

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011 (An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS 2022 CURRICULAM AND SYLLABUS (For Candidates admitted from 2022 - 2023 onwards)

M.E – THERMAL ENGINEERING (FULL TIME PROGRAMME)

M.E THERMAL ENGINEEERING (FULL TIME)

A serene and tranquil 'MECH' atmosphere helps the dynamic professionals to kindle their innovative minds. The enduring efforts of faculties have enhanced the students with omnipotent skills, with considerable research work being done in the department.

VISION

The department of mechanical engineering is committed to blossom into a center of excellence, dedicated and competent engineers by providing global quality interactive technical education to cater the needs of the industries and nation into a technologically, socially and culturally advanced one.

MISSION

- Constantly updating the departmental resources, faculty and other infrastructure by acquiring the state of the art equipments and by imparting constant in-service training to the faculty and supporting staff.
- Promoting skilled and employable graduates to meet the challenges in emerging fields of engineering.
- To prepare the students for prosperous career in entrepreneurship with leader ship qualities, ethics and human values.
- The department executes life-long learning skills and provides engineering services for sustainable development of the society.

PG - THERMAL ENGINEERING: PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1**: Excel in higher education by acquiring knowledge in mathematical, analytical and engineering principles.
- **PEO 2**: Expertise in analyzing real life problems in various Thermal engineering systems, giving appropriate solutions that are technically sound, economically feasible and socially acceptable.
- **PEO 3**: Exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning

PG - THERMAL ENGINEERING: PROGRAMME OUTCOMES (POs)

- **PO1**: An ability to apply knowledge of computing, mathematics, science and engineering fundamentals appropriate to the discipline.
- **PO2**: An ability to analyze a problem, and identify and formulate the computing requirements appropriate to its solution.
- **PO3**: An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations.
- **PO4**: An ability to design and conduct experiments, as well as to analyze and interpret data.
- **PO5**: An ability to use current techniques, skills, and modern tools necessary for computing practice.
- **PO6**: An ability to function effectively individually and on teams, including diverse and multidisciplinary, to accomplish a common goal.
- **PO7**: An understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects.
- **PO8**: An ability to communicate effectively with a range of audiences.
- **PO9**: Recognition of the need for and an ability to engage in continuing professional development.
- **PO10**: An understanding of professional, ethical, legal, security and social issues and responsibilities.
- **PO11**: An ability to examine the outcomes of actions and making corrective measures individually.

PG - THERMAL ENGINEERING: PROGRAM SPECIFIC OUTCOMES (PSOs)

• **PSO 1**: Capability to apply the basic and advanced technical knowledge to solve the real case problems in various domains of thermal engineering.

- **PSO 2**: Ability to identify, formulate and analyze the complex problems in thermal engineering field for the benefit of the society and environment.
- **PSO 3**: Ability to find out the local and global industrial problems and solve them with the use of mechanical engineering tools and the software for attaining the realistic outcomes.

Regulations -2022 M.E Thermal Engineering – Full Time

				Hou	rs/Week	Σ.		Maxi	mum N	Aarks
SI.No			Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
		SEMEST	TER I							
	1	ТНЕО	RY							
1.	22THC11	Advanced Thermodynamics	PC	3	0	0	3	40	60	100
2.	22THC12	Advanced Fluid Dynamics	PC	3	0	0	3	40	60	100
3.	22THC13	Advanced Heat Transfer	PC	3	0	0	3	40	60	100
4.	22THE1X	Professional Elective-I	PE	3	0	0	3	40	60	100
5.	22THE2X	Professional Elective-II	PE	3	0	0	3	40	60	100
6.	22MLC01	Research Methodology and IPR	MC	3	0	0	3	40	60	100
		PRACTI	CAL					-		
7.	22THC14	Thermal Engineering Laboratory	PC	0	0	4	2	60	40	100
8.	22THC15	Technical Seminar- I	EEC	0	0	2	1	100	0	100
9.	22AC XX	Audit Course – 1	AC	2	0	0	0	100	0	100
		TOTAL		20	0	6	21	500	400	900
		SEMEST	'ER II							
	I	THEO	RY				1	1	1	
1.	22THC21	Hydrogen and Fuel cell Technologies	PC	3	0	0	3	40	60	100
2.	22THC22	Computational Fluid Dynamics for Thermal Systems	PC	3	0	0	3	40	60	100
3.	22THC23	Instrumentation for Thermal Systems	PC	3	0	0	3	40	60	100
4.	22THE3X	Professional Elective- III	PE	3	0	0	3	40	60	100
5.	22THE4X	Professional Elective-IV	PE	3	0	0	3	40	60	100
		PRACTI	CAL							
6.	22THC24	Analysis & Simulation Laboratory	PC	0	0	4	2	60	40	100
7.	22THC25	Applied Thermal Engineering Laboratory	PC	0	0	4	2	60	40	100
8.	22THC26	Technical Seminar- II	EEC	0	0	2	1	100	0	100
9.	22AC XX	Audit Course-2	AC	2	0	0	0	100	0	100
		TOTAL		17	0	10	20	520	380	900

				Hour	s/Week	i.		Maximum Marks			
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total	
		SEMESTER	R III								
		THEORY	Y				-				
1.	22THE5X	Professional Elective-V	PE	3	0	0	3	40	60	100	
2.	22THE6X	Professional Elective-VI	PE	3	0	0	3	40	60	100	
3.	22THE7X	Professional Elective-VII	PE	3	0	0	3	40	60	100	
		PRACTIC	AL								
4.	22THC31	Dissertation Phase – I	EEC	0	0	20	6	120	80	200	
		TOTAL		9	0	20	15	240	260	500	
		SEMESTER	R IV								
		PRACTIC	AL								
1.	22THC41	Dissertation Phase – II	EEC	0	0	32	14	240	160	400	
		TOTAL		0	0	32	14	240	160	400	

Total Credits for the Programme = 21 + 20 + 15 + 14 = 70

LIST OF ELECTIVES FOR M.E THERMAL ENGINEERING

Professional Electives (PE)

				Hours/Week						ım S
SI.No	Course code Name of the Course		Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
		Elective - I		•	•					
1.	22CDE11	Advanced Mathematical Methods in Engineering	PE	3	0	0	3	40	60	100
2.	22THE11	Combustion in IC Engines	PE	3	0	0	3	40	60	100
3.	22THE12	Thermal management of Electric Vehicle Battery Systems	PE	3	0	0	3	40	60	100
4.	22THE13	Nuclear Engineering	PE	3	0	0	3	40	60	100
5.	22THE14	Boundary Layer Theory and Turbulence	PE	3	0	0	3	40	60	100
		Elective - II								
6.	22THE21	Air Conditioning System Design	PE	3	0	0	3	40	60	100
7.	22THE22	Bio Energy Technologies	PE	3	0	0	3	40	60	100
8.	22THE23	Optimization Techniques in Engineering	PE	3	0	0	3	40	60	100
9.	22THE24	Electric and Hybrid Vehicle Technology	PE	3	0	0	3	40	60	100
10.	22THE25	Alternate Fuels for IC Engines	PE	3	0	0	3	40	60	100
		Elective - III								
11.	22THE31	Advanced Energy Storage Technologies Refrigeration systems	PE	3	0	0	3	40	60	100
12.	22THE32	Refrigeration systems	PE	3	0	0	3	40	60	100
13.	22THE33	Advanced Power Plant Engineering	PE	3	0	0	3	40	60	100
14.	22THE34	Electronic Engine Management Systems	PE	3	0	0	3	40	60	100
15.	22THE35	Design of Heat Exchangers	PE	3	0	0	3	40	60	100
	1	Elective - IV	1				1	1	1	
16.	22THE41	Solar Power Plants	PE	3	0	0	3	40	60	100
17.	22THE42	Cryogenic Engineering	PE	3	0	0	3	40	60	100
18.	22THE43	Renewable Energy Systems	PE	3	0	0	3	40	60	100
19.	22THE44	Materials For Solar Devices	PE	3	0	0	3	40	60	100
20.	22THE45	Energy Systems Modelling & Analysis	PE	3	0	0	3	40	60	100

		Elective - V								
21.	22THE51	Design of Solar and Wind Systems	PE	3	0	0	3	40	60	100
22.	22THE52	Design and Analysis of Turbo machines	PE	3	0	0	3	40	60	100
23.	22THE53	Fire Engineering and Explosion control	PE	3	0	0	3	40	60	100
24.	22THE54	Waste to Energy	PE	3	0	0	3	40	60	100
25.	22THE55	Solar Refrigeration and Air-conditioning	PE	3	0	0	3	40	60	100
	ł	Elective - VI								
26.	22THE61	Environmental And Pollution control	PE	3	0	0	3	40	60	100
27.	22THE62	Nanotechnology	PE	3	0	0	3	40	60	100
28.	22THE63	Solar Energy for Industrial Process Heating	PE	3	0	0	3	40	60	100
29.	22THE64	Energy Efficient Buildings Design	PE	3	0	0	3	40	60	100
30.	22THE65	Analysis Of Thermal Power Cycles	PE	3	0	0	3	40	60	100
		Elective - VII								
31.	22THE71	Energy Forecasting, Modeling and Project Management	PE	3	0	0	3	40	60	100
32.	22THE72	Energy Management and Environmental Benefits	PE	3	0	0	3	40	60	100
33.	22THE73	Solar Energy Appliances	PE	3	0	0	3	40	60	100
34.	22THE74	Cost Management of Engineering Projects	PE	3	0	0	3	40	60	100
35.	22THE75	Advanced Composite materials	PE	3	0	0	3	40	60	100

			Hours/Week					Maximum Marks				
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total		
1.	22AC01	English for Research Paper Writing	PE	2	0	0	0	100	0	100		
2.	22AC02	Disaster Management	PE	2	0	0	0	100	0	100		
3.	22AC03	Sanskrit for Technical Knowledge	PE	2	0	0	0	100	0	100		
4.	22AC04	Value Education	PE	2	0	0	0	100	0	100		
5.	22AC05	Constitution of India	PE	2	0	0	0	100	0	100		
6.	22AC06	Pedagogy Studies	PE	2	0	0	0	100	0	100		
7.	22AC07	Stress Management by Yoga	PE	2	0	0	0	100	0	100		
8.	22AC08	Personality Development through Life Enlightenment Skills	PE	2	0	0	0	100	0	100		

22THC11	ADVANCED THERMODYNAN	MICS	S	emeste	er	Ι
PREREQUIS	ITES	Category	PC	Cre	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course Learr	ning Objectives					
1 To de	velop the ability to use the thermodynamics concepts for van dynamic relations	rious applications	like av	ailabilit	ty analy	sis and
2 To im	part the knowledge to analyze the real gas behaviour and chemi	cal thermodynami	cs			
3 To im	part the knowledge about chemistry behind the thermodynamics	s				
4 To exp	pose the basic concepts of Statistical and Irreversible thermodyn	namics				
5 To dis	seminate the concepts of irreversible thermodynamics					
UNIT I	AVAILABILITY ANALYSIS AND THERM PROPERTY RELATIONS	IODYNAMIC	9	0	0	9
enthalpy and	SYSTEM ations of state – fugacity – compressibility - principle of corre entropy departure - fugacity coefficient. Fundamental property	y relations for sys	stems of	f variabl	le comp	osition
	properties. Real gas mixtures - Ideal solution of real gases and bs phase rule for non – reactive components.	nd liquid - activit	y - equ	llibrium	in mul	ti-phase
UNIT III	CHEMICAL THERMODYNAMICS		9	0	0	9
- Second law	stry - First law analysis of reacting systems - Adiabatic flame t analysis of reacting systems - Criterion for reaction equilibriu					
	equilibrium composition.	-	onstant	8	eous mi	
UNIT IV	equilibrium composition. STATISTICAL THERMODYNAMICS		9	0	ous mi	
Micro states a Diarc and Bo			9 Maxwel	0 11 – Bolt	0 tzman, 1	9 Fermi -
Micro states a Diarc and Bo	STATISTICAL THERMODYNAMICS and Macro states - thermodynamic probability - degeneracy o se – Einstein statistics - microscopic interpretation of heat and		9 Maxwel	0 11 – Bolt	0 tzman, 1	9 Fermi
Micro states a Diarc and Bo calculation of UNIT V	STATISTICAL THERMODYNAMICS and Macro states - thermodynamic probability - degeneracy o se – Einstein statistics - microscopic interpretation of heat and the Macroscopic properties from partition functions.	d work, evaluation	9 Maxwel n of ent 9	0 Il – Bolt ropy, Pa	0 tzman, 1 artion fu 0	xtures 9 Fermi - Inction 9

Refe	rence Books:
1	Bejan, A., Advanced Engineering Thermodynamics, John Wiley and Cons, 1988.
2	DeHotf R.T., Thermodynamics in Materials Science, McGraw – Hill Inc., 1993
3	Holman J.P., Thermodynamics, Fourth Edition, McGraw – Hill Inc., 1988
4	Kenneth WarkJt.m., Advanced Thermodynamics for Engineers, McGrew – Hill Inc., 1995
5	Rao Y.V.C., Postulational and Statistical Thermodynamics, Allied Publisher Limited, New Delhi, 199
6	Sears F.W .and Salinger G.I., Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Third Edition, Narosa Publishing House, New Delhi, 1993

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Explain availability, second law efficiency and derive thermodynamic relations.	Evaluate				
CO2	Describe fugacity, real gas behavior and Gibbs phase rule for non-reactive components.	Apply				
CO3	Explain thermochemistry and characteristics of reacting system.	Understand				
CO4	Demonstrate micro and macroscopic analysis of thermodynamics.	Analyze				
CO5	Describe the concepts of irreversible thermodynamics.	Understand				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	2		1		2						3	3	1
CO2	3	3		1	2	2						3	3	1
CO3	3	3		1		2						3	3	1
CO4	3	3		1		2						3	3	1
CO5	3	3		1		2						3	3	1
Avg	3	2.8		1	2	2						3	3	1
	1		3/2/1 – i	ndicates	s streng	th of co	rrelatio	n (3- Hi	gh, 2- M	ledium, 1-	- Low)	1	11	

	ADVANCED FLUID DYNAM	IICS	S	emeste	r	Ι
REREQUIS	ITES	Category	PC	Cre	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
ourse Leari	ing Objectives					
1 To der	nonstrate different types of compressible flow processes					
2 To dev	velop the skill to derive the continuity and momentum equation	ns using differential	and int	egral ap	proach	
3 To dev	velop the skill to derive the equations for transport theorem, str	eam function and v	velocity	potentia	l function	on
4 To con	nmunicate the analysis of the boundary layer concepts in fluid	flow				
5 To dis	seminate the characteristics of turbulent flow					
UNIT I	TYPES OF FLOW		9	0	0	9
		el, Couette flow, cre	1 0			
UNIT II Derivation o	GOVERNING EQUATION IN FLUID DYNAM f continuity and momentum equations using integral and	ICS	9	0	0 onless f	9 Form
Derivation o		ICS differential approa	9	0		
Derivation o	f continuity and momentum equations using integral and	ICS differential approa	9	0		form
Derivation o governing eq UNIT III	f continuity and momentum equations using integral and uations - Special forms of governing equations – Integral quar	ICS differential approa ntities	9 ach – I 9	0 Dimensio 0	onless f	
Derivation o governing eq UNIT III	f continuity and momentum equations using integral and uations - Special forms of governing equations – Integral quan POTENTIAL FLOW	ICS differential approa ntities	9 ach – I 9	0 Dimensio 0	onless f	form
Derivation of governing eq UNIT III Reynolds - T UNIT IV Boundary lay	f continuity and momentum equations using integral and uations - Special forms of governing equations – Integral quan POTENTIAL FLOW ransport theorem - Kelvin's theorem - Irrotational flow - Stream	ICS differential approa titites m function- Velocit	9 ach – I 9 ty poten 9	0 Dimensio 0 tial func 0	0 etion 0	Form 9
Derivation o governing eq UNIT III Reynolds - T UNIT IV Boundary lay	f continuity and momentum equations using integral and uations - Special forms of governing equations – Integral quan POTENTIAL FLOW ransport theorem - Kelvin's theorem - Irrotational flow - Stream BOUNDARY LAYERS ver equations, flow over flat plate, momentum - Integral equ	ICS differential approa titites m function- Velocit	9 ach – I 9 ty poten 9	0 Dimensio 0 tial func 0	0 etion 0	form 9
Derivation o governing eq UNIT III Reynolds - T UNIT IV Boundary lay methodology UNIT V Characteristic	f continuity and momentum equations using integral and uations - Special forms of governing equations – Integral quar POTENTIAL FLOW ransport theorem - Kelvin's theorem - Irrotational flow - Stream BOUNDARY LAYERS ver equations, flow over flat plate, momentum - Integral equations for boundary layer equations.	ICS differential approa ntities m function- Velocit ations for boundar	9 ach – I 9 ty poten 9 y layer 9	0 Dimension 0 tial funct 0 -Approx 0	onless f 0 ction 0 ximate s	form 9 solutio

Refe	rence Books:
1	Muralidhar and Biswas, Advanced Engineering Fluid Mechanics, Alpha Science International, 2005
2	Irwin Shames, Mechanics of Fluids, McGraw Hill, 2003
3	Fox R.W., McDonald A.T, Introduction to Fluid Mechanics, John Wiley and Sons Inc,1985
4	Pijush K. Kundu, Ira M Kohen and David R. Dawaling, Fluid Mechanics, Fifth Edition,2005

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Demonstrate different types of fluid flow and derive mathematical formulations for their characteristic	Analyze
CO2	Derive the continuity and momentum equations using differential and integral approach	Evaluate
CO3	Derive the equations for transport theorem, stream function and velocity potential function.	Evaluate
CO4	Analyze the boundary layer concepts in fluid flow.	Analyze
CO5	Derive the governing equation for turbulent flow	Evaluate

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	2		2		2						3	3	1
CO2	3	2		2		2						3	3	1
CO3	3	2		2		2						3	3	1
CO4	3	2		2		2						3	3	1
CO5	3	2		2		2						3	3	1
Avg	3	2		2		2						3	3	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)													

22THC13 ADVANCED HEAT TRANSFER Semester									
PREREQUIS	ITES	Category	PC	Cre	edit	3			
			L	Т	Р	ТН			
		Hours/Week	3	0	0	3			
Course Learn	ing Objectives								
	1 To develop the ability to use the heat transfer concepts like one-dimensional, three-dimensional conduction heat								
	transfer and additional heat transfer.								
2 To dev	elop the ability to solve problems in turbulent flow heat transf	fer.							
-	part the skill to design and analyze the heat exchangers inclu	iding compact heat	exchan	ges and	phase c	change			
heat tr	ansfer.								
4 To intr	oduce the different numerical techniques for solving heat tran	sfer problems.							
5 To intr	oduce mass transfer and engine heat transfer correlations.								
UNIT I	CONDUCTION AND RADIATION HEAT TRAN	SFER	9	0	0	9			
transfer in end UNIT II Momentum a	ransfer - conduction with moving boundaries - radiation in ga closures containing absorbing and emitting media. TURBULENT FORCED CONVECTIVE HEAT T nd energy equations - turbulent boundary layer heat transfer alogy between heat and momentum transfer – Reynolds, Co	RANSFER - mixing length con	9 acept - t	0 urbulen	0 ce mode	9 el – k			
UNIT III	PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGER	Г	9	0	0	9			
	with shears edge on bank of tubes - boiling – pool and flow lure - compact heat exchangers.	boiling - heat exch	anger -	€ – NT	U appro	ach and			
UNIT IV	NUMERICAL METHODS IN HEAT TRANSFER		9	0	0	9			
Nicolson and	nce formulation of steady and transient heat conduction proble fully implicit schemes - control volume formulation - stea lculation of the flow field – SIMPLER Algorithm								
UNIT V	UNIT VMASS TRANSFER AND ENGINE HEAT TRANSFER CORRELATION90								
	r - vaporization of droplets - combined heat and mass t ike I.C. engines, compressors and turbines.	transfers - heat tra	ansfer	correlati	ons in	various			
		TC)TAL(45L):	45 PEF	RIODS			

Refe	Reference Books:								
1	Ghoshdastidar. P.S., Heat Transfer, Oxford University Press, 2004								
2	Holman.J.P., Heat Transfer, Tata Mc Graw Hill, 2002								

3	Incropera F.P. and DeWitt. D.P., Fundamentals of Heat & Mass Transfer, John Wiley & Sons, 2002.
4	Nag.P.K., Heat Transfer, Tata McGraw-Hill, 2002.
5	Ozisik. M.N., Heat Transfer – A Basic Approach, McGraw-Hill Co.
6	Yadav, R., Heat and Mass Transfer, Central Publishing House, 1995
7	Yunus A.Cengal., Heat and Mass Transfer – A practical Approach, 3 rd edition, Tata- McCraw-Hill, 2007.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Demonstrate three-dimensional conduction heat transfer mechanism and radiation concepts for various conditions.	Remember				
CO2	Explain the turbulent forced convective heat transfer concepts and analyze the heat and momentum transfer.	Analyze				
CO3	Explain condensation concepts and analysis of heat exchangers	Analyze				
CO4	Utilize the concepts numerical methods for the heat transfer applications	Apply				
CO5	Knowledge in combined heat and mass transfer mechanisms in engine applications.	Remember				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
C01	3	3	2	2	0	1	0	0	0	0	0	3	3	0
CO2	3	3	2	2	0	1	0	0	0	0	0	3	3	0
CO3	3	3	2	2	0	1	0	0	0	0	0	3	3	0
CO4	3	3	2	2	0	1	0	0	0	0	0	3	3	0
CO5	3	3	2	2	3	1	0	0	0	0	0	2	2	2
Avg	3	3	2	2	3	1	0	0	0	0	0	2.8	2.8	2
	1	ý	3/2/1 – i	ndicates	s streng	th of co	rrelatio	n (3- Hi	gh, 2- N	ledium, 1	- Low)	L		I

22M	LC01	RESEARCH METHODOLOGY	AND IPR	5	Ι		
PRER	EQUIS	ITES	Category	PC	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives				1	
1	analysis	elop the subject of the research, encourage the formation of s, rigor and independence of thought, foster individual judgen thods and develop skills required in writing research proposals	nent and skill in the	applic		•	
UNI	TI	INTRODUCTION TO RESEARCH		9	0	0	9
selec	cting a re	esearch problem, Sources of research problem, Criteria Char search problem, Scope and objectives of the research proble lem, data collection, analysis, interpretation, Necessary instru	em, Approaches to				
UNI	TI	EFFECTIVE LITERATURE STUDIES, APPROA ANALYSIS	CHES AND	9	0	0	9
evalu	uating re-	he theoretical framework of research - Developing operat search approach - Hypotheses: Parametric and non-parametric ith literature review and experiments – documentation, Plagia	c testing- Establish	ing the			
UNI	TIII	EFFECTIVE TECHNICAL WRITING		9	0	0	9
Deve	eloping a	Research Proposal, Format of research proposal, a presentation	on and assessment l	by a rev	iew con	mittee	
UNI	TIV	NATURE OF INTELLECTUAL PROPERTY		9	0	0	9
pater	nting, and	gns, Trade and Copyright, process of Patenting and De d development. International Scenario: International cooperation tenting under PCT.					
UNI	TV	PATENT RIGHTS AND IPR		9	0	0	9
Adm	ninistratio	nt Rights. Licensing and transfer of technology. Patent inform on of Patents System. New developments in IPR; IPR of nowledge Case Studies, IPR and IITs.					
			TC)TAL((45L) :	45 PEH	RIODS
Refe	rence Bo	ooks:					
1	Wayne	Goddard and Stuart Melville, "Research Methodology: An In	troduction"				
2	Ranjit k	Kumar, 2 nd Edition, "Research Methodology: A Step by Step	Guide for beginner	rs"			
3	Halbert	, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007	7				
4	Mayall,	"Industrial Design", McGraw Hill, 1992					

5Niebel, "Product Design", McGraw Hill, 19746Asimov, "Introduction to Design", Prentice Hall, 1962

7	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.
8	T. Ramappa, "Intellectual Property Rights Under TO", S. Chand, 2008.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Understand research problem formulation	Understand				
CO2	Analysis research related information	Analyse				
CO3	Follow research ethics	Create				
CO4	Understand that today's world is controlled by computer, Information technology, but tomorrow's world is ruled by ideas, concepts and creativity.	Apply				
CO5	Understand that IPR production provides an incentive to inventors for further research work and investment in R& D, which leads to creation of new and better products, and in turn brings about economic growth and social benefits.	Apply				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	0	2	0	2	3	0	0	0	2	0	3	2	2	2
CO2	0	2	0	3	3	2	0	0	2	0	2	2	2	2
CO3	2	2	0	3	2	0	0	0	3	0	0	2	2	2
CO4	2	2	0	3	3	0	0	2	3	0	0	1	0	2
CO5	1	2	0	3	3	0	0	2	3	0	0	0	0	2
Avg	1.7	2	0	2.8	2.8	2	0	2	2.6	0	2.5	1.7	2	2
	•		3/2/1 – i	indicate	s streng	th of co	rrelatio	n (3- Higł	n, 2- Meo	lium, 1-	Low)	•		•

22TH(C14	THERMAL ENGINEERING LABO	THERMAL ENGINEERING LABORATORY				
PRERE	QUISI	TES	Category	PC	Credit		2
				L	Т	Р	TH
			Hours/Week	0	0 4		4
Course]	Learni	ng Objectives					
1 7	Fo cond	uct experiments on various Thermal Engineering devices to s	tudy the performan	ce and i	ts appli	cations	
LIST O	F EXP	ERIMENTS:					
1	Perform	nance test on Spark Ignition engine and Compression Ignition	n using the alternate	e fuels			
2	Emissi	on measurement in Spark Ignition and Compression Ignition	Engines				
3		nance test on variable compression ratio petrol and diesel eng	•				
4	Perform	nance study in a cooling tower					
5	Perform	nance study in a refrigeration and heat pump systems					
6	Perform	nance Study in a solar water heater					
7	Propert	ties of fuel oils, biomass, biogas					
8	Direct	and diffused solar radiation measurements					
9	Perform	nance study on Boiler					
10	Perform	nance study on parallel and counter flow Heat Exchangers					
11	Perform	nance and characteristics studies on fan					
12	Study of	on Fuel Cell Systems					
			T	OTAL	(60P):	60 PEI	RIODS
LIST O	F EOU	JIPMENT					
1		cylinder / multi cylinder Automotive Engine with data acquis	sition system				
2	-	s analyzer					
3	Smoke	•					
4	Single	cylinder variable Compression ratio petrol engine					
5	Single	cylinder variable Compression ratio Diesel engine					
6	Cooling	g tower test rig					
7	Refrige	eration cum Heat Pump test rig					
8	100 LP	PD Solar flat plate water heater test rig					
9	Pyrano	meter					
10	Redwo	od / Saybolt viscometer					
11	Bomb	calorimeter apparatus					

12	Gas colorimeter
13	Cloud & Pour point apparatus
14	Non-IBR Boiler test rig
15	Parallel flow / Counter flow Heat exchanger test rig
16	Fan test rig

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Demonstrate the potential use of various alternate fuels available for IC engines and emission measurement of variable compression ratio SI engine.	Analyze
CO2	Test the performance characteristics of a cooling tower, water heater and refrigeration system.	Apply
CO3	Demonstrate the properties and measurement of various renewable energy sources.	Evaluate
CO4	Conduct performance study of boiler and heat exchanger.	Apply
CO5	Demonstrate performance and characteristics of fan, and fuel cell.	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	0	0	3	3	0	0	2	0	0	0	3	1	1
CO2	2	0	0	3	3	0	0	2	0	0	0	3	1	1
CO3	2	0	0	3	3	0	0	2	0	0	0	3	1	1
CO4	2	0	0	3	3	0	0	2	0	0	0	3	1	1
CO5	2	0	0	3	3	0	0	2	0	0	0	3	1	1
Avg	2	0	0	3	3	0	0	2	0	0	0	3	1	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)													

22TI	HC15	TECHNICAL SEMINAR -	- I	Se	Semester					
PRER	REQUIS	ITES	Category	EEC	Cr	1				
				L	L T P					
			Hours/Week	0	0	2	2			
Cours	se Learn	ing Objectives					<u> </u>			
1	To Enh	nance the ability of self-study.								
2	To Imp	prove presentation and communication skills.								
3	To Increase the breadth of knowledge.									
GUID	DELINE;	S								
1		udent is expected to present a seminar in one of the current to technology.	opics in the field o	f Therm	al Engi	ineering	; related			
2	The set	minar shall be of 30 minutes duration and give presentation to	the Seminar Asses	sment Co	ommitt	ee (SA	C).			
3		alty guide is to be allotted and he / she will guide and me nce also.	onitor the progress	s of the	studen	t and 1	naintain			
4	In a se	ssion of two periods per week, 4 students are expected to prese	ent the seminar.							
5	Studen	ts are encouraged to use various teaching aids such as power p	point presentation a	nd demo	nstrati	ve mod	els.			
6	Studen	ts are required to prepare a seminar report in the prescribed fo	rmat given by the I	Departme	ent.					
			Т)TAL (30P)•	30 PE	RIODS			

101AL (30P): 30 PERIODS

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Identify and choose appropriate topic of relevance.	Create					
CO2	Assimilate literature on technical articles of specified topic and develop comprehension.	Evaluate					
CO3	Prepare technical report.	Create					
CO4	Design, develop and deliver presentation on specified technical topic	Analyze					
CO5	Communicate in a structured way	Evaluate					

COURS	SE OU	TCO	MES:											
COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
C01	0	0	0	3	3	0	0	2	3	0	0	0	0	0
CO2	0	0	0	3	3	0	0	2	3	0	0	0	0	0
CO3	0	0	0	3	3	0	0	2	3	0	0	0	0	0
CO4	0	0	3	3	3	0	0	2	3	0	0	0	0	0
CO5	0	0	0	3	3	0	0	2	3	0	0	0	0	0
Avg	0	0	0	3	3	0	0	2	3	0	0	0	0	0
			3/2	/1 – indi	cates stre	ength of	correlati	on (3 – F	High, 2- N	Medium,	1- Low)			

22THC21	22THC21 HYDROGEN AND FUEL CELL TECHNOLOGIES Semester								
PREREQUIS	ITES	Category	PC	Cre	edit	3			
			L	Т	Р	ТН			
		Hours/Week	3	0	0	3			
Course Learn	ing Objectives								
1 To far	niliarize the hydrogen production techniques								
2 To im	part the knowledge about the possible applications and variou	is storage options							
3 To im	part the knowledge about the basics of fuel cell, working and a	pplications							
4 To far	niliarize the types, their merits and demerits of fuel cells								
5 To cre	ate enthusiasm to realize the cost effectiveness and eco-friendl	iness of fuel cells							
UNIT I	UNIT I HYDROGEN – BASICS AND PRODUCTION TECHNIQUES 9								
	HYDROGEN STORAGE AND APPLICATIONS prage options – compressed gas – liquid hydrogen – Hydride of hydrogen. Applications of Hydrogen		9 lge – co	0 ompariso	0 ons. Saf	9 ety and			
UNIT III	FUEL CELLS		9	0	0				
				1		9			
UNIT IV	nciple - working - thermodynamics and kinetics of fuel cell n battery Vs fuel cell	process – perform	nance e	valuatio	n of fu				
		process – perform	nance e 9	valuatio	n of fu 0				
Types of fue	n battery Vs fuel cell		9			el cell			
Types of fue UNIT V	n battery Vs fuel cell FUEL CELL – TYPES	ve merits and deme	9			el cell 9			
UNIT V Fuel cell usa	n battery Vs fuel cell FUEL CELL – TYPES cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – Relativ	ve merits and deme MICS	9 erit. 9	0	0	el cell- 9 9			
UNIT V Fuel cell usa	In battery Vs fuel cell FUEL CELL – TYPES cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – Relative APPLICATION OF FUEL CELL AND ECONO ge for domestic power systems, large scale power generation, A	ve merits and deme MICS Automobile, Space	9 erit. 9	0 0 mic and	0 0 enviror	el cell- 9 9 nmenta			

Refe	rence Books:
1	Viswanathan B. and Aulice Scibioh.M, Fuel Cells – Principles and Applications, Universities Press, 2006
2	Rebecca L. and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide, Penn Well Corporation, Oklahoma, 2005
3	Bent Sorensen (Sørensen), Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, UK 2005
4	Kordesch K. and G.Simader, Fuel Cell and Their Applications, Wiley-Vch, Germany 1996.
5	Hart A.B. and G.J.Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London 1989
6	Jeremy Rifkin, The Hydrogen Economy, Penguin Group, USA 2002

Barclay F.J., Fuel Cells, Engines and Hydrogen, Wiley, 2009

7

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Describe and analyze the techniques of Hydrogen generation.	Analyze					
CO2	Describe and classify various options for Hydrogen storage.	Understand					
CO3	Explain the principal operations of fuel cell, its thermodynamics and kinetics.	Understand					
CO4	Comprehend the different types of fuel cells compare their merits and demerits.	Understand					
CO5	Identify the potential application of a fuel cells for domestic, automotive, space craft power generations and evaluate the techno-economics of a fuel cells.	Evaluate					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	0	3	2	0	0	0	0	1	1	1	0
CO2	3	2	2	2	2	0	0	0	0	0	0	1	1	0
CO3	3	0	0	3	2	2	0	0	0	0	2	1	1	0
CO4	3	0	0	2	1	1	0	0	0	0	0	1	1	0
CO5	2	2	0	2	0	2	0	0	0	0	0	1	1	0
Avg	2.8	2	2	2.25	2	1.7	0.0	0.0	0.0	0.0	1.5	1.0	1.0	0.0

3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)

22THC	22THC22 COMPUTATIONAL FLUID DYNAMICS FOR THERMA SYSTEMS S									
PREREC	QUISI	TES	Category	PC	Cre	edit	3			
			··· /··· /	L	Т	Р	ТН			
			Hours/Week	3	0	0	3			
Course L	Learni	ng Objectives				I				
1 To introduce numerical analysis for heat, fluid flow and combustion and to understand the various discretization methods										
2	To ena	ble to solve the steady and unsteady diffusion problems using	finite volume meth	nod						
3 7	To ena	ble to solve one dimensional convection-diffusion problems u	ising finite volume	method	l					
4	To ena	ble to discretize and solve incompressible flow problems usin	g SIMPLE and oth	er algoi	rithms					
5 7	To ena	ble to model and solve turbulence flow problems								
UNIT I	AND	9	0	0	9					
momentu Discretiza	im, ene ation to	Transfer, Fluid flow – Mathematical description of fluid f ergy and chemical species - Classification of partial differentia echniques using finite difference methods – Taylor's Series lependence Test.	al equations – Initia	al and E	Boundary	y Condi	tions –			
UNIT II	[DIFFUSION PROCESSES: FINITE VOLUME	METHOD	9	0	0	9			
		ensional diffusion, Two- and three-dimensional steady state ms – Explicit, Implicit and Crank-Nicholson's schemes, Stab		s, Disc	retizatio	on of un	steady			
UNIT II	II	CONVECTION–DIFFUSION PROCESSES VOLUME METHOD	S: FINITE	9	0	0	9			
		al convection – diffusion problem, Central difference sche chniques – QUICK scheme.	eme, upwind scher	ne – H	ybrid a	nd pow	er law			
UNIT IV	V	FLOW PROCESSES: FINITE VOLUME METH	IOD	9	0	0	9			
Discretiza	ation o	f incompressible flow equations – Pressure based algorithms,	SIMPLE, SIMPLE	ER & PI	SO algo	orithms.				
UNIT V	T	TURBULENCE AND ITS MODELING		9	0	0	9			
		urbulent flow, free turbulent flows, flat plate boundary layer a $k - \omega$ models Standard and High and Low Reynolds number r		braic N	Iodels, C	One equ	ation			
			ТС	TAL(45L):	45 PEF	RIODS			

Refer	rence Books:
1	Anderson, D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid Mechanics and Heat Transfer " Hemisphere Publishing Corporation, New York, USA, 2012
2	Bose, T.K., "Numerical Fluid Dynamics" Narosa Publishing House, 1997

3	Fletcher, C.A.J. "Computational Techniques for Fluid Dynamics 1" Fundamental and General Techniques, Springer – Verlag, 1991
4	Fletcher, C.A.J. "Computational Techniques for fluid Dynamics 2" Specific Techniques for Different Flow Categories, Springer – Verlag, 1988
5	Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 2003.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Explain and apply governing equations, boundary conditions various discretization techniques.	Apply
CO2	Solve solving diffusion heat transfer problems using finite volume based numerical method.	Evaluate
CO3	Solve convection-diffusion heat transfer problems using finite volume based numerical method.	Analyze
CO4	Write computer code for incompressible flow problems.	Create
CO5	Explain and formulate various turbulence modeling.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	3	3	3	0	2	0	0	0	0	1	2	3	0
CO2	2	2	3	3	0	2	0	0	0	0	0	2	3	0
CO3	2	3	3	3	0	3	0	0	0	0	0	2	2	3
CO4	2	3	3	3	0	3	0	0	0	0	0	2	2	3
CO5	3	2	2	3	0	0	0	0	0	0	0	2	3	0
Avg	2.2	2.6	2.8	3.0	0.0	2.0	0.0	0.0	0.0	0.0	0.2	2.0	2.6	3

Hours/Week 3 0 0 3 Course Learning Objectives 1 To provide knowledge on the characteristics of various measuring instruments for thermal engineering. 2 To provide the roll of computers and microprocessors in the field of instrumentation systems. 3 To provide the roll of computers and microprocessors in the field of instrumentation systems. 3 To provide insights about the instruments for measuring the physical properties. 4 To provide knowledge on advance measurement techniques. 5 To provide the insights of various gas analyzing techniques. Yours of the insights of various gas analyzing techniques. UNIT I MEASUREMENT CHARACTERISTICS 9 0 0 9 Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments UNIT I MICROPROCESSORS AND COMPUTERS IN MEASUREMENT 9 0 0 9 Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing and intelligent instruments in use. 1 1	22THC23	INSTRUMENTATION FOR THERMAL SY	YSTEMS	S	emeste	r	II
Hours/Week Image: I	PREREQUI	SITES	Category	PC	Cre	edit	3
Image: Notice of the streng				L	Т	Р	ТН
1 To provide knowledge on the characteristics of various measuring instruments for thermal engineering. 2 To provide the roll of computers and microprocessors in the field of instrumentation systems. 3 To provide insights about the instruments for measuring the physical properties. 4 To provide knowledge on advance measurement techniques. 5 To provide the insights of various gas analyzing techniques. VNIT I MEASUREMENT CHARACTERISTICS 9 0 0 9 Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments UNIT II MICROPROCESSORS AND COMPUTERS IN MEASUREMENT 9 0 0 9 Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing and intelligent instruments in use. 9 0 0 9 UNIT III MEASUREMENT OF PHYSICAL QUANTITIES 9 0 0 9 Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors fo 9 0 0 9			Hours/Week	3	0	0	3
2 To provide the roll of computers and microprocessors in the field of instrumentation systems. 3 To provide insights about the instruments for measuring the physical properties. 4 To provide knowledge on advance measurement techniques. 5 To provide the insights of various gas analyzing techniques. UNIT I MEASUREMENT CHARACTERISTICS 9 0 0 9 Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments UNIT II MICROPROCESSORS AND COMPUTERS IN MEASUREMENT 9 0 0 9 Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing and intelligent instruments in use. 9 0 0 9 UNIT III MEASUREMENT OF PHYSICAL QUANTITIES 9 0 0 9 Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors for 9 0 0 9	Course Lear	ning Objectives					
3 To provide insights about the instruments for measuring the physical properties. 4 To provide knowledge on advance measurement techniques. 5 To provide the insights of various gas analyzing techniques. 5 To provide the insights of various gas analyzing techniques. 9 0 0 9	1 To pr	ovide knowledge on the characteristics of various measuring inst	truments for therm	nal engin	neering.		
4 To provide knowledge on advance measurement techniques. 5 To provide the insights of various gas analyzing techniques. UNIT I MEASUREMENT CHARACTERISTICS 9 0 0 9 Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments UNIT II MICROPROCESSORS AND COMPUTERS IN MEASUREMENT 9 0 0 9 Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing and intelligent instruments in use. 9 0 0 9 UNIT III MEASUREMENT OF PHYSICAL QUANTITIES 9 0 0 9 Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors for 9 0 0 9	2 To pr	ovide the roll of computers and microprocessors in the field of ir	nstrumentation sys	stems.			
5 To provide the insights of various gas analyzing techniques. 5 To provide the insights of various gas analyzing techniques. VNIT I MEASUREMENT CHARACTERISTICS 9 0 0 9 Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments UNIT II MICROPROCESSORS AND COMPUTERS IN MEASUREMENT 9 0 0 9 Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing and intelligent instruments in use. 9 0 0 9 UNIT III MEASUREMENT OF PHYSICAL QUANTITIES 9 0 0 9 Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors for 9 0 0 9	3 To pr	ovide insights about the instruments for measuring the physical p	properties.				
UNIT I MEASUREMENT CHARACTERISTICS 9 0 0 9 Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments UNIT II MICROPROCESSORS AND COMPUTERS IN MEASUREMENT 9 0 0 9 Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing and intelligent instruments in use. 9 0 0 9 UNIT III MEASUREMENT OF PHYSICAL QUANTITIES 9 0 0 9 Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors for 9 0 0	4 To pr	ovide knowledge on advance measurement techniques.					
Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instrumentsUNIT IIMICROPROCESSORS AND COMPUTERS IN MEASUREMENT9009Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing 	5 To pr	ovide the insights of various gas analyzing techniques.					
random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instrumentsUNIT IIMICROPROCESSORS AND COMPUTERS IN MEASUREMENT9009Data logging and acquisition – Sensors -types - use of sensors for error reduction, elements of micro- computer interfacing and intelligent instruments in use.9009UNIT IIIMEASUREMENT OF PHYSICAL QUANTITIES9009Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors for909	UNIT I	MEASUREMENT CHARACTERISTICS		9	0	0	9
and intelligent instruments in use. UNIT III MEASUREMENT OF PHYSICAL QUANTITIES 9 0 0 9 Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors for	random erro of instrumen	rs, Statistical analysis, Uncertainty, Experimental planning and ts MICROPROCESSORS AND COMPUTERS IN		uring in	strumer	its, Reli	
Measurement of thermo-physical properties, instruments for measuring temperature, pressure and flow –use of sensors fo			ction, elements of	micro-	comput	er inter	facing,
	UNIT III	MEASUREMENT OF PHYSICAL QUANTITIES		9	0	0	9
			perature, pressure	and flo	ow –use	of sens	ors for
UNIT IVADVANCED MEASUREMENT TECHNIQUES909	UNIT IV	ADVANCED MEASUREMENT TECHNIQUES		9	0	0	9
Shadowgraph, Schlieren, Interferometer, Laser Doppler Anemometer, Hot wire Anemometer, heat flux sensors, Telemetry in measurement.		**	wire Anemometer,	, heat fl	ux senso	ors, Tele	emetry
UNIT VMEASUREMENT ANALYSIS9009	UNIT V	MEASUREMENT ANALYSIS		9	0	0	9
Chemical thermal, magnetic and optical gas analyzers, measurement of smoke, Dust and moisture, gas chromatography spectrometry, Measurement of pH.			noke, Dust and m	oisture,	gas chi	romatog	raphy,
TOTAL(45L) : 45 PERIOD			TC)TAL(45L):	45 PEH	RIODS
Reference Books:							

1	Barnery, Intelligent Instrumentation, Prentice Hall of India, 1988.
2	Bolton.W, Industrial Control & Instrumentation, Universities Press, Second Edition, 2001
3	Doblin E.O, Measurement System Application and Design, Second Edition, McGraw Hill, 1978
4	Holman J.P., Experimental methods for engineers, McGraw-Hill, 2012
5	John G Webster, The measurement, Instrumentation and sensors Handbook, CRC and IEE Press, 1999

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Describe characteristics of measurement system and do errors encountered during measurements.	Create
CO2	Handle modern data acquisition system and interfacing of sensors with them.	Evaluate
CO3	Describe the measurement technique for the measurement of physical properties.	Create
CO4	Explain the advanced measurement technique for the measurement of physical properties.	Analyze
CO5	Describe the measurement analysis for the measurement of smoke, pH and magnetic properties.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	1	2	0	3	0	2	0	0	0	0	0	0	0	0
CO2	1	2	2	3	3	0	0	0	0	0	0	0	3	0
CO3	1	2	2	2	3	0	0	0	0	0	0	1	3	1
CO4	1	2	0	1	3	0	0	0	0	0	0	1	3	1
CO5	1	2	0	1	3	0	0	0	0	0	0	2	3	2
Avg	1.0	2.0	2	2.0	3	2	0.0	0.0	0.0	0.0	0.0	1.3	3	1.3

22TH	C24	ANALYSIS AND SIMULATION LAB	ORATORY	S	emeste	er	II
PRERE	QUISI	TES	Category	PC	Cre	edit	2
				L	Т	Р	TH
			Hours/Week	0	0	4	4
Course	Learni	ng Objectives					
-	To provi systems	de a platform to learn and get familiar with the modelling, and	lysis and simulati	on of t	hermal	enginee	ring
LIST O	F EXE	RCISES					
1	Conduc	tion heat transfer analysis					
2	Convec	tion heat transfer analysis – Velocity boundary layer					
3	Convec	tion heat transfer analysis – Internal flow					
4	Radiatio	on heat transfer analysis – Emissivity					
5	Critical	radius of insulation					
6	Lumped	heat transfer analysis					
7	Heat ex	changer analysis – NTU method					
8	Heat ex	changer analysis – LMTD method					
9	Perform	ance study on different types of solar flat plate collector					
10	Perform	ance study on stand-alone solar PV panel					
11	Perform	ance Study of solar PV panel including shading effects					
SIMUL	ATION	N LAB – REQUIREMENT:					
1	Softwar	e - Modeling software like Pro-E, Gambit, Ansys, etc					
2	Analysi	s software like Ansys, fluent, CFX, etc					
3	Equatio	n solving software like Matlab, Engg equation solver.					
4	Hardwa	re are compatible with the requirement of the above software.					
			ТС)TAL	(60P)·	60 PEI	RIOD

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Develop a model, simulation and analysis for steady state heat conduction, Convection and radiation problems	Apply
CO2	Develop a model, simulation and analysis for critical radius of insulation and Lumped system analysis.	Analyze
CO3	Develop a model, simulation and analysis for a heat exchanger.	Evaluate

CO4	Develop a model simulation and analysis for a solar collector.	Analyze
CO5	Develop model, simulation and analysis for solar PV panel.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	3	3	3	3	0	0	0	0	2	0	2	3	3
CO2	3	3	3	3	3	0	0	0	0	2	0	2	3	3
CO3	3	3	3	3	3	0	0	0	0	2	0	2	3	3
CO4	3	3	3	3	3	0	0	0	0	2	0	2	3	3
CO5	3	3	3	3	3	0	0	0	0	2	0	2	3	3
Avg	3.0	3.0	3.0	3.0	3.0	0.0	0.0	0.0	0.0	2.0	0.0	2.0	3.0	3.0

22TI	HC25	APPLIED THERMAL ENGINEERING LAB	ORATORY	S	emest	II	
PRER	REQUIS	ITES	Category	PC	Cr	edit	2
				L	Т	Р	ТН
			Hours/Week	0	0	4	4
Cours	se Learn	ing Objectives					I
1	To edu	cate the realities and applications of thermal engineering					
2	To edu	cate about calibration and its essentiality in thermal systems					
LIST	OF EXH	PERIMENTS					
1	Calibra	ation of Temperature Transducers (Thermocouple, RTD & The	ermistors).				
2	Calibra	ation of Pressure Transducers					
3	Experin	mental Analysis of Organic Rankine Cycle					
4	Fluid a	nd Thermal Transfer Properties of Liquid Fuels / Heat Transfe	er Fluids				
5	Experin	mental Studies on Pool Boiling of Water using Flow Visualiza	tion Technique				
6	Experin	mental Studies on Fluidization of Solid Fuels.					
7	Studies	s on Absorption Refrigeration System					
8	Perform	nance testing of solar water heater					
9	Perform	nance evaluation of engine on biodiesel					
10	Heat pi	ipe solar collector					
	<u> </u>		Т()TAL	(60P)·	60 PE	RIODS

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Calibrate temperature and pressure transducers.	Apply
CO2	Find thermal flow properties of liquid fuel.	Understand
CO3	Practically understand the pool boiling concept.	Apply
CO4	Conduct performance test on vapour absorption system and engine using biodiesel.	Apply
CO5	Conduct performance test on engine using biodiesel.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	0	0	0	0	2	0	2	3	2
CO2	3	3	1	3	3	0	0	0	0	2	0	2	3	2
CO3	3	3	1	3	3	0	0	0	0	2	0	2	3	2
CO4	3	3	1	3	3	0	0	0	0	2	0	2	3	2
CO5	3	3	1	3	3	0	0	0	0	2	0	2	3	2
Avg	3.0	3.0	1.0	3.0	3.0	0.0	0.0	0.0	0.0	2.0	0.0	2.0	3.0	2.0

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction	Evaluate
CO2	Develop skills regarding professional communication and technical report writing.	Apply
CO3	Learn the methodology of publishing technical papers.	Understand
CO4	Identification of good journal through various analyses for publication.	Analyze
CO5	Creation of scholar ID through various international forums for research identity	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO2	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO3	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO4	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO5	0	1	2	2	2	1	0	0	3	0	0	1	1	1
Avg	0.0	1.0	2.0	2.0	2.0	1.0	0.0	0.0	3.0	0.0	0.0	1.0	1.0	1.0

22	THC26	TECHNICAL SEMINAR –II		Se	emeste	er	II
PREF	REQUISIT	ES	Category	EEC	Cr	edit	1
				L	Т	Р	TH
			Hours/Week	0	0	2	2
Cours	se Learning	g Objectives		I			4
1	To enhance	the reading ability required for identification of his/her fi	ield of interest				
2	To develo	p skills regarding professional communication and technica	al report writing				
3	To establi	sh the fact that student is not mere recipient of ideas, but a	participant in disco	overy and	inquir	y.	
4	To learn h	ow to prepare and publish technical papers					
GUID	DELINES						
1		ent is expected to present a seminar in one of the current t chnology	topics in the field of	of Therm	al Eng	ineering	g related
2	The semi	nars hall be of 30minutes duration and give presentation to	the Seminar Asses	ssment C	ommit	tee (SA	.C).
3		mittee shall evaluate the seminar based on the style of pro- equacy of references, depth of knowledge and the overall q		al contex	t, and	coverag	e of the
4	A facult	y guide is to be allotted and he/she will guide and more also	onitor the progress	of the	studen	t and r	naintain
5	Each stue	dent has to submit a seminar report in the prescribed forma	t given by the Insti	tution			
6	In a sessi	on of two periods per week, 4 students are expected to pre-	sent the seminar				
7	Students	are encouraged to use various teaching aids such as power	point presentation	and dem	onstrat	tive mo	dels
8		mmended that the report for Technical Seminar II maybe shing in Conferences / Journals as a review paper	in the form of a teo	chnical p	aper w	hich is	suitable
9	specific t	able to identify quality journal by quartile index which field of discipline (Q index through Scimago), Scopus ind ugh cross ref	-	• •			-
10	Cross ref	erence is a reference to information located somewhere els	e in the same docu	ment.			
11	Scholar I	D creation through Google scholar, Scopus author and We	b of Science Resea	rcher ID			

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction	Evaluate
CO2	Develop skills regarding professional communication and technical report writing.	Apply
CO3	Learn the methodology of publishing technical papers.	Understand
CO4	Identification of good journal through various analyses for publication.	Analyze
CO5	Creation of scholar ID through various international forums for research identity	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO2	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO3	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO4	0	1	2	2	2	1	0	0	3	0	0	1	1	1
CO5	0	1	2	2	2	1	0	0	3	0	0	1	1	1
Avg	0.0	1.0	2.0	2.0	2.0	1.0	0.0	0.0	3.0	0.0	0.0	1.0	1.0	1.0

22T	HC31	DISSERTATION PHASE	– I	Se	emeste	er	III
PREI	REQUIS	ITES	Category	EEC	Cr	edit	6
				L	Т	Р	ТН
			Hours/Week	3	0	20	20
Cours	se Learn	ing Objectives				1	
1		elop the ability to solve a specific problem right from its identian of the same.	ification and literate	ure revie	w until	the suc	cessful
2	To trair	the students in preparing project reports and to face reviews a	and viva voce exam	nination			
CON	TENTS:						
1	involve	bject Work will start in semester III and should preferably b scientific research, design, generation/collection and ana bly bring out the individual contribution.	1				
2		ninar should be based on the area in which the candidate h n instructions for all branches of M. E.	nas undertaken the	disserta	tion w	ork as j	per the
3	The exa review.	amination shall consist of the preparation of a report consisting	g of a detailed prob	lem state	ement a	and a lit	erature
4	-	reliminary results (if available) of the problem may also be ted in front of the examiner's panel set by Head and PG coordi		report.	The w	ork has	s to be
5		ndidate has to be in regular contact with his guide and the to guide and student.	pic of the dissertat	ion must	be mu	tually d	lecided

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
C01	Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	Apply
CO2	Students will be able to use different experimental techniques.	Analyze
CO3	Students will be able to use different software/ computational/analytical tools.	Evaluate
CO4	Students will be able to design and develop an experimental set up/ equipment/test rig.	Analyze
CO5	Students will be able to conduct tests on existing setups/equipment and draw logical conclusions from the results after analyzing them.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	1	-	-	-	3	1	-	1	1	1	3	-
CO2	1	3	3	1	1	1	1	1	2	1	1	-	-	-
CO3	-	1	1	-	-	-	3	1	-	1	-	-	-	1
CO4	2	-	1	2	-	1	-	1	2	1	1	-	-	1
CO5	-	-	-	-	-	2	2	-	1	-	1	-	-	1
Avg	1.5	1.6	1.2	1.5	1	1.3	2.25	1	1.6	1	1	1	3	1

22T	HC41	DISSERTATION PHASE	– II	Se	emeste	er	Ι
PREF	REQUIS	ITES	Category	EEC	Cr	edit	14
				L	Т	Р	ТН
			Hours/Week	0	0	32	32
Cours	se Learn	ing Objectives				L	
1		elop the ability to solve a specific problem right from its identi 1 of the same.	fication and literat	ure revie	w till tl	ne succe	essful
2	To train	the students in preparing project reports and to face reviews a	and viva voce exan	nination			
CON	TENTS:						
1	involve	oject Work will start in semester III and should preferably b scientific research, design, generation/collection and ana bly bring out the individual contribution					
2		minar should be based on the area in which the candidate has n instructions for all branches of M.E	nas undertaken the	disserta	tion we	ork as j	per the
3	The exa review	amination shall consist of the preparation of a report consisting	g of a detailed prob	lem state	ement a	nd a lit	erature
4	-	eliminary results (if available) of the problem may also be ed in front of the examiner's panel set by Head and PG coordin		report.	The w	ork has	to be
5		ndidate has to be in regular contact with his guide and the topic de and student	c of the dissertation	must be	mutua	lly deci	ded by

Cours	se Outcomes:	Bloom's
Upon	completion of this course, the students will be able to:	Taxonomy Level
CO1	Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	Understand
CO2	Students will be able to use different experimental techniques.	Apply
CO3	Students will be able to use different software/ computational/analytical tools.	Analyze
CO4	Students will be able to design and develop an experimental set up/ equipment/test rig.	Evaluate
CO5	Students will be able to conduct tests on existing set ups/equipment and draw logical conclusions from the results after analyzing them.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	1	-	-	-	3	1	-	1	1	1	3	-
CO2	1	3	3	1	1	1	1	1	2	1	1	-	-	-
CO3	-	1	1	-	-	-	3	1	-	1	-	-	-	1
CO4	2	-	1	2	-	1	-	1	2	1	1	-	-	1
CO5	-	-	-	-	-	2	2	-	1	-	1	-	-	1
Avg	1.5	1.3	1.5	1	1.3	2.25	1	1.6	1	1	1	1	3	1

PROFESSIONAL ELECTIVES – I

22C	DE11	ADVANCED MATHEMATICAL MI ENGINEERING	ETHODS IN	S	Semeste	er	Ι
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
			TT (TT)	L	Т	Р	TH
			Hours/Week	3	0	3	
Cours	se Learn	ing Objectives					
1	To imp maps	lement the knowledge about the vector spaces, inverse of a	linear transformat	ion and	l compo	osition o	f linear
2	To anal	yze the solution of wave equation by method of Eigen function	n				
3	To illus	strate the solutions of diffusion and wave equations by using te	echniques of Laplac	e and F	Fourier t	ransforn	ns
4	To exa	mine the significance of the central limit theorem and testing of	of hypotheses				
5		alyze the variance of factors by one way and of experiments.	two-way classifi	cation	and s	ome s	tandard
UN	IT I	LINEAR ALGEBRA		9	0	9	0
transfo Matrix	associate	inear dependence of vectors, basis and dimension- Linear tran rank and nullity- Inverse of linear transformation- rank-nued with linear map.		omposi	tion of 1	linear m	naps-
UNI	IT II	PARTIAL DIFFERENTIAL EQUATIONS		9	0	0	9
hyperb	olic equa	of second order PDE- Solution of PDE by separation of ation in cylindrical and spherical co-ordinates- Initial and b by the method of Eigen function - D Alembert's solution for th	oundary value pro				
UN	IT III	FOURIER AND LAPLACE TRANSFORMS		9	0	0	9
		mum principle for Elliptic equations- Solution of diffusion e ation of Diffusion equation, wave equation and Laplace equation					insform
UNI	UNIT IV STANDARD DISTRIBUTIONS AND TESTING OF HYPOTHESIS						9
	l limit th	es - Standard discrete and continuous distributions (Binomial eorem and its significance - Testing a statistical hypothesis					
UNI	IT V	ANALYSIS OF VARIANCE AND DESIGN OF EXPERIMENTS		9	0	0	9
		iance - One way and two way classifications- Principles of domized design, randomized block design and latin square des		nents-	Some st	andard	designs
			TO)TAL(45L):	45 PEF	RIODS

Refe	erence Books:
1	Gilbert Strang, "Linear Algebra and its applications", Cengage Learning, New Delhi, 4 th edition, 2006.
2	K. Sankara Rao, "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.
3	Veerarajan.T, "Probability, Statistics and Random process", Tata McGraw- Hill publications, second edition New Delhi, 2002.
4	V.Krishnamoorthy, V.P.Maintra and J L Arora "An Introduction to Linear Algebra" East West Press Reprint 2005.
5	Grewal, B.S., "Higher Engineering Mathematics", 43rd edition, Khanna Publishers, New Delhi 2014.
6	J.B.Joshi, "Differential equations for Scientists and Engineers", Narosa Publications, 2010.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Demonstrate the vector spaces and linear transformations.	Apply				
CO2	Analyze the solution of wave equation by method of Eigen function.	Analyze				
CO3	Implement the Laplace and Fourier transform techniques for the solutions of diffusion and wave equation involved in engineering problems.	Evaluate				
CO4	Experiment various tests of statistics for the samples.	Apply				
CO5	Analyze the variance of factors by one way and two-way classification and some standard design of experiments.	Analyze				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	2	0	0	0	0	0	0	0	2	0	0
CO3	3	2	0	2	0	0	0	0	0	0	0	2	0	0
CO4	3	2	0	2	0	0	0	0	0	0	0	2	0	0
CO5	3	2	0	2	0	0	0	0	0	0	0	2	0	0
Avg	3	2	0	2	0	0	0	0	0	0	0	2	0	0

22THE11	COMBUSTION IN IC ENGI	NES	S	r	Ι	
PREREQUIS	ITES	Category	PE	Cre	edit	3
		Hours/Week	L	Т	Р	ТН
		Hours/ week	3	0	0	3
Course Learn	ing Objectives					
1 To mak	e familiar with the design and operating characteristics of engin	nes				
2 To unde	erstand the basic principles of combustion					
3 To gain	knowledge in the principles of SI engine combustion					
4 To unde	erstand the concepts of CI engine system.					
5 To unde combus	erstand the basic concepts of gas turbine combustion and the lat	test technological	advance	es in low	temper	ature
UNIT I	ENGINE BASICS		9	0	0	9
					0	-
	Engine operation – Torque and Power Characteristics – Intak s (Qualitative treatment only) Balancing, valve trains.	ke and Exhaust F	lows – 1	Fuel Ch	aracteris	stics –
UNIT II	COMBUSTION PRINCIPLES		9	0	0	9
	- Combustion equations, chemical equilibrium and Dissociat ction rates - Laminar and Turbulent Flame Propagation in En					
UNIT III	COMBUSTION IN S.I. ENGINES		9	0	0	9
U	nbustion, Cylinder pressure measurement and heat release a	•		bnorma		
-	riables affecting Knock, Features and design consideration o velic variations, Lean burn combustion, Stratified charge combu			• •		ustion
UNIT IV	COMBUSTION IN C.I. ENGINES		9	0	0	9
variables, Fea	mbustion, and spray formation and characterization, air mo tures and design considerations of combustion chambers, dela he injection system on combustion, Direct and indirect injection	y period correlati				
UNIT V	COMBUSTION CONCEPTS IN LOW TEMPER ENGINE	ATURE I.C.	9	0	0	9
	s charge compression ignition (HCCI) engine – Premixed ect Injection Compression Ignition (GDCI) engine, Reactivity tion.					
		TC)TAL(45L):	45 PER	RIODS

Refe	rence Books:
1	Cohen, H, Rogers, G, E.C, and Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman Group Ltd., 1980
2	Ganesan, V, Internal Combustion Engines, Tata McGraw Hill Book Co., 2003

	3	John B. Heywood, Internal Combustion Engine Fundamentals, McGraw Hill Book, 1998
	4	Pundir B P, I.C. Engines Combustion and Emission, 2010, Narosa Publishing House
Ī	5	Rajput R.K. Internal Combustion Engines, Laxmi Publications (P) Ltd, 2006

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Analyze fuel and engine characteristics.	Analyze
CO2	Describe combustion fundamental, theories and flame propagation in engineering.	Evaluate
CO3	Discuss combustion characteristics and combustion chamber types for S.I engine.	Apply
CO4	Discuss combustion characteristics and combustion chamber types for C.I engine.	Analyze
CO5	Describe combustion concepts of low temperature I.C engine.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	2	2	0	1	0	0	0	0	0	2	2	0
CO2	3	0	0	0	0	2	0	0	0	0	2	2	2	0
CO3	3	3	2	2	0	0	0	0	0	0	0	3	3	0
CO4	3	3	2	2	0	0	0	0	0	0	0	3	3	0
CO5	2	0	2	0	0	0	0	0	0	0	2	2	2	0
Avg	2.8	3	2	2	1.5	0.6	0	0	0	0	2	2.4	2.4	0

22T	HE12	THERMAL MANAGEMENT OF ELEC BATTERY SYSTEMS	FRIC VEHICLE	S	er	Ι	
PRER	EQUISI		Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learni	ng Objectives					
1	To study	v the insights of Thermal Management of Electric Vehicle Ba	ttery Systems.				
2	To recog	gnize the applications of PCM in Thermal Management.					
3	To inves	stigate the Thermal behaviours in Electric Vehicle Battery System	stems through Sim	ulation	and Exp	eriment	s.
4	To calcu	late the Energy and Exergy Analyses of Battery TMSs.					
5	To obtai	n solutions for case studies on Thermal Management Solution	ns of Electric batter	ries.			
UNI	ΤΙ	VEHICLE BATTERY TECHNOLOGIES		9	0	0	9
Vario Ther	-	nur Batteries, Aluminium-Air Batteries, Lithium-Air Batter s and Environmental Conditions, Battery Management S agement. PHASE CHANGE MATERIALS FOR PASSIVE T	Systems, Safety N		-	-	
						-	
	-	es and Types of PCMs, Organic PCMs, Inorganic PCMs, Me ncements, Cost and Environmental Impact of Phase Change N			-	of PCMs	, Heat
Case	Study 1:	Heat Exchanger Design and Optimization Model for EV Batt	eries using PCMs				
Case	Study 2:	Melting and Solidification of Paraffin in a Spherical Shell fro	m Forced External	Conve	ction		
UNI	T III	SIMULATION AND EXPERIMENTAL INVESTI BATTERY TMS's	GATION OF	9	0	0	9
Numerical Model Development for Cell and Submodules, Cell and Module Level Experimentation Set Up and Procedur Vehicle Level Experimentation Set Up and Procedure, Illustrative Example: Simulations and Experimentations on th Liquid Battery Thermal Management System Using PCMs, Simulation and Experimentations Between the Cells in th Submodule, Thermal Conductivity Enhancement by Nanoparticles							
UNI	Τ Ιν	ENERGY AND EXERGY ANALYSES OF BATTH	ERY TMSs	9	0	0	9
		ison, Modeling of Major TMS Components, Energy and al Management Systems, Case Study: Trans critical CO2-Bas				ample:	Liquid
UNI	TV	CASE STUDIES ON THERMAL MANAGEMENT SOLUTIONS OF ELECTRIC BATTERIES	ſ	9	0	0	9
Case	Study 1:	Experimental and Theoretical Investigation of Temperature I	Distributions in a Pr	rismatic	Lithiun	n-Ion Ba	attery
	Study 2: harge Cyc	Thermal Management Solutions for Electric Vehicle Lithi	um-Ion Batteries t	based of	n Vehic	le Char	ge and
Case	Study 3:	Heat Transfer and Thermal Management of Electric Vehicle	Batteries with Phas	se Chan	ge Mate	rials	
Case	Case Study 4: Experimental and Theoretical Investigation of Novel Phase Change Materials for Thermal Applications.						

Refe	erence Books:
1	Ibrahim Dinçer, Halil S. Hamut, Nader Javani, Thermal Management of Electric Vehicle Battery Systems, C, 2017.
2	Halil S. Hamut, Nader Javani, Ibrahim Dinçer, Thermal Management of Electric Vehicle Battery Systems, Wiley, 2016.
3	Weixiang Shen, Rui Xiong, Advanced Battery Management Technologies for Electric Vehicles, John Wiley and sons, First edition 2019
4	Chitra A., Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles, John Wiley and sons, First edition 2020
5	Bruno Scrosati, Jurgen Garche, Werner Tillmetz, Advances in Battery Technologies for Electric Vehicles, Woodhead Publishing, 2015.

	Course Outcomes: Upon completion of this course, the students will be able to:					
C01	Describe and analyze the techniques of Thermal Management of Electric Vehicle Battery Systems.	Analyze				
CO2	Describe and classify various applications of PCM in Thermal Management.	Evaluate				
CO3	Investigate the Thermal behaviors in Electric Vehicle Battery Systems through Simulation and experiments.	Evaluate				
CO4	Calculate the Energy and Exergy Analyses of Battery TMSs.	Apply				
CO5	Identify the solutions for case Studies on Thermal Management Solutions of Electric batteries.	Analyze				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	2	0	2	0	1	0	0	0	0	0	1	1	1
CO2	3	2	0	2	0	1	0	0	0	0	1	2	2	0
CO3	3	2	0	2	0	2	0	0	0	0	1	2	2	0
CO4	3	2	0	2	0	2	0	0	0	0	1	2	2	0
CO5	3	3	0	2	0	2	0	0	0	0	1	2	2	0
Avg	2.8	2.2	0	2	0	1.6	0	0	0	0	1	1.8	1.8	1

22TI	HE13	NUCLEAR ENGINEERING	ŗ	S	emest	er	Ι		
PRER	EQUIS	ITES	Category	PE	Cr	edit	3		
				L	Т	Р	ТН		
			Hours/Week	3	0	0	3		
Cours	e Learn	ing Objectives							
1	To imp	art the fundamentals of nuclear reactions, design of reactors and	l heat transfer tech	nniques	•				
2	To dem	onstrate the characteristics of nuclear fuels.							
3	To disc	uss the need and principle of reprocessing of nuclear fuels.							
4	To disc	uss the separation of reactor products.							
5	To imp	art the knowledge about the waste disposal and radiation protect	tion.						
UNI	UNIT INUCLEAR REACTIONS909								
of fast shieldir	breeding 1g.	uclear fission - nuclides - radioactivity – decay chains - neutror reactor - design and construction of nuclear reactors - heat t		es in nu			reactor		
UNI	TI	REACTOR MATERIALS		9	0	0	9		
	•	ccles - Characteristics of nuclear fuels - Uranium - production a fuels like Zirconium, Thorium – Beryllium.	and purification of	f Uraniı	im - coi	nversion	to UF4		
UNI	TIII	REPROCESSING		9	0	0	9		
Nuclear	r fuel cyc	eles - spent fuel characteristics - role of solvent extraction in rep	rocessing - solver	nt extra	ction eq	uipment	•		
UNI	TIV	SEPARATION OF REACTOR PRODUCTS		9	0	0	9		
	- Hexon	considered - 'Fuel Element' dissolution - precipitation process – e - TBP and thorax Processes - oxidative slagging and elect	0						
UNI	TV	WASTE DISPOSAL AND RADIATION PROTECT	ΓΙΟΝ	9	0	0	9		
• •		r wastes - safety control and pollution control and abatements prevention.	t - international c	convent	ion on	safety a	spects -		
			TC)TAL(45L):	45 PEI	RIODS		
Refe	rence Bo	ooks:							
1	Cacuc	i, Dan Gabriel, Nuclear Engineering Fundamentals, Springer, 20	010						

Kenneth Shultis J., Richard E. Faw, Fundamentals of Nuclear Science and Engineering, CRC Press; 3 edition, 2016

Kenneth D. Kok, Nuclear Engineering, CRC Press, 2009

Lamarsh, J.R., Introduction to Nuclear Reactor Theory, Wesley, 2002

2

3

4

5	Tatjana Tevremovic, Nuclear Principles in Engineering, Springer, 2008
5	ruguna reviento vie, ruerear rinterpres in Engineering, Springer, 2000

· ·	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Describe fundamentals of nuclear reactions and describe the construction and heat transfer techniques in nuclear reactor.	Understand
CO2	Describe production, purification and characterization of nuclear fuels.	Analyze
CO3	Describe fuel cycle and spent fuel reprocessing.	Understand
CO4	Describe the separation of reactor products.	Analyze
CO5	Describe waste disposal techniques and protection from radiation hazards.	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	2	1	1	2	2	0	0	0	0	0	1	2	0
CO2	2	2	1	1	2	2	0	0	0	0	0	1	2	0
CO3	2	2	0	2	2	1	0	0	0	0	0	1	2	0
CO4	2	2	0	2	2	1	0	0	0	0	0	1	2	0
CO5	2	2	0	2	2	1	2	0	0	0	0	1	2	0
Avg	2	2	1	1.6	2	1.4	2	0	0	0	0	1	2	0

22TH	E14	BOUNDARY LAYER THEORY AND T	URBULENCE	S	emeste	r	Ι
PRERE	QUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Course	Learn	ing Objectives					
1	To intro	duce the fundamental concepts of boundary layer in real flow	s.				
2	To distinguish between turbulent and laminar boundary layers.						
3 7	To mod	el turbulent flows using various approaches.					
4	To discu	uss the various flow parameters using statistical principles.					
5	To intro	duce the types, characteristics of wall shear flows from free sl	hear flows.				
UNIT	ľ	FUNDAMENTALS OF BOUNDARY LAYER T	HEORY	9	0	0	9
	al Flow	TURBULENT BOUNDARY LAYERS s – Couette flow – Two-Layer Structure of the velocity Fiel ed Internal flows – Channel Flow, Couette – Poiseuille flows,		9 ws of th	0 e wall–	Friction	9 n law –
UNIT	-	TURBULENCE AND TURBULENCE MODELS	•	9	0	0	9
		oulence – Averaging Procedures – Characteristics of Turbuler randtl's Mixing length, Two-Equation Models, Low – Reynol					
UNIT	IV	STATISTICAL THEORY OF TURBULENCE		9	0	0	9
		erage – Isotropic Turbulence and Homogeneous Turbulence Dynamics of Isotropic Turbulence – Grid Turbulence and dec		1		ence – T	Taylor's
UNIT	V	TURBULENT FLOWS		9	0	0	9
		nt shear flows – Structure of wall flow – Turbulence character nd wakes – Plane and axi-symmetric flows.	istics of Boundary	layer –	Free Tu	rbulenc	e shear
			TC)TAL(45L):	45 PEH	RIODS

Kele	erence Books:
1	Philip G. Hill and Carl R. Peterson, Mechanics and Thermodynamics of Propulsion, Second Edition, Addition – Wesley Publishing Company, New York, 2009.
2	Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H, Gas Turbine Theory, Longman, 1989.
3	G.C. Oates, "Aerothermodynamics of Aircraft Engine Components", AIAA Education Series, 1985.
4	S. M. Yahya, Fundamentals of Compressible Flow. Third edition, New Age International Pvt Ltd, 2003
5	George P. Sutton, Oscar Biblarz. Rocket Propulsion Elements, John Wiley & Sons, 8th Edition, 2010.

6	Ramamurthy, Rocket Propulsion, Pan Macmillan (India) Ltd, 2010.
	W.P.Gill, H.J.Smith & J.E. Ziurys, "Fundamentals of Internal Combustion Engines as applied to Reciprocating, Gas turbine & Jet Propulsion Power Plants", Oxford & IBH Publishing Co., 1980.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Analyze flow with the principles of boundary layer theory.	Analyze
CO2	Distinguish turbulent boundary layer for various types of flows.	Understand
CO3	Select and use various turbulence models for the appropriate applications.	Analyze
CO4	Apply the statistical theory for averaging various flow parameters.	Apply
CO5	Differentiate the characteristics of wall shear and free shear flows.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	0	0	0	2	0	0	1	0	0	2	3	0	0
CO2	2	2	3	0	0	2	0	0	0	1	2	3	0	0
CO3	2	2	3	2	0	0	0	0	0	2	2	3	2	0
CO4	2	2	3	2	0	0	0	0	0	2	2	3	1	0
CO5	2	2	3	2	0	0	0	0	0	2	2	3	1	0
Avg	2	2	3	2	2	2	0	1	0	1.4	2	3	1.3	0

22 T	HE21	AIR CONDITIONING SYSTEM	DESIGN	S	emeste	er	Ι
PREF	REQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1	To teac	h the insights of the psychometric concepts underlying Air cor	nditioning process				
2	To conv	versant with the design features and load estimation principles	of specific Air con	ditionin	ig syster	n.	
3	To intro	duce the different air conditioning system design					
4	4 To introduce the components and control in the air distribution system in air conditioning system						
5	To introduce the components, controls of air conditioning systems in automobile						
UN	IT I	PSYCHROMETRY AND AIR CONDITIONING	F PROCESSES	9	0	0	9
	-	operties, use of Psychrometric Chart, Various Psychrometric winter Air conditioning, Enthalpy potential and its insights.	c processes, Air V	Vasher,	Adiaba	tic Satu	ration.
UN	IT II	LOAD ESTIMATION		9	0	0	9
		fort – Design conditions – Solar Radiation- Heat Gain through – Procedure for heating and cooling load estimation.	h envelopes – Infil	tration a	and vent	ilation l	oads –
UN	IT III	AIR CONDITIONING SYSTEMS		9	0	0	9
		ibution systems – Single, multi zone systems, terminal reheat r systems and Unitary type systems.	systems, Dual duct	t system	is, varia	ble air v	olume
UN	IT IV	AIR DISTRIBUTION AND CONTROL		9	0	0	9
Duc	t System	Ducts, Static & Dynamic Losses, Diffusers, Duct Design–Eq Characteristics, Fan Arrangement Variable Air Volume syst nperature, humidity, air flow and quality.					
UN	IT V	HVAC SYSTEM IN AUTOMOBILES		9	0	0	9
	omotive Sciency asp	System layout and Components- Commonly used Refrigera	ants- Safety device	es – Cl	limate c	ontrol -	– Fuel
			TO)TAL(45L):	45 PEF	RIODS

Refer	rence Books:
1	Ali Vedavarz, Sunil Kumar, Mohammed Iqbal, Hussain Handbook of Heating, Ventilation and Air conditioning for Design Implementation, Industrial press Inc, 2007.
2	Arora C.P., Refrigeration and Air Conditioning, Tata McGraw Hill Pub. Company, 2010.
3	ASHRAE, Fundamentals and equipment, 4 volumes-ASHRAE Inc. 2005.
4	Carrier Air Conditioning Co., Handbook of Air Conditioning Systems design, McGraw Hill, 1985.
5	Jones, Air Conditioning Engineering, Edward Amold pub. 2001.

6	Kuehn T.H., Ramsey, J.W. and Threlkeld, J.L., Thermal Environmental Engineering, 3rd Edition, Prentice Hall, 1998.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Describe the moist air properties and psychrometric process.	Apply
CO2	Analyze and estimate the heat loads.	Analyze
CO3	Explain the construction and working of air conditioning systems.	Understand
CO4	Analyze and design ducting system for optimum air distribution and control.	Analyze
CO5	Explain layout, components HAVC system used in automobile	Apply

COURSE	COURSE OUTCOMES:													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	1	1	0	0	0	0	0	0	0	0	2	0	0
CO2	3	3	3	0	0	2	0	0	0	0	0	2	2	0
CO3	2	1	1	1	0	0	0	0	0	0	0	2	1	0
CO4	2	3	3	1	0	0	0	0	0	0	0	2	1	0
CO5	2	2	2	0	0	0	0	0	0	0	0	1	1	0
Avg	2.4	2	2	1	0	2	0	0	0	0	0	1.8	1.25	0
	1	1	3/2/1	– indic	ates str	ength of	correl	ation (3	- High,	2- Mediu	im, 1- Lo	ow)	1	1

L T P TI Hours/Week L T P TI Hours/Week L T P TI I To detail on the types of biomasses, its surplus availability and characteristics Image: Competence and economic implications 2 To create awareness on the technologies available for conversion of biomass to energy in terms of its technical competence and economic implications Image: Competence and economic implications 3 To impart knowledge on stoichiometry and combustion of bio fuels Image: Competence and economic implications Image: Competence and economic implications Image: Competence and economic implications 3 To impart knowledge on stoichiometry and combustion of bio fuels Image: Competence and economic implications Image: Competence and economic implications 4 To elucidate on the influence of equivalence ratio on thermochemical conversion of biomass. Image: Competence and economic implications Image: Competence and economic and the possibilities of producing liquid fuels form biomass Image: Competence and economic and the possibilities of producing liquid fuels form biomass 4 To rest easesment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis – Differential Scanning Calorimetry Image: Competence and economic and the possibilities on biogas yiel – possible feed stocks. Biogas plants – types – design – cons	22TH	HE22	BIO ENERGY TECHNOLO	GIES	S	emeste	er	Ι					
Hours/Week 3 0 0 3 Course Learning Objectives 1 To detail on the types of biomasses, its surplus availability and characteristics 2 To create awareness on the technologies available for conversion of biomass to energy in terms of its technical competence and economic implications 3 To impart knowledge on stoichiometry and combustion of bio fuels 4 To elucidate on the influence of equivalence ratio on thermochemical conversion of biomass. 5 To provide insight to the possibilities of producing liquid fuels form biomass 9 0 0 Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis – Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and sh handling systems –steam cost comparison with conventional fuels 10 0 0 <	PRER	REQUIS	ITES	Category	PE	Cre	edit	3					
3 0 0 3 Course Learning Objectives 1 To detail on the types of biomasses, its surplus availability and characteristics 2 To create awareness on the technologies available for conversion of biomass to energy in terms of its technical competence and economic implications 3 To impart knowledge on stoichiometry and combustion of bio fuels 4 To elucidate on the influence of equivalence ratio on thermochemical conversion of biomass. 5 To provide insight to the possibilities of producing liquid fuels form biomass UNIT I INTRODUCTION 9 0 Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis – Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. UNIT III COMBUSTION 9 0 0 <td -="" air="" biofuels<="" colspase="" combustion="" requirement="" splite="" stoichiometric="" th=""><th></th><th></th><th></th><th></th><th>L</th><th>Т</th><th>Р</th><th>ТН</th></td>	<th></th> <th></th> <th></th> <th></th> <th>L</th> <th>Т</th> <th>Р</th> <th>ТН</th>					L	Т	Р	ТН				
1 To detail on the types of biomasses, its surplus availability and characteristics 2 To create awareness on the technologies available for conversion of biomass to energy in terms of its technical competence and economic implications 3 To impart knowledge on stoichiometry and combustion of bio fuels 4 To elucidate on the influence of equivalence ratio on thermochemical conversion of biomass. 5 To provide insight to the possibilities of producing liquid fuels form biomass UNIT I INTRODUCTION 9 0 0 0 Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. UNIT III COMBUSTION 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels<				Hours/Week	3	0	0	3					
1 To detail on the types of biomasses, its surplus availability and characteristics 2 To create awareness on the technologies available for conversion of biomass to energy in terms of its technical competence and economic implications 3 To impart knowledge on stoichiometry and combustion of bio fuels 4 To elucidate on the influence of equivalence ratio on thermochemical conversion of biomass. 5 To provide insight to the possibilities of producing liquid fuels form biomass UNIT I INTRODUCTION 9 0 0 Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas platants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels 0 0 UNIT	Cours	e Learn	ing Objectives										
2 To create awareness on the technologies available for conversion of biomass to energy in terms of its technical competence and economic implications 3 To impart knowledge on stoichiometry and combustion of bio fuels 4 To elucidate on the influence of equivalence ratio on thermochemical conversion of biomass. 5 To provide insight to the possibilities of producing liquid fuels form biomass UNIT I INTRODUCTION 9 0 0 Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. UNIT III COMBUSTION 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yie		-		cteristics									
4 To elucidate on the influence of equivalence ratio on thermochemical conversion of biomass. 5 To provide insight to the possibilities of producing liquid fuels form biomass UNIT I INTRODUCTION 9 0 Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. UNIT II COMBUSTION 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rate	2	2 To create awareness on the technologies available for conversion of biomass to energy in terms of its technical											
To provide insight to the possibilities of producing liquid fuels form biomass JUNIT I INTRODUCTION 9 0 0 Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. 9 0 0 UNIT III COMBUSTION 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels 9 0 0 UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates	3	To impa	art knowledge on stoichiometry and combustion of bio fuels										
UNIT IINTRODUCTION900Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversio mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning CalorimetryUNIT IIBIO-METHANATION90Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel - possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation.UNIT IIICOMBUSTION90Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels90UNIT IVGASIFICATION, PYROLYSIS AND CARBONISATION900Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates	4	To eluc	idate on the influence of equivalence ratio on thermochemical	conversion of bior	nass.								
Biomass: types – advantages and drawbacks – Indian scenario – characteristics – carbon neutrality – conversion mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis - Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. 9 0 0 UNIT III COMBUSTION 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates	5	To prov	ide insight to the possibilities of producing liquid fuels form l	biomass									
mechanisms – fuel assessment studies – densification technologies Comparison with coal – Proximate & Ultimate Analysis Thermo Gravimetric Analysis –Differential Thermal Analysis – Differential Scanning Calorimetry UNIT II BIO-METHANATION 9 0 0 Microbial systems – phases in biogas production – parameters affecting gas production – effect of additives on biogas yiel – possible feed stocks. Biogas plants – types – design –constructional details and comparison – biogas appliances – burne luminaries and power generation. UNIT III COMBUSTION 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels 9 0 0 UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates	UNI	IT I	INTRODUCTION		9	0	0	9					
UNIT III COMBUSTION 9 0 0 Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels 9 0 0 UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates	UNI Micr – pos	IT II cobial sys ssible fee	BIO-METHANATION tems – phases in biogas production – parameters affecting gas d stocks. Biogas plants – types – design –constructional detail	s production – effe	9 ct of add	litives o	n bioga						
Perfect, complete and incomplete combustion - stoichiometric air requirement - Biofuels equivalence ratio – fixed Bed and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates					0	0	0						
and fluid Bed combustion – fuel and ash handling systems –steam cost comparison with conventional fuels UNIT IV GASIFICATION, PYROLYSIS AND CARBONISATION 9 0 0 Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates								9					
Chemistry of gasification – Types - Pyrolysis - Classification - process governing parameters – Typical yield rates							- fixed E	sed					
	UNI	IT IV	GASIFICATION, PYROLYSIS AND CARBON	ISATION	9	0	0	9					
in IC engines – 100 % Gas Engines – engine characteristics on gas mode – gas cooling and cleaning systems	Carb	onization	Techniques - merits of carbonized fuels - application - per	rformance evaluati	on –eco	nomics							
UNIT VLIQUIFIED BIOFUELS900	UNI	IT V	LIQUIFIED BIOFUELS		9	0	0	9					
History of usage of Straight Vegetable Oil (SVO) as fuel - Biodiesel production from oil seeds, waste oils and algae Process and chemistry - Biodiesel health effects / emissions /performance. Production of alcoholic fuels (methanol an ethanol) from biomass – engine modifications	Proc	ess and a	chemistry - Biodiesel health effects / emissions /performance					-					
TOTAL(45L) : 45 PERIOI				TC)TAL(45L):	45 PEF	RIODS					
Reference Books:	Dofo	ronce D.	noke:										

1	David Boyles, Bio Energy Technology Thermodynamics and costs, Ellis Hoknood Chichester, 1984
2	Iyer PVR et al, Thermochemical Characterization of Biomass, M N E S
3	Khandelwal KC, Mahdi SS, Biogas Technology – A Practical Handbook, Tata McGraw Hill, 1986

4	Mahaeswari, R.C. Bio Energy for Rural Energisation, Concepts Publication, 1997
5	Tom B Reed, Biomass Gasification – Principles and Technology, Noyce Data Corporation, 1981

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Describe and characterize various bio fuels, densifying technologies and estimate the elements present in the bio fuels.	Understand
CO2	Explain the biogas production, methodologies to enhance the bio gas production and working of the production system.	Analyze
CO3	Describe and estimate the combustion requirements of biofuels and its compare with conventional fuels.	Analyze
CO4	Explain and compare the gasification techniques and estimate its performance while using in IC engine.	Understand
CO5	Describe the production techniques of liquid bio fuels and estimate the performance and emission characteristics.	Apply

COURSE	COURSE OUTCOMES:													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	2	0	0	0	3	0	0	0	0	0	1	0	0
CO2	2	3	3	2	0	3	2	0	0	0	0	2	2	0
CO3	3	3	3	0	0	0	1	0	0	0	0	2	2	0
CO4	2	2	2	2	0	0	0	0	0	0	2	0	0	0
CO5	2	2	0	2	0	0	0	0	0	0	0	2	2	0
Avg	2.2	2.4	2.6	2	0	1.3	1.5	0	0	0	2	1.75	2	0
	1	1	3/2/1	– indic	cates st	rength	of corr	elation	(3- High	, 2- Mediu	ım, 1- Lov	v)		1

22T	HE23	OPTIMIZATION TECHNIQUES IN ENG	GINEERING	S	emest	er	Ι					
PREI	REQUIS	ITES	Category	PE	Cr	edit	3					
				L	Т	Р	ТН					
			Hours/Week	3	0	0	3					
Cour	se Learn	ing Objectives										
1	To intro	oduce the concepts and formulations of an optimization proble	ems.									
2	2 To impart the knowledge about the decision analysis.											
3	To deta	ils the insights of linear programming and methods of solving	the LPP.									
4	To fam	iliarize with the non-linear optimization techniques.										
5	To stud	y the various non-traditional optimization techniques used in	engineering applica	tions.								
UN	ITI	INTRODUCTION		9	0	0	9					
		of optimization problems, concepts of design vector, de ace and multi-level optimization, parametric linear programm	-	constrai	ns surf	ace, ob	jective					
UN	IT II	DECISION ANALYSIS		9	0	0	9					
	cision Tree cess and A	es, utility theory, game theory, multi-objective Optimization, NP.	MCDM- Goal Pro	grammi	ng, ana	lytic hie	rarchy					
UN	IT III	LINEAR PROGRAMMING		9	0	0	9					
ope	rations Gi	rm of linear programming problem; Canonical form of LP praphical method for two variable optimization problem; Exa	mples Motivation	of simp	plex me	thod, Si						
UN	IT IV	NON-LINEAR OPTIMIZATION		9	0	0	9					
		d single variable and multi variable optimization, KKT (, convex programming, Separable programming, Geometric p					adratic					
UN	IT V	NON-TRADITIONAL OPTIMIZATION		9	0	0	9					
		ithms, simulated annealing, neural network-based optimization of Fuzzy Systems	ation, particle swa	rm opti	mizatio	n, ant (Colony					
			TC)TAL(45L):	45 PEF	RIODS					

Refe	erence Books:
1	Singiresu S. Rao, "Engineering optimization – Theory and practices", John Wiley and Sons, 1996.
2	Ravindran – Phillips –Solberg, "Operations Research – Principles and Practice", John Wiley India, 2006.
3	Kalymanoy Deb, "Optimization for Engineering Design", PHI, 2003.
4	Fredrick S.Hillier and G.J.Liberman, "Introduction to Operations Research", McGraw Hill Inc. 1995.
5	G. Hadley, "Linear programming", Narosa Publishing House, New Delhi, 1990.

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Classify the optimization problems and formulate suitable optimization problem.	Apply					
CO2	Choose suitable optimization method for a problem.	Apply					
CO3	Explain the forms and use the LPP and solve a problem using LPP technique.	Analyze					
CO4	Describe non-linear optimization techniques and apply for a problem.	Analyze					
CO5	Describe non-traditional optimization techniques and apply for a problem.	Understand					

COURSE	COURSE OUTCOMES:													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	3	2	2	3	1	0	0	0	0	1	2	2	1
CO2	2	3	2	2	3	1	2	0	0	0	1	2	2	1
CO3	2	3	2	2	2	1	1	0	0	0	1	1	1	2
CO4	2	3	3	2	2	1	0	0	0	0	1	2	1	2
CO5	2	2	0	2	0	0	0	0	0	0	0	2	2	2
Avg	2	2.8	2.2 5	2	2.5	1	1.5	0	0	0	1	1.8	1.6	1.6
	1	1	3/2	/1 – in	dicates	strengtl	n of corr	elation (3- High,	2- Mediu	n, 1- Lov	w)		1

22TI	HE24	ELECTRIC AND HYBRID VEHICLE TE	CHNOLOGY	S	emeste	er	Ι
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
			TT /\X / -	L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1	To intro	oduce the concept of hybrid and electric drive trains.					
2	To elab	orate on the types and utilization of hybrid and electric drive	rains.				
3	To expo	ose on different types of AC and DC drives for electric vehicle	es.				
4	To unde	erstand and utilize different types of energy storage systems.					
5	To intro	oduce the concept of energy management strategies and drive	sizing.				
UNI	ITI	INTRODUCTION		9	0	0	9
UNI Basi train	topologi	es. HYBRID ELECTRIC DRIVE TRAINS t of hybrid traction, introduction to various hybrid drive-train es, fuel efficiency analysis. Electric Drive-trains: Basic con train topologies, power flow control in electric drive-train top	cept of electric tra	ction, ii	ntroduct		
	IT III	CONTROL OF AC & DC DRIVES		9	0	0	9
		to electric components used in hybrid and electric vehicles, tor drives, Permanent Magnet Motor drive, and Switch Reluct					
UNI	IT IV	ENERGY STORAGE		9	0	0	9
		to Energy Storage Requirements in Hybrid and Electric Vel ell based, and Super Capacitor based, Hybridization of differe			its anal	lysis - H	Battery
UNI	IT V	DRIVE SIZING AND ENERGY MANAGEMENT	STRATEGIES	9	0	0	9
moto Intro	or, sizing oduction t	we system: Matching the electric machine and the internal of the power electronics, selection of appropriate energy stora o energy management strategies used in hybrid and electric v strategies, implementation issues.	ige technology, En	ergy M	anagem	ent Stra	tegies:
			TO)TAL(45L):	45 <u>P</u> EF	RIODS

Refe	rence Books:
1	Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003
2	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003
	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Characterize and configure hybrid drivetrains requirement for a vehicle.	Understand
CO2	Design and apply appropriate hybrid and electric drive trains in a vehicle.	Analyze
CO3	Design and install suitable AC and DC drives for electric vehicles.	Analyze
CO4	Arrive at a suitable energy storage system for a hybrid / electric vehicle.	Understand
CO5	Apply energy management strategies to ensure better economy and efficiency.	Apply

COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	0	0	0	0	0	0	0	1	0	0	1
CO2	3	2	2	2	1	1	0	0	0	2	2	0	0	2
CO3	1	1	1	1	2	0	1	2	0	3	0	0	0	2
CO4	1	1	0	1	1	0	1	1	0	3	2	0	1	1
CO5	1	0	0	0	0	2	1	0	0	2	1	0	1	1
Avg	1.8	1.3	1.5	1.3	1.3	1.5	1	1.5	0	2.5	1.5	0	1	1.4

4

22TI	HE25	ALTERNATE FUELS FOR IC I	ENGINES	S	Semeste	r	Ι
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To expo	ose potential alternate fuels and their characteristics.					
2	To intro	oduce the characteristics, merit and effects of using synthetic f	fuels.				
3	To intro	oduce the concepts utilizing alcohol as a fuel and study its effe	ects on combustion	and em	ission.		
4	To elab	orate the need Bio-Diesel, its properties and its effects on con	nbustion and emissi	on.			
5	To disc	uss about various gaseous fuels and predict their performance	and combustion ch	aracteri	istics.		
UNI	ΙΤΙ	INTRODUCTION		9	0	0	9
		suitability, properties, merits and demerits of potential alte pleum gas, natural gas, biogas, fuel standards – ASTM & EN.		ohols, 1	Bio-Die	sel, hyd	lrogen,
UNI	IT II	SPECIAL AND SYNTHETIC FUELS		9	0	0	9
effec	ct on per	hetic fuels, Merits and demerits, Dual, Bi-fuel and Pilot injec formance and emission characteristics of engines, flexi-fue l characteristics.					
UN	IT III	ALCOHOL FUELS		9	0	0	9
	ion and o	roperties, Production methods and usage in engines. Blend xygenated additives. Performance, combustion and emission					
UNI	IT IV	BIO-DIESEL FUELS		9	0	0	9
preh	eating, T	s and their important properties. Fuel properties characterizat ransesterification and emulsification – Performance, com d generation biofuels, Ternary and Quaternary fuels, Issues &	bustion and emiss	ion Ch	aracteris	tics in	diesel
UNI	IT V	GASEOUS FUELS		9	0	0	9
		al gas, LPG, Hydrogen – Properties, problems, storage and s combustion and emission Characteristics in engines. Issues &				on in er	ngines.
			TC)TAL(45L):	45 PEF	RIODS

Refe	rence Books:
1	Keith Owen and Trevor Eoley, Automotive Fuels Handbook, SAE Publications, 1990
2	Pundir B.P , I.C. Engines Combustion and Emission, 2010, Narosa Publishing House
3	Pundir B.P , Engine Combustion and Emission, 2011, Narosa Publishing House Keith
4	Richard L. Bechtold, Automotive Fuels Guide Book, SAE Publications, 1997

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Analyze potential alternate fuels and their characteristics.	Analyze
CO2	Use appropriate synthetic fuels and fuel additives for better combustion characteristics.	Analyze
CO3	Describe the properties of alcohol fuel and estimate the performance of alcohol fuels and its emissions.	Understand
CO4	Explain the properties and combustion and emission characteristics of bio-diesel.	Apply
CO5	Explain different gaseous fuels and predict their performance and combustion characteristics	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	0	0	0	0	0		0	1	3	2	1
CO2	3	2	2	2	1	1	0	0		2	2	2	2	0
CO3	1	1	1	1	2	0	1	2		3	0	2	2	1
CO4	1	1	0	1	1	0	1	1		3	2	0	2	0
CO5	1	0	0	0	0	2	1	0		2	1	3	0	0
Avg	1.8	1.3	1.5	1.3	1.3	1.5	1	1.5		2.5	1.5	2.5	2	1

22THE31	ADVANCED ENERGY STORAGE TEC	CHNOLOGIES	S	Semeste	er	II	
PREREQUI	SITES	Category	PE	Cre	edit	3	
			L	Т	Р	TH	
		Hours/Week	3	0	0	3	
Course Lear	ning Objectives				1		
1 To un	lerstand the various types of energy storage technologies and it	s applications.					
2 To stu	dy the various modelling techniques of energy storage systems	using TRNSYS.					
3 To lea	rn the concepts and types of batteries						
4 To ma	ke to get understand the concepts of Hydrogen and Biogas stor	age					
5 To pro	wide the insights on Flywheel and compressed energy storage s	systems					
UNIT I	INTRODUCTION		9	0	0	9	
Necessity of e	nergy storage – types of energy storage – comparison of energy	y storage technolog	ies – A	pplicatio	ons.		
UNIT II	THERMAL STORAGE SYSTEM		9	0	0	9	
water storage porous mediu	ge – Types – Modelling of thermal storage units – Simple w system – Modelling of phase change storage system – Simple u m approach, Use of TRNSYS.					g usin	
UNIT III	ELECTRICAL ENERGY STORAGE		9	0	0	9	
energy density	concept of batteries – measuring of battery performance, chargi /, and safety issues. Types of batteries – Lead Acid, Nickel – C xample (i) zinc-Air (ii) Nickel Hydride, (iii) Lithium Battery. HYDROGEN AND BIOGAS STORAGE						
	rage options – compressed gas – liquid hydrogen – Metal Safety and management of hydrogen and Biogas storage - Appl		al Stor	age, Bio	ogas ste	orage	
UNIT V	ALTERNATE ENERGY STORAGE TECHNOLO	OGIES	9	0	0	9	
Flywheel, Sup Storage – App	ber capacitors, Principles & Methods – Applications, Compress blications.	ed air Energy stora	ge, Con	cept of	Hybrid	<u> </u>	
		TC)TAL(45L):	45 PE	RIOI	

Kere	rence Books:
1	Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications, John Wiley & Sons 2002.
2	James Larminie and Andrew Dicks, Fuel cell systems Explained, Wiley publications, 2003.
3	Luisa F. Cabeza, Advances in Thermal Energy Storage Systems: Methods and Applications, Elsevier Woodhead Publishing, 2015.
4	Robert Huggins, Energy Storage: Fundamentals, Materials and Applications, 2nd edition, Springer, 2015
5	Ru-shiliu, Leizhang, Xueliang sun, Electrochemical technologies for energy storage and conversion, Wiley publications, 2012.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify the energy storage technologies for suitable applications.	Analyze
CO2	Analyze the energy storage systems using TRNSYS.	Analyze
CO3	Recognize the concepts and types of batteries.	Evaluate
CO4	Diagnose the principle of operations of Hydrogen and Biogas storage.	Apply
CO5	Analyze the concepts of Flywheel and compressed energy storage systems.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	1	3	1	1	0	0	1	0	0	0	3	0	0
CO2	3	1	3	1	1	0	0	1	0	0	0	0	0	3
CO3	3	1	3	1	1	0	0	1	0	0	0	3	0	0
CO4	3	1	3	1	1	0	0	1	0	0	0	1	1	0
CO5	3	1	3	1	1	0	0	1	0	0	0	2	2	0
Avg	3	1	3	1	1	0	0	1	0	0	0	2.25	1.5	3

22THE32	REFRIGERATION SYSTEM	MS	S	emeste	er	II
PREREQUI	SITES	Category	PE	Cre	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					
1 Тор	ovide a complete insights of Refrigeration systems.					
2 To an	alyze the performance of refrigeration cycles.					
3 To st	udy the various components and their roles in the refrigeration sy	vstems.				
4 To a	alyze, balance and simulate the refrigeration systems.					
5 To ac	quire the knowledge about the electrical and electronic compone	ents provided in th	e refrig	eration s	systems	
UNIT I	INTRODUCTION AND REFRIGERANTS		9	0	0	9
from ideal	REFRIGERATION CYCLES nt of Vapour Compression Refrigeration Cycle from Reverse Ca vapour compression cycle, multi-pressure System, Cascade Sy onia & Li-Br Systems, Steam Jet Refrigeration.					
UNIT III	REFRIGERATION SYSTEM COMPONENTS		9	0	0	9
Expansion 1	- Types, performance, Characteristics, Types of Evaporators Devices and their behaviour with fluctuating load, cycling cont Dil Separators, Strainers, Driers, Check valves, Solenoid valves I	trols, other compo	onents s			
UNIT IV	IT IV SYSTEM BALANCING			0	0	9
	nts and system simulation - compressor, condenser, evaporator a prmance; graphical and mathematical analysis – sensitivity analy		ices per	forman	ce – Co	mplete
UNIT V	ELECTRICAL DRIVES & CONTROLS		9	0	0	9
	suits in Refrigeration systems, Refrigerant control devices, Ty ssor based control systems, Pressure controls and other controls,	-		-	Therm	ostats,
		TC)TAL(45L):	45 PEH	RIODS

11010	
1	Arora C.P., Refrigeration and Air conditioning, McGraw Hill, 3rd Ed., 2010
2	Dossat R.J., Principles of refrigeration, John Wiley, S.I. Version, 2001
3	Jordan and Priester, Refrigeration and Air conditioning 1985
4	Kuehn T.H., Ramsey J.W. and Threlkeld J.L., Thermal Environmental Engineering, 3rd Edition, Prentice Hall, 1998
5	Langley Billy C., 'Solid state electronic controls for HVACR, Prentice-Hall 1986

6	Rex Milter, Mark R.Miller., Air conditioning and Refrigeration, McGraw Hill, 2006
7	Stoecker W.F., Refrigeration and Air conditioning, McGraw-Hill Book Company, 1989

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Classify the refrigerants and suggest alternative refrigerants.	Apply
CO2	Analyze refrigeration cycles and calculate COP and explain the construction and working vapour absorption system.	Analyze
CO3	Describe the components and characteristics, classification and performance of refrigeration system.	Analyze
CO4	Simulate the refrigeration components and asses the performance.	Understand
CO5	Describe various electrical and electronic devices to drive and control of refrigeration system	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	0	0	2	3	0	0	0	2	2	0	0
CO2	3	3	0	3	0	2	0	2	0	0	0	2	3	0
CO3	3	0	0	0	0	2	0	2	0	0	0	2	0	0
CO4	0	0	3	3	2	0	0	2	0	0	2	0	3	3
CO5	1	0	0	0	2	2	0	0	0	0	2	0	0	0
Avg	2.5	3	3	3	2	2	3	2	0.0	0.0	2	2	3	3

22TH	IE33	ADVANCED POWER PLANT ENG	INEERING	S	emeste	r	II
PRERI	EQUIS	ITES	Category	PE	Cre	edit	3
			TT (TT)	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	Learn	ing Objectives					
1	To prov	ride the broad overview about the power, generation and costir	ıg.				
2	To prov	ide a very clear understanding about the steam power plant, co	omponents and the	ir functi	ons.		
3	To prov	ride a very clear understanding about the diesel and gas power	plant, components	and the	eir functi	ions.	
4	To anal	yze the advanced power cycles for power generation.					
5	To prov	ide a very clear understanding about the hydro and nuclear po	wer plant, compon	ents and	l their fu	inctions	•
UNI	ГΙ	INTRODUCTION		9	0	0	9
		Indian power sector – load curves for various applications – mparison and selection - Economics of power plants.	types of power p	lants –	merits a	nd dem	erits –
UNI	ГП	STEAM POWER PLANTS		9	0	0	9
		ical power plant utilities - Boilers, Nozzles, Turbines, Conc - Rankine Cycle – thermodynamic analysis. Cycle improvem					nt and
UNI	ГШ	DIESEL AND GAS TURBINE POWER PLANT	Ś	9	0	0	9
Layou	ut - Per	ycles - Otto, Diesel & Dual – Theoretical vis-à-vis actual – Typ rformance analysis and improvement - E.C cycles – Gas ic analysis – cycle improvements - Intercoolers, Re heaters, re	s turbine & Stirl				
UNI	ΓIV	ADVANCED POWER CYCLES		9	0	0	9
Thern	nodynan es coger	systems – topping & bottoming cycles - Performance indices nic performance of steam turbine cogeneration systems – gas neration systems- Binary Cycle -Combined cycle – IGCC – A Open cycle and closed cycle- Hybrid MHD & steam power p	turbine cogenerati FBC / PFBC cycl	on syste	ems – re	ciprocat	ing IC
UNI	ΓV	HYDRO ELECTRIC & NUCLEAR POWER PL	ANTS	9	0	0	9
plants	. Genera	Power plants – classifications - essential elements – pumped al aspects of Nuclear Engineering – Components of nuclear p U, Gas Cooled, Liquid Metal Cooled and Breeder reactor - nu	ower plants - nuc	lear rea	ctors &	types –	
			TO)TAL(45L):	45 <u>P</u> EF	RIODS

Refe	rence Books:
1	Arora and Domkundwar, A course in power Plant Engineering, Dhanpat Rai and CO, 2004
2	Gill A.B., Power Plant Performance, Butterworths, 1984
3	Haywood R.W., Analysis of Engineering Cycles, 4th Edition, Pergamon Press, Oxford, 1991
4	Horlock J.H., Cogeneration - Heat and Power, Thermodynamics and Economics, Oxford,1987

5	Lamarsh J.R., Introduction to Nuclear Engineering - 2nd edition, Addison-Wesley, 1983
6	Nag P.K., Power Plant Engineering, Tata Mcgraw Hill Publishing Co Ltd, New Delhi, 1998
7	Wood A.J., Wollenberg B.F., Power Generation, operation and control, John Wiley, New York, 1984.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Describe the characteristics of power generation and economics of power generation.	Analyze
CO2	Describe the components of steam power plant and analyze steam power cycle.	Evaluate
CO3	Calculate the cycle efficiency and analyze performance improvement of diesel and gas power cycles.	Analyze
CO4	Describe the fundamentals of cogeneration, classification and their working principles.	Analyze
CO5	Describe the components and classification working of hydroelectric nuclear power plants.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	0	0	0	2	2	2	0	0	0	2	2	1	0	0
CO2	2	2	2	2	0	0	0	0	0	0	0	0	0	0
CO3	3	3	2	0	0	0	0	0	0	0	0	2	2	0
CO4	3	3	2	0	0	0	0	0	0	0	0	2	2	0
CO5	2	0	0	0	2	0	2	0	0	0	2	2	0	0
Avg	2.5	2.6	2	2	2	2	2	0	0	2	2	1.75	2	0

22TH	HE34	ELECTRONIC ENGINE MANAGEME	ENT SYSTEMS	S	emeste	er	II
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
			TT / T T/ 1	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To prov	vide fundamental knowledge on electrical and electronics and	basic components				
2	To prov	vide details of construction and functions of various sensors ar	nd actuators used in	engine	manage	ment sy	stems
3	To prov	vide an overview of different types of ignition systems					
4	To prov	ride significant features of gasoline injection systems					
5	To prov	vide the latest advancements in Diesel injection systems					
UNI	ГΙ	ELECTRICAL AND ELECTRONICS PRINCIPLES	5	9	0	0	9
to Ai UNI Sense Oxyg	nalog Cor T II ors - Ca gen, Kno es Pneum	 bigital Integrated circuits. Comparator- Logic gates – Microconverters, Potentiometer – Wheatstone bridge. SENSORS AND ACTUATORS mshaft Position, Crank Position, Throttle Position, Air flock and Oxides of nitrogen, Principle of operation, constructionatic, EGR Valve, Waste Gate, Brushless DC motor and step 	w, Pressure, Tempon and characteristi	9 perature cs. Actu	0 , Speed ators –	0 , Exhau Intake t	9 Ist gas hrottle
UNI	ТШ	IGNITION SYSTEMS		9	0	0	9
Com	bined igi	amentals, Solid state ignition systems, High energy ignition number of the systems of the systems. Dwell angle calculations and maps.					
UNI	T IV	GASOLINE INJECTION SYSTEMS		9	0	0	9
Princ	ciples and	nd closed loop systems, Single-point, Multi-point, Direct d Features, Types of injection systems, Idle speed, lambda ulation, Fuel injection volume control for different engine ope	a, knock and sparl				
UNI	ТV	DIESEL INJECTION SYSTEMS		9	0	0	9
opera		control of fuel injection, Inline injection pump, Rotary Pur ectronic control, Common rail, unit injector and Piezoelect peration.					
			ТС)TAL(45L):	45 PEF	RIODS

Refei	rence Books:
1	Eric Chowanietz, Automobile Electronics, SAE Publications 1995
2	Robert Bosch, Gasoline Engine Management, Third Edition, Bentley Publications, 2004

3	Robert Bosch, Diesel Engine Management, Fourth Edition, Newness Publications, 2005
4	Tom Denton, Automotive Electrical and Electronic Systems, 4th Edition, Taylor and Francis Group,2004
5	William B. Ribbens, Understanding Automotive Electronics, Sxith Edition, Elsevier Inc, 2002

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify and describe the application of electrical and electronics components used in engine management systems.	Understand
CO2	Describe various sensors and actuators used in electronic engine management system.	Analyze
CO3	Describe the fundamentals of ignition system and calculate the ignition characteristics.	Evaluate
CO4	Describe the concepts, components, working and control of gasoline injection system.	Analyze
CO5	Various injector, injection system, control of fuel injection in CI engine.	Evaluate

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	0	0	0	0	0	0	0	1	0	0	2
CO2	3	2	2	2	1	1	0	0	0	2	2	0	0	2
CO3	1	1	1	1	1	0	1	2	0	3	0	1	1	1
CO4	1	1	0	1	1	0	1	1	0	3	2	2	1	1
CO5	1	0	0	0	0	2	1	0	0	2	1	2	1	1
Avg	1.8	1.3	1.5	1.3	1	1.5	1	1.5	2	2.5	1.5	1.66	1	1.4
	1	3	/2/1 – in	dicates	strengtl	h of cor	relation	(3- Hig	h, 2- M	edium, 1	- Low)			1

22T	HE35	DESIGN OF HEAT EXCHAN	IGERS	S	emeste	er	II
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To stud	y the fundamentals of heat transfer analysis in heat exchanger	S				
2	To stud	y the effects of flow parameters and do stress analysis					
3	To stud	y the effects various design factors on the performance of a he	eat exchanger.				
4	To stud	y the classification and design aspects of a compact heat exch	angers				
5	To anal	yze the sizing and rating of the heat exchangers for various ap	plications				
UN	ΠΙ	FUNDAMENTALS OF HEAT EXCHANGER		9	0	0	9
		distribution and its implications types – shell and tube heat at exchangers – LMTD and effectiveness method.	at exchangers – re	generat	ors and	recuper	ators –
UN	IT II	FLOW AND STRESS ANALYSIS		9	0	0	9
		ulence – friction factor – pressure loss – stress in tubes – head - types of failures.	der sheets and press	sure ves	ssels – tł	nermal s	tresses,
UN	IT III	DESIGN ASPECTS		9	0	0	9
		and pressure loss – flow configuration – effect of baffles – eff tube - shell and tube heat exchangers - simulation of heat exch		om idea	llity – de	esign of	double
UN	IT IV	COMPACT AND PLATE HEAT EXCHANGER	S	9	0	0	9
• 1		its and demerits – design of compact heat exchangers, plimitations.	ate heat exchange	rs – pe	erformar	nce influ	iencing
UN	IT V	CONDENSERS AND COOLING TOWERS		9	0	0	9
Desi	gn of sur	face and evaporative condensers – cooling tower – performance	ce characteristics.			I	
			TC)TAL(45L):	45 PEF	RIODS

Refe	rence Books:
1	Arthur P. Frass, Heat Exchanger Design, John Wiley & Sons, 1988
2	Hewitt G.F., Shires G.L. and Bott T.R., Process Heat Transfer, CRC Press, 1994
3	Nicholas Cheremisioff, Cooling Tower, Ann Arbor Science Pub 1981
4	Sadik Kakac and Hongtan Liu, Heat Exchangers Selection, Rating and Thermal Design, CRC Press, 2002
5	Sekulic D.P., Fundamentals of Heat Exchanger Design, John Wiley, 2003
6	TaborekT., Hewitt.G.F. and Afgan N., Heat Exchangers, Theory and Practice, McGraw-Hill Book Co. 1980

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Design and analyze heat exchanger using LMTD and effectiveness method.	Analyze
CO2	Conduct stress analysis in heat exchanger components and identify failure types.	Analyze
CO3	Describer the effects of various parameters in performance of heat exchanger.	Evaluate
CO4	Classify, design of compact and plate heat exchanger.	Analyze
CO5	Design condenser and cooling tower and analyze its performance	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	1	3	2	0	2	0	0	0	0	0	3	2	0
CO2	3	2	3	3	0	1	0	0	0	0	0	3	2	0
CO3	3	2	3	3	3	1	0	0	0	0	0	3	3	3
CO4	3	3	2	3	0	0	0	0	0	0	0	3	2	0
CO5	3	3	2	3	0	0	0	0	0	0	0	3	2	0
Avg	3	2.2	2.6	2.8	3	1.3	0	0	0	0	0	3	2.2	3
	•	3/2	2/1 – ind	icates st	rength	of corre	ation (3	- High,	2- Medi	um, 1- L	ow)	•	•	•

PREREQUISITES Category PE Credit 3 Hours/Week L T P TH Hours/Week I T P TH To discuss the fundamental classification, working and comparisons of solar power plants I To study the various power cycles involved in the solar power plants I To study the components and their functions of solar of PV power plants I To study the components and their functions of solar of PV power plants I I To study the components and their functions of solar of PV power plants I <td< th=""><th>22T</th><th>HE41</th><th>SOLAR POWER PLAN</th><th>NTS</th><th>S</th><th>emeste</th><th>er</th><th>II</th></td<>	22T	HE41	SOLAR POWER PLAN	NTS	S	emeste	er	II
Hours/WeekInternational PV POWER PLANTSHours/WeekInternational PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power ElectronicsInternational PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power ElectronicsOut International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power ElectronicsOut Integrating Power PlantsInternational PV Power PlantsInternational PV Power PlantsInternational PV Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria.INTI I SOLAR POWER CYCLES90Out International PV Power PlantsInternational PV Power PlantsInternational PV Power PlantsInternational PV POWER PLANTS90International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic CPV) - Electrical Performance.UNIT IVSOLAR PV POWER PLANTS900Out International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electro	PREF	REQUIS	ITES	Category	PE	Cre	edit	3
Course Learning Objectives30031To discuss the fundamental classification, working and comparisons of solar power plants-2To study the various power cycles involved in the solar power plants3To study the components and their functions of solar of PV power plants4To study the components and their functions of solar of PV power plants5To study the fundamentals of economics involved in the solar power plants5To study the fundamentals of economics involved in the solar power plantsVNIT IINTRODUCTION900					L	Т	Р	ТН
1 To discuss the fundamental classification, working and comparisons of solar power plants 2 To study the various power cycles involved in the solar power plants 3 To study the components and their functions of solar of PV power plants 4 To study the components and their functions of solar of PV power plants 5 To study the fundamentals of economics involved in the solar power plants UNIT I INTRODUCTION 9 0 0 9 Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria. UNIT I SOLAR POWER CYCLES 9 0 0 9 Vapour cycles – Organic cycles – Combined Cycles – Binary Cycles – Stirling Cycle – Brayton Cycle – Ericsson Cycle – Kalina Cycle. UNIT II SOLAR POWER PLANTS 9 0 0 9 UNIT III SOLAR PPOWER PLANTS 9 0 0 9 UNIT II SOLAR POWER PLANTS 9 0 0 9 UNIT III SOLAR PVPOWER PLANTS 9 0 0 9 UNIT IV SOLAR PV PO				Hours/Week	3	0	0	3
2 To study the various power cycles involved in the solar power plants 3 To study the components and their functions of solar of PV power plants 4 To study the components and their functions of solar of PV power plants 5 To study the fundamentals of economics involved in the solar power plants 5 To study the fundamentals of economics involved in the solar power plants VINIT I INTRODUCTION 9 0 0 9 Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria. VINIT II SOLAR POWER CYCLES 9 0 0 9 Vapour cycles - Organic cycles - Combined Cycles - Binary Cycles - Stirling Cycle - Brayton Cycle - Ericsson Cycle - Kalina Cycle. Value Cycles - Concentrating Dish Systems - Concentrating Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems. UNIT IV SOLAR PV POWER PLANTS 9 0 0 9 International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance. UNIT V ECONOMICS OF POWER PLANTS 9 0 0 9 Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy -	Cours	se Learn	ing Objectives					
3 To study the components and their functions fof solar thermal power plants 4 To study the components and their functions of solar of PV power plants 5 To study the fundamentals of economics involved in the solar power plants 5 To study the fundamentals of economics involved in the solar power plants 9 0 0 9 Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria. 9 0 0 9 Vapour cycles - Organic cycles - Combined Cycles - Binary Cycles - Stirling Cycle - Brayton Cycle - Ericsson Cycle - Kalina Cycle. 9 0 0 9 Vapour cycles, - Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems. 9 0 0 9 UNIT IV SOLAR PV POWER PLANTS 9 0 0 9 0 0 9 International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance. 9 0 0 9 UNIT IV ECONOMICS OF POWER PLANTS 9 0 0 9 0 </td <td>1</td> <td>To disc</td> <td>uss the fundamental classification, working and comparisons</td> <td>of solar power plan</td> <td>ts</td> <td></td> <td></td> <td></td>	1	To disc	uss the fundamental classification, working and comparisons	of solar power plan	ts			
4 To study the components and their functions of solar of PV power plants 5 To study the fundamentals of economics involved in the solar power plants UNIT I INTRODUCTION 9 0 0 9 Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria. UNIT II SOLAR POWER CYCLES 9 0 0 9 Vapour cycles – Organic cycles – Combined Cycles – Binary Cycles – Stirling Cycle – Brayton Cycle – Ericsson Cycle – Kalina Cycle. 9 0 0 9 UNIT III SOLAR THERMAL POWER PLANTS 9 0 0 9 Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems. - - UNIT IV SOLAR PV POWER PLANTS 9 0 0 9 International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance. 9 0 0 9 UNIT V ECONOMICS OF POWER PLANTS 9 0 0 9 0 9 Method	2	To stud	y the various power cycles involved in the solar power plants					
5 To study the fundamentals of economics involved in the solar power plants 5 To study the fundamentals of economics involved in the solar power plants UNIT I INTRODUCTION 9 0 0 9 Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria. 9 0 0 9 UNIT II SOLAR POWER CYCLES 9 0 0 9 Vapour cycles - Organic cycles - Combined Cycles - Binary Cycles - Stirling Cycle - Brayton Cycle - Ericsson Cycle - Kalina Cycle. UNIT III SOLAR THERMAL POWER PLANTS 9 0 0 9 Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish Systems. Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems. UNIT IV SOLAR PV POWER PLANTS 9 0 0 9 International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance. UNIT V ECONOMICS OF POWER PLANTS 9 0 0 9 Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection o	3	To stud	y the components and their functions fof solar thermal power	plants				
UNIT IINTRODUCTION9009Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria.UNIT IISOLAR POWER CYCLES9009Vapour cycles - Organic cycles - Combined Cycles - Binary Cycles - Stirling Cycle - Brayton Cycle - Ericsson Cycle - Kalina Cycle.9009UNIT IIISOLAR THERMAL POWER PLANTS9009Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems.9009UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.9009Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.9009	4	To stud	y the components and their functions of solar of PV power pla	ants				
Power Plant Scenario - Classification, Basic Principles and Features - Comparison and selection Criteria.UNIT IISOLAR POWER CYCLES9009Vapour cycles - Organic cycles - Combined Cycles - Binary Cycles - Stirling Cycle - Brayton Cycle - Ericsson Cycle - Kalina Cycle.SOLAR THERMAL POWER PLANTS9009Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems - Concentrating Linear Fresnel Reflectors - Concentrating Photovoltaic CPV) - Electrical Performance.UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.9009Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.9009	5	To stud	y the fundamentals of economics involved in the solar power	plants				
UNIT IISOLAR POWER CYCLES9009Vapour cycles – Organic cycles – Combined Cycles – Binary Cycles – Stirling Cycle – Brayton Cycle – Ericsson Cycle – Kalina Cycle.9009UNIT IIISOLAR THERMAL POWER PLANTS9009Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems.9009UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.9009Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.9009	UN	IT I	INTRODUCTION		9	0	0	9
Vapour cycles – Organic cycles – Combined Cycles – Binary Cycles – Stirling Cycle – Brayton Cycle – Ericsson Cycle – Kalina Cycle.UNIT IIISOLAR THERMAL POWER PLANTS9009Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems.9009UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.9009Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.9009	Pow	ver Plant S	Scenario - Classification, Basic Principles and Features - Com	parison and selection	on Crite	ria.		
Kalina Cycle.VINIT IIISOLAR THERMAL POWER PLANTS9009Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish SystemsSolar Chimneys - Hybrid Systems.UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics- Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.UNIT VECONOMICS OF POWER PLANTS900Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.	UN	IT II	SOLAR POWER CYCLES		9	0	0	9
Kalina Cycle.VINIT IIISOLAR THERMAL POWER PLANTS9009Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish SystemsSolar Chimneys - Hybrid Systems.UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics- Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.UNIT VECONOMICS OF POWER PLANTS900Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.	Vap	our cycle	s – Organic cycles – Combined Cycles – Binary Cycles – Sti	irling Cycle – Bray	ton Cyc	le – Eri	csson C	vcle –
Collector, Receiver, Energy Transfer Power cycles - Tower, Trough and Dish Systems - Concentrating Dish Systems - Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems.UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.9009UNIT VECONOMICS OF POWER PLANTS9009Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.900					2			
Concentrating Linear Fresnel Reflectors - Combined and Binary Cycles - Solar Chimneys - Hybrid Systems.UNIT IVSOLAR PV POWER PLANTS9009International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance.9009UNIT VECONOMICS OF POWER PLANTS9009Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.909	UN	IT III	SOLAR THERMAL POWER PLANTS		9	0	0	9
International PV Power programs - Photovoltaic Power Systems - System Integration - Energy Storage - Power Electronics - Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance. UNIT V ECONOMICS OF POWER PLANTS 9 0 0 9 Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants. - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.							ish Sys	tems -
- Stand-Alone Systems - Grid-Connected Systems - Concentrating Photovoltaic (CPV) - Electrical Performance. UNIT V ECONOMICS OF POWER PLANTS 9 0 0 9 Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants. 9 0 9	UN	IT IV	SOLAR PV POWER PLANTS		9	0	0	9
Methods of fixing power tariff - Simple Methods to Calculate the Plant Economy - Life Cycle Cost - Payback Period - Economic analysis for the selection of alternative decisions and the future of the power plants.								tronics
Economic analysis for the selection of alternative decisions and the future of the power plants.	UN	IT V	ECONOMICS OF POWER PLANTS		9	0	0	9
TOTAL(45L) : 45 PERIODS					ycle Co	st - Pay	back Pe	eriod -
				ТС)TAL(45L):	45 PEF	RIODS

Refe	erence Books:
1	Duffie, J.A., and Beckman, W.A. Solar Energy Thermal Process, John Wiley and Sons, New York, 2006
2	Kosuke Kurokawa (Ed.), Eergy from the Desert – Feasibility of very large-scale photovoltaic power generation systems, James and James 2003
3	Sukhatme S.P., Solar Energy, Tata McGraw Hills P Co., 3rd Edition, 2008
4	C.J. Winter, R.L. Sizmann, L.L. Vant-Hull, Solar Power Plants, Springer- Verlag Berlin and Heidelberg GmbH & Co. K, 2001

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Describe the fundamental classification, working and comparisons of solar power plants.	Understand
CO2	Analyze different cycle for solar power generation.	Analyze
CO3	Describe the various power cycles involved in the solar power plants.	Evaluate
CO4	Describe the components and their functions fof solar thermal power plants.	Analyze
CO5	Explain the fundamentals of economics involved in the solar power plants	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	3	0	2	0	0	0	0	0	2	2	0
CO2	3	3	3	2	0	0	0	0	0	0	0	2	2	0
CO3	3	0	3	2	0	0	0	0	0	0	0	0	0	2
CO4	2	2	2	2	2	2	0	0	0	0	0	0	0	2
CO5	0	2	0	2	0	2	0	0	0	0	0	0	0	2
Avg	2.75	2.3	2.6	2.2	2	2	0	0	0	0	0	2	2	2
	•	3/2	2/1 – ind	icates st	rength	of corre	ation (3	- High, 2	2- Medi	um, 1- L	ow)	•	•	

22THE42	CRYOGENIC ENGINEER	ING	S	Semester 1		Π
REREQUI	SITES	Category	PE	Cr	edit	3
			L	Т	Р	TI
		Hours/Week	3	0	0	3
ourse Lear	ning Objectives					
1 To giv	ve introductory knowledge about cryogenic Engineering					
2 To im	part knowledge in various liquefaction cycles and important co	omponents in the liq	luefactio	n syste	m	
3 To im	part knowledge on separation and purification of cryogenics ga	ises				
4 To pr	ovide the insights of cryo-coolers and cycles using which the cr	yo-refrigerators are	e workin	g		
5 To ex	plain the instruments for the cryogenic measurement and techni	iques to handle the	m			
			8	0	0	
Insight on C Cryogenics i	INTRODUCTION Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic LIQUEFACTION CYCLES			ıres. A	pplicati 0	
Insight on C Cryogenics i UNIT II Carnot Liqu Hampson C	Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic	al applications.	emperato 10 foule Th	0 omson	0 Effect.	Lin
Insight on C Cryogenics i UNIT II Carnot Liqu Hampson C cycle, Simps	Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic LIQUEFACTION CYCLES efaction Cycle, F.O.M. and Yield of Liquefaction Cycles. In ycle, Precooled Linde Hampson Cycle, Claudes Cycle Dual C	al applications.	emperato 10 foule Th	0 omson	0 Effect.	Lin
Insight on C Cryogenics i UNIT II Carnot Liqu Hampson C cycle, Simps UNIT III Binary Mixt	Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic LIQUEFACTION CYCLES efaction Cycle, F.O.M. and Yield of Liquefaction Cycles. In ycle, Precooled Linde Hampson Cycle, Claudes Cycle Dual C on cycle, Critical Components in Liquefaction Systems.	al applications. nversion Curve - J Cycle, Ortho-Para	oryPECreditLTPek300e300eeiieiiieiiii800cTemperatures. Applicati100e- Joule Thomson Effectara hydrogen conversion,900lumn Analysis - McCabe800s Regenerators used in Cry1000	Lin Eolli		
Insight on C Cryogenics i UNIT II Carnot Liqu Hampson C cycle, Simps UNIT III Binary Mixt Method. Ads	Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic LIQUEFACTION CYCLES efaction Cycle, F.O.M. and Yield of Liquefaction Cycles. In ycle, Precooled Linde Hampson Cycle, Claudes Cycle Dual C on cycle, Critical Components in Liquefaction Systems. SEPARATION OF CRYOGENEIC GASES ures, T-C and H-C Diagrams, Principle of Rectification, Rec	al applications. nversion Curve - J Cycle, Ortho-Para	emperatu 10 foule Th hydroges 9 n Analys	0 omson n conve 0 sis - M	0 Effect. ersion, 1 0 IcCabe	Lin Eolli
Insight on C Cryogenics i UNIT II Carnot Liqu Hampson C cycle, Simps UNIT III Binary Mixt Method. Ads UNIT IV J. T. Cryoco	Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic LIQUEFACTION CYCLES efaction Cycle, F.O.M. and Yield of Liquefaction Cycles. In ycle, Precooled Linde Hampson Cycle, Claudes Cycle Dual C on cycle, Critical Components in Liquefaction Systems. SEPARATION OF CRYOGENEIC GASES ures, T-C and H-C Diagrams, Principle of Rectification, Re sorption Systems for purification.	al applications. nversion Curve - J Cycle, Ortho-Para 1 ectification Column	emperatu 10 foule Th hydroger 9 n Analy 8	0 omson n conve 0 sis - M	0 Effect. ersion, 1 0 IcCabe	Lin Eolli Thie
Insight on C Cryogenics i UNIT II Carnot Liqu Hampson C cycle, Simps UNIT III Binary Mixt Method. Ads UNIT IV J. T. Cryoco Refrigerator	Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic LIQUEFACTION CYCLES efaction Cycle, F.O.M. and Yield of Liquefaction Cycles. In ycle, Precooled Linde Hampson Cycle, Claudes Cycle Dual C on cycle, Critical Components in Liquefaction Systems. SEPARATION OF CRYOGENEIC GASES ures, T-C and H-C Diagrams, Principle of Rectification, Re sorption Systems for purification. CRYOGENIC REFRIGERATORS olers, Stirling Cycle Refrigerators, G.M.Cryocoolers, Pulse Tub	al applications. nversion Curve - J Cycle, Ortho-Para 1 ectification Column	emperatu 10 foule Th hydroger 9 n Analy: 8 sgenerato	0 omson n conve 0 sis - M 0 ors used	0 Effect. ersion, 1 0 IcCabe 0 I in Cry	Lin Eolli
Cryogenics i UNIT II Carnot Liqu Hampson Cycycle, Simps UNIT III Binary Mixt Method. Ads UNIT IV J. T. Cryoco Refrigerators UNIT V	Cryogenics, Properties of Cryogenic fluids, Material properties n Space Programs, Superconductivity, Cryo-metallurgy, medic LIQUEFACTION CYCLES efaction Cycle, F.O.M. and Yield of Liquefaction Cycles. In ycle, Precooled Linde Hampson Cycle, Claudes Cycle Dual C on cycle, Critical Components in Liquefaction Systems. SEPARATION OF CRYOGENEIC GASES ures, T-C and H-C Diagrams, Principle of Rectification, Re sorption Systems for purification. CRYOGENIC REFRIGERATORS olers, Stirling Cycle Refrigerators, G.M.Cryocoolers, Pulse Tules, Dilution refrigerators, Magnetic Refrigerators. HANDLING OF CRYOGENS	al applications. nversion Curve - J Cycle, Ortho-Para 1 ectification Column be Refrigerators Re	emperatu 10 foule Th hydrogen 9 n Analyn 8 generato 10	0 omson n conve 0 sis - M 0 ors used 0	0 Effect. ersion, 1 IcCabe 0 I in Cry 0	Lin. Eolli Thie

Kele	
1	Klaus D. Timmerhaus and Thomas M. Flynn, Cryogenic Process Engineering, Plenum Press, ,New York, 1989
2	Randall F. Barron, Cryogenic Systems, McGraw-Hill, 1985
3	Scott R.B., Cryogenic Engineering, Van Nostrand and Co., 1962
4	Herald Weinstock, Cryogenic Technology, Boston Technical Publishers, inc., 1969
5	Robert W. Vance, Cryogenic Technology, John wiley & Sons, Inc., New York, London

6	G.Venkatarathnam, Cryogenic Mixed Refrigerant Processes, Springer Publication, 2010
7	J.G.Weisend, Hand Book of Cryogenic Engineering —II, Taylor and Francis, 1998

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Describe the properties and applications of cryogenic fluids, materials.	Apply			
CO2	Analyze various liquification cycles.	Analyze			
CO3	Describe and analyze the rectification process and absorption system.	Evaluate			
CO4	Explain components, construction and working of cryogenic refrigerator.	Analyze			
CO5	Explain insulation and instrumentations used in cryogenic system.	Understand			

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	0	0	0	0	2	0	0	0	0	2	2	0	0
CO2	3	3	0	2	0	2	0	0	0	0	2	2	3	0
CO3	3	3	0	2	0	2	0	0	0	0	2	2	3	0
CO4	3	3	0	2	0	2	0	0	0	0	2	2	0	0
CO5	2	0	0	0	0	2	0	0	0	0	2	2	0	0
Avg	2.6	3	0.0	2	0.0	2	0.0	0.0	0.0	0.0	2	2	3	0.0
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low))													

22THE43	RENEWABLE ENERGY SYS	TEMS	S	Π								
PREREQUIS	ITES	Category	PE	Cr	edit	3						
			L	Т	Р	ТН						
		Hours/Week	3	0	0	3						
Course Learn	ing Objectives											
1 To give	a broad overview of the Indian and global energy scenario											
2 To expl	To explain the various solar energy and their conversion technologies											
3 To edu	To educate the insights of wind energy, wind turbine and environmental effects											
4 To expl	ore the various bio-energy resources, conversion techniques ar	nd applications										
5 To disc	uss the techniques to convert the ocean and geothermal energie	es										
UNIT I	ENERGY SCENARIO		9	0	0	9						
Indian energ	y scenario in various sectors – domestic, industrial, comm	ercial, agriculture	. transp	ortation	and ot	hers -						
	SOLAR ENERGY on – Measurements of solar radiation and sunshine – Solar spe collectors – Solar thermal applications – Solar thermal Energ											
conversion –	Solar cells – Solar PV Systems –Solar PV applications.		1									
UNIT III	WIND ENERGY		9	0	0	9						
Horizontal ax	d energy estimation – Betz limit - Site selection for windfarm is wind turbine – components - Vertical axis wind turbine – ns – Environmental issues - Applications. BIO-ENERGY											
- Biomass ga	– Biomass direct combustion – thermochemical conversion - sifier - Types of biomass gasifiers - Cogeneration – Carboniz duction – Ethanol production - Applications.											
UNIT V	OCEAN AND GEOTHERMAL ENERGY		9	0	0	9						
Small hvdro	- Tidal energy – Wave energy – Open and closed OTEC				mal en							
	nergy sources - Types of geothermal power plants - Application	ons- Environmenta	l impact			ergy -						
	nergy sources - Types of geothermal power plants – Applicatio		l impact		5 PER							

Refei	rence Books:
1	Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.
2	Rai.G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014.
3	Sukhatme.S.P., "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2009.
4	Tiwari G.N., "Solar Energy – Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd, 2015.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Describe the Indian and global energy scenario	Apply				
CO2	Describe the various solar energy technologies and its applications.	Analyze				
CO3	Describe knowledge in the various wind energy technologies.	Evaluate				
CO4	Describe the various bio-energy technologies.	Analyze				
CO5	Describe the ocean and geothermal technologies.	Analyze				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	1	1	1	1	1	2	0	0	0	0	0	2	0	1
CO2	3	2	2	1	1	1	0	0	0	0	0	2	0	1
CO3	3	2	3	2	2	1	0	0	0	0	0	2	0	1
CO4	3	2	2	1	2	1	0	0	0	0	0	2	0	1
CO5	2	1	2	1	2	1	0	0	0	0	0	2	0	1
Avg	2.4	1.6	2	1.2	1.6	1.2	0	0	0	0	0	2	0	1
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)													

5

22THE44	MATERIALS FOR SOLAR DEVICES Semester							
PREREQU	ISITES Category PE Credit							
			L	Т	Р	TH		
		Hours/Week	3	0	0	3		
Course Lea	ning Objectives					<u> </u>		
1 To co	mprehend the materials for various parts of solar collectors							
2 To di	scuss the fundamentals of solar cell structure and classification							
3 To ed	ucate novel materials for solar cell manufacturing							
4 To id	entify the materials for thermal energy storage and electrical ener	gy storage						
5 To st	idy the system balance and cost analysis							
UNIT I	MATERIALS FOR SOLAR COLLECTORS		12	0	0	12		
UNIT II	n of Low Cost Solar Collectors. FUNDAMENTALS OF SOLAR CELLS		12	0	0	12		
influence of	Structure - Fundamental Principles of Energy Bands – Band C f impurities on energy levels – Element and Compound Semi and Optimization of solar cells – Amorphous silicon solar cells.				-	-		
UNIT III	THIN FILM AND NOVEL SOLAR CELL MATER	IALS	12	0	0	12		
Junction ar	Celluride, Galium-Arsenic, GaInP / GaAs / Ge - Thin Film, Singled Tandem Junction Solar Cells - Low Cost and High Efficient ovskite solar cells –Dye-sensitized Organic solar cells.							
UNIT IV	ENERGY STOARAGE MATERIALS		12	0	0	12		
Materials f	brage Concepts - Materials for Sensible and Latent Heat Energy or Low and High Temperature Storage Applications. Chemical rating range, Comparison and suitability for various applications	storage Concept	is - Rec					
UNIT V	BALANCE OF SYSTEM MATERIALS AND COST	FANALYSIS	12	0	0	12		
	requirements of other materials for components like Invertors, cation of suitable materials - Simple Cost Analysis for alternative					es, etc		
		TC)TAL(45L) :	60 PEI	NOI		
Reference	Rooks							

2	Sukhatme and Nayak, Solar Energy: Principles Of Thermal Collection & Storage, Tata McGrawHill, 2008

3 Nelson, J, The Physics of Solar Cells, Imperial College Press, 2003

4	Jef Poortmans and Vladimir Arkhipov, Thin Film Solar Cells, John Wiley and Sons, 2008
5	Thomas Markvart, Solar Electricity, John Wiley and Sons, 2007
6	A.R. Jha, Solar Cell Technology and Applications, Aurbach Publications, 2010

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Describe the fundamental principles of materials best suited for making solar collectors, their reliability, characteristics and possibility of using plastics.	Evaluate
CO2	Explore the materials for solar cells, principles, doping and fabrication and optimisations of solar cells.	Apply
CO3	Explore the novel materials for the fabrication of solar cell, their efficiency and organic solar cells.	Understand
CO4	Explain the concept and the diverse materials used for solar energy devices for diverse applications.	Analyze
CO5	Describe the requirements of system balance and analysis with reference to its cost.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	2	0	2	1	2	0	0	0	0	0	1	1	1
CO2	2	2	2	2	2	2	0	0	0	0	0	1	1	2
CO3	2	2	2	2	2	1	0	0	0	0	0	2	2	2
CO4	2	1	1	2	2	1	0	0	0	0	0	1	1	1
CO5	2	2	2	2	2	0	0	0	0	0	0	1	1	2
Avg	2	1.8	1.75	2	1.8	1.5	0	0	0	0	0	1.2	1.2	1.6
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)													

22T	HE45 ENERGY SYSTEMS MODELLING AND ANALYSIS Semester									
PRER	REQUIS	ITES	Category	PE Credit						
				L	Т	Р	TH			
			Hours/Week	3	0	0	3			
Cours	se Learn	ing Objectives								
1	To prov	vide the fundamentals of energy analysis and model developm	ent for closed and o	control	volume	system				
2	To intro	oduce modelling concepts for heat exchanger and solar collect	ors							
3	To prov	vide knowledge to formulate the optimization problem and over	erview of various o	ptimiza	tion tech	niques				
4	To intro	duce the energy and environmental analysis and energy-econ	omic analysis							
5	To disc	uss the applications of optimization techniques using case stud	dies							
UN	IT I	INTRODUCTION		9	0	0	9			
refri	geration	energy systems – heat exchanger - solar collectors – distillat systems - information flow diagram - solution of set of Newton Raphson method- examples of energy systems simula	f non- linear alge							
UN	IT III	OPTIMISATION TECHNIQUES		9	0	0	9			
optin analy	Objectives - constraints, problem formulation - unconstrained problems - necessary and sufficiency conditions. Constrained optimization - Lagrange multipliers, constrained variations, Linear Programming - Simplex tableau, pivoting, sensitivity analysis - new generation optimization techniques – Genetic algorithm and simulated annealing – examples. UNIT IV ENERGY- ECONOMY MODELS 9 0 0 9 Multiplier Analysis - Energy and Environmental Input / Output Analysis - Energy Aggregation – Econometric Energy									
Dem Mult	and Moo tivariate.	leling - Overview of Econometric Methods - Dynamic pr								
UN	IT V	APPLICATIONS AND CASE STUDIES		9	0	0	9			
	Case studies of optimization in Energy systems problems- Dealing with uncertainty- probabilistic techniques – Trade-offs between capital and energy using pinch analysis. TOTAL(45L) : 45 PERIODS									

Refe	erence Books:
1	Bejan, A, Tsatsaronis, G and Moran, M., Thermal Design and Optimization, John Wiley & Sons, 1996
2	Balaji C., Essentials of Thermal System Design and Optimization, Aue Books, 2011
3	Chang, Ni-Bin, Systems analysis for sustainable engineering: theory and applications, New York : McGraw-Hill, c2011

4	Stoecker W.F., Design of Thermal Systems, McGraw Hill, 2011
5	Yogesh Jaluria, Design and Optimization of Thermal Systems, CRC Press INC, 2008

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Apply mass and energy balances for the energy systems.	Apply
CO2	Do Simulation and Modeling of typical energy system.	Analyze
CO3	Use the optimization techniques to optimize the energy system.	Evaluate
CO4	Perform Energy-Economic Analysis for the typical applications.	Analyze
CO5	Have knowledge in optimization of Energy systems problems.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	2	0	0	2	0	0	0	0	0	0	0	0	0
CO2	2	3	3	3	3	0	0	2	0	0	1	0	2	3
CO3	2	3	3	3	3	0	0	2	0	0	1	0	2	3
CO4	3	2	0	2	0	2	0	2	0	0	2	0	3	0
CO5	3	2	0	2	0	2	0	2	0	0	2	0	3	0
Avg	2.6	2.4	3	2.5	2.6	2	0	2	0	0	1.5	0	2.5	3
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)													

22THE51	HE51 DESIGN OF SOLAR AND WIND SYSTEMS Semester							
PREREQUIS	QUISITES Category PE Credit							
			L	Т	Р	ТН		
		Hours/Week	3	0	0	3		
Course Learn	ing Objectives							
1 To stud	ly the radiation principles and fundamentals and classification	n of solar collectors						
2 To und	erstand the solar thermal energy conversion and storage conc	epts						
3 To und	erstand PV principles and techniques for energy storage							
4 To und	erstand the fundamentals of wind energy and its conversion s	ystem						
5 To und	erstand the aerodynamics and types of loads, generators in wi	ind turbines.						
UNIT I	SOLAR RADIATION AND COLLECTORS		9	0	0	9		
parabolic trou UNIT II	lassification - design and performance parameters - tracking gh concentrators - concentrators with point focus - Heliostats SOLAR THERMAL TECHNOLOGIES vorking, types, design and operation of - Solar heating and co	– performance of t	he colle	ctors 0	0	9		
	ination – Solar cooker: domestic, community – Solar Pond – S			nergy st	orage s	ystems		
UNIT III	SOLAR PV SYSTEM DESIGN AND APPLICATION	ONS	9	0	0	9		
cell array desi - voltage reg	b-n junction- Solar cell array system analysis and performance ign concepts - PV system design - design process and optimized ulation - maximum tracking - centralized and decentralized tem - System installation - operation and maintenances – field	zation - detailed arr d SPV systems - s	ay desig	gn - stor	age auto	onomy		
UNIT IV	WIND ENERGY FUNDAMENTALS AND WIND MEASUREMENTS	9	0	0	9			
turbines, Atn	Wind Energy Basics, Wind Speeds and scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Turbulence. Instrumentation for wind measurements, Wind data analysis, tabulation, Wind resource estimation, Betz's Limit, Turbulence Analysis							
UNIT V	UNIT VAERODYNAMICS THEORY AND WIND TURBINE TYPES900							
Airfoil terminology, Blade element theory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor & Blade), Types of loads; Sources of loads Vertical Axis Type, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Up Wind, Down Wind, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generator Drive /PMG/Rotor Excited Sync Generator								
		TO)TAL(45L):	45 PEF	RIODS		

Reference Books:

1

Goswami D.Y., Kreider, J. F. and Francis., "Principles of Solar Engineering', Taylor and Francis, 2000

2	Chetan Singh Solanki, "Solar Photovoltatics – Fundamentals, Technologies and Applications", PHI Learning Private limited, 2011
3	Mario Garcia – Sanz, Constantine H. Houpis, "Wind Energy Systems", CRC Press 2012
4	Sukhatme S.P.,. Nayak.J.P, 'Solar Energy – Principle of Thermal Storage and collection", Tata McGraw Hill, 2008
5	Solar Energy International, "Photovoltaic – Design and Installation Manual" – New Society Publishers,2006
6	Duffie A. and Beckmann W. A., "Solar Engineering of Thermal Processes, John Wiley, 1991
7	John D Sorensen and Jens N Sorensen, "Wind Energy Systems", Woodhead Publishing

Cours	se Outcomes:	Bloom's Taxonomy Level						
Upon	Upon completion of this course, the students will be able to:							
CO1	CO1 Describe solar fundamentals, collectors and classify them.							
CO2	Describe the principle and design the solar heating, cooling and other solar applications.	Apply						
CO3	Explain the principle, working, design optimization of PV system for different applications.	Understand						
CO4	Describe the basics and measurements of wind energy.	Analyze						
CO5	Explain the aerodynamic constructional details of wind turbine.	Understand						

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	2	2	0	2	1	0	0	0	0	0	3	1	0
CO2	3	1	3	0	2	0	0	0	0	0	0	3	2	0
CO3	3	0	2	2	2	0	0	0	0	0	0	3	2	2
CO4	3	0	3	0	2	0	0	0	0	0	0	3	2	0
CO5	3	0	3	2	2	2	0	0	0	0	2	3	2	0
Avg	3	1.5	2.6	2	2	1.5	0	0	0	0	2	3	1.8	2
		3/	2/1 – ind	licates	strength	of cor	relation	(3 – Hi	gh, 2- M	edium, 1	- Low)			

PREREQUISITES Category PE Credit 3 Hours/Week L T P TH Hours/Week L T P TH 3 0 0 3 3 Course Learning Objectives	22THE52	DESIGN AND ANALYSIS OF TURBO M	IACHINES	Semester III						
Hours/Week Image: Margin and the sense of the sens	PREREQU	SITES	Category	PE	Cre	edit	3			
Image: Course Learning Objectives 3 0 0 3 1 To understand the energy transfer process in turbo machines and to derive equations to calculate work done and efficiency. 1 To understand the functional aspects and performance of turbo machines. 2 To understand the functional aspects and performance of turbo machines. 3 To learn about the components of combustion chamber and their functions. 3 To understand the working and performance of turbines. 5 To calculate the performance of gas turbines and jet engines. 5 To calculate the performance of gas turbines and jet engines. 9 0 0 9 Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations– area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytropic. Imit H CENTRIFUGAL AND AXIAL FLOW COMPRESSORS 9 0 0 9 Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work –				L	Т	Р	ТН			
1 To understand the energy transfer process in turbo machines and to derive equations to calculate work done and efficiency. 2 To understand the functional aspects and performance of turbo machines. 3 To learn about the components of combustion chamber and their functions. 4 To understand the working and performance of turbines. 5 To calculate the performance of gas turbines and jet engines. UNIT I INTRODUCTION 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0			Hours/Week	3	0	0	3			
1 To understand the energy transfer process in turbo machines and to derive equations to calculate work done and efficiency. 2 To understand the functional aspects and performance of turbo machines. 3 To learn about the components of combustion chamber and their functions. 4 To understand the working and performance of turbines. 5 To calculate the performance of gas turbines and jet engines. UNIT I INTRODUCTION 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0	Course Lea	ning Objectives								
efficiency. 2 To understand the functional aspects and performance of turbo machines. 3 To learn about the components of combustion chamber and their functions. 4 To understand the working and performance of turbines. 5 To calculate the performance of gas turbines and jet engines. VNIT I INTRODUCTION 9 0 0 9 Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations– area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytropic. 9 0 0 9 Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – pressure			to derive equations	s to cal	culate w	ork dou	ne and			
3 To learn about the components of combustion chamber and their functions. 4 To understand the working and performance of turbines. 5 To calculate the performance of gas turbines and jet engines. UNIT I INTRODUCTION 9 0 0 Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations– area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytropic. UNIT II CENTRIFUGAL AND AXIAL FLOW COMPRESSORS 9 0 0 9 Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work –			to define equations		culute w	ork dor				
4 To understand the working and performance of turbines. 5 To calculate the performance of gas turbines and jet engines. UNIT I INTRODUCTION 9 0 0 9 Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations– area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytropic. UNIT II CENTRIFUGAL AND AXIAL FLOW COMPRESSORS 9 0 0 9 Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working– velocity diagrams – ideal and actual work – pressure	2 To ur	derstand the functional aspects and performance of turbo machi	nes.							
5 To calculate the performance of gas turbines and jet engines. 5 To calculate the performance of gas turbines and jet engines. UNIT I INTRODUCTION 9 0 0 9 Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations– area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytropic. 9 0 0 9 UNIT II CENTRIFUGAL AND AXIAL FLOW COMPRESSORS 9 0 0 9 Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working– velocity diagrams – ideal and actual work –	3 To le	rn about the components of combustion chamber and their func	ctions.							
UNIT IINTRODUCTION9009Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations– area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – velocity efficiencies – isentropic, mechanical, thermal, overall and polytropic.9009UNIT IICENTRIFUGAL AND AXIAL FLOW COMPRESSORS9009Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work –	4 To ur	derstand the working and performance of turbines.								
Basics of isentropic flow – static and stagnation properties – diffuser and nozzle configurations– area ratio – mass flow rate – critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytropic. UNIT II CENTRIFUGAL AND AXIAL FLOW COMPRESSORS 9 0 9 Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working– velocity diagrams – ideal and actual work –	5 To ca	culate the performance of gas turbines and jet engines.								
 critical properties. Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines – velocity diagrams. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo-machines – various efficiencies – isentropic, mechanical, thermal, overall and polytropic. UNIT II CENTRIFUGAL AND AXIAL FLOW COMPRESSORS 9 0 9 9 0 9 Centrifugal compressor – configuration and working – slip factor – work input factor – ideal and actual work – pressure coefficient - pressure ratio. Axial flow compressor – geometry and working – velocity diagrams – ideal and actual work – 	UNIT I	INTRODUCTION		9	0	0	9			
stage pressure ratio – free vortex theory– performance curves and losses.	efficiencies UNIT II Centrifugal coefficient	– isentropic, mechanical, thermal, overall and polytropic. CENTRIFUGAL AND AXIAL FLOW COMPR compressor – configuration and working – slip factor – work pressure ratio. Axial flow compressor – geometry and workir	ESSORS input factor – idea	9 al and a	0 actual we	0 ork – pr	9 ressure			
UNIT IIICOMBUSTION CHAMBER9009	UNIT III	COMBUSTION CHAMBER		9	0	0	9			
Basics of combustion. Structure and working of combustion chamber – combustion chamber arrangements – flame stability – fuel injection nozzles. Flame stabilization – cooling of combustion chamber.				arrangei	nents –	flame st	ability			
UNIT IVAXIAL AND RADIAL FLOW TURBINES9009	UNIT IV	AXIAL AND RADIAL FLOW TURBINES		9	0	0	9			
Elementary theory of axial flow turbines – stage parameters – multi-staging – stage loading and flow coefficients. Degree of reaction – stage temperature and pressure ratios – single and twin spool arrangements – performance. Matching of components. Blade Cooling. Radial flow turbines.	of reaction	- stage temperature and pressure ratios - single and twin sp								
UNIT VGAS TURBINE AND JET ENGINE CYCLES9009	UNIT V	GAS TURBINE AND JET ENGINE CYCLES		9	0	0	9			
Gas turbine cycle analysis – simple and actual. Reheated, Regenerative and Intercooled cycles for power plants. Working of Turbojet, Turbofan, Turboprop, Ramjet, Scramjet and Pulsejet Engines and cycle analysis – thrust, specific impulse, specific fuel consumption, thermal and propulsive efficiencies.	Turbojet, T	urbofan, Turboprop, Ramjet, Scramjet and Pulsejet Engines								
TOTAL(45L) : 45 PERIODS			TO)TAL(45L):	45 PEF	RIODS			

Refer	rence Books:
1	Ganesan, V., Gas Turbines, Tata McGraw Hill, 2011.
2	Cohen, H., Rogers, G F C and Saravan motto, H I H, Gas Turbine Theory, John Wiley, 5th Edition 2001.

3	Khajuria P.R and Dubey S.P., Gas Turbines and Propulsive Systems, Dhanpat Rai Publications, 2003
4	Hill P G and Peterson C R, Mechanics and Thermodynamics of Propulsion, Addition- Wesley, 1970.
5	Mattingly J D, Elements of Gas turbine Propulsion, McGraw Hill, 1st Edition. 1997

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Analyze the energy transfer process in thermodynamic systems.	Analyze
CO2	Calculate the performance of centrifugal flow and axial flow combustion systems.	Apply
CO3	Design and analyze the combustion chamber for turbo machines.	Analyze
CO4	Compute and analyze the performance of axial and radial flow turbines.	Evaluate
CO5	Predict the performance of gas turbines and thermodynamic energy systems.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	2	2	0	0	2	0	0	0	0	0	2	2	0
CO2	3	0	3	2	0	2	0	0	0	0	0	2	2	0
CO3	3	2	3	2	0	2	0	0	0	0	0	2	2	0
CO4	3	2	3	2	0	2	0	0	0	0	0	2	2	0
CO5	3	2	3	2	0	2	0	0	0	0	0	2	2	0
Avg	3	2	2.8	2	0	2	0	0	0	0	0	2	2	0
		3/2	2/1 – indi	icates st	rength o	of correl	ation (3	– High,	2- Medi	um, 1- L	.ow)			

22THE53	FIRE ENGINEERING AND EXPLOSION	CONTROL	S	Semeste	r	III
PREREQUI	SITES	Category	PE	Cre	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					
1 To un	derstand and learn the fundamentals of fire, explosion and theorem	ry of combustion				
2 To un	derstand various classes of fires, types of fire extinguishers and	protection techniq	ues			
3 To un	derstand and learn various fire protection systems, components	and their working				
	derstand the various fire-resistant materials and to design firepr					
	derstand the principles of explosion protection systems	6				
UNIT I	PHYSICS AND CHEMISTRY OF FIRE		9	0	0	9
	ies of solid, liquid and gases - fire spread - toxicity of produ					
	biling liquid expanding vapour explosion – case studies – Flix b borough and Bombay Victoria dock ship explosions. FIRE PREVENTION AND PROTECTION		9	0	0	9
classes of f watchers – l	gnition – fire triangle – principles of fire extinguishing – activities – A, B, C, D, E – types of fire extinguishers – fire stop ayout of stand pipes – fire station-fire alarms and sirens – main cue operations – fire drills – notice-first aid for burns	pers – hydrant pip	bes – ho	oses – n	nonitors	– fire
UNIT III	INDUSTRIAL FIRE PROTECTION SYSTEMS		9	0	0	9
installations CO2 system	rdrants-stand pipes – special fire suppression systems like delu , reliability, maintenance, evaluation and standards – alarm and , foam system, Dry Chemical Powder (DCP) system, halon table extinguishers – flammable liquids – tank farms – indices of	l detection systems system – need for	. Other	suppress replaces	sion sys nent –	tems –
UNIT IV	BUILDING FIRE SAFETY		9	0	0	9
structural in	of fire safe building design, Fire load, fire resistant materia tegrity – concept of egress design - exists – with calculations ldings –snookers.					
UNIT V	EXPLOSION PROTECTING SYSTEMS		9	0	0	9
Arrestors, i generation of	f explosion-detonation and blast waves-explosion parameter solation, suppression, venting, explosion relief of large enc of inert gas rupture disc in process vessels and lines explosio alons-hazards in LPG, ammonia (NH ₃), Sulphur dioxide (SO ₂),	losure-explosion von, suppression system	venting-	inert ga	ses, pla	int for
		TO)TAL(45L):	45 PEF	RIODS

Refer	rence Books:
1	Gupta, R.S., "Hand Book of Fire Technology" Orient Longman, Bombay 1977.

2	"Accident Prevention manual for industrial operations" N.S.C., Chicago, 1982
3	Dinko Tuhtar, "Fire and explosion protection".
4	Davis Daniel et al, "Hand Book of fire technology".
5	Fire fighters hazardous materials reference book Fire Prevention in Factories", an Nostrand Rein Hold, New york, 1991.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level						
CO1	CO1 Describe the fundamentals of fire, explosion and theory of combustion.							
CO2	Classify the fire, class of fire and equipment for fire extinguishing.	Analyze						
CO3	Explain various industrial fire protection systems components and their working.	Evaluate						
CO4	Design the building with fire protection and concepts of their design.	Analyze						
CO5	Describe the explosion protection system for various application.	Analyze						

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	2	0	0	2	0	0	0	0	0	2	2	2	0	0
CO2	2	0	0	2	0	0	0	0	0	2	2	2	0	0
CO3	2	0	0	2	0	1	0	0	1	1	1	2	0	0
CO4	2	0	0	2	0	1	0	0	1	1	1	2	0	0
CO5	2	0	0	2	0	1	0	0	1	1	1	2	0	0
Avg	2	0	0	2	0	1	0	0	1	1.4	1.4	2	0	0
	1	3/	2/1 – ind	licates s	trength	of corre	elation (3 – High	, 2- Me	dium, 1-	Low)	1		

22THE54	WASTE TO ENERGY		S	er	III	
PREREQUIS	ITES	Category	PE	Cre	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Learn	ing Objectives		l			
1 To ider	tify wastes from which energy can be generated					
2 To acq	uire the knowledge on biomass pyrolysis process and its applic	cations				
3 To acq	uire knowledge on various types of biomass gasifiers and their	operations				
4 To und	erstand the construction and working of on biomass combusto	rs and its application	ons for g	generatir	ng energ	у
5 To sum	marize the principles of bio-energy systems and their features					
UNIT I	INTRODUCTION TO EXTRACTION OF ENE WASTE	CRGY FROM	9	0	0	9
Classificatior gasifiers, dig	n of waste as fuel – agro based, Forest residue, Industrial was estors	ste - MSW – Conv	ersion o	levices -	– Incine	rators,
UNIT II	BIOMASS PYROLYSIS		9	0	0	9
• •	ypes, slow fast – Manufacture of charcoal – Methods - Yields elds and applications	s and application –	Manufa	cture of	f pyroly	tic oils
UNIT III	BIOMASS GASIFICATION		9	0	0	9
operation -	Fixed bed system – Downdraft and updraft gasifiers – Flui Gasifier burner arrangement for thermal heating – Gasifie and kinetic consideration in gasifier operation					
UNIT IV	BIOMASS COMBUSTION		9	0	0	9
	es – Improved challahs, types, some exotic designs, Fixed be combustors, Design, construction and operation - Operation of					ustors,
UNIT V	NIT V BIO ENERGY					9
and construct	biogas (Calorific value and composition), Biogas plant technication ional features - Biomass resources and their classification - B Direct combustion - biomass gasification - pyrolysis and lice	iomass conversion	process	es - The	ermo ch	emical
		TO)TAL(45L):	45 PEF	RIODS
Reference B	ooks:					

1	Blogas Technology – a Fractical Hand Book, Kilandelwal, K. C. K. C. and Mandi, S. S., Vol. 1 & II, Tata McCraw
	Hill Publishing Co. Ltd., 1983.

Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996 2

3	Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
4	Non -Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the various types of wastes from which energy can be generated.	Understand					
CO2	Gain knowledge on biomass pyrolysis process and its applications.	Analyze					
CO3	Develop knowledge on various types of biomass gasifiers and their operations.	Evaluate					
CO4	Gain knowledge on biomass combustors and its applications on generating energy.	Analyze					
CO5	Understand the principles of bio-energy systems and their features.	Understand					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	2	0	2	0	0	0	0	0	2	2	0
CO2	3	0	0	3	3	2	0	0	0	2	0	2	2	0
CO3	3	3	3	2	0	2	0	0	0	0	0	2	2	0
CO4	3	3	3	2	0	2	0	0	0	0	0	2	2	0
CO5	3	0	3	0	0	2	0	0	0	0	0	2	2	2
Avg	3	3	3	2.25	0.6	2	0	0	0	2	0	2	2	2
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)													

22T	22THE55 SOLAR REFRIGERATION AND AIR- CONDITIONING Semester										
PREF	REQUIS	ITES	Category	y PE Credit							
				L	L T P		ТН				
			Hours/Week	3	0	0	3				
Cours	se Learn	ing Objectives									
1	To imp	art the knowledge on thermodynamics cycle, refrigerant, refrig	erator and environ	mental	impacts						
2	To imp	art the knowledge the components, classification and working	principles of solar	cooling	system						
3	To imp	art the knowledge the components, classification and working	principles of solar	space c	ondition	ing syst	em				
4	To expl	ain the various ways of exploiting solar energy for day-to-day	applications	-							
5		il about the economics involved with the soalr systems									
UNI		INTRODUCTION		9	0	0	9				
					-		-				
	•	– Refrigerator – Heat Pump – Heat Transformer, Refrige al impacts - Thermodynamic Processes.	erants – Types ar	nd histo	rical de	velopm	ents –				
UNI	IT II	SOLAR COOLING		9	0	0	9				
		r cooling systems – Solar collectors and storage systems fo									
		cooling systems - Fuel assisted solar cooling systems Solar desiccant cooling systems - Advanced solar cooling systems		stic coo	oling an	d hybri	d air-				
UNI	IT III	SOLAR SPACE CONDITIONING SYSTEMS		9	0	0	9				
Liqu	uid Type S	Solar Heating System With / Without Storage - Heat Storage	Configurations –	Heat De	livery N	/lethods	- Air-				
Тур	e Solar H	eating Systems - Solar Refrigeration and Air Conditioning.	-		-						
UNI	IT IV	OTHER SOLAR APPLICATIONS		9	0	0	9				
Sola	ar Cooking	g – Distillation - Desalination - Solar Ponds – Solar Passive Ar	chitecture – Solar	Drying	– Solar	Chimne	у.				
UNI	IT V	SOLAR ECONOMICS		9	0	0	9				
ener indu	Application of economic methods to analyze the feasibility of solar systems to decide project / policy alternatives - Net energy analysis - and cost requirements for active and passive heating and cooling - for electric power generation - and for industrial process-heating. Economics – Fixed and variable cost - Payback period - Net Present Value - Internal Rate of Return - Carbon credit – Embodied energy analysis.										
			TC	DTAL(45L):	45 PEF	IODS				

Refe	rence Books:
1	Duffie, J.A., and Beckman, W.A. Solar Energy Thermal Process - 4 th Edition (2013), John Wiley and Sons, New York, ISBN: 978-0-470-87366-3, Solar Energy Laboratory, University of Wisconsin-Madison, pp. 944.
2	H P Garg, M Dayal, G Furlan, Physics and Technology of Solar Energy- Volume I: Solar Thermal Applications, Springer, 2007.
3	Sukhatme S.P. J K Nayak, Solar Energy, Tata McGraw Hills P Co., ISBN: 9789352607112, 4 th Edition, 2017, pp. 568.

4	Charles Christopher Newton - Concentrated Solar Thermal Energy- Published by VDM Verlag, 2008.
5	H.P.Garg, S.C.Mullick, A.K.Bhargava, D.Reidal, Solar Thermal Energy Storage Springer, 2005.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Explain the concept of Carnot cycle, thermodynamic process and environmental effects.	Evaluate				
CO2	Classify and explain solar cooling and hybrid air conditioning system.	Apply				
CO3	Articulate the technical fundamentals of solar thermal energy storage and heating systems.	Understand				
CO4	Describe the spectrum of possible solar thermal applications for day-to-day life.	Analyze				
CO5	Communicate technological and socio-economic issues involved in solar energy.	Understand				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	1	0	0	0	2	0	0	0	0	2	2	0
CO2	3	2	0	0	0	1	1	0	0	0	0	0	0	2
CO3	3	2	0	1	0	1	0	0	0	0	0	3	3	0
CO4	3	2	0	1	0	0	0	0	0	0	0	2	3	0
CO5	3	2	2	0	0	0	0	0	0	2	0	0	0	0
Avg	3	2	1.5	1	0	1	1.5	0	0	2	0	2.3	2.6	2
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)													

22TI	HE61	ENVIRONMENTAL AND POLLUTION	CONTROL	Semester I						
PRER	EQUIS	ITES	Category	ory PE Credit						
				Т	Р	TH				
			Hours/Week	3	0	0	3			
Cours	e Learn	ing Objectives								
1	To imp	art knowledge on the atmospheric change and its present cond	ition, global warmi	ng and	eco-legi	slations				
2	To deta	il on the sources of air pollution and possible solutions for mit	tigating their degrad	dation						
3	To deta	il on the sources of water pollution and possible solutions for	mitigating their deg	gradatio	n					
4	To elab	orate on the technologies available to manage all types of was	te							
5	To stud	y source, effect and control of hazardous and non-hazardous v	wastes							
UNIT	I	INTRODUCTION		9	0	0	9			
	-	eric change – greenhouse effect – Ozone depletion - natur onmental chemistry and biology – impacts – environmental. Le	•	nd ener	gy tran	sfer – r	naterial			
UNIT	II	AIR POLLUTION		9	0	0	9			
		rces and effect – air pollution meteorology – atmospheric dispersion air pollution control – air sampling and measurement.	persion – indoor air	quality	- contr	ol metho	ods and			
UNIT	III	WATER POLLUTION		9	0	0	9			
		s - water pollutants - characteristics – quality - water treatm isposal of sludge - monitoring compliance with standards.	ent systems – wast	e water	treatme	ent - tre	atment,			
UNIT	IV	WASTE MANAGEMENT		9	0	0	9			
		assification – Solid waste – Hazardous waste - Characteristi Energy Recovery – Waste minimization	ics – Collection an	d Trans	portatio	on - Dis	posal –			
UNIT V OTHER TYPE OF POLLUTION FROM INDUSTRIES					0	0	9			
Noise pollution and its impact - oil pollution - pesticides - instrumentation for pollution control - water pollution from tanneries and other industries and their control – environment impact assessment for various projects – case studies. Radiation pollution: types, sources, effects, control of radiation pollution.										
			TC	DTAL(45L):4	45 PEF	RIODS			
Refe	rence Bo	ooks:								
	1		A Design Anners	ch Drar	tica Ua	11 of Ind	lia Dut			
1	1 Arcadio P Sincero and G.A. Sincero, Environmental Engineering – A Design Apporach, Prentice Hall of India Pvt Ltd, New Delhi, 2002.									

2	Bishop P., Pollution Prevention: Fundamentals and Practice, McGraw-Hill International Edition, McGraw-Hill book Co, Singapore, 2000.
3	G.Masters, Introduction to Environmental Engineering and Science Prentice Hall of India Pvt Ltd, New Delhi, 2003
4	Gilbert M. Masters, Introduction to Environmental Engineering and Science, 2nd Edition, Prentice Hall, 1998.

5	H.Ludwig, W.Evans, Manual of Environmental Technology in Developing Countries, International Book Company, Absecon Highlands N.J. (1991).
6	H.S.Peavy, D.R.Rowe and G.Tchobanoglous, Environmental Engineering McGraw- Hill Book Company, NewYork, (1985).

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	To describe the background of present condition of the environment and remedial action required.	Evaluate
CO2	Elaborate the sources of air pollution and the equipment for control them.	Apply
CO3	Elaborate the sources of water pollution and the equipment for control them.	Understand
CO4	Elaborate the sources of solid waste, their characteristics and managements.	Analyze
CO5	Describe the other sources of pollution from the industries and their controlling techniques.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	1	1	2	1	1	2	0	3	0	2	0	1	1	1
CO2	1	1	2	1	1	2	0	3	0	2	0	1	1	1
CO3	1	1	2	1	1	2	0	3	0	2	0	1	1	1
CO4	1	1	2	1	1	2	0	3	0	2	0	1	1	1
CO5	1	1	2	1	1	2	0	3	0	2	0	1	1	1
Avg	1	1	2	1	1	2	0	3	0	2	0	1	1	1
	•	3/2	/1 – indi	icates st	rength o	of correl	ation (3	– High,	2- Medi	um, 1- L	low)		•	

22TI	HE62	NANO TECHNOLOGY	ł	S	emeste	er	III
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To impa	art the knowledge on the fundamental concepts, synthesis and	various properties	of nano	material	S	
2	To expl	ain the different routes for the synthesis of nanomaterials					
3	To dem	onstrate the characterization techniques available for nanomat	terials				
4	To unde	erstand the fundamentals of micro and nano-sensors and their	applications				
5	To stud	y the preparation methods, properties and applications of nano	ofluids				
UNI	ΊΤΙ	INTRODUCTION		9	0	0	9
		f Nano-Technology - Emergence of Nano-Technology - Botte					
		logy. Properties of materials and Nano-materials- The role of perties- Thermal Properties- Mechanical Properties- Optical P		terials-	Electroi	nic Prop	erties-
UNI	IT II	SYNTHESIS TECHNIQUES OF NANO-MATE	CRIALS	9	0	0	9
Sol-g litho	gel- Mice graphy a	nods - Inert gas condensation - Ball Milling - Chemical vapou elles and microemulsions - Cluster compounds. M based nan and SEM-based nanolithography and Nano-manipulation- Ion application	nolithography and	Nano- 1	manipul	ation- E	beam
UNI	III III	CHARACTERIZATIONS OF NANO-MATERI	ALS	9	0	0	9
Diffi	raction-O	ectron Microscopy (SEM) - Scanning Probe Microscopy ptical Microscope - Operational principle and application meters- Principle of operation and application for band gap me	n for analysis of				
UNI	T IV	NANO SENSORS AND NANO DEVICES		9	0	0	9
chara defei	acterizationse: Acce	ano-sensors - Fundamentals of sensors – Biosensor- Micron of sensors - Method of packaging at zero level - Dye lelerometer - Pressure Sensor- Night Vision System - Nano-cue circuitry.	level and first leve	l. Sens	ors for	aerospa	ce and
UNI	T V	NANO FLUIDS AND THEIR APPLICATIONS		9	0	0	9
of H	leat Tran	f Nano-fluids – Thermal and optical Properties of Nano-Fluid sfer – Role of Brownian Motion – Constraints for nano-fl of Nano-fluids - current Applications– Issues with the Enviro	uids -Models for t				
			TC)TAL(45L):	45 PEF	RIODS

Reference Books:

1	B.S.Murthy, P.Shankar, Baldevraj, B.B.Rath and James Murday, "Text Book of Nanoscience and Nanotechnology", Universities Press (India) Private Limited, 2013 Mark Ratneer, Daniel Ratner, "Nanotechnology" Pearson Education, Inc, 2003.
2	Guozhong Cao, "Nanostructures & Nanomaterials: Synthesis- Properties and Applications", Imperial College Press, 2004.
3	Bharat Bhusan (Ed.), "Springer Handbook of Nanotechnology", Springer Verlag Berlin- Heidelberg, 2004.
4	Rainer Wasser (Ed.), "Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices" Wiley-VchVerlag GmbH & Co, 2003.
5	Charles P. Poole- Jr. and Frank J. Owens, "Introduction to Nanotechnology", Wiley Interscience, 2003.
6	M.J. Madou, "Fundamentals of Microfabrication: Science of Miniaturization", CRC Press- 2nd Edition, 2002.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the evaluation of nanotechnology and various properties of nanomaterials.	Evaluate
CO2	Explain the different synthesis techniques for nanomaterials.	Apply
CO3	Explain the principles of microscopical analysis and other techniques for characterization of nanomaterials.	Understand
CO4	Understand the fundamentals, classification of nano sensor and nanodevices.	Analyze
CO5	Describe the preparation, characterization, mechanism and application of nanofluids.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	0	0	0	0	0	0	0	0	0	0	0
CO2	3	3	0	2	3	0	0	0	0	0	0	0	0	0
CO3	3	3	0	2	3	0	0	0	0	0	0	0	0	0
CO4	2	0	0	0	3	0	0	0	0	0	0	0	0	0
CO5	2	0	3	2	0	0	0	0	0	0	0	3	3	0
Avg	2.6	3	3	2	3	0	0	0	0	0	0	3	3	0
	1	3/2	/1 – ind	icates st	rength o	of correla	ation (3	– High,	2- Medi	um, 1- L	low)			

22TI	HE63	SOLAR ENERGY FOR INDUSTRIAL HEATING	PROCESS	ory PE L T eek 3 Ors. 0 oration systems. 0 oration systems. 0 oration system. 0 oration system. 0 oration Suitability 0 oratin Back, Ant 0 oratin Back, Ant 0 oratin storage for 0 oratin systems - T 0	emest	emester		
RER	REQUIS	ITES	Category		Cr	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
ours	e Learn	ing Objectives						
1	To stud	y the construction and working, merits and demerits of variou	s solar collectors.					
2	To stud	y the construction and working, merits and demerits of variou	s solar water heatir	ng syster	ms.			
3	To stud	y the concept, components and working of solar absorption sy	vstem.					
4	To stud	y the concept, components and working of solar vapour comp	ression refrigeratio	on syster	n.			
5	To expl	ain the techniques to implement solar refrigeration for practic	al applications.					
UNI	ΠΙ	SOLAR COLLECTORS		9	0	0	9	
		ector Storage System - Thermosyphon System - Open Loop, olar Water Heaters - Solar Heated Pools - Solar Heated Hot T		n Back,	Antifre	eze Sys	stems -	
		SOLAR ABSORPTION COOLING	1	9	0	0	9	
Oper amm	n cycle a	orption cooling - Principle of absorption cooling - Solar oper absorption / desorption solar cooling alternatives – Lithiun corption system – Intermittent absorption refrigeration Systems	n Bromide- Water	absorp	tion Sy	stem –	Aqua	
UN	IT IV	VAPOUR COMPRESSION REFRIGERATION	SYSTEM	9	0	0	9	
-	1	ression refrigeration cycles - Rankine cycle - Sterling cycle b s and intermittent solar refrigeration and air-conditioning syste	0	systems	s - Ther	mal mo	delling	
UN	IT V	IMPLEMENTATION TECHNIQUES		9	0	0	9	
		refrigerator – Free cooling - Solar thermoelectric refrigerat ns - Case studies.	tion and air- cond	itioning	–Solar	econon	nics of	
			T()TAL(45L):	45 PEI	RIOD	

Kutu	
1	Alefeld G. and Radermacher R., Heat Conversion Systems, CRC Press, 2004.
2	ASHRAE Hand Book-HVAC Systems & Equipment, ASHRAE Inc. Atlanta, 2008.
3	McVeigh J.C. and Sayigh A.A.M. Solar Air Conditioning and Refrigeration, PergamonPress, 1992.
4	Rakosh Das Begamudre, Energy Conversion Systems, New Age International, 2007.
5	Reinhard Radermacher, S AKelin and K Herold, Absorption chillers and heat pumps, CRCPress, 1996.

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Design the different types of solar collectors for a given cooling load.	Understand
CO2	Delineate systems for solar water heating.	Evaluate
CO3	Describe the principles and working of absorption cooling system.	Apply
CO4	Design the solar powered vapor compression refrigeration system.	Understand
CO5	Describe the various techniques for the implementation of solar energy in refrigeration and air conditioning system.	Analyze

6

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	3	3	3	1	2	2	0	0	0	1	3	2	0
CO2	3	3	3	3	1	2	2	0	0	0	1	3	2	0
CO3	3	3	3	3	1	2	2	0	0	0	1	3	2	0
CO4	3	3	2	2	1	3	2	0	0	1	1	3	2	0
CO5	3	3	0	0	1	1	0	0	0	1	0	3	2	0
Avg	3	3	2.75	2.75	1	2	2	0	0	1	1	3	2	0
		3/2	2/1 – ind	icates st	rength o	of correl	ation (3	– High,	2- Medi	um, 1- L	ow)	1	1	1

	ENERGY EFFICIENT BUILDING	S DESIGN	S	emeste	er	III	
REREQUIS	SITES	Category	PE	Credit T P 0 0 als 0 0 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0 Q 0	edit	3	
		TT (TT)	L	Т	Р	ТН	
		Hours/Week	3	0	0	3	
ourse Lear	ning Objectives						
1 To pro	vide the overall perspective of green buildings concept design						
2 To fan	iliarize with basic terminologies related to energy efficient buil	lding design and m	aterials				
3 To pro	vide knowledge on concepts of passive heating and cooling						
4 To pro	vide the knowledge on heat transfer in buildings						
5 To pro	vide the knowledge to utilize renewable energy systems in build	dings					
UNIT I	INTRODUCTION		9	L T P 3 0 0 3 0 0 erials	9		
	Building, Historical perspective, Aspects of green building desi BC Standards.	ign – Sustainable S	Site, Wa	ter, Ene	ergy, Ma	ateria	
UNIT II	LANDSCAPE AND BUILDING ENVELOPES					9	
Energy effic Thermal con (TTC), Diur	LANDSCAPE AND BUILDING ENVELOPES ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties of hal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E heat exchange of building with environment, Insulation	f Building Materi	caping, als, The	Buildin ermal T	g envel Time Co	lope onsta	
Energy effic Thermal con (TTC), Diur	ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties o nal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E	f Building Materi	caping, als, Tho iation –	Buildin ermal T Sol-air	g envel ime Co Tempe	lope onsta	
Energy effic Thermal con (TTC), Diur Processes of UNIT III HVAC intro	ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties of hal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E heat exchange of building with environment, Insulation PASSIVE HEATING AND COOLING duction, Passive Heating – Solar radiation basics, Sun Path ing, Concept of Daylighting, Passive Cooling – Natural Vent	f Building Materi ffect of Solar Rad Diagram, Direct F	caping, als, The iation – 9 Heating,	Buildin ermal T Sol-air 0 Indirec	g envel ime Co Tempe 0 t Heatin	lope onsta ratur	
Energy effic Thermal con (TTC), Diur Processes of UNIT III HVAC intro Isolated heat	ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties of hal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E heat exchange of building with environment, Insulation PASSIVE HEATING AND COOLING duction, Passive Heating – Solar radiation basics, Sun Path ing, Concept of Daylighting, Passive Cooling – Natural Vent	f Building Materi ffect of Solar Rad Diagram, Direct F	caping, als, The iation – 9 Heating, Wind),	Buildin ermal T Sol-air 0 Indirec Evapor	g envel ime Cc Tempe 0 t Heatin rative C	lope onsta eratur ng an oolin	
Energy effic Thermal con (TTC), Diur Processes of UNIT III HVAC intro Isolated heat and Radiativ UNIT IV Heat transfer	ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties of hal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E heat exchange of building with environment, Insulation PASSIVE HEATING AND COOLING duction, Passive Heating – Solar radiation basics, Sun Path ing, Concept of Daylighting, Passive Cooling – Natural Vent e Cooling.	f Building Materi ffect of Solar Rad Diagram, Direct H tilation (Stack and al Transmittance,	caping, als, The iation – 9 Heating, Wind), 9 Estimat	Credit T P 0 0 0 0 1s P 0 0 1s P 0 0 1s P 0 0 1s P 0 0 7 P 0 0 0 0 0 0 10 0 10 0 10 0 11 12 12 13 13 14 14 14 15 14 15 14 16 14 17 14 18 15 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <th10< th=""> 10</th10<>	lope onsta ratur ng an oolin		
Energy effic Thermal con (TTC), Diur Processes of UNIT III HVAC intro Isolated heat and Radiativ UNIT IV Heat transfer	ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties of nal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E heat exchange of building with environment, Insulation PASSIVE HEATING AND COOLING duction, Passive Heating – Solar radiation basics, Sun Path I ing, Concept of Daylighting, Passive Cooling – Natural Vent e Cooling. HEAT TRANSFER IN BUILDINGS • due to fenestration/infiltration, Calculation of Overall Therm	f Building Materi ffect of Solar Rad Diagram, Direct H tilation (Stack and al Transmittance,	caping, als, The iation – 9 Heating, Wind), 9 Estimat ation in	Buildin ermal T Sol-air 0 Indirec Evapor 0 ion of t buildin	g envel ime Co Tempe 0 t Heatin rative C 0 uilding gs	lope onsta rratur ng ar oolin load	
Energy effic Thermal cor (TTC), Diur Processes of UNIT III HVAC intro Isolated heat and Radiativ UNIT IV Heat transfer Steady state UNIT V Introduction	ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties of nal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E heat exchange of building with environment, Insulation PASSIVE HEATING AND COOLING duction, Passive Heating – Solar radiation basics, Sun Path ing, Concept of Daylighting, Passive Cooling – Natural Vent e Cooling. HEAT TRANSFER IN BUILDINGS tue to fenestration/infiltration, Calculation of Overall Therm method, network method, numerical method, correlations, Ther	f Building Materi ffect of Solar Rad Diagram, Direct H tilation (Stack and al Transmittance, mal Storage integr	caping, als, The iation – 9 Heating, Wind), 9 Estimat ation in 9	Buildin ermal T Sol-air 0 Indirec Evapor 0 ion of b buildin 0	g envel ime Co Tempe 0 t Heatin rative C 0 uilding gs 0	lope onsta ratur g ng ar oolin load	
Energy effic Thermal cor (TTC), Diur Processes of UNIT III HVAC intro Isolated heat and Radiativ UNIT IV Heat transfer Steady state UNIT V Introduction	ient Landscape design – Microclimate, Shading, Arbors, W nfort, Psychrometry, Comfort indices, Thermal Properties of nal Heat Capacity (DHC), Thermal Lag, Decrement Factor, E heat exchange of building with environment, Insulation PASSIVE HEATING AND COOLING duction, Passive Heating – Solar radiation basics, Sun Path ing, Concept of Daylighting, Passive Cooling – Natural Vent e Cooling. HEAT TRANSFER IN BUILDINGS to due to fenestration/infiltration, Calculation of Overall Therm method, network method, numerical method, correlations, Ther RENEWABLE ENERGY IN BUILDINGS of renewable sources in buildings, BIPV, Solar water heating	f Building Materi ffect of Solar Rad Diagram, Direct H tilation (Stack and al Transmittance, mal Storage integr	caping, als, The iation – 9 Heating, Wind), 9 Estimat ation in 9 nes, sta	Buildin ermal T Sol-air 0 Indirec Evapor 0 ion of t buildin 0 nd-alon	g envel ime Co Tempe 0 t Heatin rative C 0 uilding gs 0 e PV sy	lope onsta ratur ng an coolin load	

11010	
1	Baruch Givoni: Climate considerations in building and Urban Design, John Wiley & Sons, 1998
2	Baruch Givoni: Passive Low Energy Cooling of Buildings by, John Wiley & Sons, 15-Jul-1994
3	JA Duffie and WA Beckman: Solar Engineering of Thermal Processes, Third Edition, John Wiley & Sons, 2006
4	Jan F. Kreider, Peter S. Curtiss, Ari Rabl, Heating and cooling of buildings: Design for Efficiency, Revised Second Edition, CRC Press, 28-Dec-2009

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Will be familiar with climate responsive building design and basic concepts.	Evaluate
CO2	Will Know the basic terminologies related to buildings.	Apply
CO3	Will Know the passive (air) conditioning techniques.	Understand
CO4	Will be able to evaluate the performance of buildings.	Analyze
CO5	Gets acquainted with Renewable energy systems in buildings.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	3	1	1	2	2	1	2	1	0	0	3	0	0
CO2	3	3	3	1	1	0	0	0	0	1	1	3	0	0
CO3	3	1	3	0	1	2	0	1	0	2	2	3	0	3
CO4	3	3	3	2	2	2	0	0	0	2	2	2	0	2
CO5	3	2	3	0	3	1	0	2	0	2	2	2	0	2
Avg	3	2.4	2.6	1.3	1.8	1.75	1	1.6	1	1.75	1.75	2.6	0	2.3
		3/2	/1 – indi	icates st	rength o	of correl	ation (3	– High,	2- Medi	um, 1- L	low)	•	•	-

22TH	HE65	ANALYSIS OF THERMAL POWER	CYCLES	S	Semeste	er	III
PRER	EQUIS	ITES	Category	PE	Cro	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1	To dem	onstrate the working of steam power cycles and calculations of	of efficiency				
2	To prov	vide techniques to modify the steam cycles and estimate efficient	encies				
3	To imp	art the knowledge to analyse the air cycles with variable speci	fic heats				
4	To impa	art the knowledge to analyse the performance of Brayton cycle	e with regeneration	and rel	neating		
5	To stud	y and analyse various refrigeration cycles					
UNI	TI	STEAM POWER CYCLES		9	0	0	9
		lant cycle - Rankine cycle - Reheat cycle - Regenerative cycle	e with one and mor	e feed l	neaters -	Types	of feed
	-	and closed types - Steam traps types.					
UNIT	II	MODIFIED STEAM POWER CYCLES		9	0	0	9
-		Condensing turbines - Combined heat and power - Con	nbined cycles - Bi	ayton	cycle, I	Rankine	cycle,
combi	nations -	Binary vapour cycle.					
UNIT	T III	AIR CYCLES		9	0	0	9
Air sta	undard cy	cles - Cycles with variable specific heat - fuel air cycle - Devi	iation from actual c	ycle.	1		1
UNIT	IV	MODIFIED BRAYTON CYCLES		9	0	0	9
Brayto stages.	•	- Open cycle gas turbine - Closed cycle gas turbine - Rege	eneration - Inter co	oling a	ind rehe	ating be	etween
UNIT	C V	REFRIGERATION CYCLE		9	0	0	9
Refrig	eration C	Sycles - Vapour compression cycles - Cascade system - Vapou	r absorption cycles	- GAX	K Cycle	1	1
			TC)TAL(45L):	45 PEF	RIODS

Refe	rence Books:
1	Culp, R., Principles of Energy Conversion, McGraw-Hill, 2000.
2	Nag. P.K., Power Plant Engineering, 2nd Tata McGraw-Hill, 2002
3	Nag. P.K., Engineering Thermodynamics, 3rd ed., Tata McGraw-Hill, 2005
4	Arora, C.P., Refrigeration and Air Conditioning, 2nd ed., Tata McGraw-Hill, 2004

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Analyze the steam power cycle efficiency and work done and techniques to improve them.	Analyze
CO2	Analyze the modified steam power cycle efficiency and work done.	Analyze
CO3	Derive the equation for efficiency and work done and analyze the deviation from actual cycles.	Evaluate
CO4	Analyze the Rankine cycle efficiency and work done and techniques to improve them.	Analyze
CO5	Analyze various refrigeration cycles and their performances.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	3	2	2	0	0	0	0	0	0	0	3	3	0
CO2	3	3	2	2	0	0	0	0	0	0	0	3	3	0
CO3	3	3	2	2	0	0	0	0	0	0	0	3	3	0
CO4	3	3	2	2	0	0	0	0	0	0	0	3	3	0
CO5	3	3	2	2	0	0	0	0	0	0	0	3	3	0
Avg	3	3	2	2	0	0	0	0	0	0	0	3	3	0
	•	3/2	2/1 – indi	icates st	rength o	of correl	ation (3	– High,	2- Medi	ium, 1- L	low)	•	•	

22TH	HE71	ENERGY FORECASTING, MODE PROJECT MANAGEME		S	emeste	er	III
PRER	EQUIS		Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To exp	lain about National energy scenario					
2	To den	nonstrate the energy demand using various forecasting models					
3	To pro	vide insights to the optimization models for the effective utiliz	zation of energy sou	irces			
4	To und	erstand the procedure to the write the project proposal					
5	To und	erstand the energy policies in the country					
UNI	ΤΙ	ENERGY SCENARIO		9	0	0	9
Sour	ces and	gy in economic development and social transformation: En Overall Energy demand and Availability - Energy Consumpt lear and Renewable Energy: Present Status and future promise	ion in various sector				
UNI	TI	FORECASTING MODEL		9	0	0	9
Expo		Fechniques - Regression Analysis - Double Moving Avera Smoothing – ARIMA model- Validation techniques – Qualita Yorks.					
UNI	TIII	OPTIMIZATION MODEL		9	0	0	9
Math	nematical	Optimization - Formulation of Objective Function - O Optimization Software – Development of Energy Optim nalysis - Concept of Fuzzy Logic.					
UNI	TIV	PROJECT MANAGEMENT		9	0	0	9
	-	ration – Feasibility Study – Detailed Project Report - Project A on – Project Risk Analysis - Project Financing – Financial Ev	11	cost ben	efit Ana	ılysis - I	Project
UNI	TV	ENERGY POLICY		9	0	0	9
solar	energy	tate Level Energy Issues - National & State Energy Policy - policy - Framework of Central Electricity Authority (C (CERC & ERCs)-Costing.					
			TO)TAL(45L):	45 PEF	RIODS
Refe	rence Bo	ooks:					
1		rong J.Scott (ed.), Principles of forecasting: a hand boo chusetts: Kluwer Academic Publishers.2001.	ok for researchers	and p	ractition	ers, No	orwell,

Dhandapani Alagiri, Energy Security in India Current Scenario, The ICFAI University Press, 2006. 3. Fred Luthans, Brett C. Luthan, Kyle W. Luthans, Organisational Behaviour: An Evidence- Based Approach, Information Age Publishing; 13 edition, 2015

3	Spyros G. Makridakis, Steven C. Wheelwright, Rob J. Hyndman, Forecasting: Methods and Applications, 4th Edition, ISBN: 978-0-471-53233-0,2003
4	Yang X.S., Introduction to mathematical optimization: From linear programming to Metaheuristics, Cambridge, Int. Science Publishing, 2008

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Have knowledge in the National energy scenario.	Evaluate
CO2	Do Energy prediction using various forecasting techniques.	Apply
CO3	Develop optimization model for energy planning.	Evaluate
CO4	Capable of writing project proposals.	Apply
CO5	Understand the National and state energy policies.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	0	1	2	1	1	1	1	1	0	3	3	0	1	0
CO2	0	2	3	3	3	2	0	0	0	2	2	1	3	2
CO3	0	3	3	3	3	0	2	0	0	1	1	0	0	2
CO4	0	1	1	2	0	2	2	2	0	2	2	0	0	2
CO5	0	1	0	0	0	2	2	2	0	2	2	0	1	1
Avg	0	1.6	2.25	2.25	2.3	1.75	1.75	1.6	0	2	2	1	1.6	1.75
	•	3/	2/1 – inc	licates s	trength	of corre	lation (3	3 – High	, 2- Mea	lium, 1-	Low)			

	IE72	ENERGY MANAGEMENT AND ENVIRO BENEFITS	ONMENTAL	S	Semeste	er	III
PRERF	EQUIS	ITES	Category	PE	Cre	edit	3
			TT (XX 7 X	L	Т	Р	TH
			Hours/Week	3	0	0	3
Course	Learn	ing Objectives		1	I	1	
1	To creat	e awareness on the energy scenario of India with respect to w	vorld.				
2	To learr	the methodology adopted for an energy audit.					
3	To appr	eciate the concepts adopted in project management.					
4	To stud	y the different techniques adopted for financial appraisal of a	project.				
5	To com	prehend the impact of energy on environment.					
UNIT	ГΙ	ENERGY SCENARIO		9	0	0	9
energy		- need – types – methodology – barriers - analysis on energ	y costing and shar	ing be	ench ma	 rking fu	.1 1
	y monito	rution – billing parameters in TANGEDCO – demand side pring and targeting – CUSUM energy labelling.	• •	-		-	
UNIT	-	ution - billing parameters in TANGEDCO - demand side	• •	-		-	
Four Defini	Γ III Basic El ition and	ution – billing parameters in TANGEDCO – demand side oring and targeting – CUSUM energy labelling.	e management - in e Cycle Steps in Pr	strumer 9 roject	nts for e 0 Manager	energy a 0 ment - 1	nudit – 9 Project
Four Defini	F III Basic El ition and C) and Pe	 billing parameters in TANGEDCO – demand side pring and targeting – CUSUM energy labelling. PROJECT MANAGEMENT ements of Project Management - Project Management Life d Scope, Technical Design, Financing, Contracting, Imple 	e management - in e Cycle Steps in Pr	strumer 9 roject	nts for e 0 Manager	energy a 0 ment - 1	nudit – 9 Project
Four Defini PERT UNIT	F III Basic El ition and C) and Pe F IV tment ap tment, N	Aution – billing parameters in TANGEDCO – demand side oring and targeting – CUSUM energy labelling. PROJECT MANAGEMENT dements of Project Management - Project Management Life d Scope, Technical Design, Financing, Contracting, Imple rformance Monitoring.	e management - in e Cycle Steps in Pr mentation Techniq s techniques Simp	strumer 9 roject 1 jues (G 9 le payb	nts for e 0 Manager antt Ch 0 ack peri	energy a 0 ment - 1 art, CP1 0 od, Ret	Project M and 9 urn on
Four Defini PERT UNIT	F III Basic El ition and C) and Pe F IV tment ap tment, N cing opt	 billing parameters in TANGEDCO – demand side oring and targeting – CUSUM energy labelling. PROJECT MANAGEMENT ements of Project Management - Project Management Life d Scope, Technical Design, Financing, Contracting, Imple rformance Monitoring. FINANCIAL MANAGEMENT praisal for energy conservation projects - Financial analysi et present value, Internal rate of return - Cash flows Risk an 	e management - in e Cycle Steps in Pr mentation Techniq s techniques Simp	strumer 9 roject 1 jues (G 9 le payb	nts for e 0 Manager antt Ch 0 ack peri	energy a 0 ment - 1 art, CP1 0 od, Ret	Project M and 9 urn on
Four Defini PERT UNIT Invest invest Financ UNIT Green Conce (COP)	F III Basic El ition and C) and Pe T IV tment ap tment, N cing opti T V house e erns. Un	nution – billing parameters in TANGEDCO – demand side pring and targeting – CUSUM energy labelling. PROJECT MANAGEMENT dements of Project Management - Project Management Life d Scope, Technical Design, Financing, Contracting, Imple erformance Monitoring. FINANCIAL MANAGEMENT opraisal for energy conservation projects - Financial analysi et present value, Internal rate of return - Cash flows Risk an ions - energy performance contracts ESCOs.	e management - in e Cycle Steps in Pr mentation Techniq s techniques Simpl d sensitivity analys ffects of climate c JNFCC), Kyoto Pro	9 roject 1 jues (G 9 le payb sis: mic 9 change otocol,	0 Manager antt Ch 0 ack peri ro and n Global 1 Confere	energy a 0 ment - 1 art, CPI 0 od, Ret nacro fa 0 Environ ence of 1	Project M and 9 urn on ctors - 9 mental Parties
Four Defini PERT UNIT Invest invest Financ UNIT Green Conce (COP)	F III Basic El ition and C) and Pe T IV tment ap tment, N cing opti T V house e erns. Un	nution – billing parameters in TANGEDCO – demand side pring and targeting – CUSUM energy labelling. PROJECT MANAGEMENT ements of Project Management - Project Management Life d Scope, Technical Design, Financing, Contracting, Imple rformance Monitoring. FINANCIAL MANAGEMENT opraisal for energy conservation projects - Financial analysi et present value, Internal rate of return - Cash flows Risk an ions - energy performance contracts ESCOs. ENERGY AND ENVIRONMENT ffect and the carbon cycle - current evidence and future e ited Nations Framework Convention on Climate Change (U ions trading (ET), Joint implementation (JI), Clean Developm	e management - in e Cycle Steps in Pr mentation Techniq s techniques Simpl d sensitivity analys ffects of climate c JNFCC), Kyoto Pr nent Mechanism (C	strumer 9 roject 1 jues (G 9 le payb sis: mic 9 hange otocol, DM), P	0 Manager antt Ch 0 ack peri ro and n Global 1 Confere	energy a 0 0 ment - 1 art, CP1 art, CP1 0 od, Ret 0 nacro fa 0 Environ 0 e Carbon 0	Project M and 9 urn on ctors - 9 mental Parties 1 Fund

1	Energy Manager Training Manual (4Volumes) available at http://www.em- ea.org/gbook1.asp, A website
	administered by Bureau of Energy Efficiency (BEE), A statutory body under Ministry of Power, Government of
	India.2004.

2	L.C. Witte, P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988
3	W.C. turner, "Energy Management Hand book" Wiley, New York, 1982.
4	W.R. Murphy and G. McKay "Energy Management" Butterworths, London 1987.
5	Eastop.T.D & Croft D.R, Energy Efficiency for Engineers and Technologists, Logman Scientific & Technical, ISBN-0-582-03184, 1990.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Recognize the importance of energy conservation and suggest measures for improving per capita energy consumption.	Apply				
CO2	Analyses the energy sharing and cost sharing pattern of fuels used in industries.	Analyze				
CO3	Apply Gantt Chart, CPM and PERT in energy conservation projects.	Evaluate				
CO4	Evaluate the techno-economics of a project adopting discounting and non- discounting cash flow techniques.	Analyze				
CO5	Assess the sources of additional revenue generation for energy conservation projects adopting UNFCC.	Analyze				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	3	0	0	0	0	0	0	0	0	1	1	0	2	2
CO2	3	2	2	2	1	1	0	0	2	2	2	0	2	0
CO3	2	1	1	1	2	0	1	2	3	0	0	0	2	3
CO4	2	1	0	1	1	0	1	1	3	2	2	0	0	2
CO5	2	0	0	0	0	2	1	0	2	1	1	0	0	0
Avg	2.4	1.3	1.5	1.3	1.3	1.5	1	1	1.5	2.5	1.5		1.5	2.3
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)													

22TI	HE73	SOLAR ENERGY APPLIAN	ICES	S	er	III	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
			TT (XX /) -	L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To learn	n the principle of operation of solar PV cell and its application	in lighting system				
2	To unde	erstand the principle of working of solar cooker, types and its a	applications.				
3	To lear	n the need for solar drying and working of different dryer types	S				
4	To learn	n about various desalination techniques and factors influencing	g productivity of so	lar still	with its	types	
5	To unde	erstand the construction and working of solar furnaces					
UNIT	Ĩ	SOLAR LIGHTING		9	0	0	9
		orking principle of a solar cell – Solar home lighting systems Rural electrification process – Case studies	– solar street lighti	ing syst	ems - So	olar lan	terns –
UNIT	T II	SOLAR COOKING		9	0	0	9
		Types of solar cookers – Advantages and disadvantages - B olar cookers – Testing of a solar cooker – Applications of solar			cooker ·	- Perfor	mance
UNIT	T III	SOLAR DRYING		9	0	0	9
	olar drye	Need for solar drying - Basics of solar drying – Types of solar r – Forced circulation type dryers – Hybrid dryer – Bin type dr					
UNIT	T IV	SOLAR DESALINATION		9	0	0	9
solar o	desalinati	Necessity for desalination – Study on various desalination tech on – Basics of solar still - Simple solar still – Material pro e studies on various desalination techniques.					
UNII	V	SOLAR FURNACES		9	0	0	9
solar f	furnace d	Types of solar furnaces – Components of solar furnaces – Co esigns – Single concentrator furnace – Single heliostat solar for furnaces.				-	• •
			ТС	DTAL(45L):	45 PEF	RIODS

Refe	erence Books:
1	Suhatme and Nayak, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 2008
2	HP Garg and J Prakash: Solar Energy: Fundamentals and Applications, Tata McGraw Hill, 2010
3	Rai, G.D., Solar Energy Utilization, Khanna Publishers, Delhi, 2010.
4	Michael Grupp, Time to Shine: Applications of Solar Energy Technology, John Wiley & Sons, 2012.

Cours Upon	Bloom's Taxonomy Level	
CO1	Diagnose the fundamental concepts about solar energy systems and devices.	Evaluate
CO2	Will be familiar with concepts of solar home lighting and solar street lighting systems.	Apply
CO3	Identify the solar cooker technologies for suitable applications.	Understand
CO4	Recognize the applications and types of solar dryers.	Analyze
CO5	Aware about various desalination techniques and material problems in solar still.	Understand

5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	0	1	0	2	1	0	0	0	0	0	2	2	2
CO2	2	2	3	3	0	0	0	0	0	0	2	2	2	0
CO3	2	2	3	2	0	0	0	0	0	0	2	2	2	0
CO4	2	2	3	2	0	0	0	0	0	0	2	2	2	0
CO5	2	0	2	2	0	0	0	0	0	0	0	2	2	0
Avg	2	2	2.4	2.25	2	2	1	0	0	0	2	2	2	2
	3/2/1 – indicates strength of correlation (3 – High, 2- Medium, 1- Low)													

22TH	HE74	COST MANAGEMENT OF ENGINEE PROJECTS	ERING	S	emeste	er	III
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
			Hours/Week	L	Т	Р	TH
			Hours/ Week	3	0	0	3
Course	e Learn	ing Objectives					
1	To intro	oduce the costing concepts and their role in decision making.					
2	To intro	oduce the project management concepts and their various aspect	s.				
3	To prov	ide detailed knowledge for project execution and costing conce	pts.				
4	To prov	ride detailed knowledge on costing techniques in service sector	and various budg	etary co	ontrol teo	chnique	5.
5	To Illus	trate with quantitative techniques in cost management.					
UNI	ΤI	INTRODUCTION TO COSTING CONCEPTS		9	0	0	9
		a Costing System; Cost concepts in decision-making; Relevant ost; Creation of a Database for operational control.	nt cost, Different	ial cost,	Increm	iental co	ost and
UNI	TII	INTRODUCTION TO PROJECT MANAGEMENT		9	0	0	9
comr activi	nissionin ities, Pre	ing, Different types, why to manage, cost overruns centers, var ig. Project execution as conglomeration of technical and r project execution main clearances and documents, Project tea ured with significance, Project contracts.	nontechnical acti	vities,	Detailed	d Engin	eering
UNI	TIII	PROJECT EXECUTION AND COSTING CONCEP	TS	9	0	0	9
Cost Breal	Behavio k-even A	tion: Project cost control, Bar charts and Network diagram, Pror and Profit Planning Marginal Costing; Distinction between nalysis, Cost-Volume-Profit Analysis, Various decision-making, Life Cycle Costing.	n Marginal Cost	ing and	Absor	ption C	osting;
UNI	TIV	COSTING OF SERVICE SECTOR AND BUDGETE CONTROL	ERY	9	0	0	9
Benc	h Marki	pproach, Material Requirement Planning, Enterprise Resource ng; Balanced Score Card and Value-Chain Analysis, Budge -based budgets.					
UNI	TV	QUANTITATIVE TECHNIQUES FOR COST MAN	NAGEMENT	9	0	0	9
Linea	ar Progra	mming, PERT/CPM, Transportation problems, Assignment pro	blems, Learning	Curve T	heory.	<u> </u>	
			TC)TAL(45L):	45 PEF	RIODS

Refer	Reference Books:						
1	K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher, 1991.						
2	Charles T. Horngren and George Foster, Advanced Management Accounting, 1988, 50.						
3	Charles T. Horngren et al Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi, 2011.						

4	S Kaplan Anthony A. Alkinson, Management & Cost Accounting, 2003.
5	Vohra N.D., Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd, 2007.

	Course Outcomes: Upon completion of this course, the students will be able to:			
CO1	Understand the costing concepts and their role in decision making.	Understand		
CO2	Understand the project management concepts and their various aspects in selection.	Understand		
CO3	Interpret costing concepts with project execution.	Evaluate		
CO4	Gain knowledge of costing techniques in service sector and various budgetary control techniques.	Apply		
CO5	Become familiar with quantitative techniques in cost management.	Apply		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	0	2	0	0	3	2	0	0	1	0	0	0	0	2
CO2	0	0	0	0	0	0	0	0	3	0	3	0	0	2
CO3	0	2	0	0	2	0	0	0	3	0	3	0	0	2
CO4	0	2	0	0	0	0	0	0	2	0	2	0	0	2
CO5	0	2	0	0	3	0	0	0	2	0	2	0	0	2
Avg	0	2	0	0	2.6	2	0	0	2.2	0	2	0	0	2
	•	3/2		icates st	rength o	f correla	ation (3	– High,	2- Medi	um, 1- L	ow)			

22THE75	ADVANCED COMPOSITE MAT	FERIALS	S	emeste	er	III
PREREQU	ISITES	Category	PE	Cre	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Lea	rning Objectives					
1 To u	nderstand composite material, reinforcements and their selection					
2 To d	evelop and processing of metal- matrix, ceramic -matrix and cart	oon- carbon compo	sites.			
3 To u	nderstand engineering mechanics, analysis and design, macro and	d micro mechanics	of com	posites.		
4 To u	nderstand and analyze the properties and performance of compos	site.				
5 To u	nderstand the basics of nanocomposite materials.					
UNIT I	INTRODUCTION		9	0	0	9
UNIT II Properties (polymer,	PROPERTIES AND PERFORMANCE and microstructure of high-strength fiber materials (glass, carbon netal, ceramic, and carbon matrices). Specific strength and stift tress, strain transformations.					9
UNIT III					osnes. R	
	MECHANICS AND MANUFACTURING		9	0	0 0	
Laminatio	MECHANICS AND MANUFACTURING g mechanics analysis and design- concepts of Isotropy vs. Ar Plate theory (CLPT). Fabrication techniques- pultrusion, filan n moulding, bag moulding, resin transfer moulding, reaction injection FAILURE CRITERIA AND APPLICATIONS	nent winding, prep	te micro	omechai	0 nics, Cla	9 assical
Laminatio compression UNIT IV Hygrother plates, int	g mechanics analysis and design- concepts of Isotropy vs. Ar Plate theory (CLPT). Fabrication techniques- pultrusion, filan n moulding, bag moulding, resin transfer moulding, reaction inje	nent winding, prep ection moulding. plates, buckling an	te micro reg tech 9 alysis of	omechan nology, 0 f lamina	0 nics, Cla injectio 0 ted com	9 assical on and 9 posite
Laminatio compression UNIT IV Hygrother plates, int	g mechanics analysis and design- concepts of Isotropy vs. Ar Plate theory (CLPT). Fabrication techniques- pultrusion, filan n moulding, bag moulding, resin transfer moulding, reaction inje FAILURE CRITERIA AND APPLICATIONS nal stresses, bending of composite plates, analysis of sandwich per-laminar stresses, First Order Shear Deformation Theory	nent winding, prep ection moulding. plates, buckling an	te micro reg tech 9 alysis of	omechan nology, 0 f lamina	0 nics, Cla injectio 0 ted com	9 assical on and 9 posite
Laminatio compression UNIT IV Hygrother plates, intra automobile UNIT V Introduction	g mechanics analysis and design- concepts of Isotropy vs. Ar Plate theory (CLPT). Fabrication techniques- pultrusion, filan n moulding, bag moulding, resin transfer moulding, reaction inje FAILURE CRITERIA AND APPLICATIONS nal stresses, bending of composite plates, analysis of sandwich per-laminar stresses, First Order Shear Deformation Theory , house hold etc.	nent winding, prep ection moulding. plates, buckling an (FSDT). Applica	te micro reg tech 9 alysis of tions:	omechan nology, 0 f lamina Industria	0 nics, Cla injectio 0 ted com al, aero 0	ule of 9 assical on and 9 sposite space, 9

Kelei	Tence Books.
1	Mallick P.K., "Fibre-Reinforced Composites: Materials- Manufacturing and Design", Maneel Dekker Inc, 1993
2	Krishan K. Chawla, Composite Materials, Science and Engineering, Springer, 2001
3	Steven L. Donaldson, ASM Handbook Composites Volume 21, 2001

4	Nanocomposite science and technology – P.M. Ajayan, L.S. Schadler, P.V. Braun, Wiley, New York, 2003
5	Suresh G. Advani, E. Murat Sozer, Process Modelling in Composites Manufacturing, 2nd Ed. CRC Press, 2009

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Choose and select the suitable composite material and their reinforcements.	Apply
CO2	Select constituent materials glass, carbon, aramid, ceramic fibres and resins.	Analyze
CO3	Understand & Apply engineering mechanics, analysis and design, macro and micro mechanics of composites.	Evaluate
CO4	Highlight the appropriate use of composite structures in the industry.	Analyze
CO5	Describe the concepts of nanocomposite and their chrematistics.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO 1	PSO2	PSO3
CO1	1	2	1	3	1	0	0	0	2	0	1	0	0	0
CO2	1	1	1	2	2	1	0	0	0	0	1	0	0	1
CO3	2	2	1	1	2	2	3	0	0	2	1	1	0	0
CO4	1	1	1	1	2	0	0	0	1	0	1	0	1	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Avg	1.25	1.5	1	1.75	1.75	1.5	3		1.5	2	1	1	1	1
	•	3/2	2/1 – ind	icates st	rength o	of correl	ation (3	– High,	2- Medi	um, 1- L	ow)		•	

AUDIT COURSE

22	2AC01	ENGLISH FOR RESEARCH PAPER WRITIN	G	SEM	IEST	ER I	[/]]
PR	EREQUI	SITES	CATEGORY	PE	Cro	edit	0
			Hours/Week	L	Т	Р	TH
			Hours, week	2	0	0	2
CO	URSE O	BJECTIVES:	L. L				
1.	To help t	he learners to realize the necessity of English in writing a Research paper					
2.	To enable	e the learners to write different sections of a research paper					
3.	To train t	he learners to become better writers of research papers					
UN	IT I			6	0	0	6
Res	earch pape	r and its importance, Structure of a research paper, Planning and preparat	ion.				
UN	IT II			6	0	0	6
Eng	lish in rese	earch papers, Basic word order, Collocation, Being concise, Redundancy,	Common errors.				
UN	IT III			6	0	0	6
Key	factors the	at determine the style of a paper, Journal's background, Passive form, Rig	ght tense forms, Coh	nesion ar	nd coł	nerena	ce.
UN	IT IV			6	0	0	6
Hed	lging and c	riticizing, Paraphrasing, Plagiarism, Ensuring quality of the paper and Us	seful phrases.				
UN	IT V			6	0	0	6
Key	skills in w	riting Title, Abstract, Introduction, Review of Literature, Discussion and	Conclusion, Highli	ghting f	inding	gs.	
			Tot	al (30L	$a) = \overline{3}$	0 Pe	riods

RE	FERENCE BOOKS:
1	Adrian Wallwork, "English for Writing Research Papers," Springer New York Dorecht Heidelberg London, 2016
2	Howe, Stephen. "Phrase Book for Writing papers and Research in English," Cambridge University Press, 2012.
3	Goldbort R. "Writing for Science," Yale University press, 2006.
4	Gabor L Lovei. "Writing and Publishing Scientific Paper," Open Book Publishers, 2021

COUR	SE OUTCOMES:	Bloom's Taxonomy
On cor	npletion of the course the student will be able to	Mapped
CO1	Understand and appreciate the role of English in writing a good research paper	Understand
CO2	Apply their knowledge in writing a research paper	Apply
CO3	Analyze and assess the quality of their research paper	Analysis

22AC02	DISASTER MANAGEMENT	SEM	IES	FER 2	[/]]
PREREQU	ISITES CATEGORY	PE	Cr	edit	0
	Hours/Week	L 2	Т 0	P 0	ТН 2
COURSE (DBJECTIVES	-	Ŭ	Ŭ	-
risk reductior humanitarian weaknesses o	itical understanding of key concepts in disaster risk reduction and humanitarian response and cri n and humanitarian response policy and practice from multiple perspectives. Develop an unders response and practical relevance in specific types of disasters and conflict situations and eva of disaster management approaches. Planning and programming in different countries, particularly they work in.	tanding	g of s he st	standa rengtl	rds o is an
UNIT I	INTRODUCTION	4	0	0	4
	finition, Factors And Significance; Difference Between Hazard And Disaster; Natural An Jature, Types And Magnitude.	d Man	made	e Dis	asters
	e Areas in India: Study of Seismic Zones; Area Prone to floods and droughts, Landslides and ava coastal hazards with special reference to Tsunami; Post- Disaster diseases and epidemics.	lanches	s; Ar	eas pr	one t
UNIT II	REPERCUSSIONS OF DISASTERS AND HAZARDS	4	0	0	4
Economic Da Cyclones, Ts	REPERCUSSIONS OF DISASTERS AND HAZARDS amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts.	rthquak	tes, '	Volca	nisms
Economic Da Cyclones, Ts Industrial Acc	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc	rthquak	tes, ' actor	Volca	nisms
Economic Da Cyclones, Ts Industrial Acc UNIT III Preparedness	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts.	rthquak lear Re	tes, 'actor	Volcar Melt	nisms dowr 4
Cyclones, Ts Industrial Acc UNIT III Preparedness	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts. DISASTER PREPAREDNESS AND MANAGEMENT : Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application O	rthquak lear Re	actor actor 0 te Se	Volcar Melt	nisms down 4
Economic Da Cyclones, Ts Industrial Acc UNIT III Preparedness From Meteor UNIT IV Disaster Risk Assessment,	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts. DISASTER PREPAREDNESS AND MANAGEMENT : Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application O ological And Other Agencies, Media Reports: Governmental And Community Preparedness.	rthquak lear Re 4 f Remo 4 on. Tec	0 te Se 0	Volcan Melt O ensing O ues o	dowr 4 , Dat 4
Economic Da Cyclones, Ts Industrial Acc UNIT III Preparedness From Meteor UNIT IV Disaster Risk Assessment, Survival.	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts. DISASTER PREPAREDNESS AND MANAGEMENT : Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application O ological And Other Agencies, Media Reports: Governmental And Community Preparedness. RISK ASSESSMENT :: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation	rthquak lear Re 4 f Remo 4 on. Tec	actor 0 te Se 0 chniq t. St	Volcan Melt O ensing O ues o	dowr 4 , Dat 4
Economic Da Cyclones, Ts Industrial Acc UNIT III Preparedness From Meteor UNIT IV Disaster Risk Assessment, Survival. UNIT V Meaning, Co	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts. DISASTER PREPAREDNESS AND MANAGEMENT : Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application O ological And Other Agencies, Media Reports: Governmental And Community Preparedness. RISK ASSESSMENT c: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment	rthquak lear Re 4 f Remo 0n. Tec essmen 4	ees, ``actor actor te Se bhniq t. St	Volcan Melt O ensing U ues o rategi	4 , Dat 4 F Ris 6 4
Economic Da Cyclones, Ts Industrial Acc UNIT III Preparedness From Meteor UNIT IV Disaster Risk Assessment, Survival. UNIT V Meaning, Co	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts. DISASTER PREPAREDNESS AND MANAGEMENT : Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application O ological And Other Agencies, Media Reports: Governmental And Community Preparedness. RISK ASSESSMENT c: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situatio Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Asse DISASTER MITIGATION ncept And Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigat rograms of Disaster Mitigation In India.	rthquak lear Re 4 f Remo 0n. Tec essmen 4	ees, ``actor actor tte Se chniq tt. St 0 d No	Volcan Melt O ensing O ues o rategi O n-Stru	4 , Dat: 4 CRISI 4 CCTURA
Economic Da Cyclones, Ts Industrial Acc UNIT III Preparedness From Meteor UNIT IV Disaster Risk Assessment, Survival. UNIT V Meaning, Co	amage, Loss of Human And Animal Life, Destruction of Ecosystem. Natural Disasters: Ea unamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuc cidents, Oil Slicks And Spills, Outbreaks of Disease And Epidemics, War And Conflicts. DISASTER PREPAREDNESS AND MANAGEMENT : Monitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of Risk: Application O ological And Other Agencies, Media Reports: Governmental And Community Preparedness. RISK ASSESSMENT c: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situatio Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Asse DISASTER MITIGATION ncept And Strategies of Disaster Mitigation, Emerging Trends In Mitigation. Structural Mitigat rograms of Disaster Mitigation In India.	rthquak lear Re 4 f Remo 4 on. Tec essmen 4 tion and	ees, ``actor actor tte Se chniq tt. St 0 d No	Volcan Melt O ensing O ues o rategi O n-Stru	4 , Dat: 4 CRISI 4 CCTURA

Sahni, Pardeep. et.al. (Eds.) 2002 Disaster Mitigation Experiences And Reflections. Prentice Hall of India, New Delhi. 2

Lucknow

	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.	Understand
CO2	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.	Evaluate
CO3	Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.	Create
CO4	Critically understand the strengths and weaknesses of disaster management approaches.	Understand

	SANSKRIT FOR TECHNICAL KNOWLEDGE	SEM	EST	TER I	/II
PREREQU	ISITES CATEGORY	PE	Cr	edit	0
	Hours/Week	L	Т	P	TH
		2	0	0	2
COURSE	DBJECTIVES				
UNIT I				-	
Alphabets in	ALPHABETS Sanskrit –Past/Present/Future Tense –Simple Sentences.	8	0	0	8
Alphabets in UNIT II		8	0	0	8 8
UNIT II	Sanskrit –Past/Present/Future Tense –Simple Sentences.				
UNIT II	Sanskrit –Past/Present/Future Tense –Simple Sentences.				
UNIT II Order –Intro UNIT III	Sanskrit –Past/Present/Future Tense –Simple Sentences. LITERATURE duction of roots –Technical information about Sanskrit Literature	8	0	0	8

RE	REFERENCE BOOKS:						
1	"Abhyasa Pustakam"- Dr. Vishwas, Samskrita- Bharati Publication, New Delhi						
2	"Tech Yourself Sanskrit" PrathamaDeeksha-Vempatikutumbshastri,Rashtriya Sanskrit Sansthan,New Delhi Publication						
3	India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.						

COUR On cor	Bloom's Taxonomy Mapped	
CO1	Understanding basic Sanskrit language	Understand
CO2	Ancient Sanskrit literature about science & technology can be understood	Remembering
CO3	Being a logical language will help to develop logic in students	Apply

22AC04 VALUE EDUCATION				SEM	EST	ER	I/II
PREREQU	ISITES		CATEGORY	PE	Cr	edit	0
			Hours/Week	L	Т	Р	TH
				2	0	0	2
COURSE	DBJECTIVES			•			
To understation	-	education and self-development. To imbibe good	values in students a	nd also	knov	w abo	out the
UNIT I	BASIC VALUES			4	0	0	4
	elf-development- Social v ndards and principles-Valu	alues and individual attitudes-Work ethics, Indian ae judgements.	vision of Humanism	Moral	and	Non	Moral
UNIT II CONFIDENCE			6	0	0	6	
-		- Sense of Duty-Devotion-Self-reliance-Confident on al Unity-Patriotism-Love for nature-Discipline.	ence-Concentration-T	ruthful	ness-	Clear	ilines-
UNIT III	PERSONALITY DEV	/ELOPMENT		6	0	0	6
and Kindnes	s - Avoid fault Thinking Iappiness Vs suffering –lo	-Soul and Scientific attitude - Positive – Thinking - - Free from anger - Dignity of labour - Universa ove for truth – Aware of self-destructive habits- A	l brotherhood and re	ligious	toler	ance	-True
UNIT IV	LOVE AND COMPA	SSION		6	0	0	6
		ks Vs Blind faith –Self–management and Good he men –All religions and same message –Mind you					
			Tot	tal(22I	L)= 2	22 Pe	riods

REFERENCE BOOKS:

1

Chakraborty, S.K. "Values and Ethics for Organization Theory and Practice", Oxford University Press, New Delhi, 1998.

COUR	COURSE OUTCOMES:				
On cor	mpletion of the course the student will be able to	Mapped			
CO1	Knowledge of self-development	Understand			
CO2	Learn the importance of Human values	Remembering			
CO3	Developing the overall personality	Create			

22AC	22AC05 CONSTITUTION OF INDIA SI			SEM	SEMESTER I/II		
PREREQ	UISIT	YES	CATEGORY	PE	Cre	edit	0
			Hours/Week 2		Т	Р	TH
					0	0	2
COURSE OBJECTIVES						1	-
Indian opin emergence	ion reg	emises informing the twin themes of liberty and freedom from a civil r garding modern Indian intellectuals' constitutional role and entitlement onhood in the early years of Indian nationalism. To address the role of sc olution in 1917 and its impact on the initial drafting of the Indian Constit	to civil and econor cialism in India aft	mic rig	nts a	s well	as the
UNIT I	HIST	CORY OF MAKING OF INDIAN CONSTITUTION		4	0	0	4
History, D	rafting	Committee (Composition & working)					
UNIT II	PH	ILOSOPHY OF THE INDIAN CONSTITUTION		4	0	0	4
Preamble,	Salient	Features.					
UNIT III	CO	NTOURS OF CONSTITUTIONAL RIGHTS & DUTIES		4	0	0	4
	-	ts, right to equality, right to freedom, right against exploitation, right to	-	n, cultu	ral a	nd edu	ication
		stitutional remedies, directive principles of state policy, fundamental dut	ies.		1	1	_
UNIT IV	OR	GANS OF GOVERNANCE		4	0	0	4
	-	position, qualifications and disqualifications, powers and functions, or y, appointment and transfer of judges, qualifications, powers and function	-	nt, gove	ernor	, cour	ncil of
UNIT V	LO	CAL ADMINISTRATION		4	0	0	4
municipal position ar	corporated	ration head: role and importance, municipalities: introduction, mayor ation. Panchayati raj: introduction, PRI: zila panchayat. Elected office Block level: organizational hierarchy (different departments), village less root democracy.	cials and their role	es, CEO) zil	a pano	chayat:
UNIT VI	EL	ECTION COMMISSION		4	0	0	4
		sion: role and functioning. Chief election commissioner and election com nstitute and bodies for the welfare of SC/ST/OBC and women.	nmissioners. State e	election	com	missio	n: role
			Το	otal (24	L)=	24 P	eriods
REFERE	NCE I	BOOKS:					
1 The	Constitu	tion of India, 1950 (Bare Act), Government Publication.					
2 Dr. S	Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.						
3 M. P	M. P. Jain, Indian Constitution Law, 7th Edn., LexisNexis, 2014.						

4 D.D. Basu, Introduction to the Constitution of India, LexisNexis, 2015.

	SE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics	Understand
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	Understand
CO3	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution	Understand
CO4	Discuss the passage of the Hindu Code Bill of 1956.	Understand

22AC06 PEDAGOGY STUDIES			SEMESTER I/II				
PREREQUIS	ITES	CATEGORY	PE	Cre	edit	0	
		Hours/Week	L	Т	Р	ТН	
		Hours, week	2	0	0	2	
COURSE OF	COURSE OBJECTIVES						
	ting evidence on the review topic to inform programme design and post searchers. Identify critical evidence gaps to guide the development.	licy making underta	aken b	y the	DFII	D, other	
UNIT I			4	0	0	4	
	onale, Policy background, Conceptual framework and terminology, 'ceptual framework, Research questions, Overview of methodology and S		g, Cu	rricul	um, ′	Teacher	
UNIT II				0	0	2	
	iew: Pedagogical practices are being used by teachers in formal and in acher education.	nformal classrooms	in dev	elopi	ng co	ountries,	
UNIT III			4	0	0	4	
How can teach pedagogy? The	Evidence on the effectiveness of pedagogical practices, Methodology for the in depth stage: quality assessment of included studies, How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices, Pedagogic theory and pedagogical approaches, Teachers' attitudes and beliefs and Pedagogic strategies.						
UNIT IV			4	0	0	4	
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.							
UNIT V			2	0	0	2	
Research gaps and future directions, Research design, Contexts, pedagogy, teacher education, curriculum and assessment, dissemination and research impact							
	Total(16L)= 16 Periods						

REI	FERENCE BOOKS:
1	Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
2	Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3) 361-379.
3	Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID
4	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic math and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272-282.
5	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

	COURSE OUTCOMES: On completion of the course the student will be able to				
CO1	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?	Create			
CO2	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?	Understand			
CO3	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?	Remembering			

22AC07 STRESS MANAGEMENT BY YOGA SE			SEM	ESTI	ER I/	II
PREREQUISI	TES	CATEGORY	PE	Cree	dit	0
		Hours/Week		Т	Р	TH
			2	0	0	2
COURSE OBJ	ECTIVES					
To create a health	ny, strong willed and intelligent young society through yoga practices.					
UNIT I	UNIT I PHYSICAL AND MENTAL HEALTH				0	4
Pain and disease	- free life, Simplified Physical Exercise- Pranayama. Concentration on P	ituitary gland- Practi	ical, Go	al fixi	ng.	
UNIT II REJUVENATION OF LIFE FORCE AND WILL POWER			4	0	0	4
Principle of kaya –Will power	kalpa yoga, mind, life force and Biomagnetism, Practical, Concentration	on Muladhara- Prac	tical, A	nalysi	s of th	ought
UNIT III DEVELOPMENT OF VIRTUES			4	0	0	4
Activation of Dor	rmant Brain cells- Practical, Moralization of dezire and its classification,	Neutralization of An	nger, Re	sults	of ang	er.
UNIT IV	STREAM LINING OF MIND		4	0	0	4
Definition of Mir	nd-Worries, Eradication of Worries. The science behind blessings. Blessi	ng techniques. Bene	fits, five	basic	dutie	s
UNIT V	CAUSE AND EFFECT SYSTEM		4	0	0	4
Law of nature, Hereditary Imprints, Fivefold and Two-fold culture, good values and Resolution for world peace						
		Т	otal(24	L)=2	24 Pe	riods

RE	REFERENCE BOOKS:						
1	"Thirukkural", Pearls of Inspiration, Translation by Rajaram, Publisher :RUPA						
2	"Bharathiyar Poems", Amazon Asia – Pacific Holdings Private Limited.						
3	"Yoga for Humane Excellence", Vethathiri Maharishi, Vision for Wisdom, Vethathiri Publications						

COURS	COURSE OUTCOMES:				
On comp	On completion of the course the student will be able to				
CO1	maintain good Physical health	Apply			
CO2	develop will power	Create			
CO3	take quick and right decisions	Evaluate			
CO4	maintain good relationship with everyone around them his creating a Health Society	Apply			

	PERSONALITY DEVELOPMENT THROUGH LIFE								
22AC08	ENLIGHTENMENT SKILLS			SEMESTER I/II					
PREREQUI	SITES	CATEGORY	PE	Cre	edit	0			
			L	Т	Р	TH			
		Hours/Week	2	0	0	2			
COURSE O									
To learn to achieve the highest goal happily, To become a person with stable mind, pleasing personality and determination, To awaken wisdom in students.									
UNIT I			8	0	0	8			
Neetisatakam -	- Holistics development of personality								
Verses- 19,20,21,22 (wisdom)									
Verses- 29,31,	32 (pride & heroism)								
Verses- 26,28,	53,65 (virtue)								
Verses-52,53,5	9(dont"s)								
Verses71,73,75,78(do''s)									
UNIT II			8	0	0	8			
Approach to da	ay to day work and duties.								
Shrimad Bhag	wad Geeta:								
Chapter 2-Verses 41, 47, 48,									
Chapter 3-Vers	Chapter 3-Verses 13, 21, 27, 35,								
Chapter 6-Verses 5,13,17,23,35,									
Chapter 18-Verses 45, 46, 48									
UNIT III			8	0	0	8			
Statement of b	asic knowledge.		I		I				
Shrimad Bhagwad Geeta:									
Chapter 2-Vers	ses 56, 62, 68,								
Chapter 12-Verses 13, 14, 15, 16, 17, 18									
Personality of Role model.									
Shrimad Bhag	wad Geeta:								
Chapter 2-Vers	ses 17,								
Chapter 3-Verses 36, 37, 42,									
Chapter 4-Verses 18, 38, 42,									
Chapter 18-Ve	rses 37, 38, 63								
		Τα	tal(24	L)= 2	4 Pe	riods			

REFERENCE BOOKS:				
1	"Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.			
2	Bhartrihari's Three Sataskam (Niti- Sringar – Vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.			

COURSE OUTCOMES: On completion of the course the student will be able to		Bloom's Taxonomy Mapped	
CO1	Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve The highest goal in life	Understand	
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity	Remembering	
CO3	Study of Neetishatakam will help in developing versatile personality of students.	Understand	