-	1	-	2	1	-	-	-	1	-	-	-
CO2	2	1	-	1	2	1	-	1	2	1	-	-	-	1
CO3	1	2	3	1	1	1	2	-	1	-	1	-	1	1
CO4	-	-	2	1	-	2	1	-	2	-	1	1	2	1
CO5	1	1	1	1	-	-	2	-	-	1	1	1	2	-
Avg	1.25	1.25	2	1.0	1.5	1.5	1.5	1	1.6	1	1	1	1.6	1
	3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE22	ADVANCED TOOL DESIGN		SEM	SEMESTER I					
PREREQUI	SITES	CATEGORY	PE	Cre	edit	3			
			L	Т	Р	TH			
		Hours/Week	3	0	3				
COURSE O	BJECTIVES								
1. To enable	e the student to make the complete design of tooling, based on the design	gn of a product.							
	stand the design of tools based on various machining processes.								
	about the various standards available in data book and usage of tool de								
	ve the design of tools relevant to vibrations induced in the machining p								
	ve the design of tools for manual machining as well as NC and automa	tic screw cutting ma		1	-				
UNIT-I	TOOL-DESIGN METHODS		9	0	0	9			
	Design Procedure - Statement of the problem -Needs Analysis - Tex								
	Design – drafting practice - Tool making Practice - Tools of the Toolm		owels -	- Hole	e loca	tion –			
Jig-boring pra	ctice- Punch and Die Manufacture - Electro-discharge machining for c	avity.							
UNIT-II	TOOL MATERIALS AND DESIGN OF CUTTING TOOL	.S	9	0	0	9			
Properties of I	Aaterials – Ferrous Tooling Materials – Nonferrous Tooling Materials	- Nonmetallic Tooli	ng Mat	erials	. Desi	gn of			
	Fools – Single-point cutting tools – Milling cutters – Drill, Tap, Reame								
the selection of	f carbide cutting tools and its inserts advanced heat treatment meth	ods for composite n	naterial	s, cry	o trea	tment			
of steels, plasr	na equipment.	-		•					
UNIT-III	DESIGN OF SPINDLES AND SPINDLE BEARINGS		9	0	0	9			
Design of Spi	ndles, Bearing and Power Screws: Design of spindles subjected to co	mbined bending and	l torsio	n. Th	e layo	out of			
	loading. Anti-friction slideways. Rolling contact, hydrodynamic, hyd								
their relative p	erformance. Hydrodynamic design of journal bearings. Power Screws,	Recirculating ball sc	rews.						
UNIT-IV	MACHINE TOOL VIBRATIONS		9	0	0	9			
	ation on the machine tool; Forced vibrations. Machine tool chatter. S								
single and two	p-degree freedom analysis. Completely coefficient. Elimination of vi	bration. Vibration a	nalysis	of ma	achine	e tool			
structures.			1						
UNIT-V	TOOL DESIGN FOR NC MACHINES		9	0	0	9			
	o numerical control machine tools - Fixture design for numerically co								
	nethods for numerical control - Automatic tool changers and tool po								
	ew machine and its tooling – General explanation of the Brown and	sharp machine. Co	oncepts	of ae	stheti	c and			
ergonomics ap	plied to machine tools - latest trends in Machine Tool Design								
		Tot	al(45I	L) = 4	5 Pe	riods			
REFERENC	E BOOKS:								
	naldson, George H.LeCain and V.C. Goold, "Tool Design", Tata McGr	aw Hill, 2000							
2 Prakash I	Hiralal Joshi, "Tooling data", Wheeler Publishing, 2000								
	.K, "Machine Tool Design", Tata McGraw Hill, 1989.								
	rgaer F, "Design Principles of Metal Cutting Machine Tools", Pergame								
	N, "Machine Tool Design- Vol. 3 & 4", MIR Publishers, Moscow, 19 d Bhattacharya A, "Principles of Machine Tools Vol.2", NCB, Calcutt	68.							

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply design principles to tool design and to create economically viable products.	Apply
CO2	Recognize tool material properties, tool nomenclature and cutting tool Properties.	Understand
CO3	Analyze the design of various bearings as it relates to spindles and power screws.	Analysis
CO4	Integrate the tooling design analysis with machine tool vibration.	Analysis

Create

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO2	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO3	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO4	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO5	3	3	3	3	3	-	-	-	-	-	-	3	1	1
Avg	3.0	3.0	3.0	3.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	3.0	1.0	1.0
			3/2/1	l -indica	ates stre	ength of	correct	ion (3-H	High, 2- 1	Medium,	1-Low)			

22CDE23	INDUSTRY 4.0		SI	SEMESTER					
PREREQUI	SITES	CATEGORY	PE	Cre	edit	3			
		TT (XX 7)	L	Т	Р	ТН			
		Hours/Week	3	0	0	3			
COURSE O	BJECTIVES:								
	stand the Smart Factory paradigm.								
	he strategic framework to exploit new technologies to enable Industry 4.	0.							
	eep insights into how smartness is being harnessed from data.								
	arize in Industry 4.0 in robotic technology.								
	ment Virtual/Augmented Reality applications.			-	-	-			
	INTRODUCTION TO INDUSTRY 4.0		9	0	0	9			
Introduction-	Digitalization and the Networked Economy - concept of industry 4.0 -	Drivers, Enablers,	Compe	lling	Force	es and			
	Industry 4.0 - Industry 4.0 production system, current state of industry	4.0 Technologies - 0	Compa	rison	of In	dustry			
4.0 Factory an	4.0 Factory and today's Factory - How is India preparing for Industry 4.0.								
	FECHNOLOGY ROADMAP FOR INDUSTRY 4.0		9	0	0	9			
	Components of Industry 4.0 - Supportive Technologies - Proposed Framoduct and Process Development Phase.	nework for Technolo	gy Roa	admap	p - St	rategy			
UNIT III	NTERNET OF THINGS		9	0	0	9			
	ings (IoT) - Industrial Internet of Things (IIoT) - Internet of Services - art Logistics - Cloud Computing - Trends of Industrial Big Data and f Industry 4.0.								
UNIT IV	ROBOTICS IN THE ERA OF INDUSTRY 4.0		9	0	0	9			
	Recent Technological Components of Robots- Advanced Sensor Technological Cognitive Architecture for Cyber-Physical Robotics - Industrial Robotic								
UNIT V	ROLE OF AUGMENTED REALITY		9	0	0	9			
	AR systems and functionality -AR Hardware and Software Technology augmented reality- enhancing interactivity in AR environments- Industri			ds- v	isuali	zation			
		Tot	al(45I	<i>_</i>) = 4	1 <u>5 P</u> e	eriods			
REFERENC	E BOOKS:								

KĽ	FERENCE BOOKS:
1.	Kiran Kumar Pabbathi, "Quick Start Guide to Industry 4.0: One-Stop Reference Guide for Industry 4.0", Create space
	Independent Publishing Platform, 2018.
2.	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things, A Press, 2016.
3.	Diego Galar Pascual, Pasquale Daponte and Uday Kumar, Handbook of Industry 4.0 and SMART Systems, 1st Edition, 2020
4.	Duato J, Yalamanchili S, and Lionel Ni, "Interconnection Networks: An Engineering Approach", Morgan Kaufmann
	Publishers, 2004.
5.	Grigore C. Burdea, Philippe Coiffet, Virtual Reality Technology, Wiley 2016

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Realize the need of industry 4.0 and its inter-connectivity.	Understand
CO2	Implement a strategic framework to exploit new technologies to enable Industry 4.0.	Apply
CO3	Interpret the architecture of IOT and Recognize the uses of cloud computing.	Understand
CO4	Apply the robotic systems used in a manufacturing plant and their role in an Industry 4.0 world.	Apply
CO5	Implement Virtual/Augmented Reality applications.	Apply

COURSE	ARTIC	CULAT	TION M	IATRI	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	2	3	3	-	-
CO2	2	2	2	-	2	2	2	3	-	-	-	-	-	-
CO3	2	3	-	2	-	-	-	-	2	2	2	-	3	-
CO4	2	3	2	2		-	3	2	2	-	-	-	-	3
CO5	-	2	2	2	3	3	-	-	-	2	-	-	-	-
Avg	2.25	2.5	2	2	2.3	2.3	2.5	2.5	2.3	2	2.5	3	3	3
			3/2/	1 -indic	ates str	ength of	f correct	tion (3-1	High, 2-	Medium,	1-Low)			

22CDE24	MECHANICS OF FRACTURE		S	EME	STE	RI
PREREQUIS	ITES	CATEGORY	PE	Cr	edit	3
		TT (TT)	L	Т	Р	ТН
		Hours/Week	3	0	0	3
COURSE OB	JECTIVES:					
	and about the fundamental of fracture mechanics and fatigue.					
	and about the fundamental of LEFM.					
	er fatigue and fracture aspects in design.					
	er failure regimes for fatigue and creep crack.					
	he test methods to measure material fracture toughness.		1		1	
UNIT I	INTRODUCTION		9	0	0	9
the fracture pro stress and plane	icity - Stress Concentration Factor – Notch Strengthening – External vari cess - Griffith Crack Theory – Irwin's modification - Strain-Energy Rel strain cases - Crack stability and instability conditions - Grain-Size Refine	ease Rate – Crack			urves	, Plane
UNIT II	LINEAR ELASTIC FRACTURE MECHANICS		9	0	0	9
	Crack growth life Integration – Mean stress effect – Cyclic Plastic zone – nd LEFM limitations ELASTIC-PLASTIC FRACTURE MECHANICS	Crack Closure –I	rwin's	corre	ction 0	- Small 9
		~ ~	-		-	
	dels – J integral – crack tip opening displacement - Path independence, icity – Crack tip opening displacement Relationship between CTOD, K and J.					
UNIT IV	FATIGUE CRACK AND CREEP CRACK		9	0	0	9
variable amplitu	s – S-N, P-S-N curves – Fatigue crack growth models – crack initiation and fatigue load - Paris law –Fracture Toughness. Dynamics of moving bilities. Creep crack growth, failure at high temperatures.					
UNIT V	EXPERIMENTAL METHODS AND NUMERICAL APPROA	ACHES	9	0	0	9
	b measure material fracture toughness and critical J integral value –Correct te element modelling of crack and evaluation of J integral and stress interval.	sity parameter-Dir	ect and	l indir	ect m	ethods.
		To	tal (45	5L) =	45 P	eriods
REFERENCI	E BOOKS:					
1 T.L. Ande	rson, "Fracture mechanics: Fundamentals and Applications", 4th Edition. C	CRC Press, Taylors	& Frai	ncis, 2	2017.	
	n, "Introduction of Fracture Mechanics", McGraw Hill Book Company, 1			,		
	Ulantaliana "Defense tien and Enerteen Machania of Enertia ania Materia		T	- 10	07	

- Richard W.Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials" John wiley& sons, Inc., 1996 Nestor Perez, "Fracture Mechanics", Kluwer Academic Publishers, 2004 3
- 4
- 5 David Broek, "Elementary Engineering Fracture Mechanics", Sijthoff and Noordhoff International Publisher, 1978.
- 6 M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford Press, 1985.
- 7 S. Murakami, Continuum Damage Mechanics, Springer Netherlands, Dordrecht, 2012.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Explain the concepts about the fundamental of fracture mechanics and fatigue	Understand
CO2	Use any one of the four parameters for finding out damage tolerance: stress intensity factor, energy release rate, J integral, Crack tip opening displacement.	Apply
CO3	Manage singularity at crack tip using complex variable.	Remembering
CO4	Calculate the fatigue life of a component with or without crack in it.	Evaluate
CO5	Apply modern sophisticated experimental techniques to determine fracture toughness and stress intensity factor.	Apply

COURSE	ARTIC	ULATI	ON MA	TRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	2	2	2	-	-	-	-	-	-	1	-	-
CO2	2	1	2	2	2	-	-	-	-	-	-	2	-	2
CO3	2	2	2	3	3	-	-	-	-	-	-	-	1	-
CO4	2	1	2	3	3	-	-	-	-	-	-	-	-	-
CO5	2	2	2	2	2	-	-	-	-	-	-	-	2	1
Avg	1.8	1.6	2.0	2.4	2.4	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.5	1.5
	•		3/2/1	- indicat	es strei	ngth of	correct	ion (3-H	ligh, 2-1	Medium,	1-Low)	÷		

22CDE25	DESIGN FOR MANUFACTURING, ASSE	CMBLY	SE	EMES	STE	RI
PREREQU	ISITES	CATEGORY	PE	Cre	edit	3
		HoundWool	L	Т	Р	TH
		Hours/Week	3	0	0	3
COURSE (DBJECTIVES:	I				
	fundamental principles in the design and production of engineered pro	oducts including the f	actors that	at con	trol th	e rate
	ction and influence the quality, cost and flexibility of processes v about the various assembly methods and processes and design for asse	mbly guidelines				
	erstand the complex interrelationships between design and manufacturin					
	the various factors influencing the manufacturability of components a	0	es in mai	nufact	uring	
5. Critique	product designs for ease of assembly					
UNIT I	INTRODUCTION		9	0	0	9
Introduction:	Design philosophy - steps in design process - general design rules	for manufacturabilit	y – basi	c prin	ciples	s of
	economical production - creativity in design, application of line					
	lection of materials for design – developments in material technology	y – criteria for mater	ial select	tion –	mate	rial
	rrelationship with process selection – process selection charts.			0	0	0
UNIT II	MACHINING PROCESS		9	0	0	9
	occess: Overview of various machining processes – general design ru mess – design for machinability, economy and accessibility – redesign					
Ŭ	ples, general design recommendations for machined parts.	gning of components	101 mac	11111111	g ease	e witti
UNIT III	METAL JOINING		9	0	0	9
	: Appraisal of various welding processes, factors in design of weldme	ents – general design	-	÷	÷	
	velds – effects of thermal stresses in weld joints – design of brazed join		0	1		1
UNIT IV	METAL CASTING AND FORGING		9	0	0	9
Metal casting	: Appraisal of various casting processes, selection of casting process	- general design co	nsiderati	ons fo	r cas	ting _
	nces – use of solidification simulation in casting design – product					
-	ging – closed die forging design – parting lines of dies – drop forging d	-	-	-	-	-
UNIT V	ASSEMBLY AND ENVIRONMENT		9	0	0	9
						-
	ompliance analysis and interference analysis for the design of assemb					
	Redesign, DFA-index, poke-yoke, design for manual and autom- motivations for environment principles of environment- eco-efficien					
	cesses, environment design guidelines.	cy,product me cycle	perspect	ive, e	IIVIIO	iment
····· F··					15 D	• •
		T	otal(451	_) = 4	15 Pe	riods
REFEREN	CE BOOKS:					
1 A K Chi	tale and R C Gupta, "Product Design and Manufacturing", PHI, New I	Delhi, 2013.				
2 George	E Deiter, "Engineering Design", McGrawHill, International, 2012.					
3 Boothro	yd G, "Product design for Manufacture and Assembly", First Edition, M	Aarcel Dekker Inc., N	lew York	, 2010).	
COUDCE A	UTCONES]	Bloo	m's
	UTCOMES:					omy
On completion	of the course the student will be able to]]	Map	ped
CO1 Desc	ribe the design rules and principles for economical production a	nd select the materia	als.	1	Unde	rstand
CO2 Use	Design for Manufacture and Assembly tools for minimi	zing effort and	cost in		Ap	ply

manufacturing a product by machining processes.CO3Apply design considerations to minimize difficulty in fabrication of components by welding.ApplyCO4Apply the design considerations to minimize difficulty in fabrication of components by casting,Apply

	forming processes.	
CO5	Design components taking into consideration the environmental impact it have while	Create
	manufacturing and during its lifecycle.	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	2	-	1	1	1	1	1	-	-	2	1	1
CO2	1	1	2	1	1	2	1	1	-	-	1	2	-	3
CO3	2	1	1	2	1	1	1	1	-	-	-	3	1	1
CO4	2	1	1	2	1	1	1	1	-	-	-	3	1	1
CO5	1	1	2	1	1	2	3	1	-	-	-	2	-	1
Avg	1.5	1.0	1.6	1.5	1.0	1.4	1.4	1.0	1	0.0	1	2.4	1	1.4
		•	3/2/1	-indicat	es streng	gth of co	rrection	(3-High	, 2-Medi	um, 1-L	ow)	•		

PROFESSIONAL ELECTIVE - III

REQUISITES REQUISITES RSE OBJECTIVES: To understanding and appreciation of the principles and application nanufacturing/service firms. To develop skills necessary to effectively analyze and synthesize the conomic productive systems To ability to recognize situations in a production system environment assist in decision making on operations management and strategy To understand the managerial responsibility for Operations, even when rom corporate headquarters	that suggests the use of certain	nerent i	T 0 and o		
To understanding and appreciation of the principles and application nanufacturing/service firms. To develop skills necessary to effectively analyze and synthesize the economic productive systems To ability to recognize situations in a production system environment assist in decision making on operations management and strategy To understand the managerial responsibility for Operations, even when	ns relevant to the planning, de ne many inter-relationships inh that suggests the use of certain	3 esign, a nerent i	0 and o	0 perati	3
To understanding and appreciation of the principles and application nanufacturing/service firms. To develop skills necessary to effectively analyze and synthesize the economic productive systems To ability to recognize situations in a production system environment assist in decision making on operations management and strategy To understand the managerial responsibility for Operations, even when	ns relevant to the planning, de ne many inter-relationships inh that suggests the use of certain	esign, a	and o	perati	ions (
To understanding and appreciation of the principles and application nanufacturing/service firms. To develop skills necessary to effectively analyze and synthesize the economic productive systems To ability to recognize situations in a production system environment assist in decision making on operations management and strategy To understand the managerial responsibility for Operations, even when	that suggests the use of certain	nerent i			
To understanding and appreciation of the principles and application nanufacturing/service firms. To develop skills necessary to effectively analyze and synthesize the economic productive systems To ability to recognize situations in a production system environment assist in decision making on operations management and strategy To understand the managerial responsibility for Operations, even when	that suggests the use of certain	nerent i			
To develop skills necessary to effectively analyze and synthesize the economic productive systems To ability to recognize situations in a production system environment assist in decision making on operations management and strategy To understand the managerial responsibility for Operations, even when	that suggests the use of certain		n cor	nplex	<u> </u>
assist in decision making on operations management and strategy To understand the managerial responsibility for Operations, even when		n quanti		1	SOCI
	n production is outsourced, or		itative	e meth	iods
		perform	ned in	n regi	ons f
To recognize the need for, and problems associated with, change in orga	anizations.	T	r	1	
PRODUCTIVITY		9	0	0	9
		9 OP)	0 Meth	0	9
ation to manufacturing and service sector.	Le objectives- rioductivity (r	Or)	Metho	Juolog	gy ai
ORGANISATIONAL TRANSFORMATION		9	0	0	9
TIV RE-ENGINEERING PROCESS AND IMPROVEME	ENT MODELS	9	0	0	9
nodels - PASIM Model - Moen and Nolan Strategy for process improve	ement - LMICIP Model - NPRI	DC Mo	del.		
TV TOOLS FOR RE-ENGINEERING		9	0	0	9
tical and process tools and techniques - Information and Communets – Success Factors and common implementation Problem - Cases.	nication Technology-Implemer	ntation	of Re	eengir	neeri
		otal(45	5L) =	45 P	erio
CI CI CI CI CI CI CI CI CI CI CI CI CI C	I PRODUCTIVITY ivity Concepts - Macro and Micro factors of productivity - Dynamement at International - National and Organization level - Productivit II SYSTEMS APPROACH TO PRODUCTIVITY MANemement at International - National and Organization level - Productivit III SYSTEMS APPROACH TO PRODUCTIVITY MANememetry tual framework, Management by Objectives (MBO) - Performanement on manufacturing and service sector. III ORGANISATIONAL TRANSFORMATION ts of Organizational Transformation and Reengineering-Principles entals of process reengineering, preparing the workforce for transf P Model – DSMC Q and PMP model. IV RE-ENGINEERING PROCESS AND IMPROVEME odels - PASIM Model - Moen and Nolan Strategy for process improved to the process tools and techniques - Information and Communication and Communication and process tools and techniques - Information and Communication and Communication and Communication and Communication and Process tools and techniques - Information and Communication and Communication and Process tools and techniques - Information and Communication and techniques - Information and Communication and Commun	I PRODUCTIVITY ivity Concepts - Macro and Micro factors of productivity - Dynamics of Productivity - Producement at International - National and Organization level - Productivity measurement models. II SYSTEMS APPROACH TO PRODUCTIVITY MANAGEMENT tual framework, Management by Objectives (MBO) - Performance objectives- Productivity (Ption to manufacturing and service sector. III ORGANISATIONAL TRANSFORMATION ts of Organizational Transformation and Reengineering-Principles of organizational transformatentals of process reengineering, preparing the workforce for transformation and re-engineering, PModel – DSMC Q and PMP model. IV RE-ENGINEERING PROCESS AND IMPROVEMENT MODELS odels - PASIM Model - Moen and Nolan Strategy for process improvement - LMICIP Model - NPRI V TOOLS FOR RE-ENGINEERING cal and process tools and techniques - Information and Communication Technology-Implement	I PRODUCTIVITY 9 ivity Concepts - Macro and Micro factors of productivity - Dynamics of Productivity - Productivity C ement at International - National and Organization level - Productivity measurement models. II SYSTEMS APPROACH TO PRODUCTIVITY MANAGEMENT 9 tual framework, Management by Objectives (MBO) - Performance objectives- Productivity (POP) - T 9 tion to manufacturing and service sector. 9 III ORGANISATIONAL TRANSFORMATION 9 ts of Organizational Transformation and Reengineering-Principles of organizational transformation an entals of process reengineering, preparing the workforce for transformation and re-engineering, method P Model – DSMC Q and PMP model. 9 IV RE-ENGINEERING PROCESS AND IMPROVEMENT MODELS 9 odels - PASIM Model - Moen and Nolan Strategy for process improvement - LMICIP Model - NPRDC Model - NPRDC Model and process tools and techniques - Information and Communication Technology-Implementation 9	IPRODUCTIVITY90ivity Concepts - Macro and Micro factors of productivity - Dynamics of Productivity - Productivity Cycle ement at International - National and Organization level - Productivity measurement models.90IISYSTEMS APPROACH TO PRODUCTIVITY MANAGEMENT90tual framework, Management by Objectives (MBO) - Performance objectives- Productivity (POP) - Methodion to manufacturing and service sector.90IIIORGANISATIONAL TRANSFORMATION90ts of Organizational Transformation and Reengineering-Principles of organizational transformation and re- entals of process reengineering, preparing the workforce for transformation and re-engineering, methodology P Model – DSMC Q and PMP model.90IVRE-ENGINEERING PROCESS AND IMPROVEMENT MODELS90odels - PASIM Model - Moen and Nolan Strategy for process improvement - LMICIP Model - NPRDC Model.90cal and process tools and techniques - Information and Communication Technology-Implementation of Red90	IPRODUCTIVITY900ivity Concepts - Macro and Micro factors of productivity - Dynamics of Productivity - Productivity Cycle Producement at International - National and Organization level - Productivity measurement models.900IISYSTEMS APPROACH TO PRODUCTIVITY MANAGEMENT900tual framework, Management by Objectives (MBO) - Performance objectives- Productivity (POP) - Methodologition to manufacturing and service sector.900IIIORGANISATIONAL TRANSFORMATION900ts of Organizational Transformation and Reengineering-Principles of organizational transformation and re-engineering, preparing the workforce for transformation and re-engineering, methodology, guidP Model – DSMC Q and PMP model.900IVRE-ENGINEERING PROCESS AND IMPROVEMENT MODELS900odels - PASIM Model - Moen and Nolan Strategy for process improvement - LMICIP Model - NPRDC Model.900cal and process tools and techniques - Information and Communication Technology-Implementation of Reengine900

IVI21	FERENCE BOOKS:
1 .	Handbook on Industrial Engineering equations, formulas and calculations, Adedeji B. Badiru and Olufemi A. Omitaomu,
	2011, CRC Press.
2	"Industrial Engineering and Management", O.P.Khanna, 17th edition, DhanpatRai publications.
3	"Productivity Engineering and Management', Sumanth, D.J. TMH, New Delhi, 1994.
4	"Organisational Transformation and Process Re-engineering", Edosomwan, J.A., Library Cataloging in Pub. Data, 1995.
5	"Productivity Management – A, Systems Approach", Premvrat, Sardana, G.D. and Sahay, B.S., Narosa Publishing House. New
	Delhi, 1998.

	RSE OUTCOMES: ompletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Realize the Macro, Micro, Dynamics, Productivity cycle and Measurement.	Understand
CO2	Demonstrate the need for change in organizations to apply appropriate strategies.	Apply

CO3	Apply guidelines and principles of organizational transformation and re-engineering in industry.	Apply
CO4	Apply re-engineering process and improvement models for improving the productivity.	Apply
CO5	Apply techniques, skills and modern engineering tools for necessary engineering practical application.	Apply

COURSE	ARTIC	CULAT	TON M	IATRE	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	-	1	-	-	2	2	2
CO2	1	1	1	1	2	2	1	-	-	-	-	2	1	2
CO3	1	1	1	1	1	2	3	-	-	3	-	1	1	1
CO4	2	2	2	2	2	-	2	-	2	2	-	1	3	2
CO5	3	3	2	3	3	-	-	-	-	-	2	3	2	2
Avg	1.8	1.8	1.6	1.8	1.8	2	1.5	0.0	1.5	2.5	2	1.8	1.8	1.8
	•	•	3/2/	1 -indic	cates str	ength o	f correc	tion (3-	High, 2-	Medium,	1-Low)			

22CDE32	THEORY OF PLATES AND SHELLS	ST	STEI	ы		
	(Use of approved Data Book and Charts may be per	mitted)	51		5161	(11
PREREQU	ISITES	CATEGORY	PE	Cre	edit	3
		Hound	L	Т	Р	TH
		Hours/Week	3	0	0	3
COURS	COBJECTIVES:					
1. To u	derstand the concepts of rectangular plates, shells and frames and their analysis w	vith vrious technique	es.			
2. To ap	ply the FEM in analyzing the Plates and shells.					
3. To u	derstand the creation of Frames with basic principle.					
4. Gain	knowledge about the shells and membrane theory					
5. To u	derstand the creation of Frames with basic principle.					
UNIT I	INTRODUCTION		9	0	0	9
Thin Plates	with small deflection. Laterally loaded thin plates- governing differential equatio	n- various boundary	condit	ions		
UNIT II	PLATES		9	0	0	9
	plates. Simply supported rectangular plates- Navier solution and Levy's met plates on elastic foundation. Symmetrical bending of circular plates.	hod- Rectangular p	lates w	ith v	arious	edge
UNIT III	ANALYSIS METHODS		9	0	0	9
Energy met	nods- Finite difference and Finite element methods – Plates and Shells.					
UNIT IV	SHELLS		9	0	0	9
	on of shells- types of shells- structural action- membrane theory- shells of reve	olution and shells o	f trans	ation	- exai	-
	of membrane theory. Folded Plate structures- structural behavior- types- design b					
UNIT V	FRAMES		9	0	0	9
Space fram	es - configuration - types of nodes - general principles of design Philosophy - Bel	avior.	•	•	•	•
		Tota	al(45L)= 45	Peri	ods
			<	,		

REFERENCE BOOKS:

1 Szilard R, "Theory and Analysis of Plates", Prentice Hall Inc., 1995.

2 Timoshenko S and Krieger S.W, "Theory of Plates and Shells", McGraw Hill Book Company- New York 1990.

3 Timoshenko S, "Theory of Plates and Shells", McGraw Hill, 1990.

4 Wilhelm Flügge, "Stresses in shells", Springer, Verlag.

5 Ramasamy G.S, "Design and Construction of Concrete Shells Roofs", CBS Publishers, 1986.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Develop the ability to obtain the various deflections in plates and shells.	Create
CO2	Identify the different types of plates under different boundary connections by various classical methods and approximate methods.	Understand
CO3	Illustrate and analyze the behavior and design principles of plate and shell structures	Analysis
CO4	Analyze and design the cylindrical shells through membrane & bending theory.	Analysis
CO5	Ability to Understand the behavior and general principles of frames.	Understand

COURSE A	RTICU	LATIO	N MAT	RIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	3	3	3	1	1	-	1	-	1	-	-	-
CO2	1	3	1	2	1	2	-	-	-	-	1	-	-	2
CO3	1	3	1	2	1	2	-	-	-	-	1	1	1	-
CO4	1	2	2	1	1	1				İ		2	1	-
CO5	1	1	1	1	-	-	-	-	-			1	1	-
Avg	1.2	2.0	1.6	1.8	1.5	1.5	1	0.0	1	0.0	1	3	1	2
		•	3/2/1	-indica	tes stren	gth of co	rrection	(3-High,	2-Medi	um, 1-Lo	w)	•		•

22CDE33										
	(Use of approved Data Book and Charts may b	e permitted)					1			
PREREQUI	SITES	CATEGORY	PE	Cı	redi	it	3			
		Hours/Week	L	Т		Р	TH			
			3	0		0	3			
COURSE O	BJECTIVES:									
1. To create	awareness about optimization techniques.									
2. To understand and apply optimization techniques to real life problems.										
3. Learn to										
	op the optimal solution or design for engineering problems.									
UNIT I	INTRODUCTION			9	0	0	9			
	acteristics of mechanical elements- adequate and optimum designion- design constraints – Classification of optimization problem	n- principles of opti	mizatio	n- f	orm	nulat	ion of			
UNIT II	UNCONSTRAINED OPTIMIZATION			9	0	0	9			
	e and multivariable optimization- Techniques of unconstrained mini s – interpolation methods.	mization – Golden sec	ction- p	atter	n ar	nd gi	radient			
UNIT III	CONSTRAINED OPTIMIZATION			9	0	0	9			
	vith equality and inequality constraints – Indirect methods using pen Constrained- mixed inequality and unconstrained minimization- Gen		ige mul	tiplie	ers-	Geo	metric			
UNIT IV	STATIC APPLICATIONS			9	0	0	9			
	lications – Design of simple truss members. Design applications inimum cost- maximum weight – Design of shafts and torsionally. I					rse	loaded			
UNIT V	DYNAMIC APPLICATIONS			9	0	0	9			
	lications – Optimum design of single- two degree of freedom Optimum design of simple linkage mechanisms.	systems- vibration a	absorbe	rs. A	App	licat	ion in			
		Т	otal(45	5L)	= 4	5 Pe	eriods			

RE	FERENCE BOOKS:
1	SingiresuS.Rao, "Engineering Optimization Theory and Practice", New Age International (P) Limited, 1996.
2	Johnson Ray C, "Optimum design of mechanical elements", Wiley John & Sons, 1990.
3	Kalyanamoy Deb, "Optimization for Engineering design algorithms and Examples", Prentice Hall of India Pvt, 1995.
4	Goldberg D.E, "Genetic algorithms in search- optimization and machine", Barnen Addison-Wesley New York, 1989.
5	Saravanan.R, "Manufacturing optimization through intelligent techniques", Taylor and Francis Publications, CRC Press,
	2006.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Realistic the principles of optimization and solve optimization problem.	Understand
CO2	Familiar in solving unconstrained nonlinear optimization problems.	Apply
CO3	Familiar in solving constrained liner optimization problems	Apply
CO4	Apply these techniques to solve static and dynamic problems of day to day applications.	Apply
CO5	Develop the ability to obtain the optimal solution for engineering problems.	Create

COURSE	OURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	2	2	2	-	-	-	1	-	-	2	2	2
CO2	1	1	1	1	1	-	-	-	1	-	-	1	1	1
CO3	1	1	1	1	1	-	-	-	1	-	-	1	1	1
CO4	1	1	1	1	1	-	-	-	2	1	1	1	1	1
CO5	1	1	1	1	1	-	-	-	2	1	1	3	3	3
Avg	1.0	1.2	1.2	1.2	1.2	0.0	0.0	0.0	1.4	0.4	1	1.6	1.6	1.6
			3/2/3	1 -indica	ates stre	ngth of	correct	ion (3-H	ligh, 2-N	Aedium,	1-Low)			

22	CDE34	COMPUTATIONAL FLUID DYNAMICS		SE	MES	STEI	RII
PRI	EREQUIS	SITES	CATEGORY	PE	Cre	edit	3
			Hours/Week	L 3	Т 0	P 0	TH 3
COL		IECTIVES.		-		Ĩ	
1.		JECTIVES: stand the basics of computational fluid dynamics and governing equation					
2.		p finite difference and finite volume discredited forms of the CFD equation	ions.				
3		late explicit and implicit algorithms for solving the Euler and Navier Sto					
4		late and solve conduction type problems using appropriate CFD techniqu					
5	Gain know	wledge on different turbulence model and its practical applications.					
UN	I TIV	INTRODUCTION AND GOVERNING EQUATIONS		9	0	0	9
		putational fluid dynamics-Governing equations of fluid dynamics-Cont					
		cies transport–Physical boundary conditions–Time-averaged equation		/–Turl	oulen	t–Kin	etic
Ene	ergy Equati	ons-Mathematical behaviour of PDEs on CFD-Elliptic, Parabolic and H	yperbolic equations.				
UN	II TIN	FINITE DIFFERENCE AND FINITE VOLUME METHODS DIFFUSION	FOR	9	0	0	9
Det		finite difference equations–Simple Methods–General Methods for first a	nd second order accu	racv_	Finite	e voli	ume
		or steady state One, Two and Three – dimensional diffusion problems–					
sch	nemes–Exar	nple problems on elliptic and parabolic equations–Use of Finite Differen	ce and Finite Volume	metho	ods.	_	
UN	III TIN	CONDUCTION AND CONVECTIVE HEAT TRANSFER		9	0	0	9
- D		nal and Two-Dimensional Conduction - Convection – Diffusion probler Insteady two-dimensional convection – Diffusion – Introduction to finite FEM					
UN	VIT IV	FLUID FLOW		9	0	0	9
Go	verning Eq	uations, Stream Function – Vorticity method, Determination of pressur	e for viscous flow, SI	MPLE	E Proc	cedur	e of
		palding, Computation of Boundary layer flow, Finite difference approac					
		e gradient term and continuity equation–Staggered grid– Momentum equection equation, SIMPLE algorithm and its variants–PISO Algorithms.	ations–Pressure and V	elocit	y cor	rectio	ons-
				•		0	
		TURBULENCE MODELS	11 0 1 4 00	9	0	0	9
Alg	gebraic Mo	dels – One equation model, K - ϵ Models, Standard, Reynolds number m	odels, Prediction of Ill	110 110	w.		
			Total	(45L) = 4	5 Pe	riods
REF	ERENCE						
1	Muralidh 1995.	ar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Trans	fer", Narosa Publishin	g Hou	ise, N	ew D)elhi,
2		sdidar, P.S., "Computer Simulation of flow and heat transfer" Tata McG	aw-Hill Publishing C	ompar	iy Lto	i., 19	98.
3		Patankar "Numerical heat transfer fluid flow", Hemisphere Publishing C	ĕ	<u>r</u>	5 = 0	., =>	
4		and Hughes, J.B. "Finite Element Programming of the Navier Stock Eq		ss Lin	nited,	U.K.	,
	1981.		-				

- Anderson, D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid Mechanics and Heat Transfer "Hemisphere Publishing Corporation, Newyork, USA, 1984.
 Donald R. Honra, "Co-ordinate measurement and reverse Engineering", American Gear Manufacturers Association.1997.
- Fletcher, C.A.J. "Computational Techniques for Fluid Dynamics 1" Fundamental and General Techniques, Springer Verlag, 1987.

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Illustrate the differential equations for flow phenomena and numerical methods for their solution.	Understand
CO2	Critically analyze the mathematical representation of governing equation for fluid flow and heat transfer simulations	Analysis
CO3	Solve one dimensional and two dimensional heat transfer problems	Apply
CO4	Ability to identify, formulate, and solve conduction type problems using appropriate CFD technique.	Understand
CO5	Ability to understand different turbulence model and able to apply appropriate models to various practical applications.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	1	2	1	-	-	-	-	-	1	-	-	3
CO2	1	2	2	2	1	-	-	-	1	-	1	1	-	-
CO3	1	3	1	3	1	-	-	1	2	-	1	3	2	-
CO4	1	1	1	1	1	-	-	-	-	-	1	-	1	1
CO5	1	1	1	1	1	-	-	-	-	-	1	-	1	1
Avg	1.4	1.6	1.2	1.8	1.0	0.0	0.0	1	1.5	0.0	1.0	2	1.3	1.6

22CDE35	SUPPLY CHAIN MANAGEMENT		SEMESTER II				
PREREQUI	SITES CATE	GORY	PE	Cre	edit	3	
			L	Т	Р	тн	
	Hou	rs/Week	3	0	0	3	
COURSE	OBJECTIVES:						
1. To provid	le an insight on the fundamentals of supply chain networks, tools and techniques						
2. To apply	the tools and techniques in logistics in supply chain						
	about the role of supply chain development						
	the supply chain concepts in supplier selection.						
	the knowledge of E-Business in supply chain						
UNIT I	INTRODUCTION		9	0	0	9	
	tics and Supply chain Management: Scope and Importance- Evolution of Supply Chai betitive and Supply chain Strategies – Drivers of Supply Chain Performance and Obstat		on Pha	ases in	n Sup	ply	
UNIT II	SUPPLY CHAIN NETWORK DESIGN		9	0	0	9	
Network, Dist	ibution in network design - Factors influencing Distribution network design – Detribution Network in Practice, Framework for network Decisions - Role of transportation, carrier selection, execution and control.						
UNIT III	DEMAND AND SUPPLY IN SUPPLY CHAIN		9	0	0	9	
Implementation traditional wa	n supply chain- Methods, Approach, Errors. Aggregate planning in supply ch on. Predictable variability in supply chain, Managing supply and demand. Distribut rehousing, cross docking, inventory pooling, transhipment, Choosing appropriate strate	ion strateg	gies-di	rect s		ent,	
UNIT IV	SOURCING AND COORDINATION IN SUPPLY CHAIN		9	0	0	9	
supply chain	ing supply chain supplier selection assessment and contracts- Design collaboration - se co-ordination - Bull whip effect – Effect of lack of co-ordination in supply chain and nd trust within a supply chain.						
UNIT V	SUPPLY CHAIN AND INFORMATION TECHNOLOGY		9	0	0	9	
	in supply chain- The supply chain IT frame work Customer Relationship Manage - supplier relationship management – future of IT in supply chain – E-Business in supp	oly chain.					
		Tota	l (45L	4 = (15 Pe	riod	

R	EFERENCE BOOKS:
1	Sunil Chopra, Peter Meindl and Kalra, "Supply Chain Management, Strategy, Planning, and Operation", Pearson Education, 2010.
2	Jeremy F.Shapiro, "Modeling the Supply Chain", Thomson Duxbury, 2002.
3	Srinivasan G.S, "Quantitative models in Operations and Supply Chain Management, PHI, 2010
4	David J.Bloomberg, Stephen Lemay and Joe B.Hanna, "Logistics", PHI 2002.
5	James B.Ayers, "Handbook of Supply Chain Management", St.Lucle press, 2000.

	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	The student would understand the framework and scope of supply chain networks and functions.	Understand
CO2	To apply the concept. Logistics In Supply Chain.	Apply
CO3	To evaluate the supply chain and information technology.	Evaluate
CO4	To make the student to know the obstacles in supply chain.	Analysis
CO5	To evaluate the role of IT in supply chain.	Evaluate

COURSE ARTICULATION MATRIX

COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	-	1	-	-	1	-	-	-	-	1	1	2
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1
CO4	2	2	1	2	2	-	1	-	-	-	-	3	2	1
CO5	2	3	-	3	1	-	1	-	-	-	-	2	-	1
Avg	2.0	2.2	1	1.6	1.6	0.0	1.0	0.0	0.0	0.0	0.0	2.2	1.5	1.2

PROFESSIONAL ELECTIVE - IV

	EXPERIMENTAL TECHNIQUES AND DATA ANALY	SIS	SE	MES	TER	II
PREREQUIS	ITES	CATEGORY	PE	Cre	edit	3
		Hours/Week	L	Т	Р	TH
		Hours/ week	3	0	0	3
1 To underst 2 Familiar to 3 Understand 4 To know a 5 To underst UNIT I Strain gauge calibration - E rosettes - Cali UNIT II Circuits and in	MEASUREMENT OF CUTTING FORCES and piezoelectric transducers – characteristics - Dynamometer construction, Displacement and strain measurements by photo elasticity - Holography, interfe- bration of instruments. TEMPERATURE AND FLOW MEASUREMENT Instrumentation for different transducers - bimetallic, expanding fluid, electrica	Bridge circuits erometer, Moir teo I resistance, thern	9 - Instr chniqu 9 mistor	0 rumen ies, st 0 , theri	0 tation rain g 0 nocou	9 and auge 9 iples
Vortex shredd						ods -
UNIT III Optical and e stresses - Elec	ren photography, Interferometer CHARACTERIZATION TECHNIQUES lectron microscopy - X-Ray diffraction, Bragg's Law and its application for tron spectroscopy, electron microprobe. Surface Measurements - Micro hardne	studying crystal	9 structi	0 ure an	0 d resi	9 dual
UNIT III Optical and e stresses - Elec and forms - 3-	ren photography, Interferometer CHARACTERIZATION TECHNIQUES lectron microscopy - X-Ray diffraction, Bragg's Law and its application for tron spectroscopy, electron microprobe. Surface Measurements - Micro hardne D co-ordinate measuring machines – Scanning Electron Microscope.	studying crystal	9 structu ccurac	0 ure any of d	0 Id resi	9 dual
UNIT III Optical and e stresses - Elec and forms - 3- UNIT IV Statistical me Data Analysis Regression m	Interstand about RSM 9 0 0 9 Image and piezoelectric transducers – characteristics - Dynamometer construction, Bridge circuits - Instrumentation and a - Displacement and strain measurements by photo elasticity - Holography, interferometer, Moir techniques, strain gauge Calibration of instruments. Image and piezoelectric transducers - characteristics - Dynamometer construction, Bridge circuits - Instrumentation and a - Displacement and strain measurements by photo elasticity - Holography, interferometer, Moir techniques, strain gauge Calibration of instruments. Image and piezoelectric transducers - bimetallic, expanding fluid, electrical resistance, thermistor, thermocouples teters. Flow Measurement - Transducers for Non-compressible and compressible fluids - Obstruction and drag methods - redding flow meters - Ultrasonic, Laser Dopler and Hotwire anemometer - Flow visualization techniques - Shadow hlieren photography, Interferometer Image CHARACTERIZATION TECHNIQUES 9 0 0 9 Image Character measuring machines – Scanning Electron Microscope. Image Characteristics - State Correlation and randomization - Scanning Electron Microscope. 9 0					
UNIT III Optical and e stresses - Elec and forms - 3- UNIT IV Statistical me Data Analysis Regression m modeling – R	ren photography, Interferometer CHARACTERIZATION TECHNIQUES lectron microscopy - X-Ray diffraction, Bragg's Law and its application for tron spectroscopy, electron microprobe. Surface Measurements - Micro hardne D co-ordinate measuring machines – Scanning Electron Microscope. EXPERIMENT DESIGN AND DATA ANALYSIS thods - Randomized block design, Latin and orthogonal squares, factorial des s - Deterministic and random data, uncertainty analysis - Tests for significat odeling - direct and interaction effects - ANOVA, F-test - Time Series analys SM Technique.	studying crystal ess, roughness, ac sign - Replication ance - Chi- squar	9 structu ccurac 9 n and re, stu on and	0 ure any of d 0 rando ident's d auto	0 d resi limens 0 mizati s 't' t regres	9 dual sions 9 ion - est - ssive

- K	EFERENCE BOOKS:
1	Holman, J.P., "Experimental Methods for Engineers", McGraw Hill Int., New York.
2	Venkatesh, V.C., and Chandrasekharan, "Experimental Methods in Metal Cutting", Prentice Hall of India, Delhi.
3	Davis, O.V., "The Design and Analysis of Industrial Experiments", Longman, London.
4	Box and Jenkins; "Time Series analysis, Forecasting and control", Holden Day, Sanfrancisco.
5	Dove and Adams, "Experimental stress analysis and motion measurement", Prentice Hall of India, Delhi.

	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Develop an appropriate experimental research design for an engineering case study taking into account practical limitations.	Create
CO2	Apply knowledge of statistical analysis to assess a hypothesis by selecting appropriate statistical tests and by correctly interpreting the results of these tests.	Apply
CO3	Propose an appropriate statistical model for a given dataset and interpret the goodness of fit.	Remember
CO4	Optimize the experimental result and correlated with analytical data by using Taguchi method.	Evaluate
CO5	To develop ANOVA tables for research experiments	Create

COURSE	ARTIC	CULAT	TION M	IATRE	X									
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	-	1	-	-	1	-	-	-	-	1	1	2
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1
CO4	3	2	1	2	2	-	1	-	-	-	-	1	2	1
CO5	2	3	-	1	1	-	1	-	-	-	-	3	-	1
Avg	2.2	2.2	1	1.2	1.6	0.0	1.0	0.0	0.0	0.0	0.0	2.0	1.5	1.2
			3/2/	1 -indic	cates str	ength of	f correc	tion (3-	High, 2-	Medium,	1-Low)			

22CDE42	CAD/CAM TOOLS		SEM	EST	ER I	II
PREREQUIS	ITES	CATEGORY	PE	Cre	edit	3
			L	Т	Р	T
		Hours/Week	3	0	0	2
COURSE OB	IECTIVES:					
1. To underst	and the basics of industrial automation.					
	and nature & significance of Machine tools					
	skills for programming skills required for manufacturing.					
	owledge about CMM and its features					
6	o new techniques of RE					
UNIT I	COMPUTER AIDED MANUFACTURING		9	0	0	
– Machine tools	Processes – Removing, Forming, Deforming and joining – Integration Requirem – Point to point and continuous path machining, NC, CNC and DNC – NC P APT – Tool path generation and verification – CAD/CAM NC Programmi	rogramming – E	Basics, I	Langu	ages	, G
UNIT II	CAD/CAM HARDWARE		9	0	0	
and Networking	ypes of systems – CAD/CAM system evaluation criteria – Input devices – Ou – Programmable logic controllers – Hardware trends.	ıtput devices – l	Hardwa	re int	egrat	
UNIT III	INSPECTION METHODS		9	0	0	9
Surface quality Tolerance synth optical.	erances – Need for Tolerances – Conventional Tolerances – FITS and LIM – Geometric Tolerances – Tolerances Practices in design, Drafting and ma esis – Computer Aided Quality control – Contact Inspection Methods – Nor	nufacturing – T	oleranc tion M	e Ana ethod	alysi s - N	s – Non
UNIT IV	REVERSE ENGINEERING		9	0	0	9
Digitizing techn	of Reverse Engineering – Domain Analysis – Process Duplicating – Tools for ques – Construction of surface model – Solid part model – Characteristic evalu eature capturing – surface and solid modeling.					
UNIT V	DATA MANAGEMENT		9	0	0	
	verse Engineering Data management – Software application – software compor in experiments to evaluate a RE tools – Rule based detection for RE user interface					led
		Total ((45L) =	= 45 I	Perio	ods
REFERENCE	BOOKS:					
	eid and R. Sivasubramanian, "CAD/CAM Theory and Practice", Revised 1stEd	ition, Tata McG	raw Hil	l Publ	icati	on

1	Ibrahim Zeid and R. Sivasubramanian, "CAD/CAM Theory and Practice", Revised 1stEdition, Tata McGraw Hill Publication, 2007.
2	Catherine A. Ingle, "Reverse Engineering", Tata McGraw Hill Publication, 1994.
3	Ibrahim Zeid, "Mastering CAD/CAM", special Indian Edition, Tata McGraw Hill Publication, 2007.
4	David D. Bedworth, Mark R. Henderson and Philp M. Wolfe, "Computer Integrated Design and Manufacturing", McGraw Hill International series, 1991.
5	Linda Wills, "Reverse Engineering", Kluwer Academic Press, 1996.
6	Donald R. Honra, "Co-ordinate measurement and reverse Engineering", American Gear Manufacturers Association.1997.

	URSE OUTCOMES: ompletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Explain computer aided tools for various industrial applications which includes manufacturing, process planning, inspection, data management and reverse engineering.	Understand
CO2	Apply the concept of geometric modelling and create new objects.	Apply
CO3	Evaluate the principle of synthesis of curves and create new 3D Objects.	Evaluate
CO4	Elaborate surface modelling.	Understand
CO5	Apply the RE concepts.	Apply

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	-	1	-	-	1	-	-	-	-	3	1	2
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1
CO4	3	2	1	2	2	-	1	-	-	-	-	3	2	1
CO5	2	3	-	3	1	-	1	-	-	-	-	3	-	1
Avg	2.0	2.2	1	1.6	1.6	0.0	1.0	0.0	0.0	0.0	0.0	2.8	1.5	1.2
			3/2/1	-indica	tes strei	ngth of o	correcti	on (3-Hi	igh, 2-M	ledium, 1	-Low)			

22CDE43	CONTACT MECHANICS		SEM	IESI	ER.	11
REREQUI	SITES	CATEGORY	PE	Cre	dit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
COUDSE	OBJECTIVES:					
	derstand the concepts of mechanical properties of materials, elastic and br derstand elastic-plastic indentation and testing methods	ittle fracture of mater	rials.			
	alyze the indentation stress distribution and formulate equation					
	derstand elastic-plastic indentation and testing methods					
	knowledge on various indentation test methods					
	INTRODUCTION		9	0	0	9
Hydrostatic						
UNIT II	LINEAR ELASTIC FRACTURE AND BRITTLE FRACTUR	E	9	0	0	9
of delayed f	ailure.	biaxial stresses - Dete	erminin	g the	proba	abili
of delayed f UNIT III Introduction stress and o	ailure. ELASTIC INDENTATION 1- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fieldeformation - Indentation Stress Fields- Uniform pressure- Spherical ir	lds -Line contact -Po identer - Cylindrical	9 9 1 roller	g the 0 tact- 4 (2-D)	proba 0 Analy) con	sis ottact
of delayed f UNIT III Introduction stress and of Cylindrical Hertzian Co	ailure. ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fie deformation - Indentation Stress Fields- Uniform pressure- Spherical ir flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation ontact Equations - Auerbach's Law and the Griffith Energy	lds -Line contact -Po ndenter - Cylindrical ions - Impact –Frict	9 9 9 9 1 roller 1 roller 1 roller	g the 0 tact- A (2-D) ertziar	proba 0 Analy) con n Fra	sis ditact
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV	ailure. ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fie deformation - Indentation Stress Fields- Uniform pressure- Spherical ir flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation ontact Equations - Auerbach's Law Auerbach's Law and the Griffith Ener ELASTIC –PLASTIC INDENTATION	lds -Line contact -Po adenter - Cylindrical ions - Impact –Frict gy Balance Criterion	9 9 9 9 1 cont con 1 coller 1 coller 2	g the 0 tact- A (2-D ertzian gy Bal 0	proba 0 Analy) con n Fra ance. 0	abili ysis atact ctur
of delayed the second stress and of the construction stress and of the construction of the stress and the stres	ailure. ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fieldeformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation tact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC –PLASTIC INDENTATION tic Indentation Stress Fields – Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Contact	CATEGORY PE Credit 3 Hours/Week L T P TH Hours/Week 3 0 0 3 anical properties of materials, elastic and brittle fracture of materials. 3 0 0 3 anical properties of materials, elastic and brittle fracture of materials. 5 0 9 0 0 9 ion and testing methods				
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty recovery –	ailure. ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fie deformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation ontact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC –PLASTIC INDENTATION tic Indentation Stress Fields –Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Contor ypes - Spherical- conical- and pyramidal indenters - Sharp and blunt	lds -Line contact -Po denter - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent tact Introduction- C	9 wint con 1 roller ion -He - Energ 9 tation fi Geomet astic C	g the 0 tact- 2 (2-D ertzian y Bal 0 ractur rical contac	proba 0 Analy) con n Fra ance. 0 e- Fra Simil t - E	abili ysis ttact ctur actu larit Elast
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty recovery –O UNIT V Indenter-Lo experiment Strain Res	ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fieldeformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation tact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC –PLASTIC INDENTATION tic Indentation Stress Fields – Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Context (Press - Spherical- conical- and pyramidal indenters - Sharp and blunt Compliance- The elastic-plastic contact surface. DEPTH-SENSING INDENTATION TESTING METHODS ad-Displacement Curve-Unloading Curve Analysis-Experimental and Al Data-Application to Thin-Film Testing-Indentation Test Methods- Bond	lds -Line contact -Po adenter - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent act Introduction- C indenters -Elastic-Pl Analytical Procedure ed-Interface Techniq	9 int con 1 roller ion -He - Energ 9 tation fi Geomet astic C 9 es - Co jue - Ino	g the 0 tact- 2 (2-D ertzian y Bal 0 ractur rical contac 0 orrecti dentat	proba 0 Analy) con n Fra ance. 0 e- Fra Simil tt - E 0 ons t tion S	abili ysis o ttact ctur actu larit Elast y to the ttres
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty recovery –O UNIT V Indenter-Lo experiment Strain Res	ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fieldeformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation tact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC –PLASTIC INDENTATION tic Indentation Stress Fields – Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Context (Press - Spherical- conical- and pyramidal indenters - Sharp and blunt Compliance- The elastic-plastic contact surface. DEPTH-SENSING INDENTATION TESTING METHODS ad-Displacement Curve-Unloading Curve Analysis-Experimental and Al Data-Application to Thin-Film Testing-Indentation Test Methods- Bond ponse – Compliance Curves- Hardness Testing - Vickers hardness -	lds -Line contact -Po identer - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent act Introduction- (indenters -Elastic-Pl Analytical Procedure led-Interface Techniq Berkovich indenter	9 int con 1 roller ion -He - Energ 9 tation fi Geomet lastic C 9 es - Co µue - Ind -Depth	g the 0 tact- 2 (2-D ertzian y Bal 0 ractur rical contac 0 orrecti dentat -sens	proba 0 Analy) con n Fra ance. 0 e- Fra Simil tt - E 0 ons t tion S ing (abilit 9 vsis of tactur 1 9 actur 2 actur 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty recovery –O UNIT V Indenter-Lo experiment Strain Resp	ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fieldeformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation tact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC –PLASTIC INDENTATION tic Indentation Stress Fields – Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Context (Press - Spherical- conical- and pyramidal indenters - Sharp and blunt Compliance- The elastic-plastic contact surface. DEPTH-SENSING INDENTATION TESTING METHODS ad-Displacement Curve-Unloading Curve Analysis-Experimental and Al Data-Application to Thin-Film Testing-Indentation Test Methods- Bond ponse – Compliance Curves- Hardness Testing - Vickers hardness -	lds -Line contact -Po identer - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent act Introduction- (indenters -Elastic-Pl Analytical Procedure led-Interface Techniq Berkovich indenter	9 int con 1 roller ion -He - Energ 9 tation fi Geomet lastic C 9 es - Co µue - Ind -Depth	g the 0 tact- 2 (2-D ertzian y Bal 0 ractur rical contac 0 orrecti dentat -sens	proba 0 Analy) con n Fra ance. 0 e- Fra Simil tt - E 0 ons t tion S ing (abilit 9 vsis of tactur 1 9 actur 2 actur 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty recovery –C UNIT V Indenter-Lo experimenta Strain Resp Indentation REFERE	ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fields deformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation ontact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC -PLASTIC INDENTATION tic Indentation Stress Fields –Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Conter Operational- conical- and pyramidal indenters - Sharp and blunt Compliance- The elastic-plastic contact surface. DEPTH-SENSING INDENTATION TESTING METHODS ad-Displacement Curve-Unloading Curve Analysis-Experimental and A al Data-Application to Thin-Film Testing-Indentation Test Methods- Bond ponse – Compliance Curves- Hardness Testing - Vickers hardness - - instruments - techniques -data analysis- test standards.	lds -Line contact -Po denter - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent tact Introduction- C indenters -Elastic-Pl Analytical Procedure led-Interface Techniq Berkovich indenter Tot	9 wint con 1 roller ion -He - Energ 9 tation fr Geomet astic C 9 es - Co µue - Ind -Depth tal (45)	g the 0 tact- A (2-D ertzian y Bal 0 ractur rical contac 0 orrecti dentat -sens L)=4	proba 0 Analy) con n Fra ance. 0 e- Fra Simil tt - E 0 ons t tion S ing (5 Pet	abili 9 vsis ttact ctur 9 actur larit clast 9 to th ttres nand
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty- recovery –C UNIT V Indenter-Lo experimenta Strain Resp Indentation REFERE 1 Fisch	ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fieldeformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equationtact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC –PLASTIC INDENTATION tic Indentation Stress Fields – Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Conter/pes - Spherical- conical- and pyramidal indenters - Sharp and blunt Compliance- The elastic-plastic contact surface. DEPTH-SENSING INDENTATION TESTING METHODS rad-Displacement Curve-Unloading Curve Analysis-Experimental and Al Data-Application to Thin-Film Testing-Indentation Test Methods- Bond bonse – Compliance Curves- Hardness Testing - Vickers hardness - instruments - techniques -data analysis- test standards.	lds -Line contact -Po denter - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent tact Introduction- C indenters -Elastic-Pl Analytical Procedure led-Interface Techniq Berkovich indenter Tot	9 wint con 1 roller ion -He - Energ 9 tation fr Geomet astic C 9 es - Co µue - Ind -Depth tal (45)	g the 0 tact- A (2-D ertzian y Bal 0 ractur rical contac 0 orrecti dentat -sens L)=4	proba 0 Analy) con n Fra ance. 0 e- Fra Simil tt - E 0 ons t tion S ing (5 Pet	9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty recovery –C UNIT V Indenter-Lo experiments Strain Resp Indentation REFERE 1 Fisch series 2 John	ailure. ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fields deformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation intact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC -PLASTIC INDENTATION tic Indentation Stress Fields –Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Contor vpes - Spherical- conical- and pyramidal indenters - Sharp and blunt Compliance- The elastic-plastic contact surface. DEPTH-SENSING INDENTATION TESTING METHODS ad-Displacement Curve-Unloading Curve Analysis-Experimental and A al Data-Application to Thin-Film Testing-Indentation Test Methods- Bond ponse – Compliance Curves- Hardness Testing - Vickers hardness - - instruments - techniques -data analysis- test standards. NCE BOOKS: mer Cripps and Anthony C, "Introduction to Contact Mechanics", 2nd Editi y 2007. son.K.L, "Contact Mechanics", Cambridge University Press, Cambridge, I	lds -Line contact -Po denter - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent tact Introduction- C indenters -Elastic-Pl Analytical Procedure led-Interface Techniq Berkovich indenter Tot on, Springer Mechar	9 int con 1 roller ion -He - Energ 9 tation fr Geomet astic C 9 - Depth tal (45) nical En	g the 0 tact- 2 (2-D ertzian gy Bal 0 ractur rical contac 0 0 recti dentat dentat L)=4	proba proba Analy) con n Fra ance. 0 e- Fra Simil tt - E 0 ons tt tion S ing (5 Per	9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
of delayed f UNIT III Introduction stress and o Cylindrical Hertzian Co UNIT IV Elastic-Plas toughness- Indenter Ty recovery –C UNIT V Indenter-Lo experimenta Strain Resp Indentation REFERE 1 Fisch series 2 John 3 Vale	ailure. ELASTIC INDENTATION n- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fields deformation - Indentation Stress Fields- Uniform pressure- Spherical in flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equation intact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener ELASTIC -PLASTIC INDENTATION tic Indentation Stress Fields –Introduction- Pointed Indenters - Indentation Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Contor opes - Spherical- conical- and pyramidal indenters - Sharp and blunt Compliance- The elastic-plastic contact surface. DEPTH-SENSING INDENTATION TESTING METHODS ad-Displacement Curve-Unloading Curve Analysis-Experimental and A al Data-Application to Thin-Film Testing-Indentation Test Methods- Bond ponse – Compliance Curves- Hardness Testing - Vickers hardness - - instruments - techniques -data analysis- test standards. NCE BOOKS: her Cripps and Anthony C, "Introduction to Contact Mechanics", 2nd Editi , 2007.	lds -Line contact -Po identer - Cylindrical ions - Impact –Frict gy Balance Criterion n stress field - Indent fact Introduction- C indenters -Elastic-Pl Analytical Procedure led-Interface Techniq Berkovich indenter Tot on, Springer Mechar 1985. lechanical Engineerir	9 int con 1 roller ion -He - Energ 9 tation fr Geomet astic C 9 - Depth tal (45) nical En	g the 0 tact- 2 (2-D ertzian gy Bal 0 ractur rical contac 0 0 recti dentat dentat L)=4	proba proba Analy) con n Fra ance. 0 e- Fra Simil tt - E 0 ons tt tion S ing (5 Per	abili 9 vsis ttact ctur 9 actur larit clast 9 to th ttres nand

K.L. Johnson, K. Kendall, A.D. Roberts, "Surface Energy and the Contact of Elastic Solid", Proc. R. Soc.London, Ser. A 1971, 324, 301-313.

6 M.K. Chaudhury, T. Weaver, C.Y. Hui and E.J. Kramer "Adhesive contact of Cylindrical lens and a Flat Sheet", J. Appl. Phys. 1996, 80(1), 30-37.

	RSE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Illustrate the various stress-strain behaviour of elastic and plastic material.	Understand
CO2	Identify and determine the mechanism of elastic fracture and brittle fracture.	Understand
CO3	Analyze the stress indentation and pressure distribution in elastic contact.	Analysis
CO4	Illustrate the indenter type and elastic –plastic indentation fracture.	Understand
CO5	Ability to identify the indentation test methods.	Understand

COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	1	-	-	-	-	-	1	1	-	-	-
CO2	1	1	1	1	-	-	1	-	-	1	1	-	-	1
CO3	1	1	1	1	-	-	-	-	-	-	1	1	2	-
CO4	1	2	1	1	-	-	-	-	-	-	1	1	-	1
CO5	1	1	1	-	-	-	-	-	-	-	-	1	1	-
Avg	1.4	1.4	1.0	1	0.0	0.0	1	0.0	0.0	1	1	1	1.5	1

22CDE44	ADVANCED AUTOMOTIVE SYSTEMS		SEM	EST	ER I	Ι
PREREQUISI	TES	CATEGORY	PE	Cre	edit	3
		Hours/Week	L	Т	Р	ТН
		Hours/ week	3	0	0	3
COURSE OBJ	ECTIVES:					
1. To impart k	nowledge about the need and role of chassis construction in the function	n of an Automobile.				
2. To study the	e function of various components and sub-systems in the working of an	Automobile				
3. To Explain	the fundamental design concepts in clutch and brakes in automobile.					
4. To Analyze	the fundamental design concepts Transmission, suspension, steering sy	stems.				
5. To identify	the electronic systems on vehicle performance.					
UNIT I IN	TRODUCTION		9	0	0	9
	designing automobiles - performance of automobiles - general layout o					
	f frames, constructional details, materials, unitized frame body co	nstruction - Desig	n cond	litions	s - 10	oading
conditions.	IGINE COMPONENTS		9	0	0	9
	al for various engine components - design of cylinder, design of piston	accomply design a		•		
	ler bending and twisting, balancing weight calculations - design of valve					
UNIT III CI	LUTCH AND BRAKES		9	0	0	9
	esign of clutch - calculation of critical parameters of clutches- design					
	al vibration dampers - clutch control drives. Pressure distribution along		mining	g brak	ing to	orque -
-	nd disk brakes - fundamentals of designing brake force regulators - anti	-locking system.	0		•	0
	RANSMISSION, SUSPENSION, STEERING SYSTEMS n parameters of transmission and its design - gear shift mechanisms	1:66	9	0	0	9
	- universal joint - propeller shaft. Suspension system - Oscillation ar					
	ck absorbers. Fundamentals of designing and calculating steering co					
booster.			00		5	
			0		•	0
UNIT V AU	JTOMOTIVE ELECTRONIC SYSTEMS		9	0	0	9
position, coolant	and exhaust temperature, air mass flow for engine application. Sol em - Gasoline / diesel systems – Electronic transmission control vehicle	enoids, stepper mo	tors an	d rela	ay - (engine
		Tot	al(45I	L) = 4	15 Pe	eriods

REFERENCE BOOKS: 1 David A.Crolla, "Automotive Engineering, Powertrain, Chassis System and Vehicle Body", 2009. 2 William B. Ribbens, "Understanding Automotive Electronics", 1998. 3 Lukin P Gasparyants G and Rodionov V, "Automobile Chassis Design and Calculations", Mir Publishers, 1989. 4 Heinz Heisier, "Vehicle and Engine technology", SAE New York, 1999. 5 Gillespie T D, "Fundamentals of Vehicle Dynamics", SAE Inc. New York, 1992. 6 Schwaller A E, "Motor Automotive Technology", 3rd Edition, Delman Publishers, New York.

	RSE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Classify the chassis layout based on type of vehicles	Understand
CO2	Explain the various engine components in a vehicles	Understand
CO3	Compare the function and features of different braking and clutch systems for an automobile.	Analysis
CO4	Analyze the fundamental design concepts of transmission, suspension, steering systems	Analysis
CO5	Apply the automotive electronics to control the engine in order to reduce the emission level	Apply

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	2	1	2	1	2	-	-	-	1	1	-	2	2	2	
CO2	2	1	2	1	2	-	-	-	1	1	-	2	2	2	
CO3	2	-	2	-	2	-	-	-	-	-	-	2	2	1	
CO4	1	3	-	3	2	-	-	-	2	-	1	2	2	2	
CO5	3	-	-	-	2	-	-	-	-	-	-	2	1	2	
Avg	2.0	1.6	2	1.6	2.0	0.0	0.0	0.0	3	1	1	2.0	1.8	1.8	
			3/2/1	-indica	tes strei	ngth of c	correction	on (3-Hi	igh, 2-M	ledium, 1	-Low)				

22CDE45	DESIGN OF MATERIAL HANDLING EQUIPM	IENT	SEM	ГСТ	וסדי	T T
	(Use of approved Data Book and Charts may be perm	itted)	SEIV	LCSI	CK I	L
PREREQUIS	ITES	CATEGORY	PE	Cre	edit	3
		Hours/Week	L	Т	Р	ТН
		110u15/ WCCK	3	0	0	3
COURSE OB						
	ifferent types of material handling systems used for engineering and proce					
	of various hoisting gears and brakes for different material handling application various type of surface and overhead transportation equipment's.	ations.				
	of elevators for various manufacturing and service applications.					
	pment of conveyer systems for material flow in different industrial produc	tion systems				
	LEXIBLE HOISTING APPLIANCES	tion systems.	9	0	0	9
	and applications of material handling equipment- choice of material h	andling equipment		-	-	
	theory of hoisting equipment – chain and ropes – selection of ropes- pull					
	OAD HANDLING EQUIPMENTS AND BRAKES	<u> </u>	9	0	0	9
I	l hooks – forged Ramshorn hooks – solid triangular eye hooks –crane	grabs- electric lifti		-		
	loose materials. Arresting gear – brakes: shoe- band and cone types – ele					
shoe brakes.	<i>66</i>					
UNIT III	SURFACE AND OVERHEAD TRANSPORTATION EQUIPM	MENTS	9	0	0	9
equipments: loc	trucks – powered trucks – tractors – electronically controlled tractors comotives - winches – capstans – turntables – monorail conveyors –p nism- cantilever and monorail cranes- cogwheel drive- monocable tramwa	ipe rail systems – f	lat bar			
UNIT IV	ELEVATING EQUIPMENTS		9	0	0	9
	ion vertical conveyors – reciprocating-motion vertical conveyors – stacker r lifts – freight elevators – mast type elevators – vertical skip hoist elev nents.					
	CONVEYING EQUIPMENTS		9	0	0	9
I	- chain conveyors – apron conveyors – escalators – flight conveyors -	nollon		1	-	
	onveyors- screw conveyors and pneumatic conveyors.			-		
		Tota	al (45L	L) = 4	5 Pe	riods
REFERENCE	E BOOKS:					
	N, "Materials Handling Equipment", MIR Publishers, 1969.					
	ky. A.O and Dyachkov. V.K, "Conveying Machines- Volume I and II", N	IIR Publishers, 1985				
	v M, "Materials Handling Equipments", MIR Publishers, 1981.					
4 Boltzharol	A, "Materials Handling Handbook", The Ronald Press Company, 1958.					
5 P.S.G Tec	h, "Design Data Book", KalaikathirAchchagam, 2008.					
6 Lingaiah.	K and NarayanaIyengar, "Machine Design Data Hand Book- Vol. 1 & 2",	Suma Publishers, 19	983.			
]	Bloo	n's

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Realize the selection of material handling equipment.	Understand
CO2	Design various hoisting elements like, forged hooks, eye hooks, crane grabs and brakes shoe.	Create
CO3	Design the various types of overhead transportation equipment's.	Create
CO4	Design the bucket, industrial and freight lift elevators for to and fro transportation of materials in vertical direction.	Create
CO5	Design the different conveyor systems for material handling applications.	Create

COURSI	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	2	1	2	2	2	-	-	-	-	-	-	1	1	1	
CO2	1	2	2	2	-	-	2	-	2	-	-	3	2	3	
CO3	1	1	2	2	2	-	-	-	-	-	1	3	2	3	
CO4	1	1	2	2	2	-	-	-	-	-	1	3	2	3	
CO5	1	2	2	2	2	-	-	-	-	-	2	3	2	3	
Avg	1.2	1.4	2.0	2.0	2	0.0	2	0.0	2	0.0	3	2.6	1.8	2.6	
			3/2/	1 -indic	ates stro	ength of	correct	tion (3-H	ligh, 2-]	Medium,	1-Low)				

PROFESSIONAL ELECTIVE – V

22CDE51	MEMS AND NEMS TECHNOLOGY		SEM	EST	ER I	II
PREREQUISIT	ES	CATEGORY	PE	Cre	edit	3
		/	L	Т	Р	ТН
		Hours/Week	3	0	0	3
COURSE OBJE	CTIVES					
1. To introduce	the concepts of micro and nano electromechanical devices					
	fabrication process of Microsystems					
	design concepts of micro sensors and micro actuators					
	the concepts of quantum mechanics and nano systems				0	0
	FRODUCTION TO MEMS AND NEMS		9	0	0	9
Characteristics of I	ing effect on physical properties, scaling effects on Electrical properties, MEMS – Energy Domains -Nano and Micro electromechanical Systems polymers, metals. Stress and strain analysis – Flexural beam bending- To	, Materials for ME				
UNIT II ME	MS FABRICATION TECHNOLOGIES		9	0	0	9
	Ion Implantation, Diffusion, Oxidation, CVD, Sputtering Etch urface Micromachining, LIGA.	ing techniques,	Micror	nachi	ning:	Bulk
UNIT III MIC	CRO SENSORS		9	0	0	9
	Design of Acoustic wave sensors, Vibratory gyroscope, Parallel plate of Flow sensors, Thermal Sensing Case study: Piezoelectric energy harvest		e senso	ors, Pi	ezore	esistive
UNIT IV MIC	CRO ACTUATORS		9	0	0	9
	rs: Micro Grippers – Micro Motors, Actuation using thermal forces, ctuation using piezoelectric crystals, Actuation using Shape Memory A itch.					
UNIT V NEM	AS SYSTEMS		9	0	0	9
properties of nano	and Quantum Mechanics, Quantum confinement in 3D, 2D, 1D and ze structures- nanotubes and nanowires for nano device fabrication – Sin II metallic tunnel junctions - nanoparticles based solar cells.					
		Tot	al (45	L) =	45 P	eriods

RE	FERENCE BOOKS:
1	Marc Madou, Fundamentals of Microfabrication, CRC press 1997.
2	Stephen D.Senturia, Micro system Design, Kluwer Academic Publishers, 2001.
3	Tai Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata McGraw Hill, 2002.
4	Chang Liu, Foundations of MEMS, Pearson education India limited, 2006,
5	Sergey Edward Lyshevski, MEMS and NEMS: Systems, Devices, and Structures CRC Press, 2002.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Interpret the basics of micro/nano electromechanical systems including their scope and recent development of science and technology.	Remember
CO2	Recognize the use of materials in micro fabrication and describe the fabrication processes.	Understand
CO3	Analyze the key performance aspects of electromechanical sensors including sensors and actuators	Analysis
CO4	Gain a knowledge of basic approaches for various actuators design.	Understand
CO5	Comprehend the theoretical foundations of quantum mechanics and Nano systems.	Remember

COURSE	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	3	-	-	-	2	2	-	-	3	2	3	3	-	-	
CO2	2	2	2	-	2	2	2	3	-	-	-	-	-	-	
CO3	2	3	-	2	-	-	-	-	2	2	2	-	-	-	
CO4	2	3	2	2	-	-	3	2	2	-	-	-	-	-	
CO5	-	2	2	2	3	3	-	-	-	2	-	3	2	-	
Avg	1.8	2.0	2	2	1.4	1.4	2.5	2.5	2.3	2.3	2.5	3	2	0.0	
			3/2/	1 -indic	ates str	ength of	correct	ion (3-H	High, 2-	Medium,	1-Low)				

22CDE52	CDE52 ENTERPRISE RESOURCE PLANNING				SEMESTER III					
PREREQUISITES CATEGORY						3				
			L	Т	Р	TH				
	Hour	s/Week	3	0	0	3				
COURSE O	BJECTIVE :									
1 Learn a and tran	bout the rationale for acquiring and implementing ERP systems, selection of ERP softwactions in the ERP system.		•		-					
	tand the challenges associated with the successful implementation of Supply Chain El ip and managerial implications/actions and generating business value for the firm.	RP software	e with	an e	mpha	asis o				
	principles of leading very large change initiatives by focusing on the rational and en	otional as	bects c	of org	ganiza	ationa				
transform		-								
	p the student's organizational and analytical skills through the use of business cases studie	es, articles a	and wo	orking	g in te	eams.				
0	knowledge of the hidden cost of a company.									
UNIT I	ENTERPRISE RESOURCE PLANNING		9	0	0	9				
UNIT II Client/Server	- Supply and Demand chain – Extended supply chain management – Dynamic Models – P TECHNOLOGY AND ARCHITECTURE architecture – Technology choices – Internet direction – Evaluation framework – CR		9	0 g- ch	0 ain sa	9 afety				
Evaluation fra										
	ERP SYSTEM PACKAGES		9	0	0	9				
	e soft- Baan and Oracle – Comparison – Integration of different ERP applications – E ERP and Internet – ERP Implementation strategies – Organizational and social issues.	RP as sales	force	auto	omatio	on –				
UNIT IV	ORACLE		9	0	0	9				
	Architecture – AIM – applications – Oracle SCM. SAP: Overview – Architecture – appli – Training on various modules of IBCS ERP Package-Oracle ERP and MAXIMO- inclu					2k –				
UNIT V	ERP PROCUREMENT ISSUES		9	0	0	9				
Market Trend	$ls-Outsourcing\ ERP-Economics-Hidden\ Cost\ Issues-ROI\ -Analysis\ of\ cases\ from$	five Indian	Comp	anies						
		Total	(45L)	=45	Peri	iods				
			<u> </u>							
DEEDE										
	NCE BOOKS: nan S "ERP-A Managerial Perspective" Tata McGraw Hill 1999									

- 2 Jose Antonio Fernandez, "The SAP R/3 Handbook", Tata McGraw Hill, 1998.
- Vinod Kumar Crag and Venkitakrishnan, N.K., "Enterprise Resource Planning Concepts and Practice", Prentice Hall of India, 1998.
- 4 Garg and Venkitakrishnan, "ERP-WARE- ERP Implementation Framework", Prentice Hall, 1999.

COURSE OUTCOMES: On completion of the course the student will be able to							
CO1							
	supply chain management planning process enhances efficiency and decision making						
CO2	Define integrated information systems and Describe the benefits of customer relationship	Remember					
	management (CRM) software.						
CO3	Analyze the role of PLM, SCM and CRM in ERP.	Analysis					
CO4	Analyze the role of Consultants, Vendors and Employees.	Analysis					
CO5	Outline the accounting and management-reporting benefits that accrue from having an ERP	Understand					
	system.						

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	2	-	2	1	-	1	-	1	1	1	1	1
CO2	1	1	2	1	2	2	1	-	-	1	1	-	1	-
CO3	1	1	2	2	2	1	1	-	1	1	1	1	2	1
CO4	-	1	1	2	1	2	1	2	2	-	1	1	1	1
CO5	-	1	1	-	1	1	1	1	1	2	1	1	2	2
Avg	0.6	1.0	1.6	1.0	1.6	1.4	0.8	0.8	0.8	1.0	1.0	0.8	1.4	1.0
3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)														

22C	DE53	MECHATRONICS SYSTEM DESIGN		SEN	1ES]	rer	III
PRE	REQUI	SITES	CATEGORY	PE	Cre	dit	3
			Hours/Week	L	Т	P	ТН
				3	0	0	3
CC	URSE	OBJECTIVE :					<u> </u>
1.		ovide the interdisciplinary concepts of Electronics, Electrical, Mechanical and Canical and Electronic Systems.	Computer Systems f	or the C	Contro	ol of	
2		ow the basic working principle of sensors and transducers of use for manufactur	ring system.				
3	To kn	ow the features, modules and interfaces of microprocessors.					
4	To un	derstand the concept of PLC system in industrial applications.					
5.	To gai	n the knowledge of integration of mechatronic systems in automation of moder	n manufacturing sy	stems.			
UN	ITI	INTRODUCTION		9	0	0	9
	Mechati	to Mechatronics - Systems - Mechatronics in Products – Measurement System ronics Design- Advanced applications in Mechatronics -Measurement systems (sign
		SENSORS AND TRANSDUCERS		9	0	0	9
		- Performance Terminology - Displacement- Position and Proximity -Ve e sensors - Light sensors -Selection of sensors - Signal processing - Servo system		n - Flu	uid p	ressu	re -
UN	III TII	MICROPROCESSORS IN MECHATRONICS		9	0	0	9
Inte	erfacing i	- Architecture - Pin configuration - Instruction set - Programming of Min nput and output devices - Interfacing D/A converters and A/D converters –App ol - Traffic light controller					
UN	IT IV	PROGRAMMABLE LOGIC CONTROLLERS		9	0	0	9
		- Basic structure - Input and Output processing - Programming –Mnemonic ng - Analog input and output - Selection of PLC.	s Timers- Internal	relays	and c	ount	ers -
UN	IT V	MECHATRONICS SYSTEMS AND APPLICATIONS		9	0	0	9
		Ianufacturing – Condition Monitoring and Control - Robot for Automatic Ass d Inspection- Automotive Mechatronics: Electronic Ignition System – ABS – E					erial
			Total	(45L) =	= 45]	Peri	ods
DE		JCF BOOKS.					

RI	EFERENCE BOOKS:
1	Michael B.Histand and David G. Alciatore, "Introduction to Mechatronics and Measurement Systems", McGraw Hill International Editions, 1999.
2	Bradley- D.A, Dawson D, Buru N.C and Loader A J, "Mechatronics", Chapman and Hall, 1993.
3	Ramesh.S Gaonkar, "Microprocessor Architecture- Programming and Applications", Wiley Eastern, 1998. 2. Lawrence
	J.Kamm, "Understanding Electro-Mechanical Engineering- An Introduction to Mechatronics", Prentice Hall, 2000.
4	Ghosh- P.K. and Sridhar- P.R. "0000 to 8085- Introduction to Microprocessors for Engineers and Scientists", 2nd Edition,
	Prentice Hall, 1995.

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Generate conceptual design for Mechatronics products based on potential customer requirements.	Create
CO2	Select appropriate sensors and transducers and devise an instrumentation system for collecting information about processes.	Apply
CO3	Explain the features, modules and interfaces of microprocessors.	Understand
CO4	Write PLC program for industrial applications.	Apply
CO5	Apply the knowledge of integration of mechatronic systems in automation of modern manufacturing systems.	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	2	2	-	-	1	2	-	1	3	-	-
CO2	1	-	2	2	-	1	-	2	2	-	1	2	-	-
CO3	2	3	3	-	2	-	-	2	1	-	2	-	-	-
CO4	-	2	3	2	1	-	-	1	1	2	-	2	2	-
CO5	1	2	1	-	-	1	1	-	-	-	-	2	3	3
Avg	1.5	2.0	2.2	2	1.6	1	1	1.5	1.5	2	1.3	1.8	2.5	3
			3/2/1	- indicat	tes streng	gth of co	rrection	(3-High,	2-Medi	um, 1-Lo	ow)			

22CI	DE54	FAILURE ANALYSIS		SE	MES	TER	III
PRER	EQUI	SITES	CATEGORY	PE	Cr	edit	3
			Hours/Week	L	Т	Р	TH
			Hours/ Week	3	0	0	3
COU	URSE	OBJECTIVE :					
1.		roduce the basic concept of fracture mechanics and failure analysis.					
2.		t knowledge on mechanics of fracture during static and dynamic loading.					
3.		stand the failure mechanism of creep rupture.					
4.		stand the mechanism of wear and corrosion and knowledge on prevention.					
5.	Gain	knowledge on Reliability and condition monitoring.					
UNI	ΤΙ	INTRODUCTION		9	0	0	9
chara		ailure analysis, classification and identification of various types of fracts of ductile and brittle fracture.	ture. Overview of		1		9 9
		CONCEPTS OF FAILURE		9	0	0	
		cepts, fracture characteristics revealed by microscopy, factors affecting fat fatigue, metallurgical instabilities, environmental induced failure. Some case		ress ru	upture	e, elev	ated
UNI	T III	TYPES OF FAILURE		9	0	0	9
corre	osion st	ar, analyzing wear failure. Corrosion failures- factors influencing corrosion ess corrosion cracking, sources, characteristics of stress corrosion cracking. rious types of hydrogen damage failures					
UNI	TIV	CAUSES OF FAILURE		9	0	0	9
		ailure in forging, failure of iron and steel castings, improper heat treat Failure of weldments - reasons for failure procedure for weld failure analysis.		entrati	on a	nd ser	vice
UNI	TV	RELIABILITY		9	0	0	9
		oncept and hazard function, life prediction, condition monitoring, application for reliability, bathtub curve, parallel and series system, mean time between the series system.	ailures and life test	ing		d Wei 5 Peri	

R	EFERENCE BOOKS:
1	Bradley- D.A, Daws ASM Metals Handbook "Failure Analysis and Prevention", ASM Metals Park. Ohio, Vol.10, 10 th Edition, 1995.
2	Colangelo.V.J. and Heiser.F.A. "Analysis of Metallurgical Failures", John Wiley and Sons Inc. New York, USA, 1974. On D, Buru N.C and Loader A J, "Macaronis", Chapman and Hall, 1993.

	RSE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Evaluating the mechanical behaviour includes tensile, fatigue and creep behaviour of materials.	Evaluate
CO2	Ability to Understand the micro mechanisms of brittle and ductile fracture	Understand
CO3	Analyze the fatigue and fracture behaviour of materials	Analysis
CO4	Apply the knowledge for failure analysis and case studies	Apply
CO5	Ability to Understand the concepts of Reliability and build system reliability models for different configurations.	Understand
	computations.	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	-	-	-	-	1	1	-	-	1
CO2	3	2	2	2	1	-	-	-	-	1	-	-	-	1
CO3	2	3	2	1	1	1	-	-	-	1	-	3	2	-
CO4	2	3	2	1	1	1	1	-	-	1	1	3	2	-
CO5	2	1	1	1	2	1	-	-	-	-	-	1	1	-
Avg	2.4	2.2	1.8	1.4	1.2	1	1	0.0	0.0	1	1	1.4	1.6	1
			3 /	/ 2 / 1 -ir	dicates	strength	of corre	ection (3	-High, 2	-Mediun	n, 1-Low)			

VES: oncepts productivity and availability based on reliability a the likelihood or frequency of failures of engineering co ity, quantity of the product with minimal cost. ect the causes of failures that does occur in engineering sy ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	mponents and system ystem. tenance system – i ement. Preventive, o tenance for a system	9 nspection perating of equence 9	g and s ipmen 0	P 0 anning shutdo t. 0	
oncepts productivity and availability based on reliability a e the likelihood or frequency of failures of engineering co ity, quantity of the product with minimal cost. eet the causes of failures that does occur in engineering sy ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	and effectiveness. mponents and system ystem. tenance system – i ement. Preventive, o tenance for a system	3 ns. 9 nspectic perating of equ 9	0 0 on, Pla g and s ipmen 0	0 anning shutdo t. 0	3 9 g & own
oncepts productivity and availability based on reliability a e the likelihood or frequency of failures of engineering co ity, quantity of the product with minimal cost. eet the causes of failures that does occur in engineering sy ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	and effectiveness. mponents and system ystem. tenance system – i ement. Preventive, o tenance for a system	ns. 9 nspectic perating of equ 9	0 on, Pla g and s ipmen 0	0 anning shutdo t. 0	9 g & own
oncepts productivity and availability based on reliability a e the likelihood or frequency of failures of engineering co ity, quantity of the product with minimal cost. eet the causes of failures that does occur in engineering sy ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	mponents and system ystem. tenance system – i ement. Preventive, o tenance for a system	9 nspection perating of equence 9	on, Pla g and s ipmen 0	anning shutde t. 0	g & own
e the likelihood or frequency of failures of engineering co ity, quantity of the product with minimal cost. ect the causes of failures that does occur in engineering sy ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	mponents and system ystem. tenance system – i ement. Preventive, o tenance for a system	9 nspection perating of equence 9	on, Pla g and s ipmen 0	anning shutde t. 0	g & own
ity, quantity of the product with minimal cost. ect the causes of failures that does occur in engineering system ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	ystem. tenance system – i ement. Preventive, o tenance for a system	9 nspection perating of equence 9	on, Pla g and s ipmen 0	anning shutde t. 0	g & own
ect the causes of failures that does occur in engineering system ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	tenance system – i ement. Preventive, o tenance for a system	nspection perating of equent	on, Pla g and s ipmen 0	anning shutde t. 0	g & own
ferent failure modes RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	tenance system – i ement. Preventive, o tenance for a system	nspection perating of equent	on, Pla g and s ipmen 0	anning shutde t. 0	g & own
RODUCTION to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	ement. Preventive, o tenance for a system	nspection perating of equent	on, Pla g and s ipmen 0	anning shutde t. 0	g & own
to reliability & productivity. Basic elements of main ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	ement. Preventive, o tenance for a system	nspection perating of equent	on, Pla g and s ipmen 0	anning shutde t. 0	g & own
ion, record keeping, data analysis, learning & improve n based maintenance and Application of Preventive main RATION AND SIGNATURE ANALYSIS	ement. Preventive, o tenance for a system	perating of equ	g and s ipmen 0	shutde t. 0	own
re analysis; causes; remedy in rotating machinery. Fluid ysis. Vibration monitoring – Data acquisition, Transdu nalysis, Fault diagnosis of rotating Equipment, antifriction	cers, Time domain	and fre			
-DESTRUCTIVE TESTING		9	0	0	9
or NDT.		eak tes	sting,	corro	
	of lubricants with		•	•	-
lubrication technique for minimization of friction and w		uleli	prope	lies	
IABILITY		9	0	0	9
on and wear; Different types of wear - abrasive, corre- and techniques for minimization of wear. Data collection	osive, seizure, scorii n and Analysis, Intro	ng, Scu duction	ffing, to cor	pittin npute	g, r-
	bgraphy, ultrasonic testing, acoustic emission testing for NDT. RICATION ction to lubrication engineering, types, classification g lubrication technique for minimization of friction and w IABILITY on and wear; Different types of wear - abrasive, correct	bgraphy, ultrasonic testing, acoustic emission testing, thermo-graphy, le for NDT. RICATION ction to lubrication engineering, types, classification of lubricants with g lubrication technique for minimization of friction and wear IABILITY on and wear; Different types of wear - abrasive, corrosive, seizure, scorii . and techniques for minimization of wear. Data collection and Analysis, Intro	by paraphy, ultrasonic testing, acoustic emission testing, thermo-graphy, leak test for NDT.	ography, ultrasonic testing, acoustic emission testing, thermo-graphy, leak testing, for NDT. FRICATION 9 o ction to lubrication engineering, types, classification of lubricants with their proper glubrication technique for minimization of friction and wear JABILITY 9 on and wear; Different types of wear - abrasive, corrosive, seizure, scoring, Scuffing,	ography, ultrasonic testing, acoustic emission testing, thermo-graphy, leak testing, corrofor NDT. RICATION BRICATION Construction Construction Generation Geneation G

R	EFERENCE BOOKS:
1	Industrial Maintenance – H.P.Garg
2	Industrial Maintenance Management – S.K.Srivastava
3	Mishra, R. C. and Pathak, K., Maintenance Engineering and Management, Second Edition, Prentice Hall of India, New
	Delhi, 2004.
4	Dhillon B.S., Engineering Maintenance: A Modern Approach, Taylor & Francis Group, 2002.
5	Mobley R. K., An Introduction to Predictive Maintenance, Second Edition, Butterworth-Heinemann,

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply maintenance management skill and Explain the need of safety devices.	Apply
CO2	Apply the concept of tribology and conditioning monitoring in Vibration and Fluid analysis.	Apply
CO3	Select and apply appropriate Non-destructive testing for various measures of maintenance.	Apply
CO4	Identify the lubrication technique for minimization of friction and wear.	Understand
CO5	Analyze the failure modes of plant machineries to increase the productivity of the plant.	Analysis

COURS	COURSE ARTICULATION MATRIX													
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	-	-	-	-	1	1	1	-	3
CO2	3	2	2	2	1	-	-	-	-	1	-	1	-	-
CO3	2	3	2	1	1	1	-	-	-	1	-	-	1	-
CO4	2	3	2	1	1	1	1	-	-	1	1	-	-	1
CO5	2	3	2	1	1	1	-	-	-	1	-	-	-	1
Avg	2.4	2.6	2.0	1.4	1.0	0.6	0.20	0.0	0.0	1.0	0.4	0.4	0.20	1.0
			3 / 2	/ 1 -indi	cates sti	ength o	f correc	tion (3-I	High, 2-N	Medium,	1-Low)			

PROFESSIONAL ELECTIVE - VI

22CDE61 INTEGRATED PRODUCT AND PROCESSES DEVELOPMENT SEM										
PRI	EREQU	ISITE	CS	CATEGORY	PE	C	redi	t	3	
				TT (TT)	L	Т	P	•	TH	
				Hours/Week	3	0	0)	3	
C	OURSE (
1.		<u> </u>	ing and cost estimation, Concept of Engineering design, Industrial Ma	nagement and engin	eering	3.				
2. 3.			ne concept for new product. It the need of product specifications.							
4.			concept selection and measure customer response.							
5.			ledge in product architecture and level design issues.							
			RODUCTION				•	0	0	
			Successful Product Development- Interdisciplinary activity- Dura				0	-	9	
Ch De	nallenges evelopme	of Pro nt: The	oduct Development –Development Processes and Organizations-A e Front-End Process Adapting the Generic Product Development H ent Organizations-The AMF Organization.	A Generic Develop	ment	Proc	cess-0	Conc	ept	
U	NIT II	PRO	DUCT PLANNING			9	0	0	9	
Pro Ra	oject Plar w Data i	nning-I in Teri	Process- Identifying Opportunities- Evaluating and Prioritizing Project Reflect on the Results and the Process-Identifying Customer Needs ms of Customer Needs-Organizing the Needs into a Hierarchy- Es on the Results and the Process.	- Raw Data from C	uston	ners-	Inte	rpret	ing	
Ul	NIT III	PRC	DDUCT SPECIFICATIONS			9	0	0	9	
Ge	eneration-	The .	Specifications Established - Establishing Target Specifications-S Activity of Concept Generation-Clarify the Problem- Search effect on the Results and the Process.					Conc Expl	-	
U	NIT IV	CON	CEPT SELECTION			9	0	0	9	
Ch	noose a S	Survey	- Overview of Methodology-Concept Screening-Concept Testing- Population- Choose a Survey Format- Communicate the Concept- n the Results and the Process							
U	NIT V	PRO	DUCT ARCHITECTURE			9	0	0	9	
			are-Implications of the Architecture-Establishing the Architecture- Devel Design Issues.			tfori	n Pla	nnin	g-	
				Tota	al (45	L) =	=45 F	Perio	ds	
D	FFFDF	NCEI	BOOKS:							
1	Produc	t Desig	gn and Development, Karl T. Ulrich and Steven .D Epinger, McGraw	-Hill International E	dns. 4	th e	dition	201	3.	
2			3-0070658110. Ind Kristin Wood, "Product Design" Pearson Publication, 3rd Edition,	2012, ISBN-13: 978	30130	2127	719.			
3	Tuart P	ugh, "	Tool Design – Integrated Methods for successful Product Engineering 020141639.					wyor	k,	
4			nthal, Business One Orwin "Effective Product Design and Develop	ment", Homewood,	1992	,ISB	N:1-:	5562	3-	

5 Kemnneth Crow, "Concurrent Engineering / Integrated Product Development", DRM Associates, 26/3, Via Olivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.

	COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Impart knowledge on product development processes and organizations.	Understand					
CO2	Identify customer needs, product planning processes and allocating resources and timing.	Understand					
CO3	Apply knowledge on product specifications.	Apply					
CO4	Define the concept selection and measure customer response.	Remember					
CO5	Provide product architecture and level design issues.	Apply					

COURSE ARTICULATION MATRIX PSO3 COs/POs **PO1** PO2 **PO3 PO4** PO5 **PO6 PO7 PO8 PO9** PO10 **PO11** PSO1 PSO2 2 2 1 CO1 2 2 -1 1 ------2 1 **CO2** 1 3 1 1 1 ----_ _ -3 1 CO3 3 1 1 1 2 1 ------1 2 1 **CO4** 3 2 2 1 2 1 -----CO5 3 -1 2 -3 1 1 3 -----2.2 1.2 2.2 2.2 1.5 1.6 1.6 1.0 1 0.0 0.0 0.0 0.0 0.0 Avg 3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)

22CDE62						
REREQUISI	TES	CATEGORY	PE	Cr	edit	3
		Hours/Week	L	Т	Р	T
			3	0	0	3
	BJECTIVES:					
	an understanding of principles of safety management.					
	he students to learn about various functions and activities of safety of	1				
	tudents to conduct safety audit and write audit reports effectively in owledge about sources of information for safety promotion and train					
	ize students with evaluation of safety performance.	ing.				
UNIT I	SAFETY MANAGEMENT		9	0	0	9
committee, sa productivity.	modern safety concepts - Safety management functions - safety fety audit - performance measurements and motivation - empl		in safe		safety	and
UNIT II	OPERATIONAL SAFETY		9	0	0	9
metal cutting -	lding and cutting. Cold-metal Operation - Safety in Machine shop shot blasting, grinding, painting - power press and other machines.	- Cold bending and				
UNIT III	SAFETY MEASURES		9	0	0	9
major industria	ACCIDENT PREVENTION		9	0	0	9
Specific hazar	f safety - personal protective equipment - Causes and cost of acc d control strategies - HAZOP - Training and development of em ting, investigation.					
UNIT V	SAFETY, HEALTH, WELFARE & LAWS		9	0	0	9
	Ith standards - Industrial hygiene - occupational diseases prevention ty-pressure vessel act-Indian boiler act - The environmental protection					ion
DEEDENG		Total	(45L) :	=45 F	Period	S
REFERENC						
					000	
	safety and the law by P.M.C. Nair Publisher's, Trivandrum.	wellers bookseller	New D	alhi_ 1		
	rimaldi and Rollin H. Simonds, "Safety Management", All India Tra	avellers bookseller, 1	New De	elhi- 1	989.	
4 Managing	rimaldi and Rollin H. Simonds, "Safety Management", All India Tra N.V., "Safety in Industry", Jaico Publisher House, 1996		New De	elhi- 1	989.	
U 1	rimaldi and Rollin H. Simonds, "Safety Management", All India Tra N.V., "Safety in Industry", Jaico Publisher House, 1996 g emergencies in industries, Loss Prevention of India Ltd., Proceedir		New De	elhi- 1	.989.	
5 Occupati	rimaldi and Rollin H. Simonds, "Safety Management", All India Tra N.V., "Safety in Industry", Jaico Publisher House, 1996	ngs, 1999.				
5 Occupati	rimaldi and Rollin H. Simonds, "Safety Management", All India Tra N.V., "Safety in Industry", Jaico Publisher House, 1996 g emergencies in industries, Loss Prevention of India Ltd., Proceedir onal Safety Manual BHEL.	ngs, 1999.		Delhi,	1996.	
5 Occupati 6 Safety se	rimaldi and Rollin H. Simonds, "Safety Management", All India Tra N.V., "Safety in Industry", Jaico Publisher House, 1996 g emergencies in industries, Loss Prevention of India Ltd., Proceedir onal Safety Manual BHEL. curity and risk management by U.K. Singh & J.M. Dewan, A.P.H. F	ngs, 1999.		Delhi,	1996. Bloon	omy
5 Occupati 6 Safety se COURSE OU On completion	rimaldi and Rollin H. Simonds, "Safety Management", All India Tra N.V., "Safety in Industry", Jaico Publisher House, 1996 g emergencies in industries, Loss Prevention of India Ltd., Proceedir onal Safety Manual BHEL. curity and risk management by U.K. Singh & J.M. Dewan, A.P.H. F	ngs, 1999. Publishing company,		Delhi,	1996. Bloor	omy oed

COI	Describe the functions and activities of safety engineering department.	Understand
CO2	Carry out a safety audit for hot and metal operations and prepare a report for the audit.	Apply
CO3	Prepare an accident investigation report and estimate the accident cost using supervisors	Evaluate
	report and data.	
CO4	Evaluate the safety performance of an organization from accident records.	Evaluate
CO5	Identify various agencies, support institutions and government organizations involved in	Understand
	safety training and promotion.	

Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	-	-	-	3	2	-	-	-	-	-	2	1
CO2	-	1	1	1	1	2	2	1	1	2	1	1	1	2
CO3	1	1	1	1	3	2	2	-	-	2	1	1	1	1
CO4	1	1	1	-	3	2	1	1	1	1	1	-	1	2
CO5	1	1	1	1	2	2	2	-	1	-	-	-	-	1
Avg	1.5	1.0	1	1	1.8	2.2	1.8	1	1	1.6	1	1	1.25	1.4
			3 / 2	/ 1 -ine	dicates	strength	of corre	ction (3-	High, 2-	Medium,	1-Low)			

22CDE63												
PREREQUI	SITES	CATEGORY	PE	Cre	edit	3						
		Hours/Week	L	Т	Р	TH						
		Hours/ Week	3	0	0	3						
COURSE O	BJECTIVE											
	of this course are:											
· · ·	t and estimate the reliability from failure data.											
	system reliability using various measuring method.											
	t the reliability at system level using various models.											
	p and implement a successful reliability programme.		•		•	0						
UNIT I	RELIABILITY CONCEPT		9	0	0	9						
	nition - Quality and Reliability- Reliability mathematics - Relia											
of Reliability -	Design life -A priori and posteriori probabilities - Mortality of a	component –Bath t	ub curv	e - U	seful	life.						
UNIT II	FAILURE DATA ANALYSIS		9	0	0	9						
Data collectio	n -Empirical methods: Ungrouped/Grouped, Complete/Censore	d data – Time t	o failur	e dis	tribut	ions:						
Exponential, W	Veibull – Hazard plotting – Goodness of fit tests.											
UNIT III	RELIABILITY ASSESSMENT		9	0	0	9						
Different confi	gurations – Redundancy – m/n system – Complex systems: RBD -	- Bave's method -	Cut and	tie se	ets _]	Fault						
	- Stand by system.	Buye 5 memor	Cut und	i tie s		I uun						
UNIT IV	RELIABILITY MONITORING		9	0	0	9						
		Dating Daliatility										
	ethods: Failure terminated – Time terminated – Sequential T	esting – Kenabinty	growu	n mo	nitori	ng -						
-	Reliability allocation – Software reliability.											
UNIT V	RELIABILITY IMPROVEMENT		9	0	0	9						
	Analysis of downtime - Repair time distribution - System MTTR - Maintainability prediction - Measures of											
maintainability	maintainability – System Availability – Replacement theory.											
		Tot	al (45L) = 4	5 Pe	riods						

REFERENCE BOOKS:

Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.
 Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

	COURSE OUTCOMES: On completion of the course the student will be able to							
CO1	Explain the basic concepts of reliability engineering and its measures.	Understand						
CO2	Estimate the reliability from failure data.	Evaluate						
CO3	Assessment of system reliability using various measuring method.	Remembering						
CO4	Apply various monitoring techniques to predict the reliability at system level.	Apply						
CO5	Develop and implement a successful Reliability programme.	Create						

COURS	COURSE ARTICULATION MATRIX														
COs/P Os	PO1	PO 2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PSO 1	PSO 2	PSO 3	
CO1	2	-	-	-	2	-	-	-	-	2	-	2	1	2	
CO2	1	2	1	1	1	-	-	-	-	-	1	1	1	1	
CO3	1	2	-	2	-	-	1	-	-	-	2	2	1	-	
CO4	1	2	-	-	-	-	2	-	-	-	1	1	2	1	
CO5	2	1	1	1	-	-	-	-	-	-	2	2	2	1	
Avg	1.4	2.2 5	1	1.3	1.5	0.0	1.5	0.0	0.0	2	1.5	1.6	1.4	1.25	
	3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)														

22CDE64	MECHANICAL MEASUREMENTS AND ANAL	YSIS	SEN	AES	TER I	III
PREREQUIS	SITES	CATEGORY	PE	Cr	edit	3
		Hound	L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Ob	jectives:					
	e knowledge on various Metrological equipment's available to measure				nents.	
	e knowledge on the correct procedure to be adopted to measure the dim	nension of the con	nponer	its.		
	stand the measurements done in gear tooth profile.					
	about the role of control charts in inspection.					
	e the knowledge about six sigma.					
UNIT I	BASICS OF MEASUREMENT SYSTEM AND DEVICES		9	0	0	9
	metrology, accuracy, precision and sensitivity, Abbe's principle. T nanical loading - static characteristics of instruments - factors considered					
	ror analysis and classification - sources of error. Principle of interferom				- con	mom
	To analysis and classification sources of error. Trinciple of interferon	letty, laser interre	Tomen			
UNIT II	CALIBRATION OF INSTRUMENTS AND QUALITY STA	ANDARDS	9	0	0	9
9000 quality s	dial indicator, surface plates, slip gauges, care of gauge blocks. Gen standards. Comparators - mechanical, electrical, optical and pneumatic.		les in 1	meası	remei	nt, ISC
UNIT III	GEOMETRICAL MEASUREMENT AND MACHINE ELH	EMENTS	9	0	0	9
principle, thr measurement	surement - optical protractors, sine bar, roundness measurement, lim ee basic types of limit gauges, Tomlinson surface meter, compute of major, minor and effective diameters. Gear terminology; spur ge itch measurement.	er controlled CN	4M. IS	SO n	etric	thread
UNIT IV	STATISTICAL QUALITY CONTROL		9	0	0	9
	n- terminology and measurements - Optical measuring instruments- ol - Control charts - Sampling plans.	Acceptance test	for m	achin	es Sta	tistica
UNIT V	SIX SIGMA		9	0	0	9
Control chart	fine measure, analyse, improve and control phases. Analyse phase too, , Scatter chart, Cause and effect diagram, Pareto analysis, interrelat pothesis Testing, ANOVA, Multivariate analysis.					
		To	tal(45	5L) =	45 P	eriod
				,		
REFEREN	CE BOOKS:					
	, —A Text Book of Engineering Metrology, Dhanpat Rai publications,	New Delhi, 2007				

2 Beckwith.T.G,Roy D. Marangoni, John H. Lienhard, -Mechanical Measurements, Prentice Hall, 2006

3 Jain.R.K, —Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1999.

COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	The students can demonstrate different measurement technologies and use of them in	Apply				
	industrial components					
CO2	Evaluate the quality of job, machine and instruments.	Evaluate				
CO3	Perform calibration of measuring instruments	Analysis				
CO4	Differentiate the accuracy of instruments.	Create				
CO5	To know about the control charts and various quality tools	Remembering				

COURSE	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	1	2	-	1	-	-	1	-	-	-	-	2	1	2	
CO2	1	2	1	1	-	-	1	-	-	-	-	2	-	1	
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1	
CO4	3	2	1	2	2	-	1	-	-	-	-	1	2	1	
CO5	2	3	-	3	1	-	1	-	-	-	-	3	-	1	
Avg	2.0	2.0	1	1.6	1.6	0.0	1.0	0.0	0.0	0.0	0.0	2.2	1.3	1.2	
			3/2/1	-indica	tes stre	ngth of	correct	ion (3-H	ligh, 2-l	Medium,	1-Low)				

22CDE65	ERGONOMICS IN MANUFACTURIN	NG	SEM	EST	ER I	II							
PREREQ	UISITES	CATEGORY	PE	Cre	edit	3							
		Hours/Week	L	Т	Р	TH							
		HOULS/ WEEK	3	0	0	3							
COURSE	OBJECTIVE:												
1. To pro	1. To process of manufacturing Technology or equivalent												
	elop the work space design and environments												
	lerstand the types and manufacturing methods												
	cuss climate, noise and motion affect the ergonomics design			1	1	1							
UNIT I	INTRODUCTION:		9	0	0	9							
Interdiscipl	nary nature of ergonomics, modern ergonomics.												
UNIT II	HUMAN PERFORMANCE		9	0	0	9							
Information manual lifti	input and processing, factors affecting human performance, physical ng.	work load and energy	expendi	ture,	heat	stress,							
UNIT III	WORK SPACE DESIGN		9	0	0	9							
-	etry, Work-space design for standing and seated workers, arranger al aspect of workplace design.	nent of components w	vithin a	phys	sical	space,							
UNIT IV	UNIT IV DESIGN OF EQUIPMENT												
Ergonomic	Ergonomic factors to be considered, design of displays and controls, design for maintainability.												
UNIT V	DESIGN OF ENVIRONMENT		9	0	0	9							
Illumination	– Climate – Noise – Motion.												
		Tota	al (45L	<i>i</i>) = 4	45 Pe	riods							
			`	-									

REFERENCE BOOKS:

1	Martin Helander, "A Guide to Ergonomics of Manufacturing", CRC Press, 2 edition, December 2005.
2	Bridger, R.S., "Introduction to Ergonomics, CRC Press, 3 edition, August 2008.
3	McCormick, J., "Human Factors in Engineering and Design", McGraw-Hill, 7 edition, January 1993.

	RSE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Recognize the need, requirements and applications of ergonomics in design	Understand
CO2	Analyze the various factors affecting human performance in ergonomics	Analysis
CO3	Analyze various work space design	Analysis
CO4	Evaluate the influence of human performance over ergonomics	Evaluate
CO5	Evaluate climate, noise and motion affect the ergonomics design.	Evaluate

								-		-	-			
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
S														
CO1	2	1	2	1	-	-	-	-	-	-	2	3	1	1
CO2	2	1	1	-	1	-	-	-	2	-	1	3	2	1
CO3	1	1	-	-	1	-	-	-	2	-	1	2	1	1
CO4	1	2	1	-	1	-	-	-	1	-	2	2	2	1
CO5	1	1	-	-	-	1	-	-	2	3	1	1	1	2
Avg	1.4	1.2	3	1	1	1	0.0	0.0	1.75	3	1.4	2.2	1.4	1.2
			3/2/1	-indica	tes stre	ngth of	correct	ion (3-H	ligh, 2-	Medium,	1-Low)			

PROFESSIONAL ELECTIVE – VII

22	CDE71 QUALITY CONCEPTS IN DESIGN		SEM	IEST	ER I	III		
PR	EREQUISITES	CATEGORY	PE	Cr	edit	3		
		Hours/Week	L	T	P	TH		
			3	0	0	3		
1.	URSE OBJECTIVE: To impart knowledge on engineering design principles, material selection ar	d manufacturing pr	000550	,				
2.	To learn the principles of implementing quality in a product or services usin		0003503					
3.	To enhance the quality of the product by the use of failure mode effect ana		ting me	ethod	s to u	phold		
	the status of six sigma.							
4.	To develop a robust product or service using various strategies of design of a To maintain the product quality through the use of statistical tools and e		o impr	ove t	he nr	oduct		
5.	reliability.	morenig methods t	o mipi		ne pr	ouuer		
UN	IT I DESIGN FUNDAMENTALS, METHODS AND MATERIA	L SELECTION	5	0	0	5		
Mar	phology of Design –Design Process – Computer Aided Engineering – Con king – Creativity – Theory of Problem solving (TRIZ) – Value Analys embly – Design for casting, Forging, Metal Forming, Machining and Welding	is - Design for Ma						
UN	IT II DESIGN FOR QUALITY		10	0	0	10		
Des deve	Quality Function Deployment -House of Quality-Objectives and functions-Targets-Stakeholders- Measures and Matrices- Design of Experiments –design process-Identification of control factors, noise factors, and performance metrics – developing the experimental plan- experimental design – testing noise factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set points-reflecting and repeating.							
UN	IT III FAILURE MODE EFFECTS ANALYSIS AND DESIGN	FOR SIX SIGM	A 1	0	0 0	10		
met Basi	ic methods: Refining geometry and layout, general process of product embod hods: systems modeling, mechanical embodiment principles-FMEA method is of SIX SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem inizations - SIX SIGMA and lean production –Lean SIX SIGMA and services	linking fault states solving- SIX SIGM	to sys	tems	mode	ling -		
UN	IT IV STATISTICAL CONSIDERATION AND RELIABILITY	7	10	0	0	10		
Exp Stat Con	ortance of Experiments, Experimental Strategies, Basic principles of D erimentation, Sample size, Single Factor experiments – Completely Rando istical Analysis, Multifactor experiments - Two and three factor full Factor founding and Blocking designs, Fractional factorial design, Taguchi's app g Orthogonal Arrays, Data Analysis, Robust Design- Control and Noise factor	mized design, Ran al experiments, 2K roach - Steps in ez	lomize factor	d Blo ial Ex	ock de perin	esign, nents,		
UN	IT V DESIGN OF ENVIRONMENT		10	0	0	10		
plot	Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto diagrams- Cause and Effect diagrams-Box plots- Probability distribution-Statistical Process control–Scatter diagrams –Multivariable charts –Matrix plots and 3-D plotsReliability-Survival and Failure- Series and parallel systems-Mean time between failure-Weibull distribution							
		Tot	al(451	L) =4	5 Pe	riods		
REF	ERENCE BOOKS:							
1	George E. Dieter, Linda C. Schmidt, "Engineering Design", McGraw Hill Ed							
	Karl T. Ulrich, Steven D. Eppinger, "Product Design And Development, ,Tat		cation,	2015				
-	Amitava Mitra, "Fundamentals of Quality control and improvement", John W	•		1 .				
4	Kevin N. Otto and Kristin L. Wood, "Product Design: Techniques in Reverse Development", Prentice Hall, 2001.		ew Pro	duct				
5	Montgomery, D.C., "Design and Analysis of experiments", John Wiley and S	ons, 2017.						

6 Phillip J. Ross, "Taguchi techniques for quality engineering", Tata McGraw Hill, 2005

	RSE OUTCOMES: ompletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply the fundamentals of design and material selection to develop a high-quality product	Apply
CO2	Apply the quality concepts to develop a durable product.	Apply
CO3	Conduct Failure Mode Effect Analysis on a product in order to improve its quality using six-sigma techniques.	Apply
CO4	Apply different experimental design methods in product- development.	Apply
CO5	Implement various statistical tools to improve the product quality and reliability.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
CO1	2	3	3	3	3	2	-	-	-	-	-	2	2	2
CO2	1	1	1	1	3	2	-	-	-	-	-	2	2	2
CO3	2	2	2	2	2	2	-	-	-	-	-	2	2	2
CO4	2	2	2	2	2	2	-	-	-	-	-	2	2	2
CO5	2	2	2	2	2	2	-	-	-	-	-	2	2	2
Avg	1.8	2.0	2.0	2.0	2.4	2.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	2.0

22CDE72	DESIGN OF PRESSURE VESS	ELS	SEM	EST	'ER I	III		
PREREQU	JISITES	CATEGORY	PE	Cr	edit	3		
		Hours/Week	L	Т	Р	TH		
			3	0	0	3		
	OBJECTIVES:							
	exposure to engineering problems involved in the design of press	sure vessel						
	n about the tests and analysis for various components of pressure	vessels.						
	erstand the need for support structures and their design. iliarize the buckling and fracture analysis of pressure vessel under	various load condition	0					
UNIT I	PRESSURE VESSELS	various load condition	<u> </u>	0	0	9		
	ses-methods of fabrication –materials of constructions –differen	t specifications with a	-	-	v			
	determining stresses – Terminology and Ligament Efficiency – A		pecial	CICIC		IU DIS.		
UNIT II	DESIGN	ppileutions.	9	0	0	9		
			-		-			
	internal and external pressures-accessories to pressure vessels-		etails-d	esign	crite	eria for		
1	sel access-inspection, tests and nondestructive examinations-supp	orts.			1			
UNIT III	STRESSES IN PRESSURE VESSELS		9	0	0	9		
	- Stresses in a circular ring, cylinder - Membrane stress Anal			nts –	- Cyli	indrical		
snells, spher	cal Heads, conical heads - Thermal Stresses - Discontinuity stres	1		-				
UNIT IV	DESIGN OF TALL CYLINDRICAL SELF SUPPORT COLUMNS	TING PROCESS	9	0	0	9		
	short vertical vessels – stress concentration – at a variable Thio lar hole, elliptical openings. Theory of Reinforcement – pressure		n in a c	ylinc	lrical	vessel,		
UNIT V	BUCKLING AND FRACTURE ANALYSIS IN VESS	ELS	9	0	0	9		
cylinders or	Buckling phenomenon – Elastic Buckling of circular ring and cylinders under external pressure – the collapse of thick-walled cylinders or tubes under external pressure – Effect of supports on Elastic Buckling of Cylinders – Buckling under combined External pressure and axial loading.							
		Tot	tal (451	L) =	45 P	eriods		

RE	REFERENCE BOOKS:							
1	John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987.							
2	Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS Publishers and Distributors, 1987.							
3	Stanley, M. Wales, "Chemical process equipment, selection and Design", Butter worths series in Chemical Engineering,							
	1988.							
4	William. J., Bees, "Approximate Methods in the Design and Analysis of Pressure Vessels and Piping", Pre ASME							
	Pressure Vessels and Piping Conference, 1997.							
5	Hesse.H.C and Rushto J.H, "Process equipment design", D.VanNostran Co. Inc, N.Y, 1945.							
6	Brownell, L.E and Yound.E.H, "Process Equipment Design", McGraw Hill Co. Inc, N.Y, 1959.							

	COURSE OUTCOMES: On completion of the course the student will be able to							
CO1	Apply the fundamental principles of loads and stresses as applied to pressure vessels.	Apply						
CO2	Select and apply appropriate failure theories in the design of pressure vessels.	Apply						
CO3	Identify various stresses in different components of pressure vessels.	Understand						
CO4	Design a variety of different pressure vessels using standard codes.	Create						
CO5	Design support members of pressure vessels.	Create						

COURSE	COURSE ARTICULATION MATRIX													
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	2	2	2	2	-	-	1	-	1	2	2	2
CO2	1	2	2	2	2	-	-	-	1	-	-	2	2	2
CO3	1	2	2	2	2	-	-	-	-	-	-	2	2	2
CO4	1	2	2	2	2	-	-	-	-	-	-	3	3	3
CO5	1	2	2	2	2	-	-	-	-	-	-	3	3	3
Avg	1.0	2.0	2.0	2.0	2.0	2	0.0	0.0	1	0.0	1	2.4	2.4	2.4
	3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

220	CDE73	PLASTICITY AND METAL FORMING		SEMF	STE	RII	[
PR	EREQU	ISITES	CATEGORY	PE	Cre	edit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
CO	URSE O	BJECTIVES					
1.	To under	stand plastic deformation during forming processes.					
2.		about the various tests that can be used to determine the plasticity of a	a material.				
3.	To learn	about the analytical method of metal forming design.					
4.	To learn	about the analysis of metal forming processes.					
5.	To know	about the various advanced metal forming processes.					
UN	IT-I	THEORY OF PLASTICITY		9	0	0	9
UN Uni plas UN Slat prol	IT-II axial tensi stic instabi IT-III o analysis olems, effe	 g, extrusion, wire drawing, tube drawing and forming. CONSTITUTIVE RELATIONSHIPS AND INSTABILITY on test - Mechanical properties - Work hardening, Compression test, lity in uniaxial tension stress, plastic instability in biaxial tension stress ANALYSIS OF METAL FORMING Slip line method, upper bound solutions, statistically admissible cet of friction, thermo elastic Elasto plasticity, elasto visco plasticity - g, extrusion and wire drawing processes - Experimental techniques for 	bulge test, plane s s. e stress field, nur Thermo mechanic	9 nerical r al coupli	0 netho ng – .	0 ds, co Analy	9 ontact
		ANALYSIS OF SHEET METAL FORMING PROCESS		9	0		9
Ben	UNIT-IVANALYSIS OF SHEET METAL FORMING PROCESS9009Bending theory - Cold rolling theory - Hill's anisotropic theory, Hill's general yield theory - Sheet metal forming - Elements used - Mesh generation and formulation Equilibrium equations - Consistent full set algorithm - Numerical solutions procedures - examples of simulation of simple parts - Bench mark tests - Forming limit diagrams.909						
	IT-V	ADVANCES IN METAL FORMING		9	0	0	9
mic		g, Isothermal forging, worm forging, Hot and cold Isotropic pressing ng, super plastic forming – Overview of powder metal techniqu					
			То	tal (45I	L) = 4	5 Pe	riods
			-		/	-	

REF	REFERENCE BOOKS:								
1	Hansford. W. F and Cad dell. RM., Metal Forming Mechanics and Metallurgy, Prentice Hall Eaglewood Cliffs, 1993.								
2	Surender Kumar, "Technology of Metal Forming Processes", Prentice Hall of India, New Delhi, 2008								
3	Narayanaswamy. R, Theory of Metal Forming Plasticity, Narosa Publishers, 1999.								
4	Shiro Kobayashi, Altan. T, Metal Forming and Finite Element Method, Oxford University Press, 1989.								
5	Slater. R A. C., Engineering Plasticity - Theory & Applications to Metal Forming, John Wiely and Sons, 1987.								
6	Wagoner. R H. and Chenot. J.J., Metal Forming analysis, Cambridge University Press, 2002.								

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped						
CO1	Apply the concepts of stress, strain tensor to evaluate the plasticity of materials.							
CO2	Recognize the various experimental process, in order to access the formability nature of materials.	Understand						
CO3	Analyze the various metal forming processes with experimental techniques.	Analysis						
CO4	Formulate the sheet metal forming process in the analytical method as well as numerical simulation.	Create						
CO5	5 Study of advanced methods in metal forming processes.							

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	-	-	-	-	-	-	2	2	2
CO2	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO3	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO4	2	2	2	2	3	-	-	-	-	-	-	2	2	2
CO5	2	2	2	2	2	-	-	-	-	-	-	2	2	2
Avg	2.2	2.2	2.2	2.2	2.4	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	2.0
Avg 2.2 2.2 2.2 2.4 0.0 0.0 0.0 0.0 0.0 2.0 2.0 3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)														

22CDE74	NANOMATERIALS TECHNOLOGY		SI	EMES	TER	III	
PREREQUI	SITES	CATEGORY	PE	Cre	edit	3	
			L	Т	Р	ТН	
		Hours/Week	3	0	0	3	
 To unders To learn a To learn a To study a 	BJECTIVES: stand the concepts of Nanotechnology and behavior of nanomaterial and to about the different routes for the synthesis and consolidation of nanoparti- about the various properties and characteristics of nano-materials about the various field of applications of Nano-materials. about the use of various nano-fluids in the fields of engineering. INTRODUCTION		talline r		ls. 0	9	
Importance of Nano-Technology - Emergence of Nano-Technology - Bottom-Up and Top-down approaches- challenges in Nano- Technology. Properties of materials and Nano-materials- role of size in Nano-materials- Electronic Properties- Magnetic Properties- Thermal Properties- Mechanical Properties- Optical Properties.							
UNIT II	SYNTHESIS		9	0	0	9	
semiconductor dispersion - Po UNIT III Scanning Elect Microscope - O operation and SEM based nat	etal Nano-crystals by reduction – Solvothermal, Photochemical, Eles s - Thermolysis routes - Sonochemical routes - Liquid-liquid interface st-synthetic size-selective processing. Sol- gel- Micelles and micro emult CHARACTERIZATIONS ron Microscopy (SEM) - Scanning Probe Microscopy (SPM) - TEM ar Operational principle and application for analysis of Nano-materials- application for band gap measurement. M based nanolithography and nolithography and Nano-manipulation- Ion beam lithography- oxidation y- X-ray based lithography.	ce - Hybrid metho sions - Cluster com d EDAX analysis UV-VIS-IR Spectro Nano-manipulation	ds - So pounds 9 - X-ray ophoton - E bea	olvated 0 0 diffrac neters- am lith	metal 0 ction-C Princi ograph	atom 9 Optical ple of y and	
UNIT IV	APPLICATIONS		9	0	0	9	
sensors - Meth	o-sensors - Fundamentals of sensors – biosensor- micro fluids- MEMS a od of packaging at zero level - dye level and first level. Sensors for aero Vision System - Nano tweezers - Nano-cutting tools - Integration of sens	ospace and defense	: Accel	eromet	er - Pr	essure	
UNIT V	NANO FLUIDS		9	0	0	9	
-	Nano-fluids – Properties – Characterization of Nano-fluids - Role of Bromeasurements of thermal conductivities of Nano-fluids –Current application					luids -	
]	Fotal(4	5L) =	45 Pe	riods	
	ny, P.Shankar, Baldevraj, B.B.Rath and James Murday, "Text Bo	ok of Nanosciend	ce and	Nano	technol	logy",	
Universiti	es Press (India) Private Limited, 2013						
	neer, Daniel Ratner, "Nanotechnology" Pearson Education, Inc, 2003 Das ,Mohua Das An Introduction of Nanomaterals and Nano Science ,202	20					
	n, Tokar Ahmed, Principle of Nanoscience and Nano technology.2020						

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Knowledge about the processing techniques for nanomaterials.	Remember
CO2	Interpret the creation and manipulation of nanoscale materials and to optimize the methods for specific	Create

	material application.	
CO3	Knowledge about various properties and characteristics of nano-materials.	Understand
CO4	Use of Nano particles for the health, ecological and environmental hazards	Apply
CO5	Use of various nano-fluids in the fields of engineering.	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	3	-	1	-	1	-	1	1	-	2	2	1
CO2	1	2	2	2	2	1	1	-	1	-	1	2	2	2
CO3	1	1	2	-	2	-	-	-	2	-	-	2	2	2
CO4	1	-	-	-	-	-	1	-	3	3	2	2	2	1
CO5	1	-	1	-	-	-	1	-	2	2	-	2	2	1
Avg	1.0	1.6	2	2	1.6	1	1	0.0	1.8	2	1.5	2.0	2.0	1.4

22CDE75	TRIBOLOGY IN DESIGN		SEM	EST	ER I	II			
PREREQUISI	TES	CATEGORY	PE	Cre	edit	3			
		Hours/Week	L 3	Т 0	P 0	TH 3			
COURSE OBJ	IECTIVE:								
	nowledge in the friction, wear and lubrication aspects of machine								
	the various types of lubricants and lubrication system in the tribolo								
3. To understand the analytical behavior of different type's bearings and design of bearings based on analytical /theoretical approach.									
	e different types of high-pressure contacts and rolling bearings								
	d measure the different types of surface features associated with the	ne friction.		<u>г. </u>		-			
UNIT I SU	RFACES- FRICTION AND WEAR		9	0	0	9			
properties of me	Topography of Surfaces – Surface features – Surface interaction – Theory of Friction – Sliding and Rolling Friction-Friction properties of metallic and non-metallic materials – friction in extreme conditions – wear- types of wear – mechanism of wear – wear resistance materials – surface treatment – Surface modifications – surface coatings								
UNIT II LU	UNIT IILUBRICATION THEORY9009								
Equation- Therm	their physical properties lubricants standards – Lubrication Renal- inertia and turbulent effects – Elasto hydrodynamic and pl drostatic lubrication – Gas lubrication.								
UNIT III DI	ESIGN OF FLUID FILM BEARINGS		9	0	0	9			
lubricant flow an	ormance analysis of thrust and journal bearings – Full- partial and delivery – power loss- Heat and temperature rotating loads a ostatic Bearing design.								
UNIT IV RO	OLLING ELEMENT BEARINGS		9	0	0	9			
Stresses and defl	nematics – Materials and manufacturing processes – contact stress ection – Axial loads and rotational effects- Bearing life capacity – Rolling Bearings Failures.								
UNIT V TH	RIBO MEASUREMENTS		9	0	0	9			
	phy measurements – Electron microscope and friction and wear m ndards – bearings performance measurements – bearing vibration r		thod – i	nstru	menta	ation -			
		То	tal(45)	L) =4	5 Pe	riods			
REFERENCE	BOOKS								

KE	FERENCE BOOKS:						
1	1 Cameron A, "Basic Lubrication Theory", Ellis Herward Ltd. UK, 1981.						
2	Hulling J, "Principles of Tribology", MacMillan, 1984.						
3	Williams J.A, "Engineering Tribology", Oxford University Press, 2005.						
4	Neale M.J, "Tribology Handbook", 2 nd Edition, Butterworth Heinemann, 1995.						
5	Bharat Bhushan, "Modern Tribology Handbook Vol. I & II", CRC Press, 2001.						

	COURSE OUTCOMES: On completion of the course the student will be able to	Bloom's Taxonomy Mapped				
CO1	1 Develop the knowledge on the surface features and its role on the friction behavior of metals and non- metals.					
CO2	Analyze properties of lubrication on hydrodynamic, hydrostatic, Elasto- hydrodynamic condition.	Analysis				
CO3	Friction phenomena and select a suitable lubricant for a specific application.	Remember				
CO4	Develop processes of lubrication in all regimes and suggest an explanation to the cause of a tribological failure in rolling element.	Create				

COURSE	COURSE ARTICULATION MATRIX													
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	2	2	1	-	-	-	-	-	-	2	2	2
CO2	1	1	1	1	1	-	-	-	-	-	-	1	1	1
CO3	1	1	1	1	1	-	-	-	1	-	1	2	2	1
CO4	1	1	1	1	1	-	-	-	1	-	1	1	2	1
CO5	1	1	1	1	1	-	-	-	1	-	-	2	2	1
Avg	1.0	1.2	1.2	1.2	1.0	0.0	0.0	0.0	1	0.0	1	1.6	1.8	1.2
			3/2/1	-indica	tes stre	ngth of	correct	ion (3-H	ligh, 2-l	Medium,	1-Low)			

AUDIT COURSE

22AC01	ENGLISH FOR RESEARCH PAPER WRITIN	G	SEM	EST	ER I	/II				
PREREQUI	SITES	CATEGORY	PE	Cr	edit	0				
		Hours/Week	L	Т	P	TH				
		110u15/ Week	2	0	0	2				
COURSE O	BJECTIVES:									
1. To help the learners to realize the necessity of English in writing a Research paper										
2. To enabl	2. To enable the learners to write different sections of a research paper									
3. To train	3. To train the learners to become better writers of research papers									
UNIT I			6	0	0	6				
Research pape	Research paper and its importance, Structure of a research paper, Planning and preparation.									
UNIT II			6	0	0	6				
English in rese	earch papers, Basic word order, Collocation, Being concise, Redundancy,	Common errors.								
UNIT III			6	0	0	6				
Key factors th	at determine the style of a paper, Journal's background, Passive form, Rig	ht tense forms, Coh	esion a	nd co	heren	ce.				
UNIT IV			6	0	0	6				
Hedging and c	riticizing, Paraphrasing, Plagiarism, Ensuring quality of the paper and Use	eful phrases.								
UNIT V			6	0	0	6				
Key skills in v	vriting Title, Abstract, Introduction, Review of Literature, Discussion and	Conclusion, Highli	ghting f	indin	gs.					
		Tot	al(30L	a) = 3	0 Pe	riods				

RE	REFERENCE BOOKS:							
1	Adrian Wallwork, "English for Writing Research Papers," Springer New York Dorecht Heidelberg London, 2016							
2	Howe, Stephen. "Phrase Book for Writing papers and Research in English," Cambridge University Press, 2012.							
3	Goldbort R. "Writing for Science," Yale University press, 2006.							
4	Gabor L Lovei. "Writing and Publishing Scientific Paper," Open Book Publishers, 2021							

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understand and appreciate the role of English in writing a good research paper.	Understand
CO2	Apply their knowledge in writing a research paper.	Apply
CO3	Analyze and assess the quality of their research paper.	Analysis

22AC02 DISASTER MANAGEMENT SEME		IEST	ESTER I/II				
PRE	REQUISIT	'ES	CATEGORY	Cre	edit	0	
			Hours/Week		Т	Р	ТН
				2	0	0	2
	RSE OBJI						
risk ro huma weakı	eduction and nitarian resp	understanding of key concepts in disaster risk reduction and humanita humanitarian response policy and practice from multiple perspectives onse and practical relevance in specific types of disasters and confli aster management approaches. Planning and programming in different work in.	s. Develop an unders ct situations and eva	standing aluate t	g of s he sti	tanda rengtl	rds of hs and
UNI	Γ I INTE	RODUCTION		4	0	0	4
Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude. Disaster Prone Areas in India: Study of Seismic Zones; Area Prone to floods and droughts, Landslides and avalanches; Areas prone to cyclonic and coastal hazards with special reference to Tsunami; Post- Disaster diseases and epidemics.							one to
UNI	ΓII R	EPERCUSSIONS OF DISASTERS AND HAZARDS		4	0	0	4
Cyclo	ones, Tsunan	e, Loss of Human And Animal Life, Destruction of Ecosystem. N his, Floods, Droughts And Famines, Landslides And Avalanches, Mar ts, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War Ar	n-made disaster: Nuc				
UNI	Г III D	ISASTER PREPAREDNESS AND MANAGEMENT		4	0	0	4
		nitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of cal And Other Agencies, Media Reports: Governmental And Community		f Remo	ote Se	nsing	, Data
UNI		ISK ASSESSMENT		4	0	0	4
	sment, Glob	ncept And Elements, Disaster Risk Reduction, Global And National and Co-Operation In Risk Assessment And Warning, People's Partic					
UNI		ISASTER MITIGATION		4	0	0	4
		t And Strategies of Disaster Mitigation, Emerging Trends In Mitigation ms of Disaster Mitigation In India.	on. Structural Mitiga	tion an	d No	n-Stru	uctural
			Το	tal(20	L)=2	20 Pe	eriods
REFI	ERENCE B	DOKS:					
1		Singh AK 2012 Disaster Management in India:Perspectives, issues	and strategies New	Royal	Book	Con	npany,
2	Sahni, Parde	epEt.Al. (Eds.) 2002 Disaster Mitigation Experiences And Reflections.	Prentice Hall Of Indi	a, New	Delh	i.	
	RSE OUT of	COMES: the course the student will be able to			T	Bloo `axor Map	nomy
CO1	Learn to d response.	emonstrate a critical understanding of key concepts in disaster risk	reduction and huma	nitarian	ľ	Jnder	stand
CO2		evaluate disaster risk reduction and humanitarian response policy as.	and practice from r	nultiple	;	Eval	uate
CO3	develop an	understanding of standards of humanitarian response and practical re	elevance in specific t	ypes of	2	Cre	ate

 disasters and conflict situations

 CO4

 Critically understand the strengths and weaknesses of disaster management approaches.

Understand

22AC03 SANSKRIT FOR TECHNICAL KNOWLEDGE			SEMESTER			II	
PREREQUISITES CATEGORY P					PE Credit		
			L	Т	Р	ТН	
		Hours/Week		0	0	2	
COURSE OB.	IECTIVES						
functioning. Lea	ng knowledge in illustrious Sanskrit, the scientific language in the w rning Sanskrit to develop logic in mathematics, science & other su lars equipped with Sanskrit will be able to explore the huge knowledge fro	bjects enhances t	he me				
UNIT I ALI	PHABETS			8 0	0	8	
Alphabets in San	skrit –Past/Present/Future Tense –Simple Sentences.						
UNIT II L	ITERATURE			8 0	0	8	
Order –Introduct	ion of roots – Technical information about Sanskrit Literature						
UNIT III CONCEPTS				8 0	0	8	
Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics							
		Т	otal(2	4L)=	24 Pe	eriods	

RE	REFERENCE BOOKS:					
1	"Abhyasa Pustakam"- Dr. Vishwas, Samskrita- Bharati Publication, New Delhi					
2	"Tech Yourself Sanskrit" PrathamaDeeksha-Vempatikutumbshastri,Rashtriya Sanskrit Sansthan,New Delhi Publication					
3	India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.					

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understanding basic Sanskrit language.	Understand
CO2	Ancient Sanskrit literature about science & technology can be understood.	Remember
CO3	Being a logical language will help to develop logic in students.	Apply

22AC04	VALUE EDUCATION	VALUE EDUCATION			SEMESTER I/I			
PREREQUISI	res	CATEGORY	PE	Cre	edit	0		
	Hours/Week				Р	ТН		
Hours/Week			2	0	0	2		
COURSE OBJECTIVES								
To understand the importance of cha	e Importance of value education and self-development. To imbibe good aracter.	values in students a	nd also	h knov	w abc	out the		
	SIC VALUES		4	0	0	4		
	evelopment- Social values and individual attitudes-Work ethics, Indian ds and principles-Value judgments.	vision of Humanism	n Mora	l and	Non	Moral		
UNIT II C	ONFIDENCE		6	0	0	6		
	cultivation of values- Sense of Duty-Devotion-Self-reliance-Confide ty-Power of faith-National Unity-Patriotism-Love for nature-Discipline.	ence-Concentration-T	ruthfu	lness-	Clear	nlines-		
UNIT III P	ERSONALITY DEVELOPMENT		6	0	0	6		
Personality and Behavior Development-Soul and Scientific attitude - Positive – Thinking - Integrity and discipline -Punctuality – Love and Kindness - Avoid fault Thinking - Free from anger - Dignity of labor - Universal brotherhood and religious tolerance –True friendship –Happiness Vs. suffering –love for truth – Aware of self-destructive habits- Association and Cooperation –Doing best for saving nature.								
UNIT IV L	OVE AND COMPASSION		6	0	0	6		
Character and Competence –Holy books Vs. Blind faith –Self –management and Good health – Science of reincarnation –Equality – Non Violence –Humility –Role of Women –All religions and same message –Mind your Mind –Self -control –Honesty –Studying effectively.								
		Tot	al (22)	L)=2	22 Pe	riods		
REFERENCE	REFERENCE BOOKS:							

1 Chakraborty, S.K. "Values and Ethics for Organization Theory and Practice", Oxford University Press, New Delhi, 1998.

	RSE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Knowledge of self-development.	Understand
CO2	Learn the importance of Human values.	Remember
CO3	Developing the overall personality.	Create

22AC05 CONSTITUTION OF INDIA SEMI		IESTER I/II					
PRERE	QUISIT	ES	CATEGORY	PE	Cre	edit	0
				L	Т	P	ТН
			Hours/Week	2	0	0	2
COURS	E OBJI	ECTIVES					
Indian op emergence	oinion reg ce of nation nevik Rev	emises informing the twin themes of liberty and freedom from a civil garding modern Indian intellectuals' constitutional role and entitlement onhood in the early years of Indian nationalism. To address the role of second oution in 1917 and its impact on the initial drafting of the Indian Constitutions STORY OF MAKING OF INDIAN CONSTITUTION	to civil and econom ocialism in India afte	nic righ r the co	ts as omme	well	as the
-		Committee (Composition & working)			•	•	4
UNIT II		IILOSOPHY OF THE INDIAN CONSTITUTION		4	0	0	4
Preamble					1		1
UNIT II		ONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES		4	0	0	4
		s, right to equality, right to freedom, right against exploitation, right to stitutional remedies, directive principles of state policy, fundamental du		, cultur	al an	d edu	cation
UNIT I	V OI	RGANS OF GOVERNANCE		4	0	0	4
		osition, qualifications and disqualifications, powers and functions, y, appointment and transfer of judges, qualifications, powers and function		, gove	mor,	coun	cil of
UNIT V		OCAL ADMINISTRATION	101	4	0	0	4
and role. important	. Block ce of gras	tion. Panchayati raj: introduction, PRI: zila panchayat. Elected officials level: organizational hierarchy (different departments), village level is root democracy.		nd app	ointe		
UNIT V	I EI	LECTION COMMISSION		4	0	0	4
		ion: role and functioning. Chief election commissioner and election constitute and bodies for the welfare of SC/ST/OBC and women.	nmissioners. State el	ection c	comm	issio	n: role
			Tota	al (24]	L)=2	24 Pe	eriods
DEEED	ENCEI	BOOKS:					
		ition of India, 1950 (Bare Act), Government Publication.					
		si, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015	5.				
-		ndian Constitution Law, 7th Edn., LexisNexis, 2014.					
4 D.E	D. Basu, I	ntroduction to the Constitution of India, LexisNexis, 2015.					
COUDS		COMES:				Bloo	m's
		the course the student will be able to					nomy
-					-	Map	ped
in	Indian p				, L	Jnder	stand
		e intellectual origins of the framework of argument that informed the ding to revolution in India.	conceptualization of	f social	l	Jnder	stand
CO3 Di lea	iscuss th adership	e circumstances surrounding the foundation of the Congress Social of Jawaharlal Nehru and the eventual failure of the proposal of dir the Indian Constitution				Under	stand
		passage of the Hindu Code Bill of 1956.			J	Jnder	stand

22AC06 PEDAGOGY STUDIES			SEMESTER I			I/II		
PREREQUISIT	TES	CATEGORY	PE	Cre	edit	0		
			L	Т	Р	TH		
		Hours/Week	2	0	0	2		
COURSE OBJECTIVES								
	ng evidence on the review topic to inform programme design and pourchers. Identify critical evidence gaps to guide the development.	licy making undertal	ken by	the I	OFID,	other		
UNIT I			4	0	0	4		
Aims and rationale, Policy background, Conceptual framework and terminology, Theories of learning, Curriculum, Teacher education, Conceptual framework, Research questions, Overview of methodology and Searching								
UNIT II			2	0	0	2		
Thematic overview Curriculum, Teach	w: Pedagogical practices are being used by teachers in formal and in the education.	formal classrooms in	n devel	oping	g cou	ntries,		
UNIT III			4	0	0	4		
Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.								
UNIT IV			4	0	0	4		
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.								
UNIT V			2	0	0	2		
Research gaps and future directions, Research design, Contexts, pedagogy, teacher education, curriculum and assessment, dissemination and research impact								
		То	tal(16	L)= 1	16 Pe	riods		

RE	REFERENCE BOOKS:					
1	Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.					
2	Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3) 361-379.					
3	Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID					
4	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic math and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272-282.					
5	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.					

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?	Create
CO2	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?	Understand
CO3	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?	Remember

22AC07	2AC07 STRESS MANAGEMENT BY YOGA		SEM	IEST	STER I/II			
PREREQU	ISITES	CATEGORY	PE	Cr	edit	0		
		TT (XX) 1	L	Т	Р	ТН		
		Hours/Week	2	0	0	2		
COURSE (COURSE OBJECTIVES							
To create a h	ealthy, strong willed and intelligent young society through yoga practices.							
UNIT I	INIT I PHYSICAL AND MENTAL HEALTH		4	0	0	4		
Pain and dise	ase - free life, Simplified Physical Exercise- Pranayama. Concentration on Pi	tuitary gland- Practic	cal, Goa	al fixi	ing.			
UNIT II REJUVENATION OF LIFE FORCE AND WILL POWER			4	0	0	4		
Principle of thought –Wil	kayakalpa yoga, mind, life force and Biomagnetism, Practical, Concentral power	ation on Muladhara-	- Pract	ical,	Analy	vsis of		
UNIT III	DEVELOPMENT OF VIRTUES		4	0	0	4		
Activation of	Dormant Brain cells- Practical, Moralization of dezire and its classification,	Neutralization of An	ger, Re	sults	of an	ger.		
UNIT IV	STREAM LINING OF MIND		4	0	0	4		
Definition of	Mind-Worries, Eradication of Worries. The science behind blessings. Blessing	ng techniques. Benefi	its, five	basi	c duti	es		
UNIT V CAUSE AND EFFECT SYSTEM			4	0	0	4		
Law of nature	e, Hereditary Imprints, Fivefold and Two-fold culture, good values and Resol	ution for world peace	e		•			
Total (24L)= 24 Periods								

RE	REFERENCE BOOKS:		
1	"Thirukkural", Pearls of Inspiration, Translation by Rajaram, Publisher :RUPA		
2	"Bharathiyar Poems", Amazon Asia – Pacific Holdings Private Limited.		
3	"Yoga for Humane Excellence", Vethathiri Maharishi, Vision for Wisdom, Vethathiri Publications		

COURSE OUTCOMES: On completion of the course the student will be able to		
CO1	Maintain good Physical health.	Apply
CO2	Develop will power.	Create
CO3	Take quick and right decisions.	Evaluate
CO4	Maintain good relationship with everyone around them his creating a Health Society.	Apply

•

22AC08	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS			SEMESTER I/II		
PREREQUISIT		CATEGORY	PE Credit		0	
		Hours/Week	L	Т	Р	TH
		Hours/ Week	2	0	0	2
COURSE OBJ	ECTIVES					
To learn to achiev	e the highest goal happily, To become a person with stable mind, pleasir	g personality and de	termina	tion,	To a	waken
wisdom in student	S.					
UNIT I			8	0	0	8
Neetisatakam – He	olistics development of personality					
Verses- 19,20,21,2						
Verses- 29,31,32 (
Verses- 26,28,63,6						
Verses-52,53,59(d Verses71,73,75,78						
UNIT II			0	0	Δ	8
			8	U	0	0
	day work and duties.					
Shrimad Bhagwad Chapter 2-Verses						
Chapter 3-Verses						
Chapter 6-Verses						
Chapter 18-Verses						
UNIT III			8	0	0	8
Statement of basic	knowledge.					
Shrimad Bhagwae						
Chapter 2-Verses	56, 62, 68,					
	13, 14, 15, 16, 17, 18					
Personality of Rol						
Shrimad Bhagwad						
Chapter 2-Verses						
Chapter 3-Verses Chapter 4-Verses						
Chapter 4-Verses						
	57, 50, 05	75	4 1/2 4		14 P	• •
		To	tal(24)	L)=2	24 Pe	eriods

RE	REFERENCE BOOKS:			
1	"Srimad Bhagavad Gita" by Swami Swarupananda Advaita Ashram (Publication Department), Kolkata.			
2	Bhartrihari's Three Sataskam (Niti- Sringar – Vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.			

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Study of Shrimad- Bhagwad - Geeta will help the student in developing his personality and achieve The highest goal in life.	Understand
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity.	Remember
CO3	Study of Neetishatakam will help in developing the versatile personality of students.	Understand