

GOVERNMENT COLLEGE OF ENGINEERING SALEM - 636 011 (An Autonomous Institution Affiliated to Anna University, Chennal) REGULATIONS 2022 CURRICULAM AND SYLLABUS (For Candidates admitted from 2022 - 2023 onwards) DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING (FULL TIME PROGRAMME) Rough Draft

VISION

Strive continuously to develop Excellence in Technical Education and Research by producing technically competent Electronics and Communication Engineers to meet the growing demands of technology and socioeconomic needs.

MISSION

- To foster and achieve unmatched excellence in Electronics and Communication Engineering Domain.
- To pursue continuous improvement in infrastructure and state-of-the art laboratories.
- To establish and set best teaching and learning standards among top grade Engineering Departments across the nation.
- To encourage learning, research, creativity, innovation and professional activity by offering ambience and support.

PROGRAMME EDUCATIONAL OBJECTIVE (PEO'S)

- **PEO 1:**The graduates will utilize their expertise in Engineering to solve industry's technological problems.
- **PEO 2**:Analyze real life problems, design appropriate system to provide solutions that are technically sound, economically feasible and socially acceptable.
- **PEO 3**:Exhibit professionalism, ethical attitude, communication skills, team work in their profession and adapt to current trends by engaging in lifelong learning.

PROGRAM OUTCOMES(PO'S)

- **PO 1**:An ability to apply knowledge of Mathematics, Science, and Engineering in the Electronic and Communication Engineering.
- PO 2:An ability to design and conduct experiments, as well as to analyze and interpret data.
- PO 3:An ability to design a System, or Process to meet desired needs within realistic constraints such as Economic, Environmental, Social, Ethical, Health care and Safety, Manufacturability, and Sustainability.
- **PO 4**:An ability to identify, formulate and solve complex problems in the area of Electronics and Communication Engineering.
- PO 5:An ability to use the techniques, skills, and modern Engineering tools necessary for Engineering practice.
- **PO 6**:Knowledge of contemporary issues relevant to professional Engineering practice.

- **PO 7**:The broad education necessary to understand the impact of Engineering solutions in Global, Economic, Environmental and Social context.
- PO 8:An understanding of Professional and Ethical responsibility.
- **PO 9**:An ability to function on multidisciplinary teams.
- **PO 10**:An ability to communicate effectively.
- PO 11:Recognition of the need for, and an ability to engage in research and to involve in life-long learning.
- PO 12:An ability to work as a leader in a team, to manage projects in Multidisciplinary Environments.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To analyse, design and develop solutions for the real time problems and to apply the technical Knowledge for developing quality products for Electronics and Communication based Industry.

PSO2: To adapt to emerging Information and Communication technologies and to develop innovative ideas and solutions in RF & Communication, Networking, Embedded Systems, and VLSI.

PSO3: An ability to make use of acquired technical knowledge to get employed in the field of Electronics and Communication and also to become successful Entrepreneur.

GOVERNMENT COLLEGE OF ENGINEERING, SALEM – 636 011. B.E – ELECTRONICS AND COMMUNICATION ENGINEERING (FULL TIME)

		SEMESTER I								
S.	Course	Cat.	I	Iour	s/W	eek	M	Iax. Ma	arks	
No.	Code	Course Title	Cat.	L	Т	P	C	CA	FE	Total
1	22MC101	Induction Program	MC	-	-	-	0	-	-	-
		THEORY								
2	22EN101	Communicative English (Theory cum Practical)	HS	2	0	2	3	50	50	100
3	22MA101	Matrices, Calculus and Ordinary Differential Equations	BS	3	1	0	4	40	60	100
4	22PH102	Material Science for Engineering	BS	2	1	0	3	40	60	100
5	22CY101	Engineering Chemistry	BS	3	1	0	4	40	60	100
6	22CS101	Problem Solving and C Programming	ES	3	0	0	3	40	60	100
7	22MC102	Heritage of Tamil/ தமிழர் மரபு	HS MC	1	0	0	1	100	-	100
		PRACTICAL								
8	22CS102	Computer Practice and C Programming Laboratory	ES	0	0	3	1.5	60	40	100
9	22ME102	Workshop Manufacturing Practices	ES	0	0	4	2	60	40	100
		TOTAL		14	3	9	21.5	430	370	800
	SEMESTER II									
S.	Cource Little				Iour	s / W	eek	M	Iax. Ma	arks
No.	Code		Cat.	L	T	P	С	CA	FE	Total
		THEORY			1	ı	1	1		
1	22MA203	Linear Algebra, Partial Differential Equation Vector Calculus	BS	3	1	0	4	40	60	100
2	22PH201	Physics- Electromagnetism	BS	2	1	0	3	40	60	100
3	22HS201	Universal Human Values	HS	2	1	0	3	40	60	100
4	22EE201	Principles of Electrical Engineering	ES	3	0	0	4	40	60	100
5	22ME101	Engineering Graphics & Design	ES	1	0	4	3	40	60	100
6	22MCIN01	Engineering Sprints	EE	0	0	2	1	100) -	100
7	22MC201	Tamizhars and Technology/ தமிழரும்தொழில் நுட்பமும்	HS MC	1	0	0	1	100	-	100
8	22NC201	NCC COURSE – I (only for NCC Students)	NC	3	0	0	3	40	60	100
		PRACTICAL								
9	22EN102	Professional Skills Laboratory	HS	0	0	2	1	60	40	100
10	22PH103	Physics Laboratory	BS	0	0	3	1.5	60	40	100
11	22CY102	Chemistry Laboratory	BS	0	0	3	1.5	60	40	100
12	22EE202	Principles of Electrical Engineering Laboratory	ES	0	0	3	1.5	60	40	100
		TOTAL		15	3	17	24.5	680	520	1100

^{*}NCC credit course level I is offered for NCC students only. The grades earned by the students will be recorded in the Mark sheet, however the same shall not be considered for the computation of CGPA

		SEMESTER III	1	1						
S.	Course	Course Title	Cat.	1	Hour	s/W	eek	N	Iax. M	arks
No.	Code	Course Title		L	T	P	C	CA	FE	Total
		THEORY								
1	22MA304	Fourier Series, Complex Variables and Transforms	BS	3	1	0	4	40	60	100
2	22EC301	Semiconductor Devices and Circuits	PC	3	0	0	3	40	60	100
3	22EC302	Digital System Design	PC	3	0	0	3	40	60	100
4	22EC303	Network Theory and Synthesis	PC	3	0	0	3	40	60	100
5	22EC304	Transmission Lines and Waveguides	PC	3	0		3	40	60	100
6	22EC305	Analog Communication	PC	3	0	0	3	40	60	100
7	22MC301	Indian Constitution	M C	2	0	0	0	100	-	100
8	22MCIN02	Innovation Sprint	EE	0	0	2	1	100	-	100
9	22NC301	NCC Course – II(Only for NCC Students)	NC	3	0	0	3*	40	60	100
		PRACTICAL	. "							
10	22EC306	Semiconductor Devices and Circuits Laboratory	PC	0	0	4	2	60	40	100
11	22EC307	Digital System Design Laboratory	PC	0	0	4	2	60	40	100
		TOTAL		20	1	10	24	560	440	1100
		SEMESTER IV								
S.	Course Code	Course Title	Cat.	1	Hours / W			N	Iax. M	arks
No.	Course Coue	Course Time	Cat.	L	T	P	C	CA	FE	Total
		THEORY								
1	22MA402	Probability and Stochastic Process	BS	3	1	0	4	40	60	100
2	22EC401	Analog Circuits	PC	3	0	0	3	40	60	100
3	22EC402	Microprocessors and Microcontrollers	PC	3	0	0	3	40	60	100
4	22EC403	Signals and Systems	PC	3	0	0	3	40	60	100
5	22EC404	Control Systems	PC	3	0	0	3	40	60	100
6	22EC405	Antenna and Wave Propagation	PC	3	0	0	3	40	60	100
7	22MCIN03	Design Sprint	EE	0	0	2	1	100	-	100
8	22CYMC01	Environmental Science	MC	2	-	1	0	100	-	100
		PRACTICAL			•			_	r	
9	22EN401	Placement and Soft skills Laboratory	HS	0	0	4	2	60	40	100
10	22EC406	Analog Circuits Laboratory	PC	0	0	4	2	60	40	100
11	22EC407	Microprocessors and Microcontrollers Laboratory	PC	0	0	4	2	60	40	100
· <u> </u>		TOTAL		20	1	15	26	620	480	1100

^{*}NCC credit course level II is offered for NCC students only. The grades earned by the students will be recorded in the Mark sheet, however the same shall not be considered for the computation of CGPA

		SEMESTER V									
S.	Course Code	Course Title	Cat		Но	urs /	Wee	k	M	arks	
No.	Course Code	Course Title	•	L	,	T	P	C	CA	FE	Total
		THEORY									
1	22EC501	Digital Communication	PC	3		0	0	3	40	60	100
2	22EC502	Digital Signal Processing	PC	3		0	0	3	40	60	100
3	22EC503	Embedded Systems	PC	3		0	0	3	40	60	100
4	22EC504	Principles of Management	PC	3		0	0	3	40	60	100
5	22OExx	Open Elective -1	OE	3		0	0	3	40	60	100
6	22MCIN04	Ideation Sprint	EE	0		0	2	1	100	-	100
		PRACTICAL			·						
7	22EC505	Communication Systems Laboratory	PC	0		0	4	2	60	40	100
8	22EC506	Digital Signal Processing Laboratory	PC	0		0	4	2	60	40	100
		TOTAL		15			10	20	420	380	800
		SEMESTER VI (Regular	r Stre	am)	·						
S.	Course Code	Course Title		Cat.	H	lour	s / Wo	eek	M	lax. Ma	arks
No.	Course Code	Course Title	'	al.	L	T	P	C	CA	FE	Total
		THEORY									
1	22ECPE6xx	Professional Elective – 1]	PE	3	0	0	3	40	60	100
2	22ECPE6xx	Professional Elective – 2]	PE	3	0	0	3	40	60	100
3	22ECPE6xx	Professional Elective – 3]	PE	3	0	0	3	40	60	100
4	22ECPE6xx	Professional Elective – 4 (Industry based))]	PE	3	0	0	3	40	60	100
5	22_Oexx	Open Elective – 2	(ЭE	3	0	0	3	40	60	100
6	22Oexx	Open Elective -3	(ЭE	3	0	0	3	40	60	100
		PRACTICAL									
7	22EC601	Mini Project	Е	E	0	0	6	3	60	40	100
		TOTAL		1	8	0	6	21	300	400	700
		SEMESTER VI (Protoser	m Str	eam)							
S.	Course Code	Course Title	Cat		Hou	ırs/	Week	S	M	lax. Ma	arks
No.	Course Coue	Course Title	•	L		T	P	C	CA	FE	Total
		THEORY									
1	22IPPS11	Applied Design Thinking	EE	2	(0	2	3	100	-	100
2	22IPPS12	Start- up Fundamentals	EE	2	(0	2	3	100	-	100
3	22IPPS13	Computational Hardware	EE	2		0	2	3	100	-	100
4	22IPPS14	Coding for Innovators	EE	2	(0	2	3	100	-	100
5	22IPPS15	Industrial Design & Rapid Prototyping Techniques	EE	2	(0	2	3	100	-	100
6	22IPPS16	Industrial Automation	EE	2	(0	2	3	100	-	100
7	22IPPS17	Robotics	EE	2		0	2	3	100	_	100

		TOTAL		1	4	0	14	21	700	-	700
		SEMESTER V	II								
S.	Course Code	Course Title		¹at	H	lour	s / W	eek	M	arks	
No	Course Coue	Course Title		Cat.		T	P	C	CA	FE	Total
		THEORY									
1	22EC701	VLSI Design]	PC	3	0	0	3	40	60	100
2	22EC702	Optical and Microwave Engineering]	PC	3	0	0	3	40	60	100
3	22EC703	Wireless and Mobile Communication]	PC	3	0	0	3	40	60	100
4	22OExx	Open Elective – 4	(ЭE	3	0	0	3	40	60	100
		PRACTICAL	,								
5	22EC704	Optical and Microwave Engineering Laboratory	F	PC	0	0	4	2	60	40	100
6	22EC705	VLSI Design and Embedded Systems Laboratory	F	PC	0	0	4	2	60	40	100
		TOTAL			12	0	8	16	280	320	600
		SEMESTER VI	III								
S.					E	Iour	s/W	eek	M	lax. M	arks
No	Course Code	Course Title	(Cat.	L	Т	P	C	CA	FE	Total
		THEORY	ı				1		1		
1	22ECPE8xx	Professional Elective - 5]	PE	3	0	0	3	40	60	100
2	22ECPE8xx	Professional Elective - 6]	PE	3	0	0	3	40	60	100
	•	PRACTICAL	,		•					<u> </u>	
3	22EC801	Project Work]	EE	0	0	20	7	120	80	200
		TOTA	L		6	0	20	13	200	200	400

Electronics and Communication Engineering Scheme of Credits:163

SUMMARY

Course	Credits P	er Semest	er						Total
component		ı		1	1	1	ı	ı	Credits
	I	II	III	IV	V	VI	VII	VIII	
HS	3	4		2					9
ES	6.5	7.5							14
BS	11	10	4	4					29
PC			19	19	16		13		67
PE						12		6	18
OE					3	6	3		12
EE		1	1	1	1	3		7	14
MC/HSMC									
Total	20.5	22.5	24	26	20	21	16	13	163

Course Category	Credits	Credit %
Humanities and Social Science	9	5.52
Basic Science	29	17.8
Engineering Science	14	8.60
Program Core	64	39.26
Professional Electives	18	11.04
Open Electives	12	7.36
EEC	17	10.42
Mandatory Courses (Zero Credit)	-	-
	163	100

HS	Humanities and Social Science
BS	Basic Science
ES	Engineering Science
PC	Program Core
PE	Program Elective
OE	Open Elective
EEC	Project Work

PROFESSIONAL ELECTIVES (PE)

G.M	G G I	G. Tital			Hours/	Week			Max.Marks			
S.No	Course Code	Course Title	Cat.	L	T	P	C	CA	FE	Total		
1.	22ECPE601	Electronic Measurements	PE	3	0	0	3	40	60	100		
2.	22ECPE602	Computer Architecture	PE	3	0	0	3	40	60	100		
3.	22ECPE603	Digital Image Processing	PE	3	0	0	3	40	60	100		
4.	22ECPE604	Machine Learning	PE	3	0	0	3	40	60	100		
5.	22ECPE605	Modern Sensors and its Applications	PE	3	0	0	3	40	60	100		
6.	22ECPE606	Radar Communication	PE	3	0	0	3	40	60	100		
7.	22ECPE607	Internet of Things	PE	3	0	0	3	40	60	100		
8.	22ECPE608	Computer Networks	PE	3	0	0	3	40	60	100		
9.	22ECPE609	Software Defined Radio	PE	3	0	0	3	40	60	100		
10.	22ECPE610	High Speed Networks	PE	3	0	0	3	40	60	100		
11.	22ECPE611	Robotics	PE	3	0	0	3	40	60	100		
12.	22ECPE612	Virtual Instrumentation	PE	3	0	0	3	40	60	100		
13.	22ECPE613	Automotive Electronics	PE	3	0	0	3	40	60	100		
14.	22ECPE614	Embedded C	PE	3	0	0	3	40	60	100		
15.	22ECPE615	VLSI Physical Design	PE	3	0	0	3	40	60	100		
16.	22ECPE616	RF & EMI/EMC Testing	PE	3	0	0	3	40	60	100		
17.	22ECPE801	Multimedia Compression and Communication Techniques	PE	3	0	0	3	40	60	100		
18.	22ECPE802	Wireless Sensor Networks	PE	3	0	0	3	40	60	100		
19.	22ECPE803	Telecommunication and Switching Networks	PE	3	0	0	3	40	60	100		
20.	22ECPE804	Deep Learning	PE	3	0	0	3	40	60	100		
21.	22ECPE805	Network Security	PE	3	0	0	3	40	60	100		
22.	22ECPE806	Satellite Communication	PE	3	0	0	3	40	60	100		
23.	22ECPE807	Bio Medical Electronics	PE	3	0	0	3	40	60	100		
24.	22ECPE808	Cognitive Radio	PE	3	0	0	3	40	60	100		

		Open E	lective ((OE)						
1	22ECOE01	Fundamentals of Electron Devices	OE	3	0	0	3	40	60	100
2	22ECOE02	Principles of Modern Communication Systems	OE	3	0	0	3	40	60	100
3	22ECOE03	Microcontrollers and its applications	OE	3	0	0	3	40	60	100
4	22ECOE04	Computer Networks	OE	3	0	0	3	40	60	100
5	22ECOE05	Basics of Embedded Systems	OE	3	0	0	3	40	60	100
6	22ECOE06	Basics of Internet of Things	OE	3	0	0	3	40	60	100
7	22ECOE07	Artificial Intelligence and Machine Learning	OE	3	0	0	3	40	60	100

ELECTRONICS AND COMMUNICATION ENGINEERING- FULL TIME

REGULATION 2022 – SYLLABUS

SEMESTER-I

22MC101 INDUCTION PROGRAM	1	S	•	I	
PREREQUISITES	Category	MC	Cre	dit	0
		L	Т	P	TH
	Hours/Week	0	0	0	0

INDUCTION PROGRAM (MANDATORY) - 3 WEEKS DURATION

LIST OF EXPERIMENTS

- Physical activity.
- Creative Arts.
- Universal Human Values.
- Literary.
- Proficiency Modules.
- Lectures by Eminent People.
- Visits to local Areas.
- Familiarization to Dept./Branch & Innovations.

Total = 21 Days

22E	N101	COMMUNICATIVE ENGLISH		SEN	1EST	ER	I
PREI	REQUI	STIES	CATEGORY	HS	Cre	dit	3
Pacia	longuage	e skills listening, speaking, reading and writing	Hours/Week	L	T	P	TH
Dasic	ianguage	e skins listening, speaking, reading and writing	Hours/ Week	2	0	2	4
COU	RSE O	BJECTIVES			l		
1.	To deve	elop the communicative skills of learners by engaging them in readi	ng, writing and grar	nmar le	earning	g acti	vities
2.	To incu	lcate learners' ability to read texts, summaries, articles and user ma	nuals				
3.	To assis	st learners to acquire writing skills for academic, social and professi	onal purposes				
4.	To imp	rove learners' vocabulary and grammar to supplement their language	ge use at different co	ntexts			
UNIT	ГΙ			6	0	6	12
		terview with personal assistant, An interview with a business connensions of products.	sultant, Describing	change	es in a	com	pany,
		f-introduction, name, home background, study details, area of inter-	act hobbies strangt	he and	waakn	accac	etc
•		•					
	_	ding for detailed comprehension, specific information, Understand	ding nouces, messa	iges, ii	metabi	es, g	rapns
Writin	ng – Dial	ogue writing in a business context.					
		rts of speech, Tenses, Voices, Common errors in English, Subject- nd Articles.	Verb agreement, No	oun-Pro	noun a	agree	ment,
UNIT	ΓII			6	0	6	12
	_	an interview about a production process, Telephone conversation how a product is advertised.	ons, Making and c	changin	g app	ointn	nents,
Speak	ing - Per	rsonal interview, dress code, body language, required skills, corpora	te culture and mock	intervi	iew.		
Readii	ng - Rea	ding technical texts from journals, newspapers and technical blogs.					
Writin	ng - Writ	ing checklists, Recommendations.					
		efix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary ve adjectives.	rbs, Modal verbs, P	hrasal	verbs,	Pron	ouns,
UNIT	ГШ			6	0	6	12
	ing - Co	onversation between two employees, Interview about change in jointation.	b and corporate gif	t givin	g, Crea	l ating	good
-	_	le play - examiner and candidate, customer and sales manager, tear strialist and candidate.	n leader and team n	nember	, interv	iewe	r and
Readii	ng - Rea	ding advertisements, gadget reviews, user manuals.					
	-	viding instruction, Writing E-mails - Attending workshops, Paper cancelling a meeting.	submission for sen	ninars	and co	nfere	ences,
C	0		. 1 1 1 1				

Grammar - Conditional statements, Redundancies, Collocations and Meanings of individual words.

UNIT IV		6	0	6	12
Listening - W	orking in an international team. Statistical information. Interview with investor relations	Radio	n inters	iews	

Listening – Working in an international team, Statistical information, Interview with investor relations, Radio interview

Speaking – Giving a speech, Describing given data, Discussing company information, Summarizing an article.

Reading - Reading longer technical texts, cause and effect essays, newspaper articles, company profiles.

Writing - Essay writing on social topics, Technical Report Writing - Status reports on projects, Feasibility reports and event reports on seminars, conferences, meeting.

Grammar - Compound words, Conjunctions, Sentence completion, Negation in statements and questions.

UNIT V	6	0	6	12
			1 '	l

Listening – An interview with career advisor and recruitment agent, Feedbacks, Meeting extracts.

Speaking – Qualities required for employability, Improving employee productivity, presentation on problem-solving skills, teamwork, creativity and leadership quality.

Reading - Reading brochures, telephone messages, social media messages relevant to technical contexts.

Writing - Letter Writing - Formal Letters and Informal Letters - cover letter with resume, Mind maps, Charts - interpreting statistical data, charts, graphs and tables.

Grammar - One word substitution, Abbreviations and acronyms in technical contexts and technical vocabulary, Idioms.

Total (30L + 30P) = 60 Periods

	10tai (50L + 501) = 00 1 ci ious
REFE	ERENCE BOOKS:
1.	Meenakshi Raman and Sangeeta Sharma. Professional English. Oxford University Press, New Delhi, 2019.
2.	Krishna Mohan, Meera Bannerji. Developing Communication Skills. Macmillan India Ltd, Delhi, 1990.
3.	Sanjay Kumar, Pushp Lata. English Language and Communication Skills for Engineers. Oxford University Press, 2018.
E-RE	SOURCES:
1.	https://learnenglish.britishcouncil.org/
2.	https://www.bbc.co.uk/learningenglish

Upon comp	Bloom's Taxonomy Mapped					
CO1	CO1 : comprehend the main ideas, key details and inferred meanings of technical texts					
CO2	:	use language effectively at technical and professional contexts	L3: Applying			
CO3	:	apply the academic and functional writing skills in formal and informal communicative contexts	L3: Applying			
CO4	:	interpret pictorial representation of statistical data and charts	L3: Applying			

					CO	URSE	ART	ICUL	ATIO	N MATI	RIX				
COs /POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	1	0	0	0	0	1	3	0	1	0	0	1
CO2	0	0	0	1	0	0	0	0	1	3	0	2	0	0	2
CO3	0	0	0	2	0	0	0	0	1	3	0	1	0	0	1
CO4	0	0	0	3	0	0	0	0	1	3	0	1	0	0	1
Avg	0	0	0	1.75	0	0	0	0	1	3	0	1.25	0	0	1.25

3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)

22MA101		MATRICES, CALCULUS AND ORDE DIFFERENTIAL EQUATION B.E. (Common to all Branches Except E	SE	I			
						_	
	REQUIS		Category	y BS Credit		edit	4
Basic 12 th level Matrices, Differential Calculus, Integral Calculus and ODE			TT/3371-	L	T	P	TH
			Hours/Week	3	1	0	4
Cour	se Learn	ing Objectives					
1	To know	w the use of matrix algebra needed by engineers for practical a	applications.				
2	To unde	erstand effectively both the limit definition and rules of different	entiation.				
3	To fami	iliarize in solving maxima and minima problems in two variab	oles.				
4	To obta	in the knowledge of multiple integration and their related app	lications.				
5	To obta	in the knowledge to solve second order differential equations	with constant and v	variable	coeffici	ents.	
U	nit I	MATRICES		9	3	0	12
	gonal trans	formation.	1				form by
Repre	nit II sentation (DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives - gle variable.		9	3	0	12
Repre	nit II sentation (DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives -	Differentiation rule	9	3	0	12
Representation Line Line Line Line Line Line Line Lin	nit II sentation con of a sin it III	DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives - gle variable.	Differentiation rule	9 es -Max 9	3 ima and	0 Minim	12 a of the
Repre- function Un Partial Saddle	nit II sentation con of a sin it III	DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives - gle variable. FUNCTIONS OF SEVERAL VARIABI es – Euler's theorem for homogeneous functions – Total Deriv	Differentiation rule	9 es -Max 9	3 ima and	0 Minim	12 a of the
Repre- function Un Partial Saddle Un Multip	sentation of a sin it III I derivative point – N it IV ble integra	DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives - gle variable. FUNCTIONS OF SEVERAL VARIABI es - Euler's theorem for homogeneous functions - Total Derivatives - Method of Lagrangian multipliers - Taylor's series.	Differentiation rule LES vatives –Jacobians	9 es -Max 9 - Maxii	3 ma, Min 3	0 Minim 0 ima anc	12 a of the 12
Repre function Un Partial Saddlo Un Multip Polar)	sentation of a sin it III I derivative point – N it IV ble integra	DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives - gle variable. FUNCTIONS OF SEVERAL VARIABI es - Euler's theorem for homogeneous functions - Total Deriv Method of Lagrangian multipliers - Taylor's series. MULTIPLE INTEGRALS ls- Double integrals - Change of order of integration in double	Differentiation rule LES vatives –Jacobians e integrals – Chang o volumes.	9 es -Max 9 - Maxii	3 ma, Min 3	0 Minim 0 ima anc	12 a of the 12
Repre function Un Partial Saddle Un Multip Polar) Un Secon	sentation con of a sin it III I derivative e point – M it IV ble integra – Applica nit V d order lidre's line	DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives - gle variable. FUNCTIONS OF SEVERAL VARIABI es - Euler's theorem for homogeneous functions - Total Deriv Method of Lagrangian multipliers - Taylor's series. MULTIPLE INTEGRALS lls- Double integrals - Change of order of integration in double ation to Areas - Evaluation of Triple integrals - Application to	Differentiation rule LES vatives –Jacobians e integrals – Chang o volumes. ONS efficients –Cauchy	9 - Maxin 9 - of var 9 -Euler	3 ma, Min 3 riables (0	0 Minim 0 ima and Cartesia 0 n and 0	12 a of the 12 1 12 In to
Reprefunction Un Partial Saddle Un Multip Polar) Un Secon Legen	sentation con of a sin it III I derivative e point – M it IV ble integra – Applica nit V d order lidre's line	DIFFERENTIAL CALCULUS of functions - Limit of a function - Continuity - Derivatives - gle variable. FUNCTIONS OF SEVERAL VARIABI es - Euler's theorem for homogeneous functions - Total Deriv Method of Lagrangian multipliers - Taylor's series. MULTIPLE INTEGRALS ls- Double integrals - Change of order of integration in double ation to Areas - Evaluation of Triple integrals - Application to ORDINARY DIFFERENTIAL EQUATI inear differential equations with constant and variable con-	Differentiation rule LES vatives –Jacobians e integrals – Chang o volumes. ONS efficients –Cauchy neous first order 1	9 - Maxin 9 - of var 9 -Euler inear ea	3 ma, Min 3 riables (0	O Cartesia O and G with G	12 a of the 12 1 12 In to 12 Cauchy-

Tex	Text Books:								
1	Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publications, Delhi, 2015.								
2	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", 3 rd Edition, Narosa Publications, New Delhi, 2007.								
Refe	Reference Books:								
1	James Stewart, "Essential Calculus", 2 nd edition, Cengage Learning, New Delhi, 2014.								

2	P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (For I year B.E., B. Tech)", 9 th Edition, S. Chand & Co. Ltd. New Delhi, 2010.
3	Srimanta pal and Subath.C. Bhumia, "Engineering Mathematics", Oxford University Publications, New Delhi, 2015.
4	Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2007.
5	Siva Ramakrishna Das.P, Ruknmangadachari.E. "Engineering Mathematics", 2 nd Edition, Pearson, Chennai & Delhi, 2013.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Learn the fundamental knowledge of Matrix theory.	Understand				
CO2	Use both the limit definition and rules of differentiation to differentiable functions.	Apply				
CO3	Apply differentiation to solve maxima and minima problems.	Apply				
CO4	Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to a change of order and change of variables.	Apply				
CO5	Apply various techniques in solving differential equations.	Apply				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

22PH1	102 MATERIALS SCIENCE FOR ENGINEERING				Semest	ter	I
PRERE(QUIS	ITES	Category	BS	S Credit		3
Basic kno	owledg	e in electrical and thermal conductivity		L T			TH
			Hours/Week	2	1	0	3
Course I	Learn	ing Objectives					
1 T	o intro	oduce the theory of conducting materials and Fermi distribu	tion function.				
2 T	o give	the basic ideas of semiconductors and its Fermi level.					
3 T	o give	an overview of Dielectric polarization, dielectric losses and	d application of dielec	etrics.			
4 T	o insig	ght into the magnetic nature of materials, superconductors a	nd their applications.				
UNIT I		CONDUCTING MATERIALS		6	3	0	9
		on function - Effect of temperature on Fermi function – Γ solids - distinction between conductors, semiconductors and		irrier co	oncentra	ition in	metals
Properties -type sendeterminate	s of semicondition in	SEMICONDUCTING MATERIALS miconductor - Bonds in semiconductors - Intrinsic semiconductors ductors - Carrier concentration in intrinsic semiconductor intrinsic semiconductors - Carrier concentration in N-typerature and doping concentration - Compound semiconductors	onductors - Extrinsions(derivation) –Electripe semiconductor(derivation)	ical con	nductivi n) — va	ty and i	band ga of Fern
Properties P-type sendeterminatelevel with	s of ser micono tion in tempo t - Det	SEMICONDUCTING MATERIALS miconductor - Bonds in semiconductors - Intrinsic semiconductors - Carrier concentration in intrinsic semiconductor intrinsic semiconductors - Carrier concentration in N-type	onductors - Extrinsions(derivation) –Electripe semiconductor(derivation)	c semical con	conductori nductivi n) — va	ors - N- ty and i	type an band ga of Fern
Properties P-type sendeterminatevel with Hall effect UNIT III Electrical polarization (derivation	s of sermicondution in temperate Det Susception — Suscep	SEMICONDUCTING MATERIALS miconductor - Bonds in semiconductors - Intrinsic semiconductors - Carrier concentration in intrinsic semiconductor in intrinsic semiconductors - Carrier concentration in N-typerature and doping concentration - Compound semiconductor termination of Hall coefficient - Applications DIELECTRIC MATERIALS ptibility - Dielectric constant - Dielectric polarization - frequency and temperature dependence of polarization lielectric loss - dielectric breakdown - Uses of dielectric	onductors - Extrinsions (derivation) –Electripe semiconductor(deritors –Direct and indirect electronic , Ionic, C – Internal field – C	c semical contrivation rect band	conductivi n) — va nd gap s 3 tional and s — N	ors - N- ty and riation nemicon	-type and band gate of Fern ductors 9 re charge relation
Properties P-type sendeterminatevel with Hall effect UNIT III Electrical polarization derivation dielectric in	s of sermiconduction in temperate - Det Susception - Sus	SEMICONDUCTING MATERIALS miconductor - Bonds in semiconductors - Intrinsic semiconductors - Carrier concentration in intrinsic semiconductor in intrinsic semiconductors - Carrier concentration in N-typerature and doping concentration - Compound semiconductor termination of Hall coefficient - Applications DIELECTRIC MATERIALS ptibility - Dielectric constant - Dielectric polarization - frequency and temperature dependence of polarization lielectric loss - dielectric breakdown - Uses of dielectric	onductors - Extrinsions (derivation) –Electripe semiconductor(deritors –Direct and indirect electronic , Ionic, C – Internal field – C	c semical contrivation rect band	conductivi n) — va nd gap s 3 tional and s — N	ors - N- ty and riation nemicon	-type and band gate of Fern ductors 9 re charge relation
Properties P-type sendeterminal level with Hall effect UNIT III Electrical polarization (derivation dielectric in UNIT IV Magnetic ferromagn	s of sermicono ition in temporal tempor	miconductor - Bonds in semiconductors - Intrinsic semicoductors - Carrier concentration in intrinsic semiconductor in intrinsic semiconductors - Carrier concentration in N-typerature and doping concentration - Compound semiconductermination of Hall coefficient - Applications DIELECTRIC MATERIALS ptibility - Dielectric constant - Dielectric polarization - frequency and temperature dependence of polarization lielectric loss - dielectric breakdown - Uses of dielectric als. MAGNETIC AND SUPERCONDUCTING MATERIALS ials: Origin of magnetic moment - Bohr magneton - Di - Hysteresis - Hard and soft magnetic materials - Antiferro	Electronic , Ionic, C – Internal field – C c materials (capacito a, Para and Ferro m o magnetism.	c semicical contrivation rect bar 6 Oriental Clausiu or and 6 agnetis	conductiving and gap s 3 tional artis = M transform 3	ors - N- tty and I riation demicon O O O O O O O O O O O O O	type an band ga of Fern ductors 9 ee charg relatio olymeri
Properties P-type sendeterminate level with Hall effect UNIT III Electrical polarization dielectric in UNIT IV Magnetic ferromagn Supercond	s of sermicondition in temperate Det Susce on - : n) - c material material	SEMICONDUCTING MATERIALS miconductor - Bonds in semiconductors - Intrinsic semiconductors - Carrier concentration in intrinsic semiconductor in intrinsic semiconductors - Carrier concentration in N-typerature and doping concentration - Compound semiconductors remination of Hall coefficient - Applications DIELECTRIC MATERIALS ptibility - Dielectric constant - Dielectric polarization - frequency and temperature dependence of polarization lielectric loss - dielectric breakdown - Uses of dielectric als. MAGNETIC AND SUPERCONDUCTING MATERIALS ials: Origin of magnetic moment - Bohr magneton - Di - Hysteresis - Hard and soft magnetic materials - Antiferromaty: Properties - Type I & Type II superconductors - BCS the	Electronic , Ionic, C – Internal field – C c materials (capacito a, Para and Ferro m o magnetism.	c semicical contrivation rect bar 6 Oriental Clausiu or and 6 agnetis	conductiving and gap s 3 tional artis = M transform 3	ors - N- tty and I riation demicon O O O O O O O O O O O O O	type an band ga of Fern ductors 9 ee charg relatio olymeri
Properties P-type sendeterminate level with Hall effect UNIT III Electrical polarization (derivation dielectric in UNIT IV) Magnetic ferromagn Superconditure VIII V	s of sermiconduction in temporal tempor	miconductor - Bonds in semiconductors - Intrinsic semicoductors - Carrier concentration in intrinsic semiconductor in intrinsic semiconductors - Carrier concentration in N-typerature and doping concentration - Compound semiconductermination of Hall coefficient - Applications DIELECTRIC MATERIALS ptibility - Dielectric constant - Dielectric polarization - frequency and temperature dependence of polarization lielectric loss - dielectric breakdown - Uses of dielectric als. MAGNETIC AND SUPERCONDUCTING MATERIALS ials: Origin of magnetic moment - Bohr magneton - Di - Hysteresis - Hard and soft magnetic materials - Antiferro	onductors - Extrinsics (derivation) - Electripe semiconductor (derivations - Direct and indirect	c semic cal contrivation rect bands of agnetis magne	conduction ductivition) — value and gap s 3 tional and as — No transform 3 ettic levition levitic levition levitic levition levitic levition levitic levition levitic levi	ors - N- ty and riation riation	ee charge relation of SQUID 9 SQUID
Properties P-type sendeterminate vel with Hall effect UNIT III Electrical polarization derivation dielectric in UNIT IV Magnetic ferromagn Supercond UNIT V Metallic gapplication Nanomate	s of sermiconduction in temperate Det I susception — in temperate Det material material glasses ins.	SEMICONDUCTING MATERIALS miconductor - Bonds in semiconductors - Intrinsic semiconductors - Carrier concentration in intrinsic semiconductor in intrinsic semiconductors - Carrier concentration in N-typerature and doping concentration - Compound semiconductors remination of Hall coefficient - Applications DIELECTRIC MATERIALS ptibility - Dielectric constant - Dielectric polarization - frequency and temperature dependence of polarization lielectric loss - dielectric breakdown - Uses of dielectric als. MAGNETIC AND SUPERCONDUCTING MATERIALS ials: Origin of magnetic moment - Bohr magneton - Di - Hysteresis - Hard and soft magnetic materials - Antiferrotty:Properties - Type I & Type II superconductors - BCS the MODERN ENGINEERING MATERIALS	Direct and indirections of the semiconductors of the semiconductor (derivations — Direct and indirections — Direct and indirections — Internal field — One of the semiconductor o	6 Calculation and Clausiu or and 6 agnetis magne 6	conduction ductivition) — value and gap s tional are s — No transform s — Do transform a gap s tional are s — No transform a gap s	ors - N- ty and I riation demicon O O omain (ation – O acteriza	-type an band ga of Fern ductors 9 2ee charg relatio colymeric square s

Tex	tt Books:
1	P.K.Palanisamy, 'Materials Science', Scitech Publications (India) pvt.ltd. Chennai, Second edition, 2009
2	M. Arumugam, 'Materials Science', Anuradha Publications, Kumbakonam, 2018.

3	Rajendran V and Marikani A, 'Materials Science', Tata McGraw Publications, New Delhi, 2012
4	Jayakumar S, 'Materials Science', RK Publishers, Coimbatore, 2011.
Refe	erence Books:
1	Charles Kittel, 'Introduction to Solid state Physics', John Wiley and Sons, 7th Edition, Singapore, 2019.
2	Charles P. Poole and Frank J. Ownen, 'Introduction to Nanotechnology', Wiley India, 2007.
3	M.S. Vijaya and G. Rangarajan, 'Materials Science', Tata McGraw Hill, New Delhi, 2012.
E-]	Reference
1	https://nptel.ac.in/courses/115102025
2	https://nptel.ac.in/courses/115101012

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level			
CO1	Understanding the concept of conduction in materials and its carrier concentration.	L2: Understanding			
CO2	The basics of semiconductor and variation of Fermi level with respect to different parameters.	L1: Remembering			
СОЗ	Analyze the various mechanism involved in dielectric polarization and its applications.	L4: Analyzing			
CO4	Applying the concept of superconductor in magnetic levitation and SQUID.	L3: Applying			
CO5	Synthesis of modern engineering materials by using various techniques and its properties	L5: Evaluating			

COUR	SE AR	RTICU	LATI(ON MA	TRIX										
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	2	1	0	0	0	1	0	0	0	0	1	2	2	0
CO2	3	2	1	0	1	1	1	1	0	0	0	2	0	0	1
CO3	3	3	1	0	0	1	1	1	0	0	0	1	1	0	0
CO4	3	3	2	1	2	1	0	0	0	0	0	2	0	2	0
CO5	2	2	2	2	3	1	0	1	0	0	0	2	0	0	2
Avg	2.8	2.4	1.4	1.5	2	1	1	1	0	0	0	1.6	1.5	2	1.5
	I		3/2/1-i	indicate	s streng	th of co	rrelatio	n (3- Hi	gh, 2-M	ledium,	1- Low)	1	1	1

	CY101	ENGINEERING CHEMISTRY		S	Semeste	er	I				
PREI	REQUIS	ITES	Category	BS	Cro	edit	4				
Basic	Chemisti	У		L	Т	P	TH				
			Hours/Week	3	1	0	4				
Cour	se Learr	ing Objectives									
1	Basic F	rinciples of Spectroscopy and their applications.									
2	Knowledge of different methods for water analysis and purification & Nanomaterials and its application.										
3	Variou	s adsorption techniques and basic knowledge of Phase equilibria	a.								
4	Princip	les of electrochemistry, electrochemical cells, corrosion, and its	control.								
5	Basis o	f polymer preparations and applications and enhancement of the	e quantity and qua	lity of f	fuels.						
U	nit I	SPECTROSCOPIC TECHNIQUES		9	3	0	12				
instrur	mentation photome	law (problem) -UV visible spectroscopy: Principle, Chromo (No applications). IR spectroscopy: Principles -instrumentation try -principle -instrumentation -estimation of sodium by flame umentation -estimation of nickel by atomic absorption spectroscopy.	and applications photometer. Ato	of IR ir	ı H ₂ O, a	nd CO ₂	į				
					_	0	12				
princip	nit II	WATER TECHNOLOGY AND NANOTECHN	OLOGY	9	3	U					
Ur Hardnand sl condit Nano	ess of wa ludge) – ioning) ex	ter – types – expression of hardness – units – estimation of hard treatment of boiler feed water – Internal treatment (phosp sternal treatment – Ion exchange process, zeolite process – desa – preparations and properties of nanomaterials – nanorods – nanorods	dness of water by hate, colloidal, s lination of brackis	EDTA sodium	– boiler alumina – Reve	trouble ate and arse Osn	calgo nosis.				

Adsorption: Types of adsorption – adsorption of gases on solids – adsorption of solute from solutions – adsorption isotherms – Freundlich 's adsorption isotherm – Langmuir's adsorption isotherm.

Phase rule: Introduction, definition of terms with examples, one component system -water system - reduced phase rule - thermal analysis and cooling curves - two component systems - lead-silver system - Pattinson process.

Unit IV ELECTROCHEMISTRY 9 3 0 12

Electrode Potential- Oxidation and Reduction Potentials - Electrochemical series - Significance and application - Electrochemical cell, Cell potential, derivation of Nernst equation for single electrode potential, numerical problems on E, E_0 , and E_{cell} - numerical problems.

Electrochemical theory of corrosion with respect to iron. Factors influencing the corrosion rate: physical state of the metal, nature of the metal, area effect, over voltage, pH, temperature, and nature of the corrosion product. Types of corrosion: galvanic series; (i) Differential aeration corrosion- oxygen concentration cell, (ii) Stress corrosion- explanation-caustic embrittlement. Corrosion control by i) Cathodic protection- sacrificial anode and impressed current methods i) Protective coatings-metal coatings- galvanizing and tinning.

Unit V	POLYMERS AND FUELS	9	3	0	12
--------	--------------------	---	---	---	----

Polymers – definition – polymerization – types – addition and condensation polymerization – free radical polymerizatio mechanism – plastics, classification – preparation, properties and uses of PVC, Teflon, polycarbonate, polyurethane, nylon-6,6 PET – Rubber- vulcanization of rubber, synthetic rubbers – butyl rubber, SBR – biopolymers – Nylon-2-Nylon-6 and PHBV

Fuels - classification with examples, calorific value-classification (HCV & LCV), determination of calorific value of solid and liquid fuels using Bomb calorimeter- Petroleum cracking -fluidized bed catalytic cracking. Knocking in IC engine, its ill effects and prevention of knocking. Anti-knocking agent: Leaded and unleaded petrol.

Tex	t Books:
1	S. S. Dara and S. S. Umare, —A Textbook of Engineering Chemistry S. Chand & Company LTD, New Delhi, 2015
2	P. C. Jain and Monika Jain, —Engineering Chemistry Dhanpat Rai Publishing Company (P) LTD, New Delhi, 2015
3	S. Vairam, P. Kalyani and Suba Ramesh, —Engineering Chemistry Wiley India PVT, LTD, New Delhi, 2013.
Refe	rence Books:
1	Friedrich Emich, —Engineering Chemistry Scientific International PVT, LTD, New Delhi, 2014.
2	Prasanta Rath, —Engineering Chemistry Cengage Learning India PVT, LTD, Delhi, 2015.
3	Shikha Agarwal, — Engineering Chemistry-Fundamentals and Applications Cambridge University Press, Delhi, 2015.
E-R	eferences:
1	www.onlinecourses.nptel.ac.in/
2	www.ePathshala.nic.in

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level			
CO1	Recall the basic principles of spectroscopy and their applications	Remembrance			
CO2	Paraphrase the different methods for water analysis & purification and Nanomaterial & its applications	Understand			
CO3	Apply the various adsorption techniques and basic knowledge of Phase equilibria	Apply			
CO4	Integrate the principles of electrochemistry, electrochemical cells, corrosion, and its control	Create			
CO5	Assess the basis of polymer preparations & applications and enhancement of the quantity & quality of fuels.	Evaluate			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	0	3	0	0	0	0	0	0	0	0	3	1	1
CO2	3	2	0	1	0	2	0	0	0	0	0	0	3	1	1
CO3	3	1	0	1	0	0	0	0	0	0	0	0	2	1	1
CO4	2	1	0	1	0	2	0	0	0	0	0	0	2	3	2
CO5	3	2	0	3	0	2	0	0	0	0	0	0	1	1	1
Avg	2.8	1.8	0	1.8	0	1.2	0	0	0	0	0	0	2.2	1.4	1.2
	1		3/2/1 – i	ndicate	s streng	th of co	rrelatio	n (3- Hi	gh, 2- N	Iedium,	1- Low))		I	I

22CS101		PROBLEM SOLVING AND C PR (Common to CSE, ECE, Civil, Mechan		SE	MEST	ER		I
PREREQU	UISITES	(Common to CSE, BEE, CIVII, MCCIMI	CATEGORY	ES	Cree	lit		3
NIL				L	Т	P	TF	I
			Hours/week	3	0	0		3
Course Ob	jectives:						1	
1. To	use general p	roblem-solving techniques to device solution	ns to problems					
	understand to	he input-output relations of software involv	ed in developing and c	onvert	ing a C	prog	gram	to
		blete knowledge about the programming cond	cepts of C language.					
		SOFTWARE, PROBLEM SOLVING, A		MING	9	0	0	9
High level p	programming	language – Machine level language – Role	e of system software (E	ditor, (Compil	er, A	sseml	ble
Linker, Load	der, and Oper	rating System) in developing and executing a	C program					
Drograms	ning: Chara	cter Set – Case sensitivity – Identifiers –	Vouvords Literals	Doto	tunos	D	salare	tic
_	•	d their associated information—Formatted a	•		• •			
		rators – Precedence and Associativity – Pre		•	-			
nain() funct	_	ators – Frecedence and Associativity – Fre	e-processor unectives (HIIICIUC	ic and	#ucii	ne) –	· u
mann() runce	.1011.							
General pro	blem-solving	g Techniques: Algorithm - Flow-chart - l	Pseudocode – Develop	ing so	lutions	for	probl	en
_	_	and writing their equivalent C programs	•				•	
					ı		1	
UNIT II	CONTRO	L STATEMENTS			9	0	0	9
G 1	11 1 1	T 1 : D : : 1	: :: :: :: : : : : : : : : : : : : : : :		. 1	<u> </u>		Ļ
-		g Techniques: Representing Decision mak	•					
	and Pseudoco	oop, while loop and do-while loop – Branch	ing statements: break a	na con	imue w	IIII A	igorii	HH
riow-chart,	and Pseudoco	ode.						
C Programn	ning: Decisio	n Making: if-else statement – switch-case st	atement – Looping state	ements	: for lo	op, w	hile	loc
_	-	nching statements: break and continue – Nest				-		
		r problems involving control statements usi	ing General problem-so	olving	Techni	ques	and 1	he
equivalent C	programs							
UNIT III	ARRAYS	S, POINTERS, AND STRINGS			9	0	0	9
		, TOM (TERES, THE ESTREMES)				"		_
One-dimens	ional and tv	vo-dimensional Arrays: Declaration – Initi	ialization - Processing	– Po	inters:	Decla	aratic	n
Initializatior	n – Processin	g - Relation between pointers and arrays -	Strings - String operation	ons –	C Libra	ary su	ppor	t fo
String handl	ing							
					_			
		problems involving arrays, pointers and string	ngs using General prob	lem-so	Iving T	echni	ques	ar
their equival	lent C progra	ms						
UNIT IV	FUNCTI	ONS			9	0	0	9
Function	Library for	tions and uson defined functions. To act	n prototypas and fine	ion 1	finiti - ·)ore	_ \C^
	•	tions and user-defined functions – Function cursion – Storage classes – Working with mu		ion de	imition	s – F	aram	iet
passing mec	пашѕшѕ –Ке	cursion – Storage classes – Working with mt	umpie source mes					
Developing	solution for 1	problems involving functions using General	problem-solving Techn	iques a	nd thei	r equ	ivale	nt
programs.	,		_	•		•		
					1	1	1	
INTT V	CTDIICTI	TODO TIMICAIO AND DILE				1 ^		14
UNIT V	SINUCIO	URES, UNIONS AND FILE			9	0	0	9

Structure: declaration – definition –Structure within a structure – Passing structures to functions – Array of structures – Pointers to structures – Union – File operations: reading and writing/appending to binary and text files.

Total (45 L)= 45 Periods

Text Books:

1. Balagurusamy E, "Programming in ANSI C", Tata Mcgraw-Hill, 8th Edition, 2022.

2. Yashavant P. Kanetkar, "Let Us C", BPB Publications, 2016.

Reference Books:

1. Venugopal, "Mastering C", Second Edition, Tata McGraw-Hill Education. 2006

2. R. G. Dromey, "How to solve it by computers", Prentice Hall, 2007

3. Greg Perry and Dean Miller, "C Programming Absolute Beginner's Guide", Third Edition, Que Publishing, 2013.

4. Brain W. Kernighan and Ritchie Dennis, "The C Programming Language", Second Edition, Pearson, 1988.

E-Reference:

1.	https://www.learn-c.org/
----	--------------------------

2. https://www.programiz.com/c-programming

	SE OUTCOMES: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped			
CO1	Explain the concepts of C programming and roles of system software in programming	L1 and L2			
CO2	Use general problem-solving techniques to develop solutions to problems	L3			
CO3	Apply the concepts of C programming to develop solutions by writing C programs	L3 and L4			

COUI	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	3									3	1	
CO2	2	1	3		2							3	2	
CO3	2	1	3		2							3	3	
Avg	2	1	3		2							3	2	
	•	3	3 / 2 /1 -	indicate	es stren	gth of o	correlat	ion (3-	High, 2	2- Mediu	m, 1- Lo	w)		

22MC102		தமிழர்மரபு	Se	mestei	r		I						
PREREQUISI	ITES	Category	HSMC	Cr	edit		1						
Basics of Tam	il		L	T	P		TH						
		Hours/Week	1	0	0		1						
அல	கு I	மொழி மற்றும் இலக்கியம்	1	0	0		1						
செவ்விலக்கி இலக்கியத்தி தமிழ்க்காப்ப இலக்கியம், இலக்கியத்தி	யெங்கள் – இல் பகிர்தல் பியங்கள், த ஆழ்வார்கள் இன் வளர்ச்8	ங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு சங்க இலக்கியத்தின் சமயச்சார்பற் ல அறம் – திருக்குறளில் மேலாண் நமிழகத்தில் சமணபௌத்த சமயங்க மற்றும் நாயன்மார்கள் – சிற்றிலக்கிய சி – தமிழ் இலக்கிய வளர்ச்சியில் ன் பங்களிப்பு.	ற தன் ஈமைக்க களின் ங்கள் –	ாமை கருத்த தாக் தமிழ	_ தக்க கம் நில்	சா ள் _ப	ங்ச க்த						
அலகு II	மரபு – ப	மரபு – பாறைஓவியங்கள்முதல்நவீன ஓவியங்கள் வரைசிற்பக்கலை 3 0 0 3											
தயாரிக்கும் சுடுமண்சிற் இசைக்கருவி	கைவினை பங்கள் – நா பிகள் – மிருத	பங்கள் வரை – ஐம்பொன்சிலைகள் – ப ரப்பொருட்கள், பொம்மைகள் – (ட்டுப்புறத்தெய்வங்கள்- குமரிமுனையில் ங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் கோவில்களின் பங்கு.	தேர்செ 9 திருவ	ய்யும். ள்ளுவ	கை பர் 8	ல சின	าอ						
அலகு III	நாட்டுப்ப	புறக்கலைகள்மற்றும்வீரவிளையாட்டு	கள்	3	0	0	3						
தெருக்கூத்த தோல்பாவை		டம், வில்லுப்பாட்டு, கணியான்ச ம்பாட்டம், வளரி, புலியாட்டம், தமிழர்கள			பிலா பாட்(
அலகு IV	து	பிழர்களின் திணைக்கோட்பாடுகள்		3	0	0	3						
இலக்கியத்த அறக்கோட்ட நகரங்களும்	ில் அகம் பாடு – சங்க துறைமுகங்	ளும், விலங்குகளும் – தொல்காப்ப மற்றும் புறக்கோட்பாடுகள் – த காலத்தில் தமிழகத்தில் எழுத்தறிவும், க களும் – சங்ககாலத்தில் ஏற்றுமதி மற்று களின் வெற்றி.	5மிழர்க கல்வியு	، – شا	போ சங்	ற்ற கக	П						
அலகு V	இந்தியதே	சியஇயக்கம்மற்றும்இந்தியபண்பாட்டி தமிழர்களின்பங்களிப்பு	டிற்குத்	3	0	0	3						
தமிழ்ப்பண்ட	 பாட்டின் தாச்	ரில் தமிழர்களின் பங்கு – இந்தியா ககம் – சுயமரியாதை இயக்கம் – இந்திய கல்வெட்டுகள், கையெழுத்துப்படிகள் –	ப மருத்	துவத்	தில்,	சி	த்த						

Text Books / Reference Books:

அச்சுவரலாறு.

தமிழகவரலாறு – மக்களும் பண்பாடும் – கே. கே. பிள்ளை (வெளியீடு :தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்.

Total= 15 Periods

2 கணினித்தமிழ் – முனைவர்இல.சுந்தரம்.(விகடன்பிரசுரம்)

	கீழடி – ை நகரநாகரிகம்(தொல்லியல்துவ	வகை றைவெளியீடு)	நதிக்கரையில்	சங்ககால
4	பொருநை – ஆற்றங்கரை நாகர	ரிகம் (தொல்லிய	ல்துறைவெளியீடு)	

22MC102	HERITAGE OF TAMILS	S		Ι	
PREREQUISITES	Category	BS	Credi	t	1
Basics of Tamil			T	P	TH
	Hours/Week	1	0	0	1
Unit I	LANGUAGE AND LITERATURE	3	0	0	3

3 Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

Unit II	HERITAGE - ROCK ART PAINTINGS TO	3	0	0	3
	MODERN ART – SCULPTURE				

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

Unit III	FOLK AND MARTIAL ARTS	3	0	0	3
		_	-	-	_

Therukoothu, Karagattam, VilluPattu, KaniyanKoothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

Unit IV THINAI CONCEPT OF TAMILS	3	0	0	3
----------------------------------	---	---	---	---

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

Unit V	CONTRIBUTION OF TAMILS TO	3	0	0	3
	INDIAN NATIONAL MOVEMENT AND				
	INDIAN CULTURE				

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

Total = 15 Periods

Tex	xt Books:						
1 Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)							
2	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.						
3	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).						

4	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies)
5	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL)

22CS102	COMPUTER PRACTICE AND C PROGRAM LABORATORY (Common to CSE, ECE, EEE, Civil Machanical on	Semester			I	
(Common to CSE, ECE, EEE, Civil, Mechanical and Metallurgy) PREREQUISITES Category					edit	1.5
NIL		L	T	P	TH	
		Hours/Week	0	0	3	3
Course Lear	rning Objectives					
1 To pro	ovide basic knowledge to work with word processing applications	3				
2 To pro	ovide basic knowledge to work with spread sheet applications					
3 To pro	omote the programming ability to develop C applications					
EXPERIME	ENTS					
1. Cre	eating and Formatting documents.					
2. Cre	eating Tables and Manipulation					
3. Usi	ing Equation Editor					
4. Ins	erting Pictures, Shapes and Charts					
5. Usi	ing Mail merge					
B. Sp	read Sheet					
6. Cre	eating sheets, using built in functions and user-defined formulae					
7. Cre	eating different type of charts from data					
C. Sin	mple C Programming					
8. Pro	ogram using different operators					
9. Pro	gram using Control statements.					
10. Pr	rogram using Loops, Array and Strings.					
11. Pr	rogram using Functions and pointers					
12. Pr	rogram using Structures and Files.					
	For programming exercises Algorithm, Flow chart and pseu	udo code are esse	ential			

Total (45 P)= 45 Periods

Course Out	Course Outcomes:					
After the succ	Taxonomy					
		Mapped				
CO1	Demonstrate the usage of features supported by word processing applications.	CO1				
CO2	Demonstrate the usage of features supported by spread sheet applications.	CO2				
CO3	Apply general programming techniques to develop digital solutions to problems	CO3				
CO4	Implement solutions developed with general programming techniques in C programming language.	CO4				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1										3			1	
CO2	2	3											1	
CO3	2	3	3									3	2	
CO4	1	1	1									3	3	
Avg	1.6	2.3	2							3		3	1.7	

^{3 / 2 /1 -} indicates strength of correlation (3- High, 2- Medium, 1- Low)

22M	E102 WORKSHOP MANUFACTURING PR	SE	ER	I						
PRE	-REQUISITE	ES	Credit		2					
		TT /XX/ 1	L	T	P	TH				
		Hours/Week	0	0	4	4				
Course Objectives:										
1.	To understand the basics of safety measures taken in the laborator	y.								
2.	To provide exposure to the students with hands-on experience Mechanical Engineering.	on various basic eng	ineering	practice	s in Ci	vil and				
3.	3. To know about the various fitting joints and lathe operation.									
4.	4. To gain knowledge in welding and fitting operation.									
5.	5. To understand the fabrication of various models using sheet metals.									

LIST OF EXPERIMENTS

- 1. Introduction to Safety measures and First aid.
- 2. Study of Lathe, drilling machine -Welding methods and equipment- Casting process and tools- Sheet metal and fitting tools- Carpentry tools and joints.
- 3. Fitting: V-fitting, square fitting, Curve fitting.
- 4. Lathe: Facing, turning, taper turning and knurling.
- 5. Welding: BUTT, LAP and T- joints.
- 6. Foundry: Greensand preparation- mould making practice.
- 7. Sheet metal: Cone, tray, cylinder.
- 8. Carpentry: CROSS, T and DOVETAIL joints.
- 9. Drilling: simple exercises.

	Total = 60 Periods
Refe	rence Books:
1.	Bawa, H.S, "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
2.	Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
3.	Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd, 2006.
4.	Dr. P.kannan, Mr. T, Satheeskumar&Mr .K .Rajasekar, "Engineering practices laboratory" manual first edition 2017
5.	Dr. V. Rameshbabu "Engineering practices laboratory" VRB publication pvt ld.
E-Re	eference:
1.	https://archive.nptel.ac.in/noc/courses/noc18/SEM1/noc18-me14/
2.	https://nptel.ac.in/courses/112107083

	SE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Familiarize the working of various equipment and safety measures.	Understand
CO2	Prepare fitting of metal and wooden pieces using simple fitting and carpentry tools manually.	Apply
CO3	Fabrication of components using welding, lathe and drilling machine.	Analyze
CO4	Make the model using sheet metal works.	Analyze

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
CO2	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
CO3	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
CO4	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
CO5	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
Avg	0	2.4	0	1.6	0.8	0.6	0	0	0	0	0	0	0	0	1.6

3/2/1 – indicates strength of correlation (3 - High, 2 - Medium, 1 - Low)

SEMESTER-II

22N	IA203	SEM	ER	п					
PRE	REQU	ISTIES	CATEGORY	BS	Cre	dit	4		
		evel knowledge of Matrices, Vector Algebra, PDE, ODE and	Hours/Week	L	T	P	TH		
integ	ral Calc		3	1	0	4			
Cou	rse Ob	jectives:	-						
1.	To understand the concepts of vector space and linear transformations.								
2.	To ap	ply the concept of inner product spaces in orthogonalization.							
3.	To un	derstand the procedure to solve partial differential equations.							
4.	To fin	d the solutions of second order differential equation with constant co	pefficients by Laplac	e trans	form	meth	ods.		
5.	5. To acquire the knowledge of vector differentiation and integration and its applications.								
UNIT I VECTOR SPACES 9									
		s - Subspaces - Linear independence and linear dependence - Ba		Linea	trans	form	ation -		
Null	spaces a	and ranges - Dimension theorem - Matrix representation of a linear tr	ansformations.						
UNI	TII	INNER PRODUCT SPACES		9	3	0	12		
Inner	produc	t, norms - Gram Schmidt orthogonalization process - Adjoint of lines	ar operations - Least	square	appr	oxim	ation.		
UNI	ТШ		9	3	0	12			
soluti	ons – L	Solutions of first order equations – Standard types and equationagrange's linear equation – Integral surface passing through a given olution of linear equations of higher order with constant coefficients	curve - Classificati				•		
UNIT IV LAPLACE TRANSFORM 9									
Trans	form by	ransform- Properties of Laplace transform – Laplace Transform of per y different methods, convolution theorem – Evaluation of integrals quations with constant coefficients by Laplace transform method.					_		
UNI	TV	VECTOR CALCULUS		9	3	0	12		
	integrat	ferentiation- Gradient- Directional derivative - Diverge ion- work done - Surface and Volume integrals - Green's theore of) - Simple applications involving cubes and rectangular parallelepi	em , Gauss diverger		l Stol	ces th			

Text I	Books:
1.	Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna publications, Delhi, 2015.
2.	Friedberg, A.H., Insel, A.J. and Spence, L., "Linear Algebra", Prentice Hall of India, New Delhi, 2004.
3.	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", 3 rd Edition, Narosa Publications, New Delhi, 2007.
Refer	ence Books:
1.	James Stewart, "Essential Calculus", 2 nd Edition, Cengage Learning, New Delhi, 2013.
2.	Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.
3.	Kumaresan, S., "Linear Algebra – A Geometric Approach", Prentice-Hall of India, New Delhi, Reprint, 2010.
4.	Gilbert Strang, "Linear Algebra and its Applications", 4th Edition, Cengage Learning, New Delhi, 2014.

Course (Course Outcomes:								
Upon com	TaxonomyMapped								
CO1	:	Use the concepts of vector space and linear transformations.	L3: Applying						
CO2	:	Illustrate the concept of inner product spaces in orthogonalization.	L2: Understanding						
CO3	:	Solve various types of partial differential equations in engineering problems.	L3: Applying						
CO4	:	Apply the knowledge of Laplace transforms method to solve second order differential equations.	L3: Applying						
CO5	:	Use Gauss, Stokes and Green's theorems for the verification of line, surface and volume integrals.	L3: Applying						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	3	0	0	0	0	0	0	0	0	2	0	0
CO3	3	1	0	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	1	0	3	0	0	0	0	0	0	0	0	3	0	0
CO5	3	1	0	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	1.4	0	2.4	0	0	0	0	0	0	0	0	2.2	0	0

22P	22PH201 PHYSICS – ELECTROMAGNETISM SEMESTER										
PRE	REQUI	SITES	CATEGORY	BS	Cr	edit	3				
Knov	vledge i	n vector algebra	Hours/Week	L	T	P	TH				
			Hours/ Week	2	1	0	3				
Cour	se Obj	ectives:			ı						
1.	The co	cept of electrostatics, electric potential and their application.									
2.	The co	ncept of dielectrics, Capacitance, Poisson's and Laplace's equations.									
3.	The co	ncept of magnetostatics, magnetic fields in matter and their application	on.								
4.	The co	ncept of Faraday's law, Ampere's Law, Maxwell's Equation and the	ir application.								
5.	The co	ncept of Electromagnetic waves, and Poynting vector.									
UNI	ГΙ			6	3	0	9				
infinit	Electric field and electric flux density - Gauss's Law - applications of Gauss's law - electric field due to infinite line charge-infinite sheet of charge-uniformly charged sphere; Electric potential - potential due to a point charge- electric potential energy of a system of point charges - relationship between electric field and electric potential; Energy density in electrostatic fields.										
UNI	ΓII			6	3	0	9				
induc	ed dipole itor - spl ielectric-	of materials based on conductivity; Electric dipole - electrostatic es - polarization in dielectrics - dielectric constant and strength; Canerical capacitor; Laplace's and Poisson's equations for electrostatic Dielectric, Conductor-Dielectric and Conductor-free Space.	pacitance - paralle	el plate	capa	citor -	coaxial				
		Law - magnetic induction at point <i>P</i> due to a straight filamentary co	onductor: Amnere's								
of am	pere's la	w: infinite line current - infinite sheet of current; Magnetic Lorentz ndary conditions for Dielectric–Dielectric, Conductor-Dielectric and	force- force on cu	irrent c							
UNI	ΓIV			6	3	0	9				
Electr Induc	omagnet tance of	in terms of emf produced by changing magnetic flux; Lenz'tic breaking and its applications; Self Inductance- self inductance two tightly wound solenoids; Energy density in magnetic Fields; Dination in vacuum and non-conducting medium.	of a solenoid; Mu	utual Ir	ducta	ance -	mutual				
UNI	UNIT V		6	3	0	9					
		ation- plane electromagnetic waves in vacuum, their transverse nat y and Poynting vector; Radiation pressure.	ure, Energy carried	d by ele	ectror	nagne	tic waves				
			Total (30L+1	5T)=	= 45 I	Periods				
Text	Books:										

Text E	Text Books:							
1.	Mathew N. O.Sadiku, 'Elements of Electromagnetics', Oxford University Press, Third Edition, 2007.							
2.	Halliday, Resnick, Walker, 'Fundamentals of Physics-Electricity and Magnetism', Wiley India Pvt.Ltd., 2015.							
3.	Gangadhar K.A, Ramanthan P.M, 'Field Theory', Khanna Publications, 2002.							
Refere	Reference Books:							

1.	David J. Griffiths, 'Introduction to Electrodynamics', Prentice-Hall, Inc.,2020.							
2.	2. Kraus and Fleish, 'Electromagnetics with Applications', McGrawHill International Editions, Fifth edition, 2010.							
E-Ref	E-Reference							
1	https://nptel.ac.in/courses/115101004							
2	https://nptel.ac.in/courses/115101005							

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	:	Understand the concepts of electrostatics, electrical potential, and their applications.	L2: Understanding					
CO2	:	Interpret the concepts of dielectrics, capacitance and apply Poisson's or Laplace's equations to various electrostatic problems	L4: Analyzing					
CO3	:	Apply the concepts of magnetostatics, magnetic fields in matter and their application.	L3: Applying					
CO4	:	Apply the concepts of Faraday's laws, Ampere's Law, Maxwell's Equation.	L3: Applying					
CO5	:	The concepts of electromagnetic waves and Poynting vector.	L1: Remembering					

Remembering
Understanding
Applying
Analyzing
Evaluating
Creating

COUR COs/ POs	SE AR	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
	_			_			,			10		12			
CO1	2	3	1	1	0	1	0	0	0	0	0	1	1	0	0
CO2	3	2	2	3	0	1	0	0	0	0	0	2	2	1	1
CO3	2	2	1	1	0	0	0	0	0	0	0	1	1	0	0
CO4	3	3	2	2	0	1	0	0	0	0	0	2	2	1	1
CO5	3	2	2	2	0	0	0	0	0	0	0	2	1	0	2
Avg	2.6	2.4	1.6	1.8	0	0.6	0	0	0	0	0	1.6	1.4	0.4	0.8
	I	I	3/2/1-i	indicate	s streng	th of co	rrelatio	n (3- Hi	gh, 2-M	ledium,	1- Low)	I	I	1

22HS201	UNIVERSAL HUMAN VALUES		SE	MEST	ER	II
PRE-REQU	ISITE:	HS	Cre	edit	3	
		Hours/Week	L	Т	P	ТН
			2	1	0	3
Course Obje	ectives:					
	pment of a holistic perspective based on self-exploration alexistence.	out themselves (hun	nan bein	g), fami	ily, soci	ety an
2. Unders	tanding (or developing clarity) of the harmony in the human l	eing, family, society	and nat	ure/exist	tence.	
3. Strengt	hening of self-reflection.					
4. Develo	pment of commitment and courage to act.					
UNIT I			6	3	0	9
basic Human aspirations of appraisal of th	nd Experiential Validation- as the process for self-explorations. Right understanding, Relationship and Physicoevery human being with their correct priority. Understande current scenario Method to fulfil the above human aspiration	al Facility- the basic ing Happiness and	require Prosperi	ments fo	or fulfilactly- A	ment o
ieveis.						
sentient 'I' ar Understanding	Harmony in the Human Being - Harmony in Myself! Und the material 'Body' Understanding the needs of Self (g the Body as an instrument of 'I' (I being the doer, seer	'I') and 'Body' - h and enjoyer) Unders	appiness standing	and pl	nysical racterist	facility ics an
UNIT II Understanding sentient 'I' an Understanding activities of 'I	nd the material 'Body' Understanding the needs of Self ('I') and 'Body' - h and enjoyer) Unders the Body: Sanyam a	being as appiness standing	s a co-e s and ph the char	xistence nysical racterist	of the of the facility
UNIT II Understanding sentient 'I' an Understanding activities of 'I Physical needs UNIT III	nd the material 'Body' Understanding the needs of Self (g the Body as an instrument of 'I' (I being the doer, seer' and harmony in 'I' Understanding the harmony of I with	(I') and 'Body' - h and enjoyer) Unders the Body: Sanyam a and Health.	being as appiness standing and Heal	s a co-e s and ph the charth; corre	xistence nysical racterist ect appr	e of the facility ics an aisal c
UNIT II Understanding sentient 'I' an Understanding activities of 'I' Physical needs UNIT III Understanding human relation happiness; Trebetween intenother salient Resolution, P	nd the material 'Body' Understanding the needs of Self (gethe Body as an instrument of 'I' (I being the doer, seer and harmony in 'I' Understanding the harmony of I with so, meaning of Prosperity in detail Programs to ensure Sanyam	(I') and 'Body' - hand enjoyer) Understhe Body: Sanyam a and Health. (Iuman Relationship Unips) and program for Understanding the Difference between essociety (society between the society Human Company (Society Burnel) (Societ	being as appiness standing and Heal 6 Understa r its fulfi meaning respect eing an	s a co-es and phe the characteristics and phe the characteristics and different to and different extensions.	xistence nysical racterist ect appr	e of the facility ics and aisal of the facility ics and aisal of the facility ics and aisal of the facility ics and the facility ics an
UNIT II Understanding sentient 'I' an Understanding activities of 'I' Physical needs UNIT III Understanding human relation happiness; Trebetween intenother salient Resolution, P	and the material 'Body' Understanding the needs of Self (as the Body as an instrument of 'I' (I being the doer, seer and harmony in 'I' Understanding the harmony of I with a meaning of Prosperity in detail Programs to ensure Sanyam and Harmony in the Family and Society-Harmony in Human-Haship; meaning of Justice (nine universal values in relationship and Respect as the foundational values of relationship tion and competence. Understanding the meaning of Respect values in relationship. Understanding the harmony in the rosperity, fearlessness (trust) and co-existence as competence as competence as competence as competence and the rosperity of the rosperity of the rosperity and co-existence as competence.	(I') and 'Body' - hand enjoyer) Understhe Body: Sanyam a and Health. (Iuman Relationship Unips) and program for Understanding the Difference between essociety (society between the society Human Company (Society Burnel) (Societ	being as appiness standing and Heal 6 Understa r its fulfi meaning respect eing an	s a co-es and phe the characteristics and phe the characteristics and different to and different extensions.	xistence nysical racterist ect appr	e of the facility ics an aisal of the facility ics an aisal of the facility ics and the facil
UNIT II Understanding sentient 'I' and Understanding activities of 'I' Physical needs UNIT III Understanding human relation happiness; Trubetween intended the salient Resolution, Pharmonious on UNIT IV Understanding Nature. Interce	and the material 'Body' Understanding the needs of Self (as the Body as an instrument of 'I' (I being the doer, seer and harmony in 'I' Understanding the harmony of I with a meaning of Prosperity in detail Programs to ensure Sanyam as Harmony in the Family and Society- Harmony in Human- Haship; meaning of Justice (nine universal values in relationship that and Respect as the foundational values of relationship that and competence. Understanding the meaning of Respect values in relationship. Understanding the harmony in the prosperity, fearlessness (trust) and co-existence as competer in society- Undivided Society, Universal Order- from family Harmony in the Nature and Existence - Whole existence of the society and the four orders of the Existence as Co-existence of mutually interacting units in all	'I') and 'Body' - hand enjoyer) Understhe Body: Sanyam a and Health. Ituman Relationship Unips) and program for Understanding the Difference between esociety (society by the sehensive Human Couly to world family. as Coexistence. Unof nature- recyclability	being as appiness standing and Heal 6 Understa r its fulfi meaning respect eing an Goals. V	s a co-es and plus the characteristic state of the charact	xistence nysical racterist ect appr	e of the facility ics and aisal of the facility of the facilit
UNIT II Understanding sentient 'I' an Understanding activities of 'I Physical needs UNIT III Understanding human relation happiness; Trebetween intenother salient Resolution, Pharmonious on UNIT IV Understanding Nature. Intercunderstanding Understanding Natures.	and the material 'Body' Understanding the needs of Self (as the Body as an instrument of 'I' (I being the doer, seer and harmony in 'I' Understanding the harmony of I with a meaning of Prosperity in detail Programs to ensure Sanyam as Harmony in the Family and Society- Harmony in Human- Haship; meaning of Justice (nine universal values in relationship that and Respect as the foundational values of relationship that and competence. Understanding the meaning of Respect values in relationship. Understanding the harmony in the prosperity, fearlessness (trust) and co-existence as competer in society- Undivided Society, Universal Order- from family Harmony in the Nature and Existence - Whole existence of the society and the four orders of the Existence as Co-existence of mutually interacting units in all	'I') and 'Body' - hand enjoyer) Understhe Body: Sanyam a and Health. Ituman Relationship Unips) and program for Understanding the Difference between esociety (society by the sehensive Human Couly to world family. as Coexistence. Unof nature- recyclability	being as appiness standing and Heal 6 Understa r its fulfi meaning respect eing an Goals. V	s a co-es and plus the characteristic state of the charact	xistence nysical racterist ect appr	of the facility ics an aisal contains a ference ion; the family niversal y in the nature
UNIT II Understanding sentient 'I' ar Understanding activities of 'I Physical needs UNIT III Understanding human relation happiness; Trestween intended the other salient Resolution, Pharmonious of UNIT IV Understanding Nature. Intercunderstanding all levels of exunity Understanding Understanding All levels of exunity Understanding All levels of exunity Understanding Underst	and the material 'Body' Understanding the needs of Self (as the Body as an instrument of 'I' (I being the doer, seer and harmony in 'I' Understanding the harmony of I with a meaning of Prosperity in detail Programs to ensure Sanyam as Harmony in the Family and Society- Harmony in Human- Haship; meaning of Justice (nine universal values in relationship that and Respect as the foundational values of relationship that and competence. Understanding the meaning of Respect values in relationship. Understanding the harmony in the prosperity, fearlessness (trust) and co-existence as competer in society- Undivided Society, Universal Order- from family Harmony in the Nature and Existence - Whole existence of the society and the four orders of the Existence as Co-existence of mutually interacting units in all	'I') and 'Body' - hand enjoyer) Understhe Body: Sanyam a and Health. Ituman Relationship Understanding the Difference between esociety (society between the society (society between the soci	being as appiness standing and Heal 6 Understa r its fulfi meaning respect eing an Goals. V 6 derstandity and se olistic per color of the color of	s a co-e s and ph the charth; correct s and ph the charth; correct s and different to g of True and different extensions and the correct substituting s and the correct states are states and the correct states and the correct states are st	xistence nysical racterist ect appr	e of the facility ics an aisal of the second of the facility ics an aisal of the second of the facility is a second of the facility is a second of the facility in the second of the facility is a second of the facility in the second of the facility is a s
UNIT II Understanding sentient 'I' ar Understanding activities of 'I Physical needs UNIT III Understanding human relation happiness; Trestween intended the other salient Resolution, Pharmonious of UNIT IV Understanding Nature. Intercunderstanding all levels of exunity Understanding Understanding All levels of exunity Understanding All levels of exunity Understanding Underst	and the material 'Body' Understanding the needs of Self (as the Body as an instrument of 'I' (I being the doer, seer and harmony in 'I' Understanding the harmony of I with a meaning of Prosperity in detail Programs to ensure Sanyam and Harmony in the Family and Society-Harmony in Human-Faship; meaning of Justice (nine universal values in relationship ust and Respect as the foundational values of relationship tion and competence. Understanding the meaning of Respect values in relationship. Understanding the harmony in the rosperity, fearlessness (trust) and co-existence as competer in society-Undivided Society, Universal Order-from fands and Harmony in the Nature and Existence - Whole existence of Existence as Co-existence of mutually interacting units in all istence. In the above Holistic Understanding of Harmony on Profes of Ethical Human Conduct. Basis for Humanistic Education	'I') and 'Body' - hand enjoyer) Understhe Body: Sanyam a and Health. Ituman Relationship Understanding the Difference between esociety (society between the society between the society (society between the society between the society between the society between the society (so	being as appiness standing and Heal 6 Understa r its fulfi meaning respect eing an Goals. V 6 derstandity and se olistic per color of the color of	s a co-es and phenomena the characteristic states and phenomena the characteristic states and different and different and different states are states and the control of th	xistence nysical racterist ect appr	human mutur ference ion; the family nivers
UNIT II Understanding sentient 'I' an Understanding activities of 'I' Physical needs UNIT III Understanding numan relation appiness; Treetween intendent other salient Resolution, Pharmonious on UNIT IV Understanding Nature. Intercunderstanding all levels of exunity Units of Example 1 (Intercunderstanding all levels of exunits of Example 2 (Intercunderstanding all	and the material 'Body' Understanding the needs of Self (as the Body as an instrument of 'I' (I being the doer, seer and harmony in 'I' Understanding the harmony of I with a meaning of Prosperity in detail Programs to ensure Sanyam and Harmony in the Family and Society-Harmony in Human-Haship; meaning of Justice (nine universal values in relationship ust and Respect as the foundational values of relationship tion and competence. Understanding the meaning of Respect values in relationship. Understanding the harmony in the prosperity, fearlessness (trust) and co-existence as competed in society-Undivided Society, Universal Order-from fands and Harmony in the Nature and Existence - Whole existence as Existence as Co-existence of mutually interacting units in all instence. In the above Holistic Understanding of Harmony on Profest of Ethical Human Conduct. Basis for Humanistic Education extence in professional ethics, Strategy for transition from the professional ethics and the professional ethics and the professional ethics and the professional ethics are professional ethics.	'I') and 'Body' - hand enjoyer) Understhe Body: Sanyam a and Health. Ituman Relationship Understanding the Difference between esociety (society between the society between the society (society between the society between the society between the society between the society (so	being as appiness standing and Heal 6 Understa r its fulfi meaning respect eing an Goals. V 6 derstandity and secolistic polistic polist	s a co-es and phenomena the characteristic states and phenomena the characteristic states and different and different and different states are states and the control of th	xistence nysical racterist ect appr	e of the facility facility and the facility and the facility facil

Refer	rence Books:
1.	JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
2.	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
3.	The Story of Stuff (Book)
4.	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi
5.	Small is Beautiful - E. F Schumacher.
6.	Slow is Beautiful - Cecile Andrews
7.	Economy of Permanence - J C Kumarappa
8.	Bharat Mein Angreji Raj - PanditSunderlal
9.	Rediscovering India - by Dharampal
10.	Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi
11.	India Wins Freedom - Maulana Abdul Kalam Azad
12.	Vivekananda - Romain Rolland (English)
13.	Gandhi - Romain Rolland (English)

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
CO1	COI Become more aware of themselves, and their surroundings (family, society, nature) and become more responsible in life					
CO2	Handle problems with sustainable solutions, while keeping human relationships and human nature in mind	Apply				
СОЗ	Become sensitive to their commitment towards what they have understood (human values, human relationship and human society)	Evaluate				
CO4	Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.	Apply				

COU	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	1	0	0	1	0	2	0	1	0	3	2	0	1
CO2	0	0	1	0	0	3	0	1	0	1	0	3	1	0	1
CO3	0	0	1	0	0	2	0	1	0	1	0	3	1	0	2
CO4	0	0	2	0	0	1	0	1	0	1	0	3	1	0	1
Avg	0	0	1.25	0	0	1.75	0	1.25	0	1	0	3	1.25	0	1.25
			3 /	2/1-i	ndicates	strengt	h of co	relation	(3 – H	igh, 2 – N	Medium,	1 – Low)			

22F	EE201	PRINCIPLES OF ELECTRICAL ENGINE	SEMES	STEF	2	II	
PRE	REQU	ES	Credit		4		
Engir	neering F	Physics	Hours/Week	L	T		TH
			Hours/ Week	3	1	0	4
Cou	rse Obj	ectives:				1	
1.	To un	derstand the basic concepts of electric circuits, measuremen	ts techniques and	instrume	nts		
2.	To stu	dy the working principles of DC and AC machines					
3.	To un	derstand the components of Electrical installations					
UNI	TI	DC CIRCUITS		9	3	0	12
analy doma	sis of sin in analy	cuit elements (R, L and C), voltage and current sources, Ohm nple circuits with dc excitation. Superposition, Thevenin, Norton sis of first-order RL and RC circuits.			r theo		Time-
UNI	TII	AC CIRCUITS		9	3	0	12
powe	r, power	n of sinusoidal waveforms, peak and rms values, phasor representations, Analysis of single-phase ac circuits consisting of RL, ree-phase balanced circuits, voltage and current relations in star a	RC, RLC combin	ations (ser			
UNI	T III	TRANSFORMERS		9	3	0	12
		 Working principle – EMF equation – Ideal and Practical transferivalent circuit - Losses and Efficiency of transformers – Regulation 					
UNI	T IV	ELECTRICAL MACHINES		9	3	0	12
Starti	ng and	working and speed control of DC shunt motor, Construction a speed control of three phase induction motor, Working of single and working of synchronous generators.					
UNI	T V	ELECTRICAL INSTALLATIONS		9	3	0	12
of B	atteries,	of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCI Important Characteristics for Batteries. Elementary calculat and battery backup.					
			Total	(45L+15	T) =	60 P	eriods

Text 1	Books:
1.	Basic Electrical Engineering - D.P. Kothari and I.J. Nagrath, 3 rd edition, Tata McGraw Hill, 2010.
2.	Basic Electrical Engineering - D.C. Kulshreshtha, Tata McGraw Hill, 2019.
Refer	ence Books:
1.	Fundamentals of Electrical Engineering, L.S. Bobrow, Oxford University Press, 2011
2.	Electrical and Electronics Technology, E. Hughes, 10 th Edition, Pearson, 2010
3.	Electrical Engineering Fundamentals, Vincent Deltoro, Second Edition, Prentice Hall India, 1989

Course O	uto	comes:	Bloom's Taxonomy					
Upon com	plet	ion of this course, the students will be able to:	Mapped					
CO1	CO1 : Analyze DC and AC circuits.							
CO2	:	Apply electrical circuit theorems to DC circuits.	L3. Applying					
CO3	:	L2. Understanding						
CO4	:	Explain the working principles of DC and AC Electrical Machines.	L2. Understanding					
CO5	:	To choose components of Low Voltage Electrical Installations	L5. Remembering					

COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	1	1	1	1	2	1	1	1	1	2	2	3	1
CO2	3	3	2	1	2	1	2	1	1	1	1	2	3	3	2
CO3	3	3	3	3	2	1	3	1	1	1	1	1	2	2	1
CO4	3	3	3	3	3	1	3	1	1	1	1	2	2	3	2
CO5	2	3	3	3	3	1	3	1	1	1	1	1	2	2	1
CO6	1	1	1	3	2	1	3	1	1	1	1	1	2	3	1
Avg	2.17	2.33	2.17	2.33	2.17	1	2.67	1	1	1	1	1.50	2.17	2.67	1.33

22M	IE101	ENGINEERING GRAPHICS AND DESIGN Semest					
PREF	REQUIS	ITES	Category	ES	edit	3	
Studen	nts should	know about the basics of drawings.		L	Т	P	TH
Studen	nts should	be able to construct geometric shapes	Hours/Week	1	0	4	5
Cours	se Learn	ing Objectives					
1		art knowledge on graphical skills for communications of corprovide exposure to design.	ncepts, ideas and c	lesign o	of engin	eering p	roducts
2	To expo	ose them to existing national standards related to technical draw	wings.				
3	To unde	erstand the basics of points, lines, planes and solids.					
4	To unde	erstand the basics of the surface of an object.					
5	То ехро	ose them to isometric and perspective views of simple solids.					
Uı	nit I	PROJECTION OF POINTS, LINES AND PLANE	SURFACES	3	0	12	15
incline	ed to both	rant – Determination of true lengths and true inclinations – Pr reference planes.	ojection of polygor			T	
Un	nit II	PROJECTION OF SOLIDS		3	0	12	15
		nple solids like prisms, pyramids, cylinder and cone when the one reference plane by change of position method.	axis is perpendicu	ılar to c	one refe	rence pla	ane and
Uni	it III	SECTION OF SOLIDS AND DEVELOPMENT OF	F SURFACES	3	0	12	15
other –	solids in opment of	sove solids in a simple vertical position by cutting planes included position with cutting planes parallel to one reference plateral surfaces of simple and truncated solids – Prisms, pyrands with square and cylindrical cutouts, perpendicular to the axis	ane- Obtaining true	shape	of the se	ection.	
Un	it IV	ORTHOGRAPHIC AND ISOMETRIC PROJ	ECTION	3	0	12	15
dimens	sional obj	rojection - Visualization concepts and Freehand sketching - Vects - Layout of views - Freehand sketching of multiple views - metric projection – isometric scale - isometric projections of somes.	from pictorial view	vs of ob	jects.		f three
Un	nit V	PERSPECTIVE PROJECTION		3	0	12	15
Perspe	ctive proj	ection of prisms, pyramids and cylinders by visual ray and var	nishing point metho	ods.		I	
			,	Total (15+60)	= 75 P	eriod
Tex	kt Books	•					
	1		ovvina" Ch4-	D ₁ , k.11. 1	nin ~ II		.d D4'
1	2014.	N.D.,Panchal V M and Pramod R. Ingle, "Engineering Dr.			ning Ho	ouse, 53	
2	Partha	sarathy, N. S. and Vela Murali, "Engineering Drawing", Oxfo	rd University Press	s, 2015			

Reference Books:

1	Agrawal, B. and Agrawal C.M., "Engineering Drawing", Tata McGraw, N.Delhi, 2008.
2	Gopalakrishna, K. R., "Engineering Drawing", Subhas Stores, Bangalore, 2007.
3	Natarajan, K. V., "A text book of Engineering Graphics", 28th Ed., Dhanalakshmi Publishers, Chennai, 2015.
4	Shah, M. B., and Rana, B. C., "Engineering Drawing", Pearson, 2 nd Ed., 2009.
5	Venugopal, K. and Prabhu Raja, V., "Engineering Graphics", New Age, 2008.
E-Refe	rences
1.	https://nptel.ac.in/courses/112102304
2.	https://home.iitk.ac.in/~anupams/ME251/EDP.pdf
3.	https://static.sdcpublications.com/pdfsample/978-1-58503-610-3-1.pdf

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Familiarize with the fundamentals and standards of engineering graphics.	Understand						
CO2	Ability to understand the fundamental concepts of projection of points, lines and planes.	Analyze						
CO3	Project the solids and section of solids.	Analyze						
CO4	Familiarize and develop the lateral surfaces of solids	Analyze						
CO5	Visualize and project the orthographic, isometric and perspective sections of simple solids.	Analyze						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO2	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO3	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO4	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO5	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
Avg	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

22MC	CIN01	ENGINEERING SPRINTS		5	er	II		
PRER	EQUIS	ITES	Category	EE	Cre	1		
				L	T	P	ТН	
			Hours/Week	0	0	2	2	
Course	e Learni	ing Objectives						
1	To Strei	ngthen conceptual understanding of fundamental engineering co	oncepts.					
2	To Spar	k curiosity in students Minds.						
3	To focu	s on teaching through a problem-solving approach using Street	Fight Engineering	g princi	ples pio	neered.		
4	To foste	er the growth of functional independence and self-driven learning	ng habits.					
5	To max	imize the interest levels towards learning - as students aspire to	create meaningfu	ıl chang	ges in th	e world.		
Un	it I	STREET FIGHTING ENGINEERING		0	6	0	6	
-	_	engineering - How to street fight engineering - Decode r y - Derive actionable inferences - Perform data - driven insights	-				tterns ·	
Uni	it II	PROGRAMMING PARADIGM		0	6	0	6	
Algorith	hms - Me	mming - Outside box thinking to solve problems- Need for emory Allocation - Conditions and loops - Creating effective for mming languages & paradigms - Getting started with developm	unctions - Case s	tudies -	Visual	Program	nming -	
Uni	t III	BRAINS OF MACHINES		0	6	0	6	
Transdi	sciplinar	s in Tesla Electric car - Case study - Brains of Electric y systems to Accelerate Innovation - Idea Hexagon - Exercise t al camera.		_				
Uni	t IV	MACHINES THAT MAKE-UP THE WOR	RLD	0	6	0	6	
		onics passive components - Need for sensors & Actuators - A Basic Custom Hardware - Bootloader & its purposes.	analyzing & Und	erstand	ing elec	tronic c	ircuits -	
Uni	Unit V ENGINEERING THE REAL WORLD 0 6 0							
		vstems - Introducing to Systems Thinking - Stock and Flow D d of Systems.	iagrams - Systen	n Traps	- Interv	vening c	ircuits -	
					7 D 4	20.1	Periods	

Tex	t Books:					
1	Sanjoy Mahajan - Street Fighting Mathematics					
2	Donald Knuth - The Art of Computer Programming					
3	Think like a programmer - An introduction to creative problem solving					
4	Thinking in Systems - A Primer					
Refe	rence Books:					
1	Learning to code: How to think like a programmer					
2	How to find innovative ideas: Ramesh Raskar's note					

3	Case Study; How Tesla changed the auto industry
4	Ultimate Guide: How to develop a new electronic hardware product

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Apply street fight engineering concepts					
CO2	Construct Flowchart & block diagrams for algorithms					
CO3	Apply the idea Hexagon Tool to understand basic electronics for building basic hardware					
CO4	Examine real-world problems with a system view					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO 3
CO1															
CO2															
CO3															
CO4															
CO5															
Avg															
	I	I	3/2/1	– indica	ates stre	ngth of	correla	tion (3-	High, 2	2- Medi	ım, 1- I	Low)	I	I	

22MC201	TAMILS AND TECHNOLOGY	S	Semeste	er	II
PREREQUI	SITES Category	HS MC	Cr	edit	0
		L	T	P	TH
	Hours/Week	1	0	0	1
Course Lear	ning Objectives			1	
1					
2					
3					
4					
5		T	1		
Unit I	WEAVING AND CERAMIC TECHNOLOGY	3	0	0	3
XX7	stary during Congom Age. Commiss to shoole are Plack and Dad Ware Pottaries (D	(W/Q	Graffiti	on Potte	eries.
weaving Indu	stry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (B	JK W) -	Granna	011 1 011	
Unit II	DESIGN AND CONSTRUCTION TECHNOLOGY	3	0	0	3
Unit II Designing and Hero stones of Great Temple		3 an Age - and Temp	0 Buildin	0 g mater	3 ials and puram
Unit II Designing and Hero stones of Great Temple	DESIGN AND CONSTRUCTION TECHNOLOGY Structural construction House & Designs in household materials during Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and of Cholas and other worship places - Temples of Nayaka Period - Type study	3 an Age - and Temp	0 Buildin	0 g mater	3 ials and puram
Unit II Designing and Hero stones o Great Temple ThirumalaiNa Unit III Art of Ship B Minting of C	DESIGN AND CONSTRUCTION TECHNOLOGY Structural construction House & Designs in household materials during Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and of Cholas and other worship places - Temples of Nayaka Period - Type study vakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during	3 n Age - nd Temp (Madura British 3	Buildin bles of Mai Meer Period.	og mater Mamalla nakshi T o	3 ials and puram emple) 3
Unit II Designing and Hero stones o Great Temple ThirumalaiNa Unit III Art of Ship B Minting of C	DESIGN AND CONSTRUCTION TECHNOLOGY Structural construction House & Designs in household materials during Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and of Cholas and other worship places - Temples of Nayaka Period - Type study vakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during MANUFACTURING TECHNOLOGY milding - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and groins - Beads making-industries Stone beads -Glass beads - Terracotta bead	3 n Age - nd Temp (Madura British 3	Buildin bles of Mai Meer Period.	og mater Mamalla nakshi T o	3 ials and puram emple) 3
Unit II Designing and Hero stones of Great Temple ThirumalaiNa Unit III Art of Ship B Minting of C Archeological Unit IV Dam, Tank, puse - Agriculti	Structural construction House & Designs in household materials during Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and of Cholas and other worship places - Temples of Nayaka Period - Type study vakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during MANUFACTURING TECHNOLOGY milding - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and groins — Beads making-industries Stone beads -Glass beads - Terracotta bead evidences - Gem stone types described in Silappathikaram.	3 n Age - nd Temp (Madura British 3 noldCoin ls -Shel 3	Buildin bles of Mai Meer Period. Outside as sould beads Outside as sould beads	o g mater Mamalla nakshi T o nrce of h bone o signed fo	3 ials and puram emple) 3 iistory beats
Unit II Designing and Hero stones of Great Temple ThirumalaiNa Unit III Art of Ship B Minting of C Archeological Unit IV Dam, Tank, puse - Agriculti	Structural construction House & Designs in household materials during Sangam Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and of Cholas and other worship places - Temples of Nayaka Period - Type study wakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during MANUFACTURING TECHNOLOGY milding - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and goins — Beads making-industries Stone beads -Glass beads - Terracotta bead evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY mods, Sluice, Significance of KumizhiThoompu of Chola Period, Animal Husbandare and Agro Processing - Knowledge of Sea - Fisheries — Pearl - Conche diving -	3 n Age - nd Temp (Madura British 3 noldCoin ls -Shel 3	Buildin bles of Mai Meer Period. Outside as sould beads Outside as sould beads	o g mater Mamalla nakshi T o nrce of h bone o signed fo	3 ials and puram emple) 3 iistory beats
Unit II Designing and Hero stones of Great Temple ThirumalaiNa Unit III Art of Ship B Minting of CArcheological Unit IV Dam, Tank, puse - Agriculto Knowledge Spunit V Development	Structural construction House & Designs in household materials during Sangam age — Details of Stage Constructions in Silappathikaram - Sculptures and of Cholas and other worship places - Temples of Nayaka Period - Type study vakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during MANUFACTURING TECHNOLOGY milding - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and goins — Beads making-industries Stone beads -Glass beads - Terracotta bead evidences - Gem stone types described in Silappathikaram. AGRICULTURE AND IRRIGATION TECHNOLOGY mods, Sluice, Significance of KumizhiThoompu of Chola Period, Animal Husbanare and Agro Processing - Knowledge of Sea - Fisheries — Pearl - Conche diving - ecific Society.	3 n Age - nd Temp (Madura British 3 noldCoin ls -Shel 3 ndry - W Ancient 3	Buildin bles of Mai Meer Period. Outs as soul beads Vells des Knowl	o g mater Mamalla nakshi T o nrce of h bone o signed foedge of	3 ials and puram emple) 3 inistory beats 3 or cattle Ocean

Tex	xt Books:
1	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
3	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
4	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies)

5	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL)

		,	_	, 0111000	-	
PREREQUIS	SITES	Category	NC	Cre	edit	3
NIL			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Learn	ning Objectives				1	
1 To ma	intain the unity and disciplines to the students					
Unit I	9	0	0	9		
•	es and Org of NCC – Incentives to NCC cadets – Duties of ation: Importance and Necessity – Factors affecting Nation ty.					
Unit II	PERSONALITY DEVELOPMENT & LEAD DEVELOPMENT	ERSHIP	9	0	0	9
	tivation, Ethics &Honour code - Case Studies-Shivaji, APG anMajumdar, Jhansi Ki Rani, Narayan Murty, PrakashPaduko DISASTER MANAGEMENT AND HEALTH &	ne, Tipu Sultan, Ra				9
Disaster Manag Fighting – Initia	ement Capsule- SochVichar, Types - Organisation, Capability ative Training, Organisation Skills, Do's and Don'ts – Natural st aid in Common Medical Emergencies, Treatment & Care o	& Role of NCC Ca	l adets – ide Disa	Fire Ser sters; H	vice & lealth &	I Fire
Unit IV	PRINCIPLES OF FLIGHT & GENERAL SI KNOWLEDGE		9	0	0	9
	n – Glossary Terms – Bernoulli's Principle – Aerofoil – Forces; Armed Forces & IAF Capsule – Modes of Entry in IAF, Civi	_		_	_	
Unit V	NAVIGATION, AEROENGINES, AIRCOMP AIRMANSHIP	'AIGNS &	9	0	0	9
Engines – Turb	of Navigation – Glossary terms – Maps – Map Reading; Basic To Prop Engines; Indo Pak war 1971 – Operation Safed Sag of the Air – Circuit Procedures – ATC RT Procedures – Aviat	gar – Famous Air l	Heroes;		_	
				Total	= 45 I	Periods
Course Outo	comes:				Bloon	n's

NCC COURSE-I (Only for NCC Students)

II

Semester

22NC201

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Acquired knowledge about the history of NCC, its organization, incentives of NCC, duties, different NCC camps	Analyze
CO2	Understand the concept of national integration and its importance	Understand
CO3	Understand the importance disaster management and health and hygiene.	Understand
CO4	Understand the importance principal of Flight and knowledge about armed services.	Understand
CO5	Understand and learn the importance of navigation, Aero engines & Airmanship work.	Understand

22EN1	02	PROFESSIONAL SKILLS LABORATORY		SEM	ES	TE	R	II
PRE-R	REQU	ISITE CAT	EGORY	HS	C	redi	t	1
		Ноп	ırs/Week	L	T]	P	TH
			115/ VV CCK	0	0) ;	2	2
Course	e Obje	ectives:						
1.	Тое	nable learners to improve their reading skills						
2.	To n	nake learners show variations while reading						
3.	Тоа	ssist learners to acquire speaking competency in English						
4.	Тое	nable learners to strengthen their fluency in speaking						
UNIT	Ī				0	0	9	9
Readin units.	g – Re	eading a short story – learning pronunciation, intonation, and splitting of	sentences	to form	n m	eani	ng	ful
	ng – N	farrating a story without any help of handouts.						
UNIT					0	0	9	9
Readin	g – Re	eading a poem – learning the skill of reciting, appreciate rhyme and mus	ic, change i	in tone	as		the	
	_	e poem.	,			F		
Speakii	ng – P	ower-point presentation on a general topic.						
UNIT	III				0	0	9	9
Readin	g – Re	eading newspaper article – learning vocabulary and language pattern of	official con	nmunio	cati	on.		
•		ral presentation on a topic from basic engineering pertained to their bran	nch.					
UNIT	IV				0	0	9	9
Readin	g – Re	eading dialogue scripts – learning expression, tone, stress and co-operation	ve reading.	•				
Speakii	ng –Pr	oposing welcome address, vote of thanks and organizing events.						
UNIT	UNIT V							
Readin	g – Re	eading technical descriptions of gadgets – learning the different parts of	devices.	'	<u>'</u>			
_	_	Describing a process – everyday technical activities like taking printouts, oking a hall for meetings etc.,	purchasin	g equi	pme	ent f	or	a
			Total (07	Γ+45P) =	45 I	Per	iods
Text B	ooks:							
1.		man Whitby. Business Benchmark – Pre-Intermediate to Intermediate, Spersity Press, 2014.	tudents bo	ok, Ca	mb	ridg	e	

Refere	ence Books:
1.	Reading Fluency. Switzerland, MDPI AG, 2021.
2.	McJacobs, Wade. Dare to Read: Improving Your Reading Speed and skills. Sustralia, Friesen Press, 2021
3.	Hoge, A. J. Effortless English: Learn to Speak English Like a Native. United States, Effortless English LLC, 2014.
E-Refe	erences:
1.	https://www.talkenglish.com/
2.	https://www.readingrockets.org/

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To read passages fluently with good pronunciation	Remembering
CO2	To develop an expressive style of reading	Creating
CO3	To make effective oral presentations in technical and general contexts	Creating
CO4	To excel at professional oral communication	Evaluating

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
POs													1	2	3
CO1	0	0	0	1	0	0	0	0	2	3	0	1	0	0	1
CO2	0	0	0	1	0	0	0	0	2	3	0	1	0	0	1
CO3	0	0	0	2	0	0	0	0	2	3	0	1	0	0	1
CO4	0	0	0	2	0	0	0	0	2	3	0	1	0	0	3
Avg	0	0	0	1.5	0	0	0	0	2	3	0	1	0	0	1.5

22PH103	PHYSICS LABORATORY	SEM	ER	II		
PRE-REQU	BS	Cre	edit	1.5		
There are no	prerequisites for this course	Hours/Week	L	T	P	TH
			0	0	3	3
Course Obje	ectives:					

- 1. To handle different measuring instruments.
- 2. To understand the basic concepts of interference, diffraction, heat conduction and to measure the important parameters.

LIST OF EXPERIMENTS

- 1. Newton's rings Determination of radius of curvature of a Plano convex lens.
- 2. Carey Foster's bridge Determination of specific resistance of the material.
- 3. Poiseuille's flow Determination of the Coefficient of viscosity of a liquid.
- 4. Spectrometer Grating Normal incidence Determination of Wavelength of Mercury lines.
- 5. Lee's disc Determination of thermal conductivity of a Bad conductor.
- 6. Ultrasonic interferometer Determination of velocity of Ultrasonic Waves in Liquid.
- 7. Non-uniform bending Determination of young's modulus of the wooden bar.
- 8. Determination of Band gap of a given semiconductor.
- 9. Determination of Wavelength of laser using grating and determination of particle size using Laser.
- 10. Determination of Acceptance angle and Numerical Aperture of fiber.

Total (45P) = 45 Periods

Text B	ooks:
1.	C. S. Robinson, Dr. Ruby Das, 'A Textbook of Engineering Physics Practical', Laxmi Publication Pvt.
1.	Ltd., 2016.
2.	S. Panigrahi, 'Engineering Practical Physics', Cengage Learning India, 2015.
Refere	nce Books:
1.	M.N. Srinivasan, 'Text Book of Practical Physics', Sultan Chand & Sons, 2013
2.	Singh Harman, 'B.Sc. Practical Physics', S Chand & Company Ltd, 2022.
E-Refe	erences:
1.	https://nptel.ac.in/courses/115105110
2.	https://nptel.ac.in/courses/115105120

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Handle different measuring instruments and to measure different parameters.	Applying
CO2	Calculate the important parameters and to arrive at the final result based on the experimental measurements.	Analyzing

RSE A	RTICU	LATIO	ON MA	TRIX												
DO1	DO4	DO2	DO 4	DO 5	DO.	DO5	DOG	DOG	DO10	DO10	DO10 I	DO11	DO12	PSO	PSO	PSO
POI	PO2	PO3	PO4	POS	PO6	PO7	PO8	PO9	PO10	POII	PO12	1	2	3		
3	2	0	3	3	0	0	0	3	1	0	2	1	1	1		
3	2	0	2	1	0	0	0	2	0	0	1	1	1	1		
3	2	0	2.5	2	0	0	0	2.5	1	0	1.5	1	1	1		
	PO1 3 3	PO1 PO2 3 2 3 2	PO1 PO2 PO3 3 2 0 3 2 0	PO1 PO2 PO3 PO4 3 2 0 3 3 2 0 2	PO1 PO2 PO3 PO4 PO5 3 2 0 3 3 3 2 0 2 1	3 2 0 3 3 0 3 2 0 2 1 0	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 2 0 3 3 0 0 3 2 0 2 1 0 0	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 3 2 0 3 3 0 0 0 3 2 0 2 1 0 0 0	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 3 2 0 3 3 0 0 0 3 3 2 0 2 1 0 0 0 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 3 2 0 3 3 0 0 0 3 1 3 2 0 2 1 0 0 0 2 0	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 3 2 0 3 3 0 0 0 3 1 0 3 2 0 2 1 0 0 0 2 0 0	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 3 2 0 3 3 0 0 0 3 1 0 2 3 2 0 2 1 0 0 0 2 0 0 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO 3 2 0 3 3 0 0 0 3 1 0 2 1 3 2 0 2 1 0 0 2 0 0 1 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO PSO 1 3 2 0 3 3 0 0 0 3 1 0 2 1 1 3 2 0 2 1 0 0 2 0 0 1 1 1		

22CY102	CHEMISTRY LABORATORY	SI	SEMESTER				
PRE-REQU	ISITE CATEG	ORY BS	Cre	edit	1.5		
NIL	Hours/V	Week L	T	P	TH		
		0	0	3	3		

Course Objectives:

1. To gain practical knowledge by applying theoretical principles and performing the following experiments.

LIST OF EXPERIMENTS

- 1. Estimation of hardness of Water by EDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Estimation of Alkalinity in water
- 4. Estimation of Chloride in water sample (Iodimetry)
- 5. Estimation of Iron content in the given salt by using external indicator
- 6. Conductometric titration of Strong Acid and Strong Base
- 7. Conductometric titration of Mixture of acids and Strong base
- 8. Determination of strength of Iron by Potentiometric method
- 9. Estimation of Iron by Spectrophotometry
- 10. Estimation of Copper by Colorimeter
- 11. Determination of molecular weight and degree of Polymerization by Viscometry
- 12. Determination of pKa of the given weak acid by pH meter
- 13. Estimation of the amount of given HCl using pH meter

Total (45P) = 45 Periods

E-Refe	E-References:							
1.	www.scuolab.com/en/chemistry/							
2.	www.onlinelabs.in/chemistry							
3.	www.virtuallabs.merlot.org/vl_chemistry							

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To summarize the applicability of the practical skill gained in various fields.	Understanding
CO2	To calculate the composition of brass quantitatively and the molecular weight of polymers.	Applying
CO3	To understand the principle and applications of conductometric and pH titrations, spectrometer, and potentiometric titrations.	Understanding

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
POs													1	2	3
CO1	1	1	0	3	0	0	0	0	0	0	0	0	2	0	0
CO2	1	2	0	3	0	0	0	0	0	0	0	0	2	0	0
CO3	2	2	0	3	0	0	0	0	0	0	0	0	2	0	0
Avg	1.3	1.7	0	3	0	0	0	0	0	0	0	0	2	0	0

22EE202	PRINCIPLES OF ELECTRICAL ENGINEERING LABORATORY SEMESTER								
PREREQUI	ES	Cr	edit	1.5					
Engineering Pl	· ·	Hours/Week	L	T	P	TH			
			0	0	3	1.5			

Course Objectives:

- 1. To study hands-on experiments related to electric circuits.
- 2. To understand the working of measuring instruments and electrical machines.

List of Experiments:

- 1. Study of basic safety precautions, measuring instruments voltmeter, ammeter, multi-meter, oscilloscope and Electrical components.
- 2. Verification of Kirchhoff's laws.
- 3. Verification of Superposition theorem.
- 4. Verification of Thevenin's theorem.
- 5. Measurement of time constant of an R-C circuit.
- 6. Measurement of core loss and full-load copper loss in a single phase transformer.
- 7. Load test on a single phase transformer.
- 8. Sinusoidal steady state response of R-L, and R-C circuits impedance calculation and verification. Observation of phase differences between current and voltage.
- 9. Series/Parallel Resonance in R-L-C circuits.
- 10. Measurement of three-phase power in three-phase circuits.
- 11. Demonstration of cut-out sections of DC machine, 3-phase induction motor, and 3-phase alternator.

Total (0T + 45P) = 45 Periods

Reference Books:

Basic Electrical Engineering - D.P. Kothari and I.J. Nagrath, 3rd edition, Tata McGraw Hill, 2010.
 Basic Electrical Engineering - D.C. Kulshreshtha, Tata McGraw Hill, 2019.

Course (Out	comes:	Bloom's Taxonomy
Upon con	plet	ion of this course, the students will be able to:	Mapped
CO1	:	Discuss the working of measuring instruments and electrical machines.	L2. Understanding
CO2	:	Apply fundamental laws and theorems to electric circuits.	L3. Application
CO3	:	Estimate parameters in single phase and three phase AC circuits.	L5. Evaluation
CO4	:	Analyze resonance in single phase AC circuits.	L4. Analysis
CO5	:	Judge the steady state responses of single phase AC circuits.	L5. Evaluation

COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	2	2	1	1	1	2	1	1	1	2	2	2	2	1
CO2	1	2	1	1	1	1	1	1	1	1	2	2	3	3	2
CO3	1	2	2	2	1	1	1	1	2	2	1	2	2	3	1
CO4	1	2	2	2	1	1	2	1	1	2	2	2	3	3	2
CO5	1	2	2	2	1	1	2	1	1	2	2	2	2	3	1
Avg	1.0	2.0	1.8	1.6	1.0	1.0	1.6	1.0	1.2	1.6	1.8	2.0	2.4	2.8	1.4

SEMESTER III

22MA304	FOURIER SERIES, COMPLEX VARIABL TRANSFORMS	ES AND	SEN	/IEST	ER	III				
PREREQUISITES		CATEGORY	BS	Cr	edit	4				
NIL		Hours/Week	L	Т	P	ТН				
		Hours/ week	3	1	0	4				
Course Objectives:										
1. To introduce the	concept of Fourier series.									
2. To familiarize with Fourier, transform of a function and its sine and cosine transforms.										
3. To know about analytic functions with properties, construction of analytic functions and conformal transformations.										
4. To obtain the kn	owledge of Cauchy's integral theorems, calculus of resi	idues and complex	integra	ation	arounc	l unit				
5. To gain the skill	s to form difference equations and find its solution by us	ing Z-transform m	ethod.							
Unit I FOURIER	RSERIES		9	3	0	12				
Dirichlet's conditions	– General Fourier series – Odd and even functions – l	Half range sine ser	ries – F	Ialf ra	ange c	osine				
series - Parseval's Id	entity – Harmonic Analysis.	_								
Unit II FOURIER	RTRANSFORM		9	3	0	12				
	ntegral theorem – Fourier transform pair – Sine and Co	sine transforms –	Propert	ies –	Transf	orms				
	Convolution theorem - Parseval's Identity.		1 -	_		1				
	X DIFFERENTIATION		9	3	0	12				
proof) - Harmonic as	ex variable – Analytic functions – Cauchy – Riemann equal orthogonal properties of analytic function – Construction cz, 1/z, z ² and Bilinear transformations.									
	X INTEGRATION		9	3	0	12				
	eorem - Cauchy's integral formula - Taylor's and L d Residues - Cauchy's Residue theorem - Contour integral axis.									
Unit V Z-TRANS	SFORM AND DIFFERENCE EQUATIONS		9	3	0	12				
	functions and properties - Inverse Z - transform -init					ution				
theorem -Formation o	f difference equations – Solution of difference equations	using Z – transfor	m tech	nique	•					
		Total (45L+15T)= 60 Periods								

Tex	xt Books:
1.	Veerarajan T, "Engineering Mathematics (For Semester III)", 3 rd Edition, Tata McGraw Hill Education Pvt . Ltd., New Delhi, 2009.
2.	P. Kandasamy, K. Thilagavathy and K. Gunavathy, "Engineering Mathematics, Volume III", S. Chand & Company ltd., New Delhi, 1996.
3.	Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khanna Publications, Delhi, (2015).
4.	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 3 rd Edition, 2007.
Ref	ference Books:
1.	Srimanta pal and Subath C. Bhumia, "Engineering Mathematics", Oxford university publications, New Delhi, 2015
2.	Ewinkreyzig, "Advanced Engineering Mathematics", 9th edition, John Wiley & Sons, 2006.
3.	Grewal, B.S., "Higher Engineering Mathematics", 43 rd Edition, Khanna Publishers, Delhi, 2014.
4.	Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth Edition, McGraw-Hill, Inc.,
	New York, 1995.
5.	Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematicians", MacMillan, New York, 1988.

		oletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Acquire the knowledge about Fourier series.	L2
CO2	:	Apply the knowledge of Fourier transform in engineering problems.	L3
CO3	:	Familiar with the concept of Conformal and Bilinear transformations.	L2
CO4	:	Acquire the knowledge of Contour integration over unit circle and semi-circle.	L2
CO5	:	Use the effective mathematical tools for the solutions of partial differential	L3
		equations by using Z transform techniques for discrete time systems.	

COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO1 2	PSO 1	PSO 2	PSO3
CO1	3	2		2									2		
CO2	3	2		2									2		
CO3	3	2		2									2		
CO4	3	2		2									2		
CO5	3	2		2									2		
Avg	3	2		2									2		
	•	•	3/	$\frac{2}{1}$ - inc	dicates s	trength	of correl	ation (3-	High,2-	Mediur	n,1- Lov	v)			

	EC301	SEMICONDUCTOR DEVICES AND CIRCUI	TS	SEN	MEST	ΓER	III	
PRER	REQUIS	ITES	CATEGORY	PC	Cre	edit	3	
NIL				L	Т	P	TH	
			Hours/Week	3	0	0	3	
Cours	se Objec	tives:				<u> </u>		
1.	To unc	lerstand the fundamentals of electron devices and apply the know	vledge in electro	nic circ	uits.			
2. To design and analyse single stage and multistage amplifier circuits.								
3.	To und	lerstand and classify different kinds of power and feedback ampl	ifiers.					
Unit I			9	0	0	9		
Semic		SEMICONDUCTOR DIODES rs – Intrinsic Semiconductors – Doped Semiconductors – Currer	nt flow in semico	onducto	$r_{\rm S} - F$			
		at equations – Energy Band diagram – Diffusion and drift curre						
		- Transition and Diffusion Capacitances - Switching Characteristics						
		tky barrier diode – Zener diode – Varactor diode – Tunnel diode		indo wii		11 34	neno	
		•	Thotodiode.	0	Ι Δ		Δ.	
Unit I		DIODE APPLICATIONS AND POWER SUPPLY		9	0	0	9	
		amper circuits, Half-wave, full-wave and bridge rectifiers with		Analys	S1S TO:	r V c		
rinnie			D 1 /		1' 1		1 4	
	_	with C, L, L-C and C-L-C filters. Voltage multipliers, Voltage	ge Regulators –	Zener	diode	e reg	ulato	
Switch	hed Mod	e Power Supply (SMPS).	ge Regulators –		ı		1	
Switch Unit I	hed Mode	e Power Supply (SMPS). FRANSISTOR AMPLIFIERS		9	0	0	9	
Switch Unit I Bipola	hed Modern III '	e Power Supply (SMPS). FRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Curren	t-Voltage chara	9 cteristic	0 cs – E	0 Ebers	9 -Mo	
Switch Unit I Bipola Model	hed Mode III ' ar Junction I – MOS	e Power Supply (SMPS). FRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage	t-Voltage chara	9 cteristic - Bias	0 ing s	0 Ebers	9 -Mo	
Switch Unit I Bipola Model	hed Mode III ' ar Junction I – MOS nd FET a	e Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage sumplifiers – bias stability – various configurations (such as CE/C)	t-Voltage chara	9 cteristic - Bias	0 ing s	0 Ebers	9 -Mo	
Switch Unit I Bipola Model	hed Mode III ' ar Junction I – MOS nd FET a	e Power Supply (SMPS). FRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage	t-Voltage chara	9 cteristic - Bias	0 ing s	0 Ebers	9 -Mo	
Switch Unit I Bipola Model BJT an Unit I	hed Mode III ' ar Junction I – MOS nd FET an IV	e Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/CFREQUENCY RESPONSE OF AMPLIFIERS	t-Voltage chara e characteristics S, CB/CG, CC/	9 cteristic – Bias CD) and	o cs – E ing so I their	0 Ebers chem r feat	-Mores for ures.	
Switch Unit I Bipola Model BJT an Unit I Small	hed Model III / rar Junction I – MOS and FET and IV I signal of	Power Supply (SMPS). TRANSISTOR AMPLIFIERS On Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/C FREQUENCY RESPONSE OF AMPLIFIERS peration and models of MOSFET and BJT – general shape of fr	at-Voltage chara e characteristics S, CB/CG, CC/	9 cteristic	o es – F ing s t their o aplifie	0 Ebers chem r featr 0 ers –	-Mones for ures.	
Switch Unit I Bipola Model BJT an Unit I Small Freque	hed Model III / ar Junction I – MOS and FET a IV I signal opency Res	Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/C FREQUENCY RESPONSE OF AMPLIFIERS peration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-En	t-Voltage chara e characteristics S, CB/CG, CC/c	9 cteristic - Bias CD) and 9 se of am s - Inte	0 es - E ing s I their 0 eplific	0 Ebers chem r featr 0 ers –	-Mores for the second s	
Switch Unit I Bipola Model BJT ar Unit I Small Freque Effects	hed Model III / ar Junction I – MOS and FET a very signal opency Res s and the	re Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current-FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/C FREQUENCY RESPONSE OF AMPLIFIERS Deteration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-Enter High-Frequency Model of the MOSFET and the BJT – High-	it-Voltage chara e characteristics S, CB/CG, CC/ equency respon- nitter Amplifier Frequency Resp	9 cteristic - Bias CD) and 9 se of am s - Inte	os – Eing sold their	ers – Capa	9 -Mores for the second of the	
Switch Unit I Bipola Model BJT ar Unit I Small Freque Effects Ampli	hed Model III '' ar Junctic I – MOS and FET a signal opency Research the fifiers – Communication of the communica	Power Supply (SMPS). TRANSISTOR AMPLIFIERS On Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/C FREQUENCY RESPONSE OF AMPLIFIERS peration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-Enter High-Frequency Model of the MOSFET and the BJT – High-General expression for frequency response of multistage amplifications.	it-Voltage chara e characteristics S, CB/CG, CC/ equency respon- nitter Amplifier Frequency Resp	9 cteristic - Bias CD) and 9 se of am s - Inte	os – Eing sold their	ers – Capa	9 -Mores for the second of the	
Switch Unit I Bipola Model BJT ar Unit I Small Freque Effects Ampli	hed Model III / ar Junction I – MOS and FET are signal opency Research and the differs – Cout off from the III of the III	Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current-FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/CFREQUENCY RESPONSE OF AMPLIFIERS Deteration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-Enter High-Frequency Model of the MOSFET and the BJT – High-Frequencies of multistage amplifiers – The cascade amplifier.	it-Voltage chara e characteristics S, CB/CG, CC/ equency respon- nitter Amplifier Frequency Resp	9 cteristic	o es – E ing s I their o applificernal f the overall	bers chemr feat 0 Capa CS an uppe	-Motes for the series of the s	
Switch Unit I Bipola Model BJT ar Unit I Small Freque Effects Ampli lower Unit V	hed Model III / ar Junction I – MOS and FET a signal opency Research Research III /	Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current-FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/CFREQUENCY RESPONSE OF AMPLIFIERS) peration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-Enter High-Frequency Model of the MOSFET and the BJT – High-Frequency Model of the MOSFET and the BJT – High-Frequencies of multistage amplifiers – The cascade amplifiers. POWER AND FEEDBACK AMPLIFIERS	it-Voltage chara e characteristics S, CB/CG, CC/ equency respons itter Amplifier Frequency Resp iers - Calculati	9 cteristic 5 - Bias CD) and 9 se of am s - Interponse of on on of or	o cs – E ing so their o nplification of the o	Debers chemic feature of the chemic feature	-Mores foures. 9 Low active a	
Switch Unit I Bipola Model BJT ar Unit I Small Freque Effects Ampli lower Unit V Power	hed Mode III / rar Junction I – MOS and FET a signal opency Research and the sifiers – Cout off from III / ramplification in the signal opency Research and the sifiers – Cout off from III / ramplification in the signal open III / ramplification i	Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/C FREQUENCY RESPONSE OF AMPLIFIERS peration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-Enter High-Frequency Model of the MOSFET and the BJT – High-General expression for frequency response of multistage amplifier equencies of multistage amplifiers – The cascade amplifier. POWER AND FEEDBACK AMPLIFIERS ers-various classes of operation (Class A, Class B, Class AB,	t-Voltage charae characteristics S, CB/CG, CC/cequency responsitter Amplifier Frequency Respiers - Calculati	y cteristic — Bias CD) and y se of am s — Interpreted on of or their po	o cs – Fing so their solution of the coverall over-	Debers cheming feature of the converse of the	-Mcces for the second Control of	
Switch Unit I Bipola Model BJT ar Unit I Small Freque Effects Ampli lower Unit V Power efficie	hed Model III / ar Junction I – MOS and FET a IV I signal opency Res s and the differs – Cout off for IV I amplificancy and	Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current-FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/CFREQUENCY RESPONSE OF AMPLIFIERS peration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-Enter High-Frequency Model of the MOSFET and the BJT – High-General expression for frequency response of multistage amplifiers – The cascade amplifiers amplifiers of multistage amplifiers – The cascade amplifiers. POWER AND FEEDBACK AMPLIFIERS Pers-various classes of operation (Class A, Class B, Class AB, power dissipation calculations – cross-over distortion – Feedback	e characteristics S, CB/CG, CC/ equency responsitter Amplifier Frequency Respiers - Calculati and Class C), eack topologies:	9 cteristic	o cs – Fing so their o complification of the coverall occurrence series.	o Ebers cheming feath of the converse of the c	-Mcces foures. 9 Low acitive are are are ersicular to the control of the contro	
Switch Unit I Bipola Model BJT an Unit I Small Freque Effects Ampli lower Unit V Power efficie series,	hed Mode III / ar Junction I – MOS and FET a IV I signal opency Res and the Ifiers – Cout off from III amplification and III voltage	Power Supply (SMPS). TRANSISTOR AMPLIFIERS on Transistor- device structure and physical operation – Current FET-device structure and physical operation – Current-Voltage amplifiers – bias stability – various configurations (such as CE/C FREQUENCY RESPONSE OF AMPLIFIERS peration and models of MOSFET and BJT – general shape of fresponse of Discrete-Circuit Common-Source and Common-Enter High-Frequency Model of the MOSFET and the BJT – High-General expression for frequency response of multistage amplifier equencies of multistage amplifiers – The cascade amplifier. POWER AND FEEDBACK AMPLIFIERS ers-various classes of operation (Class A, Class B, Class AB,	e characteristics S, CB/CG, CC/ equency responsitter Amplifier Frequency Respiers - Calculati and Class C), eack topologies:	y cteristic	o cs – Fing so their o complification of the coverall occurrence series.	o Ebers cheming feath of the converse of the c	-Moes for the second of the se	

Text Boo	oks:
1.	A.S. Sedra and K.C. Smith, Microelectronic Circuits, 7 th edition, Oxford University Press, 2017.
2.	S. Salivahanan and N. Suresh kumar, "Electronic Devices and Circuits", 4e, McGraw Hill Education, 2017.

E-Re	E-References:							
1.	https://nptel.ac.in/courses/108108112							
2.	https://nptel.ac.in/courses/117103063							
3.	http://www.electronics-tutorials.ws/							

		Dutcomes: appletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Understand the characteristics of diodes and special semiconductor devices.	L2
CO2	:	Design and analyze clipper, clamper and power supply circuits.	L4
CO3	:	Acquire knowledge on working principles, characteristics and applications of BJT and FET.	L1
CO4	:	Analyse the frequency response characteristics of amplifiers.	L4
CO5	:	Design and analyze power and feedback amplifiers and derive their performance specifications.	L4

COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
POs													1	2	3
CO1	1	3	1	2									1	1	1
CO2	3	3	2	3									2	2	1
CO3	3	2	2	3									1	1	1
CO4	2	3	2	3									1	2	1
CO5	2	3	2	3									2	1	1
Avg	2.2	2.8	1.8	2.8									1.4	1.4	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22]	EC302	2	DIGITAL SYSTEM DESIGN		SEMESTER III										
PRE	REQU	UISITES		CATEGORY	PC	C	redit	3							
					L	T	P	TH							
				Hours/week	3	0	0	3							
Cours	se Obj	ectives:		l				<u>; </u>							
1	To n	nake the stud	dent understand the number system, logic families and Boolea	n algebra.											
2	To d	To design combinational and sequential circuits using gates and flip flops.													
3		Deliver the concept of Memories and Programmable Logic Devices and apply the knowledge of these devices in the design of Digital electronic circuits.													
Unit I		NUMBER	R SYSTEMS AND LOGIC GATES		9	0	0	9							
	gation o	lelay - fan -	of Logic Functions using gates – Logic Families: TTL N in - fan - out Tristate TTL - ECL. ATIONAL CIRCUITS	AND gate – Specifi	cations 9	- No	oise m	argin -							
				1											
adder -	- Magn	itude Comp	rs / Sub tractor — Serial adder / Sub tractor — Parallel adder / Sparator — Multiplexer / De-multiplexer - Encoder / Decoder — national logic using MUX and Decoder.					CD							
Unit I	II	SEQUEN	TIAL CIRCUITS		9	0	0	9							
circuits	s–Cou	nters: Asyn	lops: SR,JK,T,D and JK Master Slave—Triggering of Flip-flochronous / Ripple counters — Synchronous counters — Matter Registers—Shift Register counters	Todule on counter -											
Unit I	(V	ASYNCH	RONOUSS EQUENTIAL CIRCUITS		9	0	0	9							
Excitat	tion tab	ole – Excita	mode circuits – Primitive state / flow table – Minimization ation map - Problems in Asynchronous Circuits: Cycles – Dynamic - Essential Hazards and Hazard elimination.												
Unit V	V	MEMOR	Y DEVICES		9	0	0	9							
Program	ımmabl		ries – RAM organization — ROM organization — Flash rray (PLA) - Programmable Array Logic (PAL)- Imp												
				To	otal(45	L) =	45 Per	iods							
1															

Text Books:									
1.	M. Morris Mano," Digital Design",4 th Edition, Pearson Education(Singapore)Pvt. Ltd., NewDelhi,2008.								
2.	R.P. Jain," Modern digital Electronics", Tata McGraw Hill, 4 th Edition, 2009								

Refere	ence Books:
1.	W.H.Gothmann, "Digital Electronics – An introduction to theory and practice", PHI, 2 nd edition, 2006.
2.	D.V. Hall," Digital Circuits and Systems", Tata McGraw Hill, 1989
3.	S.Salivahanan and S.Arivazhagan ," Digital Circuits and Design", 2 nd edition, Vikas Publishing House Pvt. Ltd, New Delhi, 2004.
4.	Charles H .Roth." Fundament also f Logic Design", Thomson Publication Company, 2003.

E-Refe	E-References:								
1.	http://nptel.ac.in/noc/individual_course.php?id=noc15-ec01								
2.	https://nptel.ac.in/courses/117105080/6								
3.	https://nptel.ac.in/courses/117105080/12								

	Fourse Outcomes: pon completion of this course, the students will be able to:						
CO1	:	Understand the number system and the functioning of logic gates with various logic families.	L2, L4				
CO2	:	Design and analyse combinational logic circuits and Logic gates.	L4				
CO3	:	Design the sequential logic circuits using Flip flops	L3, L4				
CO4	:	Design and analyse asynchronous sequential logic circuits	L6				
CO5	:	UnderstandtheconceptsofmemoriesandPLDsandimplementationofcircuitsusingmemoryan dPLDs.	L2				

COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO11	PO12	PSO1	PSO2	PSO3
POs															
CO1	3	2	2	2	3	2	3	2					2	1	
CO2	3	3	2	2	3	3	2	1	1				3	2	
CO3	2	2	3	3	2	1	2	1	1				2	2	
CO4	2	1	2	1	2	2	3	1					2	1	
CO5	2	1	2	1	3	2	1	2					3	2	
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	0.4				2.4	1.6	
	•	•	•	3/2/1 -	indicate	s strengt	th of cor	relation	(3-High	,2- Mediu	m,1- Lov	v)	•		·

22EC303	NETWORK THEORY AND SYNTHESI	IS	SEMESTER III										
PRERE(UISITES	CATEGORY	PC	Cr	edit	3							
NIL			L	T	P	TH							
		Hours/Week	3	0	0	3							
Course o	ojectives:		L.		l .								
1. T	o impart knowledge on solving circuits using network theorems.												
2. T	To educate on obtaining the transient response of circuits and resonance in coupled circuits.												
3.													
Unit I	Unit I NETWORK ANALYSISTECHNIQUESANDTHEOREMS												
Unit II Transient Complex	ton's – Maximum Power Transfer – Tellegen's theorem. TRANSIENT ANALYSIS AND CIRCUIT ANALYSIS INs – I study in RL, RC, and RLC networks: Response to Step, Impuls frequency: Driving points and Transfer Functions - Poles and zero stores from pole - zero locations - Convolution theorem.	se and Sinusoida											
Unit III	MAGNETIC RESONANCE CIRCUITS			0	0	9							
Impedane Coefficie	d parallel resonance - Variation of impedance with frequency- Base of RLC circuit near resonance - Selectivity—Magnification- Selent of coupling-Dot convention - Analysis of multi - winding con - Ideal transformer-Tuned circuits. TWOPORT NETWORKS	f - inductance –	- Mutu – Seri	al ind	uctan	ice -							
	and Two port networks — Z parameters — Y parameters — h pa	arameters – AF	,	Ū	Ŭ								
	ical and Asymmetrical networks – Characteristic impedance.		, C2 p										
Unit V	it V PASSIVE NETWORK SYNTHESIS 9 0 0												
and suffic	Unit V PASSIVE NETWORK SYNTHESIS 9 0 0 9 Elements of Realizability Theory: Stability - Hurwitz Polynomials - Positive Real Functions: Definition - Necessary and sufficient conditions for a function to be positive real - Elements of circuit synthesis - Foster and Cauer forms of LC Networks - Synthesis of RC and RL networks.												
		T	otal(4	5L)=4	5 Per	iods							

Text	Books:
1.	S.K. Bhattacharya and Manpteet Singh," Network analysis and Synthesis",1stedition,Pearson Publication,2015.
2.	AbhijitChakrabarthy, "Circuit Theory Analysis and Synthesis", Dhanpath Rai & Sons, New Delhi, 2011.
Refe	rence Books:
1.	Alexander C. and Sadiku M. N. O., "Fundamentals of Electric Circuits", Tata McGraw Hill, NewDelhi, 2013.
2.	Sudhakar A. and Shyammohan S. Pillai ,"Circuits and Networks Analysis and Synthesis",McGrawHill,NewDelhi,2015.
3.	John .D. Ryder, "Networks Lines and Fields"-PHI 2 nd edition, 2003.
4.	VanValkenburg "Introduction to Modern Network Synthesis", New Age International Publisher, NewDelhi,2001.
E-Re	ferences:
1.	https://nptel.ac.in/courses/108102042/
2.	https://nptel.ac.in/courses/106105154/2
3.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/video-lectures/lecture-2/

		utcomes: upletion of this course, the students will be able to:	Bloom's Taxonomy Mapped		
CO1	:	Analyse the electric circuit using best suited network theorem	L4		
CO2	:	Apply the knowledge of Fourier Series, Fourier Transform and Laplace	L3		
		Transform to analyse the circuit			
CO3	:	Understand and analyse the resonance behaviour of circuit and apply the	L2, L4		
		knowledge to design band limited circuits according to the application.			
CO4	:	Analyse the linear network parameters, and their interaction with other networks.	L4		
CO5	:	Design RLC from a given differential equation and can say the feasibility of the	L6		
		design.			

CO//P O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO					
CO1	3	3		2	1								3	1	3					
CO2	3	3		2	1								3	1						
CO3	3	3		2	1								3	1						
CO4	3	3		2	1								3	1						
CO5	3	1	1	2	1								3	1						
Avg	3	2.6	0.2	2	1								3	1						
			•	3/2/1 -	indicates	strength	of corre	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)												

22EC304	TRANSMISSION LINES AND WAVEGUIDES		SEM	ESTE	CR	III
PREREQUISITES	CATEG	GORY	PC	Cre	dit	3
1.Physics – Electromagnetism	Hours/\	Wast.	L	T	P	TH
	Hours	vveek	3	0	0	3
Course objectives:	•			,		•
1. To introduce the various	types of transmission lines and to discuss the losses.					
2. To compute various para matching in Transmission	nmeters for loaded transmission lines using Smith chart and Lines.	nd acqui	ire knov	vledge	of st	ub
V	different types of waveguides, planar transmission lines	and w	aveonid	e resor	ators	2
Unit I TRANSMISSION		una m	9	0	0	9
l .	of transmission lines – Characteristic impedance and P	Propagat	ion Cor	nstant		
	e – Input and Transfer Impedance-Open and Short-cir					
	form distortion – Distortion less transmission line – Lo					
• •	erminated by Zo – Reflection coefficient –Reflection fact	_				
			9	0	0	9
Unit II THE LINE AT RA	ADIO FREQUENCIES		9	0	v	_
Unit II THE LINE AT RA Parameters of open wire line and	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of	f dissipa	9 tion les	0 s line-	opei	n and
Unit II THE LINE AT RA Parameters of open wire line and short circuited line – Standing was	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line $-\lambda/8$ line $-\lambda/4$	f dissipa line– λ/2	9 tion les 2 line-	o s line- The Sr	opei	n and Char
Unit II THE LINE AT RA Parameters of open wire line and short circuited line – Standing was	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of	f dissipa line– λ/2	9 tion les 2 line-	o s line- The Sr	opei	n and Char
Unit II THE LINE AT RA Parameters of open wire line and short circuited line – Standing was – Applications of the Smith Characteristics.	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line $-\lambda/8$ line $-\lambda/4$ art - Solutions of problems using Smith chart – single	f dissipa line– λ/2	9 tion les 2 line-	o s line- The Sr	opei	n and Char
Unit II THE LINE AT RA Parameters of open wire line and short circuited line – Standing was – Applications of the Smith Chamatching. Unit III RECTANGULAR	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line $-\lambda/8$ line $-\lambda/4$ art - Solutions of problems using Smith chart – single	f dissipa line– λ/2 stub ma	9 tion les 2 line- atching	s line- The Sr and do	opernith (n and Char stul
Parameters of open wire line and short circuited line – Standing way – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line $-\lambda/8$ line $-\lambda/4$ art - Solutions of problems using Smith chart - single WAVEGUIDES	f dissipa line– λ/2 stub ma	9 ation les 2 line- atching 9 erse ma	s line- The Sr and do	opernith ouble	n and Char stul
Parameters of open wire line and short circuited line – Standing was – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Waves guides – Transverse Electrical Parameters of Open wire line and Standard Parameters of Open Wire line and Open Wire	DIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 lart - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of	f dissipa line— λ / λ stub ma transve Magnet of TE ar	stion less 2 line-datching 9 erse madic wave and TM V	s line- The Sr and do	opernith ouble ouble wavectan — Co	n and Char stul 9 yes gula ut of
Unit II THE LINE AT RA Parameters of open wire line and short circuited line – Standing was – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Wave guides – Transverse Electrowavelength and phase velocity –	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant	f dissipa line— λ/λ stub ma transve Magnet of TE ar	stion less 2 line-ratching 9 erse maric wave and TM Vin rectan	s line- The Sr and do o gnetic es in re Waves gular v	opernith ouble ouble wavectan — Co	n and Char stul 9 ves - gula ut of
Parameters of open wire line and short circuited line – Standing way – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Waves guides – Transverse Electrowavelength and phase velocity – Attenuation of TE and TM modern and the standard manner.	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excitation of the control of the contr	f dissipa line— λ/λ stub ma transve Magnet of TE ar	stion less 2 line-ratching 9 erse maric wave and TM Vin rectan	s line- The Sr and do o gnetic es in re Waves gular v	opernith ouble ouble wavectan — Co	n and Charles stull 9 yes gula ut of guid
Parameters of open wire line and short circuited line – Standing way – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Wave guides – Transverse Electron wavelength and phase velocity – Attenuation of TE and TM modunit IV CIRCULAR WAV	The standard of the standard	f dissipa line— λ / λ stub ma transvo Magnet of TE ar mode in	y tion les 2 line- atching gerse ma ic wave ad TM V n rectan f modes 9	s line- The Sr and do gnetic es in re Waves gular v	openith ouble oubl	n and Char stull 9/7es gula ut of guid
Parameters of open wire line and short circuited line – Standing was – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Waves guides – Transverse Electromavelength and phase velocity – Attenuation of TE and TM modunit IV CIRCULAR WAV Bessel functions – Solution of fi	d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excit E GUIDES AND RESONATORS eld equations in cylindrical co-ordinates – TM and TE variations are supported to the control of the	f dissipa line— λ/λ stub ma transve Magnet of TE ar mode in tation of	stion less 2 line-ratching 9 erse maric wave and TM Ven rectant f modes 9 ercula	s line- The Sr and do gnetic es in re Waves gular v 0 r guid	opermith ouble wavectan — Cuwaves	n and Charles stull 9 yes gula guid 9 yes
Parameters of open wire line and short circuited line – Standing way – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Waves wave guides – Transverse Electromavelength and phase velocity – Attenuation of TE and TM modunit IV CIRCULAR WAV Bessel functions – Solution of fi impedances and characteristic in	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excit E GUIDES AND RESONATORS eld equations in cylindrical co-ordinates – TM and TE vangedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Dominant mode in circular waveguide – excit pedance – Pagance – Pagan	f dissipa line— λ/λ stub ma transve Magnet of TE ar mode in tation of	stion less 2 line-ratching 9 erse maric wave and TM Ven rectant f modes 9 ercula	s line- The Sr and do gnetic es in re Waves gular v 0 r guid	opermith ouble wavectan — Cuwaves	n and Charles stull 9 yes gula guid 9 yes
Parameters of open wire line and short circuited line – Standing way – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Wave guides – Transverse Electromavelength and phase velocity – Attenuation of TE and TM moderate Unit IV CIRCULAR WAV Bessel functions – Solution of fi impedances and characteristic in cavities - rectangular cavity resor	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excit E GUIDES AND RESONATORS eld equations in cylindrical co-ordinates – TM and TE valued of the produce – Dominant mode in circular waveguide – excitators - circular cavity resonator.	f dissipa line— λ/λ stub ma transve Magnet of TE ar mode in tation of	stion less 2 line-ratching 9 erse maric wave and TM Ven rectant f modes 9 ercula	s line- The Sr and do gnetic es in re Waves gular v 0 r guid	opermith ouble wavectan — Cuwaves	n and Charles study 9 yes gula guid 9 yes
Parameters of open wire line and short circuited line – Standing way – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Wave guides – Transverse Electron wavelength and phase velocity – Attenuation of TE and TM modunit IV CIRCULAR WAV Bessel functions – Solution of fine impedances and characteristic in cavities - rectangular cavity resorunit V PLANAR TRANS	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excite GUIDES AND RESONATORS eld equations in cylindrical co-ordinates – TM and TE water produce – Dominant mode in circular waveguide – expators - circular cavity resonator. MISSION LINES	f dissipaline— λ / λ stub material transverse and the interior of the interi	y tion les 2 line- atching 9 erse ma ic wave nd TM V n rectan f modes 9 n circula of mod	s line- The Sr and do gnetic es in re Waves gular v our guid es - N	opermith ouble oub	n and Character studies studie
Parameters of open wire line and short circuited line – Standing water – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Wave guides – Transverse Electromavelength and phase velocity – Attenuation of TE and TM modunit IV CIRCULAR WAV Bessel functions – Solution of film impedances and characteristic in cavities - rectangular cavity resorutive Velavar TRANS Introduction to planar transmissions.	d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excit E GUIDES AND RESONATORS eld equations in cylindrical co-ordinates – TM and TE vanedance – Dominant mode in circular waveguide – expators - circular cavity resonator. MISSION LINES on lines-strip lines, Micro strip lines-coupled lines-slot lines-strip lines in the line	f dissipaline— λ / Δ stub material transverse of TE are mode in tation of the waves in citation ne, copl	y attion les 2 line- atching 9 erse ma cic wave nd TM V n rectan f modes 9 n circula of mod 9 anar wa	s line- The Sr and do gnetices in re Waves gular v dur guid es - N veguio	opermith ouble oub	n an Character studies
Parameters of open wire line and short circuited line – Standing was – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Waves wave guides – Transverse Electrowavelength and phase velocity – Attenuation of TE and TM moderate of TE and TM	ADIO FREQUENCIES d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excite GUIDES AND RESONATORS eld equations in cylindrical co-ordinates – TM and TE water produce – Dominant mode in circular waveguide – expators - circular cavity resonator. MISSION LINES	f dissipaline— λ / Δ stub material transverse of TE are mode in tation of the waves in citation ne, copl	y attion les 2 line- atching 9 erse ma cic wave nd TM V n rectan f modes 9 n circula of mod 9 anar wa	s line- The Sr and do gnetices in re Waves gular v dur guid es - N veguio	opermith ouble oub	9 yes - gula ut of guide 9 wave 9 PW)
Parameters of open wire line and short circuited line – Standing water – Applications of the Smith Chamatching. Unit III RECTANGULAR Waves between parallel planes characteristics of TE and TM Wave guides – Transverse Electromavelength and phase velocity – Attenuation of TE and TM modunit IV CIRCULAR WAV Bessel functions – Solution of film impedances and characteristic in cavities - rectangular cavity resorutive Velavar TRANS Introduction to planar transmissions.	d co-axial line at high frequencies - Input impedance of aves and standing wave ratio on a line – λ/8 line – λ/4 art - Solutions of problems using Smith chart – single WAVEGUIDES of perfect conductors – Transverse electric waves – Vaves – Transverse Electromagnetic waves: Transverse ric Waves in Rectangular Waveguides – Characteristic of Impossibility of TEM waves in waveguides – Dominant des in rectangular waveguides – Wave impedances – Excit E GUIDES AND RESONATORS eld equations in cylindrical co-ordinates – TM and TE vanedance – Dominant mode in circular waveguide – expators - circular cavity resonator. MISSION LINES on lines-strip lines, Micro strip lines-coupled lines-slot lines-strip lines in the line	f dissipaline – λ/λ stub material transverse in tation of the citation of th	y attion les 2 line- atching 9 erse ma cic wave nd TM V n rectan f modes 9 n circula of mod 9 anar wa	s line- The Sr and do gnetices in re Waves gular v o r guid es - N veguid line (d	opermith ouble oub	9 yes gula guid 9 wav wav 9 PW butter

Text	t Books:
1.	J.D. Ryder "Networks, Lines and Fields", PHI, New Delhi, 2006.
2.	E.C. Jordan and K.G. Balmain "Electro Magnetic Waves and Radiating System, PHI, New Delhi, 2010.
Refe	erence Books:
1.	David M.Pozar: "Microwave Engineering", 4th Edition ,John Wiley, 2012
2.	Annapurna Das and SisirK. Das, "Microwave Engineering", TMH, 2000.
3.	Umesh Sinha, "Tranmission Lines & Networks" Sathya Prakashan publication, 2002
4.	David K.Cheng, "Field and Waves in Electromagnetism", Pearson Education, 1989.
E-Re	ferences:
1.	https://www.youtube.com/watch?v=0OwmYAIjz4A&list=PL0925FD10648D664E
2.	https://nptel.ac.in/courses/117101056
3.	https://link.springer.com/chapter/10.1007/978-1-4615-6459-1_28

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	:	Analyse the propagation of signals through transmission lines.	L4			
CO2	:	Calculate reflection and transmission coefficients, standing wave ratio and power for transmission lines using HF applications.	L5			
CO3	:	Compute various parameters for loaded transmission lines using Smith chart and acquire knowledge of stub matching in Transmission Lines.	L5			
CO4	:	Analyse the field components of different waveguides based on various modes of E and H filed.	L4			
CO5	:	Understand the concept of planar transmission lines and analyse its field distribution.	L2, L4			

CO//P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS
CO1	1	3	2	2							2		2	3	2
CO2	1	3	2	3							2		2	3	2
CO3	1	3	3	3							3		1	3	1
CO4	1	3	3	3							3		2	2	2
CO5	1	3	3	3							3		2	2	2
Avg	1	3	2.6	2.8							2.6		2	2.6	1.8
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC305	ANALOG COMMUNIC	CATION	SEM	IESTI	ER	III
PREREQUISI	ES	CATEGORY	PC	Cr	edit	3
		** /** 1	L	T	P	TH
NIL		Hours/Week	3	0	0	3
Course objecti	es:					
	e the concepts of various analog modulation and demo	•				
	and the sources of noise and its effects in Communica the presence of noise.	ation systems and to analyz	e the pe	rform	ance o	of
	ne limits set by Information Theory.					
	IPLITUDE MODULATION		9	0	0	9
Introduction to	ommunication systems – Need for modulation – Gen	neration and demodulation	of AM,	DSB-	SC, S	SSB-
	lls - Filtering of sidebands - Comparison of amplitude	de modulation systems -	Frequen	ncy tra	ınslati	on ·
Frequency divis	on multiplexing - AM Super hetrodyne receiver.					
Unit II A	GLE MODULATION		9	0	0	9
	n: Phase and Frequency modulation - Narrowband and					
	tion of FM signal – Direct FM – Indirect FM – Democ		M stere	o mult	tiplex	ing ·
	model and linear model of PLL - FM Super hetrodyne					
	ISE PERFORMANCE OF DSB, SSB RECEIVERS		9	0	0	9
	Noise - Noise figure - Noise temperature - Noise Equ					
	of Narrowband Noise in terms of In-phase and Quader - Noise in SSB Receiver.	urature components - Rec	erver ivi	louer -	- INOIS	se II
	ISE PERFORMANCE OF AM AND FM RECEIV	ERS	9	0	0	9
	eivers: Threshold effect - Noise in FM receivers: Capt		effect - I	FM the	eshol	d
reduction - Pre-	mphasis and De-emphasis in FM – Comparing the per	rformance of AM and FM.				
	FORMATION THEORY		9	0	0	9
	nformation and entropy - Rate of information - Jo					
	screte memory less channel - Channel Capacity - Shan - BW and S/N Trade-off - Huffman and Shannon – F		ous Chai	nnel -	Shanr	ion -
Traiticy Theore	- By and 5/14 Trade-off - Huffman and Shannon Tr					
		<u> </u>	otal (45	(L)= 4	5 Per	iods
Text Books:						
1 0: 11	1: "C	10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	W.'1 0		3.13.7	
1. Simon Ha 2010.	kin, "Communication Systems", 5th Edition, Internation	nal Student Version, John	Wiley &	sons,	, NY,	
	&S.D.Spare, "Communication Systems, Analog & Dig	oital" Tata McGraw Hill	1995			
Reference Book		giai , rata Westaw IIII,	1775.			
	• chilling, "Principles of communication systems", TMI	H Naw Dalhi 2009				
Tues une						
Roddy and	Coolen, "Electronic communication", 4 th Edition, PH					
3. Bruce Car	son.A, Paul B.Crilly, "Communication systems", 5 th E	dition, McGraw-Hill Int.,	2009.			

Anokhsingh, "Principles of Communication Engineering", S. Chand & Company Ltd. 2006.

https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm

E-References:

https://www.telecommunications-tutorials.com/

http://www.nptelvideos.in/2012/11/communication-engineering.html

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	:	Gain knowledge on the principles of AM and FM communication systems.	L1						
CO2	:	Ability to design AM and FM receiver.	L3						
CO3	:	The exposure to the sources of noise and its effects in Communication systems.	L2						
CO4	:	Ability to analyze the performance of receiver in the presence of noise.	L4						
CO5	:	: Ability to measure the capacity of a channel based on the information theory.							

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	1		3	4	3	6	/	0	9						
CO1	2	1	3										1	1	1
CO2	2	1	3										1	2	1
CO3	2	2	2	1									1	2	1
CO4	2	2	2	1									1	2	1
CO5	3	1	1										1	2	1
Avg	2.2	1.4	2.2	0.4									1	1.8	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22MC301	22MC301 INDIAN CONSTITUTION						
PREREQUIS	SITES	CATEGORY	MC	MC Credit		0	
NIL			L	Т	P	TH	
		Hours/Week	2	0	0	2	
	(Common to all branches)			l	I		
Course Object	etives:						
	e salient features of the Indian Constitution						
	Fundamental Rights and Fundamental Duties						
	a systematic analysis of all dimensions of Indian Political Sy	rstem					
	and the power and functions of the Parliament, the Legislatur						
UNIT I	, ,	, , , , , , , , , , , , , , , , , , ,	6	0	0	6	
Union and its	Territory – Citizenship–Fundamental Rights–Directive Princ	iples of State Policy-	Fundam	ental	Dutie	S	
UNIT II			6	0	0	6	
The Union-Th	ne States-The Union Territories-The Panchayats - The Muni	icipalities					
UNIT III	•	•	6	0	0	6	
	tive Societies—The scheduled and Tribal Areas—Relations tracts and Suits—Trade and Commerce within the territory of		and the	Stat	es–Fii	nance,	
UNIT IV	ducts and suits. Trade and Commerce within the territory of	mara	6	0	0	6	
	r the Union, the States – Tribunals – Elections– Special Prov	isions –Relating to ce					
UNIT V	The Chion, the States Thounans Elections Special Provi	isions returning to ce	6	0	0	6	
	mergency Provisions – Miscellaneous–Amendment of the Co	onstitution	1 -				
Enguages En	mergency 110 . moon important out in the		Total (6L) =	30 Pe	eriods	
			(,			

Text Books:							
1.	Subhash C.Kashyap, Our Constitution, National Book Trust, 2017						
2.	Durga Das Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.						
3.	M.V.Pylee, Constitutional History of India, S.Ch and publishing, 2010						
4.	Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford	University Press, 1999					

Cours Upon o		Bloom's Mapped	Taxonomy				
CO1	:	Understand the emergence and evolution of the Indian Constitution					
CO2	:	Explain the key concepts of Indian Political System					
CO3							
CO4	:	Present the structure and functions of the Central and State Governments, the					
Legislature and the Judiciary							

22MC	SE	SEMESTER III						
PRE-R	EQUIS	ITE:	CATEGORY	EE	Cr	edit		1
			Hours/Week	L	T	P	, .	ГН
			Hours/ week	0	0	2		2
Course	Object	ives:						
1.	To un	derstand the fundamentals of Design thinking & apply in ic	leating solutions fo	r real-	worl	d pro	ble	ms.
2.	To sol	ve challenges through problem curation, problem validation	on and customer dis	covery	prol	blem	ıs.	
UNIT	NIT I CHALLENGE CURATION							
Introdu	iction:	Design Thinking Principles - Design Thinking Values - De	esign Thinking Met	hods -	Cha	lleng	je	
impact s	setting -	Framing the design challenge.						
UNIT	ГΙΙ	CUSTOMER-CENTRIC INNOVAT	ΓΙΟΝ		3	0	0	3
	•	Customer needs - Empathy building techniques - gap analy lating Insights into Innovation Opportunities	ysis - adoption bar	riers - (obse	rvati	ons	and
UNIT	'III	IDEA GENERATION			3	0	0	3
•	• •	ns & gains - crafting value proposition - Ideation - Diverge Managing risks - Concept of minimum usable prototypes	ŭ				ules	of
UNIT	IV	PROTOTYPING			3	0	0	3
		ncepts Palm Pilot Experiment - Fake it before make it - I otype - Testing the Prototypes	Prototyping - The L	aw of	<u> </u> Failu	ıre -		
UNI	ΓV	PITCH & PRESENTATION			3	0	0	3
		ytelling - the blueprint for storytelling - Pitch Script - Pitch belling pitch - communication fundamentals	n Presentations - B	est pra	ctice	s to		
			To	tal (15	5L) =	= 15	Per	iods

Text B	Text Books:						
1.	Tim Brown (2019), "Change by Design: How design thinking transforms organizations and inspires innovation"						
2.	Jan Chipchase& Simon Steinhardt(2013), "Hidden in Plain Sight: How to Create extraordinary Products for Tomorrow's Customers", Harper Business 2013						
3.	Christian Madsbjerg&Mikkel B. Rasmussen(2014), "The Moment of Clarity", Harvard Business Review Press						
4.	IdrisMootee(2013), Design Thinking for Strategic Innovation, Willey						

5.	Alexander Osterwalder, Value Proposition Design: How to Create Products and Services Customers Want (Strategyzer) - John Wiley & Sons, 2014
Refere	nce Books:
1.	avoia. Alberto, 2009 The Pretotyping Manifesto -
2.	https://sites.google.com/a/pretotyping.org/www/the-pretotyping-manifesto
3.	Jazz Factory, All about Presentations - http://blog.jazzfactory.in/
4.	Pretotyping Methodology - https://www.pretotyping.org/methodology.html

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify real-world problems	Understand
CO2	Apply the challenge curation techniques to real-world problems.	Apply
CO3	Analyze the problems and generate solutions to address the challenges	Analyze
CO4	Build solutions using pertotyping tools & techniques	Apply
CO5	Develop an innovation pitch to effectively communicate the idea to solve the identified problem	Analyze

COU	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	0	3	0	0	0	2	1	0	2	0	0	0	0	0	2
CO2	0	3	0	2	0	0	0	0	2	0	0	0	0	0	2
CO3	0	0	3	2	0	0	0	0	2	0	0	0	0	0	2
CO4	2	0	3	0	0	0	0	1	2	0	0	0	0	0	2
CO5	0	0	0	0	0	0	0	0	2	3	0	0	0	0	2
Avg	0.4	1.2	1.2	0.8	0	0.4	0.2	0.2	2	0.6	0	0	0	0	2
			3/2/1	– indi	cates st	rength o	of corre	lation (3 – Hig	$\frac{1}{gh, 2-N}$	ledium,	1 - Low)		

22NC301	NCC COURSE-II (Only for NCC Stude	ents)	S	EMES	TER I	ΙI
PRE-REQUI	SITE:	Category	NC	Cro	edit	0
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Obje	ctives:	l	1			
1. To mai	ntain the unity and disciplines to the students					
UNIT I	SOCIAL SERVICE & COMMUNITY DEVEL	LOPMENT	9	0	0	9
Trafficking -	al service and it's need - Rural Development Program - It Civic Responsibilities - Causes & prevention of AII RTI & RTE - Traffic Control Organization - Anti Drunl	OS/HIV – Counte				
UNIT II	GENERAL AWARENESS & ADVENT	URE	9	0	0	9
	wledge – Logical & Analytical Reasoning - Modes of En- Slithering – Rock climbing – Cycling and Trekking.	ntry to Army, CA	PF, Poli	ice – SS	SB Proc	edure;
UNIT III	AEROENGINES & NAVIGATION	Ī	9	0	0	9
Terminology	to aero engines and its type – Components of aero – Jet engines – Brayton Cycle – Turbo prop engines and aps and its types - Symbols used in map – Scales of map	l its types; Require	ements of	of Navi	gation -	
UNIT IV	AIRFRAME & METEOROLOGY		9	0	0	9
	rol – Primary and Secondary –Fuselage – Main Plain an ; Importance of METT in Aviation – Atmosphere – Clou					lders –
UNIT V	FLIGHT INSTRUMENTS & AEROMODE	ELLING	9	0	0	9
History of Ae	icator – Altimeter – Artificial Horizon – Radar and Its ro Modeling – Basic Materials & Tools – Types of Aero ety Procedure.					
				Total	= 45 P	eriods

	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Acquired knowledge about social and legal responsibilities.	Understand
CO2	Understand the adventure activities and verbal training on defense examinations.	Remember and Understand
CO3	Understand the technical knowledge on aero engines and map reading.	Understand
CO4	Understand the structure and control of an aircraft.	Understand
CO5	Understand and learn the importance of avionic instruments on aircraft control.	Remember and Understand

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	0	0	0	0	0	0	0	0	0	0	3	1	1
CO2	3	3	2	3	0	0	0	0	0	0	0	0	3	2	1
CO3	3	2	3	1	0	2	0	0	0	0	0	0	3	2	1
CO4	3	2	2	2	0	0	0	0	0	0	0	0	3	2	1
CO5	3	0	0	0	0	1	0	0	0	0	0	0	3	3	1
Avg	3	1.6	1.4	1.2	0	0.6	0	0	0	0	0	0	3	2	1

 $3\,/\,2\,/\,1$ – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)

	22EC306	S LABORATORY	Y SEMESTER III					
PREF	REQUISITES		CATEGORY	PC	Cre	dit	2	
NIL				L	Т	P	TH	
			Hours/Week					
				0	0	4	4	
Cou	rse objectives:							
1.	To provide an	insight into the characteristics of electron devices.						
2.	To design and	l analyse various amplifier circuits.						
3.	To study the o	operation of rectifiers and filters.						
EXPE	ERIMENTS							
1.	Characteristics o	of PN Junction Diode and Zener Diode.						
2.	Characteristics o	of photodiode.						
3.	Design of Clippe	ers and Clampers.						
4.	Measurement of	ripple factor of Rectifiers with and without capacitor filter.						
5.	Characteristics o	of CE/CB/CC configurations of Bipolar transistors.						
6.	Characteristics o	of MOSFET.						
7.	Frequency respo	nse of BJT Amplifier using voltage divider bias (self-bias) v	vith and without emitte	r by pass	s capac	itor.		
8.	Frequency respo	onse of Multi stage amplifiers.						
9.	Determination of	f efficiency of Class A power amplifier.						
10.	Observation of the	he output of Class B Complementary symmetry power ampl	ifier with and without	crossove	r distor	tion.		
11.	Design and Anal	lysis of Series feedback amplifiers.						
12.	Design and Anal	lysis of Shunt feedback amplifiers.						
				Total	$(\mathbf{P})=\mathbf{C}$	60 Pe	riod	

Text Bo	ooks:								
1.	A.S. Sedra and K.C. Smith, Microelectronic Circuits, 7 th edition, Oxford University Press, 2017.								
2.	S. Salivahanan and N. Suresh kumar, "Electronic Devices and Circuits", Fourth edition, McGraw Hill Education, 2017.								
Referer	Reference Books:								
1.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory" 11th edition, PHI, 2017.								
2.	Ben G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2015.								
3.	S.Poorna Chandra, B.Sasikala, "Electronics Laboratory Primer", S.Chand & Company Ltd, 2010.								
4.	L.K. Maheshwari, M.M.S. Anand, "Laboratory Manual for Introductory Electronics Experiments", New age International (P)								
	Limited Publishers, 2010.								

E-Refer	rences:
1.	ttps://nptel.ac.in/courses/108108112
2.	https://nptel.ac.in/courses/108101091
3.	http://www.electronics-tutorials.ws/

Course O Upon comp		omes: on of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Analyze the characteristics of diodes and transistors.	L4
CO2	:	Design electronic circuits such as rectifiers and analyse their performance.	L5
CO3	:	Analyze the frequency response of small signal and power amplifiers using discrete components.	L5
CO4	:	Design and analyze the frequency response of feedback amplifiers.	L5
CO5	:	Implement electronic circuits and test their performance.	L6

CO// PO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO	2	3	2	2	2								1	1	1
CO	3	3	2	2	2								1	2	1
CO	3	3	2	2	2								2	2	1
CO	3	3	3	2	2								1	1	1
CO	3	3	3	2	2								2	2	1
Av	2.8	3	2.4	2	2								1.4	1.6	1
				3/2/1 -	indicate	s strengt	h of corr	elation ((3-High,	2- Mediu	ım,1- Lo	w)			

	22EC307	DIGITAL SYSTEM DESIGN LAB	SEME	ESTE	R		III					
PRER	EQUISITES		CATEGORY	PC	Credit		2					
NIL				L	Т	P	ТН					
			Hours/Week	0	0	4	4					
Cour	se objectives:											
1.	To understand the prin	ciples and methodology of digital logic design at the gate ar	nd switch level.									
2.	To design and testing of	To design and testing of combinational circuits, sequential circuits, digital logic families and programmable logic devices.										
3.	To get practical experi	ence in design, realization and verification of memory device	ces.									
EXPE	RIMENTS											
1.	Study of Logic Gates.											
2.	Implementation of logic	circuits using NAND gate and NOR gate.										
3.	Design and construct Ac	ders and sub tractors.										
4.	Design and implementat	ion of Multiplexer and De multiplexer using logic gates and	l IC74159 and IC7	4154.								
5.	Design and construct en	coder and decoder using logic gates and study of IC7445 an	d IC74147.									
6.	Study of Flip-Flops.											
7.	Construction and verific	ation of 4 bit ripple counter and Mod- N Ripple counters.										
8.	Design and implementat	ion of 3-bit synchronous up/down counter.										
9.	Implementation of SISO	, SIPO, PISO and PIPO shift registers using Flip- flops.										
10.	Design and implementat	ion of Hazard free circuits.										
11.	Implementation of comb	inational logic circuits using Multiplexer and Decoder.										
12.	Implementation of comb	inational logic functions using ROM, PLA and PAL.										
	•		T	otal (P)= 6	0 Pe	riods					

Refe	rences:								
1.	R.P. Jain, "Modern digital Electronics", 4th Edition, Tata McGraw Hill, 2009.								
2.	M. Morris Mano, "Digital Design", 4th Edition, Pearson Education (Singapore) Pvt . Ltd., New Delhi, 2008.								
Refe	ence Books:								
1.	W.H.Gothmann, "DigitalElectronics-Anintroductiontotheoryandpractice", PHI, 2 nd edition,,2006.								
2.	D.V. Hall," Digital Circuits and Systems", Tata McGraw Hill, 1989								
3.	S.SalivahananandS.Arivazhagan, "Digital Circuits and Design", 2 nd edition, Vikas Publishing HousePvt.Ltd,NewDelhi,2004.								
4.	Charles H. Roth. "Fundament also f Logic Design", Thomson Publication Company, 2003.								

E-References:							
1.	https://nptel.ac.in/courses/117105080/24						
2.	https://nptel.ac.in/courses/117106086/						
3.	https://www.youtube.com/watch?v=CeD2L6KbtVM						

Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	:	Demonstrate the truth table of various expressions and combinational circuits using logic gates.	L2				
CO2	:	Design various combinational circuits such as adders, sub tractors, comparators, multiplexers and demultiplexers.	L1, L4				
CO3	:	Design and Construct counters and shift registers.	L4				
CO4	:	Understand the concept of flip flops and Hazard free Circuit.	L2				
CO5	:	Understand the concept ROM, PLA and PAL.	L2, L4				

CO//P	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
0	1									0	1	2	1	2	3
CO1	3	2	2	2	3	2	1	2					2	2	
CO2	2	3	2	2	1	3	2	1					3	1	
CO3	2	2	2	3	2	2	2	1					2		1
CO4	2	1	2	1	2	2	3	1					2	1	
CO5	2	2	3	2	1	2	1	2						2	1
Avg	2.2	2	2.2	2	1.8	2.2	1.8	1.4					1.8	1.2	0.4

3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)

SEMESTER IV

221	/IA402	PROBABILITY AND STOCHASTIC	PROCESSES	SEN	MEST	ER	IV						
PREREQ	UISITES		CATEGORY	BS	Credit		4						
NIL				L	T	P	ТН						
			Hours/Week	3	1	0	4						
Course O	bjectives:						.1						
1. To le	earn the axioms o	f probability and use of Baye's theorem and its appli	cations.										
2. To le	arn the standard	Probability distribution and its application.											
3. To le	arn the two-dime	ensional random variables.											
	To understand the convergence of random sequences and the concepts of strong and weak laws of large numbers and central limits.												
7 I	nderstand effection process.	vely about the stochastic processes and the application	ons of correlation, spec	tral den	sities o	of the							
Unit I	PROBABII	TY AND ONE DIMENSIONAL RANDOM	VARIBLE	9	3	0	12						
function- I		Conditional probability — Total probability- Bayes' by function- Probability distribution function- Monactions.											
Unit II	STANDAR	D DISTRIBUTION		9	3	0	12						
		ic, Uniform, Normal Distributions and their properties	es- Functions of a rand	lom vari	able.								
Unit III	TWO DIMI	ENSIONAL RANDOM VARIABLES		9	3	0	12						
Joint Distri	U	$and\ Conditional\ distributions\ Markov,\ Chebyshev,$	Chern off bounds.										
Unit IV	RANDOM	PROCESSES		9	3	0	12						
		odes of convergence (everywhere, almost everywhere numbers- Central limit theorem.	ere, Probability distrib	ution an	id mea	an squa	ıre) –						
Unit V	CORRELA	TION AND SPECTRAL DENSITIES		9	3	0	12						
	•	ocess- Mean and Covariance functions- Ergodicity-Telation- Properties- Power spectral density.	Transmission of Rando	m Proce	esses t	hrough	LTI-						
			Total (45L+1	5T)=	60 Pe	riods						

Tex	xt Books:										
	Veerarajan.T, "Probability, Statistics and Random process", Tata McGraw-Hill publications, second edition,										
1.	New Delhi, 2002.										
2.	Ross. s, "A First course in Probability", 5th Edition, Pearson Education, Delhi, 2002.										
Ref	Reference Books:										
1.	H. Stark and John W. Woods "Probability and Random processes with Applications to										
2.	Signal processing", Pearson Education, Third Edition, Delhi 2002.										
3.	Peebles Jr. P.Z. "Probability Random Variables and Random Signal Principles", Tata McGraw- Hill										
	Publishers, 4th Edition, New Delhi 2002. (Chapter 6, 7 and 8)										
4.	K.L. Chung, "Introduction to Probability theory with Stochastic processes", Springer International.										
5.	Ochi, M. K, "Applied Probability and Stochastic process", John Wiley & sons, New York, 1990.										

		utcomes: upletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Learn the fundamental knowledge of the Probability concepts	L2
CO2	• •	Apply the standard distributions	L3
CO3	••	Analyze the two-dimensional random variables	L4
CO4	•••	Understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.	L2
CO5	:	Acquire the knowledge of Random Processes and Spectral densities.	L2

COs/PO	PO1	PO2	PO3	PO4	PO5	PO	PO	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S						6	7								
CO1	3	2		2									2		
CO2	3	2		2									2		
CO3	3	2		2									2		
CO4	3	2		2									2		
CO5	3	2		2									2		
Avg	3	2		2									2		
			3/2	/1 - ind	icates si	trength	of corr	elation	(3-High	n.2- Med	ium.1- L	ow)			

22EC4	101	ANALOG CIRCUITS SEME	STE	R	IV	
PRER	EQUISITI	ES CATEGORY	PC	Cı	redit	3
NIL			L	T	P	TH
		Hours/Week	3	0	0	3
Course	Objectives	s:				
1.	Togiveaco edcircuits.	mprehen sive exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and oscillators. To develop a strong basis for large exposure to all types of discrete amplifiers and the strong exposure to a strong expo	linear	andd	igitali	ntegrat
2.	To underst	and the various linear and non-linear applications of op-amp.				
3.	To underst	and the operation of the D/A &A/D converter types and its applications.				
Unit I	OSCILL	ATORS	9	0	0	9
Unit II Analysis tuned A	TUNED as of single tu	AMPLIFIERS AND MULTI VIBRATORS uned and synchronously tuned amplifiers- Class C tuned amplifiers and their applications elector coupled and Emitter coupled As table Multi vibrator -MonostableMultivibrator				
		MonostableandAstableBlockingOscillatorsusing Emitter and base timing.	Δ.	<u> </u>	Λ	0
		T FOR LINEARIC'S	9	0	0	9
different	tial gain	ic topology and its variants - Differential amplifier: Basic structure and principle of operation - Common Mode gain, CMRR - OP-AMP design -Design of Differential outputstages—compensation-DCandACcharacteristicsofOP-AM-slew rate.			alcula amplif	
Unit IV	APPLICA	TION SOFOPERATIONAL AMPLIFIER	9	0	0	9
		verting amplifiers-Integrator and Differentiator -Summing amplifier -Precision rectifier - filters: Low pass, high pass, band pass and band stop filters - Sine wave oscillators—Compa				
Unit V	DATA C	ONVERTERS AND SPECIAL FUNCTIONICS	9	0	0	9
		nverters (DAC): Weighted resistor - R-2R ladder - Analog to-Digital converters (ADC): Sin	gle sl	ope	- dual	slope -
Successi	ve Approxin	nation - Flash type - IC 555 timer and its applications - IC723 Volta geregulators.	1/45			

Text B	ooks:
1.	B.VisvesvaraRao, K.RajaRajeswari, P.ChalamRajuPantulu, K.BhaskaraRamaMurthy, "Electronic Circuits-
	II",PearsonEducation,2012
2.	D.RoyChoudhry,ShailJain,"Linear IntegratedCircuits",NewAgeInternationalPvt.Ltd.,2011.
Refer	ence Books:
1.	Millman J. And Taub H., "Pulse Digital and Switchingwaveform",3 rd Edition, McGraw-Hill International, 2011.
2.	Sedera & Smith, "Micro Electronic Circuits", 4 th Edition, Oxford University Press, Chennai.
3.	MichaelJacob, 'Applications and Design with Analog Integrated Circuits', PrenticeHallofIndia, 1996.
4.	K.R.Botkar, 'Integrated Circuits', 10 th edition, Khanna Publishers, 2010.
E-Refe	rences:
1.	http://nptel.ac.in/courses/117105080/40
2.	http://freevideolectures.com/Course/2915/Linear-Integrated-Circuits
3.	http://nptel.ac.in/courses/117108038/1

Total(45L) =45Periods

Course Upon con		tcomes: etion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Analyze different types of amplifier, oscillator and multi vibrator circuits.	L4
CO2	:	Construct and analyse tuned amplifier sand multi vibrators.	L6
CO3	:	Develop competence in linear and nonlinear Op amp circuit analysis.	L3,L4
CO4	:	Understand the concepts of waveform generation and introduce some special function ICs	L2,L4
CO5	:	Differentiate A/D and D/A converter, underst and their types and analyse their applications.	L3,L6

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	3	3	2		2		2					1	2	
CO2	2	3	3	2		2	2	1					2	2	
CO3	2	3	3	2									2	1	1
CO4	1			2			3						3	2	
CO5	2	3	3	2		2		2					2	3	
Avg	1.8	2.4	2.4	2		1.2	1	1					2	2	0.2
			3/2/1	l - ind	icates	streng	th of c	orrelat	ion (3-	High,2-	Mediur	n,1- L	ow)		

22EC	402	MICROPROCESSORS AND MICROCON	NTROLLERS	SEM	EST	ER	IV						
PREREC	UISITES		CATEGORY	PC	Cro	edit	3						
				L	Т	P	ТН						
NIL			Hours/Week	3	0	0	3						
Course C		I.	l	l .									
1.	To familiari	se with 8086 and 8051 architectures.											
2.	To interface 8086 microprocessor and 8051 microcontrollers with peripherals by programming.												
3.	To gain basic knowledge of PIC microcontrollers.												
Unit I	8086 M		9	0	0	9							
		puter systems-8086 Architecture – Pin Assignments ectives and Operators-Assembly process.	Internal Architectur	e – Ad	ldress	ing n	nodes-						
Unit II	PROGE	RAMMING AND INTERFACING OF 8086		9	0	0	9						
		erations- Programmed I/O- Interrupt I/O- Basic 8086 Con Interfaces-Peripheral Interfacing using 8255 PPI - 8279 K											
Unit III		RCHITECTURE	1 ,	9	0	0	9						
8051 archi Addressing		isters in 8051 - Pin description - 8051 parallel I/O por	rts - memory organiza	tion - 1	Instruc	ction	set —						
Unit IV	PROGE	RAMMING AND INTERFACING OF 8051		9	0	0	9						
		gramming.8051Timers - Serial Port Programming - In and Sensor Interfacing - External Memory Interface - RT				d Key	board						
Unit V	PIC MI	CRO CONTROLLERS		9	0	0	9						
		PIC microcontrollers – PIC microcontroller families-Men - Instruction set and timers in PIC	nory-Program Memory	– RAN	 ✓ Dat	a Mer	nory -						
			To	tal (45	L) = 0	45 pe	riods						

Text B	ooks:
1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.
2.	Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin D.McKinlay, "The 8051 Microcontroller and Embedded Systems using Assembly and C", 2e, 2022.
Refere	nce Books:
1.	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", 2 nd Edition, Pearson education, 2011.
2.	Martin Bates ,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier,2011.
3.	Mathur Sunil,"Microprocessor 8086 : Architecture, Programming and Interfacing",PHI Learning Pvt. Ltd.,2011.
4.	Salvador Pinillos Gimenez," 8051 Microcontrollers Fundamental Concepts, Hardware, Software and Applications in Electronics", Springer, 2019.
E-Refe	rences:
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture",Amazon,2020.
2.	https://nptel.ac.in/courses/108105102
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html

Course C Upon com		comes: ion of this course, the students will be able to:	Bloom's Taxonomy Mapped			
CO1	:	Describe and analyse the architecture of 8086 microprocessor and 8051 architectures.	L1, L4			
CO2	:	Develop assembly language programs and Interface peripherals with 8086.	L2, L3			
CO3	:	Develop assembly language programs and Interface peripherals with 8051.	L2, L3			
CO4	:	Determine application specific circuit for real-time applications.	L3			
CO5	:	Associate appropriate PIC microcontroller for a given application.	L2			

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO1	PSO2	PSO
	1	2	3	4	5	6	7	8	9	0	1	2			3
CO1	2	2									2		1		
CO2	2	2	2	2									2	2	
CO3	2	2	2	2									2	2	
CO4	2	2	2	2									2	2	2
CO5	2	2		2									2	2	
Avg	2	2	1.2	1.6							0.4		1.8	1.6	0.4
		3	3/2/1 -	indica	ates st	rength	of cor	relatio	n (3-H	igh,2- M	Iedium,1	- Low)			

22EC40	22EC403 SIGNALS AND SYSTEMS						
PREREQU	ISITES		CATEGOR Y	PC	Cro	edit	3
NIL				L	T	P	TH
			Hours/Week	3	0	0	3
Course Object	ctives:		I		I		
1. <u>To</u>	introduce ba	asics of signals and system.					
2. <u>To</u>	understand a	and perform Fourier analysis on continuous and discrete	time signal and sampli	ng theo	rem.		
3. <u>To</u>	introduce La	aplace and Z transform in analysing signals and system					
Unit I	INTRO	DUCTION TO SIGNALS AND SYSTEM		9	0	0	9
Classification	f Signals: Ev	en and Odd Signal - Energy and power signals - Continu	ious time (CT) and Di	corata t	ima ()	DT) e	ionale
		amplitude signal - System properties and representation					
		near Time-Invariant (LTI) systems: Impulse response an					
		the differential equations and difference equations.	id step response—cor	ivoiuno	<u> </u>	OHCI	ttiOii
Unit II		ER ANALYSIS OF CONTINUOUS TIME SIGN	NAL	9	0	0	9
Continuous Tir	ne Fourier S	eries (CTFS) - Properties of CTFS - Continuous Time	e Fourier Transform	(CTFT)	- C'	TFT (of CT
periodic signals	- Properties	of CTFT - Frequency response of systems characterized	by differential equation	ns.			
Unit III	LAPLAC	CE TRANSFORM AND CONTINUOUS-TIME	LTI SYSTEMS	9	0	0	9
Laplace Transfe	orm - Laplac	e Transforms of some Common Signals - Region of Co	onvergence -Properties	s of Lap	olace	Trans	form-
Inverse Laplace	Transform -	System Function - The Unilateral Laplace Transform -S	olving differential equ	ation of	CT s	ystem	<u>ı.</u>
Unit IV	SAMPI	ING THEOREM AND Z-TRANSFORMS		9	0	0	9
Representation	of continuous	s time signals by its sample - Sampling theorem – Nyqui	st rate of sampling – E	ffects o	f und	er san	npling
		ques - Data Reconstruction - Sampling of band pass si					
		orm - Z-transform for discrete time signals - Region of C					
of Z-transform	- Poles and Z	eros - Inverse Z-transform	-			_	
Unit V	FOURIE	R ANALYSIS OF DISCRETE TIME SIGNALS		9	0	0	9
Discrete Time	Fourier Serie	s (DTFS) - Properties of CTFS - Discrete Time Fourie	er Transform (DTFT)	– Prop	erties	of C	TFT -
		erete Time LTI Systems - Discrete Fourier Transform (I					
		nd parallel forms.					
			To	tal (45	L)= 4	15 pe	riods

Text Book	is:
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.
Reference	Books:
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010.
2.	Simon Haykin, Barry van Veen, "Signals and Systems", John Wiley and Sons (Asia) Private Limited, 1998.
3.	Hsu.H.P, Rakesh Ranjan "Signals and Systems",2nd Edition Schaum's Outlines, Tata McGraw Hill, 2010.
4.	Krishnaveni.V, Rajeswari.A, "Signals and Systems", 1st Edition, Wiley India Pvt Ltd, 2012.

E-References:							
1.	https://www.youtube.com/watch?v=4GewDCPU5SQ&list=PLy3nfyfK6Yw6bQ-QXJdFrhzd37mgZzk0r						
2.	https://www.edx.org/course/signals-systems-part-1-iitbombayx-ee210-1x-2						
3.	http://nptel.ac.in/courses/117104074/						

Course	Course Outcomes:						
Upon co	Upon completion of this course, the students will be able to:						
CO1	CO1 : Understand and Analyse different types of signals and systems.						
CO2	:	Represent continuous and discrete systems in time and frequency domain using different transforms.	L5				
CO3	:	Able to perform Fourier analysis of signals.	L4				
CO4	:	Sample and reconstruct a signal.	L2				
CO5	:	Realize various structures for discrete time systems	L2				

CO//P O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO3
U										0	1	2	1	2	
CO1	3	2	3	3	3	-							2	2	2
CO2	3	2	2	3	3	2							2	2	2
CO3	3	2	2	3	3	2							2	2	1
CO4	3	2	1	3	3	2							2	2	2
CO5	3	2	2	3	3	-							1	2	2
Avg	3	2	2	3	3	1.2							1.8	2	1.8
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC404		CONTROL SYSTEMS	SF	EMES	TER	IV	
PREREQ	UISIT	ES	CATEGORY	PC	Cred	dit	3
NIL			Harrya/Wash	L	Т	P	TH
NIL	NIL Hours/Week						
Pre-Requi	ste:				•	-	
1.	Lapla	nce Transform, Partial Differential Equation					
Course Ob	jectiv	'es:					
1.	To in	troduce the components and their representation of control systems.					
2.	To le	arn various methods for an alyzing the time response, frequency resp	onse and stability	of the s	ystems	3.	
3.	To in	troduce various methods for the state variable analysis.					
Unit I		MATHEMATICAL MODELS OF PHYSICAL SYSTEM	IS	9	0	0	9
Basic Eleme	ents of	Control System - Differential equations of physical systems – Ope		_		v	_
		ng of Electrical systems - Translational and rotational mechanical systems					
Techniques	- Signa	al flow graph – Mason' Gain Formula.					
Unit II		TIME RESPONSE ANALYSIS		9	0	0	9
Standard tes	st signa	als - Time response analysis - Impulse and Step Response analysis	is of First and sec	ond ord	der sys	stems	-Time
domain spec	<u>zificatio</u>	ons - P, PI, PD and PID controllers - Steady state errors and error c	onstants - Genera	lized er	ror co-	<u>effici</u>	<u>ent .</u>
Unit III		FREQUENCY RESPONSE ANALYSIS		9	0	0	9
Sinusoidal	TF an	d frequency Response - Frequency Domain specifications for secon	d order system - F	requen	cy rest	onse	plots:
Bode Plot	- Polar	Plot -Linear system design: Types of compensators - Lead, Lag and	Lead Lag Comper	nsators.			-
					т		
Unit IV STABILITY ANALYSIS						0	9
		Hurwitz Criterion - Nyquist Stability Criterion - Relative Stability	- Root Locus Te	<u>echniqu</u>	<u>e - Co</u>	nstruc	tion of
	- Stabi	lity, Dominant Poles - Application of Root Locus.					
Unit V		STATE VARIABLE ANALYSIS		9	0	0	9
		, state variable and state model - State space representation of linear e equations - Transfer function from State Variable Representation	1 – Concepts of Co	ontrolla	bility a	and C	bserv
			7	Total (4	15L)=	45 p	eriods

Text Book	is:
1.	I.J Nagrath and M. Gopal, "Control System Engineering", 5th Edition, New Age International Edition, 2018.
2.	A.Nagoorkani, "Control Systems" 2nd Edition, RBA publications, 2009
Reference	Books:
1.	Norman SNise,"Control Systems Engineering', Seventhedition, Wiley Publications, 2015
2.	Benjamin.C.Kuo, Automatic Control Systems, 7 th Edition, PHI, 2009.
3.	K.Ogata, "ModernControlEngineering", PHI, 5th Edition, 2012.
4.	A.Anand Kumar, "Control Systems", Prentice Hall of India, 2012
E-Referen	ices:
1.	https://www.edx.org/course/introduction-control-system-design-first-mitx-6-302-0x
2.	https://onlinecourses.nptel.ac.in/noc17_ee12
3.	https://onlinecourses.nptel.ac.in/noc22_ee31/preview

		putcomes: pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Frame the transfer function of different physical systems	L2
CO2	:	Analyse the time domain specification and calculate the steady state error	L3
CO3	:	Illustrate the frequency response characteristics of open loop and closed loop system response.	L3
CO4	:	Analyse the stability of the system using Routh and root locus techniques.	L4
CO5	:	Test the controllability and observability of a physical system	L3

COs/POs	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PSO	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	2	1		
CO1	3	2	2	2	1								3		2
CO2	3	1	1	2	1								2		2
CO3	3	1	1	1	1								2		1
CO4	3	1	1	1	1								3	1	2
CO5	2	1	1	1	1								2		1
Avg	2.8	1.2	1.2	1.4	1								2.4	0.2	1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC405	ANTENNA AND WAVE PROPAGATION SEMESTER							
PREREQU	ISITES	CATEGORY	PC	Cre	dit	3		
			L	T	P	TH		
NIL	NIL Hours/Week							
Course Obje	ectives:		I	I				
1.	To understand the fundamental principles of Antenna th	eory, and wave pro	pagati	on wit	h a lu	icid		
	explanation of the basic concepts and equations.							
2.	To understand the design and operation of various anten							
3.	To study the fundamental electromagnetic wave propaga	ation indifferent lay	ers of					
Unit I	RADIATION FIELD SOFWIRE ANTENNAS				-	0 9		
	ctions and electromagnetic field - Potential functions fo							
	dipole - Alternating current element - Power radiated a							
	sistance of elementary dipole with linear current distrib		stributi	on on	a th	in wire		
	liation from half – wave dipole or Effective length - Effec	ctive area.						
Unit II	ANTENNA ARRAYS			-	<u> </u>	9		
	or electric field from two and three element arrays- Unifo							
•	od of pattern multiplication - Binomial array - Use of		ages f	or ant	ennas	above		
_	ed dipole antenna – YagiUda antenna - Log periodic dipo	ole array.						
Unit III	LOOP, HELICAL AND REFLECTOR ANTENNA			-	<u> </u>	9		
	nas: small loop and general case - Radiation resistance							
	neter loop — λ/π diameter loop - Helical antenna: He							
	na – Radiation from a traveling wave on a wire - Rhomb lector antennas: Flat sheet reflector-Corner reflector – Pa					HOHIDIC		
Unit IV	APERTURE AND LENS ANTENNA	ia boloidal terrecto.	1 - 1 - 1) 9		
	d equivalence theorems - Radiation from an elemental	area of a plane wa	ave (H	_				
	om the open end of a coaxial line - Radiation from a	•	,			,		
	arces—Slot antennas - Pattern of slot antennas in flat shee							
	pedances of slot antennas - Method of feeding slot antennas -							
	 Radiation from circular aperture-Beam Width and Effe 							
lens antennas	- Lumeberg lens - Spherical waves and Bi conical anten	na.				_		
Unit V	WAVE PROPAGATION					9		
	ropagation: Structure of the ionosphere - Effective d							
	f refraction - Refractive index - Critical frequency - Skip			-	-			
	in the ionosphere due to collisions-Maximum usable fre							
	propagation - Reflection from the ground for vertically are							
	s of the earth - Resultant of direct and reflected ray at the							
propagation:	propagation: Attenuation characteristics for ground wave propagation - Calculation of field strength at a distance.							

Text Bo	ooks:					
1.	E.C. Jordan and Balmain, "Electro Magnetic Waves and Radiating Systems", PHI, 1968, Reprint 2010.					
2.	John D.Kraus and Ronalatory Marhefka, "Antennas", Tata McGraw – Hill Book Company, 2010.					
Referen	Reference Books:					
1.	Terman ,F.E., "Radio Engineers Handbook" ,Tata McGraw - Hill, 1985.					
2.	Constantine A. Balan is, "Antenna Theory Analysis and Design", John Wiley & Sons,2012.					
3.	R.E. Collins, 'Antennas and Radio Propagation ",McGraw - Hill, 1987.					
4.	Elliot, R.S," Antenna theory and design ",PHI, NewDelhi,1985.					

Total(45L)=45Periods

E-Refer	E-References:							
1.	https://www.youtube.com/watch?v=LF9kebBTWXo&list=PLAULbhIvfai5yvvLIm-oIb89dGNp1BtM6							
2.	https://www.youtube.com/watch?v=jA8aTA1Pg4s&list=PLCcWs0lpRgKcOu8LAX7GlZLIAHgyN1oVS							
3.	https://link.springer.com/chapter/10.1007/978-1-4615-6459-1 28							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 : Understand and derive the behaviour of the antenna and its performance parameters.						
CO2	:	Design and analyse antenna arrays.	L4				
CO3	:	Design and analyse Loop, Helical and Reflector antenna.	L4				
CO4	:	Design and analyse aperture and lens antennas.	L4				
CO5	:	Study radio wave propagation and its effects.	L2				

COs/POs	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	РО	PO12	PSO1	PSO2	PSO3
	1									10	11				
CO1	3	3	1	1	1								1	1	1
CO2	3	2	2	2	1								1	2	2
CO3	3	2	2	2	1								1	2	2
CO4	3	2	2	2	1								1	2	2
CO5	3	1	1	1	1										
Avg	3	2	1.6	1.6	1								0.8	1.4	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

PRE-I	REQUI	ISITE:	CATECORY								
			CATEGORY	EE	Cr	edit		1			
			Hours/Week	L	T]	?	TH			
				0	0	1	2	2			
Cours	e Obje	ectives:									
		p key skill areas essential for a product designer from xity and supports them with tools & techniques to pro-	* *	sign, its	inhe	rent					
2.	To enab	ole the participants to visualize the experience for a	user.								
3.	To learr	n the roles & responsibilities of a designer in creating	g and shaping experien	ces for	the us	ser.					
4.	4. The participants shall learn through the lenses of system thinking of how existing products work.										
5.	Learn to select & apply various practice tools to aid them in rapid prototyping										
UNI	TI	DESIGN FUNDAMENT	TALS		3	0	0	3			
	princip	o Visual Design, History and Modernism, Design The bles of design, principles of good design, designing a SYSTEM THINKING AND REVERSI	a product and a service		3	0	0	3			
		ng for Engineering Problem Solving, Understanding		nd Une							
Comple		ems, Reverse Engineering Methodology, Identify bu				•	-	ıg a			
UNIT	ГШ	USER INTERFACE & USER EX	EXPERIENCE		3	0	0	3			
		UI/UX, Human-Computer interface, user-centered orkflow, Information Architecture, UI Components,					que	s,			
UNIT	ΓΙ	MECHANICAL PROTOTY	YPING		3	0	0	3			
Rapid p	prototyp	typing - Domains in prototyping - Difference betweening methods - Tools used in different domains - Into Printing and classification - Laser Cutting and eng	roduction - Working w	ith Fusi	on 36	50 - 3	D	ıg			
UNI	T V	ELECTRONIC & SOFTWARE PR	ROTOTYPING		3	0	0	3			
	code m	Lumped Circuits - Electronic Prototyping - Tinker nanagement and version control - GitHub - GitHub Arvice - Heroku - Build Packs					_				
Platform											

Text B	Text Books:						
1.	Thinking in systems - Donella Meadows, 2015						
2.	Rapid Prototyping And Engineering Applications: A Toolbox For Prototype Development - Frank W.Liou, 2007						
3.	Rapid Prototyping Technology: Selection And Application - COOPER K. G, 2001						
Refere	nce Books:						
1.	https://thesystemsthinker.com/wp-content/uploads/2016/03/Introduction-to Systems-Thinking-IMS013Epk.pdf						
2.	https://formlabs.com/blog/ultimate-guide-to-prototyping-tools-for-hardware-and product-design/						
3.	https://docs.kicad-pcb.org/						
4.	https://www.tinkercad.com/learn/circuits						
5.	https://docs.github.com/en/free-pro- team@latest/actions/guides						

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the elements and principles of product and service design	Applying
CO2	Apply system thinking concepts in reverse engineering	Applying
соз	Apply user research techniques to meet the UX needs of a customer and design a visual prototype	Applying
CO4	Develop prototyping models using the tools from mechanical prototyping models	Applying
CO5	Develop prototyping models using the tools from electrical and software prototyping methods	Applying

CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	3	0	1	0	0	0	0	0	2	0	0	0	0	0	2
CO2	2	3	0	0	0	0	0	0	2	0	0	0	0	0	2
CO3	3	0	1	0	0	0	0	1	2	0	0	0	0	0	2
CO4	0	0	3	2	3	0	0	0	2	0	0	0	0	0	2
CO5	2	0	2	0	1	0	0	0	2	0	0	0	0	0	2
Avg	2	0.6	1.4	0.4	0.8	0	0	0	2	0	0	0	0	0	2

22CYMC01	CYMC01 ENVIRONMENTAL SCIENCE								
PREREQUISTIES		CATEGORY	MC	Credit		0			
			L	T	P	TH			
NIL		Hours/Week	2	0	1	3			
Course Objectives:			•			•			
1. To learn the concept	of non-conventional energy systems.								
2 To1 4h									

- 2. To explore the environmental impact assessment and to learn about the consequence of different types of pollutants.
- 3. To have an ancient wisdom drawn from Vedas.
 - 1. To acquire activity-based knowledge to preserve environment.
- 5. To learn about conservation of water and its optimization.

ENVIRONMENTAL AWARENESS

Various types of traditional power Plant --Advantage and Disadvantage of conventional Power Definition of non-conventional energy sources Plants - Conventional vs. Non-conventional power generation. - types of non-conventional energy sources -

30

30

India's current energy resources and their long-term viability – India's Energy requirement and management Solar Energy Basics- Solar Thermal Energy- Solar Photovoltaic Energy- Benefits and Drawbacks -Effects on the environment and safety. Wind turbine power and energy- India's wind energy potential- Wind turbine types. Environmental benefits and impacts of offshore wind energy.

Air pollution- Sources, effects, control, air quality standards, air pollution act, air pollution measurement. Water Pollution-Sources and its remedy, Soil Pollution-Sources and its remedy, disposal of solid waste. Greenhouse gases – effect, acid rain. Noise pollution reduction. Aspects of pollution from various power plants.

ENVIRONMENTAL ACTIVITIES

0 0 15 1

Group activity on water management – Group discussion on recycle of waste (4R's)- Slogan making contest – Poster making event – Expert lecture on environmental awareness – Imparting knowledge on reduction of electricity usage.

Identification and segregation of biodegradable and non-biodegradable waste – Campus cleaning activity – Plantation of trees in the college campus and local waste lands – Identification of varieties of plants and their usage – Shutting down the fans and ACs of the campus for an hour.

Total (30L+15P) = 45 Periods

Text 1	Books:						
1.	Elements of Environmental science and Engineering, P.Meenakshi, Prenitce — Hall of India, New Delhi, 2009.						
2.	A Textbook of Environmental Chemistry and Pollution Control: (With Energy, Ecology, Ethics and Society), Revised Edition, Dr. S.S. Dara, D.D. Mishra Published by S. Chand & Company Ltd, 20 14.						
Reference Books:							
1.	Introduction to Environmental Engineering and Science, Gilbert M. Masters; Wendell P. Ela Publisher: Prentice-Hal India, 3rd Edition, 2008.						
2.	Environmental Science, F;ldren D. Enger, Bredley F.Smith, WCD McGraw Hill 14" Edition 2015.						
E-Ref	ference						
1	www.onlinecourses.nptel.ac.in/						
2	www.ePathshala.nic.in						

Course Outc		es: n of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	To identify about the major renewable energy systems and will investigate the environmental impact of various energy sources as well as the consequences of various pollutants.	L2, L4
CO2	:	Predict the methods to conserve energy and ways to make optimal use of the energy for the future.	L3

COs /PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1		1	3			3	1	1				1	2		1
CO2		1	3			3	1	1				1	2		1
Avg		1	3			3	1	1				1	2		1
	3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)														

22EN40	01	PLACEMENT AND SOFT SKILLS LABORA	TORY	S	EMES	ΓER I	V		
PRERI	EQU	USITES	CATEGORY	HS	Cre	edit	2		
			_	L	T	P	TH		
NIL			Hours/Week	0	0	4	4		
1.	Ba	sic knowledge in reading skill and writing skill		<u> </u>					
2.		sic ability in listening skill and speaking skill							
Course	e Ol	bjectives:							
1.	То	develop the students' confidence and help them to attend interview	vs successfully						
2. To express opinions, illustrate with examples and conclude in group discussions									
3.	То	acquire knowledge to write error free letters and prepare reports							
4.		enhance the employability and soft skills of students							
Unit I		WRITING SKILLS			12	+	0		
Letter se	ekin	g permission to go on industrial visit, Letter of invitation, Resumo	e and cover letter, Joh	applica		•			
		ng, progress in project work			•				
Unit I	I	SPEAKING SKILLS			12	+	0		
Welcom	e ado	dress and vote of thanks, Analysing and presenting business article	es, Power point preser	ntation, I	resentir	ng the v	isuals		
		Group discussion, Participating in group discussions, Understanding				_			
Unit I									
		lity and career skills, Self-introduction, Introducing oneself to the	audiance introducine	r the tor	12	+	lills		
		tiquette, Dress code, Body language, Attending job interviews	audience, miroducing	g the top	ic, inte	view s	KIIIS,		
Unit I		VERBAL ABILITIES			10				
	·				12	+	0		
		g, Listening Comprehension, Reading comprehension, Rearranging	g Jumbled sentences,	Vocabul			1		
Unit \		REASONING ABILITIES			12	+	0		
	_	pletion, Analogy, Classification, Coding-Decoding, Blood relations	s, Seating Arrangement	nts, Dire	ctional	Sense,	Venn		
Diagrai	m, L	ogical reasoning, Statements and Conclusions.							
			7	Cotal (6	$\overline{(0P)} =$	60 pe	riods		
List of	Exe	rcises:							
1) C	over	Letter and Resume							
		Writing							
		Writing							
		rt Writing r point Presentation							
		ntroduction							
		nterview							
	roup	Discussion							
		ome Address							
/	10) Vote of Thanks								
	11) Presentation of Business Article12) Jumbled Sentences								
/	,								
	nalo								
		ng-decoding							
		l relations ng arrangements							
		al reasoning							

Refe	Reference Books:						
1.	Campus Recruitment Complete Reference, Praxis Groups (5th edition), Hyderabad, 2017.						
2.	John Seely, The Oxford Guide to Writing and Speaking, Oxford University Press, New Delhi, 2004.						
3.	R.S. Aggarwal. A Modern Approach to Verbal & Non-Verbal Reasoning. 2018 S Chand Publication, 2018						
E-Re	eferences:						
1.	https://prepinsta.com/						
2.	https://www.indiabix.com/						

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	:	To participate in group discussion and interview confidently	L3			
CO2	:	To develop adequate soft skills and career skills required for the workplace	L6			
CO3	:	To make effective presentations on given topics	L6			
CO4	L3					

COs/P Os	PO 1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO9	PO 10	PO1	PO1 2	PSO 1	PS O2	PSO3
CO1				1					2	3		1			1
CO2				2					2	3		1			2
CO3				2					1	3		1			1
CO4				1					2	3		1			2
Avg				1.5					1.75	3		1			1.5
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC406		ANALOG CIRCUITS LABO	ANALOG CIRCUITS LABORATORY					
PREREQ	UISITES		CATEGORY	PC	Cre	edit	2	
				L	T	P	TH	
NIL		Hours/Week		0	0	4	4	
Course O					I			
1.	To und	erstand the analysis and design of LC and RC oscill	lators, amplifiers and multi v	ibrators.				
2	To appl	y operational amplifiers in Linear and Nonlinear A	pplications.					
3	To uses	imulation tools for circuit design.						
EXPERIN	MENTS							
1.	Design	of RC Phase shift oscillator and We in Bridge oscil	llator.					
2.	Design	of Hartley and Colpitts oscillator.						
3.	Design	of Tuned Class C Amplifier.						
4.	Design	of As table ,Mono stable and Bi stable multi vibrate	ors using BJ T.					
5.	Simulat	tion of As table Mono stable and Bi stable multi vib	prators.					
6.	Design	of basic Circuits using Op - amp 741.						
7.	Active	Low pass, High pass and Band pass filter.						
8.	As table	e, Mono stable multi vibrators using Op-Amp.						
9.	Schmitt	t Trigger using op-amp.						
10.	Phase s	hift and Wien bridge oscillator using op-amp.						
11.	As table	e and Mono stable multi vibrators using NE 555 Tin	mer.					
12.	High vo	oltage regulator using LM723.						
				Total(60)P)=6	0 Pe	riods	

Refere	nces:
1.	Analog Electronic circuits Laboratory Manual.2. David A .Bell," Electronic Devices and Circuits",5 th Edition, Oxford University Press,
2.	B.Sasikala,S.PoornachandraRao,"Handbook of experiments in Electronics and Communication Engineering ",Vikas Publishing,2007.
E-Refe	rences:
1.	http://www.srmuniv.ac.in/sites/default/files/2017/15EI205L-manual-full.pdf
2.	http://www.gopalancolleges.com/gcem/course-material/ece/manuals/sem-lll/analog-electronics-laboratory-manual-10ESL37.pdf
3	https://www.slideshare.net/vampec/ec-ii-lab-manual

		utcomes: eletion of this course, the students will be able to:	Bloom's Taxonomy Mapped						
CO1	:	Design oscillators, multi vibrators and power amplifiers for the variety of engineering applications.	L6						
CO2	:	Design Filters Using Op amp and Perform Experiment on Frequency Response.	L3, L4						
CO3	:	Design and simulate multi vibrators using Simulation Tool.	L4						
CO4	:	Design Oscillators and multi vibrators using operational amplifiers	L6						
CO5	:	Understand the concept of high voltage regulators L2							

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	3							1	1	1	2	
CO2	2	3	3	3							1	1		2	
CO3	2	2			3								1		2
CO4	2	2		3	3									3	
CO5	2		2	2	3						1	1	2		1
Avg	2	2	1.6	2.2	1.8						0.6	0.6	2		1.5
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC407	MICROPROCESSORS AND MICROCONTROLLERS L	ABORATORY	SEMESTER IV				
PREREQ	UISITES	CATEGORY	PC	Cro	edit	2	
NIII		** /55/ 1	L	Т	P	TE	
NIL		Hours/Week	0	0	4	4	
Course Ol	bjectives:						
1.	To introduce students with the architecture and operation of 8086 microp	processor and 8051 mi	croconti	oller.			
2.	To familiarize the students with the programming and interfacing of 808	6 microprocessor and	8051 mi	croco	ntroll	er.	
3.	To provide strong foundation for designing real world applications using microcontroller.	8086 microprocessor	and 805	<u>51</u>			
EXPERIN	MENTS						
8086 Prog	rams						
1.	Kit Familiarization.						
2.	Implementation of Basic Arithmetic and Logic operations.						
3.	Implementation of Square, Square root and Cube Program.						
4.	Implementation of Code conversion and Matrix operations.						
5.	Implementation of String manipulation operations and Sorting and Search	ching.					
6.	Peripheral Interfacing of keyboard and display.						
7.	Implementation of Traffic light Control.						
8.	Implementation of Serial and Parallel Communication.						
9.	Design of programs for Digital clock and Stop watch.						
10.	Implementation of Stepper Motor Control.						
8051 Prog	1 2						
11.	Implementation of basic arithmetic and Logical operations.						
12.	Implementation of finding Square and Cube, 2's complement of a number	er.					
13.	Implementation of programs on different addressing modes.						
14.	A/D and D/A interfacing.						
15.	Waveform generation using 8051.						

References	<u>s:</u>
1.	"Microprocessors and Microcontrollers Lab Manual" prepared by ECE Department.
2.	https://www.studocu.com/in/document/anna-university/microprocessor-and-microcontroller/microprocessor-microcontroller-labaratory-manual-pdf/17250102

Cours	se O	outcomes:	Bloom's	Taxonomy
Upon	com	pletion of this course, the students will be able to:	Mapped	
CO1	:	Perform basic operations in 8086 microprocessor and 8051 microcontroller.	L2	2
CO2	:	Interface peripherals with 8086 microprocessor.	L3	3
CO3	:	Generate waveforms using Microcontroller.	L3	3
CO4	:	Develop assembly language programs for various applications using 8051 microcontroller	L3	3
CO5	:	Interface peripherals with 8051 microcontroller.	L3	3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3											2	2	
CO2	2	3		2	2								2	3	
CO3	2	3		2	2								2	2	
CO4	2	3		2	2								2	3	2
CO5	2	3		2	2								2	2	
Avg	2	3		1.6	1.6								2	2.4	0.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

SEMESTER V

	C 501	DIGITAL COMMUNICATION		SEN	MES	ГER	R V		
			CATEGORY	PC	Cre	edi	3		
PRERE	QUISITES	s:		L	Т	P	TH		
			Hours/Week	3	0	0	3		
1.	Analog Con	nmunication		· ·	ı				
	Objectives								
		the building blocks of digital communication system and	o prepare mathema	ntical h	ackgi	ounc	1 for		
		ion signal analysis .	1 1		J				
2. I	Express pass	-band data transmission and comparison of Digital modulation sys	tems.						
		error performance of a digital communication system in the phe concept of spread spectrum communication system.	presence of noise ar	nd othe	r inte	rfere	nces.		
Unit I	DETECTION AND ESTIMATION & SAMPLING PROCESS								
Model of	Digital Co	mmunication System - Gram-Schmidt orthogonalization procedu	re – Geometric inte	rpretation	on of	sign	als -		
		ignals in noise - Probability of error - Correlation receiver - Ma							
		in noise – Estimation: concepts and criteria - Sampling process: pr							
		se modulation –TDM - Waveform coding techniques: PCM - D	PCM - Delta modula	ation –	Adap	tive	Delta		
Modulatio				1					
Tinit II	DACI								
Unit II	BASI	EBAND TRANSMISSION OF DIGITAL SIGNALS		9	0	0	9		
Discrete 1	AM signal	s - Inter Symbol Interference - Nyquist's criterion for Distorti		Binary	Trans	miss	ion		
Discrete 1 Correlativ	PAM signal e level cod	s - Inter Symbol Interference - Nyquist's criterion for Distorti ing - Duo binary and modified duo binary signalling – Eye pa		Binary	Trans	miss	ion		
Discrete 1 Correlativ	PAM signal e level cod	s - Inter Symbol Interference - Nyquist's criterion for Distorti		Binary	Trans	miss	ion ·		
Discrete 1 Correlativ	PAM signal e level cod Equalization	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye pan for data transmission.		Binary	Trans	miss Syste	ion -		
Discrete 1 Correlative Adaptive	PAM signal e level cod Equalization PASS	s - Inter Symbol Interference - Nyquist's criterion for Distorti ing - Duo binary and modified duo binary signalling - Eye pa n for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS	tterns – Baseband M	Binary 1-ary P.	Trans AM S	smiss Syste	ion -		
Discrete Dis	PAM signal e level cod Equalization PASS Modulation	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation	tterns – Baseband M – Detection - Signa	Binary I-ary P 9 I space	Trans AM S	smiss Syste	ems -		
Discrete de Correlative Adaptive Unit III Digital Merror pro	PAM signal e level cod Equalization PASS Modulation bbability - 1	s - Inter Symbol Interference - Nyquist's criterion for Distorti ing - Duo binary and modified duo binary signalling - Eye pa n for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS	- Detection - Signa MSK schemes - 1	Binary I-ary P 9 I space Non Co	Trans AM S diagr heren	emiss Syste 0	9 Bit		
Discrete Correlative Adaptive Unit III Digital Merror pro Modulat	PAM signal e level cod Equalization PASS Modulation bbability - 1 ion Techniq	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and	 Baseband M Detection - Signa MSK schemes - N y and quaternary mo 	Binary I-ary P 9 I space Non Coodulation	Trans AM S diagr heren n tech	emiss Syste 0	9 Bit		
Discrete 1 Correlative Adaptive Unit III Digital Merror pro Modulat Introduc	PAM signal e level cod Equalization PASS Modulation bability - lion Techniq tion to M - signal	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binary	 Baseband M Detection - Signa MSK schemes - N y and quaternary mo 	Binary I-ary P 9 I space Non Coodulation	Trans AM S diagr heren n tech	emiss Syste 0	9 Bit		
Discrete Correlative Adaptive Unit III Digital Merror pro Modulat	PAM signal e level cod Equalization PASS Modulation bability - lion Techniq tion to M - signal	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binary	 Baseband M Detection - Signa MSK schemes - N y and quaternary mo 	Binary I-ary P 9 I space Non Coodulation	Trans AM S diagr heren n tech	emiss Syste 0	9 Bit		
Discrete Description Discrete Description Adaptive Unit III Digital Merror pro Modulat Introduc Unit IV Rationale	PAM signal e level cod Equalization PASS Modulation bability - lion Techniq tion to M - lion ERR for coding a	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear bloce	- Detection - Signa MSK schemes - N y and quaternary mosynchronization - Ap	Binary 1-ary P 9 1 space Non Co dulation pplication 9 es - Cyc	Trans AM S diagr heren n techons.	omiss Syste O am - at Bin aniqu O edunce	9 Bit nary		
Discrete 1 Correlative Adaptive Unit III Digital Merror pro Modulat Introduc Unit IV Rationale check coo	PAM signal e level cod Equalization PASS Modulation bability - lion Techniq tion to M - s FERR for coding a les - Convo	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binar ary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear bloc plutional codes - Maximum likelihood decoding of convolutional	- Detection - Signa MSK schemes - N y and quaternary mosynchronization - Ap	Binary 1-ary P 9 1 space Non Co dulation pplication 9 es - Cyc	Trans AM S diagr heren n techons.	omiss Syste O am - at Bin aniqu O edunce	9 Bit nary		
Discrete Correlative Adaptive Unit III Digital Merror pro Modulat Introduc Unit IV Rationale check coordinates	PAM signal e level cod Equalization PASS Modulation bability - lion Techniq tion to M - s FERR for coding a les - Convo	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear bloce	- Detection - Signa MSK schemes - N y and quaternary mosynchronization - Ap	Binary 1-ary P 9 1 space Non Co dulation pplication 9 es - Cyc	Trans AM S diagr heren n techons.	omiss Syste O am - at Bin aniqu O edunce	9 Bit nary ses —		
Discrete 1 Correlative Adaptive Unit III Digital Merror pro Modulat Introduc Unit IV Rationale check coo	PAM signal e level cod Equalization PASS Modulation obability - 1 ion Techniq tion to M - 2 ERR for coding a des - Convo on - Maximu SPRE	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binar ary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear bloc plutional codes - Maximum likelihood decoding of convolutional material and Gold codes. AD SPECTRUM MODULATION AND MULTIPLE ACCEPTATION AND MULTIPLE ACCEPTAT	- Detection - Signa MSK schemes - N y and quaternary mosynchronization - Ap	Binary 1-ary P 9 1 space Non Co dulation pplication 9 es - Cyc	Trans AM S diagr heren n techons.	omiss Syste O am - at Bin aniqu O edunce	9 Bit nary		
Discrete Description Discrete Description Description District Dis	PAM signal e level cod Equalization PASS Modulation bability - lion Techniq tion to M - s FERR for coding a les - Convo on - Maximu SPRE TECH	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binar ary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear blocolutional codes - Maximum likelihood decoding of convolutional mength and Gold codes. AD SPECTRUM MODULATION AND MULTIPLE ACINIQUES	- Detection - Signa MSK schemes - N y and quaternary mosynchronization - Ap k codes - Cyclic code d codes-Viterbi Alg	9 I space Non Condulation opplication or thm	Trans AM S diagr heren n techons. 0 elic re - Tre	o o o o o o o o o o o o o o o o o o o	9 Bit hary es -		
Discrete Correlative Adaptive Unit III Digital Merror pro Modulat Introduc Unit IV Rationale check coo Modulatio Unit V Pseudo-l	PAM signal e level cod Equalization PASS Modulation bability - lion Techniq tion to M - s ERR for coding a les - Convo on - Maximu SPRE TECH Noise seque	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binar ary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear blocolutional codes - Maximum likelihood decoding of convolutional mength and Gold codes. AD SPECTRUM MODULATION AND MULTIPLE ACINIQUES nces - A notion of spread spectrum - Direct sequence spread spectrum - Dir	- Detection - Signa MSK schemes - N y and quaternary mosynchronization - Ap k codes - Cyclic code al codes-Viterbi Alg	9 I space Non Coodulation opplication generated graphs and the space of the space o	Trans AM S diagr heren n tech ons. 0 elic re - Tre 0	o o d d d d d d d d d d d d	9 Bit hary ees – 9 9 Shift		
Discrete Correlative Adaptive Unit III Digital Merror pro Modulat Introduc Unit IV Rationale check coo Modulatio Unit V Pseudo-l keying	PAM signal e level cod Equalization PASS Modulation bability - 1 ion Techniq tion to M - 2 ERR for coding a les - Conve on - Maximu SPRE TECH Noise seque - Signal spa	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binar ary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear blocolutional codes - Maximum likelihood decoding of convolutional mength and Gold codes. AD SPECTRUM MODULATION AND MULTIPLE ACINIQUES	- Detection - Signa MSK schemes - N y and quaternary mosynchronization - Ap k codes - Cyclic code al codes-Viterbi Alg	9 I space Non Coodulation opplication generated graphs and the space of the space o	Trans AM S diagr heren n tech ons. 0 elic re - Tre 0	o o d d d d d d d d d d d d	9 Bit hary es – 9 9 Shift		
Discrete Correlative Adaptive Unit III Digital Merror pro Modulat Introduc Unit IV Rationale check coo Modulatio Unit V Pseudo-l keying	PAM signal e level cod Equalization PASS Modulation bability - 1 ion Techniq tion to M - 2 ERR for coding a les - Conve on - Maximu SPRE TECH Noise seque - Signal spa	s - Inter Symbol Interference - Nyquist's criterion for Distorting - Duo binary and modified duo binary signalling - Eye part for data transmission. BAND TRANSMISSION OF DIGITAL SIGNALS Formats - Coherent Binary Modulation Techniques: Generation Power spectra and waveforms of BPSK, BFSK, QPSK and ues: BFSK, Differential phase shift keying - Comparison of binary Modulation techniques - Synchronization: Carrier and symbol OR CONTROL CODING and types of codes - Discrete memory less channels - Linear blocolutional codes - Maximum likelihood decoding of convolutional im length and Gold codes. AD SPECTRUM MODULATION AND MULTIPLE ACINIQUES nces - A notion of spread spectrum - Direct sequence spread spectrum in the processing gain - Probability of error - From the processing gain - Probability of error - Processing - Probability - Processing - Probability - Processing -	- Detection - Signa MSK schemes - My and quaternary mosynchronization - Apple K codes - Cyclic code al codes-Viterbi Alger CCESS pectrum with coherer requency Hop Spread	9 I space Non Coodulation opplication generated graphs and the space of the space o	Trans AM S diagr heren n tech ons. 0 elic re Tre 0 ry ph rum (miss Syste 0 am - t Bin iniqu 0 edunce illis c	9 Bit nary es - 9 dancy codec		

To	Text Books:							
	1.	Simon Haykins, "Digital Communications" John Wiley, 2017.						
	2.	Theodore S.Rappaport, "Wireless Communications: Principles and Practice", 2nd Edition.", Pearson, 2012.						

Refere	Reference Books:										
1.	Taub & Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.										
2.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013										
3.	Dennis Roddy, John Coolen,"Electronic Communications", 10th impression, Pearson Prentice Hall, 2013.										
4.	John G.Proakis, "Digital Communication", 3rd Edition, Tata McGraw-Hill, 1995.										
E-Ref	erences:										
1.	http://www.nptelvideos.in/2012/11/communication-engineering.html										
2.	https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm										
3.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-										

		Putcomes: pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped		
CO1	:	Analyze the sampling process and the performance of a baseband and pass band digital communication system in terms of error rate	L2		
CO2	:	Able to analyse the system using eye patterns	L3		
CO3	:	Select the modulation schemes for particular	L3		
CO4	:	Perform the time and frequency domain analysis of the signals in a digital communication system and design error free communication.	L4		
CO5	:	Understand the concept of secured communication and multiple access techniques	L2		

COs/POs	РО	РО	РО	PO	PO	PO	PO	PO	PO	РО	PO 11	PO12	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10					
CO1	2	2	2	2	1								2		2
CO2	2	1	1	2	1								1		2
CO3	1	1	1	1	1								1		1
CO4	2	1	1	1	1								2	2	2
CO5	2	1	1	1	1								2		1
Avg	1.8	1.2	1.2	1.4	1								1.6	0.4	1.6
			3/2	/1 - in	dicates	streng	th of c	orrelat	ion (3-	High,2-	Medium,	1- Low)			

22EC502 DIGITAL SIGNAL PROCESSING SE												
		CATEGORY	PC	Cre	dit	3						
PREREQ	UISITES	Hours/Week	L	T	P	TH						
		Hours/ week	3	0	0	3						
1.	Signals an	d Systems										
Course O	bjectives	:										
1.	, and the second											
2.	To design	and realize IIR FIR filters to understand finite word length effects on digital filters.										
3.	To gain kr	owledge of DSP architecture, Programming and concepts of Multi rate signal processing	g.									
Unit I	DIS	CRETE FOURIER TRANSFORM	9	0	0	9						
Introduction	n to DFT-	-Properties of DFT-Circular convolution -FFT algorithms-Radix-2 FFT algorithms D	ecimat	ion i	ı Tim	e and						
		ency algorithms.										
Unit II	TATI	EINIUDE IMBLII GE DEGDONGE EII WED DEGLON	9	0	0	9						
		FINITE IMPULSE RESPONSE FILTER DESIGN		Ů	Ů							
		alog Butterworth filter-Chebyshev filter-Low pass filter, High pass filter, Band pass filt alog filters in to equivalent digital filters using bilinear transformation method -Reali										
		arog mens in to equivalent digital mens using officeal transformation method -kean iscade form-Parallel form.	zauon	Struc	iure ic	<u> </u>						
Unit III	FIN	ITE IMPULSE RESPONSE FILTER DESIGN	9	0	0	9						
Linear ph		nse of FIR filter - FIR design using window method: Rectangular, Hamming, Ha	nning	and	Black	man						
Windows	- Park-Mo	Clellan's method - Realization structures for FIR filters - Linear phase structures and and IIR filters.										
Unit IV		NITE WORD LENGTH EFFECTS	9	0	0	9						
		umbers-Quantization by truncation and rounding— Derivation for quantization no		U	· ·							
		roduct quantization error – Round off noise power - Limit cycle oscillations due to pro										
flow errors	-scaling t	o prevent overflow.										
	DSP	APPLICATION SAND DIGITALSIGNAL PROCESSOR	9	0	0	9						
Unit V												
Introduction	on to M	ulti Rate signal processing: Decimation, Interpolation-Introduction to DSPTMS etion set-Addressing modes.	320C	54X	proces	ssor:						

Text Bo	noks:								
1.	S.K.Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2013.								
2.	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", 5 th Edition, Pearson Education, 2022.								
Referen	Reference Books:								
1.	Emmanuel C. I feacher, Barry W.Jervis, "Digital Signal Processing : A Practical Approach ",2 nd Edition, Pearson Education, 2004.								
2.	A.V. Oppenheim, R.W.Schaferand J.R. Buck, "Discrete-TimeSignalProcessing", 3 rd EditionPrenticeHall,								
3.	L.R.Rabinerand B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall, 1992.								
4.	J.R.Johnson, "Introduction to Digital Signal Processing", Prentice Hall,1992.								
E-Refei	rences:								
1.	https://www.coursera.org/learn/dsp								
2.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/								
3.	www.nptelvideos.in/2012/12/digital-signal-processing.html								

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.	L4							
CO2	Design and realize IIR filters	L6							
CO3	Design and realize FIR filters	L6							
CO4	Analyse finite Word length effect on filters.	L4							
CO5	Apply the concepts of Multi rate signal processing and Gain the knowledge on DSP architecture and programming	L2							

COs/POs	РО	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	3	1	1	1								1	1	1
CO2	3	2	2	2	1		1						1	1	1
CO3	3	2	2	2	1		1						1	1	1
CO4	3	2	2	2	1		1						1	1	1
CO5	1	1	1	1	1								2	2	1
Avg	2	2	1.6	1.6	1		0.6						1.2	1.2	1
		3/	2/1 - i	ndicate	es strer	igth of	correl	ation (3-High	,2- Med	ium,1- I	Low)			

2	2EC503	}	EMBEDDED SYSTEMS		SE	MEST	ER	V
				CATEGORY	PC	Cred	lit	3
PRERI	EQUISI'	TES:		TT /XX/ 1-	L	T	P	ТН
				Hours/Week	3	0	0	3
1.	Microco	ontroller						
Course	Objecti	ives:						
1.	To impa	art know	ledge on embedded system architecture and embedded devel-	opment strategies.				
2.	To unde	erstand th	ne bus communication in processors and peripheral interfacin	g.				
3.	To unde	erstand b	asics of Real Time Operating Systems.					
Unit I	IN	NTROD	UCTION TO EMBEDDED SYSTEMS		9	0	0	9
Introduc	ction to E	mbedded	Systems -Structural units in Embedded processor, selection	n of processor and	memo	ry devi	ces- D	MA –
Memory			ethods- Timer and Counting devices, Watchdog Timer, Re	eal Time Clock, In	circu	it emu	lator,	Target
Unit I	I	EMBEI	DDED NETWORKING		9	0	0	9
			ntroduction, I/O Device Ports & Buses- Serial Bus commun			tandar	<u>d – RS</u>	<u> 8422 – </u>
		us -Seria	l Peripheral Interface (SPI) – Inter Integrated Circuits (I2C) –	need for device driv	vers.			
Unit 1			DED FIRMWARE DEVELOPMENT ENVIRO		9	0	0	9
			elopment Life Cycle- objectives, different phases of EDLC ta Flow Graph, state machine model, Sequential Program					
Unit 1	IV I	RTOS I	BASED EMBEDDED SYSTEM DESIGN		9	0	0	9
			cepts of RTOS- Task, process & threads, interrupt routines					
			nptive scheduling, Task communication shared memory, me		r proce	ess Co	mmuni	ication_
			n processes-semaphores, Mailbox, pipes, priority inversion, p					_
Unit			DED SYSTEM APPLICATION AND DEVELOPM		9	0	0	9
RFID S	Systems -	- GPS N	avigation System - Automotive Application - Smart card	System Application				
					Total	(45L)	= 45 p	eriods

Text B	ooks:
1.	Peckol, "Embedded system Design", John Wiley & Sons,2010
2.	Lyla B Das," Embedded Systems-An Integrated Approach", Pearson, 2013
Refere	nce Books:
1.	Shibu. K.V, "Introduction to Embedded Systems", 2e, Mcgraw Hill, 2017.
2.	Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013
3.	Tammy Noergaard, —Embedded Systems Architecturel, Newnes an Imprint of Elsevier, Massachusetts, 2006.
4.	Rajib Mall "Real-Time systems Theory and Practice" Pearson Education, 2007.
E-Refe	erences:
1.	https://lecturenotes.in/subject/225/embedded-system-es
2.	https://nptel.ac.in/courses/108102045/19
3.	https://www.coursera.org/learn/introduction-embedded-systems

	Course Outcomes: Jpon completion of this course, the students will be able to:			
CO1	Understand the basics of embedded systems	L2		
CO2	Study about the bus communication and peripheral interfacing	L1		

CO3	Know about the embedded product development and modeling	L2
CO4	Acquire knowledge on Real time operating system	L2
CO5	Design and Analyze the real-time applications of embedded-systems	L3

COs/POs	PO1	PO2	PO3	РО	PO5	РО	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO3
				4		6	7	8	9	10	11	12	1	2	
CO1	2		1	2	2								1		
CO2	2		2	2	2								2		2
CO3	2	1	3	3	2				2				2	1	2
CO4	2		3	2	3								1	1	1
CO5	2	2	3	3	3	2	2		2				2	2	2
Avg	2	0.6	2.4	2.4	2.4	0.4	0.4		0.8				1.6	0.8	1.4
	•	•	3/2/1 -	indica	ates strer	ngth of	correl	ation (3-Higl	n,2- Med	lium,1-	Low)	•	•	

22EC50	PRINCIPLES OF MANAGEMENT S	EMESTI	ER V					
PREREQU	UISITES CATEGOR	Y PC	Y PC Credit					
		_ L	Т	P	ТН			
	Hours/Wed	2k 3	0	0	3			
Course Ob	ojectives:		1	<u>I</u>				
	nable the students to study the evolution of Management							
2. To st	udy the functions and principles of management							
3. To le	earn the application of the principles in an organization.							
4. To er	mphasize the need for Data display recording and systems							
Unit I	INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS	9	0	0	9			
unit II	n Management. PLANNING	9	1 0					
	I Em Time	9	- 0	1 0	9			
	purpose of planning – planning process – types of planning – objectives – setting objectives – setting objectives – Planning Tools and Techniques – Decision making steps and process	ctives – po	0 olicies	— Pla	9 anning			
		ctives – po	·		_			
Premises – S Unit III Nature and authority –	Strategic Management – Planning Tools and Techniques – Decision making steps and procest ORGANISING purpose – Formal and informal organization – organization chart – organization structudepartmentalization – delegation of authority – centralization and decentralization – Jobat – HR Planning, Recruitment, selection, Training and Development, Performance Management	ctives – poess. 9 ure – types Design -	0 - Lin	- Pla 0 ne and Res	9 d staff source			
Premises – S Unit III Nature and authority – Managemen	Strategic Management – Planning Tools and Techniques – Decision making steps and procest ORGANISING purpose – Formal and informal organization – organization chart – organization structudepartmentalization – delegation of authority – centralization and decentralization – Jobat – HR Planning, Recruitment, selection, Training and Development, Performance Management	ctives – poess. 9 ure – types Design -	0 - Lin	- Pla 0 ne and Res	9 d staff source			
Unit III Nature and authority – Managemen managemen Unit IV Foundations job enrichm	Strategic Management – Planning Tools and Techniques – Decision making steps and procest ORGANISING purpose – Formal and informal organization – organization chart – organization structudepartmentalization – delegation of authority – centralization and decentralization – Jobat – HR Planning, Recruitment, selection, Training and Development, Performance Managet.	period of the pe	olicies olicies olicies huma reer p olicies	- Pla 0 ne and Res lannin	9 d staff source ag and 9 ttion –			
Unit III Nature and authority – Managemen managemen Unit IV Foundations job enrichm communicate	Strategic Management – Planning Tools and Techniques – Decision making steps and processor of the purpose – Formal and informal organization – organization chart – organization structured departmentalization – delegation of authority – centralization and decentralization – Jobsta – HR Planning, Recruitment, selection, Training and Development, Performance Managest. DIRECTING Soft individual and group behaviour – motivation – motivation theories – motivational technical elegation – types and theories of leadership – communication – process of continuous effective communication – communication and IT.	gre – types – Design – types – Design – types	O Limited Human reer points of solution of the	- Pla 0 ne and n Res lannin 0 ntisfac - barr	9 d staff source ng and 9 ction – rier in			
Driemises – S Unit III Nature and authority – Managemen managemen Unit IV Foundations job enrichm communicate Unit V	Strategic Management – Planning Tools and Techniques – Decision making steps and procest ORGANISING purpose – Formal and informal organization – organization chart – organization structured departmentalization – delegation of authority – centralization and decentralization – Jobste – HR Planning, Recruitment, selection, Training and Development, Performance Managest. DIRECTING s of individual and group behaviour – motivation – motivation theories – motivational technical technical process of the selection of	per	0 — Lin Humareer p	- Pla 0 ne and Res lannin 0 ntisfac - barr	9 d staff source ng and 9 ction – rier in			

Text	Text Books:							
1.	JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.							
2.	Stephen P. Robbins & Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.							
Refe	erence Books:							
1.	Harold Koontz & Heinz Weihrich, "Essentials of Management", Tata McGraw Hill, 1998.							
2.	Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.							
3.	Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.							
4.	Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999							

Total (45L)= 45 Periods

E-Re	ferences:
1.	https://nptel.ac.in/courses/122108038/
2.	https://www.coursera.org/learn/fundamentals-of-management
3.	https://www.digimat.in/nptel/courses/video/110107150/L01.html

	Dutcomes: appletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling and have same basic knowledge on international aspect of management	L2
CO2	To have same basic knowledge on international aspect of management.	L1
CO3	To Gain Basic knowledge on international aspect of management.	L1
CO4	To help the students to develop cognizance of the importance of management principles.	L2
CO5	To enable them to analyze and understand the environment of the organization.	L2,L4

COs/POs	РО	РО	РО	РО	РО	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	3	3								1	2	3
CO2	3	3	3	3	3								2	2	3
CO3	3	2	3	2	3								1	2	3
CO4	3	1	2	1	3								1	3	2
CO5	3	1	2	1	2								1	3	3
Avg	3	2	2.6	2	2.8								1.2	2.4	2.8
		3/2	2/1 - ii	ndicate	es strei	ngth o	f corre	lation	(3-Hig	gh,2- Me	edium, 1	l-Low	')		

	IDEATION SPRINTS	,	STER V	V			
PRE-REQU	ISITE:	Category	EE	E Cred		1	
		Hours/Week	L	T	P	TH	
		0	0	2	2		
Course Obje	ectives:						
1. To offer	a systematic and structured process to hack a solution using	available tools & resou	rces				
	ify the challenge/opportunity, derive insights from the custo l feasibility of the solution	mer/user interviews, & l	ouild a so	olution a	ınd valid	late the	
3. To build	the PoC for proposed solution & pitch to user/customer for	validation.					
UNIT I	INNOVATION 101		0	0	6	6	
	ween a startup and a small business enterprise - Idea worth pough Product Innovation Hypothesis (PIH) & Forge Innovat		ovations	- Defini	ng &val	idating	
UNIT II	PROBLEM VALIDATION & CUSTOMER	DISCOVERY	0	0	6	6	
Customer-cent	chniques of the managed innovation process (iTOOLS tric design thinking and validate the problem scenario, it that buyer beneficiary/Customer - rigorous Gap analysis of the	s significance, severity	, and in	cidence	- Disco	over &	
UNIT III	DESIGNING & CRAFTING VALUE PRO	OPOSITION	0	0	6	6	
Understand Co value proposit	ustomer Jobs, Pains & gains - Design Product/Service - Deion.	fine & quantify Value F	Propositio	on -Buil	d a com	pelling	
UNIT IV	MUP SOLUTION CONCEPT EXPLORATI GENERATION	ON & DESIGN	0	0	6	6	
	ncept Generation, Concept Assessment, Solution, Capablock Diagrams- Bill of Materials Generation - BoM Optimiz		Feasibilit	y- MU	P Desig	gn and	
UNIT V	PROOF OF CONCEPT DEVELOPMENT & DI	EMONSTRATION	0	0	6	6	
	rept design - hack to build PoC with critical features -Te nnovation Brief documentation (Proposal) - Demonstrate a I		easibility	test de	eliver of	Value	
1 1	· · · · · · · · · · · · · · · · · · ·	<u> </u>			20 D		
				Total	= 30 P	eriods	
Text Books:				Total	= 30 P	eriods	
	own, Change by Design:How design thinking transforms organized	anizations and inspires i	nnovatio				
1. Tim Brobooks, 2 Alexand				n – Har	perColli	ns e-	
 Tim Brobooks, 2 Alexand John Wi 	2009 der Osterwalder, Value Proposition Design: How to Create P.	roducts and Services Cu	stomers	n – Harj Want (S	perColli	ns e-	
 Tim Brobooks, 2 Alexand John Wi Ulrich K 	ler Osterwalder, Value Proposition Design: How to Create Poley & Sons, 2014	roducts and Services Cu	stomers	n – Har Want (S	perColli trategyz	ns e-	
 Tim Brobooks, 2 Alexand John Wi Ulrich K 	der Osterwalder, Value Proposition Design: How to Create Paley & Sons, 2014 Karl and Eppinger Steven D, Product Design and Developmenteve, Four Steps to Epiphany: Successful strategies for product	roducts and Services Cu	stomers	n – Har Want (S	perColli trategyz	ns e-	
 Tim Brobooks, 2 Alexand John Wi Ulrich K Blank St Reference B 	der Osterwalder, Value Proposition Design: How to Create Paley & Sons, 2014 Karl and Eppinger Steven D, Product Design and Developmenteve, Four Steps to Epiphany: Successful strategies for product	roducts and Services Cu nt - McGraw Hill, 5th educts that win, KS Ranch	stomers dition, 20 5th edit	n – Harj Want (S)20 ion, 201	perColli trategyz	ns e- er) -	
 Tim Brobooks, 2 Alexand John Wi Ulrich K Blank St Reference B Everything proposit Test you 	der Osterwalder, Value Proposition Design: How to Create Polley & Sons, 2014 Karl and Eppinger Steven D, Product Design and Developmenteve, Four Steps to Epiphany: Successful strategies for productooks: ing you need about value proposition: https://blog.forg	roducts and Services Cu nt - McGraw Hill, 5th educts that win, KS Ranch, eforward.in/everything-	stomers dition, 20 5th edit	n – Harj Want (S)20 ion, 201 I-to-kno	perColli trategyz 3 w-about	ns e- er) - -value	
1. Tim Brobooks, 2 2. Alexand John Wi 3. Ulrich K 4. Blank St Reference B 1. Everythin proposit 2. Test your startup-a 3. Valuation	der Osterwalder, Value Proposition Design: How to Create Polley & Sons, 2014 Karl and Eppinger Steven D, Product Design and Developmenteve, Four Steps to Epiphany: Successful strategies for productooks: ing you need about value proposition: https://blog.forgion-7247493c940c our Value Proposition:http://businessmodelalchemist.com	roducts and Services Cu nt - McGraw Hill, 5th educts that win, KS Ranch, eforward.in/everything- /2012/09/test-your-value	stomers dition, 20 5th edit you-need	n – Hary Want (S)20 ion, 201 I-to-kno ition-suj	perColli trategyz 3 w-about	ns e- er) - -value	
1. Tim Brobooks, 2 2. Alexand John Wi 3. Ulrich K 4. Blank St Reference B 1. Everythin proposit 2. Test your startup-a 3. Valuation	der Osterwalder, Value Proposition Design: How to Create Paley & Sons, 2014 Karl and Eppinger Steven D, Product Design and Developmenteve, Four Steps to Epiphany: Successful strategies for productooks: ing you need about value proposition: https://blog.forgion-7247493c940c our Value Proposition:http://businessmodelalchemist.com/and-custdev-principles.html on Risk versus Validation Risk in Product Innovations:https://oroduct-innovations-49f253ca8624 Guide for Product Innovation Rubric:https://blog.for	roducts and Services Cu nt - McGraw Hill, 5th educts that win, KS Ranch, eforward.in/everything- /2012/09/test-your-value	stomers dition, 20 5th edit you-need	n – Hary Want (S)20 ion, 201 I-to-kno ition-sup	perColli trategyz 3 w-about percharg	ns e- er) - -value e-lean dation	

	adf5ebdfd356							
6.	Evaluating Product Innovations - proof, potential, & progress:https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e							
	COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
COI	Apply a scientific method to understand the inherent risks of product innovation	Apply						
ana	Apply innovation tools & techniques to validate the problem scenario and to assess the market potential							

_		Mappeu
CO1	Apply a scientific method to understand the inherent risks of product innovation	Apply
CO2	Apply innovation tools & techniques to validate the problem scenario and to assess the market potential of product innovation;	Apply
соз	Design solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit;	Design
CO4	Demonstrate technical skills by applying technology to build and demonstrate proof of concept for the solution proposed;	Develop
CO5	Develop skills to articulate the solution concept into a proposal for grants.	Develop

COURSE	ART	ICULA	ATION	MAT	RIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1															
CO2															
CO3															
CO4															
CO5															
Avg															
	1		3/2/1	_ indic	otoc ctr	onath i	of corre	alation	(3 H;	gh. 2 – N	Iodium	1 Low)	1	I

2	22EC505	COMMUNICATION SYSTEMS LABORATORY	SEMESTER V						
PRERI	EQUISITES		CATEGORY	PC	Credit		2		
				rs/Week L 7		L T		P	TE
			Hours/Week			4	4		
Cours	se objectives:	:	- 1			1	1		
1.	To make the	e students to understand the basics of analog and digital modulati	on techniques						
2.	To deal with	the different pulse modulation schemes.							
3.	To simulate	different modulation scheme using suitable tool.							
EXPE	RIMENTS								
1.	Generation	and detection of AM signal							
2.	Generation	and detection of FM signal							
3.	Pulse Ampl	litude Modulation							
4.	Pulse Width	n Modulation							
5.	Pulse Positi	on Modulation							
6.	Sampling as	nd reconstruction of signals							
7.	Digital Mod	dulation Techniques: ASK,PSK,FSK,QPSK							
8.	Delta and A	Adaptive Delta modulation							
9.	Pulse Code	Modulation							
10.	Time Divisi	ion Multiplexing and De multiplexing							
11.	Generation	of various line codes.							
12.	Simulation	and performance analysis of analog and digital modulation techni	ques .		•				
			Tota	al (601	P)= 60) Per	iods		

Text B	ooks:
1.	S.Poorna Chandra, B.Sasikala, "Electronics Laboratory Primer", S.Chand& Company Ltd, 2010.
2.	L.K. Maheshwari, M.M.S. Anand, "Laboratory Manual for Introductory Electronics Experiments", New age International (P) Limited Publishers, 2010.
3.	Simon Haykin S., "Digital Communications Systems", 3 rd Edition, John Wiley and Sons, 2013.
Refere	nce Books:
1.	Simon Haykins, "Digital Communications" John Wiley, 2017.
2.	Taub & Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.
3.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013
4.	Dennis Roddy, John Coolen,"Electronic Communications", 10 th impression, Pearson Prentice Hall, 2013.

E-Re	eferences:
1.	https://umairbfrend.files.wordpress.com/2015/01/analogue-digital-communication-manual august-2015.pdf
	https://stannescet.ac.in/cms/staff/qbank/ECE/Lab_Manual/EC8561- COMMUNICATION%20SYSTEM%20LABORATORY-2062944779-EC%208461%20communication%20systems%20manual.pdf

3. www.vlab.co.in/ba-nptel-labs-electronics-and-communications

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	:	Generate and analyse analog and digital modulated signals.		L4			
CO2	:	Sample the given analog signal for various sampling frequency.		L4			
CO3	:	Generate various line codes for digital signals.		L3			
CO4	:	Multiplex and de multiplex digital signals		L3			
CO5	:	Write codes for various analog and digital modulation schemes.		L3			

COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
POs										0	1	2	1	2	3
CO1	1	2	2	1	2							1	2	2	2
CO2	1	2	2	1	2							1	1	2	2
CO3	1	2	2	1	2							1	2	2	2
CO4	1	2	2	1	2							1	1	2	2
CO5	2	2	2	1	2							1	2	2	2
Avg	2.8	2	2	1	2							1	1.6	2	2
	3/2/1 - indicates strength of correlation (3-High,2-Medium,1-Low)														

22E	CC506	DIGITAL SIGNAL PROCESSING LABORATORY	SEM	SEMESTER V							
PRER	EQUISI	TES	CATEGORY PC Credit								
				L	T	P	TH				
1.Signa	als and Sy	ystems	Hours/Week	0	0	4	4				
Cours	se object	ives:									
1.	To impl	ement basic signals operations using a software tool.									
2.	To desig	gn FFT algorithms, IIR and FIR filters.									
3.	To verif	fy the various basic signal processing technique.									
EXPE	RIMEN	ΓS									
1.	Generat	ion of Signals									
2.	Discrete	e-time convolution									
3.	Circular	convolution of two sequences									
4.	Samplin	ng and effect of aliasing									
5.	Spectrui	m analysis using Discrete Fourier Transform									
6.	Calculat	tion of FFT of a signal using a) Decimation in time algorithm b) Decimation	on in frequency algo	rithm							
7.	Design	of FIR filters using a)Windowing technique b)Frequency sampling metho	d								
8.	Design	of IIR digital filter using Bilinear transformation									
9.	Design	of IIR digital filter using Impulse invariant method									
10.	Verifica	ntion of BIBO stability of a system.									
	I		Tota	l (60I	P)= 6	0 Pei	riods				

Text Bo	ooks:
1.	Digital Signal Processing Using MATLAB, Vinay K.Ingle, John G.Proakis, Cent age learning, 3 rd Edition, 2012
2.	Sanjit K. Mitra, "Digital Signal Processing", 3rd Edition, McGraw Hill Higher Education, 2007.
Refere	nce Books:
1.	Simon Haykins, "Digital Communications" John Wiley, 2017.
2.	Taub & Schilling, "Principles of Digital Communication", 28th reprint, Tata McGraw-Hill, 2014.
3.	R.N.Mutagi,"Digital Communication", 2 nd Edition, Oxford University Press, 2013
4.	Dennis Roddy , John Coolen , "Electronic Communications", 10 th impression, Pearson Prentice Hall, 2013.

E-References:								
1.	https://nptel.ac.in/courses/117102060/							
	Studentsfocus.com/notes/anna_university/ECE/5SEM/EC6511%20%20DSP%20Lab/EC%206511%20DIGITAL%20SIGNA L%20PROCESSING%20LAB%20MANUAL_2013_regulation.pdf							
3.	vlab.co.in/ba_nptel_labs.ph p? id =1							

Course	e Outcomes:				
Upon co	mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped			
CO1	Generate and analyse various signal processing algorithms.	L4			
CO2	Implement FFT algorithms, Linear/Circular convolution.	L4			
CO3	Design FIR filters.	L6			
CO4	Design IIR filters.	L6			
CO5	Verify and understand system stability.	L4			

COs/POs	РО	PO	РО	РО	РО	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	1	3			1		1			1	1	1
CO2	3	3	1	1	3			1		1			1	1	1
CO3	3	3	2	2	3			1		1			1	1	1
CO4	3	3	2	2	3			1		1			1	1	1
CO5	3	3	2	2	3			1		1			1	1	1
Avg	3	3	1.6	1.6	3			1		1			1	1	1
3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)															

SEMESTER VII

22EC701	VLSI DESIGN	SEMESTER VII									
	CATEGORY	P	Cre	3							
PREREQUISIT	Ĺ	Т	P	TH							
	k	3	0	0	3						
1. Transı	insmission lines and										
Course Objectiv	ves:										
1. To uno	lerstand the concepts of MOS transistors operations and their AC and DC characteristics	S.									
2. To une	lerstand the fabrication process of CMOS technology and its layout design rules.										
3. To des	To design Data path systems and Subsystems using Verilog HDL and Learn FPGA architectures										
Unit I	MOS TRANSISTOR THEORY	9	0	0	9						
NMOS, PMOS Enhancement transistor - Threshold voltage - Body effect - MOS device: Basic DC equations - Channel length modulation - Mobility variation - MOS models - Small signal AC characteristics Complementary CMOS inverter: DC characteristics - Noise Margin - Rise time - Fall time - Power dissipation Transmission gate - Stick diagram - Layout diagram.											
Unit II	CMOS TECHNOLOGY	9	0	0	9						
An overview of S	ilicon semiconductor technology - Basic CMOS technology: n-well - P well - Twin	tub an	d SO	I Pro	cess –						
	hancements: Interconnects - Circuit elements: Resistors - Capacitors - Electrically Alt	erable	RON	<u> Is - E</u>	<u> Bipolar</u>						
transistors - Latch	up and its prevention techniques.										
Unit III <u>I</u>	OATA PATH SYSTEMS AND ARRAY OF SUBSYSTEMS	9	0	0	9						
	stems: Addition/Subtraction - One/Zero Detectors - Comparators - Counters - MAM - DRAM - Read-Only Memory.	Iultipl	icatio	n - 1	Array						
Unit IV	VERILOG HARDWARE DESCRIPTION LANGUAGE	9	0	0	9						
	LSI Design flow - Modules and ports - Switch level modelling - Gate level modelling -										
	ing - Structural gate level description of decoder - Equality detector - Comparator - Programme - Prog	riority	enco	der -	<u>D-flip</u>						
flop - Half adder -	Full adder - Ripple Carry Adder.										
Unit V (CMOS CHIP DESIGN	9	0	0	9						
Channelled - Ch	w - CMOS chip design options: Full custom ASIC - Standard Cell based ASIC - Gate annel less and structured GA - Programmable logic structures; Programming of Programmable GA - Need for CMOS testing.										
	To	otal (4	5L)=	45 p	eriods						

Text Boo	oks:
1.	Neil H. E. Weste & David Money Harris, "CMOS VLSI Design Circuits and System perspective ", 2nd Edition, Pearson Education, 2016
2.	Samir Palnitkar: "Verilog HDL" A Guide to Digital Design and Synthesis", 2nd Edition, Pearson Education,
Referen	ce Books:
1.	Douglas.A.Puchnell, Kamran Eshraghian, "'Basics VLSI Design and Circuits", 3rd Edition, Prentice Hall India 2011.
2.	M.J.S .Smith, "Application - Specific Integrated Circuits", Pearson Education, 2009.
3.	V.G.Kirankumar, H.R.Nagesh, "Introduction to VLSI Design", Pearson Education, 2011
4.	Wayne Wolf, "Modern VLSI Design", Pearson Education, 2003.

E-References:								
1.	https://freevideolectures.com/Subject/VLSI-and-ASIC-Design 2. 3.							
2.	https://www.tutorialspoint.com/vlsi_design/vlsi_design_useful_resources.html							
3.	https://nptel.ac.in/courses/117101058							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the concept of MOS transistors, use analytical methods and circuit analysis models in analysis of CMOS circuits.	L3					
CO2	Understand the CMOS process technology and design layout diagrams.	L2					
CO3	Able to learn and design data path systems and array of subsystems.	L3					
CO4	Model the digital system using Verilog Hardware Description Language and	L3					
CO5	Learn FPGA architectures and need for CMOS testing.	L2					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO	РО	PO	PO	PO10	PO11	PO12	PSO	PSO	PSO3
						6	7	8	9				1	2	
CO1	2														1
CO2	1														1
CO3	2														1
CO4	2	1		2	3								1	2	1
CO5			2	2										2	1
Avg	1.4	0.2	0.4	0.8	0.6								0.2	0.8	1
	3/2/1 - indicates strength of correlation (3-High,2-Medium,1-Low)														

	C702	OPTICAL AND MICROWAVE ENGINEERING	SE	TER	VII						
		CATEGORY	PC	Cr	edit	3					
PREREQUISITES: Hours/Week					P 0	TH					
	1. Digital Electronics										
1.	_										
	Objecti										
1.		erstand and gain knowledge about various microwave components.									
2.	To stud	ly the microwave generation and amplification using microwave solid-state devices.									
3.	To stud	ly the microwave generation and amplification using microwave tubes.									
4.	To und	erstand the different kind of losses, signal distortion in optical wave guides and other signal deg	radatio	n fact	ors.						
5.	To und	erstand the working of optic transmitters and receivers.									
Unit I		MICROWAVE COMPONENTS	9	0	0	9					
Couplers	s - Two-F	s - Magic Tees (Hybrid Tees) - Hybrid Rings (Rat-Race Circuits) -Waveguide Corners - Bends Hole Directional Couplers - S Matrix of a Directional Coupler - Hybrid Couplers - Circulators and Circ	d Isola	tors.		1					
Unit I	Ι	CMOS TECHNOLOGY	9	0	0	9					
		amplification - Avalanche transit - Time devices - Introduction - Read Diode -IMPATT Diode				owave					
	Γ Diodes -	Amplification - Avalanche transit - Time devices – Introduction - Read Diode - IMPATT Diode - Parametric Devices	es - TR	APAT	ΓT Die	odes -					
Unit I	Γ Diodes -	- Parametric Devices MICROWAVE TUBES	es - TR.	APAT	TT Die	odes -					
Unit I	T Diodes - II I ns - Two nce - He	- Parametric Devices	9 Efficie	oncy -	T Die	odes - 9 tronic					
Unit I	T Diodes - TI I Ins - Two Ince - He Field - W	- Parametric Devices MICROWAVE TUBES cavity Klystron Amplifiers - Reflex Klystrons - Velocity Modulation - Power Output and lix Traveling Wave Tubes (TWTs) - Slow Wave structures - Amplification Process - Con ave Modes - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetron - SIGNAL DEGRADATION IN OPTICAL FIBERS	9 Efficie vection agnetro	o ency - Curr	O Electent -	9 tronic Axia					
Unit I Klystron Admittat Electric Unit I Optical Scatterin Factors	T Diodes - II I ns - Two nce - He Field - W IV fiber stru- ng losses - contributi	Parametric Devices MICROWAVE TUBES cavity Klystron Amplifiers - Reflex Klystrons - Velocity Modulation - Power Output and lix Traveling Wave Tubes (TWTs) - Slow Wave structures - Amplification Process - Convave Modes - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetro	9 Efficie vection agnetro 9 on - Ab Intra m	o cncy - Curren. o cosorpt	O Electent - O ion lo	9 tronic Axial					
Unit I Klystron Admittat Electric Unit I Optical Scatterin Factors	T Diodes - II I II I II S - Two II Field - W IV I fiber struing losses - contribution	MICROWAVE TUBES cavity Klystron Amplifiers - Reflex Klystrons - Velocity Modulation - Power Output and lix Traveling Wave Tubes (TWTs) - Slow Wave structures - Amplification Process - Convave Modes - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetron - Coaxial Magnetron - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetron - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetron - Gain Consideration - Fibers - Signal Distortion in Fibers - Attenuation - Bending Losses - Core and Cladding losses - Signal Distortion in Fibers - Intermodal delay - Ing to dispersion - Group Delay - Material Dispersion - Wave guide Dispersion - Basics of signal Dispersion - Basics of signal Dispersion - Wave guide Dispersion - Basics of signal Dispersion - Wave guide Dispersion - Basics of signal Dispersion - Wave guide Dispersion - Basics of signal Dispersion - Wave guide Dispersion - Basics of signal Dispersion - Wave guide Dispersion - Wav	9 Efficie vection agnetro 9 on - Ab Intra m	o cncy - Curren. o cosorpt	O Electent - O ion lo	9 tronic Axia					
Unit I Klystron Admittat Electric Unit I Optical Scatterin Factors o LED – S Unit V Physical Double operation	T Diodes - II	MICROWAVE TUBES cavity Klystron Amplifiers - Reflex Klystrons - Velocity Modulation - Power Output and lix Traveling Wave Tubes (TWTs) - Slow Wave structures - Amplification Process - Convave Modes - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetron - Coaxial Magnetron - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetron - Gain Consideration - Magnetron Oscillators - Cylindrical Magnetron - Coaxial Magnetron - Gain Consideration - Signal Distortion in Fibers - Attenuation - Bending Losses - Core and Cladding losses - Signal Distortion in Fibers - Intermodal delay - Inguity to dispersion - Group Delay - Material Dispersion - Wave guide Dispersion - Basics of signal Light source materials - Quantum efficiency and LED power - LASER diodes.	9 Efficie vection agnetro 9 on - Ab Intra memicon 9 Detecto - Fund	o corpt odal oducto	O e e e e e e e e e e e e e e e e e e e	9 y tronic Axia 9 y sisses rision sics -					

To	Text Books:								
	1.	Samuel Y.Liao, "Microwave Devices and Circuits", 3rd Edition, Pearson education, 2008.							
	2.	Gerd Keiser, "Optical Fiber Communication", 3rd& 4th Edition, McGraw -Hill International, 2012							

Reference Books:							
1.	R.E. Collin, "Foundations for Microwave Engineering", 2nd Edition, IEEE Press, 2002.						
2.	David M.Pozar, "Microwave Engineering", 2nd Edition, John Wiley & Sons, 2003						

3.	Govind P. Agrawal, "Fiber-Optic Communication Systems", John Wiley & Sons, reprint, 3 rd Edition, 2012						
4.	S.C.Gupta, "Textbook on Optical Fiber Communication and its applications", 2nd Edition, PHI, 2012.						
E-Refe	E-References:						
1.	https://nptel.ac.in/courses/108101112/						
2.	http://nptel.ac.in/courses/113104012/						
3.	http://nptel.ac.in/courses/115102026/						

Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Explain the active and passive microwave components used in microwave communication.						
CO2	Have an in-depth knowledge of microwave generation and amplification.						
CO3	Calculate the degradation in the signal due to losses and dispersion.						
CO4	Ability to identify, understand and evaluate fiber transmission characteristics for real time link design.	L3					
CO5	Explain the various optical sources and optical detectors and their use in the optical communication system.	L3					

COs/POs	PO	PO	PO	РО	PO	PO	PO	РО	РО	PO10	PO1	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9		1	12			
CO1		2	2	2							1		1	2	1
CO2		3	2	3							2		1	2	1
CO3		2	2	2									2	1	2
CO4		2	2	2							2		2	1	2
CO5		1	2	2							1		1	2	1
Avg		2	2	2.2							1.2		1.4	1.6	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22F	EC703	WIRELESS AND MOBILE COMMUNICATION	SE	VII				
PRER	PREREQUISITES CATEGORY							
	LQCIST		Hours/Week	L	Т	P	T H	
1.	3	0	0	3				
Cours	e Object	ves:						
1.	To make	the students understand the basics of wireless and mobile communication	n					
2.	To unde	estand the basics and design if cellular system.						
3.	To have	an insight into the various propagation models and the speech coders use	d in mobile comm	unicatio	on			
Unit I	IN'	FRODUCTION AND MODERN WIRELESS COMMUNICAT	TION	9	0	0	9	
	SY	STEMS						
		ireless communications - History and evolution - Mobile radio system a						
		nication systems - Trends in cellular radio and personal communication networks - 3G wireless networks - 4G mobile web access - 5G fa						
standar	ds			1		ss net		
Unit		HE CELLULAR CONCEPT: SYSTEM DESIGN FUNDAMI ODULATION TECHNIQUES FOR MOBILE RADIO	ENTALS AND	9	0	0	9	
service	- Improv	- Channel Assignment strategies - Handoff strategies - Interference and ng coverage and capacity in cellular systems - Modulation: Combined PSK, M_ ary QAM, M_ ary FSK and OFDM.						
Unit	III MO	DBILE RADIO PROPAGATION:LARGE SCALE PATH LOS	<u>88</u>	9	0	0	9	
		Radio wave propagation - Free-space propagation model - 3 basic propag						
		ion model – Diffraction - Knife-edge diffraction model -Scattering – rasing path loss models - Outdoor propagation models - Indoor propagation		model	- Prac	tical I	Link	
Unit	IV MO	DBILE RADIO PROPAGATION:SMALL-SCALE FADING A	ND	9	0	0	9	
measur	ements - F	g: Small scale multipath propagation - Impulse response model of a mult arameters of mobile multipath channels – Types of small-scale fading- Ir constriction - Azimuthal Direction of maximum fading.					l	
Unit		9	0	0	9			
equaliz Diversi	ation - Lir ty Conside	damentals – Training a generic adaptive equalizer – Equalizers in a commear equalizers - Nonlinear equalization - Algorithms for adaptive equalizations - Polarization diversity -Frequency diversity -Time diversity -C-Choosing Speech Codecs for Mobile communication - GSM codec - US	ation – Diversity: 1 RAKE receiver – 6 BDC codec	Practica	al Spa Speed	ch cod		

Text Books:										
1.	Theodore S.Rappaport, "Wireless Communications: Principles and Practice", 2nd Edition.", Pearson, 2012.									
2.	Simon Haykin, "Digital Communications" Student Edition, John Wiley & sons, 2008.									
Referen	ce Books:									
1.	A.Molisch, Wiley, "Wireless Communications", 2 nd Edition, 2010.									
2.	V.K. Garg, "Principles and Applications of GSM", Pearson Edition.									
3.	V.K. Garg, "IS-95 CDMA and CDMA 2000", Pearson Edition.									
4.	S. Haykins, "Communication Systems", 5th Edition, John wiley, 2008.									

E-Refere	ences:
1.	http://www.pdfsdownload.com/download-pdf-for-free/wireless+communication+rappaport
2.	https://www.oreilly.com/library/view/wireless-communications-principles/0130422320/
3.	https://en.wikipedia.org/wiki/Adaptive_equalizer

		outcomes: bletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Characterize a wireless channel and evolve the system design specifications and understand the difference between wireless compared to wired counterpart.	L2
CO2	:	Design a cellular system, with improved coverage and capacity with the cell structure based on the resource availability and traffic demands and able to calculate interference.	L3
CO3	:	Identify various propagation effects and calculate large scale path loss.	L3
CO4	:	Analyze small scale and multipath fading in mobile environment.	L2
CO5	:	Exploit multiple antenna techniques for capacity / performance gains and design equalizer.	L2

Cos/Pos	PO1	PO2	PO	PO	PO	PO	PO	PO	PO	PO	PO 11	PO12	PSO	PSO2	PSO3
			3	4	5	6	7	8	9	10			1		
CO1		1	1	2	1								1	2	1
CO2	2	1	2	2	1								1	2	2
CO3	1	1	1	1	1								1	2	1
CO4	1	1	2	1	1								1	2	1
CO5	1	1	1	1	1								1	2	1
Avg	1	1	1.4	1.4	1								1	2	1.2
			3/2/	1 – inc	licates	streng	th of c	orrelat	ion (3-	High,2-	Medium,	1- Low)			

22EC704	OPTICAL AND MICROWAVE ENGINEERING LA	BORATORY	S	EME	STER	VII
DDEDEOL	HEUDEC	PC	Cre	2		
PREREQU	01S11 ES		L	Т	P	TH
1.	Communication systems Lab	Hours/Week	0	0	4	4
Course Ob	jectives:				I I	
1.	To Understand the working principle of microwave components	•				
2.	To Practice microwave measurement procedures.					
3.	To Understand the working principle of optical sources, detector	r, fibres and microw	ave com	ponent	s.	
4.	To Develop and understand simple optical communication link.					
5.	To Learn about the characteristics and measurements in optical	fibre.				
EXPERIME	ENTS:					
	OPTICAL COMMUNICATION					
1.	Determination of Numerical aperture for Fibers and Measureme	nt of Attenuation in	fibers.			
2.	Mode Characteristics of Fibers – SM Fibers.					
3.	Coupling Fibers to Semi-Conductor Sources – Connectors & Sp	lices.				
4.	Establish Fiber optic analog and digital communication links.					
5.	LED & Photo Diode Characteristics.					
	MICROWAVE ENGINEERING					
6.	VSWR Measurements.					
7.	Determination of terminated impedance.					
8.	Determination of guide wavelength and frequency.					
9.	Radiation Pattern of Horn antenna.					
10.	Microwave Power Measurement.					
11.	Characteristics of Gunn diode Oscillator.					
12.	Mode Characteristics Reflex Klystron.					
13.	Dielectric constant measurements.					
14.	Study of Isolator, circulator and Hybrid Tee.					
			To	otal (6	0P)=6	0 Perio

Reference	es:
1	Samuel Y.Liao, —Microwave Devices and Circuits, Pearson education, 3rd Edition, 2008.
2	Gerd Keiser, —Optical Fiber Communication McGraw –Hill International, 3rd& 4th ed., 2012
E-Refere	nces:
1	http://nptel.ac.in/courses/113104012/
2	http://nptel.ac.in/courses/115102026/
3	http://nptel.ac.in/courses/113106062/21

Course O Upon com	utcomes: upletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyze the performance of simple optical link.	L4
CO2	Gain knowledge on working of LED and photo detector.	L2
CO3	Gain knowledge on testing microwave components.	L3
CO4	Analyze the radiation of pattern of antenna,	L3
CO5	Measure a microwave link's impedance, VSWR, and frequency.	L3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	3	3			2				2		3	2	2
CO2	2	3	3	3			2				2		3	2	2
CO3	2	3	3	3			2				2		3	2	2
CO4	1	3	3	3			2				2		3	2	2
CO5	1	3	3	3			2				2		2	2	2
Avg	1.4	3	3	3			2				2		2.8	2	2
			3/2/	l - indi	cates sti	rength o	of correl	lation (3	-High,2	2- Mediu	m,1- Lo	w)			

22E	C705			1	L	Sl	[I)E	SI	G	N.	A	N	1I	D]	E	Μ	IB	EI	DI	DE	D	S	YS	TE	M	SI		۱	3 C	R	A]	(O	RY			S	EMI	EST	ER	VI	I
DEDE	OHIGHTE	70																													CA	AT]	EG	OR	Y]	PC	(cre	dit		2
KEKE	QUISITE	4 3																													Hours/Week			L	T	1	P		T			
1.	VLSI De	esig	gn	1 &	Е	mł)ei	dd	ed	Sy	ste	m	ıs	;									Hours/Week							0	0		4		4							
COUR	SE OBJE																																									
1.	To desi	•		_			•				Ŭ									•				Ŭ	Ŭ																	
2.	To prac	ctic	al	lly	tra	in	th	ie j	pro	gr	am	ım	nir	ng	g	co	n	cer	pts	us	sin	g V	√eı	rilo	g H	DL	an	ıd	in	np	ler	ner	it in	FF	' GA							
3.	Design	the	e J	Βι	ild	in	g J	Blo	ock	s c	of I	En	nt	be	ede	lde	ed	Sy	yste	em	ıs a	anc	d s	im	ılat	ion	too	ols	s.													
EXPER	IMENTS:	:																																								
	VLSI DI	ES	I	GN	ſ																																					
1.	Design	an	d	si	nu	lat	e (Co	ml	oin	ati	or	na	al (ci	irc	cui	its	usi	ing	g V	/er	ilo	og I	IDI	٦.																
2.	Design	an	d	si	nu	lat	e	Se	que	ent	ial	ci	ir	cı	uit	ts	us	sin	ıg V	Ve	ril	og	Н	DL																		
3.	Design	Tr	af	ffi	: li	gh	t c	on	itro	lle	er u	ısi	in	ıg	V	/ei	ril	log	ţН	DI	L.																					
4.	Design	Pip	pε	eliı	iec	p	ara	alle	el a	ıdd	ler	tc	0 8	ad	dd	18	3 n	ıun	nbe	er	of	siz	ze :	12	oits	eac	ch i	in	2'	s c	cor	npl	eme	ent.								
5.	Design	8 t	oit	t s	gn	ed	n	ıul	tip	lic	ati	on	n a	al	lgo	ori	ith	ım	1.																							
6.	Study o	of F	-P	G	4]	30	ar	d.																																		
7.	Implem	nen	ıta	atio	n	of	A)	LU	J/ N	ſΑ	Сı	un	nit	t i	in	F	PC	БA	١.																							
8.	Implem	nen	ıta	atio	n	of	Fl	ip-	-Fl	ops	s ir	ı F	FF	PC	G <i>P</i>	A.																										
	EMBED	DI	EJ	D	SY	Sī	ſΕ	M	S					_	_		_																									
9.	Embedde	ed j	pı	rog	ra	n	fo	r I/	/O	int	erf	fac	ci	nş	gι	us	sin	ıg Ì	PIC	Сс	cor	ntro	olle	er.																		
10.	Design a	ı ste	ep	pe	r r	10	to	r c	on	tro	lle	rι	us	sin	ng	ς L	C	D	an	d l	ke	ys i	in	PIC	co	ntr	olle	er.														
11.	Generate	e 3-	-p	ha	se	PV	V۱	M s	sig	nal	s a	ıno	d	do	ler	mc	on	str	rate	e tł	he	uti	lit	y o	f PV	VV.	I w	itł	h ł	nig	gh	brig	ght	LE.	D li	ghts	usiı	ng R	7	8.		
12.	Measure	ro	or	m	en	ıpo	era	atu	re	and	d d	lis	spl	la	ıy	th	ne	sa	me	e ir	n a	L	CD) w	ith l	key	boa	are	d i	int	era	acti	on	usit	ıg R	L 7	3					
13.	Design a	ın e	n	nb	edo	lec	ls	yst	ten	ı to	n	ne	as	su	ıre	e t	the	e u	ınk	no	WI	n si	igr	nal	frec	uei	ncy	/ u	ısi	ng	; ti	mei	:/co	unt	er o	f RI	78.					
14.	Demonst	trat	te	th	e u	sa	ge	of	f w	atc	hd	log	g	ti	im	ier	rs	an	id v	vol	lta	ge	de	tec	tion	fac	cili	tie	es	of	R	L78	3 in	an	app	icat	ion.					
15.	Interface	• A	D	C	wi	h	en	nbe	edo	led	lsy	yst	te	m	n t	tra	ain	ier	kit	t.																						
	Basic exp	ner		ma	nte	11.			ΔΙ) N /I		O 44	tο	- V																												

Referen	nces:
1	J.Bhaskar, "Verilog HDL Primer" 2nd Edition, 2004.
2	Alexander G. Dean, "Embedded Systems Fundamentals with Arm Cortex M Based Microcontrollers: A Practical Approach".

E-References:

1	https://freevideolectures.com/Subject/VLSI-and-ASIC-Design 2. 3.
2	https://www.tutorialspoint.com/vlsi_design/vlsi_design_useful_resources.html.
3	https://nptel.ac.in/courses/117101058.

	Outcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To demonstrate a clear understanding in VeriLog HDL	L6
CO2	Model a combinational circuit and sequential circuit using Verilog HDL.	L6
CO3	Import the logic modules into FPGA boards.	L5
CO4	Write, debug and compile embedded processors programs for a given Application.	L6
CO5	Implement interrupt control for a given embedded System.	L5

COs/POs	PO1	PO2	PO	РО	РО	PO	РО	PO	PO	PO1	PO	РО	PSO	PSO	PSO3
			3	4	5	6	7	8	9	0	11	12	1	2	
CO1	1	2	1		3	1				1			2	3	1
CO2	1	2	1		3	1				1			2	3	1
CO3	1	2	1		3	1				1			2	3	1
CO4	1	2	1		3	1				1			2	3	1
CO5	1	2	1		3	1				1			2	3	1
Avg	1	2	1		3	1				1			2	3	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

PROFESSIONAL ELECTIVES (PE)

S.No	Comme Code	rse Code Course Title			Hours/	Week		Max. Marks				
5.N0	Course Code	Course Title	Cat.	L	T	P	C	CA	FE	Total		
25.	22ECPE601	Electronic Measurements	PE	3	0	0	3	40	60	100		
26.	22ECPE602	Computer Architecture	PE	3	0	0	3	40	60	100		
27.	22ECPE603	Digital Image Processing	PE	3	0	0	3	40	60	100		
28.	22ECPE604	Machine Learning	PE	3	0	0	3	40	60	100		
29.	22ECPE605	Modern Sensors and its Applications	PE	3	0	0	3	40	60	100		
30.	22ECPE606	Radar Communication	PE	3	0	0	3	40	60	100		
31.	22ECPE607	Internet of Things	PE	3	0	0	3	40	60	100		
32.	22ECPE608	Computer Networks	PE	3	0	0	3	40	60	100		
33.	22ECPE609	Software Defined Radio	PE	3	0	0	3	40	60	100		
34.	22ECPE610	High Speed Networks	PE	3	0	0	3	40	60	100		
35.	22ECPE611	Robotics	PE	3	0	0	3	40	60	100		
36.	22ECPE612	Virtual Instrumentation	PE	3	0	0	3	40	60	100		
37.	22ECPE613	Automotive Electronics	PE	3	0	0	3	40	60	100		
38.	22ECPE614	Embedded C	PE	3	0	0	3	40	60	100		
39.	22ECPE615	VLSI Physical Design	PE	3	0	0	3	40	60	100		
40.	22ECPE616	RF & EMI/EMC Testing	PE	3	0	0	3	40	60	100		
41.	22ECPE801	Multimedia Compression and Communication Techniques	PE	3	0	0	3	40	60	100		
42.	22ECPE802	Wireless Sensor Networks	PE	3	0	0	3	40	60	100		
43.	22ECPE803	Telecommunication and Switching Networks	PE	3	0	0	3	40	60	100		
44.	22ECPE804	Deep Learning	PE	3	0	0	3	40	60	100		
45.	22ECPE805	Network Security	PE	3	0	0	3	40	60	100		
46.	22ECPE806	Satellite Communication	PE	3	0	0	3	40	60	100		
47.	22ECPE807	Bio Medical Electronics	PE	3	0	0	3	40	60	100		
48.	22ECPE808	Cognitive Radio	PE	3	0	0	3	40	60	100		

PROFESSIONAL ELECTIVES

22EC	PE601	ELECTRONIC MEASUREMENTS		SE	MES	TEF	R VI
PRER	EQUISI	TES C	ATEGOR Y	PE	Cro		3
		п	ours/Week	L	T	P	TH
1.	Electron	ic Devices	ours/ week	3	0	0	3
Course	e Objecti	ives:					
1.		v the basic measurement concepts, units, standards, various types of meters					
2.	Learn to and anal	measure unknown value of components using bridges and understand the yzers.	e concept of	various	sign	al ger	nerator
3.	To gain	knowledge on Different types transducers and their usage in the Data Acqu	isition system				
4.	To emph	asize the need for Data display recording and systems					
Unit	t I B.	ASIC MEASUREMENTS		9	0	0	9
	nic Multi 1	Immeters and Voltmeters - AC Ammeters and Voltmeters - Multi range - meter. RIDGE MEASUREMENT	Omi meter. se	9	, pc, 5	0	9
		C Bridges and their Applications - Wheatstone Bridge - Kelvin Bridge -	AC Bridges	-			-
		e - Hay Bridge - Schering Bridge – We in Bridge - Wagner ground Connec	_		₁	рпса	LIOIIS
Unit		IGNAL GENERATOR & ANALYZERS		9	0	0	9
Signal (Generators	s: Sine wave generator, Frequency Synthesized Generator, Sweep frequer	icy Generator.	Pulse	and s	quare	wave
generate	ors. Funct	ion Generators Sweep Frequency Generator - Pulse and square wave ge	nerator - Func	tion G	enerat	ors -	Signal
Analyze	ers: Wave	Analyzers - Harmonic Distortion Analyzers - Spectrum Analyzers.					
Unit	IV T	RANSDUCER & DATA ACQUISITION SYSTEMS		9	0	0	9
Classifi	cation of	Transducers - Variable Resistive transducers - Strain gauges, Thermistor,	RTD - Variab	le Indu	ictive	trans	ducers
		- Variable Capacitive Transducers - Photo electric transducers, Piezo el					-
		nart / intelligent sensors, Data Acquisition System: Interfacing transducers	to Electronics	Contr	ol and	Mea	suring
System.				_			
Unit		ATA DISPLAY RECORDING AND SYSTEMS		9	0	0	9
		- Digital storage and Analog storage oscilloscope. Analog and Dig	•		•		
		Block diagram and architecture – Applications in various fields. Measur	rement system	ıs appl	ied to	Mic	ro and
Nanoteo	chnology						
			TD - 4	al (45	T \	4 = T	

Text	Books:
1.	Albert D.Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", 5th
1.	Edition, PHI, 2011.
2.	A.K. Sawhney, "A Course in Electrical & Electronic Measurements & Instrumentation", Dhanpat Rai and Co, 2010.
Refer	rence Books:
1.	John G. Webster, "Measurement, Instrumentation, and Sensors Handbook", CRC Press. 2014
2.	RobertA.Witte, "ElectronicTestInstruments, AnalogandDigitalMeasurements", 2 nd Edition, PearsonEducation, 2004.
3.	K.LalKishore, "Electronic Measurements and Instrumentations", Pearson Education, 2005.
4.	Deoblin E.O. "Measurement Systems - Application and Design", McGraw Hill, 4th Edition, 2005

]	E-Re	eferences:
	1.	https://nptel.ac.in/courses/108105153
	2.	http://bcas.du.ac.in/wp-content/uploads/2020/04/Study-Material-DrAvneesh-Mittal.pdf

3.	http://www.academia.edu/8140873/A	K Sawhney-
٠.	IIIIID.// w w w .acauciiiia.cuu/01 4 00/3/A	ix.sawiiicv-

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Discuss about the principles of various measurement techniques and identify its errors	L2
CO2	Have knowledge on designing and to find the unknown elements in the measuring bridges.	L3
CO3	To categorize different instruments used for signal generation and analysis.	L2
CO4	Analyze the transducers and its impact and to understand the function of Data acquisition systems.	L2
CO5	To have knowledge on Data display and recording Systems.	L1

COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1	PO 12	PSO1	PSO2	PSO3
				-											
CO1	3	2	1		1								1		2
CO2	3		2	2	1								1	1	2
CO3	3	1		1	2								1	1	2
CO4	3		1	2									1		1
CO5	3	2	1		1								1	2	2
Avg	3	1	1	1	1								1	0.8	1.8
			3/2/1	- indic	cates st	rength	of co	relatio	on (3-H	ligh,2- N	Iedium,	1- Lov	v)		

COMPUTER AR	CHITECTURE	SI	EMES	STER	VI	
QUISITES CATEGORY						
		L	T	P	Т	
	Hours/Week				Н	
		3	0	0	3	
		· I		l		
ibe computer architecture concepts and mechas, and networks.	nisms related to the design of mo	dern pro	cessoi	rs,		
stand various design alternatives and make a	compelling quantitative and/or qu	alitative	argun	nent fo	or	
design is superior to the other approaches.	CATA					
rate the fixed point and floating-point arithmet	<u> </u>				_	
UNDAMENTALS OF QUANTITATIVE D of Computers- Defining Computer Architectu		9	0	0	9	
OMPUTER ARITHMETIC tion of signed numbers - Design of fast adde algorithm - Fast multiplication - Bit pair rec int numbers - Arithmetic operations on floatin	coding of the multiplier - Carry	save add	lition			
ROCESSING UNITS		9	0	0	9	
 Execution of a complete Instruction – Pipelining – Basic concepts – Data hazards – Iteration – Superscalar operation – Performance 	- Instruction hazards - Influence					
EMORY SYSTEM		9	0	0	9	
iconductor RAMs, ROMs – Speed, size and cons of Cache Performance - Performance codary storage - CD-ROM - DVD_ROM - DVI	consideration – Virtual memory-					
OMAIN-SPECIFIC ARCHITECTURES		9	0	0	9	
	eural Networks - The Neurons					
nes for DSAs - Example Domain: Deep Ne Perceptron - Convolutional Neural Network			al Network – Batches	al Network – Batches – O	al Network – Ratches – Ouantia	

Text E	600KS:
1.	John Hennessy, David Patterson ,"Computer Architecture A Quantitative Approach",6 th Ed, Morgan Kaufmann Publishers,2019.
2.	Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization" 5th Ed, McGraw Hill, 2001.
Refere	ence Books:
1.	William Stallings, "Computer Organization and Architecture – Designing for Performance", 10 th Edition, Pearson 2016.
2.	David A. Patterson and John L.Hennessy, "Computer Organization and Design, the hardware / software interface", 5 th edition, Morgan Kaufmann, Elsevier, 2014.
3.	Caxton C. Foster, "Computer Architecture", 6th Edition, Van Nostrand Reinhold Company.
4.	Andrews .Tanenbaum , T odd Austin," Structured Computer Organization", 6th Edition, Pearson, 2013.

E-Referen	nces:
1.	http://nptel.ac.in/courses/106102062/
2.	https://www.coursera.org/learn/comparch/home/week/1
3.	https://nptel.ac.in/courses/106106134

	e Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Recognize the trends followed in designing architecture.	L2
CO2	Illustrate the fixed point and floating-point arithmetic for ALU operation.	L1
CO3	Analyse the pipeline performance considering the hazards by computing clock cycles.	L4
CO4	Differentiate the types of memory and use suitable type for architecture development	L3
CO5	Understand domain-specific architectures like DNN and TPU for a new application	L3

COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	PSO3
CO1		2		2									2	1	2
CO2	2		3	2									1		
CO3	1		2										2		2
CO4	2	2	2	2	2								2		3
CO5		2	2		2								2	1	3
Avg	1	1.2	1.8	1.2	0.8								1.8	0.4	2
11.8		1				tranath	of corre	lation (2 III.ah	2 Madiu	m 1 Lou	-)	1.0	J	_

	DIGITAL IMAGE PROCESSING		SEME	STER	VI
PREREQUISITES	CATEGO	RY PE	Cr	edit	3
		L	T	P	TH
1 Signals and S	ystems Hours/Wo	eek 3	0	0	3
Course Objectives:	I			<u> </u>	
1 To become fam	iliar with digital image fundamentals				
2 To get exposed	to simple image enhancement techniques in Spatial and Frequency doma	ain			
3 To learn concep	ots of degradation function and restoration techniques				
4 To study the im	age segmentation and representation techniques.				
5 To become fam	iliar with image compression and recognition methods				
Unit I DIGITA	AL IMAGE FUNDAMENTALS	9	0	0	9
		_	0	0	9
	l transformations — Histogram processing — Basics of Spatial Filtering-		g and S	harpei	ning
Spatial Filtering, Frequency	l transformations – Histogram processing – Basics of Spatial Filtering- y Domain: Introduction to Fourier Transform– Smoothing and Sharpeningsian filters, Homomorphic filtering, Color image enhancement.		g and S	harpei	ning
Spatial Filtering, Frequency Ideal, Butterworth and Gau	y Domain: Introduction to Fourier Transform-Smoothing and Sharpenin		g and S	harpei	ning ers –
Spatial Filtering, Frequency Ideal, Butterworth and Gau Unit III IMAGE mage Restoration - degrada	y Domain: Introduction to Fourier Transform—Smoothing and Sharpenin ssian filters, Homomorphic filtering, Color image enhancement. RESTORATION tion model, Properties, Noise models — Mean Filters — Order Statistics	ng frequency 9 Adaptive	g and S y doma:	harpei in filte	ning ers –
Spatial Filtering, Frequency Ideal, Butterworth and Gautenit III IMAGE mage Restoration - degrada Filters – Band pass Filters –	y Domain: Introduction to Fourier Transform— Smoothing and Sharpeningsian filters, Homomorphic filtering, Color image enhancement. RESTORATION tion model, Properties, Noise models — Mean Filters — Order Statistics— Notch Filters — Optimum Notch Filtering — Inverse Filtering — Wiener fü	ng frequence 9 Adaptive ltering	g and S y doma: 0 filters –	harper in filte 0	ers – 9 rejec
Spatial Filtering, Frequency Ideal, Butterworth and Gau Unit III IMAGE mage Restoration - degrada Filters - Band pass Filters - Unit IV IMAGE	y Domain: Introduction to Fourier Transform— Smoothing and Sharpening Sian filters, Homomorphic filtering, Color image enhancement. RESTORATION tion model, Properties, Noise models — Mean Filters — Order Statistics— Notch Filters — Optimum Notch Filtering — Inverse Filtering — Wiener filters SEGMENTATION	9 Adaptive ltering 9	g and S y doma	harperin filte 0 Band	ning ers – 9 reject
Spatial Filtering, Frequency Ideal, Butterworth and Gau Unit III IMAGE mage Restoration - degrada Filters - Band pass Filters - Unit IV IMAGE Edge detection, Edge linking splitting and merging - Mercental Mercental Spatial	y Domain: Introduction to Fourier Transform— Smoothing and Sharpeningsian filters, Homomorphic filtering, Color image enhancement. RESTORATION tion model, Properties, Noise models — Mean Filters — Order Statistics— Notch Filters — Optimum Notch Filtering — Inverse Filtering — Wiener fü	9 Adaptive Itering 9 - Region g	g and S doma: 0 filters – 0 rowing	harperin filte 0 Band 0 Res	ning ers – 9 reject
Spatial Filtering, Frequency Ideal, Butterworth and Gau Unit III IMAGE mage Restoration - degrada Filters - Band pass Filters - Unit IV IMAGE Edge detection, Edge linki splitting and merging - M concepts - Dam construction	y Domain: Introduction to Fourier Transform— Smoothing and Sharpening sign filters, Homomorphic filtering, Color image enhancement. RESTORATION tion model, Properties, Noise models — Mean Filters — Order Statistics—Notch Filters — Optimum Notch Filtering — Inverse Filtering — Wiener filters—Optimum Notch Filtering — Region based segmentation orphological processing—erosion and dilation, Segmentation by morph	9 Adaptive Itering 9 - Region g	g and S doma: 0 filters – 0 rowing	harperin filte 0 Band 0 Res	ning ers – 9 rejection gion
Spatial Filtering, Frequency Ideal, Butterworth and Gau Unit III IMAGE mage Restoration - degrada Filters - Band pass Filters - Unit IV IMAGE Edge detection, Edge linki splitting and merging - M concepts - Dam construction Unit V IMAGE Need for data compression,	y Domain: Introduction to Fourier Transform— Smoothing and Sharpening sisters, Homomorphic filtering, Color image enhancement. RESTORATION tion model, Properties, Noise models — Mean Filters — Order Statistics—Notch Filters — Optimum Notch Filtering — Inverse Filtering — Wiener filters—Optimum Notch Filtering — Inverse Filtering — Wiener filters—Optimum Notch Filtering — Region based segmentation orphological processing—erosion and dilation, Segmentation by morphon—Watershed segmentation algorithm. COMPRESSION AND RECOGNITION Huffman, Run Length Encoding, Shift codes, Arithmetic coding, JPE scription, Fourier Descriptor, Regional Descriptors — Topological features.	9 Adaptive ltering 9 - Region ghological w GG standard	g and Sy domary	harperin filte O Band Reg ds - b O G. Bou	ning ers – 9 rejection gion asic

Text Boo	oks:
1.	Rafael C. Gonzalez, Richard E. Woods, _Digital Image Processing', Pearson, Third Edition, 2010.Anil K. Jain, _Fundamentals of Digital Image Processing', Pearson, 2002.
2.	Anil K. Jain, _Fundamentals of Digital Image Processing', Pearson, 2002.
Referen	ee Books:
1.	Rafael C. Gonzalez, Richard E. Woods, Steven Eddins, _Digital Image Processing using MATLAB', Pearson Education, Inc., 2011.
2.	Kenneth R. Castle man, _Digital Image Processing', Pearson, 2006.
3.	William K. Pratt, _Digital Image Processing', John Wiley, New York, 2002
4.	Milan Sonka et al _Image processing, analysis and machine vision', Brookes/Cole, Vikas Publishing House, 2nd edition, 1999.
E-Refer	ences:
1.	https://www.tutorialspoint.com/dip/index.html
2.	https://www.youtube.com/watch?v=zDuJZDBsfto
3.	https://www.udemy.com/topic/image-processing/

		ce Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
C	CO1	Know and understand the basics and fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms.	L2
C	CO2	Operate on images using the techniques of smoothing, sharpening and enhancement.	L3
C	CO3	Understand the restoration concepts and filtering techniques.	L2

CO4	Learn the basics of segmentation and features extraction	L2
CO5	Apply compression and recognition methods for color models.	L3

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO10	PO1	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9		1	12	1	2	
CO1	2	1	2	1	1						1		2	2	2
CO2	2	1	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	2	2	3	2	1						2		2	2	2
Avg	2	1.6	2.4	1.4	1						1.4		2	2	2
		3/2/	1 - inc	dicates	streng	gth of	correla	tion (3	8-High	,2- Medi	ium,1- 1	Low)			

roduction-Discriminative and Generative Models -Linear Regression - Least Squares -Under-fitting / Over fitting -Cross alidation — Lasso Regression- Classification - Logistic Regression- Gradient Linear Models -Support Vector Machines are learned Methods —Instance based Methods - K-Nearest Neighbours - Tree based Methods —Decision Trees —ID3 — CART Issemble Methods —Random Forest - Evaluation of Classification Algorithms Unit III UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING 9 0 0 9 Troduction - Clustering Algorithms -K — Means — Hierarchical Clustering - Cluster Validity - Dimensionality Reduction incipal Component Analysis — Recommendation Systems - EM algorithm. Reinforcement Learning — Elements -Mode sed Learning — Temporal Difference Learning Unit IV PROBABILISTIC METHODS FOR LEARNING 9 0 0 9 Troduction -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks -Probabilistic odelling of Problems -Inference in Bayesian Belief Networks — Probability Density Estimation - Sequence Models — arkov Models — Hidden Markov Models	22ECP	PE604	MACHINE LEARNING		S	EMES	TER V	/I
Course Objectives: To understand the concepts and mathematical foundations of machine learning and types of problems tackled by machine learning	PREREC	QUISIT	ES	CATEGORY	PE	Cred	lit	3
To understand the concepts and mathematical foundations of machine learning and types of problems tackled by machine learning 2				Hours/Week	L	T	P	
To understand the concepts and mathematical foundations of machine learning and types of problems tackled by machine learning To explore the different supervised learning techniques including ensemble methods To learn different aspects of unsupervised learning and reinforcement learning To learn the role of probabilistic methods for machine learning To understand the basic concepts of neural networks and deep learning. Init I INTRODUCTION AND MATHEMATICAL FOUNDATIONS Public Learning? Need—History—Definitions—Applications—Advantages, Disadvantages & Challenges—Types of achine Learning Problems—Mathematical Foundations—Linear Algebra & Analytical Geometry—Probability and Statistics syesian Conditional Probability—Vector Calculus & Optimization—Decision Theory—Information theory Init II SUPERVISED LEARNING Production—Discriminative and Generative Models—Linear Regression—Least Squares—Under-fitting—Over fitting—Cross didation—Lasso Regression—Classification—Logistic Regression—Gradient Linear Models—Support Vector Machines—Tree based Methods—Instance based Methods—K-Nearest Neighbours—Tree based Methods—Decision Trees—ID3—CART semble Methods—Random Forest—Evaluation of Classification Algorithms Init III UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING Production—Clustering Algorithms—K—Means—Hierarchical Clustering—Cluster Validity—Dimensionality Reduction—incipal Component Analysis—Recommendation Systems—EM algorithm. Reinforcement Learning—Elements—Modes and Learning—Temporal Difference Learning To the Probabilistic METHODS FOR LEARNING PROBABILISTIC METHODS FOR LEARNING—Probability Density Estimation—Sequence Models—arkov Models—Hidden Markov Models					3	0	0	3
machine learning To explore the different supervised learning techniques including ensemble methods To learn different aspects of unsupervised learning and reinforcement learning To learn the role of probabilistic methods for machine learning To learn the role of probabilistic methods for machine learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To understand the basic concepts of neural networks and deep learning To evaluation								
To explore the different supervised learning techniques including ensemble methods To learn different aspects of unsupervised learning and reinforcement learning To learn the role of probabilistic methods for machine learning To understand the basic concepts of neural networks and deep learning. INTRODUCTION AND MATHEMATICAL FOUNDATIONS To understand the basic concepts of neural networks and deep learning. INTRODUCTION AND MATHEMATICAL FOUNDATIONS 9 0 0 9 hat is Machine Learning? Need –History – Definitions – Applications - Advantages, Disadvantages & Challenges -Types o achine Learning Problems – Mathematical Foundations - Linear Algebra & Analytical Geometry -Probability and Statistics syesian Conditional Probability -Vector Calculus & Optimization - Decision Theory - Information theory Init I SUPERVISED LEARNING 9 0 0 5 Troduction – Discriminative and Generative Models -Linear Regression - Least Squares -Under-Fitting / Over fitting -Cross didation – Lasso Regression - Classification - Logistic Regression - Gradient Linear Models -Support Vector Machines - Street Methods -Instance based Methods - K-Nearest Neighbours - Tree based Methods –Decision Trees –ID3 – CART seemble Methods –Random Forest - Evaluation of Classification Algorithms Init II UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING 9 0 0 5 Troduction - Clustering Algorithms -K – Means – Hierarchical Clustering - Cluster Validity - Dimensionality Reduction incipal Component Analysis – Recommendation Systems - EM algorithm. Reinforcement Learning – Elements -Modes and Learning – Temporal Difference Learning Init IV PROBABILISTIC METHODS FOR LEARNING 9 0 0 5 Troduction - Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks - Probabilistic bedelling of Problems -Inference in Bayesian Belief Networks – Probability Density Estimation - Sequence Models – Arroy Models – Hidden Markoy Models	1			s of machine learning and ty	pes of p	roblem	is tackl	ed by
To learn different aspects of unsupervised learning and reinforcement learning To learn the role of probabilistic methods for machine learning To understand the basic concepts of neural networks and deep learning. INTRODUCTION AND MATHEMATICAL FOUNDATIONS Polat is Machine Learning? Need –History – Definitions – Applications - Advantages, Disadvantages & Challenges - Types of archine Learning Problems – Mathematical Foundations - Linear Algebra & Analytical Geometry - Probability and Statistics syesian Conditional Probability - Vector Calculus & Optimization - Decision Theory - Information theory Init I SUPERVISED LEARNING To duction – Discriminative and Generative Models - Linear Regression - Least Squares - Under-fitting / Over fitting - Cross didation – Lasso Regression- Classification - Logistic Regression- Gradient Linear Models - Support Vector Machines and Methods - Instance based Methods - K-Nearest Neighbours - Tree based Methods – Decision Trees – ID3 – CART is memble Methods – Random Forest - Evaluation of Classification Algorithms Init II UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING UNSUPERVISED LEARNING - Hierarchical Clustering - Cluster Validity - Dimensionality Reduction recipal Component Analysis – Recommendation Systems - EM algorithm. Reinforcement Learning – Elements - Models – High and the problems - Inference Learning Init IV PROBABILISTIC METHODS FOR LEARNING PROBABILISTIC METHODS FOR LEARNING Apairium Apriori - Bayesian Belief Networks - Probabilistic podelling of Problems - Inference in Bayesian Belief Networks – Probability Density Estimation - Sequence Models – arkov Models – Hidden Markov Models	2			aludina anaambla mathada				
To learn the role of probabilistic methods for machine learning To understand the basic concepts of neural networks and deep learning. INTRODUCTION AND MATHEMATICAL FOUNDATIONS Part is Machine Learning? Need—History—Definitions—Applications—Advantages, Disadvantages & Challenges—Types of achine Learning Problems—Mathematical Foundations—Linear Algebra & Analytical Geometry—Probability and Statistics system Conditional Probability—Vector Calculus & Optimization—Decision Theory—Information theory. Init II SUPERVISED LEARNING SUPERVISED LEARNING SUPERVISED LEARNING Output SUPERVI			1 0 1					
To understand the basic concepts of neural networks and deep learning.								
Init I INTRODUCTION AND MATHEMATICAL FOUNDATIONS 9 0 0 9			*					
hat is Machine Learning? Need –History – Definitions – Applications - Advantages, Disadvantages & Challenges -Types of achine Learning Problems – Mathematical Foundations - Linear Algebra & Analytical Geometry - Probability and Statistics by Existing Conditional Probability - Vector Calculus & Optimization - Decision Theory - Information theory Init II SUPERVISED LEARNING 9 0 0 9 Troduction-Discriminative and Generative Models -Linear Regression - Least Squares -Under-fitting / Over fitting -Cross didation – Lasso Regression- Classification - Logistic Regression- Gradient Linear Models -Support Vector Machines are Methods -Instance based Methods - K-Nearest Neighbours - Tree based Methods –Decision Trees –ID3 – CART is memble Methods –Random Forest - Evaluation of Classification Algorithms Unit III UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING 9 0 0 9 Troduction - Clustering Algorithms - K – Means – Hierarchical Clustering - Cluster Validity - Dimensionality Reduction incipal Component Analysis – Recommendation Systems - EM algorithm. Reinforcement Learning – Elements -Mode sed Learning – Temporal Difference Learning Unit IV PROBABILISTIC METHODS FOR LEARNING 9 0 0 9 Troduction -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks - Probabilistic odelling of Problems -Inference in Bayesian Belief Networks – Probability Density Estimation - Sequence Models – arkov Models – Hidden Markov Models								
achine Learning Problems — Mathematical Foundations - Linear Algebra & Analytical Geometry - Probability and Statistics ayesian Conditional Probability - Vector Calculus & Optimization - Decision Theory - Information theory Init II SUPERVISED LEARNING 9 0 0 9	Unit I	IN	TRODUCTION AND MATHEMATICAL FO	<u>UNDATIONS</u>	9	0	0	9
roduction-Discriminative and Generative Models -Linear Regression - Least Squares -Under-fitting / Over fitting -Cross didation — Lasso Regression- Classification - Logistic Regression- Gradient Linear Models -Support Vector Machines and Methods —Instance based Methods - K-Nearest Neighbours - Tree based Methods —Decision Trees —ID3 — CART Issemble Methods —Random Forest - Evaluation of Classification Algorithms Unit III UNSUPERVISED LEARNING AND REINFORCEMENT LEARNING 9 0 0 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	Machine Le	earning P	roblems – Mathematical Foundations - Linear Alg	ebra & Analytical Geometry	-Probal	oility ar		
Adidation — Lasso Regression- Classification - Logistic Regression- Gradient Linear Models -Support Vector Machines and Methods -Instance based Methods - K-Nearest Neighbours - Tree based Methods —Decision Trees —ID3 — CART is semble Methods —Random Forest - Evaluation of Classification Algorithms Unit III	Unit II	9	SUPERVISED LEARNING		9	0	0	9
troduction - Clustering Algorithms -K - Means - Hierarchical Clustering - Cluster Validity - Dimensionality Reduction incipal Component Analysis - Recommendation Systems - EM algorithm. Reinforcement Learning - Elements - Mode sed Learning - Temporal Difference Learning Unit IV PROBABILISTIC METHODS FOR LEARNING PROBABILISTIC METHODS FOR LEARNING 19 0 0 9 Troduction - Naïve Bayes Algorithm - Maximum Likelihood - Maximum Apriori - Bayesian Belief Networks - Probabilistic odelling of Problems - Inference in Bayesian Belief Networks - Probability Density Estimation - Sequence Models - arkov Models - Hidden Markov Models	Kernel Mer	thods -In:	stance based Methods - K-Nearest Neighbours -	Tree based Methods -Decis				
Incipal Component Analysis – Recommendation Systems - EM algorithm. Reinforcement Learning – Elements -Mode sed Learning – Temporal Difference Learning Unit IV PROBABILISTIC METHODS FOR LEARNING PROBABILISTIC METHODS FOR LEARNING PROBABILISTIC METHODS FOR LEARNING Production -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks -Probabilistic odelling of Problems -Inference in Bayesian Belief Networks – Probability Density Estimation - Sequence Models – arkov Models – Hidden Markov Models	Unit III	Ţ	UNSUPERVISED LEARNING AND REINFOR	RCEMENT LEARNING	9	0	0	9
Unit IV PROBABILISTIC METHODS FOR LEARNING 9 0 0 9 Irroduction -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks -Probabilistic odelling of Problems -Inference in Bayesian Belief Networks - Probability Density Estimation - Sequence Models - arkov Models - Hidden Markov Models								
troduction -Naïve Bayes Algorithm -Maximum Likelihood -Maximum Apriori -Bayesian Belief Networks -Probabilistic odelling of Problems -Inference in Bayesian Belief Networks - Probability Density Estimation - Sequence Models - arkov Models - Hidden Markov Models								
odelling of Problems -Inference in Bayesian Belief Networks – Probability Density Estimation - Sequence Models – arkov Models – Hidden Markov Models	Unit IV	I	PROBABILISTIC METHODS FOR LEARNIN	<u>G</u>	9	0	0	9
odelling of Problems -Inference in Bayesian Belief Networks – Probability Density Estimation - Sequence Models – arkov Models – Hidden Markov Models	Introduction	n -Naïve	Bayes Algorithm -Maximum Likelihood -Maximu	m Apriori -Bayesian Belief l	Network	s -Prob	abilisti	ic
								_
Init V NEURAL NETWORK AND DEEP LEARNING 9 0 0 9				-				
	Unit V		NEURAL NETWORK AND DEEP LEARNING	G	9	0	0	9
eural Networks – Biological Motivation- Perceptron – Multi-layer Perceptron – Feed Forward Network – Back Propagation	Neural Net	works – I	Biological Motivation- Perceptron – Multi-layer Po	erceptron – Feed Forward Ne	etwork -	- Back	Propag	ation-
ctivation and Loss Functions- Limitations of Machine Learning - Deep Learning- Convolution Neural Networks	Activation	and Los	s Functions- Limitations of Machine Learning	- Deep Learning- Convo	lution 1	Veural	Netwo	rks –
current Neural Networks – Use cases	Recurrent N	Neural Ne	tworks – Use cases					
Total(45L) =45 Periods					Total(4	45L) =4	15 Peri	ods

Text Boo	oks:
1.	Stephen Mars land, "Machine Learning: An Algorithmic Perspective", Chapman & Hall/CRC, 2nd Edition, 2014.
2.	Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
Reference	ee Books:
1.	Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.
2.	Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008
3.	Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006
4.	Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.
5.	Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012

E-Refere	nces:
1.	https://machinelearningmastery.com/
2.	https://ai.google/education/
3.	https://in.coursera.org/learn/machine-learning

	e Outcomes: empletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the mathematical foundation for solving ML problems.	L2
CO2	Apply various supervised learning technique to solve ML problem	L3
CO3	Apply various unsupervised and reinforcement learning technique to solve ML problems	L3
CO4	Understand various probabilistic methods of learning.	L3
CO5	Understand basic idea behind neural network and deep learning. p	L3

COs/POs	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	1	2	1	1						1	1	2	2	2
CO2	2	1	2	1	1						1	1	2	2	2
CO3	2	2	3	2	1						3	2	2	2	2
CO4	2	2	2	1	1						3	2	2	2	2
CO5	2	2	3	2	1						3	2	2	2	2
Avg	2	1.6	2.4	1.4	1						2.2	1.6	2	2	2
	•	3/2	2/1 - iı	ndicate	es strer	igth of	correl	ation (3-Higl	n,2- Med	lium,1-	Low)			

	ECPE605	MOD	ERN S	ENSORS AND	ITS APP	PLICATIONS		SEME	STER	VI
PRE	REQUIS	ITES				CATEGORY	PE	Cre	edit	3
						Hours/Week	L	Т	P	TH
						Hours/ week	3	0	0	3
Cour	se Objecti	ves:					I		1	<u> </u>
1	To know	the various stimuli the	at are to	be measured in re	eal life instr	rumentation.				
2	To select	the right process or p	henome	na on which the se	ensor shoul	d depend on				
3	Toa ware	of the various sensors	s availat	ole for measureme	ent and cont	trol applications.				
Unit	I	PROBLEM SOLV	VING				9	0	0	9
	nse to impu		nusoidal	l inputs. Environm	nental facto	aracteristics of sensors ars and reliability of sen		nd II or	der ser	sors -
Sensor	rs for mech	anical systems or med				celeration and force - fl			l el indic	_
pressu strictiv	re in fluids ve acceleror	s - stress in solids. T meters, potentio metri	chanical ypical s c sensor	sensors - Displace sensors - wire and rs, LVDT	ement - acc	celeration and force - fl in gauges, anemometer	ow of fluid	ls - leve lectric		cators agneto
pressu strictiv Unit	re in fluids ve acceleror	s - stress in solids. T meters, potentio metri THERMAL AND	chanical ypical s c sensor OPTIC	sensors - Displace sensors - wire and s, LVDT CAL SENSORS	ement - acc d film strai	in gauges, anemometer	ow of fluid es, piezo e	ls - leve lectric	and m	cators agneto
pressu strictiv Unit Therm thermi photo	re in fluids re acceleror III al sensors: stors – colo transistor, , Hallide ra	s - stress in solids. T meters, potentio metri THERMAL AND temperature – tempe or pyrometry. Optical	chanical sypical security of sensor OPTIC erature of sensors. Radia	sensors - Displaces ensors - wire and strain to the sensors - wire and strain to the strain to the sensors - wire and strain to the strain to the sensors - Displace - heat strain to the strain to th	ement - acc d film strai quantity. T – waveleng diation inte		ow of fluid s, piezo e gent situation pendent re	ls - leve lectric 0 on - thesistors	onermoo	eators agneto
Therm thermi photo based) Unit Magne	re in fluids re acceleror III al sensors: stors – colo transistor, , Hallide ra IV	s - stress in solids. T meters, potentio metri THERMAL AND temperature – tempe or pyrometry. Optical CCD, CMOS sensors diation detectors. MAGNETIC AND magnetic field, magn	chanical spical second option	sensors - Displaces sensors - wire and sensors - wire and sensors - wire and sensors - LVDT CAL SENSORS difference - heat sensors ight intensity - tion detectors: random de	ement - acc d film strai quantity. T – waveleng diation inte	Thermometers for different that color – light de	ow of fluid as, piezo e grent situation pendent re Gieger gronduction s	ls - leve lectric 0 on - the esistors Muller 0 quids.	onermoc, photo courted	cators agneto 9 couple odiode er (ga
Unit Thermichermichoto Dased) Unit Magne	re in fluids re acceleror III al sensors: stors – colo transistor, Hallide ra IV etic sensors: sensors: Inte	s - stress in solids. T meters, potentio metri THERMAL AND temperature – tempe or pyrometry. Optical CCD, CMOS sensors diation detectors. MAGNETIC AND magnetic field, magn	chanical spical second option	sensors - Displaces sensors - wire and sensors - call sensors - heat sensors - h	ement - acc d film strai quantity. T – waveleng diation inte	Thermometers for different and color – light detensity, particle counteres, Hall sensors, super co	yent situation of Gieger 9 rent situation of Gieger 9 renduction sees, piezo e	ls - leve lectric 0 on - the esistors Muller 0 quids.	onermoc, photo courted	cators agnet 9 couple odiode er (ga

Text	Books:
1.	Doebelin, "Measurement Systems: Application and Design", McGraw Hill Kogakusha Ltd,1983.
2.	Julian W. Gardner, Vijay K. Varadan, Osama O. Awadelkarim "Microsensors, MEMS and Smart Devices", New York: Wiley, 2001.
Refe	rence Books:
1.	Henry Bolte, "Sensors – A Comprehensive Sensors", John Wiley.
2.	Jocob Fraden," Handbook of Modern Sensors, Physics, Designs, and Applications", Springer,2014
3.	Manabendra Bhuyan," Intelligent Instrumentation Principles and Applications", CRC Press,2017
4.	Randy Frank," Understanding Smart Sensors", Second edition, Artech House, 2000.
E-Ref	Perences:
1.	https://onlinecourses.nptel.ac.in/noc22_ee50/preview
2.	https://www.youtube.com/watch?v=1uPTyjxZzyo
3.	https://nptel.ac.in/courses/115107122

	Outcomes: upletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Appreciate the operation of various measuring and control instruments which they encounter in their respective fields.	L2
CO2	Visualize the sensors and the measuring systems when they have to work in areas of interdisciplinary nature and also think of sensors and sensors systems when for a new situation they encounter in their career	L4
CO3	Identify and select the right process or phenomena on which the sensor should depend on.	L2
CO4	Know various stimuli that are to be measured in real life instrumentation.	L2
CO5	Apply all types sensor in various fields.	L3, L4

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	1	2											2		
CO2	2	2	1	1		2	1				3	1	3	2	
CO3	2	2	2	1			3				2		2		
CO4	3	2	3	2	3						1		1	2	
CO5	3	2	3		2	2	1				2	2	2		1
Avg	2.2	2	1.8	0.8	1	0.8	1				1.6	0.6	2	0.8	0.2
	•		3/2	2/1 - i	ndicate	es strer	ngth of	correl	ation (3-High	,2- Med	lium,1-	Low)		

22	ECPE60	RADAR COMMUNICATION		S	EMES	TER	VI					
PRE	REQUIS	ITES	CATEGORY	PE	Cre	dit	3					
			TT /XX/ 1	L	T	P	TH					
			Hours/Week	3	0	0 requence ver Noise 0 Filter Ba MIT) - to Tra 0 man-Pe 0 , adapti 0 ar Rece	3					
Cour	se Object	ives:										
1	To intro	luce the students about various types of radar and its applications.										
2	To enha	nce the knowledge on Doppler RADAR										
3	To enha	nce the knowledge on detection of RADAR signals.										
4	To enha	enhance the knowledge on CFAR.										
5	Develop	an ability to gain knowledge on radar transmitters and receivers										
U	nit I	I RADAR AND RADAR EQUATION 9 0 0										
Untrodu Digital Dopple Accura	nit II action to I MTI Procer Radare acy - Low-	ise Ratio-Probability Density Functions- Probabilities of Detection and Formation MTI AND PULSE DOPPLER RADAR Doppler and MTI Radar- Delay —Line Cancellers- Staggered Pulse Reportersing - Moving Target Detector - Limitations to MTI Performance - Metalogical With Radar —Mono pulse Tracking —Conical Scan and Sean Angle Tracking - Tracking in Range - Automatic Tracking with Surveil Threshold Detection Of Radar Targets	etition Frequencies TI from a Moving quential Lobing - lance Radars (ADT	Platfor Limita). 9	m (AM tions t	ter B IIT) - o Tra	Pulse acking					
		gies for multiple measurements, Introduction to optimal detection: all models for noise and target RCS in radar, threshold detection of radar		and I	Ney m	an-Pe	earson					
	nit IV	CONSTANT FALSE ALARM RATE DETECTORS	<u> </u>	9	0	0	9					
Overvi CFAR		ection theory, false alarm impact and sensitivity, CFAR detectors, Cell av	veraging CFAR, rob	oust CF	ARs, a	dapti	ve					
U	nit V	RADAR TRANSMITTERS AND RECEIVERS		9	0	0	9					
		near Beam Power Tubes - Solid State RF Power Sources - Magnetron - Ower - Receiver noise Figure - Super heterodyne Receiver - Duplexers and	Receiver Protector		ar Disp	olays.						

Text	Books:
1.	Mark A.Richards, "Fundamentals of Radar Signal Processing", Tata McGraw Hill, 1st Edition, 2005.
2.	Merrill I. Skolnik ," Introduction to Radar Systems", Tata McGraw-Hill (3rd Edition) 2008.
Refe	rence Books:
1.	Mark A.Richards, James A.Scheer, William A.Holm," Principles of Modern RADAR", Yes dee Publishing Pvt Ltd, 1st Edition, 2012.
2.	Nathan son, F.E, "Radar Design Principles, second edition, McGraw-Hill, New York, 1991.
3.	Steven M.Kay, "Fundamentals of Statistical Signal Processing", Vol II Detection Theory, Prentice Hall Inc, 1998.
4.	Peyton Z. Peebles:, "Radar Principles", John wiley, 2004.
E-Re	ferences:
1.	http://www.radioelectronics.com/info/data/semicond/semiconductor/semiconductor-materials-types-list.php
2.	http://911electronic.com/
3.	https://nptel.ac.in/courses/108105154

	Course Outcomes: Upon completion of this course, the students will be able to:								
CO1	Identify the concepts of radar measurements, radar functions and range equation.	L2							
CO2	Familiarize about MTI and pulse Doppler radar and detection of RADAR signals.	L2							
CO3	Analyze the principle behind, detecting the signals of radar communication.	L4							
CO4	Apply CFAR detector to improve the detection performance of Radar.	L3							
CO5	Knowledge in RADAR systems and analyze the signal to noise ratio in the radar system.	L5							

COs/POs	РО	РО	PO	РО	РО	РО	РО	PO	РО	PO	РО	РО	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		2	3	3	2						2		2	2	2
CO2		2	3	3	2						2		2	2	2
CO3		2	2	3	2						2		2	2	2
CO4		2	3	2	2						2		2	2	2
CO5		2	3	3	2						2		2	2	2
Avg		2	2.8	2.8	2						2		2	2	2
		3/2/1	- indic	cates s	trengt	th of c	orrela	tion (.	3-Hig	h,2- Me	dium,1	- Low	7)		

PREREQUISITE CATEGORY PE Credit 3	22E	CPE607	INTERNET OF THING	S		SEME	STER	VI			
Course Objectives: 1 To understand the vision of M2M to IOT. 2 To gain an understanding of IOT market perspective. 3 To acquire knowledge on IOT Technology Fundamentals and applications 4 To build small system using Raspberry Pi. Unit I M2M TO IOT - THE VISION 9 0 0 9 Introduction - From M2M to IOT- M2M towards IOT: M2M Communication - The global context - A use case example - Differing Characteristics. Unit I M2M TO IOT - A MARKET PERSPECTIVE 9 0 0 9 Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview - Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit II IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 IOT Enabling technologies - IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python -IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces - Programming - Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking - Environment - We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation - Introduction - Case study (Phase two) - Commercial building automation in the future.	PREREQUIS	SITE		CATEGORY	PE	Cred	it	3			
Course Objectives: 1 To understand the vision of M2M to IOT. 2 To gain an understanding of IOT market perspective. 3 To acquire knowledge on IOT Technology Fundamentals and applications 4 To build small system using Raspberry Pi. Unit I M2M TO IOT – THE VISION 9 0 0 9 Introduction - From M2M to IOT- M2M towards IOT: M2M Communication - The global context - A use case example – Differing Characteristics. Unit I M2M TO IOT – A MARKET PERSPECTIVE 9 0 0 9 Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview – Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit II IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 9 IOT Enabling technologies - IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python -IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces - Programming — Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection - Cities-Smart parking - Environment - We other monitoring system-Air pollution Monitoring-Forest Fire Detection - Agriculture - Smart irrigation. Commercial Building Automation - Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.				Hours/Week	L	Т	P	TH			
To understand the vision of M2M to IOT. 2 To gain an understanding of IOT market perspective. 3 To acquire knowledge on IOT Technology Fundamentals and applications 4 To build small system using Raspberry Pi. Unit I M2M TO IOT – THE VISION 9 0 0 9 Introduction - From M2M to IOT - M2M towards IOT: M2M Communication - The global context - A use case example – Differing Characteristics. Unit II M2M TO IOT – A MARKET PERSPECTIVE 9 0 0 9 Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview – Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit III IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 IOT Enabling technologies - IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python -IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces - Programming - Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking - Environment - We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation - Introduction - Case study (Phase one): Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.					3	0	0	3			
To gain an understanding of IOT market perspective. 3 To acquire knowledge on IOT Technology Fundamentals and applications 4 To build small system using Raspberry Pi. Unit I M2M TO IOT - THE VISION 9 0 0 9 Introduction - From M2M to IOT- M2M towards IOT: M2M Communication - The global context - A use case example - Differing Characteristics. Unit II M2M TO IOT - A MARKET PERSPECTIVE 9 0 0 9 Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview - Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit II IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 IOT Enabling technologies - IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python -IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces - Programming - Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking - Environment - We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation - Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.	Course Obj	ectives:			1		J.				
To build small system using Raspberry Pi. Unit I M2M TO IOT - THE VISION 9 0 0 9 Introduction - From M2M to IOT- M2M towards IOT: M2M Communication - The global context - A use case example - Differing Characteristics. Unit II M2M TO IOT - A MARKET PERSPECTIVE 9 0 0 9 Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview - Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit III IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 IOT Enabling technologies - IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python -IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces - Programming - Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking - Environment - We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation - Introduction - Case study (Phase one): Commercial building automation in the future.	1	To understand th	ne vision of M2M to IOT.								
To build small system using Raspberry Pi. Unit I M2M TO IOT - THE VISION 9 0 0 9	2	To gain an unde	rstanding of IOT market perspective.								
Unit I M2M TO IOT - THE VISION 9 0 0 9	3	To acquire know	vledge on IOT Technology Fundamentals and	applications							
Introduction - From M2M to IOT- M2M towards IOT: M2M Communication - The global context - A use case example — Differing Characteristics. Unit II	4	To build small s	ystem using Raspberry Pi.								
Unit II M2M TO IOT – A MARKET PERSPECTIVE 9 0 0 9 Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview – Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit III IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 IOT Enabling technologies - IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. 9 0 0 9 Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python -IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces - Programming - Other IOT devices - IOT Reference Model - Real World Design Constraints. 9 0 0 9 Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking - Environment - We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation - Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial bu	Unit I	M2M TO IO	T – THE VISION		9	0	0	9			
Unit II M2M TO IOT – A MARKET PERSPECTIVE 9 0 0 9 Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview – Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit III IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 IOT Enabling technologies - IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. 9 0 0 9 Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python -IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces - Programming - Other IOT devices - IOT Reference Model - Real World Design Constraints. 9 0 0 9 Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking - Environment - We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation - Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial bu	Introduction -	From M2M to 1	OT- M2M towards IOT: M2M Communica	tion - The global	context	- A use	case e	xample –			
Introduction - Some Definitions - M2M Value Chains - IOT Value Chains - An emerging industrial structure for IOT-International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview - Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit III								-			
International driven global value chain and global information monopolies - M2M to IOT-An Architectural Overview — Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit III	Unit II	M2M TO IO	T – A MARKET PERSPECTIVE		9	0	0	9			
Building an architecture - Main design principles and needed capabilities - An IOT architecture outline - Standards considerations. Unit III IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9											
Unit III IOT TECHNOLOGY FUNDAMENTALS 9 0 0 9 IOT Enabling technologies – IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python –IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces – Programming – Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment – We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.											
Unit III IOT TECHNOLOGY FUNDAMENTALS IOT Enabling technologies – IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS IOT Systems-Logical Design using Python –IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces – Programming – Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS INTO USE CASES AND APPLICATIONS IOT USE CASES AND AP	_		ain design principles and needed capabiliti	ies - An IOT arc	hitectur	e outline	e - Sta	ndards			
IOT Enabling technologies – IOT levels and deployment templates - Devices and gateways - Data management - Business processes in IOT - Everything as a Service (XaaS) - M2M and IOT Analytics. Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python –IOT Physical Devices and End Points- IOT Device - Raspberry Pi - Interfaces – Programming – Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment – We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.							0				
Unit IV BUILDING IOT WITH HARDWARE PLATFORMS 9 0 0 9 IOT Systems-Logical Design using Python –IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces – Programming – Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment – We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one): Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.						•	•	_			
Unit IVBUILDING IOT WITH HARDWARE PLATFORMS9009IOT Systems-Logical Design using Python –IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces – Programming – Other IOT devices - IOT Reference Model - Real World Design Constraints.9009Unit VIOT USE CASES AND APPLICATIONS9009Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment – We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.					- Data	manage	ment -	Business			
IOT Systems-Logical Design using Python –IOT Physical Devices and End Points- IOT Device - Raspberry Pi -Interfaces – Programming – Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment – We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.					0	Λ	0	0			
Programming – Other IOT devices - IOT Reference Model - Real World Design Constraints. Unit V IOT USE CASES AND APPLICATIONS 9 0 9						·					
Unit V IOT USE CASES AND APPLICATIONS 9 0 0 9 Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment – We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one): Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.					c - Itas	pocity 1	i -interi	accs –			
Home automation-Automatic lighting-Home intrusion detection- Cities-Smart parking – Environment – We other monitoring system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one): Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.				gii constraints.	9 0 0 9						
system-Air pollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigation. Commercial Building Automation – Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.				rt parking – Envir	onment	– We of	her mo	nitoring			
Introduction - Case study (Phase one) : Commercial building automation today - Case study (Phase two) - Commercial building automation in the future.								_			
automation in the future.											
		• ,	cone, . commercial contains automation toda	ij Sube staaj (i ii		, сони					
	untomation in	ine ruture.			т	otal(45T) -45 T	Poriode			

Text Book	s:											
1.	Jan Holler, Vlasios T siatsis, Catherine Mulligan, Stefan Aves and, Stamat is Karnouskos, David Boyle, "From											
	Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic											
	Press, 2014.											
2.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015											
Reference	Books:											
1.	Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to the smart grid and											
	building automation', John Wiley & Dons, 2012.											
2.	Francis da Costa, "Rethinking the Internet of Things: A Scalable Approach to Connecting											
	Everything", 1st Edition, A press Publications, 2013											
3.	HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2010.											
4.	Fabrice Theoleyr, Ai-Chun Pang, 'Internet of Things and M2M Communications', River Publishers,											
	2013.											

E-Referen	ces:
1.	https://nptel.ac.in/courses/106105166
2.	https://onlineitguru.com/IoT-online-training.html
3.	https://onlinecourses.nptel.ac.in/noc22_cs53/preview

0 0 0 0 0 0	Outcomes: Inpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the vision of IOT from a global context.	L2
CO2	Determine the Market perspective of IOT.	L1
CO3	Understand the IOT technology fundamentals.	L2
CO4	Build small system using Raspberry Pi.	L3
CO5	Analyse applications of IOT and case studies	L4

COs/POs	PO1	PO	PO	РО	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO3
		2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		1			2										
CO2	2	2	2	2	2							1	1		
CO3	2	2	2	2	2							1	1		
CO4	2	2	2	2	2						2	2	2		
CO5	2	2	2	2	2						2		2		2
Avg	1.6	1.8	1.6	1.6	2						0.8	0.8	1.2		0.4
		3/2/1 -	indic	ates s	trengt	h of c	orrela	tion (3-Hig	h,2- Me	dium,	l- Lov	w)		

22ECPE608 COMPUTERNETWORKS	SEM	ESTE	R VI		
PREREQUISITES	CATEGOR Y	PE	Cre	edit	C
Nil	Hours/Week	L	Т	P	T H
Course Objectives:					
1. To introduce the basic concept in modern data communication and compute					
2. To in traduce the students the functions of different layers and in-depth kno	<u> </u>				
3. To make students to get familiarized with different protocols and network l	• •				
4. To introduce the basic functions of trans port layer and congestion in network					
5. To understand the concepts of various network Applications and Data secur	<u> </u>	1			
Unit I NETWORK FUNDAMENTALS AND PHYSICAL LAY	ER	9	0	0	9
Components – networks – Topologies – The OSI reference model - layers and Physical Layer: Transmission Media – Guided media & unguided media - EIA 2 Unit II DATA LINK LAYER		9	0	0	9
	i d			•	_
Logical link control Functions: - Framing, Flow control, Error control: CRC, LI Random access, Controlled access, Channelization - Wired LANs: Ether Internetworking, Interconnection issues, Interconnection devices: - Repeaters, H	net IEEE 802.3, IEEE 802	2.4, an	d IE		
Unit III NETWORK LAYER		9	0	0	9
Switching-Circuit switching, packet switching, message switching. Internet pr VPN. Network Routing Algorithms - Unicast routing protocol: Distance Vector					
	_	_	0		
Unit IV TRANSPORT LAYER		9	0	U	9
Transport Services, Elements of Transport protocols, Connection man Transmission Control Protocol (TCP) – Congestion Control and Quality		m Pro	tocol	(UD	9
Transport Services, Elements of Transport protocols, Connection man-		m Pro	tocol	(UD	9
Transport Services, Elements of Transport protocols, Connection man Transmission Control Protocol (TCP) – Congestion Control and Quality	of services (QoS) – Integr	m Pro ated S	tocol ervic	(UD es	9 PP) –

rex	t Books:
1.	Behrouz A. Foruzan, "Data communication and Networking", TMH, 4th edition, 2014.
2.	James. F. Kurouse& W. Ross, "Computer Networking: A Top down Approach Featuring", Pearson, 2020.
Ref	erence Books:
1.	LarryL.Peterson&PeterS.Davie,"ComputerNetworks",HarcourtAsiaPvt.Ltd.,SecondEdition,2000.
2.	AndrewS.Tanenbaum, "ComputerNetworks", PHI, FourthEdition, 2003.
3.	An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education, 2002.
4.	AjitPal,"DataCommunicationandComputerNetworks",PHI,2014.
E-R	References:
1.	https://nptel.ac.in/courses/106105183
2.	https://www.mbit.edu.in/wp-content/uploads/2020/05/Computer-Networks-5th-Edition.pdf
3.	https://www.tutorialspoint.com/data_communication_computer_network/index.htm

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	:	Explain the basic concept in modern data communication and different level of layers in the protocol	L2			
CO2	:	Analyse the functions and services of data link layer	L4			
CO3	:	Categorize the functions and services of network layer	L2			
CO4	:	Examine the basic functions of transport layer and congestion in networks	L2			
CO5	:	Analyse the concepts of various network applications and data security	L4			

COs/POs	PO1	PO	PO	PO	PO	PO	PO	PO 8	PO	PO 10	PO	PO 12	PSO1	PSO2	PSO3
			3	4	3	6	/	0	9	10	11	12			
CO1	2	1	1		1								2		1
CO2	2	1	2		1								2	1	1
CO3	2	1	1										3	1	2
CO4	3	2	1		2								2		2
CO5	2	1	1		1								1	1	1
Avg	2.2	1.2	1.2		1								2	0.6	1.4
			3/2/1	- indic	ates st	rength	of cor	relatio	on (3-H	ligh,2- N	1edium	,1- Lo	w)		

22ECPF	2609	SOFTWARE DEFINED RADIO	SEM	ESTE	R VI		
PRERE(UISITES		CATEGORY	PE	Cro	edit	3
			Hours/Week	L	Т	P	T H
Nil				3	0	0	3
Course C	bjectives:						
		e evolving software defined radio techniques and their essential fu	nctionalities.				
2. To stu	dy the basic	c architecture and standard for software defined radio.					
3. To un	derstand the	e evolving cognitive radio techniques and their functionalities.					
4. To stu	dy the basic	c architecture and standard for cognitive radio.					
5. To ex	pose the stu	dent to evolving applications and next generation wireless networ	k.				
Unit I	INTRO	DUCTION TO SOFTWARE-DEFINED RADIO		9	0	0	9
	functions of	ARCHITECTURE f the software radio, basic SDR, hardware architecture, Comcomponent interfaces, interface topologies among plug and play recomposed in the software architecture.		9 ng reso	0 ources	0 s, sof	9 tware
Unit III	INTRO	DUCTION TO COGNITIVE RADIOS		9	0	0	9
		rare, cognitive techniques – position awareness, environment awareness are techniques.	areness in cognitive	radios,	optir	nizati	on of
Unit IV	COGN	ITIVE RADIO ARCHITECTURE		9	0	0	9
		orient, plan, decide and act phases, Organization, SDR vare Architectures, Overview of IEEE 802.22 standard for be					
Unit V	NEXT (GENERATION WIRELESS NETWORK		9	0	0	9
The XG N cross – lay		nitecture, spectrum sensing, spectrum management, spectrum mol	pility, spectrum shar	ing, up	per la	yer is	sues,
			Tota	al (451	L)= 4	5 Pe	riods

Text	Books:
1.	Joseph Mitola III,"Software Radio Architecture: Object-Oriented Approaches to Wireless System Engineering", John Wiley & Sons Ltd. 2000.
2.	Markus Dillinger, Kambiz Madani, Nancy Alonistioti, "Software Defined Radio", John Wiley, 2003.
Refer	rence Books:
1.	Kwang-Cheng Chen, Ramjee Prasad, — Cognitive Radio Networksl, John Wiley and Sons, 2009.
2.	Huseyin Arslan (Ed.), —Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, 2007.
3.	Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.
4.	Ian F. Akyildiz, Won – Yeol Lee, Mehmet C. Vuran, ShantidevMohanty, "Next generation / dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier Computer Networks, May 2006.

E-Re	E-References:						
1.	https://www.rcet.org.in/uploads/files/LectureNotes/ece/S7/cognitive%20radio/UNIT%201%20notes.pdf						
2.	https://www.rcet.org.in/uploads/files/LectureNotes/ece/S7/cognitive%20radio/UNIT%201%20notes.pdf						
3.	https://www.dsengg.ac.in/ece/EC6802%20Wireless%20Network.pdf						

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Gain knowledge on the design principles on software defined radio and cognitive radio						
CO2	An ability to make system-level decisions for software-defined radio technology and products	L3					
CO3	Gain knowledge and understanding of software defined radio architecture.	L1					
CO4	Apply the knowledge of advanced features of cognitive radio for real world applications	L3					
CO5	Knowledge and development methods for wireless Network	L4					

COs/POs	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	1		1	2				1					1		
CO2		1				2								2	
CO3	2			1									1		
CO4							2						2	1	1
CO5	2		1			1		2					1		
Avg	1	0.2	0.4	0.6		0.6	0.2	0.6					1	0.6	0.2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECPE610	HIGH SPEED NETWORKS		SE	MES	ΓER	VI			
PREREQUISIT	PREREQUISITES CATEGORY								
1 Commute	n Matricolles	Hours/Week	L	Т	P	ТН			
1. Compute	r Networks	Hours/ week	3	0	0	3			
Course Objectiv	ves:								
	d the packet switching, ATM and Frame relay networks.								
	techniques involved to support real-time traffic and congestion control	•							
	r with different levels of quality of service to different applications.								
Unit I INT	RODUCTION TO HIGH SPEED NETWORKS		9	0	0	9			
The need for a pr	otocol architecture - The TCP/IP protocol architecture - Internetwork	sing – Packet switch	ching no	etworl	cs – F	rame			
	Asynchronous transfer mode: ATM Protocol Architecture, ATM logic								
Categories, AAL -	- High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fibre Channel –	Wireless LANs: ap	plicatio	ns, re	quirei	ments			
 Architecture of 8 									
Unit II CO	INGESTION AND TRAFFIC MANAGEMENT		9	0	0	9			
Queuing Analysis	- Queuing Models - Single Server Queues - Effects of Congestion -C	ongestion Control	– Traffi	c Mar	nagem	ient –			
Congestion Contro	ol in Packet Switching Networks – Frame Relay Congestion Control.								
Unit III TCI	P AND ATM CONGESTION CONTROL		9	0	0	9			
TCP Flow contro	- TCP Congestion Control - Retransmission - Timer Management	z – Exponential R	ΓO bacl	k off	– KA	RN's			
Algorithm – Wind	low management - Performance of TCP over ATM - Traffic and Cor	gestion control in	ATM -	Requ	ireme	ents –			
	c Management Frame work, Traffic Control – ABR traffic Managem	ent – ABR rate co	ntrol, I	RM ce	ell for	mats,			
ABR Capacity allo	ocations – GFR traffic management.								
Unit IV INT	EGRATED AND DIFFERENTIATED SERVICES		9	0	0	9			
Integrated Service	tes Architecture – Approach, Components, Services – Queuing	Discipline: FQ, P	S, BRI	FQ, G	PS, V	WFQ			
_	Detection – Differentiated Services.								
Unit V PRO	OTOCOLS FOR QOS SUPPORT		9	0	0	9			
	nd Characteristics, Data Flow, RSVP operations, Protocol Mechan	isms – Multiproto	col La	bel S	witch	ing –			
	Stacking, Protocol details – RTP – Protocol Architecture, Data Transfe					C			
_			tal (45)	L)= 4	5 Per	riods			

Text	Books:
1.	Warland, Pravin Varaiya, "High performance communication networks", Second Edition, Jean Harcourt Asia Pvt. Ltd, 2001.
2.	William Stallings, "High speed networks and internets", Pearson Education, Second Edition, 2002.
Refe	rence Books:
1.	James F. Kurose, Keith W. Ross, "Computer Networking, A Top-Down Approach Featuring the Internet", Pearson Education, Third Edition, 2011
2.	IrvanPepelnjk, Jim Guichard, Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2, 2003.
3.	Abhijit S. Pandya, Ercan Sea, "ATM Technology for Broad Band Telecommunication Networks", CRC Press, New York, 2004.
4.	Kaven Pahlavan And Prashant Krishnamoorthy, "Principles Of Wireless Network", Prentice Hall Of India, 2010.

E-References:						
1.	http://freevideolectures.com/Course/2278/Data-Communication/30					
2.	http://nptel.ac.in/courses/106105082/30					
3.	https://nptel.ac.in/courses/106105183					

	e Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Compare ATM, Frame Relay and TCP/IP networks.	L4
CO2	Understand the concepts of queuing mechanism and congestion control techniques in packet switching and frame relay networks.	L2
CO3	Analyze the traffic management in TCP and ATM.	L4
CO4	Be familiar with the integrated and differentiated service architecture.	L1
CO5	Understand the protocols to support various levels of quality of service to different applications.	L2

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2		1	1	2	1					2		1	2	2
CO2	3		1	2	2	2							1	1	1
CO3	2		1	2	1	2							2	2	2
CO4	1		1	1	1	1							1	2	1
CO5	1		1	1	2	1					2		2	2	2
Avg	1.8		1	1.4	1.6	1.4					0.8		1.4	1.8	1.6
		3/2	2/1 - iı	ndicate	s strer	gth of	correl	ation (3-Higl	n,2- Med	lium,1-	Low)			

22ECPE611	ROBOTICS		SE	MES	STER V	VI
PREREQUISI	ΓES	CATEGORY	PE	Cr	edit	3
			L	T	P	ТН
		Hours/Week	3	0	0	3
Course Objecti	ves:					
To understar	nd the functions of the basic components of a Robot.					
	use of various types of End of Effectors and Sensors					
	nowledge in Robot Kinematics and Programming					
	oot safety issues and economics.					
Unit I FU		9	0	0	9	
	on - Robot Anatomy - Coordinate Systems, Work Envelope Types at ons, Speed of Motion, Pay Load- Robot Parts and their Functions-Need					Yaw,
	OBOT DRIVE SYSTEMS AND END EFFECTORS		9	0	0	9
	s-Hydraulic Drives-Mechanical Drives-Electrical Drives-D.C. Servo N	Actors Stopper Mc	tore A	v	v	
Hydraulic- Gripp	Applications and Comparison of all these Drives, End Effectors-Greens, Magnetic Grippers, Vacuum Grippers; Two Fingered and Threes; Selection and Design Considerations.					
Unit III SE	NSORS AND MACHINE VISION		9	0	0	9
LVDT, Resolver Approach, Time Compliance Sens Lighting Techniq	a sensor, Principles and Applications of the following types of sensors, Optical Encoders, pneumatic Position Sensors, Range Sensors Tr of Flight, Range Finders, Laser Range Meters, Touch Sensors ,binarors, Slip Sensors, Camera, Frame Grabber, Sensing and Digitizing Impues, Image Processing and Analysis-Data Reduction, Segmentation, Fications- Inspection, Identification, Visual Serving and Navigation.	iangulations Principry Sensors., Antilogage Data- Signal Co	ples, St g Senso onversi	ructur ors, W on, Im	ed, Lig rist Ser age Sto	ghting nsors, orage,
Unit IV RO	BOT KINEMATICS AND ROBOT PROGRAMMING		9	0	0	9
Forward Kinem	atics, Inverse Kinematics and Difference; Forward Kinematics	and Reverse Kine	ematics	of m	nanipul	ators
with Two, Thre and Forces-Mar Lead through Pr	e Degrees of Freedom (in 2 Dimension), Four Degrees of freedomipulator Dynamics, Trajectory Generator, Manipulator Mechanogramming, Robot programming Languages-VAL Programming Dynamics and simple Programs.	om (in 3 Dimensi nism Design-Der	on) Jac ivation	cobiai is and	ns, Vel d probl	ocity lems.
Unit V IM	PLEMENTATION AND ROBOT ECONOMICS		9	0	0	9
	lementation of Robots in Industries-Various Steps; Safety Consideration	ns for Robot Operat	tions - l	·	•	

Text	Books:
1.	Klafter R.D., Chmielewski T.A and Negin M., "Robotic Engineering - An Integrated Approach", Prentice Hall, 2003.
2.	Groover M.P., "Industrial Robotics -Technology Programming and Applications", McGraw Hill, 2001.
Refe	rence Books:
1.	Craig J.J., "Introduction to Robotics Mechanics and Control", Pearson Education, 2008
2.	Deb S.R., "Robotics Technology and Flexible Automation" Tata McGraw Hill Book Co., 1994.
3.	Koren Y., "Robotics for Engineers", Mc Graw Hill Book Co., 1992.
4.	Rajput R.K., "Robotics and Industrial Automation", S.Chand and Company, 2008

Total (45L)= 45 Periods

E-Re	ferences:
1.	https://nptel.ac.in/courses/112105249
2.	https://nptel.ac.in/courses/112105236
3.	https://www.youtube.com/watch?v=7Bahzh3rniw

Course Or Upon com	pletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	The students can able to apply the basic engineering knowledge for the design of robotics.	L1, L2
CO2	Apply the knowledge on robot drive systems and end effectors.	L2, L4
CO3	Have the knowledge on Sensors and meters	L2, L4
CO4	Able to apply the Robotic kinematic and VAL Programming	L4, L5
CO5	Implement the robotics on economics and safety.	L3, L6

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	1	2	1	1	1								1		
CO2	2	1	2	2	1		1					1	2	1	
CO3	2	2	1	2	2		1					1	2	2	2
CO4	2	3	2	3	3	1	2	1				2	2	2	
CO5	3	3	2	3	3	1	2	2	1	1	3	3	3	2	3
Avg	2	2.2	1.6	2.2	2	0.4	1.2	0.6	0.2	0.2	0.6	1.4	2	1.4	1
			3/2/	l - ind	icates	strengtl	n of co	rrelatio	n (3-H	igh,2- N	ledium,	1- Low)			

22]	ECPE6	12	VIRTUAL INSTRUMENTATION		SE	MES'	TER	VI
PRI	E-REQ	UISI	ΓE:	CATEGORY	PE	Cre	edit	3
1. A	nalog In	tegrat	ed Circuits.	II /33/1-	L	T	P	TH
				Hours/Week	3	0	0	3
Cou	ırse Ob	jectiv	ves:					
1.			graphical programming environment					
2.			lamentals of virtual instrumentation programming					
3.			mple applications using VI APHICAL PROGRAMMING ENVIRONMENT				,	
Uni		hical Programming	9	0	0	9		
	ing - Co		ebugging - Context Sensitive Help - Types of VI's - Creating Subs.	o-Vis - Concepts of	graphi	cal pro	ogran	ıming
Uni	t II	FUN	DAMENTALS OF VIRTUAL INSTRUMENTATION PR	OGRAMMING	9	0	0	9
type	s - Grap	hs an	ning - Controlling Program execution with structure - Composite d charts - Analog and digital - Shift registers and feedback nodes - Loutput operations.					
Uni	t III	DAT	TA ACQUISITION WITH LABVIEW		9	0	0	9
Mult	tiplexing ts - Co	g of a	Instrumentation - PC based data acquisition - Typical on board DAG nalog inputs - Single ended and differential inputs - Different strate of universal DAQ card - Use of timer - counter and analog outputs	gies for sampling of	of multi	- char	nnel a	nalog
Uni	t IV	CLU	STER OF INSTRUMENTS IN SYSTEM		9	0	0	9
			rnal instruments to a PC RS232C - RS-422 - RS485 and USB standa etion to bus protocols of MOD bus and CAN bus.	rds - IEEE488 stanc	lard -IS	O-OS	I mod	lel for
Uni	t V	ANA	ALYSIS TOOLS AND SIMPLE APPLICATION IN VI		9	0	0	9
Win	dowing -	- Prac	and manipulation - Anti-aliasing Filter - Frequency_ Domain Signal a tical Hints for Frequency Domain Analysis - Signal Processing Func - Filters: Control design and simulation - Simulation of a simple secon	tions - Time Doma				

Tex	t Books:
1.	Jovitha Jerome "Virtual Instrumentation using LabVIEW", PHI publication, 2010
2.	Jeffrey Travis Jim Kring "LabVIEW for Everyone", 3rd Edition, Pearson education.
Ref	erence Books:
1.	Robert H. Bishop "Learning with Lab-View", PreticeeHall,2009
2.	Sanjay Gupta "Virtual Instrumentation, LABVIEW", , TMH, NewDelhi, 2003
3.	Peter W Gofton,"Understanding Serial Communication", Sybes International, 2000
4.	S.Gupta and J P Gupta, "PC Interfacing for Data Acquisition and Process Control", Instrument Society of America, 1994.
E-R	eferences:
1.	http://www.ni.com/white-paper/4752/en/
2.	http://sine.ni.com/tacs/app/fp/p/ap/ov/lang/en/pg/1/sn/n5:selfpacedonline/
3.	https://www.virtualinstruments.com/training/

Total (45L)= 45 Periods

	e Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply structured programming concepts in developing VI programs and employ various debugging techniques.	L3
CO2	Create applications that uses plug in DAQ boards and built in analysis functions to process the data.	L3
CO3	Define and Describe acquisition methodologies.	L2
CO4	Design and analyze various applications using signal Processing tool kit	L4
CO5	Design and analyze various applications using control and simulation tool kit.	L4

COs/POs	PO	РО	РО	РО	PO	PO	PO	PO	РО	PO	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	3	2	3	3								1	2	1
CO2	3	2	2	3	2								2	2	2
CO3	3	2	2	2	3								1	2	2
CO4	3	1	2	1	2								1	3	2
CO5	3	2	2	1	2								1	3	3
Avg	3	2	2	2	2.4								1.2	2.4	2
			3/2/1	- indi	cates st	rength	of co	relatio	on (3-H	igh,2- M	Iedium,	1- Low	7)		

22E(CPE61	13 AUTOMOTIVE ELECTRONICS		SE	MES'	TER	VI					
PRE-	REQU	UISITE:	CATEGORY	PE	Cr	edit	3					
			Hours/Week	L	T	P	TH					
			Hours/ week	3	0	0	3					
Cours	se Obj	jectives:										
1. T	he stud	lent will come to know the various stimuli that are to be measured in rea	l life instrumentation									
2. H	le will b	be able to select the right process or phenomena on which the sensor sho	ould depend on									
3. A	3. Aware of the various sensors available for measurement and control applications.											
Unit l	I	INTRODUCTION		9	0	0	9					
		electronics in automobiles - emission laws - introduction to Euro I, E										
		harat Standards. Charging systems: Working and design of charging ci	rcuit diagram – Alter	rnators -	- requ	ireme	nts of					
startin		m – Starter motors and starter circuits.		T		1	1					
Unit l	TT	FUNDAMENTALS OF VIRTUAL INSTRUMENTATION		9	0	0	9					
		PROGRAMMING			Ů	Ů						
		ems: Ignition fundamentals - Electronic ignition systems - Programmed										
_		ark Plugs. Electronic fuel Control: Basics of combustion – Engine fuelli	ng and exhaust emiss	sions – I	Electro	onic c	ontrol					
		n – Petrol fuel injection – Diesel fuel injection.		T	1	1						
Unit l		SENSOR AND ACTUATORS		9	0	0	9					
		nciple and characteristics of Airflow rate, Engine crankshaft ang		ll effect								
		exhaust gas oxygen sensors - study of fuel injector, exhaust gas recircu	ılation actuators, ste	epper mo	otor a	ctuato	r, and					
		ated actuator.		T .			_					
Unit l		ENGINE CONTROL SYSTEMS		9	0	0	9					
		es for fuel control-engine control subsystems – ignition control method										
_	•	- block diagram of the engine management system. In vehicle networ	ks: CAN standard, fo	ormat of	CAN	stand	lard –					
		ystems in modern automobiles.		_		1 _						
Unit '		CHASSIS AND SAFETY SYSTEMS		9	0	0	9					
		trol system - Cruise control system - electronic control of automat										
		spension system – working of airbag and role of MEMS in airbag system	ns – centralized door	locking	syste	m – cl	ımate					
contro	ol of car	S.	/ID	4 1 (45	T \ /	15 D	• 1					
			To	otal (45	L)=4	is Pe	riods					

Text Books:			
1.	Tom Denton, "Automobile Electrical and Electronics Systems", Edward Arnold Publishers, 2000.		
2.	William B. Ribbens, "Understanding Automotive Electronics", 5th edition, Newnes Publishing, 2000.		
Reference Books:			
1.	Barry Hollembeak, "Automotive Electricity, Electronics & Computer Controls", Delmar Publishers, 2001.		
2.	"Fuel System and Emission controls", Check Chart Publication, 2000.		
3.	Ronald. K. Jurgon, "Automotive Electronics Handbook", McGraw-Hill, 1999.		
4.	S.Gupta and J P Gupta, "PC Interfacing for Data Acquisition and Process Control", Instrument Society of America,1994.		
E-Re	E-References:		
1.	https://nptel.ac.in/courses/107106088		
2.	https://www.youtube.com/watch?v=2losZDDqctU		
3.	https://www.renesas.com/in/en/application/automotive/chassis-safety		

Course Outcomes: Upon completion of this course, the students will be able to		Bloom's Taxonomy Mapped
CO1	Know the importance of emission standards in automobiles	L2
CO2	Understand the electronic fuel injection/ignition components and their function	L3

CO3	Choose and use sensors and equipment for measuring mechanical quantities, temperature and appropriate actuators.	L3
CO4	Diagnose electronic engine control systems problems with appropriate diagnostic tools.	L3
CO5	Understand the safety measures in chassis and vehicle.	L3

1 2) PC	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
3	1	3	3	3	2				3	3	3		2
3	2	3	3	3	2				3	3	3		2
3	3	3	3	3	2				3	3	3		2
3	2	3	3	3	2				2	3	3		2
3	2	3	3	3	2				3	3	3		2
3	2	3	3	3	2				2.8	3	3		2
	3 3 3 3 3	3 1 3 2 3 3 3 2 3 2 3 2	3 1 3 3 2 3 3 3 3 3 2 3 3 2 3 3 2 3 3 2 3	3 1 3 3 3 2 3 3 3 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3	3 1 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3 3	3 1 3 3 3 2 3 2 3 3 3 2 3 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2	3 1 3 3 3 2 3 2 3 3 3 2 3 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2	3 1 3 3 3 2 3 2 3 3 3 2 3 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2	3 1 3 3 2 3 2 3 3 3 2 3 3 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 2 3 2 3 3 3 2 3 2 3 3 3 2	3 1 3 3 2 3 3 2 3 3 2 3 3 3 3 3 2 3 3 2 3 3 2 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 2 3 2 3 3 2 2 3 2 3 3 2 2	3 1 3 3 2 3 3 3 2 3 3 2 3 3 3 3 3 3 2 3 3 3 2 3 3 2 2 3 3 2 3 3 2 3 3 3 2 3 3 2 3 3	3 1 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3	3 1 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 2 2 3 3 3 2 3 3 2 3 3 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3

22E	CPE6	14	EMBEDDED C		SEN	1EST	ER V	VII
PREREQU	ISITI	E		CATEGORY	PE	Cr	edit	3
1. C Program	mming	5			L	Т	P	TH
				Hours/Week	3	0	0	3
						Ů	ŭ	
Course Ob	•							
1			led programs using the C programming language.					
2			nd build skills in writing circuit and assembly-level c	ode.				
3	To i		ledge on programming for real time problems.					
Unit I			CTION TO EMBEDDED SYSTEMS		9	0	0	9
			or Embedded Systems-Difference between C and					
			- Develop embedded software. 8051 microcon		external	inter	face-	Reset
requirements	- Cloc	k-Memory-I	O pins and timers- Interrupts-Serial Interface & Pow	er Consumption.				
Unit II			ED PROGRAMMING		9	0	0	9
			il software and loading the project-Configuring the					
			ogram - Aside: Building the hardware - Reading s					
_			ple: Reading and writing bytes - bits- The need f	or pull-up resistors – l	Example	es: De	aling	with
			inputs- counting goats					
Unit II			ME PROGRAMMING		9	0	0	9
			vith C - The Project Header (Main.h)- The port hea					
			Restructuring the goat-counting example-Further exa					
			0 and Timer 1- Example: Generating a precise 50	ms delay- Creating a	portabl	e hard	lware	delay-
			lware timeouts		1			
Unit IV		EMBEDD			9	0	0	9
			ng system-Basis of a simple embedded OS- Intro					
			es - Important design constraints when using sEO					
			- Introduction - Implementing a multi-state system (ncing	and
			enting a multi-state system (Input / Timed) - Example	e: Controller for a wash	ning mad	hine.		
Unit V			CE AND CASE STUDY		9	0	0	9
			ction - RS-232- basic RS-232 protocol - Asynchr					
			ecture - Using the on-chip UART for RS-232 c		ory-Exa	mple-	Serial	menu
architecture-l	Examp	le-Data acq	nisition and Remote – control robot. Case Study: Intr					
					Total(4	5L) = 4	5 Per	iods

Text Book	s:							
1.	Michael J.Pont," Embedded C", Pearson Education, 2008.							
2.	Stephen Oualline, "Bare Metal C Embedded Programming for the Real World", No Starch Press,2022							
Reference	Books:							
1.	Mark Siegesmund, "Embedded C Programming Techniques and Applications of C and PIC MCUS", Elsevier Science, 2014.							
2.	Michael Barr," Embedded C Coding Standard", Create Space Independent Publishing Platform, 2018.							
3.	Michael Barr, Anthony Massa, "Programming Embedded Systems With C and GNU Development Tools", O'Reilly Media, 2006.							
4.	LyLa B. Das, "Embedded Systems: An Integrated Approach", Pearson Education India, 2012.							
E-Referen	ces:							
1.	https://www.cranesvarsity.com/courses/embedded-c-course/							
2.	https://www.udemy.com/course/embedded-c-programming-for-embedded-systems/							

Course Outco Upon completi	mes: on of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand basics of embedded systems and 8051 microcontroller	L2
CO2	Develop basic embedded programs	L3
CO3	Develop advanced embedded programs	L3
CO4	Relate and write programs for embedded Operating System	L1
CO5	Analyse the case study problems	L4

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1		1			2										
CO2	2	2	2	2	2							1	1		
CO3	2	2	2	2	2							1	1		
CO4	2	2	2	2	2						2	2	2		
CO5	2	2	2	2	2						2		2		2
Avg	1.6	1.8	1.6	1.6	2						0.8	0.8	1.2		0.4
			1.6	1.6	2			11	-ti (2				1.2		

3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)

22ECPE	615 VLSI PHYSICAL DE	ESIGN	SE	EMES	TER	SEMESTER VI					
PRE-REC	QUISITE:	CATEGORY	PE	Cre	edit	3					
1. VLSI des	sign		L	Т	P	TH					
1.		Hours/Week	3	0	0	3					
VLSI desig											
Course O	-	· Fl 1 · Dl	1 D	•							
	stand the concepts of Physical Design Process such as partition	<u> </u>		ing.							
	ss the concepts of design optimization algorithms and their ap	1									
	stand the concepts of simulation and synthesis in VLSI Des	ign Automation \Box Formulate CAI	desig	n prob	lems	using					
	hmic methods.		1		1	1					
Unit I	INTRODUCTION TO VLSI DESIGN AUTOMA	FION TOOLS	9	0	0	9					
	n automation tools- algorithms and system design. Structura n methods. Design management tools.	ll and logic design. Transistor level	design	ı. Lay	out de	sign.					
Unit II	LAYOUT COMPACTION, PLACEMENT AND	PARTITIONING	9	0	0	9					
Algorithms	npaction, placement and routing. Design rules, symbolic la for constrained graph compaction. Circuit representate algorithms.			ulation ment							
Unit III	FLOOR PLANNING AND ROUTING		9	0	0	Λ					
	ning and routing- floor planning concepts. Shape functions atting, global routing and its algorithms.	and floor planning sizing. Loca	l routi	ng. Ar	ea ro	9					
Unit IV	SIMULATION AND LOGIC SYNTHESIS AND V	VERIFICATION	9	0	0						
Simulation	and logic synthesis- gate level and switch level model COBDD principles, implementation, construction and manipu	ing and simulation. Introduction	_	Ū	v	iting.					
Simulation	and logic synthesis- gate level and switch level model	ing and simulation. Introduction	_	Ū	v	iting.					
Simulation synthesis. R Unit V High-level	and logic synthesis- gate level and switch level model COBDD principles, implementation, construction and manipu	ing and simulation. Introduction lation. Two level logic synthesis. Internal representation of input	n to co	mbinat	tional 0	9 logic					

Tex	t Books:
1.	S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley (India), 2006.
2.	N.A.Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer, 2012.
Ref	erence Books:
1.	S.M. Sait, H. Youssef, "VLSI Physical Design Automation", Cambridge India, 2010.
2.	M.Sarrafzadeh, "Introduction to VLSI Physical Design", McGraw Hill (IE), 1996.
3.	Giovanni De Micheli, "Synthesis and Optimization of Digital Circuits", McGraw Hill, 2017
4.	Andrew B. Kahng and Jens Lienig "VLSI Physical Design: From Graph Partitioning to Timing Closure", Springer, 2011
E-R	eferences:
1.	https://nptel.ac.in/courses/106105161
2.	https://www.vlsi-expert.com/p/physical-design.html
3.	https://www.academia.edu/36687882/VLSI Design smd154 Physical design back end

	Outcomes: mpletion of this course, the students will be able to:	Bloom's Taxonomy Mapped					
CO1							
CO2	Solve the performance issues in circuit layout.	L3					
CO3	Analyze physical design problems and Employ appropriate automation algorithms for partitioning, floor planning, placement and routing	L4					
CO4	Decompose large mapping problem into pieces, including logic optimization with partitioning, placement and routing	L3					
CO5	Students are able to analyze circuits using both analytical and CAD tools.	L3					

COs/POs	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	1	1	1	1									1	1	
CO2	2	2	1	1									1		
CO3	2	2	1	1									1		
CO4	1	1	1	1		1							1	1	
CO5	3	3	1	1	3	1							1	2	3
Avg	1.8	1.8	1	1	0.6	0.4							1	0.8	0.6
	•	3/	$\frac{7}{2/1}$ - i	ndicate	es stren	gth of	correla	tion (3	-High,	2- Mediu	m,1- Lo	w)			

22	ECPE616	RF&EMI/EMC TESTING		SE	MES	STER	VI
PR	E-REQUI	SITE	CATEGORY	PE	Cr	edit	3
			Hours/Week	L	T	P	TH
1.	Physics f	For electromagnetism	nours/ week	3	0	0	3
Co	urse Obje						
1.	To know	the RF equipment's needed for testing.					
2.		n the concepts of EMI and EMC in electrical circuits and their character	ristics.				
3.		uce the importance of measuring equipment's.					
4.		the knowledge on grounding and shielding measures and design aspect	S.				
5.		e basic concepts of standards and regulations RF EQUIPMENT FOR MEASUREMENT AND ANTENNA		1		I	
Un			9	0	0	9	
-		MEASUREMENT	D' '1 M				1
		nalyzer- Principle, Measurement procedure, Network Analyz					
		Antenna Measurement: Reflection coefficient, Return loss of		-			
		l Network Analyzer, Gain Measurement, Radiation pattern me	asurement in both	maoo	r and	ı Ane	cnoic
	mber, Tes			I -		I .	1 -
		EMC FUNDAMENTALS		9	0	0	9
		EMI and EMC, Sources and Simulators, Propagation Methods, Basic A	1	stem E	iviror	nment,	cross
		d coupling, EM coupling in Far field, EM topology and grounding, Filt			-		
		CMI FROM APPARATUS, CIRCUITS AND OPEN AREA T		9	0	0	9
		tic emissions, noise from relays and switches, nonlinearities in ci					
		oply lines, electromagnetic interference. Open area test sites	and measurements	s, ope	n-are	a test	site,
		te attenuation, antenna factor measurement.		1 -		1 -	1 -
		RADIATED AND CONDUCTED INTERFERENCE MEASU		9	0	0	9
		amber, TEM cell, giga-Hertz TEM Cell, comparison of test					
		ages, conducted EM noise on power lines, conducted EMI from	equipment, immun	ity to	cond	ucted	EMI,
det	ectors and	measurements.					
		CMC STANDARDS		9	0	0	9
		MC Standards, Radiated and Conducted Emission (RE/CE) Standards	s, Radiated and Cond	lucted 1	lmmu	nity (I	RI/CI)
Sta	ndards, Elec	etrostatic Discharge (ESD) Standards.					
			To	tal (45	5L)=	45 Pe	riods

Text	Books:
1.	IET Electrical Measurement Series, "Microwave Measurements" 3rd Edition.
2.	Henry W. Ott, "Electromagnetic Compatibility Engineering", John Wiley & Sons, 2009.
Refe	erence Books:
1.	V.P. Kodali, Engineering Electromagnetic Compatibility, 2/e, Wiley-IEEE Press, 2001.
2.	Dipak L. Sengupta and Valdis V. Liepa,"Applied Electromagnetics and Electromagnetic Compatibility", John Wiley & Sons.
3.	C. R. Paul, Introduction to Electromagnetic Compatibility, John Wiley and Sons, 2013.
4.	EMI/EMC Tesing, Society of Applied Microwave Electronics Engineering and Research
E-I	References:
1.	http://edocs.soco.agilent.com
2.	https://archive.nptel.ac.in/courses/108/106/108106138/
3.	https://courseware.cutm.ac.in/courses/electromagnetic-compatibility/

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Explain the basics of RF measurement and Experience testing of RF components.	L4					
CO2	Find the source of Electromagnetic interference.	L4					
CO3	Predict the proper grounding, Shield and safety equipment's.	L3					
CO4	Analyze the test conditions for the EUT.	L4					
CO5	Explain the measurements with help of testing procedures and explain the standards for EMI/EMC.	L2					

COs/POs	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1		2	3	3	3						2		3	2	3
CO2		2	3	3	2						2		3	2	3
CO3		2	3	2	3						2		2	2	2
CO4		2	2	3	3						2		2	2	2
CO5		2	3	3	3						2		3	2	3
Avg		2	2.8	2.8	2.8						2		2.6	2	2.6
		3,	/2/1 -	indicat	es stre	ngth of	correl	ation (3-High	,2- Medi	ium,1- I	Low)			

	MULTIMEDIA COMPRESSION AND COMMUNICATECHNIQUES	ATION	SEM	1EST	TER	VIII
PRE-REQUIS	ITE	CATEGOR Y	PE	Cro	edit	3
1.Basic mathen	natical analysis skills and digital modulation techniques.	Hours/Week	L	Т	P	T H
		Hours/ Week	3	0	0	3
Course Object	ives:					
	ght the features of data redundancy and various compression techniques inv	olved.				
2. To und	lerstand the various challenges involved in text and audio compression.					
	part knowledge on various image and video compression techniques.					
	NTRODUCTION AND TEXT COMPRESSION		9	0	0	9
Compression – 1	verview of information theory - Redundancy - Compression Technic Measures of performance - Text compression: Shannon Fano coding - iques - LZW family algorithms - Entropy measures of performance - Qual	Huffman coding				
Unit II A	AUDIO COMPRESSION		9	0	0	9
coding: G.722 -	ectral masking, Temporal masking, and Psychoacoustic model - Basic su Application to audio coding: MPEG audio - Progressive encoding for nniques—Vocoders.					
Unit III I	MAGE COMPRESSION AND VIDEO COMPRESSION		9	0	0	9
	Line Constant The MDEC 2 M to Constant H 262 TELL T.D.					
	Video Standard - The MPEG-2 Video Standard: H.262 - ITU-T Recommend MULTIMEDIA COMMUNICATIONS	dation H.263.	9	0	0	9
Unit IV Note that Introduction – Multimedia application and	MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M	I – Broadband m	ultiserv ainmer	vice r	netwo	rks - ons -
Unit IV M Introduction – Multimedia appl Application and Application QoS	MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M	I – Broadband m	ultiserv ainmer	vice r	netwo	rks -
Unit IV Introduction – Multimedia appl Application and Application QoS Unit V Introduction – Finetworks - Packet browsing - Elect	MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M.	I – Broadband me internet – Entert ultipoint conferen personal commun oplications over the	ultiservainmer cing – 9 ication is interested in the interested in the second in the	vice r nt app Netw 0 s: Cin	onetwork Cork Cork Cork Cork Cork Cork Cork C	rks - ons - ooS - 9 mode
Unit IV Introduction – Multimedia appl Application and Application QoS Unit V Introduction – Finetworks - Packet browsing - Elect	MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to interest switched networks - Electronic mail - Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive approach in the communication in the communicati	I – Broadband me internet – Entertultipoint conferen personal commun pplications over the	ultiservainmer cing – 9 ication is interested in the interested in the second in the	vice r nt app Netw 0 s: Cir net: In	olication of the control of the cont	rks - ons -
Unit IV Introduction – Multimedia appl Application and Application QoS Unit V Introduction – Finetworks - Packet browsing - Elect	MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to interest switched networks - Electronic mail - Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive approach in the communication in the communicati	I – Broadband me internet – Entertultipoint conferen personal commun pplications over the	ultiservainmer cing – 9 ication le internatainme	vice r nt app Netw 0 s: Cir net: In	olication of the control of the cont	rks - ons -
Unit IV MIntroduction – Multimedia appl Application and Application QoS Unit V SIntroduction – Finetworks - Packet browsing - Elect	MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to interest switched networks - Electronic mail - Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive approach in the communication in the communicati	I – Broadband me internet – Entertultipoint conferen personal commun pplications over the	ultiservainmer cing – 9 ication le internatainme	vice r nt app Netw 0 s: Cir net: In	olication of the control of the cont	rks - ons -
Unit IV M Introduction – M Multimedia appl Application QoS Unit V S Introduction – F networks - Packe browsing- Elect Movie/Video on Text Books:	MULTIMEDIA COMMUNICATIONS Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to interest switched networks - Electronic mail - Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards relating to interactive approach in the communication in the communicati	I — Broadband me internet — Entertultipoint conferen personal commun pplications over thandards for enter	ultiservainmer cing – 9 ication le internatainme	vice r nt app Netw 0 s: Cir net: In	olication of the control of the cont	rks - ons -
Unit IV M Introduction – M Multimedia appl Application and Application QoS Unit V S Introduction – F networks - Packe browsing - Elect Movie/Video on Text Books: 1. SayoodK	Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to interest switched networks - Electronic mail - Standards relating to interactive apronic commerce - Intermediate systems - Java and JavaScript – Stademand - Interactive television.	I — Broadband me internet — Entertultipoint conferen personal commun oplications over the indards for enter Tota 2006.	ultiservainmer cing – 9 ication e internatainme 1 (45L	vice rate app Netw O s: Cinnet: Int app 1 = 4	ork C ork C orcuit inform oplicate 5 Per	rks - ons - OoS - 9 mode ations
Unit IV M Introduction - M Multimedia appl Application and Application QoS Unit V S Introduction - F networks - Packe browsing - Elect Movie/Video on Text Books: 1. SayoodK 2. Fred Hall	Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to interest switched networks - Electronic mail - Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards - Interactive television.	I — Broadband me internet — Entertultipoint conferen personal commun oplications over the indards for enter Tota 2006.	ultiservainmer cing – 9 ication e internatainme 1 (45L	vice rate app Netw O s: Cinnet: Int app 1 = 4	ork C ork C orcuit inform oplicate 5 Per	rks - ons - OoS - 9 mode ations
Unit IV Introduction - Multimedia appl Application and Application QoS Unit V S Introduction - F networks - Packe browsing - Elect Movie/Video on Text Books: 1. SayoodK 2. Fred Hall	Multimedia networks: Telephone – Data – Broadcast television – ISDN ications: Interpersonal communications – Interactive applications over the networking terminology: Media – Communication modes – Network – M. STANDARDS FOR MULTIMEDIA COMMUNICATIONS Reference models: TCP/IP- Protocol basics – Standards relating to interest switched networks - Electronic mail - Standards relating to interactive appronic commerce - Intermediate systems - Java and JavaScript – Standards - Interactive television.	I — Broadband me internet — Entertultipoint conferen personal commun oplications over the indards for enter Tota 2006.	ultiservainmer cing – 9 ication e internatainme 1 (45L	vice rate app Netw O s: Cinnet: Int app 1 = 4	ork C ork C orcuit inform oplicate 5 Per	rks - ons - OoS - 9 mode ations

E-Re	ferences:
1.	http://freevideolectures.com/Course/2278/Data-Communication/30
2.	http://nptel.ac.in/courses/106105082/30

Peter D. Johnson Jr., Greg A. Harris, D.C. Hankerson, "Introduction to Information Theory and Data Compression", 2nd Edition, Chapman and Hall/CRC, February 26, 2003.

Jan Vozer, —Video compression for multimedial, AP 83rofess, New York, 1995

3.

4.

3. <a href="https://www.google.co.in/books/edition/Multimedia_Communications_Applications_N/g_1ECYMqrVwC?hl=en&gbpv=1&dq=Fred+Halsall,+%E2%80%95Multimedia+communication-+Applications,+Networks,+Protocols+and+Standards%E2%80%96,+Pearson+education,+2007+pdf+download&printsec=frontcover

ontcover

	e Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To understand different coding techniques and apply various algorithms for compression.	L2
CO2	To understand the quality and performance of various text and audio compression algorithms.	L2
CO3	Apply various text and video compression algorithms for practical applications.	L3
CO4	Apply the compression concepts in multimedia communication.	L3
CO5	Able to configure multimedia communication network.	L4

Os/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	1	1	3	2								3	1	2
CO2	3	2	1	3	1								3	1	2
CO3	3	2	1	2	2								3	2	1
CO4	2	2	2	3	1								3	1	1
CO5	2	2	1	3	1								3	2	2
Avg	2.4	1.8	1.2	2.8	1.4								3	1.4	1.6
			3/2/1	- indi	cates s	trength	of co	relatio	n (3-H	igh,2- M	ledium,	1- Low)		

22ECPE802 WIRELESS SENSOR NETWORKS	SEM	EST	ER V	/III
PRE-REQUISITE CATEGORY	PE	Cre	edit	3
1. Wireless networks Hours/Week	L	T	P	TH
Hours/ Week	3	0	0	3
Course Objectives:				
1. Learn fundamental of Ad hoc network and architecture				
2. Understand the MAC and routing protocols.				
3. Have an in-depth knowledge on QoS, security and sensor network platforms				1
Unit I ROUTING PROTOCOLS Elements of Ad hoc Wireless Networks, Issues in Ad hoc wireless networks, Example commercial applications	9	0	0	9
Table Driven Routing Protocols – Destination Sequenced Distance Vector (DSDV), On–Demand Routing properties of Demand Distance Vector Routing (AODV).	rotocol	ls –A	d hoc	On–
Unit II ARCHITECTURES OF WSN WSN application examples, Types of applications, Challenges for Wireless Sensor Networks, Enabling Tech	9	0	0	9
Sensor Networks, Single-Node Architecture: Hardware Components, Energy Consumption of Sensor Nodes, execution environments Network Architecture: Sensor Network Scenarios, Optimization goals and figures of merit, Design princip interfaces of WSNs, gateway concepts.	•			
Unit III MAC PROTOCOLS AND ROUTING PROTOCOLS	9	0	0	9
Image compression: Predictive techniques – PCM – DPCM - DM - Transform coding - Introduction to JPEC standards - Study of EZW. Video compression: Video signal representation – ITU-T Recommendation H.261 – The MPEG-1 Video Standard - The MPEG-2 Video Standard: H.262 - ITU-T Recommendation H.263.				
Unit IV QUALITY OF SERVICE AND ADVANCED APPLICATION SUPPORT	9	0	0	9
Quality of Service: Coverage and deployment, Reliable data transport, Single packet delivery, Block delivery, orate control - Advanced application support: Advanced in-network processing, Security and Application-specific			contro	ol and
Unit V SENSOR NETWORK PLATFORMS AND TOOLS	9	0	0	9
Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms – Tiny Of Node-level Simulators – NS2 and its extension to sensor networks, COOJA, TOSSIM, Programming beyond in centric programming.				

Text	Books:
1.	C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education – 2008
2.	Holger Karl and Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2007.
Refe	rence Books:
1.	Feng Zhao and Leonides Guibas, "Wireless sensor networks ", Elsevier publication - 2004.
2.	Charles E. Perkins, —Ad Hoc Networking, Addison Wesley, 2000.
3.	William Stallings, "Wireless Communications and Networks ", Pearson Education – 2004
4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks, Elsevier, 2002, 394 - 422.

E-Re	E-References:									
1.	https://nptel.ac.in/courses/106105183									
2.	https://nptel.ac.in/courses/106105183									

2	
1 1.	https://archive.nptel.ac.in/courses/106/105/106105160/
٠.	1 https://archive.hbtef.ac.in/courses/100/103/100103/100/

	Course Outcomes: Upon completion of this course, the students will be able to								
CO1	1 Know the basics of Ad hoc networks and Wireless Sensor Networks								
CO2	Have a knowledge on architecture of Wireless Sensor Networks								
CO3	CO3 Apply the knowledge to identify MAC and routing protocols								
CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	L2							
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	L1							

COs/PO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2				3	3	3		2
CO2	3	3	2	3	3	3	2				3	3	3		2
CO3	3	3	3	3	3	3	2				3	3	3		2
CO4	3	3	2	3	3	3	2				2	3	3		2
CO5	3	3	2	3	3	3	2				3	3	3		2
Avg	3	3	2	3	3	3	2				2.8	3	3		2
	•	•	3	/2/1 i	ndicate	ac etrai	agth of	correl	ation (3 High	2- Med	ium 1	(w)		

22ECPE803	TELECOMMUNICATION AND SWITCHING NET	WORKS	SEN	ΓER	VIII			
PRE-REQUISI	TE	CATEGORY	PE	Cre	edit	3		
1. Digital comm	unication	/	L	TH				
<i>6</i>		Hours/Week	3	0	0	3		
Course Objecti	ves:							
	stand the fundamentals and application of telecommunication networks.							
	stand and design Modern digital telecommunication switching and netwo	<u>rks.</u>						
	rstand recent topics like switching systems, time division switching s	ystems, ISDN, vo	ice dat	a inte	gratic	n and		
	ce of telephone traffic analysis and telephone networks.		1					
	IULTIPLEXING		9	0	0	9		
Transmission, As	tems, FDM Multiplexing and modulation, The Introduction to digits, Dignehronous and synchronous transmission, Line Coding, Binary N-Zero erformance Time Division Multiplexing, Time Division Multiplex Loops	Substitution, Digi						
	IGITAL SWITCHING		9	0	0	9		
	ons, Space Division Switching, Time Division Switching, two-dime ESS Toll Switch, Digital Cross-Connect Systems, Digital Switching in ar							
Unit III	NETWORK SYNCHRONIZATION CONTROL AND MANA	GEMENT	9	0	0	9		
	Recovery, Phase-Locked Loop, Clock Instability, Elastic Store, Jitter os, Asynchronous Multiplexing, Network Synchronization, U.S. Net nent.							
Unit IV	DIGITAL SUBSCRIBER ACCESS		9	0	0	9		
ISDN: Basic Rate Access Architecture, ISDN U Interface, ISDN D Channel Protocol. High-Data-Rate Digital Subscriber Loops: Asymmetric Digital Subscriber Line, VDSL, Digital Loop Carrier Systems: Universal Digital Loop Carrier Systems, Integrated Digital Loop Carrier Systems, Next-Generation Digital Loop Carrier, Fiber in the Loop, Hybrid Fiber Coax Systems, and Voice band Modems: PCM Modems, Local Microwave Distribution Service, Digital Satellite Services.								
Unit V T	RAFFIC ANALYSIS		9	0	0	9		
	zation: Arrival Distributions, Holding Time Distributions, Loss Systems babilities, Overflow Traffic, Delay Systems: Exponential service Times, Overflow Traffic, Delay Systems: Exponential service Times, Overflow Traffic, Delay Systems:							
						eriods		

Text	Books:									
1.	J. Bellamy, "Digital Telephony", John Wiley, 2003, 3rd Edition.									
2.	JE Flood, "Telecommunications Switching, Traffic and Networks", Pearson.									
Refe	Reference Books:									
1.	R.A.Thomson, "Telephone switching Systems", Artech House Publishers, 2000.									
2.	W. Stalling, "Data and Computer Communications", Prentice Hall, 1993.									
3.	T.N.Saadawi, M.H.Ammar, A.E.Hakeem, "Fundamentals of Telecommunication Networks", Wiley Inter science, 1994.									
4.	Syed. R. Ali —Digital switching systems, McGraw Hill New York 1998									
E-Re	ferences:									
1.	https://www.telecommunications-tutorials.com/									
2.	https://cosmolearning.org/video-lectures/sonetsdh-11113/									
3.	https://ieeexplore.ieee.org/document/6770122									

	Course Outcomes: Upon completion of this course, the students will be able to						
CO1	Understand the concepts of Frequency and Time division multiplexing	L2					
CO2	Design the Space division switching and Time division switching	L3					
CO3	Understand the concepts of network organization of telephone networks	L2					
CO4	To compare telephone network, data network and integrated service digital network.	L2					
CO5	Analyze traffic in telephone networks	L3					

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	2													2	1
CO2	2	1											2	2	1
CO3	2		1			1							2	2	1
CO4	2		1											2	1
CO5	2	1		1									2	2	1
Avg	2	0.4	0.4	0.2		0.2							1.2	2	1
			3/	2/1 - i	ndicate	es stren	gth of	correla	ation (3	8-High,2	2- Medi	um,1- L	ow)		

22EC	CPE804	DEEP LEARNING		SEI	MES	STER	VIII
PRE-F	REQUIS	ITE	CATEGORY	PE	3		
			Hours/Week	L	T	P	TH
			Hours, week	3	0	0	3
Course	e Object	ives:					
1.	Underst	anding the basics concepts of deep learning					
2.	Emphas	izing knowledge on various deep learning algorithms					
3.	Underst	anding of CNN and RNN to model for real world applications					
4.	Underst	anding the various challenges involved in designing deep learning algorithm	ns for varied applic	ations.			
Uni	it I	INTRODUCTON TO DEEP LEARNING		9	0	0	9
		Deep Learning: Basics: Biological Neuron, Idea of computational units, Mon, Perceptron Learning Algorithm, Linear separability. Convergence theore					
Unit	t II I	FEEDFORWARD NETWORKS		9	0	0	9
Feed fo		etworks: Multilayer Perceptron, Gradient Descent, Back propagation, En	npirical Risk Minii	mizatio	n, re	egulariz	zation,
Unit	III (CONVOLUTIONAL NETWORKS		9	0	0	9
		etworks: The Convolution Operation - Variants of the Basic Convolution Fution Algorithms - Random or Unsupervised Features- Le Net, Alex Net	unction - Structure	d Outp	uts -	Data T	ypes -
Unit	IV	RECURRENT NEURAL NETWORKS		9	0	0	9
		l Networks: Bidirectional RNNs - Deep Recurrent Networks Recursive er Gated RNNs.	Neural Networks	- The	Long	Short	-Term
Unit	t V I	DEEP GENERATIVE MODELS AND APPLICATIONS		9	0	0	9
Deep Generative Models: Boltzmann Machines - Restricted Boltzmann Machines - Introduction to MCMC and Gibbs Sampling-gradient computations in RBMs - Deep Belief Networks- Deep Boltzmann Machines - Applications: Large-Scale Deep Learning - Computer - Speech Recognition - Natural Language Processing - Other Applications. Total (45L) = 45 Periods							
			101	ai (45	ட) =	45 Pe	eriods

Text 1	Books:
1.	Ian Good fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
2.	Bengio, Yoshua. "Learning deep architectures for AI." Boston Delft 2009
Refer	rence Books:
1.	N.D.Lewis, "Deep Learning Made Easy with R: A Gentle Introduction for Data Science", January 2016.
2.	Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms", O'Reilly publications.
3.	Tariq Rashid, "Make your own neural network " Amazon Digital Services
4.	Anirudh Koul, "Practical Deep Learning for Cloud, Mobile, and Edge", O'Reilly Media, 2019.
E-Ref	ferences:
1.	https://machinelearningmastery.com/
2.	https://ai.google/education/
3.	https://in.coursera.org/learn/Deep-learning

	Outcomes: pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand basic idea behind deep learning.	L1
CO2	Develop concept of feed forward network and encoders	L3

CO3	Apply concept of CNN in a real time application.	L3
CO4	Apply concept of RNN for an application	L3
CO5	Develop Deep Generative models	L3

COs/POs	PO1	РО	РО	РО	РО	РО	РО	РО	PO	PO	PO	РО	PSO1	PSO2	PSO3
		2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	2	1	1						1	1	2	2	2
CO2	2	1	2	1	1						1	1	2	2	2
CO3	2	2	3	2	1						3	2	2	2	2
CO4	2	2	2	1	1						3	2	2	2	2
CO5	2	2	3	2	1						3	2	2	2	2
Avg	2	1.6	2.4	1.4	1						2.2	1.6	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECPE805	NETWORK SECURITY		SEMESTER			VIII
PRE-REQUIS	CAT	EGORY	PE	Cre	edit	3
			L	T	P	ТН
	Hour	rs/Week	3	0	0	3
Course Object	tives:	L	ı			
1. To unde	erstand Cryptography Theories, Algorithms and Systems.					
2. To unde	erstand necessary Approaches and Techniques to build protection mechanisms in or	der to secure	comp	uter 1	netwo	orks.
Unit I	INTRODUCTON		9	0	0	9
substitution tech information theo	arity – Security attacks, services and mechanisms – OSI security architecture – hniques, transposition techniques, steganography) Foundations of modern or product cryptosystem – cryptanalysis.		y: per			rity –
Unit II	SYMMETRIC CRYPTOGRAPHY		9	0	0	9
- Groups, Rings, Differential and	symmetric key cryptography: Algebraic structures - Modular arithmetic-Euclid's algorithm Fields- Finite fields- SYMMETRIC KEY CIPHERS: SDES — Block cipher Principlear cryptanalysis - Block cipher design principles — Block cipher mode of operation Standard - RC4 — Key distribution.	iples of DES	S - St	rengtl	n of I	DES –
Unit III	PUBLIC KEY CRYPTOGRAPHY		9	0	0	9
Euler's Theorer cryptosystem –	asymmetric key cryptography: Primes – Primality Testing – Factorization – Eulom - Chinese Remainder Theorem – Exponentiation and logarithm - ASYMIKey distribution – Key management – Diffie Hellman key exchange - ElGanic curve cryptography.	METRIC K	EY (CIPHE	ERS:	RSA
Unit IV	MESSAGE AUTHENTICATION AND INTEGRITY		9	0	0	9
signature and a	equirement – Authentication function – MAC – Hash function – Security of hash furthentication protocols – DSS- Entity Authentication: Biometrics, Passwords, pplications - Kerberos, X.509.					
Unit V	SECURITY PRACTICE AND SYSTEM SECURITY		9	0	0	9
Electronic Mail viruses – Firewa	security – PGP, S/MIME – IP security – Web Security - SYSTEM SECURITY: lls.	Intruders –	Malio	cious	softw	≀are –

Text	Books:
1.	William Stallings, "Cryptography and Network Security: Principles and Practice", PHI 3rd Edition, 2006.
2.	BehrouzA.Foruzan, "Cryptography and Network Security", Tata McGraw Hill 2007
Refer	rence Books:
1.	C K Shyamala, N Harini and Dr. T R Padmanabhan, "Cryptography and Network Security", Wiley India Pvt.Ltd
2.	Charlie Kaufman, Radia Perlman, and Mike Speciner, "Network Security: PRIVATE Communication in a PUBLIC World", Prentice Hall, ISBN 0-13-046019-2
3.	Cyber Security and Network Security Sabyasachi Pramanik , Debabrata Samanta, M. Vinay , Abhijit Guha Wiley Publication
4.	Arthur Salmon, "Applied Network Security", Packt Publishing, 2017.
E-Re	ferences:
1.	https://geekflare.com/learn-network-security/
2.	https://www.checkpoint.com/cyber-hub/network-security/what-is-network-security/
3.	https://www.udemy.com/courses/it-and-software/network-and-security/

Total (45L) = 45 Periods

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the fundamentals of networks security, security architecture, threats and vulnerabilities	L2					
CO2	Apply the different cryptographic operations of symmetric cryptographic algorithms	L3					
CO3	Apply the different cryptographic operations of public key cryptography	L3					
CO4	Apply the various Authentication schemes to simulate different applications.	L3					
CO5	Understand various Security practices and System security standards	L3					

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	2	1	1						1	1	2	2	2
CO2	2	1	2	1	1						1	1	2	2	2
CO3	2	2	3	2	1						3	2	2	2	2
CO4	2	2	2	1	1						3	2	2	2	2
CO5	2	2	3	2	1						3	2	2	2	2
Avg	2	1.6	2.4	1.4	1						2.2	1.6	2	2	2
		3,	/2/1 - i	ndicate	es stren	gth of	correla	tion (3	-High,	2- Mediu	m,1- Lo	w)			

22ECPE8	06	SATELLITE COMMUNICAT	ΓΙΟΝ	SEN	1EST	ER V	'III
PREREQ	UISITES		CATEGORY	PE Cred		dit	3
			Hours/Week	L	Т	P	тн
			Hours/ week	3	0	0	3
Course O	ojectives:	-		I	l		
1.	•	introduce students to the fundamentals of satellite	communication				
2.	To provide them with a so from one earth station to an	und understanding of how a satellite communicat other.	ion system success:	fully tran	sfers i	nform	ation
3.	To expose them to example to apply the knowledge in d	s of applications and tradeoffs that typically occur esign problems.	in engineering syste	m desigr	, and t	o ask	them
Unit I	OVERVIEW OF METHODS	SATELLITE SYSTEMS, ORBITS AND LA	AUNCHING	9	0	0	9
– Kepler's	Second Law – Kepler's Thi ghts – Orbital Perturbations	r Satellite Services – INTELSAT – U.S.Domsats – rd Law – Definitions of Terms for Earth -orbiting – Local Mean Solar Time and Sun - Synchronous CARY ORBIT & SPACE SEGMENT	g Satellites – Orbita				
Introduction Satellite – S	n – Antenna Look Angels – Sun Transit Outage – Launc	The Polar Mount Antenna – Limits of Visibility – hing Orbits - Power Supply – Attitude Control – absystem – Morelos and Satmex5 – Anik-Satellites	Station Keeping -	Orbits - Thermal	Earth Contro	Eclip	se of
Unit I		NT & SPACE LINK		9	0	0	9
Stations - Misalignm	Equivalent Isotropic Radia ent Losses – Fixed Atmosph hk - Effects of rain – Combin	Master Antenna TV System – Community Antented Power – Transmission Losses : Free-Space heric and Ionospheric Losses – Link Power Budget hed Uplink and Downlink C/N Ratio – Inter modula CCESS	Transmission – F Equation – Carrier	eeder Lo	sses –	Ante	enna
		Demand-Assigned FDMA - SPADE System -	Dandwidth limited		v	v	
	peration - TDMA -On-board	l signal Processing for TDMA / FDMA operation					
Unit V		ITE MOBILE AND SPECIALIZED SERV	TICES	9	0	0	9
Polarizatio	on -Transponder capacity - 1	evision - Orbital Spacing - Power Rating and Sit rates for digital Television -The Home Receiv					
Indoor Un	it(IDU) – HDI V - Satellite	Mobile Services – VSATs – GPS –Orbcomm.					

Text Bo	oks:
1.	Dennis Roddy, "Satellite Communications", Tata McGraw-Hill Education Private Limited, fourth edition, 2009
2.	Barry George Evans, "Satellite communication systems", 3rd Edition, IETPublications 1999
Referen	ce Books:
1.	Timothy Pratt – Charles Bostian & Jeremy Allmuti, Satellite Communications, John Willy & Sons (Asia) Pvt. Ltd, second edition 2014
2.	Wilbur L. Pritchars Henri G.SuyderHond Robert A.Nelson, Satellite Communication Systems Engineering, Pearson Education Ltd., Second edition 2003
3.	M.Richharia, Satellite Communication Systems (Design Principles), Macmillan Press Ltd. Second Edition 2003.
4.	Satellite communication engineering By Michael O. Kolawole, CRC Press, 2002.
E-Refer	ences:
1.	http://nptel.ac.in/courses/117105131/
2.	http://nptel.ac.in/courses/106105082/33
3.	https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite-engineering-fall-2003/lecture-notes/

		etion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Describe the motion of satellite in the orbit and understand orbital effects in communications system performance	L2
CO2	:	Calculate the received carrier power at the input of earth station receiver or satellite transponder.	L3
CO3	:	Compute the noise power and carrier to noise ratio at the input of earth station or satellite	L3
CO4	:	Calculate losses and design both up-link and down link	L3
CO5	:	design domestic satellite system using small earth station	L2

COs/POs	PO1	PO2	PO	PO	PO	PO	PO	PO	PO	PO 10	PO 11	PO12	PSO1	PSO2	PSO3
			3	4	5	6	7	8	9						
CO1		2	2	2	1								1	2	1
CO2	2	1	1	2	1								1	2	2
CO3	2	1	1	1	1								1	2	1
CO4	2	1	1	1	1								2	2	1
CO5	1	1	1	1	1								2	1	1
Avg	1.4	1.2	1.2	1.4	1								1.4	1.8	1.2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECI		SEMESTER VIII									
PRERE(QUISIT	ES	CATEGORY	PE	Cr	edit	3				
Analas E	1 : -	_	Hours/Week	L	Т	P	TH				
Analog E	iectronic	CS .	Hours/ week	3	0	0	3				
Course C	bjectiv	es:			•	•					
1.	_	n knowledge about the various physiological parameters both electrical and	non-electrical, th	ne metho	ds of 1	recordi	ing				
		o the method of transmitting these parameters.									
2.	1	y about various assist devices used in hospitals.									
Unit	I	ELECTRO-PHYSIOLOGY AND BIOPOTENTIAL RECORD	ING	9	0	0	9				
_		potentials — Bio potential electrodes types - Bio amplifiers, ECG, EEG, land signal characteristics.	EMG lead system	ns and re	ecordi	ng me	thods				
Unit	II	BIO-CHEMICAL AND NON-ELECTRICAL PARAMETER MEASUREMENT		9	0	0	9				
		H, PO2 and PCO2, colorimeter - Blood flow meter - Cardiac output - Res rt rate measurement - Pulse rate measurement - Blood cell counters.	piratory rate mea	suremen	t - Blo	ood pr	essur				
Unit	III	MEDICAL IMAGING SYSTEM		9	0	0	9				
		omputer tomography – Mammography – Magnetic Resonance Imag Thermography,	ing – Positron	Emissio	n To	mogra	phy				
Unit	IV	ASSIST DEVICES AND BIO-TELEMETRY		9	0	0	9				
Cardiac pa Radio pill	cemaker	s - DC Defibrillator – Hemodialyzer, Heart Lung Machine, Telemetry: prin	nciples, Frequenc	y selecti	on, Bi	otelen	netry				
Unit	V	RECENT TRENDS IN MEDICAL INSTRUMENTATION		9	0	0	9				
	unit - A	applications of Laser in medicine - Cryogenic application - Introduction to	Telemedicine, I	Electrical	safet	y in m	edica				

Text Bo	oks:							
1.	Khandpur, R.S., Handbook of Biomedical Instrumentation, TATA McGraw-Hill, New Delhi, 2014							
2.	John G. Webster, Medical Instrumentation Application and Design, John Wiley and Sons, 4th edn., 2009							
Referen	ce Books:							
1.	Joseph J.Carr and John M.Brown, Introduction to Biomedical equipment Technology, Pearson							
2.	Education, 2013.							
3.	Leslie Cromwell, Fred J. Weibell, "Erich A. Pfeiffer, Biomedical Instrumentation and Measurements", Pearson Education							
	India, 2nd Edition, 2015.							
4.	Edward J. Bukstein, Medical electronics, Ungar Publications, 2002							
E-Refer	ences:							
1.	https://nptel.ac.in/courses/108108180							
2.	https://biomedikal.in/2009/12/lecture-notes-on-biomedical-instrumentation/							
3.	https://www.digimat.in/nptel/courses/video/108105101/L40.html							

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Acquire and analyze the various bio signals and vital parameters.	L4					
CO2	Measure biochemical and other physiological information.	L3					
CO3	To understand the use of radiation for diagnostic and therapy	L2					
CO4	Explain the function and application of various diagnostic and therapeutic equipment.	L2					
CO5	Explain about the recent developments in the field of biomedical engineering and analyze the safety aspects of medical equipment.	L3					

COs/POs	PO1	PO2	РО	PO	PO	PO	РО	РО	PO	PO	PO	РО	PSO1	PSO2	PSO3
			3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	1								3		2
CO2	3	2	2	1	2								3	1	2
CO3	3	1	3	1	1								3	1	2
CO4	3	2	2	1									3	2	1
CO5	3	2	3	1	1								3	2	2
Avg	3	1.8	2.4	1.2	1.2								3	1.2	1.8
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECPE808	COGNITIVE RADIO		SEN	AES T	TER	VIII
PREREQUIS	ITES	CATEGORY	PE	Cre	edit	3
			L	Т	P	TH
		Hours/Week	3	0	0	3
Course Objec	tives					1
	able the student to understand the requirements in designing software de onalities	fined radios and cogn	itive ra	dio ai	nd its	
	able the student to understand the evolving paradigm of cognitive radio ologies for its implementation.	communication and th	e enab	ling		
3 To an	alyse the spectrum management functions using cognitive radio systems	and cognitive radio n	etwork	is.		
Unit I		9	0	0	9	
	elf-aware, the cognition cycle, organization of congnition tasks, structure ironment awareness in cognitive radios –concepts, architecture, design of		gnitio	n task	s, Ena	abling
Unit II	SDR ARCHITECTURE		9	0	0	9
	d Radio: Evolution - essential functions of the Software Defined Radio					
	y - top level component topology - computational properties of function odules - architecture partitions - merits and demerits of SDR - problems		rface t	opolo	gies a	mon
Unit III	COGNITIVE RADIO ARCHITECTURE	raced by SDK.	9	0	0	9
	io – functions, components and design rules, Cognition cycle – ori	ent, plan, decide and	l act r	hases	. Infe	
	hitecture maps, Building the Cognitive Radio Architecture on Software				,	
Unit IV	COGNITIVE RADIO NETWORK SECURITY		9	0	0	9
	EEEE 802.22 standard for broadband wireless access in TV bands in IEEE 802.22 - security threats to the radio software.	-Primary user emula	tion a	ttacks	- se	curity
Unit V	MAC AND NETWORK LAYER DESIGN FOR COGNITIVE	VE RADIO	9	0	0	9
	ive radios – Multichannel MAC - slotted ALOHA – CSMA, Network la r control techniques.	yer design – routing i	n cogn	itive 1	adios	, flov
	-	Total	(45 L	a = 4	15 Pe	riod

Text	Books:
1	Alexander M. Wyglinski, MaziarNekovee, and Thomas Hou Y, "Cognitive Radio Communications and Networks - Principles and Practice", Elsevier Inc., 2010
2	Kwang-Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons Ltd, 2009
Refer	rence Books:
1	Arslan H, "Cognitive Radio, Software Defined Radio and Adaptive Wireless Systems", University of South Florida, USA, Springer, 2007.
2	Khattab, Ahmed, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks - From Theory to Practice", Springer Series: Analog Circuits and Signal Processing, 2009.
3	Mitola J, "Cognitive Radio: An Integrated Agent Architecture for software defined radio", Doctor of Technology thesis, Royal Inst. Technology, Sweden 2000.
4	E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, "Principles of Cognitive Radio", Cambridge University Press, 2013.
E-Re	ference:
1	http://www.wirelessinnovation.org/Cognitive_Radio_Architecture
2	http://www.xgtechnology.com/innovations/cognitive-radio-networks/
3	http://www.radio-electronics.com/info/rf-technology-design/cognitive-radio-cr/technologytutorial.php

	Outcomes: ompletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the concepts and design of cognitive radios.	L2
CO2	Study about the SDR architecture and analysis.	L1
CO3	Analyse the various cognitive radio network architectures.	L4
CO4	Analyse the various security threats to the radio software in cognitive radio network.	L4
CO5	To analyse the performance of MAC and network layer design for cognitive radio.	L3

\

COs/POs	PO1	PO2	PO	PO	PO	PO	РО	РО	PO	PO	PO	РО	PSO1	PSO2	PSO3
			3	4	5	6	7	8	9	10	11	12			
CO1		2	2	2	1		2		1		1	1	2		1
CO2		2	2	1	2		1		1		1	1	2	1	1
CO3		1	3	1	1		1		1		1	1	2	1	1
CO4		2	2	1			2		1		1	1	2	2	1
CO5		2	3	1	1		1		1		1	1	2	2	1
Avg		1.8	2.4	1.2	1.2		1.4		1		1	1	2	1.2	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

		Open	Elective	e (OE)						
1	22ECOE01	Fundamentals of Electron Devices	OE	3	0	0	3	40	60	100
2	22ECOE02	Principles of Modern Communication Systems	OE	3	0	0	3	40	60	100
3	22ECOE03	Microcontrollers and its applications	OE	3	0	0	3	40	60	100
4	22ECOE04	Computer Networks	OE	3	0	0	3	40	60	100
5	22ECOE05	Basics of Embedded Systems	OE	3	0	0	3	40	60	100
6	22ECOE06	Basics of Internet of Things	OE	3	0	0	3	40	60	100
7	22ECOE07	Artificial Intelligence and Machine Learning	OE	3	0	0	3	40	60	100

OPEN ELECTIVES

	22ECOE01	FUNDAMENTALS OF ELECTRON	DEVICES	OPEN ELECTIVE									
PRERI	EQUISITES		CATEGORY	OE	Cre	dit	3						
				L	Т	P	TH						
			Hours/Week	3	0	0	3						
Course	Objectives:	1			I								
1.	To understand the fundamenta	ls of electron devices and apply the knowledge of the	ese devices in electr	onic ci	rcuits.								
2.	. To design and analyse single stage and multistage amplifier circuits.												
3.													
Unit I	SEMICONDUCTOR DI	ODE		9	0	0	9						
Unit I NPN -Pl paramete	I BIPOLAR JUNCTION P - Operations-Early effect-Curer model, Multi Emitter Transist	rent equations — Input and Output characteristics of or.		9 brid -p	1	1	ı						
Unit I JFETs		ristics,-Current equations-Pinch off voltage and its	significance- MOS	9 FET- C	0 Charac	0 terist	ics-						
Thresh	old voltage, D-MOSFET, E-MC	SFET- Characteristics — Comparison of MOSFET	with JFET.										
Unit I	V SPECIAL SEMICON	DUCTOR DEVICES		9	0	0	9						
	emiconductor Junction- MESFE aractor diode –Tunnel diode, LA	T, FINFET, PINFET, CNTFET, DUAL GATE MOS SER diode.	SFET, Schottky bar	rier dic	de-Ze	ner	L						
Unit V	POWER DEVICES A	ND DISPLAY DEVICES		9	0	0	9						
UJT, SC	CR, Diac, Triac, Power BJT- Pov	ver MOSFET- DMOS-VMOS, LED, LCD, Photo tra		ler, Sol									

Text I	Text Books:												
1.	Millman and Halkias, "Electronic Devices and Circuits", 4th Edition, McGraw Hill, 2015.												
2.	Salivahanan. S, Suresh Kumar. N, Vallavaraj.A, "Electronic Devices and circuits", Fourth Edition, Tata McGraw-Hill,												
Reference Books:													
1.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory" Pearson Prentice Hall, 11th Edition,												
2.	Bhattacharya and Sharma, "Solid State Electronic Devices", 2nd Edition, Oxford University Press, 2014.												
3.	R.S.Sedha, "A Textbook of Electronic Devices and Circuits", 2nd Edition, S.Chand Publications, 2008.												
4.	David A. Bell, "Electronic Devices and Circuits", 5th Edition, Oxford University Press, 2008.												

E-Refe	erences:
1.	https://archive.nptel.ac.in/courses/108/108108122/
2.	https://www.youtube.com/watch?v=qqQ8wO-lNmI
3.	https://slideplayer.com/slide/12438044/

Course Oute Upon comple	comes: etion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Analyze the characteristics of semiconductor diodes.	L2
CO2	Describe the problems of Transistor circuits using model parameters.	L2, L4
CO3	Analyze the knowledge of various types of FET.	L2, L4
CO4	Gain a knowledge on special semiconductor devices	L2
CO5	Understand the knowledge on Power and Display devices.	L2

COs/POs	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	3	1										1		
CO2	2	3	1	2									2		
CO3	2	3	1	3									3		
CO4	1	2	1				1				1	3	3		1
CO5	1	3	1	1	1		1				2	3	3	1	2
Avg	1.6	2.8	1	1.2	0.2		0.4				0.6	1.2	2.4	0.2	0.6
		2	/2/1	ndiant		ath of		tion (2	High) Madi	1 T	~***)			

22ECOE	02	PRINCIPLES OF MODERN COMMUNICATION SYSTEMS	OPEN	ELE(ELECTIVE							
PREREQ	UISI	ITES	CATEGORY	OE	Cre	dit	3					
			Hours/Week	L	Т	P	TH					
			nours/ week	3	0	0	3					
Course O	bject	tives:										
1.	To ha	we the knowledge of the basic concepts of AM, FM and PM.										
2.	To ga	in knowledge about different pulse modulation and digital modulation	techniques.									
3.	To ga	in knowledge about technical information on satellite communication	and wireless comm	nunicati	on							
Unit I	F	FUNDAMENTALS OF ANALOG COMMUNICATION		9	DE Credit L T P 3 0 0 Differential Pulse Credit System (AM – F 9 0 0 Differential Pulse Credit Pulse Cr							
modulation	: M	roduction - Amplitude modulation: Modulator and demodulator with dodulator and demodulator with waveforms - Phase modulation - receivers (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison of various Amplitude (Block diagram approach only) - Comparison only)	Equivalence betw	een PN	1 and	FM	- FM					
Unit II	I	BASICS OF DIGITAL COMMUNICATION AND PULSE MODULATION		9	9							
	- Pul	Modulation (PAM) – Pulse Width Modulation (PWM) – Pulse code lse Position modulation: Generation and detection - Comparison of va - PPM).										
Unit III	Ι	DIGITAL MODULATION TECHNIQUES		9	0	0	9					
		Keying (ASK) – Frequency Shift Keying (FSK) - Minimum Shift I –M- ary PSK- Comparison of various Digital Communication System			nase Sl	nift K	eying					
Unit IV	S	SATELLITE COMMUNICATION		9	0	0	9					
system link	mod	lites- Kepler's laws - Satellite Orbits-Geo synchrous Satellites - Satellites - Uplink model and down link model - Multiple Access Technology - Various Satellite services.										
Unit V	(CELLULAR MOBILE COMMUNICATION		9	0	0 0						
		- Frequency reuse-Channel Assignment Strategy - Hand off mechanicattering - Bluetooth-WLAN-Global System for Mobile Communication			dels: I	Reflec	tion -					
			To	tal (45	SL)= 4	5 Pe	riods					

Text l	Text Books:										
1.	Rappaport T.S, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson Education, 2007										
2.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2010										
Reference Books:											
1.	Dennis Roddy, John Coolen, "Electronic Communications", Prentice Hall of India, 4 th Edition.,2016										
2.	H.Taub, D L Schilling and G Saha, "Principles of Communication", 3rd Edition, Pearson Education, 2007.										
3.	B. P.Lathi, "Modern Analog and Digital Communication Systems", 3 rd Edition, Oxford University Press, 2007.										
4.	AnokhSingh, "Principles of Communication Engineering", S.CHAND Publication, 2002										

E-R	References:
1.	http://www.nptelvideos.in/2012/11/communication-engineering.html
2.	https://www.tutorialspoint.com/analog_communication/analog_communication_introduction.htm
3.	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-973-communication-system-design-spring-
	2006/lecture-notes/

	Course Outcomes: Upon completion of this course, the students will be able to: COL Understand the read for modulation and how applies modulation takes place.					
CO1	Understand the need for modulation and how analog modulation takes place	L2				
CO2	Understand the features of digital communication and pulse modulation.	L2				
CO3	Analyse various digital modulation schemes.	L4				
CO4	Have the knowledge about satellite communication.	L1				
CO5	Have the basics of wireless and mobile communication.	L1				

COs/POs	PO	РО	PO	РО	РО	РО	PO	РО	РО	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	2	1								3	2	2
CO2	2	2	1	1	1								2	1	2
CO3	1	3	2	2	1								3	1	2
CO4	2	2	1	1	1								3	2	2
CO5	1	2	2	1	1								3	2	2
Avg	1.6	2.2	1.4	1.4	1								2.8	1.6	2
			3/2/1	- indic	ates st	rength	of co	relatio	on (3-H	ligh,2- N	ledium,	,1- Lov	v)		

22ECO	DE03	MICROCONTROLLER AND ITS APPLICATIONS	OPEN	ELEC	ELECTIVE							
PREREQ	UISITE	S	CATEGORY	OE	3							
				L	T	P	TH					
			Hours/Week	3	0	0	3					
Course O	bjectives	:			1							
1.	To lear	n microcontroller basics and get exposure to 8051 architectures					-					
2.		To embed and program with 8051 microcontrollers										
3.	To intro	oduce the advanced features in microcontrollers and its application	ons									
Unit I	INT	RODUCTION TO 8051 MICROCONTROLLER		9	0	0	9					
Unit II	ASS	in description - 8051 parallel I/O ports - memory organization. EMBLY LANGUAGE PROGRAMMING language, assembly language, middle-level and high-level lan	guages, 8051 Addr	9 essing n	0 nodes.	0 Instr	9 ruction					
		ntax and function of instructions, example programs.	Sungest over riddi			111001						
Unit III	I/O I	PORT AND INTERRUPTS PROGRAMMING		9	0	0	9					
button swit	ch, relay,	Byte size I/O, bit addressability and configuring I/O ports, inte- example programs with assembly. Polling & interrupt method oling, disabling and priority setting, example programs in assemb	ls, executing an inte									
Unit IV	PIC	MICROCONTROLLERS		9	0	0	9					
		of PIC microcontrollers – PIC microcontroller families-12-bit in de a PIC microcontroller.	struction word-14-b	oit instru	ction	word	-16-bit					
Unit V	APP	LICATIONS		9	0	0	9					
		egment display, LCD module, ADC 0804, wave form general er motor, appropriate program.	tion using DAC 08	08, DC	moto	or-PW	M for					
			T	otal (45	5L)=	45 Pe	eriods					

Tex	t Books:
1.	A.Mazidi , J.C. Mazidi&R.D.McKinlay," The 8051 Microcontroller & Embedded systems using assembly and C" (2ndEdition)
2.	Lucio Di Jasio et.al., "PIC Microcontrollers: Know It All", Elsevier Science,2007
Refe	erence Books:
1.	Microcontrollers & applications, Ramani Kalpathi, & Ganesh Raja
2.	Embedded C - Michael .J.Pont - Pearson Education -2002
3.	I. Scott MacKenzie, Raphael CW. Phan "The 8051 Microcontroller", Pearson/Prentice Hall Publishers, 2008.
4.	M. Mahalakshmi, "8051 Microcontroller Architecture, Programming and Application", Laxmi Publications , 2008.

E-Refere	ences:
1.	https://nptel.ac.in/courses/108105102

2.	https://www.youtube.com/playlist?list=PLm_MSClsnwm9hEIDpFfDnOEu-6kVnF4ug
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html

Course Outcom Upon completion	Bloom's Taxonomy Mapped	
CO1	Understand the basics of microcontroller and 8051 architectures.	L2
CO2	Develop programs for control applications using assembly language	L3
CO3	Illustrate the use of interrupts and service routines	L1, L3
CO4	Understand the PIC microcontroller architecture.	L2
CO5	Design microcontroller based-applications for simple real-world applications	L3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1	1	2		2		2							3		2
CO2	1	2				2									1
CO3	2	2		3		1							2		3
CO4	1	3		2		2							2		1
CO5	2	3		1		2							2		2
Avg	1.4	2.4		1.6		1.8							1.8		1.8
			3/2/1 = i	ndicate	s stren	gth of c	orrelati	ion (3-I	High,2-	Mediu	n,1-Lo	w)			

22E	COE04	COMPUTERNETWORKS OPEN	ELEC	E								
PRER	EQUISITE											
			L	T	P	TH						
		Hours/Week	3	0	0	3						
Course	e Objective	S:										
1.	To introdu	ce the basic concept in modern data communication and computer networking.										
2.	To introdu											
3.	To make s	tudents to get familiarized with different protocols and network layer components.										
4.	To introdu	ce the basic functions of transport layer and congestion in networks.										
5.	To unders	and the concepts of various network Applications and Data security.										
Unit I	NE	TWORK FUNDAMENTALS AND PHYSICAL LAYER	9	0	0	9						
Unit II Logical Randon	link control access, Cor	smission Media – Guided media & unguided media - EIA 232, SONET TA LINK LAYER Functions: - Framing, Flow control, Error control: CRC, LLC protocols -HDLC, P to P- trolled access, Channelization - Wired LANs: Ethernet IEEE 802.3, IEEE 802.4, and IEEE es, Interconnection devices: - Repeaters, Hubs, Routers/switches and Gateways.										
Unit II	I NE	TWORK LAYER	9	0	0	9						
Switchi		The state of the s	RARP.	VPN	. Net							
	, riigoriumis	witching, packet switching, message switching. Internet protocols; IPV4, IPV6, ARP, I-Unicast routing protocol: Distance Vector Routing – Link State Routing.	,			work						
			9	0	0	work 9						
Unit IV Transpo	V TF	- Unicast routing protocol: Distance Vector Routing – Link State Routing.	9		•	9						
Unit IV Transpo	V TR	- Unicast routing protocol: Distance Vector Routing – Link State Routing. ANSPORT LAYER Elements of Transport protocols, Connection management, – User Datagram Protocol	9		•	9						

Text Bo	oks:								
1.	Behrouz A. Foruzan, "Data communication and Networking", TMH, 4th edition, 2014.								
2.	James. F. Kurouse& W. Ross, "Computer Networking: A Top down Approach Featuring", Pearson, 2020.								
Referen	ce Books:								
1.	LarryL.Peterson&PeterS.Davie,"ComputerNetworks",HarcourtAsiaPvt.Ltd.,SecondEdition.								
2.	AndrewS.Tanenbaum, "ComputerNetworks", PHI, FourthEdition, 2003.								
3.	An Engineering Approach to Computer Networks-S. Keshav, 2nd Edition, Pearson Education								
4.	AjitPal, "DataCommunicationandComputerNetworks", PHI, 2014.								

E-References:						
1.	https://nptel.ac.in/courses/106105183					
2.	https://www.mbit.edu.in/wp-content/uploads/2020/05/Computer-Networks-5th-Edition.pdf					
3.	https://www.tutorialspoint.com/data_communication_computer_network/index.htm					

Course Outcomes:								
Upon o	pon completion of this course, the students will be able to:							
CO1	:	Explain the basic concept in modern data communication and different level of layers in the protocol	L2					
CO2	:	Analyse the functions and services of data link layer	L4					
CO3	:	Categorize the functions and services of network layer	L2					
CO4	:	Examine the basic functions of transport layer and congestion in networks	L2					
CO5	:	Analyse the concepts of various network applications and data security	L4					

COs/POs	PO	PO	РО	РО	РО	PO	PO	РО	PO	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	1		1								2		1
CO2	2	1	2		1								2	1	1
CO3	2	1	1										3	1	2
CO4	3	2	1		2								2		2
CO5	2	1	1		1								1	1	1
Avg	2.2	1.2	1.2		1								2	0.6	1.4
			3/2/	1 - ind	icates s	strength	of co	rrelatio	n (3-H	igh,2- Mo	edium,1	- Low)			

22ECOF	22ECOE05 BASICS OF EMBEDDED SYSTEMS OPI								
			CATEGORY	TEGORY OE Credit					
PREREQU	ISITES		Hours/Week L						
1. Micro	3	0	0	3					
Course Obj	ectives:		•	•					
		nowledge on embedded system architecture and embedded developn	ent Strategies						
		nd the bus Communication in processors and peripheral interfacing							
3. To	understa	nd basics of Real Time Operating System							
Unit I	BAS	SICS OF EMBEDDED SYSTEMS		9	0	0	9		
Process - Har	dware So	rends in Embedded Systems - Architecture of Embedded Systems of tware Partitioning - Development Environment.	- Embedded Design			ı	ı		
Unit II	ME	MORY MANAGEMENT AND INTERRUPTS		9	0	0	9		
		edure - Types of Memory - Memory Management Methods - DMA - Interrupt Latency - Interrupt Priority - Programmable Interrupt Con					rrupts		
Unit III	COI	MMUNICATION INTERFACES		9	0	0	9		
Interfacing B IEEE 802.11		rial Interfaces - RS232/UART - RS422/RS485 - I2C Interface - SPI oth	Interface - USB – C	AN - II	RDA	- Ethe	rnet -		
Unit IV	REA	AL TIME OPERATING SYSTEMS		9	0	0	9		
Event Driven	Schedul	Task Management - Task Scheduling - Classification of Scheduling - Resource Sharing - Priority Inheritance Protocol - Priority Cei Message Queues - Timers - Commercial RTOS.							
Unit V	VAI	LIDATION AND DEBUGGING		9	0	0	9		
Debuggers ar	nd Debug	hines - Validation Types and Methods - Host Testing - Host-Base Kernels - ROM Emulator - Logical Analyzer – Background Debug Navigation System – Development of Protocol Converter.							
			Tot	al (45)	L)=4	5 Pe	riods		

Text Bo	ooks:									
1.	Sriram VIyer and Pankaj Gupta, —Embedded Real-time Systems Programmingl, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.									
2.	Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011.									
Referen	Reference Books:									
1.	Prasad K V K K, —Embedded/Real-Time Systems: Concepts, Design and Programming – The Ultimate Reference, Himal Impressions, New Delhi, 2003									
2.	Heath, "Embedded Systems Designl", Newnes an Imprint of Elsevier, Massachusetts, 2003.									
3.	Tammy Noergaard, "Embedded Systems Architecture", Newnes an Imprint of Elsevier, Massachusetts, 2006.									
4.	Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013									

E-References:									
1.	https://lecturenotes.in/subject/225/embedded-system-es								
2.	https://nptel.ac.in/courses/108102045/19								
3.	https://www.coursera.org/learn/introduction-embedded-systems.								

Course Out Upon comple	comes: tion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Outline the concepts of embedded systems	L1
CO2	Understand the concept of memory management system and interrupts.	L2
CO3	Know the importance of interfaces.	L2
CO4	Understand real time operating system concepts.	L2
CO5	To realize the applications of validation and debugging.	L3

COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2				3	3	3		2
CO2	3	3	2	3	3	3	2				3	3	3		2
CO3	3	3	3	3	3	3	2				3	3	3		2
CO4	3	3	2	3	3	3	2				2	3	3		2
CO5	3	3	2	3	3	3	2				3	3	3		2
Avg	3	3	2	3	3	3	2				2.8	3	3		2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

PREREQUIS	SITES			ELECTIVE									
			CATEGORY	OE	Cro	edit	3						
				L	Т	P	TH						
1. Micro	processor	and microcontroller	Hours/Week	3	0	0	3						
Course Objec	ctives:		1	l.	I								
		the vision of M2M to IOT.											
. To gain an understanding of IOT market perspective.													
	. To acquire knowledge on Io T Technology Fundamentals and applications												
		system using Raspberry Pi.											
Unit I		TO IOT – THE VISION		9	0	0	9						
Introduction - F Characteristics.		M to Io T- M2M towards Io T: M2M Communication - The globa	ıl context - A use ca	ise exa	mple	– Difi	fering						
Unit II	M2M	TO IOT – A MARKET PERSPECTIVE		9	0	0	9						
driven global v	alue chair	initions - M2M Value Chains – Io T Value Chains - An emerging and global information monopolies - M2M to Io T-An Architect and needed capabilities - An Io T architecture outline - Standards co	tural Overview – Bu										
Unit III	IOT T	ECHNOLOGY FUNDAMENTALS		9	0	0	9						
		es – Io T levels and deployment templates - Devices and gateways rvice (XaaS) - M2M and Io T Analytics.	- Data management	- Busi	ness p	roces	ses in						
Unit IV	BUILI	DING IOT WITH HARDWARE PLATFORMS		9	0	0	9						
		esign using Python –Io T Physical Devices and End Points- Io T devices – Io T Reference Model - Real World Design Constraint		rry Pi	- Inte	erface	s –						
Unit V	IOT U	SE CASES AND APPLICATIONS		9	0	0	9						
monitoring syst	tem-Air p Case stud	natic lighting-Home intrusion detection- Cities-Smart parking – Encollution Monitoring-Forest Fire Detection- Agriculture- Smart irrigly (Phase one): Commercial building automation today - Case	gation. Commercial study (Phase two)	Buildi	merci	al bu	ilding						

Text	Books:
1.	Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, "From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.
2.	Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015
Refer	rence Books:
1.	Olivier Hersent, davidBoswarthick, Omar Elloumi, 'The Internet of Things Applications to the smart grid building automation', John Wiley & Dong, 2012
2.	Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013
3.	HakimaChaouchi, 'The Internet of Things Connecting Objects', John Wiley & Sons, 2010.
4.	FabriceTheoleyr, Ai-Chun Pang, 'Internet of Things and M2M Communications', River Publishers, 2013.

E-Refer	E-References:									
1.	https://nptel.ac.in/courses/106105166									
2.	https://onlineitguru.com/IoT-online-training.html									
3.	https://onlinecourses.nptel.ac.in/noc22 cs53/preview									

		utcomes:	Bloom's Taxonomy Mapped
Upon c	omp	pletion of this course, the students will be able to:	Broom's Taxonomy Mapped
CO1	:	Understand the vision of Io T from a global context.	L2
CO2	:	Determine the Market perspective of Io T.	L1
CO3	:	Understand the Io T technology fundamentals.	L2
CO4	:	Build small system using Raspberry Pi.	L3
CO5	:	Analyse applications of Io T and case studies	L4

COs/POs	PO1	PO2	PO3	РО	PO	PO	PSO1	PSO2	PSO3						
				4	5	6	7	8	9	10	11	12			
CO1		1			2										
CO2	2	2	2	2	2							1	1		
CO3	2	2	2	2	2							1	1		
CO4	2	2	2	2	2						2	2	2		
CO5	2	2	2	2	2						2		2		2
Avg	1.6	1.8	1.6	1.6	2						0.8	0.8	1.2		0.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC	OE07	ARTIFICIAL INTELLIGENCE & MACHINE LEARNING	OPEN	ELEC	TIV	E	
PRERE(UISITES		CATEGORY OE Credit				
			L T P				
1.	. Microprocessor and microcontroller Hours/Week						
Course C	bjectives						
		t uninformed and Heuristic search techniques.					
	To Learn te	chniques for reasoning under uncertainty					
		Machine Learning and supervised learning algorithms					
	•	t ensemble and unsupervised learning algorithms.					
5.	Learn the b	asics of deep learning using neural networks.					
Unit I	PRO	OBLEM SOLVING		9	0	0	9
Introduction	on - From 1	M2M to IoT- M2M towards IoT: M2M Communication - The global	context - A use ca	se exan	ıple -	- Diff	fering
Characteri	stics.						
Unit II	PRO	OBABILISTIC REASONING		9	0	0	9
		nty – Bayesian inference – naïve bayes models. Probabilistic reasonin	g – Bayesian netwo	rks – ex	act i	nferer	nce in
		erence in BN – causal networks.					
Unit III		PERVISED LEARNING		9	0	0	9
gradient d	escent, Lir	ine learning – Linear Regression Models: Least squares, single & munear Classification Models: Discriminant function – Probabilistic diversed – Naive Bayes, Maximum margin classifier – Support vector in	scriminative model	- Log			
Unit IV	ENS	SEMBLE TECHNIQUES AND UNSUPERVISED LEARNIN	G	9	0	0	9
	I Combining multiple learners: Model combination schemes, Voting, Ensemble Learning - bagging, boosting, stacking, Unsupervised learning: K-means, Instance Based Learning: KNN						
Unit V	NE	URAL NETWORKS		9	0	0	9
error back	Perceptron - Multilayer perceptron, activation functions, network training – gradient descent optimization – stochastic gradient descent, error backpropagation, from shallow networks to deep networks –Unit saturation (aka the vanishing gradient problem) –batch normalization, regularization, dropout.						
			Tot	al (45I	<u>_)= 4</u>	5 Pe	riods

Text Boo	Text Books:							
1.	Stuart Russell and Peter Norvig, "Artificial Intelligence – A Modern Approach", Fourth Edition, Pearson Education, 2021							
2.	Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006							

Reference	Reference Books:					
1.	Ethem Alpaydin, "Introduction to Machine Learning", MIT Press, Fourth Edition, 2020.					
2.	Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence", McGraw Hill, 2008					
3.	Patrick H. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006					
4.	Tom Mitchell, "Machine Learning", McGraw Hill, 3rd Edition, 1997.					

E-Refer	E-References:					
1.	https://machinelearningmastery.com/					
2.	https://ai.google/education/					
3.	https://in.coursera.org/learn/machine-learning					

Course O	*****	
Upon com	pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Use appropriate search algorithms for problem solving	L2
CO2	Apply reasoning under uncertainty	L3
CO3	Build supervised learning models	L3
CO4	Build ensembling and unsupervised models	L3
CO5	Build deep learning neural network models	L3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	РО	РО	PO	РО	РО	РО	PO 10	PO	РО	PSO1	PSO2	PSO3
				4	5	6	7	8	9		11	12			
CO1	2	1	2	1	1						1	1	2	2	2
CO2	2	1	2	1	1						1	1	2	2	2
CO3	2	2	3	2	1						3	2	2	2	2
CO4	2	2	2	1	1						3	2	2	2	2
CO5	2	2	3	2	1						3	2	2	2	2
Avg	2	1.6	2.4	1.4	1						2.2	1.6	2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: VLSI DESIGN

S.	Course Code	Course Code Course Title		Hrs/Wk& Credits						
No.	00000	334.50	Category	L	T	P	С			
1.	22ECH101	VLSI technology	PEC	3	0	0	3			
2.	22ECH102	Analog CMOS IC design	PEC	3	0	0	3			
3.	22ECH103	Device modelling	PEC	3	0	0	3			
4.	22ECH104	Network on chip	PEC	3	0	0	3			
5.	22ECH105	DSP integrated circuits	PEC	3	0	0	3			
6.	22ECH106	VLSI signal processing	PEC	3	0	0	3			
7.	22ECH107	Mixed signal VLSI design	PEC	3	0	0	3			
8.	22ECH108	VLSI for wireless communication	PEC	3	0	0	3			
9.	22ECH109	VLSI for IOT systems	PEC	3	0	0	3			
10.	22ECH110	VLSI for CAD Design	PEC	3	0	0	3			

VERTICAL 2: NETWORKING

S.	Course Code	e Code Course Title		Hrs/Wk& Credits							
No.			Category	L	T	P	С				
1.	22ECH201	High performance networks	PEC	3	0	0	3				
2.	22ECH202	Optical communication networks	PEC	3	0	0	3				
3.	22ECH203	Network security and management	PEC	3	0	0	3				
4.	22ECH204	Artificial neural networks	PEC	3	0	0	3				
5.	22ECH205	5G networking	PEC	3	0	0	3				
6.	22ECH206	Wireless Adhoc and sensor networks	PEC	3	0	0	3				
7.	22ECH207	Software defined networks	PEC	3	0	0	3				
8.	22ECH208	Embedded system for networking	PEC	3	0	0	3				
9.	22ECH209	Cognitive radio networking	PEC	3	0	0	3				
10.	22ECH210	Next generation networks	PEC	3	0	0	3				

VERTICAL 3: COMMUNICATION

S.	Course Code	e Code Course Title		Hrs/Wk& Credits							
No.		Course Title	Category	L	Т	P	С				
1.	22ECH301	Statistical Theory of Communication	PEC	3	0	0	3				
2.	22ECH302	Information Theory and Coding	PEC	3	0	0	3				
3.	22ECH303	mm Wave Communication	PEC	3	0	0	3				
4.	22ECH304	Spread Spectrum Communication	PEC	3	0	0	3				
5.	22ECH305	MIMO Communication	PEC	3	0	0	3				
6.	22ECH306	Smart Antennas	PEC	3	0	0	3				
7.	22ECH307	RF IC and Microwave MEMs	PEC	3	0	0	3				
8.	22ECH308	Cognitive Radio	PEC	3	0	0	3				
9.	22ECH309	Satellite Positioning and Navigation Systems	PEC	3	0	0	3				
10.	22ECH310	Remote Sensing	PEC	3	0	0	3				

VERTICAL 4: SIGNAL PROCESSING

S.	Course Code	rse Code Course Title		Н	rs/Wk& C	Credits	
No.		23.000	Category	L	T	P	С
1.	22ECH401	Advanced digital signal processing	PEC	3	0	0	3
2.	22ECH402	Speech processing	PEC	3	0	0	3
3.	22ECH403	Software defined radio	PEC	3	0	0	3
4.	22ECH404	Wavelet signal processing	PEC	3	0	0	3
5.	22ECH405	Pattern recognition and machine learning	PEC	3	0	0	3
6.	22ECH406	Adaptive/array signal processing	PEC	3	0	0	3
7.	22ECH407	Multimedia processing	PEC	3	0	0	3
8.	22ECH408	Biomedical signal and image processing	PEC	3	0	0	3
9.	22ECH409	VLSI signal processing	PEC	3	0	0	3
10.	22ECH410	Radar signal processing	PEC	3	0	0	3

22EC	CH101	VLSI TECHNOLOGY		Semester					
PRER	REQUIS	ITES	Category	PEC	3				
				L	T	P	TH		
VLSI	Design		Hours/Week	3	0	0	3		
Cours	se Learn	ing Objectives							
1	To und	erstand the concepts of wafer preparation, epitaxy and oxidation	o <u>n.</u>						
2	To stud	y the use of various deposition and diffusion.							
3	To imp	art knowledge in ion implementation and VLSI process integra	ation.						
Un	nit I	CRYSTAL GROWTH, WAFER PREPARATION, EP OXIDATION	PITAXY AND	9	0	0	9		
Molecu	ılar Bear	le Silicon, Czochralski crystal growing, Silicon Shaping, p n Epitaxy, Silicon on Insulators, Growth Mechanism and ki properties, Redistribution of Dopants at interface, Oxidation o	inetics, Thin Oxid	es, Oxio	dation 7	- Γechniq	ues and		
Unit II	[LITHOGRAPHY AND RELATIVE PLASMA ETCHING	<u>G</u>	9	0	0	9		
		aphy, Electron Lithography, X-Ray Lithography, Ion Lithogra h mechanism, relative Plasma Etching techniques and Equipme		erties, Fo	eature S	lize con	trol and		
Unit II	II	DEPOSITION AND DIFFUSION		9	0	0	9		
		ress, Polysilicon, Silicon Dioxide- Silicon Nitride- plasma ass ensional Diffusion Equation — Atomic Diffusion Mechanism —			of Diff	usion in	Solids,		
Unit IV	V	ION IMPLEMENTATION AND METALLIZATION		9	0	0	9		
		Implant equipment. Annealing-Shallow junction – High encoices- Physical vapor deposition – Patterning.	ergy implantation	– Meta	llizatioı	ı Appli	cations-		
Unit V	,	VLSI PROCESS INTEGRATION AND PACKAGING OF DEVICES	OF VLSI	9	0	0	9		
		nology – CMOS IC Technology – MOS Memory IC technolog				abricat	ion.		
Package types—banking design consideration – VLSI assembly technology – Package fabrication technology. Total (45 L) = 45 Periods							Doniod~		
				101	11 (43 L	<i>ij</i> = 45	rerious		

Tex	t Books:
1	Sze, S.M., "VLSI Technology", Second Edition, McGraw-Hill, New York, 1998.
2	Mukherjee, Amar., "Introduction to NMOS and CMOS VLSI System Design", Prentice Hall India, New Delhi, 2000.
Refe	rence Books:
1	Plummer, James D., Deal, Michael D. and Griffin, Peter B., "Silicon VLSI Technology: Fundamentals Practice and Modeling", Prentice Hall India, New Delhi, 2000.
2	Hubert Kaeslin., "Digital Integrated Circuit Design From VLSI Architectures to CMOS Fabrication" Cambridge, 2008.
3	Douglas A.Pucknell, "Basic VLSI Design", Third Edition, Mc Graw Hill Book Co., 2015.
4	Sorab K.Ghandhi., "VLSI Fabrication Principles: Silicon and Gallium Arsenide", 2nd Edition, John Wiley & Sons, 1994.
E-Refe	erence:

1	https://nptel.ac.in/courses/117106093
2	https://freevideolectures.com/course/3183/vlsi-technology-i
3	http://www.infocobuild.com/education/audio-video-courses/electronics/VLSITechnology-IIT-Madras/lecture-09.html

00421	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Summarize the approach for wafer preparation, Epitaxy and Oxidation	L2
CO2	Distinguish the various methods for lithography and plasma etching	L4
CO3	Illustrate the various Deposition and diffusion process	L4
CO4	Infer the process of ion implantation and metallization	L2
CO5	Realize the various IC technology and Package types	L4

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		2	1	1						1	1	1	2	
CO2	3		2	1	1						2	1	2	2	
CO3	3		2	1	2		2				2	1	2	3	
CO4	3	1	2	1	2		2				1	2	2	3	
CO5	3	2	2	3	3	1	2	2	1	1	3	3	3	3	3
Avg															
	3	1.5	2	1.4	1.8	1	2	2	1	1	1.8	1.6	2	2.6	3

	CH102	ANALOG CMOS IC DESIGN		S	Semeste	er	
PREF	REQUIS	ITES	Category	PEC	Cr	edit	3
VLSI 1	Design			L	T	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1	To desi	gn the fundamentals of analog circuits and MOS device mode	els.				
2	To desi	gn high frequency amplifiers and analyse Operational amplifi	ers.				
3	To anal	yse two stage amplifiers and design current sources and sinks	•				
Uı	nit I	SINGLE STAGE AMPLIFIERS		9	0	0	9
Cascoo	de and Fo	sics and equivalent circuits and models, CS, CG and Source olded Cascode configurations with active load, design of sise, gain, BW, ICMR and power dissipation, voltage swing, h	Differential and Cigh gain amplifier	Cascode	Amplif		
Un	nit II	HIGH FREQUENCY AND NOISE CHARACT AMPLIFIERS	TERISTICS OF	9	0	0	9
		sociation of poles with nodes, frequency response of CS, CGs, statistical characteristics of noise, noise in Single Stage amp		ower, Ca	ascode	and Diff	erentia
Uni	it III	FEEDBACK AND SINGLE STAGE OPERATIONAL	AMPLIFIERS	9	0	0	9
		types of negative feedback circuits, effect of loading in feed					
		ngle stage Op Amps, two-stage Op Amps, input range lime in Op Amps.		sting, sl	ew rate	, power	
reject				sting, sl	ew rate	o, power	
Uni Analys Stage,	it IV sis Of Tw Multipole	e in Op Amps. STABILITY AND FREQUENCY COMPENSATION (OF TWO CS as Second Stage	9 ge And	0 Using (0 Cascode	supply 9 Second
Uni Analys Stage, Two S	it IV sis Of Tw Multipole	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER o Stage Op Amp – Two Stage Op Amp Single Stage CMOS er Systems, Phase Margin, Frequency Compensation, And Compensatio	OF TWO CS as Second Stage	9 ge And	0 Using (0 Cascode	supply 9 Second
Analys Stage, Two S	it IV sis Of Tw Multipole tage Op A nit V at sinks an wing case	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER o Stage Op Amp – Two Stage Op Amp Single Stage CMOS of Systems, Phase Margin, Frequency Compensation, And Comps, Other Compensation Techniques.	OF TWO CS as Second Stagompensation Of Two	ge And vo Stage	0 Using (cop Are	0 Cascode mps, Sle 0 curce, de	9 Second wing In 9
Analys Stage, Two S	it IV sis Of Tw Multipole tage Op A nit V at sinks an wing case	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER o Stage Op Amp – Two Stage Op Amp Single Stage CMOS of Systems, Phase Margin, Frequency Compensation, And Comps, Other Compensation Techniques. BANDGAP REFERENCES and sources, current mirrors, Wilson current source, Widlar of code sink, current amplifiers, supply independent biasing,	OF TWO CS as Second Stagompensation Of Two	9 ge And 70 Stage	0 Using Cop Are	0 Cascode mps, Sle 0 curce, de	Second wing In 9 esign o
Uni Analys Stage, Two S Uni Curren high s CTAT	it IV sis Of Tw Multipole tage Op A nit V at sinks an wing case	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER o Stage Op Amp – Two Stage Op Amp Single Stage CMOS of Systems, Phase Margin, Frequency Compensation, And Comps, Other Compensation Techniques. BANDGAP REFERENCES and sources, current mirrors, Wilson current source, Widlar of code sink, current amplifiers, supply independent biasing, eneration, constant-gm biasing.	OF TWO CS as Second Stagompensation Of Two	9 ge And 70 Stage	0 Using Cop Are	0 Cascode nps, Sle 0 ource, doces, PT	Second wing In 9 esign o
Uni Analys Stage, Two S Uni Curren high s CTAT	it IV sis Of Tw Multipole tage Op A nit V at sinks ar wing case current g	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER o Stage Op Amp – Two Stage Op Amp Single Stage CMOS of Systems, Phase Margin, Frequency Compensation, And Comps, Other Compensation Techniques. BANDGAP REFERENCES and sources, current mirrors, Wilson current source, Widlar of code sink, current amplifiers, supply independent biasing, eneration, constant-gm biasing.	OF TWO CS as Second Stagompensation Of Two current source, case temperature indep	9 ge And 70 Stage 9 code cu endent	0 Using Cop Are	0 Cascode nps, Sle 0 ource, doces, PT	Second Se
Analys Stage, Two S Un Curren high s CTAT	it IV sis Of Tw Multipole tage Op A nit V nt sinks an wing case current g	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER o Stage Op Amp – Two Stage Op Amp Single Stage CMOS of Systems, Phase Margin, Frequency Compensation, And Comps, Other Compensation Techniques. BANDGAP REFERENCES and sources, current mirrors, Wilson current source, Widlar of code sink, current amplifiers, supply independent biasing, eneration, constant-gm biasing.	OF TWO CS as Second Stagompensation Of Two current source, case temperature indep	9 ge And 70 Stage 9 code cu endent	0 Using Cop Are	0 Cascode nps, Sle 0 ource, doces, PT	Second Se
Tex Tex 1	it IV sis Of Tw Multipole tage Op A nit V nt sinks an wing case current g	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER O Stage Op Amp – Two Stage Op Amp Single Stage CMOS of Systems, Phase Margin, Frequency Compensation, And Comps, Other Compensation Techniques. BANDGAP REFERENCES Indicate the stage of the stag	OF TWO CS as Second Stagompensation Of Two current source, case temperature indep	9 ge And 70 Stage 9 code cu endent	0 Using Cop Are	0 Cascode nps, Sle 0 ource, doces, PT	Second Se
Tex Tex 1	it IV sis Of Tw Multipole tage Op A nit V at sinks ar wing case current g At Books Behzac Willey	STABILITY AND FREQUENCY COMPENSATION OF STAGE AMPLIFIER O Stage Op Amp – Two Stage Op Amp Single Stage CMOS of Systems, Phase Margin, Frequency Compensation, And Comps, Other Compensation Techniques. BANDGAP REFERENCES Indicate the stage of the stag	CS as Second Stagompensation Of Two current source, case temperature indep	ge And 70 Stage 9 code cuendent	0 Using Cop Are	0 Cascode nps, Sle 0 ource, doces, PT	Second wing In 9 esign o

3	Recorded Lecture Available at 6. Jacob Baker "CMOS: Circuit Design, Layout, And Simulation, Wiley IEEE Press,
	3rd Edition, 2010.
4	Uyemura John P Uyemura "CMOS Logic Circuit Design", Kluwer Academic Publishers, 1999.
E-Refe	erence:
1	http://www.ee.iitm.ac.in/vlsi/courses/ee5320_2021/start
2	https://onlinecourses.nptel.ac.in/noc22_ee37/
3	https://archive.nptel.ac.in/courses/117/106/117106030/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Design amplifiers to meet user specifications	L3
CO2	Analyze the frequency and noise performance of amplifiers	L4
CO3	Design and analyze feedback amplifiers and one stage op amps	L3
CO4	Design and analyze two stage op amps	L3
CO5	Design and analyze current mirrors and current sinks with MOS devices.	L3

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO10	PO1	PO1	PSO	PSO2	PSO
	1	2	3	4	5	6	7	8	9		1	2	1		
CO1	2	2	1	1	1		1				1		1	2	1
CO2	2	2	1	1	1		1				1		1	2	1
CO3	2	3	2	1	2		1				2	1	1	2	1
CO4	2	3	2	1	2		2	1	2		2	2	1	2	1
CO5	2	3	1	1	2		2	1	2		3	2	1	2	1
Avg	2	2.6	1.4	1	1.6		1.4	1	2		1.8	1.67	1	2	1

PRERE	H103	DEVICE MODELING		S	emeste	er	
	EQUIS	ITES	Category	PEC	Cr	edit	3
Electroni	ic Devic	ces and Circuits		L	T	P	TH
			Hours/Week	3	0	0	3
Course	Learn	ing Objectives				1	
1	To stud	y the MOS capacitors and to model MOS Transistors					
2	To unde	erstand the various CMOS design parameters and their impact	on performance of	f the dev	ice		
3	To stud	y the device level characteristics of BJT transistors					
Unit I		MOS CAPACITORS		9	0	0	3
Surface	Potenti	al: Accumulation, Depletion, and Inversion, Electrostatic	Potential and Ch	narge D	istribut	ion in	Silicon,
Device C into and	Characte through	Charge in Silicon Dioxide and at the Silicon—Oxide Interface eristics, High-Field Effects, Impact Ionization and Avalanche h Silicon Dioxide, Injection of Hot Carriers from Silicon in the Breakdown	Breakdown, Band-	to-Band	l Tunne	ling, Tu	nneling
Unit II		MOSFET DEVICES		9	0	0	3
		ect, Short-Channel MOSFETs, Short-Channel Effect, Veloc				nsport (Channel
	Modulat	ect, Short-Channel MOSFETs, Short-Channel Effect, Velocion, Source–Drain Series Resistance, MOSFET Degradation a CMOS DEVICE DESIGN				nsport (Channel 3
Unit III MOSFET Requiren Threshol	Modulat T Scalin ment, Cl Id Volta	CMOS DEVICE DESIGN ng, Constant-Field Scaling, Generalized Scaling, Nonscaling hannel Profile Design, Nonuniform Doping, Quantum Effect on the Mosfet Channel Length, Various Definitions of Channel Length, Various Definitions of Channel Length, Various Definitions of Channel Length, Various Definitions	g Effects, Thresholon Threshold Volta	High Fie 9 Id Volta age, Disc ction of	oge, This erete Do	0 reshold- ppant Ef	3 Voltage fects on
Unit III MOSFET Requiren Threshol Length, I	Modulat T Scalin ment, Cl Id Volta	CMOS DEVICE DESIGN ng, Constant-Field Scaling, Generalized Scaling, Nonscaling hannel Profile Design, Nonuniform Doping, Quantum Effect on the Mosfet Channel Length, Various Definitions of Channel Meaning of Effective Channel Length, Extraction of Channel Length, Extraction Channel Length, Extraction Channel Length, Extraction Channel Length, Extraction Channel L	g Effects, Thresholon Threshold Volta	9 Id Volta age, Disception of Measurer	oge, Threrete Do	oreshold- opant Effective (3 Voltage fects on Channel
Unit III MOSFET Requiren Threshol	Modulat T Scalin ment, Cl Id Volta	CMOS DEVICE DESIGN ng, Constant-Field Scaling, Generalized Scaling, Nonscaling hannel Profile Design, Nonuniform Doping, Quantum Effect on the Mosfet Channel Length, Various Definitions of Channel Length, Various Definitions of Channel Length, Various Definitions of Channel Length, Various Definitions	g Effects, Thresholon Threshold Volta	High Fie 9 Id Volta age, Disc ction of	oge, This erete Do	0 reshold- ppant Ef	3 Voltage fects on
Unit III MOSFET Requiren Threshol Length, I Unit IV Basic Ch Elements Delay to Oxide T Resistand	T Scalinment, Cld Volta Physica MOS Cost, Source Devices Chickness Ce and Cost	CMOS DEVICE DESIGN ng, Constant-Field Scaling, Generalized Scaling, Nonscaling hannel Profile Design, Nonuniform Doping, Quantum Effect on the Mosfet Channel Length, Various Definitions of Channel Meaning of Effective Channel Length, Extraction of Channel Length, Extraction Channel Length, Extraction Channel Length, Extraction Channel Length, Extraction Channel L	g Effects, Thresholon Threshold Voltannel Length, Extracel Length by C–V M R Gates, Inverter acce, Interconnect R Sensitivity to Chaeshold Voltage, Seerformance Factors	9 Id Volta age, Disc ction of Measurer 9 and NA and C, annel Wi nsitivity of Adva	ge, Thirete Do the Effinents ND La Sensiti didth, Le of De anced C	overshold-pant Effective (3 Voltage fects on Channel 3 Parasitic CMOS and Gate Parasitic
Unit III MOSFET Requiren Threshol Length, I Unit IV Basic Ch Elements Delay to Oxide T Resistand	T Scalinment, Cld Volta Physica MOS Cost, Source Devices Chickness Ce and Cost	CMOS DEVICE DESIGN Ing, Constant-Field Scaling, Generalized Scaling, Nonscaling hannel Profile Design, Nonuniform Doping, Quantum Effect or age, MOSFET Channel Length, Various Definitions of Charle Meaning of Effective Channel Length, Extraction of Channel Length, Extraction of Channel CMOS PERFORMANCE FACTORS Circuit Elements, CMOS Inverters, CMOS NAND and NOI ce—Drain Resistance, Parasitic Capacitances, Gate Resistance Parameters, Propagation Delay and Delay Equation, Delay s, Sensitivity of Delay to Power-Supply Voltage and Three Capacitance, Delay of Two-Way NAND and Body Effect, Peters of Capacitance, Delay of Two-Way Nand Body Effect, Peters of Capacitance, Delay of Two-Way Nand Body Effect, Peters of Capacitance, Delay of Two-Way Nand Body Effect, Peters of Capacitance, Delay of Two-Way Nand Body Effect, Peters of Capacitance, Delay of Two-Way Nan	g Effects, Thresholon Threshold Voltannel Length, Extracel Length by C–V M R Gates, Inverter acce, Interconnect R Sensitivity to Chaeshold Voltage, Seerformance Factors	9 Id Volta age, Disc ction of Measurer 9 and NA and C, annel Wi nsitivity of Adva	ge, Thirete Do the Effinents ND La Sensiti didth, Le of De anced C	overshold-pant Effective (3 Voltage fects on Channel 3 Parasitic CMOS and Gate Parasitic
Length M Unit III MOSFET Requiren Threshol Length, I Unit IV Basic CT Elements Delay to Oxide T Resistanc MOSFET Unit V n-p-n T Transisto Characte Collector Bipolar I Circuit M	Modulat T Scalinment, Cl Id Volta Physica MOS Coss, Source Device Chickness Ce and Cors in RI Cransisto Ors, Ide Eristics, r Volta Device Model, I ence of	CMOS DEVICE DESIGN Ing, Constant-Field Scaling, Generalized Scaling, Nonscaling mannel Profile Design, Nonuniform Doping, Quantum Effect or age, MOSFET Channel Length, Various Definitions of Chantel Meaning of Effective Channel Length, Extraction of Channel CMOS PERFORMANCE FACTORS Circuit Elements, CMOS Inverters, CMOS NAND and NOI ce—Drain Resistance, Parasitic Capacitances, Gate Resistance Parameters, Propagation Delay and Delay Equation, Delay s, Sensitivity of Delay to Power-Supply Voltage and Thre Capacitance, Delay of Two-Way NAND and Body Effect, Performance of Company Company (Company) Parameters on CMOS Performance (Company) Parameters (Company) Pa	g Effects, Thresholon Threshold Voltannel Length, Extracel Length by C–V Medical Length	Id Volta Ige, Disc ction of Measurer and NA and C, nnel Wi nsitivity of Adva ature CN Theory f arrent C s Resist Base Cu odel, Sn Common	ge, Thirete Do the Effments O ND La Sensition of De Cor Des Gains, ances, I ances, I ances, I ances, I ances anc	opant Effective (Opant Effective (Opant Effective (Opant Effective (Opant Effective (Opant Effective (Opant Effect	3 Voltage fects on Channel 3 Parasitic CMOS and Gate Parasitic Devices, 3 Bipolar C-VCE f Base-urrents, ivalent-Gain in

Text Books:

1	Behzad Razavi, "Fundamentals of Microelectronics" Wiley Student Edition, 2nd Edition, 2013.
2	J P Collinge, C A Collinge, "Physics of Semiconductor devices" Springer 2002 Edition.
Refe	rence Books:
1	Donald A. Neamen, "Semiconductor Physics and Devices", University of New Mexico, 4th Edition, 2012.
2	Yuan Taur and Tak H. Ning, "Fundamentals of Modern VLSI Devices", Cambridge University Press, 2nd Edition, 2009.
3	A.S. Sedra and K.C. Smith, "Microelectronic Circuits", 7th edition, Oxford University Press, 2015.
4	Ben G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices", 7th edition, Pearson, 2014.
E-Refe	rences:
1.	http://www.nptelvideos.com/course.php?id=527
2.	https://www.digimat.in/nptel/courses/video/108105188/L28.html
3.	https://freevideolectures.com/course/4072/nptel-microelectronics

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Design MOSFET and BJT devices to desired specifications.	L2
CO2	Model MOSFET and BJT devices to desired specifications.	L3
CO3	Analyze the CMOS Parameters and performance.	L4
CO4	Apply the mathematical techniques for device simulations	L3
CO5	Analyze concepts about Bipolar Devices.	L4

					(COURS	E ART	ICULA	TION	MATE	RIX				
CO s/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO 1	2	2	2	1									2	2	1
CO 2	2	1	1	1									2	2	1
CO 3	2	2	2	1		1							2	2	2
CO 4	2	2	1	1									2	2	2
CO 5	2	2	2	1		1							2	2	2
Avg	2	1.8	1.6	1		1							2	2	1.6
				3/2/1 - i	ndicate	s streng	gth of co	orrelati	on (3-H	igh,2-	Mediu	ım,1- l	Low)		

22ECH10	4 NETWORKS ON CHIP		Se	emeste	r	
PREREQU	UISITES Ca	tegory	PEC	Cr	edit	3
1.Computer	Networks		L	Т	P	TH
	Hours	/Week	3	0	0	3
Course Le	arning Objectives					
	understand the concept of network - on - chip					
2 To	learn router architecture designs					
_	study fault tolerance and three dimensional integration of network - on - or	chip				
Unit I	INTRODUCTION TO NOC	1	9	0	0	3
	to NoC – OSI layer rules in NoC - Interconnection Networks in Network - Routing Strategies - Flow Control Protocol Quality-of-Service Support	-on-Chip	Network	Topolo	gies - S	witchin
Unit II	ARCHITECTURE DESIGN		9	0	0	3
	 Cechniques and Packet Format - Asynchronous FIFO Design -GALS Style Design - VC Router Architecture Design - Adaptive Router Architecture		nmunicati	ion - W	ormhol	e Route
Architecture			nmunicati	ion - W	ormhol 0	e Route
Architecture Unit III Packet routi Tree-Based	e Design - VC Router Architecture Design - Adaptive Router Architecture	Design.	9 n – Effic	0 ient and	0 l Deadle	3 ock-Fre
Architecture Unit III Packet routi Tree-Based	ROUTING ALGORITHM ng-Qos, congestion control and flow control – router design – network li Multicast Routing Methods - Path-Based Multicast Routing for 2D a	Design.	9 n – Effic	0 ient and	0 l Deadle	3 ock-Fre
Architecture Unit III Packet routi Tree-Based Routing Alg Unit IV Design-Secu	ROUTING ALGORITHM ng-Qos, congestion control and flow control – router design – network li Multicast Routing Methods - Path-Based Multicast Routing for 2D a gorithms - Reliable and Adaptive Routing Algorithms	Design. ink desig and 3D 1	9 n – Effic Mesh Ne	o ient and etworks	0 d Deadle-Fault-	3 ock-Free Toleran
Architecture Unit III Packet routi Tree-Based Routing Alg Unit IV Design-Secu Tolerance for	ROUTING ALGORITHM ng-Qos, congestion control and flow control – router design – network li Multicast Routing Methods - Path-Based Multicast Routing for 2D a porithms - Reliable and Adaptive Routing Algorithms TEST AND FAULT TOLERANCE OF NOC urity in Networks-on-Chips-Formal Verification of Communications	ink designand 3D in Network-Chips.	9 n – Effic Mesh Ne	o ient and etworks	0 d Deadle-Fault-	3 ock-Free Toleran
Architecture Unit III Packet routi Tree-Based Routing Alg Unit IV Design-Secu Tolerance for Unit V Three-Dime Communica	ROUTING ALGORITHM ng-Qos, congestion control and flow control – router design – network li Multicast Routing Methods - Path-Based Multicast Routing for 2D a gorithms - Reliable and Adaptive Routing Algorithms TEST AND FAULT TOLERANCE OF NOC urity in Networks-on-Chips-Formal Verification of Communications or Networks-on-Chip Infrastructures-Monitoring Services for Networks-on-	in Network-Chips.	9 n – Effic Mesh Ne 9 vorks-on 9 omposed	0 ient and etworks: 0 Chips-	0 I Deadle-Fault- 0 Test ar	3 ock-Free Tolerar 3 od Fau On-Chi
Architecture Unit III Packet routi Tree-Based Routing Alg Unit IV Design-Secu Tolerance for Unit V Three-Dime Communica	ROUTING ALGORITHM ng-Qos, congestion control and flow control – router design – network li Multicast Routing Methods - Path-Based Multicast Routing for 2D a gorithms - Reliable and Adaptive Routing Algorithms TEST AND FAULT TOLERANCE OF NOC arity in Networks-on-Chips-Formal Verification of Communications or Networks-on-Chip Infrastructures-Monitoring Services for Networks-on THREE-DIMENSIONAL INTEGRATION OF NETWORK-ON ensional Networks-on-Chips Architectures. — A Novel Dimensional tion in 3D Architectures - Resource Allocation for QoS On-Chip Communications	in Network-Chips.	9 n – Effic Mesh Ne 9 vorks-on 9 mposed – Netwo	0 ient and etworks: 0 Chips-	0 I Deadle-Fault- 0 Test ar	3 On-Chirotocols

Te	xt Books:
1	Chrysostomos Nicopoulos, Vijaykrishnan Narayanan, Chita R.Das" Networks-on - Chip "Architectures Holistic Design Exploration", Springer. 2009.
2	Fayezgebali, Haythamelmiligi, HqhahedWatheq E1-Kharashi "Networks-on-Chips theory and practice CRC press, 2009.
Ref	erence Books:
1	Konstantinos Tatas and Kostas Siozios "Designing 2D and 3D Network-on-Chip Architectures" 2013
2	Palesi, Maurizio, Daneshtalab, Masoud "Routing Algorithms in Networks-on-Chip" 2014

3	SantanuKundu, SantanuChattopadhyay "Network-on-Chip: The Next Generation of System
	on-Chip Integration", CRC Press, 2014.
4	Sheng Ma, Libo, Mingche, Shi, Zhiying, "Networks-on-chip", Morgan Kaufmann, 2014.
E-Re	ferences:
1.	https://archive.nptel.ac.in/courses/106/103/106103183/
2.	https://www.digimat.in/nptel/courses/video/108106149/L93.html
3.	https://slideplayer.com/slide/7253925/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Compare different architecture design	L2
CO2	Discuss different routing algorithms	L2
CO3	Explain three dimensional networks - on-chip architectures	L3
CO4	Analyze test and fault tolerance of Communications in NOC	L4
CO5	Apply the 3D Integration procedures in NOC	L3

COURSE ARTICULATION MATRIX															
COs/P Os	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	2	2	1							2		1	2	
CO2	2	3	2	2									2	3	2
CO3	1	3	1	2									2	3	
CO4	2	3	2	2									2	3	2
CO5	1	3	2	2									2	3	2
Avg	1.4	2.8	1.8	1.8									1.8	2.8	2
	I	I	3/2	/1 - ind	licates	strengt	h of co	rrelatio	on (3-H	ligh,2- M	ledium	,1- Lov	v)	<u> </u>	

22E(CH105	DSP INTEGRATED CIRCUITS	5	Se	Semester		
PREF	REQUIS	ITES	Category	PEC	EC Credit		3
1.Digi	tal Signal	Processing		L	Т	P	P TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1	To fam	iliarize the concept of DSP and DSP algorithms.					
2	To intro	oduce the Multirate systems and finite wordlength effects	3				
3	To kno	w about the basic DSP processor architectures and the syr	nthesis of the proces	sing eleme	ents		
Unit I		INTRODUCTION TO DSP INTEGRATED CIRCU	9	0	0	3	
	cation spe	r Transform, FFT Algorithm, Image coding, Discrete c cific ICs for DSP, DSP systems, DSP system design, Integ DIGITAL FILTERS AND FINITE WORD LENGTI	grated circuit design		0	0	3
		filter structures, FIR chips, IIR filters, Specifications					
		ti rate filters. Finite word length effects - Parasitic osc d-off noise, Coefficient sensitivity, Sensitivity and noise.	cillations, Scaling of	of signal l	evels, R	lound-o	ff nois
Measu Unit I DSP s	II ystem are	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES chitectures, Standard DSP architecture-Harvard and Mo	dified Harvard arch	9 nitecture. I	0	0	3
Measu Unit I DSP s Multip	II ystem are processors	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES	dified Harvard arch	9 nitecture. I	0	0	3
Measu Unit II DSP s Multip Unit I Synthe with I	ystem are processors V esis: Map Bit — ser	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES chitectures, Standard DSP architecture-Harvard and Morand multi computers, Systolic and Wave front arrays, Share	dified Harvard archared memory archite	9 hitecture. I ectures. 9 PEs, Share	deal DS	O Ory arch	3 mitecture
Measu Unit I DSP s Multip Unit I Synthe with I Async	ystem are processors V esis: Map Bit — ser hronous s	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES chitectures, Standard DSP architecture-Harvard and Morand multi computers, Systolic and Wave front arrays, Shapping of DSP algorithms onto hardware, Implementation rial PEs. Combinational & sequential networks- Store	dified Harvard archared memory archited based on complex age elements – cl	9 hitecture. I ectures. 9 PEs, Share	deal DS	O Ory arch	3 mitecture
Measu Unit I DSP s Multip Unit I Synthe with I Asynci Unit V Conve	ystem are processors V esis: Map Bit — ser hronous s r ntional n Serial aria	DSP ARCHITECTURES Chitectures, Standard DSP architecture-Harvard and Most and multi computers, Systolic and Wave front arrays, Sharping of DSP algorithms onto hardware, Implementation rial PEs. Combinational & sequential networks- Storystems -FSM	dified Harvard archared memory archited based on complex age elements – cl	9 intecture. Intectures. 9 PEs, Share ocking of parallel an	deal DS o deal DS o deal DS	O P archi O ory arch onous O erial ari	3 nitecture 3 thmeti
Measu Unit II DSP s Multip Unit I Synthe with I Asynci Unit V Conve	ystem are processors V esis: Map Bit — ser hronous s r ntional n Serial aria	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES chitectures, Standard DSP architecture-Harvard and Most and multi computers, Systolic and Wave front arrays, Sh. SYNTHESIS OF DSP ARCHITECTURES ping of DSP algorithms onto hardware, Implementation rial PEs. Combinational & sequential networks- Storystems -FSM ARITHMETIC UNIT AND PROCESSING ELEME umber system, Redundant Number system, Residue Nutthmetic, CORDIC Algorithm, Basic shift accumulator	dified Harvard archared memory archited based on complex age elements – cl	9 existecture. I sectures. 9 PEs, Share ocking of parallel an emory size	deal DS o deal DS o deal DS	O P archi O ory arch onous O erial ari	3 nitecture 3 thmeti
Measu Unit I DSP s Multip Unit I Synthe with I Asynci Unit V Conve	ystem are processors V esis: Map Bit — ser hronous s r ntional n Serial aria	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES chitectures, Standard DSP architecture-Harvard and Morand multi computers, Systolic and Wave front arrays, Shark SYNTHESIS OF DSP ARCHITECTURES ping of DSP algorithms onto hardware, Implementation rial PEs. Combinational & sequential networks- Storystems -FSM ARITHMETIC UNIT AND PROCESSING ELEME umber system, Redundant Number system, Residue Nuthmetic, CORDIC Algorithm, Basic shift accumulator accumulator. Case Study: DCT and FFT processor	dified Harvard archared memory archited based on complex age elements – cl	9 existecture. I sectures. 9 PEs, Share ocking of parallel an emory size	deal DS deal DS o ed memorsynchr o d Bit-So c, Comp	O P archi O ory arch onous O erial ari	3 nitectus system 3 thmeti
Measu Unit I DSP s Multip Unit I Synthe with I Asynci Unit V Conve Digit Improv	ystem are processors V esis: Map Bit — ser hronous s / ntional n Serial arived shift-	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES chitectures, Standard DSP architecture-Harvard and Morand multi computers, Systolic and Wave front arrays, Shark SYNTHESIS OF DSP ARCHITECTURES ping of DSP algorithms onto hardware, Implementation rial PEs. Combinational & sequential networks- Storystems -FSM ARITHMETIC UNIT AND PROCESSING ELEME umber system, Redundant Number system, Residue Nuthmetic, CORDIC Algorithm, Basic shift accumulator accumulator. Case Study: DCT and FFT processor	dified Harvard archared memory archited based on complex age elements – clentral complex age system, Bit-jer, Reducing the memory architecture.	9 existecture. I sectures. 9 PEs, Share ocking of parallel an emory size	deal DS deal DS o ed memorsynchr o d Bit-So c, Comp	O P archi O ory arch onous O erial ari	3 nitectus system 3 thmeti
Measu Unit II DSP s Multip Unit I Synthe with I Asynci Unit V Conve Digit Improv	ystem are processors V esis: Map Bit — ser hronous s r ntional n Serial ari ved shift-	d-off noise, Coefficient sensitivity, Sensitivity and noise. DSP ARCHITECTURES chitectures, Standard DSP architecture-Harvard and Morand multi computers, Systolic and Wave front arrays, Shart SYNTHESIS OF DSP ARCHITECTURES ping of DSP algorithms onto hardware, Implementation rial PEs. Combinational & sequential networks- Storystems -FSM ARITHMETIC UNIT AND PROCESSING ELEME umber system, Redundant Number system, Residue Nutthmetic, CORDIC Algorithm, Basic shift accumulator accumulator. Case Study: DCT and FFT processor	dified Harvard archared memory archited based on complex age elements – classical complex in the	9 exitecture. I ectures. 9 PEs, Sharrocking of 9 parallel an emory size Total	deal DS deal DS o ed memorsynchr o d Bit-So c, Comp	O P archi O ory arch onous O erial ari	3 nitecture 3 thmetiltiplier
Measu Unit I DSP s Multip Unit I Synthe with I Asynci Unit V Conve Digit Improv	ystem are processors V esis: Map Bit — ser hronous s r ntional n Serial ari ved shift-	DSP ARCHITECTURES Chitectures, Standard DSP architecture-Harvard and Morand multi computers, Systolic and Wave front arrays, Sharper of DSP algorithms onto hardware, Implementation rial PEs. Combinational & sequential networks- Storystems -FSM ARITHMETIC UNIT AND PROCESSING ELEME umber system, Redundant Number system, Residue Number system, Redundant Number system, Residue Number computers, Cordict Algorithm, Basic shift accumulator accumulator. Case Study: DCT and FFT processor Charlest Study: DCT and FFT processor Proakis, Dimitris G. Manolakis, "Digital Signal Processing	dified Harvard archared memory archited based on complex age elements – classical complex in the	9 exitecture. I ectures. 9 PEs, Sharrocking of 9 parallel an emory size Total	deal DS deal DS o ed memorsynchr o d Bit-So c, Comp	O P archi O ory arch onous O erial ari	3 nitectus system 3 thmeti

B.Venkatramani, M.Bhaskar, "Digital Signal Processors", Tata McGraw-Hill, 2002.

5	Avtar Singh and S. Srinivasan, "Digital Signal Processing – Implementations using DSP Microprocessors with
	<u>Examples</u>
	from TMS320C54xx", cengage Learning India Private Limited, Delhi 2012
4	S.K. Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.
E-Re	ferences:
1	http://www.nptelvideos.com/lecture.php?id=7678
2	https://www.digimat.in/cgi-bin/search.cgi
3	https://www.allaboutcircuits.com/video-tutorials/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Get to know about the Digital Signal Processing concepts and its algorithms	L1
CO2	Get an idea about finite word length effects in digital filters	L2
CO3	Concept behind multi rate systems is understood.	L2
CO4	Get familiar with the DSP processor architectures	L2
CO5	Perform the synthesis of processing elements	L4

COURSE ARTICULATION MATRIX															
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO 12	PSO1	PSO2	PSO3
CO1	1		2	1									2	2	2
CO2	2		1	1									1	2	1
CO3	3		1	1									2		1
CO4	1		1	1									2	2	1
CO5	2	2	2	1									1	2	1
Avg	1.8	2	1.4	1									1.6	2	1.2

3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)

22EC	H106	VLSI SIGNAL PROCESSING	G	Se	emester	r	
PRER	EQUIS	ITES	Category	PEC	Cre	edit	3
VLSI I	Design			L	Т	P	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives			I	<u> </u>	J
1	To intro	oduce fundamentals of VLSI signal processing and expose t	hem to examples of	applicati	ons.		
2	To desi	gn and optimize VLSI architectures for basic DSP algorithm	ns.				
3	To imp	art knowledge in asynchronous pipelining.					
Unit I		PIPELINING AND PARALLEL PROCESSING OF D FILTERS	DIGITAL	9	0	0	3
iteration	n bound,	DSP systems – Typical DSP algorithms, Data flow and Longest path matrix algorithm, Pipelining and Parallel ow power.					
Unit II		ALGORITHMIC STRENGTH REDUCTION TECHN	NIQUE I	9	0	0	3
and par	allel pro	nitions and properties, Unfolding – an algorithm for unfoldicessing application, Algorithmic strength reduction in filte DCT architecture, rank-order filters, Odd-Even merge-sort at	ers and transforms	– 2-parall	lel FIR	filter, 2	
Unit II		ALGORITHIMIC STRENGTH REDUCTION -II	. •	9	0	0	3
Ahead	pipelinir	n – Cook-Toom algorithm, modified Cook-Toom algorithing in first-order IIR filters, Look-Ahead pipelining with lel processing of IIR filters, combined pipelining and parall	h powerof-2 decon	nposition,			
Unit IV	7	BIT-LEVEL ARITHMETIC ARCHITECTURES		9	0	0	3
Design	of Lyon	etic architectures – parallel multipliers with sign extensions bit-serial multipliers using Horner's rule, bit-serial FIR for precision improvement, Distributed Arithmetic fundament	filter, CSD represen	tation, CS			
Unit V		NUMERICAL STRENGTH REDUCTION, WAVE AN ASYNCHRONOUS PIPELINING	ND	9	0	0	3
pipelini	ing and	gth reduction – subexpression elimination, multiple const clocking styles, clock skew in edge-triggered single pha- pipelining bundled data versus dual rail protocol.					
				Tot	al (45 L	<u>a)</u> = 45	Periods

Text Books: Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and implementation", Wiley, Interscience, 2010. 2 U. Meyer - Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer, Second Edition, 2004

Reference Books: Magdy A. Bayoumi, Magdy A. Bayoumi, E. Swartzlander, "VLSI Signal Processing Technology", Kluwer Academic 1 Publishers.October 1994. Isamail, Mohammed and Fiez, Terri, "Analog VLSI Signal and Information Processing", McGraw-Hill, New York, 1994. 3 S.Y. Kuang, H.J. White House, T.Kailath., "VLSI and Modern Signal Processing", Prentice Hall, 1995. Jose E. France, YannisTsividls, "Design of Analog Digital VLSI Circuits for Telecommunications and Signal 4 Processing", Prentice Hall, 1994. Richard. J. Higgins, "Digital Signal Processing in VLSI", Prentice Hall, 1990. e-Reference:

https://nptel.ac.in/courses/108105157

2	https://slideplayer.com/slide/8932417/
3	https://www.youtube.com/watch?v=gIgNlhuqxWo

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand VLSI design methodology for signal processing systems.	L2						
CO2	Perform the pipelining and parallel processing in FIR systems to achieve high speed and low power.	L2,L4						
CO3	Apply the algorithmic strength reduction using various techniques.	L2,L4						
CO4	Modify the existing or new DSP architectures suitable for VLSI.	L4,L5						
CO5	Implement the strength reduction and asynchronous pipelining.	L3,46						

COs/POs	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
	1												1	2	3
CO1	3	2	1	1	1								2		
CO2	3	1	2	2	1		2					2	2	1	
CO3	3	2	1	2	2	2	1					2	2	2	2
CO4	2	2	2	3	3	1	2	1				2	2	2	1
CO5	3	3	2	3	3	1	2	2	2	1	3	3	3	2	3
Avg												2.2			
	2.8	2	1.6	2.2	2	1.3	1.75	1.5	2	1	3	5	2.2	1.75	2

	CH107	107 MIXED SIGNAL VLSI DESIGN Se					
PREI	REQUIS	ITES	Category	PEC	CC Credit		
VLSI	I Design			L	Т	P	TH
			Hours/Week	3	0	0	3
Cour	se Learn	ing Objectives				<u> </u>	1
1	To ana	lyze the characteristics of IC based CMOS filters.					
2	To des	ign various data converter architecture circuits.					
3	To des	ign oscillators and phase lock loop circuit.					
U	nit I	INTRODUCTION		9	0	0	9
Ur	nit II	INTEGRATOR BASED CMOS FILTERS	OCEPT C. L.	9	0	0	9
		ing Blocks- low pass filter, Active RC integrators, Mering Topologies: The Bilinear transfer function, The Bilinear transfer function for the Bilinear transfer function			tegrator	s, Discr	ete tir
Un	nit III	DATA CONVERTER ARCHITECTURES		9	0	0	9
Pipel		tures- Resistor string, R-2R ladder Networks, Curre C. ADC Architectures- Flash, Two-step flash AI ADC.					
Un	nit IV	DATA CONVERTER MODELING AND SNR		9	0	0	9
		Laliasing: A modeling approach, Impulse sampling, Th	a cample and Hold Ou	antizatio	n noise.		
SNR:		iew, Clock Jitter, Improving SNR using Averaging, De High pass sinc filters - Using feedback to improve SNR.	ecimating filter for ADC		olating	filter foi	·DAC
SNR: Band ₁		ew, Clock Jitter, Improving SNR using Averaging, De	ecimating filter for ADC		olating	filter for	DAC
SNR: Band J Ur	pass and F nit V scillators,	iew, Clock Jitter, Improving SNR using Averaging, De ligh pass sinc filters - Using feedback to improve SNR.	ecimating filter for ADC	Ss, Interpo	0	0	9
SNR: Band J Ur	pass and F nit V scillators,	iew, Clock Jitter, Improving SNR using Averaging, De High pass sinc filters - Using feedback to improve SNR. OSCILLATORS AND PLL	ecimating filter for ADC	9 effects i	0 n PLLs	0	9 Locke
SNR: Band J Ur LC os Loops	pass and F nit V scillators,	iew, Clock Jitter, Improving SNR using Averaging, De Jigh pass sinc filters - Using feedback to improve SNR. OSCILLATORS AND PLL Voltage Controlled Oscillators. Simple PLL, Charge p	ecimating filter for ADC	9 effects i	0 n PLLs	0, Delay	9 Locke
SNR: Band J Ur LC os Loops	pass and F nit V scillators, s.	iew, Clock Jitter, Improving SNR using Averaging, De Jigh pass sinc filters - Using feedback to improve SNR. OSCILLATORS AND PLL Voltage Controlled Oscillators. Simple PLL, Charge p	oumps PLLs, Non ideal	9 effects i	on PLLs	0, Delay	9 Locke

1 ex	t books:
1	CMOS Mixed Signal Circuit Design by R.Jacob Baker, Wiley India, IEEE Press, reprint 2008.
2	CMOS Circuit Design, Layout and Simulation by R.Jacob Baker, Wiley India, IEEE Press, Second Edition, reprint 2009.
Refe	rence Books:
1	Design of Analog CMOS Integrated Circuits by Behzad Razavi, McGraw Hill, 33rd Re- print, 2016.
2	M.L.Bushnell & V.D.Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed signal VLSI Circuits", Kluwer Academic Publishers, 2004
3	N.K Jha and S.G Gupta ,"Testing of Digital Systems", Cambridge University Press, 2003.

4	Laung-Terng Wang, Cheng-Wen Wu, Xiaoqing Wen, VLSI "Test Principles and Architectures", Morgan Kaufmann Publishers, 2006
E-Re	ference:
1	http://www.ee.iitm.ac.in/vlsi/courses/ee5320_2021/start
2	https://onlinecourses.nptel.ac.in/noc22_ee37/
3	https://archive.nptel.ac.in/courses/117/106/117106030/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Apply the concepts for mixed signal MOS circuit.	L2
CO2	Analyze the characteristics of IC based CMOS filters.	L2
CO3	Design of various data converter architecture circuits.	L3
CO4	Analyze the signal to noise ratio and modeling of mixed signals.	L3
CO5	Design of oscillators and phase lock loop circuit.	L4

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1	2	1						1		1	2	1
CO2	3	2	2	2	1						1		2	2	1
CO3	3	3	3	2	1				2		1		2	2	1
CO4	2	2	2	3	2		2		2		2	1	2	2	1
CO5	2	2	2	3	2		2		2		2	2	2	2	2
Avg	2.4	2.2	2	2.4	1.4		2		2		1.4	1.5	1.8	2	1.2

PREREQUISITES Wireless Communication and VLSI Design Course Objectives 1 To understand the concepts of basic 2 To design low noise amplifiers, mixed 3 To design PLL and VCO and to undesign PLL						
Course Objectives 1 To understand the concepts of basic 2 To design low noise amplifiers, mix. 3 To design PLL and VCO and to und wireless communication. Unit I WIRELESS COMMUN Introduction – Overview of Wireless syster channel description – Path loss – Multipath Unit II RECEIVER ARCHITEC Receiver front end – Filter design – No Introduction – Wideband LNA design – Na Unit III MIXERS Balancing Mixer – Qualitative Description Mixer – Switching Mixer – Distortion, Co Switching Mixer – Sampling Mixer – Converted to the conve	EGOI	ORY	PE	Cro	edit	3
Course Objectives 1 To understand the concepts of basic 2 To design low noise amplifiers, mix 3 To design PLL and VCO and to und wireless communication. Unit I WIRELESS COMMUN Introduction – Overview of Wireless system channel description – Path loss – Multipath Unit II RECEIVER ARCHITEC Receiver front end – Filter design – No Introduction – Wideband LNA design – Na Unit III MIXERS Balancing Mixer – Qualitative Description Mixer – Switching Mixer – Distortion, Co Switching Mixer – Sampling Mixer – Converted to the conver		Zaal-	L	T	P	TH
To understand the concepts of basic To design low noise amplifiers, mixing To design PLL and VCO and to und wireless communication. Unit I WIRELESS COMMUN Introduction – Overview of Wireless system channel description – Path loss – Multipath Unit II RECEIVER ARCHITECT Receiver front end – Filter design – No Introduction – Wideband LNA design – Na Unit III MIXERS Balancing Mixer – Qualitative Description Mixer – Switching Mixer – Distortion, Co Switching Mixer – Sampling Mixer – Converted to the synthesis of the synthesis of the sign approaches – A complete synt	Wireless Communication and VLSI Design Hours/Week					3
To design low noise amplifiers, mixed and wireless communication. Unit I WIRELESS COMMUNICATION OF THE COMMUNICAT						
To design PLL and VCO and to und wireless communication. Unit I WIRELESS COMMUN Introduction – Overview of Wireless syster channel description – Path loss – Multipath Unit II RECEIVER ARCHITEC Receiver front end – Filter design – No Introduction – Wideband LNA design – Na Unit III MIXERS Balancing Mixer – Qualitative Description Mixer – Switching Mixer – Distortion, Co Switching Mixer – Sampling Mixer – Converted to the product of						
Unit I WIRELESS COMMUN Introduction – Overview of Wireless system channel description – Path loss – Multipath Unit II RECEIVER ARCHITECT Receiver front end – Filter design – No Introduction – Wideband LNA design – Na Unit III MIXERS Balancing Mixer – Qualitative Description Mixer - Switching Mixer – Distortion, Co Switching Mixer - Sampling Mixer - Convolution – Wideband LNA design – Na Unit IV FREQUENCY SYNTHE PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthe	ess com	mmuni	ication.			
Introduction – Overview of Wireless syster channel description – Path loss – Multipath Unit II RECEIVER ARCHITECT Receiver front end – Filter design – No Introduction – Wideband LNA design – Na Unit III MIXERS Balancing Mixer - Qualitative Description Mixer - Switching Mixer – Distortion, Co Switching Mixer - Sampling Mixer - Convolution of Control of Contro	s and fr	front e	end of th	he rece	iver i	1
Channel description – Path loss – Multipath Unit II RECEIVER ARCHITEC Receiver front end – Filter design – No Introduction – Wideband LNA design – Na Unit III MIXERS Balancing Mixer - Qualitative Description Mixer - Switching Mixer – Distortion, Co Switching Mixer - Sampling Mixer - Converted to the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthetical management of the Converted PLL – Phase detector – Dividers – Voltage A converted PLL – Phase detector – Dividers – Volta			9	0	0	9
Balancing Mixer - Qualitative Description Mixer - Switching Mixer - Distortion, Co Switching Mixer - Sampling Mixer - Conve Unit IV FREQUENCY SYNTHE PLL - Phase detector - Dividers - Voltage and design approaches - A complete synthe				o ercept j	0 point.	3 LNA
Mixer - Switching Mixer - Distortion, Co Switching Mixer - Sampling Mixer - Conve Unit IV FREQUENCY SYNTHE PLL - Phase detector - Dividers - Voltage and design approaches - A complete synthe			9	0	0	9
PLL – Phase detector – Dividers – Voltage and design approaches – A complete synthe	ing Mi	Aixer -	A Pra	ctical	Unbal	anced
and design approaches – A complete synthe			9	0	0	9
Unit V TRANSMITTER ARCH						filters
·	5		9	0	0	9
Transmitter back end design – Quadrature l	n.				•	
		Tota	al (45]	L) = 4	45 Pe	riods

Text 1	Books:
1	Bosco H Leung "VLSI for Wireless Communication", Pearson Education, 2002
2	B.Razavi ,"RF Microelectronics", Prentice-Hall communication engineering and emerging technologies series, 2012.
Refer	ence Books:
1	Behzad Razavi, "Design of Analog CMOS Integrated Circuits" McGraw-Hill, 1999
2	Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI wireless design – Circuits & Systems", Kluwer Academic Publishers, 2000.
3	Crols and M. Steyaert, "CMOS Wireless Transceiver Design," Boston, Kluwer Academic Pub., 1997
4	Thomas H.Lee, "The Design of CMOS Radio – Frequency Integrated Circuits", Cambridge University Press ,2003.

e-Ref	e-Reference:							
1	https://nptel.ac.in/courses/117104099/							
2	http://www.nptelvideos.in/2012/12/wireless-communication.html							
3	http://videos.gitam.edu/nptel/ece.html							

Course O Upon con	putcomes: appletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Understand the fading concepts	L2
CO2	Design Low Noise amplifier and low noise amplifiers.	L3
CO3	Design mixers with noise	L3
CO4	Evaluate the performance of Frequency synthesizers.	L5
CO5	Design and analyze Power amplifiers.	L3

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	2	2	1	2	2	1	1				2	2	2		2
CO2	1	2	2	2	1	1	2				1	2	1		2
CO3	2	1	2	1	1	2	1				2	1	2		1
CO4	1	1	2	2	1	1	2				1	1	1		2
CO5	2	1	2	1	2	2	1				2	2	1		1
Avg	1.6	1.4	1.8	1.6	1.4	1.4	1.4				1.6	1.6	1.4		1.6
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

ZZE(CH109	VLSI FOR IOT SYSTEMS	S	S	emeste	r	
PREF	REQUIS	ITES	PEC	EC Credit		3	
VLSI	Design &	&IOT	L	Т	P	TH	
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives			<u> </u>		
1	To anal	yze the components of IOT and IC technology for IOT.					
2	To acqu	rire the electronic system design for IOT.					
3	To imp	art the knowledge on System design for IOT and applicati	ons.				
Uı	nit I	INTRODUCTION		9	0	0	9
		nected world - Need, Legacy systems for connected world- rits and Demerits of loT technology. Applications driven				of loT	
Un	it II	COMPONENTS OF IOT		9	0	0	9
	it III	mpute nodes of loT Connectivity technologies in loT - So IC TECHNOLOGY FOR IOT	ftware in loT systems	s - feature	es and p	roperties 0	9
Non Powe	Volatile I er Manag	re for lot Devices - Application Processors, Microcontro Memories (NVM). Embedded Non-Volatile Memories, A ement - Low Dropout Regulator, DC-to-DC Converte s and Systems, Role of Field Programmability in IoT syste	anti-Fuse One Time I	Programr	nable (0	OTP) me	emorie
Un	it IV	ELECTRONIC SYSTEM DESIGN FOR IOT		9	0	0	9
	Design rds, Com	m Design for loT Requirements, Computing blocks in Iof for IoT systems, Mixed Signal challenges in hardware	e systems, Form Fa	ctor- Gu ntegratio	idelines n, Oper	and pr ating co	evailin nditior
standa of loT	systems.	ponent models & System Design - Feasibility and challer and impact on Electronic System Design, Hardware Security		∠, SI/P) 8			
standar of loT in IOT				9	0	0	9
standar of loT in IOT Un Autom	it V nated Desits Using	nd impact on Electronic System Design, Hardware Secur	rity issues, EMI/EMO	9 ge Scalin	g - App	roximat	e Add
standar of loT in IOT Un Autom	it V nated Desits Using	APPLICATIONS gn of Reconfigurable Microarchitectures for Accelerator Clocked CMOS Adiabatic Logic (CCAL) for IoT Appl	rity issues, EMI/EMO	9 ge Scalin nagemen	g - App t Techr	roximat	e Add Reduc
standar of loT in IOT Un Autom Circuit Standb	it V nated Desits Using	APPLICATIONS gn of Reconfigurable Microarchitectures for Accelerator Clocked CMOS Adiabatic Logic (CCAL) for IoT Appl Consumption in Ultra-Low Power IoT and Sensory Apple	rity issues, EMI/EMO	9 ge Scalin nagemen	g - App t Techr	proximat rique to	e Add Reduc
standar of loT in IOT Un Autom Circuit Standb	nit V nated Desits Using by Energy at Books Alloto.	APPLICATIONS gn of Reconfigurable Microarchitectures for Accelerator Clocked CMOS Adiabatic Logic (CCAL) for IoT Appl Consumption in Ultra-Low Power IoT and Sensory Apple	rity issues, EMI/EMO s Under Wide-Voltagications -Battery Ma ications	9 ge Scalin nagemen	g - App t Techr	proximat ique to (L) = 45	e Add Reduc

Refe	rence Books:
1	Rashid Khan, KajariGhoshdastidar, AjithVasudevan, "Learning lot with Particle Photon and Electron". Packt Publishin Limited (Verlag), 2016.
2	Shubakar Kalya, Muralidhar Kulkarni, Shivaprakasha, Advances in VLSI, Signal Processing, Power Electronics, IoT, Communication and Embedded Systems, Springer, 2021.
3	<u>Ibrahim (Abe) M. Elfadel</u> (Editor), <u>Mohammed Ismail</u> (Editor), TheIoT Physical Layer: Design and Implementation, Springer, 2018.
4	<u>JyotiKandpal</u> , Opportunity and Challenges for VLSI in IoT Application, DOI: <u>10.4018/978-1-6684-3855-8.ch010</u> 5Bosco H Leung "VLSI for Wireless Communication", PearsonEducation, 2002
E-Refe	erence:
1	http://www.ee.iitm.ac.in/vlsi/courses/ee5320_2021/start
2	https://onlinecourses.nptel.ac.in/noc22_ee37/
3	https://archive.nptel.ac.in/courses/117/106/117106030/

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the basic concepts of IOT	L2
CO2	Infer the components of IOT	L2
CO3	Understand the IC technology for IOT	L2
CO4	Acquire the electronic system design for IOT	L3
CO5	Infer the applications of IOT	L2

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO 12	PSO1	PSO2	PSO3
CO1	1	1	1	1							1		1	2	
CO2	1	1	1	1							2		1	2	
CO3	1	1	1	1	2		1				2		1	2	
CO4	1	1	1	1	2	1	1	1			2	2	1	2	2
CO5	1	1	1	1	2	1	1	1	1		2	2	1	2	2
Avg	1	1	1	1	2	1	1	1	1		1.8	2	1	2	2

	CH110	CAD FOR VLSI DESIGN		So	emeste	r	
PRER	REQUIS	ITES	Category	PEC	Cr	edit	3
VLSI	Design			L	Т	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives			1		
1	To intro	oduce the VLSI design methodologies, data structures and a	algorithms required	for VLSI	design.		
2	To stud	y algorithms for partitioning, placement, floor planning and	d routing.				
3	To stud	y algorithms for modelling, simulation and synthesis.					
Un	nit I	INTRODUCTION		9	0	0	9
		Data Structures and Algorithms – Algorithmic Graph The lems – General Purpose Methods for Combinatorial Optima		9 onal Com	0 plexity	0 – Tract	9 able and
Uni	it III	ALGORITHMS FOR PARTITIONING AND PLAC	EMENT	9	0	Τ.	
					U	0	9
Place	ut Compa ment Alg it IV	action – Problem Formulation – Algorithms for Constrain orithms. ALGORITHMS FOR FLOORPLANNING AND RO	nt Graph Compaction				
Placer	ment Alg	orithms. ALGORITHMS FOR FLOORPLANNING AND RO	nt Graph Compaction	on – Part	itioning	g – Plac	rement -
Placer Uni Floorpl	ment Alg it IV lanning -	orithms.	nt Graph Compaction	on – Part	itioning	g – Plac	rement -
Placer Uni Floorpl Routing	ment Alg it IV lanning -	orithms. ALGORITHMS FOR FLOORPLANNING AND RO	nt Graph Compaction	on – Part	itioning	g – Plac	rement -
Placer Uni Floorph Routing Un Simula	it IV lanning - g.	ALGORITHMS FOR FLOORPLANNING AND RO Problem Formulation – Floorplanning Algorithms – Ro	out Graph Compaction OUTING uting – Area Routi	on – Part 9 ng – Glo	itioning 0 bal Rou	g – Plac 0 uting –	gement –

Tex	t Books:
1	Sabih H. Gerez, "Algorithms for VLSI Design Automation", Second Edition, Wiley-India, 2017.
2	Naveed a. Sherwani, "Algorithms for VLSI Physical Design Automation", 3rd Edition, Springer, 2017.
Refe	rence Books:
1	Charles J. Alpert, Dinesh P. Mehta and Sachin S Sapatnekar, "Handbook of Algorithms for Physical Design Automation, CRC Press, 1st Edition
2	N.a. Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2002.
3	Andrew B Kahng and Jens Lienig, "VLSI Physical Design: From Graph Partitioning to Timing Closure".
4	Rolf Drechsler, "Evolutionary Algorithms for VLSI CAD".

E-Re	ference:
1	https://archive.nptel.ac.in/courses/106/106/106106088/
2	https://gndec.ac.in/~librarian/web%20courses/IIT-MADRAS/CAD%20for%20VLSI%20DESIGN%20I/index1.html
3	https://archive.nptel.ac.in/courses/117/101/117101058/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Use various VLSI design methodologies	L2
CO2	Understand different data structures and algorithms required for VLSI design.	L3
CO3	Develop algorithms for partitioning and placement.	L3
CO4	Develop algorithms for floorplanning and routing.	L3
CO5	Design algorithms for modelling, simulation and synthesis.	L4

					COUF	RSE AI	RTICU	LATI	ON M.	ATRIX					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO 12	PSO1	PSO2	PSO3
CO1	2	2	1	1	1								1	2	1
CO2	1	1	1	1	1	1					1		1	2	1
CO3	1	1	1	1	1	1					1		1	2	1
CO4	1	1	1	1	1	1					2	1	1	2	1
CO5	1	1	1	1	1						2	1	1	2	1
Avg	1.2	1.2	1	1	1	1					1.5	1	1	2	1
	1	3,	/2/1 - i	indicat	es stre	ngth o	f corre	lation	(3-Hig	h,2- Med	lium,1-	Low)	ı	L	I

22ECH	I201	HIGH PERFORMANCE NETWO	ORKS	:	Semest	ter	
PRERE	QUIS	ITES	Category	PE	Cı	redit	3
			** (***	L	T	P	TH
			Hours/Week	3	0	0	3
Course	Learn	ing Objectives					
1	To Con	npare and contrast high throughput and low latency networking	ig devices				
2	To intro	oduce the layered communication architectures of high perfor	mance network.				
3	To appl	ly various layer protocols and solve security issues					
UNIT I		INTRODUCTION		9	0	0	9
		TCP/IP, Multiplexing, Modes of communication, Switching Addressing signaling & Routing, Header structure, ATM ad-					
with ATN				1	1	1	1
UNIT II	I	MULTIMEDIA NETWORKING APPLICATIONS	8	9	0	0	9
		d audio and video-Best effort service -protocols for real topolicing mechanism integrated services, RSVP, differentiated		olicatio	ns, Bey	ond bes	st effor
UNIT II			services.	9	0	0	9
UNII	11	ADVANCED NETWORKS CONCEPTS		9	U	U	9
		d performance, binary block codes, orthogonal, Biorthogo P, security in VPN, MPLS-operation, routing, tunneling and u					
		is, P2P connections	or 120, marro c			22 043	
UNIT I	V	TRAFFIC MODELLING		9	0	0	9
		l , Need for modeling, Poisson modeling and its failure, non- _I					
		—Pollaczek-Khinchin formula and M/G/1, M/D/1, self-simi s theorem and Jackson theorem.	lar models and Bat	ch-arri	val moo	del, Netv	works c
UNIT V		NETWORK SECURITY AND MANAGEMENT		9	0	0	9
application	ons- Ke	ecture, SNMP basics, SNMP naming and OIDs, MIBs, SNMI erberos, X.509 authentication service, Electronic mail securalls- Firewall design principles.					
				Tota	al (45L	(a) = 45]	Period
Toyt 1	Books	•					
•		e Defined Networks: A Comprehensive Approach by Paul Go	ransson and				
C	Chuck B	Black, Morgan Kaufmann Publications, 2014					
2 S	DN - S	oftware Defined Networks by Thomas D. Nadeau & Ken Gra	y, O'Reilly, 2013				
Refere	nce Bo	ooks:					
1 S	oftwar	re Defined Networking with OpenFlow by SiamakAzodo	olmolky, Packt Pu	ıblishi	ng, 201	13	
1		Ç 1	•				

Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road to SDN: an intellectual history of programmable networks." ACM SIGCOMM Computer Communication Review 44.2 (2014): 87-98.

3	Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76
4	Vivek Tiwari, —SDN and Open Flow for Beginnersl, Amazon Digital Services, Inc., 2013.
E-Re	eference
1	https://onlinecourses.nptel.ac.in/noc23_cs35/preview
2	https://www.youtube.com/watch?v=d70RV20bJaY

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Recognize and differentiate concepts of ATM, SONET and ISDN.	L2
CO2	Understand various multimedia networking applications and services.	L2
CO3	Apply advanced networks concepts	L3
CO4	Perform traffic based on the various models and theorems	L3
CO5	Solve various networks security issues and understand management concepts	L1, L3

COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1		2		2									3		2
CO2		2		2									3		3
CO3	2	2	2	2								2	2		1
CO4	2	2	2	2								2	1		1
CO5	2	2	3	2								2	2		2
Avg	1.2	2	1.4	2								1.2	2.2		1.8

		NETWORKS		Semest	er	
70r *	UISITES	Category	PE	Cr	edit	3
70			L	Т	P	TH
70		Hours/Week	3	0	0	3
ourse L	earning Objectives					
1 To	p learn the basic elements of optical fiber transmission link,	fiber modes configurations	s and st	ructures	S.	
2 To	elearn the various optical source materials, LED structures,	quantum efficiency and La	aser dic	des and	its uses	3.
9	o understand the fiber optical network components, variet inciples WDM.	y of networking aspects,	SONE	T/SDH	and ope	erationa
UNIT I	OPTICAL FIBER COMMUNICATIONS		9	0	0	9
ndex fiber crystal fibe U NIT II	s, Single mode fibers, Cutoff wavelength, Mode field diameters. TRANSMISSION CHARACTERISTICS	eter, effective refractive in	dex. Fi	ber Mat	terials, I	Photon 9
Modulation	urces: Light Emitting diodes: LED Structures, Light Son. Laser Diodes: Modes and Threshold conditions, Ra	te equation, External Q	uantum	Effici	ency, F	Resona
	ss. Photodetectors: Physical principles of Photodiodes, I Optical Receiver Operation: Error sources. Front End Ampli					Ontica
	OPTICAL NETWORK ARCHITECTURES		Δ.			opue
UNIT IV			9	0	0	9
Introduction Broadcast	on to Optical Networks; WDM networks, SONET / SDI and Select Networks- Topologies for Broadcast Networks re. WOBAN and OTDM networks. Introduction to ASON.		tworks,	Layere	ed Arch	9 nitecture
Introduction Broadcast	and Select Networks- Topologies for Broadcast Networks	, Media Access Control P	tworks,	Layere	ed Arch	9 nitecture
Introduction Broadcast Architectur UNIT V Photonic I Switch-bas	and Select Networks- Topologies for Broadcast Networks re. WOBAN and OTDM networks. Introduction to ASON.	WORKS lexing, Synchronisation,	tworks, Protocol 9 Broade	Layereds, Wave	ed Archelength O DM ne	9 Routin
Introduction Broadcast Architectur UNIT V Photonic I Switch-bas	and Select Networks- Topologies for Broadcast Networks re. WOBAN and OTDM networks. Introduction to ASON. PACKET SWITCHING AND ACCESS NET Packet Switching – OTDM, Multiplexing and Demultipled networks; Access Networks – Network Architecture	WORKS lexing, Synchronisation,	tworks, Protocol	Layereds, Wave	o DM neaccess N	9 nitecture Routin 9 9 etworks
Introduction Broadcast Architectur UNIT V Photonic I Switch-bas	and Select Networks- Topologies for Broadcast Networks re. WOBAN and OTDM networks. Introduction to ASON. PACKET SWITCHING AND ACCESS NET Packet Switching – OTDM, Multiplexing and Demultipled networks; Access Networks – Network Architecture res; Future Access Networks	WORKS lexing, Synchronisation,	tworks, Protocol	Layere ls, Wave 0 0 cast OT otical A	o DM neaccess N	9 nitecture Routin 9 etworks Networks
Introduction Broadcast Architectur UNIT V Photonic I Switch-base Architectur Text Bo	and Select Networks- Topologies for Broadcast Networks re. WOBAN and OTDM networks. Introduction to ASON. PACKET SWITCHING AND ACCESS NET Packet Switching – OTDM, Multiplexing and Demultipled networks; Access Networks – Network Architecture res; Future Access Networks	WORKS lexing, Synchronisation, overview, OTDM netwo	y Broadd rks; Op	Layere ls, Wave 0 0 cast OT otical A	o DM neaccess N = 45 1	9 nitectur Routin 9 etworks Networ

1	Optical Communication systems by John Gowar, 2nd Edition
2	Optical fiber Communications by John M. Senior, 3rd Edition
3	Biswanath Mukherjee, "Optical Communication Networks", Mc-GrawHill ©1997, First Edition
4	C. Siva Ram Moorthy and Mohan Gurusamy, "WDM Optical Networks : Concept, Design and Algorithms", Prentice Hall of India, Ist Edition, 2002.
E-R	eference
1	Optical Communications - Course (nptel.ac.in)
2	https://opg.optica.org/jocn/home.cfm

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Recall the principles of operation of various optical fiber communication systems.	L1
CO2	Analyze the transmission characteristics of optical fiber and use	L3
CO3	Recognize the type of optical sources	L1
CO4	Understand different types of optical network architectures and their applications	L2
CO5	Relate aspects of algorithms to connectivity and packet switching and queuing.	L3

					COUR	RSE AR	TICUI	ATIO	N MAT	RIX					
COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO3
CO1		2		2									3		2
CO2	2	2	2	2								2	2		1
CO3	2	2	2	2								2	2		1
CO4	2	2	2	2								2	1		1
CO5	2	2	2	2								2	2		1
Avg	1.6	2	1.6	2								1.6	2.2		1.2
	1	3	3/2/1-in	dicates	strengt	h of co	rrelatio	n (3- H	igh, 2-N	Medium	, 1- Lo	w)	I	I	ı

PRERE		NETWORK SECURITY AND MANAGER	MENT	\$	Semest	er	
	EQUISI	ITES	Category	PE	Cr	edit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Course	Learni	ing Objectives					
1	Unders	stand the need and concept of security					
2	To und	derstand necessary Approaches and Techniques to build proks.	otection mechanism	ns in or	der to s	secure c	omputer
3	To und	lerstand Cryptography Theories, Algorithms and Systems					
Unit I		INTRODUCTION AND NUMBER THEORY		9	0	0	9
Arithmet Cryptogr	tic, Co	s and Mechanisms, and Techniques. Number Theory and Mangruence Arithmetic-Linear Congruence and Quadratic Classical Symmetric-Key Ciphers –Substitution Ciphers, Trans	Congruence – sposition Ciphers	Basics	for A	Asymme	tric-Key
Unit II		SYMMETRIC AND ASYMMETRIC CRYPTOSYSTEM	/18	9	0	0	9
Birthday	Integri Attacks	AUTHENTICATION, DIGITAL SIGNATURES AND Coty & Message Authentication - Message Authentication of St., Digital Signatures - Digital Signature Standards (FIPS 18 ribution – RSA schemes, Digital Certificates - PKI Certificates	Code (MAC), Cry 6-2), DSA (ANSI	X9.30)	, RSA (
Unit IV		SECURITY AT LAYERS		9	0	0	9
		Security - IPSec, Transport Layer Security- SSL/TLS, SS pts, Architecture, Packet Filtering, Proxy Services and Bastic		lyer Se	L curity –	-PGP, S	/MIME
Unit V		NETWORK MANAGEMENT AND SNMP PROTOCOL	L MODEL	9	0	0	9
Network	manage 2 – MIE	stem management, Network management system platform; Cement standards. SNMPV1, SNMPV2 system architecture, 3 – SNMPV2 protocol, SNMPV3-Architecture, Application,	SNMPV2, structur	e of ma	anagem	ent info	rmation
				Т	otal (45	5L)= 45	Periods
	Books:						
Text	Behrouz	A.Forouzan, "Cryptography and Network Security", Special	Edition, Tata McG	raw Hil	1, 2007		
,		,,,,,, ,					
1 B	Mani Sul	bramanian, "Network Management – Principles & Practice" -		ice Hal	l, 2012.		
1 B		bramanian, "Network Management – Principles & Practice" -		ice Hal	1, 2012.		
1 B 2 M Refere	ence Bo	bramanian, "Network Management – Principles & Practice" -	- 2nd Edition Prent				on, 2002

3	Charlie Kaufmann, Radia Perlman, Mike Speciner, "Network Security", Second Edition,						
4	David M. Durton, "Elementary Number Theory", Tata Mcgraw Hill, Sixth Edition, 2009.						
E-Re	E-References:						
1	https://onlinecourses.nptel.ac.in/noc21_cs16/preview						
2	https://nptel.ac.in/courses/106105031						
3	https://www.udemy.com/courses/it-and-software/network-and-security/						

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Apply a structed approach to identify the need, interest and functionality of the networks.	L3
CO2	Able to identify the security issues in the network and resolve it.	L1
CO3	Analyze the vulnerabilities in any computing system and hence we able to design a security solution	L4
CO4	Evaluate security mechanisms using rigorous approaches by key ciphers and Hash functions.	L5
CO5	Demonstrate various security applications, firewall, web security, Email security and malicious software, etc.,	L4

					COUF	RSE Al	RTICU	LATI	ON M.	ATRIX					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1						1	1	2	2	2
CO2	2	1	2	1	1						1	1	2	2	2
CO3	2	2	3	2	1						3	2	2	2	2
CO4	2	2	2	1	1						3	2	2	2	2
CO5	2	2	3	2	1						3	2	2	2	2
Avg	2	1.6	2.4	1.4	1						2.2	1.6	2	2	2
		3	/2/1 -	indicat	tes stre	ngth o	f corre	lation	(3-Hig	h,2- Me	dium.1-	Low)	1	1	

22EC	CH204	ARTIFICIAL NEURAL NETV	WORKS	S	Semest	er	
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
				L	T	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ning Objectives					
1	To und	erstand the biological neural network and to model equiva	alent neuron models.				
2	To und	erstand the architecture, learning algorithms					
3	To kno	w the issues of various feed forward and feedback neural	networks.				
4	To exp	lore the Neuro dynamic models for various problems					
UNIT	, I	Introduction		9	0	0	9
Archite Learnii	ectures, I	Neural Network, Human Brain, Models of a Neuron, N Knowledge Representation, Artificial Intelligence and Nory Based Learning, Hebbian Learning, Competitive, Bolt	Neural Networks Learn		ocess: E		
יייואוי	, 11	Dangantrang		0	I 10		ソ
Single Least 1 Relatio Algorit	Layer Pe Mean Squ on Betwe thm XOR	Perceptrons erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Annealen Perceptron and Bayes Classifier for a Gaussian Englishment Problem, Heuristics, Output Representation and Decision Back Propagation	ling Techniques, Percep vironment. Multilayer	otron – Percept	Convergron: Ba	t Squaregence Tack Pro	Theorei pagatio
Single Least Melation Algorit UNIT Back P	Layer Pe Mean Squ on Betwe thm XOR	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Annealen Perceptron and Bayes Classifier for a Gaussian Enterproblem, Heuristics, Output Representation and Decision	ling Techniques, Perceptironment. Multilayer in Rule, Computer Expensions, Cross x, Generalization, Cross	s, Linea otron — Percept riment, 9	ar Least Convergence: Ba Feature	t Square gence Tack Prote Detect	Theorer pagation
Single Least Melation Algorith UNIT Back F	Layer Pe Mean Squ on Betwe thm XOR YIII Propagation	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enterproblem, Heuristics, Output Representation and Decision Back Propagation on: Back Propagation and Differentiation, Hessian Matrix	ling Techniques, Perceptironment. Multilayer in Rule, Computer Expensions, Cross x, Generalization, Cross	s, Linea otron — Percept riment, 9	ar Least Convergence: Ba Feature	t Square gence Tack Prote Detect	Theorer pagation
Single Least M Relatio Algorit UNIT Back F Techni UNIT	Layer Pe Mean Squ on Betwee thm XOR YIII Propagation iques, Vir	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enterproblem, Heuristics, Output Representation and Decision Back Propagation on: Back Propagation and Differentiation, Hessian Matrix trues and Limitations of Back Propagation Learning, Access	ling Techniques, Percepvironment. Multilayer in Rule, Computer Experx, Generalization, Crosselerated Convergence, S	s, Linea otron — Percept riment, 9 s Valida upervis	The convertion of the converti	t Square gence Tack Pro	Prunir
Least Melation Algorithm UNIT Back For Technical UNIT Two F	Layer Per Mean Square Mean Mean Square Mean Mean Mean Mean Mean Mean Mean Mea	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enterproblem, Heuristics, Output Representation and Decision Back Propagation on: Back Propagation and Differentiation, Hessian Matrix trues and Limitations of Back Propagation Learning, Accel Self-Organization Maps (SOM) ature Mapping Models, Self-Organization Map, SOM	ling Techniques, Percepvironment. Multilayer in Rule, Computer Experx, Generalization, Crosselerated Convergence, S	s, Linea otron — Percept riment, 9 s Valida upervis	The convertion of the converti	t Square gence Tack Pro	Prunir
Single Least Melatio Algorit UNIT Back F Techni UNIT Two E Simula UNIT	Layer Per Mean Square Non Betwee thm XOR TIII Propagation in the Propagation of the Propa	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enter Problem, Heuristics, Output Representation and Decision Back Propagation on: Back Propagation and Differentiation, Hessian Matrix trues and Limitations of Back Propagation Learning, Acceleration Self-Organization Maps (SOM) atture Mapping Models, Self-Organization Map, SOM arning Vector Quantization, Adaptive Patter Classification	ling Techniques, Percepvironment. Multilayer in Rule, Computer Experiments, Computer Experiments, Generalization, Crosselerated Convergence, Selerated Convergen	s, Linea potron — Percept riment, 9 s Valida upervis 9 s of Fe	ar Least Convergence: Ba Feature O ation, Need Lear O eature 1	t Square gence Tack Properties Detects Olivery 1	Prunin 9 Comput
Single Least Melatio Algorit UNIT Back F Fechni UNIT Two E Simula UNIT	Layer Per Mean Square Non Betwee thm XOR TIII Propagation in the Propagation of the Propa	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enter Problem, Heuristics, Output Representation and Decision Back Propagation on: Back Propagation and Differentiation, Hessian Matrix trues and Limitations of Back Propagation Learning, Accel Self-Organization Maps (SOM) atture Mapping Models, Self-Organization Map, SOM arning Vector Quantization, Adaptive Patter Classification Neuro Dynamics and Hopfield Models es: Dynamical Systems, Stability of Equilibrium States, A	ling Techniques, Percepvironment. Multilayer in Rule, Computer Experiments, Computer Experiments, Generalization, Crosselerated Convergence, Selerated Convergen	s, Linea otron — Percept riment, 9 s Valida upervis 9 s of Fe	ar Least Convergence: Ba Feature O ation, Need Lear O eature 1	t Square gence Tack Properties Detects Outside Detects	Prunin 9 Comput 9 lation of
Single Least M Relatio Algorit UNIT Back F Techni UNIT Two F Simula UNIT Neuro Attract	Layer Per Mean Square Non Betwee thm XOR TIII Propagation in the Propagation of the Propa	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enter Problem, Heuristics, Output Representation and Decision Back Propagation on: Back Propagation and Differentiation, Hessian Matrix tues and Limitations of Back Propagation Learning, Acceleration Maps (SOM) Self-Organization Maps (SOM) ature Mapping Models, Self-Organization Map, SOM arning Vector Quantization, Adaptive Patter Classification Neuro Dynamics and Hopfield Models es: Dynamical Systems, Stability of Equilibrium States, A Recurrent Network Paradigm Hopfield Models — Hopfield	ling Techniques, Percepvironment. Multilayer in Rule, Computer Experiments, Computer Experiments, Generalization, Crosselerated Convergence, Selerated Convergen	s, Linea otron — Percept riment, 9 s Valida upervis 9 s of Fe	Convergence Convergence Baseline Baseli	t Square gence Tack Properties Detects Outside Detects	Prunin 9 Comput
Single Least M Relatio Algorit UNIT Back F Techni UNIT Two F Simula UNIT Neuro Attract	Layer Per Mean Square Mean Squ	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enter Problem, Heuristics, Output Representation and Decision Back Propagation on: Back Propagation and Differentiation, Hessian Matrix tues and Limitations of Back Propagation Learning, Acceleration Maps (SOM) Self-Organization Maps (SOM) ature Mapping Models, Self-Organization Map, SOM arning Vector Quantization, Adaptive Patter Classification Neuro Dynamics and Hopfield Models es: Dynamical Systems, Stability of Equilibrium States, A Recurrent Network Paradigm Hopfield Models — Hopfield	ling Techniques, Percepvironment. Multilayer in Rule, Computer Expensive Rule, Computer Rule, Rule, Computer Rule, Rule, Computer Rule, R	s, Linea otron — Percept riment, 9 s Valida upervis 9 s of Fe	Convergence Convergence Baseline Baseli	t Square gence Tack Properties Detects Outside Detects	Prunin 9 Comput
Single Least M Relatio Algorit UNIT Back F Techni UNIT Two F Simula UNIT Neuro Attract	Layer Per Mean Square Per Per Mean Square Per Per Per Mean Square Per Per Per Per Per Per Per Per Per P	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enterproblem, Heuristics, Output Representation and Decision Back Propagation On: Back Propagation and Differentiation, Hessian Matrix trues and Limitations of Back Propagation Learning, Accel Self-Organization Maps (SOM) atture Mapping Models, Self-Organization Map, SOM arning Vector Quantization, Adaptive Patter Classification Neuro Dynamics and Hopfield Models es: Dynamical Systems, Stability of Equilibrium States, A Recurrent Network Paradigm Hopfield Models — Hopfield	ling Techniques, Percepvironment. Multilayer in Rule, Computer Expersion Rule, Computer Expersions, Crosselerated Convergence, Selerated Convergence, Selevated	s, Linea ptron — Percept riment, 9 s Valida upervis 9 s of Fe	Convergence Convergence Baseline Baseli	t Square gence Tack Properties Detects Outside Detects	Prunir 9 Comput 9 lation of
Single Least M Relatio Algorit UNIT Back F Techni UNIT Two F Simula UNIT Neuro Attract 1 2	Layer Per Mean Square Per Per Mean Square Per Per Per Mean Square Per Per Per Per Per Per Per Per Per P	erceptrons: Adaptive Filtering Problem, Unconstrained Cuare Algorithm, Learning Curves, Learning Rate Anneal en Perceptron and Bayes Classifier for a Gaussian Enter Problem, Heuristics, Output Representation and Decision Back Propagation On: Back Propagation and Differentiation, Hessian Matrix trues and Limitations of Back Propagation Learning, Access Self-Organization Maps (SOM) atture Mapping Models, Self-Organization Map, SOM arning Vector Quantization, Adaptive Patter Classification Neuro Dynamics and Hopfield Models Es: Dynamical Systems, Stability of Equilibrium States, A Recurrent Network Paradigm Hopfield Models — Hopfield I Neural Networks - B. Vegnanarayana Prentice Hall of Intion to Artificial Neural Systems Jacek M. Zurada, JAICO	ling Techniques, Percepvironment. Multilayer in Rule, Computer Expersion Rule, Computer Expersions, Crosselerated Convergence, Selerated Convergence, Selevated	s, Linea ptron — Percept riment, 9 s Valida upervis 9 s of Fe	Convergence Convergence Baseline Baseli	t Square gence Tack Properties Detects Outside Detects	Prunin 9 Comput

Neural Networks a Comprehensive Foundations, Simon S Haykin, PHI Ed.

3	Neural Networks -James A Freeman David M S Kapura Pearson Ed., 2004.
4	Joao Luis Garcia Rosa, Artificial Neural Networks Models and Applications, IntechOpen,2016
E-R	eference
1	https://in.coursera.org/learn/neural-networks-deep-learninghttps://in.coursera.org/learn/neural-networks-deep-learning
2	https://nptel.ac.in/courses/117105084
3	https://in.coursera.org/learn/machine-learning

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the similarity of biological networks and Neural networks	L2
CO2	Perform the training of neural networks using various learning rules.	L3
CO3	Apply the concepts of forward and backward propagations.	L3
CO4	Recognize mapping models and self-organizing map	L1
CO5	Understand and construct the Hopfield models.	L2, L3

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1		2		2									3		2
CO2	2	2	3	2								2	2		3
CO3	2	2	2	2								2	2		1
CO4	2	2	2	2								2			
CO5		2	3	2								2	2		2
Avg	1.2	2	2	2								1.6	1.8		1.8

22ECH2	205	5G COMMUNICATION NETWOR	KS	\$	Semester		
PREREC	QUISI	ITES	Category	PE	Cr	edit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Course I	Learni	ing Objectives					
1	To des	scribe the evolution of mobile communication leading to the	introduction of 5G				
2	To ide	ntify the spectrum requirement					
3	То ехр	olain the key innovations in radio and network					
Unit I		INTRODUCTION TO 5G		9	0	0	9
	- 5G S	Standardization – 3GPP and IMT2020 – Spectrum for 5					
Unit II		5G WIRELESS PROPAGATION CHANNELS AND S	PECTRUM	9	0	0	9
		ng requirements, propagation scenarios and challenges in t Spectrum for 4G – Spectrum Challenges in 5G- 5G Spectru					
Unit III	stems.	TRANSMISSION AND DESIGN TECHNIQUES FOR		9	0	0	9
		nts of transmission over 5G, Modulation Techniques – Ort					
Unit IV	nultiple	e accesses (GFDMA), nonorthogonal multiple accesses (NO DEVICE-TO-DEVICE (D2D) COMMUNICATIONS	MA).	9	0	0	9
		e (D2D) and machine-to-machine (M2M) type communication				 ardizatio	n to 50
Unit V		MILLIMETER WAVE COMMUNICATIONS		9	0	0	9
interferen	ce and	e Communications – spectrum regulations, deployment so mobility management, Massive MIMO propagation chann- with Imperfect CSI, Multi-Cell Massive MIMO, Pilot Conta	el models, Channel	Estimat	ion in I	Massive	
				Т	otal (45	5L)= 45	Period
Text B	Books:						
1 At	fif Osse	eiran, Jose.F.Monserrat, Patrick Marsch, "Fundamentals of	5G Mobile Networks	s" , Can	nbridge	Univers	ity Pre
_		auter "From GSM From GSM to LTE–Advanced Pro and 5 nd", Wiley-Blackwell	G: An Introduction	to Mob	ile Netv	vorks an	d Mob
Referer	ice Bo	ooks:					
1		os G.Kanatos, Konstantina S.Nikita, Panagiotis Mathiopor from Mobile to 5G", CRC Press.	ulos, "New Direction	ns in V	Vireless	Comm	unicati
		nom whome to 30°, exertiess.					

3	Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", John Wiley & Sons.							
4	Amitabha Ghosh and Rapeepat Ratasuk "Essentials of LTE and LTE-A", Cambridge University Press.							
E-Re	E-References:							
1	https://nptel.ac.in/courses/112104181/							
2	https://www.qualcomm.com							
3	https://5glab.de							

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the concepts and design of cognitive radios.	L2
CO2	Study about the SDR architecture and analysis.	L1
CO3	Analyse the various cognitive radio network architectures and network security.	L4
CO4	To analyse the performance of MAC and network layer design for cognitive radio.	L4
CO5	Able to improve the quality of video conferencing, improve the immersive learning experience and able to use AR and VR to design modules	L3

	COURSE ARTICULATION MATRIX														
Cos/P os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO 1	PSO 2	PS O3
CO1	2	3	2	1	1								3		
CO2	3	2	2	1	1								3	2	1
CO3	2	2	2	3	1								3	2	
CO4	1	1	2	1	2								2	3	
CO5	1	1	2	2	2								2	3	1
Avg	1.8	1.8	2	1.6	1.4								2.6	2	0.4
	ı	1	1	3/2/1 - i	ndicates	strength	of corre	lation (3	High,2-	Mediun	1,1- Low)	1	1	

22EC	H206	WIRELESS ADHOC AND SENSOR NETV	VOKKS	S			
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	P	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives			ı		1
1	To un	derstand the basics of Ad-hoc & Sensor Networks.					
2	To lea	rn various fundamental and emerging protocols of all layers.					
3	To un	derstand the nature and applications of Ad-hoc and sensor net	works.				
Unit I		MAC & TCP IN AD HOC NETWORKS		9	0	0	9
Networ	ks – MA	f WLANs – IEEE 802.11 Architecture – Self configuration at C Protocols for Ad-Hoc Wireless Networks – Contention Batew – TCP and MANETs – Solutions for TCP over Ad-Hoc Ne	sed Protocols – TC				
Unit II		ROUTING IN AD HOC NETWORKS		9	0	0	9
strategi		ch-Principles and issues – Location services – DREAM – Queedy packet forwarding – Restricted directional flooding-					
	ction – A	MAC, ROUTING & QOS IN WIRELESS SENSOR NET Architecture – Single node architecture – Sensor network of ASNs – Protocols for WSN – Physical Layer: Transceiver I	design consideration				
Introduce principl IEEE 80 Centric support	ction – Ales for W 02.15.4 Ales Cont	Architecture – Single node architecture – Sensor network of VSNs – Protocols for WSN – Physical Layer: Transceiver I Zigbee – Link Layer and Error Control issues – Routing Protention Based Networking – Transport Protocols & QOS –	lesign consideration Design consideration Ocols – Mobile No	ons – E ons – N des and	nergy I AC La I Mobil	Efficien nyer Pro e Robot oplicatio	Design stocols — s — Data on Layer
Introduce principl IEEE 8 Centric support Unit IV	ction – Ales for W 02.15.4 Ales Cont	Architecture – Single node architecture – Sensor network of VSNs – Protocols for WSN – Physical Layer : Transceiver I Zigbee – Link Layer and Error Control issues – Routing Protention Based Networking – Transport Protocols & QOS – SENSOR MANAGEMENT ment – Topology Control Protocols and Sensing Mode	design consideration Design consideration Ocols – Mobile No Congestion Contr	ons — E ons — N des and ol issue	inergy I MAC La I Mobiles – Ap	Efficien nyer Pro e Robot oplicatio	Design tocols – s – Data on Layer
Introduction principl IEEE 8 Centric support Unit IV Sensor	ction – Ales for Wolles for Wolles for Wolles & Cont	Architecture – Single node architecture – Sensor network of VSNs – Protocols for WSN – Physical Layer: Transceiver I Zigbee – Link Layer and Error Control issues – Routing Protention Based Networking – Transport Protocols & QOS – SENSOR MANAGEMENT	design consideration Design consideration Ocols – Mobile No Congestion Contr	ons — E ons — N des and ol issue	inergy I MAC La I Mobiles – Ap	Efficien nyer Pro e Robot oplicatio	Design tocols – s – Data on Layer
Introduction principal IEEE 80 Centric support Unit IV Sensor Localiz Unit V Security water many services and services are services and services are services and services are services are services and services are services are services are services and services are services	ction – Ales for Wood 2.15.4 Ales Contest. Manage ation and your Adnarking to	Architecture – Single node architecture – Sensor network of SNs – Protocols for WSN – Physical Layer: Transceiver I Zigbee – Link Layer and Error Control issues – Routing Protention Based Networking – Transport Protocols & QOS – SENSOR MANAGEMENT ment – Topology Control Protocols and Sensing Mode I positioning – Operating systems and Sensor Network program	design consideration Design consideration Design consideration Occupation Control Selection Protocomming – Sensor Notes ment – Software ba	ons – E ons – N des and ol issue 9 ls – T etwork 9	nnergy I AC La I Mobiles – Ap	Efficien ayer Pro e Robot pplication o nchronitors.	Design tocols – s – Data on Layer 9 zation –
Introduction principal IEEE 80 Centric support Unit IV Sensor Localiz Unit V Security water many security security water many security security water many security security water many security sec	ction – Ales for Wood 2.15.4 Ales Contest. Manage ation and your Adnarking to	Architecture — Single node architecture — Sensor network of VSNs — Protocols for WSN — Physical Layer: Transceiver I Zigbee — Link Layer and Error Control issues — Routing Protention Based Networking — Transport Protocols & QOS — SENSOR MANAGEMENT Imment — Topology Control Protocols and Sensing Mode of positioning — Operating systems and Sensor Network program SECURITY IN AD HOC AND SENSOR NETWORKS Hoc and Sensor networks — Key Distribution and Managemethniques — Defense against routing attacks — Secure Adhoc research in the second	design consideration Design consideration Design consideration Occupation Control Selection Protocomming – Sensor Notes ment – Software ba	ons – E ons – N des and ol issue 9 ls – T etwork 9 ased Ar Broadc	nergy I MAC La I Mobiles – Ap	Efficien ayer Pro e Robot oplication one- nehroni tors. output outp	Design tocols – s – Data on Layer 9 zation –
Introduction principal IEEE 80 Centric support Unit IV Sensor Localiz Unit V Security water m protoco	ction – Ales for Wood 2.15.4 Ales Contest. Manage ation and your Adnarking to	Architecture — Single node architecture — Sensor network of VSNs — Protocols for WSN — Physical Layer: Transceiver I Zigbee — Link Layer and Error Control issues — Routing Protention Based Networking — Transport Protocols & QOS — SENSOR MANAGEMENT Imment — Topology Control Protocols and Sensing Mode if positioning — Operating systems and Sensor Network progrational SECURITY IN AD HOC AND SENSOR NETWORKS Hoc and Sensor networks — Key Distribution and Managen echniques — Defense against routing attacks — Secure Adhoc rule — Biba — Sensor Network Security Protocols — SPINS.	design consideration Design consideration Design consideration Occupation Control Selection Protocomming – Sensor Notes ment – Software ba	ons – E ons – N des and ol issue 9 ls – T etwork 9 ased Ar Broadc	nergy I MAC La I Mobiles – Ap	Efficien ayer Pro e Robot oplication one- nehroni tors. output outp	properties of the properties o
Introduction principal IEEE 80 Centric support Unit IV Sensor Localiz Unit V Security water me protoco	ction – Ales for Work (1984) (Architecture — Single node architecture — Sensor network of VSNs — Protocols for WSN — Physical Layer: Transceiver I Zigbee — Link Layer and Error Control issues — Routing Protention Based Networking — Transport Protocols & QOS — SENSOR MANAGEMENT Imment — Topology Control Protocols and Sensing Mode if positioning — Operating systems and Sensor Network progrational SECURITY IN AD HOC AND SENSOR NETWORKS Hoc and Sensor networks — Key Distribution and Managen echniques — Defense against routing attacks — Secure Adhoc rule — Biba — Sensor Network Security Protocols — SPINS.	design consideration Design consideration Ocols – Mobile No Congestion Contr Selection Protocomming – Sensor No ment – Software baseouting protocols –	ons – E ons – N des and ol issue 9 ls – T etwork 9 ased Ar Broadc	nergy I MAC La I Mobiles – Ap o ime sy: Simulat o tal (45	Efficien ayer Pro e Robot oplication one- nehroni tors. output outp	process of the proces
Introduction principal IEEE 80 Centric support Unit IV Sensor Localiz Unit V Security water m protoco Text 1	ction – Ales for Work (1984) White the content of t	Architecture — Single node architecture — Sensor network of VSNs — Protocols for WSN — Physical Layer: Transceiver I Zigbee — Link Layer and Error Control issues — Routing Protention Based Networking — Transport Protocols & QOS — SENSOR MANAGEMENT ment — Topology Control Protocols and Sensing Mode I positioning — Operating systems and Sensor Network progrational SECURITY IN AD HOC AND SENSOR NETWORKS Hoc and Sensor networks — Key Distribution and Managene echniques — Defense against routing attacks — Secure Adhoc rate — LA — Biba — Sensor Network Security Protocols — SPINS.	design consideration Design consideration Ocols – Mobile No Congestion Contr Selection Protocomming – Sensor No ment – Software barouting protocols – red and Wireless No	nns – E ons – N des and ol issue 9 ls – T etwork 9 ased Ar Broadc	nergy I MAC La I Mobiles – Ap o ime sy: Simulat otal (45	Efficien ayer Pro e Robot oplication on the continuous of the con	priorition of the priorition o
Introduction principal IEEE 80 Centric support Unit IV Sensor Localiz Unit V Security water material protocool Text 1 2	ction – Ales for Work (1984) White the content of t	Architecture — Single node architecture — Sensor network of SNs — Protocols for WSN — Physical Layer: Transceiver I Zigbee — Link Layer and Error Control issues — Routing Protention Based Networking — Transport Protocols & QOS — SENSOR MANAGEMENT ment — Topology Control Protocols and Sensing Mode I positioning — Operating systems and Sensor Network progrations and Sensor Network Protocols — SECURITY IN AD HOC AND SENSOR NETWORKS Hoc and Sensor networks — Key Distribution and Managen echniques — Defense against routing attacks — Secure Adhoc rate LA — Biba — Sensor Network Security Protocols — SPINS. Perrig, J. D. Tygar, "Secure Broadcast Communication: In Windows Cordeiro, Dharma Prakash Agrawal "Ad Hoc and World Scientific Publishing, 2011	design consideration Design consideration Ocols – Mobile No Congestion Contr Selection Protocomming – Sensor No ment – Software barouting protocols – red and Wireless No	nns – E ons – N des and ol issue 9 ls – T etwork 9 ased Ar Broadc	nergy I MAC La I Mobiles – Ap o ime sy: Simulat otal (45	Efficien ayer Pro e Robot oplication on the continuous of the con	priorition of the priorition o

2	CK.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002.
3	Erdal Çayırcı, Chunming Rong, "Security in Wireless Ad Hoc and Sensor Networks", John Wiley and Sons, 2009.
4	Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks Theory and Practice", John Wiley and Sons, 2010.
E-Re	eferences:
E-Re	https://nptel.ac.in/courses/106105183
1 2	1

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify different issues in wireless ad hoc and sensor networks	L2
CO2	To analyze protocols developed for ad hoc and sensor networks.	L4
CO3	To identify and address the security threats in ad hoc and sensor networks.	L2
CO4	Establish a Sensor network environment for different type of applications	L3
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	L1

	COURSE ARTICULATION MATRIX														
Cos/ Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO 1	PSO 2	PSO 3
CO1	3	3	1	3	3	3	2				3	3	3		2
CO2	3	3	2	3	3	3	2				3	3	3		2
CO3	3	3	3	3	3	3	2				3	3	3		2
CO4	3	3	2	3	3	3	2				2	3	3		2
CO5	3	3	2	3	3	3	2				3	3	3		2
Avg	3	3	2	3	3	3	2				2.8	3	3		2
	•	•		3/2/1 - i	ndicates	strength	of corre	lation (3	-High,2-	Mediun	n,1- Low)		•	•

22ECH20	SOFTWARE DEFINED NETV	VORKS				
		CATEGORY	PEC	Cre	edit	3
		Hours/Week	L	T	P	TH
		Hours/ week	3	0	0	3
Course Ob	jectives:				1	
1. To dif	ferentiate between traditional networks and software define	d networks				
2. To lea	rn advanced and emerging networking technologies					
3. To ob	tain skills to do advanced networking research and program	ming				
4. To lea	ern to use software programs to perform varying and comple	ex networking tasks				
UNIT I	INTRODUCTION		9	0	0	9
SDN Origins Genesis of Sl UNIT II	s and Evolution – Introduction – Why SDN? – Centraliz DN SDN ABSTRACTIONS	zed and Distributed Cont	rol and D	ata Pl	anes -	- Th
Vmware/Nic						
UNIT III	PROGRAMMING SDN'S		9	0	0	9
Network Pro	grammability – Network Function Virtualization – NetApp	Development, Network S	licing			
UNIT IV	SDN APPLICATIONS AND USE CASES		9	0	0	9
SDN in the D System	Data Center – SDN in Other Environments – SDN Application	ons – SDN Use Cases – T	he Open N	etworl	k Ope	rating
	SDN'S FUTURE AND PERSPECTIVES		9	0	0	9
UNIT V						
UNIT V SDN Open S	ource – SDN Futures – Final Thoughts and Conclusions					

Text B	Books:
1.	Software Defined Networks: A Comprehensive Approach by Paul Goransson and Chuck Black, Morgan Kaufmann Publications, 2014
2.	SDN – Software Defined Networks by Thomas D. Nadeau & Ken Gray, O'Reilly, 2013
Refere	ence Books:
1.	Software Defined Networking with OpenFlow by SiamakAzodolmolky, Packt Publishing, 2013
2.	Feamster, Nick, Jennifer Rexford, and Ellen Zegura. "The road to SDN: an intellectual history of programmable networks." ACM SIGCOMM Computer Communication Review 44.2 (2014): 87-98.
3.	Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76

4.	Vivek Tiwari, —SDN and Open Flow for Beginnersl, Amazon Digital Services, Inc., 2013.
E-Ref	erence
1	https://www.youtube.com/watch?v=CaukSKg_sI0
2	https://in.coursera.org/learn/sdn
3	https://nptel.ac.in/courses/108107107

Course (Outo	comes:	Bloom's Taxonomy
Upon com	Mapped		
CO1	:	Differentiate between traditional networks and software defined networks	L2
CO2	:	Understand advanced and emerging networking technologies	L2
CO3	:	Obtain skills to do advanced networking research and programming	L3
CO4	:	Learn how to use software programs to perform varying and complex networking tasks	L1
CO5	:	Expand upon the knowledge learned and apply it to solve real world problems	L3

Cos/P os	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PS O1	PS O2	PS O3
CO1		2		2									3		2
CO2		2		2									3		3
CO3	2	2	2	2								2	2		1
CO4	2	2	2	2								2	1		1
CO5	2	2	3	2								2	2		2
Avg	1.2	2	1.4	2								1.2	2.2		1.8

22E	CH208	EMBEDDED SYSTEM FOR NETWOR	RKING				
			CATEGORY	PE	Cı	edit	C
			Hours/Week	L	Т	P	TH
			Hours/ Week	3	0	0	3
Cour	se Obj	ectives:			l		
1.	To lea	rn embedded communication protocols and BUS					
2.	To obt	ain skillset in basic and embedded ethernet					
3.	To obt	ain skills to do advanced networking research and programming					
4.	To spe	ecify, design, implement, and debug an embedded system project					
UNI	ГΙ	EMBEDDED COMMUNICATION PROTOCOLS		9	0	0	9
- Syn	chronou	etworking: Introduction – Serial/Parallel Communication – Serial as Serial Protocols -Serial Peripheral Interface (SPI) – Inter Integral protocols – Fire wire.					
UNI	ΓII	USB AND CAN BUS		9	0	0	9
Enum	eration	ntroduction – Speed Identification on the bus – USB States – US –Descriptors –PIC 18 Microcontroller USB Interface – C Program ors – Nominal Bit Timing – PIC microcontroller CAN Interface –	ns -CAN Bus - Introd	uction -	- Fram		
UNI	ΓIII	ETHERNET BASICS		9	0	0	9
Desig		a network – Inside Ethernet – Building a Network: Hardware og es: Selecting components –Ethernet Controllers – Using the internacol.					
UNIT	ΓIV	EMBEDDED ETHERNET		9	0	0	9
		messages using UDP and TCP – Serving web pages with Dynam for Embedded Systems – Using FTP – Keeping Devices and Network		eb pages	s that	respon	d to user
UNI	ΓV	WIRELESS EMBEDDED NETWORKING		9	0	0	9
		sor networks – Introduction – Applications – Network Topology C protocols –SMAC – Energy efficient and robust routing – Data (•	e Syncl	nroniza	ation -	- Energy
				Total	(45L)	= 45	Periods

Text I	Books:
1.	Frank Vahid, Tony Givargis, "Embedded Systems Design: A Unified Hardware/Software Introduction", John & Wile Publications, 2002
2.	Jan Axelson, "Parallel Port Complete: Programming, interfacing and using the PCs parallel printer port", Penran Publications, 1996.
Refer	ence Books:
1.	Dogan Ibrahim, "Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F series", Elsevier 2008.

2.	Jan Axelson, "Embedded Ethernet and Internet Complete", Penram publications, 2003.
3.	Bhaskar Krishnamachari", "Networking Wireless Sensors", Cambridge press 2005.
E-Refe	erence
1	https://www.cisco.com/c/en/us/solutions/internet-of-things/iot-embedded-services.html
2	https://in.coursera.org/courses?query=embedded%20systems
3	https://www.coursera.org/lecture/iot/lecture-3-2-basic-equipment-UMLzi

Course C Upon com		on of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	:	Understand different communication protocols	L2
CO2	:	Understand data flow in BUS and interfacing	L2
CO3	:	Obtain skills to use internet in local and wide communications	L3
CO4	:	Differentiate UDP and TCP communication	L1
CO5	:	Expand upon the knowledge learned and apply it to solve real world problems	L3

					C	OURS	SE AR	FICUI	LATIO	N MAT	RIX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO12	PSO1	PSO2	PSO3
CO1		2		2									3		2
CO2		2		2									3		3
CO3	2	2	2	2								2	2		1
CO4	2	2	2	2								2	1		1
CO5	2	2	3	2								2	2		2
Avg	1.2	2	1.4	2								1.2	2.2		1.8
			3/2	/1 - in	dicates	s stren	gth of	correla	ation (3	3-High,2	- Medium	1,1- Low))		

22ECH209	COGNITIVE RADIO NETWORKS		S	Semester		
PREREQUI	SITES	Category	PE	Cr	edit	3
		/	L	P	TH	
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					
1 Und	erstand the concepts of cognitive radio					
2 Lear	n spectrum sensing and dynamic spectrum access					
3 To i	ntroduce the student about fundamental concepts and applications	s of cognitive radi	o netwo	orks.		
Unit I	INTRODUCTION TO SOFTWARE-DEFINED RADIO A COGNITIVE RADIO	AND	9	0	0	9
	oftware Defined Radio and Cognitive radio: goals, benefits, defing technologies, radio frequency spectrum and regulations.	nitions, architectu	res, rela	ations w	ith othe	r radio
Unit II	COGNITIVE RADIO ARCHITECTURE		9	0	0	9
	io – functions, components and design rules, Cognition cycle -					
	chitecture maps, Building the Cognitive Radio Architecture on S2 standard for broadband wireless access in TV bands.	Software defined	Radio .	Archite	cture, O	verviev
Unit III	SPECTRUM SENSING AND DYNAMIC SPECTRUM A		9	0	0	9
Unit III Introduction – , Bayesian Ap Divergence a	Primary user detection techniques – energy detection, feature de proach, Neyman Pearson fusion rule for spectrum sensing, Cond other approaches, Fundamental Tradeoffs in spectrum sensings - Unlicensed and Licensed Spectrum Sharing, Fundamental Licensed	etection, matched Optimum spectrum	filtering m sensi Sharing	g, coope ing - K g Mode	erative d	letectio Leible
Unit III Introduction – , Bayesian A Divergence a Spectrum Acc	Primary user detection techniques – energy detection, feature de oproach, Neyman Pearson fusion rule for spectrum sensing, Cond other approaches, Fundamental Tradeoffs in spectrum sensing.	stection, matched Optimum spectrum ssing, Spectrum imits of Cognitive	filtering m sensi Sharing	g, coope ing - K g Mode	erative d	letectio Leible
Unit III Introduction – , Bayesian Application According to the second	Primary user detection techniques – energy detection, feature de proach, Neyman Pearson fusion rule for spectrum sensing, Cod other approaches, Fundamental Tradeoffs in spectrum sensess - Unlicensed and Licensed Spectrum Sharing, Fundamental Licensed Spectrum S	etection, matched Optimum spectrum asing, Spectrum aimits of Cognitive	filtering m sensi Sharing e Radio	g, coope ing - K g Mode	erative dullback	letectio Leible Dynami
Unit III Introduction – , Bayesian Application According to the control of the c	Primary user detection techniques – energy detection, feature de proach, Neyman Pearson fusion rule for spectrum sensing, Conductor of the approaches, Fundamental Tradeoffs in spectrum senses - Unlicensed and Licensed Spectrum Sharing, Fundamental Liemann MAC AND NETWORK LAYER DESIGN FOR COGNITATION IN TRADEORY OF THE PROPERTY OF TH	etection, matched Optimum spectrum asing, Spectrum aimits of Cognitive	filtering m sensi Sharing e Radio	g, coope ing - K g Mode	erative dullback	letectio Leible Dynami
Unit III Introduction – , Bayesian Aj Divergence at Spectrum Acc Unit IV MAC for cog radios, flow co Unit V Cognitive radi Data storage at	Primary user detection techniques – energy detection, feature de oproach, Neyman Pearson fusion rule for spectrum sensing, Condition of the approaches, Fundamental Tradeoffs in spectrum senses - Unlicensed and Licensed Spectrum Sharing, Fundamental Limitive radios – Multichannel MAC - slotted ALOHA – CSMA ontrol and error control techniques.	stection, matched Optimum spectrum asing, Spectrum asing of Cognitive TVE RADIO A, Network layer echnologies and presented	filtering m sensi Sharing e Radio g design	g, coope ing - K g Mode - routi	erative dullback els of I o o dullback els of I	letectio Leible Dynami 9 ognitiv 9 ologies
Unit III Introduction — , Bayesian Application — , Bayesian Application — , Bayesian Application — , Bayesian Application — Introduction — MAC for cognation of the cognation of the cognitive radio and the cognitive radi	Primary user detection techniques – energy detection, feature de oproach, Neyman Pearson fusion rule for spectrum sensing, Condother approaches, Fundamental Tradeoffs in spectrum senses - Unlicensed and Licensed Spectrum Sharing, Fundamental Limitive radios – Multichannel MAC - slotted ALOHA – CSMA ontrol and error control techniques. ADVANCED TOPICS IN COGNITIVE RADIO of for Internet of Things - Features and applications – Enabling techniques – Requirement and challenges of IoT –	stection, matched Optimum spectrum asing, Spectrum asing of Cognitive TVE RADIO A, Network layer echnologies and presented	filtering m sensi Sharing e Radio g design g rotocols ey— MI	g, coope ing - K g Mode - routi 0 - routi	erative dullback els of I o o dullback els of I	letection Leible Dynamic Programming Progr
Unit III Introduction – , Bayesian Application According to the second of the second	Primary user detection techniques – energy detection, feature de oproach, Neyman Pearson fusion rule for spectrum sensing, Condition of the approaches, Fundamental Tradeoffs in spectrum senses - Unlicensed and Licensed Spectrum Sharing, Fundamental Liemann MAC AND NETWORK LAYER DESIGN FOR COGNITION of the condition of the condi	stection, matched Optimum spectrum asing, Spectrum asing of Cognitive TVE RADIO A, Network layer echnologies and presented	filtering m sensi Sharing e Radio g design g rotocols ey— MI	g, coope ing - K g Mode - routi 0 - routi	erative dullbackels of I	letectio Leible Dynami 9 cognitiv 9 cologies Radio
Unit III Introduction – , Bayesian Aprivergence and Spectrum Accurate IV MAC for cogradios, flow control IV Cognitive radional Data storage and Power allocations In Inc. Inc.	Primary user detection techniques – energy detection, feature de oproach, Neyman Pearson fusion rule for spectrum sensing, Condition of the approaches, Fundamental Tradeoffs in spectrum senses - Unlicensed and Licensed Spectrum Sharing, Fundamental Liemann MAC AND NETWORK LAYER DESIGN FOR COGNITION of the condition of the condi	etection, matched Optimum spectrum asing, Spectrum imits of Cognitive IVE RADIO A, Network layer echnologies and pre- Energy efficience	filtering m sensi Sharing e Radio g design g rotocols ey— MI	g, coope ing - K g Mode - routi 0 - routi 0 S - M2N MO Co	erative dullback els of I	letectio Leible Dynami 9 cognitiv 9 cologies Radio Period
Unit III Introduction — , Bayesian Aj Divergence at Spectrum Acc Unit IV MAC for cog radios, flow co Unit V Cognitive radi Data storage at Power allocati Text Book Alexan Press,	Primary user detection techniques — energy detection, feature de oproach, Neyman Pearson fusion rule for spectrum sensing, Condition of the approaches, Fundamental Tradeoffs in spectrum senses - Unlicensed and Licensed Spectrum Sharing, Fundamental Limitative radios — Multichannel MAC - slotted ALOHA — CSMA ontrol and error control techniques. ADVANCED TOPICS IN COGNITIVE RADIO of for Internet of Things - Features and applications — Enabling techniques — Requirement and challenges of IoT — on algorithms.	etection, matched Optimum spectrum asing, Spectrum imits of Cognitive IVE RADIO A, Network layer echnologies and pre- Energy efficience	filtering m sensi Sharing e Radio g design g rotocols ey— MI	g, coope ing - K g Mode - routi 0 - routi 0 S - M2N MO Co	erative dullback els of I	letectical Leible Dynam. 9 cognitive 9 cologies Radio

Kwang-Cheng Chen, Ramjee Prasad, "Cognitive Radio Networks", John Wiley and Sons, 2009.

1

Huseyin Arslan (Ed.), "Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, Springer, 2007.

3	SShanmugavel, M.A.Bhagyaveni, R.Kalidoss, "Cognitive Radio-An Enabler for Internet of things", River Publishers, 2017.
E-Re	eferences:
1	https://www.youtube.com/watch?v=FCDZV2U6xxE
2	https://www.youtube.com/watch?v=oFon8h68RtM
3	https://www.udemy.com/course/cognitive-radio-networks/

0 0 0	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level						
CO1	CO1 Able to understand the fundamental concept of cognitive radio networks							
CO2	Understand technologies to allow and efficient use of TVWS for radio communication based on two spectrum sharing business models	L2						
CO3	Understand the fundamental issues regarding dynamic spectrum access.	L2						
CO4	Develop the cognitive radio as well as techniques for spectrum holes detection that cognitive radio takes advantages in order to exploit it.	L3						
CO5	Understand the radio resource management and trading as well as number of optimization techniques for better spectrum exploitation.	L2						

					CC	OURSE A	ARTICU	LATIO	N MATE	RIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	1	1								3		
CO2	3	2	2	1	1								3	2	1
CO3	2	2	2	3	1								3	2	
CO4	1	1	2	1	2								2	3	
CO5	1	1	2	2	2								2	3	1
Avg	1.8	1.8	2	1.6	1.4								2.6	2	0.4
	•			3/2/1 - i	ndicates	strength	of corre	lation (3	-High,2-	Mediun	n,1- Low	7)			•

2212	CH210	NEXT GENERATION NETWORKS	5	5	Semest	er	
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
			** /**/ 1	L	T	P	ТН
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1	To lear	n Wireless technologies and Ad-hoc Network.					
2	To exp	ore NGN architecture and management activities.					
3	To gair	the knowledge of Cooperation for Next Generation Wireless	Networks				
Unit I		BASIC HISTORY OF MOBILE COMPUTING		9	0	0	9
through		mobile computing, Three tier architecture, design consider, Wireless network architecture, Applications, Security, Conceng.					
Unit II	Ī	OVERVIEW OF WIRELESS NETWORK AND TECHN	OLOGIES	9	0	0	9
Unit II GPRS	and pac	network operation	9 - Dat	0 ta servi	o ces in o	9 GPRS -	
Unit IV		GPRS - Billing and charging in GPRS. INFRASTRUCTURE AND AD-HOC NETWORK		9	0	0	9
IEEE 8	802.11a -	eture - Protocol Architecture - Medium Access Control layer - 802.11b standards -Wireless LAN architecture - Mobility etworks and sensor networks - Wireless LAN security.					
Unit V	7						
		WIRELESS APPLICATION PROTOCOL(WAP), APPLICATION CDMA AND 3G	MMS, GPRS	9	0	0	9
	ty issues	WIRELESS APPLICATION PROTOCOL(WAP),	Wireless data -	Third	generat vergenc	ion net	works - ologies -
Securit	ty issues	WIRELESS APPLICATION PROTOCOL(WAP), APPLICATION CDMA AND 3G Technology – FHSS – DSSS - CDMA versus GSM - 3G Wireless LAN - WiFi v/s 3G Voice over Internet protoco	Wireless data -	Third e - Con ecurity	generat vergenc framew	ion net e techno ork for	works - blogies - mobile
Securit enviror	ty issues	WIRELESS APPLICATION PROTOCOL(WAP), APPLICATION CDMA AND 3G Technology – FHSS – DSSS - CDMA versus GSM - 3G Wireless LAN - WiFi v/s 3G Voice over Internet protoco in mobile Information security - Security techniques and	Wireless data -	Third e - Con ecurity	generat vergenc framew	ion net e techno ork for	works - blogies - mobile
Securit enviror	ty issues nment.	WIRELESS APPLICATION PROTOCOL(WAP), APPLICATION CDMA AND 3G Technology – FHSS – DSSS - CDMA versus GSM - 3G Wireless LAN - WiFi v/s 3G Voice over Internet protoco in mobile Information security - Security techniques and	Wireless data - ol and convergence d algorithms - Se	Third e - Con ccurity	generat vergenc framew	ion nette technork for	works - blogies - mobile Periods
Securit enviror Tex	ty issues nment. tt Books Jingmin Madhus	WIRELESS APPLICATION PROTOCOL(WAP), APPLICATION CDMA AND 3G Technology – FHSS – DSSS - CDMA versus GSM - 3G Wireless LAN - WiFi v/s 3G Voice over Internet protoco in mobile Information security - Security techniques and	Wireless data - ol and convergence d algorithms - Se	Third e - Concertify T	generat vergenc framew	ion netre technors for for state of the stat	works - blogies - mobile Periods
Securit enviror Tex 1	ty issues nment. tt Books Jingmin Madhus	WIRELESS APPLICATION PROTOCOL(WAP), APPLICATION CDMA AND 3G In Technology – FHSS – DSSS - CDMA versus GSM - 3G Wireless LAN - WiFi v/s 3G Voice over Internet protoco in mobile Information security - Security techniques and g Li Salina, Pascal Salina "Next Generation Networks-perspect anga Liyanage, Andrei Gurtov, Mika Ylianttila, "Software ture", Wiley, June 2015.	Wireless data - ol and convergence d algorithms - Se	Third e - Concertify T	generat vergenc framew	ion netre technors for for state of the stat	works - blogies - mobile Periods

2	Savo G Glisic," Advanced Wireless Networks- Technology and Business models", Wiley, 3 rd edition- 2016
3	Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", Wiley, 2015.
4	Athanasios G. Kanatas, Konstantina S. Nikita, Panagiotis Takis Mathiopoulos, "New Directions in Wireless communications Systems: From Mobile to 5G", CRC Press, 2017.
E-R	eferences:
1.	https://nptel.ac.in/courses/106105183
2.	https://www.coursera.org/lecture/smart-device-mobile-emerging-technologies/4-5-lte-advanced-part-2-A4XMD
3.	https://www.coursera.org/lecture/network-transformation-101/yet-another-next-generation-yang-data-modeling-language-NXxPA

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	To understand concept of mobile communication.	L2
CO2	To analyse next generation mobile communication system.	L4
CO3	Analyze various protocols of all layers for mobile and adhoc wireless communication networks	L4
CO4	Analyze and examine new generation of mobile technology.	L4
CO5	Recognize and understand cellular technology using long term evolution.	L2

						С	OURS	E ART	TCULA	ATION N	MATRIX				
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO12	PSO1	PSO2	PSO3
CO1		1	1	2	1								1	2	1
CO2	2	1	2	2	1								1	2	2
CO3	1	1	1	1	1								1	2	1
CO4	1	1	2	1	1								1	2	1
CO5	1	1	1	1	1								1	2	1
Avg	1	1	1.4	1.4	1								1	2	1.2
				3/2	2/1 - in	dicates	streng	gth of c	orrelati	on (3-H	igh,2- Med	dium,1- I	Low)		

22EC	CH301		Semest	er						
PRER	REQUIS	ITES	Category	PE	Cr	edit	3			
				L	T	P	TH			
			Hours/Week	3	0	0	3			
Cours	se Learn	ing Objectives			1					
1	To intro	oduce various decision making system, filtering techniques an	d statistical operation	ons.						
2	To impa	art knowledge on Estimation theory.								
3	To gain	knowledge on Information theory.								
Unit I		INFORMATION MEASURE 9 0 0								
Unit II	I screte me	NOISY CODING moryless channel. Mutual information and channel capacity. ing schemes. Shannon's fundamental theorem. Capacity of a light of the control of the capacity of a light of the capacity.	Classification of ch			0 ation of	9 channel			
Unit II		OPTIMIMUM LINEAR SYSTEMS		9	0	0	9			
		ication in presence of additive white Gaussian noise. The connoise. Linear estimation using least mean square error criterio		Matched	l filter f	or addit	ive non-			
Unit I	V	TESTING OF STATISTICAL HYPOTHESIS		9	0	0	9			
		tests, Bayes, Neyman Pearson and Mini-max tests. Probabion of known binary signals in Gaussian noise.	oility of error. Reco	eiver o _l	perating	charac	teristics.			
Unit V	7	PARAMETER ESTIMATION		9	0	0	9			
diagrar		nknown parameters random and deterministic: ML, MSE a lsed radar system. The radar equation detection of steady poigets.		on of th	e range	and vel				
					(10		2 02 10 020			
Tex	t Books	•								
1	Yuk Wii	•								
		ng Lee, Statistical Theory of Communication, Literary Licens	ing, LLC 2013							
2	S.P. Eug									
	S.P. Eug	ng Lee, Statistical Theory of Communication, Literary Licens ene Xavier, Statistical Theory of Communication, New Age I								
	rence Bo	ng Lee, Statistical Theory of Communication, Literary Licens ene Xavier, Statistical Theory of Communication, New Age I	International, 1997	, 1963						

Yuk Wing Lee, Statistical Theory of Communication Hardcover – 1, John Wiley & Sons Inc 1960

I. Ravi Kumar, Compr. Statistical Theory of Communication, Firewall Media, 2001

3

4

E-Re	E-References:								
1	http://www.spec.gmu.edu/~pparis/classes/notes_630/handouts.pdf								
2	https://archive.nptel.ac.in/noc/courses/noc20/SEM1/noc20-ee53/								
3	http://drolet.segfaults.net/EE501/CourseNotesEE501.pdf								

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Characterize and apply probabilistic techniques in modern decision systems.	L3						
CO2	Demonstrate and compare various Estimation techniques	L2						
CO3	Apply various source coding techniques to real time data	L3						
CO4	Apply appropriate model for estimation and signal modeling for the given problem	L3						
CO5	Analyze non-parametric and parametric methods for spectral estimation	L4						

						COUF	RSE AI	RTICU	LATIC	N MAT	RIX				
COs/P Os	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	1								3		2
CO2	3	1	1	2	1								3	1	2
CO3	3	1	2	2	2								3	1	2
CO4	3	2	2	1	1								3		1
CO5	3	1	2	2	1								3	2	2
Avg	3	1.4	1.6	1.8	1								3	0.8	1.8
	1	1		3/2/1 -	indicat	es stre	ngth of	correl	ation (3	8-High,2	- Mediu	m,1- L	ow)	ı	1

	02	INFORMATION THEORY AN	D CODING	5	Semest	er		
PREREQ	UISI	res	Category	PE	Cr	edit	3	
				L	Т	P	TH	
			Hours/Week	3	0	0	3	
Course Lo	earnir	ng Objectives	<u> </u>					
1 To	study	the basic concepts of information theory.						
2 To	under	stand the concepts of error control coding.						
3 To	Learn	various applications of coding theory.						
Unit I		INFORMATION THEORY		9	0	0	9	
	and Pı	BLOCK CODES rinciples: Hamming weight, Hamming distance, Minimage Lincor block godes. Cyclic codes. Syndrome					9 ammii	
odes, Repe	etition	codes - Linear block codes, Cyclic codes - Syndrome		decode	r – CRO	С.		
Unit III		BCH CODES		9	0	0	9	
orrection.	Non –	BCH codes, Decoding procedures, Implementation of binary BCH codes: q –ary Linear Block Codes, Primir –Binary BCH and RS codes: The Berlekamp – Masse	tive BCH codes over GF					
Unit IV	7	CONVOLUTION CODES		9	0	0	9	
		volutional codes, Structural properties, Distance proper gorithm, Stack and Fano sequential decoding Algorith			n for de	ecoding,	Soft -	
Unit V		CONCATENATED CODES		9	0	0	9	
ingle leve		catenated codes, Multilevel Concatenated codes, Son volutional Inner codes, Introduction to Turbo coding						

Tex	t Books:
1	Shu Lin &Daniel J. Costello, Jr. "Error Control Coding "Pearson / Prentice Hall, Second Edition, 2011.
2	R Bose, "Information Theory, Coding and Cryptography", TMH 2016.
Refe	rence Books:
1	S. Gravano, "Introduction to Error Control Codes", Oxford University Press 2007.
2	Amitabha Bhattacharya, "Digital Communication", TMH 2017.
3	Simon Haykin, "Digital Communication Systems", Wiley, 2021.
4	Todd K Moon, "Error Correction Coding", Wiley, Second Edition, 2020.

e-Re	ference:
1	https://nptel.ac.in/courses/117101053
2	https://nptel.ac.in/courses/108102117
3	https://nptel.ac.in/courses/117108097

	completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Use algebraic techniques to construct efficient codes	L3
CO2	Identify the parameters of a given code	L4
CO3	State and prove the limits on achievable code performance	L2
CO4	Understand practical aspects of data compression and error-control coding	L2
CO5	Design the encoding and decoding circuits for block codes, convolutional codes, BCH and concatenated codes.	L3

				(COUR	SE AI	RTICU	LATI	ON M	ATRIX					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3			2	1								2	1	1
CO2	2			2	1								1	1	1
CO3	3			3	1								2	1	1
CO4	3			2	1								2	2	1
CO5	2			2	1								1	1	
Avg	2.6			2.2	1								1.6	1.2	0.8
	•		3/2/1 -	indica	ites stre	ength o	f corre	lation ((3-High	n,2- Med	ium,1- I	Low)	•	•	

PRER	H303	MM WAVE COMMUNICATION		5			
	EQUIS	ITES	Category	PE	E Credi		3
Analog and Sys		gital Communication, Digital System Design and Signals		L	Т	P	ТН
and Sys	stems		Hours/Week	3	0	0	3
Course	e Learn	ing Objectives			1		
1	To und	erstand the fundamentals of Millimeter wave devices and circu	nits.				
2	To und	erstand the various components of Millimeter wave Communic	cations system.				
3	To kno	w the antenna design at Millimeter wave frequencies.					
Unit I		INTRODUCTION		9	0	0	9
Large applicat	scale protions of r	e characteristics- millimeter wave wireless, implementation chappagation channel effects, small scale channel effects, Onillimeter wave communications.					merging
Unit II		MM WAVE DEVICES AND CIRCUITS		9	0	0	9
mm wa	ve Trans	e generation and amplification: Peniotrons, Ubitrons, Gyrotrosistors, transistor configurations, Analog mm wave compone e devices, Consumption factor theory, Trends and architecture	nts: Amplifiers, M	ixers, V	VCO, P	LL. Me	trics for
Unit II	I	MM WAVE COMMUNICATION SYSTEMS		9	0	0	9
architec	cture, Tra	millimeter wave communications: OOK, PSK, FSK, QAM, Consceiver without mixer, Receiver without Oscillator, Millimeter design considerations.					
Unit IV	7	MM WAVE MIMO SYSTEMS		9	0	0	9
Massiv	e MIMC						
	g in MI	O Communications, Spatial diversity of Antenna Arrays, M MO system, Potential benefits for mm wave systems, Spati by and modulation allocation.					
spatial,	g in MI frequenc	MO system, Potential benefits for mm wave systems, Spati					
Unit V Antenn package	g in MII frequence a beamw e mm w	MO system, Potential benefits for mm wave systems, Spaticy and modulation allocation.	al, Temporal and I	9 consider for for	0 eration,	o On-chi	9 p and In
Spatial, Unit V Antenn package	g in MII frequence a beamw e mm w	MO system, Potential benefits for mm wave systems, Spaticy and modulation allocation. ANTENNAS FOR MM WAVE SYSTEMS ridth, polarization, advanced beam steering and beam forming ave antennas, Techniques to improve gain of on-chip anterpression of the systems.	al, Temporal and I	9 consider for obile.	0 eration, mm wa	On-chi	9 p and In
spatial, Unit V Antenn package antenna	g in MII frequence a beamw e mm w	MO system, Potential benefits for mm wave systems, Spaticy and modulation allocation. ANTENNAS FOR MM WAVE SYSTEMS ridth, polarization, advanced beam steering and beam forming ave antennas, Techniques to improve gain of on-chip antenderic to Device to Device communications over 5G systems, Design te	al, Temporal and I	9 consider for obile.	0 eration, mm wa	On-chi	9 p and In adaptive
Spatial, Unit V Antenn package antenna	g in MII frequence a beamwe mm we arrays, I	MO system, Potential benefits for mm wave systems, Spaticy and modulation allocation. ANTENNAS FOR MM WAVE SYSTEMS ridth, polarization, advanced beam steering and beam forming ave antennas, Techniques to improve gain of on-chip antenderic to Device to Device communications over 5G systems, Design te	al, Temporal and I	9 considion for abile.	o eration, mm was	0 On-chi ave in :	9 p and In adaptive
Spatial, Unit V Antenn package antenna Text	a beamwe mm wa arrays, l	MO system, Potential benefits for mm wave systems, Spaticy and modulation allocation. ANTENNAS FOR MM WAVE SYSTEMS Antennas, Techniques to improve gain of on-chip anterpresent to Device to Device communications over 5G systems, Design techniques, Device to Device communications over 5G systems, Design techniques, Mr. Heath, Robert C. Daniel, James N. Theodore S. Rappaport,	al, Temporal and land, many wave design mas, Implementation chniques of 5G modern construction of the chniques	9 considion for bile. Total (o eration, mm was	0 On-chi ave in :	9 p and In adaptive
Unit V Antenn package antenna Text	a beamwe mm wa arrays, l	MO system, Potential benefits for mm wave systems, Spaticy and modulation allocation. ANTENNAS FOR MM WAVE SYSTEMS ANTENNAS	al, Temporal and land, many wave design mas, Implementation chniques of 5G modern construction of the chniques	9 considion for bile. Total (o eration, mm was	0 On-chi ave in :	9 p and In adaptive
Spatial, Unit V Antenn package antenna Text 1 2 Refer	a beamwe mm wa arrays, lead to Books Robert V. Commun. K.C. Hu	MO system, Potential benefits for mm wave systems, Spaticy and modulation allocation. ANTENNAS FOR MM WAVE SYSTEMS ANTENNAS	al, Temporal and land, Temporal and land, Temporal and land, make design mas, Implementation of 5G modern process, land, and l	9 considion for bile. Total (o eration, mm was	0 On-chi ave in :	9 p and In adaptive

3	John S. Seybold "Introduction to RF propagation," John Wiley and Sons, 2005.
	Chia-Chin Chong, Kiyoshi Hamaguchi, Peter F. M. Smulders and Su-Khiong, "Millimeter – Wave Wireless Communication Systems: Theory and Applications," Hindawi Publishing Corporation, 2007.
E-Re	ferences:
1	https://onlinecourses.nptel.ac.in/noc23_ee69/preview
2	https://onlinecourses.nptel.ac.in/noc22_ee102/preview
3	https://www.classcentral.com/course/swayam-millimeter-wave-technology-7903

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand wave propagation models for millimeter wave.	L2
CO2	Understand Millimeter devices and circuits.	L2
CO3	Understand Millimeter-wave based communication systems.	L2
CO4	Understand Millimeter-wave based MIMO systems	L2
CO5	Design antenna for Millimeter wave frequencies	L3

						COUI	RSE A	RTICU	LATIO	ON MAT	RIX				
COs/PO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1					2		2	2	
CO2	3	2	1	2	2	1					2		2	2	
CO3	3	2	1	2	2	1					2		2	2	
CO4	3	2	1	2	2	1					2		2	2	
CO5	3	2	1	2	2	1					2		2	2	
Avg	3	2	1	2	2	1					2		2	2	
	I	1	1	3/2/1 -	indica	tes stre	ngth o	f corre	ation (3-High,2	- Mediu	m,1- L	ow)		

22EC	CH304	SPREAD SPECTRUM COMMUNICATION	ON	5	Semeste	er	
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
Analo	g and Di	gital Communication		L	T	P	ТН
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					<u>. </u>
1	To unde	erstand the basics of spread spectrum communication systems.					
2	To learn	n about the performance of spread spectrum in multipath enviro	onment.				
3	To unde	erstand the performance analysis of spread spectrum systems.					
Un	nit I	SPREADING CODES		9	0	0	9
Genera	tion and	hmetic- Sequence Generator Fundamentals-State - Machine Re Properties of m-Sequences Gold Codes - Kasami Sequences (So Code Keying - Walsh–Hadamard Sequences.					S-
Un	it II	SPREAD SPECTRUM SYSTEMS		9	0	0	9
		e Spread Spectrum (DSSS)- Processing Gain- Frequency low FHSS – Coherent and Noncoherent Fast FHSS- Hybrid DS/			(FHSS)-	Coher	ent and
Uni	it III	SYNCHRONIZATION IN SPREAD SPECTR	RUM	9	0	0	9
		overy - Carrier Synchronization - Code Synchronization – udonoise Tracking in Direct Sequence Receivers.	Pseudonoise Ac	i equisitio	on in D	irect S	equence
Uni	it IV	SPREAD SPECTRUM IN MULTIPATH ENVIRO	ONMENT	9	0	0	9
Spread	Spectrui	n Communication System Model, Performance of Spread Speem Systems with Forward Error Correction: Elementary Block rror Probability-Elementary Convolution Coding Concepts, De	ck Coding Conce	pts-Op	timum I		
Un	it V	PERFORMANCE ANALYSIS OF SPREAD SPECTRU	UM SYSTEM	9	0	0	9
probab	ility of in	spread spectrum system under AWGN, multi-user Interference ntercept methods, optimum intercept receiver for direct sequenter AWGN and fading channels, RAKE receiver.					
				Total	(45+15)) = 60 1	Periods
Tex	t Books	:					
1	Rodger l	E. Ziemer, "Fundamentals of Spread Spectrum Modulation", M	organ & Claypoo	l, Publi	shers sei	ries, 200)7.
2		Sklar & Pabitra Kumar Ray, "Digital Communications Fundamon, Inc, 2021.	nentals and Applic	cations'	', Third	Edition,	Pearson
Refe	rence Bo	ooks:					
1	Don Tor	rieri, "Principles of Spread-Spectrum Communication Systems	", Springer, 3 rd Ed	lition, 2	2015.		
2		son, R. E. Ziemer, and D. E. Borth, "Introduction to Spread Spetice Hall, 1995	ectrum Communi	cations'	', Upper	Saddle	River,

3	M.K. Simon, J.K. Omura, R.A. Scholtz, and B.K. Levitt, "Spread Spectrum Communications Handbook", Electronic Edition, McGraw-Hill, 2002
4	Robert C.Dixon, "Spread Spectrum Systems with Commercial Applications", 3rd Edition, John Wiley & Sons, Ins, 1994
E-Re	eference:
1	https://nptel.ac.in/courses/117105077/
2	http://www.rgcetpdy.ac.in/Notes/IT/III%20YEAR/COMMUNICATION%20ENGINEERING-II/Unit%202.pdf
3	https://www.tutorialspoint.com/digital_communication/digital_communication_spread_spectrum_modulation.htm

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the spread spectrum codes.	L2
CO2	Arrive at detailed specifications of the spread spectrum systems.	L1
CO3	Design systems based on spread spectrum synchronization.	L3
CO4	Design the spread spectrum in multipath environment.	L3
CO5	Know the concept of Performance analysis of spread spectrum system.	L1

					COUR	SE AR	TICUI	LATIO	N MA	TRIX					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2		2	2	1								1		1
CO2	2		2	2	1								2		1
CO3	2		2	2	1								2	1	1
CO4	2		2	2	1								2	1	1
CO5	2		2	2	1								2	1	1
Avg	2		2	2	1								1.8	0.6	1
-	1	3	/2/1 -	indicat	es strei	ngth of	correl	ation (3	3-High	,2- Medi	um,1- L	ow)	I	1	I

	211303			`	Jennese		
PREF	REQUIS	SITES	Category	PE	Cr	Credit	
Analo	g and Di	igital Communication		L	Т	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ning Objectives					
1		e comprehensive coverage of coding techniques for Multiple In	nput Multiple Outp	ut (MIN	MO) coi	mmunic	ation
2	To ana	lyze about MIMO communication systems, Space-time block	codes, Space-time	trellis c	odes		
3	To gair	n knowledge on MIMO systems for frequency-selective (FS) for	ading channels.				
Uı	nit I	FADING CHANNELS AND DIVERSITY TECHNIQUE	CS .	9	0	0	9
		hels – Error/Outage probability over fading channels – Diversit Multiple antennas in wireless communications.	y techniques – Cha	nnel co	oding as	a mean	s of
Un	nit II	CAPACITY AND INFORMATION RATES OF MIM	O CHANNELS	9	0	0	9
		nformation rates of noisy, AWGN and fading channels – Cochannels – Constrained signalling for MIMO communication		chann	els – C	Capacity	of nor
Uni	it III	SPACE-TIME BLOCK AND TRELLIS CO	DDES	9	0	0	9
Develo		f concatenated codes – Concatenated codes for AWGN and M s – Concatenated space-time block coding.		9 urbo coo	0 ded moo	0 dulation	9 for
Un	nit V	SPACE-TIME CODING FOR FREQUENCY SELEC CHANNELS	TIVE FADING	9	0	0	9
		 cy-selective channels - Capacity and Information rates of MI on for MIMO FS channels - challenges in MIMO OFDM syst					
				Total	(45+15	() = 60]	Period
Tex	t Books	:					
1	Tolga M England	1. Duman and Ali Ghrayeb, "Coding for MIMO Communication, 2007	on systems", John	Wiley &	& Sons,	West Si	ıssex,
2	A.B. Ge USA, 20	ershman and N.D. Sidiropoulus, "Space-time processing for M 005.	IMO communication	ons", W	iley, H	oboken,	NJ,
Refe	rence B	ooks:					
1	E.G. La 2003.	rsson and P. Stoica, "Space-time block coding for Wireless co	mmunications", Ca	ımbridg	ge Unive	ersity Pr	ess,
2	Aditya l India, 20	K. Jagannatham, Principles of Modern Wireless Communication 015.	ons Systems, 1st Ed	lition, I	McGraw	v-Hill E	ducatio

MIMO COMMUNICATION

Semester

22ECH305

3	H. Jafarkhani, "Space-time coding: Theory & Practice", Cambridge University Press, 2005.
4	Huaibei Zhou" Advance MIMO systems" Scientific Research Publishing; 1st edition, 2009.
E-Re	ference:
1	https://nptel.ac.in/noc/individual_course.php?id=noc17-cs37
2	https://nptel.ac.in/courses/117104115/34
3	https://nptel.ac.in/noc/individual_course.php?id=noc16-ec11

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand the diversity techniques and design the MIMO channels.	L2
CO2	Understand the capacity of MIMO channels.	L1
CO3	Analyse the performance of Space time Trellis code.	L4
CO4	Design concatenated codes.	L3
CO5	Understand Frequency selective channels to estimate the capacity of MIMO channels.	L2

					COUI	RSE A	RTICU	LATIO	ON MA	ATRIX					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2		1	1	1								2	1	1
CO2	1		1	1	1								2		1
CO3	2		2	2	1								2		1
CO4	2		2	2	1								2	1	1
CO5	2		2	2	1								2		1
Avg	1.8		1.6	1.6	1								2	0.4	1
			3/2/1 -	indica	ites stre	ength o	f corre	lation (3-Higl	n,2- Medi	um,1- I	Low)		•	

22EC	H306	SMART ANTENNAS			Semest	er	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
Antenna	a and wa	ve propagation		L	Т	P	ТН
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1	To gain	basic knowledge on smart antennas.					
2	To unde	erstand adaptive beam forming.					
3	To acqu	ire insight about space-time processing.					
Unit I		INTRODUCTION TO SMART ANTENNAS		9	0	0	9
Division	n Multip	Antennas- Smart Antenna Configurations- Switched-Beam le Access (SDMA)- Architecture of a Smart Antenna System Smart Antennas System.					
Unit II		DOA ESTIMATION FUNDAMENTALS		9	0	0	9
Estimat	ion Meth	Vector, Received Signal Model, Subspace-Based Data Monds, Conventional Beamforming Method, Capon's Minimur SIC Algorithm, ESPRIT Algorithm, Uniqueness of DOA Esti	n Variance Method				
Unit III	Ī	BEAM FORMING FUNDAMENTALS		9	0	0	9
Unit IV Antenna	y Constra	Maximum, SINR Beam former, Minimum Mean Square I ained Minimum Variance (LCMV). INTEGRATION AND SIMULATION OF SMART ANT , Mutual Coupling, Adaptive Signal Processing Algorithms, I ining for Rayleigh-Fading, Channel, Trellis-Coded Modulater	TENNAS DOA, Adaptive Bea	9 am forn	0 ning, Be	0 am form	9 ning and
Systems		bile Adhoc Networks (MANETs), Protocol, Simulations, Disc					
Unit V	~	SPACE-TIME PROCESSING		9	0	0	9
		Time Channel and Signal Models, Space—Time Beamforn occessing for DSCDMA, Capacity, and Data Rates in MIMO S		and Co	o-Chanr	iel Supj	pression,
				T	otal (45	5L)= 45	Periods
Text	Books	:					
-	Constant series-20	tine A. Balanis & Panayiotis I. Ioannides, "Introduction to Sm 007	nart Antennas", Mo	rgan &	Claypo	ol Publi	shers'
		C. Liberti Jr., Theodore S Rappaport, "Smart Antennas for Wi Applications", PTR – PH publishers, 1st Edition, 1989.	reless Communicat	ionsIS-	95 and '	Third G	eneration
Refer	rence Bo	ooks:					
		paport, "Smart Antennas Adaptive Arrays Algorithms and Wiishers 1999.	ireless Position Loc	ation",	IEEE p	ress 199	98, PTR -
	1						

3	Frank B. Gross, Smart Antennas with MATLAB®, 2nd Edition, 2015 McGraw-Hill Education.
4	T. K. Sarkar, Michael C. Wicks, Magdalena Salazar-Palma, Robert J. Bonneau, Smart Antennas: 143 (Wiley Series in Microwave and Optical Engineering), Wiley-IEEE Press; 1st edition (20 May 2003).
E-Re	ferences:
1	https://onlinecourses.nptel.ac.in/noc20_ee20/preview
2	https://nptel.ac.in/courses/108101092
3	https://archive.nptel.ac.in/courses/117/107/117107035/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Understand various types of smart antenna and its configurations.	L2
CO2	Analyse various estimation methods.	L4
CO3	Understand and analyse beamforming in smart antennas.	L2 & L4
CO4	Integrate and simulate algorithms related to smart antennas.	L3
CO5	Analyse and understand space-time processing techniques.	L4

					(COUR	SE AR	TICUL	ATIO	N MATR	IX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1					2		2	2	
CO2	3	2	1	2	2	1					2		2	2	
CO3	3	2	1	2	2	1					2		2	2	
CO4	3	2	1	2	2	1					2		2	2	
CO5	3	2	1	2	2	1					2		2	2	
Avg	3	2	1	2	2	1					2		2	2	
		1	3	/2/1 - i	ndicate	s stren	gth of	correla	tion (3-	High,2- l	Medium	,1- Lov	v)		

22EC	CH307	RF IC AND MICROWAVE MEMS	}		Semest	er	
PRER	REQUIS	ITES	Category	PE	Cr	edit	3
Transm	nission lir	nes and Microwave Engineering		L	Т	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives		I.	1	<u> </u>	
1	Familia devices	rize the students with different types of MEMS devices and fa	abrication methods	of pass	ive and	active N	MEMS
2	Design	micro machined passive components, Transmission lines and	Antennas.				
3	Analyse	e Packaging and reliability issues in MEMS structures.					
Unit I	1	INTRODUCTION		9	0	0	9
MEMS	S for micals and fa	hnology. MMIC components, Active devices, Passive lumped rowave applications, MEMS technology and fabrication, m brication techniques. MEMS SWITCHES		ng of M	MEMS d		
Unit II	<u> </u>	MEMS SWITCHES		9	U	U	9
		es: Introduction to MEMS switches; Capacitive shunt and senetic modelling; Techniques of MEMS switch fabrication and					it model
Unit II	II	RF FILTERS AND PHASE SHIFTERS		9	0	0	9
		Phase Shifters: Modeling of mechanical filters, micron filters for millimeter wave frequencies; Various types of MEN					
Unit I	V	TRANSMISSION LINES AND ANTENNAS		9	0	0	9
micron	nachined	ines and Antennas: Micromachined transmission lines, losses waveguide components; Micromachined antennas: Micromachined antennas: Micromachined antennas.					
Unit V	7	INTEGRATION AND PACKAGING		9 0 es: Physical description Design of MEMS swite 9 0 ilters, surface acoustinifters; Ferroelectric phases on lines, coplanar training techniques to im 9 0	0	9	
_	ation and lity issues	Packaging: Role of MEMS packages, types of MEMS packages.	ages, module packa	iging, p	ackagin	g matei	rials and
				Т	otal (45	(L)= 45	Periods
Tex	t Books	:					
1	Varadan	, V.K., Vinoy, K.J. and Jose, K.J., "RF MEMS and their Appl	lications", John Wi	ley & S	ons. 200	02.	
2	Rebeiz,	G.M., "MEMS: Theory Design and Technology", John Wiley	& Sons. 1999.				
Refe	rence B	ooks:					
1	De Los	Santos, H.J, "RF MEMS Circuit Design for Wireless Commun	nications". Artech l	House.	1999.		
-		Santos, 11.3, Ki William Chedit Design for Wheless Commun	, , , , , , , , , , , , , , , , , , , ,				
2	Trimme	r, W., "Micromechanics & MEMS", IEEE Press. 1996.	, , , , , , , , , , , , , , , , , , , ,				

4	Sze, S.M., "Semiconductor Sensors", John Wiley & Sons. 1994.
E-Re	eferences:
1	https://onlinecourses.nptel.ac.in/noc19_ee57/preview
2	https://www.surrey.ac.uk/cpd-and-short-courses/microwave-circuits-and-systems
3	RF and millimeter-Wave Circuit Design Coursera

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify various types of MMIC and MEMS devices, fabrication methods and packaging standards.	L2
CO2	Design MEMS tuneable capacitors and switches using micromachining techniques.	L3
CO3	Model MEMS filters and Phase shifters for various types of RF applications.	L3
CO4	Design and analysis of Micro machined Transmission lines and Antennas for wireless applications	L3
CO5	Analyse the reliability and design related issues in MEMS structures.	L4

					(COURS	SE AR	TICUL	ATIO	N MATR	IX				
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	1					2		2	2	
CO2	3	2	1	2	2	1					2		2	2	
CO3	3	2	1	2	2	1					2		2	2	
CO4	3	2	1	2	2	1					2		2	2	
CO5	3	2	1	2	2	1					2		2	2	
Avg	3	2	1	2	2	1					2		2	2	
	1	1	3,	$\frac{1}{2/1} - i$	ndicate	s stren	gth of	correla	tion (3-	High,2-	Mediun	1,1- Lo	w)	1	

22EC	H308	COGNITIVE RADIO		S	Semest	er	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
				L	Т	P	ТН
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1	To enal function	ole the student to understand the requirements in designing so- nalities	ftware defined radio	os and c	cognitive	e radio	and its
2		ole the student to understand the evolving paradigm of cognition ogies for its implementation	ve radio communic	ation aı	nd the e	nabling	
3	To anal	yse the spectrum management functions using cognitive radio	systems and cogni	tive rad	lio netw	orks.	
Unit I	I	INTRODUCTION TO COGNITIVE RADIOS		9	0	0	9
Digital		Lognitive radio (CR) architecture, functions of cognitive radio, spectrum sensing, spectrum analysis and decision, potenti				A), con	nponen
Digital of cogn Unit II Spectru	nitive rad	SPECTRUM SENSING ng, detection of spectrum holes (TVWS), collaborative sens	al applications of co	ognitive 9	e radio.	0	9
Digital of cogn Unit II Spectru	mitive rad	SPECTRUM SENSING ng, detection of spectrum holes (TVWS), collaborative sens	al applications of co	ognitive 9	e radio.	0	9
Digital of cogn Unit II Spectru busines Unit II Linear	nitive rad	SPECTRUM SENSING ng, detection of spectrum holes (TVWS), collaborative sensition. OPTIMIZATION TECHNIQUES OF DYNAMIC SPECALLOCATION ming, convex programming, non-linear programming, into	al applications of costsing, geo-location of	9 latabase	e radio. 0 e and sp	o pectrum	9 sharin
Digital of cogn Unit II Spectru busines Unit II Linear	im sensings models I programmatic program	SPECTRUM SENSING ng, detection of spectrum holes (TVWS), collaborative sensition. OPTIMIZATION TECHNIQUES OF DYNAMIC SPECALLOCATION ming, convex programming, non-linear programming, into	al applications of cosing, geo-location of cosing, geo-location of costs and costs are considered as a second cost and costs are costs as a second cost and costs are costs are costs as a second cost as a second cost are costs as a second cost as a second cost are costs as a second cost as a se	9 latabase	e radio. 0 e and sp	o pectrum	9 sharin
Digital of cogn Unit II Spectru busines Unit II Linear stochas Unit IV	mitive rad	SPECTRUM SENSING Ing, detection of spectrum holes (TVWS), collaborative sension. OPTIMIZATION TECHNIQUES OF DYNAMIC SPECIALLOCATION Imming, convex programming, non-linear programming, inflamming.	al applications of costsing, geo-location of costsing, geo-location of costs and costs are costs as a second cost and costs are costs as a second cost as a second cost are costs as a second cost are costs as a second cost as a second cost as a second cost are costs as a second cost as a sec	g database g g , dyna	e radio. 0 e and sp mic pro	0 pectrum 0 pgramm	9 sharing 9
Digital of cogn Unit II Spectru busines Unit II Linear stochas Unit IV	m sensing sension sens	SPECTRUM SENSING Ing, detection of spectrum holes (TVWS), collaborative sensions. OPTIMIZATION TECHNIQUES OF DYNAMIC SPECIALLOCATION Imming, convex programming, non-linear programming, informations. DYNAMIC SPECTRUM ACCESS AND MANAGEMENT	al applications of costsing, geo-location of costsing, geo-location of costs and costs are costs as a second cost and costs are costs as a second cost as a second cost are costs as a second cost are costs as a second cost as a second cost as a second cost are costs as a second cost as a sec	g database g g , dyna	e radio. 0 e and sp mic pro	0 pectrum 0 pgramm	9 sharin 9
Digital of cogn Unit II Spectru busines Unit II Linear stochas Unit IV Spectru Unit V Introdu	m sensing sens	SPECTRUM SENSING Ing, detection of spectrum holes (TVWS), collaborative sensions. OPTIMIZATION TECHNIQUES OF DYNAMIC SPECIALLOCATION Imming, convex programming, non-linear programming, inflamming. DYNAMIC SPECTRUM ACCESS AND MANAGEMENT, cognitive radio architectures, centralized dynamic spectrum	al applications of costsing, geo-location of costsing, geo-location of costs and costs are costs as a cost of costs and costs are costs as a cost of costs are co	9 databasa 9 dynam 9 dynam	e radio. 0 e and sp mic pro ic spectr	0 pectrum 0 prum acc	9 sharing an 9 seess.

Tex	tt Books:
1	Ekram Hossain, DusitNiyato, Zhu Han, "Dynamic Spectrum Access and Management in Cognitive Radio Networks", Cambridge University Press, 2009.
2	E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, "Principles of Cognitive Radio", Cambridge University Press, 2013.
Refe	rence Books:
1	Bruce Fette, "Cognitive radio technology", Elsevier, 2nd edition, 2009.
2	Cognitive Radio Hardbound by Budati Anil Kumar , Peter Ho Chiung Ching , Shuichi Torii , CRC Press 1st Edition 2021
3	Alexander M. Wyglinski, Maziar Nekovee, And Y. Thomas Hou, "Cognitive RadioCommunications And Networks - Principles And Practice", Elsevier Inc., 2010.

4 Handbook of Cognitive Radio Editor: Wei Zhang, Springer 2020

E-Re	ferences:
1	http://www.xgtechnology.com/innovations/cognitive-radio-networks/
2	https://snscourseware.org/snscenew/notes.php?cw=CW_5d09f853e42f6
3	https://www.techtarget.com/searchnetworking/definition/cognitive-radio

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the fundamental concepts of cognitive radio networks	L2					
CO2	Develop the cognitive radio, as well as techniques for spectrum holes detection that cognitive radio takes advantages in order to exploit it.	L3					
CO3	<u>Understand technologies to allow an efficient use of TVWS for radio communications based on two spectrum sharing business models/policies.</u>	L2					
CO4	Understand fundamental issues regarding dynamic spectrum access, the radio-resource management and trading, as well as a number of optimisation techniques for better spectrum exploitation.	L2					
CO5	Understanding of the applications of auction theory as an economic approach to enable the emerging cognitive radio systems very useful.	L2					

					(COURS	SE AR	TICUL	ATIO	N MATR	IX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	1							3	3	
CO2	3	2	3	3	1	1							3	2	
CO3	3	2	2	3	1	1							2	3	3
CO4	3	2	3	3	2	1							2		3
CO5	3	3	3	3	1	1							2		3
Avg	2.8	2.4	2.6	2.8	1.4	1							2.4	1.6	2.4

3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)

22ECH309	SATELLITE POSITIONING AND NAVIGATI	ON SYSTEMS	\$	Semest	er	
PREREQUI	SITES	Category	PE	edit	3	
		TT /XX71-	L	T	P	TH
		Hours/Week	3	0	0	3
Course Lear	ning Objectives					
1 To lea	arn about the science behind the orbiting satellites and var	rious multiplexing	g scher	nes		
2 To im	part knowledge on earth station parameters used for satel	llite communicati	on.			
3 To ga	in knowledge of navigation systems especially GPS in de	etail.				
Unit I	ORBITS, PROPAGATION IMPAIRMENTS A LINK	AND SPACE	9	0	0	9
Command (Trequency Re	ination. Satellite subsystems: Attitude and Orbital Contr TT&C), Power System, Communications System, Sacuse Antennas. Communication link design: Basic transmout frequency reuse, System noise temperature G/T ratio.	tellite transpond hission theory, EII , Noise figure and	er, Sp RP, Co	ace Cr mpletion	aft An on Link	tennas
	CATELLITE MILITIDI E ACCECCEC, CATELL	ITE MODII E				
Unit II Frequency D Access (TDM Spectrum Tra	ivision Multiple Access (FDMA), Intermodulation, Canal Aleks (FDMA), Satellite Switched TDMA, Demand Assignment Insmission and Reception. Message Transmission by FDM (FDMA) (FDM	alculation of C/I Multiple Access MA: M/G/1 Queu	(DANe, Mes	MA), C sage Tr	DMA ansmis	Spread Sion by
Unit II Frequency D Access (TDM Spectrum Tra TDMA, PUR	AND SPECIALIZED SERVICES ivision Multiple Access (FDMA), Intermodulation, CaMA), Satellite Switched TDMA, Demand Assignment	alculation of C/I Multiple Access MA: M/G/1 Queu Packet Reservati	N, Tin (DAN e, Mes on, Tr	ne Divi MA), C sage Tr ee Algo	ision M CDMA cansmis	Iultiple Spread sion by VSAT
Unit II Frequency D Access (TDM Spectrum Tra TDMA, PUR Technologies	ivision Multiple Access (FDMA), Intermodulation, Canala, Satellite Switched TDMA, Demand Assignment Insmission and Reception. Message Transmission by FDME ALOHA, Satellite Packet Switching, Slotted Aloha,	alculation of C/I Multiple Access MA: M/G/1 Queu Packet Reservati	N, Tin (DAN e, Mes on, Tr	ne Divi MA), C sage Tr ee Algo	ision M CDMA cansmis	Iultiple Spread sion by VSAT
Unit II Frequency D Access (TDN Spectrum Tra TDMA, PUR Technologies Network. Unit III Transmitters earth station	AND SPECIALIZED SERVICES ivision Multiple Access (FDMA), Intermodulation, Coman, Satellite Switched TDMA, Demand Assignment Insmission and Reception. Message Transmission by FDME ALOHA, Satellite Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, 19	alculation of C/I Multiple Access MA: M/G/1 Queu Packet Reservati Mobile Satellite	N, Tim (DAN e, Mes on, Tr Netwo	me Dividinal Dividinal MA), Consage Tree Algorks, Constant of the contract of	ision M CDMA cansmis crithm, CDMA	Iultiple Spread Sion by VSAT MSAT
Unit II Frequency D Access (TDN Spectrum Tra TDMA, PUR Technologies Network. Unit III Transmitters earth station	AND SPECIALIZED SERVICES ivision Multiple Access (FDMA), Intermodulation, Company Assignment and Reception. Message Transmission by FDME ALOHA, Satellite Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, EARTH STATION TECHNOLOGY Some Receivers, Antennas, Tracking Systems, Transponders, Lower Orbit Considerations, Coverage and frequency	alculation of C/I Multiple Access MA: M/G/1 Queur Packet Reservati Mobile Satellite Small earth static considerations, I	N, Tim (DAN e, Mes on, Tr Netwo	MA), C sage Tr ee Algorks, C	ision M CDMA cansmis crithm, CDMA	Iultiple Spread sion by VSAT MSAT
Unit II Frequency D Access (TDN Spectrum Tra TDMA, PUR Technologies Network. Unit III Transmitters earth station Television a Unit IV The History	ivision Multiple Access (FDMA), Intermodulation, Coman, Satellite Switched TDMA, Demand Assignment Insmission and Reception. Message Transmission by FDME ALOHA, Satellite Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, EARTH STATION TECHNOLOGY See Receivers, Antennas, Tracking Systems, Transponders, Lower Orbit Considerations, Coverage and frequency and Radio, Satellite Navigation. INTRODUCTION TO GLOBAL NAVIGATION Services.	alculation of C/I Multiple Access MA: M/G/1 Queu- Packet Reservati Mobile Satellite Small earth static considerations, I	N, Time (DANe, Mes on, Translation Network) 9 on Ant Direct 9 GPS	ne Dividal, Cosage Tree Algorks, Cosage Tree Algorks, Cosage Tree and Cosage T	sion McDMA ransmis prithm, CDMA 0 Equipm asting s	Iultiple Spread
Unit II Frequency D Access (TDN Spectrum Tra TDMA, PUR Technologies Network. Unit III Transmitters earth station Television a Unit IV The History Trilateration,	ivision Multiple Access (FDMA), Intermodulation, Comandal, Satellite Switched TDMA, Demand Assignment Insmission and Reception. Message Transmission by FDME ALOHA, Satellite Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search State Packet Switching, Slotted Aloha, Network Configuration, Polling VSAT Networks, Search State Packet Switch	ATELLITE AVSTAR GPS, Determining the recessors Aultiple Access Ma: M/G/1 Queue Packet Reservati Mobile Satellite Small earth static considerations, 1	N, Time (DANe, Mes on, Translation Network) 9 on Ant Direct 9 GPS	ne Dividal, Cosage Tree Algorks, Cosage Tree Algorks, Cosage Tree and Cosage T	sion McDMA ransmis prithm, CDMA 0 Equipm asting s	Iultiple Spread
Unit II Frequency D Access (TDN Spectrum Tra TDMA, PUR Technologies Network. Unit III Transmitters earth station Television a Unit IV The History Trilateration, Y-Z Plane. Unit V GPS system s code, C/A co GPS orbital	ivision Multiple Access (FDMA), Intermodulation, Cama, Satellite Switched TDMA, Demand Assignment Insmission and Reception. Message Transmission by FDME ALOHA, Satellite Packet Switching, Slotted Aloha, Network Configurations, Polling VSAT Networks, Search Stationary (Search Stationary). Receivers, Antennas, Tracking Systems, Transponders, Lower Orbit Considerations, Coverage and frequency and Radio, Satellite Navigation. INTRODUCTION TO GLOBAL NAVIGATION SEASTEMS (GNSSS) of GPS, The Evolution of GPS, Development of NAD Determining the receiver position in 2D or XY Plane, Determining the receiver position in 2D or XY Plane, Description of GPS ORBITS AND SATELLITE POSITIONS OF COMMENTS OF COM	ATELLITE AVSTAR GPS, Determining the reservations, Int., GPS Signals, PS. Anti-spoofing ge format (RINE)	N, Tim (DAMe, Mes on, Tr Netwo 9 on Ant Direct 9 GPS eceiver	ne Dividial de Div	on noise ve avai	Jultiple Spreadsion by VSAT MSAT 9 The spread of the spre

241

Text Books:

1	Timothy Pratt, Jeremy Allnutt, "Satellite Communications", 3 rd Edition, Wiley, 2019.
2	G S RAO, "Global Navigation Satellite Systems", McGraw-Hill publications, New Delhi, 2010.

Refe	rence Books:
1	D.C.Agarwal. R Anand, "Satellite Communications", Khanna Publishers, 2021.
2	M. Richcharia, "Satellite Communications: Design Principles" 2nd Ed., BSP, 2003.
3	James Ba, Yen Tsui, "Fundamentals of GPS receivers – A software approach", John Wiley & Sons, 2001.
4	Gunter Seeber, "Satellite Geodesy Foundations-Methods and Applications", 2003.
e-Re	eference:
1	https://nptel.ac.in/courses/117105131
2	https://www.youtube.com/watch?v=H00_PVX2bRw
3	https://youtube.com/playlist?list=PLLy_2iUCG87A55NPtEwWoWPiKs0-9NNT1

	se Outcomes:	Bloom's Taxonomy Level				
Upon	Upon completion of this course, the students will be able to:					
CO1	Architect appropriate technologies for the implementation of specified satellite communication systems.	L3				
CO2	Understand the various multiple access techniques for satellite services.	L2				
CO3	Analyze and evaluate a satellite link and suggest enhancements to improve the link performance.	L4				
CO4	Summarize the working principle of GPS and its history.	L1				
CO5	Develop new navigation solutions for determining accurate user position.	L3				

					COUR	SE AI	RTICU	LATI	ON M	ATRIX					
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	1		2	1	1	1	1						2	1	1
CO2	1		1	1	1	1	1						1		1
CO3	2		2	1	1	1	1						2	1	1
CO4	1		1	1	1	1							1		1
CO5	2		2	1	1	1	1						2	2	1
Avg	1.4		1.6	1	1	1	0.8						1.6	0.8	1
			3/2/1 -	indica	ites stre	ength o	f corre	lation ((3-High	n,2- Med	ium,1- I	Low)			

22E(CH310	REMOTE SENSING			Semest	er	
PREF	REQUIS	ITES	Category	PE	edit	3	
				L	T	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives					
1	To fam	iliarize about the basic principles of remote sensing					
2	To acqu	uire knowledge about the motion of remote sensing satellite	s in the space				
3	To expo	ose the various types of sensors used for remote sensing					
4	To gain	knowledge about the generation of satellite data products					
Unit I		PHYSICS OF REMOTE SENSING		9	0	0	9
-atmos	spheric in	nospheric window- Energy interaction with surface features fluence on spectral response patterns- multi concept in Rem PLATFORMS		e of ve	egetation	1, soil a	nd wate
		PLATFORMS		9	U	U	9
Orbit of maneu synchr	elements vers – es onous sat	Types of orbits – Motions of planets and satellites – I cape velocity - Types and characteristics of different remellites. SENSORS					
Orbit of maneu synchr Unit II Classif resolut whiskle charac	elements vers – es conous sat II fication of cion – Que coroom can teristics of	cape velocity - Types and characteristics of different remellites.	tion concept - Spectra – opto-mechanica	9 ral, Raal scannicroway	0 diometr ners – ve sense	0 ic and pushbroors – g	9 tempora
Orbit of maneu synchr Unit II Classif resolut whiskle charachysis, I	elements vers – es conous sat II fication o cion – Qu coroom ca teristics o ERS, EN	scape velocity - Types and characteristics of different remellites. SENSORS f remote sensors – selection of sensor parameters - resolute uality of images – imaging mode – photographic came meras – Panchromatic, multi spectral, thermal, hyperspector scanner imagery – Operational Earth resource satellites	tion concept - Spectra – opto-mechanica	9 ral, Raal scannicroway	0 diometr ners – ve sense	0 ic and pushbroors – g	9 tempora
maneu synchr Unit I Classif resolut whiskl charac hysis, I Unit Γ Ground	elements vers – es vonous sat II fication o cion – Qu proom ca teristics o ERS, EN' V d segmen et output	SENSORS f remote sensors – selection of sensor parameters - resoluted it is provided in the selection of sensor parameters - resoluted it is provided in the sensor parameters - resoluted it is provided in the sensor parameters - resoluted it is provided in the sensor parameters - resoluted it is provided in the sensor parameters - resoluted	tion concept - Spectra - opto-mechanicatral scanners and mrandsat, SPOT, II	9 ral, Ra al scannicrowa RS, Wo	diometrners – ve sensorldViev	oric and pushbroors – g	general genera
Orbit of maneu synchr Unit II Classif resolut whiskle charace hysis, II Ground product International Unit V	elements vers – es vonous sat II fication o tion – Qu proom cat teristics o ERS, ENV V d segmen et output ational Sa	SENSORS f remote sensors – selection of sensor parameters - resoluted litter images – imaging mode – photographic came meras – Panchromatic, multi spectral, thermal, hyperspector scanner imagery – Operational Earth resource satellites VISAT, Sentinel. DATA RECEPTION AND DATA PRODUCTS It organization – Data product generation – sources of emedium – Digital products – Super structure, Fast, GeoT tellite Data Products – ordering of data DATA ANALYSIS	tion concept - Spectra – opto-mechanicatral scanners and m - Landsat, SPOT, Illerors in received data	9 ral, Ra al scani icrowa RS, Wo 9 1 - refe ad HDF	diometr ners – ve senso orldViev	oric and pushbroors – g w, hype	getemporation and getemporatio
Orbit of maneur synchr Unit II Classification in the character in the ch	elements vers — es conous sat II Fication oction — Que coroom car teristics oc ERS, EN' V d segment et output ational Sa coroducts a cessing — ication als	SENSORS f remote sensors – selection of sensor parameters - resoluted ity of images – imaging mode – photographic came meras – Panchromatic, multi spectral, thermal, hyperspector scanner imagery – Operational Earth resource satellites VISAT, Sentinel. DATA RECEPTION AND DATA PRODUCTS tt organization – Data product generation – sources of er medium – Digital products – Super structure, Fast, GeoT tellite Data Products – ordering of data	note sensing platform ation concept - Spect ra - opto-mechanica ratral scanners and m - Landsat, SPOT, II rors in received data IFF, Hierarchical an - interpretation keys mage classification - racy assessment hy	9 ral, Ra al scani icrowa RS, Wo 9 a – refe ad HDF	diometriners – ve sensorldViev 0 erencing f forma 0 ital imavised an	oric and pushbroors – gw, hype ors – Incomplete of the control of	getemporation and second and seco
Orbit of maneu synchr Unit II Classification whiskle charact hysis, II Ground product Internation Unit V Data p Preproclassific Knowl	elements vers — es conous sat II Fication oction — Que coroom car teristics oc ERS, EN' V d segment et output ational Sa coroducts a cessing — ication als	SENSORS f remote sensors – selection of sensor parameters - resoluted lives of images – imaging mode – photographic came meras – Panchromatic, multi spectral, thermal, hyperspector scanner imagery – Operational Earth resource satellites VISAT, Sentinel. DATA RECEPTION AND DATA PRODUCTS at organization – Data product generation – sources of er medium – Digital products – Super structure, Fast, GeoT tellite Data Products – ordering of data DATA ANALYSIS and their characteristics – Elements of visual interpretation – Image rectification – Image enhancement techniques – In gorithms for multispectral and hyperspectral images – Accuract declassification, Neural Network Classification, Fuzzy Classes	note sensing platform ation concept - Spect ra - opto-mechanica ratral scanners and m - Landsat, SPOT, II rors in received data IFF, Hierarchical an - interpretation keys mage classification - racy assessment hy	9 ral, Ra al scani icrowa RS, Wo 9 a – refe ad HDF	diometr ners – ve senso orldViev 0 erencing forma 0 ital ima vised an	oric and pushbroors – gw, hype ors – Incomplete of the control of	getemporation and second and seco
Orbit of maneu synchr Unit II Classifiresolut whiskle charace hysis, I Unit I Ground product Internation Unit V Data p Preproclassifit Knowl	elements vers – es vonous sat II fication o cion – Qu proom cal teristics o ERS, ENV V d segmen et output ational Sa r roducts a cessing – ication al eledge base at Books	SENSORS f remote sensors – selection of sensor parameters - resoluted lives of images – imaging mode – photographic came meras – Panchromatic, multi spectral, thermal, hyperspector scanner imagery – Operational Earth resource satellites VISAT, Sentinel. DATA RECEPTION AND DATA PRODUCTS at organization – Data product generation – sources of er medium – Digital products – Super structure, Fast, GeoT tellite Data Products – ordering of data DATA ANALYSIS and their characteristics – Elements of visual interpretation – Image rectification – Image enhancement techniques – In gorithms for multispectral and hyperspectral images – Accuract declassification, Neural Network Classification, Fuzzy Classes	tion concept - Spectra – opto-mechanicatral scanners and m - Landsat, SPOT, III	9 ral, Ra al scani icrowa RS, We 9 a – refe ad HDF 9 s – Dig Super brid cla	diometriners — ve sensorld View 0 erencing forma 0 ital imavised an assification	oric and pushbroors – gw, hype org schements – Incomplete of the control of the	getemporation and getemporatio

Refe	rence Books:
1	Beniamino Cipriani, Remote Sensing and Image Interpretation, Scitus, 2016
2	John A.Richards, Springer – Verlag, Remate Sensing Digital Image Analysis 5th edition, 2013.
3	George Joseph, Fundamentals of Remote Sensing, Third Edition, Universities Press (India) Pvt Ltd, Hyderabad, 2018
4	Shunlin Liang, Jindi Wang, Acad Pr "Advanced Remote Sensing", Acad Pr, 2nd Edition, 2019.
E-Re	eferences:
1	https://nptel.ac.in/courses/105108077
2	https://ncert.nic.in/textbook/pdf/kegy307.pdf
3	https://www.uotechnology.edu.iq/appsciences/Laser/Lacture laser/thrid class/Remote Sensing/3-Remote Sensing.pdf

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand the concepts and laws related to remote sensing	L2					
CO2	Acquire knowledge about various remote sensing platforms	L1					
CO3	<u>Understand the characteristics of different types of remote sensors</u>	L2					
CO4	Gain knowledge about reception, product generation, storage and ordering of satellite data	L1					
CO5	Understand the concept of different image processing techniques and interpretation of satellite data	L2					

					С	OURS	E ART	TICUL	ATION	[MATR]	IX				
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	3	2	1	1								3		
CO2	3	2	2	1	1								3	2	1
CO3	2	2	2	3	1								3	2	
CO4	1	1	2	1	2								2	3	
CO5	1	1	2	2	2								2	3	1
Avg	1.8	1.8	2	1.6	1.4								2.6	2	0.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22E(CH401	ADVANCED DIGITAL SIGNAL PROC	ESSING		Semest	er	
PREF	REQUIS	ITES	Category	PE	Cr	edit	3
DIGIT	ΓAL SIG	NAL PROCESSING		L	T	P	TH
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives		1			<u> </u>
1		rn and understand the concepts of stationary and non-sta		<u>ignals</u>			
2		alysis & characterization of discrete-time random procesurciate the significance of estimation of power spectral d		proces	ses		
3	To intr	roduce the principles of optimum filters such as Wiener a	and Kalman filter	S			
4	To inti	roduce the principles of adaptive filters and their application	tions to communi	cation			
	engine	ering					
5		roduce the concepts of multi-resolution analysis		_	_		
Ur	nit I	DISCRETE-TIME RANDOM PROCESSES		9	0	0	9
autoco	ovariance	bles - ensemble averages a review, random processe matrices, ergodic random process, white noise, filter frandom processes - AR, MA, ARMA					
Un	it II	SPECTRUM ESTIMATION		9	0	0	9
Durbi	n recursi	(AR) spectrum estimation – autocorrelation method, Proon OPTIMUM FILTERS		9	0	0	9
		FIR Wiener filter - discrete Wiener Hopf equation, Appausal and non-causal filters. Recursive estimators - discrete			ear pred	diction.	IIR
Uni	it IV	ADAPTIVE FILTERS		9	0	0	9
		properties of adaptive filters - FIR adaptive filters. Adaptitem - convergence. Applications of adaptive filtering —				_	
Un	nit V	MULTIRESOLUTION ANALYSIS		9	0	0	9
coding	g, the co	urier transform - Heisenberg uncertainty principle. Principle intinuous and discrete wavelet transform - properties. Apge compression					
				Total	(45 L)	= 45 I	Periods
Tex	t Books	:					
	T	1 H. Hayes, "Statistical digital signal processing and mo	deling" Iohn Wil	ev and	Sons		
1		w York, Indian reprint 2008.		oj unu	20113		
			II-11 I				
2	P. P. V	aidyanathan, "Multirate systems and filter banks", Prenti	ce Hall Inc.				

Refe	rence Books:
1	John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth Edition, Pearson Education / Prentice Hall, 2007
2	Sophoncles J. Orfanidis, "Optimum signal processing", McGraw Hill, 2000
3	Simon Haykin, "Adaptive Filter Theory", Prentice Hall, 5th Edition, 2014.
4	S. Kay," Modern spectrum Estimation theory and application", Pearson India, 2009.
e-Re	eference:
1	https://ekeeda.com/degree-courses/electrical-engineering/advanced-digital-signal-processing
2	https://www.classcentral.com/course/youtube-advanced-digital-signal-processing-course-97386
3	https://nptel.ac.in/courses/117101001

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Articulate and apply the concepts of special random processes in practical applications	L4
CO2	Apply optimum filters appropriately for a given communication application	L3
CO3	Choose appropriate spectrum estimation techniques for a given random process	L2
CO4	Apply appropriate adaptive algorithm for processing non-stationary signals	L3
CO5	Apply and analyse wavelet transforms for signal and image processing based applications	L3

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	2	1	1						1		2	2	2
CO2	2	2	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	2	2	3	2	1						2		2	2	2
Avg	2	2	2.4	1.4	1						1.4		2	2	2
			3/2/1 -	indica	ates str	ength o	of corre	lation (3-High	n,2- Medi	um,1- L	ow)			

22EC	CH402	SPEECH PROCESSING		5	Semester						
PRER	REQUIS	ITES	Category	PE	Cre	edit	3				
DIGIT	TAL SIG	NAL PROCESSING		L	Т	P	ТН				
			Hours/Week	3	0	0	3				
Cours	se Learn	ing Objectives			ı	1					
1	To understand the speech production mechanism and the various speech analysis techniques and speech models										
2	To und	lerstand the speech compression techniques									
3	To und	lerstand the speech recognition techniques									
4	To kno	w the speaker recognition and text to speech synthesis to	echniques_								
Un	nit I	SPEECH SIGNAL CHARACTERISTICS & ANAL	YSIS	9	0	0	3				
Un Sampl	it II	Perception SPEECH COMPRESSION Quantization of Speech (PCM) - Adaptive differential PC									
		Quantization of Speech (PCM) - Adaptive differential PC Linear predictive coding (LPC) - Code excited Linear pr				r					
Uni	it III	SPEECH RECOGNITION		9	0	0	3				
based	on HMN	h recognition- Hidden Markov Model (HMM)- training plant language models for large vocabulary speech recognited - Context dependent subword units- Semantic post process.	tion – Overall rec	ognitic	n syste						
Uni	it IV	SPEAKER RECOGNITION		9	0	0	3				
		meters for speaker verification- Feature space for speaker aker verification-Text independent speaker verification to		ilarity 1	measur	es- Tex	t				
Un	it V	SPEAKER RECOGNITION AND TEXT TO SPEE SYNTHESIS	СН	9	0	0	3				
		synthesis(TTS)-Concatenative and waveform synthesis and naturalness-role of prosody	methods, sub-wo	rd unit	s for T	ΓS,	1				
				Total	(45 L)	= 45 I	Periods				
Tex	t Books	:									
1	L. R. R	abiner and R. W. Schafer, Introduction to Digital Signal	Processing, Foun	dations	s and						
	Trends	in Signal Processing Vol. 1, Nos. 1–2 (2007) 1–194	-								

Ben Gold and Nelson Morgan "Speech and Audio signal processing- processing and

perception of speech and music", John Wiley and sons 2006

2

Refe	rence Books:
1	Lawrence Rabiner, Biiing and- Hwang Juang and B.Yegnanarayana "Fundamentals of Speech
	Recognition", Pearson Education, 2009
2	Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999
3	Donglos O shanhnessy "Speech Communication: Human and Machine ", 2nd Ed. University
	press 2001.
4	Daniel Jurafsky and James H Martin, "Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education
e-Re	eference:
1	https://www.udemy.com/course/speech-recognition-a-z-with-hands-on-learnkarts/
2	https://onlinecourses.nptel.ac.in/noc22_ee117/preview
3	https://archive.nptel.ac.in/courses/108/108108185/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Analyse the speech signal	L4
CO2	Design speech compression techniques	L4
CO3	Configure speech recognition techniques	L3
CO4	Understand speaker recognition systems	L2
CO5	Design text to speech synthesis systems	L3

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO	PSO1	PSO2	PSO
	1	2	3	4	5	6	7	8	9		11	12			
	1														
CO1	2	1	2	2	1								2	2	2
CO2	2	1	2	1	1								2	2	2
CO3	2	1	2	1	1								2	2	2
GO 4	-	- 1		2	4										
CO4	2	1	2	2	I								2	2	2
CO5	2	1	2	2	1								2	2	2
Avg	2	1	2	1.5	1								2	2	2

DDED							
LNEK	EQUIS	ITES	Category	PE	Cr	edit	3
				L	T	P	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To uno	derstand the evolving software defined radio and cognitiv	e radio technique	es and			
	their e	ssential functionalities					
2	To stu	dy the basic architecture and standard for cognitive radio					
3	To uno	derstand the physical, MAC and Network layer design of	cognitive radio				
4	To exp	oose the student to evolving applications and advanced fe	atures of cognitiv	ve radio	<u>)</u>		
Un	it I	INTRODUCTION TO SOFTWARE-DEFINED R COGNITIVE RADIO	9	0	0	3	
		 Software Defined Radio and Cognitive radio: goals, bene		archite	ctures,	relation	l ns with
other r	adios, is	ssues, enabling technologies, radio frequency spectrum ar	nd regulations.				
Uni	it II	COGNITIVE RADIO ARCHITECTURE		9	0	0	3
	are and	le – orient, plan, decide and act phases, Organization, SD Software Architectures, Overview of IEEE 802.22 standa					
Uni	t III	SPECTRUM SENSING AND DYNAMIC SPECTRO	UM ACCESS	9	0	0	3
cooper	ative de namic S _I	Primary user detection techniques – energy detection, feateretion and other approaches, Fundamental Tradeoffs in spectrum Access - Unlicensed and Licensed Spectrum Sha	spectrum sensing	g, Spec	trum Sl	naring N	
Uni	t IV	MAC AND NETWORK LAYER DESIGN FOR CORADIO	9	0	0	3	
	_	nitive radios – Polling, ALOHA, slotted ALOHA, CSMA, nitive radios, flow control and error control techniques.	, CSMA / CA, N	etwork	layer	design -	_
Uni	it V	ADVANCED TOPICS IN COGNITIVE RADIO		9	0	0	3
		ecurity issues in cognitive radios, auction based spectrum nitive radio, cognitive radio for Internet of Things.	markets in cogn	itive ra	idio ne	tworks,	public
				Total	(45 L)	= 45 I	Periods
Text	t Books	<u> </u>					
1	Alexan	der M. Wyglinski, Maziar Nekovee, Thomas Hou, "Cogn	nitive Radio Com	munic	ations		
	•						

2	Huseyin Arslan (Ed.), "Cognitive Radio, Software Defined Radio, and Adaptive Wireless
	Systems, Springer, 2007.
Refe	rence Books:
1	Jeffrey H. Reed ,"Software Radio: A Modern Approach to Radio Engineering", Pearson Education Low Price Edition, 2002
2	Kwang-Cheng Chen, Ramjee Prasad, "Cognitive Radio Networks", John Wiley and Sons, 2009.
3	Ezio Biglieri, Professor Andrea J. Goldsmith, Dr Larry J. Greenstein, Narayan B. Mandayam,
	H. Vincent Poor, "Principles of Cognitive Radio", Cambridge University Press, 2012.
4	Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski, "Software-Defined Radio for Engineers", mobile communication series, 2018.
e-Re	ference:
1	https://onlinecourses.nptel.ac.in/noc22_ee78/preview
2	https://www.udemy.com/topic/software-defined-radio-sdr/
3	https://commtech-academy.com/sdr/

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Gain knowledge on the design principles on software defined radio and cognitive radio	L2
CO2	Develop the ability to design and implement algorithms for cognitive radio spectrum sensing and dynamic spectrum access	L3
CO3	Build experiments and projects with real time wireless applications	L4
CO4	Apply the knowledge of advanced features of cognitive radio for real world applications	L3
CO5	Study the principal Challenge of receiver design.	L2

	COURSE ARTICULATION MATRIX														
COs/POs	РО	РО	РО	РО	РО	PO	РО	PO	PO	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	2	1	1						1		2	2	2
CO2	2	1	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	2	1	2	1	1						1		2	2	2
Avg	2	1.5	2.2	1.2	1						1.25		2	2	2
			5	5											
			3/2/1 -	indica	tes stre	ngth o	f corre	lation ((3-High	n,2- Med	ium,1- I	Low)	1	·	·

22ECH40	Wavelet Signal Processing	Wavelet Signal Processing									
PREREQ	UISITES	PE	Credit		3						
			L	Т	P	TH					
		Hours/Week	3	0	0	3					
Course Le	earning Objectives				1						
1 <u>To</u>	study the basics of signal representation and Fourier theory										
2 To	understand Multi Resolution Analysis and Wavelet concepts										
3 То	study the wavelet transform in both continuous and discrete d	omain									
4 <u>To</u>	understand the design of wavelets using Lifting scheme										
5 <u>To</u>	understand the applications of Wavelet transform										
Unit I	FUNDAMENTALS		9	0	0	3					
	Vectors and Signals – Signal Spaces – Concept of Converge eory: Fourier series expansion, Fourier transform, Short time F MULTI RESOLUTION ANALYSIS										
Wavelet B Functions	of Multi Resolution Analysis (MRA) – Haar Basis – Conasis for MRA – Continuous Time MRA Interpretation for the DTWT – PRQMF Filter Banks.		iscrete	Time							
Unit III			9	0	0	3					
Wavelet '	Transform – Definition and Properties – Concept of Scale and Transform (CWT) – Scaling Function and Wavelet Function, Bi Orthogonal)– Tiling of Time – Scale Plane for CWT.										
Unit IV	DISCRETE WAVELET TRANSFORM		9	0	0	3					
Properties Mallat's A	and Sub Band Coding Principles – Wavelet Filters – Inverse of Filter Coefficients – Choice of Wavelet Function Coefficients – Inverse of Filter Coefficients – Choice of Wavelet Function Coefficients of Ligorithm for DWT – Multi Band Wavelet Transforms Ligorithm Factorization – Geometrical Foundations of Lifting Scenario	nts – Derivation fting Scheme-	ns of D Wave	aubech let Tra	ies Wav nsform	elets - Using					
Unit V	APPLICATIONS		9	0	0	3					
Technique	ethods for signal processing- Image Compression Technique s: Noise Estimation – Shrinkage Rules – Shrinkage Function, and Object Detection.			_	_						
				(45 L)							

Tex	et Books:
1	Rao R M and A S Bopardikar, "Wavelet Transforms Introduction to theory and Applications", Pearson Education, Asia, 2000.
2	L.Prasad & S.S.Iyengar, "Wavelet Analysis with Applications to Image Processing", CRC Press, 1997.

Refe	rence Books:
1	J. C. Goswami and A. K. Chan, "Fundamentals of wavelets: Theory, Algorithms and Applications" WileyInterscience Publication, John Wiley & Sons Inc., 1999.
2	M. Vetterli, J. Kovacevic, "Wavelets and subband coding" Prentice Hall Inc, 1995.
3	Stephen G. Mallat, "A wavelet tour of signal processing" 2 nd Edition Academic Press, 2000.
4	Soman K P and Ramachandran K I, —Insight into Wavelets From Theory to practice, Prentice Hall, 2004.
E-R	eference:
1	https://ocw.mit.edu/courses/18-327-wavelets-filter-banks-and-applications-spring-2003/
2	https://nptel.ac.in/courses/108101093
3	https://archive.nptel.ac.in/courses/117/101/117101123/

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	L2						
CO2	Gain knowledge about MRA and representation using wavelet bases	L2					
CO3	Acquire knowledge about various wavelet transforms	L2					
CO4	Design using wavelet transform	L5					
CO5	Apply wavelet transform for various signal & image processing applications	L3					

COURSE ARTICULATION MATRIX															
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1								2	2	2
CO2	2	1	2	1	1								2	2	2
CO3	2	1	2	1	1								2	2	2
CO4	2	1	2	1	1								2	2	2
CO5	2	1	2	1	1								2	2	2
Avg	2	1	2	1	1								2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22EC	CH405	PATTERN RECOGNITION AND MACHINE	LEARNING	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cr	edit	3
			Hours/Week	L	T	P	TH
		3	0	0	3		
Cours	e Learn	ing Objectives			I	1	ı
1	Unders	tand the in-depth concept of Pattern Recognition, Bayes Decis	sion Theory Perce	ption a	nd relate	ed Conc	epts_
2	To enal	ole the student to understand the working concepts of RF active	e components and	amplific	ers		
3	Unders	tand the concept of ML Pattern Classification and the concept	of DL Pattern Rec	ognitio	<u>n</u>		
4	To Und	erstand the basics concepts of machine learning, CNN and RN	N to model for rea	al world	l applica	ations.	
Un	nit I	INTRODUCTION TO PATTERN RECOGNITION		9	0	0	3
		ithms. Rule Induction. Decision Trees. Bayesian Methods. C					
		e Bayes Induction for Numeric Attributes. Correction to the ayesian Methods. Other Induction Methods. Neural Networks	•		_		
		Machines.	s. Genetic Augusta		stance	Juseu Li	carning.
Un	it II	STATISTICAL PATTERN RECOGNITION		9	0	0	3
		nd regression. Features, Feature Vectors, and Classifiers. Pre-					
		Polynomial curve fitting. Model complexity. Multivariate rametric methods. Sequential parameter estimation. Linear disc					
		etwork mappings.					
Uni	it III	BAYES DECISION THEORY CLASSIFIERS		9	0	0	3
		Theory. Discriminant Functions and Decision Surfaces. The					
		fier for Normally Distributed Classes. Exact interpolation. Ratheory. Noisy interpolation theory. Relation to kernel re-					
		omparison with the multi-layer perceptron. Basis function optim	•	ousis .	ranction	netwo	1K3 101
Uni	it IV	INTRODUCTION TO MACHINE LEARNING		9	0	0	3
Biologi	ical Neur	on, Idea of computational units, McCulloch-Pitts unit and Th	hresholding logic,	Linear	Percept	ron, Per	ceptron
		thm, Linear separability. Convergence theorem for Perceptro	n Learning Algori	thm. F	eed forv	ward Ne	tworks:
Ividitiid	tyci i cic	ption, backpropagation, Radia basis function networks.					
Un	it V	CONVOLUTIONAL AND RECURRENT NEURAL	NETWORKS	9	0	0	3
		Networks: The Convolution Operation - Variants of the Basic O					
		tt Convolution Algorithms - Random or Unsupervised Feature NNs - Deep Recurrent Networks Recursive Neural Network					
	Autoenc	*	xs The Long St		III IVICII	iory and	<u>a Gaica</u>
				Total	(45 L)	= 45 I	Periods
Tex	t Books	:					
1	Pattern (Classification, 2nd Edition, Richard O. Duda, Peter E. Hart, and	d David G. Stork.	Wiley, 2	2000		
2	Ethem A	alpaydin, "Introduction to Machine Learning", The MIT Press,	September 2014,IS	SBN 97	8-0-262	2-02818-	<u>.9</u>
Refe	rence B	ooks:					
1	"Pattern	Recognition and Machine Learning", Christopher M. Bishop.	Springer, 2010				
2	Practica	Machine Learning and Image Processing, Himanshu Singh. A	press, 2019				

3	MehryarMohri, AfshinRostamizadeh, AmeetTalwalkar, "Foundations of Machine Learning", MIT Press (MA) 2012.
4	Bengio, Yoshua. "Learning deep architectures for AI." Foundations and trends in Machine Learning, now publishers Inc.,2009.
e-Re	eference:
1	https://www.geeksforgeeks.org/pattern-recognition-introduction/
2	https://viso.ai/deep-learning/pattern-recognition/
3	https://nptel.ac.in/courses/117108048

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand basic idea behind pattern recognition and machine learning	L2						
CO2	Understand statistical pattern recognition	L2						
CO3	Apply various decision theory classifiers.	L3						
CO4	Understand the basics of machine learning	L2						
CO5	Apply the concept of CNN and RNN to model applications	L3						

					COUR	RSE AI	RTICU	LATI	ON M	ATRIX					
COs/POs	РО	РО	PO	РО	РО	PO	РО	РО	РО	PO 10	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9		11	12			
CO1	2	2	2	1	1						1		2	2	2
CO2	2	2	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	2	2	3	2	1						2		2	2	2
Avg	2	2	2.4	1.4	1						1.4		2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)											•			

22EC	CH406			S	er		
PRER	REQUIS	SITES	Category	PE	Cro	edit	3
Signal	s and Sy	ystems		L	Т	P	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ning Objectives				1	
1	To anal	lyze and to design signal processing algorithms both in the ten	nporal and spatial d	<u>omain</u>			
2	To dev	elop a mathematical theory of linear adaptive filters					
3	To desi	ign optimum and linear filter					
Un	nit I	INTRODUCTION		9	0	0	3
lacami	nosition.	E: £14			_		
		Eigen filter.				Γ.	
Un	it II	ADAPTIVE FILTERS		9	0	0	3
Un: Linear	it II Optimui	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener		ıs, Erro	r-perfor	mance	surfac
Un Linear MMSE	it II Optimui E (minim	ADAPTIVE FILTERS	mance surface, MN	ns, Erro MSE fil	r-perfor tering in	mance n case (surfac of line
Un Linear MMSE Models	it II Optimum (minimum s. Genera hm, Optim	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener mean-squared error), Canonical form of the error-perforalized Sidelobe Canceler. Iterative Solution of the Normal Equinization of the step-size, Least Mean Square (LMS) Algorithm	mance surface, MN ations-Steepest des n, Recursive Least	ns, Erro MSE fil- cent alg Squares	r-perfor tering in gorithm, (RLS)	mance n case of Stabilit Algorith	surfactof line ty of the
Un Linear MMSE Models	it II Optimur E (minimus s. Genera	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener mean-squared error), Canonical form of the error-perforulized Sidelobe Canceler. Iterative Solution of the Normal Equ	mance surface, MN ations-Steepest des n, Recursive Least	ns, Erro MSE filo cent alg	r-perfor tering in gorithm,	mance n case of Stabilit	surfactof line
Un Linear MMSE Models Algorith Uni	optimur Optimur E (minimus. Genera hm, Optimus IIII	ADAPTIVE FILTERS m. Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Filters) and Filtering (Wiener Filters) and Filter of the error-performance of Sidelobe Canceler. Iterative Solution of the Normal Equipartation of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION OF Step 1 (1988) and Step 2 (1988) and Step 3 (1988) an	mance surface, MN ations-Steepest des n, Recursive Least S DN n matrix at the rece	ns, Erro MSE fil- cent alg Squares 9	or-perfor tering in gorithm, (RLS)	rmance n case of Stabilit Algorith 0	surfactof line ty of the sum and stimate
Un Linear MMSE Models Algorith Uni Data m	optimur C (minimuss. Generation, Optimist III	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Filters) and Filtering (Wiener Filters) and Filter of the error-performatized Sidelobe Canceler. Iterative Solution of the Normal Equivariation of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION A estimation), Eigen decomposition of the spatial correlation he model order. Spectral MUSIC-DOA estimation, Periodog	mance surface, MN ations-Steepest des n, Recursive Least S DN n matrix at the rece	ns, Erro MSE fil- cent alg Squares 9	or-perfor tering in gorithm, (RLS)	rmance n case of Stabilit Algorith 0	surfactof line ty of the sum and stimate
Un Linear MMSE Models Algorith Uni Data m Estima invaria	Optimur E (minimus Genera hm, Optimus H IIII	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Filters) and Filtering (Wiener Filters) and Filters of the error-performatized Sidelobe Canceler. Iterative Solution of the Normal Equivariation of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION PARAMETE	mance surface, MN ations-Steepest des n, Recursive Least S DN n matrix at the rece	ns, Erro MSE filicent alg Squares 9 eive arra PRIT. So	or-perfor tering in gorithm, (RLS) 0	mance n case of Stabilit Algorith 0 space es matrice	surface of lines ty of the mm 3
Un Linear MMSE Models algorith Uni Data m Estima invaria	optimur C (minimuss. Generation, Optimist III	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Filters) and Filtering (Wiener Filters) and Filter of the error-performatized Sidelobe Canceler. Iterative Solution of the Normal Equivariation of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION A estimation), Eigen decomposition of the spatial correlation he model order. Spectral MUSIC-DOA estimation, Periodog	mance surface, MN ations-Steepest des n, Recursive Least S DN n matrix at the rece	ns, Erro MSE fil- cent alg Squares 9	or-perfor tering in gorithm, (RLS)	rmance n case of Stabilit Algorith 0	surfac of lines ty of the m 3
Un Linear MMSE Models algorith Uni Data m Estimation aria	Optimur E (minimus E (minimus E Genera hm, Optimus It III model (DO tion of the nace propertit IV	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Filters) and Filtering (Wiener Filters) and Filters of the error-performatized Sidelobe Canceler. Iterative Solution of the Normal Equivariation of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION PARAMETE	mance surface, MN ations-Steepest des n, Recursive Least S DN n matrix at the rece ram. Standard ESP	ns, Erro MSE filicent alg Squares 9 eive arra PRIT. Se	or-perfor tering in gorithm, (RLS) 0 ay, Subselection	mance n case of Stabilities Algorith 0 space es matrice	surface of line ty of the surface of line ty of the surface of the
Un Linear MMSE Models algorith Uni Data m Estimatinvaria Uni	Optimure (minimus. Generalism, Optimus III) model (Dottion of the properties IV)	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Militer Solution of the error-performatized Sidelobe Canceler. Iterative Solution of the Normal Equivariation of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION PARAMETER ESTIMATION PARAMETER ESTIMATION PARAMETER ESTIMATION PARAMETER ESTIMATION PARAMETER ESTIMATION PROCESSING PERSOR-BASED SIGNAL PROCESSING	mance surface, MN ations-Steepest des n, Recursive Least S N n matrix at the rece ram. Standard ESP	As, Erro MSE filtorent alg Squares 9 Eive arra PRIT. So 9	or-perfor tering in gorithm, (RLS) 0 ay, Subselection	mance n case (Stabilit Algorith 0 space es matrice 0 s-Highe	surface surfac
Un Linear MMSE Models algorith Uni Data m Estimat Invaria Uni	Optimum (Comminimum) (Comminimu	ADAPTIVE FILTERS m. Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Militers (Wiener Filters)-Principle of Orthogonality, Wiener Filters (Wiener Filters)-Principle of Orthogonality, Wiener Filters, Parinciple of Orthogonality, Wiener Filters, Principle of Orthogonality, Wie	mance surface, MN ations-Steepest des n, Recursive Least S N n matrix at the rece ram. Standard ESP	As, Erro MSE filtorent alg Squares 9 Eive arra PRIT. So 9	or-perfor tering in gorithm, (RLS) 0 ay, Subselection	mance n case (Stabilit Algorith 0 space es matrice 0 s-Highe	surface of line ty of the surface of line ty of the surface of the
Un Linear MMSE Models Algorith Uni Data m Estima invaria Uni Introdu SVD (I	Optimur E (minimus. General hm, Optimus it III model (Dottion of the property	m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Miltering (Wiener Filters)-Principle of Orthogonality, Wiener Milter Solution of the error-perforalized Sidelobe Canceler. Iterative Solution of the Normal Equipmization of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION PRINCIPLE PRINC	mance surface, MN ations-Steepest des n, Recursive Least S N n matrix at the rece ram. Standard ESP Clementary Tensor n Selected Signal Pr	ss, Erro MSE fil cent alg Squares 9 sive arra PRIT. Se 9 Decomprocessir	or-perfor tering in gorithm, (RLS), 0 ay, Subselection Oposition g Appli	mance n case of Stabilit Algorith 0 space es matrice 0 s-Highe cations.	surface of line ty of the surface of line ty
Un Linear MMSE Models algorith Uni Data m Estima invaria Uni Introdu SVD (I	Optimur E (minimus. General hm, Optimus it III model (Dottion of the property	ADAPTIVE FILTERS m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Militers (Wiener Filters)	mance surface, MN ations-Steepest des n, Recursive Least S N n matrix at the rece ram. Standard ESP Clementary Tensor n Selected Signal Pr	ss, Erro MSE fil cent alg Squares 9 sive arra PRIT. Se 9 Decomprocessir	or-perfor tering in gorithm, (RLS), 0 ay, Subselection Oposition g Appli	mance n case of Stabilit Algorith 0 space es matrice 0 s-Highe cations.	surface surfac
Un Linear MMSE Models algorith Uni Data m Estima invaria Uni Introdu SVD (I	Optimur E (minimus. General hm, Optimus it III model (Dottion of the property	m Filtering (Wiener Filters)-Principle of Orthogonality, Wiener Miltering (Wiener Filters)-Principle of Orthogonality, Wiener Milter Solution of the error-perforalized Sidelobe Canceler. Iterative Solution of the Normal Equipmization of the step-size, Least Mean Square (LMS) Algorithm HIGH-RESOLUTION PARAMETER ESTIMATION PRINCIPLE PRINC	mance surface, MN ations-Steepest des n, Recursive Least S N n matrix at the rece ram. Standard ESP Clementary Tensor n Selected Signal Pr	s, Erro MSE fil cent alg Squares 9 eive arra PRIT. Se Decomprocessir 9 und (CR	or-perfor tering in gorithm, (RLS), 0 ay, Subselection Oposition g Appli	mance n case of Stabilit Algorith 0 space es matrice 0 s-Highe cations.	surface surface of line ty of the surface of line ty of the surface of the surfac

Tex	t Books:
1	A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons, Inc., New York, NY, 2003.
2	T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing.
Refe	rence Books:
1	S. Haykin, AdaptiveFilterTheory.Prentice-Hall, 4th edition, 2002.
2	H. L. V.Trees, OptimumArrayProcessing.John Wiley & Sons, Inc., New York, NY, 2002.
3	Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing, D. Manolakis, V. Ingle, S. Kogan, McGraw Hill, 1999.
4	Adaptive Filtering: Algorithms and Practical Implementation, P. Diniz, Kluwer, 1997.

E-Re	E-Reference:								
1	https://nptel.ac.in/courses/117105075								
2	http://www.infocobuild.com/education/audio-video-courses/electronics/AdaptiveSignalProcessing-IIT-Kharagpur/lecture-30.html								
3	https://www.ce.cit.tum.de/msv/courses/master-lectures/adaptive-and-array-signal-processing/								

	Course Outcomes: Upon completion of this course, the students will be able to:							
CO1	Understand the concepts of temporal and spatial filtering.	L2						
CO2	Designing, implementing, and analyzing adaptive filters applied to system identification	L4						
CO3	Identify tensors for selected signal processing application	L3						
CO4	Apply various techniques to retrieve high resolution parameter estimation	L3						
CO5	Understand the concepts of Maximum likelihood estimators	L2						

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1		1	2	1	1						1		2	2	2
CO2		1	2	1	1						1		2	2	2
CO3		2	3	2	1						2		2	2	2
CO4		2	2	1	1						1		2	2	2
CO5		2	3	2	1						2		2	2	2
Avg		1.6	2.4	1.4	1						1.4		2	2	2

1 2	EQUIS	ITES	Category	PE	Cr	edit	3
1 2					Credit		3
1 2				L	T	P	ТН
1 2			Hours/Week	3	0	0	3
2	Learn	ing Objectives					
_	To get	familiarity with gamut of multimedia and its significance	<u>e</u>				
3	To acq	uire knowledge in multimedia components.					
	To acq	uire knowledge about multimedia tools and authoring					
4	To acq	uire knowledge in the development of multimedia applic	cations.				
5	То ехр	lore the latest trends and technologies in multimedia					
Unit	t I	INTRODUCTION		9	0	0	3
Introduc	ction to	Multimedia – Characteristics of Multimedia Presentation	on – Multimedia	Compc	nents –	- Promo	otion of
Multime	edia Ba	ased Components - Digital Representation - Media and	d Data Streams –	- Multi	media .	Archite	cture -
		ocuments, Multimedia Tasks and Concerns, Product		distri	bution,	Hypei	media
<u>www.a</u> Unit		ernet, Authoring, Multimedia over wireless and mobile r	<u>ietworks.</u>				1
Omt	. 11	ELEMENTS OF MULTIMEDIA		9	0	0	3
Unit		MULTIMEDIA TOOLS		9	0	0	3
Tools –	Cross]	ls – Features and Types – Card and Page Based Tools – Platform Authoring Tools – Editing Tools – Painting and ols – Image Editing Tools – Sound Editing Tools – Digital	Drawing Tools -				ased
Unit	IV	MULTIMEDIA SYSTEMS		9	0	0	3
2000, ba H.26X - Time Pr	asic aud – Multi rotocols	Types and Techniques: CODEC, Text Compression: GIF dio compression – ADPCM, MPEG Psychoacoustics, ba media Database System – User Interfaces – OS Multimes – Play Back Architectures – Synchronization – Documesign – Digital Copyrights, Content analysis.	sic Video compre edia Support – Ha	ssion t rdware	echnique Suppo	ues – M ort – Re	IPEG, al
Unit	t V	MULTIMEDIA APPLICATIONS FOR THE WEB PLATFORMS	AND MOBILE	9	0	0	3
Report \ multime	Writing edia co	- Conceptualization - Content Collection - Storyboard- g - Documentation. Multimedia for the web and mobile patent distribution, Multimedia Information sharing - soc vices, interactive cloud gaming. Multimedia information	olatforms. Virtual ial media sharing	Realit	y, Inter	net	
				Total	(45 L)	= 45 H	eriods
Text	Books	:					
1 <u>I</u>	Li, Ze-l	Nian, Drew, Mark, Liu, Jiangchuan, "Fundamentals of M	Iultimedia", Sprir	iger, T	nird Ed	ition, 2	021.

2	Prabhat K.Andleigh, Kiran Thakrar, "MULTIMEDIA SYSTEMS DESIGN", Pearson Education, 2015.
Refe	rence Books:
1	Gerald Friedland, Ramesh Jain, "Multimedia Computing", Cambridge University Press, 2018.
2	Ranjan Parekh, "Principles of Multimedia", Second Edition, McGraw-Hill Education, 2017
3	Multimedia Signal Processing - Theory And Applications In Speech, Music And Communications by Vaseghi, John Wiley And Sons
4	Jan Vozer, "Video Compression for Multimedia", AP Press, New York, 1995.
e-Re	eference:
1	https://www.aonlinetraining.com/
2	https://gb.coursera.org/lecture/android-programming-2/multimedia-part-1-NW4wT
3	https://onlinecourses.nptel.ac.in

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Handle the multimedia elements effectively.	L2
CO2	Articulate the concepts and techniques used in multimedia applications.	L2
CO3	Develop effective strategies to deliver Quality of Experience in multimedia applications	L3
CO4	Design and implement algorithms and techniques applied to multimedia objects.	L5
CO5	Design and develop multimedia applications following software engineering models.	L5

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	1	2	1	1						1		2	2	2
CO2	2	1	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	2	2	3	2	1						2		2	2	2
Avg	2	1.6	2.4	1.4	1						1.4		2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22E(CH408	BIOMEDICAL SIGNAL AND IMAGE PRO	CESSING	Semester							
PREF	REQUIS	ITES	Category	PE	Credit		3				
Signal	ls and Sy			L	Т	P	TH				
			Hours/Week	3	0	0	3				
Cours	se Learn	ing Objectives									
1	To lear	the image fundamentals and mathematical transforms necessary for signal and image processing.									
2	To stud	dy the various image enhancement techniques.									
3	To appl	ly various image restoration procedures in medical images.									
4	To gain	n knowledge about the basic concepts of image compression pro	ocedures.								
5	To stud	ly about the various segmentation techniques applied to Medica	al Images.								
	nit I			0	0	0	2				
		BIOMEDICAL SIGNALS AND IMAGES ectrophysiology, relation of electrocardiogram (ECG) comp		9	0	0	3				
	<u>modalitie</u> etic resona	s for medical imaging: ultrasound, X-ray, CT, MRI, PET, and	I SPECT.MRI: Phy	sics an	d signa	ı proces	sing to				
	nit II	FUNDAMENTALS OF DETERMINISTIC SI	IGNAL AND	0	0	٥	2				
Un Data A IIR fil proper (FFT),	Acquisition lters, bas ties. FIR	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfolap-save algorithm, digital filtering of continuous-time signals.	Digital Filtering: The discrete-tinorm and its propers. Sampling Revis	ne Fou ties, the ited: Sa	rier tran fast Foumpling	nsform ourier tra and ali	and its ansform asing in				
Un Data A IIR fil proper (FFT), time a system	Acquisition Iters, bas ties. FIR the overland frequents. Image	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfelap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filtering of the processing II: Interpolation, noise reduction methods, edge determined.	Digital Filtering: The discrete-tingorm and its proper S. Sampling Revis Stering and Fourier Control of the con	Difference Four ties, the ited: Sa metho hic filte	nce equarier trainer fast Formpling ods to 2 ering.	ations, landing ations, land alice. and alice. -D sign	FIR and and its ansform asing in nals and				
Un Data A IIR fil proper (FFT), time a system Un	Acquisition Iters, bas ties. FIR the overland frequents. Image	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfolap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge determined to the continuous of the processing II: Interpolation of I	Digital Filtering: The discrete-ting orm and its proper s. Sampling Revistering and Fourier ection, homomorph	Difference Founties, the ited: Sa method hic filte	nce equations are fast Foundament for the fast Foundament for the fast for the fast for the fast fast for the fast fast fast fast fast fast fast fast	ations, I nsform ourier tra and ali a-D sign	FIR and and its ansform asing in hals and				
Un Data A IIR fil proper (FFT), time a system Un Edge c Adapti	Acquisition lters, bas ties. FIR the overland frequents. Image it III	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfelap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filtering of the processing II: Interpolation, noise reduction methods, edge determined.	Digital Filtering: The discrete-ting orm and its proper s. Sampling Revisitering and Fourier ection, homomorphy of the control	Difference Fourties, the ited: Sar methochic filte	nce equation trainer fast Formpling ods to 2 pring.	ations, lansform burier trandaliand aliandon burier trandaliand aliandon burier transform and aliandon burier transform and aliandon burier transform and aliandon burier transform aliandon burier tran	FIR and and its ansform asing in als and				
Un Data A IIR fil proper (FFT), time a system Un Edge c Adapti Recog	Acquisition lters, bas ties. FIR the overland frequents. Image it III	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfolap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge detection methods, edge detection methods, edge detection, Thresholding, Region Based segmentation, Watershed segmentation	Digital Filtering: The discrete-ting orm and its proper s. Sampling Revisitering and Fourier ection, homomorphy of the control	Difference Fourties, the ited: Sar methochic filte	nce equation trainer fast Formpling ods to 2 pring.	ations, lansform burier trandaliand aliandon burier trandaliand aliandon burier transform and aliandon burier transform and aliandon burier transform and aliandon burier transform aliandon burier tran	FIR and and its ansform asing in als and				
Un Data A IIR fil proper (FFT), time a system Un Edge c Adapti Recog	Acquisition lters, bas ties. FIR the overland frequents. Image it III detection-ive thresh nition bas	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfolap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge detection. IMAGE SEGMENTATION AND OBJECT RECOGMART Hidreth edge detector - Canny edge detector, Thresholding holding, Region Based segmentation, Watershed segmentated on decision theoretic methods-matching, Optimum statistical	Digital Filtering: The discrete-ting and its proper s. Sampling Revisitering and Fourier ection, homomorphy and foundation - Battion algorithm, all classifiers.	Difference Founties, the ited: Sar methodic filte	nce equarier trainer fast Formpling ods to 2 cring.	ations, land alimental and ali	FIR and and its ansform asing in als and stands are stands and stands are stands and stands and stands are stands and stands and stands are stands as stands are stands are stands as stands are stands are stands				
Un Data A IIR fil proper (FFT), time a system Un Edge c Adapti Recog Un	Acquisition lters, bas ties. FIR the overland frequents. Image it III letection-ive thresh nition bas it IV	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfolap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge detector. IMAGE SEGMENTATION AND OBJECT RECOGMART Hidreth edge detector - Canny edge detector, Thresholding holding, Region Based segmentation, Watershed segmentated on decision theoretic methods-matching, Optimum statistical IMAGE COMPRESSION	Digital Filtering: The discrete-ting and its proper s. Sampling Revisitering and Fourier ection, homomorphy and foundation - Battion algorithm, all classifiers.	Difference Founties, the ited: Sar methodic filte	nce equarier trainer fast Formpling ods to 2 cring.	ations, land alimental and ali	FIR and and its ansform asing in als and 3				
Un Data A IIR fil proper (FFT), time a system Un Edge c Adapti Recog Un Image plane-	Acquisition lters, bas ties. FIR the overland frequents. Image it III letection-ive thresh nition bas it IV	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfolap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge detector. IMAGE SEGMENTATION AND OBJECT RECOGNAMATH Hidreth edge detector - Canny edge detector, Thresholding holding, Region Based segmentation, Watershed segmentated on decision theoretic methods-matching, Optimum statistical IMAGE COMPRESSION ssion-Fundamentals - Image compression standards- Cooksider of the company of the	Digital Filtering: The discrete-ting orm and its proper s. Sampling Revise tering and Fourier ection, homomorphy of the control of the contro	Difference Founties, the ited: Sar methodic filte	nce equarier trainer fast Formpling ods to 2 cring.	ations, land alimental and ali	FIR and its and its ansform asing in als and stands are stands and stands are stands and stands are stands and stands are stands and stands and stands are stands are stands are stands and stands are stands and stands are stands are stands are stands and stands are				
Un Data A IIR fil proper (FFT), time a system Un Edge c Adapti Recog Un Image plane-	Acquisition lters, bas ties. FIR the overly and frequents. Image it III letection-ive thresh nition bas it IV e comprese-, Transformit V	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfelap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge detection methods, edge detection design and the second materials and second methods are detected on decision theoretic methods-matching, Optimum statistical image compression standards—Cooperm—and Lossy—and lossless predictive coding. IMAGE RESTORATION AND RECONSTRICTION AND RECONSTRICTI	Digital Filtering: The discrete-ting orm and its proper s. Sampling Revise terring and Fourier ection, homomorphy of the control of the contr	Difference Founties, the ited: Sar methochic filter Patterns 9, Huffing 9	once equation training of the fast Formpling odds to 2 cring. Obal threes and properties and properties of the fast Formpling of th	ations, lansform ourier tra and aliandon ourier tra an	FIR and and its ansform asing in hals and 3 g - Basic classes, 3 lice-, Bit Image				
Un Data A IIR fil proper (FFT), time a system Un Edge c Adapti Recog Un Image plane-	Acquisition lters, bas ties. FIR the overland frequents. Image it III detection-ive threshold it IV e compresent V e degrada struction	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transfolap-save algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge detector. IMAGE SEGMENTATION AND OBJECT RECOGNAMINATION AND RECONSTRUMAGE COMPRESSION SSION- Fundamentals - Image compression standards- Cooperm- and Lossy- and lossless predictive coding. IMAGE RESTORATION AND RECONSTRUMEDICAL IMAGES ation models, Algebraic approach to restoration, inverse	Digital Filtering: The discrete-ting orm and its proper s. Sampling Revise terring and Fourier ection, homomorphy of the control of the contr	Difference Founties, the ited: Sar methodhic filterenses of the patterns of th	once equation training of the fast Formpling odds to 2 cring. Obal threes and properties and properties of the fast Formpling of th	ations, lansform ourier trand aliand aliand aliand aliand aliand aliand aliand aliand attern of the second attention at the second attention attention at the second attention at the s	FIR and and its ansform asing in hals and standard and st				
Un Data A IIR fil proper (FFT), time a system Un Edge of Adapti Recog Un Image plane-	Acquisition lters, bas ties. FIR the overland frequents. Image it III detection-ive threshold it IV e compresent V e degrada struction	FUNDAMENTALS OF DETERMINISTIC SI IMAGE PROCESSING n: Sampling in time, aliasing, interpolation, and quantization. ic properties of discrete-time systems, convolution. DTFT filter design using windows. DFT: The discrete Fourier transforms are algorithm, digital filtering of continuous-time signals ency, spectral analysis. Image processing, I: Extension of filter processing II: Interpolation, noise reduction methods, edge detector. Image SEGMENTATION AND OBJECT RECOGN Marr Hidreth edge detector - Canny edge detector, Thresholding holding, Region Based segmentation, Watershed segmentated on decision theoretic methods-matching, Optimum statistical image compression standards- Cooperm- and Lossy- and lossless predictive coding. IMAGE RESTORATION AND RECONSTRUMEDICAL IMAGES ation models, Algebraic approach to restoration, inverse from projections - Radon transforms - Filter back projections - Radon transforms - Filter back projections.	Digital Filtering: The discrete-ting orm and its proper s. Sampling Revise terring and Fourier ection, homomorphy of the control of the contr	Difference Founties, the ited: Sar methodhic filterenses of the patterns of th	nce equarier trainer fast Formpling ods to 2 pring. 0 bal thress and pring of the principle of the principl	ations, lansform ourier trand aliand aliand aliand aliand aliand aliand aliand aliand attern of the second attention at the second attention attention at the second attention at the s	FIR and and its ansform asing in hals and standard and st				

2	Rafael C, Gonzalez and Richard E Woods, "Digital Image Processing", Pearson Education Asia, Third Edition, 2007.
Refe	rence Books:
1	William K Pratt, "Digital Image Processing", John Wiley NJ, 4th Edition, 2007
2	Albert Macouski, "Medical Imaging systems", Prentice Hall, New Jersey 2nd edition 1997.
3	Lim, J. S. Two-Dimensional Signal and Image Processing. Upper Saddle River, NJ: Prentice Hall, 1989.
4	Macovski, A. Medical Imaging Systems. Upper Saddle River, NJ: Prentice Hall, 1983.
e-Re	eference:
1	https://onlinecourses.nptel.ac.in/noc20_ee41
2	https://onlinecourses.nptel.ac.in/noc21_bt50
3	https://onlinecourses.nptel.ac.in/noc20_ee40

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Identify the equipment used in the analysis of biomedical signal and image processing	L4
CO2	Understand the filtering concepts applied to signal and images.	L2
CO3	Understand how to apply the image processing techniques for various medical images.	L3
CO4	Learn the fundamental concepts of medical image acquisition	L2
CO5	Understand the concepts of image compression and restoration	L2

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1		1	2	1	1						1		2	2	2
CO2		1	2	1	1						1		2	2	2
CO3		2	3	2	1						2		2	2	2
CO4		2	2	1	1						1		2	2	2
CO5		2	3	2	1						2		2	2	2
Avg		1.6	2.4	1.4	1						1.4		2	2	2
		I	3/2/1	- indi	cates st	rength	of cor	relation	1 (3-Hi	gh,2- Me	dium,1-	Low)	1	1	l

22ECH409	VLSI SIGNAL PROCESSING		S	Semester		
PREREQUI	SITES	Category	PE Credit		redit	3
VLSI design		Hours/Week	L	Т	T P	
	3	0	0	3		
Course Lear	ning Objectives					1
1 To re	view VLSI design methods.					
2 To ex	plore VLSI architecture					
3 To in	aplement DSP algorithms onto digital hardware					
4 Appli	cations of parallel processing and pipelining.					
Unit I	PIPELINING AND PARALLEL PROCESSING		9	0	0	3
Unit II	FOLDING AND UNFOLDING		9	0	0	3
Power. Retin	Pipelining of FIR Digital Filters, Parallel Processing. Pipeling: Introduction, Definition and Properties, Solving Syste	•	s, Reti	ming ⁷	Fechniq	ues.
architectures	oduction -Folding Transform – Register minimization Ted – folding of multirate systems Unfolding: Introduction – A	An Algorithm fo				
Unit III	ritical Path, Unfolding and Retiming – Applications of Un SYSTOLIC ARCHITECTURE DESIGN	ifolding.	9	0	0	3
	Systolic Array Design Methodology, FIR Systolic Array and 2D Systolic Array Design, Systolic Design for Space Representations.				Vector,	Matri
Unit IV	FAST CONVOLUTION		9	0	0	3
	, Cook, Toom Algorithm, Winogard Algorithm, Iterated Cution Algorithm by Inspection.	Convolution, Cy	clic Co	onvolu	tion, De	sign o
Unit V	LOW POWER DESIGN		9	0	0	3
Programmal	Power Consumption –Power Analysis, Power Reduction to ble DSP: Evaluation of Programmable Digital Signal Prommunications, Processors for Multimedia Signal Processing	rocessors, DSP				
			Tota	l (45 I	L) = 45 I	Period

Tex	t Books:
1	Keshab K. Parhi. "VLSI Digital Signal Processing Systems", Wiley-Inter Sciences, 1999
2	Kung S. Y, H. J. While House, T. Kailath, "VLSI and Modern Signal processing", 1985, Prentice Hall.
Refe	rence Books:
1	Mohammed Ismail, Terri, Fiez, "Analog VLSI Signal and Information Processing", McGraw Hill, 1994.
2	Kung. S.Y., H.J. While house T.Kailath, "VLSI and Modern signal processing", Prentice Hall, 1985.

3	Jose E. France, Yannis Tsividls, "Design of Analog Digital VLSI Circuits for Telecommunications and Signal Processing", Prentice Hall, 1994.
4	Medisetti V. K, "VLSI Digital Signal Processing", 1995, IEEE Press (NY), USA.
E-Re	eference:
1	https://archive.nptel.ac.in/courses/108/105/108105157/
2	https://www.classcentral.com/course/swayam-vlsi-signal-processing-17837
3	https://nptel.ac.in/courses/108106149

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Understand VLSI design methodology for signal processing systems.	L2					
CO2	Design and analysis of FIR digital filters using pipelined and parallel processing architecture	L4					
CO3	Be familiar with VLSI algorithms and architectures for DSP.	L2					
CO4	Implementing Cook, Toom Algorithm, Winogard Algorithms.	L3					
CO5	Gain knowledge on DSP for mobile and wireless communication	L2					

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	2	2	1	1						1		2	2	2
CO2	1	2	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	1	2	3	2	1						2		2	2	2
Avg	2.4	2	2.4	1.4	1						1.4		2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECH410	RADAR SIGNAL PROCESSING	S	er						
PREREQUI	SITES	Category PE Credit							
Digital signal	Processing		L	T	P	TH			
	Hours/Wee				0	3			
Course Lear	ning Objectives			ı	1				
1 To stu	ndy about different radar signal processing techniques								
2 To lea	To learn about radar signal model								
3 To stu	ady about radar signal detection								
Unit I	INTRODUCTION TO RADAR SYSTEMS		9	0	0	3			
	pplication of radar, basic radar function, elements of pulse operations, A preview of basic radar signal processing, rasing. SIGNAL MODELS					ar			
•	of a radar signal, amplitude models, types of clutters, nois dels: the doppler shift, spatial models, spectral model.	se model and sign	-						
Unit III	SAMPLING AND QUANTIZATION OF PUL SIGNALS	SED RADAR	9	0	0	3			
selecting th	d criteria for sampling radar signals, Sampling in the fee pulse repetition interval, sampling the doppler spe Quantization, I/Q Imbalance and Digital I/Q.								
Unit IV	RADAR WAVEFORMS		9	0	0	3			
burst wavefo	, the waveform matched filter, Matched filtering of move orm, frequency-modulated pulse compression waveforms frequency waveform, Phase-modulated pulse compression	s, Range sidelobe	contro	ol for F	M wav	eforms,			
Unit V	DOPPLER PROCESSING:		9	0	0	3			
dwell stagge	rms of the Doppler spectrum, moving target indication or, Pulse pair processing, additional Doppler processing in for moving platforms: adaptive displaced phase centre is	ssues, clutter map	ping a	•	_				
uciccioi, IVI.	11 for moving platforms, adaptive displaced phase centre	antenna processin	-6:						
detector, IVI	11 for moving platforms, adaptive displaced phase centre	•		(45+15) = 60 I	Periods			
Text Book		•		(45+15)) = 60 I	Periods			
Text Book		,	Total (Periods			
Text Book	s:	", McGraw-Hill, I	Total (ork, 20		Periods			

Ramon Nitzberg, "Radar Signal Processing and Adaptive Systems", Artech House, 1999.

Michael O Kolawole, "Radar systems, Peak Detection and Tracking", Elseveir, 2010.

1

2

3	August. W Rihaczek, "Principles of High Resolution Radar", Artech House, 1996.
4	Peyton Z. Peebles, "Radar Principles", Wiley India, 2009
E-Re	eference:
1	https://onlinecourses.nptel.ac.in/noc19_ee58/preview
2	https://nptel.ac.in/courses/108105154
3	https://abrarhashmi.files.wordpress.com/2020/02/lecture_1_make_radar-fundamentals_final.pdf

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level						
CO1	CO1 Demonstrate the basic operation of Radar concepts.							
CO2	Classify the various types of Radars.	L2						
CO3	Design and analyze the radar signals and processing.	L4						
CO4	Learn advanced signal processing technics for Radar applications	L1						
CO5	Process the data received from radar.	L4						

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	2	2	1	1						1		2	2	2
CO2	2	2	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	2	2	3	2	1						2		2	2	2
Avg	2	2	2.4	1.4	1						1.4		2	2	2
		1	3/2/	l - indi	cates st	trength	of cor	relation	1 (3-Hi	gh,2- Me	dium,1-	Low)	·	·	·

Minor Degree Programme for Other Departments

	Villion Degree 11 og tulmine 101 Other Departments												
S. N	Course Code	Course Title	Hrs/Wk& Credits										
			L	Т	P	С							
		Electronics and Communication Eng	gineering										
1.	22ECM01	Electron Devices	3	0	0	3							
2.	22ECM02	Digital Electronics	3	0	0	3							
3.	22ECM03	Electronic Circuits	3	0	0	3							
4.	22ECM04	Signal Processing	3	0	0	3							
5.	22ECM05	Microprocessors and Microcontrollers	3	0	0	3							
6.	22ECM06	Analog and Digital Communication	3	0	0	3							
7.	22ECM07	Communication Networks	3	0	0	3							
8.	22ECM08	Fundamentals of IoT	3	0	0	3							
9.	22ECM09	Wireless sensors and networking	3	0	0	3							
10.	22ECM10	Basics of Embedded systems	3	0	0	3							

22ECM01	ELECTRON DEVICES					
PREREQUISITES		CATEGORY	PE	С		
			L	Т	P	ТН
		PE	3	0	0	3

Course Objectives:

- 1. To introduce components such as diodes, BJTs and FETs, their characteristics and applications
- 2. To understand, analyse and design of simple diode and transistor circuits.
- 3. To know the switching characteristics of components and the concept of rectifiers and power supplies

Unit I EXTRINSIC SEMICONDUCTOR AND PN JUCTIONS

9 0 0 9

N and P type semiconductor and their energy band structures- Law of electrical neutrality-calculation of location of Fermi level and free electron and hole densities in extrinsic semiconductors-Mobility, drift current and conductivity-diffusion current-continuity equation- Hall effect and its applications. Band structure of PN junction – current component in a PN junction- derivation of diode equation-temperature dependence of diode characteristics and equivalent models.

Unit II SWITCHING CHARACTERISTICS OF PN JUNTION AND SPECIAL DIODES

0 (

Calculation of transition and diffusion capacitance- varactor diode-charge control description of diode-switching characteristics of diode- mechanism of avalanche and Zener breakdown-temperature dependence of breakdown voltages- backward diode-tunneling

Unit III BIPOLAR JUNCTION TRANSISTORS

effect in thin barriers - tunnel diode-photo diode-light emitting diodes.

9 0 0 9

Construction of PNP and NPN transistors- BJT current components-emitter to collector and base to collector current gains-base width modulation CB, CE and CC characteristics- breakdown characteristics- Ebers-Moll model - transistor switching times- Photo translator.

Unit IV FIELD EFFECT TRANSISTORS

9 0 0 9

Construction and characteristics of JFET-relation between pinch off voltage and drain current derivation. MOSFETS - enhancement and depletion types. CMOS circuits. MOS capacitance, BICMOS, SOI CMOS.

Unit V RECTIFIERS AND POWER SUPPLIES

9 0 0

Half-wave, full-wave and bridge rectifiers with resistive load. Analysis for Vdc and ripple voltage with C, CL, L-C and C-L-C filters. Voltage multipliers Zener diode regulator. Electronically regulated d.c power supplies. Line regulation, output resistance and temperature coefficient.

Total (45L+0T)=45 Periods

Text	Books:
1.	JaconMillman& Christos C. Halkias, "Electronic Devices and Circuits" Tata McGraw-Hill, 1991.
2.	Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuit Theory 8th edition.", PHI, 2002
Refe	rence Books:
1.	Donald A. Neaman. "Semiconductor Physics and Devices" 3 rd Ed., Tata McGraw-Hill 2002
2.	S. Salivahanan, N. Suresh kumar and A. Vallavaraj, Electronic Devices and Circuits, TMH, 1998.
3.	Ben, G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, Pearson Education 2000
4.	Floyd, "Electronic Devices", Sixth edition, Pearson Education, 2003.
E-R	eferences:
1.	https://archive.nptel.ac.in/courses/108/108/108108122/
2.	https://www.youtube.com/watch?v=qqQ8wO-lNmI
3.	https://slideplayer.com/slide/12438044/

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	CO1 Interpret various applications of diode.						
CO2	Classify various configurations and biasing technique of BJT	L3					
CO3	Apply the knowledge of using special devices for various applications	L2					
CO4	Discuss operation, biasing and applications of JFET.	L4					
CO5	Design power supplies and rectifiers	L3					

					CO	URSE	ARTI	CULA	TION I	MATRIX					
COs/POs	PO	PO	РО	РО	PO	PO	PO	РО	РО	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1										1		
CO2	2	2	1										2		
CO3	2	2	1										3		
CO4	2	2	1										2	2	1
CO5	2	2	1										3	2	2
Avg	2	2	1										2.2	2	
			3/2/	1 - ind	icates s	trength	of co	rrelatio	n (3-H	igh,2- Me	edium,1	- Low)			

To introduce basic postulates of boolean algebra and show the correlation between expressions To Introduce the methods for Simplifying Boolean expressions To Outline the formal procedures for the analysis and design of combinational circuits and sequential circuits To introduce the Concept of Memories and programmable logic devices To illustrate the concept of synchronous and Asynchronous sequential circuits NUMBER SYSTEMS AND LOGIC GATES		M02	DIGITAL ELECTRONICS											
Course Objectives To introduce basic postulates of boolean algebra and show the correlation between expressions To Introduce the methods for Simplifying Boolean expressions To Outline the formal procedures for the analysis and design of combinational circuits and sequential circuits To introduce the Concept of Memories and programmable logic devices To illustrate the concept of synchronous and Asynchronous sequential circuits To introduce the Concept of Synchronous and Asynchronous sequential circuits Interval	PRER	REQUIS	ITES	CATEGORY	PE	Cr	edit		С					
Course Objectives To introduce basic postulates of boolean algebra and show the correlation between expressions To Introduce the methods for Simplifying Boolean expressions To Outline the formal procedures for the analysis and design of combinational circuits and sequential circuits To introduce the Concept of Memories and programmable logic devices To illustrate the concept of synchronous and Asynchronous sequential circuits Unit I NUMBER SYSTEMS AND LOGIC GATES					L	Т	P	7	ГН					
To introduce basic postulates of boolean algebra and show the correlation between expressions To Introduce the methods for Simplifying Boolean expressions To Outline the formal procedures for the analysis and design of combinational circuits and sequential circuits To introduce the Concept of Memories and programmable logic devices To illustrate the concept of synchronous and Asynchronous sequential circuits Init NUMBER SYSTEMS AND LOGIC GATES 9 0 0 Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Boo Algebra and Minimization Techniques - Canonical forms - Conversion between canonical forms - Simplifications of Boo expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II COMBINATIONAL CIRCUITS 9 0 0 Design procedure - Adders/Subtractor - Serial adder/ Subtractor - Parallel adder/ Subtractor- BCD adder- Multipl Demultiplexer - encoder / decoder - code converters. Unit II SEQUENTIAL CIRCUIT 9 0 0 Design Procedure - Flip flops: SR, JK, T, D and JKMS - Triggering of Flip-flop - Realization of flip flops - Moore and Mc Counters: Asynchronous / Ripple counters - Synchronous counters - Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits - primitive state / flow table - Minimization of primitive state table - state assign reproblems in Asynchronous Circuits: Cycles - Races - Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories -RAM organization -ROM organization. Programmable Logic Devices: Programmable Logic Devices: Programmable Logic Andreas - Adders - Adder				Hours/Week	3	0	0	3	3					
To Introduce the methods for Simplifying Boolean expressions To Outline the formal procedures for the analysis and design of combinational circuits and sequential circuits To introduce the Concept of Memories and programmable logic devices To illustrate the concept of synchronous and Asynchronous sequential circuits Unit I NUMBER SYSTEMS AND LOGIC GATES Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Boo Algebra and Minimization Techniques - Canonical forms - Conversion between canonical forms - Simplifications of Boo expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II COMBINATIONAL CIRCUITS 9 0 0 Design procedure - Adders/Subtractor - Serial adder/ Subtractor - Parallel adder/ Subtractor- BCD adder- Multipl Demultiplexer - encoder / decoder - code converters. Unit III SEQUENTIAL CIRCUIT 9 0 0 Design Procedure - Flip flops: SR, JK, T, D and JKMS - Triggering of Flip-flop - Realization of flip flops - Moore and Me Counters: Asynchronous / Ripple counters - Synchronous counters - Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits - primitive state / flow table - Minimization of primitive state table - state assigns Problems in Asynchronous Circuits: Cycles - Races - Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories -RAM organization -ROM organization. Programmable Logic Devices: Programmable Logic Access - Programmable Logic Devices: Programmable Logic Access - Programmable Logic Programm	Cours	se Object	tives		I									
To Outline the formal procedures for the analysis and design of combinational circuits and sequential circuits To introduce the Concept of Memories and programmable logic devices To illustrate the concept of synchronous and Asynchronous sequential circuits Unit I NUMBER SYSTEMS AND LOGIC GATES 9 0 0 Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Boadgebra and Minimization Techniques - Canonical forms - Conversion between canonical forms - Simplifications of Boacexpressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II COMBINATIONAL CIRCUITS 9 0 0 Design procedure - Adders/Subtractor - Serial adder/ Subtractor - Parallel adder/ Subtractor- BCD adder- Multipl Demultiplexer - encoder / decoder - code converters. Unit III SEQUENTIAL CIRCUIT 9 0 0 Design Procedure - Flip flops: SR, JK, T, D and JKMS - Triggering of Flip-flop - Realization of flip flops - Moore and Mc Counters: Asynchronous / Ripple counters - Synchronous counters - Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits - primitive state / flow table - Minimization of primitive state table - state assignm Problems in Asynchronous Circuits: Cycles - Races - Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories -RAM organization -ROM organization. Programmable Logic Devices: Programmable Logic Amendmental mode circuits - Programmable Logic Devices: Programmable Logic Amendmental Logic Devices: Programmable Logic Amendmental Logic Devices: Programmable Logic Amendmental Logic Devices: Programmable Logic Devices:	1	To intro	duce basic postulates of boolean algebra and show the correlation be	etween expressions										
To introduce the Concept of Memories and programmable logic devices To illustrate the concept of synchronous and Asynchronous sequential circuits Unit I NUMBER SYSTEMS AND LOGIC GATES Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Bor Algebra and Minimization Techniques - Canonical forms - Conversion between canonical forms - Simplifications of Bor expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II COMBINATIONAL CIRCUITS 9 0 0 Design procedure - Adders/Subtractor - Serial adder/ Subtractor - Parallel adder/ Subtractor- BCD adder- Multipl Demultiplexer - encoder / decoder - code converters. Unit III SEQUENTIAL CIRCUIT 9 0 0 Design Procedure - Flip flops: SR, JK, T, D and JKMS - Triggering of Flip-flop - Realization of flip flops - Moore and Me Counters: Asynchronous / Ripple counters - Synchronous counters - Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits - primitive state / flow table - Minimization of primitive state table - state assign Problems in Asynchronous Circuits: Cycles - Races - Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories -RAM organization -ROM organization. Programmable Logic Devices: Programmable Logic A	2	To Intro	oduce the methods for Simplifying Boolean expressions											
To illustrate the concept of synchronous and Asynchronous sequential circuits Unit I NUMBER SYSTEMS AND LOGIC GATES Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Bod Algebra and Minimization Techniques - Canonical forms - Conversion between canonical forms - Simplifications of Bod expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II COMBINATIONAL CIRCUITS 9 0 0 Design procedure - Adders/Subtractor - Serial adder/ Subtractor - Parallel adder/ Subtractor- BCD adder- Multipl Demultiplexer - encoder / decoder - code converters. Unit III SEQUENTIAL CIRCUIT 9 0 0 Design Procedure - Flip flops: SR, JK, T, D and JKMS - Triggering of Flip-flop - Realization of flip flops - Moore and Mc Counters: Asynchronous / Ripple counters - Synchronous counters - Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits - primitive state / flow table - Minimization of primitive state table - state assignt Problems in Asynchronous Circuits: Cycles - Races - Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories -RAM organization -ROM organization. Programmable Logic Devices: Programmable Logic Access - Programmable Logic	3	To Outline the formal procedures for the analysis and design of combinational circuits and sequential circuits												
Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Bod Algebra and Minimization Techniques - Canonical forms - Conversion between canonical forms - Simplifications of Bod expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II COMBINATIONAL CIRCUITS Design procedure - Adders/Subtractor - Serial adder/ Subtractor - Parallel adder/ Subtractor- BCD adder- Multiple Demultiplexer - encoder / decoder - code converters. Unit III SEQUENTIAL CIRCUIT Design Procedure - Flip flops: SR, JK, T, D and JKMS - Triggering of Flip-flop - Realization of flip flops - Moore and Me Counters: Asynchronous / Ripple counters - Synchronous counters - Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: Design of fundamental mode circuits - primitive state / flow table - Minimization of primitive state table - state assign Problems in Asynchronous Circuits: Cycles - Races - Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: Q 0 0 Classification of memories -RAM organization -ROM organization. Programmable Logic Devices: Programmable Logic Americans and the content of the programmable Logic Devices: Programmable Logic Americans and the programmable Logic Devices: Programmable Logi	4	To introduce the Concept of Memories and programmable logic devices												
Number Systems - signed Binary numbers - Binary Arithmetic - Binary codes -conversion from one code to another - Bod Algebra and Minimization Techniques - Canonical forms — Conversion between canonical forms — Simplifications of Bod expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II	5	To illust	trate the concept of synchronous and Asynchronous sequential circuit	its										
Algebra and Minimization Techniques - Canonical forms – Conversion between canonical forms – Simplifications of Bode expressions using Karnaugh map - LOGIC GATES - Implementations of Logic Functions using gates. Unit II COMBINATIONAL CIRCUITS 9 0 0 Design procedure – Adders/Subtractor – Serial adder/ Subtractor - Parallel adder/ Subtractor- BCD adder- Multipl Demultiplexer - encoder / decoder – code converters. Unit III SEQUENTIAL CIRCUIT 9 0 0 Design Procedure - Flip flops: SR, JK, T, D and JKMS – Triggering of Flip-flop - Realization of flip flops – Moore and Me Counters: Asynchronous / Ripple counters – Synchronous counters – Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits – primitive state / flow table – Minimization of primitive state table – state assigns Problems in Asynchronous Circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Academy (Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Academy (Classification of memories – RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Academy (Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Academy (Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Academy (Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic Academy (Classification of memories –RAM organization –ROM organization. Programmable Logic Academy (Classification of memories –RAM organization –ROM organization. Programmable Logic Academy (Classification of memories –RAM organization –ROM organization. Pro	Unit I	NU	UMBER SYSTEMS AND LOGIC GATES		9		0	0	9					
Demultiplexer - encoder / decoder – code converters. Unit III SEQUENTIAL CIRCUIT 9 0 0 Design Procedure - Flip flops: SR, JK, T, D and JKMS – Triggering of Flip-flop - Realization of flip flops – Moore and Me Counters: Asynchronous / Ripple counters – Synchronous counters – Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits – primitive state / flow table – Minimization of primitive state table – state assignmental mode circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic	Unit I	II CO	OMBINATIONAL CIRCUITS		9		0	0	9					
Design Procedure - Flip flops: SR, JK, T, D and JKMS – Triggering of Flip-flop - Realization of flip flops – Moore and Me Counters: Asynchronous / Ripple counters – Synchronous counters – Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits – primitive state / flow table – Minimization of primitive state table – state assignr Problems in Asynchronous Circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic				adder/ Subtractor- Bo	CD ado	ler-	Multi	iple	xe					
Counters: Asynchronous / Ripple counters – Synchronous counters – Modulo n counter. Register: shift registers- Universal register. Unit IV ASYNCHRONOUS SEQUENTIAL CIRCUITS: 9 0 0 Design of fundamental mode circuits – primitive state / flow table – Minimization of primitive state table – state assignmental problems in Asynchronous Circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic A	Unit I	II SE												
Design of fundamental mode circuits – primitive state / flow table – Minimization of primitive state table –state assignmental mode circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic A			EQUENTIAL CIRCUIT			9	0	0						
Problems in Asynchronous Circuits: Cycles – Races – Hazards. Design of Hazard Free Circuits: Static, Dynamic Hazelimination Unit V PLD AND MEMORY DEVICES: PLD AND MEMORY DEVICES: 9 0 0 Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic A	Count	ers: Asyı	ure - Flip flops: SR, JK, T, D and JKMS – Triggering of Flip-flop -		ps – Mo	oore	and N	Лea	ly					
Unit V PLD AND MEMORY DEVICES: 9 0 0 Classification of memories –RAM organization –ROM organization. Programmable Logic Devices: Programmable Logic A	Count registe	ers: Asyı er.	ure - Flip flops: SR, JK, T, D and JKMS – Triggering of Flip-flop - nchronous / Ripple counters – Synchronous counters – Modulo n co		ps – Moregister	oore s- Ur	and N	Лea	ly shi					
	Counteregiste Unit I Design Proble	ers: Asyrer. (V AS) n of functions in A	ure - Flip flops: SR, JK, T, D and JKMS – Triggering of Flip-flop - nchronous / Ripple counters – Synchronous counters – Modulo n co SYNCHRONOUS SEQUENTIAL CIRCUITS: damental mode circuits – primitive state / flow table – Minimization	on of primitive state	ps – Moregister	poore s- Un	and Manivers 0 assig	Mea sal s	shi					
	Counteregiste Unit I Design Proble elimin	ers: Asyr (V AS) n of function aution	ure - Flip flops: SR, JK, T, D and JKMS – Triggering of Flip-flop - Inchronous / Ripple counters – Synchronous counters – Modulo n co SYNCHRONOUS SEQUENTIAL CIRCUITS: damental mode circuits – primitive state / flow table – Minimization asynchronous Circuits: Cycles – Races – Hazards. Design of Hazards.	on of primitive state	ps – Moregister table – tatic, E	poore s- Ur 9 state	and Maivers 0 assignic H	Mea sal s	ly shi					

Text Bo	oks:								
1	M. Morris Mano, Digital Design, 4.ed., Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2008								
2	R.P.Jain, Modern Digital Electronics, 4th edition, TMH, 2010.								
Reference Books:									
1	S. Salivahanan and S. Arivazhagan, Digital Circuits and Design, 2 nd ed., Vikas Publishing House Pvt. Ltd, New Delhi, 2004								
2	Charles H.Roth. "Fundamentals of Logic Design", Thomson Publication Company, 2003.								
3	Donald P.Leach and Albert Paul Malvino, Digital Principles and Applications, 5 ed., Tata McGraw Hill Publishing Company Limited, New Delhi, 2003.								
4	John F.Wakerly, Digital Design: Principles and practices, PHI, 2006								

E-Re	E-Reference:										
1	http://nptel.ac.in/noc/individual course.php?id=noc15-ec01										
2	https://nptel.ac.in/courses/117105080/6										
3	https://nptel.ac.in/courses/117105080/12										

Course	Outcomes:	Bloom's							
Upon co	Upon completion of this course, the students will be able to:								
opon co	opon completion of this course, the students will be able to.								
CO1	Minimize Boolean expressions and implement using logic gates	L3							
CO2	Design and analyse combinational logic circuits.	L4							
CO3	Design and analyse synchronous and asynchronous sequential logic circuits	L4							
CO4	CO4 Understand the concepts of memories and PLDs								
CO5	Implement circuits using memory and PLDs.	L3							

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	2	2	3	2	3	2					2	1	
CO2	3	3	2	2	3	3	2	1	1				3	2	
CO3	2	2	3	3	2	1	2	1	1				2	2	
CO4	2	1	2	1	2	2	3	1					2	1	
CO5	2	1	2	1	3	2	1	2					3	2	
Avg	2.4	1.8	2.2	1.8	2.6	2	2.2	1.4	0.4				2.4	1.6	
3/2/1 - indi	cates st	trength	of co	relatio	n (3-H:	igh,2-]	l Mediui	n,1- Lo	ow)						

To give a co			PE L 3	T 0	P 0	3 TH 3	
To perform a To give a co	es analysis on Small signal amplifiers and large signal amplifier mprehensive exposure to all types of discrete amplifiers and	S.					
To perform a To give a co	es analysis on Small signal amplifiers and large signal amplifier mprehensive exposure to all types of discrete amplifiers and	S.	3	0	0	3	
To perform a To give a co	analysis on Small signal amplifiers and large signal amplifier mprehensive exposure to all types of discrete amplifiers and			I.			
To give a co	mprehensive exposure to all types of discrete amplifiers and						
To understar	<u> </u>	oscillators.					
	nd the various linear and non-linear applications of op-amp						
Unit I							
	MIDBAND ANALYSIS OF SMALL SIGNAL AN	IPLIFIERS	9	0	0	9	
dance. Miller asing input in istage amplif ant circuit to i	's theorem. Darlington connection using similar and Comple inpedance using Darlington connection and bootstrapping. C iers-Basic emitter coupled differential amplifier circuit. Differential amplifier circuit.	mentary transistors S, CG and CD (FE	. Methor Γ) amp R. Use	ods of lifiers	f s. nstant	1	
Unit II	LARGE SIGNAL AMPLIFIERS		9	0	0	9	
ime and their RC coupled ifiers. Calcu	relation to cut off frequencies. Classification of amplifiers (Canada transformer-coupled power amplifiers. Class B conclusion of power output, efficiency and power dissipation	Class A, B, AB, C& aplementary-symmentary disto	cD), Ef etry, p rtion a	ficien oush-p ind n	cy of oull p netho	class power ds of	
Jnit III	OSCILLATORS		9	0	0	9	
stabilization cillator - Wie	of amplitude - Analysis of Oscillator using Cascade connec n bridge Oscillator and Twin-T Oscillators - Analysis of LO	tion of RC and LC C Oscillators: Colpi	filters tts – H	- RC artley	phase	shift	
J nit IV	TUNED AMPLIFIERS AND MULTIVIBRA	TORS	9	0	0	9	
iency of Cla i vibrator –	ss C tuned Amplifier- Collector coupled and Emitter coupled Bistable Multi vibrator - Triggering methods – Mono stabliming.	ed Astable Multi ve e and Astable Bloo	vibrato	- M	ono :	stable	
Basic structure and principle of operation - Calculation of differential gain - Common Mode gain, CMRR - OP-AMP design - DC and AC characteristics of OP-AMP. Applications: Inverting and non-inverting amplifiers - Integrator and Differentiator - Summing amplifier - Precision rectifier - Schmitt trigger and its applications - Active filters: Low pass, high pass, band pass and band stop filters - Sine wave oscillators - Comparator - Multi vibrator. Total (45 L) = 45 Periods							
	dance. Miller asing input ir istage amplifint circuit to i Unit II frequency & valent circuit ifiers. Calcume and their Caupled ifiers. Calcumating it. Calcu	dance. Miller's theorem. Darlington connection using similar and Completating input impedance using Darlington connection and bootstrapping. Clastage amplifiers-Basic emitter coupled differential amplifier circuit. Different circuit to improve CMRR. Unit II LARGE SIGNAL AMPLIFIERS frequency & High frequency analysis of amplifiers -Hybrid — pi equalent circuit of FETs. Gain-bandwidth product of FETs. General expressifiers. Calculation of overall upper and lower cut off frequencies of multime and their relation to cut off frequencies. Classification of amplifiers (Caccoupled and transformer-coupled power amplifiers. Class B containing it. Calculation of power output, efficiency and power dissipation nating it. Calculation of actual power handling capacity of transistors with Juit III OSCILLATORS dback Amplifier: Block diagram - Gain with feedback - Barkhausen Critical dback Amplifiers Block diagram - Gain with feedback - Barkhausen Critical dback Amplifier: Block diagram - Gain with feedback - Barkhausen Critical dback and Pierce oscillators - Frequency range of RC Oscillators - Analysis of LC let and Pierce oscillators - Frequency range of RC Oscillators - Electrical diagram - Bistable Multi vibrator - Triggering methods - Mono stableter and base timing. Unit V OPERATIONAL AMPLIFIERS AND ITS APPL of the structure and principle of operation - Calculation of differential gain - DC and AC characteristics of OP-AMP. Applications: Inverting and rentiator - Summing amplifier - Precision rectifier - Schmitt trigger and rentiator - Summing amplifier - Precision rectifier - Schmitt trigger and rentiator - Summing amplifier - Precision rectifier - Schmitt trigger and rentiator - Summing amplifier - Precision rectifier - Schmitt trigger and rentiator - Summing amplifier - Precision rectifier - Schmitt trigger and rentiator - Summing amplifier - Precision rectifier - Schmitt trigger and rentiator - Summing amplifier - Precision rectifier - Schmitt trigger and rentiator - Summing amplifier - Precision rectifier - Schmitt	dance. Miller's theorem. Darlington connection using similar and Complementary transistors asing input impedance using Darlington connection and bootstrapping. CS, CG and CD (FE' istage amplifiers-Basic emitter coupled differential amplifier circuit. Differential gain, CMRI and circuit to improve CMRR. Unit II LARGE SIGNAL AMPLIFIERS frequency & High frequency analysis of amplifiers -Hybrid – pi equivalent circuit of alent circuit of FETs. Gain-bandwidth product of FETs. General expression for frequency effers. Calculation of overall upper and lower cut off frequencies of multistage amplifiers. In me and their relation to cut off frequencies. Classification of amplifiers (Class A, B, AB, C&C coupled and transformer-coupled power amplifiers. Class B complementary-symmistiers. Calculation of power output, efficiency and power dissipation. Crossover distonating it. Calculation of actual power handling capacity of transistors with and without heat somit III OSCILLATORS dback Amplifier: Block diagram - Gain with feedback - Barkhausen Criterion - Mechanism stabilization of amplitude - Analysis of Oscillator using Cascade connection of RC and LC illator - Wien bridge Oscillator and Twin-T Oscillators - Analysis of LC Oscillators: Colpiter and Pierce oscillators - Frequency range of RC Oscillators - Electrical equivalent circuit of Inti IV TUNED AMPLIFIERS AND MULTIVIBRATORS visit of single tuned and synchronously tuned amplifiers - Class C tuned Amplifiers are inciped of Class C tuned Amplifier- Collector coupled and Emitter coupled Astable Multivibrator - Bistable Multivibrator - Triggering methods - Mono stable and Astable Blocker and base timing. Unit V OPERATIONAL AMPLIFIERS AND ITS APPLICATIONS To structure and principle of operation - Calculation of differential gain - Common Mode gain - DC and AC characteristics of OP-AMP. Applications: Inverting and non-inverting amprentiator - Summing amplifier - Precision rectifier - Schmitt trigger and its applications - Apass, band pass and band stop filters - Si	dance. Miller's theorem. Darlington connection using similar and Complementary transistors. Methods as in put impedance using Darlington connection and bootstrapping. CS, CG and CD (FET) amp istage amplifiers-Basic emitter coupled differential amplifier circuit. Differential gain, CMRR. Use on the circuit to improve CMRR. Unit II LARGE SIGNAL AMPLIFIERS 9 frequency & High frequency analysis of amplifiers -Hybrid – pi equivalent circuit of BJTsralent circuit of FETs. Gain-bandwidth product of FETs. General expression for frequency responsifiers. Calculation of overall upper and lower cut off frequencies of multistage amplifiers. Amplifier me and their relation to cut off frequencies. Classification of amplifiers (Class A, B, AB, C&D), Effect coupled and transformer-coupled power amplifiers. Class B complementary-symmetry, prifiers. Calculation of power output, efficiency and power dissipation. Crossover distortion anating it. Calculation of actual power handling capacity of transistors with and without heat sink. How the complementary in	dance. Miller's theorem. Darlington connection using similar and Complementary transistors. Methods of asing input impedance using Darlington connection and bootstrapping. CS, CG and CD (FET) amplifiers istage amplifiers-Basic emitter coupled differential amplifier circuit. Differential gain, CMRR. Use of cornic circuit to improve CMRR. Unit II LARGE SIGNAL AMPLIFIERS 9 0 requency & High frequency analysis of amplifiers -Hybrid – pi equivalent circuit of BJTsHigh ralent circuit of FETs. Gain-bandwidth product of FETs. General expression for frequency response of ifiers. Calculation of overall upper and lower cut off frequencies of multistage amplifiers. Amplifier risme and their relation to cut off frequencies. Classification of amplifiers (Class A, B, AB, C&D), Efficient Coupled and transformer-coupled power amplifiers. Class B complementary-symmetry, push-rifiers. Calculation of power output, efficiency and power dissipation. Crossover distortion and mating it. Calculation of actual power handling capacity of transistors with and without heat sink. Heat sink III OSCILLATORS 9 0 dback Amplifier: Block diagram - Gain with feedback - Barkhausen Criterion - Mechanism for start of stabilization of amplitude - Analysis of Oscillator using Cascade connection of RC and LC filters - RC illator - Wien bridge Oscillator and Twin-T Oscillators - Analysis of LC Oscillators: Colpitts - Hartleyler and Pierce oscillators - Frequency range of RC Oscillators - Electrical equivalent circuit of Crystal. Total IV TUNED AMPLIFIERS AND MULTIVIBRATORS 9 0 cysis of single tuned and synchronously tuned amplifiers - Class C tuned amplifiers and their appiency of Class C tuned Amplifier- Collector coupled and Emitter coupled Astable Multi vibrator - Micro in vibrator - Bistable Multi vibrator - Triggering methods - Mono stable and Astable Blocking Oscillater and base timing. Unit V OPERATIONAL AMPLIFIERS AND ITS APPLICATIONS 9 0 c structure and principle of operation - Calculation of differential gain - Common Mode gain, CM	frequency & High frequency analysis of amplifiers -Hybrid – pi equivalent circuit of BJTsHigh frequency according to the frequency of FETs. General expression for frequency response of multifiers. Calculation of overall upper and lower cut off frequencies of multistage amplifiers. Amplifier rise time and their relation to cut off frequencies. Classification of amplifiers (Class A, B, AB, C&D), Efficiency of C coupled and transformer-coupled power amplifiers. Class B complementary-symmetry, push-pull prifiers. Calculation of power output, efficiency and power dissipation. Crossover distortion and method nating it. Calculation of actual power handling capacity of transistors with and without heat sink. Heat sink des Unit III OSCILLATORS 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Text	Books:
1	B.Visvesvara Rao, K.Raja Rajeswari, P.Chalam Raju Pantulu, K.Bhaskara Rama Murthy, "Electronic Circuits-II", Pearson Education, 2012
2	D.Roy Choudhry, Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd., 2011.
Refe	rence Books:
1	Millman J. and Taub H., "Pulse Digital and Switching waveform", 3rd Edition, McGraw-Hill International , 2011.
2	Sedera& Smith, "Micro Electronic Circuits", 4 th Edition, Oxford University Press, Chennai.

3	Michael Jacob, 'Applications and Design with Analog Integrated Circuits', Prentice Hall of India, 1996.									
4	K.R.Botkar, 'Integrated Circuits', 10th edition, Khanna Publishers, 2010.									
e-Ref	e-Reference:									
1	http://nptel.ac.in/courses/117105080/40									
2	http://nptel.ac.in/courses/117108038/1									
3	https://freevideolectures.com/course/2915/linear-integrated-circuits									

Course	Course Outcomes:						
Upon co	Upon completion of this course, the students will be able to:						
CO1	To analyze small signal amplifiers and Large signal Amplifiers.	L3					
CO2	Analyze the frequency response characteristics of amplifiers	L3					
CO3	Develop insight of on oscillator design.	L3					
CO4	Construct and analyse tuned amplifiers and multivibrators.	L3					
CO5	Develop competence in linear and nonlinear Op amp circuit analysis.	L3					

	COURSE ARTICULATION MATRIX														
COs/POs	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO	PO	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	1	2									1	2	1
CO2	3	2	1	2									1	2	1
CO3	3	2	1	2									1	2	1
CO4	3	2	1	2									1	2	1
CO5	1	2	1	2									1	2	1
Avg	2.6	2	1	2									1	2	1
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECM04	SIGNAL PROCESSING					
PREREQUISITI	ES	CATEGORY	PE	Credit		3
		Harry /Wash	L	T	P	TH
		Hours/Week	3	0	0	3

Course Objectives:

- 1. To understand and perform Fourier and Laplace analysis on signals and systems respectively.
- 2. To analyse the Discrete Fourier Transform, Fast Fourier Transform algorithms.
- 3. To design and realize IIR, FIR filters.

Unit I INTRODUCTION TO SIGNALS AND SYSTEM

9 0 0 9

Classification of Signals: Even and Odd Signal - Energy and power signals - Continuous time (CT) and Discrete time (DT) signals - Continuous and Discrete amplitude signal -. System properties and representation: linearity - Tme-invariance - Causality - Stability - Realizability. - Linear Time-Invariant (LTI) systems: Impulse response and step response - Convolution - Correlation - System representation through differential equations and difference equations.

Unit II ANALYSIS OF SIGNAL AND SYSTEMS

9 0 0 9

Introduction to Fourier Transform, Fourier Series, Relating the Laplace Transform to Fourier Transform, Frequency response of continuous time systems. Introduction to z- Transform.

Unit III DISCRETE FOURIER TRANSFORM

9 0 0 9

Introduction to DFT – Properties of DFT - Circular convolution - FFT algorithms – Radix-2 FFT algorithms – Decimation in Time and Decimation in Frequency algorithms.

Unit IV INFINITE IMPULSE RESPONSE FILTER DESIGN

9 0 0 9

Characteristics of Analog Butterworth filter - Chebyshev filter - Low pass filter, High pass filter, Band pass filter and Band stop filter - Transformation of analog filters in to equivalent digital filters using bilinear transformation method - Realization structure for IIR filters-Direct form - Cascade form - Parallel form.

Unit V FINITE IMPULSE RESPONSE FILTER DESIGN

9 0 0 9

Linear phase response of FIR filter - FIR design using window method: Rectangular, Hamming, Hanning and Blackmann Windows - Park-McClellan's method - Realization structures for FIR filters - Linear phase structures and Direct form structure - Comparison of FIR and IIR filters.

Total (45L)= 45 Periods

Text E	Sooks.								
1.	A.Anand Kumar, "Signals and Systems", 3rd Edition, PHI, 2013.								
2.	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", 4th Edition, Pearson Education, 2009.								
Refere	ence Books:								
1.	Alan V Oppenheim, Alan S Willsky and S Hamid Nawab, "Signals and Systems", 2nd edition, PHI Learning Private Limited, New Delhi, 2010.								
2.	B.P. Lathi, "Principles of Signal Processing and Linear Systems", Oxford University Press, 2009.								
3.	Emmanuel C. Ifeacher, Barry W. Jervis, "Digital Signal Processing: A Practical Approach", 2nd Edition, Pearson Education, 2004.								
4.	S.K. Mitra, "Digital Signal Processing, A Computer Based approach", 4th Edition, McGraw-Hill, 2010.								
E-Ref	erences:								
1.	http://nptel.ac.in/courses/117104074/								
2.	https://www.coursera.org/learn/dsp								
3.	https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/								

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Analyse and understands different types of signals.	L2, L4			
CO2	Represent continuous signals and systems in time and frequency domain using different transforms.	L4			
CO3	Analyse the need for Discrete Fourier Transform, Fast Fourier Transform algorithms in digital signals & systems.	L4			
CO4	Design and realize IIR filters.	L3			
CO5	Design and realize FIR filters.	L3			

	COURSE ARTICULATION MATRIX														
COs/POs	РО	PO	РО	РО	РО	РО	PO	РО	PO	PO	РО	PO	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	3	3	3	-							2	2	2
CO2	3	2	2	3	3	2							2	2	2
CO3	3	2	2	2	1		1						1	1	1
CO4	3	2	2	2	1		1						1	1	1
CO5	1	1	1	1	1								2	2	1
Avg	2.6	2	2	2.2	1.8	0.4	0.4						1.6	1.6	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECM0)5	MICROPROCESSORS AND MICROCONTROLI	LERS						
PREREQUIS	PREREQUISITES CATEGORY OEC								
				L	T	P	TH		
			Hours/Week	3	0	0	3		
Course Object	ctives:			l l					
1.	To fami	liarise with 8086 and 8051 architectures.							
2.	To inter	face 8086 microprocessor and 8051 microcontrollers with periphe	erals by programr	ning.					
3.	To gain	basic knowledge of PIC microcontrollers.							
Unit I	8086 M	ICROPROCESSOR ARCHITECTURE			9		9		
		mputer systems-8086 Architecture – Pin Assignments – Internal ad Operators-Assembly process.	Architecture – A	Addressing	g mode	s- Ins	truction		
Unit II	PROGI	RAMMING AND INTERFACING OF 8086			9		9		
		siderations- Programmed I/O- Interrupt I/O- Basic 8086 Confi O Interfaces-Peripheral Interfacing using 8255 PPI - 8279 Keyboa					Mode-		
Unit III	8051 A	RCHITECTURE			9		9		
8051 architect modes	ture - Re	gisters in 8051 - Pin description - 8051 parallel I/O ports - memo	ory organization -	Instruction	on set –	– Ado	lressing		
Unit IV	PROGI	RAMMING AND INTERFACING OF 8051			9		9		
	Assembly language programming.8051Timers - Serial Port Programming - Interrupts Programming - LCD and Keyboard Interfacing - ADC, DAC and Sensor Interfacing - Motor Control.								
Unit V	PIC MI	CROCONTROLLERS			9		9		
Main characteristics of PIC microcontrollers – PIC microcontroller families-Memory-Program Memory – RAM Data Memory - Instruction set and timers in PIC									
				Tota	ıl (L+T)	= 45	periods		

Text Books:	
1.	Yu-Cheng Liu, Glenn A. Gibson," Microcomputer Systems, The 8086/8088 Family", Pearson, 2e, 2019.
2.	Muhammad Ali Mazidi, Janice GillispieMazidi, RolinD.McKinlay, "The 8051 Microcontroller and Embedded Systems
۷.	using Assembly and C", 2e, 2022.
Reference Bo	ooks:
1.	Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded Systems:
1.	Using Assembly and C", 2nd Edition, Pearson education, 2011.
2.	Martin Bates ,"PIC Microcontrollers-An Introduction to Microelectronics", 3e, Elsevier,2011.
3.	Mathur Sunil,"Microprocessor 8086: Architecture, Programming and Interfacing",PHI Learning Pvt. Ltd.,2011.
4	Salvador PinillosGimenez," 8051 Microcontrollers Fundamental Concepts, Hardware, Software and Applications in
4.	Electronics", Springer,2019.
E-References	S:
1.	Ashraf Almadhoun,"A Detailed Look Into PIC Microcontroller and Its Architecture", Amazon, 2020.
2.	https://nptel.ac.in/courses/108105102
3.	http://www.satishkashyap.com/2012/02/video-lectures-on-microprocessors-and.html

	se Outcomes: n completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Describe and analyse the architecture of 8086 microprocessor and 8051 architectures.	L1
CO2	Develop assembly language programs and Interface peripherals with 8086.	L2, L3
CO3	Develop assembly language programs and Interface peripherals with 8051.	L2, L3
CO4	Determine application specific circuit for real-time applications.	L2
CO5	Associate appropriate PIC microcontroller for a given application.	L2

	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	РО	PO	РО	РО	PO	РО	PO	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2									2		1		
CO2	2	2	2	2									2	2	
CO3	2	2	2	2									2	2	
CO4	2	2	2	2									2	2	2
CO5	2	2		2									2	2	
Avg	2	2	1.2	1.6							0.4		1.8	1.6	0.4

22ECI	M06	ANALOG AND DIGITAL COMMUNICATION							
PRER	REQUISIT	ES	CATEGORY	PE	Cre	dit	3		
			II /XX/ l-	L	T	P	TH		
			Hours/Week	3	0	0	3		
Cours	se Objectiv	es:							
1.	Understa	nd analog and digital communication techniques.							
2.	Learn da	ta and pulse communication techniques.							
3.	Be famil	iarized with source and Error control coding.							
Unit I	IN	FORMATION THEORY			9	9 0	0 9		
		mation and entropy – Source coding theorem – Shannon Fano coding linformation – Channel capacity – Channel coding theorem.	– Huffman codi	ng – D	iscrete	mem	oryless		
Unit I	I A	NALOG COMMUNICATION			9	0	0 9		
- Type	es – Need f	Noise – External Noise- Internal Noise- Noise Calculation. Introduction for Modulation. Theory of Amplitude Modulation – Evolution and Dease Modulation – Comparison of various Analog Communication Syst	escription of SSI	3 Techi					
Unit I		DIGITAL COMMUNICATION			9	0	0 9		
BPSK Compa	– QPSK – arison of va	Keying (ASK) – Frequency Shift Keying (FSK) Minimum Shift Key 8 PSK – 16 PSK – Quadrature Amplitude Modulation (QAM) – 8 Qrious Digital Communication System (ASK – FSK – PSK – QAM).	2AM – 16 QAM		dwidth	Effic	ciency-		
Unit I		PULSE COMMUNICATION AND MULTIPLE ACCESS TECHN				0			
Compa		ation: Pulse Amplitude Modulation (PAM) – Pulse Time Modulation arious Pulse Communication System (PAM – PTM – PCM). Mult							
Unit V	V E	RROR CONTROL CODING			9	0	0 9		
	Linear block codes - Cyclic codes - Convolution codes - Maximum likelihood decoding of convolutional codes - Sequential decoding of convolutional codes - Trellis codes - Applications.								
				Total	(45L)	= 45]	Periods		

Text	Books:
1.	Simon Haykin, "Communication Systems", 4th Edition, John Wiley & Sons, 2014.
2.	J.G.Proakis, M.Salehi, —Fundamentals of Communication Systems, Pearson Education 2014.
Refe	erence Books:
1.	B.P.Lathi, —Modern Digital and Analog Communication Systems , 4th Edition, Oxford University Press, 2013.
2.	D.Roody, J.Coolen, —Electronic Communications, 4th edition PHI 2015.
3.	B.Sklar, —Digital Communications Fundamentals and Applicationsl, 5th Edition Pearson Education 2017
4.	H P Hsu, Schaum Outline Series - —Analog and Digital Communications TMH, 5 th edition 2006
E-Re	eferences:
1.	https://onlinecourses.nptel.ac.in/noc21_ee74/preview
2.	https://nptel.ac.in/courses/117101051
3.	https://www.digimat.in/nptel/courses/video/117105143/L51.html

		utcomes: utcomes: utcomes:	Bloom's Taxonomy Mapped				
CO1	:	Apply the concepts of Random Process to the design of Communication systems	L3				
CO2	:	Apply analog and digital communication techniques.	L3				
CO3	:	Understand the use of data and pulse communication techniques.	L2				

CO4	:	Analyze Source and Error control coding.	L4
CO5		Design AM communication systems and Angle modulated communication systems	L3

					CC	OURSE A	ARTICU	LATION	N MATE	RIX					
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO12	PSO 1	PSO 2	PSO 3
CO1	2	3	2	1	1								3		
CO2	3	2	2	1	1								3	2	1
CO3	2	2	2	3	1								3	2	
CO4	1	1	2	1	2								2	3	
CO5	1	1	2	2	2								2	3	1
Avg	1.8	1.8	2	1.6	1.4								2.6	2	0.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECM07	COMMUNICATION NETWORKS						
PREREQUIS	SITES CAT	TEGORY	PE	Credit		3	
			L	T	P	TH	
	Hou	Hours/Week 3 0					
Course Object	tives:						
1. Understa	nd the division of network functionalities into layers.						
	ar with the components required to build different types of networks						
3. Be expos	ed to the required functionality at each layer						
4. Learn the	flow control and congestion control algorithms						
Unit I	FUNDAMENTALS & LINK LAYER			9	0 (9	
	Data Communications- Networks - Building Network and its types- Overview of						
Mode – Physic	cal Layer – Overview of Data and Signals - introduction to Data Link Layer - Link	layer Addre	essing-	Erro	r Dete	ection	
and Correction							
	MEDIA ACCESS & INTERNETWORKING			9		9	
	Data link Control and Media access control - Ethernet (802.3) - Wireless LANs -						
	v Energy – WiFi – 6LowPAN–Zigbee - Network layer services – Packet Switching	g – IPV4 Ad	ddress -	- Net	work	layer	
	ICMP, Mobile IP)						
	ROUTING			9		9	
	icast Routing - Algorithms - Protocols - Multicast Routing and its basics	 Overview 	v of I	ntrad	omair	1 and	
	rotocols – Overview of IPv6 Addressing – Transition from IPv4 to IPv6		1				
	TRANSPORT LAYER			9	-	9	
	o Transport layer –Protocols- User Datagram Protocols (UDP) and Transmission (
	CP Connection – State Transition Diagram – Flow, Error and Congestion Control	l - Congesti	on avoi	danc	e (DE	ECbit,	
	- Application requirements				_ 1		
	APPLICATION LAYER			9		9	
	ayer Paradigms – Client Server Programming – World Wide Web and HTTP - DN				TP, P	OP3,	
IMAP, MIME) – Introduction to Peer to Peer Networks – Need for Cryptography and Network Se						
		T	otal (4	5L)=	45 Pe	eriods	

Text I	Books:
1.	Behrouz A Forouzan, Data Communications and Networking, 4th Edition, 2020
2.	James F. Kurose, Keith W. Ross, Computer Networking - A Top-Down Approach Featuring the Internet, Seventh Edition, Pearson Education, 2016.
Refere	ence Books:
1.	Nader. F. Mir, "Computer and Communication Networks", Pearson Prentice Hall Publishers, 2nd Edition, 2014.
2.	Alberto Leon-Garcia, IndraWidjajaCommunication Networks 2nd Edition McGraw-Hill Education, 2003
3.	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill Publisher, 2011.
4.	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers, 2011.
E-Ref	erences:
1.	https://onlinecourses.nptel.ac.in/noc22_ee61/preview
2.	https://www.ee.iitb.ac.in/~sarva/courses/EE706/2012/EE706LecNotes.pdf
3.	http://www.cs.kent.edu/~farrell/net01/lectures/

	Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped				
CO1	Explain the basic concept in modern data communication and different level of layers in the protocol	L2				
CO2	Analyse the functions and services of data link layer	L4				
CO3	Categorize the functions and services of network layer	L2				
CO4	CO4 Examine the basic functions of transport layer and congestion in networks					
CO5	Analyse the concepts of various network applications and data security	L4				

					CO	URSE	ARTI	CULA'	TION I	MATRIX					
COs/POs	PO	РО	РО	РО	РО	PO	РО	РО	PO	PO	PO	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	1		1								2		1
CO2	2	1	2		1								2	1	1
CO3	2	1	1										3	1	2
CO4	3	2	1		2								2		2
CO5	2	1	1		1								1	1	1
Avg	2.2	1.2	1.2		1								2	0.6	1.4
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

	CM08	INTERNET OF THINGS				
PRF	EREQUISI	TES CATEGORY	PE	Cre	dit	3
Man		Hours/Week	L	T	P	TH
Non	ie	nours/week	3	0	0	3
Cou	ırse Object	ives		I		
1	To unders	stand Smart Objects and IoT Architectures				
2	To learn a	bout various IOT-related protocols				
3	To build s	simple IoT Systems using Arduino and Raspberry Pi				
4	To unders	tand data analytics and cloud in the context of IoT				
5	To develo	p IoT infrastructure for popular applications				
1	Unit I	FUNDAMENTALS OF IoT	9	0	0	9
Fund		models – Simplified IoT Architecture and Core IoT Functional Stack – Fog, Edge ks of an IoT ecosystem – Sensors, Actuators, Smart Objects and Connecting Smart IoT Protocols			0	9
		chnologies: Physical and MAC layers, topology and Security of IEEE 802.15.4	1 000			
Opti	imizing IP	1ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and C for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks rvisory Control and Data Acquisition – Application Layer Protocols: CoAP and MC	Constrai – Appl	ned]	Netwo	orks –
Opti Metl	imizing IP	1ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and C for IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks	Constrai – Appl	ned]	Netwo	orks –
Opti Metl U	imizing IP hods: Super Jnit III esign Metho	1ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Confor IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks revisory Control and Data Acquisition – Application Layer Protocols: CoAP and MQ	Constrai – Appl OTT 9 system	ned lication	Netwo	orks – nsport 9 locks -
Opti Metl U De Arc	imizing IP hods: Super Jnit III esign Metho	1ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Confort IoT: From 6LoWPAN to 6Lo, Routing over Low Power and Lossy Networks revisory Control and Data Acquisition – Application Layer Protocols: CoAP and MQ DESIGN AND DEVELOPMENT Dedology - Embedded computing logic - Microcontroller, System on Chips - IoT states.	Constrai – Appl OTT 9 system	ned lication	Netwo	orks – nsport 9 locks -
Opti Metl De Arc	imizing IP hods: Super Unit III esign Methoduino - Boa Unit IV lectured Vs Ulactured Vs Ulacture	1ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained Nodes and Constrained Nodes and Constrained Nodes and Constrained Lossy Networks revisory Control and Data Acquisition – Application Layer Protocols: CoAP and MCODESIGN AND DEVELOPMENT Endology - Embedded computing logic - Microcontroller, System on Chips - IoT start details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Python	Constraint Apple TT 9 system hon Program 9 g - No nalytic	ned dication of the second of	Netwon Tra	9 locks - gases - Cloud
Opti Metl U De Arc	imizing IP hods: Super Unit III esign Methoduino - Boa Unit IV lectured Vs Ulactured Vs Ulacture	1ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Data Acquisition – Application Layer Protocols: CoAP and MCODESIGN AND DEVELOPMENT Development Nodes of Microcontroller, System on Chips - IoT sourced details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Pythodology - Embedded Computing Logic - Microcontroller, System on Chips - IoT sourced details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Pythodology - Embedded Computing Logic - Microcontroller, System on Chips - IoT sourced details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Pythodology - Embedded Computing Logic - Microcontroller, System on Chips - IoT sourced details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Pythodology - Embedded Computing Logic - Microcontroller, System on Chips - IoT sourced details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Pythodology - Embedded Computing Logic - Microcontroller, System on Chips - IoT sourced details, IDE programming - Raspberry Pi - Interfaces and Raspberry Pi with Pythodology - Embedded Computing Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on Chips - IoT sourced Logic - Microcontroller, System on	Constraint Apple TT 9 system hon Program 9 g - No nalytic	ned dication of the second of	Netwon Tra	9 locks - gases - Cloud
Opti Meti De Arc Struc Hade for I	Imizing IP hods: Super Jnit III ssign Method duino - Boa Unit IV lectured Vs U loop Ecosys IoT, Python Unit V loo IoT syste ity Industry	1ah and LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained LoRaWAN – Network Layer: IP versions, Constrained Nodes and Constrained Lorentz Production Layer Protocols: CoAP and MCODESIGN AND DEVELOPMENT Development Lorentz Protocols: CoAP and MCODESIGN AND DEVELOPMENT Development Layer Protocols: CoAP and MCODESIGN AND Development Layer Protocols: CoAP and M	Constraint Apple TT 9 System Hon Property 9 System Hon Property 9 System Hon Property 9 Model	obuildingram OSQL s - X CONF O (CPw	Netwon Tra 0 ing blinging Databively -YAN 0 EE) -	9 locks - Cloud NG 9 Power

Text !	Books:
1	David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, —IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things, Cisco Press, 2017
2	ArshdeepBahga, Vijay Madisetti, —Internet of Things – A hands-on approachl, Universities Press, 2015
Refer	ence Books:
1	Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things – Key applications and Protocols, Wiley, 2012 (for Unit 2).
2	Jan Ho" ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier, 2014.
3	Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), —Architecting the Internet of Thingsl, Springer, 2011.

4	Michael Margolis, Arduino Cookbook, Recipes to Begin, Expand, and Enhance Your Projects, 2nd Edition,
4	O'Reilly Media, 2011.
e-Ref	erence:
1	https://online.stanford.edu/courses/xee100-introduction-internet-things
2	https://www.udemy.com/topic/internet-of-things/
3	https://www.netacad.com/courses/iot

	Outcomes: pletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the concept of IoT.	L2
CO2	Analyze various protocols for IoT.	L3
CO3	Design a PoC of an IoT system using Rasperry Pi/Arduino	L3
CO4	Apply data analytics and use cloud offerings related to IoT.	L3
CO5	Analyze applications of IoT in real time scenario	L4

	COURSE ARTICULATION MATRIX														
COs/POs	PO	РО	PO	РО	PO	PO	РО	PO	PO	PO	РО	РО	PSO1	PSO2	PSO3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	2	1	1						1		2	2	2
CO2	2	1	2	1	1						1		2	2	2
CO3	2	2	3	2	1						2		2	2	2
CO4	2	2	2	1	1						1		2	2	2
CO5	2	2	3	2	1						2		2	2	2
Avg	2	1.6	2.4	1.4	1						1.4		2	2	2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECM	09	WIRELESS SENSORS AND NETWORKING								
PRE-REQU	JISITE		CATEGORY	Y PE Credit						
1. W	ireless	networks		L	Т	P	TH			
			Hours/Week	3	0	0	3			
Course Ob	ectives	:								
1. Le	arn fu	ndamental of Ad hoc network and architecture								
2. U	ndersta	nd the MAC and routing protocols.								
3. H	ave an	in-depth knowledge on QoS, security and sensor network platforms								
Unit I		OUTING PROTOCOLS			9	-	0 9			
networking	, Ad h	hoc Wireless Networks, Issues in Ad hoc wireless networks, Exampoc wireless Internet, Issues in Designing a Routing Protocol for Ad Ho	oc Wireless Netw	orks, C	lassi	ficatio	ons of			
		s, Table Driven Routing Protocols – Destination Sequenced Distance	Vector (DSDV)	, On–I	D emai	nd Ro	outing			
•		On–Demand Distance Vector Routing (AODV).								
Unit II		RCHITECTURES OF WSN			9		0 9			
		examples, Types of applications, Challenges for Wireless Sensor Netwo Single-Node Architecture: Hardware Components, Energy Consumption								
execution e										
		ture: Sensor Network Scenarios, Optimization goals and figures of me	erit, Design princ	iples o	f WS	N, Se	ervice			
		s, gateway concepts.			1					
Unit III		MAC PROTOCOLS AND ROUTING PROTOCOLS			9	_	0 9			
		n: Predictive techniques – PCM – DPCM - DM - Transform coding - Ir								
		of EZW. Video compression: Video signal representation – ITU-T Recor		l – Mo	del ba	ised c	oding			
		ideo Standard - The MPEG-2 Video Standard: H.262 - ITU-T Recommen			T _					
Unit IV		QUALITY OF SERVICE AND ADVANCED APPLICATION SUPPO			9		0 9			
		e: Coverage and deployment, Reliable data transport, Single packet deli					ontrol			
		Advanced application support: Advanced in-network processing, Security	and Application-	specific						
Unit V		ENSOR NETWORK PLATFORMS AND TOOLS		. ~	9		0 9			
		lware – Berkeley Motes, Programming Challenges, Node-level software j								
		ators - NS2 and its extension to sensor networks, COOJA, TOSSIM, I	Programming bey	ond in	lividu	ıal no	des –			
State centri	c prog	ramming.								
			Т	otal (4	5L) =	45 P	eriods			

Text	Books:
1.	C. Siva Ram Murthy, and B. S. Manoj, "AdHoc Wireless networks ", Pearson Education – 2008
2.	Holger Karl and Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2007.
Refe	rence Books:
1.	Feng Zhao and LeonidesGuibas, "Wireless sensor networks", Elsevier publication - 2004.
2.	Charles E. Perkins, —Ad Hoc Networking, Addison Wesley, 2000.
3.	William Stallings, "Wireless Communications and Networks", Pearson Education – 2004
4.	I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks, Elsevier, 2002, 394 - 422.
E-Re	eferences:
1.	https://nptel.ac.in/courses/106105183
2.	https://nptel.ac.in/courses/106105183
3.	https://archive.nptel.ac.in/courses/106/105/106105160/

Course Ou Upon com	tcomes: pletion of this course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Know the basics of Ad hoc networks and Wireless Sensor Networks	L2
CO2	Have a knowledge on architecture of Wireless Sensor Networks	L3
CO3	Apply the knowledge to identify MAC and routing protocols	L3

CO4	Understand the transport layer and security issues possible in Ad hoc and sensor networks	L2
CO5	Be familiar with the OS used in Wireless Sensor Networks and build basic modules	L1

	COURSE ARTICULATION MATRIX														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3	3	3	2				3	3	3		2
CO2	3	3	2	3	3	3	2				3	3	3		2
CO3	3	3	3	3	3	3	2				3	3	3		2
CO4	3	3	2	3	3	3	2				2	3	3		2
CO5	3	3	2	3	3	3	2				3	3	3		2
Avg	3	3	2	3	3	3	2				2.8	3	3		2
	3/2/1 - indicates strength of correlation (3-High,2- Medium,1- Low)														

22ECM10)	BASICS OF EMBEDDED SYSTEMS				
PREREQ	UISITES	CATEGOR	Y PE	Cr	edit	3
			. L	Т	P	TH
Micropro	cessors and N	Mmicrocontrollers Hours/Wee	K 3	0	0	3
Course O	bjectives	,			•	
1 To	impart knowle	edge on embedded system architecture and embedded development Strategies				
2 To	understand th	e bus Communication in processors and peripheral interfacing				
3 To	understand ba	asics of Real Time Operating System				
UNIT I	BASICS (OF EMBEDDED SYSTEMS	9	0	0	9
UNIT II		tware Partitioning - Development Environment. Y MANAGEMENT AND INTERRUPTS	9	0	0	9
Memory A	Access Proced	Y MANAGEMENT AND INTERRUPTS dure - Types of Memory - Memory Management Methods - DMA - Memory Types - Interrupt Latency - Interrupt Priority - Programmable Interrupt Co	ry Interfa	cing -	Pollir	ng V
Routines	- Types of In	merrupts - interrupt Latency - interrupt Priority – Programmable interrupt Co	iiiioiieis -	· IIIIEIII	ipi Se	EI VIC
UNIT III	COMMU	NICATION INTERFACES	9	0	0	9
•	g Buses - Ser IEEE 802.11	rial Interfaces - RS232/UART - RS422/RS485 - I2C Interface - SPI Interfac - Bluetooth	e - USB	– CAN	- IR	DA
UNIT IV	REAL TI	ME OPERATING SYSTEMS	9	0	0	9
- Event	Driven Sched	Fask Management - Task Scheduling - Classification of Scheduling Algorithm luling - Resource Sharing - Priority Inheritance Protocol - Priority Cei x - Semaphores - Message Queues - Timers - Commercial RTOS.				
UNIT V	VALIDA'	TION AND DEBUGGING	9	0	0	9
	s and Debug K	nes - Validation Types and Methods - Host Testing - Host-Based Testing Setup Kernels - ROM Emulator - Logical Analyzer — Background Debug Mode - InC				ote
	RFID Systems	s - GPS Navigation System – Development of Protocol Converter				

Text E	Text Books:						
1	Sriram V Iyer and Pankaj Gupta, —Embedded Real-time Systems Programmingl, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.						
2	Arnold S Berger, —Embedded Systems Design - An Introduction to Processes, Tools and Techniques, Elsevier, New Delhi, 2011.						
Refere	ence Books:						
1	Prasad K V K K, —Embedded/Real-Time Systems: Concepts, Design and Programming – The Ultimate Reference, Himal Impressions, New Delhi, 2003						
2	Heath, "Embedded Systems Design", Newnes an Imprint of Elsevier, Massachusetts, 2003.						
3	Tammy Noergaard, "Embedded Systems Architecture", Newnes an Imprint of Elsevier, Massachusetts, 2006.						
4	Raj Kamal, 'Embedded System-Architecture, Programming, Design', McGraw Hill, 2013						
e-Refe	e-Reference:						
1	https://lecturenotes.in/subject/225/embedded-system-es						

2	https://nptel.ac.in/courses/108102045/19
3	https://www.coursera.org/learn/introduction-embedded-systems.

.

	Course Outcomes: Upon completion of this course, the students will be able to						
CO1	Outline the concepts of embedded systems	L2					
CO2	Understand the concept of memory management system and interrupts.	L2					
CO3	Know the importance of interfaces.	L2					
CO4	Understand real time operating system concepts.	L2					
CO5	To realize the applications of validation and debugging.	L3					

COURSE ARTICULATION MATRIX															
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3
CO1	3	3	1	3							3	3	3		2
CO2	3	3	2	3							3	3	3		2
CO3	3	3	3	3							3	3	3		2
CO4	3	3	2	3							2	3	3		2
CO5	3	3	2	3							3	3	3		2
Avg	3	3	2	3							2.8	3	3		2
			3/2/	l - ind	icates s	strengtl	n of co	rrelatio	n (3-H	igh,2- N	/ledium,	1- Low))		