

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011

(An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS 2022 CURRICULUM AND SYLLABUS

(For Candidates admitted from 2022 - 2023 onwards)

M.E – STRUCTURAL ENGINEERING (FULL TIME PROGRAMME)

M.E STRUCTURAL ENGINEERING (FULL TIME)

VISION

To impart knowledge and excellence in Civil Engineering and technology with global perspectives to our students and to make them ethically strong engineers to build our nation.

MISSION

- To produce Civil Engineers of high caliber, technical skills and ethical values to serve the society and nation.
- To make the department a centre of excellence in the field of civil engineering and allied research
- To provide knowledge base and consultancy services to the community in all areas of civil engineering.
- To promote innovative and original thinking in the of budding engineers to face the challenges of the future.

PEO: (Programme Educational Objectives - M.E. – Structural Engineering)

- **PEO 1**: Provide a sound foundation to the students in the structural engineering concepts necessary to formulate, solve and analyze problems and to prepare them for further advancements in structural engineering research.
- **PEO 2**: Develop the ability among students to synthesize data and technical concepts both analytically and by various advanced software for application to structural designs.
- **PEO 3**: Provide opportunity for students to work as part of teams on multidisciplinary projects.
- **PEO 4**: Prepare students for successful career in construction industry to meet the needs of Indian and multinational companies.
- **PEO 5**: Promote student awareness on the life-long learning excellence leadership and to introduce them to ethics and codes of professional practice.

PROGRAM OUTCOMES (POs): M.E. – Structural Engineering

On completion of M.E., degree programme in Structural Engineering graduates.

- **PO 1**: Will demonstrate advanced knowledge in identifying analyzing and solving Structural Engineering problems.
- **PO 2**: Will demonstrate the ability to design complicated structural components and conduct advanced experiments, interpret, analyze data and report results.
- **PO 3**: Will demonstrate the ability in advanced R.C.C. and Steel designs of structures meeting out the desired specifications and requirements.
- **PO 4**: Will demonstrate the ability to function in a design and construction company or in a construction material manufacturing industry by effectively guiding the undergraduate and diploma engineers in achieving the desired results or targets.
- PO 5: Will be able to perform advanced tests and analyze the constructional materials and components by handling sophisticated and modern testing equipments.
- **PO 6**: Will demonstrate the ability to formulate and arrive at an optimized solution to structural engineering problems.
- **PO 7**: Will demonstrate through effective communication and skills on their understanding of professional ethical responsibilities.
- **PO 8**: Will have the confidence to apply engineering solutions related to structural engineering in global and social contexts and will possess an understanding of the impact of structural engineering on society and demonstrate awareness of contemporary issues.
- **PO 9**: Will be familiar with the utilization of modern engineering software packages to analyze and design structures.
- **PO 10**: Can take part and succeed in competitive examinations and perform well in written and oral tests conducted by leading construction firms across the globe.
- PO 11: Publications of papers in conferences and journals.

PROGRAM SPECIFIC OUTCOMES (PSOs):

M.E. – Structural Engineering

The M.E. Degree Programme in Structural Engineering is offered in the department with the following programme specific objectives:

- **PSO 1**: The graduates of this programme will be able to meet the needs of public in the design and execution of quality construction work considering principles of mechanics, mathematics and physics to construct sustainable buildings that will ensure safety and durability till the service period.
- **PSO 2**: The graduates will calculate the loads and the stresses acting on the building, analysis for the loads and design sections of structures to sustain the loads using building analysis software packages.
- **PSO 3**: The graduates will be able to work effectively as an individual or in a team having acquired leadership skills and manage projects in multidisciplinary environments.

M.E. DEGREE IN STRUCTURAL ENGINEERING – FULL TIME

FIRST SEMESTER

Sl.	Subject		~ · =	CA	End	Total		-	Cred	its
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	P	C
		TH	EORY							
1	22STC11	Advanced Structural Analysis	PC	40	60	100	3	0	0	3
2	22STC12	Theory of Elasticity and Plasticity	PC	40	60	100	3	0	0	3
		ELECTIVE								
3	22STE1X	Elective –I	PE	40	60	100	3	0	0	3
4	22STE2X	Elective – II	PE	40	60	100	3	0	0	3
		PRA	CTICAL							
5	22STC13	Structural Design Lab	EEC	60	40	100	0	0	2	2
6	22STC14	Concrete and Experimental Stress Analysis Lab	PC	60	40	100	0	0	2	2
		MANDATORY COURSE								
7	22MLC01	Research Methodology and IPR	MLC	40	60	100	3	0	0	3
		AUDIT COURSE								
8	22ACX	Audit Course 1	AC	100	-	100	2	0	0	0
		TOTAL		420	380	800	17	0	4	19

SECOND SEMESTER

Sl.	Subject	Course Title	CAT	CA	End Sem.	Total		Cre	dits	
No.	Code		CAT	Marks	Marks	Marks	L	T	P	C
		THEORY								
1	22STC21	Finite Element Method in Structural Engineering	PC	40	60	100	3	0	0	3
2	22STC22	Structural Dynamics	PC	40	60	100	3	0	0	3
		ELECTIVE								
3	22STE3X	Elective – III	PE	40	60	100	3	0	0	3
4	22STE4X	Elective – IV	PE	40	60	100	3	0	0	3
		PRACTICAL								
5	22STC23	Model Testing Lab	PC	60	40	100	0	0	2	2
6	22STC24	Numerical Analysis Lab	EEC	60	40	100	0	0	2	2
7	22STC25	Mini Project	EEC	40	60	100	0	0	4	2
		AUDIT COURSE								
8	22ACX	Audit Course 2	AC	100	-	100	2	0	0	0
		TOTAL		420	380	800	14	0	8	18

THIRD SEMESTER

Sl.	Subject	G TIV	G. 1.	CA	End	Total		Cre	dits	
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	T	P	C
		ELECTIVE								
1	22STE5X	Elective – V	PE	40	60	100	3	0	0	3
2	22STE6X	Elective – VI	PE	40	60	100	3	0	0	3
		DISSERTATION								
3	22STC31	Dissertation Phase – I	EEC	120	80	200	0	0	20	10
		TOTAL		200	200	400	6	0	20	16

FOURTH SEMESTER

Sl.	Subject	Course Title	CAT	CA	End	Total		Cre	dits	
No.	Code	Course Title	CAI	Marks	Sem. Marks	Marks	L	Т	P	C
		DISSERTATION								
1	22STC41	Dissertation Phase – II	EEC	240	160	400	0	0	34	17
		TOTAL		240	160	400	0	0	34	17

Total number of credits to be earned for the award of degree = 70(19+18+16+17)

List of Programme Electives (PE):

Sl.	Subject	Course Title	CAT	CA	End Sem.	Total		Cre	dits	
No.	Code			Marks	Marks	Marks	L	Т	P	C
Electi	ive 1							•		
1	22STE11	Theory of Thin Plates and Shells	PE	40	60	100	3	0	0	3
2	22STE12	Theory and Applications of Cement Composites	PE	40	60	100	3	0	0	3
3	22STE13	Theory of Structural Stability	PE	40	60	100	3	0	0	3
4	22STE14	Corrosion and its Prevention	PE	40	60	100	3	0	0	3
Electi	ive II		•				•			
5	22STE21	Analytical and Numerical Methods for Structural Engineering	PE	40	60	100	3	0	0	3
6	22STE22	Structural Health Monitoring	PE	40	60	100	3	0	0	3
7	22STE23	Structural Optimization	PE	40	60	100	3	0	0	3
8	22STE24	Experimental Techniques and Instrumentation	PE	40	60	100	3	0	0	3
Electi	ive III									
9	22STE31	Advanced Steel Design	PE	40	60	100	3	0	0	3
10	22STE32	Design of Formwork	PE	40	60	100	3	0	0	3
11	22STE33	Design of High Rise Structures	PE	40	60	100	3	0	0	3
12	22STE34	Design of Masonry Structures	PE	40	60	100	3	0	0	3
13	22STE35	Design of Prefabricated Structures	PE	40	60	100	3	0	0	3
14	22STE36	Design of Steel - Concrete Composite Structures	PE	40	60	100	3	0	0	3
Electi	ive – IV	ı					1	I	1	
15	22STE41	Design of Advanced Concrete Structures	PE	40	60	100	3	0	0	3
16	22STE42	Advanced Design of Foundations	PE	40	60	100	3	0	0	3
17	22STE43	Design of Industrial Structures	PE	40	60	100	3	0	0	3
18	22STE44	SubStructure Design	PE	40	60	100	3	0	0	3
19	22STE45	Design and Construction of Ferrocement Structures	PE	40	60	100	3	0	0	3

Electi	ive –V									
20	22STE51	Design of Prestressed Concrete Structures	PE	40	60	100	3	0	0	3
21	22STE52	Analysis of Laminated Composite Plates	PE	40	60	100	3	0	0	3
22	22STE53	Fracture Mechanics of Concrete Structures	PE	40	60	100	3	0	0	3
23	22STE54	Design of Plates and Shells	PE	40	60	100	3	0	0	3
24	22STE55	Design of Bridges	PE	40	60	100	3	0	0	3
25	22STE56	Modern Construction Materials	PE	40	60	100	3	0	0	3
Electi	ive –VI		•		1	1		<u>I</u>		
26	22STE61	Advanced Concrete Technology	PE	40	60	100	3	0	0	3
27	22STE62	Disaster Resistant Structures	PE	40	60	100	3	0	0	3
28	22STE63	Soil Structure Interaction	PE	40	60	100	3	0	0	3
29	22STE64	Offshore Structures	PE	40	60	100	3	0	0	3
30	22STE65	Wind and Cyclone Effects on Structures	PE	40	60	100	3	0	0	3

Audit Courses (AC):

Sl.	Subject	Course Title	САТ	CA	End Sem.	Total		Cred	lits	
No.	Code			Marks	Marks	Marks	L	Т	P	C
1	22AC01	English for Research Paper Writing	AC	100	-	100	2	0	0	0
2	22AC02	Disaster Management	AC	100	-	100	2	0	0	0
3	22AC03	Sanskrit for Technical Knowledge	AC	100	-	100	2	0	0	0
4	22AC04	Value Addition	AC	100	-	100	2	0	0	0
5	22AC05	Constitution of India	AC	100	-	100	2	0	0	0
6	22AC06	Pedagogy Studies	AC	100	-	100	2	0	0	0
7	22AC07	Stress Management by Yoga	AC	100	-	100	2	0	0	0
8	22AC08	Personality Development through Life Enlightenment Skills	AC	100	-	100	2	0	0	0

22STC11	ADVANCED STRUCTURAL ANALYSIS		S	emeste	er	I
PREREQUIS	SITES Cat	egory	PC	Cre	edit	3
			L	Т	P	TH
	Hours/	Week	3	0	0	3
Course Leari	ning Objectives					
1 To imp	part knowledge to the students with fundamental concepts					
2 Energy	concepts in structures					
3 Statica	ally determinate and indeterminate structures					
	n methods like flexibility method and stiffness method At the end of the	course,	he will	be in a	positio	n to use
softwar Unit I	re packages to solve indeterminate structures STRUCTURES- FUNDAMENTAL CONCEPTS		9	0	0	9
	Force and displacement measurement – Generalized or Independent measurement					
	stems and elements-Computing displacements and forces from virtual wo exibility coefficients.		0			
			0	0	•	
Unit II Strain energy in	ENERGY CONCEPTS IN STRUCTURES n terms of stiffness and flexibility matrices – properties of stiffness and flexibility matrices.			0 ces – in	0 terpreta	9 tion of
Unit II Strain energy in co-efficient – B Transformatio Determinate – flexibility – sys displacement in	ENERGY CONCEPTS IN STRUCTURES In terms of stiffness and flexibility matrices – properties of stiffness and flexibility matrices – properties of stiffness and flexibility slaw (forces not at the coordinates) – other energy theorems using men of information in structures indeterminate structures – transformation of system forces to element tem displacement to element displacement – element stiffness to system a general – stiffness and flexibility in general – normal coordinates and or	atrix not forces – stiffness	y matrions elemen	ces – in nt flexit	terpreta bility to on of for	tion of system
Unit II Strain energy in co-efficient – B Transformatio Determinate – flexibility – sys displacement in	ENERGY CONCEPTS IN STRUCTURES In terms of stiffness and flexibility matrices – properties of stiffness and flexibility matrices – properties of stiffness and flexibility slaw (forces not at the coordinates) – other energy theorems using men of information in structures indeterminate structures – transformation of system forces to element tem displacement to element displacement – element stiffness to system a general – stiffness and flexibility in general – normal coordinates and or	atrix not forces – stiffness	y matrions elemen	ces – in nt flexit	terpreta bility to on of for	tion of system
Unit II Strain energy ir co-efficient – B Transformatio Determinate – flexibility – sys displacement in contragradience Unit III Statically deter Transformation	ENERGY CONCEPTS IN STRUCTURES In terms of stiffness and flexibility matrices – properties of stiffness and flexibility matrices – properties of stiffness and flexiti's law (forces not at the coordinates) – other energy theorems using material of information in structures indeterminate structures – transformation of system forces to element term displacement to element displacement – element stiffness to system in general – stiffness and flexibility in general – normal coordinates and on the structures.	atrix not forces — stiffness rthogona to ill ansion and	y matrications elemented transful transf	ces – in nt flexib formatio ormatio	terpreta pility to on of for on - prin on on of many prince of the content of t	system reces and ciple o
Unit II Strain energy ir co-efficient – B Transformatio Determinate – flexibility – sys displacement in contragradience Unit III Statically deter Transformation	ENERGY CONCEPTS IN STRUCTURES In terms of stiffness and flexibility matrices – properties of stiffness and flexibis law (forces not at the coordinates) – other energy theorems using monof information in structures indeterminate structures – transformation of system forces to element term displacement to element displacement – element stiffness to system a general – stiffness and flexibility in general – normal coordinates and one set. THE FLEXIBILITY METHOD minate structures-Indeterminate structures-Choice of redundant leading to one set of redundant to another- Internal forces due to Thermal expansion.	atrix not forces — stiffness rthogona to ill ansion and	y matrications elemented transful transf	ces – in nt flexib formatio ormatio	terpreta pility to on of for on - prin on on of many prince of the content of t	systemates and ciple of an attrices
Unit II Strain energy in co-efficient – B Transformation Determinate – flexibility – system displacement in contragradience Unit III Statically deter Transformation of flexibility materials and the contragradience of flexibility ma	ENERGY CONCEPTS IN STRUCTURES In terms of stiffness and flexibility matrices – properties of stiffness and flexibis law (forces not at the coordinates) – other energy theorems using monof information in structures indeterminate structures – transformation of system forces to element term displacement to element displacement – element stiffness to system a general – stiffness and flexibility in general – normal coordinates and one set. THE FLEXIBILITY METHOD minate structures-Indeterminate structures-Choice of redundant leading to one set of redundant to another- Internal forces due to Thermal expanatrix- Application to pin-jointed plane truss-Continuous beams-Frames-Grants- The properties of stiffness and flexibility matrices – properties of stiffness and flexibility matrices – other energy theorems using monof information in structures THE FLEXIBILITY METHOD	atrix not forces — stiffness rthogona to ill ansion and rids orce at so on of St	y matrications elemented transful transful delack of the continuous continuou	ces – in nt flexib formatio conditi of fit-Re ordinate approac	terpreta pility to pin of for n – prin oned m ducing oned m ducing	system res and aciple of strices and aciple of strices the size of siz
Unit II Strain energy in co-efficient – B Transformatio Determinate – flexibility – sys displacement in contragradience Unit III Statically deter Transformation of flexibility ma Unit IV Introduction-Determinate of the system of the syst	ENERGY CONCEPTS IN STRUCTURES In terms of stiffness and flexibility matrices – properties of stiffness and flexibility matrices – properties of stiffness and flexibility in structures indeterminate structures – transformation of system forces to element tem displacement to element displacement – element stiffness to system a general – stiffness and flexibility in general – normal coordinates and or the structures-Indeterminate structures-Choice of redundant leading to one set of redundant to another- Internal forces due to Thermal expansionary. Application to pin-jointed plane truss-Continuous beams-Frames-Gritty and stiffness method-Stiffness matrix for structures with zero folity and stiffness- lack of fit-Stiffness matrix with rigid motions-Application ontinuous beams-Frames-Grids-Space trusses and frames-introduction on	atrix not forces — stiffness rthogona to ill ansion and rids orce at so on of St	y matrications elemented transful transful delack of the continuous continuou	ces – in nt flexib formatio conditi of fit-Re ordinate approac	terpreta pility to pin of for n – prin oned m ducing oned m ducing	system res and ciple of strices and ciple of strices the size of size
Unit II Strain energy ir co-efficient – B Transformation Determinate – flexibility – system displacement in contragradience Unit III Statically deter Transformation of flexibility material determination of flexibility determination of flexibility material determination of flexibility determination of	ENERGY CONCEPTS IN STRUCTURES In terms of stiffness and flexibility matrices – properties of stiffness and it betti's law (forces not at the coordinates) – other energy theorems using ment of information in structures indeterminate structures – transformation of system forces to element item displacement to element displacement – element stiffness to system in item displacement to element displacement – normal coordinates and on item displacement to element displacement – normal coordinates and on item displacement to element displacement – the stiffness and flexibility in general – normal coordinates and on item displacement to element stiffness and flexibility method THE FLEXIBILITY METHOD THE FLEXIBILITY METHOD THE STIFFNESS METHOD Evelopment of stiffness method-Stiffness matrix for structures with zero for lity and stiffness- lack of fit-Stiffness matrix with rigid motions-Application to not on the stiffness of stiffness or Flexibility. ANALYSIS BY SUBSTRUCTURES Distructures using the stiffness and the flexibility method with tridiagonalize the stiffness or structures using the stiffness and the flexibility method with tridiagonalize the stiffness and the	atrix not forces — stiffness rthogona to ill an anion and rids on of St ly-Static ration	y matrications elementary transful transf 9 and well dlack of the conditions of the	ces – in nt flexib formatio cormatio conditio f fit-Re o ordinate approact asation t	terpreta bility to on of for n – prin oned m ducing os- Anale h to pin echniqu	system reces and ciple of grantrices the size grant jointed grant

Tex	t Books:
1	Rubinstein F.M., Matrix computer methods of Structural Analysis, Prentice Hall, 2016
2	William Weaver J.R. and James M.Gere, Matrix Analysis of Framed Structures, CBS Publishers & Distributors, 2012
Refe	rence Books:
1	Devadas Menon, Advanced Structural Analysis, Narosa Publishing House, New Delhi, 2009
2	Pandit G.S. and Gupta S.P., Structural Analysis-A Matrix Approach, TataMcGraw-Hill Publishing company Limited, New Delhi 2008 second edition
3	Reddy C.S., Basic Structural Analysis, Tata McGraw-Hill Publishing Company Limited, New Delhi third edition July 2017
4	Rajasekaran S and Sankarasubramanian G., Computational Structural Mechanics, Prentice-Hall of India Private limited, New Delhi, 2015.

Course	Ou	tcomes:
Upon co	mpl	etion of this course, the students will be able to:
CO1	:	Apply the fundamental concepts in matrix method of analyzing civil engineering structures
CO2	:	Understand the energy concepts in structures
CO3	:	Solve the indeterminate structure using flexibility matrix
CO4	:	Solve the indeterminate structure using stiffness matrix
CO5	:	Analyze the techniques of inter-connected, complicated and very large structures by sub-structuring.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	2	-	1	-	2	1	-	-	-	1	-	-
CO2	2	1	1	1	-	2	1	-	1	2	-	-	1	-	-
CO3	2	1	1	1	2	-	1	1	-	1	-	-	1	-	-
CO4	2	1	1	1	1	-	-	1	-	2	-	-	1	-	-
CO5	2	1	1	1	1	-	-	1	-	2	-	-	1	-	-
Avg	2	1	1	1.2	1.3	1.5	1	1.25	1	1.75	-	-	1	-	-
	•		3/2/1-	-indicate	es streng	th of c	orrelati	ion (3-	High, 2	-Mediur	n, 1- Lov	v)			

22STC12	THEORY OF ELASTICITY AND PLAST		S	Semeste	er	I
PREREQUIS	ITES	Category	PC	Cre	edit	3
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Learn	ing Objectives					
and to	art knowledge to the students about the behaviour and stress obtain general solution, torsion of non-circular section and plastic and plastic stages of loadings will be discussed					
Unit I	ANALYSIS OF STRESS AND STRAIN	1	9	0	0	9
stresses and stra	ach – definition and notation of stress - components of stress a ins for three dimensional element - equations of equilibrium a inates – Transformation of stresses and strains – Boundary co	and compatibility co				
Unit II	TWO DIMENSIONAL PROBLEMS IN CARTE ORDINATES	SIAN CO-	9	0	0	9
	d plane strain problems with practical examples – Equation inates – Airy's stress function.	ns of equilibrium a	nd com	patibilit	y condi	tions
Unit III	TWO DIMENSIONAL PROBLEMS IN POLAR CO-	ODDINATES	9	0	0	9
Equations of eq uniform pressur in plate – effect disc subjected to	uilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bot o diametrically opposite concentrated loads.	axisymmetrical pro	oblems; centrationite plat	thick cy on due t es, stres	linder u o circula	Inder ar hole ircular
Equations of equations of equations pressur in plate – effect disc subjected to Unit IV Torsion of varions	uilibrium and compatibility conditions in polar co-ordinates – e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bot o diametrically opposite concentrated loads. TORSION ous shaped bars, pure torsion of prismatic bars, Prandtl's mem	ending – stress condundary of semi infir	oblems; centrationite plate	thick cy on due to es, stres	vlinder u o circula ses in ci	inder ar hole ircular
Equations of equations of equations pressur in plate – effect disc subjected to Unit IV Torsion of varions	uilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bot o diametrically opposite concentrated loads. TORSION	ending – stress condundary of semi infir	oblems; centrationite plate	thick cy on due to es, stres	vlinder u o circula ses in ci	inder ar hole ircular
Equations of equations of equations pressur in plate – effect disc subjected to Unit IV Torsion of varions	uilibrium and compatibility conditions in polar co-ordinates – e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bot o diametrically opposite concentrated loads. TORSION ous shaped bars, pure torsion of prismatic bars, Prandtl's mem	ending – stress condundary of semi infir	oblems; centrationite plate	thick cy on due to es, stres	vlinder u o circula ses in ci	inder ar hole ircular
Equations of equiform pressur in plate – effect disc subjected to Unit IV Torsion of various hollow shafts, P Unit V Theory of Plast theory – St. Versurface – Flow	uilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bot of diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion — elastic-plastic torsion analysis — circular section	axisymmetrical pro- ending – stress condundary of semi infired brane analogy, torsion – sand heap analogon of plastic analysinises criterion – MorandtlReuss equality	pblems; centration of the plate	thick cy on due to es, stres	vlinder v o circula ses in ci	and 9 and and 9 and
Equations of equiniform pressurin plate – effect disc subjected to Unit IV Torsion of various hollow shafts, P Unit V Theory of Plast theory – St. Versurface – Flow	uilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bor o diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion — elastic-plastic torsion analysis — circular section THEORY OF PLASTICITY icity — Stress-strain diagram — Ideal plastic body — illustration annt's theory — Tresca Criterion — Beltrami's theory — Von n rule (stress-strain relationship for perfectly plastic flow) — Pr	axisymmetrical pro- ending – stress condundary of semi infired brane analogy, torsion – sand heap analogon of plastic analysinises criterion – MorandtlReuss equality	pblems; centration of the plate	thick cy on due to es, stres	vlinder v o circula ses in ci	and 9 and 9 and yenkine - yie
Equations of equations of equations pressur in plate – effect disc subjected to Unit IV Torsion of various hollow shafts, P Unit V Theory of Plast theory – St. Versurface – Flow	utilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bor o diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion — elastic-plastic torsion analysis — circular section THEORY OF PLASTICITY icity — Stress-strain diagram — Ideal plastic body — illustration nant's theory — Tresca Criterion — Beltrami's theory — Von n rule (stress-strain relationship for perfectly plastic flow) — Pon n Tresca — Plastic potential — uniqueness of a stress distribution	axisymmetrical pro- ending – stress condundary of semi infired brane analogy, torsion – sand heap analogon of plastic analysinises criterion – MorandtlReuss equality	pblems; centration of the plate	thick cy on due to es, stres	vlinder u o circula ses in ci	and 9 and 9 and yenkine - yie
Equations of equiniform pressur in plate – effect disc subjected to Unit IV Torsion of various hollow shafts, P Unit V Theory of Plast theory – St. Versurface – Flow relation based of the control of	utilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bor o diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion — elastic-plastic torsion analysis — circular section THEORY OF PLASTICITY icity — Stress-strain diagram — Ideal plastic body — illustration nant's theory — Tresca Criterion — Beltrami's theory — Von n rule (stress-strain relationship for perfectly plastic flow) — Pon n Tresca — Plastic potential — uniqueness of a stress distribution	eaxisymmetrical pro- ending — stress condundary of semi infir undary of semi infir brane analogy, torsi on — sand heap analo on of plastic analys nises criterion — Mo randtlReuss equality on — strain hardening	oblems; centration of the plate	thick cy on due to es, stres	viinder u o circula ses in ci	and 9 and 9 and yenkine - yie
Equations of equiform pressur in plate – effect disc subjected to Unit IV Torsion of various hollow shafts, Punit V Theory of Plast theory – St. Versurface – Flow relation based of the Equation ba	utilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bor o diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion — elastic-plastic torsion analysis — circular section THEORY OF PLASTICITY icity — Stress-strain diagram — Ideal plastic body — illustration nant's theory — Tresca Criterion — Beltrami's theory — Von n rule (stress-strain relationship for perfectly plastic flow) — Prin Tresca — Plastic potential — uniqueness of a stress distribution THEORY OF PLASTICITY icity — Stress-strain relationship for perfectly plastic flow) — Prin Tresca — Plastic potential — uniqueness of a stress distribution	axisymmetrical pro- ending — stress condundary of semi infired brane analogy, torsion — sand heap analogon of plastic analysinises criterion — MorandtlReuss equalityon — strain hardening	oblems; centration of the plate	thick cy on due to es, stres	viinder u o circula ses in ci	and 9 and 9 and yenkine - yie ss-stra
Equations of equiniform pressurin plate – effect disc subjected to Unit IV Torsion of various hollow shafts, P Unit V Theory of Plast theory – St. Versurface – Flow relation based of the Company of	utilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bor of diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion — elastic-plastic torsion analysis — circular section THEORY OF PLASTICITY icity — Stress-strain diagram — Ideal plastic body — illustration thant's theory — Tresca Criterion — Beltrami's theory — Von n rule (stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic, flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic, flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic, flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution	axisymmetrical pro- ending — stress condundary of semi infired brane analogy, torsion — sand heap analogon of plastic analysinises criterion — MorandtlReuss equalityon — strain hardening	oblems; centration of the plate	thick cy on due to es, stres	viinder u o circula ses in ci	and 9 and 9 ankines - yiess-stra
Equations of equiniform pressurin plate – effect disc subjected to Unit IV Torsion of variothollow shafts, P Unit V Theory of Plast theory – St. Versurface – Flow relation based of the External Property of Plast Sadhu Reference B	utilibrium and compatibility conditions in polar co-ordinates — e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bor of diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion — elastic-plastic torsion analysis — circular section THEORY OF PLASTICITY icity — Stress-strain diagram — Ideal plastic body — illustration thant's theory — Tresca Criterion — Beltrami's theory — Von n rule (stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic, flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic, flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution icity — Stress-strain relationship for perfectly plastic, flow) — Pr n Tresca — Plastic potential — uniqueness of a stress distribution	axisymmetrical properties of ending — stress condundary of semi infinition — sand heap analogon of plastic analysmises criterion — MorandtlReuss equality on — strain hardening	oblems; centration of the plate	thick cy on due to es, stres	viinder u o circula ses in ci	and 9 and 9 and yenkines
Equations of equiniform pressurin plate – effect disc subjected to Unit IV Torsion of various hollow shafts, P Unit V Theory of Plast theory – St. Versurface – Flow relation based of the Equation	uilibrium and compatibility conditions in polar co-ordinates— e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bor of diametrically opposite concentrated loads. TORSION bus shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion—elastic-plastic torsion analysis—circular section THEORY OF PLASTICITY icity—Stress-strain diagram—Ideal plastic body—illustration nant's theory—Tresca Criterion—Beltrami's theory—Von in rule (stress-strain relationship for perfectly plastic flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution in Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic, flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic, flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic, flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic, flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic, flow)—Pin Tresca—Plastic potential—uniqueness of a stress distribution icity—Stress-strain relationship for perfectly plastic, flow for perfectly plastic flow for perfectly pl	axisymmetrical properties of ending — stress condundary of semi infirmation — sand heap analogon — sand heap analogon — strain hardening on — strain harde	oblems; centration of the plate	thick cy on due to es, stres	viinder u o circula ses in ci	and 9 and 9 ankines - yiess-stra

Chakrabarthy, Theory of Plasticity, McGraw Hill Co., 1988

Chandramouli P N,Theory of Elasticity, Yes Dee;1st edition, 2017

4

5

Course	Out	comes:
Upon co	mple	tion of this course, the students will be able to:
CO1	:	Have Knowledge about stress distribution in engineering structures
CO2	:	To understand of the essential facts, concepts, theories and principles underlying elasticity and plasticity theory
CO3	:	Complex methods to understand stress distribution which is not possible using elementary methods.
CO4	:	To Learn applications of both elasticity and plasticity to Engineering design and analysis.
CO5	•	Solve analytically the simple boundary value problems with elasto- plastic & Strain hardening properties.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	-	1	1	-	-	-	-	-	1	-	-
CO2	3	2	2	2	-	2	1	-	-	-	-	-	1	-	-
CO3	3	2	-	1	2	-	1	-	-	-	-	-	1	=	-
CO4	3	-	-	1	2	-	1	-	-	-	-	-	-	-	-
CO5	3	2	2	-	2	-	1	-	-	-	-	-	-	=	-
Avg	3	2	2	1.2	2	1.5	1	-	-	-	-	-	1	-	-

22ST	CC13	STRUCTURAL DESIGN LA IS 875 (Part-3) -2015) May be Perm		Semester		I	
PRER	EQUISITES		Category	EEC	Cre	edit	2
				L	T	P	TH
			Hours/Week	0	0 0		2
EXPER	RIMENTS					<u> </u>	.1
1	Analysis of conti	nuous beam					
2	Analysis of Singl	e Storey frame					
3	Analysis of multi	-storey frame					
4	Design of multi-s	torey frame					
5	Analysis and Des	ign of Multistorey Building					
6	Analysis and Des	ign of Steel Truss					
7	Analysis and Des	ign of Foundation					
8	Analysis of Prefa	bricated/Preengineered Structures					
				Total (45+15)	= 60 I	Periods

	Outcomes: mpletion of this course, the students will be able to:
CO1	All the Structural Components of Frame Buildings.
CO2	Multi-Storey Frame Buildings.
CO3	Foundation
CO4	Steel Structures.
CO5	Prepare the complete Structural drawing using computer software.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	2	3	-	2	1	1	3	-	1	-	-	-	3
CO2	1	-	2	3	-	2	1	-	3	-	1	-	-	-	3
CO3	1	-	2	3	-	2	1	1	3	-	1	-	-	-	3
CO4	1	-	2	3	-	2	1	-	3	-	1	-	-	-	3
CO5	1	-	2	3	-	2	1	1	3	-	1	-	-	-	3
Avg	1	-	2	3	-	2	1	•	3	-	1	-	-	-	3
			3/2/1	-indicate	es streng	th of c	orrelati	on (3-	High, 2	-Mediur	n, 1- Lov	v)			•

22S	TC14	CONCRETE AND EXPERIMENTAL STRESS ANA (IS 456-2000,IS 10262-2019, IS 1199 (Part-6)-2018, EFNARO and Guidelines for Self Compacting Concrete (February -20 Permitted	C-Specification	Semester		I	
PREF	REQUIS	ITES	Category	PC	Cre	edit	2
				L	Т	P	TH
			Hours/Week	0	0	2	2
Cours	se Learn	ning Objectives					
1		part practical knowledge to the students about the tests on propout the measuring devices.	perties of concret	e, desig	n of co	ncrete 1	mix and
EXPE	RIMEN	rs					
1.	Deteri	mination of Modulus of Elasticity of concrete using Compress m	neter				
2.	Mix D	Design					
3.	Exper	rimental stress analysis using photoelastic apparatus					
4.	Study	of Begg'sDeformator					
5.	Study	of mechanical strain gauges					
6.	Study	of optical and electrical strain gauges					
7.	Load	vs deflection characteristics of simply supported beam using load	d cell, LVDT and	l Data a	cquisiti	on syste	em
8.	Perme	eability test for concrete					
9.	Exper	rimental study on fresh properties of self compacting concrete					
10.	Accel	erated curing of concrete					
			,	Total (45+15`	= 60 I	Periods

	e Outcomes: completion of this course, the students will be able to:
CO1	Able to design concrete mixes
CO2	Measure the permeability of concrete, crack width etc
CO3	Study the applications of various strain gauges
CO4	Perform non-destructive tests
CO5	Study the flow characteristics of Self-compacting concrete.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	2	-	1	-	1	2	1	-	-	3	-
CO2	2	2	2	-	3	-	-	-	-	2	1	-	-	3	-
CO3	2	2	2	-	2	-	-	-	-	2	1	-	-	3	-
CO4	2	2	2	-	3	2	-	-	-	2	1	-	-	3	-
CO5	2	2	2	-	-	2	1	-	-	2	1	-	-	3	-
Avg	2	2	2.25	3	2	2	-	-	-	2	1	-	-	3	-
			3/2/1-	-indicate	es streng	th of c	orrelati	on (3-	High, 2	-Mediur	n, 1- Lov	v)			

	LC01	RESEARCH METHODOLOGY AND) IPR	Se	meste	r	
PRERI	EQUIS	ITES	Category	MLC	Cr	edit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1	analysis	elop the subject of the research, encourage the formation of less, rigor and independence of thought, foster individual judgn thods and develop skills required in writing research proposations.	nent and skill in the a	pplicatio			
Uni	it I	INTRODUCTION TO RESEARCH		9	0	0	9
problem	n, data co	earch problem, scope and objectives of research problem, a oblection, analysis, interpretation, necessary instrumentation.					
Unit		EFFECTIVE LITERATURE STUDIES APPROACE	·	9	0	0	9
research	approac	theoretical frame work of research- developing operational sch-hypothesis: parametric and non-parametric testing- estably and experiments- documentation, plagiarism, research ethic	lishing the reliability				
Unit	t III	EFFECTIVE TECHNICAL WRITING, HOW TO W	RITE REPORT,	9	0	0	9
		PAPER	,		Ů	-	
Develop	ping a re	PAPER search proposal, format of research proposal, a presentation				ee	
Develop Unit			and assessment by a			ee 0	9
Unit Patents, develop	t IV , designs oment. In	search proposal, format of research proposal, a presentation	and assessment by a RTY technological resear	review co	ommitt 0 vation,	0 patentir	9
Unit Patents, develop	designs.	search proposal, format of research proposal, a presentation NATURE OF INTELLECTUAL PROPE , trade and copyright, process of patenting and development:	and assessment by a RTY technological resear	review co	ommitt 0 vation,	0 patentir	9
Unit Patents, develope under Po Unit Scope of Adminis	designs. oment. In oct it V of patent stration of	search proposal, format of research proposal, a presentation NATURE OF INTELLECTUAL PROPE , trade and copyright, process of patenting and development: ternational scenario: international cooperation on intellectual patents. Licensing and transfer of technology. Patent information of patents system. New developments in IPR; IPR of biological patents.	and assessment by a RTY technological resear al property. Procedure	review co 9 ch, innove grants of	ommitt 0 ration, f paten 3 cal ind	patentir ts, pater 0	9 ng, nting 12
Unit Patents, develope under Po Unit Scope o Adminis	designs. oment. In oct it V of patent stration of	search proposal, format of research proposal, a presentation NATURE OF INTELLECTUAL PROPE , trade and copyright, process of patenting and development: ternational scenario: international cooperation on intellectual PATENT RIGHTS AND IPR rights. Licensing and transfer of technology. Patent informational cooperation and transfer of technology.	and assessment by a RTY technological resear al property. Procedure	review co 9 ch, innove grants of	ommitt 0 ration, f paten 3 cal inde etc., t	patentir ts, pater 0	9 ng, nting 12 s. al
Unit Patents, develope under Po Unit Scope of Administ	designs. oment. In oct it V of patent stration of	search proposal, format of research proposal, a presentation NATURE OF INTELLECTUAL PROPE trade and copyright, process of patenting and development: ternational scenario: international cooperation on intellectual patents. PATENT RIGHTS AND IPR rights. Licensing and transfer of technology. Patent information of patents system. New developments in IPR; IPR of biologistudies, IPR and IITs.	and assessment by a RTY technological resear al property. Procedure	review co 9 ch, innove grants of	ommitt 0 ration, f paten 3 cal inde etc., t	patentir ts, pater 0 ications radition	9 ng, nting 12 s. al
Unit Patents, develope under Po Unit Scope of Administ knowled	t IV designs ment. In CT t V of patent stration of	search proposal, format of research proposal, a presentation NATURE OF INTELLECTUAL PROPE trade and copyright, process of patenting and development: ternational scenario: international cooperation on intellectual patents. PATENT RIGHTS AND IPR rights. Licensing and transfer of technology. Patent information of patents system. New developments in IPR; IPR of biologistudies, IPR and IITs.	and assessment by a RTY technological resear al property. Procedure tion and databases. G cal system, computer	review co	ommitt 0 ration, f paten 3 cal inde etc., t	patentir ts, pater 0 ications radition	9 ng, nting 12 s. al
Unit Patents, develope under Po Unit Scope of Adminis knowled	t IV designs ment. In CT t V of patent stration odge case	search proposal, format of research proposal, a presentation NATURE OF INTELLECTUAL PROPE trade and copyright, process of patenting and development: ternational scenario: international cooperation on intellectual patents. Licensing and transfer of technology. Patent information of patents system. New developments in IPR; IPR of biologistudies, IPR and IITs.	and assessment by a RTY technological resear al property. Procedure tion and databases. G cal system, computer	review co	ommitt 0 ration, f paten 3 cal inde etc., t	patentir ts, pater 0 ications radition	9 ng, nting 12 s. al
Unit Patents, develope under Po Unit Scope o Adminis knowled	t IV designs ment. In CT t V of patent stration odge case t Books Stuart t Wayne	search proposal, format of research proposal, a presentation NATURE OF INTELLECTUAL PROPE trade and copyright, process of patenting and development: ternational scenario: international cooperation on intellectual patents. PATENT RIGHTS AND IPR rights. Licensing and transfer of technology. Patent informatof patents system. New developments in IPR; IPR of biologistudies, IPR and IITs. trade and copyright, process of patenting and developments in IPR. PATENT RIGHTS AND IPR rights. Licensing and transfer of technology. Patent informatof patents system. New developments in IPR; IPR of biologistudies, IPR and IITs.	and assessment by a RTY technological resear al property. Procedure tion and databases. G cal system, computer ction for science & e introduction"	review co 9 ch, innove grants of 9 reographic softward	ommitt 0 ration, f paten 3 cal inde etc., t	patentir ts, pater 0 ications radition	9 ng, nting 12 s. al

Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age," 2016.

Reference Books:

2

3

4

5

Mayall, "Industrial design" McGraw Hill, 1992
Niebel, "Product design" McGraw Hill, 1974

Asimov, "Introduction to Design", Prentice Hall, 1962.

T. Ramappa, "Intellectual Property Rights Under WTO". S. Chand 2008.

	e Outcomes: completion of this course, the students will be able to:
CO1	Understand research problem formulation
CO2	Analysis research related information
CO3	Follow research ethics.
CO4	Understand that today's world controlled by Computer, Information technology, but tomorrow world ruled by ideas, concept and creativity.
CO5	Understand that IPR production provides an incentive to inventors for further research work and investment in R&D, which leads to creation of new and better products, and in turnbrings about, economic growth and social benefits.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
CO2	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
CO3	1	-	-	-	-	-	3	1	-	-	3	-	-	-	-
CO4	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
CO5	1	-	-	-	-	-	2	1	-	-	3	-	-	-	-
Avg	1	-	-	•	-	-	2	1	-	-	3	-	-	-	-

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22S	TC21	FINITE ELEMENT METHOD IN STRUCTURAL	ENGINEERING	S	Semeste	er	II
PREF	REQUIS	ITES	Category	PC	Cro	edit	3
				L	Т	P	TH
			Hours/Week	Ement methods tion, polynomial inting algebraic system ysis, and interpretation 9 0 0 ming equation – di ls – variational form yantage, disadvantage 9 0 0 finite elements – de 9 0 0 finite element form lems. 9 0 0 tots – one and two din solution techniques Total 4	0	3	
Cours	se Learn	ing Objectives					
1	To have	e a detailed knowledge and understanding of the fundamental	concept of finite el	ement n	nethods		
2		oduce basic aspects of finite element technology, including tion of boundary conditions, assembly of global arrays, and so		-	-	-	olation,
3		elop proficiency in the application of the finite element metho to realistic engineering problems	ds (modeling, analy	ysis, and	l interpr	etation (of
Uı	nit I	INTRODUCTION		9	0	0	9
Un	nit II	ONE DIMENSIONAL PROBLEMS	linear and 12.1			0	9
		and stiffness matrices and force vectors – assembly of matrices	•	order el	ements	– deriv	ation of
Un	it III	TWO-DIMENSIONAL SCALAR VARIABLE PR	OBLEMS	9	0	0	9
		D equations involving scalar variable functions – variations – shape function and element matrices and vectors. Applications			element	formu	lation –
Un	it IV	TWO-DIMENSIONAL VECTOR VARIABLE PR	ROBLEMS	9	0	0	9
-		sticity – plane stress, plane strain, and axisymmetric probler ate and shell elements	ms – body forces a	nd temp	perature	effects	– stress
Un	nit V	ISOPARAMETRIC FORMULATION		9	0	0	9
serend	ipity elen	ate system – iso parametric elements – shape function for iso nents – numerical integration and application to plane stress namic problems – introduction of analysis software	_				
					T	otal 45	Periods
Tex	kt Books	:					
1	Rao S.S	S., The Finite Elements Method in Engineering, EL Service, N	New Delhi, 2005				
2	Rajasel	karan S., Finite Element Analysis in Engineering Design, Who	eeler Publishing 20	20			
Refe	erence Bo	ooks:					
1	Desai (C.S., Elementary Finite Element Method, Prentice Hall, INC,	2011				
2	Chandi	rapatla Tirupati R and Belegundu Ashok D, Introduction to Fi			na 1th ac	lition P	rentice
2		India, 2015	nite Elements in Er	ngineeri	ing 4 - ec		Tentice

4	Segerlind Larry J., Applied Finite element Analysis, John Wiley and Sons Inc., 2010
5	Seshu T.N, Finite Element Analysis – Theory and Programming, Second Edition, Tata McGraw Hill Publishing Co., 2003

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Discretize the structure and also to formulate boundary value problems of finite element method							
CO2	Develop shape function and element stiffness matrices for 1D elements and solve structures made up of 1D elements using FEM							
CO3	Solve 2D scalar variable problems							
CO4	Formulate 2D FEM elements for plane stress and plane strain problems							
CO5	Built iso parametric elements, serendipity, Lagrangian elements and axisymmetry elements for 2D stress analysis							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	-	1	-	1	1	-	-	-	1	-	-
CO2	1	-	2	2	2	-	-	1	1	-	-	-	1	-	-
CO3	2	1	2	2	1	-	-	ı	-	-	-	-	-	-	-
CO4	1	-	2	2	2	-	-	1	1	-	-	-	1	-	-
CO5	2	1	2		1	-	-	-	-	-	-	-	-	-	-
Avg	1.6	1.33	2	2	1.5	1	-	-	-	-	-	-	1	-	-

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

	QUISITES	Category	PC	Cr	3	
		Hours/Week	L	T	P	ТН
			3 0 0			3
Course L	earning Objectives					
	o impart the knowledge to the students about vibrations the ructure to a dynamic load.	ory on stable structur	al syste	ems, the	respon	ise of a
Unit I	PRINCIPLES OF DYNAMICS		9	0	0	9
generalized notion for	and its importance to structural engineering problems - Elemen d mass - D'Alembert's principle - Mathematical modeling of costs SDOF - damped and undamped free vibrations - Undamped excitation - damped or undamped - evaluation of damping - re	lynamics systems - De d forced vibration - C	gree of Critical	Freedo dampin	m - equ g - resp	ation o
Unit I	MULTIPLE DEGREE OF FREEDOM S	YSTEM	9	0	0	9
J ndampe d	cal modeling of MDOF systems - Two degree of freedom forced vibration - Normal modes of vibration - Free and for des - Approximate methods - Holzer, Rayleigh and Mode super	ced vibrations of MD0		_		
Unit II	I DIRECT INTEGRATION METHODS FOR DYNA	AMIC RESPONSE	9	0	0	9
_	forced vibration - Normal modes of vibration - Free and forced des - Approximate methods - Holzer, Rayleigh and Mode super		systems	Ortho	gonant	, 01
Unit I		position techniques.	9	0	0	9
Unit IV Mathemati flexural vil		of continuous systems	- axial	vibratio	n of a b	eam -
Unit IV Mathemati Flexural vil	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using	of continuous systems Conservation of Energ	- axial	vibratio	n of a b	eam -
Unit IV Mathemati flexural vil Work. Unit V	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI	of continuous systems Conservation of Energ	- axial y - Forr	vibrationulation	on of a b using V	eam - /irtual
Unit IV Mathemati Texural vil Work. Unit V	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by	of continuous systems Conservation of Energ	- axial y - Forr	vibration ulation 0	on of a b using V	eam - Virtual 9 ions fo
Unit IV Mathemati Elexural vil Work. Unit V	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by Machinery - Base Isolation.	of continuous systems Conservation of Energ	- axial y - Forr	vibration ulation 0	n of a b using \ 0	eam - /irtual 9 ions fo
Unit IV Mathemati Elexural vil Work. Unit V Dynamic I Industrial I	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by Machinery - Base Isolation.	of continuous systems Conservation of Energy CS(CONCEPTS Traffic, Blasting and	- axial y - Forr	vibration ulation 0	n of a b using \ 0	eam - Virtual 9 ions fo
Unit IV Mathematic Elexural vil Work. Unit V Dynamic II Industrial II	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by Machinery - Base Isolation.	of continuous systems Conservation of Energy CCS(CONCEPTS Traffic, Blasting and	- axial y - Forr 9 Pile D	vibration ulation o	n of a b using \ 0	eam - /irtual 9 ions fo
Unit IV Mathemati lexural vil Work. Unit V Dynamic I ndustrial l Text B 1 D 2 S	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by Machinery - Base Isolation. Doks: ynamics of Structures, Clough R. W. and Penzien J., McGraw 1997.	of continuous systems Conservation of Energy CCS(CONCEPTS Traffic, Blasting and	- axial y - Forr 9 Pile D	vibration ulation o	n of a b using \ 0	eam - /irtual 9 ions fo
Unit IV Mathematic lexural vil Work. Unit V Dynamic I Industrial I Text B 1 D 2 S Referen	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by Machinery - Base Isolation. Tooks: ynamics of Structures, Clough R. W. and Penzien J., McGraw in tructural Dynamics and Introduction to Earthquake Engineering	of continuous systems Conservation of Energy CS(CONCEPTS Traffic, Blasting and Hill. Chopra A. K., Pearson	- axial y - Forr 9 Pile D	vibration ulation o	n of a b using \ 0	eam - /irtual 9 ions fo
Unit IV Mathematic lexural vill Work. Unit V Dynamic II Industrial II Text B 1 D 2 S Referen 1 S	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by Machinery - Base Isolation. Dooks: ynamics of Structures, Clough R. W. and Penzien J., McGraw in tructural Dynamics and Introduction to Earthquake Engineering the Books:	of continuous systems Conservation of Energy CS(CONCEPTS Traffic, Blasting and Hill. Chopra A. K., Pearson	- axial y - Forr 9 Pile D	vibration ulation o	n of a b using \ 0	eam - /irtual 9 ions fo
Unit IV Mathemati flexural vil Work. Unit V Dynamic I Industrial I Text B 1 D 2 S Referen 1 S 2 D	CONTINUOUS SYSTEMS cal modeling of continuous systems - Free and forced vibration oration of a beam - Rayleigh- Ritz method - Formulation using SPECIAL TOPICS IN STRUCTURAL DYNAMI ONLY) Effects of Wind Loading, Moving Loads, Vibrations caused by Machinery - Base Isolation. Dooks: ynamics of Structures, Clough R. W. and Penzien J., McGraw Eructural Dynamics and Introduction to Earthquake Engineering the Books: tructural Dynamics - Vibrations and Systems, Madhujit Mukho	of continuous systems Conservation of Energy CS(CONCEPTS Traffic, Blasting and Hill. C, Chopra A. K., Pearson padhyay, Ane Books In	- axial y - Forr 9 Pile D	vibration ulation o	n of a b using \ 0	eam - /irtual 9 ions fo

STRUCTURAL DYNAMICS

22STC22

II

Semester

Course	Course Outcomes:							
Upon co	mpletion of this course, the students will be able to:							
CO1	Evaluate the dynamics response of SDOF and MDOF systems using fundamental theory and equation of motion.							
CO2	Analyze the continuous system subjected to dynamic loading.							
CO3	Solve the dynamic response by using various numerical methods.							
CO4	Study the effect of Wind, Moving loads, Vibration etc on structures.							
CO5	Study the effect of Wind, Moving loads, Vibration etc on structures.							

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	2	1	-	2	3	-	-	3	-	-	-	-	2	-
1	2	1	-	2	3	-	-	3	-	-	-	-	2	-
1	2	1	-	2	3	1	1	3	-	-	-	-	2	-
1	2	1	-	2	3	ı	ı	3	-	-	-	-	2	-
1	2	1	-	2	3	ı	ı	3	-	-	-	-	2	-
1	2	1		2	3	ı		3	-	-	-	-	2	-
	1 1 1 1 1	1 2 1 2 1 2 1 2 1 2	1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	1 2 1 - 1 2 1 - 1 2 1 - 1 2 1 - 1 2 1 - 1 2 1 -	1 2 1 - 2 1 2 1 - 2 1 2 1 - 2 1 2 1 - 2 1 2 1 - 2 1 2 1 - 2	1 2 1 - 2 3 1 2 1 - 2 3 1 2 1 - 2 3 1 2 1 - 2 3 1 2 1 - 2 3 1 2 1 - 2 3	1 2 1 - 2 3 - 1 2 1 - 2 3 - 1 2 1 - 2 3 - 1 2 1 - 2 3 - 1 2 1 - 2 3 - 1 2 1 - 2 3 -	1 2 1 - 2 3 - - 1 2 1 - 2 3 - - 1 2 1 - 2 3 - - 1 2 1 - 2 3 - - 1 2 1 - 2 3 - - 1 2 1 - 2 3 - -	1 2 1 - 2 3 - - 3 1 2 1 - 2 3 - - 3 1 2 1 - 2 3 - - 3 1 2 1 - 2 3 - - 3 1 2 1 - 2 3 - - 3 1 2 1 - 2 3 - - 3	1 2 1 - 2 3 - - 3 - 1 2 1 - 2 3 - - 3 - 1 2 1 - 2 3 - - 3 - 1 2 1 - 2 3 - - 3 - 1 2 1 - 2 3 - - 3 - 1 2 1 - 2 3 - - 3 -	1 2 1 - 2 3 - - 3 - - 1 2 1 - 2 3 - - 3 - - 1 2 1 - 2 3 - - 3 - - 1 2 1 - 2 3 - - 3 - - 1 2 1 - 2 3 - - 3 - - 1 2 1 - 2 3 - - 3 - -	1 2 1 - 2 3 - - 3 - - - 1 2 1 - 2 3 - - 3 - - - 1 2 1 - 2 3 - - 3 - - - 1 2 1 - 2 3 - - 3 - - - 1 2 1 - 2 3 - - 3 - - - 1 2 1 - 2 3 - - 3 - - -	1 2 1 - 2 3 - - 3 -	1 2 1 - 2 3 - - 3 - - - 2 1 2 1 - 2 3 - - 3 - - - 2 1 2 1 - 2 3 - - 3 - - - 2 1 2 1 - 2 3 - - 3 - - - 2 1 2 1 - 2 3 - - 3 - - - 2 1 2 1 - 2 3 - - 3 - - - 2

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22S	TC23	MODEL TESTING LAB	MODEL TESTING LAB						
PREF	REQUISIT	ES	Category				2		
				L	ТР		TH		
			Hours/Week	0	0	2	2		
Cours	se Learnin	g Objectives				I			
1		t practical knowledge to the students to understand the be e tests, their field applications by applying engineering prin		structu	res and	about	he Non		
EXPE	RIMENTS								
1.	Determi	nation of stress-strain curve of high strength concrete							
2.	Determi of concr	nation of Correlation between cube strength, cylinder strengete.	th, split tensile stre	ngth an	d modu	lus of r	ıpture		
3.	Cyclic lo	pading test							
4.	Non-De	structive testing on existing concrete members through Rebound hammer and Ultrasonic pulse velocity test Measurement of cracks							
5.	Experim	ental study on the behavior of beam under flexure							
6.	Experim	ental study on the behavior of beam under shear							
7.	Corrosio	on study on reinforced concrete							
8.	Rapid cl	aloride penetration test (RCPT) on concrete							
9.	Determi	nation of density of hardened concrete using automated buo	yancy balance						
10.	Perform	the dynamic test on beam to determine the damping co-effi	cients for free vibra	ation.					
	1				Tota	al (45)I	Periods		

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	After completing all the experiments prescribed, students will be able to design high grade concrete and study the parameters affecting its performance							
CO2	Students will be able to conduct Non Destructive tests, corrosion test and RCPT on concrete							
CO3	On completion of this laboratory course students will be able to cast and test RC beams for flexure and shear behavior							
CO4	They will be able to test cyclic load testing on beams							
CO5	Understand the dynamic test on beams							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	-	1	-	-	-	2	1	-	-	3	-
CO2	3	2	2	-	3	2	-	-	-	2	1	-	-	3	-
CO3	2	2	2	2	-	1	-	-	-	2	1	-	-	3	-
CO4	2	2	2	2	-	1	-	-	-	2	1	-	-	3	-
CO5	2	2	2	2	-	-	-	-	-	2	1	-	-	3	-
Avg	2.25	2	2	2	3	1.25	-	-	-	2	1	-	-	3	-

22STC24	NUMERICAL ANALYSIS LA	Se	II			
PREREQUIS	ITES	Category	EEC Credit			2
			L	Т	P	TH
		Hours/Week	0	0	2	2
Carrage I some	ing Objectives					

Course Learning Objectives

To obtain the numerical solution of non- linear system of equations by using Bisection and Newton's methods and To acquire the knowledge with Curve fitting by Least Square approximations. To find the solution of system of linear equations using Gauss Elimination, Gauss Seidal, Gauss Jordan methods. To familiarize with numerical integration using Trapezoidal and Simpson's rules. To familiarize with numerical solution of ordinary differential equations using Euler's and Runge-Kutta methods.

SYLLABUS CONTENTS

0122	1205 001(121(15	
1	Find the roots of Non- Linear equation using Bisection Method	
2	Find the roots of Non- Linear equation using Newton's Method	
3	Curve Fitting by Least Square Approximations	
4	Solve the System of Linear equation using Gauss Elimination Method	
5	Solve the System of Linear equation using Gauss Seidal Iteration Method	
6	Solve the System of Linear equation using Gauss Jordan Method	
7	Integrate numerically using Trapezoidal rule	
8	Integrate numerically using Simpson's rule	
9	Numerical Solution of Ordinary Differential equations by Euler's Method	
10	Numerical Solution of Ordinary Differential equations by Runge- Kutta Method	
		Total (45+15) = 60 Periods

Fausett. L.V., "Applied Numerical Analysis Using MATLAB", Pearson Education Pvt. Ltd., 2nd edition, 2007

Reference Books:

Text Books:

1	Chapra. S.C. and Canale. R.P, Numerical Methods for Engineers, Tata Mcgraw Hill Publications, 5th edition, 2006
2	Structural Dynamics by using MATLab

3 Introduction to MATLab

RELATED VIDEO COURSES

1	Computational Techniques: http://nptel.ac.in/courses/103106074/
---	---

Numerical Methods and Programming: http://nptel.ac.in/courses/122106033

	Outcomes: mpletion of this course, the students will be able to:
CO1	Obtain the numerical solutions of non-linear equations using Bisection and Newton's method
CO2	Do curve fitting by least square approximations
CO3	Solve the system of linear equations using Gauss -Elimination / Gauss -Seidal iteration / Gauss Jordan Method
CO4	Integrate numerically using Trapezoidal and Simpson's rules
CO5	Obtain the numerical solution of ordinary differential equations by Euler's and Runge-Kutta methods

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0

22STC25	MINI PROJECT		Se	emester	•	II
PREREQUIS	ITES	Category	EEC	Cre	edit	2
			L	T	P	TH
		Hours/Week	0	0	4	4
Course Learn	ing Objectives					

1	Identify structural engineering problems reviewing available literature
2	Study different techniques used to analyze complex structural systems
3	work on the solutions given and present solution by using his/her technique applying engineering principles
4	Present solution by using his/her technique applying engineering principles
5	Prepare technical report & presentation.

Syllabus Contents

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution. Continuous assessment of Mini Project at Mid Sem and End Sem will be monitored by the departmental committee.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	-	1	-	2	1	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	2	1	-	-	-	-
CO3	2	-	-	-	-	-	-	1	-	2	1	-	-	-	-
CO4	2	-	-	-	-	-	-	-	-	2	1	-	-	-	-
CO5	2	-	-	-	-	-	1	1	1	2	1	-	-	-	-
Avg	2	-	-	-	-	-	•	1	•	2	1	-	-	-	-

22STC31	DISSERTATION I		Semes	ter-III	
	Categor	y EEC	Cred	lit	10
	Hours/Wee	L	T	P	TH
	Hours, week	0	0	20	20

Course Outcomes:

- 1. Identify structural engineering problems reviewing available literature.
- 2. Identify appropriate techniques to analyze complex structural systems.
- 3. Apply engineering and management principles through efficient handling of project
- 4 Ability to update the latest literature in chosen area of research & establishment of the scope of work.
- Development of the methodology for the chosen research problem and perform basic theoretical/ experiments studies.

Syllabus Contents

Dissertation-I will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to the latest literature available.

End semester presentation should be done along with the report on identification of topics for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions and must bring out individuals' contribution.

Continuous assessment of Dissertation - I and Dissertation - II at Mid Semester and End Semester will be monitored by the departmental committee.

COs/ POs	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	1	1	-	2	1	-	-	-	-
CO2	-	-	-	-	-	-	-	1	1	2	1	-	-	-	-
CO3	2	-	-	-	_	-	1	1	1	2	1	-	-	-	-
CO4	2	-	-	-	-	-	-	-	-	2	1	-	-	-	-
CO5	2	-	-	-	_	-	-	-	-	2	1	-	-	-	-
Avg	2	-	-	-	-	-	-	-	-	2	1	-	-	-	-

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22STC41	DISSERTATION II			Semo	ester-I	V
		Category	EEC	Cre	dit	17
		Hours/Week	L	Т	P	ТН
		Hours/ Week	0	0	34	34

Course Outcomes:

1.	Solve complex structural problems by applying appropriate techniques and tools
2.	Exhibit good communication skill to the engineering community and society
3.	Demonstrate professional ethics and work culture
4	Conduct of Laboratory/ analytical/ software studies.
5	Analysis of Data, development of models, offer solutions to the research problem and provide conclusions of the

Syllabus Contents

work.

Dissertation – II will be an extension of the to work on the topic identified in Dissertation –I. Continuous assessment should be done of the work done by adopting the methodology decided involving numerical analysis/ conduct experiments, collection and analysis of data, etc. There will be a pre submission seminar at the end of the academic term. After the approval the student has to submit the detailed report and an external examiner is called for the viva-voce to assess along with the guide.

COs/ POs	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	ı	1	-	2	1	-	ı	-	-
CO2	-	-	-	-	-	-	-	-	-	2	1	-	-	-	-
CO3	2	-	-	-	-	-	-	-	-	2	1	-	-	-	-
CO4	2	-	-	-	-	-	-	-	-	2	1	-	-	-	-
CO5	2	-	-	-	-	-	-	-	-	2	1	-	-	-	-
Avg	2	-	-	-	-	-	•	•	-	2	1	-		-	-

22STE11	THEORY OF THIN PLATES AND SHI	ELL	S	Semeste	er	I
PREREQUI	SITES	Category	PE	Cre	edit	3
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Lear	ning Objectives				ı	
1 To im	part knowledge to the students about theory of plates, special an	nd approximate me	thods of	fanalys	is of pla	ites.
Unit I	INTRODUCTION		9	3	0	12
-	Surfaces, Shell Co-ordinates, Strain Displacement Relations, As, Stress Resultants, Equation of Equilibrium using Principle o	-			-	nt Field
Unit II	STATIC ANALYSIS OF PLATES		9	3	0	12
	uation for a Rectangular Plate, Navier Solution for Simply solution for Rectangular Plate with other Boundary Condition	• • •	tangula	r Plate	under	Various
Unit III	CIRCULAR PLATES		9	3	0	12
•	Axi- Symmetric Loading, Governing Differential Equation in eigh-Ritz approach for Simple Cases in Rectangular Plates.	Polar Co-ordinates	. Appro	ximate 1	Method	s of
Unit IV	STATIC ANALYSIS OF SHELLS		9	3	0	12
Membrane The	ory of Shells - Cylindrical, Conical and Spherical Shells.					<u>.</u> I
Unit V	SHELLS OF REVOLUTION		9	3	0	12
	lution: with Bending Resistance - Cylindrical and Conical Sles in Plate and Shell.	hells, Application t	o Pipes	and Pr	ressure	Vessels.
				Tot	tal -451	Periods
Text Book	S:					

Tex	t Books:						
1	Theory of Plates and Shells, Timoshenko S. and KriegerW., McGraw Hill.2nd edition 1987.						
2	Stresses in Plates and Shells, UguralAnsel C., McGraw Hill. illustrated edition 1981						
Refer	rence Books:						
1	Thin Elastic Shells, Kraus H., John Wiley and Sons.1st edition1967.						
2	Theory of Plates, ChandrashekharaK., Universities Press. 2001,Illustrated edition						
3	Design and Construction of Concrete Shells, Ramaswamy G.S., R.E.Krieger 1984, 2nd edition						

Course	Course Outcomes:							
Upon co	Upon completion of this course, the students will be able to:							
CO1	At the end of the course, students will be able to Use analytical methods for the solution of thin plates and shells.							
CO2	Use analytical methods for the solution of shells.							
CO3	Apply the numerical techniques and tools for the complex problems in thin plates.							
CO4	Apply the numerical techniques and tools for the complex problems in shells.							
CO5	To study the application of plates and shells							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	2	-	1	2	-	3	=.	2	-	1	-	1	-
CO2	-	3	-	1	1	1	1	-	1	-	1	-	-	1	-
CO3	3	-	1	1	1	-	1	-	1	-	1	-	-	1	-
CO4	2	1	-	1	-	1	-	2	-	2	-	-	2	1	-
CO5	1	1	_	1	-	1	-	-	-	2	1	1	2	1	-
Avg	2.6	2	1.5	1	1	2	1	2.5	1	2	1	1	2	1	-
			3/2/1	-indicate	es streng	th of c	orrelati	ion (3-	High, 2	-Mediur	n, 1- Lov	v)	•		

22STE12	THEORY AND APPLICATIONS OF CEMENT C	COMPOSITES	S	Semeste	er	I			
PREREQUISI	ITES	Category	PE	Cre	edit	3			
			L	Т	P	TH			
		Hours/Week	3	0	0	3			
Course Learni	ing Objectives								
1 To impa	art knowledge on the material properties of ferrocement, a	nalysis, design an	d const	ruction	of ferro	ocement			
Unit I	INTRODUCTION		9	0	0	9			
Composites and materials – Mode	Multi-phase materials – Components of Composite materels and Theories.	rials – Classification	ons – S	Structure	of Co	mposite			
Unit II	MECHANICAL BEHAVIOUR		9	0	0	9			
Reinforcement -	Composites – Kinds – Ordinary Concrete – Fiber Reinforce – Components and Applications – Interfaces in Cement Components Piber Cement paste interface – Interface between old and new	osites – Kinds of							
Unit III	CEMENT COMPOSITES		9	0	0	9			
Composites – Construction Te	nt Composites, Terminology, Constituent Materials and the Glass fiber – Steel fiber – Synthetic Polymeric fiber – Control of Fibre Reinforced Concrete - Ferrocement, Casting and Curing.	Carbon fiber – Ve	getable	fiber -	- Textil	e fiber,			
Unit IV	MECHANICAL PROPERTIES OF CEMENT COM	MPOSITES	9	0	0	9			
Behavior of F Durability and	Perrocement, Fiber Reinforced Concrete in Tension, Comp Corrosion.	pression, Flexure,	Shear,	Fatigue	and I	mpact,			
	Cement Composites: FRC and Ferrocement- Housing, Water rials- Orthotropic and Anisotropic behaviour, Constitutive rel	_			Structu	ires.			
Unit V	Unit V ANALYSIS AND DESIGN OF CEMENT COMPOSITE 9 0 0 STRUCTURAL ELEMENTS								
Ferrocement, SI	FCON and Fibre Reinforced Concrete.								

Refe	Reference Books:								
	Cement – Based Composites Materials, Mechanical Properties and Performance, Andrzej M Brandt, 2 nd Ed., Taylor and Francis, CRC Press, 2017.								
2	Mechanics of Composite Materials, Jones R. M., 2nd Ed., Taylor and Francis, BSP Books, 2015.								
3	Ferrocement – Theory and Applications, Pama R. P., IFIC, 1987.								
4	New Concrete Materials, Swamy R.N., 1stEd., Blackie, Academic and Professional, Chapman & Hall, 1983.								

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Formulate constitutive behaviour of composite materials – Ferrocement, SIFCON and Fibre Reinforced Concrete - by understanding their strain- stress behaviour							
CO2	Classify the materials as per orthotropic and anisotropic behavior.							
CO3	Estimate strain constants using theories applicable to composite materials.							
CO4	To study the properties and applications of cement composites.							
CO5	Analyse and design structural elements made of cement composites.							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	3	-	1	-	2	1	-	1	1	1	1	-
CO2	3	-	3	3	-	2	1	-	1	2	-	-	1	1	-
CO3	3	-	-	1	2	=.	1	1	-	1	1	2	=	-	-
CO4	2	3	2	3	1	-	-	1	-	2	1	-	1	1	-
CO5	2	1	2	1	1	=.	-	1	-	2	1	-	1	1	-
Avg	2.75	2.5	2.6	2.5	1.5	1.5	1	2	1	1.66	1	1.5	1	1	-
			3/2/1-	indicate	s streng	th of co	rrelatio	on (3- H	igh, 2-M	edium,	1- Low)				

DDEP	TE13	THEORY OF STRUCTURAL STABIL	ITY	S	Semeste	er	I
rkek	REQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1		part knowledge to the students on the behaviour of structures and plates, lateral buckling of beam and column design form		compr	ession,	the stat	oility o
Un	nit I	STABILITY OF COLUMNS		9	0	0	9
Bucklir	_	clumns- Equilibrium; Energy and Imperfection approaches - Effect of shear on buckling load - Large deflection theory. METHODS OF ANALYSIS AND IN ELASTIC BU	-	9	1S- Bui	11 up c	orumns 9
		ethods – Rayleigh and Galerkin methods – numerical method	T' ' 1'CC	1 0	·	1	
		• •					-
		ethods – Rayleigh and Galeikhi methods – humerical methods experimental study of column behaviour – South well plot - ive length of Columns - Inelastic behaviour- Tangent modulus	Column curves -	Deriva	tion of		•
formula		experimental study of column behaviour - South well plot -	Column curves -	Deriva	tion of		•
formula Uni Beam Buckl	a - Effect it III column ling of fra	experimental study of column behaviour – South well plot - ive length of Columns - Inelastic behaviour- Tangent modulus	Column curves -s and Double modu	Derivalus theo 9 n elastic	tion of ory.	Column	design
Uni Beam Buckl method	a - Effect it III column ling of fra	xperimental study of column behaviour – South well plot - ive length of Columns - Inelastic behaviour- Tangent modulus BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns – Single storey portal frames with and without side sway	Column curves -s and Double modu	Derivalus theo 9 n elastic	tion of ory.	Column	desigi
Uni Beam Buckl method Uni Latera	a - Effect it III a column ling of fra ds — Use o it IV al bucklir lever bea	BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns - Single storey portal frames with and without side sway of Wood's charts. BUCKLING OF BEAMS ag of beams - Energy method- Application to Symmetric and sums - Narrow rectangular cross sections - Numerical solutions	c Column curves - s and Double modu umns - Columns or - Classical and sti	Derivation of the period of th	tion of ory. 0 c foundate 0 - simply	Oution –	9 yetted and
Uni Beam Buckl method Uni Latera Cantil Unifo	a - Effect it III column ling of fra ds - Use o it IV al bucklir lever bear	BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns - Single storey portal frames with and without side sway of Wood's charts. BUCKLING OF BEAMS ag of beams - Energy method- Application to Symmetric and sums - Narrow rectangular cross sections - Numerical solutions and one-uniform Torsion on open cross section - Flexural torsional	c Column curves - s and Double modu umns - Columns or - Classical and sti	Derivate lus theology of the lastic ffness 9 beams - ing prium and the lastic ffness or ing the lastic field for ing the lastic field	tion of ory. 0 c foundate 0 - simply	Oution – O suppor	9 yeted and pach.
Beam Buckl method Uni Latera Cantil Unifo	a - Effect it III column ling of fra ds - Use o it IV al bucklir lever bea orm and r	BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns – Single storey portal frames with and without side sway of Wood's charts. BUCKLING OF BEAMS mg of beams – Energy method- Application to Symmetric and sums – Narrow rectangular cross sections – Numerical solutions non-uniform Torsion on open cross section - Flexural torsional BUCKLING OF THIN PLATES gular plates - Governing Differential equations - Simply Supplication of Columns – Simply Supplication	column curves - s and Double modu umns - Columns or - Classical and sti single symmetric I s - Torsional buckli buckling - Equilib	Derivation of the property of	tion of ory. 0 c foundate o simply and energy	Outrion – O support	9 red and oach.

Text Books:

Chajes A, Principles of Structural Stability Theory, Prentice Hall, Inc., New Jersey 1974

Ashwinikumar, Stability of Structures, Allied Publishers Ltd, 1998

Reference Books:

I Iyengar N.G.R, Structural Stability of Columns and Plates, Affiliated East- West Press Pvt. Ltd., 1988

Stephen P. Timoshenko and Gere, Theory of Elastic Stability, McGraw-Hill Company 2012

Allen H.G and Bulson P.S., Background to Buckling, McGraw-Hill Book Company, 1980

Smitses, Elastic Stability of Structures, Prentice Hall, 1998

Brush and Almorth, Buckling of Bars, Plates and Shells, McGraw-Hill Book Company, 1975

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Will have knowledge about the concepts of structural stability and analytical approaches						
CO2	Will have an understanding of the methods of analysis and inelastic behaviour of columns, lateral and torsional buckling of beams and buckling of thin plates.						
CO3	Will also be able to perform advanced experiments on beam columns and frames.						
CO4	Will also be able to analyse the buckling of beams						
CO5	Will also be able to analyse the buckling of thin plates						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	=.	3	3	-	1	-	2	=.	1	1	-	1	-	-
CO2	-	3	2	1	-	1	-	1	1	-	-	1	-	-	-
CO3	2	-	1	-	1	-	1	2	-	2	-	1	-	1	-
CO4	-	2	-	3	1	1	1	-	2	-	1	1	-	1	-
CO5	-	2	-	1	1	1	1	-	2	-	1	1	1	1	-
Avg	2.5	2.5	2	2.33	1	1	1	1.66	1.5	1.5	1	1	1	1	-
			3/2/	l-indica	tes strei	ngth of	correlat	ion (3-)	High, 2	-Medium	, 1- Low)				

	22STE14 CORROSION AND ITS PREVENTION Ser							
PREREQUI	SITES Category	PE	Cre	edit	3			
		L	Т	P	TH			
	Hours/Week	3	0	3				
Course Lear	ning Objectives							
1 To stu	dy the environmental effects on structures, corrosion, tests and prevention of corr	osion.						
2 To un	derstand the mechanism of corrosion.							
3 To rec	ognize the importance of corrosion prevention and control planning.							
4 To kn	ow about the various methods of protective measures against corrosion.							
5 To ge	know about the chemicals and materials used as inhibitors for corrosion activities	s in cond	crete.					
Unit I	INTRODUCTION	9	0	0	9			
	agation-electrochemical process-physical process, theory of reinforcement corroctrolyte-corrosion potential and rate of corrosion. IDENTIFICATION AND APPRAISAL OF CORROSION	sion-bas	0	osion ce	11-anoc			
	ess and mechanism-approach to investigation-visual observation and documenta							
	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and too test and pH value, chloride content-half cell potential survey- resistivity map	d testing	g, insitu	testing	of stee			
	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling an	d testing	g, insitu	testing	of stee			
Unit III Methods used cell ratio, elect	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity map MONITORING OF CORROSION I for monitoring corrosion-open circuit potential measurement, resistivity measure rical resistance probe method, polarization resistance technique, impedance technique	ping-me	g, insitu easureme 0 orrosion	testing ent of co	of stee			
Unit III Methods used cell ratio, elect	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity map MONITORING OF CORROSION I for monitoring corrosion-open circuit potential measurement, resistivity measurement.	ping-me	g, insitu easureme 0 orrosion	testing ent of co	of stee			
Methods used cell ratio, elect electrochemica Unit IV Coating to reintereinforcement,	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity map MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measure rical resistance probe method, polarization resistance technique, impedance technique analysis.	9 ement, coique, gu 9 estressir	orrosion ard ring	testing ent of co	9 que,			
Unit III Methods used telectrochemica Unit IV Coating to reinerinforcement,	MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measure rical resistance probe method, polarization resistance technique, impedance technil noise analysis. PROTECTIVE MEASURES forcement- metallic coatings-epoxy coatings-cement based coatings-coating to pr	9 ement, coique, gu 9 estressir	orrosion ard ring	testing ent of co	9 que,			
Unit III Methods used telectrochemica Unit IV Coating to reinterinforcement, resistant steel. Unit V Definition of in	MONITORING OF CORROSION If or monitoring corrosion-open circuit potential measurement, resistivity measure rical resistance probe method, polarization resistance technique, impedance technil noise analysis. PROTECTIVE MEASURES forcement- metallic coatings-epoxy coatings-cement based coatings-coating to pristainless steel, non-ferrous reinforcement and coating to concrete surface, improving the standard properties of the survey of the standard properties and proving the survey of the s	9 ement, coique, gu 9 estressir	oncrete	testing ent of co	9 que, 9 zed sion			
Unit III Methods used cell ratio, electelectrochemica Unit IV Coating to rein reinforcement, resistant steel. Unit V Definition of in	MONITORING OF CORROSION I for monitoring corrosion-open circuit potential measurement, resistivity measure rical resistance probe method, polarization resistance technique, impedance technil noise analysis. PROTECTIVE MEASURES forcement- metallic coatings-epoxy coatings-cement based coatings-coating to prestainless steel, non-ferrous reinforcement and coating to concrete surface, improve this important in the provided in the provided statement and coating to concrete surface, improved the provided statement and cathodic inhibitors-rice husk ash, fly ash, electrochemical remains and coating to concrete surface and cathodic inhibitors-rice husk ash, fly ash, electrochemical remains and coating to concrete surface.	9 ement, coique, gu 9 estressir	oncrete ochloride	testing ent of co	9 ue, 9 zed sion 9 oncrete			
Methods used cell ratio, electrochemical Unit IV Coating to reinfercement, resistant steel. Unit V Definition of its	MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measure rical resistance probe method, polarization resistance technique, impedance technique analysis. PROTECTIVE MEASURES forcement- metallic coatings-epoxy coatings-cement based coatings-coating to prostainless steel, non-ferrous reinforcement and coating to concrete surface, improve INHIBITORS FOR CONCRETE shibitor-anodic and cathodic inhibitors-rice husk ash, fly ash, electrochemical rematerials, carbon FRP, glass FRP, parafil tendons.	9 ement, coique, gu 9 estressir	oncrete ochloride	testing testing techniq techniq techniq techniq from c	9 jue, 9 zed sion 9 oncrete			

U.Kamachi Mudali Baldev Raj,S.Rangarajan Corrosion prevention and control,Narosa Publication,2009 edition.

R.D.Angal, Principles and prevention of corrosion, Narosa Publication, 2010 edition.

2

Refe	Reference Books:								
1	Fontanna, G,Mars,"Corrosion Engineering",ThirdEdition,McGraw-Hill Book Company,Third Edition,2017.								
2	Kumar Mehta,P.,"Concrete-Structure,Properties and Materials", Prentice-Hall, INC, Englewood Cliffs, New Jersey,1993								

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	To know about phenomenon of corrosion, its propagation and the methods to monitor corrosion.				
CO2	To measure the rate of corrosion using Ultrasonic Pulse Velocity technique.				
CO3	To understand different protective measures like coatings to concrete structures.				
CO4	To design Protection system against corrosion of infrastructure, plant, equipment and machinery.				
CO5	Ability to undertake corrosion problem identification, formulation and solution.				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	2	2	-	2	1	-	2	-	1	-	1	-	-
CO2	1	-	2	2	-	2	1	-	2	-	1	-	1	-	-
CO3	1	-	2	2	-	2	1	-	2	-	1	-	1	-	-
CO4	1	-	2	2	-	2	1	-	2	-	1	-	1	-	-
CO5	1	-	2	2	-	2	1	-	2	-	1	-	1	-	-
Avg	1	-	2	2	-	2	1		2	-	1	-	1	-	-
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

22STE21 ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL ENGINEERING PREREQUISITES Category					Semester			
					Credit		3	
				L	Т	P	TH	
			Hours/Week	3	0	0	3	
Cours	se Learn	ing Objectives		l			ı	
1	curve f	iliarize the numerical solution of linear system of equations an fitting by least squares.to impart the knowledge in solving ins. To obtain the finite difference solution of one dimensional valuations	nitial value prob	lems fo	r ordin	ary diff	erentia	
Un	nit I	SOLUTION OF EQUATIONS AND EIGEN VALUE P	PROBLEMS	9	0	0	9	
		se position, Iterative method, Newton Raphson method-Solauss Jordan, Gauss Jacobi and Gauss Seidal methods-Eigen val				tions by	y Gauss	
Unit II INTERPOLATION AND APPROXIMATION					_	•		
UII	it II	INTERPOLATION AND APPROXIMATIO	N	9	0	0	9	
Interpo	olation wi	ith Newton's divided difference, Lagrangian polynomial, New hial approximations (Curve fitting)						
Interpo Square	olation wi	l ith Newton's divided difference, Lagrangian polynomial, New	vton Forward and					
Interpo Square Uni Numer	plation with polynomic pol	l ith Newton's divided difference, Lagrangian polynomial, New nial approximations (Curve fitting)	vton Forward and RATION ation by Trapezo	Backw	vard dif	ferences 0	s- Leas	
Interpo Square Uni Numeri Simpso	plation with polynomic pol	ith Newton's divided difference, Lagrangian polynomial, New hial approximations (Curve fitting) NUMERICAL DIFFERENTIATION AND INTEGE erentiation with interpolation polynomials, Numerical integra	RATION ation by Trapezo	Backw	vard dif	ferences 0	s- Leas	
Interpo Square Uni Numeri Simpso Uni Single	polation with polynomiat III rical differences 3/8 resitt IV	ith Newton's divided difference, Lagrangian polynomial, New hial approximations (Curve fitting) NUMERICAL DIFFERENTIATION AND INTEGE erentiation with interpolation polynomials, Numerical integral ule –Double integrals using by Trapezoidal rule and Simpson's INITIAL VALUE PROBLEMS FOR ORDINARY DIFF	RATION ation by Trapezo rule FERENTIAL Fourth order Rur	9 idal rul	o le-Simp ta meth	ferences 0 son's 1 0 od for f	9 /3 rule	
Interpo Square Uni Numeri Simpso Uni Single second	polation with polynomiat III rical differences 3/8 resitt IV	ith Newton's divided difference, Lagrangian polynomial, New hial approximations (Curve fitting) NUMERICAL DIFFERENTIATION AND INTEGE erentiation with interpolation polynomials, Numerical integral ule —Double integrals using by Trapezoidal rule and Simpson's integral integral integrals using by Trapezoidal rule and Simpson's EQUATIONS hods: Taylor series method-Euler and modified Euler method-	RATION ation by Trapezo rule FERENTIAL Fourth order Rur aforth predictor an	9 idal rul	o le-Simp ta meth	ferences 0 son's 1 0 od for f	9 /3 rule	
Interpo Square Uni Numeri Simpso Uni Single second Uni	polation with polynomiat III rical difference on by ex	ith Newton's divided difference, Lagrangian polynomial, New hial approximations (Curve fitting) NUMERICAL DIFFERENTIATION AND INTEGE erentiation with interpolation polynomials, Numerical integral ule —Double integrals using by Trapezoidal rule and Simpson's integral integrals using by Trapezoidal rule and Simpson's EQUATIONS hods: Taylor series method-Euler and modified Euler method-ferential equations- Multistep method: Milne and Adam's-Bash BOUNDARY VALUE PROBLEMS IN ORDINARY AND	RATION ation by Trapezo rule FERENTIAL Fourth order Rur aforth predictor an ID PARTIAL te difference solu	9 idal rul 9 age-Kutt d correct 9 tions of	o e-Simp ta methetor met o f one di	ferences 0 son's 1 0 od for filhods 0	9 /3 rule 9 irst and	

Tex	Text Books:					
1	Veerarajan. T and Ramachandran, "Numerical methods with Programs in C and C++", Tata McGraw Hill, New Delhi, 2006					
2	Kandasamy.P, Thilagavathy.K, Gunavathi.K, "Numerical Methods" S.Chand& Co., New Delhi, 2005					
Refe	Reference Books:					
1	Gerald, C. F. and Wheatley, P.O.," Applied Numerical Analysis", Sixth Edition, Pearson Education Asia, New Delhi – 2002					
2	M.K.Venkataraman, "Numerical Methods", National Publishing Company,2000					
3	Jain M.K.Iyengar, K & Jain R.K., "Numerical Methods for Scientific and Engineering Computation", New Age International (P) Ltd, Publishers 2003					
4	Manish Goyal, "Numerical Methods and Statistical techniques Using 'C' ", 1st Edition, Laxmi Publications (P) Ltd, 2009					

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Obtain the numerical solutions of linear and non-linear equations						
CO2	Acquire the techniques of interpolation and approximations						
CO3	Familiarize with the numerical differentiation and integration.						
CO4	Solve the initial value problems for ordinary differential equations						
CO5	Good knowledge about different concreting methods						

COUI	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2									2		
CO2	3	2	2	2									2		
CO3	3	2	2	2									2		
CO4	3	2	2	2									2		
CO5	3	2	2	2									2		
Avg	3	2	2	2									2		
	•	•	3/2/1	-indica	ites stre	ngth of	correlat	ion (3-	High, 2	2-Mediu	m, 1- Lo	ow)	•		

22511	E22	STRUCTURAL HEALTH MONITORI	NG	Semester			I	
PRERE	EQUIS	ITES	Category	PE	Cro	edit	3	
				L	Т	P	TH	
			Hours/Week	3	0	0	3	
Course	Learn	ing Objectives						
	static fi	nose the distress in the structure understanding the causes an eld methods. To Assess the health of structure using dynamic es of the structure						
Unit	t I	STRUCTURAL HEALTH		9	0	0	9	
-	•	lesign to resist earthquake, cyclone and flood – National and i area – Traditional and modern structures	international codes	of pract	tice – B	ye law o	of urba	
Unit	: II	STRUCTURAL HEALTH MONITORIN	G	9	0	0	9	
Concepts	s, Vario	us Measures, Structural Safety in Alteration				l		
Unit	III	STRUCTURAL AUDIT		9	0	0	9	
	ent of H	STRUCTURAL AUDIT Iealth of Structure, Collapse and Investigation, Investigation N	Management, SHM			_		
Assessm	ent of H		Management, SHM			_		
Assessm certificat Unit Static I	nent of H te IV Field Te	Health of Structure, Collapse and Investigation, Investigation N		Proced 9	ures, Iss	sue of S	tability	
Assessm certificat Unit Static I Static R	ient of H te IV Field Te Response	FIELD TESTING esting: Types of Static Tests, Simulation and Loading Methode Measurement, Issue of stability certificate. Testing: Types of Dynamic Field Test, Stress History Data, D	ls, sensor systems a	Proced 9 and hard	ures, Iss	oue of S	tability 9 ents,	
Assessm certificat Unit Static I Static R	ient of H te IV Field Te Response	FIELD TESTING esting: Types of Static Tests, Simulation and Loading Methode Measurement, Issue of stability certificate. Testing: Types of Dynamic Field Test, Stress History Data, Equisition Systems, Remote Structural Health Monitoring.	ls, sensor systems a Dynamic Response	Proced 9 and hard	ures, Iss	oue of S	tability 9 ents,	
Assessm certificat Unit Static I Static R	rent of Hete IV Field Te Response c Field Data Ac	FIELD TESTING esting: Types of Static Tests, Simulation and Loading Methode Measurement, Issue of stability certificate. Testing: Types of Dynamic Field Test, Stress History Data, D	ls, sensor systems a Dynamic Response	Proced 9 and hard	ures, Iss	oue of S	tability 9 ents,	
Assessm certificat Unit Static I Static R Dynamic Remote I Unit	rent of Hete IV Field Te Response c Field ' Data Ac t V	FIELD TESTING esting: Types of Static Tests, Simulation and Loading Methode Measurement, Issue of stability certificate. Testing: Types of Dynamic Field Test, Stress History Data, Dequisition Systems, Remote Structural Health Monitoring. INTRODUCTION TO REPAIRS AND REHABILIT	ds, sensor systems a Dynamic Response ATIONS OF	Proced 9 Ind hard Method	ures, Iss 0 ware re is, Hard	oue of Solution of	9 ents,	

Tex	t Books:
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2010.
2	Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007
Refe	rence Books:
1	Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006
2	Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2nd Edition 2014
3	Handbook on Repair and Rehabilitation of RCC Buildings, Central Public Works Department, Government of India.

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Able to demonstrate the condition of structures						
CO2	Will able to inspect and evaluate the damaged structures						
CO3	Will able to implement the repairing techniques of a structure						
CO4	Will demonstrate the dismantling and demolishing structures						
CO5	Know the various data processing methods through case studies.						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	-	1	-	-	-	2	1	-	3	-	-
CO2	3	2	2	-	3	2	-	-	-	2	1	-	3	-	-
CO3	2	2	2	2	-	-	-	-	-	2	1	-	3	-	-
CO4	2	2	2	2	-	-	-	-	-	2	1	-	3	-	-
CO5	2	2	2	2	-	-	-	-	-	2	1	-	3	-	-
Avg	2.25	2	2	2	3	1.5	-	-	•	2	1	-	3	-	-
	•	•	3/2/1-	indicate	es streng	th of co	orrelati	on (3-	High, 2	-Mediur	n, 1- Lov	v)			•

22STE23	STRUCTURAL OPTIMIZATION		S	er	I		
PREREQ	JISITES	Category	PE	Credit		3	
			L	Т	P	ТН	
		Hours/Week	3	0	0	3	
Course Le	arning Objectives				<u> </u>	1	
	impart knowledge to the students on structural optimization technorems.	niques, computer sea	arch me	ethods a	nd optii	nization	
Unit I	BASIC PRINCIPLES, CLASSICAL OPTIMIZATION	TECHNIQUES	9	0	0	9	
Behaviour a and global of	- Objective function, Constraints – Equality and inequality nd other constraints – Design space – Feasible and infeasible – ptima. Differential calculus – Optimality criteria – Single varial ts – Lagrange Multiplier Method with equality constraints – Khu	Convex and Concarble optimization – M	ve – Ad Iultivar	ctive cor riable op	nstraint otimizat	Localion with	
Unit II	LINEAR PROGRAMMING		9	0	0	9	
	of problems – Graphical solution – Analytical methods – Standa orm – Basic feasible solution – Simplex Method – Two phase me nm.		-				
					_		
Dichotomou	NON-LINEAR PROGRAMMING ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Int						
One dimens Dichotomou techniques. Multivariable gradient me	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Intes: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletch	erpolation methods Cauchy's steepest	e and Uncor	Unrestri nstrained method	cted se	arch – ization ugate	
One dimens Dichotomou techniques. Multivariable gradient med Unit IV	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Intes: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves)	erpolation methods. - Cauchy's steepest of the Powell).	e and Uncordescent	Unrestrinstrained method	cted sed optime – Conj	earch – nization	
One dimensions Dichotomous techniques. Multivariably gradient medical Unit IV Posynomial problems with the problems wi	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Intes: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variable	erpolation methods. - Cauchy's steepest of her Powell). quations – Unconstratione degree of difficu	e and Uncor descent 9 inned an	Unrestrinstrained method 0 ad constrillman's	cted sed optime - Conj o rained principl	earch – nization ugate 9	
One dimensions Dichotomous techniques. Multivariable gradient mer Unit IV Posynomial problems with optimality—	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Intes: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variable	erpolation methods. - Cauchy's steepest of her Powell). quations – Unconstratione degree of difficu	e and Uncor descent 9 inned an	Unrestrinstrained method 0 ad constrillman's	cted sed optime - Conj o rained principl	earch – nization ugate 9	
One dimensions Dichotomous techniques. Multivariable gradient met Unit IV Posynomial problems with optimality—tabular methods for the Unit V Methods for the Dichotomous districts and the Unit V	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Intes: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variable	erpolation methods. - Cauchy's steepest of the Powell). quations – Unconstratione degree of difficulab-optimization prob	e and Uncordescent 9 uined and ulty. Belolems un	Unrestrinstrained method O d constrained sing class	cted sed optime – Conj Orained principle ssical are	earch — ization ugate 9 de of ad	
One dimensions Dichotomous techniques. Multivariable gradient met Unit IV Posynomial problems with optimality—tabular methods for the Unit V Methods for the Dichotomous districts and the Unit V	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Inteles: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variab	erpolation methods. - Cauchy's steepest of the Powell). quations – Unconstratione degree of difficulab-optimization prob	e and Uncordescent 9 uined and ulty. Belolems un	Unrestrinstrained method O ad constrillman's sing class Using p	cted sed optime — Conj Orained principle ssical an Orained to the conjugate of the conjuga	arch – ization ugate 9 de of ad	
One dimensions Dichotomous techniques. Multivariable gradient met Unit IV Posynomial problems with optimality—tabular methods for the Methods for the Dichotomous techniques of the Dichot	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Inteles: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variable metric method – Concept of Simultaneous equations of degree of difficulty – Concept of solving problems with of Representation of a multistage decision problem – Concept of subject of Structural decision problem – Concept of Structural design of structural elements, continuous beams and eight design for truss members – Fully stressed design.	erpolation methods. - Cauchy's steepest of the Powell). quations – Unconstratione degree of difficulab-optimization prob	e and Uncordescent 9 uined and ulty. Belolems un	Unrestrinstrained method O ad constrillman's sing class Using p	cted sed optime — Conj Orained principle ssical an Orained to the conjugate of the conjuga	arch – ization ugate 9 le of and 9 heory –	
One dimensions Dichotomous techniques. Multivariably gradient mericolor Unit IV Posynomial problems with optimality—tabular methods for Minimum with the control of the con	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Inteles: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variable metric method – Concept of Simultaneous equations of degree of difficulty – Concept of solving problems with of Representation of a multistage decision problem – Concept of subject of Structural decision problem – Concept of Structural design of structural elements, continuous beams and eight design for truss members – Fully stressed design.	erpolation methods. - Cauchy's steepest of her Powell). - Quations – Unconstration degree of difficults optimization problem. - And single storeyed to the storeyed of the single storeyed to the storeyed	e and Uncordescent 9 iined an alty. Belolems uncordescent 9 frames	Unrestrinstrained method O ad constrillman's sing class Uusing p	cted sed optim Conj O rained principl ssical ar O clastic t	arch – ization ugate 9 e of ad heory –	
One dimensions Dichotomous techniques. Multivariable gradient met Unit IV Posynomial problems with optimality—tabular methods for Minimum were served. I Sim	ional minimization methods: Unidimensional — Unimodal furs search — Fibonacci Method — Golden Section Method — Interest Unconstrained multivariable functions — Univariate method—hod (Fletcher Reeves) — Variable metric method (Davidon Fletcher Reeves) — Variable	erpolation methods. - Cauchy's steepest of her Powell). - Quations – Unconstration degree of difficults optimization problem. - And single storeyed to the storeyed of the single storeyed to the storeyed	e and Uncordescent 9 iined an alty. Belolems uncordescent 9 frames	Unrestrinstrained method O ad constrillman's sing class Uusing p	cted sed optim Conj O rained principl ssical ar O clastic t	arch – ization ugate 9 e of ad heory –	
One dimensions Dichotomous techniques. Multivariably gradient merical variables of the company o	ional minimization methods: Unidimensional — Unimodal furs search — Fibonacci Method — Golden Section Method — Interest Unconstrained multivariable functions — Univariate method—hod (Fletcher Reeves) — Variable metric method (Davidon Fletcher GEOMETRIC & DYNAMIC PROGRAMMING—degree of difficulty — reducing GPP to a set of simultaneous equation to the problem of a multistage decision problem — Concept of success. STRUCTURAL APPLICATIONS—optimal design of structural elements, continuous beams an eight design for truss members — Fully stressed design. Dks: giresu S Rao, Optimization Theory and Applications, New Age B Krish, Optimum Structural Design, McGraw-Hill Book Co.	erpolation methods. - Cauchy's steepest of her Powell). - Quations – Unconstration degree of difficults optimization problem. - And single storeyed to the storeyed of the single storeyed to the storeyed	e and Uncordescent 9 iined an alty. Belolems uncordescent 9 frames	Unrestrinstrained method O ad constrillman's sing class Uusing p	cted sed optim Conj O rained principl ssical ar O clastic t	arch – ization ugate 9 e of ad heory –	
One dimensi Dichotomous echniques. Multivariable gradient met Unit IV Posynomial problems with poptimality—tabular meth Unit V Methods for Minimum with Text Bottler and I Single Posynomial for the I Single Posynomial problems with poptimality—tabular methods for Minimum with I Single Posynomial for the I Sing	ional minimization methods: Unidimensional — Unimodal furs search — Fibonacci Method — Golden Section Method — Interest Unconstrained multivariable functions — Univariate method—hod (Fletcher Reeves) — Variable metric method (Davidon Fletcher GEOMETRIC & DYNAMIC PROGRAMMING—degree of difficulty — reducing GPP to a set of simultaneous equation to the problem of a multistage decision problem — Concept of success. STRUCTURAL APPLICATIONS—optimal design of structural elements, continuous beams an eight design for truss members — Fully stressed design. Dks: giresu S Rao, Optimization Theory and Applications, New Age B Krish, Optimum Structural Design, McGraw-Hill Book Co.	erpolation methods. - Cauchy's steepest of her Powell). [quations – Unconstration degree of difficults optimization problem.] Index single storeyed for the storeyed of the single storeyed of the storeyed of the storeyed of the single storeyed of the s	e and Uncordescent 9 iined analty. Belolems uncordescent 9 frames	Unrestrinstrained method O ad constrillman's sing class Using p Tot	cted sed optime — Conj Orained principle ssical an Orained tal -45]	arch — ization ugate 9 le of ad heory — Periods	
One dimension Dichotomous techniques. Multivariable gradient merical Unit IV Posynomial problems with optimality—tabular methods for Minimum with the Unit V Methods for Minim	ional minimization methods: Unidimensional – Unimodal furs search – Fibonacci Method – Golden Section Method – Inteles: Unconstrained multivariable functions – Univariate method – hod (Fletcher Reeves) – Variable metric method (Davidon Fletcher Reeves) – Variable metric method (Davidon Fletcher) – degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of the zero degree of difficulty – Concept of solving problems with one of s	erpolation methods. - Cauchy's steepest of her Powell). - Quations — Unconstration degree of difficults problem and single storeyed for the	e and Uncordescent 9 iined analty. Belolems uncordescent 9 frames	Unrestrinstrained method O ad constrillman's sing class Using p Tot	cted sed optime — Conj Orained principle ssical an Orained tal -45]	arch – ization ugate 9 le of and 9 heory – Periods	

	e Outcomes: ompletion of this course, the students will be able to:
CO1	Apply the knowledge of engineering fundamentals to formulate and solve the Engineering problems by classical optimization techniques.
CO2	Identify, formulate and solve engineering problems by linear and non-linear Programming.
CO3	Analyse the problem and reducing G.P.P to a set of simultaneous equations.
CO4	Design various structural elements with minimum weight.
CO5	Use the optimization techniques for simple structural elements.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	1	-	-	-	-	-	-	1	-	-
CO2	3	2	2	2	1	1	-	-	-	-	-	-	1	-	-
CO3	3	2	2	2	1	1	-	-	-	-	-	-	1	-	-
CO4	3	2	2	2	1	1	-	-	-	-	-	-	1	-	-
CO5	3	2	2	2	1	1	-	-	-	-	-	-	1	-	-
Avg	3	2	2	2	1	1	-	-	-	-	-	-	1	-	-

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

	ГЕ24	EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION Semester I								
PRER	EQUIS	ITES	Category	PE	Cre	edit	3			
				L	Т	P	ТН			
		Hours/Week		3	0	0	3			
Course	e Learn	ing Objectives								
1	To imp techniq	art knowledge about the measurement of force, strain, vibration	on, wind flow, distr	ress and	l nondes	structive	etesting			
Un	it I	FORCE AND STRIN MEASUREMENTS	S	9	0	0	9			
		Principle, Types, Performance and Uses-Photo elasticity, P. – Electronic load cell – Proving rings – Calibration of testing		cations	– Hydi	raulic ja	ack and			
Uni	it II	VIBRATION MEASUREMENTS		9	0	0	9			
accele	eration m					•	nd			
	-	easurements – Vibration meter – Seismographs – Vibration and lay and recording of signals – Cathode Ray Oscilloscope ems - Principles and Applications.	•		plotters	– Dig				
Acquisi	-	alay and recording of signals - Cathode Ray Oscilloscope	- XY plotters -		plotters	- Dig				
Acquisi Unit	t III les of pre	olay and recording of signals – Cathode Ray Oscilloscope ems - Principles and Applications.	- XY plotters - MENTS evel meter - Ventu	Chart 9 urimeter	0	0	ital and			
Acquisi Unit Principl Wind tu	t III les of pre	olay and recording of signals – Cathode Ray Oscilloscope ems - Principles and Applications. ACOUSTICS AND WIND FLOW MEASUREM ressure and flow measurements – Pressure transducer – Sound leads to the control of the co	- XY plotters - MENTS evel meter - Ventu	Chart 9 urimeter	0	0	ital and			
Unit Principl Wind tu Unit	t III lles of preunnel and t IV losis of d	lay and recording of signals – Cathode Ray Oscilloscope ems - Principles and Applications. ACOUSTICS AND WIND FLOW MEASUREM essure and flow measurements – Pressure transducer – Sound led its use in structural analysis – structural modeling - Direct and	- XY plotters - MENTS evel meter - Ventue d indirect model are prrosion of reinforce	9 primeter nalysis 9	0 and Flo	0 ow mete	9			
Unit Principl Wind tu Unit Unit Diagn - Half of	t III lles of preunnel and t IV losis of d	lay and recording of signals – Cathode Ray Oscilloscope ems - Principles and Applications. ACOUSTICS AND WIND FLOW MEASUREM essure and flow measurements – Pressure transducer – Sound led its use in structural analysis – structural modeling - Direct and DISTRESS MEASUREMENTS istress in structures- Crack observation and measurement – Co	- XY plotters - MENTS evel meter - Ventue d indirect model are prosion of reinforce for demolition	9 primeter nalysis 9	0 and Flo	0 ow mete	9			
Principle Wind to Unit Diagn - Half of Unit Load te	t III lles of preunnel and t IV losis of d cell, con it V esting of	lay and recording of signals – Cathode Ray Oscilloscope ems - Principles and Applications. ACOUSTICS AND WIND FLOW MEASUREM essure and flow measurements – Pressure transducer – Sound led its use in structural analysis – structural modeling - Direct and DISTRESS MEASUREMENTS istress in structures- Crack observation and measurement – Construction and use – damage assessment – Controlled blasting for	- XY plotters - MENTS evel meter - Ventue d indirect model ar prosion of reinforce for demolition DS - Ultra sonic testin	9 primeter nalysis 9 prement in 9	0 and Flo	0 over meter over the	9 ers – 9			

Tex	Text Books:								
1	Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2009.								
Refe	Reference Books:								
1	Karthick and Balaji S, "Applications and Techniques for Experimental Stress Analysis", 2019.								
2	Dalley.J.W.andRiley.W.F., "Experimental Stress Analysis", Tata McGraw Hill Book Co.								
3	Srinath L.S., et al, Experimental Stress Analysis, Tata McGraw Hill Co., New Delhi, 1984.								
4	Sironi R.S and Radha Krishna H.C., Mechanical Measurements, New Age International (P) Ltd.								

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Familiarize with various types of measuring devices and their working principles						
CO2	Able to select a measuring device for a specific experimental work						
CO3	Able to conduct experiments, observe and interpret data.						
CO4	Obtained the expected results from the interpretation.						
CO5	They will be able to analyze the structure by non-destructive testing methods.						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	-	2	-	1	-	-	-	-	1	-	-	3	-
CO2	-	3	-	2	-	1	-	-	-	-	1	-	-	3	-
CO3	-	3	-	2	-	1	-	-	-	-	1	-	-	3	-
CO4	-	3	-	2	-	1	-	-	-	-	1	-	-	3	-
CO5	-	3	-	2	-	1	-	-	-	-	1	-	-	3	-
Avg	-	3	-	2	-	1	-	-	-	-	1	-	-	3	-
			3/2/1-	indicate	es streng	th of c	orrelati	on (3-	High. 2	-Mediu	n, 1- Lov	v)			

dicates strength of correlation (3- High, 2-Medium, 1- Low)

	ADVANCED STEEL DESIGN						
22STE31	(IS:875(part-III)-198, IS: 800-200, IS: 811-1987, SP: 6(5)), IS: 801-1967)	Semester			II	
	may be Permitted			Г			
PREREQUIS	SITES	PE	PE Cree		3		
			L	T	P	TH	
		Hours/Week	3	0	0	3	
Course Learn	ning Objectives						
	lerstand the property of structural steel and gain knowledge of tions and the knowledge about design of beam columns and stu					d about	
Unit I	INTRODUCTION		9	0	0	9	
compactness, s Design of Steel	Structural Steel: Mechanical Properties, Hysteresis, Ductilius slenderness, residual stresses. Structures: Inelastic bending curvature, plastic moments, de able stress design, Philosophies of limit state design, Plastic Design.	sign criteria stabil	ity, stre	ngth, dı	rift. Met		
Unit II	ECCENTRIC AND MOMENT CONNECTION		9	0	0	9	
			_				
	Beam-Column Connections- Connections Subjected to Ecceled - Framed Connections- Seated Connections - Bracket Connections		ment R	esistant	Conne	ctions –	
Unit III	DESIGN OF BEAM COLUMNS		9	0	0	9	
Introduction – C Design of beam	General behavior of beam-columns – codal provision for local cal-columns.	capacity check and	overall	bucklin	g check	_	
Unit IV	PRE-ENGINEERED BUILDINGS		9	0	0	9	
Introduction – c	connection details – design of typical portal frame from Industri	ial shed using IS: 8	800-200	7.	•		
Unit V	LIGHT GAUGE STEEL STRUCTURES 9 0 0						
Types of cross	sections - local buckling and lateral buckling - concepts of el	astic width – desig	an of co	omnress	ion and	tonsion	
• •	s, deflection of beams and design of beam webs.	astic width desig	gii oi co	лиргезз	ion and	tension	

Tex	tt Books:
1	Duggal S.K., Limit State Design of Steel Structures, TataMcGraw Hill Education Private Ltd., New Delhi , 2017
2	Subramanian N, Design of Steel Structures, Oxford University Press, 2013
3	Ramchandra S and VirendraGehlot, Limit State Design of Steel Structures, Standard Publication, New Delhi, 2013
4	M.R. Sheyekar "Limit state design in Structural Steel", 1st Edition, PHI Publications, 2010.
5	Wie-Wen Yu.,"Cold-Formed Steel Structures"-Wheeler Publishing.2012
6	William T.Segui"LFRD Steel Design" PWS Publishing, 2013
Refe	rence Books:
1	Gaylord E.H, Gaylord N.C. and Stallmeyer, J.E, Design of Steel Structures, 3rd edition, McGraw-Hill Publications, 1992.

2	IS:875(part-III)-1987, Code of for design loads(other than earthquake for building and structures)
3	Teaching Resources for Structural Steel Design – Vol.I& II, INSDAG, Kolkatta.
4	IS: 811-1987, Cold Formed Light Gauge Structural Steel Sections
5	IS: 800-2007, Code of practice for general construction in steel
6	SP: 6(5) ISI Hand book for Structural Engineers – Cold-Formed Light gauge steel structures
7	IS: 801-1967, Code of practice for use of cold-formed light gauge steel structural members in general building construction

	Outcomes: mpletion of this course, the students will be able to:
CO1	Understand the behaviour of steel and design philosophies
CO2	They acquire knowledge to analysis and design of eccentric connections.
CO3	To acquire the knowledge of stability behavior of beam and column sections
CO4	Understand the behaviour of moment resistant frames used in pre-engineering buildings
CO5	To learn the behavior and design of of light gauge steel axial and flexural members.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	-	3	-	1	2	-	-	-	1	2	-
CO2	3	3	3	2	2	2	-	1	1	1	-	-	1	3	-
CO3	3	3	3	2	2	2	-	2	1	-	-	-	1	3	-
CO4	3	3	3	2	2	2	-	1	1	1	-	-	1	3	-
CO5	3	3	3	2	2	2	-	2	1	-	-	-	1	3	-
Avg	3	3	3	2.2	2	2.2	-	1.4	1.2	1	-	-	1	2.8	-
	•	•	3/2/1	-indica	ites stre	ngth of	correlat	ion (3-	High, 2	2-Mediu	m, 1- Lo	ow)	•		

22STE32	DESIGN OF FORMWORK		S	Semeste	mester	
PREREQUIS	ITES	PE	Credit		3	
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Learn	ing Objectives				I	I
To stud	n knowledge of formwork and its materials and the various medly the design of special formwork structures and gain knowledge of formwork.	_			stand al	out th
Unit I	INTRODUCTION		9	0	0	9
	EON WYONY DEGRAY			nd Vert	I	I
Supports Unit II	FORMWORK DESIGN		9	0	0	9
Unit II Concepts, Form	work Systems and Design for Foundations, Walls, Columns, S		9	0	0	9
Unit II					I	I
Unit II Concepts, Form Unit III	work Systems and Design for Foundations, Walls, Columns, S	CTURES	9	0	0	9
Concepts, Form Unit III	work Systems and Design for Foundations, Walls, Columns, S FORMWORK DESIGN FOR SPECIAL STRUC	CTURES	9	0	0	9
Unit II Concepts, Form Unit III Shells, Domes, Unit IV	work Systems and Design for Foundations, Walls, Columns, S FORMWORK DESIGN FOR SPECIAL STRUCT Folded Plates, OverheadWater Tanks, Natural Draft Cooling T	CTURES Cower, Bridges.	9 9	0	0	9
Unit II Concepts, Form Unit III Shells, Domes, Unit IV	work Systems and Design for Foundations, Walls, Columns, S FORMWORK DESIGN FOR SPECIAL STRUCT Folded Plates, OverheadWater Tanks, Natural Draft Cooling T FLYING FORMWORK	CTURES Cower, Bridges.	9 9	0	0	9
Unit II Concepts, Form Unit III Shells, Domes, Unit IV Table Form, Tu Unit V	work Systems and Design for Foundations, Walls, Columns, S FORMWORK DESIGN FOR SPECIAL STRUCT Folded Plates, OverheadWater Tanks, Natural Draft Cooling T FLYING FORMWORK nnel Form, Slip Form, Formwork for Precast Concrete, Formwork	CTURES Cower, Bridges. vork Management I	9 9 ssues -	0 0 0 Pre- and	0 0 1 Post-A	9 9 ward.

Refe	rence Books:
1	Formwork for Concrete Structures, Peurify, McGraw Hill India, 2015.
2	Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012.
3	IS 14687: 2014, False work for Concrete Structures - Guidelines, BIS

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Select proper formwork, accessories and material.					
CO2	Design the form work for Beams, Slabs, columns, Walls and Foundations.					
CO3	Design the form work for Special Structures.					
CO4	Understand the working of flying formwork.					
CO5	Judge the formwork failures through case studies.					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	1	-	-	-	-	-	-	1	1	-
CO2	2	1	1	1	1	1	-	-	-	-	-	-	1	1	-
CO3	2	1	1	1	1	1	-	-	-	-	-	-	1	1	-
CO4	2	1	1	1	1	1	-	-	-	-	-	-	1	1	-
CO5	2	1	1	1	1	1	-	-	-	-	-	-	1	1	-
Avg	2.2	1.2	1.2	1	1	1	-	-	-	-	-	-	1	1	-

22STE33	DESIGN OF HIGH RISE STRUCTURE (IS 4998: 2015, SP7-2016 IS SP 7-NBC) may be pe		S	Semeste	er	II
PREREQUI	SITES	Category	PE	PE Cr		3
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					
	udent is expected to understand the design of high rise structure leve both safety and economy.	s and incorporate	this in	the desi	gn of st	ructure
Unit I	INTRODUCTION		9	0	0	9
	drainage and garbage disposal - service systems - structural and m - Human comfort criteria. DESIGN OF TRANSMISSION / TV TOWE		9	0	0	9
Mast and trestl	es: Configuration, bracing system, analysis and design for vertical	al transverse and l	longitud	linal loa	ds.	
Unit III	ANALYSIS AND DESIGN OF RC CHIMNE	EY	9	0	0	9
RC Chimney-a	nalysis and design, Foundation design for varied soil strata.				•	
Unit IV	BEHAVIOR OF STRUCTURAL SYSTEMS	S	9	0	0	9
	ng the height and structural form, Behavior of Braced frames, Riguells, Wall-Frames, Tubular. Outrigger braced, Hybrid systems.	_	ed fram	es, Shea	ır walls,	
	ANALYSIS AND DESIGN OF TALL STRUCT	9	0	0		
Unit V	ANALISIS AND DESIGN OF TALL STRUCTO	UKES	9	U	U	9

Total -45Periods

Refe	rence Books:
1	Structural Design of Multi-storeyed Buildings, Varyani U. H., 2nd Ed., SouthAsian Publishers, New Delhi, 2002.
2	Structural Analysis and Design of Tall Buildings, Taranath B. S., McGraw Hill, 1988.
3	Illustrated Design of Reinforced Concrete Buildings(GF+3storeyed), Shah V. L. &Karve S. R., Structures Publications, Pune, 2013.
4	Design of Multi Storeyed Buildings, Vol. 1 & 2, CPWD Publications, 1976.
5	Tall Building Structures, Smith Byran S. and Coull Alex, Wiley India. 1991.
6	IS 4998: 2015-Design of Reinforced concrete chimneys
7	SP7-2016 IS SP 7-NBC-National building code of India 2016

Course	Course Outcomes:						
Upon co	Upon completion of this course, the students will be able to:						
CO1	1 To understand the behavior of tall structures.						
CO2	Analyze, design and detail Transmission/TV tower.						
CO3	Analyze. design and detail of chimneys.						
CO4	To understand the behavior of various structural forums.						
CO5	To carry out the stability analysis.						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	2	2	-	2	1	-	2	-	-	-	1	-	-
CO2	2	-	2	2	-	2	1	-	2	-	-	-	1	-	-
CO3	2	-	2	2	-	2	1	-	2	_	-	-	1	-	-
CO4	2	-	2	2	-	2	1	-	2	-	-	-	1	1	1
CO5	2	-	2	2	-	2	1	-	2	-	-	-	1	-	-
Avg	2	-	2	2	-	2	1	-	2	-	-	-	1	-	-

22STE34	DESIGN OF MASONRY STRUCTURI	ES	S	Semeste	er	II	
PREREQ	ISITES	Category	PE	Credit		3	
			L	T	P	ТН	
		Hours/Week	3	0	0	3	
Course Le	rning Objectives				1		
	npart knowledge to the students about masonry materials and to strength of the structure. This also guides to know its behavior a					ıral and	
Unit I	INTRODUCTION		9	0	0	9	
	Historical Perspective, Masonry Materials, Masonry Design Behaviour of Masonry, Masonry Wall Configurations, Distribution			of Lo	ad Cor	ditions,	
Unit II	FLEXURAL STRENGTH		9	0	0	9	
Flexural stre	gth of Reinforced Masonry Members: In plane and Out-of-plane	Loading.					
Unit III	INTERACTIONS	INTERACTIONS					
Structural W	ll, Columns and Pilasters, Retaining Wall, Pier and Foundation				1		
Unit IV	SHEAR STRENGTH		9	0	0	9	
Shear Stre	th and Ductility of Reinforced Masonry Members.						
Prestressed	asonry - Stability of Walls, Coupling of Masonry Walls, Opening	gs, Columns, Bean	ns.				
Unit V	ELASTIC AND INELASTIC ANALYSIS	}	9	0	0	9	
Modeling T	chniques, Static Push Over Analysis and use of Capacity Design S	Spectra.	1		1		
					tal -45I		

Refe	rence Books:
1	Design of Reinforced Masonry Structures, NarendraTaly, ICC, 2nd Edn,
2	Masonry Structures: Behavior and Design, Hamid Ahmad A. and Drysdale Robert G., Pearson College Div; 2nd edition (May 1, 1993).
3	Mechanics of Masonry Structures, Editor: Maurizio Angelillo, Springer; 2014 edition (March 21, 2014).India, 1986.
4	Earthquake-resistant Design of Masonry Buildings, TomaeviMiha, Imperial College Press, 1999.

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	CO1 Understand the masonry design approaches.							
CO2	Analyze Reinforced Masonry Members.							
CO3	Determine interactions between members.							
CO4	Check the stability of walls							
CO5	Perform elastic and Inelastic analysis of masonry walls.							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	2	-	-	ı	-	1	1	1
CO2	2	2	2	2	1	1	-	2	-	-	-	-	1	1	1
CO3	2	2	2	2	1	1	-	2	-	_	-	-	1	1	1
CO4	2	2	2	2	1	1	-	2	-	-	-	-	1	1	1
CO5	2	2	2	2	1	1	-	2	-	_	-	-	1	1	1
Avg	2	2	2	2	1	1	-	2	-	-	-	-	1	1	1

roof struc Unit I General civil engine specifications - Ministrages of loading a	ng Objectives t knowledge to the students about structural design of prefal	LES and layout of pre	PE L 3	1	P 0	3 TH 3
1 To impart roof struc Unit I General civil engrespecifications - Mestages of loading a	t knowledge to the students about structural design of prefaitures. INTRODUCTION AND DESIGN PRINCIPI ineering requirements, specific requirements for planning odular co- ordinations, standardizations, Disuniting of Prefa	bricated structures LES and layout of pre	3, indust	0	0	3
1 To impart roof struc Unit I General civil engrespecifications - Mestages of loading a	t knowledge to the students about structural design of prefaitures. INTRODUCTION AND DESIGN PRINCIPI ineering requirements, specific requirements for planning odular co- ordinations, standardizations, Disuniting of Prefa	bricated structures LES and layout of pre	, indust	rial buil		
1 To impart roof struc Unit I General civil engrespecifications - Mestages of loading a	t knowledge to the students about structural design of prefaitures. INTRODUCTION AND DESIGN PRINCIPI ineering requirements, specific requirements for planning odular co- ordinations, standardizations, Disuniting of Prefa	LES and layout of pre	-	1	dings ar	ıd she
roof struc Unit I General civil engine specifications - Ministrages of loading a	INTRODUCTION AND DESIGN PRINCIPI ineering requirements, specific requirements for planning odular co- ordinations, standardizations, Disuniting of Prefa	LES and layout of pre	-	1	dings ar	nd she
General civil eng specifications - M stages of loading a	ineering requirements, specific requirements for planning odular co- ordinations, standardizations, Disuniting of Prefa	and layout of pre	9	•		
specifications - M stages of loading a	odular co- ordinations, standardizations, Disuniting of Prefa			0	0	9
	and codal provisions, sarcty factor, material properties, defice		ons, tra	nsportat	ions, ere	
Unit II	REINFORCED CONCRETE PREFARICATED STR ELEMENTS	RUCTURAL	9	0	0	9
	ctures – long wall, cross- wall, large panel buildings, one wa tials and curtain walls, single storey industrial buildings with					1
Unit III	FLOORS, STAIRS, ROOFS AND WALLS	S	9	0	0	9
of roof slabs and in control for short te	os, analysis and design example of cored and panel types and insulation requirements, description of joints, their behavior are and long term loads, ultimate strength calculations in she walls, curtain, partition and bearing walls, load transfer from all panels.	and reinforcement in the arrangement in the arrange	requirer pes of v	ments, de wall pane	eflectionels, bloc	n ks and
Unit IV	DESIGN OF INDUSTRIAL BUILDINGS	}	9	0	0	9
-	ngle- storey industrial sheds with crane gantry systems, desig girders, corbels and columns, wind bracing design.	n of R.C Roof trus	sses, roo	of panels	s, design	of
Unit V	DESIGN OF SHELL ROOFS FOR INDUSTRIAL	SHEDS	9	0	0	9
Cylindrical, folded	d plate and hyper- prefabricated shells, erection and jointing,	joint design, hand	book b	ased des	ign.	
				Tot	al -45P	erio

Tex	t Books:
1	Lewicki B, Building with large Prefabricates, Elsevier Publishing Company, Amsterdam/ London/ New York, 1998.
2	Koncz T, Manual of Precast Concrete Constructions, Vol. I, II and III, Bauverlag, GMBH, 1976.
Refe	rence Books:
1	Structural Design Manual, Precast Concrete Connections & Details, Society for the Studies in the use of Precast Concrete, NeatherlandBetorVerlag, 1978.
2	LassloMokk, Prefabricated Concrete for Industrial and Public Sectors, Akademiai Kiado, Budapest, 1964.
3	Murashev V, Sigalov E and Bailov V, Design of Reinforced Concrete Structures, Mir Publishers, 1976.
4	CBRI, Building Materials and Components, 1990, India
5	Gerostiza C.Z, Hendrikson C, Rehat D.R, Knowledge Based Process Planning for Construction and Manufacturing, Academic Press, Inc., 1989.
6	Warzawski A, Industrializations and Robotics in Building – AManagerial Approach, Harper & Row, 1990.

Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	CO1 Able to gain knowledge about the requirements for planning and layout of prefabricating plant							
CO2	Will be familiar with the IS codal provisions, for prefabrication of structural elements							
CO3	Will be able to design large panel walls, one way and two way prefabricated slabs, curtain walls, single storey industrial buildings with trusses, and gantry systems							
CO4	Identify the different roof trusses used in industrial buildings.							
CO5	They will be in a position to design of shell roofs for industrial sheds.							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	2	1	-	-	1	1	-	-	-	1	1	-
CO2	2	3	1	2	1	-	-	1	1	-	-	-	1	1	-
CO3	2	3	1	2	1	-	-	1	1	-	-	-	1	1	-
CO4	2	3	1	2	1	-	-	1	1	-	-	-	1	1	
CO5	2	3	1	2	1	-	-	1	1	-	-	-	1	1	
Avg	2	3	1	2	1	-	-	1	1	-	-	-	1	1	-
			2/2/1	indicat	aa atuan	ath of a	ommalati.	on (2. I	Ligh 2	Madines	1 Lov)			

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22STE36	(IS 11384-1984, EN 1994-1-1 (2004) only tables, Steel table, may be Permitted	IS 800:2007)	Semester			II
PREREQUIS	ITES	Category	PE	Credit		3
		_	L	T	P	TH
		Hours/Week	3	0	0	3
Course Learn	ning Objectives				1	1
	part knowledge to the students about design of composite mer ts. The case studies were investigated to know the seismic behave			girders	and its	design
Unit I	INTRODUCTION		9	0	0	9
Introduction to sandwich constr	steel-concrete composite construction – Theory of composite struction	ructures – Introd	duction	to steel	- concre	ete-steel
Unit II	DESIGN OF COMPOSITE MEMBERS		9	0	0	9
Behaviour of c	composite beams, columns – Design of composite beams, stores	eel-concrete con	nposite	columr	ns – De	esign of
Unit III	DESIGN OF CONNCTIONS IN COMPOSITE MEN	MBERS	9	0	0	9
	Types of connections – Design of connections in composite struct omposite trusses.	ures – Shear con	nection	, Design	n of	
Unit IV	DESIGN OF COMPOSITE BRIDGES		9	0	0	9
Introduction to	Composite Box Girder Bridges – Behaviour of box girder bridge	s – design conce	pts		1	
Unit V	CASE STUDIES		9	0	0	9
General case stu	\mathbf{r}	smic behaviour o	of comp	osite str	uctures.	
						Periods

Tex	t Books:
1	Johnson R.P., Composite structures of steel and concrete, Blackwell Scientific Publications, 2nd edition, U.K., 2004.
2	Owens G.W and Knowels P., Steel Designers manual,5th edition, Steel Concrete Institute (UK), Oxford Blackwell Scientific Publications, 1992.
Refe	rence Books:
1	Arya, A.S., Design of Steel Structures, New Chand & Brothers, New Delhi 2014.
2	Workshop on Steel concrete composite structures conducted at Anna University 2000.
3	Necessary Indian & Eurocodes
4	INSDAG teaching resources for structural steel design, Vol.2, INSDAG, IspanNiketan, Calcutta.
5	IS 11384-2022 Code of Practice for composite construction in structural steel and concrete
	EN 1994-1-1 (2004): Euro code 4 : Design of composite steel and concrete structures-Part-1-1 : General rules and rules
	for buildings
7	Steel table, IS 800:2007 General construction in steel.

Course	Course Outcomes:						
Upon completion of this course, the students will be able to:							
CO1	Have a thorough understanding of the behavior of steel concrete composite structure components – slabs, beams, columns and trusses.						
CO2	Design the meeting out the desired specifications and requirements.						
CO3	Have the ability to solve Structural engineering problems.						
CO4	Have the knowledge to conduct advanced experiments on steel concrete composite structural components.						
CO5	Have knowledge in the seismic study and general case studies of steel-concrete composite structures						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	1	-	2	3	-	1	1	-	3	-
CO2	2	-	3	-	1	1	-	1	-	1	-	1	1	-	-
CO3	1	1		2	-	1	2		1	1	-	1	-	2	-
CO4	2	-	1	1	-	1	1	-	2	-	-	1	-	-	-
CO5	2	-	1	1	-	1	1	-	-	-	-	1	-	-	-
Avg	2	1.5	2	1.66	1	1	1.5	1.5	2	1	1	1	1	2.5	-
			3/2/1	-indica	ites strei	ngth of	correlatio	on (3- H	igh, 2-N	1edium, 1	- Low)				

22S	STE41	DESIGN OF ADVANCED CONCRETE STRU	CTURES	S	semeste	er	II
PREF	REQUIS	SITES	Category	PE	Cro	3	
				L	T	P	TH
			Hours/Week	3	0	0	3
Cours	se Learr	ning Objectives					
1		part knowledge to the students with regard to the design of sour of structural members and expose them to the concepts of					
Uı	nit I	DESIGN OF BEAMS CURVED IN PLAN AND DEE	EP BEAMS	9	0	0	9
spandr	rel beams	ombined effect of shear, bending moment and torsion – Ana - Design of deep beams.	alysis and design	of bear	ms curv	red in p	lan and
Un	nit II	DESIGN OF SPECIAL R.C. ELEMENTS		9	0	0	9
_		der columns – Design of RC walls and shear walls –Classiflanged shear walls – Design of corbels.	ssification and d	esign p	rinciple	s – De	sign of
Un	it III	DESIGN OF FLAT SLAB AND GRID FLOO	RS	9	0	0	9
		y of slabs – Hillerberg's method of design of slab – Design of fl nalysis and design of grid floors.	lat slab - Equivale	nt fram	e metho	d of des	ign –
Un	it IV	INELASTIC BEHAVIOUR OF R.C. BEAM	IS .	9	0	0	9
		our of concrete beams – moment rotation curves – Moment redin of cast in situ joints in frame.	istribution – Bake	r's meth	nod of a	nalysis	and
Un	nit V	DETAILING REQUIREMENTS		9	0	0	9
_	S: 5525	ailing of structural members using seismic design – Reinforcer – Earthquake resistant Design – Detailing requirements for	_				_
					Tot	al -451	eriod:

Text Books:							
1	S Unnikrishna Pillai, Devdas Menon. "Reinforced Concrete Design" McGraw Hill, 2021						
2	Varghese P.C., Advanced Reinforced Concrete Design, Prentice Hall of India, 2005						
Refe	rence Books:						
1	KirshnaRaju N., Advanced Reinforced Concrete Design, CBS Publishers and Distribuors , 2016						
2	Purushothaman P., Reinforced Concrete Structural Elements. Behaviour Analysis and Design, Tata Mcgraw Hill.						
3	Park R. and Paulay T., Reinforced Concrete Structures, John Wiley & Sons.2017.						

	e Outcomes: completion of this course, the students will be able to:
CO1	Analyse the special structures by understanding their behaviour
CO2	.Design and prepare detail structural drawings for execution.
CO3	Design the special elements like corbels, deep beams, spandrel beams and grid floors
CO4	Predict the moment curvature behavior, design and detailing of concrete elements based on ductility parameter
CO5	Able to design and provide detailing of various structures using various IS codes

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	1	1	-	1	1	2	-	3	2	2
CO2	1	-	3	3	2	-	1	-	2	1	3	-	1	1	1
CO3	3	2	3	-	-	1	1	-	1	1	2	-	3	2	2
CO4	1	-	3	3	2	-	1	-	2	1	3	-	1	1	1
CO5	1	-	3	3	2	-	1	-	1	1	2	-	1	1	1
Avg	2	2	3	3	2	1	1	-	1.5	1	2.5	-	2	1.5	1.5
			3/2/1	-indica	ites strei	ngth of	correlat	ion (3-	High, 2	-Mediur	n, 1- Lov	v)			

22S	TE42	ADVANCED DESIGN OF FOUNDATION	ONS	Semester			II
PREI	REQUIS	ITES	Category	PE	Credit		3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Cour	se Learn	ing Objectives				l	ı
1	the Sett	erstand the basic philosophy of planning of Soil Exploration at thement of Footings and Rafts. To estimate Load Transfer of the Tounderstand the provision of IS and IRC Design Code s.	f Piles, Settlement	of Pile	Found	lations a	and Pile
\mathbf{U}_1	nit I		9	0	0	9	
	U	il Exploration for Different Projects, Methods of Subsurfaction Tests.	e Exploration, Mo	ethods	of Bori	ngs alo	ng with
Ur	nit II	SHALLOW FOUNDATIONS		9	0	0	9
-		or Satisfactory Performance of Foundations, Methods of Estimortioning of Foundations using Field Test Data, Pressure - Settle		-			_
and Ra		· · · · · · · · · · · · · · · · · · ·		-			_
Un Metho pile gi	it III ds of Estimoup & pil	ortioning of Foundations using Field Test Data, Pressure - Settl	lement Characteris s, Pile Group Capa	y scity and	m Const 0 d Settler	itutive I 0 nent, De	9 esign o
Un Metho pile gi Propor	it III ds of Estimoup & pil	PILE FOUNDATIONS mating Load Transfer of Piles, Settlements of Pile Foundations le cap, Laterally Loaded Piles, Pile Load Tests, Analytical Estatements	lement Characteris s, Pile Group Capa	y scity and	m Const 0 d Settler	itutive I 0 nent, De	9 esign of
and Ra Un Metho pile gr Propor Un IS and	it III ds of Estimateup & pil rtioning of it IV IRC Desi	PILE FOUNDATIONS mating Load Transfer of Piles, Settlements of Pile Foundations le cap, Laterally Loaded Piles, Pile Load Tests, Analytical Est Pile Foundations, Lateral and Uplift Capacity of Piles.	lement Characteris s, Pile Group Capa stimation of Load-	9 acity and Settler	od Settler	oment, De havior o	9 esign of Piles
Metho pile gri Propor Un IS and Comp	it III ds of Estimateup & pil rtioning of it IV IRC Desi	PILE FOUNDATIONS mating Load Transfer of Piles, Settlements of Pile Foundations le cap, Laterally Loaded Piles, Pile Load Tests, Analytical Est Pile Foundations, Lateral and Uplift Capacity of Piles. WELL FOUNDATION Ign Code Provisions, Elastic Theory and Ultimate Resistance N	lement Characteris s, Pile Group Capa stimation of Load-	9 acity and Settler	od Settler	oment, De havior o	esign o of Piles
un Metho pile graph Proport Un IS and Comp	it III ds of Estination & pill rtioning of it IV IRC Designations are it V ting and B	PILE FOUNDATIONS mating Load Transfer of Piles, Settlements of Pile Foundations le cap, Laterally Loaded Piles, Pile Load Tests, Analytical Est Pile Foundations, Lateral and Uplift Capacity of Piles. WELL FOUNDATION Ign Code Provisions, Elastic Theory and Ultimate Resistance Normal Tunnels.	s, Pile Group Capa stimation of Load- Methods. Tunnels a	9 acity and Settler 9 nd Arch	on Const	o ment, Do havior o Soils, Pr	9 esign o of Piles 9
and Ra Un Methoropile graph Proport Un IS and Comp	it III ds of Estination & pill rtioning of it IV IRC Designations are it V ting and B	PILE FOUNDATIONS mating Load Transfer of Piles, Settlements of Pile Foundations le cap, Laterally Loaded Piles, Pile Load Tests, Analytical Est Pile Foundations, Lateral and Uplift Capacity of Piles. WELL FOUNDATION Ign Code Provisions, Elastic Theory and Ultimate Resistance Normal Tunnels. OPEN CUTS Bracing Systems in Shallow and Deep Open Cuts in Different States.	s, Pile Group Capa stimation of Load- Methods. Tunnels a	9 acity and Settler 9 nd Arch	O d Settler ment Be	o ment, Do havior o Soils, Pr	9 esign o of Piles 9 essure
and Ra Un Methor pile gr Propor Un IS and Comp Ur Shee Anal	it III ds of Estination & pill rtioning of it IV IRC Designations are it V ting and B	PILE FOUNDATIONS mating Load Transfer of Piles, Settlements of Pile Foundations le cap, Laterally Loaded Piles, Pile Load Tests, Analytical Est Pile Foundations, Lateral and Uplift Capacity of Piles. WELL FOUNDATION Ign Code Provisions, Elastic Theory and Ultimate Resistance Normal Tunnels. OPEN CUTS Bracing Systems in Shallow and Deep Open Cuts in Different Spesign, Foundations under uplifting loads, Soil-structure interactions.	s, Pile Group Capa stimation of Load- Methods. Tunnels a	9 acity and Settler 9 nd Arch	O d Settler ment Be	oment, Dohavior of O	9 esign o of Piles 9 essure
and Ra Un Methor pile gr Propor Un IS and Comp Ur Shee Anal	it III ds of Estimatoup & pill retioning of it IV IRC Desiduations are it V ting and B ysis and D	PILE FOUNDATIONS mating Load Transfer of Piles, Settlements of Pile Foundations le cap, Laterally Loaded Piles, Pile Load Tests, Analytical Est Pile Foundations, Lateral and Uplift Capacity of Piles. WELL FOUNDATION Ign Code Provisions, Elastic Theory and Ultimate Resistance Normal Tunnels. OPEN CUTS Bracing Systems in Shallow and Deep Open Cuts in Different Spesign, Foundations under uplifting loads, Soil-structure interactions.	s, Pile Group Capa stimation of Load- Methods. Tunnels a Soil Types. Coffer	9 acity and Settler 9 nd Arch	O d Settler ment Be	oment, Dohavior of O	9 esign of Piles 9 ressure

Design of foundation system, N.P. Kurian, Narosa Publishing House, 2014 (3rd edition)

Foundation Analysis and Design, J. E. Bowles, Tata McGraw Hill New York, 2001 (5th edition)

Reference Books:

2

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Decide the suitability of soil strata for different projects.					
CO2	Design shallow foundations deciding the bearing capacity of soil.					
CO3	Analyze and design the pile foundation					
CO4	Understand analysis methods for well foundation.					
CO5	Analysis and design foundation for coffer dam.					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	2	-	-	-	-	-	-	-	1	1	-
CO2	2	2	2	2	2	-	-	-	-	-	-	-	1	-	-
CO3	2	2	3	2	2	1	-	-	-	-	-	-	1	-	-
CO4	2	2	2	2	2	-	-	-	-	-	-	-	1	-	-
CO5	2	2	-	2	2	1	-	-	-	-	-	-	1	-	-
Avg	2	2	2	2	2	1	-	-	-	-	-	-	1	-	-

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

	DESIGN OF INDUSTRIAL STRUCTURI			emeste		
22STE43						II
	SP(6) Steel tables; IS: 804-1967) may be Permitt	ted				
PREREQUI	SITES	Category	PE	Cro	edit	3
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					
	part knowledge to the students about industrial design of built-uphimneys and water tanks.	p girders, portal fi	rames,	steel bu	nkers ar	nd silos
Unit I	PLANNING AND FUNCTIONAL REQUIREMENT	NTS	9	0	0	9
	of Industries and Industrial Structures-planning for layout requion against noise and vibration-guidelines from factories act-mater	•		_		and fir
Unit II	BUILT-UP GIRDERS		9	0	0	9
Introduction, moments and	loads acting on gantry girder, permissible stress, types of gantry shears, construction details, design procedure Plate girder –		ne rails,	, crane	data, ma	aximun
Introduction, moments and	loads acting on gantry girder, permissible stress, types of gantry		ne rails,	, crane	data, ma	aximun
Introduction, moments and shear strengt	loads acting on gantry girder, permissible stress, types of gantry shears, construction details, design procedure Plate girder — n of web – stiffeners – Connection – design procedure.	elements of plate	ne rails, e girder	crane of the control	data, ma cural str	aximun ength
Introduction, moments and shear strengt	loads acting on gantry girder, permissible stress, types of gantry lishears, construction details, design procedure. Plate girder – n of web – stiffeners – Connection – design procedure. PORTAL FRAMES	elements of plate	ne rails, e girder	crane of the control	data, ma cural str	aximun ength
Introduction, moments and shear strengt Unit III Design of port Unit IV Design of sq	loads acting on gantry girder, permissible stress, types of gantry shears, construction details, design procedure. Plate girder — of web — stiffeners — Connection — design procedure. PORTAL FRAMES al frame with hinged base, design of portal frame with fixed base	- Gable structure Design of side pl	ne rails, e girder 9 s – ligh	o t weigh	data, ma cural str 0 t structu 0	9 ares.
Introduction, moments and shear strengt Unit III Design of port Unit IV Design of square of square strengt Unit IV	loads acting on gantry girder, permissible stress, types of gantry I shears, construction details, design procedure. Plate girder — of web — stiffeners — Connection — design procedure. PORTAL FRAMES al frame with hinged base, design of portal frame with fixed base STEEL BUNKERS AND SILOS hare bunker — Jansen's and Airy's theories — IS code provisions —	- Gable structure Design of side pl	ne rails, e girder 9 s – ligh	o t weigh	data, ma cural str 0 t structu 0	ength 9 ares.
Introduction, moments and shear strengt Unit III Design of port Unit IV Design of square Longitudinal Unit V Introduction—	loads acting on gantry girder, permissible stress, types of gantry shears, construction details, design procedure. Plate girder — of web — stiffeners — Connection — design procedure. PORTAL FRAMES al frame with hinged base, design of portal frame with fixed base STEEL BUNKERS AND SILOS hare bunker — Jansen's and Airy's theories — IS code provisions — beams — Design of cylindrical silo — side plates — ring girder - sti	- Gable structure Design of side planers. ngs and access gir	ne rails, e girder 9 s – ligh 9 ates – s order, load	o trane o o o o o o o o o o o o o o o o o o o	data, ma cural str 0 t structu 0 s - Hoop d load	9 per – 9

Text	Books:
1	Procs. of advanced course on Industrial Structures, Structural Engineering Research Center, 1982.
2	Design of steel structures, Bunmia P.c., Jain Ashok Kr., Jain Arun Kr., 2nd edition, Lakshmi publishers, 2012.
3	Shiyekar M R,"Limit State Design in Structural Steel",PHI Learning private limited,New Delhi,2017.
4	Subramanian N,"Design of Steel Structures",Oxford university press,New Delhi,2016.
Refer	rence Books:
1	Manohar S.N, Tall Chimneys – Design and Construction, Tata McGrawHill,1985.
2	Rajagopalan Dr. K, Storage Structures, Oxford IBH Publishing Company Ltd 1989.
3	IS: 875(part-III)-1987, Code of for design loads (other than earthquake for building and structures).
4	IS: 4995(part-I)-1974, Criteria for design of Reinforced concrete bins for the storage of granular and powdery materials.
5	Hand book on functional requirements of Industrial buildings, SP-32-1986, Bureau of Indian Standards, New Delhi, 1990.
6	IS: 800-1984, Code of practice for general construction in steel.
7	SP(6) Steel tables; IS: 804-1967, Specifications for rectangular pressed steel tanks.

	Outcomes: empletion of this course, the students will be able to:
CO1	Acquire knowledge about functional requirements of Industrial buildings.
CO2	Understand the behavior and design of plate and gantry girders.
CO3	Acquire knowledge about the design of portal frames.
CO4	Understand the design concept of steel bunkers and silos.
CO5	Design of steel chimneys and understand the design behavior.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	1	2	-	3	3	1	-	-	1	3	-
CO2	3	3	3	3	1	3	-	3	3	1	-	-	2	3	-
СОЗ	3	3	3	3	1	2	-	3	3	1	-	-	1	3	-
CO4	3	3	3	3	1	3	-	3	3	1	-	-	2	3	-
CO5	3	3	3	3	1	3	-	3	3	1	-	-	2	3	-
Avg	3	3	3	3	1	2.6	-	3	3	1	-	-	1.6	3	-
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22STE44	SUBSTRUCTURE DESIGN (IS 456-2000, IS 2911(Part-1/Sec-1)-2010, IS2911(Part-1/S 2911 (Part 1/Sec-3)-2010, IS 2911 (Part-4)-1985,IS802 (Par IS802 (Part-1/Sec2)-2015,IS 2974-1982, IS6403-1981, IS12	t-1/Sec-1)-2015,	S	Semesto	er	II
DDEDEALIG	be Permitted	Catagowy	PE	C	edit	3
PREREQUIS	SITES	Category			1	
		Hours/Week	L	T	P	TH
			3	0	0	3
Course Lear	ning Objectives					<u>I</u>
	part knowledge about the design of shallow foundation, deation and tower foundation.	ep foundation, fou	ındatior	for br	ridges, 1	nachine
Unit I	INTRODUCTION		9	0	0	9
-	investigation report for design of foundation structure-Type mputation of loads-General principle of design of reinforced co				_	ment of
Unit II	DESIGN OF SHALLOW FOUNDATION	1	9	0	0	9
-	on-Load carrying capacity of different types of piles and detailing of capacity of piles-Lateral pile load test.	ng of reinforcemen	nt accor	ding to	IS 2911	-Design
Unit III	DESIGN OF DEEP FOUNDATION		9	0	0	9
-	on-Load carrying capacity of different types of piles and detailing of capacity of piles-Lateral pile load test.	ng of reinforcement	t accord	ling to I	S 2911-	Design
Unit IV	FOUNDATION FOR BRIDGES AND MACH	INES	9	0	0	9
	bridges – Well and caisson foundation – Design of pier cap –D ine foundation.	esign of pier-Gene	ral prin	ciples, 1	olanning	and
Unit V	Unit V TOWER FOUNDATIONS					9
	Design of foundation for towers – forces on tower foundation undation excavation – Design of ground anchors.	- General design	criteria	– Stru	ctural d	esign o
				Tot	tal -451	Periods

102	A DOORS.						
1	Tomlinson M.J and Boorman R, Foundation design and construction, ELBS longman VI Edition, 1995.						
2	Swamisaran, Analysis and design of substructures, Limit state design, Oxford and IBH Publishing Co. Pvt. Lt, NewDelhi, 1996.						
Reference Books:							
1	Nayak N.V, Foundation design manual for practicing engineers, DhanpatRai & sons,1982.						
1.	Nayak N.V, Foundation design manual for practicing engineers, DhanpatRai& sons,1982.						
2.	IS 456-2000-Plain and Reinforced concrete-code of practice.						
3	IS 2911(Part-1/Sec-1)-2010-Design and construction of pile foundations-Code of practice.						
4.	IS2911(Part-2/Sec-2)-2010- Design and construction of pile foundations-Code of practice.						

5.	IS 2911 (Part1/Sec-3)-2010-Pile foundation –Code of practice.
6.	IS 2911 (Part-4)-1985-Code of practice for Design and construction of pile foundation .
7.	IS802 (Part-1/Sec-1)-2015-Use of structural steel in overhead transmission line towers-Code of practice.
8.	IS802 (Part-1/Sec2)-2015- Use of structural steel in overhead transmission line towers-Code of practice.
9.	IS 2974-1982-Code of practice for Design and construction of machine foundation.
10.	IS6403-1981-Code of practice for determination of breaking capacity of shallow foundation.
11.	IS12070-1987-Code of practice for Design and construction of shallow foundation on rocks.

Course	Course Outcomes:							
Upon completion of this course, the students will be able to:								
CO1	Able to adopt a suitable foundation based on the soil condition and the type of structure.							
CO2	Familiarize with principles, planning and design of various types of foundation as per IS codal specifications and requirements.							
CO3	Able to design and detailing of reinforcement for foundations.							
CO4	They will be through knowledge about the design of machine foundation.							
CO5	They will be able to design of tower foundation.							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	3	-	-	2	-	2	-	1	-	-	-	3	2
CO2	1	3	3	-	-	2	-	2	-	1	-	-	-	3	2
CO3	1	3	3	-	-	2	-	2	-	1	-	-	-	3	2
CO4	1	3	3	-	-	2	-	2	-	1	-	-	-	3	2
CO5	1	3	3	-	-	2	-	2	-	1	-	-	-	3	2
Avg	1	3	3	-	-	2	-	2	•	1	-	1	-	3	2

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22STE45	DESIGN AND CONSTRUCTION OF FERRO STRUCTURES	CEMENT	S	Semeste	er	II		
PREREQUIS		Category	PE	Cre	edit	3		
			L	Т	P	TH		
	Hours/Week					3		
Course Lear	ning Objectives							
1 To im	part knowledge on the material properties of ferrocement, aures.	nalysis, design an	d const	ruction	of ferro	cement		
Unit I	FERROCEMENT AS A STRUCTURAL MATI	ERIAL	9	0	0	9		
	arities between ferrocement and reinforced concrete, Mechar aterial, ferrocement for structural applications, Construction me		_	es of fe	rroceme	ent as a		
Omt H	ANAL 1515 METHODS		7	U	v	7		
relationships control metho absorbed per	on crack width- Relationship between crack width -its spacin between crack width, spacing of cracks, modular ratio, modulused of design- applied to pipes, silos, water tanks and waterproounit volume of ferrocement. Its use in design of structures namic loading-earthquake, wind, machine foundations.	s of elasticity and t	tensile s	stress of	mortar.	Crack		
Unit IV	DESIGN THROUGH SHAPE AND COMPOSITE COM	NSTRUCTION	9	0	0	9		
to compression shapes in three columns and be rotation, domes ferrocement el	ement to gain strength, stress pattern changed due to shaping, and different ways of giving forms, boxing, corrugating, folding dimensions. Analysis of various forms for stress pattern und earns, stiffened plates in compression and flexure, built in section, pyramids, folded plates. Design of composite structures of ferements with in-built RCC framework. Joints of precast method from the property of the propert	g, ribbing, stiffeninger loading-cavity ons like H, U, T, rocement with RC	ng, arch walls, +, L. Sh C, steel	ning, wa hollow hells of t and ma	ffling. (floors, l ranslatio sonry. F	Giving nollow on and Precast		
Unit V	FERROCEMENT CONSTRUCTIONS		9	0	0	9		
hollow floors, housing using	hollow beams. Stiffened plates as slabs. Design and construin-situ mortaring method and method of joining precast wallications in water treatment and effluent treatment plants and in	ction of multi-sto lling and floor par	ried bu nels. W	ildings ater and Bridges	and mas	ss scale etaining		
Text Book	S:							
		1.0	T C					
	ment, Authors: B R Paul and R P Pama, Published by International Ferrocement Information Centre. angkok, Thailand.							

Ferrocement and laminated cementitious composites, Author: A E Naaman, Publisher: Techno-press, Ann Arbor,

2

Michigan, USA.

Reference Books:

_	
1	State-of-the-art report and guide for Design, Construction and Repairs of Ferrocement; ACI committee Report. No ACI-549R- 88 and ACI 549.1R.88, Published by American Concrete Institute, Detroit, USA.
2	Ferrocement, Authors: B R Paul and R P Pama, Published by International Ferrocement Information Centre. A.I.T.Bangkok, Thailand.
3	Chapter 1 titled 'Ferrocement' by S P Shah and P N Balaguru, in book 'Concrete Technology and Design Vol II Editor; R N Swamy.
4	Proceedings of International Symposiums on 'Ferrocement and thin reinforced composites Ferro 1 to Ferro 10.
5	Ferrocrete Technology- A Construction Manual, Author: Dr. B. N. Divekar, Published by the Author.

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	On completion of the course the student will be able to understand the concepts of ferrocement technology.							
CO2	The student will be in a position to analyse and design ferrocement structures.							
CO3	The student will gain the knowledge of the method of construction of the structures.							
CO4	The student will gain the knowledge of the design of ferrocement structures							
CO5	The student will gain the knowledge of the various structures of ferrocement structures with case studies.							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	2	1	2	3	1	1	1	-	1	3	-	1
CO2	2	3	-	1	1	2	-	1	1	-	2	1	1	1	-
CO3	1	-	1	-	2	1	1	-	1	1	-	1	1	1	-
CO4	1	3	1	-	1	2	1	1	1	1	2	1	1	1	-
CO5	1	3	1	1	-	2	1	1	1	1	2	1	1	1	-
Avg	2	3	1	1.5	2	1.6	2	1	1	1	2	1	1.6	1	1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22STE51		DESIGN OF PRESTRESSED CONCRETE ST	RUCTURES					
225	1E51	(IS :3370 (Part III)-1967, IS : 1343-2012) may be	permitted		Semeste	ж ———		
PREI	REQUIS	ITES	Category	PE	Cre	edit	3	
					Т	P	TH	
		Hours/Week	3	0	0	3		
Cours	se Learn	ning Objectives		<u> </u>				
1		ourse covers the principles analysis and design of prestre lition to the BIS codal provisions, ACI and British code,						
Uı	nit I	PRINCIPLES, ANALYSIS FOR FLEXUR DEFLECTION		9	0	0	9	
design preter	n for flex nsioned a	Prestressing – Types of prestressing systems – Materiaure- Behavior of prestressed concrete elements – General and post tensioned systems - losses in prestress – analysis - at service load and Magnel's approach - short term a	al concept of prest ysis for Ultimate	tress – streng	Force to	ransmit	ted by	
Un	Unit II DESIGN FOR FLEXURE					0	9	
codal	provision	and post tensioned systems - losses in prestress - analyms - at service load and Magnel's approach - short term a	and longterm defle	ection.	T	· .	<u> </u>	
	it III	DESIGN FOR SHEAR, TORSION AND ANCHO		9	0	0	9	
-		determinate structures – Continuous beams – Concept of rigid frames – Choice of cable profiles.	concordance and	linear	transfo	rmatior	ıs –	
Un	it IV	STATICALLY INDETERMINATE STRUC	TURES	9	0	0	9	
		ndeterminate structures – Continuous beams – Concept of drigid frames – Choice of cable profiles.	of concordance an	d linea	r transf	ormatio	ons –	
Un	nit V	PRESTRESSED CONCRETE SPECIAL STRU	UCTURES	9	0	0	9	
constr	ruction-	rcular prestressing – Design of prestressed concrete pip types, behaviour, flexural stresses, longitudinal shear esign of poles and piles - Partial prestressing – Principles,	r transfer, transv	erse s	hear –	Comp	-	
						<u> </u>		
Tex	xt Books							
1	Rajag	opalan N, Prestressed Concrete, Narosa Publishing Hous	se, 2002.					
2	Krish	naraju N, Prestressed Concrete, Tata McGraw-Hill Publi	shing Company,	6th Ed	2018.			
Refe	erence B	ooks:						
	Lin.T.Y Ned Burns, Design of Prestressed Concrete Structures, 3rd edition, John Wiley & Sons, 1982.							

Sinha N.C & Roy S.K, Fundamentals of Prestressed Concrete, S.Chand& Co, New Delhi 1985.

IS: 1343-2012-Indian standard prestressed concrete – code of practice

IS:3370 (Part III)-1967- Indian standard code of practice for concrete structures for the storage of liquids

2

4.

part III prestressed concrete structures

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Students will able to find out the basics and losses in prestressed concrete structures						
CO2	Understand the basic concept of pre and post-tensioning processes, analyze prestressed concrete members						
CO3	Design prestressed concrete deck slab and end blocks						
CO4	Design the continuous beams and composite beam						
CO5	Design of water tank and piles.						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	2	2	-	-	-	-	-	-	2	2	-
CO2	3	3	2	2	2	2	-	-	-	-	-	-	2	2	-
СОЗ	3	3	2	2	2	2	-	-	-	-	-	-	2	2	-
CO4	3	3	2	2	2	2	-	-	-	-	-	-	2	2	-
CO5	3	3	2	2	2	2	-	-	-	-	-	-	2	2	-
Avg	3	3	2	2	2	2	-	-	-	-	-	-	2	2	-
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22STE52	ANALYSIS OF LAMINATED COMPOSIT	E PLATES	S	Semeste		
PREREQUIS	ITES	Category	PE	Credit		3
			L	T	P	ТН
		Hours/Week	3	0	0	3
Course Learn	ing Objectives				<u> </u>	<u> </u>
	part knowledge to the students about theory of plates, l	aminated, compo	site pla	ates and	d appro	ximate
Unit I	INTRODUCTION		9	0	0	9
•	Field Approximations for Classical Laminated Plat Theory (FSDT), Analytical Solutions for Bending of Rec	• .	-			
Unit II	GOVERNING EQUATIONS		9	0	0	9
Navier Solutio	ns of Cross-Ply and Angle-Ply Laminated Simply-Suppo	orted Plates, Dete	rminat	ion of S	Stresses	•
Unit III	ANALYTICAL SOLUTIONS		9	0	0	9
	s for Plates with Other Boundary Conditions. Analytical tes Using FSDT.	Solutions for Ber	nding o	f Recta	ngular	
Unit IV	FINITE ELEMENT SOLUTIONS USING	CLPT	9	0	0	9
Method, Recta	Solutions for Bending of Rectangular Laminated Plates ngular Elements, Formation of Stiffness Matrix, Formation of Stresses.					
Unit V	FINITE ELEMENT SOLUTIONS USING	FSDT	9	0	0	9
	t Solutions for Bending of Rectangular Laminated Platulation, Post Computation of Stresses. Analysis of Rec	_				
				Tot	al -45I	Periods

1

Mechanics of Laminated Composites Plates and Shells, Reddy J. N.,2nd edition CRC Press.

	Outcomes: ompletion of this course, the students will be able to:
CO1	Analyze the rectangular composite plates using the analytical methods.
CO2	Analyze the composite plates using advanced finite element methods.
CO3	Develop the computer programs for the analysis of composite plates.
CO4	Develop the FEM of solutions for rectangular plates using CLPT technique
CO5	Develop the FEM of solutions forlaminated plates using FDST technique

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	1	-	1	-	-	1	2	-	1	1	1	-
CO2	1	-	1	-	1	1	-	1	-	-	1	-	1	-	-
CO3	1	1	-	1	-	1	1	-	1	1	-	1	-	1	-
CO4	1	1	1	1	1	1	1	1	-	-	1	1	-	1	-
CO5	1	1	1	1	1	1	1	1	-	-	1	1	-	1	-
Avg	1.66	1.5	1	1	1	1	1	1	1	1.5	1	1	1	1	-

22ST	ГЕ53	FRACTURE MECHANICS OF CONCRETE S	TRUCTURES	Semester			
PRER	EQUIS	ITES	Category	PE	Credit		3
				L	T	P	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					<u></u>
1		part knowledge on various fracture mechanisms, the earnd study the failure modes with models of concrete st				propert	ies. To
Un	it I	INTRODUCTION		9	0	0	9
Basic I	Fracture	Mechanics, Crack in a Structure, Mechanisms of Fractu	re and Crack Gro	wth.			
Uni	it II	TYPES OF FRACTURE		9	0	0	9
Cleava	age Fract	ture, Ductile Fracture, Fatigue Cracking, Environment as	ssisted Cracking,	Service	e Failur	e Anal	ysis.
Uni	t III	STRESS AT CRACK TIP		9	0	0	9
		Tip, Linear Elastic Fracture Mechanics, Griffith's Crite Erwin's Plastic Zone Correction, R curves, Compliance,		•	-		
Uni	t IV	MATERIAL MODELS		9	0	0	9
Genera	al Conce	epts, Crack Models, Band Models, Models based on Con-	tinuum Damage l	Mechar	nics.		
Uni	it V	APPLICATION ON SPECIAL CONCRETE AND MODELING	NUMERICAL	9	0	0	9
Applic	cations to	o High Strength Concrete, Fiber Reinforced Concrete, Cr	rack Concepts and	d Num	erical M	Iodelir	ıg.
					Tot	al -451	Periods
	t Rooks						

Tex	t Books:
1	Fracture Mechanics, Sun C. T. and Jin Z.H., 1st Edition, Elsevier Academic Press, 2012.
2	Elementary Engineering Fracture Mechanics, BroekDavid, 3rd Rev. Ed. Springer, 1982.
Refer	rence Books:
1	Fracture Mechanics of Concrete Structures – Theory and Applications, Elfgreen., RILEM Report, Chapman and Hall, 1989.
2	Fracture Mechanics – Applications to Concrete, Victor, Li C., Bazant Z. P., ACI SP 118, ACI Detroit, 1989.

Course	Course Outcomes:							
Upon co	Upon completion of this course, the students will be able to:							
CO1	Identify and classify cracking of concrete structures based on fracture mechanics.							
CO2	Implement stress intensity factor for notched members							
CO3	Apply fracture mechanics models to high strength concrete and FRC structures.							
CO4	Compute J-integral for various sections understanding the concepts of LEFM.							
CO5	To develop numerical models.							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	1	-	-	-	-	ı	-	1	1	1
CO2	2	-	1	-	1	1	-	-	-	-	-	-	1	1	-
CO3	2	1	1	2	-	1	2	-	-	_	-	-	1	-	-
CO4	1	-	1	1	-	1	1	-	-	-	ı	-	1	1	1
CO5	-	1	1	1	1	1	1	-	-	-	-	-	1	-	-
Avg	2	1.3	1	1.5	1	1	1.3	-	-	-	-	-	1	-	-

22STE54	DESIGN OF PLATES AND SHELLS	S	S	emest	er		
PREREQUIS	SITES	Category	PE	Cr	3		
		_	L	T	P	TH	
		Hours/Week	3	0	0	3	
Course Lear	ning Objectives						
1 To im	part knowledge to the students about design of plates, shoures.	ells, folded plate	es and	the an	alysis o	f thes	
Unit I	Unit I LATERALLY LOADED PLATES						
Thin plates conditions.	with small deflection. Laterally loaded thin plates, go	overning differen	ential	equatio	ons, bo	undar	
Unit II	DESIGN OF FOLDED PLATES		9	0	0	9	
Folded plate s	tructures - Structural behaviour - Types - Design by ACI-A	ASCE Task Com	nmittee	metho	od.		
Unit III	MEMBRANE AND BENDING THEORY OF S	HELLS	9	0	0	9	
	of all all a Transport and a last and a Managarana	theory - Shells o	of revol	lution a	and shel	ls of	
	of shells - Types of shells - Structural action - Membrane teamples- Limitations of membrane theory.	incory - Bhens c					
	• •		9	0	0	9	
translation- E Unit IV	xamples- Limitations of membrane theory.			0	0	9	

shells and edge members - Design of conoidal shells - New shell forms - Funicular shells.

Total -45Periods

Text	Text Books:								
1	Theory of Plates and Shells, Timoshenko and Woinowsky-Krieger S., Tata McGraw Hill Edition, 2010.								
2	Design and Construction of Concrete Shell Roofs, Ramaswamy G. S., 1st Edition, 2005.								
Refer	rence Books:								
1	Design of Reinforced Concrete Shells & Folded Plate, Varghese P. C., 1st Edition, PHI.								
2	Design of Plate and Shell Structures, JawadMaan H., Springer Science.								

Course	Course Outcomes:						
Upon co	Upon completion of this course, the students will be able to:						
CO1	Analyze and design prismatic folded plate systems						
CO2	Analyze and design shells using approximate solutions						
CO3	Analyze and Design Cylindrical Shells						
CO4	Design Doubly Curved Shells using Approximate Solutions.						
CO5	Design Doubly Curved Shells using Approximate Solutions.						

COs /POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	-	1	2	-	3	-	2	-	1	-	1	-
CO2	-	3	-	1	1	1	1	-	1	-	1	-	-	1	-
CO3	3	-	1	1	1	-	1	-	1	-	1	-	1	1	-
CO4	3	-	1	1	1	-	1	-	1	-	1	-	1	1	-
CO5	3	-	1	1	1	-	1	-	1	-	1	-	1	1	-
Avg	3	2	1.33	1	1	1.5	1	3	1	2	1	1	1	1	-

22STE55	DESIGN OF BRIDGES		Semeste		er	III	
PREREQU	UISITES	Category	PE	Cre	edit	3	
			L	T	P	TH	
		Hours/Week	3	0	0	3	
Course Le	arning Objectives						
	the end of the course the students shall have knowledge a stressed concrete bridges and also about bearing, substructure		_		span b	ridges	
Unit I	INTRODUCTION		9	0	0	9	
Componen	s of bridge - Classification - Need for investigation Data co	•	discha	rge - lir	near wa	terway	
- economic	al span scour depth - traffic projection - choice of bridge typ						
- economic Unit II	LOADS ON BRIDGES	JC.	9	0	0	9	
Unit II Indian Roa forces - lor		ive loads - impac	et effec	t - win	d and s	seismic	
Unit II Indian Roa forces - lor	LOADS ON BRIDGES d Congress (IRC) bridge codes - dimensions - dead and li	ive loads - impac	et effec	t - win	d and s	seismic	
Unit II Indian Roa forces - lor stresses. Unit III Design of s	LOADS ON BRIDGES d Congress (IRC) bridge codes - dimensions - dead and ligitudinal and centrifugal forces - hydraulic forces - earth	ive loads - impac pressure - tempe	et effec erature	t - win- effect a	d and sec	seismic ondary 9	
Unit II Indian Roa forces - lor stresses. Unit III Design of s	LOADS ON BRIDGES d Congress (IRC) bridge codes - dimensions - dead and ligitudinal and centrifugal forces - hydraulic forces - earth SLAB AND T-BEAM BRIDGES lab bridges - skew slab culverts - box culverts. T - Pigeaud of	ive loads - impac pressure - tempe	et effec erature	t - win- effect a	d and sec	seismic ondary 9	
Unit II Indian Roa forces - lor stresses. Unit III Design of s method des Unit IV	LOADS ON BRIDGES d Congress (IRC) bridge codes - dimensions - dead and ligitudinal and centrifugal forces - hydraulic forces - earth SLAB AND T-BEAM BRIDGES lab bridges - skew slab culverts - box culverts. T - Pigeaud eign of T - beam bridges	ive loads - impac pressure - tempe curves - Courbon	et effec erature 9 's theor	t - wingeffect a	d and second of the second of	seismic ondary 9	
Unit II Indian Roa forces - lor stresses. Unit III Design of s method des Unit IV	LOADS ON BRIDGES d Congress (IRC) bridge codes - dimensions - dead and ligitudinal and centrifugal forces - hydraulic forces - earth SLAB AND T-BEAM BRIDGES lab bridges - skew slab culverts - box culverts. T - Pigeaud cign of T - beam bridges LONG SPAN GIRDER BRIDGES	ive loads - impactive pressure - temper curves - Courbon ced cantilever brid	et effec erature 9 's theor	t - wingeffect a	d and second of the second of	seismic ondary 9	
Unit II Indian Roa forces - lor stresses. Unit III Design of s method des Unit IV Design prir Unit V	LOADS ON BRIDGES d Congress (IRC) bridge codes - dimensions - dead and ligitudinal and centrifugal forces - hydraulic forces - earth SLAB AND T-BEAM BRIDGES lab bridges - skew slab culverts - box culverts. T - Pigeaud eign of T - beam bridges LONG SPAN GIRDER BRIDGES ciples of continuous bridges, box girder bridges, and balance	ive loads - impactor pressure - temper curves - Courbon ced cantilever bridges	et effec erature 9 's theor 9 dges.	t - win effect a	d and second second second of the desired se	seismicondary 9 egar 9	

Tex	t Books:
1	Raina V.K. "Concrete Bridge Practice", Tata McGraw-Hill Publishing Company, New Delhi, 1991.
2	Krishnaraju N, "Design of Bridges", Oxford and IBH Publishing Co., Bombay, Calcutta, New Delhi 1988
3	Ponnuswamy S, "Bridge Engineering", Tata McGraw-Hill, 1989
Refei	rence Books:
1	Bakht, B. and Jaegar, L.G., "Bridge Analysis Simplified", McGraw-Hill,1985.
2	Derrick Beckett, "An Introduction to Structural Design of Concrete Bridges", Surrey University Press, Henley Thomes, Oxford Shire, 1973
3	Taylor F.W, Thomson S.E. and Smulski E, "Reinforced Concrete Bridges", John Wiley and Sons, New York,1955
4	Edwin H.Gaylord Jr., Charles N.Gaylord, James E. Stallmeyer "Design of Steel Structures", McGraw-Hill International Editions, 1992.

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	CO1 Have a complete knowledge about the substructure and superstructure of bridge structures							
CO2	To design of components of long and short span bridges							
CO3	To design prestressed concrete bridges and their bearings, footings							
CO4	To analyze the various types of bridge structures							
CO5	To design and analyze the various structural elements of bridge structures							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	3	-	-	1	-	1	1	-	1	1	-	1	-
CO2	-	2	2	3	3	1	-	-	-	-	-	-	-	-	-
CO3	3	1	-	3	-	1	2	-	-	2	1	-	1	1	-
CO4	3	1	2	3	2	1	-	1	1	-	1	1	1	-	-
CO5	3	1	2	3	2	1	-	1	1	-	1	1	1	-	-
Avg	3	1.25	2.25	3	2.33	1	2	1	1	2	1	1	1	1	-
	•	•	3/2/1 ii	ndianta	c strong	th of an	rralatio	n (2 LI	ich 2 N	/ledium	1 Low	.)	•		•

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22S	TE56	MODERN CONSTRUCTION MATER	RIALS	S	emeste	er	
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
				L	T	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives		I		I	
1		end of this course the student shall have a good knowled struction and their significance.	lge about the rece	ent mat	erials a	nd type	s used
Un	nit I	SPECIAL CONCRETES		9	0	0	9
		navior of concrete - High Strength and High Performanc ncrete, Alternate Materials to concrete - Aerocon blocks			orced (Concret	e, Self
Un	it II	METALS		9	0	0	9
		Alloy Steels - Aluminum and its Products - Coatings to - M2 panels for wall panels.	o reinforcement -	– Appl	ications	s - Gal	valume
Uni	it III	COMPOSITES		9	0	0	9
		forced Polymers - Fiber Reinforced Concrete - Steel Fiber composites - carbon fibers and composite reinforcement			mposite	es - Fibe	er
Uni	it IV	OTHER MATERIALS		9	0	0	9
Water	Proofing	g Compounds - Non-weathering Materials - Flooring and	d Façade Material	ls		I	
Un	it V	SMART AND INTELLIGENT MATERI	IALS	9	0	0	9
Smart	and Inte	lligent Materials for intelligent buildings - Special featur	res			I	
					Tot	al -45F	Periods

Tex	t Books:
1	Santhakumar A.R., Concrete Technology, Oxford University press, New Delhi. 2007
2	Shetty M.S, Concrete Technology: Theory and Practice, S.Chand& Company Ltd., 2005
Refer	rence Books:
1	Mamlouk M.S. and Zaniewski J.P., Materials for Civil and Construction Engineers, Prentice Hall Inc., 1999
2	Ashby M.F. and Jones D.R.H.H. Engineering Materials 1: An introduction to Properties, applications and designs, Elsevier Publications, 2005
3	Shan Somayaji, Civil Engineering Materials, Prentice Hall Inc., 2001
4	Aitkens , High Performance Concrete, McGraw Hill, 1999
5	Deucher K.N, Korfiatis G.P and Ezeldin A.S, Materials for civil and Highway Engineers, Prentice Hall Inc., 1998.
6	ACI Report 440.2R-02, Guide for the design and construction of externally bonded RP systems for strengthening concrete structures, American Concrete Institute, 2002

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	CO1 Acquire good knowledge about the recent construction materials, their construction and their significance.							
CO2	Able to use modern materials based on their requirements.							
CO3	Able to find new construction materials.							
CO4	Identify the different flooring materials and applications of facade materials							
CO5	Apply the knowledge of smart and intelligent materials in construction field.							

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	-	1	-	2	-	-	-	-	1	1	-
CO2	2	2	2	2	-	1	-	2	-	-	-	-	2	-	-
CO3	2	1	1	1	-	-	-	2	-	-	-	-	2	-	-
CO4	2	1	1	1	-	1	-	2	-	-	-	-	1	-	-
CO5	2	1	1	-	-	1	-	2	-	-	-	-	1	-	-
Avg	2	1.2	1.2	1.25	-	1	-	2	-	-	-	-	1.6	-	-

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22CTI	E/1	ADVANCED CONCRETE TECHNOI) P?				
22STI	E01	(IS 456:2000, IS 10262-2019,ACI 211.1-91) may be	permitted	, c	Semeste	71		
PRERE	EQUIS	ITES	Category	PE	Cre	edit	3	
			¥	L	T	P	TH	
			Hours/Week	3	0	0	3	
Course	Learn	ing Objectives		I				
1	about t per IS	end of this course, The student shall have a good know the types of special concrete. To understand the conce code standards. To get awareness about the strength pro- about the concreting methods.	pt and procedure	for co	ncrete	mix de	sign as	
Unit	t I	CONCRETE		9	0	0	9	
•		fresh concrete- Hardened concrete- Thermal expansion properties - Creep and shrinkage-Variability of Concret	•	-Water	tightne	ess and	l crack	
Unit	II	MIX DESIGN		9	0	0	9	
Principle Testing		Concrete mix design- Methods of Concrete mix design – acrete.	I.S. Method, AC	I Meth	od and	DOE I	Method	
Unit 1	III	STRENGTH OF CONCRETE AND ADMIX	TURES	9	0	0	9	
affecting	g stren	er Uniaxial and Multiaxial Stresses – Failure Modes – gth – Accelerating and Retarding admixtures-Super plaineral admixtures.	_			_		
Unit 1	IV	SPECIAL CONCRETES		9	0	0	9	
Concrete	e- Epo	Concrete-Fly Ash Concrete- Fiber Reinforced Concoxy Resins and Screeds for Rehabilitation – Proper dy mixed concrete	· · · · · · · · · · · · · · · · · · ·		_			
Unit	V	CONCRETING METHODS		9	0	0	9	
		anufacturing of Concrete - Methods of Transportation pecial Concreting methods - Vacuum concrete - Shotcret		_				
					Tot	al -45I	Periods	

Text	t Books:
1	Shetty M.S., Concrete Technology, S.Chand and Company Ltd., Delhi. 2005
2	Santhakumar A.R, Concrete Technology, Oxford University Press, 2007
Refer	rence Books:
1	Rudhani G, LightWeight Concrete, Hungarian Academy of science 1963
2	Gambhir M.L, Concrete Technology, 3 rd Edition, The Tata McGraw Hill Co.,2004
3	Neville, A.M., Properties of Concrete, Pitman publishing limited, London.2004
4	Krishnasamy K.T , Kama sundar Rao A and Khandekar A.A, Concrete technology, DhanpatRai and sons ,Delhi 2001
5	Orchard D.F., Concrete Technology, Vol - 1 and Vol – 2, Asia Publishing House, Delhi 2001.
6.	IS 456:2000 Indian standard plain and reinforced concrete-Code of practice

7.	IS 10262-2019 Indian standard recommended guild lines for concrete mix design, Bureau of Indian standard, New Delhi
8.	ACI 211.1-91- Standard practice of selecting proportions for normal, heavy weight and mass concrete

	Outcomes: completion of this course, the students will be able to:						
CO1	CO1 Know about the properties of concrete						
CO2	Design the concrete mix using ACI + IS code methods						
CO3	Know about the role of various types of admixtures in concrete						
CO4	Design special concretes for specific applications						
CO5	Apply various types of concreting methods in the field						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	2	-	-	-	-	2	-	-
CO2	2	2	2	2	1	1	-	2	-	-	-	-	1	-	-
CO3	2	2	2	2	1	1	-	2	-	-	-	-	1	-	-
CO4	2	2	2	2	1	1	-	2	-	-	-	-	1	-	-
CO5	2	2	2	2	1	1	-	2	-	-	-	-	1	-	-
Avg	2	2	2	2	1	1	-	2	-	-	-	-	1.2	-	-
		1	3/2/1	-indica	ites stre	ngth of	correlat	ion (3-	High, 2	-Mediu	m, 1- Lo	ow)			

22ST	ГЕ62	DISASTER RESISTANT STRUCTU	RES	S	Semester		
PRER	EQUIS	ITES	Category	PE	Cro	Credit	
				L	Т	P	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1	repair technic	derstand the basic philosophy of design of disaster resonand rehabilitation of disturbed structures, design structures and understand the provision of relevant standard nowledge about the ability to conduct damage assessment	ctures with mode specification, re-	ern ma quirem	terials	and ad	vance
Uni	it I	BEHAVIOR OF LIFE-LINE STRUCTU	RES	9	0	0	9
Philoso	onhy for	design to resist earthquake, cyclone and flood – Nation	nal and internatio	nal co	des of p	oractice	e – By
		nd semi-urban area – Traditional and modern structures					
	urban aı	•		9	0	0	9
law of Uni	urban an it II nse of	nd semi-urban area – Traditional and modern structures	Safety analysi				
law of Uni Respor	urban an it II nse of	nd semi-urban area – Traditional and modern structures COMMUNITY STRUCTURE					
law of Uni Resport assessr Unit	urban and the street of the st	COMMUNITY STRUCTURE dams, bridges, buildings – Strengthening measures	TING	s and	rating 0	- Rel	iability
law of Uni Resport assessr Unit	urban and it III nse of orment t III g and event disas	COMMUNITY STRUCTURE dams, bridges, buildings – Strengthening measures REHABILITATION AND RETROFITT aluation – Classification of structures for safety point of	TING view – Methods	s and	rating 0	- Rel	iability
law of Uni Resport assessn Unit Testing differen Unit	it II nse of onent t III g and ev nt disas t IV modern	COMMUNITY STRUCTURE dams, bridges, buildings — Strengthening measures REHABILITATION AND RETROFITT aluation — Classification of structures for safety point of sters — Qualification test	TING view – Methods POSITES	s and 9 of stren	rating 0 ngtheni	- Rel 0 ng for	iability 9
Unite Control of the	urban and the street of the st	COMMUNITY STRUCTURE dams, bridges, buildings – Strengthening measures REHABILITATION AND RETROFITT aluation – Classification of structures for safety point of sters – Qualification test DETAILING OF STRUCTURES AND COMMUNITY STRUCTURES STRU	TING view – Methods POSITES of modern analysi	s and 9 of stren	rating 0 ngtheni	- Rel 0 ng for	iability 9
law of Uni Respor assessn Unit Testing differen Unit Use of techniq Uni Damag	urban and the street of the st	COMMUNITY STRUCTURE dams, bridges, buildings – Strengthening measures REHABILITATION AND RETROFITT aluation – Classification of structures for safety point of sters – Qualification test DETAILING OF STRUCTURES AND COMP materials and their impact on disaster reduction – Use of ptimization for performance	TING view – Methods POSITES of modern analysi JRES	s and 9 of stren 9 s, Desi 9	rating 0 ngtheni 0 gn and	- Rel 0 ng for 0 constru	9 section

Text	t Books:						
1	Proceedings of IABSE 14 th Congress "Civilization through Civil Engineering" New Delhi, May 1992.						
2	Raiker R.N., Learning from failures - Deficiencies in design, construction and service, R&D center (SDCPL) Raikar Bhavan, Bombay, 1987.						
Refer	rence Books:						
1	Moskwin V. et al, "Concrete and Reinforced Concrete – Deterioration and Protection, Mir publishers, Moscow, 1980.						
2	Allen R.T and Edwards S.C, Repair of Concrete Structures, Blakie and Sons, U.K., 1987.						

Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Will understand the basic philosophy of design of disaster resistant structures						
CO2	Will demonstrate the ability of identifying, formulating and understanding repair and rehabilitation of disturbed structures.						
CO3	Will demonstrates the ability in designing structures with modern materials and techniques for disaster effect reduction.						
CO4	Will understand the provision of relevant standard specification, requirements and usage.						
CO5	Will demonstrate the ability to conduct damage assessments and write reports.						

COs /POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	-	-	1	-	2	-	1	1	-	1	-	-
CO2	1	-	2	-	-	1	-	3	-	-	3	-	-	-	1
CO3	3	-	1	-	2	-	3	-	1	1	-	1	-	1	-
CO4	3	-	1	-	1	-	1	1	-	1	-	1	-	1	-
CO5	-	2	-	1	-	2	1	-	2	-	1	1	-	-	1
Avg	2.5	2	1.75	1	1.5	1.33	1.66	2	1.5	1	1.66	1	1	1	1

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22S	TE63	SOIL STRUCTURE INTERACTION	ON	S	Semeste				
PRER	REQUIS	ITES	Category	PE	Credit		3		
				L	T	P	TH		
			Hours/Week	3	0	0	3		
Cours	se Learn	ing Objectives			L	I.			
1		udent is expected to understand the importance and sorate this in the design of structures to achieve both safet		oil stru	cture ir	nteracti	on and		
Un	nit I	SOIL-FOUNDATION INTERACTIO	N	9	0	0	9		
Scope	of soil	o Soil-foundation interaction problems — Soil behavior foundation interaction analysis, Soil response models, Elastic plastic behavior and Time dependent behavior.							
Un	nit II	BEAM ON ELASTIC FOUNDATION- SOIL	MODELS	9	0	0	9		
		two parameters, Isotropic elastic half-space, Analysis relation to their stiffness.	of beams of fin	ite len	gth, Cla	assifica	tion of		
Uni	it III	PLATE ON ELASTIC MEDIUM		9	0	0	9		
	_	Winkler, Two parameters, Isotropic elastic medium, Thind Circular plates, Numerical analysis of finite plates, Sin	*	, Analy	sis of f	inite pl	ates,		
Uni	it IV	ELASTIC ANALYSIS OF PILE		9	0	0	9		
	•	s of single pile, Theoretical solutions for settlement and lysis, Load distribution in groups with rigid cap.	load distributions	, Analy	sis of p	oile gro	up,		
Un	nit V	LATERALLY LOADED PILE	9	0	0	9			
	Load deflection prediction for laterally loaded piles, Subgrade reaction and elastic analysis, Interaction analysis, Pile raft system, Solutions through influence charts.								
					Tot	al -45F	Periods		

Tex	t Books:
1	Selvadurai, A.P.S., Elastic Analysis of Soil Foundation Interaction, Elsevier, 1979.
2	Poulos, H.G., and Davis, E.H., Pile Foundation Analysis and Design, John Wiley, 1980.
Refe	rence Books:
1	Scott R.F., Foundation Analysis, Prentice Hall, 1981.
2	Structure-Soil Interaction - State of Art Report", Institution of Structural Engineers, 1978.
3	ACI 336, Suggested Analysis and Design Procedures for combined footings and Mats,
	American Concrete Institute, Delhi, 1988.

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 The students will be able to understand various applications to soil structure interaction.						
CO2	The students will able to calculate contact pressure and settlement under foundation						
CO3	The student will able to calculate earth pressure on different retaining structures						
CO4	Dynamic analysis of soil structure interaction problems.						
CO5	Analyze ground foundation and structure interaction problems.						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	3	1	2	-	2	-	-	-	-	-	3	2
CO2	2	2	1	3	1	2	-	2	-	-	-	-	-	3	2
СОЗ	2	2	1	3	1	2	-	2	-	-	-	-	-	3	2
CO4	2	2	1	3	1	2	-	2	-	-	-	-	-	3	2
CO5	2	2	1	3	1	2	-	2	-	-	-	-	-	3	2
Avg	2	2	1	3	1	2	-	2	-	-	-	-	-	3	2
Avg	2	2			_	_		_		- Madin	- 1 I a	-	-	3	

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22S'	TE64		S	Semeste	er		
PREF	REQUIS	ITES	Category	PE	Cro	edit	3
				L	T P		TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives				I	
1		part knowledge to the students about structural design cheories and forces related to offshore structures, analysis					ctures,
Ur	nit I	DESIGN OF PIPES		9	0	0	9
Struct	ural desi	gn of Concrete, Prestressed Concrete, Steel and Cast Iro	n piping mains, so	ewerag	e tanks	design	
Un	it II	DESIGN OF SPECIAL PURPOSE STRUC	TURES	9	0	0	9
	•	reservoirs and swimming pools, Intake towers, Structures such as settling tanks, clari flocculators, aeration ta	•	_	founda	tion of	water
Uni	it III	SEWERAGE WORKS		9	0	0	9
•	n of stee	l, lattice structures used in water and sewerage treatment	works – protection	on met	hods of	both R	C and
	24 TX7						
Uni	11 1 V	WAVE THEORIES, FORCES OF OFFSHORE ST	TRUCTURES	9	0	0	9
		WAVE THEORIES, FORCES OF OFFSHORE S' ation process, small, finite amplitude and non-linear wav		9	0	0	9
Wav	e Genera	•	e theories.				9
Wav Wind	e Genera	ation process, small, finite amplitude and non-linear way	e theories.				9
Wav Wind Un	forces, v	ation process, small, finite amplitude and non-linear way wave forces on small bodies and large bodies – current for ANALYSIS AND DESIGN OF OFFSHORE STILL of analysis, foundation analysis and dynamics of offshore	e theories. orces and use of m RUCTURES ore structures.	norison	equation	on	·
Wav Wind Un	forces, v	ntion process, small, finite amplitude and non-linear way wave forces on small bodies and large bodies – current for ANALYSIS AND DESIGN OF OFFSHORE STI	e theories. orces and use of m RUCTURES ore structures.	norison	equation	on	·

Text Books:						
1	Dayaratnam P., Design of Reinforced concrete structures, OXFORD and IBH Publishing Co., New Delhi. 2003.					
2	Krishna Raju, Prestressed Concrete, Tata McGraw Hill Publishing Co. 2 nd Edition 1988.					
3	Chakrabarti S.K, Hydrodynamics of offshore structures, Computational Mechanics Publications, 1987					
4	Thomas H.Dawson, Offshore Structural Engineering, Prentice Hall Inc., Englewood Cliffs, N.J 1983.					
Refer	rence Books:					
1	Sinha N.C. and Roy S. K., Reinforced concreteby S.Chand and Co. 1985.					
2	Hulse R.K and Mosley, W.H., Reinforced Concrete Design by Computer, Macmillan Education Ltd., 1986.					
3	Ramaswamy, G. S, Design and construction of Concrete shell roofs, CBSPublishers, India, 1986.					
4	Green, J.K and Perkins, P.H., Concrete liquid retaining structures, AppliedScience Publishers, 1981					

5	API, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms, American Petroleum Institute Publication, RP2A, Dallas, Texas.
6	Wiegel R.L, Oceanographical Engineering, Prentice Hall Inc, Englewood Cliffs, N.J.1964.
7	Brebbia C.A, & Walker S, Dynamic Analysis of Offshore Structures, New-nesButterworths, U.K.1979.
8	Reddy D.V. and Arockiasamy M, Offshore structures, Vol1, Krieger Publishing Company Malabar, Florida, 1991.
9	Metcalf And Eddy, "Wastewater Engineering Treatment & Reuse", IV Edition, Tata McGraw Hill Publishing Co.2003

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	essential environmental structures and special structures through analysis and design.								
CO2	understand about the waves, force exerted by wave on coastal and offshore structures								
CO3	Will be able to design small offshore structures like platforms, submerged pipelines etc								
CO4	Applying the knowledge of wave forces and offshore structures.								
CO5	Analyze offshore structures by means of static and dynamics methods.								

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO2	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO3	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO4	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO5	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
Avg	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22S	ТЕ65	WIND AND CYCLONE EFFECTS ON STR	RUCTURES	S	Semeste	er			
PRER	REQUIS	ITES	Category	PE	Cro	edit	3		
				L	T	P	ТН		
			Hours/Week	3	0	0	3		
Cours	se Learn	ing Objectives							
1		part knowledge to the students about wind and cyclongs and structural components as per I.S. codes.	one effects on st	ructure	es and	the des	sign of		
Un	nit I	INTRODUCTION		9	0	0	9		
		Spectral studies, Gust factor, Wind velocity, Methods factor, aspect ratio and drag effects.	s of measuremen	ts, var	iation (of spee	d with		
Un	it II	WIND TUNNEL STUDIES		9	0	0	9		
Wind '	Tunnel S	Studies, Types of tunnels, Modeling requirements, Interp	oretation of results	s, Aero	-elastic	models	S.		
Uni	it III	WIND EFFECT	WIND EFFECT						
Wind	on struc	tures, Rigid structures, Flexible structures, Static and Dy	namic effects, Ta	ll build	lings, c	himney	s.		
Uni	it IV	DESIGN PRINCIPLES		9	0	0	9		
Applic	cation to	design, IS 875 code method, Buildings, Chimneys, Roo	f Shelters						
Un	it V	CYCLONE EFFECT AND DESIGN OF CLA	ADDING	9	0	0	9		
Cyclor	ne effect	t on structures, cladding design, window glass design							
					Tot	al -45F	Periods		

Tex	t Books:
1	Cook.N.J., The Designer's Guide to Wind Loading of Building Structures, Butterworth's, 1989
2	Kolousek., et.al., Wind Effects on Civil Engineering Structures, Elsevier Publications, 1984.
Refe	rence Books:
1	Peter Sachs, Wind Forces in Engineering, Pergamon Press, New York, 1978
2	Lawson T.V., Wind Effects on Building Vol. I and II, Applied Science Publishers, London, 2011

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	Have a clear understanding about wind effects and performance of wind tunnel studies.								
CO2	To understand about the wind loads, their effects with codal specifications								
CO3	To analyze and design structures to resist extreme wind forces and cyclones.								
CO4	Design some special structures subjected to wind loading.								
CO5	Design of structures for cyclone effect and design of cladding.								

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	1	1	-	1	-	1	-	1	-	-
CO2	3	2	2	2	1	1	1	-	-	-	-	-	1	-	-
CO3	3	2	2	2	1	1	1	-	-	-	-	-	1	-	-
CO4	3	2	2	2	1	1	1	-	-	-	-	-	1	-	-
CO5	3	2	2	2	1	1	1	-	1	-	-	-	1	-	-
Avg	3	2	2	2	1	1	1	-	-	-	-	-	1	-	-

AUDIT COURSE

22AC01	ENGLISH FOR RESEARCH PAPER WRITIN	G	SEM	EST	ER I	/II
PREREQUI	SITES	CATEGORY	PE	Cr	edit	0
		TT /XX/ 1	L	Т	P	ТН
		Hours/Week	2	0	0	2
COURSE O	BJECTIVES:			1		
	stand the importance of writing skills in a Research paper. To Learn how I skills of writing a good research paper	to write different sec	ctions i	na re	esearc	h
UNIT I	4	0	0	4		
Research pap	er and its importance, Structure of a research paper, Planning and J	oreparation.				
UNIT II			4	0	0	4
English in res	search papers, Basic word order, Collocation, Being concise, Redu	ndancy, Common	errors.			
UNIT III			4	0	0	4
Key factors the coherence.	nat determine the style of a paper, Journal's background, Passive for	orm, Right tense for	orms, C	Cohes	ion a	nd
UNIT IV			4	0	0	4
Hedging and	criticizing, Paraphrasing, Plagiarism, Ensuring quality of the paper	and Useful phras	es.			
UNIT V			4	0	0	4
Key skills in findings.	writing Title, Abstract, Introduction, Review of Literature, Discuss	ion and Conclusion	on, Hig	hligh	ting	
<u> </u>		Tot	tal(30I	(2) = 2	20 Pe	riods

RE	FERENCE BOOKS:
1	Goldbort R (2006) "Writing for Science," Yale Universitypress
2	Day R (2006) "How to Write and Publish a Scientific Paper," Cambridge University Press
3	Highman N (1998), "Handbook of Writing for the Mathematical Sciences," SIAM. Highman's book.
4	Adrian Wallwork, "English for Writing Research Papers," Springer New York Dorecht Heidelberg London, 2011

COURS	SE OUTCOMES:						
On com	On completion of the course the student will be able to						
CO1	Understand and appreciate the process of a good research paper						
CO2	Apply their gained knowledge in writing a research paper						
CO3	Analyze and assess the quality of their research paper						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	2	0	0	0	0	2	3	0	1	0	0	0	0	1
CO2	0	3	0	0	0	0	1	3	0	1	0	0	0	0	2
CO3	0	2	0	0	0	0	1	3	0	1	0	0	0	0	1
Avg	0	2.3	0	0	0	0	1.3	3	0	1	0	0	0	0	1.3
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22AC02	SEMESTER I/II					
PREREQUISIT	TES	CATEGORY	PE	PE Credit		
		Hours/Week	L	T	P	ТН
		110dis/ // con	2	0	0	2

COURSE OBJECTIVES

To have a critical understanding of key concepts in disaster risk reduction and humanitarian response and critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives. Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations and evaluate the strengths and weaknesses of disaster management approaches. Planning and programming in different countries, particularly their home country or the countries they work in.

UNIT I INTRODUCTION

4 0 0 4

Disaster: Definition, Factors And Significance; Difference Between Hazard And Disaster; Natural And Manmade Disasters: Difference, Nature, Types And Magnitude.

Disaster Prone Areas in India: Study of Seismic Zones; Area Prone to floods and droughts, Landslides and avalanches; Areas prone to cyclonic and coastal hazards with special reference to Tsunami; Post- Disaster diseases and epidemics.

UNIT II REPERCUSSIONS OF DISASTERS AND HAZARDS

0 0 4

Economic Damage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts.

UNIT III DISASTER PREPAREDNESS AND MANAGEMENT

0 0 4

Preparedness: Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application Of Remote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

UNIT IV RISK ASSESSMENT

0 0

Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.

UNIT V DISASTER MITIGATION

0 0

Meaning, Concept And Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs of Disaster Mitigation In India.

Total(20L)= 20 Periods

REFERENCE BOOKS:

- R. Nishith, Singh AK 2012 Disaster Management in India:Perspectives, issues and strategies New Royal Book Company, Lucknow
- 2 Sahni, PardeepEt.Al. (Eds.) 2002 Disaster Mitigation Experiences And Reflections. Prentice Hall Of India, New Delhi.

COURSE OUTCOMES:

On completion of the course the student will be able to

- CO1 Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.

 CO2 Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives
- CO3 Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO2	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO3	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
Avg	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0

22AC03	SANSKRIT FOR TECHNICAL KNOWL	EDGE	SEM	EST	ER 1	/II
PREREQUIS	ITES	CATEGORY	PE	Cre	dit	0
		Hours/Week	L	T	P	ТН
		Hours/ week	2	0	0	2
COURSE OB	JECTIVES					
To get a work	ing knowledge in illustrious Sanskrit, the scientific lang	guage in the world.	Learn	ing S	ansk	rit to
improve brain	functioning. Learning Sanskrit to develop logic in	mathematics, scien	ce &	othe	r suł	ojects
enhances the n	nemory power. The engineering scholars equipped with	Sanskrit will be abl	e to ex	kplore	e the	huge
knowledge from	m ancient literature.					
UNIT I ALF	PHABETS		8	8 0	0	8
Alphabets in S	anskrit –Past/Present/Future Tense –Simple Sentences.					
UNIT II LI	TERATURE			8 0	0	8
Order –Introdu	action of roots –Technical information about Sanskrit Lite	erature				

RE	FERENCE BOOKS:
1	"Abhyasa Pustakam" - Dr. Vishwas, Samskrita- Bharati Publication, New Delhi
2	"Tech Yourself Sanskrit" PrathamaDeeksha-Vempatikutumbshastri,Rashtriya Sanskrit Sansthan,New
	Delhi Publication
3	India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd. New Delhi

Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics

8 0 0

Total(24L)= 24 Periods

UNIT III CONCEPTS

COURS	E OUTCOMES:
On comp	letion of the course the student will be able to
CO1	Understanding basic Sanskrit language
CO2	Ancient Sanskrit literature about science & technology can be understood
CO3	Being a logical language will help to develop logic in students

COs /POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO2	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO3	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
Avg	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
	•	•	3/2/	l-indic	ates stre	ngth of	correla	tion (3-	High,	2-Medi	um, 1- Lo	ow)			•

22AC04	VALUE EDUCATION	VALUE EDUCATION					
PREREQUIS	TTES CA	ATEGORY	PE	Cree	dit	0	
		TT (NY 1		T	P	TH	
	l n	lours/Week	2	0	0	2	

COURSE OBJECTIVES

To understand the Importance of value education and self-development. To imbibe good values in students and also know about the importance of character.

UNIT I BASIC VALUES

0 0 4

Values and self-development- Social values and individual attitudes-Work ethics, Indian vision of Humanism Moral and Non Moral valuation-Standards and principles-Value judgements.

UNIT II | CONFIDENCE

6 0

0 6

Importance of cultivation of values- Sense of Duty-Devotion-Self-reliance-Confidence-Concentration-Truthfulness-Cleanlines-Honesty-Humanity-Power of faith-National Unity-Patriotism-Love for nature-Discipline.

UNIT III PERSONALITY DEVELOPMENT

6 0 0 6

Personality and Behavior Development-Soul and Scientific attitude - Positive - Thinking - Integrity and discipline -Punctuality - Love and Kindness - Avoid fault Thinking - Free from anger - Dignity of labor - Universal brotherhood and religious tolerance -True friendship -Happiness Vs suffering -love for truth - Aware of self destructive habits- Association and Cooperation -Doing best for saving nature.

UNIT IV LOVE AND COMPASSION

6 0 0 6

Character and Competence –Holy books vs Blind faith –Self –management and Good health – Science of reincarnation –Equality –Non Violence –Humility -Role of Women –All religions and same message –Mind your Mind –Self -control –Honesty –Studying effectively.

Total (22L)= 22 Periods

REFERENCE BOOKS:

Chakraborty, S.K. "Values and Ethics for Organization Theory and Practice", Oxford University Press, New Delhi, 1998.

	SE OUTCOMES: upletion of the course the student will be able to
CO1	Knowledge of self-development
CO2	Learn the importance of Human values
CO3	Developing the overall personality

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO2	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO3	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
Avg	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
			3/2/1-ii	ndicates	strength	of corre	elation (3. High	2-Medi	ium 1- I	ow)				

PREREQUISITES	CATEGORY	PE	Cr	adit	
				cuit	0
	/	L	Т	P	TH
	Hours/Week	2	0	0	2
COURSE OBJECTIVES	•	•			
Understand the premises informing the twin themes of liberty and freedom growth of Indian opinion regarding modern Indian intellectuals' constitution rights as well as the emergence of nationhood in the early years of Indian national control of the ear	nal role and entitlement ationalism. To address t	to civi he role	l and	l ecor ociali	nomic ism in
India after the commencement of the Bolshevik Revolution in 1917 and it	its impact on the initial	draftin	g of	the I	lndian
Constitution. UNIT I HISTORY OF MAKING OF INDIAN CONSTITUTION					

UNIT I	HISTORY OF MAKING OF INDIAN CONSTITUTION	4 0 0 4
History, D	rafting Committee (Composition & working)	
IINIT II	PHILOSOPHY OF THE INDIAN CONSTITUTION	4 0 0 4

UNIT II PHILOSOPHY OF THE INDIAN CONSTITUTION 4 0 0 4

CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES

D.D. Basu, Introduction to the Constitution of India, LexisNexis, 2015.

Preamble, Salient Features.

UNIT III

Fundamental rights, right to equality, right to freedom, right against exploitation, right to freedom of religion, cultural and

education rights, right to constitutional remedies, directive principles of state policy, fundamental duties. UNIT IV | ORGANS OF GOVERNANCE | 4 | 0 | 0 | 4

Parliament, composition, qualifications and disqualifications, powers and functions, executive, president, governor, council of ministers, judiciary, appointment and transfer of judges, qualifications, powers and functions.

UNIT V LOCAL ADMINISTRATION 4 0 0 4

Districts administration head: role and importance, municipalities: introduction, mayor and role of elected representative, CEO of municipal corporation. Panchayati raj: introduction, PRI: zila panchayat. Elected officials and their roles, CEO zila panchayat: position and role. Block level: organizational hierarchy (different departments), village level: role of elected and appointed officials, importance of grass root democracy.

UNIT VI | ELECTION COMMISSION | 4 | 0 |

Election Commission: role and functioning. Chief election commissioner and election commissioners. State election commission: role and functioning. Institute and bodies for the welfare of SC/ST/OBC and women.

Total (24 L) = 24 Periods

REFERENCE BOOKS: 1 The Constitution of India, 1950 (Bare Act), Government Publication. 2 Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015. 3 M. P. Jain, Indian Constitution Law, 7th Edn., LexisNexis, 2014.

	RSE OUTCOMES: Inpletion of the course the student will be able to
CO1	Understand the making of the Indian Constitution and its features.
CO2	Understand the rights of equality, the right of freedom and the right to constitutional remedies.
CO3	Have an insight into various organs of Governance – composition and functions.
CO4	Understand powers and functions of municipalities, Panchayats and Co-operative Societies.
CO5	Understand Electoral process, special provisions.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO2	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO3	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
Avg	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
			3/2/1	-indica	ites strei	ngth of	correlat	ion (3-	High, 2	-Mediu	m, 1- Lo	ow)			

			0211			.,
PREREQUIS	TITES	CATEGORY	PE	Cr	edit	0
		TT /557 1	L	T	P	TH
		Hours/Week	2	0	0	2
COURSE OF	JECTIVES					
	tisting evidence on the review topic to inform programme design gencies and researchers. Identify critical evidence gaps to guide the		ng und	lertal	ken b	y the
UNIT I			4	0	0	4
Teacher educa	ionale, Policy background, Conceptual framework and terminol tion, Conceptual framework, Research questions, Overview of metle	0.5 ·	ching		1	
UNIT II			2	0	0	2
	rview: Pedagogical practices are being used by teachers in formal riculum, Teacher education.	and informal clas	sroom	s in (devel	oping
UNIT III			4	0	0	4
included stud materials best	the effectiveness of pedagogical practices, Methodology for the ies, How can teacher education (curriculum and practicum) an support effective pedagogy? Theory of change. Strength and naturactices, Pedagogic theory and pedagogical approaches, Teacher	d the school currer of the body of	iculum eviden	n and	d gui or eff	dance ective
UNIT IV			4	0	0	4
	levelopment: alignment with classroom practices and follow-up and the community, Curriculum and assessment, Barriers to learning					
UNIT V			2	0	0	2
	and future directions, Research design, Contexts, pedagogy, teacher and research impact	er education, curric	ulum	and a	ssess	ment
		To	tal(16	L)=	16 Pe	riod
REFERENC	E BOOKS:					

PEDAGOGY STUDIES

22AC06

SEMESTER I/II

RE	FERENCE BOOKS:
1	Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
2	Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3)
	361-379.
3	Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project
3	(MUSTER) country report 1. London: DFID
4	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic math and reading
4	in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272-282.
5	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston:
3	Blackwell.

	COURSE OUTCOMES: On completion of the course the student will be able to									
CO1	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?									
CO2	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?									
CO3	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?									
CO4	Understand Professional development (Curriculum and assessment).									
CO5	Develop research design , curriculum and assessment									

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO2	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO3	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO4	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
CO5	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
Avg	2	2	2	2	1	1	-	1	1	1	-	-	1	-	-
			2/2/1	. 1		.1 C	1	(2 II:	1 2 3 4	1' 1	T \				

22AC07	STRESS MANAGEMENT BY YOGA		SEM	IES'	TER :	I/II					
PREREQU	JISITES	CATEGORY	PE	Cr	edit	0					
		**	L	T	P	ТН					
		Hours/Week	2	0	0	2					
COURSE	OBJECTIVES										
To create a	healthy, strong willed and intelligent young society through y	oga practices.									
UNIT I		4	0	0	4						
Pain and di Practical, C	sease - free life, Simplified Physical Exercise- Pranayama. Co foal fixing.	oncentration on Pi	tuitar	y gla	ind-	1					
UNIT II	REJUVENATION OF LIFE FORCE AND WILL POW	ER	4	0	0	4					
-	f kayakalpa yoga, mind, life force and Biomagnetism, Panalysis of thought –Will power	ractical, Concentr	ation	on	Mula	dhara-					
UNIT III	DEVELOPMENT OF VIRTUES		4	0	0	4					
	of Dormant Brain cells- Practical, Moralization of dezire and aults of anger.	its classification,	Neutr	aliza	tion o	of					
UNIT IV	STREAM LINING OF MIND		4	0	0	4					
	of Mind-Worries, Eradication of Worries. The science behind we basic duties	blessings. Blessir	ig tec	hniq	ues.	1					
UNIT V	CAUSE AND EFFECT SYSTEM		4	0	0	4					
Law of nati	ure, Hereditary Imprints, Fivefold and Two-fold culture, good	values and Resol	ution	for v	world	peace					
	Total (24L)= 24 Periods										

RE	FERENCE BOOKS:									
1	"Thirukkural", Pearls of Inspiration, Translation by Rajaram, Publisher :RUPA									
2	"Bharathiyar Poems", Amazon Asia – Pacific Holdings Private Limited.									
Ref	Reference Books:									
3	"Yoga for Humane Excellence", Vethathiri Maharishi, Vision for Wisdom, Vethathiri Publications									

COURSE OUTCOMES:
On completion of the course the student will be able to
CO1 Maintain good Physical health

CO1	Maintain good Physical health
CO2	Develop will power
CO3	Take quick and right decisions

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO2	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO3	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
Avg	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0

22AC08	SEM	EMESTER I/II				
PREREQUISI	ITES	CATEGORY	PE Credit 0			0
		II/33/ l-	L	T	P	ТН
		Hours/Week	2	0	0	2

COURSE OBJECTIVES

To learn to achieve the highest goal happily, To become a person with stable mind, pleasing personality and determination, To awaken wisdom in students.

UNIT I PERSONALITY DEVELOPMENT

Neetisatakam – Holistics development of personality

Verses- 19,20,21,22 (wisdom)

Verses-29,31,32 (pride & heroism)

Verses- 26,28,63,65 (virtue)

Verses-52,53,59(dont"s)

Verses71,73,75,78(do''s)

UNIT II DUTIES AND SERVICES

8 0 0 8

 $0 \quad 0$

8

8

Five Duty, Service Mortality, Introspection Cause and Effect System.

UNIT III DEVELOPMENT OF VIRTUES

8 0 0 8

Five - Foldeed culture, Two- Folded culture, Self control & Self - Realization. Understanding the Nature Respect others' feelings.

Total(24L)= 24 Periods

Su	Suggested Reading:									
1	Thirukkural, Bharathiyar Poems									
2	Yoga for Modern age - Vethathiri Maharishi									

	E OUTCOMES: letion of the course the student will be able to
CO1	Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve The highest goal in life
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity
CO3	Study of Neetishatakam will help in developing the versatile personality of students.

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO2	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
CO3	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
Avg	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0
	•	•	3/2/1-	indicate	s streng	th of co	rrelation	(3- Hi	h 2-M	edium. 1	- Low)				