

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011

(An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS 2022 CURRICULUM AND SYLLABUS (For Candidates admitted from 2022 - 2023 onwards)

M.E. COMMUNICATION SYSTEMS (FULL TIME PROGRAMME)

M.E COMMUNICATION SYSTEMS (FULL TIME)

VISION

• Strive continuously to develop Excellence in Technical Education and Research by producing technically competent Electronics and Communication Engineers to meet the growing demands of technology and socioeconomic needs.

MISSION

- To foster and achieve unmatched excellence in Electronics and Communication Engineering Domain.
- To pursue continuous improvement in infrastructure and state-of-the art laboratories.
- To establish and set best teaching and learning standards among top grade Engineering Departments across the nation.
- To encourage learning, research, creativity, innovation and professional activity by offering ambience and support.

PG-PROGRAMME EDUCATIONAL OBJECTIVES (PEO's)

PEO1: Graduates of the programme will be professional Communication systems Engineers, Researchers, and Academicians with ethical and social responsibility.

PEO2: Graduates of the programme will continue to learn and handle cutting-edge technology.

PG-PROGRAM OUTCOMES (PO's)

PO1: An ability to independently carry out research /investigation and development work to solve practical problems.

PO2: An ability to write and present a substantial technical report.

PO3: Students should be able to demonstrate a degree of mastery over communication systems. The mastery should be at a level higher than the requirements in the Electronics and Communication Engineering bachelor program.

PG-PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Recognize the complex problems and develop solutions in diverse fields of Communication Systems.

PSO2: Acquire specific knowledge to promote research and career excellence in the area of Communication Systems.

M.E. COMMUNICATION SYSTEMS

CURRICULUM

		SI	EMESTE	RI						
				Hour	s/week			Ma	ximum	Marks
Sl.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
	L		THEOR	Y				J	L	1
1.	22COC11	Antennas and Radiating Systems	Core	3	0	0	3	40	60	100
2.	22COC12	Advanced Digital Communication Techniques	Core	3	0	0	3	40	60	100
3.	22COE1X	Elective – I	Elect 1	3	0	0	3	40	60	100
4.	22COE2X	Elective – II	Elect 2	3	0	0	3	40	60	100
5.	22MLC01	Research Methodology and IPR	MLC	3	0	0	3	40	60	100
			RACTIC	AL						
6.	22COC13	Antennas and Radiating Systems lab	Core	0	0	4	2	60	40	100
7.	22COC14	Advanced Digital Communication Systems Lab	Core	0	0	4	2	60	40	100
	Mandatory	Course (Non-Credit)								
8.	22AC1x	Audit Course 1	Audit	0	0	0	0	100	0	100
		TOTAL		15	0	8	19	420	380	800
		SI	EMESTE	ER II						
	I	Γ	THEOF	RY						
				Hour	s/week			Ma	<u>ximum</u>	Marks
Sl.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
1.	22COC21	RF and Microwave Circuit Design	Core	3	0	0	3	40	60	100
2.	22COC22	Advanced Digital Signal Processing	Core	3	0	0	3	40	60	100
3.	22COE3X	Elective – III	Elect 3	3	0	0	3	40	60	100
4.	22COE4X	Elective – IV	Elect 4	3	0	0	3	40	60	100
5.	22COE5X	Elective – V	Elect 5	3	0	0	3	40	60	100
	Γ		TICAL					T	1	
6.	22COC23	Advanced Digital Signal Processing Lab	Core	0	0	4	2	60	40	100
						1	1	1	1	1

	Mandatory	Course (Non-Credit)								
8.	22AC2X	Audit course 2	Audit	0	0	0	0	100	0	100
		TOTAL		15	0	8	19	420	380	800
		SEN	IESTER	III						
	1	Ĩ	HEORY	7						
				Hour	s/week			Ma	<u>ximum</u>	Marks
Sl.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
1.	22COE6X	Elective – VI	Elect 6	3	0	0	3	40	60	100
2.	22COE 7 X	Elective – VII	Elect 7	3	0	0	3	40	60	100
			PRACT	FICAL	1					
3.	22CO301	Dissertation Phase – I	EEC	0	0	20	10	120	80	200
		TOTAL		6	0	20	16	200	200	400
		SEM	ESTER	IV						
		PRA	CTICA	Ĺ				-		
			H	Iours/v	veek			Maxi	mum N	Iarks
Sl.No	Cours ecode	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
1.	22CO401	Dissertation Phase – II	EEC	0	0	32	16	240	160	400
		TOTAL		0	0	32	16	240	160	400

Total Credits for the programme = 19 +19+16+16=70

Professional Electives (PE)

				Ног	ırs/week		1	Ma	ximum	Marks
Sl.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
Elec	tive - I			I			I			1
1.	22COE11	Multimedia Compression Techniques	PE	3	0	0	3	40	60	100
2.	22COE12	Advanced Communication Networks	PE	3	0	0	3	40	60	100
3.	22COE13	Wireless Sensor Networks	PE	3	0	0	3	40	60	100
4.	4. 22COE14 Deep Learning		PE	3	0	0	3	40	60	100
Elec	ctive - II									•
5.	22COE21	Signal Detection and Estimation	PE	3	0	0	3	40	60	100
6.	22COE22	Optical Networks	PE	3	0	0	3	40	60	100
7.	22COE23	Satellite Communication and Navigation Systems	PE	3	0	0	3	40	60	100
8.	22COE24	Cloud Computing Technologies	PE	3	0	0	3	40	60	100
Elec	ctive - III									
9.	22COE31	Wireless and Mobile Communication	PE	3	0	0	3	40	60	100
10.	22COE32	Pattern Recognition and Machine learning	PE	3	0	0	3	40	60	100
11.	22COE33	Voice and data networks	PE	3	0	0	3	40	60	100
12.	22COE34	Digital Image and Video Processing	PE	3	0	0	3	40	60	100
Elec	ctive - IV									
13.	22COE41	Spread Spectrum Communication	PE	3	0	0	3	40	60	100
14.	22COE42	MIMO System	PE	3	0	0	3	40	60	100
15.	22COE43	High Performance Networks	PE	3	0	0	3	40	60	100
16.	22COE44	5G Communication Networks	PE	3	0	0	3	40	60	100
Elec	ctive - V									
17.	22COE51	DSP Architecture	PE	3	0	0	3	40	60	100
18.	22COE52	Electromagnetic Interference and Compatibility	PE	3	0	0	3	40	60	100
19.	22COE53	Radar Signal Processing	PE	3	0	0	3	40	60	100
20.	22COE54	Natural Language Processing	PE	3	0	0	3	40	60	100
Elec	ctive - VI									

21.	22COE61	Cognitive Radio	PE	3	0	0	3	40	60	100
22.	22COE62	Internet of Things	PE	3	0	0	3	40	60	100
23.	22COE63	VLSI for Wireless Communication	PE	3	0	0	3	40	60	100
24.	22COE64	Cryptography and Network Security	PE	3	0	0	3	40	60	100
Elec	ctive - VII									
25.	22COE71	Remote Sensing	PE	3	0	0	3	40	60	100
26.	22COE72	Wavelet signal processing	PE	3	0	0	3	40	60	100
27.	22COE73	Bio Mems	PE	3	0	0	3	40	60	100
28.	22COE74	Big Data Technologies	PE	3	0	0	3	40	60	100

List of Audit Courses:

Course Code	Name of Course
22AC01	English for Research paper writing
22AC02	Disaster Management
22AC03	Sanskrit for Technical Knowledge
22AC04	Value Education
22AC05	Constitution of India
22AC06	Pedagogy Studies
22AC07	Stress Management by Yoga
22AC08	Personality Development through Life Enlightenment Skills

22C0	OC11	ANTENNAS AND RADIATING SYS	ГЕMS	5	Semest	ter	Ι		
PRER	EQUIS	ITES	Category	PC	Cı	redit	3		
				L	L T		L T P		TH
			Hours/Week	3	0	0	3		
Cours	e Learn	ing Objectives							
1	To kno	w the different types of antennas and fundamental parameters.							
2	To dese	cribe the various linear wire antennas, loop antennas, reflector a	intennas and array	S					
3	To fam	iliarise with modern antennas and measurement techniques							
Un	it I	ANTENNA FUNDAMENTALS & WIRE ANTENNA	AS	9	0	0	9		
Circula		on equation. Linear Wire Antennas: Infinitesimal dipole, small ircular Loop of constant current, Circular loop with non-unifor LINEAR ARRAYS		dipole	, Loop	Antenna	s: Small		
		Γwo element array, N Element array: Uniform Amplitude and a	spacing Broadsid	-	· ·	, in the second	-		
	-	ev array, Super directivity, Planar array, Design consideration.	spueling, broudsid	e una i		unuy, i	monna		
Uni	t III	APERTURE AND HORN ANTENNAS		9	0	0	9		
		nas: Huygens's Field Equivalence principle, radiation equations ane, H-plane Sectoral horns, Pyramidal and Conical horns.	s, Rectangular Ap	erture, (Circula	r Apertu	re. Horn		
Uni	it IV	REFLECTOR AND MICRO STRIP ANTENNAS		9	0	0	9		
Micro	strip An	tennas: Basic Characteristics, Feeding mechanisms, Method	of analysis, Recta	angular	Patch,	Circula	r Patch.		
Reflect	or Anten	nas: Plane reflector, parabolic reflector, Cassegrain reflectors, I	Introduction to MI	MO.					
Un	it V	MODERN ANTENNAS & MEASUREMENT TECH	INIQUES	9	0	0	9		
Base st	tation an	tennas, PIFA – Antennas for WBAN – RFID Antennas – Au	utomotive antenna	as, MII	MO ant	ennas, I	Diversity		
techniq	ues – Ar	tenna impedance and radiation pattern measurements.							
				Total	l (45 L) = 45	Periods		
T -	4 D c - 1								
rex	t Books	•							

1	John D.Kraus and Ronalatory Marhefka, "Antennas", Tata McGraw-Hill Book Company, 2010.
2	Constantine A. Balanis, "Antenna Theory Analysis and Design", John Wiley & Sons, 2012.
Refer	rence Books:
1	E.C. Jordan & K.G. Balmain, "Electromagnetic waves & Radiating Systems", Prentice Hall, India, Reprint 2010.
2	Elliot, R.S: "Antenna theory and design", PHI, New Delhi, 1985.
3	R.C.Johnson and H.Jasik, "Antenna Engineering hand book", Mc-Graw Hill, 1984.
4	Girish Kumar and K.P.Ray, "Broad band Micro-strip antennas", Artech house, 2003.

e-Re	ference:
1	https://nptel.ac.in/courses/108101092
2	https://onlinecourses.nptel.ac.in/noc22_ee63
3	Microwave engineering and antennas Coursera

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Compute the far field distance, radiation pattern and gain of an antenna for given current Distribution.	Evaluate			
CO2	Design antennas and antenna arrays for various desired radiation pattern characteristics.	Apply			
CO3	Understand the capability and assess the performance of various antennas.	Understand			
CO4	Identify the antennas specific to the applications and understand antenna measurement techniques.	Analyse			

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1				2	2
CO2	2			3	2
CO3	2			3	3
CO4	2			3	3
Avg	1.5			2.75	2.5

22C0	OC12	ADVANCED DIGITAL COMMUNIC TECHNIQUES	CATION	Semester			Ι
PRER	EQUIS	ITES	Category	PC	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives			•		
1	geomet	e the students understand the different modules in the digital or rical interpretation of signals and the channels.	-		h mathe	matical	and
2		yse the receiver filters in the presence of noise and the base		-			
3		art the knowledge of the pass band modulation techniques and ee digital communication systems.	to enhance the tec	hnical k	nowled	ge in de	signing
Un	it I	CODED DIGITAL COMMUNICATION SYSTEM	S	9	0	0	9
Orthog Interlea	Digital communication system model (description of different modules of the block diagram) - Gram-Schmidt Orthogonalisation procedure - Geometric Interpretation of signals - Coded digital communication systems architectures – Interleaving & deinterleaving to mitigate channel memory- synchronization of I-D systems- Coded system architecture for channels with memory.						
Uni	it II	DETECTION AND ESTIMATION		9	0	0	9
receive Maxim	r - Match	ak of correlators to noisy input - Detection of known signals in ned filter receiver - Detection of signals with unknown phase is ihood Estimation - Wiener Filter for waveform Estimation - L	n noise - Estimation	n: Conc	epts and	l criteria	
Uni	t III	COMMUNICATION OVER BANDLIMITED CHA	ANNELS	9	0	0	9
limited with co Fundan	AWGN ontrolled	characterization of a band limited channel –Optimum pulse sh channels- Nyquist Criterion for zero ISI – Eye pattern of a ISI –Optimum demodulation of digital signals in the presence Survey of equalization techniques - zero-forcing linear equa- zation	band limited con the of ISI and AWO	nmunic GN - E	ation sy Qualiza	stems – tion tech	systems miques:
Uni	t IV	DIGITAL MODULATION TECHNIQUES		9	0	0	9
error pr binary	robability modulat	ion Formats - Coherent Binary Modulation Techniques: Ger 7 - Power spectra and waveforms of BPSK, BFSK, QPSK ion techniques - Comparison of binary and quaternary M-ary Modulation techniques	and MSK schem	es – N	on cohe	rent ort	hogonal
Uni	Unit V BLOCK AND CONVOLUTIONAL CODED DIGITAL				0	0	9
		COMMUNICATION		9	U	0	9
codes: Decodi method	Represen ng techn ls – Appl	odes: Properties-Examples of Block codes - case study: Reatitation of codes using Matrix – Polynomial - State diagram - iques of convolutional codes: Maximum likelihood decodications: Coding for WGN channels - Coding for compound oding for efficient utilization of bandwidth and power.	Tree diagram and ling of convolution	Trellis nal cod lock co	diagran les - Vi odes for	n – Prop iterbi al error co	erties – gorithm

Text	t Books:
1	Simon Haykin, 'Digital Communications ', John Wiley & sons, 2014
	Marvin K Simon, Sami M Hinedi , William C Lindsey , 'Digital Communication Techniques- signal design and detection'. PHI Learning, 2014

Ref	erence Books:
1	J. G. Proakis and M. Salehi, Fundamentals of Communication Systems, Pearson Education, 2005.
2	S. Haykins, 'Communication Systems', 5th Edition., John wiley, 2014.
3	Theodore S.Rappaport "Wireless Communications: Principles and Practice', 2 nd Edition, Pearson, 2012.
4	Wayne Tomasi, 'Advanced Electronic Communication Systems, 6th Edition., Pearson Education, 2014.
e-R	eference:
1	https://en.wikipedia.org/wiki/Gram-Schmidt_process
2	https://books.google.co.in/books?isbn=0070591172
3	https://nptel.ac.in > courses

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Apply the knowledge of mathematical models of channels in the design of Digital Communication systems.	Apply
CO2	Classify the different receiver used in the digital communication systems.	Understand
CO3	Analyse the eye patterns and can select the algorithm for equalizer to reduce ISI.	Analyse
CO4	Design a digital modulator and can generate codes for error free communication.	Apply

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2		1	2	1
CO2	2		1	2	1
CO3	2		1	2	1
CO4	2		1	2	1
Avg	2		1	2	1
	3/2/1 - indicates str	rength of correla	ation (3-High,2-]	Medium,1- Low)	I

22C	ANTENNAS AND RADIATING SYSTEMS LAB		S	emeste	er	Ι		
PRER	REQUIS	ITES	Category	PC	Credit		2	
				L	TH			
			Hours/Week	0	0	4	4	
Cours	se Learn	ing Objectives				1		
1	Determi	ine specifications, design, construct, and test antenna						
2	Study th	ne characteristics of patch antennas.						
3	Able to	simulate MIMO antennas and to study its various parameters.						
EXPE	ERIMEN	ITS						
1.	Radiatio	on Pattern Measurement of Dipole and monopole Antenna.						
2.	Measure the Radiation Pattern of Loop Antenna.							
3.	Design	and study the radiation pattern of Broad side and End Fire Arr	cay.					
4.	Measure	e the Radiation pattern of Horn Antenna.						
5.	Design	of Rectangular Microstrip Patch antenna (RMSA) with differe	ent feed techniques	viz., ed	ge, inse	t.		
6.	Design	of Rectangular Microstrip Patch antenna (RMSA) using coaxi	ial probe feed.					
7.	Design	circular microstrip antenna						
8.	Study th	ne effect of slots in microstrip antenna						
9.	Design	of a Frequency reconfigurable antenna						
10.	Design	a two element MIMO antenna and obtain its diversity perform	nance factors					
	<u> </u>			т	otal (P)= 60 1	Period	

Тех	Text Books:				
1	Constantine A. Balanis, "Antenna Theory Analysis and Design", John Wiley & Sons, 2012.				
2	Elliot, R.S: "Antenna theory and design", PHI, New Delhi, 1985.				
Refe	erence Books:				
1.	https://www.academia.edu/3356546/High_Frequency_Structure_Simulator_HFSS_Tutorial				
2.	https://www.researchgate.net/publication/322726818_Microstrip_Antennas				
3.	Engineering tutorial center - YouTube				

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level		
CO1	Use HFSS to simulate different types of antennas.	Apply		
CO2	Design and study the radiation pattern of antennas and arrays	Analyse		
CO3	Understand the impact of variation in antenna parameters in radiation pattern.	Understanding		
CO4	Differentiate antenna array and MIMO antenna	Analyse		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2			3	2
CO2	3			2	2
CO3	3			2	3
CO4	2			2	3
Avg	2.5			2.25	2.5

22C0	DC14	ADVANCED DIGITAL COMMUNICATION S LABORATORY	SYSTEMS	S	emeste	er	Ι
PRER	EQUIS	ITES	Category	y PC Cree		edit	2
				L	Т	Р	ТН
			Hours/Week	0	0	4	4
Cours	e Learn	ing Objectives					
1	To supp	plement the theory course Advanced Digital Communication T	echniques.				
2		ist the students in obtaining a better understanding of nication systems.	the operation of	differe	nt mod	ules of	digital
3	-	vide experience in analyzing and testing of digital communica ipments.	tion systems using	simulat	ion soft	ware as	well as
EXPE	RIMEN	VTS					
1.	Generat	te line codes for the digital signals (NRZ-RZ-Manchester)					
2.	Comput	tation of the analytical signal and the Power Spectral Density u	using Hilbert Trans	form.			
3.	Analysi	s of the harmonic distortion of a system in the presence of no	oise.				
4.	Matchee	d filter.					
5.	Weiner	filter.					
6.	Eye pat	tern of a communication system.					
7.	Channe	l Equalizer.					
8.	Linear a	and cyclic codes.					
9.	An end-	-to-end communication link using turbo codes in and AWGN	channel and the est	imation	of the l	Bit Erro	Rate.
10.	Generat	tion of all the digital modulation schemes.					
11.		nance evaluation of the M-ary digital modulation techniques					
12.	Compar	rative study of SDR and HDR.					
				Tot	al (P)	= 60 P	eriods

Text	t Books:
1	Simon Haykin, 'Digital Communications ', John Wiley & sons, 2014
	Marvin K Simon, Sami M Hinedi , William C Lindsey , 'Digital Communication Techniques- signal desing and detection'. PHI Learning, 2014
Refe	rence Books:
1	M. K. Simon, S. M. Hinedi and W. C. Lindsey, 'Digital Communication Techniques: Signal Design and detection' Prentice Hall India, N. Delhi, 2015.
2	W. Tomasi, Advanced Electronic Communication Systems, 4th Edition., Pearson Education, 1998.
3	Peyton Z.Peebles, JR, Digital communication systems, Prentice hall

4 Wayne Tomasi, 'Advanced Electronic Communication Systems, 6th Edition., Pearson Education, 2014.

E-R	eferences:
1.	M. K. Simon, S. M. Hinedi and W. C. Lindsey, 'Digital Communication Techniques: Signal Design and detection' Prentice Hall India, N. Delhi, 2015.
2.	W. Tomasi, Advanced Electronic Communication Systems, 4th Edition., Pearson Education, 1998.
3.	Peyton Z.Peebles, JR, Digital communication systems, Prentice hall
1.	https://nptel.ac.in/courses/108108112
2.	https://nptel.ac.in/courses/108101091
3.	http://www.electronics-tutorials.ws/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level		
CO1	Compute and analyse the distortion in the presence of noise and to design filters.	Analyze		
CO2	Analyse the system using eye pattern and design equalizer to avoid ISI.	Analyze		
CO3	Design an error free system using coding techniques.	Apply		
CO4	Select the modulation scheme and able to design system using SDR.	Apply		

PO1	PO2	PO3	PSO1	PSO2
2			2	2
2			2	2
2			2	2
2			2	2
2			2	2
	2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2

22M	22MLC01 RESEARCH METHODOLOGY AND IPR			Semester		r	
PRER	EQUIS	ITES	Category	MLC	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives			1		
1	analysis	elop the subject of the research, encourage the formation of s, rigor and independence of thought, foster individual judge thods and develop skills required in writing research propos	ment and skill in the a	pplicatio			
Un	Unit I INTRODUCTION TO RESEARCH				0	0	9
selectin	ng the res	earch problem, sources of research problem, criteria cha earch problem, scope and objectives of research problem, a ollection, analysis, interpretation, necessary instrumentation	approaches of investig		-		
Uni	it II	EFFECTIVE LITERATURE STUDIES APPROACI	HES, ANALYSIS	9	0	0	9
researc	h approad	theoretical frame work of research- developing operational ch-hypothesis: parametric and non-parametric testing- estab and experiments- documentation, plagiarism, research ethi	lishing the reliability				
Uni	t III	EFFECTIVE TECHNICAL WRITING, HOW TO W PAPER	VRITE REPORT,	9	0	0	9
Develo	ping a re	search proposal, format of research proposal, a presentation	and assessment by a	review c	ommitte	ee	
Uni	t IV	NATURE OF INTELLECTUAL PROPE	CRTY	9	0	0	9
	oment. In	, trade and copyright, process of patenting and development ternational scenario: international cooperation on intellectua					
Uni	it V	PATENT RIGHTS AND IPR		9	3	0	12
Admini	istration of	rights. Licensing and transfer of technology. Patent information of patents system. New developments in IPR; IPR of biolog studies, IPR and IITs.					

Total 45 Periods

Tex	t Books:
1	Stuart melvile and waynegoddard "Rearch methodology an introduction for science & engineering students"
2	Wayne Goddard and stuart Melville, "research methododlogy: An introduction"
3	Ranjitkumar, second edition, "Rearch methodology : A step by step guide for beginners"
4	Halbert, "Resisting intellectual property", Taylor and Francis Ltd, 2007
Refe	rence Books:
1	Mayall, "Industrial design" McGraw Hill, 1992
2	Niebel, "Product design" McGraw Hill, 1974
3	Asimov, "Introduction to Design", Prentice Hall, 1962.
4	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age," 2016.
5	T. Ramappa, "Intellectual Property Rights Under WTO". S. Chand 2008.

	Course Outcomes:					
Upon co	Upon completion of this course, the students will be able to:					
CO1	Understand research problem formulation					
CO2	Analysis research related information					
CO3	Follow research ethics.					
CO4	Understand that today's world controlled by Computer, Information technology, but tomorrow world ruled by ideas, concept and creativity.					
CO5	Understand that IPR production provides an incentive to inventors for further research work and investment in R&D, which leads to creation of new and better products, and in turnbrings about, economic growth and social benefits.					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
CO2	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
CO3	1	-	-	-	-	-	3	1	-	-	3	-	-	-	-
CO4	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
CO5	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
Avg	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
	•	•	3/2/1-	indicate	es streng	th of co	orrelati	on (3-	High, 2	-Mediur	n, 1- Lov	w)			

22C0	OC21	RF AND MICROWAVE CIRCUIT D	DESIGN	S	Semeste	er	II
PRER	EQUIS	ITES	Category	PC	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To enab	ble the student to understand the various components that cons	stitute RF and Micro	owave s	system		
2	To enab	ble the student to understand the working concepts of RF activ	e components and	amplifie	ers		
3	-	ose the student to know the basic analysis techniques needed f ous applications	or evaluating the pe	erforma	nce of a	ın RF sy	stem
Un	it I	INTRODUCTION		9	0	0	9
Design Freque	, Dimens ncy Induc	F and Microwave Concepts and Applications- and Units Freq ions - RF Behaviour of Passive Components: High Frequency ctors, Types of Transmission Lines-Equivalent Circuit represe stant - phase constant - phase velocity - Smith chart.	Resistors, High Fr	equency	y Capac	itors, Hi	gh
Un	it II	RF DEVICE AND CIRCUIT		9	0	0	9
stabilit	y conside	sign- power gain equations - maximum gain design, low noise rations; RF oscillator design -one – port and two – port negati easurements; RF Mixer Design: Single ended mixer – double	ive resistance oscill				
Uni	t III	RF SYSTEM DESIGN		9	0	0	9
-		tching concepts - Microstrip matching - Transistor biasing	networks – Amplif	ier desi	gn conc	epts and	l power
		ign of portable systems.				1	
	t IV	RF FEEDBACK SYSTEMS AND POWER AMPLI		9	0	0	9
compe	nsation; C	back systems: Gain and phase margin- root– locus techniques General model – Class A, AB, B, C, D, E and F amplifiers - point ing techniques - ACPR metric- design considerations.					18 -
Un	it V	RF RESONATORS AND FILTERS	5	9	0	0	9
		types, transmission line resonators, Resonant waveguide cavi ons, Special Filter Realizations, Filter Implementation, Coupl		esonato	ors, RF l	Filters: I	Basic
				Tota	l (45 L)) = 45 F	Periods
Tex	t Books	:					
1	Mathew	M. Radmanesh, "Radio Frequency & Microwave Electronics	", Pearson Education	on Asia,	Second	d Edition	1,
2	Reinhold Edition.	d Ludwig and Powel Bretchko," RF Circuit Design – Theory a	and Applications",	Pearsor	n Educat	tion Asia	a, First
Refe	rence Bo	ooks:					
1		ra K. Misra, "Radio Frequency and Microwave Communication John Wiley & Sons, 2nd edition, July 2004.	on Circuits – Analys	sis and	Design"	, Wiley	Student
2	Christop	her Bowick, Cheryl Aljuni and John Biyler, "RF Circuit Desi	gn", Elsevier Scien	ce, 200	8.		
3	Joseph Carr, "Secrets of RF Design", Tata McGraw Hill Publications, 3 rd Edition, 2004.						

4 B.Razavi, "RF Microelectronics", Pearson Education, 1997.

e-Reference:

1	http://www.qsl.net/va3iul/Files/RF_courses_lectures.htm
2	http://www.seas.ucla.edu/brweb/teaching.html
3	http://nptel.ac.in/courses

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Understand the behaviour of passive components at very high frequency.	Understand		
CO2	Design High Frequency Mixer and Amplifiers.	Apply		
CO3	Analyze the performance parameters of RF system design and power amplifiers.	Analyze		
CO4	Perform a variety of RF resonators and filters.	Remember		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2		1	1	1
CO2	1	2		2	
CO3	1		2		2
CO4	2	2		1	
Avg	1.5	1	0.75	1	0.75

3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)

22C0	OC22	ADVANCED DIGITAL SIGNAL PRO	CESSING	5	Semest	er	II	
PRER	EQUIS	ITES	Category	PC	Cr	edit	3	
-				L	Т	Р	TH	
			Hours/Week	3	0	0	3	
Cours	e Learn	ing Objectives						
1		nate power spectrum using non- parametric and parametric me						
2	2 To know about optimum filters and adaptive filtering and its applications							
3		y the concept of multirate signal processing for various applic	ations	1	r		T	
Un	it I	DISCRETE RANDOM SIGNAL PROCESSING		9	0	0	9	
mean a White 1 Theore	and varia noise pro m – Spec	n processes – Ensemble averages – Wide sense stationary p nce - Auto-covariance and Auto-correlation matrices- Auto cess – Wiener Khintchine relation - Power spectral density – ial types of Random Processes – AR,MA, ARMA Processes –	covariance and C Filtering random p	Cross co rocess -	ovarianc	e- Prop	perties –	
Uni	it II	SPECTRUM ESTIMATION		9	0	0	9	
Periodo	ogram, M spectrur	ectra from finite duration signals, Bias and Consistency of est odified Periodogram, Bartlett, Welch and Blackman-Tukey m n estimation - Detection of Harmonic signals - Performance a	ethods, Parametric	Metho	ds: AR,	MA an		
Unit I	II	SIGNAL MODELING AND OPTIMUM FILTERS		9	0	0	9	
Introd	luction- I	Least squares method - Pade approximation - Prony's method	nod – Forward and	l backw	ard line	ear pred	liction –	
Levin	son Recu	rsion – Lattice filter - FIR Wiener filter – Filtering – Linear	Prediction - Non-	Causal	and Ca	usal IIR	Wiener	
Filter	Discre	te Kalman filter, continuous-time Kalman filter, extended Ka	lman filter.			-		
Uni	t IV	ADAPTIVE FILTERS		9	0	0	9	
Norma	lized LM	ters - Newton's steepest descent method – Widrow Hoff LMS S – Applications: Noise cancellation, channel equalization, ec nm, Exponentially weighted RLS-sliding window RLS. Matrix	ho canceller, Adap	tive Re			RLS	
Uni	it V	MULTIRATE DIGITAL SIGNAL PROCESSING		9	0	0	9	
Sampli System	ng Rate C is with Di	factor D - Interpolation by a factor I - Sampling rate conversion Conversion. Applications of Multirate signal processing - Desi fferent Sampling Rates, Implementation of Narrow Band Low entation of Digital Filter Banks, Quadrature Mirror Filters.	ign of Phase Shifter	rs, Inter and Co	facing of	of Digita Speech		
L								
Tex	t Books							
1	Monson	H. Hayes, "Statistical Digital Signal Processing and Modeling	g", John Wiley and	Sons, 2	2008.			
2		Proakis, Dimitris G. Manolakis, "Digital Signal Processing: P Pearson Education, 2013.	rinciples, Algorith	ms and	Applica	tions", 4	4 th	

Reference Books:

1	P. P. Vaidyanathan, "Multirate Systems and Filter Banks", Prentice Hall, 1992.
-	D.G. Manolakis, V.K. Ingle and S.M. Kogon, Statistical and Adaptive Signal Processing, Artech House Publishers, 2005.

3	Simon Haykin, "Adaptive Filter Theory", Prentice Hall, 5th Edition, 2014.					
4	4 S. Kay," Modern spectrum Estimation theory and application", Pearson India, 2009.					
e-Re	e-Reference:					
1	https://nptel.ac.in/courses/108106136/					
2	htts://www.coursera.org/learn/dsp					
3	https://nptel.ac.in/courses/117101001					

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Analyze discrete time random processes.	Analyze		
CO2	Apply appropriate model for estimation and signal modeling for the given problem.	Apply		
CO3	Design adaptive filters for different applications.	Apply		
CO4	Design discrete time system for the given application using multirate signal processing.	Create		

2		1		
-		1	2	
2	1	1	2	2
2	2	2	2	2
3	2	2	3	2
2.25	1.25	1.5	2.25	1.5
	5	5 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

22C0	OC23	ADVANCED DIGITAL SIGNAL PROCE	ESSING LAB	Semester			II
PRER	REQUIS	ITES	Category	PC	Cre	edit	2
				L	L T P		ТН
			Hours/Week	0	4		
Cours	se Learn	ing Objectives	I				
1	To impa	art knowledge for implementing various DSP algorithms.					
2	To gain	knowledge on signal multi-rate processing.					
3	To imp	lement FIR and IIR filters.					
EXPE	RIMEN	ITS					
1.	Determ	ination of the Power Spectrum of a given signal.					
2.	Simulat	ion of LP and HP FIR filter for a given sequence					
3.	Implem	entation of LP and HP IIR filter for a given sequence.					
4.	Generat	tion of Sinusoidal signal through filtering.					
5.	Generation of DTMF signals.						
6.	Simulat	ion of Decimation Process.					
7.	Simulat	ion of Interpolation Process.					
8.	Simulat	ion of I/D sampling rate converters.					
9.	Simulat	ion of Impulse Response of First Order and Second Order	r System.				
10.	Simulat	ion of Pseudorandom noise sequence.					
11.	Square,	Ramp signal Generation Using a Lookup Table.					
	1			Total	(45 L)	= 45 I	Periods

Refe	rence Books:
1	M. K. Simon, S. M. Hinedi and W. C. Lindsey, 'Digital Communication Techniques: Signal Design and detection' Prentice Hall India, N. Delhi, 2015.
2	W. Tomasi, Advanced Electronic Communication Systems, 4 th Edition., Pearson Education, 1998.
e-Re	eference:
1	file:///F:/SDR/SDR%20lab.pdf
2	file:///F:/SDR/3801-manuel.pdf
3	https://nptel.ac.in > courses

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Compute and analyse the distortion in the presence of noise and to design filters.	Analyse		
CO2	Analyse the system using eye pattern and design equalizer to avoid ISI.	Analyse		
CO3	Design an error free system using coding techniques.	Analyse		
CO4	Select the modulation scheme and able to design system using SDR.	Analyse		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
<u>CO1</u>	2	1	2	1	2
CO1 CO2	2	1	2	1	2
CO3	2	1	2	1	2
CO4	2	1	2	1	2
Avg	2	1	2	1	2
3/2/1	- indicates stre	ngth of correly	ation (3-High)	2- Medium,1- Lov	v)

22C0	DE11	MULTIMEDIA COMPRESSION TECH	HNIQUES Semester				Ι
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives		1	1		1
1	1 To study the basics of various data coding techniques.						
2	To gair	knowledge on various audio compression techniques.					
3	To und	erstand various image and video compression techniques.					
Un	it I	INTRODUCTION AND MATHEMATICAL PREL	IMINARIES	9	0	0	9
informa Adaptiv	ation the	echniques – Modeling and Coding - Overview of inform ory - minimum description length principle - Huffman cod nan coding – Applications of Huffman coding. ARITHMETIC CODING AND DICTIONARY TEC	ling algorithms –				
arithme	etic codir	oding a sequence – Generating a binary code – Comparison of g - applications – Introduction to dictionary techniques - Stati Scalar and Vector Quantization.					
Uni	t III	SUBBAND CODING AND AUDIO COMPRESSIO	N	9	0	0	9
		sub-band coding - Design of filter banks - Application to spe G audio coding : Layer I, Layer II, Layer III - MPEG advance)
Uni	t IV	TRANSFORM CODING AND IMAGE COMPRES	SION	9	0	0	9
Transfo	orm codi	ng techniques : KL-DCT-DST- Walsh Hadamard transforms	6 – Application to	image	compre	ession :	JPEG -
Wavele	et based o	compression: EZW - SPIHT, JPEG-2000.					
Uni	it V	VIDEO COMPRESSION		9	0	0	9
Motion	comper	sation - Video signal representation — ITU-T recommendation	ntion H.261, H 26	2, H 20	53 and	H 264 -	- Model
based c	oding	Asymmetric applications - MPEG standards - Motion estimation	on techniques : MI	PEG 4 p	oart 2		
				Total	(45 L)	= 45 I	Periods
Terr	t Books	•					

1	Khalid Sayood, "Introduction to Data Compression", Morgan Kaufman, 2017.
2	Salomon D, "Data Compression The Complete Reference", Springer, 2015.
Refe	rence Books:
1	Jan Vozer, "Video Compression for Multimedia", AP Press, New York, 1995.
2	Alistar Moffat, "Compression and Coding Algorithms", Kluwer Academic Publishers, 2002
3	Salomon D, "A Guide to Data Compression Methods", Springer, 2002.
4	Wayne Tomasi, 'Advanced Electronic Communication Systems, 6th Edition., Pearson Education, 2014.

e-Re	e-Reference:			
1	https://www.coursera.org			
2	https://onlinecourses.nptel.ac.in			
3	https://www.youtube.com/watch?v=rC16fhvXZOo			

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Code information using various Lossy and Lossless methods.	Apply		
CO2	Apply the concepts dictionary-based coding techniques.	Understand		
CO3	Do various analysis on audio compression.	Understand		
CO4	Implement image and video compression	Understand		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2		1	2	1
CO2	2		1	2	1
CO3	2		1	2	1
CO4	2		1	2	1
Avg	2		1	2	1
		.1 1	·· (2 11: 1 2 3	<i>x</i> 1' 1 X \	
	3/2/1 - indicates st	rength of correla	tion (3-Hign,2- I	Medium, I - Low)	

22C	OE12	ADVANCED COMMUNICATION NET	WORKS	Semester			Ι
PREF	REQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	•	•	•	2
				3	0	0	3
Cours	se Learn	ing Objectives					
1	To ana	lyze the performance of network.					
2 To gain knowledge on network layer and various routing protocols.							
3	To fam	iliarize the functions and protocols of the internet servers.					
Uı	nit I	OVERVIEW OF INTERNET		9	0	0	9
	Overview of Internet-Concepts, challenges and history. Overview of high speed networks-ATM. TCP/IP Congestion and Flow Control in Internet-Throughput analysis of TCP congestion control. TCP for high bandwidth delay networks. Fairness issues in TCP						
Un	Unit II REAL TIME COMMUNICATIONS OVER INTERNET			9	0	0	9
Adapti	ve applic	ations. Latency and throughput issues. Integrated Services M	odel (intServ). Re	source	reserva	tion in 1	Internet.
RSVP.	Resourc	e Reservation in internet, Characterization of Traffic by Line	early Bounded arri	ival Pro	ocesses	(LBAP)	, Leaky
bucket	algorithr	n and its properties.					
Uni	it III	PACKET SCHEDULING ALGORITHMS		9	0	0	9
Packe	et Schedu	ling Algorithms-requirements and choices. Scheduling guarant	nteed service conr	nections	s. GPS,	WFQ a	nd Rate
propo	ortional a	gorithms. High speed scheduler design. Theory of Latency Ra	ate servers and de	lay bou	inds in j	packet s	witched
netwo	orks for L	BAP traffic.; Active Queue Management - RED, WRED and V	Virtual clock. Con	trol the	oretic a	nalysis o	of active
queue	e manage	ment.					
Un	it IV	IP ADDRESS LOOKUP-CHALLENGES		9	0	0	9
Packet algorit		ation algorithms and Flow Identification- Grid of Tries, Cross p	producting and con	trolled	prefix e	expansio	n
Un	it V	V ADMISSION CONTROL IN INTERNET				0	9
archite	cture and	ctive bandwidth, Measurement based admission control; Different framework. IPV4, IPV6, IP tunnelling, IP switching and MPL PLS architecture and framework. MPLS Protocols. Traffic eng	S-Overview of IP	over A'			
				Total	(45 L)	= 45 1	Periods
Тех	t Books	:					
1	1	airand and Pravin Varaiya, High Performance Communications	Networks. Second	1 Editic	on. 2000).	
2	2 Jean Le Boudec and Patrick Thiran, Network Calculus A Theory of Deterministic Queueing Systems for the Internet, Springer Veriag, 2001.						

Refei	rence Books:
1	Zhang Wang, "Internet QoS", Morgan Kaufman, 2001.
	Anurag Kumar, D.Manjunath and Joy Kuri,"Communication Networking: An analytical Approach:, Morgan Kaufman Publisher, 2004.
3	George Kesidis." ATM Network Performance: Kluwer Academic, Research Papers, 2005.

4 Nader F,Mir," Computer and Communication Networks", Second Edition, 2015.

e-Re	ference:
1	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-829-computer-networks-fall-2002/lecture-notes/
2	http://nptel.ac.in/courses/106105081/1
3	https://youtube.com/playlist?list=PLBlnK6fEyqRgMCUAG0XRw78UA8qnv6jEx

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Design and develop protocols for communication networks.	U
CO2	Analyze and design routing algorithms	А
CO3	Design protocols for various functions in the network.	А
CO4	Optimize network design and identify various IP address challenging.	A

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	1	2	1	1
CO2	1	1	2	2	2
CO3	1	1	2	2	2
CO4	1	1	2	2	2
Avg	1	1	2	1.75	1.75
3/2/1 -	indicates stren	gth of correla	ntion (3-High,	2- Medium,1- Lov	v)

22COE13	WIRELESS SENSOR NETWOR	KS	5	Semest	er	Ι
PREREQUI	SITES	Category	PE	Cr	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					<u> </u>
1 To ob	ain a broad understanding of the technologies and applications	of wireless sensor	networ	KS .		
2 To gai	n knowledge on the protocols used for wireless sensor network	8				
3 To un	derstand the tools used for wireless sensor networks					
Unit I	WSN ARCHITECTURE		9	0	0	9
	gle-node architecture –Hardware components – Energy consumer ronments – Network architecture – Sensor network scenari epts.		goals	and fig	ures of	merit –
	and transceiver design considerations – MAC protocols for wir		9	0	0	9
-	oncepts – Address and name management – Assignment of g – Geographic routing. INFRASTRUCTURE ESTABLISHMENT	MAC addresses –	Routin 9	ng proto		Energy-
	onization – Introduction to the time synchronization prob	alem Protocols	-	Ŭ	0	
•	on – Protocols based on receiver/ receiver synchronization					
•	oaches – Mathematical basis for the iteration problem – Sir		-	-	-	
environments						
Unit IV	TOPOLOGY CONTROL		9	0	0	9
Motivation and	l basic ideas – Controlling topology in flat networks – Hierarc	hical networks by	domina	ting set	s – Hier	archical
networks by cl	ustering - Combining hierarchical topologies and power contra	ol – Adaptive node	e activi	ty – Dat	ta aggre	gation –
Data centric sto	orage.					
Unit V	SENSOR NETWORK PLATFORMS AND TOOLS		9	0	0	9
Sensor node ha State-centric pr	rdware – Berkeley motes – Programming challenges – Node-le ogramming.	vel software platfo	rms – 1	Node-lev	vel simu	lators –
			Total	(45 L)	= 45 I	Periods
Text Book	s:					
1 Holger	Karl, A Willig, "Protocols And Architectures for Wireless Sense	sor Networks", Joh	n Wile	y, 2007.		
_	hao, Leonidas Guibas, "Wireless Sensor Networks-An Informa	tion Processing Ap	proach	", Elsev	ier, 2014	4.

- 1 Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks-Technology, Protocols, And Applications", John Wiley, 2007.
- 2 Waltenegus Dargie , Christian Poellabauer, "Fundamentals Of Wireless Sensor Networks Theory And Practice", John Wiley and Sons Publications, 2010.

3	Bhaskar Krishnamachari, "Networking Wireless Sensors", Cambridge Press, 2009.
---	---

4	Mohammad Ilyas, Imad Mahgoub, "Handbook Of Sensor Networks: Compact Wireless And Wired Sensing Systems", CRC Press, 2004.
e-Re	ference:
1	http://nptel.ac.in/courses/106105160/
2	http://edusparkz.com/course_details?course_id=11142
3	https://ict.iitk.ac.in/courses/wireless-ad-hoc-and-sensor-networks/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Gain knowledge on the basics of wireless sensor networks.	Remember
CO2	Get exposure to network protocol design and apply these principles in the context of wireless sensor networks.	Apply
CO3	Learn various hardware, software platforms that exist for sensor networks.	Understand
CO4	Gain knowledge on various topologies available in wireless sensor networks	Understand

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2				
CO2	2	1	2	2	2
CO3	2		1	2	2
CO4	2	0.5	1	1	1
Avg	2	1	1	1.25	1.25
3/2/1 -	indicates stre	ngth of correla	ation (3-High,	2- Medium,1- Lov	w)

22C	OE14	DEEP LEARNING		S	Semest	er	Ι
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To gain	insights on machine learning basics and its challenges					
2	To und	erstand and apply deep learning algorithms using keras and Te	ensor flow				
3	To perf	orm object localization, pre-process data and use generative n	nodels				
Un	nit I	INTRODUCTION		9	0	0	9
Theory Validat	-Machine	deep learning-Applied Math and Machine Learning Basice e Learning Basics- Learning Algorithms- Capacity, Over Supervised and Unsupervised Learning Algorithms- Challeng MODERN PRACTICAL DEEP NETWORKS	rfitting and Under	fitting-	Hyper	paramet	
Deep I	Feed forv	vard Networks- Regularization for Deep Learning- Optimiz	zation for Training	Deep	Models	-	-
-		Coptimization-Applications-Long Short-Term Memory-Cor	-	-			•
Neural	Network	s (RNN).					
Uni	t III	DEEP CONVOLUTIONAL MODELS		9	0	0	9
Objec	t Detecti	on: Object Localization, Landmark detection, YOLO Algorit	hm-NLP: Introduct	ion to l	NLP and	d deep l	earning-
Simpl	le word v	vector representations: word2vec, GloVe-Advanced word ve	ector representation	ns- lang	uage n	nodels, s	oftmax,
single	layer ne	tworks- Neural Networks and back propagation for named ent	tity recognition				
Uni	it IV	GENERATIVE MODELS		9	0	0	9
Restric	tive Boltz	zmann Machines (RBMs)- Introduction to MCMC and Gibbs	Sampling- gradient	t compu	itations	in RBM	s- Deep
		hines. Recent trends: Variational Auto encoders - Generative	Adversarial Netwo	orks- M	ulti-task	c Deep I	earning
		ep Learning.		1		T	1
Un	it V	TOOLS AND APPLICATIONS		9	0	0	9
		Keras and Tensor flow-Deep learning for computer vision, De				-	
-	-	Models for Healthcare Applications- Semantic parsing of S.	Speech using Recu	rrent N	et- LS	ГM netv	vork for
sentime	ent analys	515.					
				Total	(45 L)	= 451	Periods
Tex	t Books	:					
1	Ian Goo	dfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", "	MIT Press, 2016.				
2	Adam G	ibson and Josh Patterson,"Deep Learning: A Practitioner's Ap	pproach", 1st Editio	n,O'Re	illy Me	dia,2017	1
Refe	rence B	ooks:					
1	Deng &	Yu, Deep Learning: Methods and Applications, Now Publish	ers, 2013				
2	Michael	Nielsen, Neural Networks and Deep Learning, Determination	Press, 2015.es of a	leep lea	rning T	echniqu	e

3	Miguel Morales, Grokking Deep Reinforcement Learning,2020
4	Stephan Raaijmakers,"Deep Learning for Natural Language Processing", Manning, 2022
e-Re	ference:
1	https://www.coursera.org/learn/convolutional-neural-networks
2	http://neuralnetworksanddeeplearning.com/
3	(339) Deep Learning Full Course - Learn Deep Learning in 6 Hours Deep Learning Tutorial Edureka - YouTube

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Use deep learning algorithms for the specific use case.	А
CO2	Practically implement deep networks for suitable real world problems using DL tools	А
CO3	Perform object localization and efficiently pre-process data.	U
CO4	Apply generative models and optimize on real world problems and explore its applications	А

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2		2	1	3
CO2	2		3		2
CO3	2		2		2
CO4	2		2	2	2
Avg	2		2.25	0.75	2.25

22CC	DE21	SIGNAL DETECTION AND ESTIM	ATION	5	Ι		
PRER	EQUIS	ITES	Category	y PE Credi		edit	3
-			Hours/Week	L	Т	Р	ТН
		3	0	0	3		
Course	e Learn	ing Objectives					I
1	To intro	oduce various decision-making systems.					
2	To imp	art knowledge on Estimation Theory.					
3	To gain	knowledge of Filtering techniques and Statistical operations.					
Un	it I	RANDOM PROCESSES		9	0	0	9
Discrete	e Linear	Models, Markov Sequences and Processes, Point Processes, a	nd Gaussian Proces	sses	I		
Unit I	I	DETECTION THEORY		9	0	0	9
Rule, M	Iultiple-O	Problem, Maximum A posteriori Decision Rule, Minimum Pr Class Problem (Bayes)- minimum probability error with and w er, General Calculation of Probability of Error, General Gauss	vithout equal a prior	ri proba	bilities,	Neyma	
	t III	LINEAR MINIMUM MEAN-SQUARE ERROR FI		9	0	0	9
Linear	r Minimu	um Mean Squared Error Estimators, Nonlinear Minimum Mea	an Squared Error E	stimato	ors. Inno	ovations	, Digital
Wiene	er Filters	with Stored Data, Real-time Digital Wiener Filters, Kalman F	ülters.				
Uni	t IV	STATISTICS		9	0	0	9
Measur	ements,	Nonparametric Estimators of Probability Distribution and De	ensity Functions, P	oint Es	timators	s of Par	ameters,
Measur	es of the	e Quality of Estimators, Introduction to Interval Estimates,	Distribution of Est	imators	s, Tests	of Hyp	otheses,
Simple	Linear R	Regression, Multiple Linear Regression.					
Unit V		EXAMPLE V ESTIMATING THE PARAMETERS OF RANDOM PROCESSES FROM DATA		9	0	0	9
		arity and Ergodicity, Model-free Estimation, Model-based Es Functions.	timation of Autoco	rrelatio	n Funct	ions, Po	wer
				Total	(45 L)	= 45	Periods

Te	xt Books:
1	K. Sam Shanmugan & A.M. Breipohl, "Random Signals: Detection, Estimation and Data Analysis", Wiley India Pvt. Ltd, 2011.
2	Lonnie C. Ludeman, "Random Processes: Filtering, Estimation and Detection", Wiley India Pvt. Ltd., 2010.
Refe	erence Books:
1	Steven. M.Kay, "Fundamentals of Statistical Signal Processing: Volume I Estimation Theory", Prentice Hall, USA, 1998.
2	Srinath, Rajasekaran, Viswanathan, "Introduction to Statistical Signal Processing with Applications", 2003, PHI.
3	Louis L. Scharf, "Statistical Signal Processing: Detection, Estimation and Time Series Analysis", 1991, Addison Wesley.
4	Mischa Schwartz, Leonard Shaw, "Signal Processing: Discrete Spectral Analysis – Detection & Estimation", 1975, McGraw Hill.

e-Re	ference:
	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-432-stochastic-processes-detection-and-estimation-spring-2004/
2	https://nptel.ac.in/courses/117103018/
3	https://www.coursera.org/learn/information-theory

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Characterize and apply probabilistic techniques in modern decision systems.	Analyse		
CO2	Demonstrate and compare various Estimation techniques.	Analyse		
CO3	Understand statistics of various estimators.	Understand		
CO4	Estimate the parameters of random process for the data given.	Analyse		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	1	2	2	2
CO2	1	1	2	2	2
CO3	1	1	2	2	2
CO4	1	1	2	2	2
Avg	1	1	2	2	2
	3/2/1 - indicates str	ength of correls	ation (3-High,2-	Medium,1- Low)	

22C0	22COE22 OPTICAL NETWORKS Semester				er	Ι	
PRER	EQUIS	ITES	Category	PE	edit	3	
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	o I oorn	ing Objectives					
		erstand optical system components like optical amplifiers, way	valength converters				
1				•			
2	-	the knowledge about the Network management and access ne					
3		n the students to acquire a solid understanding of foundations or sissues.	of optical networks	techno	logies, s	systems,	
Un	it I	INTRODUCTION TO OPTICAL NETWORKS		9	0	0	9
Technic and ch Modula	ques, Sec annel sp ation, Cro	tions Networks Architecture, Services, circuit switching and p cond generation Optical Networks, Optical Packet Switching acing, Wavelength standards, Optical power and loss, Net oss-phase Modulation, Solitons. Components: Couplers, Isc ers, Transmitters, Detectors, Switches, Wavelength Converters	, Transmission Ba twork Evolution, olators and Circula	sics: W Nonline	aveleng ear Effe	th, frequencies: Sel	uencies, f-phase
Un	it II	TRANSMISSION SYSTEM ENGINEERING		9	0	0	9
System	Model,	Power Penalty, Transmitter, Receiver, Optical Amplifiers, O	Crosstalk, Dispers	on, Wa	avelengt	h Stabil	ization,
Overall	l Design	Considerations. Optical Internets: Migration to IP optical ne	etworking, IP and	Optical	backbo	one, IP	Routing
table, N	MPLS and	d optical cross connect table, Protocol stack Alternatives, Inte	ernetworking SS7 a	and Leg	acy Tra	nsport,	Internet
transpo	ort networ	k protocol stack.					
Uni	t III	OPTICAL NETWORK ARCHITECTURES		9	0	0	9
Introd	luction to	Optical Networks: SONET, SDH and Optical Transport Ne	tworks (OTNs): S	ONET :	multiple	xing hie	erarchy,
Frame	e structur	re, Functional Component, problem detection, concatenatio	n. Architecture of	Optic	al Trans	sport N	etworks
(OTN	s): Digit	al wrapper, in-band and out-of band control signalling,	Importance of M	Iultiple	xing an	d multi	plexing
hierar	chies, SC	ONET multiplexing hierarchies, SDH multiplexing hierarchie	es, New Optical Tr	ranspor	t, OTN	layered	Model,
Gener	ric Framin	ng Procedure (GFP).					
Uni	t IV	WDM NETWORK ELEMENTS		9	0	0	9
WDM,	Network	topologies, MPLS and Optical Networks: WDM: WDM ope	ration, Dense Way	elength	Divisio	on Multi	plexing
(DWD)	M), Erbiu	um-doped Fiber (EDF), WDM amplifiers, Add Drop Multip	lexers, Wavelengt	h Conti	nuity P	roperty,	Higher
dispers	ion for D	WDM, Tunable DWDM Lasers.					
Un	it V	NETWORK TOPOLOGIES AND PROTECTION S	SCHEMES	9	0	0	9
Robust	network	s, Line and path protection switching, Types of topology, Poi	int to point topolog	gy, bi-d	irection	al line-s	witched
ring (B	LSR), m	eshed topology, Passive optical networks, Metro optical networks	works 28 MPLS a	nd Opti	ical Net	works:	IS label
switchi	ng, Forw	arding equivalence class (FEC), Types of MPLS nodes, Lab	bel distribution and	l bindiı	ng, labe	l swapp	ing and
traffic	forwardi	ng, MPLS support of Virtual Private Networks (VPN), MI	PLS traffic engine	ering, l	Multi-pr	otocol	Lambda
switchi	ng (MPL	S).					
				Total	(45 L)	= 45 I	Periods

Te	xt Books:
1	Rajiv Ramaswami, Sivarajan, Sasaki, "Optical Networks: A Practical Perspective", MK, Elsevier, 3 rd edition, 2010.

2 C. Siva Ram Murthy and Mohan Gurusamy, "WDM Optical Networks: Concepts Design, and Algorithms", PHI, EEE, 2001

Refe	erence Books:
1	.Thomas E. Stern, Georgios Ellinas, Krishna Bala, "Multiwavelength Optical Networks – Architecture, Design and control ", Cambridge University Press, 2nd Edition, 2009.
2	P.E. Green, Jr., "Fiber Optic Networks", Prentice Hall, NJ, 1993.
3	Biswanath Mukherjee, "Optical WDM Networks", Springer, 2006.
4	Vivek Alwayn, "Optical Network Design and Implementation", Pearson Education,2004
e-R	eference:
1	https://nptel.ac.in/downloads/117101054/
2	http://ece.eng.wayne.edu/~avrutsky/Teaching/ECE5870/NotesFall10.html
3	Optical Networks Tutorial (tutorialspoint.com)

Cours Upon o	Bloom's Taxonomy Level	
CO1	To understand the importance of the backbone infrastructure for our present and future communication.	Understand
CO2	To know the concept of system model and optical internets.	Remember
CO3	Analyze the performance of optical networks and network elements.	Analyze
CO4	To be able to arrive at detailed specifications of the network topologies and protection schemes	Understand

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2	1	1	1	2
CO2		2			1
CO3	2		1	1	1
CO4		1	2	2	
Avg	1	1	1	1	1
3/2/1	- indicates stre	ngth of correla	ation (3-High,2	2- Medium,1- Lov	v)

22C0	OE23	E23 SATELLITE COMMUNICATION AND NAVIGATION SYSTEMS Semester			er	Ι		
PRER	EQUIS	ITES	Category	PE	Cro	edit	3	
				L	Т	Р	TH	
			Hours/Week	3	0	0	3	
9	.			Ũ	v	Ŭ	U	
Cours		ing Objectives						
1		n about the science behind the orbiting satellites and various m		es				
2	To imp	art knowledge on earth station parameters used for satellite con	mmunication.					
3	To gain	knowledge of navigation systems especially GPS in detail.						
Un	nit I	ORBITS, PROPAGATION IMPAIRMENTS AND	SPACE LINK	9	0	0	9	
Introduction, Satellite orbits, Kepler 's three laws, Orbital Elements, Eclipse effect, Orbit determination, Loo determination. Satellite subsystems: Attitude and Orbital Control System (AOCS), Telemetry Tracking and Co (TT&C), Power System, Communications System, Satellite transponder, Space Craft Antennas, Frequency Reuse A Communication link design: Basic transmission theory, EIRP, Completion Link design with and without frequency System noise temperature G/T ratio, Noise figure and Noise temperature.900Unit IISATELLITE MULTIPLE ACCESSES: SATELLITE MOBILE AND SPECIALIZED SERVICES900					euse Ar equency	ntennas.		
Freque	ney Divis	sion Multiple Access (FDMA), Intermodulation, Calculation of	of C/N. Time Divis	ion Mu	ltiple A	CCASS (T		
_	-	ed TDMA, Demand Assignment Multiple Access (DAMA)			-			
		sage Transmission by FDMA: M/G/1 Queue, Message Transmission by FDMA: Message Transmission by FD	· •	-				
-		g, Slotted Aloha, Packet Reservation, Tree Algorithm, VSAT	•					
		s, Mobile Satellite Networks, CDMA MSAT Network.			U	,	U	
Uni	t III	EARTH STATION TECHNOLOGY		9	0	0	9	
Transm	nitters, R	eceivers, Antennas, Tracking Systems, Transponders, Sma	ll earth station A	ntennas	, Equip	ment fo		
station,	Lower	Orbit Considerations, Coverage and frequency consideratio	ns, Direct broadc	asting s	atellite	Televisi	ion and	
Radio,	Satellite	Navigation.						
Uni	it IV	INTRODUCTION TO GLOBAL NAVIGATION SA SYSTEMS (GNSSs)	ATELLITE	9	0	0	9	
Determ	The History of GPS, The Evolution of GPS, Development of NAVSTAR GPS, GPS working principle, Trilateration, Determining the receiver position in 2D or XY Plane, Determining the receiver position in 3D or X-Y-Z Plane.							
ΨT	:4 X 7	GPS ORBITS AND SATELLITE POSITION						
Unit V		DETERMINATION		9	0	0	9	
GPS sy	stem seg	ments, Space segment, Control segment, User segment, GPS	Signals, Pseudor	andom	noise (P	RN) co	de, C/A	
code, l	P code N	Javigation data, and Signal structure of GPS. Anti-spoofing (A	AS), selective avail	ability (GPS orb	ital para	imeters,	
descrip	tion of r	eceiver independent exchange format (RINEX) - Observatio	n data and naviga	tion me	essage d	lata para	ameters,	
GPS po	osition de	termination, least squares						
				Total	(45 L)	= 45 H	Periods	
					. ,			

Text	t Books:
1	Satellite Communications – Timothy Pratt, Charles Bostian, Jeremy Allnutt, 2nd Edition, 2003, John Wiley & Sons.

2 G S RAO, Global Navigation Satellite Systems, McGraw-Hill publications, New Delhi, 2010.

Reference Books:						
1	Satellite Communications - by Dr.D.C.Agarwal.					
2	Satellite Communications: Design Principles – M. Richcharia, 2nd Ed., BSP, 2003.					
3	James Ba – Yen Tsui, _Fundamentals of GPS receivers – A software approach', John Wiley & Sons (2001).					
4	Gunter Seeber., Satellite Geodesy Foundations-Methods and Applications,2003.					
e-Re	ference:					
1	https://youtube.com/playlist?list=PL3rE2jS8zxAxamj-MY7FvzOZkHUALNndQ					
2	https://youtube.com/playlist?list=PLAnjLC20C-XQnoowCtt-67WmyxoQPu2Fi					
3	https://youtube.com/playlist?list=PLLy_2iUCG87A55NPtEwWoWPiKs0-9NNT1					

Course Outcomes: Upon completion of this course, the students will be able to: CO1 Architect appropriate technologies for the implementation of specified satellite communication systems based on specific systems designed for satellite communications. CO2 Analyze and evaluate a satellite link and suggest enhancements to improve the link performance. CO3 Summarize the working principle of GPS and its history. CO4 Develop new navigation solutions for determining accurate user position.

COs/POs	PO1	PO2	PO3	PSO1	PSO2
C01		2	1		
CO2	1	2	2	1	1
CO3		2	1		
CO4	1	2	2	1	1
Avg	0.5	2	1.5	0.5	0.5
2 10 11				2- Medium,1- Lov	`

22C0	DE24	CLOUD COMPUTING TECHNOLO	OGIES	Semester			Ι
PRER	EQUIS	ITES	Category	PE Credit		edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
9	.			Ũ	Ŭ	Ŭ	Ŭ
Cours	•	ing Objectives					
1		gnize the cloud computing architecture and infrastructure, incl and hybrid cloud.	luding SaaS, PaaS,	IaaS, p	ublic cl	oud, pri	vate
2	To use	commercial cloud computing infrastructures, such as Amazon	Web Services, to c	leploy a	apps like	e Micros	soft
		and Google App Engine ly cloud security to a range of practical applications and analys	a tha trada offe ha	twoon	lanlovin	a applia	ations
3		l infrastructure versus the cloud.	se the trade-ons be	tween c	cpioyiii	ig appric	auons
Un	Unit I INTRODUCTION				0	0	9
					N. 1.1	Cl	
		Cloud Computing - Defining a Cloud-A closer look - A Clou Challenges Ahead - Historical Developments - Computing P					
		computing- Elements of parallel and distributed computing.		e		1	1
Un	it II	VIRTUALIZATION		9	0	0	9
Introdu	ction - H	l ypervisors - Main Categories of Virtualization: Full, Para – Cha	aracteristics of virt	ualized	environ	ments –	
		rtualization techniques- Virtualization and cloud computing- F	Pros and cons of vir	rtualiza	tion – T	echnolo	gy
exampl	es- Aen	VMWare - Microsoft Hyper-V CLOUD COMPUTING ARCHITECTURE AND					
Uni	t III	TECHNOLOGIES		9	0	0	9
		oud Reference Model SaaS, PaaS, IaaS -Types of clouds- pul ds-Economics of the cloud-Open Challenges.	blic clouds, private	clouds	, comm	unity clo	ouds
Uni	t IV	CLOUD SECURITY			0	0	9
Infrastr	ucture S	ecurity: Network level, Host level and Application level -I	Data Security- Ider	ntity an	d acces	s Mana	gement:
Archite	ecture and	d Practices - Security Management in the Cloud - Federation in	n Cloud - Cloud Sto	orage –	Edge C	omputir	ıg.
Un	it V	CLOUD PLATFORMS AND APPLICATIONS		9	0	0	9
Amazo	n web s	ervices-Google Engine-Microsoft Azure-Cloud Applications	Scientific Applica	tions-E	Business	and Co	onsumer
Applica	ations.						
				Total	(45 L)	= 45 I	Periods
Тех	t Books	:					
1		ar Buyya, Christian Vecchiola and Thamarai SelviS, "Masterin on Private Limited,New Delhi,2013.	ng Cloud Computir	ng", Tat	ta McGr	aw Hill	
2		Resse G., "Cloud Application Architectures: Building Applica ,O' Reilly.2009	tions and Infrastru	cture in	the Clo	ud" , Fi	rst

	Edition , O Temi J.2009					
Refer	Reference Books:					
1	Arshdeep Bahga, Vijay Madisetti, "Cloud Computing: A Hands-On Approach",2014					
2	Sosinsky B., "Cloud Computing Bible", Wiley India Pvt Ltd, 2011					
U	Chen, Lei, Le-Khac, Nhien-An, Takabi, Hassan, "Security, privacy and digital forensics in the cloud", John Wiley & Sons, 2019.					

4 Tim Mather, Subra Kumarasamy and Shahed Latif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Complainace", O'Reilly, USA, 2011.

e-Re	e-Reference:					
1	https://www.coursera.org/specializations/cloud-computing					
2	https://onlinecourses.nptel.ac.in/noc21_cs62/preview					
3	Optical Networks Tutorial (tutorialspoint.com)					

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Recommend suitable cloud delivery methods for an application.	U		
CO2	Apply virtualization techniques to provide cloud service.	А		
CO3	List and use different types of clouds based on the requirement.	R		
CO4	Apply cloud security to the data using different levels of security and use cloud services like Google App Engine, Microsoft Azure and Amazon AWS	А		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2		2		
CO2	2		2	1	3
CO3	3		2	2	2
CO4	2		2	2	3
Avg	2.25		2	1.25	2

22C	OE31	WIRELESS AND MOBILE COMMUN	ICATION	N Semester		er	II
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	1 To make the students understand the basics of wireless and mobile communication.						
2	2 To learn various fundamental mobile radio propagation.						
3		yse the issues pertaining to major obstacles in establishment a	and efficient manag	ement o	of Cellul	ar syste	ms and
T I	standar	ds. INTRODUCTION AND MODERN WIRELESS					
Un	COMMUNICATION SYSTEMS			9	0	0	9
commo commu	on wirele inication	wireless communications - History and evolution – Mobile ss communication systems - Trends in cellular radio an systems: 2G Cellular networks – 3G wireless networks - 4G k standards	d personal commu mobile web access	inicatio	ns - M	lodern	wireless
		THE CELLULAR CONCEPT: SYSTEM DESIGN					
Un	it II	FUNDAMENTALS AND MODULATION TECHNIQUES FOR			0	0	9
		MOBILE RADIO					
Freque	ncy reuse	- Channel Assignment strategies - Handoff starategies - Inter	rference and system	n capaci	ty -Tru	nking an	id grade
of serv	vice - Im	proving coverage and capacity in cellular systems - Modu	alation: Combined	linear	and Cor	nstant e	nvelope
modula	ation tech	niques - Spread Spectrum Modulation Techniques					
Uni	t III	MOBILE RADIO PROPAGATION: LARGE SCA LOSS	LE PATH	9	0	0	9
Introd	luction to	Radio wave propagation - Free-space propagation model-	- 3 basic propagat	ion me	chanism	s and n	nodels :
reflec	tion - Gr	ound reflection model - Diffraction - Knife-edge diffraction	model -Scattering	g – rada	r cross	section	model -
Practi	cal Link	budget design using path loss models - Outdoor propagation r	nodels - Indoor pro	pagatio	n model	s .	
Uni	it IV	MOBILE RADIO PROPAGATION: SMALL-SCA AND MULTIPATH FADING	LE FADING	9	0	0	9
Small-S	Scale fad	ling: Small scale multipath propagation - Impulse respon	nse model of a mu	ultipath	channe	1 - Sma	all-scale
multipa	ath meas	urements - Parameters of mobile multipath channels - Ty	ypes of small-scale	e fading	g-Raylei	gh and	Ricean
distribu	ition – sta	atistical models for Multipath fading channels : Clarke's mode	el for flat fading - T	Гwo ray	Rayleig	gh fading	g model
- Introd	duction to	o shape factors: Angular spread - Angular constriction - Azi	muthal Direction o	f maxir	num fac	ling - A	pplying
shape factors to wideband channels.							
Un	it V	EQUALISATION, DIVERSITY AND CHANNEL	CODING	9	0	0	9
equaliz - Dive receive	Equalisation:Fundamentals – Training a generic adaptive equalizer – Equalizers in a communication receivers Survey of equalization - Linear equalizers - Nonlinear equalization - Algorithms for adaptive equalization – Fractionally spaced equalizers - Diversity: Practical Space Diversity Considerations - Polarization diversity - Frequency diversity - Time diversity - RAKE receiver - Coding: Turbo codes - Speech coding –Vocoders - LPC-Choosing Speech Codecs for Mobile communication - GSM codec - USDC codec.						
				Total	(45 L)	= 45 I	Periods

Text	t Books:
1	Theodore S.Rappaport, "Wireless Communications: Principles and Practice", 2 nd Edition.", Pearson, 2012.

Simon Haykin, "Digital Communications" Student Edition, John Wiley & sons, 2008. 2

2	Simon Haykin, "Digital Communications" Student Edition, John Wiley & sons, 2008.					
Ref	Reference Books:					
1	A.Molisch, Wiley, "Wireless Communications", 2 nd Edition, 2010.					
2	V.K. Garg, "Principles and Applications of GSM", Pearson Edition.					
3	V.K. Garg, "IS-95 CDMA and CDMA 2000", Pearson Edition.					
4	S. Haykins, "Communication Systems", 5 th Edition, John wiley, 2008.					
e-R	eference:					
1	http://www.pdfsdownload.com/download-pdf-for-free/wireless+communication+rappaport					
2	https://www.oreilly.com/library/view/wireless-communications-principles/0130422320/					
3	https://en.wikipedia.org/wiki/Adaptive_equalizer					

Cours Upon o	Bloom's Taxonomy Level		
CO1	Understand the difference in wireless compared to wired counterpart.	Understand	
CO2	Understand the different propagation mechanisms and calculate large scale path loss.	Apply	
CO3	Analyze small scale and multipath fading in mobile environment.	Apply	
CO4	Analyze the cell structure and calculate interference and improve the coverage and capacity of cellular system.	Apply	

COs/POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2		1	2	1	
CO2	2		1	2	1	
CO3	2		1	2	1	
CO4	2		1	2	1	
Avg	2		1	2	1	
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)						

22C	OE32	PATTERN RECOGNITION AND MACHIN	E LEARNING	ING Semester		er	II
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					<u> </u>
1	To und	erstand the concepts of Pattern classification.					
2	To gain	knowledge on feature extraction and selection techniques					
3	To get	exposure on Expert systems and Machine learning.					
Ur	nit I	PATTERN CLASSIFIER		9	0	0	9
likeliho approa learnin approa	bod estim ch – Patt g and cla ch to patt	attern recognition – Discriminant functions – Supervised nation – Bayesian parameter estimation – Perceptron algorit ern classification by distance functions – Minimum distance issification – Clustering concept – C-means algorithm – Hie ern clustering – Validity of clustering solutions.	thm – LMSE algo e pattern classifier	rithm - r- Clus	- Proble tering fo	ems with or unsup	h Bayes pervised
	it II	STRUCTURAL PATTERN RECOGNITION		9	0	0	9
		mal grammars – String generation as pattern description – mars and applications – Graph based structural representation	•		descript	ion – Pa	arsing –
Uni	it III	FEATURE EXTRACTION AND SELECTION		9	0	0	9
	y minimi selectior	zation – Karhunen – Loeve transformation – Feature selection	through functions	approx	imation	– Binar	у
Uni	it IV	INTRODUCTION TO AI AND PRODUCTION SY	STEMS	9	0	0	9
Introdu	action to	AI-Problem formulation, Problem Definition - Production	n systems, Control	strate	gies, Se	arch str	ategies.
Proble	m charact	eristics, Production system characteristics -Specialized produc	ction system- Probl	lem solv	ving me	thods - l	Problem
graphs	, Matchii	ng, Indexing and Heuristic functions -Hill Climbing-Depth	first and Breath f	first, Co	onstraint	ts satisf	action -
Related	d algorith	ms, Measure of performance and analysis of search algorithms	8.				
Un	it V	PLANNING AND EXPERT SYSTEMS		9	0	0	9
Basic p	plan gene	ration systems - Strips -Advanced plan generation systems -	- K strips -Strategie	c expla	nations	Why, W	Why not
and ho	w explan	ations. Learning- Machine learning, adaptive Learning- Exper	rt systems - Archite	ecture c	of expert	system	s, Roles
of exp	ert systen	ns - Knowledge Acquisition –Meta knowledge, Heuristics. T	ypical expert system	ms - M	YCIN,	DART,	XOON,
Expert	systems	shells.					
Total (45 L) = 45 Periods							
Tor	t Books	•					
Iex	- F						
1	Robert J York, 20	Schalkoff, "Pattern Recognition Statistical, Structural and Ne. 112.	eural Approaches",	John W	iley & S	Sons Inc	:., New
2	2 Tou and Gonzales, "Pattern Recognition Principles", Wesley Publication Company, London, 2014						

2 Four and Gonzales, Pattern Recognition Principles , wesley Publication Company, London, 2014 Reference Books: 1 Duda R.O., and Har P.E., "Pattern Classification and Scene Analysis", Wiley, New York, 2013. 2 Morton Nadier and Eric Smith P., "Pattern Recognition Engineering", John Wiley & Sons, New York, 2012

3	Ethem Alpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine Learning series)", The MIT Press; Second edition, 2009.
4	Stuart Russell, Peter Norvig, "Artificial Intelligence: A Modern Approach", Third Edition, Pearson Education / Prentice Hall of India, 2015.
e-Re	ference:
1	https://www.coursera.org/specializations/machine-learning-introduction
2	https://nptel.ac.in/courses/106106046
3	https://nptel.ac.in/courses/117108048

Cours Upon o	Bloom's Taxonomy Level	
CO1	Implement pattern classification methods and structural pattern recognition.	Understand
CO2	Implement feature extraction and selection.	Understand
CO3	Apply AI problem solving techniques for machine learning	Apply
CO4	Apply the concepts of various planning algorithm and expert systems.	Apply

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2		2	2	2
CO2	2		2	2	2
CO3	3		3	3	3
CO4	2	2	2	2	2
Avg	2.25	0.5	2.25	2.25	2.25
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)					

22C	OE33	VOICE AND DATA NETWORI	KS	Semester		er	II
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To gain networl	the knowledge on computer networks and provides a good baks.	ackground for adva	nced stu	udies in	voice a	nd data
2	The stu	dents will be able to design different networks based on differ at OSI layers.	ent Internet protoco	ols and	also abl	e to wor	k for
3		expose an interconnecting network.					
Un	it I	INTRODUCTION TO VOICE AND DATA NETW	ORKS	9	0	0	9
		n Issues, Network Performance Issues, Network Terminolog, Issues in design of voice and data networks.	ogy, centralized a	nd dist	ributed	approac	ches for
Un	it II	TRANSMISSION METHODS AND SWITCHING		9	0	0	9
Layere	d and La	yer less Communication, Cross layer design of Networks, Vo	ice Networks (wire	d and w	vireless)	and Sw	itching,
Circuit	Switchin	g and Packet Switching, Statistical Multiplexing.					
Uni	t III	DATA LINK LAYER PROTOCOLS		9	0	0	9
Data	Network	s and their Design, Link layer design- Link adaptation, Lin	k Layer Protocols,	, Retrai	nsmissic	on. Mec	hanisms
(ARQ), Hybrid	ARQ (HARQ), Go Back N, Selective Repeat protocols and t	heir analysis.				
Uni	it IV	DELAY MODELS IN DATAS NETWORK		9	0	0	9
Queuin	ig Model	s of Networks, Traffic Models , Little's Theorem, Markov ch	nains, M/M/1and ot	ther Ma	irkov sy	stems, 1	Multiple
Access	Protocol	s - Aloha System, Carrier Sensing, Examples of Local area n	networks.				
Un	it V	INTERCONNECTING NETWORKS		9	0	0	9
Inter-n	etworking	g, Bridging, Global Internet, IP protocol and addressing, Sub	netting, Classless I	Inter do	main R	outing (CIDR),
IP add	lress loc	kup , Routing in Internet. End to End Protocols, TC	P and UDP. Co	ngestio	n Cont	rol, A	Additive
Increas	e/Multip	licative Decrease, Slow Start, Fast Retransmit/ Fast Recovery					
				Total	(45 L)	= 45 1	Periods
Tex	t Books	:					
			11 11 1002				
1	D. Berts	ekas and R. Gallager, "Data Networks", 2nd Edition, Prentice	e nall, 1992.				

ſ	2	L. Peterson and B. S. Davie, "Computer Networks: A Systems Approach", 5th Edition, Morgan Kaufman, 2011

Refe	rence Books:					
1	Kumar, D. Manjunath and J. Kuri, "Communication Networking: An analytical approach", 1st Edition, Morgan Kaufman, 2004.					
2	Leonard Kleinrock, "Queueing Systems, Volume I: Theory", 1st Edition, John Wiley and Sons, 1975.					
3	Aaron Kershenbaum, "Telecommunication Network Design Algorithms", McGraw Hill, 1993					

4	Vijay Ahuja, "Design and Analysis of Computer Communication Networks", McGraw Hill, 1987						
e-Re	e-Reference:						
1	https://www.youtube.com/watch?v=Y4tOm5rdmtY						
2	http://www.nptelvideos.in/2012/11/data-communication.html						
3	https://www.digimat.in/nptel/courses/video/106105082/L32.html						

Cours Upon o	Bloom's Taxonomy Level	
CO1	To understand the introduction to voice and data networks.	U
CO2	To Analyse the transmission methods and switching.	А
CO3	To understand the concept of data link layer protocols and design delay models.	U
CO4	To Analyze the concept of interconnecting networks.	А

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	1	2	1	1
CO2	1	1	2	1	1
CO3	1	1	2	1	1
CO4	1	1	2	1	1
Avg	1	1	2	1	1
3/2/1	- indicates stre	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22C0	DE34	DIGITAL IMAGE AND VIDEO PROCI	ESSING	Semester		er	II		
PRER	EQUIS	ITES	Category	PE	Cre	edit	3		
				L	Т	Р	ТН		
			Hours/Week	3	0	0	3		
Cours	Course Learning Objectives								
1	To stuc	ly the image fundamentals and mathematical transforms	necessary for im	age Pro	ocessing	g.			
2	To stuc	ly the image enhancement techniques, To study image re-	estoration proced	ures					
3	To stuc	ly the image compression procedures							
Un	it I	FUNDAMENTALS OF IMAGE PROCESSING AN TRANSFORMS	ND IMAGE	9	0	0	9		
Applica Fourier transfor	ations of transfor	nage sampling, Quantization, Resolution, Image file for Digital image processing. Introduction, Need for transform, i m and its transforms, Importance of phase, Walsh transfo ete cosine transform, KL transform, singular value decompo s.	mage transforms, F rm, Hadamard tra	Fourier form,	ransforr Haar t	n, 2 D l ransforr	Discrete n, slant		
	it II	IMAGE ENHANCEMENT		9	0	0	9		
Sharpe image Types	ening spa sharpen of image	n methods: Histogram processing, Fundamentals of atial filters. Frequency domain methods: Basics of filte ing, Selective filtering. Image Restoration: Introduction e blur, Classification of image restoration techniques, In on techniques.	ring in frequency on to Image rest	⁷ doma oration	in, imag , Image	ge smo e degra	othing, dation,		
Uni	t III	IMAGE SEGMENTATION		9	0	0	9		
Introdu	uction to	image segmentation, Point, Line and Edge Detection, I	Region based seg	mentati	ion., Cl	assifica	ation of		
C		techniques, Region approach to image segmentation,	e	•	Ũ	U U			
based of	on thresh	nolding, Edge based segmentation, Edge detection and li	inking, Hough tra	nsform	, Activ	e conto	our.		
Uni	t IV	IMAGE COMPRESSION		9	0	0	9		
Introdu	uction, N	leed for image compression, Redundancy in images, C	lassification of re	dunda	ncy in i	mages,	image		
compre	ession s	cheme, Classification of image compression schemes	, Fundamentals	of info	rmatior	theor	y, Run		
length	coding,	Shannon - Fano coding, Huffman coding, Arithmetic c	oding, Predictive	coding	g, Trans	sformed	d based		
compression, Image compression standard, Wavelet-based image compression, JPEG Standards.									
Uni	it V	2-D MOTION ESTIMATION		9	0	0	9		
motion Wavef	Optical flow, general methodologies, pixel-based motion estimation, Block matching algorithm, Mesh based motion Estimation, global Motion Estimation, Region based motion estimation, multi resolution motion estimation. Waveform based coding, Block based transform coding, predictive coding, Application of motion estimation in video coding. Total (45 L) = 45 Periods								

Tex	t Books:
1	Gonzaleze and Woods ,"Digital Image Processing ", 3rd edition, Pearson 2.
2	Yao wang, Joem Ostarmann and Ya – quin Zhang, "Video processing and communication ",1st edition, PHI

Reference Books:

1	Digital Image Processing and Analysis-Human and Computer Vision Application with CVIP Tools –					
	ScotteUmbaugh, 2nd Ed, CRC Press, 2011.					
2	2 Digital Video Processing – M. Tekalp, Prentice Hall International					
3	Digital Image Processing – S.Jayaraman, S.Esakkirajan, T.Veera Kumar – TMH, 2009					
4	Multidimentional Signal, Image and Video Processing and Coding – John Woods, 2ndEd, Elsevier					
e-Re	e-Reference:					
1	http://ijariie.com/AdminUploadPdf/IMAGE_COMPRESSION_TECHNIQUES_ijariie1406_volume_1_15_p age_100_105.pdf					
2	https://telin.ugent.be/~sanja/ImageProcessingCourse/08c_VideoCompression.pdf					
3	http://booksite.elsevier.com/samplechapters/9780123814203/Woods_11.2_through_11.3.pdf					

Course Upon of	Bloom's Taxonomy Level	
CO1	Study about the representation of digital images in transform domain, application of various image transforms.	Remember
CO2	Understand image degradation, image restoration techniques using spatial filters and frequency domain	Understand
CO3	Study about the detection of point, line and edges in images and redundancy in image compression techniques.	Remember
CO4	Understand the general methodologies for 2D motion estimation, various coding used in video processing.	Understand

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2	2	1		2
CO2	1		2	1	
CO3	2	1		2	1
CO4	1		2		1
Avg	1.5	0.75	1.25	0.75	1
3/2/1 -	indicates stre	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22COE41	SPREAD SPECTRUM COM	MUNICATION	Semester			II
PREREQU	ISITES	Category	PE	Cr	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Lea	rning Objectives					
1 To	inderstand the basics of spread spectrum commun	nication systems.				
2 To 2	earn about the performance of spread spectrum in	n multipath environment.				
3 To	inderstand the way in which performance analysi	s of spread spectrum system	ns.			
Unit I	SPREADING CODES		9	0	0	9
Generation	Arithmetic- Sequence Generator Fundamentals-State &Properties of m-Sequences Gold Codes - Kas ary Code Keying - Walsh–Hadamard Sequences.					
Unit II	Unit II SPREAD SPECTRUM SYSTEMS		9	0	0	9
Direct Sequ	ence Spread Spectrum (DSSS)- Processing Gair	n- Frequency Hop Spread S	Spectru	m (FH	(SS)- C	oheren
& Noncohe	rent Slow FHSS – Coherent & Noncoherent Fast	FHSS- Hybrid DS/FH Spre	ead Spe	ectrum.		
Unit III	SYNCHRONIZATION IN SPREAD SPEC	CTRUM	9	0	0	9
Baseband 1	Recovery - Carrier Synchronization - Code Sy	nchronization – Pseudo r	noise A	Acquisi	tion in	Direc
Sequence R	eceivers- Pseudo noise Tracking in Direct Seque	nce Receivers.				
Unit IV	SPREAD SPECTRUM IN MULTIPATH	ENVIRONMENT	9	0	0	9
Spread Spe	ctrum Communication System Model, Perforn	nance of Spread Spectrum	n Syste	ems wi	thout	Coding
Performanc	e of Spread Spectrum Systems with Forward E	Error Correction: Elementar	y Blo	ck Cod	ling Co	oncepts
Optimum I	ecoding Rule-Calculation of Error Probability-	Elementary Convolution Co	oding (Concep	ts, - D	ecodin
and Bit-Err	or Rate.					
Unit V	PERFORMANCE ANALYSIS OF SPREA SYSTEM	AD SPECTRUM	9	0	0	3
Performanc	e of spread spectrum system under AWGN,	multi-user Interference, j	ammir	ig and	narrov	w ban
interference	s Low probability of intercept methods, opti	imum intercept receiver f	for dir	ect sec	quence	spread
spectrum, E	rror probability of DS-CDMA system under AW	GN and fading channels, R	AKE r	eceiver	:	
			Total	(45 L)	= 45]	Period
Tort Do	h					
Text Boo						
1 Rod 2007	ger E. Ziemer, "Fundamentals of Spread Spectrum".	n Modulation", Morgan & (Claypo	ol, Pub	olishers	series,
	ard Sklar & Pabitra Kumar Ray, "Digital Commu on, Pearson Education, Inc, 2001.	unications Fundamentals an	d App	lication	is", Sec	ond
Reference						

1 Don Torrieri, "Principles of Spread-Spectrum Communication Systems", 3rd Edition

2	L. Peterson, R. E. Ziemer, and D. E. Borth, "Introduction to Spread Spectrum Communications", Upper Saddle River, NJ: Prentice Hall, 1995
3	M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt, "Spread Spectrum Communications Handbook", Electronic Edition, McGraw-Hill, 2002
4	Robert C.Dixon, "Spread Spectrum Systems with Commercial Applications", 3rd Edition, John Wiley & Sons, Ins, 1994
e-Re	ference:
1	https://nptel.ac.in/courses/117105077/
2	http://www.rgcetpdy.ac.in/Notes/IT/III%20YEAR/COMMUNICATION%20ENGINEERING- II/Unit%202.pdf
3	https://www.tutorialspoint.com/digital_communication/digital_communication_spread_spectrum_modulation .htm

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	To be able to arrive at detailed specifications of the spread spectrum systems.	Remember		
CO2	To design systems based on spread spectrum synchronization.	Understand		
CO3	To design the spread spectrum in multipath environment.	Apply		
CO4	To Know the concept of Performance analysis of spread spectrum system.	Understand		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2	1	1	2	1
CO2	1	2			1
CO3	2		2	1	2
CO4	1	2		2	
Avg	1.5	1.25	0.75	1.25	1
3/2/1 -	indicates strer	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22C	OE42	MIMO SYSTEMS		S	Semeste	er	II
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
-				L T		Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives			1		
1		e comprehensive coverage of coding techniques for Mul unication systems.	tiple Input Multip	ole Out	put (M	IMO)	
2	To ana	lyze about MIMO communication systems, Space-time	block codes, Spac	ce-time	trellis	codes	
3	To gai	n knowledge on MIMO systems for frequency-selective	(FS) fading chan	nels.			
Un	nit I	FADING CHANNELS AND DIVERSITY TECHN	IQUES	9	0	0	9
		nels – Error/Outage probability over fading channels – I diversity – Multiple antennas in wireless communication		ies – C	hannel	coding	; as a
Un	it II	CAPACITY AND INFORMATION RATES (CHANNELS	OF MIMO	9 0		0	9
Capac	ity and I	nformation rates of noisy, AWGN and fading channels	- Capacity of MI	MO cl	nannels	– Cap	acity of
non-co	oherent N	MIMO channels – Constrained signalling for MIMO con	nmunications.				
Uni	it III	SPACE-TIME BLOCK AND TRELLIS CODES		9	0	0	9
codes Repres	– Linear sentation	sity with two antennas: The Alamouti scheme – Orthogo dispersion codes – Generic space-time trellis codes – Ba of space-time trellis codes for PSK constellation – Perfo of space-time block and trellis codes	asic space-time co	ode des	sign pri	nciples	—
	it IV	CONCATENATED CODES AND ITERATIVE DE	CODING	9	0	0	9
	•	of concatenated codes – Concatenated codes for AWGN MIMO channels – Concatenated space-time block codi		nels – T	Turbo c	coded	
Un	Unit V SPACE-TIME CODING FOR FREQUENCY SELECTIVE FADING CHANNELS		9	0	0	9	
MIMC) freque	ncy-selective channels - Capacity and Information rates	s of MIMO FS fa	ding c	hannels	s – Spa	ce-time
coding	g and Ch	annel detection for MIMO FS channels - challenges in	MIMO OFDM s	systems	s – Ant	enna se	election
for MI	MO sys	tems.					
				Total	(45 L)	= 45]	Periods
Toy	t Rooks	•					

ТСЛ	t DOOKS.
1	Tolga M. Duman and Ali Ghrayeb, "Coding for MIMO Communication systems", John Wiley & Sons, West Sussex, England, 2007
	A.B. Gershman and N.D. Sidiropoulus, "Space-time processing for MIMO communications", Wiley, Hoboken, NJ, USA, 2005.
Refe	rence Books:
1	E.G. Larsson and P. Stoica, "Space-time block coding for Wireless communications", Cambridge University Press, 2003.
2	M. Janakiraman, "Space-time codes and MIMO systems", Artech House, 2004.

3	H. Jafarkhani, "Space-time coding: Theory & Practice", Cambridge University Press, 2005.
4	Huaibei Zhou" Advance MIMO systems" Scientific Research Publishing; 1st edition (1 September 2009).
e-Re	ference:
1	https://nptel.ac.in/noc/individual_course.php?id=noc17-cs37
2	https://nptel.ac.in/courses/117104115/34
3	https://nptel.ac.in/noc/individual_course.php?id=noc16-ec11

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	CO1 Understand the diversity techniques and design the MIMO channels			
CO2	Analyse the performance of for Space time Trellis code.	А		
CO3	Design concatenated codes.	А		
CO4	Understand Frequency selective channels to estimate the capacity of MIMO channels.	А		

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	1	2	1	2
001	1	1	Z	1	2
CO2	1	1	2	1	2
CO3	1	1	2	1	2
CO4	1	1	2	1	2
Avg	1	1	2	1	2
3/2/1 -	indicates stren	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22C0	HIGH PERFORMANCE NETWORKS		Semester		II		
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1		lerstand the high-speed computer network architectures, t network management concepts	concepts of mult	imedia	networ	king an	d
2		dy the recent network concepts with reference to MPLS	and VPN.				
3	To stud	dy about the mathematical models related to network per	rformance analysi	is			
Un	Unit I SWITCHING NETWORKS				0	0	9
DWDM	Л, DSL,	cket switching - Ethernet, Token Ring, FDDI, DQDB, Fra Intelligent Networks – CATV, ATM – Features, Addressin r, Management control, BISDN, Internetworking with ATM.					
Un	it II	MULTIMEDIA NETWORKING APPLICATIONS	5	9	0	0	9
Stream	ning stor	ed Audio and Video, Best effort service, protocols for re	eal time interactiv	ve appl	ications	, Beyo	nd best
effort,	schedul	ing and policing mechanism, integrated services, RSVP	differentiated ser	vices.			
Uni	Unit III ADVANCED NETWORKS CONCEPTS			9	0	0	9
VPN	-Remote	-Access VPN, site-to-site VPN, Tunneling to PPP,	Security in VPN	.MPLS	S-operat	tion, R	outing,
Tunn	eling an	d use of FEC, Traffic Engineering, and MPLS based V	PN, overlay netw	orksP2	2P conn	ections	IPv4
vs. ve	5.			1	1	1	
Uni	it IV	PACKET QUEUES AND DELAY ANALYSIS		9	0	0	9
Little's	s theorem	n, Birth and Death process, Queueing discipline- Cont	rol & stability -,	Marko	ovian Fl	FO Qu	leueing
Ū		Aarkovian - Pollaczek-Khinchin Formula and M/G/1, M	//D/1, self- simil	ar mod	lels and	Batch	-arrival
		ks of Queues – Burke's theorem and Jackson Theorem.		1	T	T	
Un	it V	NETWORK MANAGEMENT & SNMP		9	0	0	9
Netwo	ork Arch	itecture, SNMP Basics, SNMP Naming and OIDs, MIR	Bs, SNMPv1 Data	а Туре	s, ASN	.1 Synt	ax and
SNMP	P, SNMP	Tables, SNMP Operations, MIB Browsing, MIB-2, SN	MP and ASN.1 E	Incodin	g		
				Total	(45 L)	= 45 F	Periods
Tex	t Books	•					
	n	rose & K.W. Ross, "Computer Networking- A Top Dow	n Annroach East	urina			
1		rnet", Pearson, 6th Edition, 2012.	n Approach reat	unng			
2	Nader I	F.Mir, "Computer and Communication Networks", Pears	son Education, 21	nd Edit	ion 201	5.	
Refe	rence B	ooks:					
1	Peter D	ordal, "An Introduction to Computer Networks", Relea	ase 1.9.16, 2018.				
2	Walran Edition	d .J. Varatya, "High Performance Communication Netw , 2000.	ork", Morgan Ka	ufmanı	n publis	hers, 2	nd

3	Fred Halsall and Lingana Gouda Kulkarni, "Computer Networking and the Internet", Fifth Edition, Pearson Education, 2012.							
4	Jain Raj "High Performance TCP/IP Networking ", Prentice-Hall of India Pvt.Ltd 2012							
e-R	eference:							
1	https://www.intel.com/content/www/us/en/collections/products/networking/high-performance- networking.html?s=Newest							
2	https://link.springer.com/book/10.1007/978-0-387-35388-3							
3	https://www.oreilly.com/library/view/high-performance-browser/9781449344757/							

Cours Upon	Bloom's Taxonomy Level			
CO1	Understand and Analyse			
CO2	CO2 To be able to design and implement protocols in multimedia networks			
CO3	To be able to compare the various methods of providing connection-oriented services and to services over an advanced network with reference to MPLS, VPN.	Understand		
CO4	To be able to analyze performance of network related issues using mathematical models and explore the concepts of network management.	Analyse		

COs/POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2	2	3	2	2		
CO2	2	2	3	2	2		
CO3	2	2	2	2	2		
CO4	2	2	2	2	2		
Avg	2	2	2.5	2	2		
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)							

22COE44 5G COMMUNICATION NETWORKS Semest					Semeste	er	II			
PRER	EQUIS	ITES	Category	PE	Cr	edit	3			
				L	Т	Р	ТН			
			Hours/Week	3	0	0	3			
Cours	Course Learning Objectives									
	To describe the evolution of mobile communication leading to the introduction of 5C									
2										
3		plain the key innovations in radio and network								
_	nit I	INTRODUCTION TO 5G		9	0	0	9			
				9	U	0	9			
) - 5G	E) overview- Introduction to 5G – Use Cases - Evolving LTH Standardization - 3GPP and IMT2020 - Spectrum for 5C								
Lini	:4 TT	5G WIRELESS PROPAGATION CHANNELS AN	D	_			_			
Un	it II	SPECTRUM		9	0	0	9			
Chann	el mode	ling requirements, propagation scenarios and challenge	es in the 5G mod	lelling,	Chann	el Moc	lels for			
mm W	ave MI	MO Systems. Spectrum for 4G – Spectrum Challenges	in 5G- 5G Spect	trum te	chnolo	gies- V	alue of			
spectru	um for 5	G.								
Uni	t III	TRANSMISSION AND DESIGN TECHNIQUES F	OR 5G	9	0	0	9			
Basic 1	requiren	nents of transmission over 5G, Modulation Techniques -	- Orthogonal freq	uency	divisio	n multij	plexing			
(OFD)	M), gene	eralized frequency division multiplexing (GFDM), filte	r bank multi-car	riers (F	FBMC)	and ur	niversal			
filtered	d multi-	carrier (UFMC), Multiple Accesses Techniques - orth	ogonal frequency	/ divisi	ion mu	ltiple a	ccesses			
(OFD)	MA), ge	eneralized frequency division multiple accesses (G	FDMA), nonort	hogona	al mult	tiple a	ccesses			
(NOM	(A).									
Uni	it IV	DEVICE-TO-DEVICE (D2D) COMMUNICATION	1S	9	0	0	9			
Device	e-to-devi	ice (D2D) and machine-to-machine (M2M) type c	ommunications	– Ext	ension	of 4C	i D2D			
standa	rdizatior	n to 5G, radio resource management for mobile broadb	and D2D, multih	op and	l multi-	operato	or D2D			
comm	unication	ns.								
Uni	it V	MILLIMETER WAVE COMMUNICATIONS		9	0	0	9			
Millim	neter-wa	ve Communications – spectrum regulations, deploym	ent scenarios, b	eamfor	ming, j	physica	l layer			
technic	ques, in	terference and mobility management, Massive MIN	AO propagation	chann	el mo	dels, C	hannel			
Estima	ation in	Massive MIMO, Massive MIMO with Imperfect	t CSI, Multi-Ce	ell Ma	assive	MIMO	, Pilot			
Contar	Contamination, Spatial Modulation (SM)									
	Total (45 L) = 45 Periods									
l					,					
Tex	Text Books:									

1	Afif Osseiran, Jose.F.Monserrat, Patrick Marsch, "Fundamentals of 5G Mobile Networks", Cambridge University Press

2 Martin Sauter "From GSM From GSM to LTE–Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband", Wiley-Blackwell

Refe	rence Books:
1	Athanasios G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopoulos, "New Directions in Wireless Communication Systems from Mobile to 5G", CRC Press.
2	Theodore S.Rappaport, Robert W.Heath, Robert C.Danials, James N.Murdock "Millimeter Wave Wireless Communications", Prentice Hall Communications.
3	Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", John Wiley & Sons.
4	Amitabha Ghosh and Rapeepat Ratasuk "Essentials of LTE and LTE-A", Cambridge University Press.
e-Re	ference:
1	https://nptel.ac.in/courses/112104181/
2	https://www.qualcomm.com
3	https://5glab.de

Cours Upon o	Bloom's Taxonomy Level	
CO1	Analyze	
CO2	Able to design a transceiver for Multicarrier waveforms.	Understand
CO3	Able to analyze multiple access techniques in 5G networks	Analyze
CO4	Able to design a pilot, estimate channels and analyze capacity for single cell and multicell Massive MIMO and analyze different types of cooperative communications.	Analyze

COs/POs	PO1	PO2	PO3	PSO1	PSO2	
CO1	2	1	3	1	2	
CO2	2	1	2	1	2	
CO3	2	1	3	2	2	
CO4	2	1	3	2	2	
Avg	2	1	2.75	1.5	2	
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)						

22C	OE51	DSP ARCHITECTURE		Semester		III	
PRER	EQUIS	ITES	Category	ory PE Credit			
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives		I			1
1	Gain k	nowledge in various digital Signal Processor					
2	provid	e in-depth knowledge on Third generation DSP Architec	ture and program	ming s	skills		
3	provid	e in-depth knowledge on Advanced DSP architectures a	nd its applications	5			
Un	it I	ARCHITECTURE OF PROGRAMMABLE DSPs		9	0	0	9
-	it II	ry, SIMD, VLIW architectures, pipelining, special addressing TMS320C5X PROCESSOR	modes in PDSPs, o	9	o periphe	orals.	9
Archit	ecture -	- Assembly language syntax - Addressing modes –	Assembly langu	-	ů	-	-
		ration – Block Diagram of DSP starter kit – Application		-			-
Uni	t III	TMS320C6X PROCESSOR		9	0	0	9
Suppo	rt Tools	f the C6x Processor - Instruction Set - DSP Developmen - Code Composer Studio - Support Files - Programming ograms for processing real time signals.	•				Kit
	it IV	ADSP PROCESSORS		9	0	0	9
Archit	ecture of	of ADSP-21XX and ADSP-210XX series of DSP pa	rocessors- Addre	essing	modes	and as	sembly
langua	ige instru	actions – Application programs –Filter design, FFT calcu	ulation.				
Un	it V	ADVANCED PROCESSORS		9	0	0	9
Archit	ecture o	f TMS320C54X: Pipe line operation, Code Composer s	studio –Architectu	ure of]	Motoro	la DSP	563XX
- Com	parison	of the features of DSP family processors.					
				Total	(45 L)	= 45 I	Periods

Text	t Books:
1	B.Venkataramani and M.Bhaskar, "Digital Signal Processors – Architecture, Programming and Applications" – Tata McGraw – Hill Publishing Company Limited. New Delhi, 2003.
2	Avtar Singh and S. Srinivasan, Digital Signal Processing – Implementations using DSP Microprocessors with Examples from TMS320C54xx, cengage Learning India Private Limited, Delhi 2012
Refer	rence Books:
1	Lapsley et al., DSP Processor Fundamentals, Architectures & Features ^I , S. Chand & Co, 1 st Edition, 2000
2	Sen M. Kuo&WoonSergGan, Digital Signal Processors Architectures, Implementation and Applicationl, Pearson Practice Hall, 1st Edition, 2013
3	Digital signal Processing-Jonatham stein, John Wiley,2005

4 Peter Pirsch, Architectures for Digital Signal Processing^I, John Weily, 1 st Edition, 2007.

e-Re	e-Reference:					
1	https://nptel.ac.in/courses/108106149					
2	https://nptel.ac.in/courses/108102045					
3	https://youtube.com/playlist?list=PLMpCSwrw7iRG_78dNkxO76zezlEF81qIx					

Cours Upon o	Bloom's Taxonomy Level				
CO1	CO1 Able to distinguish between the architectural features of General-purpose processors and DSP processors				
CO2	Understand the architectures of TMS320C5x,TMS320C6X and advanced processors	Understand			
CO3	Acquire knowledge about architecture various addressing modes of ADSP processors	Understand			
CO4	Design and implement basic DSP algorithms	Apply			

COs/POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	2			2	2			
CO2	2			2	2			
CO3	2			3	2			
CO4	3			2	2			
Avg	2.25			2.25	2			
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)								

22COE52		ELECTROMAGNETIC INTERFERENCE AND			Semester		
2200	JE52	COMPATIBILITY			semest	ег	II
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives		I			
1	To deve	elop an understanding of basics of Electromagnetic interference	ce in electronic syst	ems			
2	To acqu	ire knowledge on the EMI coupling mechanisms and concept	s of EMI control so	chemes			
3	To get a techniq	acquainted with design PCB incorporating EMC principles, cu	irrent EMC standar	ds and	measure	ement	
Un	Unit I EMI/EMC CONCEPTS					0	9
EMI/E	MC Conc	epts, EMI-EMC definitions and Units of parameters, Sources	and victim of EM	[Condu	icted an	d Radiat	ed EMI
Emissio	on, Susce	ptibility, Transient EMI, ESD, Radiation Hazards.				1	
Uni	it II	EMI COUPLING PRINCIPLES		9	0	0	9
EMI C	oupling H	Principles - Conducted, radiated and transient coupling; Com	mon ground imped	ance co	upling;	Commo	n mode
and gro	ound loop	coupling ; Differential mode coupling ; Near field cable to ca	able coupling, cross	talk ; I	Field to	cable co	upling ;
Power	mains an	d Power supply coupling. Simulation of Electromagnetic inter	ference.				
Uni	t III	EMI CONTROL TECHNIQUES		9	0	0	9
EMI C	Control T	echniques: Shielding, Filtering, Grounding, Bonding, Isola	ation transformer,	Transi	ent sup	pressors	, Cable
routing	, Signal c	control.					
Uni	t IV	EMC DESIGN OF PCBs		9	0	0	9
EMC I	Design C	of PCBs: Component selection and mounting; PCB trace	impedance; Routir	ng; Cro	ss talk	control;	Power
distribu	tion deco	oupling; Zoning; Grounding; VIAs connection; Terminations;	EM simulation of	PCB's			
Un	it V	EMI MEASUREMENT AND STANDARDS		9	0	0	9
EMI M	leasureme	ents: Open area test site; TEM cell; EMI test shielded chambe	er and shielded ferr	-			-
		Sensors, Injectors / Couplers, and coupling factors; EMI Rec					
		C, EN; Military standards: MIL461E/462.		2	,		
				Total	(45 L)	= 45 I	Periods
Tex	t Books						
1		Weston," Electromagnetic Compatibility – Methods, Analys	is, Circuits and mea	asureme	ents", C	RC pres	5,
Bocaraton 2017							
2		lliams, "EMC for product Designers",5ed,Newness,2017.					
Refe	rence B	ooks:					
1		G. Andre and Kenneth Wyatt," EMI Troubleshooting Cookboo SciTech publishing,2014	ok for Product Des	igners (Electroi	nagnetic	s and
2	C.R.Paul, "Introduction to Electromagnetic Compatibility", 2nd ed John Wiley and Sons, Inc, 2010.						

3	Henry W.Ott.," Electromagnetic Compatibility Engineering, Revised edition, Wiley Black well Newyork, 2009.
4	Printed Circuit Board Design Techniques for EMC Compliance: A Handbook for Designers, 2nd Edition Mark I. Montrose, ISBN: 978-0-780-35376-3 July 2000 Wiley-IEEE Press
e-R	Reference:
1	https://www.mclpcb.com/blog/pcb-electromagnetic-issues/
2	https://www.electronics-notes.com/articles/analogue_circuits/emc-emi-electromagnetic-interference-compatibility/pcb-design-for-emc.php
3	https://www.newelectronics.co.uk/content/features/emc-basics-and-practical-pcb-design-tips

	Course Outcomes: Upon completion of this course, the students will be able to:		
CO1	Understand EMI and susceptibility	Understand	
CO2	Identify EMI coupling mechanisms	Analyse	
CO3	Use appropriate EMI control schemes in electronic systems	Understand	
CO4	Design PCBs with EMC and Conduct EMI measurements according to standards	Design	

COs/POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2	1	1	2	2		
CO2	2	1	1	2	2		
CO3	2	2	2	2	2		
CO4	2	2	2	2	2		
Avg	2	1.5	1.5	2	2		
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)							

22C	OE53	RADAR SIGNAL PROCESSIN	G	5	Semest	er	II	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Carro	Teen	ing Objections			Ŭ	Ű		
		ing Objectives	nultinlaying cohom					
1		n about the science behind the orbiting satellites and various n		es				
2	-	art knowledge on earth station parameters used for satellite co	mmunication.					
3	-	knowledge of navigation systems especially GPS in detail.		T	1	T	T	
Un	nit I	RADAR BASICS		9	0	0	9	
Models			ency Models-The					
Un	it II	SAMPLING AND QUANTIZATION OF PULSEI SIGNALS	O RADAR	9	0	0	9	
Domain	ns and C	riteria for Sampling Radar Signals, Sampling in the Fast Time	e Dimension, Samp	oling in	Slow T	ime – S	electing	
the Pul	se Repet	ition Interval, Sampling the Doppler Spectrum, Sampling in	the Spatial and An	gle Dir	nension	s, Quan	tization,	
I/Q Im	balance a	nd Digital I/Q						
Uni	t III	DOPPLER PROCESSING		9	0	0	9	
		of the Doppler Spectrum, Moving Target Indication (MTI), F pler Processing Issues, Clutter Mapping and the Moving Targe					essing,	
Uni	it IV	SYNTHETIC APERTURE IMAGING		9	0	0	9	
Introdu	iction to	Synthetic Aperture Imaging, Introduction to SAR Fundame	ntals, Strip map S.	AR Da	ta Chara	acteristic	es, Strip	
map SA	AR Image	e Formation Algorithms, Spotlight SAR Data Characteristics,	the Polar Format I	mage F	ormatio	n Algor	ithm for	
Spotlig	ht SAR,	Interferometric SAR.						
Un	it V	BEAMFORMING AND SPACE-TIME ADAPTIVI	E	0	0	0	0	
Ch	it v	PROCESSING		9	0	0	9	
Time S	ignal Mo	Beamforming and Space-Time Adaptive Processing- Spatial F odelling, Processing the Space-Time Signal, Computational Iss P Algorithms and Analysis, Limitations to STAP						
	Total (45 L) = 45 Periods							
-	(D)							
Tex	t Books	:						
1	Mark A	. Richards, "Fundamentals of Radar Signal Processing", McG	raw Hill					
2	Fred E.	Nathanson, "Radar Design Principles: Signal Processing and	The Environment",	2nd Ed	lition, 1	999, PH	I.	
Refe	rence B	ooks:						

1	M.I. Skolnik, "Introduction to Radar Systems", 3rd Edition, 2001, TMH.

2	Peyton Z. Peebles, Jr., "Radar Principles", 2004, John Wiley.
3	R. Nitzberg, "Radar Signal Processing and Adaptive Systems", 1999, Artech House.
4	F.E. Nathanson, "Radar Design Principles", 1st Edition, 1969, McGraw Hill.
e-Re	eference:
1	Radar: Introduction to Radar Systems — Online Course MIT Lincoln Laboratory
2	Microsoft Word - semreport1.doc (iitb.ac.in)
3	Naren Naik Digital Signal Processing Course (iitk.ac.in)

Cours Upon	Bloom's Taxonomy Level	
CO1	Understand the factors affecting the radar performance using radar range equation to calculate transmitter power	Understand
CO2	Analyze the principle of frequency modulated –continuous wave radar and apply it for altimeter applications	Analyze
CO3	Analyze the statistical parameters of radar cross section of targets to measure signal to noise ratio and system losses	Analyze
CO4	Analyze the detection techniques of target echo signal reflected back to the radar antenna for obtaining the location and distance of the reflecting object.	Analyze

COs/POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2	1	1	2	2		
CO2	2	1	1	2	2		
CO3	3	1	2	2	2		
CO4	2	1	2	2	2		
Avg	2.25	1	1.5	2	2		
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)							

22C0	DE54	NATURAL LANGUAGE PROCESS	SING	Semester		er	II	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	Course Learning Objectives							
1		derstand the representation and processing of Morpholog		eech, T	aggers	and to		
2		iate various techniques used for speech synthesis and real lerstand different aspects of natural language syntax and		ods use	ed for n	rocessi	nσ	
2		and disambiguating word senses.	the various meth	045 45	ou tor p	10000551		
3		reciate the various representations of semantics and disc	course and to know	w abou	t variou	18		
T T		ations of natural language processing.	TESENIC		1	1		
Un	it I	MORPHOLOGY AND PART-OF SPEECH PROC	ESSING	9	0	0	9	
Smooth Transfo	ning - In prmation-	Parsing - Porter Stemmer – Tokenization-Detection and Corr terpolation - Backoff Part-of Speech Tagging – English V Based Tagging - Evaluation and Error Analysis. Hidden Mark	Vord Classes - Ta	gsets -	Rule-B	ased - 1	-	
Uni	it II	SPEECH PROCESSING		9	0	0	9	
Compu Finite- Morph	utation - State P	nition –Architecture – Hidden Markov Model to Spe Evaluation. Triphones – Discriminative Training - Mo Phonology – Computational Optimality Theory - S SYNTAX ANALYSIS	delling Variation.	Comp	outation	al Phor	nology-	
			C D 1	-	ů	÷		
and C Dynan Parsing CFGs	ontext-F nic Prog g – Prob – Collin	nars of English – Constituency - Context-Free Grammar Free Grammars - Dependency Grammars. Syntactic H ramming Parsing Methods –CKY-Earley and Chart Pa pabilistic Context-Free Grammars – Probabilistic CKY s Parser Language and Complexity -The Chomsky Hiera	Parsing – Parsing arsing- Partial Pa Parsing of PCFG archy -The Pumpi	g as S rsing-H s –Pro	earch - Evaluati babilist	Ambi ion. Sta	guity - atistical	
Uni	t IV	SEMANTIC AND PRAGMATIC INTERPRETAT	ION	9	0	0	9	
Representation of Meaning – Desirable Properties - Computational Semantics -Word Senses - Relations Between Senses – WorldNet - Event Participants- Proposition Bank - Frame Net – Metaphor. Computational Lexical Semantics – Word Sense Disambiguation- Supervised Word Sense Disambiguation - Dictionary and Thesaurus Methods- Word Similarity – Minimally Supervised WSD - Hyponymy and Other Word Relations - Semantic Role Labelling – Unsupervised Sense Disambiguation. Computational Discourse - Discourse Segmentation – Unsupervised Discourse - Segmentation - Text Coherence - Reference Resolution –Phenomena– Features and algorithms - Pronominal Anaphora Resolution								
Uni	it V	APPLICATIONS		9	0	0	9	
Information Extraction – Named Entity Recognition - Relation Detection and Classification – Temporal and Event Processing - Template-Filling - Biomedical Information Extraction. Question Answering and Summarization - Information Retrieval -Factoid Question Answering - Summarization - Single and Multi-Document Summarization - Focused Summarization - Evaluation. Dialog and Conversational Agents – Properties of Human Conversations – Basic Dialogue Systems - VoiceXML - Information- State and Dialogue Acts - Markov Decision Process Architecture. Machine Translation –Issues in Machine Translation - Classical MT and the Vauquois Triangle - Statistical MT - Phrase-Based Translation Model - Alignment in MT –IBM Models – Evaluation Total (45 L) = 45 Periods								
				rotal	(43 L)	– 43 f	er tous	

Tex	t Books:
1	Jurafsky and Martin, "Speech and Language Processing", Pearson Prentice Hall, Second Edition, 2008.
2	Christopher D. Manning and HinrichSchütze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.
Refe	rence Books:
1	Stevan Bird, "Natural Language Processing with Python", Shroff, 2009.
2	James Allen, "Natural Language Understanding", Addison Wesley, Second Edition, 2007.
3	NitinIndurkhya, Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, 2010.
4	Alexander Clark, Chris Fox, Shalom Lappin, "The Handbook of Computational Linguistics and Natural Language Processing", Wiley-Blackwell, 2012.
e-Re	ference:
1	https://www.ibm.com/cloud/learn/natural-language-processing
2	https://www.techtarget.com/searchenterpriseai/definition/natural-language-processing-NLP
3	https://www.sas.com/en_us/insights/analytics/what-is-natural-language-processing-nlp.html

Cour	Course Outcomes:				
Upon	Taxonomy Level				
CO1	Identify the different linguistic components of given sentences.	Understand			
CO2	Design a morphological analyser for a language of your choice using finite state automata concepts.	Design			
CO3	Implement the Earley algorithm for a language of choice by providing suitable grammar and words.	Analyse			
CO4	Use a machine learning algorithm for word sense disambiguation and Build a tagger to semantically tag words using WordNet and Design a business application	Design			

COs/POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2	1	2	2	2		
CO2	2	2	2	2	2		
CO3	2	1	2	2	2		
CO4	2	2	1	2	2		
Avg	2	1.5	1.75	2	2		
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)							

22COE61	COGNITIVE RADIO		S	Semester		
PREREQUI	SITES	Category	PE	Cr	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					
	able the student to understand the requirements in designing soft onalities	ware defined radio	os and c	ognitivo	e radio a	and its
	able the student to understand the evolving paradigm of cognitive plogies for its implementation.	e radio communic	ation ar	nd the en	nabling	
3 To an	alyse the spectrum management functions using cognitive radio s	systems and cogni	tive rad	lio netw	orks.	
Unit I	INTRODUCTION TO COGNITIVE RADIOS		9	0	0	9
Unit II	ion and environment awareness in cognitive radios –concepts, ar SDR ARCHITECTURE		9	0	0	9
degrees of pro	ed Radio: Evolution - essential functions of the Software Define grammability - top level component topology - computational pro-	operties of function	cture go nal con	als - qu nponent	antifyin s - inter	g face
topologies ame Unit III	COGNITIVE RADIO ARCHITECTURE	demerits of SDR -	problei 9	ns faced 0	1 by SD 0	R. 9
•	dio - functions, components and design rules, Cognition cycle	-		-		nference
-	rchitecture maps, Building the Cognitive Radio Architecture on S	Software defined l	Radio A	rchitect	ture	1
Unit IV	COGNITIVE RADIO NETWORK SECURITY		9	0	0	9
Overview of 1	EEE 802.22 standard for broadband wireless access in TV ba	ands -Primary use	er emul	ation at	tacks -	security
vulnerabilities	in IEEE 802.22 - security threats to the radio software.					
Unit V	MAC AND NETWORK LAYER DESIGN FOR CO RADIO	GNITIVE	9	0	0	9
MAC for cog	nitive radios - Multichannel MAC - slotted ALOHA - CSMA	A, Network layer	design	– routi	ng in c	ognitive
radios, flow co	ntrol and error control techniques.					
			Total	(45 L)	- 45 1	Periods
			I Utal	(45 L)	- 43	
Text Book	s.		I otal	(40 1)	- 43]	

	Principles and Practice", Elsevier Inc., 2010
2	Kwang-Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons Ltd, 2009
Refe	rence Books:
1	Arslan H, "Cognitive Radio, Software Defined Radio and Adaptive Wireless Systems", University of South Florida, USA, Springer, 2007.
	Khattab, Ahmed, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks - From Theory to Practice", Springer Series: Analog Circuits and Signal Processing, 2009.
	Mitola J, "Cognitive Radio: An Integrated Agent Architecture for software defined radio", Doctor of Technology thesis, Royal Inst. Technology, Sweden 2000.

4 E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, "Principles of Cognitive Radio", Cambridge University Press, 2013.

e-Re	e-Reference:						
1	http://www.wirelessinnovation.org/Cognitive_Radio_Architecture						
2	http://www.xgtechnology.com/innovations/cognitive-radio-networks/						
3	http://www.radio-electronics.com/info/rf-technology-design/cognitive-radio-cr/technologytutorial.php						

	Course Outcomes: Upon completion of this course, the students will be able to:	
CO1	Understand the concepts and design of cognitive radios.	Understand
CO2	Study about the SDR architecture and analysis.	Remember
CO3	Analyse the various cognitive radio network architectures and network security.	Analyze
CO4	To analyse the performance of MAC and network layer design for cognitive radio.	Apply
CO5		

COs/POs	PO1	PO2	PO3	PSO1	PSO2			
<u>CO1</u>	1	2	2	1	2			
C01	1	2	2	1	2			
CO2		2	1		1			
CO3	2	1		2				
CO4	2		1	2	1			
Avg	1.25	1.25	1	1.25	1			
3/2/1 - indicates strength of correlation (3-High, 2- Medium, 1- Low)								

22C	OE62	INTERNET OF THINGS		5	Semester			
PREF	REQUIS	ITES	Category	PE	Cro	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	se Learr	ing Objectives						
1		ess the vision and introduction of IoT and to Implement Data a Technology.	nd Knowledge Ma	nageme	nt and u	se of De	evices	
2		lerstand State of the Art - IoT Architecture and to build a smal	l low-cost embedd	ed syste	em using	single	Board	
3	To lear	n the various case study of IoT systems.						
Uı	nit I	INTRODUCTION AND APPLICATIONS		9	0	0	9	
protoco Autom	ols, Log ation, Ci	IoT – Definition, Characteristics, functional requirements, rical Design - functional blocks, communication models, ties, Environment, Energy, Agriculture, Health, Industry						
	it II	IoT DESIGN & SYSTEM MANAGEMENT		9	0	0	9	
		Machine to Machine, Difference between IoT & M2M,			ork, Ne	twork f	unction	
		oT system management – SNMP, NETCONF, YANG, IoT De	esign methodology.		1	1	1	
	it III	IOT PROTOCOLS & SYSTEM TTP, UPnP, CoAP, MQTT, XMPP. IoT systems logical de		9	0	0	9	
	HTTP &	rol flow, functions or modules. Modules & package of pyt URL Lib, SMTP Lib. Exemplary Device: Raspberry Pi - Lir		-				
Un	it IV	IoT CLOUD & DATA ANALYTICS		9	0	0	9	
Introdu	uction to	Cloud storage Models - WAMP - Xively Cloud for IoT -	- Python Web App	olication	n Frame	work-D	jango –	
Design	ing a RE	STful based Web API. Data Analytics for IoT – Apache Hado	oop, Apache Oozie.					
Un	it V	IoT SECURITY		9	0	0	9	
		ase attacks, Attacks as per architecture, Attacks based on con						
•		and Renewal - Security access algorithms for unidirectional ta transmissions.	data transmissions,	Securit	ty access	s algorit	hms for	
				Total	(45 L)	= 45 H	Periods	
Тех	t Books	:						
1	Arshdee Limited	ep Bahga, Vijay Madisetti, "Internet of Things - A hand on app , 2014	proach", Universitie	es Press	(India)	Private		
2		Raj, Anupama C. Raman, "The Internet of Things – Enabling aylor & Francis Group, 2017.	Technologies, Plat	forms a	and Use	cases",	CRC	
Refe	rence B	ooks:						
1	William	Stallings, Lawrie Brown, "Computer Security: Principles and	Practice", Third E	dition,	Pearson,	, 2014.		
	1							

W/:11: C4-11:	I Duran	"C	· Ci+	Duinain	1		Thind D.	1:4: D		2014
William Stallings,	Lawrie Brown,	Computer	security:	. Princip	nes and Pl	ractice,	Third EC	nuon, r	earson, 2	2014.

2	Fei Hu, "Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations," 1st edition, CRC Press, 2016.
3	Rajkumar Buyya, "Internet of Things – Principles and Paradigms", Published by Morgan Kaufmann, Elsevier, 2016.
	Introduction to IoT Paperback – 31 January 2022 by Sudip Misra , Anandarup Mukherjee, Arijit Roy Cambridge University Press
e-Re	ference:
1	https://www.oracle.com/in/internet-of-things/what-is-iot/
2	https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html
3	https://aws.amazon.com/what-is/iot/

	Course Outcomes: Upon completion of this course, the students will be able to:		
CO1	O1 Understand the concepts and design of cognitive radios.		
CO2	Study about the SDR architecture and analysis.	Remember	
CO3	Analyse the various cognitive radio network architectures and network security.	Analyse	
CO4	To analyse the performance of MAC and network layer design for cognitive radio.	Analyse	

COs/POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	1	2	2	1	2			
CO2	1	2	1	1	2			
CO3	2	2	2	1	1			
CO4	2	2	2	2	1			
Avg	1.5	2	1.75	1.25	1.5			
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)								

22C	OE63	VLSI FOR WIRELESS COMMUNIC	ATION		er	III	
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1		erstand the concepts of basic wireless communication concepts	5.				
2		gn low noise amplifiers, mixers and various types of mixers do		s comn	unicati	on.	
3		gn PLL and VCO and to understand the concepts of back end	-				ceiver
-	in wire	less communication.			1		1
Ur	nit I	WIRELESS COMMUNICATION CONCEPTS		9	0	0	9
		Overview of Wireless systems – Standards – Access Metho el description – Path loss – Multipath fading – Standard Transl		scheme	s – Cla	ssical cl	nannel –
Un	;+ TT	RECEIVER ARCHITECTURE AND LOW NOISE	1	9			
Un	Unit II AMPLIFIERS				0	0	9
Receiv	er front	end – Filter design – Non-idealities – Design parameters	– Noise figure an	d Inpu	t interc	ept poi	nt. LNA
Introdu	uction – V	Videband LNA design – Narrow band LNA design: Impedance	e matching and Co	re ampl	ifier.		
Uni	it III	MIXERS		9	0	0	9
Balan	cing Mix	ter - Qualitative Description of the Gilbert Mixer - Conversion	n Gain – Distortion	1 – Noi	se - A (Complet	e Active
Mixe	r - Switcl	ning Mixer – Distortion, Conversion Gain and Noise in Unbal	anced Switching N	/lixer -	A Pract	tical Un	balanced
Switc Mixe	•	xer - Sampling Mixer - Conversion Gain, Distortion, Intrinsi	c and Extrinsic No	oise in	Single	ended s	ampling
	it IV	FREQUENCY SYNTHESIZERS		9	0	0	9
PLL –	Phase de	etector – Dividers – Voltage Controlled Oscillators – LC osc	illators – Ring Os		-		
		gn approaches – A complete synthesizer design example (I	-				-
divider							
•••	• 4 • 7	TRANSMITTER ARCHITECTURES AND POWE	R				
Un	it V	AMPLIFIERS		9	0	0	9
Transn	nitter bac	k end design – Quadrature Local Oscillator generator – Power	amplifier design.			1	1
				Tota	(45 L)) = 45	Periods
Tex	t Books	:					
1	Bosco F	I Leung "VLSI for Wireless Communication", Pearson Educat	ion, 2002.				
1		5 ,	,				
2	B.Razav	vi, "RF Microelectronics", Prentice-Hall communication engin	neering and emergi	ng tech	nologie	s series,	2012.

Reference Books:

1	Behzad Razavi, "Design of Analog CMOS Integrated Circuits" McGraw-Hill, 1999
-	Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI wireless design – Circuits & Systems", Kluwer Academic Publishers, 2000.

3	Crols and M. Steyaert, "CMOS Wireless Transceiver Design," Boston, Kluwer Academic Pub., 1997					
4	Thomas H.Lee, "The Design of CMOS Radio – Frequency Integrated Circuits", Cambridge University Press, 2003.					
e-Re	e-Reference:					
1	https://nptel.ac.in/courses/117104099/					
2	http://www.nptelvideos.in/2012/12/wireless-communication.html					
3	http://videos.gitam.edu/nptel/ece.html					

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the fading concepts	U
CO2	Design Low Noise amplifier and Mixers.	А
CO3	Evaluate the performance of Frequency synthesizers.	А
CO4	Design and analyze Power amplifiers.	А

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1	1	2	1	2
CO2	1	1	2	1	2
CO3	1	1	2	1	2
CO4	1	1	2	1	2
Avg	1	1	2	1	2
3/2/1	- indicates stre	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22C0	OE64	CRYPTOGRAPHY AND NETWORK S	ECURITY	Semester			III	
PRER	EQUIS	ITES	Category	PE Credit			3	
				L	Т	Р	TE	
			Hours/Week		0	0	3	
Cours	e Learn	ing Objectives						
1		erstand \cdot the importance and goals of communication network a vertice of attacks.	and information sec	curity a	nd intro	duce the	em to	
2	authent			-		•	d	
3		preciate the practical aspects of security features design and the tworking domains.	eir implementation	in wire	d and w	ireless		
Un	nit I	INTRODUCTION ON SECURITY		9	0	0	9	
Traditio		Cryptographic attacks, Security services and mechanisms metric-Key Ciphers: Substitution Ciphers and Transposition C SYMMETRIC AND ASYMMETRIC KEY ALGOR	Ciphers, Mathemati				ograph	
Traditio Un i	onal Sym it II	metric-Key Ciphers: Substitution Ciphers and Transposition C	Ciphers, Mathemati	cs for C 9	Cryptogr 0	aphy.	9	
Traditio Uni Introdu RC4, P	onal Sym it II action to principle o	SYMMETRIC AND ASYMMETRIC KEY ALGOI Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem.	Ciphers, Mathemati RITHMS ds (DES), Advance	cs for C 9 ed Encry	O yption S	o 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 (AES	
Traditio Uni Introdu RC4, P Uni	it II iction to rinciple o t III	Immetric-Key Ciphers: Substitution Ciphers and Transposition C SYMMETRIC AND ASYMMETRIC KEY ALGOI Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA	Ciphers, Mathemati RITHMS ds (DES), Advance	es for C 9 ed Encry 9	O yption S	o 0 0 0 0 0	9 1 (AES 9	
Traditio Uni Introdu RC4, P Uni Messa	it II iction to rinciple o t III age Integ	Immetric-Key Ciphers: Substitution Ciphers and Transposition C SYMMETRIC AND ASYMMETRIC KEY ALGOI Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA grity, Hash functions: SHA 512, Whirlpool, Digital signatu	Ciphers, Mathemati RITHMS ds (DES), Advance	es for C 9 ed Encry 9	O yption S	o 0 0 0 0 0	9 1 (AES 9	
Traditic Uni Introdu RC4, P Uni Messa Entity	it II action to trinciple o t III age Integ Authent	Immetric-Key Ciphers: Substitution Ciphers and Transposition C SYMMETRIC AND ASYMMETRIC KEY ALGOI Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA grity, Hash functions: SHA 512, Whirlpool, Digital signatu tication: Biometrics, Key management Techniques.	Ciphers, Mathemati RITHMS ds (DES), Advance NAGEMENT res: Digital signat	es for C 9 ed Encry 9 ure star	o yption S o ndards.	aphy. 0 tandard Authen	9 1 (AES 9 tication	
Traditio Uni Introdu RC4, P Uni Messa Entity Uni	it II iction to rrinciple of t III age Integ v Authent it IV	 SYMMETRIC AND ASYMMETRIC KEY ALGOR Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA grity, Hash functions: SHA 512, Whirlpool, Digital signatu tication: Biometrics, Key management Techniques. NETWORK SECURITY, FIREWALLS AND WEE 	Ciphers, Mathemati RITHMS ds (DES), Advance ANAGEMENT res: Digital signat B SECURITY	es for C 9 ed Enery 9 ure star 9	0 yption S 0 ndards.	aphy. 0 tandarc 0 Authen 0	9 1 (AES 9 tication 9	
Traditio Uni Introdu RC4, P Uni Messa Entity Uni Introdu	it II iction to rrinciple of t III age Integ v Authent it IV iction on	 SYMMETRIC AND ASYMMETRIC KEY ALGOI SYMMETRIC AND ASYMMETRIC KEY ALGOI Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA grity, Hash functions: SHA 512, Whirlpool, Digital signatu tication: Biometrics, Key management Techniques. NETWORK SECURITY, FIREWALLS AND WEF Firewalls, Types of Firewalls, IP Security, E-mail security: PO 	Ciphers, Mathemati RITHMS ds (DES), Advance ANAGEMENT res: Digital signat B SECURITY	es for C 9 ed Encry 9 ure star 9 securit	0 yption S o ndards. y: SSL-7	aphy. 0 tandarc 0 Authen 0 FLS, SI	9 I (AES tication 9 ET.	
Traditio Uni Introdu RC4, P Uni Messa Entity Uni Introdu	it II iction to rrinciple of t III age Integ v Authent it IV iction on it V	 SYMMETRIC AND ASYMMETRIC KEY ALGOR Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA grity, Hash functions: SHA 512, Whirlpool, Digital signatu tication: Biometrics, Key management Techniques. NETWORK SECURITY, FIREWALLS AND WEF Firewalls, Types of Firewalls, IP Security, E-mail security: PO WIRELESS NETWORK SECURITY 	Ciphers, Mathemati RITHMS ds (DES), Advance ANAGEMENT res: Digital signat B SECURITY GP- S/MIME, Web	es for C 9 ed Encry 9 ure star 9 security 9	0 yption S o ndards. y: SSL-7 0	aphy. 0 tandarc 0 Authen 0 TLS, SI 0	9 1 (AES 9 tication 9 ET. 9	
Traditio Uni Introdu RC4, P. Uni Messa Entity Uni Introdu Uni Security	it II action to rrinciple o t III age Integ Authent it IV action on it V y Attack	 SYMMETRIC AND ASYMMETRIC KEY ALGOI SYMMETRIC AND ASYMMETRIC KEY ALGOI Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA grity, Hash functions: SHA 512, Whirlpool, Digital signatu tication: Biometrics, Key management Techniques. NETWORK SECURITY, FIREWALLS AND WEE Firewalls, Types of Firewalls, IP Security, E-mail security: PO WIRELESS NETWORK SECURITY issues specific to Wireless systems: Worm hole, Tunneling, I 	Ciphers, Mathemati RITHMS ds (DES), Advance ANAGEMENT res: Digital signat B SECURITY GP- S/MIME, Web DoS. Security for W	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 yption S 0 ndards. 0 y: SSL-7 0 Security	aphy. 0 tandarc 0 Authen 0 FLS, SI 0 for Br	9 1 (AES 9 ticatio 9 ET. 9 oadbar	
Traditio Uni Introdu RC4, P. Uni Messa Entity Uni Introdu Uni Security	it II action to rrinciple o t III age Integ Authent it IV action on it V y Attack	 SYMMETRIC AND ASYMMETRIC KEY ALGOR Block Ciphers and Stream Ciphers, Data Encryption Standard of asymmetric key algorithms, RSA Cryptosystem. INTEGRITY, AUTHENTICATION AND KEY MA grity, Hash functions: SHA 512, Whirlpool, Digital signatu tication: Biometrics, Key management Techniques. NETWORK SECURITY, FIREWALLS AND WEF Firewalls, Types of Firewalls, IP Security, E-mail security: PO WIRELESS NETWORK SECURITY 	Ciphers, Mathemati RITHMS ds (DES), Advance ANAGEMENT res: Digital signat B SECURITY GP- S/MIME, Web DoS. Security for W	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 yption S 0 ndards. 0 y: SSL-7 0 Security	aphy. 0 tandarc 0 Authen 0 FLS, SI 0 for Br	9 1 (AES 9 ticatio 9 ET. 9 oadbar	

Tex	t Books:
1	Behrouz A. Forouzan ,"Cryptography and Network security", 3e, McGraw-Hill, 2015
2	William Stallings, "Cryptography and Network security: principles and practice", Prentice Hall of India, New Delhi, 7 th Edition,2017
Refe	rence Books:
1	Atul Kahate, "Cryptography and Network security", Tata McGraw-Hill, 4th Edition, 2019.
2	R.K.Nichols and P.C. Lekkas ,"Wireless Security: Models , threats and Solutions", McGraw- Hill, 2001.
3	S.Bose, P.Vijayakumar, "Cryptography and Network security", Pearson, 2017.
4	S.Musa, "Network Security and Cryptography", Mercury Learning and Information LLC, 2018.

e-Re	e-Reference:				
1	"Security of Wireless Ad Hoc Networks," http://www.cs.umd.edu/~aram/wireless/survey.pdf				
2	Introduction to side channel attacks – http://gauss.ececs.uc.edu/Courses/c653/lectures/SideC/intro.pdf.				
3	https://nptel.ac.in/courses/106105162				

Course Outcomes: Upon completion of this course, the students will be able to:		Bloom's Taxonomy Level
CO1	Demonstrate an understanding of the ways in which communication network security may get compromised and the basic principles of security algorithm design.	Understand
CO2	CO2 Familiar with the different types of security attacks, approaches to handling security and the algorithms in use for maintaining data integrity and authenticity.	
CO3	Implement and analyse the different algorithms and compare their performances.	Analyze
CO4	CO4 Appreciate the practical aspects of security features design and their implementation in wired and wireless internetworking domains.	

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1		1	1	1
CO2	2		2	2	2
CO3	3	1	2	3	2
CO4	2	1	2	2	2
Avg	2	0.5	1.75	2	1.75
3/2/	1 - indicates stre	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22C0	COE71 REMOTE SENSING Semester		er	III			
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
	Hours/Week		L	Т	Р	TH	
			3	0	0	3	
Cours	e Learn	ing Objectives					
1	To intro	oduce remote sensing systems					
2	To gain	knowledge on image processing techniques for remote sensir	ıg				
3	To know	w various applications of remote sensing					
Un	it I	INTRODUCTION AND BASIC CONCEPTS OF R SENSING SYSTEMS	EMOTE	9	0	0	9
Spectru	m, Energ	asic concepts of remote sensing, Airborne and space born so gy sources and radiation principles, Energy interactions in the erspectral sensing, Remote sensing satellites and their features	e atmosphere, with				
Uni	it II	IMAGE PROCESSING SYSTEM AND DISPLAY		9	0	0	9
Image l	Processin	g System Characteristics, The Histogram and Its Significance	, Univariate, Multi	variate	Image S	statistics	, Black-
and-Wh	nite Hard	-Copy Image Display, Temporary Video Image Display, Me	rging Different Ty	pes of F	Remotel	y Sense	d Data ,
Transfo	orming V	ideo Displays to Hard-Copy Displays.					
Uni	t III	IMAGE PREPROCESSING		9	0	0	9
CORF	RECTION	N AND ENHANCEMENT: Radiometric Correction, Geom	etric Correction of	f Remo	te Sens	or Data	, Image
		Magnification, Contrast Enhancement, Band Ratioing, Spatia	al Filtering to Enha	nce Lov	w- and]	High-Fro	equency
Detail	and Edg	es, Texture Transformations.		1	1		
Uni	t IV	THEMATIC INFORMATION EXTRACTION AN	D DIGITAL	9	0	0	9
		IMAGE CLASSIFICATION			Ĩ	-	
-		ation, Supervised Classification, The Classification Stage, T		-			
-		cation, Classification of Mixed Pixels, The Output Stage and		-			
		Classification, Classification Accuracy Assessment, Chang	ge Detection, Imag	ge Time	e Series	Analys	is, Data
		integration.					
	it V	CASE STUDY: APPLICATIONS OF REMOTE SH		9	0	0	9
		nd Use/Land Cover Mapping, Geologic and Soil Mapping				• • • •	
_		blications, Water Resource Applications, Snow and Ice retland Mapping, Wildlife Ecology Applications, Archaeologic		roan ai	na keg	jional P	lanning
Applica	utoris, w	enand Mapping, whome Ecology Applications, Archaeologi	cal Applications.		· • • • • •		
				Total	(45 L)	= 45 I	Periods
Tex	t Books	:					
1	John R.	Jensen, "Introductory Digital Image Processing: A Remote Se	ensing Perspective"	, Pearso	on, 2017	7.	
2	Thomas	Lillesand, Ralph W. Kiefer, Jonathan Chipman,"Remote Sens	sing and Image Inte	erpretati	ion" , W	viley, 20	17
2	inomas	Enterna, Kaiph W. Kerer, Johanan Chiphan, Kenote Sen	and mage mit	Protati	.511 , 11	y, 20	± /

1	Gonzalez Rafael C and Woods Richard E, "Digital Image Processing", 4th Ed., Pearson, 2018.
2	Richards John A & Xiuping Xia, "Remote Sensing Digital Image Analysis: An Introduction", Springer-Verlag, 2013
3	Robert Grier Reeves, "Manual of Remote Sensing", American Society of Photogrammetry , 2007.
4	Samantha Lavender, Andrew Lavender, "Practical handbook of remote sensing", CRC Press, 2017.
e-Re	ference:
1	https://oceanservice.noaa.gov/facts/remotesensing.html
2	https://gisgeography.com/remote-sensing-earth-observation-guide/
3	https://nptel.ac.in/courses/105103193

Cours Upon o	Bloom's Taxonomy Level	
CO1	Understand the basics of remote sensing systems.	Understand
CO2	Apply image processing techniques in the area of remote sensing.	Apply
CO3	Extract and analyse thematic information using image analysis techniques	Apply
CO4	Implement various remote sensing applications using the learnt technique.	Apply

COs/POs	PO1	PO2	PO3	PSO1	PSO2			
CO1	1		1	1	1			
CO2	2		2	1	1			
CO3	2	1	2	2	2			
CO4	2	1	2	2	2			
Avg	1.75	0.5	1.75	1.5	1.5			
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)								

22COE72 WAVELET SIGNAL PROCESSING Semester				er			
PRER	EQUIS	ITES	Category		Credit		
			Hours/Week	L	Т	P	TH
Cours	e Learn	ing Objectives					
1	To exp	ose the students to the basics of wavelet theory.					
2	To illus	strate the use of wavelet processing for data compression.					
3	To exp	ose the students to use the wavelet processing for noise suppres	ssion.				
Un	nit I	WINDOWED FOURIER TRANSFORM		9	0	0	9
Wavele algorith		Balian-Low theorem. Multiresolution analysis. (MRA). Cor	nstruction of wave	lets fr	om MR	A. Fast	wavelet
-	it II	WAVELET TRANSFORM		9	0	0	9
Hilbert		borted wavelets. Cascade algorithm. Franklin and spline wavele ames. Frame representation. Representation of signals by frame n.			n.		1
Uni	t III	WAVELET PACKETS		9	0	0	9
Hilbert		orted wavelets. Cascade algorithm. Franklin and spline wavele ames. Frame representation. Representation of signals by frame			n.		
	it IV	NOISE SUPPRESSION		9	0	0	9
		Is for signal processing. Noise suppression. Representation of on from corrupted frame representation.	noise-corrupted si	gnals ı	using fra	ames. A	lgorithm
Un	it V	WAVELET METHODS FOR IMAGE PROCESSIN	NG	9	0	0	9
Wavele	et metho	ds for image processing. Burt- Adelson and Mallat's pyrami	dal decomposition	scher	nes. 2D	-dyadic	wavelet
transfo	rm.						
				Tota	l (45 L)) = 45	Periods
Tex	t Books	:					
1	E.Herna	ndez & G.Weiss, A First Course on Wavelets, CRC Press, 199	6.				
2	2 L.Prasad & S.S.Iyengar, Wavelet Analysis with Applications to Image Processing, CRC Press, 1997.						
Refe	rence B	ooks:					
1	.Fundan	nentals of Wavelets: Theory, Algorithms, and Applications, J.C	C. Goswami and A.	K. Ch	an, 2nd	ed., Wil	ey, 2011

Refer	rence Books:
1	.Fundamentals of Wavelets: Theory, Algorithms, and Applications, J.C. Goswami and A.K. Chan, 2nd ed., Wiley, 2011
2	R.M. Rao & A.S. Bopardikar, Wavelet Transforms, Addition Wesley, 1998.
3	J.C. Goswami & A.K. Chan, Fundamentals of Wavelets, John Wiley, 1999.
4	K. P. Soman, K. I. Ramachandran, "Insight into Wavelets: From Theory to Practice", Third Edition, PHI, 2004.

e-Reference:			
1	https://web.stanford.edu/class/energy281/WaveletAnalysis.pdf		
2	https://nptel.ac.in/courses/117101123		
3	https://nptel.ac.in/courses/108101093		

Course Outcomes: Upon completion of this course, the students will be able to:		Bloom's Taxonomy Level
CO1	Understand about windowed Fourier transform and difference between windowed Fourier transform and wavelet transform.	Understand
CO2	Understand wavelet basis and characterize continuous and discrete wavelet transforms	Understand
CO3	Understand multi resolution analysis and identify various wavelets and evaluate their time- frequency resolution properties	Apply
CO4	Design certain classes of wavelets to specification and justify the basis of the application of wavelet transforms to different fields.	Analyse

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	1			1	1
CO2	1			1	1
CO3	2			2	2
CO4	2			2	2
Avg	1.5			1.5	1.5
3/2/1 -	indicates stren	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22COE73 BIO MEMS Semester				er	II		
PRER	EQUIS	SITES	Category	PE	Cr	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learr	ning Objectives	I		1		
1	To tra	in the students in the design aspects of Bio MEMS devices an	d Systems.				
2	To ma	ake the students aware of applications in various medical speci	ialists.				
3	To aw	vare the students to compare the conventions methods and Bio	MEMS usage.				
Unit I BIO MEMS-INTRODUCTION AND FABRICATION		9	0	0	9		
		e driving force behind Biomedical Applications – Biocomp – Organizations - Education of Bio MEMS-Silicon Micro Fab					gularity
Uni	Unit II MICRO FLUIDIC PRINCIPLES		9	0	0	9	
Introdu	ction-Tr	ansport Processes- Electro kinetic Phenomena-Micro valves –	Micro mixers- Mic	ro pumj	ps.		
Uni	Unit III SENSOR PRINCIPLES and MICRO SENSORS			9	0	0	9
Introd	luction-F	Pabrication-Basic Sensors-Optical fibers - Piezo electricity	and SAW device	s-Elect	rochem	ical det	ection -
Appli	cations i	n Medicine.					
Uni	t IV	MICRO ACTUATORS and DRUG DELIVERY		9	0	0	9
Introdu	ction-Ac	ctivation Methods-Micro actuators for Micro fluidics-equivale	nt circuit representa	tion-D	rug Deli	ivery	•
Uni	it V	MICRO TOTAL ANALYSIS			0	0	9
Lab on	Chip-C	apillary Electrophoresis Arrays-cell, molecule and Particle F	Handling-Surface M	Iodifica	tion- N	licrosph	ere-Cell
based E	Bioassay	Systems. Detection and Measurement Methods-Emerging Bio	MEMS Technolog	gy-Pack	aging, l	Power, I	Data and
RF Safe	ety-Bioc	ompatibility, Standards.					
				Total	(45 L)	= 45 1	Periods
Tor	+ Dools	-					
Tex	t Books						
1	Steven	S. Saliterman, Fundamentals of Bio MEMS and Medical Micro	o devices, Wiley In	terscier	nce, 200	6.	
2	G.T. A.	Kovacs, "Micro machined Transducers Sourcebook", 1998.					

Refe	Reference Books:			
1	Albert Folch, Introduction to Bio MEMS, CRC Press, 2012.			
2	Gerald A. Urban, Bio MEMS, Springer, 2006.			
3	Wanjun wang, steven A. Soper, Bio MEMS, 2006.			
4	M. J. Madou, "Fundametal of Micro fabrication", 2002.			
e-Re	ference:			

1	https://nptel.ac.in/courses/112104181/
2	https://nanohub.org/resources/992/download/2005.02.07-Bashir1.pdf
3	https://spie.org/samples/PM153.pdf

Course Outcomes: Upon completion of this course, the students will be able to:		Bloom's Taxonomy Level
CO1	Understand the MEMS fabrication processes and characteristics of various materials.	Understand
CO2	Specify the design issues related to different types of sensors and actuators at micro scale level.	Remember
CO3	Understand the methods of actuation of fluids at micro level.	Understand
CO4	Learn the principles of Micro Actuators and Drug Delivery system and applications of Micro Total Analysis and Apply various procedures for the design of MEMS devices for healthcare applications	Apply

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PSO1	PSO2
CO1	2	1	3	3	2
CO2	1	1	3	3	2
CO3	1	1	2	3	2
CO4	2	1	2	3	2
Avg	1.5	1	2.5	3	2
3/2/1 -	indicates strer	ngth of correla	tion (3-High,2	- Medium,1- Low)	

22COE74 BIG DATA TECHNOLOGIES Semester		er	III				
PRER	REQUIS	ITES	Category	PE	PE Credit		3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					<u> </u>
1	To gain	n insights on big data analytics					
2	To use	Hadoop on suitable real time applications and explore Cassan	dra, Hive and Pig				
3	To perf	form Map, Reduce and solve a real time problem involving dat	abases like Mongo	DB			
Un	nit I	INTRODUCTION		9	0	0	9
Preven	t Busines	l Data – Introduction to Big Data - Big Data Analytics - clas ses from Capitalizing on Big Data - Top Challenges Facing B Ferminologies Used in Big Data Environment - Few Top Anal	ig Data - Why is B				
Un	it II	HADOOP		9	0	0	9
The big	g data tec	chnology landscape – NoSQL – Hadoop - Introduction to Hadoop - Introduc	doop - RDBMS ve	rsus Ha	idoop -	RDBMS	s versus
Hadooj	p - Hado	op Overview - Hadoop Distributed File System - Processin	g Data with Hado	op - M	anaging	Resour	ces and
Applic	ation witl	h Hadoop YARN - Hadoop Ecosystem					
Uni	it III	MAP REDUCE & MONGODB		9	0	0	9
Introdu	iction to	Map reduce Programming- Introduction to MongoDB - What	is MongoDB? - W	hy Mo	ngoDB	? - RDB	MS and
Mongo	DB - Da	ta Types in MongoDB – MongoDB Query Language					
Uni	it IV	CASSANDRA AND HIVE		9	0	0	9
Introdu	ction to	Cassandra - Features of Cassandra - CQL Data Types - CQ	LSH – Key spaces	- CRL	JD – lle	ctions –	Alter -
Import	and Exp	ort – querying system tables Hive Architecture - Hive Data T	ypes - Hive File F	ormat -	Hive Q	uery La	nguage-
RC File	e Implem	entation – SerDe – User Defined Functions					
Un	it V	PIG AND CASE STUDIES		9	0	0	9
Introduction to Pig - The Anatomy of Pig - Pig on Hadoop - Pig Latin Overview - Data Types - Running Pig - Execution Modes of Pig - HDFS Commands - Relational operators - Eval Function - Complex Data Type - User Defined Function - parameter Substitution - Diagnostic Operator - Word Count Example - When to use Pig? - When NOT to use Pig? - Pig versus Hive - Reporting tool – Trends – Case studies: Walmart: How Big Data is used to drive supermarket performance –Netflix: How Netflix used Big Data to give us the programmes we want.							
Total (45 L) = 45 Periods							
T	(D]						
Tex	t Books						
1 Seema Acharya, Subhashini Chellappan, "Big Data and Analytics", Wiley Publication, first edition. Reprint in 2016.							
2		Marr, "Big Data in Practice: How 45 Successful Companies V , Wiley Publication, First edition, 2016.	Used Big Data Ana	lytics to) Delive	r Extrao	rdinary
Refe	rence B	ooks:			-		

1 DT Editorial Services, "Black Book- Big Data (Covers Hadoop 2, MapReduce, Hive, Yarn, PIG, R, Data visualization)", Dream tech Press edition 2016.

2	Radha Shankarmani, M Vijayalakshmi, "Big Data Analytics", Wiley Publications, First Edition 2016 .
5	Nathan Marz,James Warren, Big Data: Principles and best practices of scalable realtime data systems 1st Edition, Manning
4	Leskovec, Rajaraman, Ullman, Mining of Massive Datasets, Cambridge University Press.
e-Re	ference:
1	https://www.coursera.org/learn/big-data-emerging-technologies
2	https://onlinecourses.nptel.ac.in/noc21_cs86/preview
3	(339) Big Data & Hadoop Full Course - Learn Hadoop In 10 Hours Hadoop Tutorial For Beginners Edureka - YouTube

Cours Upon o	Bloom's Taxonomy Level	
CO1	Describe Big Data Analytics	R
CO2	Practically implement Hadoop on suitable real time applications with MONGODB	А
CO3	Perform Map Reduce and solve a real time problem using Cassandra, Hive or Pig	А
CO4	Understand how Big Data is used in real world to solve problems	U

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PSO1	PSO2		
CO1	2		2		2		
	Z		L		L		
CO2	2		2	1	2		
CO3	2		2		2		
CO4	2	2	2	1	2		
Avg	2	0.5	2	0.5	2		
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)							

AUDIT COURSE

22AC01	AC01 ENGLISH FOR RESEARCH PAPER WRITING		SEMESTER I/II			Ι
PREREQUI	SITES	CATEGORY	PE	Cre	edit	0
Hours/Week		L	Т	Р	TH	
	110u15/ Week					
COURSE O	BJECTIVES:					
1. To help t	ne learners to realize the necessity of English in writing a Research paper					
	the learners to write different sections of a research paper					
3. To train t	he learners to become better writers of research papers					
UNIT I			6	0	0	6
Research pape	r and its importance, Structure of a research paper, Planning and preparatio	n.				
UNIT II			6	0	0	6
English in rese	arch papers, Basic word order, Collocation, Being concise, Redundancy, C	ommon errors.				
UNIT III			6	0	0	6
Key factors that	tt determine the style of a paper, Journal's background, Passive form, Right	t tense forms, Coł	nesion an	d coh	nerenc	e.
UNIT IV			6	0	0	6
Hedging and criticizing, Paraphrasing, Plagiarism, Ensuring quality of the paper and Useful phrases.						
UNIT V			6	0	0	6
Key skills in writing Title, Abstract, Introduction, Review of Literature, Discussion and Conclusion, Highlighting findings.						
		То	tal(30L	$) = \overline{3}$	0 Pe	riods

REFERENCE BOOKS:				
1.	Adrian Wallwork, "English for Writing Research Papers," Springer New York Dorecht Heidelberg London, 2016			
2	Howe, Stephen. "Phrase Book for Writing papers and Research in English," Cambridge University Press, 2012.			
3	Goldbort R. "Writing for Science," Yale University press, 2006.			
4	Gabor L Lovei. "Writing and Publishing Scientific Paper," Open Book Publishers, 2021			

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	understand and appreciate the role of English in writing a good research paper	Understand
CO2	apply their knowledge in writing a research paper	Apply
CO3	analyze and assess the quality of their research paper	Analysis

22AC02	DISASTER MANAGEMENT		SEM	IEST	ER	I/II
PREREQUI	SITES	CATEGORY	PE	Cre	edit	0
		Hours/Week	L	Т	Р	TH
			2	0	0	2
	BJECTIVES		. 11	1	. 1	• •
	ical understanding of key concepts in disaster risk reduction and humanitaria and humanitarian response policy and practice from multiple perspectives.					
	response and practical relevance in specific types of disasters and conflict					
	disaster management approaches. Planning and programming in different co					
the countries t		, r				
UNIT I	INTRODUCTION		4	0	0	4
Disaster: Defi	nition, Factors And Significance; Difference Between Hazard And Dis	aster; Natural And	d Man	made	Dis	asters:
	ture, Types And Magnitude.	,				
	Areas in India: Study of Seismic Zones; Area Prone to floods and droughts,		lanches	; Are	as pr	one to
cyclonic and c	oastal hazards with special reference to Tsunami; Post- Disaster diseases and e	epidemics.				
UNIT II	REPERCUSSIONS OF DISASTERS AND HAZARDS		4	0	0	4
Economia De	mage, Loss of Human And Animal Life, Destruction of Ecosystem. Nat	ural Disastars: Ea	ethquak	ac V	Voloo	iama
	namis, Floods, Droughts And Famines, Landslides And Avalanches, Man-n					
	dents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And		iour ree	uetor	wien	uo w 11,
UNIT III	DISASTER PREPAREDNESS AND MANAGEMENT		4	0	0	4
Preparedness:	Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of R	isk. Application Of	f Remo	te Sei	nsino	Data
	logical And Other Agencies, Media Reports: Governmental And Community				151115	, Duiu
UNIT IV	RISK ASSESSMENT	1	4	0	0	4
	Concept And Elements, Disaster Risk Reduction, Global And National Di	saster Risk Situatio		*	•	
	Global Co-Operation In Risk Assessment And Warning, People's Particip					
Survival.					U	
UNIT V	DISASTER MITIGATION		4	0	0	4
Meaning. Con	cept And Strategies of Disaster Mitigation, Emerging Trends In Mitigation.	Structural Mitigat	ion and	l Nor	1-Stru	ictural
	ograms of Disaster Mitigation In India.	U				
		Το	tal(20]	() = 2	20 Pe	riods
		10		_, _		
REFERENCE	BOOKS:					
, R. Nishi	h, Singh AK 2012 Disaster Management in India:Perspectives, issues an	d strategies New	Royal	Book	Coi	npany
1 Lucknow		-	2			

	Eddinow
2	Sahni, PardeepEt.Al. (Eds.) 2002 Disaster Mitigation Experiences And Reflections. Prentice Hall Of India, New Delhi.

COUR On cor	Bloom's Taxonomy Mapped	
CO1	Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.	Understand
CO2	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.	Evaluate
CO3	develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations	Create
CO4	Critically understand the strengths and weaknesses of disaster management approaches.	Understand

22AC03	22AC03 SANSKRIT FOR TECHNICAL KNOWLEDGE			SEMESTER			
PREREQU	PREREQUISITES CATEGORY			Cr	edit	0	
	п	Hours/Week		Т	Р	TH	
	п			0	0	2	
COURSE (OBJECTIVES						
functioning.	orking knowledge in illustrious Sanskrit, the scientific language in the world Learning Sanskrit to develop logic in mathematics, science & other subjec scholars equipped with Sanskrit will be able to explore the huge knowledge from a ALPHABETS	ets enhances the		ory p			
01.111	Sanskrit –Past/Present/Future Tense –Simple Sentences.			U	v	U	
UNIT II	LITERATURE		8	0	0	8	
Order –Intro	duction of roots – Technical information about Sanskrit Literature						
UNIT III	CONCEPTS		8	0	0	8	
Technical co	ncepts of Engineering-Electrical, Mechanical, Architecture, Mathematics						
		Tot	al(24I	L)= 2	4 Pe	riods	

REFERENCE BOOKS:

1	"Abhyasa Pustakam"- Dr. Vishwas, Samskrita- Bharati Publication, New Delhi
2	"Tech Yourself Sanskrit" PrathamaDeeksha-Vempatikutumbshastri,Rashtriya Sanskrit Sansthan,New Delhi Publication
3	India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understanding basic Sanskrit language	Understand
CO2	Ancient Sanskrit literature about science & technology can be understood	Remembering
CO3	Being a logical language will help to develop logic in students	Apply

22AC04	VALUE EDUCATION	SEM	ES T	FER	I/II
PREREQUIS	TES CATEGORY	PE	Cr	edit	0
		L	Т	Р	TH
	Hours/Week	2	0	0	2
COURSE OB.	JECTIVES		•		
To understand th	ne Importance of value education and self-development. To imbibe good values in students and	d also	kno	w abc	ut th
importance of ch	naracter.				
UNIT I BAS	SIC VALUES	4	0	0	4
	ards and principles-Value judgements. ONFIDENCE	6	0	0	6
	ONFIDENCE cultivation of values- Sense of Duty-Devotion-Self-reliance-Confidence-Concentration-Tru	_	v	v	v
1	ity-Power of faith-National Unity-Patriotism-Love for nature-Discipline.	uunu	ness	Cicai	mmee
			•		
	ERSONALITY DEVELOPMENT	6	0	0	6
Personality and l and Kindness - friendship –Hap saving nature.	ERSONALITY DEVELOPMENT Behavior Development-Soul and Scientific attitude - Positive – Thinking - Integrity and disciplin Avoid fault Thinking - Free from anger - Dignity of labor - Universal brotherhood and relig piness Vs suffering –love for truth – Aware of self destructive habits- Association and Cooper	ne -Pu gious	nctua toler	ality – ance	6 - Lov -Tru
Personality and l and Kindness - friendship –Hap saving nature.	ERSONALITY DEVELOPMENT Behavior Development-Soul and Scientific attitude - Positive – Thinking - Integrity and disciplin Avoid fault Thinking - Free from anger - Dignity of labor - Universal brotherhood and relig	ne -Pu gious	nctua toler –Do	ality – ance	6 - Lov -Tru
Personality and l and Kindness - friendship –Hap saving nature. UNIT IV LO Character and C	ERSONALITY DEVELOPMENT Behavior Development-Soul and Scientific attitude - Positive – Thinking - Integrity and disciplin Avoid fault Thinking - Free from anger - Dignity of labor - Universal brotherhood and relig piness Vs suffering –love for truth – Aware of self destructive habits- Association and Cooper	ne -Pu gious ration 6	nctua toler –Do 0 tion	ality – ance ing b 0 –Equa	6 - Lov -Tru est fo 6 ality -

REFERENCE BOOKS:

1

Chakraborty, S.K. "Values and Ethics for Organization Theory and Practice", Oxford University Press, New Delhi, 1998.

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Knowledge of self-development	Understand
CO2	Learn the importance of Human values	Remembering
CO3	Developing the overall personality	Create

22AC05	CONSTITUTION OF INDIA		SEM	EST	ER I	/ II
PREREQU	ISITES CA'	FEGORY	PE	Cre	edit	0
	Ца	urs/Week	L	Т	Р	TH
		urs/ week	2	0	0	2
COURSE (DBJECTIVES					
Indian opinio emergence of	he premises informing the twin themes of liberty and freedom from a civil rights pon regarding modern Indian intellectuals' constitutional role and entitlement to civ f nationhood in the early years of Indian nationalism. To address the role of socialist c Revolution in 1917 and its impact on the initial drafting of the Indian Constitution.	il and econo	mic rigl	nts a	s well	as the
	HISTORY OF MAKING OF INDIAN CONSTITUTION		4	0	0	4
History, Draf	ting Committee (Composition & working)					
UNIT II	PHILOSOPHY OF THE INDIAN CONSTITUTION		4	0	0	4
Preamble, Sa	lient Features.					
UNIT III	CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES		4	0	0	4
	ORGANS OF GOVERNANCE composition, qualifications and disqualifications, powers and functions, execut liciary, appointment and transfer of judges, qualifications, powers and functions.	ive, presider	4 nt, gove	0 ernor	0 , cour	4 ncil of
UNIT V	LOCAL ADMINISTRATION		4	0	0	4
municipal co and role. Blo of grass root UNIT VI	hinistration head: role and importance, municipalities: introduction, mayor and ro rporation. Panchayati raj: introduction, PRI: zila panchayat. Elected officials and the ck level: organizational hierarchy (different departments), village level: role of elect democracy. ELECTION COMMISSION	eir roles, CEO) zila pa	ncha	iyat: p	osition
	nmission: role and functioning. Chief election commissioner and election commission	oners. State e		1	-	4 n: role
	amission: role and functioning. Chief election commissioner and election commission ng. Institute and bodies for the welfare of SC/ST/OBC and women.			com	missio	n: role
and functioni			election	com	missio	n: role
and functioni REFEREN 1 The Co	ng. Institute and bodies for the welfare of SC/ST/OBC and women. CE BOOKS: Onstitution of India, 1950 (Bare Act), Government Publication.		election	com	missio	n: role
and functioni REFEREN 1 The Co	ng. Institute and bodies for the welfare of SC/ST/OBC and women. CE BOOKS:		election	com	missio	n: role
and function REFEREN 1 The Co 2 Dr. S. I	ng. Institute and bodies for the welfare of SC/ST/OBC and women. CE BOOKS: Onstitution of India, 1950 (Bare Act), Government Publication.		election	com	missio	n: role

	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	CO1 Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics	
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	Understand
CO3	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution	Understand
CO4	Discuss the passage of the Hindu Code Bill of 1956.	Understand

22AC06	PEDAGOGY STUDIES		SEM	[/ II		
PREREQUISI	TES	CATEGORY	PE	Cre	edit	0
		Hours/Week	L	Т	Р	TH
		Hours/ Week	2	0	0	2
COURSE OBJ	IECTIVES					
To Review existing evidence on the review topic to inform programme design and policy making undertaken by the DFID, other agencies and researchers. Identify critical evidence gaps to guide the development.						
UNIT I			4	0	0	4
	le, Policy background, Conceptual framework and terminology, Theories ework, Research questions, Overview of methodology and Searching	of learning, Currici	ulum, T	Teache	er edu	ication,
UNIT II			2	0	0	2
Thematic overvi Curriculum, Teac	ew: Pedagogical practices are being used by teachers in formal and intereducation.	formal classrooms	in dev	elopir	ng co	untries,
UNIT III			4	0	0	4
Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.						
UNIT IV			4	0	0	4
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.						
UNIT V			2	0	0	2
	and future directions, Research design, Contexts, pedagogy, teache d research impact	r education, curri	culum	and	asse	ssment,
		T	otal(1	6L)=	16 P	eriods

REFERENCE BOOKS:

1	Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.			
2	Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3) 361-379.			
Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUS				
3	report 1. London: DFID			
4	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic math and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272-282.			
4	Does teacher preparation count? International Journal Educational Development, 33 (3): 272-282.			
5	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.			

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?	Create
CO2	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?	Understand
CO3	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?	Remembering

22AC07	2AC07 STRESS MANAGEMENT BY YOGA SE		SEM	SEMESTER I/		
PREREQUIS	EQUISITES CATEGORY PE		PE	Cr	edit	0
		Hours/Week		Т	Р	ТН
		Hours/ Week	2	0	0	2
COURSE OB.	COURSE OBJECTIVES					
To create a healt	hy, strong willed and intelligent young society through yoga practices.					
UNIT I	PHYSICAL AND MENTAL HEALTH		4	0	0	4
Pain and disease	- free life, Simplified Physical Exercise- Pranayama. Concentration on F	Pituitary gland- Practi	cal, Go	al fix	ing.	
UNIT II REJUVENATION OF LIFE FORCE AND WILL POWER		4	0	0	4	
Principle of kaya –Will power	kalpa yoga, mind, life force and Biomagnetism, Practical, Concentration	on Muladhara- Prac	tical, A	nalys	sis of	thought
UNIT III DEVELOPMENT OF VIRTUES		4	0	0	4	
Activation of Do	rmant Brain cells- Practical, Moralization of dezire and its classification,	Neutralization of Ar	nger, Re	esults	of ar	iger.
UNIT IV	STREAM LINING OF MIND		4	0	0	4
Definition of Mind-Worries, Eradication of Worries. The science behind blessings. Blessing techniques. Benefits, five basic duties						
UNIT V CAUSE AND EFFECT SYSTEM		4	0	0	4	
Law of nature, H	lereditary Imprints, Fivefold and Two-fold culture, good values and Reso	lution for world peac	ce .			
Total(24L)= 24 Periods						

REI	FERENCE BOOKS:	
1	"Thirukkural", Pearls of Inspiration, Translation by Rajaram, Publisher :RUPA	
2	"Bharathiyar Poems", Amazon Asia – Pacific Holdings Private Limited.	
3	"Yoga for Humane Excellence", Vethathiri Maharishi, Vision for Wisdom, Vethathiri Publications	
CO	URSE OUTCOMES:	Bloom's Taxonomy

	pletion of the course the student will be able to	Mapped
CO1	CO1 maintain good Physical health	
CO2	develop will power	Create
CO3	take quick and right decisions	Evaluate
CO4	maintain good relationship with everyone around them his creating a Health Society	Apply

22AC08	PERSONALITY DEVELOPMENT THROUGH LIFE		SEMESTER I/I				
	ENLIGHTENMENT SKILLS						
PREREQUIS	ITES	CATEGORY	PE	Cree		0	
		Hours/Week	L	Т	P	TH	
		Hours/ Week	2	0	0	2	
COURSE OB	BJECTIVES						
To learn to achieve the highest goal happily, To become a person with stable mind, pleasing personality and determination, To awaken wisdom in students.							
UNIT I			8	0	0	8	
Verses- 19,20,2	2 (pride & heroism) 3,65 (virtue) Ø(dont"s)						
UNIT II			8	0	0	8	
Shrimad Bhagw Chapter 2-Verse Chapter 3-Verse Chapter 6-Verse Chapter 18-Ver	es 41, 47, 48, es 13, 21, 27, 35, es 5,13,17,23,35,						
UNIT III			8	0	0	8	
Statement of ba Shrimad Bhagy Chapter 2-Verse Chapter 12-Ver Personality of F Shrimad Bhagw Chapter 2-Verse Chapter 3-Verse Chapter 4-Verse Chapter 18-Ver	wad Geeta: es 56, 62, 68, ses 13, 14, 15, 16, 17, 18 cole model. vad Geeta: es 17, es 36, 37, 42, es 18, 38, 42,						
		Tot	al(24I	()=24	l Pei	riods	

REF	REFERENCE BOOKS:				
1	1 "Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.				
2	Bhartrihari's Three Sataskam (Niti- Sringar - Vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam,	New Delhi.			
	COURSE OUTCOMES:Bloom's TaxonomOn completion of the course the student will be able toMapped				
CO	Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve The highest goal in life	Understand			
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity	Remembering			
CO3	Study of Neetishatakam will help in developing versatile personality of students.	Understand			