

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011 (An Autonomous Institution Affiliated to Anna University, Chennai)

REGULATIONS 2022 CURRICULUM AND SYLLABUS

(For Candidates admitted from 2022 - 2023 onwards)

M.E – WELDING TECHNOLOGY (FULL TIME PROGRAMME)

M.E WELDING TECHNOLOGY (FULL TIME)

VISION

To become a globally competent department in Metallurgical and Materials Engineering.

MISSION

• To achieve the vision, our diligent faculty will use effective, continually updated methodologies.

• To mould metallurgical and materials engineering graduates with professional excellence and social responsibility.

- To carry out quality research of national global relevance.
- To provide highest quality technical support and knowledge to industries.

At the end of the course, the welding technology post graduates are,

PEO1. Expand their knowledge of the fundamental theory of the process, design, materials and testing aspects of welding and welding related fields.

PEO2. Practice and establish welding knowledge in an integrated fashion to solve diverse practical problems in the welding and joining field.

PEO3. Develop entrepreneur skills and collaborative aspects of their professional activity in an organized and productive fashion.

The Programe Outcomes of the welding technology programme are,

PO1. Apply knowledge of mathematics, science and engineering for the solution of engineering problems

PO2. Investigate, design and analyze system component or process to meet the desire needs in metallurgical engineering

PO3. Design and conduct experiments to find solutions in the field of metallurgical engineering

PO4. Conduct investigation of complex engineering problems in the field of metallurgical engineering to provide valid conclusions

PO5. Use modern engineering tools necessary for engineering activities with an understanding of the limitations

PO6. Demonstrate understanding of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice.

PO7. Understand the impact of engineering solutions in societal and environmental context and explain the need for sustainable development

PO8. Understand and respect professional and ethical responsibility

PO9. Function on multi-disciplinary team as a leader or a team member

PO10. Communicate effectively both orally and in writing.

PO11. Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work

PO12. Recognize the need for, and have the preparation and ability to engage in life-long learning

At the end of this programme, welding Technology post graduates will be able to:

PSO1: Select and design welding processes and inspection techniques based on application, fabrication and service conditions.

PSO2: Specify materials based on application, fabrication and service conditions.

PSO3: Identify research gaps in multidisciplinary environments, which will provide a link to the development of innovative solutions for real- world challenges.

			Hou	ırs/V	Veek				Maximum Marks		
Course code	Name of the Course	Category	Contact periods	Lecture	Tutorial/ Demo*	Practical	Credit	CA	FE	Total	
	SEMEST	TER I									
22WTC11	Core	3	3	-	-	3	40	60	100		
22WTC12	Welding Processes – I	Core	3	3	-	-	3	40	60	100	
22WTE	Elective - I	PEC-1	3	3	-	-	3	40	60	100	
22WTE	Elective - II	PEC -2	3	3	-	-	3	40	60	100	
22WTC13	Metallography Lab	Core	4	-	-	4	2	60	40	100	
22WTC14	Joining Lab	Core	4	-	-	4	2	60	40	100	
22MLC01	Research Methodology and IPR	MC	3	3	-	-	3	40	60	100	
22AC	Audit course – 1	Audit	2	2	-	-	0				
	TOTAL		25	17	-	8	19	-	-	700	
	SEMEST	'ER II			•		1	r			
22WTC21	Welding Processes – II	Core	3	3	-	-	3	40	60	100	
22WTC22	Welding Metallurgy	Core	3	3	-	-	3	40	60	100	
22WTE	Elective – III	PEC-3	3	3	-	-	3	40	60	100	
22WTE	Elective - IV	PEC-4	3	3	-	-	3	40	60	100	
22WTC23	Quality Control in Weldments Lab	Core	4	-	-	4	2	60	40	100	
22WTC24	Characterization Lab	Core	4	-	-	4	2	60	40	100	
22WTC25	Mini Project	EEC	4	-	-	4	2	60	40	100	
22AC	Audit course – 2	Audit	2	2	-	-	0				
	TOTAL		26	14	-	12	18	-	-	700	
	SEMEST	ER III					1	1			
22WTE	Elective - V	PEC-5	3	3	-	-	3	40	60	100	
22WTE	Elective - VI	PEC-6	3	3	-	-	3	40	60	100	
22WTC31	Project Phase – I	EEC	20	-	-	20	10	120	80	200	
	TOTAL		26	6	-	20	16			400	
	SEMEST	ER IV			<u>.</u>		•		·		
22WTC41	Project Phase – II	EEC	34	-	-	34	17	240	160	400	
	TOTAL		34	-	-	34	17			400	
			1		1		I	1	1		

M.E. WELDING TECHNOLOGY – Full Time

Total Credits for the programme = 19 + 18 + 16 + 167= 70

PROFESSIONAL ELECTIVE COURSES (PEC)

Course Code	Name of Course
22WTE01	Physical Metallurgy and Heat Treatment
22WTE02	Welding Economics, Management and Safety
22WTE03	Composite Materials
22WTE04	Materials Characterization
22WTE05	Failure Analysis in Weldments
22WTE06	Testing and Inspection of Materials
22WTE07	Non - metallic Materials
22WTE08	Finite Element Analysis
22WTE09	Electrical Aspects of Welding
22WTE10	Total Quality System and Engineering
22WTE11	Automation and Robots in Welding
22WTE12	Welding Application Technology
22WTE13	Brazing, Soldering, Surfacing and Cutting
22WTE14	Corrosion and Surface Engineering
22WTE15	Design of Weldments
22WTE16	Industrial Safety
22WTE17	Welding Codes and Standards
22WTE18	Foundry Processes and Metallurgy
22WTE19	Forming Processes

AUDIT COURSES

Course Code	Name of Course
22AC01	English for Research Paper Writing
22AC02	Disaster Management
22 AC 03	Sanskrit for Technical Knowledge
22 AC 04	Value Education
22 AC 05	Constitution of India
22 AC 06	Pedagogy Studies
22 AC 07	Stress Management by Yoga
22AC08	Personality Development through Life Enlightenment Skills

22W	TC11	ADVANCED MATHEMATICS AND ST	ATISTICS	S	emest	ter		Ι
PRER	EQUIS	ITES	Category	PC	Cı	redit	1	3
Engin	eering N	Aaths	TT / T7 1	L	Т	P		TH
			Hours/Week	3	0	0		3
Cours	e Learn	ing Objectives						
1		iliarize with the numerical solution of linear and non-lir l of least squares.	near equations and	d fitting	g curv	es by	the	
2	To obta transfo	ain the solutions of diffusion and wave equation by using rms.	g techniques of L	aplace	and F	ourie	r	
3		lerstand the significance of central limit theorem and tes	0 11					
4	To ana experir	lyze the variance of factors by one way and two way cla nents.	ssification and so	ome sta	ndard	desig	gn of	f
5		iliarize with the numerical solution of linear and non -li l of least squares.	near equations an	d fittin	g curv	es by	/ the	
Un	it I	CURVE FITTING AND SOLUTION OF EQUATION	ONS		9	0	0	9
reducil	ble to li	by the Method of Least Squares –Fitting of straight linear forms- Solution of Algebraic and Transcendental near system of equations by Gauss Elimination, Gauss Jo	equations by Ne	wton-	Raphs	son n		
Uni	it II	LAPLACE TRANSFORM TECHNIQUES DIFFERENTIAL EQUATIONS	FOR PARTI	AL	9	0	0	9
		orm: Definitions – Properties- Inverse Laplace transform aplace transform technique.	n- Solution of diff	fusion of	equation	on an	d wa	ave
Uni	t III	FOURIER TRANSFORM TECHNIQUES DIFFERENTIAL EQUATIONS	FOR PARTI	AL	9	0	0	9
		orm: Definitions – Properties- Transform of elementary and Laplace equation by Fourier transform technique.	functions- Solution	on of E	Diffusi	on eq	luati	on,
Uni	t IV	STANDARD DISTRIBUTIONS AND TESTING C	OF HYPOTHES	IS	9	0	0	9
Expon	ential) –	bles- Standard discrete and continuous distributions (Central limit theorem and its significance- Testing a stand Chi-square test).						
Uni	it V	ANALYSIS OF VARIANCE AND DESIGN OF EX	PERIMENTS	9	0	0	1	9
-		ariance -One way and Two way classifications- Prir ns (Completely Randomized Design, Randomized Block			-		- So	ome
				Tota	l (45 I	L) =	45 H	Iours
Tex	t Books	:						
1	K.Sank Delhi, 2	ara Rao, "Introduction to Partial Differential Equations" 2003.	, Prentice Hall of	India	Pvt. Li	td., N	ew	
2		ijan. T, "Probability, Statistics and Random process", Ta New Delhi, 2002.	ata McGraw- Hill	public	ations	, seco	ond	
	Kandas	amy. P, Thilagavathy. K, Gunavathi. K, "Numerical Me	thods" S. Chand	& Co.,	New]	Delhi	, 20	05.
Refe	rence Bo	ooks:						
1	Grewal	, B.S., "Higher Engineering Mathematics", 43 rd edition,	Khanna Publishe	ers, Nev	w Dell	ni, 20	14.	
2		vs. L.C and Shivamoggi. B, "Integral Transforms for Engelhi, 2003.	gineers", Prientic	e Hall	of Ind	ia Pv	t. Lt	d.,
2	D 0	the second	<i>a r</i>		10			

³ Peter O'Neil, "Advanced Engineering Mathematics", 7th edition, Cengage Learning, 2012.

4	Gupta, S.C. and Kapur, V.K., "Fundamentals of Mathematical Statistics", S. Chand and Sons, New Delhi, 11 th Edition 2014
5	Devore, Jay L., "Probability and Statistics for Engineering and the Sciences",5 th Edition, Brooks- Cole, 1999.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Obtain the numerical solution of linear and non-linear equations and fitting curves by method of least squares.	L2: Understanding
CO2	:	Obtain the solutions of diffusion and wave equation involved in engineering problems by using Laplace and Fourier transform techniques.	L2: Understanding
CO3	:	Gain the knowledge on statistical sampling and its applications, analysis of variance by one and two way classification	L4: Analysing
CO4	:	Improve Personality skills, Major determination in profession in group behaviour.	L3: Applying
CO5	:	Discuss the modern concepts for better industrial management.	L3: Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2								1		
CO2	2	2	2	1	2								1		
CO3	2	2	2	2	2								1		
Avg.	2.0	2.0	2.0	1.7	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
					3/2/1	-indica	tes strei	ngth of	correlat	tion (3- H	ligh, 2-N	ledium,	1- Low)		

22W	ГС12	WELDING PROCESSES –I		S	emes	ter		Ι
PRER	EQUIS	ITES	Category	PC	С	redit	t	3
Manuf	facturin	g Technology	Hound	L	Т		P	TH
			Hours/Week	3	0		0	3
Course	e Learn	ing Objectives						
1		erstand the various welding processes.						
2		n knowledge on the principle of operation, advantages, li g processes.	imitations and app	olicatio	ns of	vario	ous	
3	To sug	gest appropriate welding processes for applications.						
Un	it I	INTRODUCTION TO JOINING PROCESSES AN WELDING	ND GAS		9	0	0	9
process Shieldi – set u	ses, Hea ing gase	welding, comparison of welding with other fabricat at sources for fusion welding, shielding methods, Nat s, Arc physics. Relationship between heat input and ener uipment – Flame characteristics, different kinds of flar ng.	ture and behavio	r of fl Fuel Ga	uxes as We	for y elding	weldii g: Gas	ng, ses
Uni	it II	SHIELDED METAL ARC WELDING			9	0	0	9
power	sources	ss: Principle of the process, Electrodes, functions of flux and their applications, AWS Classifications of electrod Advantages, limitations and applications of SMAW proc	les, electrode desi	ignation	ns, de	fects		•
Uni	t III	GAS TUNGSTEN ARC WELDING AND PLASMA	A ARC WELDIN	G	9	0	0	9
starting develo Equipr micro,	g and sto pments, nent, Op low and	Arc Welding – Equipment, Electrodes, polarity, shiel opping, choice of filler metal composition, use of pulse advantages, limitations and applications, defects, ca perating modes – melt- in technique, key-hole technique high current plasma arc welding and their applications.	d arc and GTA s uses and remedie e, transferred arc	pot wel es. Pla and no	ding, sma on-tra	othe arc v insfer	er rece weldin rred a	ent ng: irc,
Uni	t IV	GAS METAL ARC WELDING AND FLUX CORE	CD ARC WELDI	NG	9	0	0	9
electro of GM	des, Pul IAW. H	rc Welding- Principle of operation, Metal transfer n sed GMAW, Synergic GMAW, Cold Metal Transfer. A Flux cored arc welding–Process features, Equipmen Advantages, disadvantages and applications of Flux Cor	dvantages, disadv t, Electrode mai	vantage	s and	app	licatio	ons
Uni	it V	SUBMERGED ARC WELDING AND STUD ARC	WELDING		9	0	0	9
Variati	ons of l	c welding – Principle of operation, Equipment, Flux Process, Defects, Advantages, Disadvantages and App d arc welding gun, Ferrules. Defects, Advantages, Dis	olications. Stud a	rc welc applica	ling - tions	- Equ in S	iipme tud A	ent,
				1000		L) –	- 10 1	
Refer	rence Bo	ooks:						
1	Howard	B. Cary, "Modern Welding Technology", Prentice Hall	l, 6 th Ed.,2017					
2	Parmar	R.S. "Welding Processes and Technology" Khanna Pub	lishers, 2 nd Ed., 2	005.				
3	Nadkar	ni. S.V. "Modern Arc Welding Technology" Oxford IBF	H Publishing Co.2	2005.				
4	AWS W	Velding Handbook.9 th edition Volume1, "Welding Scien	ce and Technolog	y",201	3.			
5	AWS W	Velding Handbook. 9 th edition. Volume 2, "Welding Pro	cesses", 2013.					

6	ASM Handbook, "Welding, Brazing and Soldering" Vol. 6, ASM2017.
7	ASM Handbook, "Welding Fundamentals and Processes" Vol. 6A, ASM2017
8	Lancaster J.F. "The Physics of Welding", Pergamon Press, 2 nd Ed., 1986.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Identify and list the broad classification of various welding processes.	L2: Understanding
CO2	:	Explain the principle of operation, advantages, limitations and applications of SMAW process.	L3: Applying
CO3	:	Discuss the principle of operation, advantages, limitations and applications of GTAW and PAW processes.	L3: Applying
CO4	:	Explain the principle of operation, advantages, limitations and applications of GMAW and FCAW processes.	L3: Applying
CO5	:	Describe the principle of operation, advantages, limitations and applications of SAW, SW and CAW processes	L3: Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1											1		
CO2	2	1	1	2		1		1					2		1
CO3	2	1		1	1								2	1	1
CO4	1	2		1			1						1		
CO5	2	1											1		
Avg.	1.6	1.2	1.0	1.3	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	1.4	1.0	1.0
					3/2/1	-indica	tes strei	ngth of	correlat	tion (3- H	ligh, 2-N	ledium,	1- Low)		

22WT	ГС13	METALLOGRAPHY LAB		S	er	Ι	
PRERI	EQUIS	ITES	Category	PC	Cre	edit	2
Engine	ering n	naterials and Metallurgy		L	Т	Р	ТН
			Hours/Week	0	0	4	4
Course	e Learn	ing Objectives					1
1		arn about sample preparation and metallurgical microstru neir conditions and same to be apply in various application		variou	s produ	ict forn	1
List	of expe	eriments					
1	Study	of metallurgical microscope and specimen preparation					
2	Macro	examination of samples					
3	Micro	structure of carbon steels and alloy steels					
4	Micro	structure of cast irons					
5	Micro	structure of non-ferrous alloys					
6	Micro	structure of heat treated/processed samples					
7	Grain	size measurement					
8	Study	of weld bead characteristics					
9	Micro	structure of weldments (Similar and Dissimilar)					
10	Micro	hardness survey of weldments					
L					Tot	al = 60	Hours

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Prepare the specimens for suitable metallographic examination with best practices.	L4:Analysing
CO2	:	Perform macro examinations with aid of profile projector	L4:Analysing
CO3	:	Operate metallurgical microscopes and examine the specimens.	L2: Understanding
CO4	:	Identify, analyze and interpret various microstructure of materials	L4:Analysing

	<u>COURSE ARTICULATION MATRIX</u>														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	1	1	1	1					1	1	2	
CO2	1		2	2	2	1							2	2	1
CO3	1	1	1	1	2	1						1	1	1	1
CO4	1		1	2	2	1							2	2	
Avg.	1.0	1.0	1.3	1.5	1.8	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.5	1.8	1.0
					3/2/1	-indica	tes strei	ngth of	correlat	tion (3- H	ligh, 2-N	ledium,	1- Low)		

22W	TC14	JOINING LAB		S	emeste	er	Ι
PRER	REQUIS	ITES	Category	PC	Cre	edit	2
Manu	ıfacturin	ng Technology		L	Т	Р	ТН
			Hours/Week	0	0	4	4
Cours	se Learn	ing Objectives				I	<u>I</u>
1	-	in knowledge in simple operation of welding machines, o apply in various joining applications.	practical aspects	of weld	ling pro	ocesses	and
List	t of Expo	eriments					
1	Study a	and Demo of Welding Machines					
2	Arc – S	Striking and Weld Bead Practices by SMAW process					
3	Prepara	ation of joints by SMAW process					
4	Weld F	Bead Practices by GTAW process					
5	Weld F	Bead Practices by GMAW process					
6	Friction	n welding of metals					
7	Friction	n Stir welding of metals					
8	Ultrasc	onic welding of metals and plastics					
9	Weldal	bility test for Hot cracking					
10	Weldal	bility test for Cold cracking					
	1				Tot	al = 60	Hours

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	••	Generate arc, and identify the process parameters and their effects during welding.	L2: Understanding
CO2		Prepare and select the process parameters for bend practices by producing butt and fillet joints.	L4:Analysing
CO3	••	Perform various solid state welding processes and understanding its process parameters.	L2: Understanding
CO4	:	Evaluate cold or hot cracking susceptibility of different alloys.	L2: Understanding

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1		1								1		
CO2	1		1		1	1							2	1	1
CO3	1	1	2	1									1		
CO4	1		1		1	1							1		
Avg.	1.0	1.0	1.3	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22M	LC01	RESEARCH METHODOLOGY &	: IPR	S	Semeste	er	Ι
PRER	EQUIS	ITES	Category	MC	Cre	edit	3
NIL			Hound	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To dev	elop the subject of their research					
2	Develo	ppment required in writing research proposals, reports an	nd dissertation				
Un	it I	INTRODUCTION TO RESEARCH		9	0	0	9
Errors	in select	search problem, Sources of research problem, Criteria C ting are search problem, Scope and objectives of researc esearch problem, data collection, analysis, interpretation,	h problem. Appro	baches	of inve		
Uni	it II	EFFECTIVE LITERATURE STUDIES, APPROA ANALYSIS	CHES,	9	0	0	9
evalua	ting rese	e theoretical framework of research- Developing oper earch approach- Hypothesis: parametric and non- para findings with literature review and experiment document	metric testing- E	stablisl	ning the	e reliab	
	t III	EFFECTIVE TECHNICAL WRITING, HOW TO REPORT, PAPER		9	0	0	9
Develo commi		Research Proposal, Format of research proposal, a p	presentation and	assessi	ment b	y a rev	view
Uni	t IV	NATURE OF INTELLECTUAL PROPERTY		9	0	0	9
innova	tion, pa	gns, Trade and Copyright. Process of Patenting an tenting, development. International Scenario: Internatio					
Uni	it V	PATENT RIGHTS AND IPR		9	0	0	9
Indicat	tions. N	nt Rights. Licensing and transfer of technology. Patent ew Developments in IPR: Administration of Patent Sy tems, Computer Software etc. Traditional knowledge Ca	stem. New deve	lopmer	nts in I		
				Tota	al (45 L	a) = 45	Hours
Refe	rence Bo	ooks:					
1	Stuart N student	Aelville and Wayne Goddard, "Research methodology: a	an introduction fo	r scien	ce & en	igineeri	ng
2	Wayne	Goddard and Stuart Melville, "Research Methodology:	An Introduction"				
3	Ranjit H	Kumar, 2nd Edition, "Research Methodology: A Step by	Step Guide for b	eginne	rs"		
4	Halbert	, "Resisting Intellectual Property", Taylor & Francis Ltd	l, 2007.				
5	Mayall	, "Industrial Design", McGraw Hill,1992.					
6	Niebel	, "Product Design", McGraw Hill,1974.					
7	Asimov	r, "Introduction to Design", Prentice Hall, 1962.					
8	Robert 2016.	P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectu	al Property in Ne	w Tec	hnologi	cal Age	e",
9	T. Ram	appa, "Intellectual Property Rights Under WTO", S. Cha	and, 2008				

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Understand research problem formulation.	L2: Understanding
CO2	:	Analyze research related Information.	L4:Analysing
CO3	:	Follow research ethics.	L3:Applying
CO4	:	Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.	L2: Understanding
CO5	:	Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.	L2: Understanding

	COURSE ARTICULATION MATRIX														
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1						1	1	1	1	1	1	1			1
CO2						1	1	1	1	1	1	1			1
CO3						1	1	1	1	1	1	1			1
CO4						1	1	1	1	1	1	1			1
CO5						1	1	1	1	1	1	1			1
Avg.	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TC21	WELDING PROCESSES-II		5	Semest	er	II					
PRER	EQUIS	ITES	Category	PC	Cr	edit	3					
Manu	facturin	g technology		L	Т	Р	ТН					
			Hours/Week	3	0	0	3					
Cours	e Learn	ing Objectives				•						
1	To und	erstand the various special/advanced welding processes.										
2	•	n knowledge on the principle of operation, advantages, lin/advanced welding processes.	mitations and ap	plicatio	ons of v	various						
Un	it I	ELECTRON BEAM AND LASER BEAM WELDIN	NG	9	0	0	9					
Heat generation and regulation, equipment details in typical set-up, electron beam welding in different degrees of vacuum, advantages, disadvantages and applications. Laser Beam Welding: Laser sources for welding, Principles of operation, advantages, limitations, and applications. Introduction to Hybrid Welding Process.												
	it II	ELECTRO SLAG WELDING AND RESISTANCE	WELDING	9	0	0	9					
of curr slag we Resista for spo choice	Electro slag welding - Heat generation, principles of operations, wire and consumable guide techniques, selection of current, voltage and other process variables, nature of fluxes and their choice, applications, variants of electro slag welding, Electro gas welding. Resistance welding - Principles of contact resistance, surface preparation, calculation of current, time and voltage for spot welding – Temperature distribution, spot welding cycle, inter-relationship between process variables, choice of electrode material, seam welding, projection welding. Flash welding, Upset welding, Percussion welding, High frequency welding.											
	t III	SOLID STATE WELDING PROCESSES		9	0	0	9					
weldin proces Cold p Forge and ap	ng, Low ses and poressure welding plication		s, Overview of v g, Diffusion wel	arious ding, V	solid s Ultraso	tate we nic wel	lding ding,					
Uni	t IV	FRICTION AND FRICTION STIR WELDING		9	0	0	9					
equipn Frictio tool til Flaws	nents, w on Stir W lt and p	ling-Theoreticalconsiderations,Processcharacteriaelding variables, weld properties, joint design, applicationvelding -Principles of operation,Important welding paralunge depth, tool design.Generation and flow of heat,ects in FSW -Friction surfacing and friction stir processionOTHER JOINING PROCESSES, CUTTI	ns. ameters - tool rot advantages, lim ng.	ation a nitation	and trav	verse sp applica	eeds, tions.					
UII	IL V	SURFACING		9	0	0	9					
Adhesive bonding – Concept, Procedure, Testing of Adhesive bonded joints, types of adhesive bonded joints, Sandwich Construction, selection and types of adhesives. Welding of plastics, Underwater Welding. Thermit Welding, Brazing and Soldering -Fundamentals, Types, brazing and soldering alloys and their classification. Thermal cutting – Oxy-fuel cutting, arc cutting, plasma arc cutting, laser cutting. Surfacing. Total (45 L) = 45 Hours												
[
Refe	rence Bo	ooks:										
1	AWS V	Velding Handbook. 9thedition. Volume 2, Welding Proce	esses, 2013.									

- 2 Schwartz M.M., "Metals Joining Manual", McGraw Hill Books.1979.
- 3 Metals Handbook (Welding, Brazing and Soldering), Vol. 6, 10th Edition. ASM1995.

4	Howard B. Cary, "Modern Welding Technology", Prentice Hall, 6th Ed., 2017.
5	Tylecote R.F., "The Solid Phase Welding of Metals", Edward Arnold Publishers Ltd. London.1968.
6	Christopher Davis, "Laser Welding - Practical Guide", Jaico Publishing House, 1994.
7	Parmar R.S. "Welding Processes and Technology", Khanna Publishers, 2 nd Ed., 2005.
8	ASM Handbook, "Welding Fundamentals and Processes" Vol. 6A, ASM 2017

		utcomes: apletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Explain the principle of operation, advantages, limitations and applications of various solid state welding processes.	L3:Applying
CO2	:	Discuss the principle of operation, advantages, limitations and applications of FRW and FSW processes.	L3:Applying
CO3	:	Explain the principle of operation, advantages, limitations and applications of EBW and LBW processes.	L3:Applying
CO4	:	Explain the principle of operation, advantages, limitations and applications of ESW and Resistance welding processes.	L3:Applying
CO5	:	Describe the principle and features of various special joining techniques and thermal cutting methods	L2: Understanding

L3:Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1												1		
CO2	2	1		1		1	1						1		
CO3	2		1										1		
CO4		1		1	1								1		
CO5	1	1												1	1
Avg.	1.5	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
					3/2/1	-indica	tes strei	ngth of	correlat	tion (3- F	ligh, 2-N	ledium,	1- Low)		

22WTC22 WELDING METALLURGY Semester									
PRER	EQU	ISITES	Category	PC		Cred	lit	3	
Manu metall		ing technology, Engineering materials and	Hours/Week	L	r	Г	Р	ТН	
metan	urgy		110u15/ Week	3	(0	0	3	
Cours	e Lea	rning Objectives							
1	-	ain understanding of heat flow and temperature distribution netry.	n on weld compo	nents	base	d on y	weld		
2		nderstand the solidification structure and growth morpholometers.	ogy on weld joins	in re	latior	n to th	e wel	ding	
3		y phase transformations in weld joints with aid of CCT, So loy steels, carbon steels and stainless steels.	chaffler and Delor	ng dia	agran	ns and	l weld	ling	
4	Stud	y of weldability of various non-ferrous alloys.							
Uni	t I	HEAT FLOW IN ARC WELDING			9	0	0	9	
Joint C consid effect	Geome erations of well	asic heat transfer equations, temperature distributions an etry, plate thickness, preheating and other factors. Compa ns. Solidification – Epitaxial growth – weld metal solidifi ding parameters – absorption of gases – gas/metal and slag	arison of welding cation – cellular	proc and c	esses	base	d on t	hese	
Unit	II	WELDABILITY AND WELDABILITY TESTING			9	0	0	9	
phenor	mena	Weldability, Factors affecting Weldability, Welding in welding, Characterization of weldments, Weldability te raint tests, External restraint tests, Mechanical tests for wel	ests - cold crackin Idments-Tension	g test tests a	s, ho	t crac	king		
Unit	III	WELDABILITY OF CARBON STEELS AND STEELS	LOW ALLO	Y	9	0	0	9	
transfo Post h	ormati eating	f different microstructural zones in welded plain carbon on in weldmetal and heat affected zones. Hydrogen induce and post weld heat treatment, Hot cracking – composite Lamellar cracking.	ed cracking, Carb	on eq	luival	ent, p	rehea	ting,	
Uni	t IV	WELDABILITY OF STAINLESS STEEL			9	0	0	9	
elemen WRC	nts, W diagra	to stainless steel classification, effect of alloying elemented automatic stainless steels – Hot cracking – ms, Mode of solidification, Sensitization, Sigma embrittle artensitic and duplex stainless steels, selection of filler me	constitution diagr ement. Metallurgi	ams	– Scl	haffle	r, De	long,	
	it V	WELDABILITY OF OTHER ALLOYS AND DISSIM			9	0	0	9	
proble Welda approp Dissim	ms en bility priate f nilar w	cast irons, High Cr steels, Maraging Steels – Process, proc countered and solutions. of Al alloys, Cu Alloys, Ti Alloys and Ni Alloys – Se for each material. relding: Metallurgical problems in dissimilar welding- calc hniques of dissimilar welding.	election of weldir	ng pro on- m	ocess	and ls of c	proce	edure	
Refe	rence	Books:							
1	1	ar R.S., "Welding Engineering and Technology", Khanna	Publishers.1997.						
2		aster J.F., "Metallurgy of Welding", George Allen & Unw							
3	3 Kou. S., "Welding Metallurgy", John Wiley & Sons. 1987.								
4	Gran	on. H., "Fundamentals of Welding Metallurgy", Jaico Pub	blishing House. N	ew D	elhi,	1994.			

5	Norman Bailey, "Weldability of Ferritic Steels", Jaico Publishing House, 1997
6	AWS Welding Hand book. 8th edition. Vol-1. Welding Technology, 1998.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Illustrate the heat flow in welding, structures formed and effect of various welding parameters.	L2: Understanding
CO2	:	List and explain the various types of weldability tests.	L4:Analysing
CO3	:	Discuss the weldability of carbon steel and low alloy steels and weldability issues.	L2: Understanding
CO4	:	Analyse the weldability of stainless steel.	L4:Analysing
CO5	:	Apply various welding process, procedure, and filler metal selection for the welding of cast iron, non-ferrous alloys and for dissimilar welding.	L3:Applying

					<u>CO</u>	URSE	ARTIC	CULAT	TON M	IATRIX	<u> </u>				
CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	1	1											1		
CO2	1	2	1	2		1							1		
CO3	2	1	1	1	1									2	1
CO4	2	2		1			1							2	
CO5	1	1											1		
Avg.	1.4	1.4	1.0	1.3	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	2.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TC23	QUALITY CONTROL I	N WELDMEN	NT LAB	S	emeste	er	II
PRER	REQUISI	TES		Category	PC	Cre	edit	2
	facturing	g technology, Engineering mate	erials and	Hours/Week	L	Т	Р	ТН
metall	lurgy		0	0	4	4		
Cours	se Learni	ng Objectives	I					1
1		about welding measuring gauges, princi) for quality control in welding application		al testing and insp	ection	docum	ents	
List of	f experim	ents						
1	Study of	Welding Gauges and Measuring Equipm	ents					
2	Preparati	on of WPS and PQR						
3	Preparati	on of Welder qualification test						
4	Tensile t	est of weldments						
5	Bend tes	t of weldments						
6		est of weldments (notch location - weld n temperature	netal, HAZ and	l parent material)	- room	tempe	rature	
7]	Fit-up ins	pection						
8	Visual In	spection						
9	Dye-Pene	trant Testing and Magnetic Testing Exam	nination					
10	Radiogra	phic Film Interpretation						
11	Study of I	Inspection, Testing and Plan(ITP)						
		of MTCs (Material/Mill Test Certificate) ling Consumables	and BTCs (Ba	tch Test Certifica	te) - Ra	aw mat	erials	
						Tota	al = 60	Hours

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Explain the practical aspects of welding gauges and their applications.	L2: Understanding
CO2	:	Hands on experience in material testing and their sample preparation.	L3:Applying
CO3	:	Exposure of Quality control documents - Read and understand the various reports	L3:Applying
CO4	:	Understand and report welding documents (WPS, PQR &WPQ).	L2: Understanding

					CO	URSE .	ARTIC	CULAT	TON M	IATRIX	<u> </u>				
CO/P	PO	PO	РО	РО	PO	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	1	1	1			1							1		
CO2	1		2		1	1							1		1
CO3	1	1	1	1		1								1	
CO4	1		1			1							1		
Avg.	1.0	1.0	1.3	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22WT	C24	CHARACTERIZATION LAB		S	Π		
PRERE	EQUIS	ITES	Category	PC	Cre	edit	2
Engine	ering n	naterials and metallurgy		L	Т	Р	ТН
			Hours/Week	0	0	4	4
Course	Learn	ing Objectives					<u> </u>
1	To lear	n the principles of material characterization and to apply	y them for various	s engin	eering	applica	tions.
List of 1	Experi	ments					
	-	ication of Planes by Stereographic projection.					
2	Indexir	ng of patterns in XRD graphs.					
3	Estima	tion of precise lattice parameter of cubic crystals.					
4	Determ	nination of crystallite size and r.m.s. strain for mechanica	ally alloyed powd	ler.			
5	Interpr	etation of Thermal analytical curves.					
6	Analys	is of SEM fractographs.					
7	Analys	is of TEM images of metals and alloys.					
8	Determ	nination of volume fraction of phases using image analys	sis.				
9	Determ	nination of nodularity and nodule count in cast iron using	g image analysis.				
10	Corros	ion rate determination by a) weight loss method, b) effect	et of inhibitor.				
11	Evalua	tion of corrosion characteristic by Polarization technique	e.				
					Tot	al = 60	Hour

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Identify and mark the pole figures.	L2: Understanding
CO2	:	Illustrate the index of XRD and examine the applications of XRD pattern.	L4:Analysing
CO3	:	Interpret the DSC curves and analyze the SEM and TEM images of metal and alloys.	L4:Analysing
CO4	:	Analyze images for determining volume fraction of phases and the nodularity and nodule count in cast iron.	L4:Analysing
CO5	:	Evaluate the corrosion rate by weight loss method, the effect of inhibitor on rate of corrosion, and the corrosion characteristics by Polarization method.	L3:Applying

					CO	URSE .	ARTIC	CULAT	ION M	ATRIX					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			1									1		
CO2	1		2	1									1		
CO3	2	1	2	1										1	1
CO4		1			1								1		
CO5	1				1										1
Avg.	1.3	1.0	2.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

PROFESSIONAL ELECTIVE COURSES (PEC)

22W'	2WTE01 PHYSICAL METALLURGY AND HEAT TREATMENT Semester										
PRER	EQUIS	ITES	Category	PE	Credit		3				
Engin	eering n	naterials and metallurgy	Hours/Week	L	Т	Р	ТН				
Engin		naterials and inclainingy	110u15/ Week	3	0	0	3				
Cours	e Learn	ing Objectives									
1	-	part knowledge on the phase diagrams, properties and ap b identify and select suitable materials for various engine	•		d non-f	errous a	alloys				
2	2 To know the fundamental concepts of various heat treatment processes.										
Un	it I	PHASE DIAGRAMS		9	0	0	9				
system cooling	ıs – com g, Fe-C l	olution types, compounds, Hume- Rothery rules; Gibb's position and amount of phases, development of microstr Equilibrium diagram - effects of alloying elements – Fer	ucture – equilibri	um an	d non-e	quilibri	um				
	iagrams			[Γ	1					
Uni	it II	FERROUS ALLOYS		9	0	0	9				
HSLA Stainle harden	steels – ess steels ed stain	eels – low alloy and Q and T steels dual phase steels – u High Cr steels - processing, properties & applications. s- effects of chromium and nickel – ferritic and Auste less steels. Types of Cast Irons- Gray Cast iron, white in I metallurgy, composition of cast irons, properties and ap	nitic, martensitic on, malleable iro	, duple	ex and	precipi	tation				
Uni	t III	NON –FERROUS ALLOYS		9	0	0	9				
Physic alloys.		lurgy, composition, properties and applications of Cu all	loys, Al Alloys, T	'i alloy	rs, Ni al	lloys an	d Mg				
Uni	t IV	HEAT TREATMENT PROCESSES		9	0	0	9				
Harder Marter	nability npering,	rpes, Normalizing, Hardening - Retained austenite -me studies- Jominy end quench test, Grossman's expe Heat treatment of gray cast irons, white cast irons, mal bys and copper alloys.	eriments, Tempe	ring	Auster	npering	and				
	it V	CASE HARDENING		9	0	0	9				
treatn steels	nent afte used, e	Carburising: Principle, carbon potential, application of er carburising, structure, properties and common proble ffects of microstructure, white layer, nitriding methods, ing: principle, methods, operating variables. Measureme	ems in carburisin Carbo nitriding,	g. Niti	riding: ding, I	introdu nductio	ction, n and				
	Total = 45 Hours										
Refe	rence Bo	ooks:									
1	Raghav	an V. "Physical Metallurgy – Principles and Practice", F	Prentice Hall of In	idia, 2 ^r	^d Editio	on, 201	1.				
2		ns D Callister, "Material Science and Engineering", Wile									
3	³ Flinn. R.A. and Trojan. P.K. "Engineering Materials and their Applications", 4 th Edition, Jaico, 1999.										
4		n G. Budinski and Michael K. Budinski, "Engineering M , 4th Indian Reprint 2002.	laterials", Prentic	e Hall	of Indi	a Privat	te				
5	Metals Hand book. 10 th edition. Volumes 1, 2 and 3, ASM.2018										

6	Rajan and Sharma "Heat Treatment Principles and Techniques" –Prentice Hall of India (P) Ltd, New Delhi, 2009.
7	Vijendra Singh, "Heat Treatment of Metals", Standard Publishers Distributors, Delhi, First edition 1998.
8	Romesh.C. Sharma, "Principles of Heat Treatment of Steels", New Age International Pvt. Ltd. Publishers, New Delhi, 2008.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Explain the formation of solid solutions, construct the phase diagrams and understand the TTT and CCT diagrams.	L2: Understanding
CO2	:	Discuss the principal effects on properties of the major alloying elements used in steels and analyze the basic structure and properties of different types of cast irons.	L4:Analysing
CO3	:	Explain the properties and applications of some important non-ferrous metals such as Cu, Al, Ti, Ni, Mg and their alloys.	L2: Understanding
CO4	:	Discuss the various heat treatment processes for specific alloys.	L2: Understanding
CO5	:	Elaborate the various case hardening processes, advantages, limitations and it's applications.	L3:Applying

					CO	URSE .	ARTIC	CULAT	ION N	IATRIX	<u> </u>				
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	1			1									1		
CO2	1	1			1									1	
CO3		1		1										1	
CO4	1				1	1							1		
CO5	1			1			1						1		
Avh.	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE02	WELDING ECONOMICS, MANAGEMENT	AND SAFETY	S	Semeste	er	
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
		g technology, Engineering materials and		L	Т	Р	ТН
metall	lurgy		Hours/Week	3	0	0	3
~				5	U	U	5
		ing Objectives					
	lo design	n a system, a component, or a process to meet desired afluencing welding cost, Estimation of welding time, cost	needs within re	alistic	constra	ints su	ch as
		in welding & its manufacturability and sustainability.	sting for weiding,	piant .	layout s	setup, c	alety
Un	nit I	FACTORS INFLUENCING WELDING ECONOM	ICS	9	0	0	9
		n-selection of electrodes, size, type and metal recover					
		ver welding and joint fit - up welding position - op	eration factor -	jigs, fi	xtures,	positio	oners,
Operat	tor effici	ency.					
Un	it II	ESTIMATION OF WELDING TIME		9	0	0	9
Need	for time	standard – definition of standard time- various method	ls of computing	standaı	d time	– anal	ytical
calcula	ation – c	omputerization of time standards.					
Uni	t III	ESTIMATION AND COSTING FOR WELDING		9	0	0	9
Defini	tion of t	erms – composition of welding costs, cost of consumable	es – labour cost–	cost ov	er head	s - fori	nulae
		cost curves for different processes like GMAW, SAW, I	ESW, Mechaniza	tion in	weldin	g – job	shop
operat				•	•	0	
	it IV	PROCESS AND PLANT LAYOUT		9	0	0	9
	-	duct lay out – construction – service consideration – emp stations- resistance welding; power tools - blast stations			·		
		e forges - jigs and fixtures cleaning supplies- welding e					
		the welding shop for maximum convenience and ease o		· · r	r · r ·	0	
Un	it V	SAFE PRACTICES IN WELDING		9	0	0	9
		installation of equipments, safe handling equipment-	•	•	d face	protec	tion -
-	• •	tection - ventilation -protective extra clothing - electric s	•	•			
	•	velding operations, production control planning for well	U 1	· ·		-	•
-	-	duling. activating, monitoring, materials management in magement and man-power planning	welding- Invent	ory co	ntrol- E	sasic as	pects
01 IIIa		magement and man-power pranning					
					Tota	al = 45	Hours
Refe	rence Bo	ooks:					
1	ASM N	Ietals Handbook, Vol.6, "Welding, Brazing and Solderin	ıg", ASM, New Y	ork, 1	998.		

-			th
`			" O 1"." A WG OO17
/	AWN Welding Handbook Vol 5 "Hng	incering Costs Chighty and Nater	$V' \cup edition \cup W \setminus V \cup V$
-	AWS Welding Handbook, vol.5, "Eng		$(\cdot) $ cultion. A $(\cdot) $. 2013.
	8 9 9 8		· · · · · · · · · · · · · · · · · · ·

3 John Norrish, "Arc Welding Processes - Technologies and process control", Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining, 2006.

4 Standard Data for Arc Welding – The Welding Institute, U.K., 1994.

5 Bathy. J., "Industrial Administration and Management", 1984.

⁶ The Procedure Handbook of Arc Welding, 12th Edition, Lincoln Electric, USA, 2003.

ASM Metals Handbook, Vol.6, "Welding, Brazing and Soldering", ASM, New York, 1998.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Illustrate various factors influencing the welding cost.	L2: Understanding
CO2	:	Estimate the standard welding time using various methods for the welding processes.	L4:Analysing
CO3	:	Calculate the welding cost for the different welding processes.	L4:Analysing
CO4	:	Explain various requirements on setting up a welding plant layout.	L2: Understanding
CO5	:	Discuss the safety measures during welding processes and planning operations.	L2: Understanding

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1			1								1		
CO2	1	2	1		1		1								1
CO3	2	1		2		1					1	1	2		
CO4		1		1	2								2		
CO5	1		1		1						1			1	
Avg.	1.3	1.3	1.0	1.5	1.3	1.0	1.0	0.0	0.0	0.0	1.0	1.0	1.7	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22WTE03	COMPOSITE MATERIA	LS	S	emeste	er				
PREREQUIS	ITES	Category	PE	Cre	edit	3			
Engineering n	naterials and metallurgy		L	Т	Р	TH			
		Hours/Week	3	0	0	3			
Unit I	INTRODUCTION TO COMPOSITES		9	0	0	9			
Functional req	Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.								
Unit II	REINFORCEMENTS		9	0	0	9			
fibers. Properti	vup, curing, properties and applications of glass fiber es and applications of whiskers, particle reinforcements verse rule of mixtures. Isostrain and Isostress conditions	s. Mechanical Beh							
Unit III	MANUFACTURING OF METAL MATRIX COM	POSITES	9	0	0	9			
Manufacturing	id State diffusion technique, Cladding – Hot isosta of Ceramic Matrix Composites: Liquid Metal Infiltrati arbon composites: Knitting, Braiding, Weaving. Properti	on – Liquid phase	e sinter						
Unit IV	MANUFACTURING OF POLYMER MATRIX CO	OMPOSITES	9	0	0	9			
	Moulding compounds and prepregs – hand layup methors pression moulding – Reaction injection moulding. Prop			– Filam	ent wii	nding			
Unit V	STRENGTH OF COMPOSITES		9	0	0	9			
criteria, hydro	Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hydrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.								
				Tota	al = 45	Hours			

Re	Reference Books:								
1.	Material Science and Technology – Vol 13 – Composites by R.W. Cahn – VCH, West Germany.								
2.	Materials Science and Engineering, An introduction. W D Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.								

		Outcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Classify the composites and explain their properties.	L2: Understanding
CO2	:	Distinguish various reinforcements used in composites.	L4:Analysing
CO3	:	Explain the processing of metal matrix composites and their applications	L2: Understanding
CO4	:	Explain the processing of polymer matrix composites and their applications	L2: Understanding
CO5	:	Identify the mechanism of composites and determine the laminates stress within laminates.	L3:Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1		1	1								1		
CO2		1	1		1									1	1
CO3	1	1		1		1							2		
CO4	2				1								2		
CO5	1													1	
Avg.	1.3	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE04	MATERIALS CHARACTERIZA	TION	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
Engin	eering n	naterials and metallurgy		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1		quire knowledge on various characterizations, chemical etallurgical components.	and thermal anal	ysis tec	chnique	s to ana	lyses
Un	it I	METALLOGRAPHIC TECHNIQUES		9	0	0	9
contras	st, interf	with of focus and components and working of Metall erence, hot stage and quantitative metallographic technic specimen preparation techniques.					
Uni	it II	X-RAY DIFFRACTION TECHNIQUES		9	0	0	9
		d Characteristic spectrum– Bragg's law– Diffraction m sity of diffracted beams – structure factor calculations.	nethods– Laue, ro	otating	crystal	and po	owder
Uni	t III	APPILICATIONS OF X-RAY DIFFARACTION		9	0	0	9
	ation in	- general feature and optics – proportional scintillation determination of crystal structure, lattice parameter					
	t IV	ELECTRON MICROSCOPY		9	0	0	9
specin Constr	nen prep ruction a	and operation of Transmission Electron Microscopy – paration techniques, elemental analysis by wavelength and operation of Scanning Electron Microscopy, Sca e Microscope and Atomic force microscopy. Evaluation	dispersive and e nning Transmiss	nergy ion El	dispers ectron	ive sys Micros	tems.
	it V	ADVANCED CHEMICAL AND THERMAL ANA METHODS		9	0	0	9
Auge	r spectro	acopy, Spectroscopy- principles, Atomic Absorption Specopy. Differential Thermal Analysis, Differential Sca	T A · T				
					Tot	al = 45	Hours
Dofo	rence Bo	aaka					
		JUKS.					
1		ngelo, "Materials Characterisation", Elsevier (India) Pvt.					
2	-	V.A. "Modern Metallographic Techniques and their App	•		cience,	1971.	
3	-	B.D., "Elements of X- ray Diffraction", 2 ¹¹⁰ Edition, Add	•				
4	r	Ietals Handbook, Vol.10, Material Characterization, AS		98.			
5		s. G, "Transmission Electron Microscopy of Metals", Jo	•				
6	Smallm	an R.E., "Modern Physical Metallurgy", 4 ¹¹¹ Edition, Bu	tterworths.1985.				
7	Loretto	. M.H., "Electron Beam Analysis of Materials", Chapma	an and Hall, 1984				

		utcomes: apletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Describe the principle of various optical microscopic techniques.	L2: Understanding
CO2	:	Demonstrate the bragg's law of diffraction and the principle of XRD.	L4:Analysing
CO3	:	Determine crystal structure, lattice parameter, phase identification, solvus line estimation and residual stress analysis using XRD.	L2: Understanding
CO4	:	Describe the principle of various electron optical techniques.	L1: Remembering
CO5	:	Explain the analysis of composition, thermal and stress variations using spectroscopy, and calorimeters etc.,	L3:Applying

	<u>COURSE ARTICULATION MATRIX</u>														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2			1	1							1	2		
CO2	1		1										1		
CO3		2												2	
CO4	1			2	1							1	2		1
CO5	1		1	1	2							1	1		2
Avg.	1.3	2.0	1.0	1.3	1.3	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.5	2.0	1.5
					3/2/	1-indica	ates stre	ngth of	correla	tion (3-1	High, 2-N	Medium,	1- Low)		

22W]	ГЕ05	FAILURE ANALYSIS IN WELI	DMENTS	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
Engine	eering n	naterials and metallurgy		L	Т	Р	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1		lerstand the concepts on failure and fracture analysis of the		design	n new n	naterial	s that
Uni		INTRODUCTION TO FAILURE ANALYSIS		9	0	0	9
-		lure analysis, classification and identification of vario naracteristics of ductile and brittle fracture.	us types of fract	ure. O	verview	v of fra	acture
Uni	t II	WELDMENT SURFACE FAILURES		9	0	0	9
variou	us types	ar, analyzing wear failure. Corrosion failures- factors is of corrosion stress corrosion cracking, sources, ch analyzing stress corrosion cracking, various types of hy	aracteristics of s	stress of	corrosio		
Unit	t III	WELDMENT CREEP AND FATIGUE FAILURES	8	9	0	0	9
ruptur	re, elev	epts, fracture characteristics revealed by microscopy, ated temperature fatigue, metallurgical instabilities, e ldment failures.	Ũ	•		-	
Unit	t IV	FAILURE OF WELDED PRODUCTS		9	0	0	9
weldn		ilure in forge weldments, failure of welded iron and cress concentration by weldments, in-service weldment action.	•	· ·			
Uni	it V	RELIABILITY		9	0	0	9
	eibull di	cept and hazard function, life prediction, condition mor istribution for reliability, bathtub curve, parallel and ser	0 11			-	
					Tot	al = 45	Hours
Refer	ence B	ooks:					
		elo. V.J. and Heiser. F.A., "Analysis of Metallurgical Fa JSA, 1987.	ilures", John Wil	ey and	Sons Iı	nc. Nev	V
		K., "Metallurgy of Failure Analysis", Tata McGraw Hil	l, New Delhi, 199	02.			
3	Donald	J. Wulpi, "Understanding how components fail", ASM	International, 3 rd	Edition	ı, 2013.		
	ASM N 1995.	letals Handbook "Failure Analysis and Prevention", AS	M Metals Park. C	hio, V	ol.10, 1	0 th Edi	tion,
5	•	elo. V.J. and Heiser. F.A., "Analysis of Metallurgical Fa JSA, 1987.	ilures", John Wil	ey and	Sons Iı	nc. Nev	V

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1		Explain the types of fracture and their analysis.	L2: Understanding
CO2	:	List the various factors causing failures of weldments.	L2: Understanding
CO3	:	Analyze the causes for Fatigue and Creep failures.	L4:Analysing
CO4	:	Discuss failure of various welded product forms.	L2: Understanding
CO5	:	Explain various concepts in reliability.	L2: Understanding

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO3
CO1	1	1		1		1								1	
CO2	2	1	1										1		
CO3		1		1	1		1						1		
CO4	1	2		1										1	
CO5		1											1		
Avg.	1.3	1.2	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0
					3/2/1	l-indica	tes stre	ngth of	correlat	tion (3- I	High, 2-N	ledium,	1- Low)		

22WTE06	TESTING AND INSPECTION OF MA	TERIALS	S	Semeste	er	
PREREQUIS	ITES	Category	PE	Cre	edit	3
Engineering n	naterials and metallurgy		L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course Learn	ing Objectives	I				
1 To imp	part knowledge in destructive and non-destructive testing	g with case studies	s.			
2 To pro	vide an understanding of the basic principles of various	testing and inspec	ction.			
Unit I	DESTRUCTIVE TESTS		9	0	0	9
test- Izod and Nick Break Te	ngineering stress- strain curve, True Stress- strain curve Charpy impact test, Ductile to Brittle Transition Tem est, Drop Weight tests and other large scale tests. Har Bend tests. Nano indentation.	perature (DBTT)	, deter	minatio	n of D	ВТТ,
Unit II	SURFACE NDT TECHNIQUES		9	0	0	9
and limitations to weldments.	entional testing. Visual inspection, Liquid penetrant Ins s. Dyes, developers, and cleaners, fluorescent penetrant Magnetic particle Inspection: Principle, application, n echnique, demagnetization. Principle, application and ction methods.	test, application magnetization me	of liqu thods,	id pene magnet	trant te tic part	esting icles,
Unit III	RADIOGRAPHY AND OTHER NDT TECHNIQU	JES	9	0	0	9
use of filters films – grain graphic equiv Gamma Ray chart. Measu radiation dos technique, sta Digital radiog	 bgraphy: Types of radiation, production of X-rays, propand screens, geometric factors, inverse square Law, find fineness, density, speed, contrast, characteristic curalence. Radiography: Gamma ray sources, characteristics of rement of radioactivity, radiation hazards, units of e, radiation detection and measurement instruments, andard radiographs, Interpretation of radiographs, applic graphy. Acoustic Emission Techniques, Holography, Leic testing, service leak test. 	ilm types and proves, penetrameter Gamma ray sour radiation dose r protection again cation of radiograp	cessin cs, Exp ces, G neasur st radi phic te	g, chara posure amma r ement, lation.	acterist charts, ay exp permis Fluoros weldm	ics of radio osure ssible scopy nents.
Unit IV	ULTRASONIC INSPECTION		9	0	0	9
production of thickness meas	asonic waves, principle of wave propagation, charac ultrasonic waves, couplants. Inspection methods – surement. Types of scanning, test blocks, IIW reference ultrasonic testing to weldments, Time of flight diffraction	Pulse echo, tran block. Calibratio	nsmiss on of ul	ion and trasoni	1 resor c equip	nance, ment,
Unit V	OVERVIEW OF CODES AND STANDARDS REL NDT &WELDING	LATED TO	9	0	0	9
documents or codes on pipe vessel code S	of inspectors as per ASNT and their authority and resp n following subject areas like definition and symbols, f elines and refinery equipments and storage tanks for re- Section II,V,VIII & IX, ASME code for pressure pipi- redure Specifications, Procedure Qualification Records,	filler metals Qual efinery service, A ngs - the purpose	ificatio SME– e of re	n and T Boiler a spective	Festing and Pre e code	, API essure
				Tota	l = 45	Hours

Reference Books:

Dieter G. E., "Mechanical Metallurgy", SI metric Edition, McGraw Hill Books, 1988.

1

2	Baldevraj, Jayakumar.T., Thavasimuthu. M., "Practical Non-destructive Testing", Narosa Publishers.1997.
3	AWSWeldingHandbook,vol.5,"EngineeringCosts,QualityandSafety",7 th Ed, AWS, 1997
4	Hull, "Non Destructive Testing", ELBS Edition, 1991.
5	McGonnagle. W.J. "Non-Destructive Testing", Gordon and Breach, 2 nd Ed., 1971.
6	ASM Metals Hand Book. Vol. 9. Non-destructive Testing and Inspection, 1988.
7	Codes and Standards- ASNT, AWS D1.1, API1104, ASME- Boiler & Pressure Vessel Code – Section II, V, VIII,IX.
8	ASNT Nondestructive Testing Handbooks, Third Edition, American Society for Nondestructive Testing.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Outline the destructive testing such as tensile test, impact test and hardness test.	L2: Understanding
CO2	:	Select the suitable NDT techniques for surface analysis.	L3:Applying
CO3	:	Demonstrate the applications of X ray radiography and gamma ray radiography.	L3:Applying
CO4	:	Discuss the principle, inspection methods and applications of ultrasonic inspection.	L3:Applying
CO5	:	Identify suitable codes, standards and specifications for NDT.	L3:Applying

	<u>COURSE ARTICULATION MATRIX</u>														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1		1									1		
CO2	2	1			1								1		
CO3		2	1	1		1							2		1
CO4	1	1		1									1		
CO5	1														1
Avg.	1.3	1.3	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0	1.0
					3/2/1	-indica	tes strei	ngth of	correlat	tion (3- H	High, 2-N	ledium,	1- Low)		

22W1	ГЕ07	NON-METALLIC MATERIAL	.S	S	Semeste	er	
PRERI	EQUIS	ITES	Category	PE	Cre	edit	3
Engine	ering n	naterials and metallurgy		L	Т	Р	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
		ow various types of polymers, ceramics and compo- sing and behaviour of it.	sites and its rela	ated co	oncepts,	under	stand
Uni	it I	INTRODUCTION TO POLYMERS		9	0	0	9
polyme Degree applicat polyam	ers-conc of poly tions of iides, p	thermoset, thermoplastics and elastomers. Structure ept of Glass Transition Temperature (Tg). Polymerizat merization -molecular weight of polymers- problems. I f polyethylene, polypropylene, polyvinyl chloride, pol polyesters, polycarbonates and polyurethanes. Engin er, nitrile rubbers.	tion- types and m Polymer additives lystyrene, Polyme	nechani 5. Struc 2. Struc	sms wi ture, pr nethacry	th exan opertie /late, F	nples s and TFE,
Unit	t II	PROCESSING AND BEHAVIOUR OF POLYMEI	RS	9	0	0	9
Reactio	on Inje	on of equipments and process details of Extrusion, inj ction moulding, thermoforming, Blow moulding, - creep and stress relaxation in polymers. Yielding and f	compression mo	oulding	and	calenda	aring.
Unit	III	ENGINEERING CERAMICS		9	0	0	9
Sodium ionic ra	n chlorid dius rat	nding types in ceramics – calculation of percentage i de, cesium chloride, alumina, spinel and fluorite structu tio - Pauling's Rules. Simple problems involving Packin applications of SiC, Cubic Boron Nitride, PSZ, Barium	ures - examples. ng Fraction, critic	Co-ord al radiu	ination is ratio	numbe	r and
Unit	IV	PROCESSING OF CERAMICS AND GLASSES		9	0	0	9
pressing	g. Hot 1	on of slip and slurry casting, applications. Powder proc Isostatic Pressing and Cold Isostatic pressing, Liquid I applications. Blowing, pressing, drawing, rolling and ca	Phase sintering. 7	Types of	of glass	es, stru	cture,
Unit	t V	COMPOSITES		9	0	0	9
process Pultrusi Cerami	es - H ion, Inje c Matri rcement	ix Composites: Polymer matrix resins, Reinforcement and lay-up processes, Spray up processes, Compress ection moulding. Fiber reinforced plastics (FRP), Glass to ix composites: Ceramic matrix - oxide ceramics, not s – particles, fibers, whiskers. Sintering - Hot press	ssion moulding, fiber reinforced p n-oxide ceramics	Resin lastics	transfer (GRP). ina, sil	r moul icon n	ding, itride.
	0				Tota	l = 45	Hours
		_					
Refer	ence Bo	ooks:					
	Raymoi 1971.	nd Seymour, "An Introduction to Polymer Chemistry", N	McGraw-Hill Boo	ok Co.,	New Y	ork, US	SA,
2	Michel	Barsoum, "Fundamentals of Ceramics", McGraw-Hill F	Publishing Co. Sir	ngapore	e, 1997.		
3	Kingery	W.D., "Introduction to Ceramics", John Wiley, USA,	1960.				
		vs F.L. and Rawlings R.D., "Composite materials: Engin , England, 1 st edition, 1994.	neering and Scient	ce", Ch	apman	and Ha	ıll,
5	Chawla	K.K., "Composite materials", Springer – Verlag, 1987.					
0	Bhargav Delhi.	va. "Engineering Materials- Polymers, Ceramics and Co	omposites", Prenti	ce Hall	of Indi	a Ltd.,	New

7	Gowariker V R., Viswanathan N V, Jayadev Sreedhar, "Polymer Science", New Age International Pvt. Ltd.,
	2005.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Classify the polymers and select different polymer materials for various applications.	L2: Understanding
CO2	:	Illustrate different methods to synthesize polymer materials.	L2: Understanding
CO3	:	Distinguish the structure and properties of different ceramics.	L4:Analysing
CO4	:	Illustrate different methods to synthesize ceramic and glasses.	L2: Understanding
CO5	:	Explain types, synthesis and properties and its applications of PMCs and CMCs.	L3:Applying

	<u>COURSE ARTICULATION MATRIX</u>														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1												1		
CO2	1			1	1								1		
CO3	2		1											1	
CO4		1											1		
CO5	1		1											1	
Avg.	1.3	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0
					3/2/1	-indica	tes strei	ngth of	correlat	ion (3- I	High, 2-N	ledium,	1- Low)		

22W]	ГЕ08	FINITE ELEMENT ANAL	S				
PRER	EQUIS	PE	Cr	3			
Engine	eering N	Aaths		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1	To pro method	vide the basic FEM modeling and to analyze and solve r ds.	netallurgical prob	olems u	sing th	ose	
Uni	it I	TWO DIMENSIONAL PROBLEMS		9	0	0	9
Evaluat transfer Axi-syr	tion of f r – Tors mmetric	on – Laplace equation – Weak form – Element matrice integrals – Assembly – Axi-symmetric problems – App sional cylindrical member – Transient analysis - Theory c problems– Principle of virtual displacement.	lications – Condu of elasticity – Pl	ane str	and cor ain – P	vection Plane st	n heat ress –
Uni		ISOPARAMETRIC ELEMENTS AND ITS APPLI		9	0	0	9
integra	tion – C	Bilinear quadrilateral elements – Quadratic quadrilat Gauss quadrature – Static condensation – Load consider plications.					
Unit	t III	NON-LINEAR PROBLEMS AND ERROR ESTIM	IATES	9	0	0	9
Geome	etric No	Iterative Techniques- Material non-Linearity- Elaston linearity-large displacement Formulation-Application or norms and Convergence rates- high refinement with a	on in Metal Form	ning P	rocess	and co	•
Unit	t IV	DYNAMIC PROBLEM		9	0	0	9
		ation- Free- Transient and Forced Response- Solution Pr on- Newmark - Methods –Examples.	ocedures- Subspa	ice Iter	ative T	echniqu	ıe -
Uni	Unit V FLUID MECHANICS					0	9
	• •	uations of Fluid Mechanics-Inviscid and Incompressibl		Form	ulation	s-Slow	Non-
					To	tal= 45	Hours
Refer	ence B	ooks:					
	Cook, F Sons,19	Robert Davis et al "Concepts and Applications of Finite 1981.	Element Analysis	", Wile	ey, Johr	n &	
2	Desai C	C.S. and Abel J.F., "Introduction to Finite Element Method	od", Affiliated Ea	st- We	st Press	s, 1972	
3	Chandr	upatla, Belagundu, "Finite Elements in Engineering", Pr	entice Hall of Ind	lia Priv	ate Ltd	., 2002	
4	O.C. Zi	enkiewicz and R.L. Taylor, Finite element methods Vol	I & Vol II, McGr	aw Hil	1, 198 <mark>9</mark>	, 1992.	

5 K.J. Bathe, Finite element procedures, PHI Ltd., 1996.

Course Upon	Bloom's Taxonomy Mapped		
CO1	:	Demonstrate understanding of FE formulation for axi-symmetric problems in heat transfer and elasticity.	L2: Understanding
CO2	:	Identify the primary and secondary variables of the problem and choose correct nodal degrees of freedom and develop suitable shape functions for an isoparametric element.	L3:Applying
CO3	:	Solve contact problems using non-linear equations of equilibrium.	L4:Analysing
CO4	:	Analyze the dynamic flow problems by iterative methods.	L4:Analysing
CO5	:	Solve non Newtonian Flow-Navier Stokes Equation by FE equations.	L4:Analysing

COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			1									1		
CO2	1	1			1	1							1		
CO3		1		1									1		
CO4				1	1								1		
CO5	1				1								1		
Avg.	1.0	1.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

22W	TE09	ELECTRICAL ASPECTS OF WEL	DING	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
		ng technology, Basic Electrical and Electronic		L	Т	Р	ТН
Engine	eering		Hours/Week	3	0	0	3
Course	e Learn	ing Objectives	I			1	
1		lerstand the static and dynamic characteristics of electric	e arc and its assoc	iated p	ower		
2		teristics. n knowledge on the operating principles of various types	s of welding powe	er sour	ces.		
Un	it I	ELECTRICAL CHARACTERISTICS OF WELDI AND POWER SOURCES	ING ARC	9	0	0	9
of forc arc m source selecti	es in ar aintena e-extern ion of V	omena occurring in welding arc- potential distribution- c, arc blow- causes of arc blow, steps to reduce arc blo nce - requirements for a welding power source- al static V-I characteristic- constant current characteristic for a welding process – dynamic racteristic- arc length control.	w methods of an V-I characterist cteristic- constar	rc initities tic of the toolt	ation- a welc age cha	metho ding p aracter	ds of ower istic-
Uni	it II	WELDING TRANSFORMERS AND ROTATING	MACHINES	9	0	0	9
reactor – split	- satur	of welding transformer– types of welding transformer- able reactor – all characteristic- rotating machine – serie welding generator – out put characteristic – multi oper ns.	es generator –sepa	rately	excited-	- self ex	cited
Unit	t III	SOLID STATE WELDING POWER SOURCES		9	0	0	9
regulat technic	tion sys que)- pr	principles – uncontrolled, controlled – basic inverter tems – SCR phase control, transistor series regulated imary rectification – inverter control – hybrid design – advantages of solid state power sources.	or – secondary s	witche	d trans	istor (l	PWM
Uni	t IV	CONTROLS IN ARC WELDING		9	0	0	9
monito trackin	oring of ng devic	ntrol and close loop control- electric wire feed-autor process- resistance spot welding monitoring and contro es- robotic arc welding system- adaptive control in autor rt system in welding.	ol- seam tracking	device	s- sense	ors for	seam
Uni	it V	ELECTRICAL MEASUREMENTS IN WELDING SPECIAL POWER SOURCES	AND	9	0	0	9
oscillo	scope, l	of welding current, voltage, temperature, load and displ LVDT, thermocouples, Hall Effect current sensors, M welding power sources, synergetic welding power sources	Aechanical sensor	•		•	•
	*				Tota	al = 45	Hours
Refer	rence B	ooks:					
1	John N	orrish, "Arc Welding processes" - Institute of Physics Pr	ublishing Bristol	1992.			
2	R.S.Par	mar,"Welding Processes and Technology" Khanna Publ	lishers 2 nd Ed., 20	05.			
		B. Cary "Arc Welding Automations", Marcel Dekker I					
4	Md.Ibra	ahim Khan "Welding Science and Technology, New age	e International Ne	w Delh	i 2007.		
5		aan "Arc Welding control" CRC Press Washington D.C.					
6	The Pro	ocedure Handbook of Arc Welding, twelfth Edition, Line	coln Electric, USA	A, 1973	3.		

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Demonstrate the static and dynamic characteristics of electric arc and its associated power characteristics.	L2: Understanding
CO2	:	Choose different transformers and rotating machines for various welding processes.	L3:Applying
CO3	:	Select the right choice of welding power sources for solid state welding processes.	L3:Applying
CO4	:	Recognize and list the wire feed systems and seam tracking devices.	L3:Applying
CO5	:	Discuss various electrical measurements in welding and special power sources.	L2: Understanding

	<u>COURSE ARTICULATION MATRIX</u>														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			1	2	1							1		
CO2	2	1			1	1							1		
CO3	1	1		1									1		
CO4	1												1		
CO5		1	1										1		
Avg.	1.3	1.0	1.0	1.0	1.5	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE10	TOTAL QUALITY SYSTEM AND ENG	INEERING	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1		rn the different techniques of total quality management ering and different management systems.	nt and the manag	gement	princi	ples us	ed in
2	To leas	rn the methods of statistical quality control and process c	capability.				
Un	it I	INTRODUCTION		9	0	0	9
		Quality Management – Pioneers of TQM –Quality Cos g – Re-engineering - Concurrent Engineering.	st-Quality System	n- Cust	omer C	Drientat	ion –
Un	it II	MANAGEMENT SYSTEMS		9	0	0	9
	ng – Br	Organizational Structure- Team Building- Information information of ISO 9001:2015, ISO/TS 16949:2014, IS					
Uni	t III	TECHNIQUES OF TQM		9	0	0	9
		y Function Deployment, Quality Circles, KAIZEN, POK Single vendor Concept, J.I.T.	KA YOKE, Taguc	hi Met	hods, 5	S, Six	
Uni	t IV	STATISTICAL QUALITY CONTROL		9	0	0	9
	und Exp	Philosophy of statistical process control –Control Chart conential-weighted moving average control charts-ot					
Un	it V	ACCEPTANCE SAMPLING		9	0	0	9
-		mpling Problem –Single Sampling Plans for Attributes - ards – The Dodge – Romig Sampling plans.	-Double, Multiple	e and s	equenti	al samj	oling,
					Tota	al = 45	Hours

Refe	rence Books:
1	Mohamed Zairi, "Total Quality Management for Engineers", Wood head Publishers, 2013.
	Montgomery Douglas C, "Introduction to Statistical Quality Control", John Wiley and Sons Inc., New Delhi, 2013.
3	Fiegenbaum. A.V, "Total Quality Control", Mc Graw Hill Inc., New Delhi, 2008.
4	Eugene Grant et. al, "Statistical Quality Control", 7thedition, Mc Graw Hill, New Delhi, 2000.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Illustrate quality and cost of the TQM systems.	L2: Understanding
CO2	:	Discuss different quality auditing systems.	L2: Understanding
CO3	:	Explain different techniques and concepts of Total Quality Management.	L2: Understanding
CO4	:	Analyze different Statistical process for quality control.	L4:Analysing
CO5	:	Solve problems on different sampling methods.	L3:Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						1			1				1		
CO2								1				1	1		
CO3									1						1
CO4						1		1	1						1
CO5							1	1							1
Avg.	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0	1.0	0.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE11	AUTOMATION AND ROBOT	S	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
Manu	facturin	ng Technology		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	proces	npile and work with the automated equipment and it's ses and other related welding processes.					
2		nulate the Automated welding equipment, Arc and where the second sensors and gain knowledge on operation			rdized	arc we	lding
Un	it I	AUTOMATION OF ARC WELDING PROCESSE		9	0	0	9
contro disadv	l weldi antages	mation in welding, introduction to semi-automatic me ng. Automatic welding system – factors affecting of welding automation. Arc welding processes suitable ferent welding processes like GMAW, FCAW, SAW, G	g welding produte for automation	activity and de	– adva gree of	antages	and
Uni	it II	AUTOMATION OF OTHER RELATED PROCES	SES	9	0	0	9
weldin	ıg, Lasei	tomation in Brazing and Soldering processes. Automat Beam welding and Solid State welding processes. Auto Beam cutting and Thermal spraying.			-		
Uni	t III	AUTOMATED WELDING EQUIPMENT, ARC A MOTION DEVICES	ND WORK	9	0	0	9
drums, function manipu stock p	, pay of ons of t ulators a	er sources, type of electrode wire feeders and electrode of packs, typical adaptors and spiders. Types of weldin torches. Types of standardized arc motion devices – and Gantry carriages. Work motion devices – Universers. Combination of arc and work motion devices. STANDARDIZED ARC WELDING MACHINES, AND SENSORS	ng torches used i - Tractor, carriag sal positioners, tu	n auto ges, sie	mated de beau	welding n carri	g and ages,
weld – Plasma automa	- around a Transf atic wel	arc welding equipment, types of standardized welding machines, nozzle welders and bore welders. beam we erred Arc Overlay system. Automatic welding of pipes dding machines. Temporary portable automated toolin c welding.	lders, strip welde s and tubes Intro	rs, Las ductior	er weld to son	ling cel ne dedi	l and cated
Uni	it V	ROBOTIC ARC WELDING		9	0	0	9
Spheri	cal, Cyl	hation of arc welding. Robotic arc welding system, type indrical and Scara – Hybrid robots for welding, feature eaching the robot, Specifying the welding robot. Some ca	s of a welding ro	bot, ro	botic pa	art – ho	lding
					Tota	al = 45	Hours
Df	n	•					
Keiei	rence B	00KS:					
1		B. Cary "Arc welding Automation"- Marcel Dekker, N	lew York,1995				
2		Velding Handbook, Vol. 3, 9th edition, A W S., 2015.	th				
3		Velding Handbook, vol.5, "Engineering Costs, Quality a			WS, 20)15.	
4		ocedure Handbook of Arc Welding, 13 th Edition, Lincolr				-	_
5	Proceed	lings of the International Conference on Assembly Auto	mation, British W	/elding	Institu	te, 198.	5.

6	Kozyrev,	Industrial	Robots	Handbook,	Mir	Publishers,	Moscow,	1985.
---	----------	------------	--------	-----------	-----	-------------	---------	-------

		utcomes: apletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Demonstrate the automation of the arc welding processes.	L2: Understanding
CO2	:	Demonstrate the automation of other the welding and related processes.	L4:Analysing
CO3	:	Discuss different automated welding equipments, arc and work motions devices.	L2: Understanding
CO4	:	Explain the standardized arc welding machines, controls and sensors.	L2: Understanding
CO5	:	Apply the Robotic Arc welding for different functions of robot system.	L3: Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1												1		
CO2	2	1											1		
CO3	2	1											2		
CO4	1			1	1									1	
CO5	1														1
Avg.	1.4	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE12	WELDING APPLICATION TECHNO	OLOGY	S	Semest	er						
PRER	PREREQUISITES Category PE Credit Annufacturing Technology											
Manut	facturin	g Technology		L	Т	Р	TH					
			Hours/Week	3	0	0	3					
Cours	e Learn	ing Objectives		1			I					
1	To und	lerstand the materials, Process, fabrication techniques us	sed in welding of	structu	ral, pre	ssure						
		s, storage tank, piping and pipelines, chemical plants and	, 0									
3		in knowledge of the materials, processes, fabrication ures used for shipyards, railways, aerospace and automo		string	ent qu	ality co	ontrol					
Un	it I	WELDING OF STRUCTURALS AND PRESSURE		9	0	0	9					
		LS: Types of structural elements and their welding, mat					-					
weldin	SUREVI g proces	ESSELS: Material selection and factors affecting it, falses used, nozzle welding, tube to tube plate welds, flang bility aspects of pressure vessel steels.			-							
Uni	it II	WELDING OF STORAGE TANKS AND PIPINGS	5	9	0	0	9					
STORAGE TANKS: Welding of vertical storage tanks and Horton sphere. PIPING AND PIPELINES: pipe steels and electrodes, types of joints and welding, backing welds rings, fitting alloys used for piping, pipe welding procedures, preheating and PWHT, offshore pipework, pipelines and pipelin welding, under water pipeline welding.												
Uni	t III	WELDINGIN CHEMICAL PLANTS, CRYOG	ENICS &	9	0	0	9					
		MICRO JOINING TECHNIQUES PLANTS: Welding of oil-refinery components and fertili	1									
CRYO proced MICR	GENIC lures use	S: Materials used for cryogenic applications, proble ed for welding cryogenic materials. ING TECHNIQUES: Various techniques used for joinin	ems of welding.	Weld	U I							
Uni	t IV	WELDING OFSHIP STRUCTURE AND RAILWA	AYS	9	0	0	9					
constru RAILV	uction, v	TURE: Main parts of ship structure, materials for ship buvelding of submarine steels, welding of offshore structure Materials used for locomotive subassemblies, rail coachess used.	res.			-	s and					
	it V	WELDING OF AEROSPACE AND AUTOMOBIL	Æ	9	0	0	9					
weldin AUTO	g of airc MOBIL	Main parts of aerospace structure, materials for aircraft craft structures. E: Main parts in Automobiles, Materials used for autom mponents.	-				tion,					
					Tota	al = 45	Hours					
Refei	rence B	ooks:										
1		ndkarni, "Modern Arc Welding Technology", Oxford-IB										
2		rmar, "Welding Engineering and Technology", Khanna		Delhi,	1 st editi	on 199'	7.					
3		Velding Handbook, Sec.5 – Applications of Welding, 5^{u}	Edition, 1967.									
4	AWS V	Velding Handbook, Vol.4, 7 th Edition, 1991.										
5	ASM N	Ietals Handbook, Vol.6, Welding, Brazing and Soldering	g, ASM, New Yo	rk, 199	98.							

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Select the suitable welding procedures for the fabrication of structural elements and conventional pressure vessels and solve the difficulties in welding of pressure vessel steels.	L2: Understanding
CO2	:	Choose the correct materials, electrodes, type of joint, welding processes and fittings for the fabrication of storage tanks, piping as well as pipelines.	L4:Analysing
CO3	:	Solve the problems involved in welding of oil refinery components, fertilizer components and cryogenic materials.	L4:Analysing
CO4	:	Demonstrate the shipbuilding activities and solve the problems involved in welding of submarine steels and railway materials.	L3:Applying
CO5	:	Discuss materials for Aerospace and Automobile components and their weldments.	L3:Applying

	COURSE ARTICULATION MATRIX														
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	1				1		1						1		
CO2	2	1		1											1
CO3	1	2			1								1		
CO4	1					1							1		
CO5	1														1
Avg.	1.2	1.5	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE13	BRAZING, SOLDERING, SURFAC CUTTING	CING AND	5	Semeste	er	
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
Manu	facturir	ng Technology		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1		nderstand the fundamental concepts, applications, advancing and cutting.	tages and limitat	ions of	brazin	g, solde	ering,
Ur	nit I	FUNDAMENTALS OF BRAZING AND SOLDER	ING	9	0	0	9
	•	spreading characteristics, surface tension and contact rry joints. Capillary dams	angle concepts.	Filling	g of ho	orizonta	l and
Un	it II	FLUXES AND ATMOSPHERES FOR BRAZING A SOLDERING	AND	9	0	0	9
metal	l flux re	and characteristics constituents of flux, grouping and a moval and related corrosion problem. Atmosphere for b fetallurgy of filler metal for brazing and soldering. Joint	prazing and atmos	phere	for bra	zing sp	
Uni	it III	SOLDERING AND BRAZING PROCESSES	-	9	0	0	9
furna	ice brazi	ng, flame soldering furnace soldering, hot gas blanket so ng, induction brazing, dip brazing resistance brazing, va zing and soldering defects.	-	-			-
Uni	it IV	SURFACING		9	0	0	9
	-	ying, plasma spraying, laser surface alloying and modifi d corrosion resistance. CVD, PVD and ion implantation.		· ·	•	mprove	wear
Un	it V	THERMAL CUTTING PROCESSES		9	0	0	9
arc, a	air carbo	ng- oxyfuel gas, metal powder, chemical flux and oxyge n arc cutting. Metal and plasma arc cutting, High energy nder water cutting.	-		im cutti	ing, wat	ter jet
					Tot	al = 45	Hours
Refe	rence B	ooks:					
1	Schwar	tz. M., "Brazing – for the Engineering Technologies", C	hampan and Hall	, 1995.			
2	Manko	. H.H., "Solders and Soldering".2 nd Edition, McGraw Hi	ll, 1979.				
3	Udin, F	Funk, and Wulf., "Welding for Engineers".					
4	ASM N	Aetals Hand Book Vol. 6 "Welding and Brazing", 1988.					
5	Lancas	ter .J .F. "Metallurgy of Welding, Brazing and Soldering	" 3 rd edition. Geo	rge Al	len & U	Jnwin,	1980.
6	Brooke	, "Indusrial Brazing", Bcton.1975.					

Course Upon		Bloom's Taxonomy Mapped	
CO1	:	Explain the concepts of brazing and soldering.	L2: Understanding
CO2	:	Identify suitable fluxes, atmosphere and filler metals used for brazing and soldering.	L3:Applying
CO3	:	Identify different type of brazing and soldering for various applications.	L3:Applying
CO4	:	Explain different types of surfacing techniques.	L2: Understanding
CO5	:	Discuss the various thermal cutting processes.	L2: Understanding

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			1	1								1		
CO2	1													1	
CO3	2		1			1	1						1		1
CO4		1											1		
CO5	1	1											1		
Avg.	1.3	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	ТЕ14	CORROSION AND SURFACE ENGIN	EERING	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
Engin	eering n	naterials and Metallurgy		L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					1
1		vide a practical knowledge about corrosion and surface on ineering field.	engineering, with	its app	lication	1	
Un	it I	MECHANISMS AND TYPES OF CORROSION		9	0	0	9
Galvar	nic corr	lirect and Electro chemical Corrosion, Hydrogen evolu osion, Galvanic series-specific types of corrosion revice Fretting, Erosion and Stress Corrosion –Factors ir	such as uniform	n, Pit			
Uni	it II	TESTING AND PREVENTION OF CORROSION		9	0	0	9
Hydrog Corros	gen Ind ion - I	ing techniques and procedures- Corrosion Testing A uced Cracking (HIC) Test, Sulphide Stress Corrosio Design against corrosion –Modifications of corrosive rotective surface coatings.	on Cracking (SS	CC) T	est- P		on of
Uni	t III	CORROSION BEHAVIOR OF MATERIALS		9	0	0	9
		steels, stainless steel, Aluminum alloys, copper alloys, amics and Composite materials.	Nickel and Tita	nium a	lloys-	corrosi	on of
Uni	t IV	SURFACE ENGINEERING FOR WEAR AND CO RESISTANCE	RROSION	9	0	0	9
		ings –Electro and Electro less Plating –Hot dip coating Conversion coating –Selection of coating for wear and			praying	, Flam	e and
Uni	it V	THIN LAYER ENGINEERING PROCESSES		9	0	0	9
deposi	tion, Th	etron Beam hardening –Effect of process variables such ermal evaporation, Arc vaporization, Sputtering, Ion pla FiN , Al_2O_3 and Diamond coating Properties and applic	ting - Chemical v	apor d	epositio	on – Co	
Refei	rence Bo	ooks:					
1	Fontana	a. G., Corrosion Engineering, McGraw Hill, 1985.					
2	Kennetl	h G. Budinski, Surface Engineering for Wear Resistance	e, Prentice hall, 19	992.			
3	ASM N	Ietals Hand Book – Vol. 5, Surface Engineering, 1996.					
4	Denny .	A Jones, "Principles and prevention of corrosion", 2 nd ec	dition, Prentice Ha	all, Ne	w Jerse	y, 1995	5.
5	ASM Ir	ternational, Surface Engineering for Corrosion and Wea	ar Resistance, 200	5.			

6 Schweitzer. P.A., Corrosion Engineering Hand Book, 3rd Edition, Marcel Decker, 1996.

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	••	Classify different types of corrosion and explain their mechanisms.	L2: Understanding
CO2	:	Estimate corrosion resistance by different tests.	L4:Analysing
CO3	:	Understand corrosion behaviour of different metals at different conditions.	L2: Understanding
CO4	:	Define different forms of processing techniques of surface engineering materials.	L2: Understanding
CO5	:	Apply different types of deposition and spraying techniques of thin layer applications.	L3:Applying

	COURSE ARTICULATION MATRIX														
CO/P	PO	PO	PO	PO	РО	PO	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	1					1	1								1
CO2	1	1		1									1		
CO3	2		1		1									1	
CO4	1				1								1		
CO5	1												1		
Avg.	1.2	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22WTE	15 DESIGN OF WELDME	NTS	5	Semester PE Credit					
PRERE	QUISITES	Category	PE	Credit T P 0 0 ic constraints striction and resistortion and resistortin and resistortion and resistortion and resi					
Manufa	cturing Technology		L	Т	Р	TH			
		Hours/Week	3	0	0	3			
Course	Learning Objectives								
des	design a system, a component, or a process to meet de ign basics, weld design for static loading, weld design sses and failure analysis of the manufacturing.								
Unit l	• •		9	0	0	9			
connecti	f joints, Types of welds, variants of joints, selection o ons, welding symbols, weld dimensions, NDT symbols design principles.	• • •							
Unit I	WELD DESIGN FOR STATIC LOADING		9	0	0	9			
	or section properties, Weld design stress calculation for ion, compression, bending, shear, torsion and shock.	welds, design unde	r differ	ent type	es of lo	ading			
Unit II	I WELD DESIGN FOR DYNAMIC LOADING		9	0	0	9			
using fra	oint, methods of improving fatigue life of welded structure toughness value (KIC).	ctures, design for fa	-	-		-			
Unit I	DISTORTION AND RESIDUAL STRESSES		9	0	0	9			
Ũ	residual stresses – causes, occurrence, effects-thermal ffecting distortion –distortion control methods – predict		•	• •					
Unit V	FAILURE ANALYSIS IN DESIGN ASPECTS		9	0	0	9			
	analysis-methodology, approaches, tools and technique ieval, procedural steps for investigation of a failure f nts.	•							
				Tota	al = 45	Hour			
Refere	nce Books:								
1 B	lodgett. O. W., Design of Weldments, James F. Lincoln	Arc Welding Found	lation,	1991.					
2 R	.S.Parmar, Welding Engineering and Technology 2 nd ec	lition, 2010.							
Ū	burney T.R. Fatigue of Welded Structures. Cambridge U	-							
	olfe. T., Barsom. J., Fracture and Fatigue Control of Str rentice Hall, 1987.	uctures – Application	ns of F	racture	Mecha	nics,			
5 A	SM Metals Hand Book. Failure Analysis and Prevention	n. Vol. 11. ASM 200)2.						
Ŭ	bas, A.K., Metallurgy of Failure Analysis, Tata McGraw								
	onald J. Wulpi, Understanding how components fail, A								
0	Colangelo. V.J. and Heiser. F.A., "Analysis of Metallurgi York, USA, 1987.	ical Failures", John V	Wiley a	nd Son	s Inc. N	New			

Course Upon		Bloom's Taxonomy Mapped	
CO1	:	Explain the design basics of the different welding operations.	L2: Understanding
CO2	:	Choose suitable weld design for static loading processes.	L3:Applying
CO3	:	Select suitable weld design for dynamic loading processes.	L3:Applying
CO4	:	Illustrate the factors influencing the distortion and residual stresses.	L2: Understanding
CO5	:	Distinguish various types of weldment failures.	L4: Analysing

	COURSE ARTICULATION MATRIX														
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	1												1		1
CO2	1		1	1									1		
CO3	2	1	2		1								1		
CO4	1		1												1
CO5	1		1												1
Avg.	1.2	1.0	1.3	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE16	INDUSTRIAL SAFETY		S	emeste	er			
	EQUIS	g Technology	Category				3		
Manu	lactuim	ig reemology	Hours/Week	L	Т	Р	ТН		
				3	0	0	3		
Un	it I	INDUSTRIAL SAFETY		9	0	0	9		
steps/p layouts	ent, caus procedur s, light, hting, eq	ash roo	ms, dri	nking	water				
Uni	it II	FUNDAMENTALS OF MAINTENANCE ENGINE	EERING	9	0	0	9		
mainte		d aim of maintenance engineering, Primary and s department, Types of maintenance, Types and appl ost & its relation with replacement economy, Service lif	lications of tool						
Uni	t III	WEAR AND CORROSION AND THEIR PREVEN	NTION	9	0	0	9		
Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.									
Uni	t IV	FAULT TRACING		9	0	0	9		
activiti automo	ies, sho otive, th al combu	concept and importance, decision tree concept, need a w as decision tree, draw decision tree for problems ermal and electrical equipment's like, I. Any one mac ustion engine, v. Boiler, vi. Electrical motors, Types o	s in machine too chine tool, ii. Pun	ols, hyd np iii. 2	draulic, Air con	pneur npresso	natic, or, iv.		
Uni	it V	PERIODIC AND PREVENTIVE MAINTENANCE	E	9	0	0	9		
compo comple and pro Progra	onents, exitiesar eventive m and	ction-concept and need, degreasing, cleaning and repa overhauling of electrical motor, common troubles aditsuse,definition,need,stepsandadvantagesofpreventive e maintenance of: I. Machine tools, ii. Pumps, iii. Air co schedule of preventive maintenance of mechanical intenance. Repair cycle concept and importance.	and remedies or maintenance. Ste ompressors, iv. Di	of elec ps/proc esel ge	etric m cedure eneratin ent, ad	otor, 1 for per g (DG) vantage	repair riodic sets,		
D A									
Refer	rence Bo	ooks:							
1	Mainter	nance Engineering Handbook, Higgins & Morrow, Da Ir	nformation Servic	es.					
2	Mainter	nance Engineering, H. P. Garg, S. Chand and Company.							
3	Pump-h	ydraulic Compressors, Audels, Mcgrew Hill Publication	1.						
4	Founda	tion Engineering Handbook, Winterkorn, Hans, Chapma	an & Hall London	•					

		utcomes: npletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Discuss the safety rules & regulations, standards & codes applicable for engineering industry.	L2: Understanding
CO2	:	Analyse fundamentals of maintenance and industrial safety	L4: Analysing
CO3	:	Apply the principles wear and corrosion for different industry.	L3:Applying
CO4	•	Analyse fault tracing system of various machineries.	L4: Analysing
CO5	:	Elaborate various periodic and preventive maintenance activities in industry	L2: Understanding

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1												1		
CO2	1												1		
CO3	2	1		1										1	
CO4	1		1		1	1									1
CO5	1		1				1								1
Avg.	1.2	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22W	TE17	WELDING CODES AND STANDA	ARDS	S	emeste	er		
PRER	EQUIS	ITES	Category	PE	Cre	edit	3	
Manu	facturin	g Technology		L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Learn	ing Objectives						
1		view and Introductory treatment of codes and standard document procedures and qualification.	ds in the reference	ce – N	umerica	al prob	lems,	
2	To acq	uire knowledge on various welding codes and standards	related to various	s engin	eering a	applicat	ions.	
Un	Unit ISTRUCTURAL WELDING CODES9009						9	
Design standa		ements, allowable stress values, workmanship and insp	pection, introduct	ion to	welding	g codes	s and	
Un	Init IIPETROLEUM PIPING FABRICATION909							
	-	roduct standards for manufacturing of pipe – welding spection, API 1104 and API 5L.	procedure and w	velder	qualific	ations,	field	
Uni	t III	PRESSUR EVESSELF ABRICATION		9	0	0	9	
•	n require testing.	ements fabrication methods, joint categories, welding ar	nd inspection, pos	st weld	heat tr	eatmen	t and	
Uni	it IV	WELDING PROCEDURE AND WELDER QUAL	IFICATION	9	0	0	9	
Weldi	ng proce	dure specification, procedure qualification records, perfe	ormance qualifica	tion, v	ariables			
Un	it V	MATERIALS AND CONSUMABLES		9	0	0	9	
Introduction to materials standards and testing of materials, consumables testing and qualification as per ASME/AWS requirements.								
		Total = 45 Hours						

Refe	Reference Books:								
1	AWS D1.1 Structural Welding Code								
2	API 1104								
3	ASME Section VIII – Division 1								
4	ASME Section IX								
5	ASME Section II Part A and C								
6	API6A								

Course Upon		Bloom's Taxonomy Mapped	
CO1	:	Identify various design requirements and applicability of AWS D1.1.	L4:Analysing
CO2	:	Apply API 1104 and AP15L for pipe welding applications	L3:Applying
CO3	:	Apply ASME II, V, VIII and IX for boiler fabrication.	L3:Applying
CO4	:	Apply WPS, PQR and performance qualification variables for a specific welding application.	L3:Applying
CO5	:	Discuss suitability of different materials based on standard, testing methods and consumable testing.	L2: Understanding

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1												1		
CO2	2		1	1			1						1		1
CO3	1	2			1	1									1
CO4	1												1	1	
CO5	1													1	
Avg.	1.2	2.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
					3/2/1	l-indica	tes stre	ngth of	correlat	tion (3- H	ligh, 2-N	ledium,	1- Low)		

PREREQUISITESCategoryPECreditionSManufacturing MetallurgyTechnology, Engineering materials materialsand Hours/WeekITPTHMours/Week3003Course Learning Objectives1To know the basic concept of metal casting technology. 2To apply the concept to produce new materials.9009Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.9009Unit IMOULDING AND CASTING TECHNIQUES9009Sand moulding: green sand moulding, dry sand moulding, skin dry sand moulding, shell moulding, carbon di- oxide process, permanent mould casting, die casting, chertifugal casting, plaster mould casting, investment casting, squeeze casting, full mould process, Rheo casting, Thixo casting.9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, sue of chills, exothermic composities control in steels and cast irons. Simple problems on charge calculations. Use of softwares for foundry applications9009Quality control: composition control in steels and cast irons. Simple problems on charge calculations. Use of softwares for foundry applications9009	22WTE18	22WTE18 FOUNDRY PROCESSES AND METALLURGY Semester									
MetallurgyHours/Week21114Hours/Week3003Course Lear-ing Objectives1To know the basic concept of metal casting technology. 27 3 0092To ap-ly the concept to produce new materials.9009Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Molding, sands preparation.9009Sand moulding: green sand moulding, dry sand moulding, skin dry sand moulding, shell moulding, investent casting, squeeze casting, full mould process, Rheo casting, Thixo casting.9009Unit IIDESIGN OF CASTINGS9009Unit IIIDESIGN OF CASTINGS9 <td>PREREQUIS</td> <td>SITES</td> <td>Category</td> <td>PE</td> <td>Cre</td> <td>edit</td> <td>3</td>	PREREQUIS	SITES	Category	PE	Cre	edit	3				
Intensity we can be addressed by the concept of metal casting technology.30032To apply the concept of metal casting technology.79009Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.9009Unit IMOULDING AND CASTING TECHNIQUES9009Onit IIMOULDING AND CASTING TECHNIQUES909Sand moulding, dry sand moulding, skin dry sand moulding, shell moulding, carbon di- oxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, squezze casting full mould process, Rhoe casting, Thixo casting.9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yiet calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9009		ng Technology, Engineering materials and		L	Т	Р	ТН				
1To know the basic concept of metal casting technology.2To apply the concept to produce new materials.Unit IMOULDING MATERIALS AND PATTERNS9009Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.9009Unit IIMOULDING AND CASTING TECHNIQUES9009Sand moulding: green sand moulding, dry sand moulding, skin dry sand moulding, shell moulding, carbon dioxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, squeze casting, full mould process, Rheo casting, Thixo casting.9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yiel calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9009	wietanui gy		Hours/Week	3	0	0	3				
2To apply the concept to produce new materials.Unit IMOULDING MATERIALS AND PATTERNS9009Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.9009Unit IIMOULDING AND CASTING TECHNIQUES9009Sand moulding: green sand moulding, dry sand moulding, skin dry sand moulding, shell moulding, carbon di- oxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, full mould process, Rheo casting, Thixo casting.9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9009	Course Learn	ning Objectives									
Unit IMOULDING MATERIALS AND PATTERNS9009Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.9009Unit IIMOULDING AND CASTING TECHNIQUES9009Sand moulding: oxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, squeeze casting, full mould process, Rheo casting, Thixo casting.9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9009	1 To know the basic concept of metal casting technology.										
Introduction to foundry operations, patterns - functions, types, allowances, selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.Unit IIMOULDING AND CASTING TECHNIQUES9009Sand moulding: oxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, full mould process, Rheo casting, Thixo casting.9009Unit IIIDESIGN OF CASTINGS9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yiel' calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9009	2 To app										
codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.Unit IIMOULDING AND CASTING TECHNIQUES9009Sand moulding: oxide process, permanent mould casting, div sand moulding, skin dry sand moulding, shell moulding, carbon di- oxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, squeeze casting, full mould process, Rheo casting, Thixo casting.9009Unit IIIDESIGN OF CASTINGS9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9009	Unit I	MOULDING MATERIALS AND PATTERNS		9	0	0	9				
Sand moulding:green sand moulding, dry sand moulding, skin dry sand moulding, shell moulding, carbon dioxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, squeeze casting, full mould process, Rheo casting, Thixo casting.9009Unit IIIDESIGN OF CASTINGS9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yiel/calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9009	codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands.										
oxide process, permanent mould casting, die casting, centrifugal casting, plaster mould casting, investment casting, squeeze casting, full mould process, Rheo casting, Thixo casting.Unit IIIDESIGN OF CASTINGS9009Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Use of softwares for foundry applications9009Unit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION9099	Unit II	Unit IIMOULDING AND CASTING TECHNIQUES9009									
Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Use of softwares for foundry applications Unit IV QUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION 9 0 9	oxide process	, permanent mould casting, die casting, centrifugal c	casting, plaster m								
Chvorinov's rule, design and positioning of riser with examples, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Use of softwares for foundry applicationsUnit IVQUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION909	Unit III	DESIGN OF CASTINGS		9	0	0	9				
AUTOMATION	Chvorinov's r	ule, design and positioning of riser with examples, use	of chills, exother								
Quality control: composition control in steels and cast irons. Simple problems on charge calculations. Cleaning	Unit IV		N AND	9	0	0	9				
and repair of castings. Casting defects and remedies. Heat treatment of castings. Inspection of casting. Principles of mechanisation, automation and foundry layout. Sand reclamation and Pollution control in foundries.	and repair of	castings. Casting defects and remedies. Heat treatment c	of castings. Inspec	tion of	f casting	g. Princ					
Unit VFOUNDRY METALLURGY9009	Unit V	FOUNDRY METALLURGY		9	0	0	9				
Melting practice and Metallurgy of steels, alloy steels, cast irons, aluminium alloys, copper alloys and magnesium alloys, Solidification of Castings, Fluidity, Definition, Factors affecting and Measurement of Fluidity, inoculation in cast irons, modification in Al-Si system, Slag-Metal Reactions, Gases in Metals and Degassing Technique.	ation										
Total = 45 Hours					Tota	al = 45	Hours				

Refei	rence Books:
	Heine R W., Loper, C.R. Rosenthal, P.C., "Principles of Metal Casting", Tata-McGraw Hill Publishing Co Ltd, New Delhi, 2011.
2	Jain P.L ,"Principles of Foundry Technology", Tata McGraw Hill Publishing Co Ltd, New Delhi,

Course Upon		Bloom's Taxonomy Mapped	
CO1	:	Explain the moulding materials, types of pattern and allowances in foundry operations.	L2: Understanding
CO2	:	Discuss various casting techniques.	L2: Understanding
CO3	:	Apply various design aspects for different casting techniques.	L3:Applying
CO4	:	Describe the quality control, fettling, inspection and automation of casting engineering.	L2: Understanding
CO5	:	Apply the melting procedure for the various alloys like steels, stainless steels, Discuss the slag-metal reactions.	L3:Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1					1							1		
CO2	1				1								1		
CO3		1	1	1											1
CO4	1				1										1
CO5	1					1	1							1	
Avg.	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22WTE19	FORMING PROCESSES		S	Semeste	er	
PREREQUIS	ITES	Category	PE	Cre	edit	3
Manufacturin Metallurgy	g Technology, Engineering materials and		L	Т	Р	TH
Wietanurgy		Hours/Week	3	0	0	3
		I				
Unit I	FUNDAMENTALS OF METAL FORMING		9	0	0	9
strain- Formin	Von Mises, Tresca yield criteria. Comparison of yield g load calculations. Fundamentals of metal forming: , Hot, Cold and Warm working, Strain rate effects, Meta ses.	Flow stress deter	minati	on, Tei	nperati	ire in
Unit II	FORGING AND ROLLING		9	0	0	9
forging - Die billets, slabs a	ging-types of presses and hammers, Classification, Oper design, Calculation of forging loads - Defects, causes a nd sheet, types of rolling mills. Forces and geometrica causes and remedies.	and remedies. Ro	lling:	Rolling	of Blo	ooms,
Unit III	EXTRUSION AND DRAWING		9	0	0	9
extrusion, defe Hydrostatic ex	ect and Indirect extrusion, equipments, container less ex ects and remedies. Analysis of extrusion, tube extrusion trusion. Equal Channel Angular Extrusion. Defects caus oduction to Super plasticity.	and production of ses and remedies,	f seami Drawii	less pip	e and tu	ıbe.
Unit IV	SHEET METAL WORKING AND HIGH VELOC	CITY FORMING		9 0	0	9
Punching. Def Magnetic pulse	orming: Bending, spinning, stretch forming, deep drawir ects and applications. High velocity forming methods: E e forming and pneumatic method, Dynapak method. For value), strain rate sensitivity (m value), plastic strain rati nit diagram.	Explosive forming mability tests: Eff	, Electi fect of	ro hydra strain h	aulic, ardenir	ıg
Unit V	POWDER METALLURGY		9	0	0	9
methods. Con	advantages and disadvantages. Powder production mapaction-Pressure and pressure-less compaction tech d state and liquid phase sintering. Microwave sintering,	niques. Hot and	Cold			
				Tot	al = 45	Hours
Reference B						
	DOKS:					
1 Dieter,	G.E., Mechanical Metallurgy, McGraw Hill Co, SI Edit	ion, 1995.				
1			2001.			

Course Upon		Bloom's Taxonomy Mapped	
CO1	:	Describe the various fundamentals aspects of metal forming processes.	L2: Understanding
CO2	:	Explain the knowledge in forging and rolling processes.	L2: Understanding
CO3	:	Explain the extrusion and drawing processes, defects and it remedies.	L2: Understanding
CO4	:	Apply the fundamentals of various sheet metals forming process for different sheet components.	L3:Applying
CO5	:	Apply the concepts of power metallurgy for densification of components.	L3:Applying

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		1										1		1
CO2	1	1		1	1								1		
CO3	1												1		
CO4	1												1		
CO5	1												1	1	
Avg.	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

AUDIT COURSES

22AC01	1 ENGLISH FOR RESEARCH PAPER WRITING SEMESTI								
PREREQU	ISTIES	CATEGORY	AC	Cre	edit	0			
D . 1911.	paper writing on a particular topic		L	Т	Р	TH			
Basic skill in	Hours/Week	2	0	0	2				
COURSE O	BJECTIVES								
1. To help	p the learners to realize the necessity of English in writing a Research	ch paper							
2. To ena	ble the learners to write different sections of a research paper	•••							
3. To trai	n the learners to become better writers of research papers								
UNIT I			6	0	0	0			
Research pape	er and its importance, Structure of a research paper, Planning and pa	reparation.							
UNIT II			6	0	0	0			
English in res	earch papers, Basic word order, Collocation, Being concise, Redun	dancy, Common error	s.						
UNIT III			6	0	0	0			
Key factors t coherence.	hat determine the style of a paper, Journal's background, Passi	ve form, Right tense	forms,	Cohe	esion	and			
UNIT IV			6	0	0	0			
Hedging and	criticizing, Paraphrasing, Plagiarism, Ensuring quality of the paper	and Useful phrases.							
UNIT V			6	0	0	0			
Key skills in v	writing Title, Abstract, Introduction, Review of Literature, Discussi	on and Conclusion, H	ighlight	ing fi	nding	s.			
-			(30L+						

REFE	REFERENCE BOOKS:									
1.	Adrian Wallwork, "English for Writing Research Papers," Springer New York Dorecht Heidelberg London, 2016									
2.	Howe, Stephen. "Phrase Book for Writing papers and Research in English," Cambridge University Press, 2012.									
3.	Goldbort R. "Writing for Science," Yale University press, 2006.									
4	Gabor L Lovei. "Writing and Publishing Scientific Paper," Open Book Publishers, 2021									

REF	FERENCES:
1.	R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
2.	Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.

	COURSE OUTCOMES:BIUpon completion of this course, the students will be able to:M							
CO1	:	understand and appreciate the role of English in writing a good research paper	L2: Understanding					
CO2	:	apply their knowledge in writing a research paper	L3: Applying					
CO3	:	analyze and assess the quality of their research paper	L4: Analyzing					

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	2	0	0	0	0	2	3	0	1	0	0	0	0	1
CO2	0	3	0	0	0	0	1	3	0	1	0	0	0	0	2
CO3	0	2	0	0	0	0	1	3	0	1	0	0	0	0	1
Avg	0	2.3	0	0	0	0	1.3	3	0	1	0	0	0	0	1.3
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22AC02	DISASTER MANAGEMEN	T	SEMESTER I / II							
PREREQUISIT	E	CATEGORY	AC	Cr	edit	0				
		TT /XX7 1-	L	Т	Р	ТН				
		Hours/Week	2	0	0	2				
Course Objectives:										
To have a critical understanding of key concepts in disaster risk reduction and humanitarian response policy and practice from multiple perspectives. Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations and evaluate the strengths and weaknesses of disaster management approaches. Planning and programming in different countries, particularly their home country or the countries they work in.										
5	FRODUCTION - DISASTER PRONE AREA	S IN INDIA	4	0	0	0				
Disasters: Differen Prone To Floods A Special Reference UNIT II REP	n, Factors And Significance; Difference Between F ce, Nature, Types And Magnitude. Disaster Prone Ar And Droughts, Landslides And Avalanches; Areas P To Tsunami; Post Disaster Diseases And Epidemics ERCUSSIONS OF DISASTERS AND HAZA e, Loss Of Human And Animal Life, Destruction O	eas In India : Study (rone To Cyclonic Ar RDS	Of Seism nd Coasta	ic Zo al Har 0	ones; A zards V 0	reas Vith				
Volcanisms, Cyclo	nes, Tsunamis, Floods, Droughts And Famines, Lan Ieltdown, Industrial Accidents, Oil Slicks And Spills	dslides And Avalance	hes, Ma	n-mae	de disas	ster:				
UNIT III DISA	ASTER PREPAREDNESS AND MANAGEM	ENT	4	0	0	0				
Preparedness: Mor	nitoring Of Phenomena Triggering A Disaster Or Data From Meteorological And Other Agencies, Me	Hazard; Evaluation								
	K ASSESSMENT		4	0	0	0				
Techniques Of Ris	Disaster Risk: Concept And Elements, Disaster Risk Reduction, Global And National Disaster Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And Warning, People's Participation In Risk Assessment. Strategies for Survival.									
UNIT V DISA	ASTER MITIGATION		4	0	0	0				
	t And Strategies Of Disaster Mitigation, Emerging Traitigation, Programs Of Disaster Mitigation In India.	-								
		Tota	al (20L+	-0T)=	= 20 Pe	eriods				

COURS	COURSE OUTCOMES									
On comp	oleti	on of the course, the students will be able to								
CO1	:	Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.								
CO2	:	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives								
CO3	:	Develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations								
CO4	:	Critically understand the strengths and weaknesses of disaster management approaches								

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	1	1			
CO2					1	1	1	1	1	1	1	1			
CO3					1	1	1	1	1	1	1	1			
CO4					1	1	1	1	1	1	1	1			
Avg					1	1	1	1	1	1	1	1			
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22AC	03	3 SANSKRIT FOR TECHNICAL KNOWLEDGE SEMESTER I / II									
PREREQ	UISIT	E	CATEGORY	AC	Credit		0				
			Hours/Week	L	Т	Р	TH				
				2	0	0	2				
Course O	bjectiv	es:									
improve bi enhancing	To get a working knowledge in illustrious Sanskrit, the scientific language in the world. Learning of Sanskrit to improve brain functioning. Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature.										
Unit I				8	0	0	0				
Alphabets i	in Sansk	rit-Past/Present/Future Tense-Simple Sentences									
Unit II				8	0	0	0				
Order-Intro	oduction	of roots-Technical information about Sanskrit Liter	ature				•				
Unit III				8	0	0	0				
Technical c	Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics										
	Total (24L+0T)= 24 Periods										

REFF	REFERENCE BOOKS:								
1.	Abhyaspustakam" – Dr. Vishwas, Samskrita-Bharti Publication, New Delhi								
2	"Teach Yourself Sanskrit" Prathama Deeksha-Vempati Kutumbshastri, Rashtriya Sanskrit Sansthanam, New								
Ζ.	Delhi Publication								
3.	India"s Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi								

COURSE OUTCOMES

On completion of the course, the students will be able to									
CO1	•••	Understanding basic Sanskrit language							
CO2	:	Ancient Sanskrit literature about science & technology can be understood							
CO3	:	Being a logical language will help to develop logic in students							

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	1	1			
CO2					1	1	1	1	1	1	1	1			
CO3					1	1	1	1	1	1	1	1			
Avg	Avg 1 1 1 1 1 1 1 1 1														
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22AC04	VALUE EDUCATION		SEM	EST	'ER I	/ II
PREREQUISIT	E	CATEGORY	AC	Cre	edit	0
		Hours/Week	L	Т	Р	TH
			2	0	0	2
Course Objectiv	es:					
	importance of value education and self-development. To	imbibe good values	s in stu	dents	and a	ılso
know about the im	portance of character.					
Unit I			4	0	0	0
Values and self-de	velopment – Social values and individual attitudes - Work	ethics, Indian visior	n of Hu	manis	sm Mo	oral
and non-moral valu	ation - Standards and principles - Value judgements.					
Unit II			6	0	0	0
Importance of cul	tivation of values - Sense of duty-Devotion - Self-re	liance – Confidenc	e – Co	oncen	tratio	n –
Truthfulness – Cle	anliness – Honesty – Humanity -Power of faith - Nation	al Unity – Patriotisr	n - Lov	e for	natur	e –
Discipline						
Unit III			6	0	0	0
Personality and Be	havior Development - Soul and Scientific attitude - Positi	tive – Thinking - Int	egrity a	and d	iscipli	ne-
Punctuality - Love	and Kindness - Avoid fault Thinking - Free from anger -	Dignity of labor - U	Jnivers	al bro	therh	bod
	ance - True friendship-Happiness Vs suffering - love for					
	poperation - Doing best for saving nature					
Unit IV			6	0	0	0
Character and C	ompetence - Holy books vs Blind faith - Self-man	agement and Good	healtl	ı -Sc	ience	of
	ality – Nonviolence – Humility - Role of Women - All					
	ol – Honesty - Studying effectively	C	U		5	
		Total (2	22L+0	T)=	22 Pe	riods

Course	Ou	itcomes							
On com	ple	tion of the course, the students will be able to							
CO1 : Knowledge of self-development									
CO2	:	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives							
CO3	:	Learn the importance of Human values							
CO4 : Developing the overall personality									

Suggested Reading:

Chakraborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi, 1998. 1.

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	1	1			
CO2					1	1	1	1	1	1	1	1			
CO3					1	1	1	1	1	1	1	1			
CO4					1	1	1	1	1	1	1	1			
Avg					1	1	1	1	1	1	1	1			
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22AC05		CONSTITUTION OF INDIA		SE	MES	TER I	[/ II
PREREQUIS	SITE		CATEGORY	AC	Cr	edit	0
			Hours/Week	L	Т	Р	ТН
			Hours/ week	2	0	0	2
COURSE OBJ	JECTIV	VES:					
		es informing the twin themes of liberty and freedom					
		opinion regarding modern Indian intellectuals" const					
		Il as the emergence of nationhood in the early years of					
		r the commencement of the Bolshevik Revolution in	1917 and its impac	t on th	e initi	al draf	tıng
of the Indian Co Unit I		1011. FORY OF MAKING OF THE INDIAN CONS	ΤΙΤΙΤΙΛΝ	4	0	0	0
		mittee, (Composition & Working)	IIIUIION	4	U	0	0
Unit II		PHILOSOPHY OF THE INDIAN CONSTITU	ΤΙΟΝ	4	0	0	0
Preamble, Salie			JION	4	U	U	U
Unit III		NTOURS OF CONSTITUTIONAL RIGHTS	8. DUTIES	4	0	0	0
		ght to equality, right to freedom, right against exploita		•	v	v	v
		right to constitutional remedies, directive principles of					urai
Unit IV	i iigiito,	ORGANS OF GOVERNANCE	i state policy, fund	4		0	0
	mpositio	on, qualifications and disqualifications, powers and	functions executiv	•	-	-	-
		diciary, appointment and transfer of judges, qualification				50,001	1101,
Unit V	, J	LOCAL ADMINISTRATION		4	0	0	0
	nistratio	on head: role and importance, municipalities: in	troduction, mayor	and	role	of elec	cted
		f municipal corporation. Panchayati raj: introduction,					
their roles, CEO	O zilapa	anchayat: position and role. Block level: organizationa	al hierarchy(differer	it depa	rtmen	ts), vill	age
level: role of ele	ected ar	nd appointed officials, importance of grass root democ	eracy	-			
Unit VI		ELECTION COMMISSION		4	0	0	0
		role and functioning. Chief election commissioner a			s. Sta	te elec	tion
commission: ro	ole and f	functioning. Institute and bodies for the welfare of SC/					
			Tot	al (24I	2 +0T)	= 24 P	eriods

Suggested Reading:

1. The Constitution of India, 1950 (Bare Act), Government Publication

2. Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.

3. M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course	Ot	itcomes:
Upon co	mpl	etion of this course, the students will be able to:
CO1	:	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics
CO2	:	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India
CO3	:	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution
CO4	:	Discuss the passage of the Hindu Code Bill of 1956.

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	1	1			
CO2					1	1	1	1	1	1	1	1			
CO3					1	1	1	1	1	1	1	1			
CO4					1	1	1	1	1	1	1	1			
Avg					1	1	1	1	1	1	1	1			
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22AC06	PEDAGOGY STUDIES		SE	MES	ΓER	I/	II
PREREQUISTE		CATEGORY	AC	Cre	dit		0
		House (Wools	L	Т	Р]	ſĦ
		Hours/Week	2	T P 0 0 g undertaker 4 0 arning, Curr rching 2 0 common in dev 4 0 ality assess ulum and g idence for e iefs and Pea 4 0 t, Support f rces and larg 2 0	0		2
Course Objective	s:						
	evidence on the review topic to inform programme c and researchers. Identify critical evidence gaps to gu			underta	iken [by th	ıe
Unit I		•	4)	0	0
	Policy background, Conceptual framework and tern				Curric	ulur	n,
Unit II	Conceptual framework, Research questions, Overview	of methodology and	$\frac{1 \text{ Searc}}{2}$			0	0
	Pedagogical practices are being used by teachers in fo	rmal and informal of				v	-
	m, Teacher education.		1455100	/115 III	ucve	lopii	ıg
Unit III			4)	0	0
included studies, H materials best suppo pedagogical practice	fectiveness of pedagogical practices, Methodology for ow can teacher education (curriculum and practicum ort effective pedagogy? Theory of change. Strength and es, Pedagogic theory and pedagogical approaches, Te	n) and the school c I nature of the body	urricul of evid	um an lence f	d gui or eff	dand ectiv	ce ve
strategies. Unit IV			4			0	0
Professional develop	pment: alignment with classroom practices and follow e community, Curriculum and assessment, Barriers to	I II '	upport,	Suppo	ort fro	om th	ne
Unit V			2)	0	0
Research gaps and	future directions, Research design, Contexts, ped nation and research impact	agogy, teacher edu			·	v	
		Tota	l (16L	.+ 0 T):	= 16	Per	iods
1			`				

Sug	gested Reading:
1.	Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261
2.	Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379.
3.	Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER) country report 1. London: DFID
4.	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282.
5.	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

Cour	se (Outcomes:
Upon	con	npletion of this course, the students will be able to:
CO1	:	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
CO2	:	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
CO3	:	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?

	COURSE ARTICULATION MATRIX														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	1	1			
CO2					1	1	1	1	1	1	1	1			
CO3					1	1	1	1	1	1	1	1			
Avg	Avg 1 1 1 1 1 1 1 1 1 1														
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22AC07	STRESS MANAGEMENT BY Y	OGA	SE	MES	TER I	/ II
PREREQUISITE		CATEGORY	AC	Cr	edit	0
		Harry (Waals	L	Т	Р	TH
		Hours/Week	2	0	0	2
Course Objective	S:					
To achieve overall h	ealth of body and mind, To overcome stress					
Unit I			8	0	0	0
Definitions of Eight	parts of yoga.					
Unit II			8	0	0	0
Yam and Niyam. Do tapa, swadhyay, ishv)`s and Don"t"s in life. 1.Ahinsa, satya, astheya, bram yarpranidhan	hacharya and aparigr	aha 2.S	hauch	a, santo	osh,
Unit III			8	0	0	0
Asan and Pranayam and its effects-Types	1. Various yog poses and their benefits for mind & bo of pranayama	dy 2. Regularization	of brea	thing	techniq	ues
		То	tal (24I	L+0T)	= 24 P	eriods
Suggested Readin	0					
	for Group Tarining-Part-I" :Janardan Swami Yogabhy Internal Nature" by Swami Vivekananda, Advaita As					a
Course Outcomes	•					
Upon completion of	this course, the students will be able to:					
	healthy mind in a healthy body thus improving social	health.				
CO2 : Improve	efficiency					

COURSE ARTICULATION MATRIX															
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	1	1			
CO2					1	1	1	1	1	1	1	1			
Avg					1	1	1	1	1	1	1	1			
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															

22AC08		PERSONALITY DEVELOPMENT T	SEMESTED I/ II									
		ENLIGHTENMENT SKI	SEMESTER I/ II									
PREREQ	CATEGORY	AC	C Credit		0							
			Hours/Week	L	Т	Р	TH					
			Hours/ Week	2	0	0	2					
Course O	\$											
To learn to achieve the highest goal happily, To become a person with stable mind, pleasing personality and determination, To awaken wisdom in students.												
Unit I		ISATAKAM - HOLISTIC DEVE ONALITY	LOPMENT OF	8	0	0	0					
Verses- 19,	20, 21, 2	2 (wisdom)										
Verses- 29,	31, 32 (p	ride & heroism)										
Verses- 26,	28, 63, 6	5 (virtue)										
Verses- 52,	53, 59 (d	lont"s)										
Verses- 71,	73, 75, 7	8 (do''s)										
Unit II	APPR	OACH TO DAY TO DAY WORK AND DU	TIES	8	0	0	0					
ShrimadBha												
Chapter 2-V												
Chapter 3-V												
Chapter 6-V	Verses 5,1	3,17,23, 35,										
Chapter 18-	Verses 4	5, 46, 48.										
Unit III	STAT	EMENTS OF BASIC KNOWLEDGE		8	0	0	0					
Shrimad Bh	nagwad G	eeta:										
Chapter2-V	erses 56,	62, 68										
Chapter 12	-Verses 1	3, 14, 15, 16,17, 18										
Personality	of Role 1	nodel.										
Shrimad Bh	nagwad G	eeta:										
Chapter2-V	erses 17,											
Chapter 3-V	Verses 36	,37,42										
Chapter 4-V												
Chapter18 -	- Verses	37,38,63										
			Total (2	24L+0	Γ)= 2	4 Pe	riods					
Suggested	Readin	g:										
1. "Srim	ad Bhaga	wad Gita" by Swami Swarupan and a Advaita Ashr	am (Publication Departme	nt), Ko	lkata.							
2. Bhart	rihari"s T	hree Satakam (Niti-sringar-vairagya) by P.Gopinath	n, Rashtriya Sanskrit Sans	thanam	, New	Delh	ii.					
·												
Course O	utcomes	:										
		this course, the students will be able to:										
CO1 :	Study	of Shrimad-Bhagwad-Geeta will help the student	in developing his persona	ality an	d ach	ieve	the					
		goal in life										
CO2 :		rson who has studied Geeta will lead the nation and	· · ·	sperity								
CO3 :	Study of	of Neetishatakam will help in developing versatile p	ersonality of students.									
r												
COURSE	ADTICU	Ι ΑΤΙΩΝ ΜΑΤΡΙΥ										

COURSE ARTICULATION MATRIX														
COs / POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1					1	1	1	1	1	1	1			
CO2					1	1	1	1	1	1	1			
CO3					1	1	1	1	1	1	1			
Avg					1	1	1	1	1	1	1			
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														