

<image><image><image><image><image><image><image><image><image><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

DEPARTMENT OF MECHANICAL ENGINEEERING - VISION & MISSION

A serene and tranquil 'MECH' atmosphere helps the dynamic professionals to kindle their innovative minds. The enduring efforts of faculties have enhanced the students with omnipotent skills, with considerable research work being done in the department.

VISION

The department of mechanical engineering is committed to blossom into a centre of excellence, dedicated and competent engineers by providing global quality interactive technical education to cater the needs of the industries and nation into a technologically, socially and culturally advanced one.

MISSION

- Constantly updating the departmental resources, faculty and other infrastructure by acquiring the state of the art equipments and by imparting constant in-service training to the faculty and supporting staff.
- Promoting skilled and employable graduates to meet the challenges in emerging fields of engineering.
- To prepare the students for prosperous career in entrepreneurship with leader ship qualities, ethics and human values.
- The department executes life-long learning skills and provides engineering services for sustainable development of the society.

PROGRAMME EDUCATIONAL OBJECTIVES

- **PEO 1**: To provide students with strong fundamental knowledge in mathematics, science and basic engineering to enable them to solve the mechanical engineering related problems.
- **PEO 2**: To develop expertise in core areas like design, analyze and synthesize data and technical concepts with software skills to create novel products and solutions for the real time problems.
- **PEO 3**: Graduates able to exhibit professionalism in their profession with effective communication, ethical attitude, entrepreneurship skills and the knowledge in global economy to meet the social challenges.
- **PEO 4**: To promote the students for continuous learning towards professional growth in contemporary areas of socio-technological issues like energy crisis, environmental pollution, industrial issues and natural disaster.

PROGRAMME OUTCOMES

- **PO1**: Apply the knowledge of mathematics, science and engineering specialization to solve complex engineering problems.
- **PO2**: Graduates will have the ability to identify, formulate, conduct experiment and analyze engineering problems
- **PO3**: Graduates will demonstrate the ability to design and evaluate a mechanical system (or) process with appropriate consideration for the socio environmental conditions.
- **PO4**: Graduates will demonstrate the ability to design and conduct experiments, interpretation of data and synthesis of information to provide valid conclusions.
- **PO5**: Graduates will be familiar with modern engineering software tools and equipments to model and predict the Mechanical engineering problems
- **PO6**: Demonstrate knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice
- **PO7**: Understand the impact of engineering solution in the environmental context and the need for sustainable development.
- **PO8**: Apply ethical principles and commitment to professional ethics and norms of the practice in the field of Mechanical engineering.
- **PO9**: Obtain the ability to function individually and also as a team member in multi-disciplinary activities.
- **PO10**: Able to communicate effectively in verbal, written and graphical forms.
- **PO11**: Recognize the need and ability to engage in independent and life-long learning in the broadest context of technological change.
- **PO12**: Graduates will have the ability to employ effective project management skills and financial principles to develop project plans in multi-disciplinary environments.

PROGRAMME SPECIFIC OUTCOMES

- **PSO 1**: Ability to identify, analyze and solve engineering problems in the domains of Design, Thermal and Manufacturing systems.
- **PSO 2**: Ability to apply their knowledge in principle of design and analysis, in execution of automation in mechanical system / processes.
- **PSO 3**: Ability to involve professionally in industries or as an entrepreneur by applying manufacturing and management practices.

GOVERNMENT COLLEGE OF ENGINEERING, SALEM – 636 011. B.E - MECHANICAL ENGINEERING (FULL TIME) - R2022 CURRICULUM

SEMESTER I											
S.	Course	C T:41-	C-4		Hour	s/Wee	k	M	ax. Ma	arks	
No.	Code	Course little	Cat	L	Т	Р	С	CA	FE	Total	
1	22MC101	Induction Program	MC	-	-	-	0	-	-	-	
		THEOR	Y								
2	22MA101	Matrices, Calculus and Ordinary Differential Equation	BS	3	1	0	4	40	60	100	
3	22CY101	Engineering Chemistry	BS	3	1	0	4	40	60	100	
4	22EE101	Basics Electrical and Electronics Engineering	ES	3	1	0	4	40	60	100	
5	22ME101	Engineering Graphics and Design	ES	1	0	4	3	40	60	100	
6	22CS101	Problem Solving and C Programming	ES	3	0	0	3	40	60	100	
7	22MC102	Heritage of Tamil / தமிழர்மரபு	HS MC	1	0	0	1	100	-	100	
		PRACTIC	AL							L	
8	22EN102	Professional Skills Laboratory	HS	0	0	2	1.0	60	40	100	
9	22PH103	Physics Laboratory	BS	0	0	3	1.5	60	40	100	
10	22CY102	Chemistry laboratory	BS	0	0	3	1.5	60	40	100	
11	22EE102	Basics Electrical and Electronics Engineering Laboratory	ES	0	0	3	1.5	60	40	100	
		TOTAL					24.5			1000	
		SEMESTE	R II	-							
S.	Course			Но	urs/W	/eek	G	M	ax. Ma	arks	
No.	Code	Course little	Cat	L	Т	Р	C	CA	FE	Total	
		THEOR	Y								
1	22EN101	Communicative English(Theory cum Practical)	HS	2	0	2	3	50	50	100	
2	22MA201	Partial Differential Equation, Vector Calculus and Complex Variables	BS	3	1	0	4	40	60	100	
3	22PH101	Engineering Physics	BS	3	1	0	4	40	60	100	
4	22ES101	Engineering Mechanics	ES	3	0	0	3	40	60	100	
5	22HS201	Universal Human Values	HS	2	1	0	3	40	60	100	
6	22MCIN01	Engineering Sprints	EE	0	0	2	1	100	-	100	
7	22MC201	Tamils and Technology / தமிழரும் தொழில்நுட்பமும்	HS MC	1	0	0	1	100	-	100	
8	22NC201	NCC Course – I (only for NCC students)*	NC	3	0	0	3*	-	-	100*	
	1	PRACTIC	AL		1	-		Γ	[[
9	22CS102	Computer Practice and C Programming Laboratory	ES	0	0	3	1.5	60	40	100	
10	22ME102	Workshop Manufacturing Practices	ES	0	0	4	2.0	60	40	100	
		TOTAL					22.5			900	

SEMESTER III *NCC credit course level I is offered for NCC students only. The grades earned by the students will be recorded in the Mark sheet, however the same shall not be considered for the computation of CGPA $\underbrace{4}$

S.	Course	Course Title	C-4		Hours	/Week	K	Max. Marks		
No.	Code	Course Inte	Cat	L	Т	Р	С	CA	FE	Total
		THEOR	Y							
1	22MA305	Fourier Series, Boundary Value Problems and Transforms	BS	3	0	0	3	40	60	100
2	22ME301	Engineering Thermodynamics	PC	3	1	0	4	40	60	100
3	22ME302	Fluid Mechanics and Machinery	PC	3	1	0	4	40	60	100
4	22ME303	Manufacturing Processes	PC	3	0	0	3	40	60	100
5	22MT310	Materials Engineering	ES	3	0	0	3	40	60	100
6	22MCIN02	Innovation Sprints	EE	0	0	2	1	100	-	100
7	22NC301	NCC Course – II (only for NCC Students)*	NC	3	0	0	3*	-	-	100*
PRACTICAL										•
8	22ME304	CAD Laboratory	PC	0	0	3	1.5	60	40	100
9	22CE308	Strength of Materials and Fluid Mechanics Laboratory	ES	0	0	3	1.5	60	40	100
	1	TOTAL					21			800
		SEMESTE	R IV			/***				
S. No.	Course Code	Course Title	Cat	T.	Hours	/ week			ax. Ma	arks Total
		THEOR	Y		-	-	C			Total
1	22ME401	Kinematics of Machinery	PC	3	1	0	4	40	60	100
2	22ME402	Thermal Engineering	PC	3	1	0	4	40	60	100
3	22ME403	Metal cutting and Machine Tools	PC	3	0	0	3	40	60	100
4	22ME404	Hydraulics and Pneumatics	PC	3	0	0	3	40	60	100
5	22CE409	Strength of Materials	ES	3	0	0	3	40	60	100
6	22MCIN03	Design Sprints	EE	0	0	2	1	100	_	100
7	22CYMC01	Environmental Science	MC	2	0	1	0	-	-	-
	1	PRACTIC	CAL	1	1	1	1	1	1	1
9	22ME405	Thermal Engineering Laboratory	PC	0	0	3	1.5	60	40	100
10	22ME406	Manufacturing Technology Laboratory	PC	0	0	3	1.5	60	40	100
TOTAL 21								800		

*NCC credit course level II is offered for NCC students only. The grades earned by the students will be recorded in the Mark sheet, however the same shall not be considered for the computation of CGPA

	SEMESTER V												
S.	Course		C-4		Hou	rs/W	eek	N	Iax. M	larks			
No.	Code	Course Title	Cat	L	Т	Р	С	CA	FE	Total			
		THEORY	,										
1	22ME501	Design of Machine Elements	PC	3	1	0	4	40	60	100			
2	22ME502	Heat and Mass Transfer	PC	3	0	0	3	40	60	100			
3	22ME503	Metrology and Quality Control	PC	3	0	0	3	40	60	100			
4	22ME504	Dynamics of Machinery	PC	3	0	0	3	40	60	100			
5	22ME505	Instrumentation and Control system	PC	3	0	0	3	40	60	100			
6	22MCIN04	Ideation Sprints	EE	0	0	2	1	100	-	100			
7	22MC301	Indian Constitution	MC	3	0	0	0	100	-	100			
		PRACTICA	L										
8	22ME506	Dynamics and Metrology Laboratory	PC	0	0	3	1.5	60	40	100			
9	22EN502	Placement and Career Training Laboratory	HS	0	0	4	1.5	60	40	100			
10	22ME507	Heat Transfer and Refrigeration Laboratory	PC	0	0	3	1.5	60	40	100			
		TOTAL 21.5						900					
		SEMESTER VI (REGU	LAR S	TRE	AM))		Γ					
S.	Course	Course Title	Cat		Hou	rs/W	eek	N	Iax. M	larks			
No.	Code			L	Т	Р	С	CA	FE	Total			
		THEORY	T	1	I	1	ſ	I	ſ	I			
1	22MEPE1X	Professional Elective – I	PE	3	0	0	3	40	60	100			
2	22MEPE2X	Professional Elective – II	PE	3	0	0	3	40	60	100			
3	22MEPE3X	Professional Elective – III	PE	3	0	0	3	40	60	100			
4	22MEOE1X	Open Elective –I	OE	3	0	0	3	40	60	100			
5	22MEOE2X	Open Elective –II	OE	3	0	0	3	40	60	100			
6 22MEOE3X Open Elective-III OE 3 0 0 3 40 60 100									100				
		PRACTICA	L										
7	22ME601	Mini Project	EE	0	0	6	3	60	40	100			
		TOTAL					21			700			

		SEMESTER VI (PROT	OSEM	STRI	EAM)					
S.	Course				Hour	s/We	ek	N	Iax. M	larks	
No.	Code	Course Title	Cat	L	Т	Р	С	CA	FE	Total	
		THEOR	Y	•			-				
1	22PSPE01	Computational Hardware	PE	3	0	0	3	100	0	100	
2	22PSPE02	Coding for Innovators	PE	3	0	0	3	100	0	100	
3	22PSPE03	Industrial Automation	PE	3	0	0	3	100	0	100	
4	22PSOE01	Applied Design Thinking	OE	3	0	0	3	100	0	100	
5	22PSOE02	Startup Fundamentals	OE	3	0	0	3	100	0	100	
6	22PSOE03	Prototype Development	OE	3	0	0	3	100	0	100	
		PRACTIC	AL								
7 22MEPS17 Robotics EE 3 0 0 3 100 0 100										100	
		TOTAL					21			700	
SEMESTER VII											
S.	Course				Hour	s/We	ek	N	Iax. M	larks	
No.	Code	Course Title	Cat	L	Т	Р	С	CA	FE	Total	
		THEOR	Y	11						1	
1	22ME701	Mechatronics	PC	3	0	0	3	40	60	100	
2	22ME702	Finite Element Analysis	PC	3	0	0	3	40	60	100	
3	22HS701	Operations Research	HS	3	0	0	3	40	60	100	
4	22MEPE4X	Professional Elective – IV	PE	3	0	0	3	40	60	100	
		PRACTIC	AL								
5	22ME703	Mechatronics Laboratory	PC	0	0	3	1.5	60	40	100	
6	22ME704	Simulation Laboratory	PC	0	0	3	1.5	60	40	100	
7	22ME705	CAM Laboratory	PC	0	0	3	1.5	60	40	100	
8	22ME706	Project – I	EE	0	0	8	4	60	40	100	
		TOTAL					20.5			800	
		SEMESTER	VIII								
S.	Course	Course Title	Cat		Hour	s/We	ek	N	Iax. M	larks	
No.	Code	Course Title	Cat	L	Т	Р	С	CA	FE	Total	
		THEOR	Y								
1	22MEPE5X	Professional Elective – V	PE	3	0	0	3	40	60	100	
2	22MEPE6X	Professional Elective – VI	PE	3	0	0	3	40	60	100	
3	22MEOE4X	Open Elective –IV	OE	3	0	0	3	40	60	100	
		PRACTIC	AL								
4	22ME801	Project –II	EE	0	0	20	10	120	80	200	
		TOTAL					19			500	
GRAND TOTAL 167											

Course Component				Credits I	Per Seme	ester			Total Gradit	
course component	Ι	II	III	IV	V	VI	VII	VIII	Credit	
Humanities and Social Sciences (HS)	1	6			1.5		3		11.5	
Engineering Science (ES)	11.5	6.5	4.5	3					25.5	
Basic Science (BS)	11	8	3						22	
Professional Core (PC)			12.5	17	19		10.5		59	
Professional Electives (PE)						9	3	3	18	
Open Electives (OE)						9		3	12	
Empl. Enhancement Courses (EE)		1	1	1	2	3	4	10	19	
Mandatory Course (One Credit) (MC/HSMC)	1	1							2	
	23.5	21.5	21	21	22.5	21	20.5	16	169	

SUMMARY FOR REGULAR STREAM

PROFESSIONAL ELECTIVE COURSES

Code No.	Course	Hours/Week				Maximum Marks			
	PROFESSIONAL ELECTIVES -	I (VI S	SEMES	TER)					
		L	Т	Р	С	CA	FE	Total	
22MEPE11	Automobile Engineering	3	0	0	3	40	60	100	
22MEPE12	Composite Materials	3	0	0	3	40	60	100	
22MEPE13	Computer Integrated Manufacturing	3	0	0	3	40	60	100	
22MEPE14	Design of Transmission system	3	0	0	3	40	60	100	
22MEPE15	Energy Conservation in Industries	3	0	0	3	40	60	100	
22MEPE16	Gas Dynamics & Jet Propulsion	3	0	0	3	40	60	100	
22MEPE17	Renewable Energy System	3	0	0	3	40	60	100	
	PROFESSIONAL ELECTIVES -	II (VI S	SEMES	STER)					
22MEPE21	Advanced Strength of Materials	3	0	0	3	40	60	100	
22MEPE22	Energy Efficient Buildings Design	3	0	0	3	40	60	100	
22MEPE23	Engineering System Analysis and Design	3	0	0	3	40	60	100	
22MEPE24	Industrial Engineering and Management	3	0	0	3	40	60	100	
22MEPE25	Internal Combustion Engines	3	0	0	3	40	60	100	
22MEPE26	Machine Drawing	2	3	0	3	40	60	100	
22MEPE27	Power plant Engineering	3	0	0	3	40	60	100	
	PROFESSIONAL ELECTIVES - I	II (VI	SEME	STER))				
22MEPE31	Fuels and Combustion	3	0	0	3	40	60	100	
22MEPE32	Maintenance Engineering	3	0	0	3	40	60	100	
22MEPE33	Non-traditional Machining Process	3	0	0	3	40	60	100	
22MEPE34	Professional Ethics and Human Values	3	0	0	3	40	60	100	
22MEPE35	Rapid Product Development Technologies	3	0	0	3	40	60	100	
22MEPE36	Refrigeration & Air Conditioning	3	0	0	3	40	60	100	
22MEPE37	Solar Energy Technology	3	0	0	3	40	60	100	
	PROFESSIONAL ELECTIVES - I	V (VII	SEME	STER)				
22MEPE41	Advanced Decision Modelling Technique	3	0	0	3	40	60	100	
22MEPE42	Automation in Manufacturing	3	0	0	3	40	60	100	
22MEPE43	Cryogenic Engineering	3	0	0	3	40	60	100	
22MEPE44	Fracture Mechanics and Failure Analysis	3	0	0	3	40	60	100	
22MEPE45	Fundamentals of Tribology	3	0	0	3	40	60	100	
22MEPE46	Metal Forming Processes	3	0	0	3	40	60	100	
22MEPE47	Micro and Nano Machining	3	0	0	3	40	60	100	

PROFESSIONAL ELECTIVES - V (VIII SEMESTER)													
22MEPE51	Analysis and Synthesis of Mechanism	3	0	0	3	40	60	100					
22MEPE52	Design of Jigs, Fixtures and Press tools	3	0	0	3	40	60	100					
22MEPE53	Heat Transfer Problems in Electronics and Instrumentation	3	0	0	3	40	60	100					
22MEPE54	Nano Technology	3	0	0	3	40	60	100					
22MEPE55	Nuclear Engineering	3	0	0	3	40	60	100					
22MEPE56	Thermal Turbo Machines	3	0	0	3	40	60	100					
22MEPE57	Total Quality Management	3	0	0	3	40	60	100					
	PROFESSIONAL ELECTIVES - V	I (VIII	I SEMI	ESTER	.)								
22MEPE61	Design of Production Tooling	3	0	0	3	40	60	100					
22MEPE62	Engineering System Modelling and Simulation	3	0	0	3	40	60	100					
22MEPE63	Entrepreneurship Development	3	0	0	3	40	60	100					
22MEPE64	Industrial Safety	3	0	0	3	40	60	100					
22MEPE65	Introduction to Computational Fluid Dynamics	3	0	0	3	40	60	100					
22MEPE66	Marine Engineering	3	0	0	3	40	60	100					
22MEPE67	Robotics	3	0	0	3	40	60	100					

LIST OF OPEN ELECTIVE COURSES

C N	Course	Course			Hours	/Week		Maxi	mum N	Marks
S.No.	Code	Course	Cat	L	Т	Р	С	CA	FE	Total
	I	COURSES OFFERED BY THE DEPAI	RTMEN	T OF N	MATH	ЕМАТ	ICS	1		
1	22MAOE01	Sampling Theory	OE	3	0	0	3	40	60	100
2	22MAOE02	Numerical Methods	OE	3	0	0	3	40	60	100
3	22MAOE03	Probability and Queuing Theory	OE	3	0	0	3	40	60	100
	I	COURSES OFFERED BY THE DEPARTI	MENT (OF CIV	IL EN	GINEH	ERING	r		L
4	22CEOE01	Environmental Management	OE	3	0	0	3	40	60	100
5	22CEOE02	Disaster Mitigation and Management	OE	3	0	0	3	40	60	100
6	22CEOE03	Repair and Rehabilitation of Building Elements	OE	3	0	0	3	40	60	100
7	22CEOE04	Mechanics of Deformable bodies	OE	3	0	0	3	40	60	100
	COURSES	OFFERED BY THE DEPARTMENT OF (COMPU	TER S	CIENO	CE ANI	D ENG	INEER	ING	
8	22CSOE01	Object Oriented Programming Using C++	OE	3	0	0	3	40	60	100
9	22CSOE02	Operating Systems	OE	3	0	0	3	40	60	100
10	22CSOE03	Computer Networks	OE	3	0	0	3	40	60	100
11	22CSOE04	Python Programming	OE	3	0	0	3	40	60	100
12	22CSOE05	Java Programming	OE	3	0	0	3	40	60	100
13	22CSOE06	Computer Organization and Architecture	OE	3	0	0	3	40	60	100
14	22CSOE07	Data Structures Using C++	OE	3	0	0	3	40	60	100
15	22CSOE08	Neural Networks	OE	3	0	0	3	40	60	100
16	22CSOE09	Soft Computing	OE	3	0	0	3	40	60	100
CO	URSES OFFEI	RED BY THE DEPARTMENT OF ELECT	RONICS	S AND	COM	MUNIC	CATIO	N ENGI	INEER	ING
17	22ECOE01	Fundamentals of Electron Devices	OE	3	0	0	3	40	60	100
18	22ECOE02	Principles of Modern Communication Systems	OE	3	0	0	3	40	60	100
19	22ECOE03	Microcontrollers and its applications	OE	3	0	0	3	40	60	100
20	22ECOE04	Computer Networks	OE	3	0	0	3	40	60	100
21	22ECOE05	Basics of Embedded Systems	OE	3	0	0	3	40	60	100
22	22ECOE06	Basics of Internet of Things	OE	3	0	0	3	40	60	100
23	22ECOE07	Artificial Intelligence and Machine Learning	OE	3	0	0	3	40	60	100
(COURSES OFI	FERED BY THE DEPARTMENT OF ELE	CTRICA	L AN	D ELE	CTRO	NICS	ENGINE	ERIN	G
24	22EEOE04	Renewable Energy Sources	OE	3	0	0	3	40	60	100
25	22EEOE05	Industrial Drives	OE	3	0	0	3	40	60	100
26	22EEOE06	Energy Conservation and Management	OE	3	0	0	3	40	60	100
27	22EEOE07	Electric Vehicles	OE	3	0	0	3	40	60	100

	COURSES OFFERED BY THE DEPARTMENT OF MECHANICAL ENGINEERING												
28	22MEOE01	Design of Machine Elements and Machining	OE	3	0	0	3	40	60	100			
29	22MEOE02	Industrial Engineering	OE	3	0	0	3	40	60	100			
30	22MEOE03	Industrial Robotics	OE	3	0	0	3	40	60	100			
31	22MEOE04	Power plant Engineering	OE	3	0	0	3	40	60	100			
32	22MEOE05	Principles of Management	OE	3	0	0	3	40	60	100			
33	22MEOE06	Professional Ethics in Engineering	OE	3	0	0	3	40	60	100			
34	22MEOE07	Renewable Sources of Energy	OE	3	0	0	3	40	60	100			
35	22MEOE08	Robotic Process Automation	OE	3	0	0	3	40	60	100			
36	22MEOE09	Total Quality Management	OE	3	0	0	3	40	60	100			
	COUR	SES OFFERED BY THE DEPARTMENT	OF MET	ſALLU	JRGIC	AL EN	IGINE	ERING					
37	22MTOE01	Foundry and Welding Technology	OE	3	0	0	3	40	60	100			
38	22MTOE02	Surface Engineering	OE	3	0	0	3	40	60	100			
39	22MTOE03	Design and Selection of Materials	OE	3	0	0	3	40	60	100			
40	22MTOE04	Nano Science and Technology	OE	3	0	0	3	40	60	100			
41	22MTOE05	Materials for Automobile Components	OE	3	0	0	3	40	60	100			

B.E – HONOURS PROFESSIONAL ELECTIVE COURSES – VERTICALS

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B.Tech. (Honours) or Minor Degree. For B.E. / B. Tech. (Honours). A student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only. For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes.

Vertical - I	Vertical - II	Vertical - III
Clean and Green Energy Technologies	Computational Engineering	Product and Process Development
22MEH101 Hydrogen and Fuel Cell Technologies	22MEH201 Numerical methods in Mechanical Engineering	22MEH301 Precision Engineering
22MEH102 Thermal Management of Electric Vehicle Battery Systems	22MEH202 Advanced Fluid Mechanics	22MEH302 Advanced Materials Technology
22MEH103 Electric and Hybrid Vehicle Technology	22MEH203 Fundamentals of Bio-Mechanics	22MEH303 Additive Manufacturing
22MEH104 Alternate Fuels for IC Engines	22MEH204 Introduction to Machine Learning	22MEH304 Non Destructive Testing and Failure Analysis
22MEH105 Advanced Energy Storage Technologies	22MEH205 Design Optimization and Design Theory	22MEH305 Product Life Cycle Management
22MEH106 Solar Power Plants	22MEH206 Advanced Finite Element Methods	22MEH306 Ergonomics in Design
22MEH107 Materials for Solar Devices	22MEH207 Advanced Computational Fluid Dynamics	22MEH307 Surface Engineering
22MEH108 Design of Solar and Wind Systems	22MEH208 Smart Materials and Structures	22MEH308 Industrial Layout Design and Safety
22MEH109 Fire Engineering and Explosion Control	22MEH209 Design of Pressure vessels	22MEH309 Digital Manufacturing and IOT
22MEH110 Energy Management and Environmental Benefits	22MEH210 Mechanical Vibrations	22MEH310 Smart Mobility and Intelligent vehicles

PROFESSIONAL ELECTIVE COURSES – VERTICALS VERTICAL I - CLEAN AND GREEN ENERGY TECHNOLOGIES

S.	Cada Na	Courses Title		Hours	/Week		Max	kimum	Marks
No.	Code No.	Course Thie	L	Т	Р	С	CA	FE	Total
1.	22MEH101	Hydrogen and Fuel Cell Technologies	3	0	0	3	40	60	100
2.	22MEH102	Thermal Management of Electric Vehicle Battery Systems	3	0	0	3	40	60	100
3.	22MEH103	Electric and Hybrid Vehicle Technology	3	0	0	3	40	60	100
4.	22MEH104	Alternate Fuels for IC Engines	3	0	0	3	40	60	100
5.	22MEH105	Advanced Energy Storage Technologies	3	0	0	3	40	60	100
6.	22MEH106	Solar Power Plants	3	0	0	3	40	60	100
7.	22MEH107	Materials for Solar Devices	3	0	0	3	40	60	100
8.	22MEH108	Design of Solar and Wind Systems	3	0	0	3	40	60	100
9.	22MEH109	Fire Engineering and Explosion Control	3	0	0	3	40	60	100
10.	22MEH110	Energy Management and Environmental Benefits	3	0	0	3	40	60	100

VERTICAL II - COMPUTATIONAL ENGINEERING

S.	Codo No	Course Title		Hours	/Week		Maximum Marks			
No.	Code No.	Course Thie	L	Т	Р	С	CA	FE	Total	
1.	22MEH201	Numerical methods in Mechanical Engineering	3	0	0	3	40	60	100	
2.	22MEH202	Advanced Fluid Mechanics	3	0	0	3	40	60	100	
3.	22MEH203	Fundamentals of Bio-Mechanics	3	0	0	3	40	60	100	
4.	22MEH204	Introduction to Machine Learning	3	0	0	3	40	60	100	
5.	22MEH205	Design Optimization and Design Theory	3	0	0	3	40	60	100	
6.	22MEH206	Advanced Finite Element Methods	3	0	0	3	40	60	100	
7.	22MEH207	Advanced Computational Fluid Dynamics	3	0	0	3	40	60	100	
8.	22MEH208	Smart Materials and Structures	3	0	0	3	40	60	100	
9.	22MEH209	Design of Pressure vessels	3	0	0	3	40	60	100	
10.	22MEH210	Mechanical Vibrations	3	0	0	3	40	60	100	

S.	Codo No			Hours	/Week	Maximum Marks			
NO.	Code No.	Course Title	L	Т	Р	С	CA	FE	Total
1.	22MEH301	Precision Engineering	3	0	0	3	40	60	100
2.	22MEH302	Advanced Materials Technology	3	0	0	3	40	60	100
3.	22MEH303	Additive Manufacturing	3	0	0	3	40	60	100
4.	22MEH304	Non Destructive Testing and Failure Analysis	3	0	0	3	40	60	100
5.	22MEH305	Product Life Cycle Management	3	0	0	3	40	60	100
6.	22MEH306	Ergonomics in Design	3	0	0	3	40	60	100
7.	22MEH307	Surface Engineering	3	0	0	3	40	60	100
8.	22MEH308	Industrial Layout Design and Safety	3	0	0	3	40	60	100
9.	22MEH309	Digital Manufacturing and IOT	3	0	0	3	40	60	100
10.	22MEH310	Smart Mobility and Intelligent vehicles	3	0	0	3	40	60	100

VERTICAL III - PRODUCT AND PROCESS DEVELOPMENT

S.	Codo No	Course Title		Hours	/Week	Maximum Marks			
No.	Code No.	Course Title	L	Т	Р	С	CA	FE	Total
1.	22MEM01	Engineering Thermodynamics	3	0	0	3	40	60	100
2.	22MEM02	Fluid Mechanics and Machinery	3	0	0	3	40	60	100
3.	22MEM03	Manufacturing Processes	3	0	0	3	40	60	100
4.	22MEM04	Materials Engineering	3	0	0	3	40	60	100
5.	22MEM05	Kinematics of Machinery	3	0	0	3	40	60	100
6.	22MEM06	Hydraulics and Pneumatics	3	0	0	3	40	60	100
7.	22MEM07	Design of Machine Elements	3	0	0	3	40	60	100
8.	22MEM08	Heat and Mass Transfer	3	0	0	3	40	60	100
9.	22MEM09	Metrology and Quality Control	3	0	0	3	40	60	100
10.	22MEM10	Dynamics of Machinery	3	0	0	3	40	60	100

DEPARTMENT OF MECHANICAL ENGINEERING MINOR DEGREE COURSES - VERTICALS

B.E MECHANICAL ENGINEERING - FULL TIME

REGULATION 2022 – SYLLABUS

SEMESTER-I

22MC101	SEMESTER I					
PRE-REQU	ISITE	Category	MC	Cre	edit	0
		11 / 11 / -	L	Т	Р	ТН
	0	0	0	0		
INDUCTIO	N PROGRAM (MANDATORY) - 3 WEEKS DURATION		•			•
LIST OF EX	VPERIMENTS					
• Physi	cal activity.					
Creat	ive Arts.					
• Univ	ersal Human Values.					
• Litera	ary.					
Profi	ciency Modules.					
• Lectu	res by Eminent People.					
Visits	s to local Areas.					
• Fami	liarization to Dept./Branch & Innovations.					
			Γ	'otal	= 21	Days

22M	A101	MATRICES, CALCULUS AND ORDINARY DIFFE EQUATION	RENTIAL	SEMESTER I						
PRE	-REQU	ISITE:	Category	BS	Cre	dit	4			
	1.0th 1		** /**/ *	L	Т	Р	TH			
Basic	: 12 ^m leve	I Matrices, Differential Calculus, Integral Calculus and ODE.	Hours/Week	3	1	0	4			
Cou	rse Obje	ctives:								
1.	To know	w the use of matrix algebra needed by engineers for practical applica	tions.							
2.	To unde	erstand effectively both the limit definition and rules of differentiation	n.							
3.	To fam	iliarize in solving maxima and minima problems in two variables.								
4.	To obta	in the knowledge of multiple integrations and their related application	ons.							
5.	To obta	in the knowledge to solve second order differential equations with co	onstant and variab	le coeff	icients					
U	nit I	MATRICES		9	3	0	12			
Hami ortho	ilton theo gonal trai	rem (excluding proof) – Diagonalization of Matrices - Reductions formation.	on of quadratic fo	orm to	canoni	cal fo	orm by			
Uı	nit II	DIFFERENTIAL CALCULUS		9	3	0	12			
Repre funct	esentation ion of a si	of functions - Limit of a function - Continuity - Derivatives - Diffeingle variable.	rentiation rules - 1	Maxima	and M	linima	a of the			
Un	it III	FUNCTIONS OF SEVERAL VARIABLES)	9	3	0	12			
Partia point	al derivati - – Metho	ves – Euler's theorem for homogenous functions – Total Derivative d of Lagrangian multipliers- Taylor's series.	es -Jacobians – M	axima,	Minim	a and	Saddle			
Un	it IV	MULTIPLE INTEGRALS		9	3	0	12			
Multi Polar	iple integ) – Applie	rals- Double integrals – Change of order of integration in double i cation to Areas – Evaluation of Triple integrals – Application to volu	ntegrals – Change imes.	e of var	iables	(Carte	sian to			
Uı	nit V	ORDINARY DIFFERENTIAL EQUATION	S	9	3	0	12			
Secon Legen coeff	Second-order linear differential equations with constant and variable coefficients –Cauchy-Euler equation and Cauchy-Legendre's linear equation - Method of variation of parameters –Simultaneous first order linear equations with constant coefficients.									
	Total (45L+15T) = 60 Periods									

Text	Books:
1.	Grewal. B.S, "Higher Engineering Mathematics", 43 rd Edition, KhannaPublications, Delhi, 2015.
2.	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", 3rd Edition, Narosa Publications, New Delhi, 2007.
Refe	rence Books:
1.	James Stewart, "Essential Calculus", 2 nd Edition Cengage Learning, New Delhi, 2014.
2.	P. Kandasamy, K. Thilagavathy and K. Gunavathy," Engineering Mathematics (For I year B.E., B. Tech)", 9th Edition, S. Chand & Co. Ltd. New Delhi, 2010.
3.	Srimanta pal and Subath.C. Bhumia, "Engineering Mathematics", Oxford university publications, New Delhi, 2015
4.	Ewinkreyzig, "Advanced Engineering Mathematics", 9th edition, John Wiley & Sons, 2007.
5.	Siva RamakrishnaDas.P, Ruknmangadachari.E. "Engineering Mathematics", 2 nd edition, Pearson, Chennai & Delhi, , 2013.

COUF Upon c	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Learn the fundamental knowledge of Matrix theory.	Understand
<i>CO2</i>	Use both the limit definition and rules of differentiation to differentiable functions.	Apply
CO3	Apply differentiation to solve maxima and minima problems.	Apply
<i>CO4</i>	Apply integration to compute multiple integrals, area, volume, integrals in polar coordinates, in addition to a change of order and change of variables.	Apply
<i>C05</i>	Apply various techniques in solving differential equations.	Apply

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
			3/2	/ 1 – in/	dicates	strengt	h of cor	relatio	n (3 – H	ligh, 2 –	Medium	, 1 – Lov	v)		

220	CY101	ENGINEERING CHEMISTRY		SEMESTER I							
PR	E-REQ	UISITE:	Category	BS	Cre	edit	4				
Pa	sia Chan	alatar	Hours/Wook	L	Т	Р	С				
Das		liisti y	Hours/ week	3	1	0	4				
Co	urse Ob	jectives:									
1.	Basic P	rinciples of Spectroscopy and their applications.									
2.	Knowle	dge of different methods for water analysis and purification & N	Vanomaterial and its	applicat	ion.						
3.	Various	adsorption technics and basic knowledge of Phase equilibria.									
4.	4. Principles of electrochemistry, electrochemical cells, corrosion, and its control.										
5. Basis of polymer preparations and applications and enhancement of the quantity and quality of fuels.											
U	J nit I	SPECTROSCOPIC TECHNIQUES		9	3	0	12				
inst Flai prin	Beer-Lambert's law (problem) -UV visible spectroscopy: Principle, Chromophores, auxochrome, electronic transitions and instrumentation (No applications). IR spectroscopy: Principles -instrumentation and applications of IR in H ₂ O, and CO ₂ . Flame photometry -principle -instrumentation -estimation of sodium by flame photometer. Atomic absorption spectroscopy - principles -instrumentation -estimation of nickel by atomic absorption spectroscopy.										
U	nit II	WATER TECHNOLOGY AND NANO TECH	NOLOGY	9	3	0	12				
con Nar thei	ditioning) no chemis	external treatment – Ion exchange process, zeolite process – de stry – preparations and properties of nanomaterials – nanorods ion.	esalination of bracki – nanowires – nano	sh water otubes –	– Rever	rse Osmo nano tub	bes and				
U	nit III	SURFACE CHEMISTRY AND PHASE EQU	ILIBRIA	9	3	0	12				
Ads Free	sorption: ' undlich's	Types of adsorption – adsorption of gases on solids – adsorptio adsorption isotherm – Langmuir's adsorption isotherm.	n of solute from sol	utions –	adsorpti	ion isoth	erms –				
Pha ther	se rule: 1 mal analy	Introduction, definition of terms with examples, one compon- ysis and cooling curves – two component systems – lead-silver s	ent system -water s system – Pattinson p	system – rocess.	- reduce	d phase	rule –				
U	nit IV	ELECTROCHEMISTRY		9	3	0	12				
Elec Elec and phy Typ exp met	Electrode Potential- Oxidation and Reduction Potentials - Electrochemical series – Significance and application - Electrochemical cell, Cell potential, derivation of Nernst equation for single electrode potential, numerical problems on E, E_0 , and E_{cell} - numerical problems. Electrochemical theory of corrosion with respect to iron. Factors influencing the corrosion rate: physical state of the metal, nature of the metal, area effect, over voltage, pH, temperature, and nature of the corrosion product. Types of corrosion: galvanic series; (i) Differential aeration corrosion- oxygen concentration cell, (ii) Stress corrosion-explanation-caustic embrittlement. Corrosion control by i) Cathodic protection- sacrificial anode and impressed current methods i) Protective coatings metal coatings galvanizing and tinging										
U	nit V	POLYMERS AND FUELS		9	3	0	12				
Poly mec PET Fue and	Polymers – definition – polymerization – types – addition and condensation polymerization – free radical polymerization mechanism – plastics, classification – preparation, properties and uses of PVC, Teflon, polycarbonate, polyurethane, nylon-6,6, PET – Rubber- vulcanization of rubber, synthetic rubbers – butyl rubber, SBR – biopolymers – Nylon-2-Nylon-6 and PHBV Fuels - classification with examples, calorific value-classification (HCV & LCV), and determination of calorific value of solid and liquid fuels using Bomb calorimeter- Petroleum cracking -fluidized bed catalytic cracking. Knocking in IC engine, its ill										
ette	ects and p	revention of knocking. Anti-knocking agent: Leaded and unlead	ea petrol.				• =				
			To	tal (45)	L+15T)	= 60 P	eriods				

Tex	xt Books:
1.	S. S. Dara and S. S. Umare, —A Textbook of Engineering Chemistry S. Chand & Company LTD, New Delhi, 2015
2.	P. C. Jain and Monika Jain, —Engineering Chemistry Dhanpat Rai Publishing Company (P) LTD, New Delhi, 2015
3.	S. Vairam, P. Kalyani and Suba Ramesh, —Engineering Chemistry Wiley India PVT, LTD, New Delhi, 2013.
Ref	ference Books:
1.	Friedrich Emich, -Engineering Chemistry Scientific International PVT, LTD, New Delhi, 2014.
2.	PrasantaRath, —Engineering Chemistry Cengage Learning India PVT, LTD, Delhi, 2015.
3.	ShikhaAgarwal, — Engineering Chemistry-Fundamentals and Applications Cambridge University Press, Delhi, 2015.
E-F	References:
1	www.onlinecourses.nptel.ac.in/
2	www.ePathshala.nic.in

COUR Upon c	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Recall the basic principles of spectroscopy and their applications	Remember
<i>CO2</i>	Paraphrase the different methods for water analysis & purification and Nanomaterial & its applications	Understand
СО3	Apply the various adsorption technics and basic knowledge of Phase equilibria	Apply
<i>CO4</i>	Integrate the principles of electrochemistry, electrochemical cells, corrosion, and its control	Create
<i>C05</i>	Assess the basis of polymer preparations & applications and enhancement of the quantity & quality of fuels.	Evaluate

COU	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	0	3	0	0	0	0	0	0	0	0	3	1	1
CO2	3	2	0	1	0	2	0	0	0	0	0	0	3	1	1
CO3	3	1	0	1	0	0	0	0	0	0	0	0	2	1	1
CO4	2	1	0	1	0	2	0	0	0	0	0	0	2	3	2
CO5	3	2	0	3	0	2	0	0	0	0	0	0	1	1	1
Avg	2.8	1.8	0	1.8	0	1.2	0	0	0	0	0	0	2.2	1.4	1.2
			3/2	/ 1 – in	dicates	strengt	h of cor	relation	n (3 – H	ligh, 2 – 1	Medium	, 1 – Low	7)		

22EE101 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING SEMESTER											
PRI	E-REQU	JISITE	Category	ES	Cre	edit	4				
			TT /TT / I -	L	Т	Р	С				
			Hours/ week	3	1	0	4				
Cou	ırse Obj	ectives:									
1.	To unde	erstand and analyze basic electric circuits.									
2.	2. To study working principle of electrical machines and transformer.										
3.	3. To study basics of electronic devices and operational amplifier.										
4. To understand the concepts of electrical installations.											
UN	NIT I	DC CIRCUITS		9	3	0	12				
Elec circu and	Electrical circuit elements (R, L and C) - Voltage and current sources - Ohm's law and Kirchoff's laws- Series and parallel circuits - Analysis of simple electrical circuits with DC excitation using fundamental laws – Superposition theorem, Thevenin's and Norton's theorems.										
UN	II TI	AC CIRCUITS		9	3	0	12				
repro react	esentation tive pownections.	1- Analysis of single-phase ac circuits consisting of RL, RC, er, apparent power, power factor. Three phase AC circuit	RLC combinations ts, voltage and cur	(series a rent rela	nd parall tions in	el), real star and	power, d delta				
UN	IT III	ELECTRICAL MACHINES AND TRANSFO	ORMERS	9	3	0	12				
DC three trans	Motor: C e-phase in sformer, G	Construction, operation, types and applications, Speed control nduction motors - Working of single-phase induction motor an Construction and working, losses and efficiency in transformer	l of DC shunt moto d its applications – ' 's, Introduction to Th	r - Cons Transfor tree phas	truction mers: Ide se transfo	and wor al and pormers	king of ractical				
UN	IT IV	BASICS ELECTRONICS SYSTEM	[9	3	0	12				
Intro CB, Inve	oduction CC con rting Am	- Basic structure of semiconductors devices- PN junction dio figuration and working principle. Operational Amplifier-pr plifier, Non inverting Amplifier, summing amplifier and differ	ode, Zener diode and inciple of operation rential amplifier.	d V-I chan, Chara	aracterist	tics- BJT , Applic	T – CE, cations-				
UN	NIT V	ELECTRICAL INSTALLATIONS		9	3	0	12				
Com of he Intro	Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB - Types of wires and cables – Earthing - Basics of house wiring tools and components, types of house wiring – Batteries: Principle Characteristics-Types and its applications - Introduction to UPS and SMPS.										
			Т	otal (45	L+15T	= 60 P	eriods				

Te	xt Books:
1.	Muthu Subramaniyam, R., Salivaganan, R., and Muralidharan, K. A., "Basic Electrical and Electronics Engineering", Second Edition, Tata McGraw Hill, 2010.
2.	Kothari, D. P., and Nagrath, I. J., "Basic Electrical Engineering", Tata McGraw Hill, 2010.
3.	Kulshreshtha, D.C., "Basic Electrical Engineering", Tata McGraw Hill, 2009.
Re	ference Books:
1.	Bobrow, L. S., "Fundamentals of Electrical Engineering", Oxford University Press, 2011.
2.	Hughes, E., "Electrical and Electronics Technology", Pearson, 2010.

COUR Upon c	Bloom's Taxonomy Mapped	
CO1	Analyze the DC circuits using fundamental laws and theorems.	Analyze
<i>CO2</i>	Analyze the single and three phase AC circuits.	Analyze
СО3	Recognize the working principle of electrical machines and transformers.	Understand
<i>CO4</i>	Recognize the fundamentals and characteristics of diode, BJT and operational amplifier.	Understand
<i>C05</i>	Demonstrate the concept of electrical installations.	Apply

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO2	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO3	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
CO4	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
CO5	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
Avg	1	0.4	0	0	0	0	0	0	0	0	1	1	0	0	0
			3/2	/ 1 – in	dicates	strengt	h of cor	relation	n (3 – H	ligh, 2 –	Medium	, 1 – Lov	v)		

22M	E101	ENGINEERING GRAPHICS AND DE	SIGN		SEMESTER I							
PRE	-REQ	UISITE:	Category	ES	Cr	edit	3					
1. Stu	idents sl	nould know about the basics of drawings.	TT / T T	L	Т	Р	ТН					
2. Stu	idents s	nould be able to construct geometric shapes.	1	0	4	5						
Cour	rse Ob	jectives:		1								
1.	1. To impart knowledge on graphical skills for communications of concepts, ideas and design of engineering products and to provide exposure to design.											
2.	2. To expose them to existing national standards related to technical drawings.											
3.	To un	derstand the basics of points, lines, planes and solids.										
4.	To un	derstand the basics of the surface of object.										
5.	To ex	pose them to isometric and perspective views of simple solids	5.									
UN	IT I	PROJECTION OF POINTS, LINES AND PLAN	E SURFACES	3	0	12	15					
Gener locate circul	General principles of orthographic projection- Projection of points, located in all quadrants – Projection of straight lines located in the first quadrant – Determination of true lengths and true inclinations – Projection of polygonal surface and circular lamina inclined to both reference planes.											
UNI	IT II	PROJECTION OF SOLIDS		3	0	12	15					
Proje also i	ction of nclined	simple solids like prisms, pyramids, cylinder and cone when to one reference plane by change of position method.	the axis is perpend	dicular to	one refe	erence pl	ane and					
UNI	T III	SECTION OF SOLIDS AND DEVELOPMENT O	F SURFACES	3	0	12	15					
Section other Devel latera	oning of – solids lopmen l surfac	f above solids in a simple vertical position by cutting planes sinclined position with cutting planes parallel to one reference t of lateral surfaces of simple and truncated solids – Prism es of solids with square and cylindrical cutouts, perpendicular	inclined to one refe e plane- Obtaining ns, pyramids cyline r to the axis.	erence pla true shap ders and	ane and pe of the cones-	perpendi section. Developi	cular to ment of					
UNI	TIV	ORTHOGRAPHIC AND ISOMETRIC PRO	JECTION	3	0	12	15					
Ortho dimen	ographic nsional	Projection - Visualization concepts and Freehand sketching objects - Layout of views - Freehand sketching of multiple views	- Visualization pri ews from pictorial	nciples - views of	Represe object.	ntation c	of three-					
Princ: cylind	iples of ders and	isometric projection – isometric scale - isometric project cones.	ions of simple sol	lids, trun	cated pr	isms, py	ramids,					
UN	IT V	PERSPECTIVE PROJECTION		3	0	12	15					
Persp	ective p	rojection of prisms, pyramids and cylinders by visual ray and	l vanishing point m	ethods.								
]	Fotal (1	5L+60P) = 75 F	Periods					
-												

Text	Books:								
1.	Bhatt, N.D.,Panchal V M and Pramod R. Ingle, "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2014.								
2.	Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015								
Refe	Reference Books:								
1.	Agrawal, B. and Agrawal C.M., "Engineering Drawing", Tata McGraw, N.Delhi, 2008.								
2.	Gopalakrishna, K. R., "Engineering Drawing", Subhas Stores, Bangalore, 2007.								
3.	Natarajan, K. V., "A text book of Engineering Graphics", 28thEd., Dhanalakshmi Publishers, Chennai, 2015.								
4.	Shah, M. B., and Rana, B. C., "Engineering Drawing", Pearson, 2 nd Ed., 2009.								
5.	Venugopal, K. and Prabhu Raja, V., "Engineering Graphics", New Age,2008.								

E-Re	E-References:								
1.	https://nptel.ac.in/courses/112102304								
2.	https://home.iitk.ac.in/~anupams/ME251/EDP.pdf								
3.	https://static.sdcpublications.com/pdfsample/978-1-58503-610-3-1.pdf								

COUF Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Familiarize with the fundamentals and standards of engineering graphics.	Understand					
<i>CO2</i>	Ability to understand the fundamental concepts of projection of points, lines and planes.	Analyze					
СО3	Project the solids and section of solids.	Analyze					
<i>CO4</i>	Familiarize and develop the lateral surfaces of solids	Analyze					
<i>C05</i>	Visualize and project the orthographic, isometric and perspective sections of simple solids.	Analyze					

COURSE ARTICULATION MATRIX															
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO2	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO3	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO4	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
CO5	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
Avg	3	1	0	0	0	0	0	0	0	0	0	0	3	1	0
			3 / 2	2 / 1 – ii	ndicates	strengt	h of coi	relation	n (3 – H	igh, 2 – N	Medium,	1 - Low)		

22C	S101	PROBLEM SOLVING AND C PROGRAMM	AING		SEMESTER I								
PRE	-REQ	UISITE	Category	ES	Cre	edit	3						
			H	L	Т	Р	С						
			Hours/Week	3	0	0	3						
Cou	Course Objectives:												
1.	1. To use general problem-solving techniques to device solutions to problems												
2.	2. To understand the input-output relations of software involved in developing and converting a C program to an executable code.												
3.	3. To provide complete knowledge about the programming concepts of C language.												
UN	IT I	SYSTEM SOFTWARE, PROBLEM SOLVING PROGRAMMING	, AND C	9	0	0	9						
High Load	High level programming language – Machine level language – role of system software (Editor, Compiler, Assembler, Linker, Loader, and Operating System) in developing and executing a C program												
C Pro Varia Opera	ogramn ibles ai ators –	ning: Character set – Case sensitivity – Identifiers – Keywords nd their associated information – Formed and unformed conso Precedence and Associativity – Pre-processor directives (#include	–Literals – Data le input-output st le and #define) – t	types – atement he main	Declara s – Typ () funct	tion stat e conve ion	rsion –						
Gene only	General problem-solving Techniques: Algorithm – Flow-chart – Pseudocode – Developing solution for problems involving only operators and writing their equivalent C programs.												
UNI	IT II	CONTROL STATEMENTS		9	0	0	9						
Gene stater and F	ral pro nent: f seudoc	blem-solving Techniques: Representing Decision making: if-el or loop, while loop and do-while loop – Branching statements: code	se statement – sw break and continu	vitch-cas ue with	e statem Algorith	nent – L m, Flow	ooping /-chart,						
while	e loop –	- Branching statements: break and continue – Nesting	- Looping stateme	int: for fo	oop, wiii	ie loop a	and do-						
Deve equiv	loping valent C	solutions for problems involving control statements using C programs	General problem	-solving	technic	ques an	d their						
UNI	T III	ARRAYS, POINTERS, AND STRINGS		9	0	0	9						
One- Proce Deve	dimens essing - loping	ional and two-dimensional Arrays: Declaration– Initialization – - relation between pointers and arrays – Strings – String operation solutions for problems involving arrays, pointers and strings using	Processing – Point n – C Library supp ng General problem	ters:Decl port for s m-solvir	laration- tring han ng Techr	- Initializ ndling niques ar	zation -						
equiv	alent C	2 programs.					_						
UNI	TIV	FUNCTIONS		9	0	0	9						
Funct mech	tion – l anisms	Library functions and user-defined functions – Function prototy – Recursion – Storage classes – Working with multiple source f	pes and function of the second s	definitio	ns – Par	ameter]	passing						
Deve progr	loping ams.	solutions for problems involving functions using General pro	blem-solving tech	nniques	and thei	r equiva	alent C						
UNI	T V	STRUCTURES, UNIONS AND FILE		9	0	0	9						
Struc Point	ture: d ers to s	eclaration – definition - Structure within a structure – Passing structures-Union - File operation: reading and writing/appending	structures to fur to binary and text	nctions - files.	- Array	of struc	tures –						
					Total	= 45 P	eriods						
L													

Text	Books:
1.	Balagurusamy E, "Programming in ANSI C", Tata McGraw-Hill, 8th Edition, 2022.
2.	Yashvant P. Kanetkar, "Let Us C", BPB Publications, 2016.
Refe	rence Books:
1.	Venugopal, "Mastering C", Second Edition", Tata McGraw-Hill. 2006
2.	R. G. Dromey, "How to solve it by computers", Prentice Hall, 2007
3.	Greg Perry and Dean Miller, "C Programming Absolute Beginner's Guide", Third Edition, Que Publishing, 20123
4.	Brain W.Kernighan and Ritchie Dennis, "The C Programming Language", Second Edition, Pearson, 1988.
E-R	eference:
1.	https://www.learn-c.org/
2.	https://www.programiz.com/c-programming

COUF Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:								
С01	Explain the concepts of C Programming and roles of system software in programming	Remember & Understand							
<i>CO2</i>	Use general problem-solving techniques to develop solution to problems	Apply							
СОЗ	Apply the concepts of C Programming to develop solutions by writing C programs	Apply& Analyze							

COUI	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3	0	0	0	0	0	0	0	0	3	1	0	0
CO2	2	1	3	0	2	0	0	0	0	0	0	3	2	0	0
CO3	2	1	3	0	2	0	0	0	0	0	0	3	3	0	0
Avg	2	1	3	0	1.3	0	0	0	0	0	0	3	2	0	0
			3 / 2 /	′ 1 – ind	licates s	strengtl	n of cor	relatio	n (3 – H	ligh, 2 –	Medium	, 1 – Lov	v)		

22MC102	தமிழர்மரபு	Semester I													
PREREQU ISITES	Category	HSMC	C	redi	t	1									
Basics of	Hours/Week	L	Т]	P	TH									
1 21111	Hours/ week	0		0	1										
அலகு I	மொழி மற்றும் இலக்கியம்	3	0		0	3									
இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் – சங்க இலக்கியத்தின் சமயச்சார்பற்றதன்மை – சங்கஇலக்கியத்தில்பகிர்தல்அறம் – திருக்குறளில்மேலாண்மைக்கருத்துக்கள் – தமிழ்க்காப்பியங்கள், தமிழகத்தில்சமணபௌத்தசமயங்களின்தாக்கம்–பக்திஇலக்கியம், ஆழ்வார்கள்மற்றும்நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில்நவீனஇலக்கியத்தின்வளர்ச்சி – கமிம்லெக்கியவளர்ச்சியில்பாரகியார்மற்றும்பாரகிகாசன்அகியோரின்பங்களிப்ப															
அலகு II	மரபு – பாறைஓவியங்கள்முதல்நவீன ஓவியங் வரைசிற்பக்கலை	கள்	3	0	0	3									
நடுகல்முதல் பழங்குடியி தேர்செய்யு குமரிமுனை நாதஸ்வரம்	ல்நவீனசிற்பங்கள்வரை – ஜம் னர்மற்றும்தயாரிக்கும்கைவினைப்பொருட்கள், ம்கலை – சுடுமண்சிற்பங்கள் – ாயில்திருவள்ளுவர்சிலை- இசைக்கருவிகள் – மிரு – தமிழர்களின்சமூகபொருளாதாரவாழ்வில்கோவ	பொன் நாட தங்கய் பில்களி	ாசின பொட ட்டுப்ப ந், பஎ ின்பா	லச ப்ன புறத றற, ங்கு	ள் மச த்தெ வீ	 தய்வங்கள்- ணை, யாழ்,									
அலகு III	நாட்டுப்புறக்கலைகள்மற்றும்வீரவிளையாட்டு	கள்	3	0	0	3									
தெருக்கூத்த தோல்பானை	த, கரகாட்டம், வில்லுப்பாட்டு, கணிı வக்கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழ	பான்க ர்களில	ூத்து, ர்வில	നെ	ஒ யா	விலாட்டம், ட்டுகள்.									
அலகு IV	தமிழர்களின்திணைக்கோட்பாடுகள்		3	0	0	3									
தமிழகத்தில தொல்காப்ப தமிழர்கள் – சங்ககால கடல்கடந்த	ன்தாவரங்களும், விலங்குக பியம்மற்றும்சங்கஇலக்கியத்தில்அகம்மற்றும்புறக பாற்றியஅறக்கோட்பாடு – சங்ககாலத்தில்தமிழக நகரங்களும்துறைமுகங்களும் – சங்ககாலத்தில் நாடுகளில்சோழர்களின்வெற்றி.	ளும் க்கோட் த்தில் ஏற்றும	பாடு எழுத் திமற்	கள் தறி ற்று	ா வெப் ம்இ	_ _ றக்குமதி _									
அலகு V	இந்தியதேசியஇயக்கம்மற்றும்இந்தியபண்பா ற்குத்தமிழர்களின்பங்களிப்பு	ாட்டி	3	0	0	3									
இந்தியவிடு இந்தியாவில இந்தியமரு தமிழ்ப்புத்த	இந்தியவிடுதலைப்போரில்தமிழர்களின்பங்கு இந்தியாவின்பிறப்பகுதிகளில்தமிழ்ப்பண்பாட்டின்தாக்கம் – சுயமரியாதைஇயக்கம் – இந்தியமருத்துவத்தில், சித்தமருத்துவத்தின்பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் – கமிழ்ப்பக்கதங்களின்அச்சுவாலாறு														
				1	Total= 15 Periods										

]	Cext Books / Reference Books:
1	தமிழகவரலாறு – மக்களும்பண்பாடும் – கே. கே. பிள்ளை (வெளியீடு :தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்.
2	கணினித்தமிழ் – முனைவர்இல.சுந்தரம்.(விகடன்பிரசுரம்)

3 கீழடி – வைகைநதிக்கரையில்சங்ககாலநகரநாகரிகம்(தொல்லியல்துறைவெளியீடு)

4 பொருநை – ஆற்றங்கரைநாகரிகம்(தொல்லியல்துறைவெளியீடு)

22MC102	HERITAGE OF TAMILS		Seme	ester I						
PREREQUISITE	S	Category	BS	Cre	edit	1				
Basics of Tamil			L	Т	Р	ТН				
	1	0	0	1						
Unit I	E	3	0	0	3					
3 Language Familie Secular Nature of Sa Tamil Epics and Im minor Poetry - Deve	s in India - Dravidian Languages – Tamil as a Classic angam Literature – Distributive Justice in Sangam Liter pact of Buddhism & Jainism in Tamil Land - Bakthi L lopment of Modern literature in Tamil - Contribution of I	al Language - Cl ature - Manageme iterature Azhwars Bharathiyar and Bl	assical ent Prins and Nanathio	Literatu nciples i Vayanma Ihasan.	ure in T in Thiru ars - Fo	Camil – Ikural - orms of				
Unit II	HERITAGE - ROCK ART PAINTINGS TO M – SCULPTURE	ODERN ART	3	0	0	3				
Hero stone to mode Terracotta sculptures Parai, Veenai, Yazh	ern sculpture - Bronze icons - Tribes and their handic s, Village deities, Thiruvalluvar Statue at Kanyakumari, and Nadhaswaram - Role of Temples in Social and Econo	rafts - Art of tem Making of musica omic Life of Tami	ple ca d instru ls.	r makin 1ments -	g N - Mridh	Aassive angam,				
Unit III	FOLK AND MARTIAL ARTS		3	0	0	3				
Therukoothu, Karag Sports and Games of	attam, VilluPattu, KaniyanKoothu, Oyillattam, Leather Tamils.	puppetry, Silamb	attam,	Valari,	Tiger o	lance -				
Unit IV	THINAI CONCEPT OF TAMILS	5	3	0	0	3				
Flora and Fauna of Tamils - Education a Sangam Age - Overs	Tamils & Aham and Puram Concept from Tholkappiya and Literacy during Sangam Age - Ancient Cities and Po seas Conquest of Cholas.	am and Sangam L orts of Sangam Ag	iteratu e - Exp	re - Ara	am Con Import	cept of during				
Unit V	CONTRIBUTION OF TAMILS TO INDIAN NATIONAL3003MOVEMENT AND INDIAN CULTURE3003									
Contribution of Tam Respect Movement History of Tamil Boo	Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.									
				Total	= 15 P	eriods				

Tex	t Books:
1	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
3	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
4	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies)

5	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology&TamilNadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL)

22EN102 PROFESSIONAL SKILLS LABORATORY SEMESTED												
PRE	-REQU	JISITE	Category	HS	Cr	edit	1					
л ·			TT /TT 1	L	Т	Р	ТН					
Basi	c langu	age skills listening, speaking, reading and writing	Hours/Week	0	0	2	2					
Cou	rse Obj	ectives:			•	•	•					
1.	To ena	ble learners to improve their reading skills										
2.	To mal	ke learners show variations while reading										
3.	To assi	st learners to acquire speaking competency in English										
4.	4. To enable learners to strengthen their fluency in speaking											
UNI	ТІ			0	0	6	6					
Read	ing – Re	ading a short story – learning pronunciation, intonation, and sp	litting of sentences	to form	meanin	gful unit	ts.					
Speal	king – N	arrating a story without any help of handouts.										
UNI	T II			0	0	6	6					
Read	ing – Re	ading a poem – learning the skill of reciting, appreciate rhym	e and music, chang	ge in ton	e as per	the emo	tion of					
the p	oem.											
Speaking – Power-point presentation on a general topic.												
UNI	TIII			0	0	6	6					
Read	ing – Re	ading newspaper article – learning vocabulary and language pa	attern of official con	mmunica	ation.							
Spea	king - Or	al presentation on a topic from basic engineering pertained to	their branch.		1		1					
UNI	T IV			0	0	6	6					
Read	ing – Re	ading dialogue scripts - learning expression, tone, stress and co	o-operative reading	.								
Speal	king –Pro	oposing welcome address, vote of thanks and organizing event	8.	[r	1					
UNI	ΤV			0	0	6	6					
Read Speal book	ing – Rea king – D ing a hall	ading technical descriptions of gadgets – learning the different bescribing a process – everyday technical activities like taking l for meetings etc	parts of devices. g printouts, purchas	sing equ	ipment	for a co	mpany,					
	0				Total	= 30 P	eriods					
Text	Books:	2										
1.	Norma	n Whitby. Business Benchmark – Pre-Intermediate to Interme	diate, Students boo	k, Camb	ridge U	niversity	Press,					
	2014.											
Refe	rence B	Books:										
1.	Readin	ng Fluency. Switzerland, MDPI AG, 2021.										
2.	McJac	obs, Wade. Dare to Read: Improving Your Reading Speed and	skills. Australia, F	riesen P	ress, 202	21						
3.	Hoge,	A. J. Effortless English: Learn to Speak English Like a Native	. United States, Eff	ortless E	Inglish I	LLC, 201	14.					
F-D	forme											
1	https://	/www.talkenglish.com/										
2.	https://	/www.readingrockets.org/										
		<i>o</i>										

COUR	RSE OUTCOMES:	Bloom's Taxonomy				
Upon o	Upon completion of the course, the students will be able to:					
C01	Read passages fluently with good pronunciation	Remember				
<i>CO2</i>	Develop an expressive style of reading	Create				
-						

СО3	Make effective oral presentations in technical and general contexts	Create
<i>CO4</i>	Excel at professional oral communication	Evaluate

COU	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	1	0	0	0	0	2	3	0	1	0	0	1
CO2	0	0	0	1	0	0	0	0	2	3	0	1	0	0	1
CO3	0	0	0	2	0	0	0	0	2	3	0	1	0	0	1
CO4	0	0	0	2	0	0	0	0	2	3	0	1	0	0	3
Avg	0	0	0	1.5	0	0	0	0	2	3	0	1	0	0	1.5
			3/2/	/ 1 – ind	licates s	strengtl	h of cor	relation	n (3 – H	ligh, 2 –	Medium	, 1 – Lov	v)		

22PH103 PHYSICS LABORATORY SEMESTER												
PRE	-REQ	UISITE	Category	BS	Cre	edit	1.5					
			L	Т	Р	ТН						
NIL			0	0	3	3						
Cou	rse Ob	bjectives:			1		1					
1.	To ha	andle different measuring instruments.										
2.	To ui	nderstand the basic concepts of interference, diffraction, heat con	nduction and to me	asure the	e importa	ant para	meters.					
	1	LIST OF EXPERIMEN'	TS									
2 3 4 5 6 7 7 8 8 9 9	. Can . Poi . Spe . Lee . Ult . No . Det 0. Det	rey Foster's bridge – Determination of specific resistance of the iseuille's flow – Determination of the Coefficient of viscosity of ectrometer – Grating – Normal incidence – Determination of Wa e's disc – Determination of thermal conductivity of a Bad condu- trasonic interferometer – Determination of velocity of Ultrasonic on-uniform bending – Determination of young's modulus of the v termination of Band gap of a given semiconductor. termination of Wavelength of laser using grating and determinat termination of Acceptance angle and Numerical Aperture of fibe	material. a liquid. avelength of Mercu ctor. Waves in Liquid. wooden bar. ion of particle size er.	ry lines. using La	aser.							
— (.			Tota	al (45P)	= 45 P	eriods					
Text	BOOK			1.11	D / T	1 001						
1.	C. S.	Robinson, Dr. Ruby Das, 'A Textbook of Engineering Physics I	Practical', Laxmi P	ublicatio	on Pvt. L	.td., 201	6.					
2.	S. Pa	nigrahi, 'Engineering Practical Physics', Cengage Learning Indi	ia, 2015.									
Refe	rence	Books:										
1.	M.N.	. Srinivasan, 'Text Book of Practical Physics', Sultan Chand & S	Sons, 2013									
2.	Singl	h Harman, 'B.Sc. Practical Physics', S Chand & Company Ltd, 2	2022.									

COUF	COURSE OUTCOMES:							
Upon c	Mapped							
C01	Handle different measuring instruments and to measure different parameters.	Apply						
CO2	Calculate the important parameters and to arrive at the final result based on the experimental measurements.	Analyze						

COUR	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	3	3	0	0	0	3	1	0	2	1	1	1
CO2	3	2	0	2	1	0	0	0	2	0	0	1	1	1	1
Avg	3	2	0	2.5	2	0	0	0	2.5	0.5	0	1.5	1	1	1
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22CY	102 CHEMISTRY LABORATORY	S	EME	STE	STER I						
PRE-F	REQUISITE	Category	BS	S Credit 1.5							
		L	Т	Р	С						
		0	0	3	1.5						
Course	e Objectives:				1 1						
1.	To gain practical knowledge by applying theoretical principles and per	forming the followin	g exper	iments	5.						
LIST (OF EXPERIMENTS										
1.	Estimation of hardness of Water by EDTA										
2.	Estimation of Copper in brass by EDTA										
3.	Estimation of Alkalinity in water										
4.	Estimation of Chloride in water sample (Iodimetry)										
5.	Estimation of Iron content in the given salt by using external indicato	r									
6.	Conductometric titration of Strong Acid and Strong Base										
7.	Conductometric titration of Mixture of acids and Strong base										
8.	Determination of strength of Iron by Potentiometric method										
9.	Estimation of Iron by Spectrophotometry										
10.	0. Estimation of Copper by Colorimeter										
11.	11. Determination of molecular weight and degree of Polymerization by Viscometry										
12.	12. Determination of pKa of the given weak acid by pH meter										
13.	Estimation of the amount of given HCl using pH meter										
	Total = 45 Periods										

E-References:								
1.	. www.scuolab.com/en/chemistry/							
2.	2. <u>www.onlinelabs.in/chemistry</u>							
3.	www.virtuallabs.merlot.org/vl_chemistry							
COU Upon	Bloom's Taxonomy Mapped							
C01	Summarize the applicability of the practical skill gained in various fields.	Understand						
<i>CO2</i>	Calculate the composition of brass quantitatively and the molecular weight of polymers.	Apply						
СОЗ	Understand the principle and applications of conductometric and ph titrations, spectrometer, and potentiometric titrations.	Understand						

COURSE ARTICULATION MATRIX															
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	3	0	0	0	0	0	0	0	0	2	0	0
CO2	1	2	0	3	0	0	0	0	0	0	0	0	2	0	0
CO3	2	2	0	3	0	0	0	0	0	0	0	0	2	0	0
Avg	1.3	1.7	0	3	0	0	0	0	0	0	0	0	2	0	0
3/2/1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)															

22EE102	BASIC ELECTRICAL AND ELECTRONICS ENG LABORATORY	GINEERING	SEMESTER I					
PRE-RE	QUISITE	Category	ES	Cre	edit	1.5		
		/	L	Т	Р	ТН		
		Hours/Week	0 0 3		3	3		
Course (Dbjectives:					1		
1. To im	part hands on experience in use of measuring instruments, testing	in transformers, ar	nd house	wiring p	practices			
LIST OF	EXPERIMENTS							
1. V	erification of Kirchhoff's laws.							
2. V	erification of Superposition theorem.							
3. N	leasurement of three-phase power in three-phase circuits.							
4. D	Determination losses in single phase Transformer.							
5. E	Demonstration of cut-out sections of machines: induction machine	(squirrel cage rotor	r), and si	ngle-ph	ase indu	ction		
n	notor.							
6. Speed control of DC shunt motor.								
7. S	tudy of basic safety precautions, measuring instruments – voltmet omponents.	er, ammeter, multi	-meter, a	nd Elec	trical			
8. V	I Characteristics of PN Junction diode.							
o 0								

- 9. Staircase wiring.
- 10. Wiring for fluorescent lamp.

Total (45 P) = 45 Periods

COURS Upon co	Bloom's Taxonomy Mapped	
C01	Analyse DC and AC circuits.	Analyze
CO2	Calculate various losses in transformer.	Analyze
СОЗ	Recognise the parts of single-phase and three phase induction motors.	Understand
<i>CO4</i>	Demonstrate the characteristics of electron devices.	Understand
<i>CO5</i>	Practice electrical connections by wires of appropriate ratings.	Apply

COURSE ARTICULATION MATRIX

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO2	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO3	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
CO4	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
CO5	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
Avg	1	0.4	0	0	0	0	0	0	0	0	1	1	0	0	0
3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)															

SEMESTER-II

22EI	N101	SEMESTER II									
PRE	-REQU	ISITE	Category	HS	Credit		3				
				L	Т	Р	TH				
Basic	language	e skills listening, speaking, reading and writing	Hours/Week	2	0	2	4				
Cou	rse Obje	ectives:		1							
1.	1. To develop the communicative skills of learners by engaging them in reading, writing and grammar learning activities										
2. To inculcate learners' ability to read texts, summaries, articles and user manuals											
3. To assist learners to acquire writing skills for academic, social and professional purposes											
4.	To impr	ove learners' vocabulary and grammar to supplement their	language use at differ	ent cont	exts						
UN	IT I			6	0	6	12				
Descri Speal Read releva Writi Gram Prepo	ribing din king - Sel ing - Rea ant to tecl ng – Dial mar - Pa ositions an	nensions of products. f-introduction, name, home background, study details, area ading for detailed comprehension, specific information, U hnical contexts. ogue writing in a business context. rts of speech, Tenses, Voices, Common errors in English, nd Articles.	of interest, hobbies, s Inderstanding notices Subject-Verb agreem	trengths , messag ent, Nor	and wea ges, time	aknesses etables, pun agre	ement,				
UN	IT II			6	0	6	12				
Descr Speal Read Writi Gram Adve	 Listening – An interview about a production process, Telephone conversations, Making and changing appointments, Description of how a product is advertised. Speaking - Personal interview, dress code, body language, required skills, corporate culture and mock interview. Reading - Reading technical texts from journals, newspapers and technical blogs. Writing - Writing checklists, Recommendations. Grammar - Prefix and suffix, Synonyms, Antonyms, Verb forms - Auxiliary verbs, Modal verbs, Phrasal verbs, Pronouns, Adverbs and Adjustives. 										
UN	IT III			6	0	6	12				
Lister teams Speal applie Read Writi Arrar Gram	Listening - Conversation between two employees, Interview about change in job and corporate gift giving, Creating good teams: a presentation. Speaking - Role play - examiner and candidate, customer and sales manager, team leader and team member, interviewer and applicant, industrialist and candidate. Reading - Reading advertisements, gadget reviews, user manuals. Writing - Providing instruction, Writing E-mails - Attending workshops, Paper submission for seminars and conferences, Arranging and cancelling a meeting.										
UN	IT IV			6	0	6	12				
Listening – Working in an international team, Statistical information, Interview with investor relations, Radio interviews. Speaking – Giving a speech, describing given data, discussing company information, Summarizing an article. Reading - Reading longer technical texts, cause and effect essays, newspaper articles, company profiles. Writing - Essay writing on social topics, Technical Report Writing – Status reports on projects, Feasibility reports and event reports on seminars, conferences, meeting. Grammar - Compound words, Conjunctions, Sentence completion, Negation in statements and questions.											
UNI	ΤV			6	0	6	12				
Lister Speal team	Listening – An interview with career advisor and recruitment agent, Feedbacks, Meeting extracts. Speaking – Qualities required for employability, Improving employee productivity, presentation on problem-solving skills, teamwork, creativity and leadership quality.										
Reading - Reading brochures, telephone messages, social media messages relevant to technical contexts.

Writing - Letter Writing - Formal Letters and Informal Letters - cover letter with resume, Mind maps, Charts - interpreting statistical data, charts, graphs and tables.

Grammar - One word substitution, Abbreviations and acronyms in technical contexts and technical vocabulary, Idioms.

Total (30L + 30P) = 60 Periods

Refe	Reference Books:					
1.	Meenakshi Raman and Sangeeta Sharma. Professional English. Oxford University Press, New Delhi, 2019.					
2.	Krishna Mohan, MeeraBannerji. Developing Communication Skills. Macmillan India Ltd, Delhi, 1990.					
3.	Sanjay Kumar, PushpaLata. English Language and Communication Skills for Engineers. Oxford University Press, 2018.					
E-R	eferences:					
1.	https://learnenglish.britishcouncil.org/					
2.	https://www.bbc.co.uk/learningenglish					

COUF Upon c	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Comprehend the main ideas, key details and inferred meanings of technical texts	Understand
<i>CO2</i>	Use language effectively at technical and professional contexts	Apply
СОЗ	Apply the academic and functional writing skills in formal and informal communicative contexts	Apply
<i>CO4</i>	Interpret pictorial representation of statistical data and charts	Apply

COU	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	1	0	0	0	0	1	3	0	1	0	0	1
CO2	0	0	0	1	0	0	0	0	1	3	0	2	0	0	2
CO3	0	0	0	2	0	0	0	0	1	3	0	1	0	0	1
CO4	0	0	0	3	0	0	0	0	1	3	0	1	0	0	1
Avg	0	0	0	1.75	0	0	0	0	1	3	0	1.25	0	0	1.25
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22M	A201	PARTIAL DIFFERENTIAL EQUATIONS, V CALCULUS AND COMPLEX VARIAB	ECTOR	SEMESTER II					
PRE-	REQU	ISITE:	Category	BS	Cr	edit	4		
Basic	12th lev	el knowledge of Partial Derivatives, Vector algebra and	TT //TT 1	L	Т	Р	TH		
Comp	lex Nun	bers.	Hours/ week	3	1	0	4		
Cour	se Obje	ectives:							
1.	To fa	miliarize with the formation and solutions of first-order partial	differential equatio	n.					
2.	To fa	miliarize with the solutions of higher-order partial differential e	equations.						
3.	To ac	quire knowledge of vector differentiation and integration and it	ts applications.						
4.	To kr	ow about analytic functions with properties, construction of an	alytic functions and	l confori	nal tran	sformati	ons.		
5.	To ol circle	otain the knowledge of Cauchy's integral theorems, calculus and semi-circle.	of residues and co	omplex	integrati	ion arou	nd unit		
UN	IT I	PARTIAL DIFFERENTIAL EQUATIONS – FIR	AST ORDER	9	3	0	12		
Forma differe	tion of the state	partial differential equations by elimination of arbitrary consta- uations - Standard types of first order linear and non-linear PDI	nts and functions - E- Lagrange's linea	- Solutio r PDE.	ons to fi	rst order	partial		
UNI	TI	PARTIAL DIFFERENTIAL EQUATIONS - HIG	HER ORDER	9	3	0	12		
Solutio compl coordi equatio	on to l ementar nates, L on.	nomogeneous and non-homogeneous linear partial difference y function and particular integral method - Separation of aplace equation in Cartesian and polar coordinates, one-dime	ntial equations of variables method: ensional diffusion e	second simple quation,	and h problen one-dir	igher-or ns in Ca nensiona	der by artesian al wave		
UNI	TIII	VECTOR CALCULUS		9	3	0	12		
Vector Surfac involv	r differe e and V ing cube	ntiation- Gradient- Directional derivative - Divergence - Curl, olume integrals - Green's theorem, Gauss divergence and Sto es and rectangular parallelepipeds.	Vector integration kes theorem (witho	- Line ir ut proof	ntegratio) – Sim	n- work ple appli	done –		
UNI	T IV	COMPLEX DIFFERENTIATION		9	3	0	12		
Functi – Harr cz, 1/z	ons of a nonic ar z, z ² and]	complex variable – Analytic functions – Cauchy – Riemann e ad orthogonal properties of analytic function – Construction of Bilinear transformations.	quation and sufficie analytic functions -	ent cond - Confor	itions (e mal maj	xcluding ppings: v	g proof) w= z+c,		
UNI	T V	COMPLEX INTEGRATION		9	3	0	12		
Cauch Poles real ax	y's integ and Res tis.	gral theorem - Cauchy's integral formula – Taylor's and Laure idues – Cauchy's Residue theorem – Contour integration: Circ	ent's theorems (Sta sular and semi-circl	tements e contou	only) ar urs with	nd expan no poles	sions – s on the		
			Το	otal (45)	L+15T)) = 60 P	eriods		
Text	Books:								
1.	Grewal	. B.S, "Higher Engineering Mathematics", 43 rd Edition, Khann	a Publications, Dell	ni, 2015.					
2.	Jain R.	K. and Iyengar S.R.K., "Advanced Engineering Mathematics",	3 rd Edition, Narosa	Publicat	ions, Ne	ew Delhi	, 2007.		
Refer	ence B	ooks:							
1.	James S	Stewart, "Essential Calculus", 2 nd edition Cengage Learning, N	ew Delhi, 2014.						
2.	P. Kano Chand	dasamy, K. Thilagavathy and K. Gunavathy," Engineering Mat & Co. Ltd. New Delhi, 2010.	hematics (For I yea	r B.E., I	B. Tech)	", 9 th Edi	tion, S.		
3.	Sriman	ta pal and Subath C. Bhumia, "Engineering Mathematics", Oxf	ord university publ	ications,	New D	elhi, 201	5		
4.	Ewinkr	eyzig, "Advanced Engineering Mathematics", 9th Edition, John	n Wiley & Sons, 20	07.					

COUR Upon c	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand how to solve the given standard partial differential equations.	Understand
<i>CO2</i>	Solve higher order partial differential equations.	Apply
CO3	Use Gauss, Stokes and Green's theorems for the verification of line, surface and volume integrals.	Apply
<i>CO4</i>	Familiar with the concept of Conformal and Bilinear transformations.	Understand
<i>CO</i> 5	Acquire the knowledge of Contour integration over unit circle and semi-circle.	Apply

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	1	2	0	0	0	0	0	0	0	0	2	0	0
CO3	3	2	1	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	2	1	2	0	0	0	0	0	0	0	0	2	0	0
CO5	3	2	1	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	2	1	2	0	0	0	0	0	0	0	0	2	0	0
			3 / 2	2 / 1 – ii	ndicates	strengt	h of cor	relation	(3 – Hi	gh, 2 - N	/ledium,	1 – Low)			

22PH	I101	ENGINEERING PHYSICS		SEMESTER II					
PRE	-REQUI	SITE:	Category	BS	Cre	edit	4		
				L	Т	Р	TH		
Basic	theoretica	ll knowledge in Physics	Hours/Week	3	1	0	4		
Cour	se Objec	ctives:							
1.	To under	rstand Principles of ultrasonic production, its applications and	l acoustics of buildin	ngs.					
2.	To under	rstand Principle, working and industrial applications of LASE	R and optical fiber						
3.	To gain	knowledge in mode of transmission of heat by conduction me	chanism with exper	imental	illustrati	ons			
4.	To obtai	n knowledge in basic concepts of quantum physics and matter	r waves						
5.	To acqui	re knowledge in basics of crystal structure, types of crystal ar	nd its defects and cr	ystal gro	wth tech	nniques			
UN	I TIV	ULTRASONICS AND ACOUSTICS	5	9	3	0	12		
ULTR Piezoo applic ACOU and th	ULTRASONICS: Introduction – Production - Magnetostriction effect – Magnetostriction generator – Piezoelectric effect – Piezoelectric generator –Detection of ultrasonic waves - Properties – Acoustical grating– Velocity measurement–Industrial applications - Drilling, welding, soldering and cleaning –SONAR – Medical applications (Qualitative). ACOUSTICS OF BUILDINGS: Introduction – Reverberation and reverberation time –Factors affecting acoustics of buildings and their remedies – Absorption co-efficient – Basic requirements for the acoustically good auditorium.								
UN	IT II	LASER AND FIBRE OPTICS		9	3	0	12		
Types FIBEI Accep	s of laser-l R OPTICS ptance ang	Nd–YAG,CO ₂ laser – Industrial and medical applications (Qu S: Principle of optical fiber – Structure and classification of c cle – Fiber optic communication (Block diagram).	alitative) optical fiber – Critic	al angle	- Nume	rical ape	erture –		
UN		I HERMAL PHYSICS		9	3	U	12		
Mode condu Searle insula	s of Tran activity an e's metho ation in bu	smission of heat - Conduction – Convection – Radiation d its unit –Thermal conduction through compound media in d for good conductors, Lee's disc method for Bad condu ildings.	– Thermal conduct n series – Determin actors – Thermal i	tivity – ation of nsulating	Coeffici thermal g materi	ient of t conduc ials – T	hermal tivity - hermal		
UN	IT IV	QUANTUM PHYSICS		9	3	0	12		
Matte and d (Qual	r waves – ependent itative).	experimental evidence: Davisson and Germer experiment – equations – Physical significance of wave function – Particle	Schroedinger's way e in a one-dimensio	ve equational box	ion - Tir – Electr	ne inder on Micr	oendent roscope		
UN	IT V	CRYSTAL PHYSICS		9	3	0	12		
Lattic Crysta defect	e – Unit c al growth t – Line de	cell – Bravais lattice – Number of atoms per unit cell, atomic techniques: Bridgman, Czochralski techniques. Crystal imper efects – Edge dislocation, Screw dislocation – Planar defects -	e radius, coordinatio rfections - Point det - Grain boundaries, To	on numb fects – S Twin bo otal (451	er, and p chottky oundaries L+ 15T)	packing defect, l s. = 60 P	factor– Frenkel eriods		
Text	Books:								
1.	Arumu	gam M, 'Engineering Physics', Anuradha publishers, 2019.							
2.	Rajend	lran V. and Marikani A, 'Engineering Physics', PHI Learning	Pvt., India, 2018.						
3.	Palanis	samy P.K, 'Engineering Physics', SCITECH Publications, 20	18.						
4.	Ragava	an V, 'Material science and engineering', Prentice Hall of Ind	ia Pvt Ltd, NewDel	hi, 2004					
5.	5. Introduction to crystal growth, Principles and Practice, H.L. Bhat, Taylor and Francis, 2015 edition.								

Refere	Reference Books:					
1.	Gaur R.K. and Gupta S.L, 'Engineering Physics', DhanpatRai publishers, 2012.					
2.	Arthur Beiser, 'Concepts of Modern Physics', Tata McGraw Hill Publishing Co. Ltd, sixth Edition, 2019.					
3.	Gerdkeiser, 'Optical fiber communications', Tata McGraw Hill Publishing Co. Ltd, 5th Edition, 2017.					
4.	OrazioSvelto. David C. Hanna, 'Principles of Lasers', Springer Science &Business Media, LLC, 2010.					

COUR Upon c	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the principle, production of ultrasonic wave and acoustics of buildings.	Understand
<i>CO2</i>	Understand the principle and applications of laser and optical fiber.	Understand
CO3	Analyze various modes involved in heat transmission	Analyze
<i>CO4</i>	Gain knowledge in basic concept of quantum physics.	Remember
<i>C05</i>	Recognize crystal structure, crystal defects and crystal growth techniques.	Evaluate

COURS	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	0	0	0	0	0	2	2	1	0
CO2	2	3	1	1	2	1	0	0	0	0	0	2	1	1	0
CO3	3	2	1	1	0	0	0	0	0	0	0	1	2	0	0
CO4	3	2	1	1	2	0	1	0	0	0	0	1	1	0	0
CO5	2	2	1	1	2	0	0	0	0	0	0	1	0	1	1
Avg	2.6	2.2	1	1	1.4	0.4	0.2	0	0	0	0	1.4	1.2	0.6	0.2
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22ES	S101	ENGINEERING MECHANICS		SEMESTER II						
PRE	-REQ	UISITE:	Category	ES	Cr	edit	3			
1. En	gineer	ing Physics.	TT /TT /] -	L	Т	Р	TH			
2. En	gineer	ing Mathematics.	Hours/ week	3	0	0	3			
Cour	Course Objectives:									
1.	1. To develop the capacity to predict the effect of force and motion in the course of carrying out the design functions of engineering.									
2.	To ar	halyze the force systems and friction.								
3.	To st	udy the dynamics of particles, impulse and momentum								
UN	IT I	STATICS OF PARTICLES		9	0	0	9			
Funda Resul a Part	Fundamental Concepts and Principles, Systems of Units, Method of Problem Solutions, Statics of Particles -Forces in a Plane, Resultant of Forces, Resolution of a Force into Components, Rectangular Components of a Force, Unit Vectors. Equilibrium of a Particle- Newton's First Law of Motion, Space and Free-Body Diagrams, Forces in Space, Equilibrium of a Particle in Space.									
UNI	IT II	EQUILIBRIUM OF RIGID BODIES		9	0	0	9			
Theorem Vector Resol Three	rem, Roors, Mo lution of Dime	ectangular Components of the Moment of a Force, Scalar Produ- oment of a Force about an Axis, Couple - Moment of a Co of a Given Force into a Force -Couple system, Further Reduction nsions - Reactions at Supports and Connections.	ct of Two Vectors, puple, Equivalent C on of a System of F	Mixed 7 Couples, Forces, E	Friple Pr Additic quilibrit	oduct of on of C um in T	f Three ouples, wo and			
UNI	T III	PROPERTIES OF SURFACES AND SOL	IDS	9	0	0	9			
Centr mome Mom	roid of ent of ent of i	simple figures from first principle, centroid of composite section inertia- Definition, Moment of inertia of plane sections from inertia of standard sections and composite sections; Theorems of	ons; Centre of Gra first principles, Tl Pappus-Guldinus.	ivity and	l its imp of mon	blication nent of	s; Area inertia,			
UNI	T IV	FRICTION		9	0	0	9			
The la	aws of	dry friction. Coefficients of friction, Angles of friction, Wedges,	Wheel friction. Rol	ling resi	stance, I	Ladder f	riction.			
UNI	T V	DYNAMICS OF PARTICLES		9	0	0	9			
Kiner Motio Work	matics ons, Dy and E	- Rectilinear Motion and Curvilinear Motion of Particles. Kinetic namic Equilibrium, Energy and Momentum Methods - Work of nergy, Principle of Impulse and Momentum, Impact of elastic boo	es- Newton's Secon a Force , Kinetic E dies.	d Law o nergy of	f Motio a Partic	n -Equat cle, Princ	tions of ciple of			
					Total	= 45 P	eriods			

Text	Books:				
1.	A Textbook of Engineering Mechanics, R.K. Bansal, Laxmi Publications, 2010.				
2.	Rajasekaran S and Sankarasubramanian G., "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt. Ltd., 2013.				
Refe	Reference Books:				
1.	Beer Ferdinand P, Russel Johnston Jr., David F Mazurek, Philip J Cornwell, SanjeevSanghi, Vector Mechanics for Engineers: Statics and Dynamics, McGraw Higher Education. 11thEdition, 2017.				
2.	Timoshenko S, Young D H, Rao J V and SukumarPati, Engineering Mechanics, 5thEdition, McGraw Hill Higher Education, 2013.				
3.	Hibbeller, R.C., Engineering Mechanics: Statics, and Engineering Mechanics: Dynamics, 13th edition, Prentice Hall, 2013.				

4.	Palanichamy M.S. and Nagam S., "Engineering Mechanics - Statics & Dynamics", Tata McGraw-Hill, 2001							
5.	Engineering Mechanics, D.S. Bedi, Khanna Book Publishing Co. (P) Ltd, 2019.							
E-Re	E-References:							
1.	https://nptel.ac.in/courses/122104014							
2.	https://nptel.ac.in/courses/112106286							

COUR Upon c	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Apply the various methods to determine the resultant forces and its equilibrium acting on a particle in 2D and 3D	Create
<i>CO2</i>	Apply the concept of reaction forces (non-concurrent coplanar and noncoplanar forces) and moment of various support systems with rigid bodies in 2D and 3D.	Evaluate
CO3	Evaluate area moments of inertia for various sections by applying the concepts of centroids.	Evaluate
<i>CO4</i>	Apply the concepts of frictional forces at the contact surfaces of various engineering systems.	Apply
<i>C05</i>	Apply the various methods for evaluating dynamic parameters of the particles subjected to concurrent coplanar forces.	Apply

COU	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	0	0	0	0	0	0	0	1	3	1	0
CO2	3	2	2	1	0	0	0	0	0	0	0	1	3	1	0
CO3	3	2	2	1	0	0	0	0	0	0	0	2	3	2	0
CO4	3	1	2	1	0	0	0	0	0	0	0	1	3	2	0
CO5	3	1	2	1	0	0	0	0	0	0	0	1	3	2	0
Avg	3	1.6	2	1	0	0	0	0	0	0	0	1.2	3	1.6	0
			3 /	2 / 1 – i	ndicates	strengt	h of coi	relation	(3 – Hi	igh, 2 – N	ledium,	1 – Low)			

22HS	5201	UNIVERSAL HUMAN VALUES		SEMESTER II							
PRE	-REQU	ISITE:	Category	HS	Cre	edit	3				
			TT //TT 1	L	Т	Р	ТН				
			Hours/ week	2	1	0	3				
Cour	rse Obje	ectives:									
1.	Develop nature/e	pment of a holistic perspective based on self-exploration abo existence.	ut themselves (hur	nan bein	g), fami	ily, socie	ety and				
2.	Underst	tanding (or developing clarity) of the harmony in the human be	ing, family, society	and nat	ure/exist	tence.					
3.	3. Strengthening of self-reflection.										
4.	Develop	pment of commitment and courage to act.									
UN	I TI			6	3	0	9				
Accep basic aspira appra levels	Acceptance' and Experiential Validation- as the process for self-exploration Continuous Happiness and Prosperity- A look at basic Human Aspirations. Right understanding, Relationship and Physical Facility- the basic requirements for fulfilment of aspirations of every human being with their correct priority. Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario Method to fulfil the above human aspirations- understanding and living in harmony at various levels.										
UN	IT II			6	3	0	9				
Under sentie Under activi Physic	rstanding ent 'I' an rstanding ties of 'I cal needs	Harmony in the Human Being - Harmony in Myself! Und ad the material 'Body' Understanding the needs of Self ('I the Body as an instrument of 'I' (I being the doer, seer an and harmony in 'I' Understanding the harmony of I with the meaning of Prosperity in detail Programs to ensure Sanyam a	erstanding human ') and 'Body' - h nd enjoyer) Unders ne Body: Sanyam a nd Health.	being as appiness standing and Heal	s a co-e s and ph the chan th; corre	xistence nysical f racteristi ect appra	of the facility. ics and hisal of				
UN	IT III			6	3	0	9				
Under humat happit betwe other Resol harmo	rstanding n relatior ness; Tru een intent salient ution, Provident	Harmony in the Family and Society- Harmony in Human- Hunship; meaning of Justice (nine universal values in relationship, ust and Respect as the foundational values of relationship, ion and competence. Understanding the meaning of Respect, I values in relationship. Understanding the harmony in the rosperity, fearlessness (trust) and co-existence as compreder in society- Undivided Society, Universal Order- from family	man Relationship U os) and program for Understanding the Difference between society (society b hensive Human C ly to world family.	Understa r its fulfi meanin respect eing an Goals. V	nding va Iment to g of Tr and diff extensi 'isualizir	alues in l o ensure ust; Diff cerentiati on of f ng a ur	numan- mutual ference on; the amily): niversal				
UN	IT IV			6	3	0	9				
Under Natur Under all lev	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence. Understanding the harmony in the Nature. Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence of mutually interacting units in all- pervasive space. Holistic perception of harmony at all levels of existence.										
UN	IT V			6	3	0	9				
Implie Defin Order	Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values. Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in professional ethics, Strategy for transition from the present state to Universal Human Order.										
			Tot	al (30L	+ 15T)	= 45 P	eriods				

Refe	rence Books:
1.	Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010
Refe	rence Books:
1.	JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
2.	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
3.	The Story of Stuff (Book)
4.	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi
5.	Small is Beautiful - E. F Schumacher.
6.	Slow is Beautiful - Cecile Andrews
7.	Economy of Permanence - J C Kumarappa
8.	Bharat Mein Angreji Raj - PanditSunderlal
9.	Rediscovering India - by Dharampal
10.	Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi
11.	India Wins Freedom - Maulana Abdul Kalam Azad
12.	Vivekananda - Romain Rolland (English)
13.	Gandhi - Romain Rolland (English)

COUF Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Become more aware of themselves, and their surroundings (family, society, nature) and become more responsible in life	Evaluate					
<i>CO2</i>	Handle problems with sustainable solutions, while keeping human relationships and human nature in mind	Apply					
СОЗ	Become sensitive to their commitment towards what they have understood (human values, human relationship and human society)	Evaluate					
CO4	Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.	Apply					

COU	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	1	0	0	1	0	2	0	1	0	3	2	0	1
CO2	0	0	1	0	0	3	0	1	0	1	0	3	1	0	1
CO3	0	0	1	0	0	2	0	1	0	1	0	3	1	0	2
CO4	0	0	2	0	0	1	0	1	0	1	0	3	1	0	1
Avg	0	0	1.25	0	0	1.75	0	1.25	0	1	0	3	1.25	0	1.25
		•	3 /	2 / 1 – i	ndicates	s streng	th of co	relatior	n (3 – H	igh, 2 – N	Medium,	1 – Low)	•		

22M	CIN01	ENGINEERING SPRINTS			SEMES	STER II	[
PRE	-REQU	ISITE:	Category	EE	Cro	edit	1				
			Hours/Weelr	L	Т	Р	ТН				
			Hours/ week	0	0	2	2				
Cou	rse Obje	ctives:									
1.	1. To strengthen conceptual understanding of fundamental engineering concepts.										
2.	To spar	k curiosity in students' Minds.									
3.	To focu	s on teaching through a problem-solving approach using Street	t Fight Engineerin	g princip	les pion	eered.					
4.	To fost	er the growth of functional independence and self-driven learni	ng habits								
5.	To max	imize the interest levels toward learning - as students aspire to	create meaningful	l changes	s in the w	vorld.					
UN	I TI	STREET FIGHTING ENGINEERING	Ţ	0	0	6	6				
Why Relat	Street fi ionship st	ght engineering - How to street fight engineering - Decod udy - Derive actionable inferences - Perform data driven insigl	le real-world prob hts- Generate conc	blems - cepts and	Observe case stu	key pat dies	tterns -				
UN	IT II	PROGRAMMING PARADIGM		0	0	6	6				
Need Algor Types	for prog rithms - N s of progr	ramming - Outside box thinking to solve problems - Need Memory Allocation - Conditions and loops - Creating effective amming languages& paradigms - Getting started with develop	for algorithms an e functions - Case ment - Build & tes	d data s e studies st an algo	tructures - Visual prithm - I	-Flowcl Program Sest pract	harts & hming - tices				
UN	IT III	BRAINS OF MACHINES		0	0	6	6				
Key Trans Brain	Innovatio disciplina s of Digit	ons in Tesla Electric car - Case study - Brains of Electrary systems to Accelerate innovation - Idea Hexagon - Exercial camera	ric cars - Transo se to think new in	lisciplina	ry syste ns using	ms - A Idea Hez	dapting xagon -				
UN	IT IV	MACHINES THAT MAKE-UP THE WO	RLD	0	0	6	6				
Basic How	of Elect to Build a	ronics Passive Components -Need for sensors & Actuators - a Basic Custom Hardware - Bootloader& its purpose	Analyzing & Ur	nderstand	ling elec	tronic ci	rcuits -				
UN	IT V	ENGINEERING THE REAL WORLD)	0	0	6	6				
Real- Livin	Real-world as systems - Introduction to Systems Thinking - Stock and Flow Diagrams - System Traps - Intervening in System - Living in a World of Systems										
					Total	= 30 P	eriods				
L											

Text	Books:						
1.	SanjoyMahajan - Street Fighting Mathematics						
2.	Donald Knuth - The Art of Computer Programming						
3.	Think like a programmer: An introduction to creative problem solving						
4.	Thinking in Systems: A Primer						
Refe	Reference Books:						
1.	Learning to code: How to think like a programmer						
2.	How to find innovative ideas: Ramesh Raskar's note						
3.	Case study: How Tesla changed the auto industry						
4.	Ultimate Guide: How to develop a new electronic hardware product						

COUR Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Apply street fight engineering concepts to solve problems	Apply					
<i>CO2</i>	Construct flowcharts & block diagrams for algorithms	Apply					
СО3	Apply the Idea Hexagon Tool to learn innovation models	Apply					
<i>CO4</i>	Understand basic electronics for building hardware	Apply					
<i>C05</i>	Examine real-world problems with a system view	Analyze					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3						
CO1	2	3	0	0	0	0	0	0	2	0	2	0	0	0	2						
CO2	2	0	0	3	0	0	0	0	2	0	0	0	0	0	2						
CO3	2	2	0	3	0	0	0	0	2	0	2	0	0	0	2						
CO4	2	2	0	3	0	0	0	1	2	0	2	0	0	0	2						
CO5	0	3	0	0	0	1	2	0	2	1	2	0	0	0	2						
Avg	1.6	2	0	1.8	0	0.2	0.4	0.2	2	0.2	1.6	0	0	0	2						
			3 / 2	2 / 1 — ii	ndicates	strengt	h of cor	relation	3/2/1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)												

22M	[C201	TAMILS AND TECHNOLOGY		:	SEME	STER	II
PRER	REQUIS	ITES	Category	HS MS	Cre	edit	1
				L	Т	Р	ТН
			Hours/Week	1	0	0	1
Cours	se Learn	ing Objectives				I	
1							
2							
3							
4							
5		Г				1	1
Ur	nit I	WEAVING AND CERAMIC TECHNOL	OGY	3	0	0	3
Weavi	ng Indust	ry during Sangam Age – Ceramic technology – Black and Red	d Ware Potteries (B	8RW) –	Graffiti	on Pott	eries.
Un	it II	DESIGN AND CONSTRUCTION TECHNO	DLOGY	3	0	0	3
Uni Art of Mintin Archeo	it III Ship Bui g of Coi ological e	MANUFACTURING TECHNOLOG Iding - Metallurgical studies - Iron industry - Iron smelting,s ins – Beads making-industries Stone beads -Glass beads vidences - Gem stone types described in Silappathikaram.	Y teel -Copper and g - Terracotta bead	3 oldCoin ls -Shel	0 s as sou 1 beads	0 urce of l / bone	3 history - beats -
Uni	it IV	AGRICULTURE AND IRRIGATION TECH	NOLOGY	3	0	0	3
Dam, 7 use - A Knowl	Fank, por Agricultur edge Spe	nds, Sluice, Significance of KumizhiThoompu of Chola Perio e and Agro Processing - Knowledge of Sea - Fisheries – Pearl cific Society.	od, Animal Husban - Conche diving -	dry - W Ancient	Vells des	igned f edge of	or cattle Ocean -
Un	it V	SCIENTIFIC TAMIL & TAMIL COMPU	TING	3	0	0	3
Develo Tamil	opment of Virtual A	f Scientific Tamil - Tamil computing – Digitalization of Ta cademy – Tamil Digital Library – Online Tamil Dictionaries	amil Books – Deve – Sorkuvai Project.	elopmer	nt of Ta	mil Sof	ftware –
					Total	= 15 I	Periods
Tex	t Books	:					
1	Socia	l Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB	& ESC and RMRI	2 – (in p	rint)		
2	Socia Studi	l Life of the Tamils - The Classical Period (Dr.S.Singarave es.	lu) (Published by:	Interna	tional Ir	nstitute	of Tamil
3	Histo Instit	rical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.E ute of Tamil Studies).	D. Thirunavukkaras	su) (Pub	lished l	by: Inte	ernational

4 The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies)

5	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology&TamilNadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL)

201	NCC COURSE-I(Only for NCC Stud	ents)		Semo	ester II		
EQUIS	ITES	Category	NC	Cr	edit	3	
		TT /XX / -	L	Т	Р	ТН	
		Hours/ week	3	0	0	3	
Learn	ing Objectives		<u> </u>	1			
To mai	ntain the unity and disciplines to the students						
t I	NCC GENERAL & NATIONAL INTEGRAT AWARENESS	ION AND	9	0	0	9	
bjective Integra Securit	es and Org of NCC – Incentives to NCC cadets – Duties of ation: Importance and Necessity – Factors affecting Nation y.	NCC Cadets – No al Integration – U	CC Can nity in	ıps: Tyj Diversi	pes & C ty – Th	Conduct; reats to	
II	PERSONALITY DEVELOPMENT & LEAD DEVELOPMENT	DERSHIP	9	0	0	9	
Personality Development Capsule -Self Awareness Empathy, Creative& Creative Thinking, Communication Skills - Group Discussion - Stress emotions, Change Your Mindset, Inter Personal R Time Managements, Civil Sense - Career Counselling, SSB Procedures & Interview Skills; Leader Indicators, Motivation, Ethics & Honour code - Case Studies-Shivaji, APG Abdul Kalam & Deepa M Ratan Tata KiranMajumdar Ibansi Ki Rani Narayan Murty PrakashPadukone Tinu Sultan Rabindran							
III	DISASTER MANAGEMENT AND HEALTH &	z HYGIENE	9	0	0	9	
Manage – Initia on – Firs	ement Capsule- SochVichar, Types - Organisation, Capability tive Training, Organisation Skills, Do's and Don'ts – Natural t aid in Common Medical Emergencies, Treatment & Care o	& Role of NCC C Disasters, Man Ma f Wounds – Introdu	adets – ide Disa uction to	Fire Ser isters; H o Yoga	vice & l lealth & & Exerc	Fire ises.	
IV	PRINCIPLES OF FLIGHT & GENERAL SI KNOWLEDGE	ERVICE	9	0	0	9	
Motion Thrust; isitions.	– Glossary Terms – Bernoulli's Principle – Aerofoil – Forces Armed Forces & IAF Capsule – Modes of Entry in IAF, Civi	s acting on Aircraft l Aviation – Aircra	– Lift & ıft Reco	k Drag - gnition	– Flaps a – Latest	& Slats Trends	
t V	NAVIGATION, AEROENGINES, AIRCOMP AIRMANSHIP	AIGNS &	9	0	0	9	
ments of – Turbo - Rules o	² Navigation – Glossary terms – Maps – Map Reading; Basic o Prop Engines; Indo Pak war 1971 – Operation Safed Sag of the Air – Circuit Procedures – ATC RT Procedures – Aviat	Theory – Types of gar – Famous Air I tion Medicine - Sur	Engine Heroes; vival.	s – Pisto Airmar	on Engir 1ship –	nes – Jet Airfield	
				Total	= 45 I	Periods	
0.4					Bloon	n's	
e Outc	omes: on of this course, the students will be able to:			Ta	xonom	y Level	
Acquir differe	ed knowledge about the history of NCC, its organization, incent NCC camps	entives of NCC, du	ties,		Analyz	ze	
Understand the concept of national integration and its importance Understand							
Understand the importance disaster management and health and hygiene. Understand							
	QUIS: QUIS: I To mai I bjective Integra Securit II ity De ication anagem s, Mot ta, Kira III Manage – Initia n – Firs IV Motion Thrust; sitions. V nents of – Turbo Rules of e Outce ompleti Acquir different Unders	QUISITES Icearning Objectives To maintain the unity and disciplines to the students I NCC GENERAL & NATIONAL INTEGRAT AWARENESS bjectives and Org of NCC – Incentives to NCC cadets – Duties of Integration: Importance and Necessity – Factors affecting Nation Security. II PERSONALITY DEVELOPMENT & LEAE DEVELOPMENT ity Development Capsule -Self Awareness Empathy, Creative uication Skills - Group Discussion - Stress emotions, Change Your anagements, Civil Sense - Career Counselling, SSB Procedures of a, KiranMajumdar, Jhansi Ki Rani, Narayan Murty, PrakashPaduko III DISASTER MANAGEMENT AND HEALTH & Management Capsule -SochVichar, Types - Organisation, Capability – Initiative Training, Organisation Skills, Do's and Don'ts – Natural n – First aid in Common Medical Emergencies, Treatment & Care o IV PRINCIPLES OF FLIGHT & GENERAL SI KNOWLEDGE Motion - Glossary Terms – Bernoulli's Principle – Aerofoil – Forces Thrust; Armed Forces & IAF Capsule – Modes of Entry in IAF, Civi sitions. V NAVIGATION, AEROENGINES, AIRCOMF AIRMANSHIP nents of Navigation – Glossary terms – Maps – Map Reading; Basic – Turbo Prop Engines; Indo Pak war 1971 – Operation Safed Sag Rules of the Air – Circuit Procedures – ATC RT Procedures – Aviat e Outcomes: ompletion of this course, the students will be able to: Acquired knowledge about the history of NCC, its organization, ince different NCC camps	QUISITES Category Hours/Week Idearning Objectives To maintain the unity and disciplines to the students Idearning Objectives To maintain the unity and disciplines to the students Idearning Objectives To maintain the unity and disciplines to the students Idearning Objectives To maintain the unity and disciplines to the students Idearning Objectives To maintain the unity and disciplines to the students Idearning Objectives I NCC GENERAL & NATIONAL INTEGRATION AND AWARENESS Security. Factors affecting National Integration - U Security. II PERSONALITY DEVELOPMENT & LEADERSHIP DEVELOPMENT Scurity. PERSONALITY DEVELOPMENT & LEADERSHIP DEVELOPMENT ity Development Capsule -Self Awareness Empathy, Creative & Creative Thin ication Skills - Group Discussion - Stress emotions, Change Your Mindset, Inter Per anagements, Civil Sense - Career Counselling, SSB Procedures & Interview Skills, Marke Ea, MarnMajumdar, Jhansi Ki Rani, Narayan Murty, PrakashPadukone, Tipu Sultan, Ra III DISASTER MANAGEMENT AND HEALTH & HYGIENE Management Capsule - SochVichar, Types - Organisation, Capability & Role of NCC C - Inditive Training, Organisation Skills, Do's and Don'ts - Natural Disasters, Man Ma n - First aid in Common Medical Emergencies, Treatment & Care of Wounds - Introd No - First aid in Common Medical Emergencies, Treatment & Care of Wounds - Introd	QUISITES Category NC Hours/Week L 3 Learning Objectives To maintain the unity and disciplines to the students 9 Diperiod of the unity and disciplines to the students 9 Diperiod of the unity and disciplines to NCC cadets – Duties of NCC Cadets – NCC Can Integration: Importance and Necessity – Factors affecting National Integration – Unity in Security. 9 II PERSONALITY DEVELOPMENT & LEADERSHIP DEVELOPMENT 9 ity Development Capsule - Self Awareness Empathy, Creative& Creative Thinking, catations, Change Your Mindset, Inter Personal F anagements, Civil Sense – Career Counselling, SSB Procedures & Interview Skills: Leade s, Motivation, Ethics &Honour code - Case Studies-Shivaji, APG Abdul Kalam & Deepa M a, KiranMajumdar, Jhansi Ki Rani, Narayan Murty, PrakashPadukone, Tipu Sultan, Rabindran III DISASTER MANAGEMENT AND HEALTH & HYGIENE 9 Management Capsule - Soch Vichar, Types - Organisation, Capability & Role of NCC Cadets – Initiative Training, Organisation Skills, Do's and Don'ts – Natural Disasters, Man Made Dis n – First aid in Common Medical Emergencies, Treatment & Care of Wounds – Introduction to the Air – Grees & IAF Capsule – Modes of Entry in IAF, Civil Aviation – Aircraft Reco sitions. 9 Motion – Glossary Terms – Bernoulli's Principle – Aerofoil – Forces acting on Aircraft – Lift & Thrust; Armed Forces & IAF Capsule – Modes of Entry in IAF, Civil Aviation – Aircraft Reco sitions. 9 NAVIGATION, AEROENGINES, AIRCOMPAIGNS & AIRCOMPAIGNS & IARCMANSHIP 9 <td>Inclusion of the evolution of t</td> <td>Incomposition Content of the content of t</td>	Inclusion of the evolution of t	Incomposition Content of the content of t	

CO4	Understand the importance principal of Flight and knowledge about armed services.	Understand
CO5	Understand and learn the importance of navigation, Aero engines & Airmanship work.	Understand

220	CS102	COMPUTER PRACTICE AND C PROGR LABORATORY	AMMING	ļ	II		
PREF	REQUIS	ITES	Category	ES	Cre	edit	1.5
				L	Т	Р	TH
			Hours/Week	0	0	•	2
		U	U	3	3		
Cours	se Learn	ing Objectives					
1	To prov	ide basic knowledge to work with word processing application	ns				
2	To prov	ide basic knowledge to work with spread sheet applications					
3	To pron	note the programming ability to develop C applications					
		EXPERIMENTS					
A. Wo	ord Proces	ssing					
1.	Creating	and formatting documents.					
2.	Creating	Tables and Manipulation					
3.	Using Ec	quation Editor					
4.	Inserting	Pictures, Shapes and Charts					
5.	Using M	ail merge					
B. Spr	ead Sheet	t					
6.	Creating	sheets, using built in function and use-defined formulae					
7.	Creating	different types of charts from data					
C. Sin	ple C Pr	ogramming					
8.	Program	using different operators.					
9.	Program	using Control statements.					
10.	Program	using Loops, Array and Strings.					
11.	Program	using Functions and pointers.					
12.	Program	using Structures and Files.					
For p	rogrammi	ing exercises Algorithm, Flow chart and pseudo code are e	ssential				
			,	Total (45+15)	= 60 P	eriods

Cours Upon	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level
CO1	Demonstrate the usage of features supported by word processing applications.	Understand and Apply
CO2	Demonstrate the usage of features supported by spread sheet applications.	Understand and Apply
CO3	Apply general programming techniques to develop digital solution to problems	Understand and Apply
CO4	Implement solutions develop with general programming techniques in C programming language	Understand and Apply

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
C01	0	0	0	0	0	0	0	0	0	3	0	0	1	0	0
CO2	2	3	0	0	0	0	0	0	0	0	0	0	1	0	0
CO3	2	3	3	0	0	0	0	0	0	0	0	3	2	0	0
CO4	1	1	1	0	0	0	0	0	0	0	0	3	3	0	0
Avg	1.6	2.3	2	0	0	0	0	0	0	3	0	3	1.7	0	0
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

22MI	E102	WORKSHOP MANUFACTURING PRAC	CTICES	SEMESTER II				
PRER	EQUIS	ITES	Category	ES	S Credit		2	
				L	Т	Р	ТН	
			Hours/Week	0	0	4	4	
Course	e Learn	ing Objectives				<u> </u>	<u> </u>	
1	To unde	erstand the basics of safety measures taken in the laboratory.						
2	To prov Mechan	vide exposure to the students with hands-on experience on v nical Engineering.	arious basic engi	neering	practic	es in C	ivil and	
3	To know	w about the various fitting joints and lathe operation.						
4	To gain	knowledge in welding and fitting operation.						
5	To unde	erstand the fabrication of various models using sheet metals.						
•		LIST OF EXPERIMENTS	5					
1.	Introdu	ction to Safety measures and First aid.						
2.	Study o tools- C	of Lathe, drilling machine -Welding methods and equipment- C Carpentry tools and joints.	asting process and	d tools-	Sheet n	netal an	d fitting	
3.	Fitting:	V-fitting, square fitting, Curve fitting.						
4.	Lathe: l	Facing, turning, taper turning and knurling.						
5.	Weldin	g: BUTT, LAP and T- joints.						
6.	Foundry	y: Greensand preparation- mould making practice.						
7.	Sheet m	netal: Cone, tray, cylinder.						
8.	Carpent	try: CROSS, T and DOVETAIL joints.						

9. Drilling: simple exercises.

Total = 30 Periods

Refe	rence Books:
1	Bawa, H.S, "Workshop Practice", Tata McGraw Hill Publishing Company Limited, 2007.
2	Jeyachandran, K, Natarajan, K and Balasubramanian, S, "A Primer on Engineering Practices Laboratory", Anuradha Publications, 2007.
3	Jeyapoovan, T, SaravanaPandian, M and Pranitha, S, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd, 2006.
4	Dr. P.kannan, Mr. T, Satheeskumar&Mr .K .Rajasekar, "Engineering practices laboratory" manual first edition 2017
5	Dr. V. Rameshbabu "Engineering practices laboratory" VRB publication pvt ld.

Cours Upon o	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Familiarize the working of various equipment and safety measures.	Understand					
CO2	Prepare fitting of metal and wooden pieces using simple fitting and carpentry tools manually.	Apply					
CO3	Fabrication of components using welding, lathe and drilling machine.	Analyze					
CO4	Make the model using sheet metal works.	Analyze					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
CO2	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
CO3	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
CO4	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
CO5	0	3	0	2	1	0	0	0	0	0	0	0	0	0	2
Avg	0	2.4	0	1.6	0.8	0.6	0	0	0	0	0	0	0	0	1.6
	3/2/1 – indicates strength of correlation (3- High, 2- Medium, 1- Low)														

SEMESTER-III

22M	A305	FOURIER SERIES, BOUNDARY VALUES PRO TRANSFORMS	BLEMS AND	S	SEMES	TER I	Π		
PRE	-REQU	ISITE:	Category	BS	Cr	edit	3		
	4h			L	Т	Р	ТН		
Basic	e 12 th lev	el knowledge of Taylor series, ODE and integration.	Hours/Week	¹ 3 0 0 3					
Cou	rse Obj	ectives:		1	1				
1.	To intr	oduce the concept of the Fourier series.							
2.	To und	lerstand the application of Fourier analysis in solving boundary	value problems.						
3.	To ob- transfo	tain the knowledge of solving second order ODE using Larrn using convolution theorem.	aplace transform te	echnique	s and in	nverse l	Laplace		
4.	To fam	illiarize with Fourier, transform of a function and its sine and co	osine transforms.						
5.	To gain	n the skills to form difference equations and find its solution by	using the Z-transfo	rm meth	od.				
UN	ITI	FOURIER SERIES		9	0	0	9		
Diric Parse	hlet's co val's Ide	nditions – General Fourier series – Odd and even functions – entity.	Half range sine ser	ies – Ha	lf range	cosine	series –		
UN	IT II	BOUNDARY VALUE PROBLEMS		9	0	0	9		
Class dime soluti	ification nsional h ions in C	of second-order quasi-linear partial differential equations – S neat equation – Steady-state solution of two-dimensional heat e artesian coordinates.	olutions of one-dim quation (Insulated e	ensional edges exc	l wave e cluded)	quation – Fourie	– One- er series		
UN	IT III	LAPLACE TRANSFORM		9	0	0	9		
Lapla theor	ace Trans ems- Tra	sform- Conditions for existence – Transform of elementary fu nsform of periodic Functions – Inverse Laplace Transform- sta	nctions – Basic Protection Research	operties - ion of co	–Initial a onvolutio	and Fina on theor	al value em.		
UN	IT IV	FOURIER TRANSFORM		9	0	0	9		
State: simpl	ment of le functio	Fourier integral theorem – Fourier transforms pair – Sine an ons – Convolution theorem - Parseval's Identity.	d Cosine transform	s – Prop	perties –	Transfo	orms of		
UN	IT V	Z -TRANSFORM AND DIFFERENCE EQU	ATIONS	9	0	0	9		
Z-tra Form	nsform o ation of	f simple functions and properties – Inverse Z – transform –initidifference equations.	al and final value th	eorems-	Convol	ution th	eorem -		
					Total	= 45 P	eriods		

Text Books: Veerarajan T, "Engineering Mathematics (For Semester III)", 3rd Edition, Tata McGraw Hill Education Pvt. Ltd., New 1. Delhi, 2009. P. Kandasamy, K. Thilagavathy and K. Gunavathy, "Engineering Mathematics, Volume III", S. Chand & Company ltd., 2. New Delhi, 1996. **Reference Books:** Grewal, B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014. 1. Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", 6th Edition, McGraw-Hill, Inc., New York, 2. 1995. Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematics", MacMillan, New 3. York, 1988. 4. Narayanan, S., Manicavachagom Pillai, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students",

COUR Upon c	Bloom's Taxonomy Mapped	
C01	Acquire knowledge about the Fourier series.	Understand
CO2	Appreciate the physical significance of Fourier series techniques in solving one and two- dimensional heat flow problems and one-dimensional wave equations.	Understand
СО3	Apply the knowledge of the Laplace transforms.	Understand
<i>CO4</i>	Apply the knowledge of Fourier transform in engineering problems.	Apply
<i>C05</i>	Apply the knowledge of Z-transform in engineering problems.	Apply

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
Avg	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22M	E301	ENGINEERING THERMODYNAMI (Use of standard thermodynamic tables, Mollier diagram	C S are permitted)	S	SEMES	TER I	I
PRE	-REQU	ISITE:	Category	PC	Cre	edit	4
				L	Т	Р	ТН
			Hours/Week	3	1	0	4
Cou	rse Obje	ectives:			L		
1.	1. To impart the knowledge on concepts of zeroth and first law of thermodynamics.						
2.	To mak in close	e the learners to understand the third law of thermodynamics a d and open systems.	and analyze the var	ious wo	rk and h	eat inter	actions
3.	To teacl	h properties of pure substance.					
4.	To impa	art knowledge on the concepts of steam power cycle.					
5.	To deriv	ve thermodynamic relations for ideal and real gases.		T	r	1	
U	I TIN	BASIC CONCEPT AND FIRST LAV	V	9	3	0	12
Thern heat. stead	modynam First law y flow pr	ic equilibrium, Displacement work, P-V diagram. Zeroth law of thermodynamics – application to closed and open systems, ocess with reference to various thermal equipment. SECOND LAW AND ENTROPY	of thermodynamic internal energy, sp	s – conc ecific he	ept of the capace	emperaticities, en	thalpy,
Heat these Conc	engine – statemer ept of ent	Refrigerator – Heat Pump, Second law of thermodynamics – the their corollaries. Reversibility and irreversibility. Carnot propy, principle of increase of entropy, T-s diagram, T-ds equat	Kelvin's and Claus cycle, reversed Car ions.	sius state	ements- le. Claus	Equival sius inec	ence of quality,
UN	IT III	PROPERTIES OF PURE SUBSTANC	ES	9	3	0	12
Stear fracti	n - forma Ion. Calcu	tion and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s lation of work done and heat transfer in non-flow and flow pro-	diagrams. PVT su cesses using Steam	rface. De Table a	etermina nd Molli	tion of d	dryness
UN	IT IV	STEAM POWER CYCLE		9	3	0	12
Stand	lard Rank	ine cycle, Performance Improvement - Reheat cycle, regenerat	ive cycle and their	combina	tion cyc	les.	
UN	NIT V	IDEAL AND REAL GASES AND THERMO I RELATIONS	OYNAMIC	9	3	0	12
Prope Princ heat e	Properties of ideal and real gases, equation of state of ideal and real gases, Avogadro's law, Vander Waal's equation of states, Principle of corresponding states, reduced properties and compressibility chart. Exact differentials, Maxwell relations, Specific heat equations, T-ds relations, Clausius Clapeyron equations and Joule Thomson Coefficient.						
	Total (45L+15T)= 60 Periods						

Text	Text Books:						
1.	Nag. P.K, "Engineering Thermodynamics", Tata McGraw-Hill, New Delhi, 2017.						
2.	Sonntag, R.E., Borgnakke, C., and Van Wylen, G.J., Fundamentals of Thermodynamics, 6th ed., John Wiley, 2003.						
3.	Arora C.P, "Thermodynamics", Tata McGraw Hill, New Delhi, 2003.						
4.	Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.						
Refe	rence Books:						
1.	Cengel, "Thermodynamics- An Engineering Approach", 3rd Edition, Tata McGraw Hill,2015.						

COUR Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Understand the concepts of zeroth, first and second law of thermodynamics.	Remember					
CO2	Analyze the various work and heat interactions for different types of processes for closed and open systems	Evaluate					
СО3	Evaluate the different properties of pure substances using steam tables and Mollier chart	Evaluate					
<i>CO4</i>	Analyze the performance of steam power cycle.	Analyze					
<i>CO</i> 5	Derive thermodynamic relations for ideal and real gases.	Analyze					

COUI	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	0	0	1	0	0	0	0	1	3	1	1
CO2	3	3	2	2	0	0	1	0	0	0	0	1	3	1	1
CO3	3	3	3	2	0	1	1	0	0	0	0	1	3	1	1
CO4	2	3	2	2	0	1	1	0	0	0	0	1	3	1	1
CO5	3	3	2	2	0	1	0	0	0	0	0	1	3	1	1
Avg	2.8	3	2.2	2	0	0.6	0.8	0	0	0	0	1	3	1	1
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22M	E302	FLUID MECHANICS AND MACHINE	SEMESTER III					
PRE	-REQU	ISITE:	Category	PC	Cre	edit	4	
1. En	gineering	Physics		L	Т	Р	ТН	
2.Eng 3.Eng	ineering gineering	Chemistry Mathematics	Hours/Week	3	1	0	4	
Cour	se Obje	ectives:						
1.	To un	derstand the basic concepts and properties of fluids						
2.	2. To analyze the kinematic and dynamic concepts of fluid flow							
3.	To un	derstand the various incompressible fluid flow through pipes a	nd between parallel	plates				
4.	To ap	ply the principles of fluid mechanics to design and operation of	f hydraulic turbines					
5.	To ap	ply the principles of fluid mechanics to design and operation of	f hydraulic pumps					
UN	ITI	INTRODUCTION AND FLUID STATI	ICS	9	3	0	12	
Basic densit Archi	concepts ty, vapo medes' p	s and units of measurement of physical quantities- Classification ur pressure, surface tension, Capillarity and viscosity. Florinciple.	on of fluids - Proper uid statics- hydros	rties of f static pr	'luids – o ressure,	lensity, buoyan	relative cy and	
UN	IT II	FLUID KINEMATICS AND DYNAMI	CS	9	3	0	12	
strear applic dimer	streamline, path line, streak line and timeline. Velocity potential function and Stream function - continuity equation and its applications. Fluid dynamics - Bernoulli's equation and its applications. Dimensional analysis – Buckingham's theorem, dimensional homogeneity, similarity-laws and models.							
UN	IT III	FLOW THROUGH PIPES AND PLAT	ES	9	3	0	12	
Incon pipes hydra layer	npressible and flow ulic grad flows - E	e fluid flow-Laminar flow- Hagen-Poiseuille equation, shear s between parallel plates. Turbulent flow – flow through pipes, lient line, flow through pipes in series and parallel- Moody's f Boundary layer thickness, momentum thickness, energy thickne	tress, pressure grad friction factors in tu friction factor chart ss-boundary layer s	ient rela irbulent . Power eparatio	tionship flow - to transmis n.	- flow to tal energession-Bo	hrough gy line, oundary	
UN	IT IV	HYDRAULIC TURBINES		9	3	0	12	
Hydra perfor degre	aulic turb rmance c e of react	vines classification-impulse and reaction turbines-Working prinurves for Pelton, Francis and Kaplan turbines. Comparison be tion -draft tubes.	nciple, Velocity tria tween impulse and	ngle, wo	ork done turbine	-efficier - specifi	ncy and c speed	
UN	IT V	HYDRAULIC PUMPS		9	3	0	12	
Class and p Cavit	Classification of hydraulic pumps-Centrifugal pumps - working principle, velocity triangle, specific speed, performance curves and priming. Reciprocating pumps - classification, working principle, indicator diagram, air vessels and performance curves. Cavitation in pumps. Working principles of gear and vane pumps. Total (45L+15T) = 60 Periods							
Tovt	Rooka							
1 1 I I	Bouks:	RK "A Textbook of Fluid Mechanics and Hydroulia Machin	es Oth Ed" Lorm:	Publicet	ion Dut	[td 201	0	
1. 2	Bainut	R.K., A Textbook of Fluid Mechanics and Hydraulic Machan	vice" S Chand and (Compan	$\frac{1011 \text{ FV}}{1011 \text{ FV}}$	111	0.	
2.	Subran	anya K "Eluid Mechanics and Hydraulic Machines" Tata M	cGraw Hill Publish	ing Com	y Ltu, 20	d 2011		
Refe	rence R	noks.			Pully Du	, <i>2</i> 011.		
1	White	"Fluid Mechanics & Ed" McGraw Hill India 2017						
2.	White, Fluid Mechanics, 6 Eu , Mechanical of Fluid Mechanics 8 th Edition" Wiley 2016							
3.	 Yunuscengel, John. M.cimbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill, 2017. 							

4.	Som, S.K, Biswas.G and SumanChakraborty, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill India, 2011.					
5.	Dr.P.N.Modi, Dr.S.M.Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard book house, 2018.					
E-Re	E-References:					
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on fluid mechanics.					

COUR Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Understand the basic concepts and properties of fluids	Remember				
<i>CO2</i>	Analyze the kinematic and dynamic concepts of fluid flow	Analyze				
СО3	Understand the various incompressible fluid flow through pipes and between parallel plates	Understand				
<i>CO4</i>	Apply the principles of fluid mechanics to design and operation of hydraulic turbines	Apply				
<i>C05</i>	Apply the principles of fluid mechanics to design and operation of hydraulic pumps	Apply				

COU	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	0	0	0	2	0	0	0	1	0	2	2	1
CO2	3	3	1	0	2	0	0	0	0	0	0	0	2	2	1
CO3	2	3	2	2	1	0	0	0	0	0	0	0	2	2	1
CO4	3	3	3	2	1	2	1	0	0	0	0	0	2	2	1
CO5	3	3	3	2	1	2	1	0	0	0	0	0	2	2	1
Avg	2.8	2.6	2	1.2	1	0.8	0.8	0	0	0	0.2	0	2	2	1
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22M	E303	MANUFACTURING PROCESSES	SEMESTER III						
PRE	-REQU	ISITE:	Category	PC	Cr	edit	3		
1. Ba	sic scien	ce, Engineering mathematics, Engineering Physics	TT (TT)	L	Т	Р	С		
2. En	gineering	g Materials	Hours/Week	3	0	0	3		
Cour	rse Obj	ectives:							
1.	1. To make the students familiarize with various manufacturing processes and fabrication techniques of metals and design of casting.								
2.	2. To develop design concepts of various manufacturing processes.								
3.	Gain k	nowledge to select appropriate manufacturing processes for vario	ous parts.						
4.	To dev	elop an entrepreneur skill among the students.							
5.	To eval	uate and select plastic deformation processes for various parts.							
UN	I TI	CASTING		9	0	0	9		
Conce solidi moule	Concepts of Manufacturing Process -Sand casting -Patterns – Design of Pattern, mould and cores- gate and riser design, solidification time calculation - Moulding machines - Core making. Special moulding processes – CO ₂ moulding; shell moulding, investment moulding, pressure die casting, centrifugal casting, casting defects.								
UN	IT II	WELDING		9	0	0	9		
Class subm beam	Classification of welding processes. Principles of Oxy-acetylene gas welding. Metal arc welding, resistance welding, submerged arc welding, tungsten inert gas welding, metal inert gas welding, plasma arc welding, thermit welding, electron beam welding, laser beam welding, defects in welding, Soldering and Brazing, Adhesive Bonding.								
UNI	IT III	METAL FORMING		10	0	0	10		
Metal proce opera Princ	llurgical esses, Ho ttions. Ro iple of ro	aspects of metal forming, slip, twinning mechanics of plastic of t working and cold working of metals, Forging processes – or olling of metals– Types of Rolling mill – Flat strip rolling – sl od and wire drawing – Tube drawing – Principles of Extrusion –	leformation, load ben, closed and in hape rolling opera Types.	estimation estimation estions –	on of bu n die fo Defects	Ilk defor rging – in rolled	mation forging d parts.		
UNI	IT IV	SHAPING OF PLASTICS		8	0	0	8		
Types and ty blowi typica	s of plas ypical ap ing – Ex al applica	tics - Characteristics of the forming and shaping processes – M plications of - Injection moulding – Plunger and screw machines trusion - Typical industrial applications – Thermoforming – Pro- ations - Compression moulding – Transfer moulding.	Ioulding of Thern s – Blow mouldin ocessing of Therm	noplastic g – Rota losets – `	s – Wor ational m Working	king pri oulding princip	nciples – Film les and		
UN	IT V	SHEET METAL FORMING AND POWDER MET	ALLURGY	9	0	0	9		
Form presse techn	ability o es used, iques, A	f Sheet Metal, load estimation of sheet metal processes - Shear Super Plastic forming; Introduction to Powder Metallurgy– Prindvantages, limitations and applications of powder metallurgy.	ing, Deep drawing ncipal steps invol	g, Bendi ved – si	ng operation of the second sec	ations- t	ypes of pacting		
	Total = 45 Periods								
Text	Books:								
1.	HajraC Mumba	houdhury, "Elements of Workshop Technology", Vol. I and ai, 2005.	II, Media Promo	ters and	Publisl	ners Pvt	., Ltd.,		
2.	Nageno 2007.	draParashar B.S. and Mittal R.K., "Elements of Manufacturing P	Processes", Prentic	e-Hall o	f India I	Private L	imited,		

Refe	rence Books:
1.	SeropeKalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials",4/e, Pearson Education, Inc. 2007.

2.	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001.					
3.	"H.M.T. "Production Technology – Handbook", Tata McGraw-Hill, 2000.					
4.	Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000.					
5.	Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.					
E-Re	E-References:					
1.	https://fdocuments.in/document/production-technology-55844cac00bfc.html?page=40					

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Describe the operational features of various casting processes, design of gate, riser and discover various defects in casting.	Understand			
<i>CO2</i>	Explain various metal joining processes and compare them.	Understand			
СОЗ	Summarize several types of metal forming processes and select suitable method for different applications.	Analyze			
<i>CO4</i>	Analyze various manufacturing methods for plastics and their needs in industry.	Analyze			
<i>C05</i>	Describe various sheet metal forming processes, load estimation calculation and principles of powder metallurgy	Understand			

|--|

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	0	0	0	0	0	1	0	0	1	2	1
CO2	2	1	2	1	0	1	0	0	1	1	0	0	1	2	1
CO3	1	1	1	1	0	0	0	0	0	1	0	0	1	1	1
CO4	1	1	1	0	1	0	0	0	0	1	0	0	1	1	1
CO5	0	1	0	0	0	0	0	0	1	1	0	0	1	0	1
Avg	1.2	1	1.2	0.6	0.2	0.2	0	0	0.4	1	0	0	1	1.2	1
	3/2/1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22M	T310	MATERIALS ENGINEERING		SEMESTER III						
PRE	-REQUI	SITE:	Category	ES	Cre	edit	3			
1. En	gineering l	Physics		L	Т	Р	TH			
2.Eng	gineering C	hemistry	Hours/Week	3	0	0	3			
Cou	rse Objec	tives:		1						
1. To impart concept on reactions, treatment, microstructure and mechanical behavior of engineering materials at different temperature.										
2.	2. To learn basic principles in metallurgy and materials engineering.									
3.	To identi	ty and select suitable engineering materials based on their appl	ications							
U	NIT I	PHASE DIAGRAMS		9	0	0	9			
Cryst syster diagr	al structure ms – Eute am - effect	es, Phases, solid solution types, compounds, Hume- Rothery ructic, Eutectoid, Peritectic systems. Lever rule, Equilibrium s of alloying elements – Ferrite and Austenite Stabilizers, TTT	iles; Gibb's phase and non-equilibri and CCT diagran	rule; Bi um coo 1s.	nary ison ling, Fe	morphot -C Equi	ıs alloy librium			
UN	II TIN	HEAT TREATMENT		9	0	0	9			
Isothe test – harde	Definition – Full annealing, stress relief, recrystallisation and spheroidizing –normalizing, hardening and tempering of steel. Isothermal transformation diagrams – cooling curves superimposed on I.T. diagram CCR - Hardenability, Jominy end quench test – Austempering, martempering – case hardening, carburising, nitriding, cyaniding, carbo-nitriding – Flame and Induction hardening. Heat treatment of non-ferrous alloys - precipitation hardening. Heat treatment of HSS tools, gears, springs and gauges.									
UN	III III	FERROUS AND NON-FERROUS META	ALS	9	0	0	9			
Plain and p Copp	carbon ste precipitatio per alloys –	eels – Tool steels - maraging steels – HSLA steels. Stainless s n hardened stainless steels. Types of Cast Irons- Gray cast iro Brass, Bronze and Cupronickel, Aluminium alloys, Bearing al	steels- ferritic and n, white cast iron loys.	Austeni , mallea	itic, mar ble cast	tensitic, iron, S.(duplex G. Iron.			
UN	NIT IV	MECHANICAL PROPERTIES AND TEST	ГING	9	0	0	9			
Mech Fract and it	nanical pro ure - Type ts effects –	perties of engineering materials - Mechanisms of plastic defo s of fracture – Testing of materials - tension, compression and testing for hardness (Brinell, Vickers and Rockwell) - Impact	ormation, slip and d shear loads - fat test - Izod and Cha	twinnin igue and arpy.	g – Cree l creep t	ep, Fatig ests – h	gue and ardness			
UN	NIT V	NON-DESTRUCTIVE TESTING AND SUR ENGINEERING	FACE	9	0	0	9			
Non- inspe methe	Destructive ction and code, high a	e Testing: Basic principles, Testing method - Radiographic Liquid penetrant inspections. Introduction to surface engineer nd low energy beam methods, surface engineering charts, elast	c Testing, Ultraso ing– Definition, o ic contact mechan	onic test liffusion ics.	ing, Ma techniq	ignetic ues, dep	particle position			
					Total	= 45 P	eriods			
Text	Books:									
1. Kenneth G. Budinski and Michael K. Buinski, "Engineering Materials", Prentice Hall of India Ltd, 2002.										
2. Raghavan, V, "Materials Science and Engineering", Prentice Hall of India (P) Ltd., 1999.										
3.	3. Aswani.K.G, "A Text Book of Material Science", S.Chand and Co. Ltd., New Delhi, 2001.									
4.	Khanna (D.P., "A Text Book of Materials Science and Metallurgy", Dha	npatRai Sons, 200)4.						
Refe	rence Bo	oks:								
1.	William.	D.Callsber, "Material Science and Engineering", John Wiley a	nd Sons, 1997.							
2.	. Sydney.H.Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994.									

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Understand the formation of materials and their classification based on atomic structure.	Understand			
<i>CO2</i>	Understand the principles of various heat treatment processes in fabrication industry.	Understand			
СОЗ	Describe properties, applications and types of various ferrous and non-ferrous metals used in fabrication industry	Understand			
<i>CO4</i>	Describe various types of failure and select methods for destructive testing	Understand			
<i>C05</i>	Select methods for Non-destructive testing	Evaluate			

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	1	1	1	0	0	0	0	0	2	3	1
CO2	1	0	2	1	1	2	1	0	0	0	0	0	2	3	1
CO3	0	1	1	1	1	0	1	0	0	0	0	0	3	2	1
CO4	0	2	2	1	1	1	1	0	0	0	0	0	2	3	1
CO5	0	2	2	2	1	0	1	0	0	0	0	0	2	2	1
Avg	0.4	1.2	1.8	1.4	1.0	0.8	1	0	0	0	0	0	2.2	2.6	1.0
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22MCIN02 INNOVATION SPRINTS SEMESTER							Ι		
PRE	-REQU	ISITE:	Category	EE	Cre	edit	1		
			Houng/Wools	L	Т	Р	ТН		
			Hours/ week	0	0	2	2		
Cou	rse Obje	ctives:							
1.	1. To understand the fundamentals of Design thinking & apply in ideating solutions for real-world problems.								
2.	To solve	e challenges through problem curation, problem validation and	customer discover	y proble	ms.	-			
UN	I TIN	CHALLENGE CURATION		3	0	0	3		
Introd Fram	duction: I ing the de	Design Thinking Principles - Design Thinking Values - Designesign challenge.	n Thinking Metho	ds - Cha	allenge i	mpact s	etting -		
UN	II TI	CUSTOMER-CENTRIC INNOVATIO	N	3	0	0	3		
Unde Trans	erstanding slating Ins	Customer needs - Empathy building techniques - gap analysi ights into Innovation Opportunities	s - adoption barrie	ers - obs	ervation	s and in	sights -		
UN	IT III	IDEA GENERATION		3	0	0	3		
Ident: brain	ifying pa storming	ins & gains - crafting value proposition - Ideation - Div - Managing risks - Concept of minimum usable prototypes - Ge	rergent Thinking	- Ideatic	on meth	nods- Ri	ules of		
UN	IT IV	PROTOTYPING		3	0	0	3		
Proto Proto	Prototyping concepts Palm Pilot Experiment - Fake it before make it - Prototyping - The Law of Failure - Building a Prototype - Testing the Prototypes								
UN	NIT V	PITCH & PRESENTATION		3	0	0	3		
Scien comp	Science of Storytelling - the blueprint for storytelling - Pitch Script - Pitch Presentations - Best practices to creating a compelling pitch - communication fundamentals								
	Total = 15 Periods								

Text	Books:
1.	Tim Brown (2019), "Change by Design: How design thinking transforms organizations and inspires innovation"
2.	Jan Chipchase& Simon Steinhardt (2013), "Hidden in Plain Sight: How to Create extraordinary Products for Tomorrow's Customers", Harper Business 2013
3.	Christian Madsbjerg&Mikkel B. Rasmussen (2014), "The Moment of Clarity", Harvard Business Review Press
4.	IdrisMootee(2013), Design Thinking for Strategic Innovation, Willey
5.	Alexander Osterwalder, Value Proposition Design: How to Create Products and Services Customers Want (Strategyzer) John Wiley & Sons, 2014
Refe	rence Books:
1.	Avoia. Alberto, 2009 The Pretotyping Manifesto -
2.	https://sites.google.com/a/pretotyping.org/www/the-pretotyping-manifesto
3.	Jazz Factory, All about Presentations - http://blog.jazzfactory.in/
4.	Pretotyping Methodology - https://www.pretotyping.org/methodology.html

COUR Upon c	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Identify real-world problems	Understand				
<i>CO2</i>	Apply the challenge curation techniques to real-world problems.	Apply				
СО3	Analyze the problems and generate solutions to address the challenges	Analyze				
<i>CO4</i>	Build solutions using prototyping tools & techniques	Apply				
<i>C05</i>	Develop an innovation pitch to effectively communicate the idea to solve the identified problem	Analyze				

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	3	0	0	0	2	1	0	2	0	0	0	0	0	2
CO2	0	3	0	2	0	0	0	0	2	0	0	0	0	0	2
CO3	0	0	3	2	0	0	0	0	2	0	0	0	0	0	2
CO4	2	0	3	0	0	0	0	1	2	0	0	0	0	0	2
CO5	0	0	0	0	0	0	0	0	2	3	0	0	0	0	2
Avg	0.4	1.2	1.2	0.8	0	0.4	0.2	0.2	2	0.6	0	0	0	0	2
	3/2/1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22NC301	NCC COURSE-II (Only for NCC Stude	NCC COURSE-II (Only for NCC Students) SEM									
PRE-REQU	SITE:	Category	NC	Cre	Credit						
		Hound/Wook	L	Т	Р	TH					
		HOURS/ WEEK	3	0	0	3					
Course Obje	ctives:										
1. To main	tain the unity and disciplines to the students		-								
UNIT I	SOCIAL SERVICE & COMMUNITY DEVEI	LOPMENT	9	0	0	9					
Basic of social service and it's need - Rural Development Program – NGOs Roles & Contribution – Drug abuse and Trafficking – Civic Responsibilities – Causes & prevention of AIDS/HIV – Counter Terrorism – Corruption – Social Evil – RTI & RTE – Traffic Control Organization – Anti Drunken Driving.											
UNIT II	0	0	9								
General Knowledge – Logical & Analytical Reasoning - Modes of Entry to Army, CAPF, Police – SSB Procedure; Para Sailing – Slithering – Rock climbing – Cycling and Trekking.											
UNIT III	AEROENGINES & NAVIGATION		9	0	0	9					
Introduction to engines – Bray - Symbols used	aero engines and its type – Components of aero engines – P ton Cycle – Turbo prop engines and its types; Requirements o in map – Scales of map – Map reading procedure and its aids	Principles of Propuls of Navigation - Line	sion – B s on Ear	asic Ter th – Maj	minolog ps and it	y – Jet s types					
UNIT IV	AIRFRAME & METEOROLOGY		9	0	0	9					
Aircraft Contro Gear; Importan	ol – Primary and Secondary –Fuselage – Main Plain and Tai ce of METT in Aviation – Atmosphere – Clouds and Precipita	il Plain – Ailerons, ation – Flying Haza	Elevato rds.	rs& Rud	lders –L	anding					
UNIT V	FLIGHT INSTRUMENTS & AEROMODE	ELLING	9	0	0	9					
Airspeed Indicator – Altimeter – Artificial Horizon – Radar and Its Type – Instruments Battery Test, Compass; History of Aero Modeling – Basic Materials & Tools – Types of Aero Modelling – Flying/Building of Aero Models – General Safety Procedure.											
Total = 45 Periods											

COURS Upon co	Upon completion of the course, the students will be able to:							
C01	Acquired knowledge about social and legal responsibilities.	Understand						
<i>CO2</i>	Understand the adventure activities and verbal training on defense examinations.	Remember and Understand						
СОЗ	Understand the technical knowledge on aero engines and map reading.	Understand						
<i>CO4</i>	Understand the structure and control of an aircraft.	Understand						
<i>CO5</i>	Understand and learn the importance of avionic instruments on aircraft control.	Remember and Understand						

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	0	0	0	0	0	0	0	0	0	0	3	1	1
CO2	3	3	2	3	0	0	0	0	0	0	0	0	3	2	1
CO3	3	2	3	1	0	2	0	0	0	0	0	0	3	2	1
CO4	3	2	2	2	0	0	0	0	0	0	0	0	3	2	1
CO5	3	0	0	0	0	1	0	0	0	0	0	0	3	3	1
Avg	3	1.6	1.4	1.2	0	0.6	0	0	0	0	0	0	3	2	1
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22ME	304	S	SEMESTER III					
PRE-REQUISITE: Category PC							redit 1.5	
1. Engi	Engineering Drawing L T						TI	
2. Mac	hine Dr	awing	Hours/Week	0	0	3	1.	
Cours	e Obje	ectives:				L		
1. Ur	nderstan	nd the Code of drawing practice as per BIS conventions f	or mechanical elements u	ising CA	D softwa	are.		
2. Pra	actice th	he methods for sectioning and drawing the joints, couplin	ngs, bearings, and keys.					
3. Pro	epare as	ssembly drawings, sectional views and bill of materials for	or selected assemblies.					
		CAD EXPERIM	ENTS					
The stu Engine	udents v er/ CAT	will be required to carry out the following exercises us FIA /I-Deas/ Solid Edge/Solid Works etc.)	ing software packages (e	e.g. 3D n	nodeling	packag	e / P	
	• Intr	roduction to advanced modeling software						
	• Par	t Modeling of Screw Jack						
	• Par	t Modeling of Flange Coupling						
	• Par	t Modeling of Plummer Block						
	• Par	t Modeling of Knuckle Joint						
	• Cre	ation of 3D assembly model of universal joint						
	• Cre	ation of 3D assembly model of connecting rod						
	• Cre	ation of 3D assembly model of crankshaft						
	• Cre	ation of 3D assembly model of Lathe Tailstock						
	• Cre	eation of 3D assembly model of Piston.						
	• Cre	ation of 3D assembly model of Safety valve.						
	• Det	tailing of Lathe Tailstock						
					Total	= 45 P	erio	
COUH Upon c	RSE O	UTCOMES: tion of the course, the students will be able to:				Bloo Taxoi Map	m's nomy ped	
C01	Des feat	cribe how CAD technology can be leveraged in the dest ures available with CAD software	ign process and the basic	and adv	anced	Under	stan	
	Des	ign a part or assembly of parts using Computer-Aided D	esign software.			Cre	ate	
<i>CO2</i>								

COUR	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	3	0	1	0	0	0	2	0	2	2	1
CO2	1	1	1	1	3	0	1	0	0	0	0	0	2	2	1
CO3	2	2	2	1	2	0	1	0	0	0	1	0	2	2	1
Avg	1.6	1.6	1.33	1.33	2.6	0	1	0	0	0	1	0	2	2	1
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22C	E308	STRENGTH OF MATERIALS AND FLUID ME LABORATORY	SEMESTER III				
PRE	-REQU	JISITE:	Category	ES	ES Credit		
Strei	ngth of N	Vaterials	//	L	Т	Р	ТН
Fluic	l Mecha	nics	Hours/Week	0	0	3	3
Cou	rse Obj	ectives:					
1.	To an strain	alyze structural members subjected to tension, compression and b and elastic behavior of materials.	pending using the fu	ndament	al con	cepts of	f stress,
2.	To Stu	dy about Pump and Turbine.					
		STRENGTH OF MATERIAL LABORATO	ORY EXERCISES	5			
	1. D	ouble shear test on mild steel rod					
	2. Te	ension Test on mild steel rod					
	3. Te	est of springs (Open coil and closed coil)					
	4. In	npact test on a metallic specimen (Izod and Charpy Impact test)					
	5. H	ardness tests on metallic specimen (Brinell / Rockwell)					
	6. Be	ending deflection test on beams					
	FLUID MECHANICS LABORATORY EXERCISES						
	1. D	etermination of Friction factor of pipes					
	2. Pe	erformance characteristics of Kaplan Turbine					
	3. Determination of the coefficient of discharge of orifice meter						
	4. Determination of the coefficient of discharge of venturi meter						
5. Conducting experiments and drawing the characteristics curves of centrifugal pump							
6. Conducting experiments and drawing the characteristics curves of reciprocating pump							
	7. C	onducting experiments and drawing the characteristics curves of ge	ear pump				
				,	Fotal	= 30 P	eriods

COURS Upon cor	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
C01	Learn the various techniques of testing methods for materials	Understand				
<i>CO2</i>	Perform test and identify the different characteristics of materials.	Evaluate				
СО3	Perform experiments on hydraulic machines to draw the performance characteristics.	Evaluate				

COUR	COURSE ARTICULATION MATRIX														
CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	1	0	0	0	0	1	0	0	0	1	1	3
CO2	1	2	1	1	0	0	0	0	1	0	0	0	2	1	2
CO3	1	2	2	2	0	0	0	0	1	0	0	0	2	1	3
Avg	1	2	1.33	1.33	0	0	0	0	1	0	0	0	1.66	1	2.6
			3/2	/ 1 – in	licates	strengtl	1 of cor	relatior	n (3 – H	igh, 2 – 1	Medium,	1 – Low)		

SEMESTER-IV

22M	E401	KINEMATICS OF MACHINERY	5	SEMES	TER I	V	
PRE	-REQU	ISITE:	PC	Cre	edit	4	
1. En	1. Engineering Graphics.						TH
2.Eng	gineering	Mechanics	Hours/ week	3	1	0	4
Cou	rse Obj	ectives:					
1.	To und	erstand the basic components and layout of linkages in the assem	nbly of a system/ ma	achine.			
2.	To und point ir	erstand the principles in analyzing the assembly with respect to a link of a mechanism.	the displacement, v	velocity,	and acco	eleration	at any
3.	To und	erstand basics of cam profile and its displacement.					
4.	To und	erstand the basic concepts of toothed gearing and kinematics of g	gear trains.				
5.	Illustra	te the effects of friction drives in transmission system.					
UN	I TI	BASICS OF MECHANISMS		9	3	0	12
Class inver some	Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider-crank chains Limit positions- Mechanical advantage - Transmission angle- Description of some common mechanisms- Quick return mechanism, straight-line generators- Universal Joint- Rocker Mechanisms.						nematic ption of
UN	IT II	KINEMATIC ANALYSIS		9	3	0	12
Displ veloc mech graph	acement, bity and anism, d nical synt	, velocity and acceleration analysis of simple mechanisms - graph acceleration analysis using loop closure equations- kinematy ynamics, Coincident points- Coriolis component of acceleration hesis for motion and path generation.	hical velocity analy tic analysis of sin n. Introduction to lin	sis using nple me nkage sy	; instanta chanism nthesis	neous co s- slide - three F	entres - r-crank Position
UN	IT III	KINEMATICS OF CAM		9	3	0	12
Class harm angle	sification onic and and und	of cams and followers- Terminology and definitions- Displacen cycloidal motions- derivatives of follower motions- specified ercutting, sizing of cams, graphical and analytical disc cam profi	ment diagrams Unit contour cams circu le synthesis for rolle	form velular and er and fla	ocity, pa tangent at face F	trabolic, cams- p ollowers	simple oressure s.
UN	IT IV	GEARS AND GEAR TRAINS		9	3	0	12
Invol and in	ute and onterferen	cycloidal gear profiles, gear parameters, fundamental law of gear ce/undercutting- helical, bevel, worm, rack & pinion gears, epicy	aring and conjugate clic and regular gea	e action, ar train k	spur ge	ar conta es.	ct ratio
UNIT VFRICTION IN MACHINE ELEMENTS930						12	
Surface contacts- sliding and rolling friction- friction drives- friction in screw threads – bearings and lubrication- fri Clutches- belt and rope drives- friction in brakes.						friction	
			Та	otal (45)	L+15T)	= 60 P	eriods
Text	Books:						

I UNIV D							
1.	Rattan S.S, "Theory of Machines", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998.						
2.	Ghosh, A and Mallick, A.K, "Theory of Mechanisms and Machines", East-West Pvt. Ltd., New Delhi, 1988.						
Refere	nce Books:						
1.	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 1984.						
2.	Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Wiley- Eastern Ltd., New Delhi, 1992.						
3.	Erdman AG and Sandor G N, "Mechanism Design, Analysis and Synthesis", Vol.I, PHI Inc., 1997.						
4.	Ambekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.						
5.	John Hannah and Stephens R C, "Mechanisms of Machines", Viva Low Price Student Edition, New Delhi, 1999.						
E-Refe	E-References:						
--------	---	--	--	--	--	--	--
1.	https://archive.nptel.ac.in/courses/112/104/112104121/						
2.	https://nptel.ac.in/courses/112106270						
3.	http://velhightech.com/Documents/ME8492 Kinematics of Machinery.pdf						

COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
C01	Demonstrate and understand the concepts of various mechanisms and pairs.						
CO2	Analyze the velocity and acceleration of simple mechanisms.	Analyze					
СОЗ	Construct the cam profile for various motion.	Create					
<i>CO4</i>	Solve problems on gears and gear trains.	Evaluate					
<i>C05</i>	Evaluate the friction in transmission system	Evaluate					

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO2	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO3	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO4	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO5	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
Avg	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

	E 40 0	THERMAL ENGINEERING					X 7
22M	LE402	(Use of standard thermodynamic tables, Mollier diagram, Psy and Refrigerant property tables are permitted in the exa	vchometric chart amination)		V		
PRF	E-REQU	ISITE:	Category	PC	Cr	edit	4
				L	Т	Р	TH
			Hours/Week	3	1	0	4
Cou	rse Obje	ectives:					
1.	To teac	h the construction and working of IC engine and basics on gas po	ower cycles.				
2.	To acqu	aint the concepts of nozzle, turbine and draw velocity triangle for	or a turbine, calcula	te work	done an	d efficie	ency.
3.	To und recipro	erstand the construction and working of all types compressor cating compressor.	and calculate the	work do	ne and	efficien	cy of a
4.	To prov	vide knowledge concept of psychrometry and its processes.					
5.	To acqu	aint knowledge of refrigeration cycles and calculation of COP a	nd RE				
UI	NIT I	INTERNAL COMBUSTION ENGINES AND GA CYCLES	S POWER	9	3	0	12
Class two s Otto,	sification stroke and , Diesel, I	of IC engine, IC engine components and functions. Valve timing four stroke engines, Actual and theoretical P-V diagram of two Dual, Brayton cycles, Calculation of mean effective pressure and a	g diagram and port and four stroke er air standard efficies	timing d ngines, Pe	iagram. erforma	Compa nce calc	rison of sulation.
UN	II TI	STEAM NOZZLES AND TURBINES		9	3	0	12
Flow Impu turbi	y of steam Ilse and H nes.	a through nozzles, shapes of nozzles, effect of friction, critical Reaction Turbines, Compounding of Impulse Turbines. Velocity	pressure ratio, su y Diagrams, work	persatura done and	ted flow d efficie	w. Princ ency for	iples of simple
UN	IT III	AIR COMPRESSOR		9	3	0	12
Class Isoth of Ro	sification ermal eff otary com	and comparison, working principle, work of compression - w iciency and Isentropic efficiency. Multistage air compressor with pressors with reciprocating air compressors.	ith and without cl h Intercooling. Wo	earance, orking pri	Volume inciple a	etric eff and com	iciency, parison
UN	IT IV	PSYCHROMETRY		9	3	0	12
Psyc Psyc and a	hrometric hrometric adiabatic 1	properties – Property calculations using Psychrometric chart chart – adiabatic saturation, sensible heating and cooling, hum nixing.	and expressions. adification, dehum	Psychronidificatio	metric _I on, evap	processe	s using cooling
UN	NIT V	REFRIGERATION SYSTEMS		9	3	0	12
Vapo calcu	our comp lations. V	ression Refrigeration cycle – Effect of suction and delivery provoking principle of vapour absorption system. Comparison betw	essures, super hear	t and sub ession an	o coolin d absor	ig, perfo	ormance stems.
			Te	otal (451	L+15T)) = 60 I	Periods
Text	t Books:						
1.	Rajput, I	R.K, "Thermal Engineering", S. Chand Publishers, 2000.					
2.	Rudram	porthy, R, "Thermal Engineering", Tata McGraw Hill, New Delh	i, 2003.				
3.	Kothand Sons, 5t	araman, C.P., Domkundwar,S. and Domkundwar, A.V, "A contraction and the contraction of th	ourse in Thermal	Enginee	ring", I	Dhanpat	Rai and
4.	Sarkar E	K, "Thermal Engineering", Tata McGraw Hill, 1998					
Refe	erence B	ooks:					

1. Holman. J.P., "Thermodynamics", McGraw Hill, 1985.

COURS Upon co	Bloom's Taxonomy Mapped	
C01	Analyze the performance parameters in IC engines and air standard cycles.	Analyze
CO2	Analyze the performance of steam nozzle and turbines and understand the concepts of compounding.	Analyze
СОЗ	Evaluate the performance parameters of an air compressor.	Evaluate
<i>CO4</i>	Apply the principles of Psychrometry for air-conditioning processes.	Apply
<i>CO5</i>	Analyze the vapour compression refrigeration cycle and evaluate COP and refrigerating effect.	Analyze

COURSE ARTICULATION MATRIX COs/ **PO1 PO2 PO3 PO4** PO5 **PO6 PO7 PO8 PO9** PO10 PO11 PO12 PSO1 PSO2 PSO3 POs CO1 **CO2** CO3 CO4 CO5 1.2 1.4 0.6 Avg 1.6 3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)

22M	E403	METAL CUTTING AND MACHINE TO	OLS	5	SEMES	STER I	V
PRE	-REQUI	SITE:	Category	PC	Cr	edit	3
Intro	duction to	Materials, force analysis		L	Т	Р	ТН
Heat treatment processes and Engineering physics. Hours/Week						0	3
Cou	rse Objec	ctives:					
1.	To pro	vide knowledge on basic mechanics of metal cutting.					
2.	Summa	arize the constructional and operational features of machine too	ls for manufacturing	g variou	s compo	nents.	
3.	Explain	n the machine tools for hole making grinding and broaching.					
4.	To ana	lyze various unconventional machining processes and their nee	ds in industries				
5.	Descrit	be the necessity of additive manufacturing techniques and ready	to interpret with in	dustries	require	ments	-
UI	I TIN	THEORY OF METAL CUTTING		9	0	0	9
Mech ortho Mach	nanics of o gonal men ninability.	chip formation, single-point cutting tool, forces in machinin tal cutting, thermal aspects, cutting tool materials, tool w	ng, Types of chips ear, tool life, surf	, cuttin ace fini	g tools- sh, cutt	- nomen ting flui	clature, ds and
UI	II TIN	AUTOMATS, SHAPING AND PLANING MA	CHINES	9	0	0	9
Caps autor opera	tan and tu nats – sha ations.	rret lathes – construction - indexing mechanism - operation ping and planning machines – types – construction - mecha	s - working princij nism – principle o	ple of si f operat	ingle an ion – di	d multi- ifferent s	spindle shaping
UN	III TII	DRILLING, BROACHING AND GRINDING M	IACHINES	9	0	0	9
Drill types – mo	ing machir , tool nom unting and	nes – specifications, types - feed mechanism, operations – dri enclature, broaching operations – grinding – types of grinding reconditioning of grinding wheels.	ll tool nomenclatur machines – grinding	e – bros g wheels	aching - , specifi	- specific cations -	cations, - bonds
UN	NIT IV	MILLING AND GEAR GENERATING MA	CHINES	9	0	0	9
Milli – gea - bev	ng – speci Ir generatio el gear ger	fications – types - cutter nomenclature – types of cutters – mill on - gear shaping and gear hobbing – specifications - cutters –c herators – gear finishing methods	ing processes – ind oated tools & insert	exing – s- cuttin	gear for g spur a	ming in nd helica	milling al gears
U	V TIN	ADVANCES IN MACHINING		9	0	0	9
Unco Macl Addi Stere sinte	onventional hining (AJ) tive manu o lithogra ring- 3D Pr	I machining processes - principles, process parameters, MRR M), Electrochemical Machining (ECM). Electric Discharge M facturing processes - Fundamentals of Additive Manufacturin phy apparatus - STL file - Fused Deposition Modeling- L rinter – Tooling.	, process capabilitie Iachining (EDM), I ng (AM)-Product I aminated Object N	es and t Laser Be Developi Manufact	ooling f eam Mac nent-Ma turing-	for Abras chining (aterials f Selective	ive Jet (LBM). For AM E Laser
					Tota	l = 45 P	'eriods
Text	Books:						
1.	Kalpakjia	n and Schmid, "Manufacturing processes for Engineering Mate	erials" (5th Edition)	- Pearson	n India,	2014.	
2.	Rao. P.N 2013	"Manufacturing Technology - Metal Cutting and Machine Te	ools", 3rd Edition, '	Tata Mc	Graw-H	Iill, New	[,] Delhi,
Refe	erence Bo	oks:					
1.	HajraCho	udhury, "Elements of Workshop Technology", Vol.II., Media F	Promoters 2014				
2.	"H.M.T. '	'Production Technology – Handbook", Tata McGraw-Hill, 200	0.				

3. Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000.

4.	Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.
5.	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001

COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
C01	Explain the mechanism of material removal processes.						
<i>CO2</i>	Describe the constructional and operational features of special-purpose lathes, shaper and planner.	Understand					
СОЗ	Gain working exposure to hole-making operations, grinding and broaching machines utilized in industries.	Evaluate					
<i>CO4</i>	Study of special-purpose machine tools, operations and its uses in industries.	Understand					
C05	Summarize unconventional machining processes and additive manufacturing processes and their applications.	Remember					

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	0	1	0	0	0	0	0	1	1	0	2	0	1
CO2	0	1	1	1	0	0	0	0	0	1	1	1	1	2	3
CO3	0	1	1	0	0	0	0	0	0	1	1	1	1	2	2
CO4	0	1	1	0	0	0	0	0	0	1	1	1	1	2	2
CO5	0	1	0	0	2	0	2	0	2	1	1	1	1	2	2
Avg	0.4	1	0.6	0.4	0.1	0	0.1	0	0.1	1	1	0.8	1.2	1.6	2
	3/2/1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22M	E404	HYDRAULICS AND PNEUMATICS	5	SEMESTER IV				
PRE	-REQUIS	ITE:	Category	PC	Cre	edit	3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cou	rse Object	tives:						
1.	To enable	e the students, understand the basics of hydraulics and pneumat	tics					
2.	Applying	the working principles of hydraulic actuators and control comp	ponents.					
3.	Designing	g and develop hydraulic circuits and systems.						
4.	Applying	the working principles of pneumatic power system and its con	nponents.					
5.	Solving p	roblems and troubles in fluid power systems.						
U	NIT I	FLUID POWER PRINICIPLES AND HYDRAU	LIC PUMPS	9	0	0	9	
select Source Disac	tion – Basi ces of Hyd lvantages, H	cs of Hydraulics – Pascal's Law – Principles of flow - Fric draulic power; Pumping Theory – Pump Classification Performance, Selection criteria of pumps – Fixed and Variable	tion loss – Work, 1 – Construction, V displacement pump	Power a Vorking, os – Prob	nd Torq Design lems.	ue - Pro 1, Adva	blems, .ntages,	
U	NIT II	HYDRAULIC ACTUATORS AND CONTROL CO	OMPONENTS	9	0	0	9	
moto – Ac Probl	rs - Control cessories; I lems.	Components: Direction Control, Flow control and pressure control and pressure Switches – Filters – types and selection	ontrol valves – Typ 1 - Applications –	bes, Cons Fluid Po	struction ower AN	and Op	eration 1bols –	
		HYDRAULIC CIRCUITS AND SYSTE	MS	9	U	U	9	
Accu Air-o syster hydra	mulators, li over oil, Seo ms, Hydros aulic servo s	ntensifiers, Industrial hydraulic circuits – Regenerative, Pump quence, Reciprocation, Synchronization, Fail - Safe, Speed C static transmission, Electro hydraulic circuits – Servo and I systems.	o Unloading, Doub Control, Deceleratio Proportional valves	le - Pum on circui – Appl	np, Press its, Sizir lications	ng of hy - Mech	nsifier, draulic nanical,	
U	NIT IV	PNEUMATIC AND ELECTRO PNEUMATIC	SYSTEMS	9	0	0	9	
Prope valve methe Introd	erties of air es, Pneumat od – Integr duction to f	– Air preparation and distribution – Filters, Regulator, Lubr ic actuators, Design of Pneumatic circuit – classification - sir ration of fringe circuits, Electro pneumatic system – Eleme luidics and pneumatic logic circuits.	icator, Muffler, Ain ngle cylinder and m nts – Ladder diagn	r control nulti cyli ram – ti	valves, nder circ mer circ	Quick of cuits - C cuits pro	exhaust Cascade Oblems,	
U	NIT V	DESIGN OF FLUID POWER CIRCUITS TROUBLESHOOTING	AND	9	0	0	9	
Serve hydra troub Autor pneur	o systems, H aulic pneum leshooting. mation – H matics com	Hydro mechanical servo systems, electro hydraulic servo system natic logic circuits, ladder diagrams, PLC applications in flui Design of Pneumatic circuits for metal working, handling, ydraulic and Pneumatic power packs. Case studies: A simple ponents.	ns and proportional d power control. F clamping counter sequence, synchron	l Valves, luid pow and time ize circu	Introdu ver circu er circui nits using	ction to its, failu ts. – Lo g hydrau	electro ire and ow-cost ilic and	
	Total = 45 Periods							
Text	Books:							
1.	Manjumda	r S.R, "Oil Hydraulics", Tata McGraw-Hill, December 2002.						
2.	Anthony E	sposito, "Fluid Power with Applications", Pearson Education 2	2013.					

Ref	Reference Books:						
1.	Andrew Parr, "Hydraulic and Pneumatics", Jaico Publications House, 2005.						
2.	Bolton W. "Pneumatic and hydraulic system", Butterworth-Heinemann 1997						
3.	Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 2010						
4.	Shanmugasundaram. K, "Hydraulic and Pneumatic controls", Chand & Co, 2006						
5.	Srinivasan.R. "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008.						
E-R	leferences:						
1.	http://www.fluidpowerjournal.com						
2.	http://14.139.160.15/courses/112102011/2						
3.	https://www.nfpa.com/home.htm						

COURS Upon co	Bloom's Taxonomy Mapped	
C01	Select the components as per the application	Evaluate
CO2	Apply the working principles of hydraulic actuators and control components.	Apply
СОЗ	Design and develop hydraulic circuits and systems.	Create
<i>CO4</i>	Apply the working principles of pneumatic power system and its components.	Apply
<i>C05</i>	Solve problems and troubles in fluid power systems.	Evaluate

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	0	0	0	0	0	0	0	0	1	1	1
CO2	0	2	2	1	0	0	0	0	0	0	0	0	1	1	1
CO3	1	2	3	0	0	1	0	0	0	0	0	0	1	2	1
CO4	1	1	3	2	2	0	0	0	0	0	0	0	2	1	1
CO5	1	1	2	0	0	0	0	0	0	0	0	0	1	1	1
Avg	1	1.4	2.2	0.6	0.4	0.2	0	0	0	0	0	0	1.2	1.2	1
			3/2	/ 1 – ine	dicates	strengtl	n of cor	relatior	n (3 – H	igh, 2 – I	Medium,	1 – Low	·)		

22C	E 409	STRENGTH OF MATERIALS		S	SEMES	TER I	V					
PRE	-REQUI	SITE:	Category	ES	Cre	edit	3					
Diffe	erentiation	, Partial Differential Equations	Hours/Wook	L	Т	Р	ТН					
Engi	neering M	echanics.	HOUTS/ WEEK	3	0	0	3					
Cou	rse Obje	ctives:										
1.	To une and sp	derstand the nature of stresses developed in simple geometries heres for various types of simple loads	such as bars, canti	levers, t	beams, sl	hafts, cy	linders					
2.	To cal	culate the shear force and bending moment of various beams tra	nsverse loading									
3.	To esti	mate the slope and the deflection of beams and strengths of the	columns									
4. To evaluate the axial and hoop stresses in thin and thick shells for the applied internal and external pressures.												
5. To learn about the torsion behavior of shafts and coil springs												
U	NIT I	STRESS, STRAIN AND DEFORMATION OF	F SOLIDS	9	0	0	9					
Defor relati comp	rmation in ons- volu ound bars	n solids- Hooke's law, stress and strain- tension, compressi metric, linear and shear strains- principal stresses and princip -Relation between elastic constants-Thermal stresses.	on and shear stres pal planes- Mohr's	ses-elas circle.	tic cons Deforma	tants an ation of	d their simple					
UN	II TI	TRANSVERSE LOADING ON BEAMS AND ST BEAMS	RESSES IN	9	0	0	9					
Beam suppo stress sectio	ns and typ orted and distribution and cha	es of transverse loading on beams- shear force and bending r over-hanging beams, cantilevers. Theory of bending of beams, on, point and distributed loads. Shear stress distribution of sir nnel sections.	noment diagrams T bending stress dist nple beams- circula	ypes of ribution ar, rectar	beam su and neu ngular, "	apports, atral axis T" sectio	simply s, shear on, "T"					
UN	IT III	DEFLECTION OF BEAMS AND COLU	MNS	9	0	0	9					
Mom of slo recip: form	ent of ine opes and d rocal theo ila for col	rtia about an axis and polar moment of inertia, deflection of a b leflection in beams, Macaulay's method – Area moment metho rems. Columns: End Conditions-Equivalent length of a colum umns.	eam using double in d - Conjugate beam nn-Euler's equation	ntegratio and stra Slende	on metho ain energ rness rat	d, comp gy – Ma tio - Ra	utation xwell's nkine's					
UN	IT IV	THIN CYLINDERS, SPHERES AND THICK C	YLINDERS	9	0	0	9					
Axial spher	and hoo	p stresses in cylinders subjected to internal pressure, deform subjected to internal pressure – Lame's theorem.	ation of thick and	thin cyl	linders,	deforma	tion in					
U	NIT V	TORSION AND SPRINGS		9	0	0	9					
Torsi sprin	on, stresse gs-Wahl's	es and deformation in circular and hollow shafts, stepped shafts factor of spring Stresses in helical springs under torsion loads-	, deflection of shaft Stiffness and deflect	s fixed a ion of sj	t both en prings un	nds. Tor nder axia	sion on al load.					
					Total	= 45 P	eriods					
Text	Books:											
1.	Rajput, F	R.K, "Strength of Materials", S.Chand and Co, 3rd Edition, 2003	6.									
2.	Bansal, F	R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2016										
Refe	rence Bo	ooks:										
1.	Strength	of Materials, D.S. Bedi, Khanna Publishing House										
2.	2. Subramanian R., "Strength of Materials", Oxford University Press, Oxford Higher Education Series, 2010.											
3.	Mechani	cs of Materials, Punmia, Jain and Jain, Laxmi Publications										
4.	Strength	of Materials (Mechanics of Solid), R.S. Khurmi, S.Chand Publi	cations									

5. Strength of Materials, Jindal U.C., Asian Books Pvt. Ltd., New Delhi, 2009

E-References:

1. NPTEL Videos/Tutorials

COUR Upon c	Bloom's Taxonomy Mapped	
CO1	Evaluate the stress, strain and strain energy of simple bars	Evaluate
<i>CO2</i>	Familiarize the load transferring mechanism in beams and stress distribution due to shearing force and bending moment	Understand
СО3	Evaluate the slope and the deflection of beams and strengths of the columns	Evaluate
<i>CO4</i>	Analyze and design thin and thick shells for the applied internal and external pressures.	Analyze
<i>CO</i> 5	Analyze the torsion behavior of shafts and coil springs	Analyze

<u>COU</u>	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0
CO2	2	2	1	1	0	0	0	0	0	0	0	0	1	2	0
CO3	3	2	1	1	0	0	0	0	0	0	0	0	2	2	0
CO4	3	2	2	2	0	0	0	0	0	0	0	0	2	0	1
CO5	2	2	2	2	0	0	0	0	0	0	0	0	2	0	1
Avg	Avg 2.4 1.8 1.4 1.2 0 0 0 0 0 0 0 1.4 0.8 0.4														0.4
			3/2	/ 1 – in	dicates	strengt	h of cor	relation	n (3 – H	igh, 2 – 1	Medium,	1 – Low)		

22MC	CIN03	DESIGN SPRINTS		5	SEMES	TER I	V				
PRE-	REQUIS	SITE:	Category	EE	EE Credit						
			H / W) .	L	Т	Р	TH				
			Hours/ week	K 0 0 2							
Cours	se Objec	tives:									
1.	Develo support	p key skill areas essential for a product designer from the persp s them with tools & techniques to prototype rapidly.	pective of design, it	s inheren	t comple	exity and	1				
2.	To enal	ble the participants to visualize the experience for a user.									
3.	To lear	n the roles & responsibilities of a designer in creating and shap	oing experiences for	the user	•						
4.	The par	ticipants shall learn through the lenses of system thinking of h	ow existing produc	ts work.							
5.	Learn t	o select & apply various practice tools to aid them in rapid pro	totyping								
UN	IT I	DESIGN FUNDAMENTALS		0	0	6	6				
Introdu design	action to , principle	Visual Design, History and Modernism, Design Thinking me es of good design, designing a product and a service	thodology, seven e	elements	of desig	n, princi	ples of				
UN	IT II	SYSTEM THINKING AND REVERSE ENGI	NEERING	0	0	6	6				
System Revers	n Thinkin e Engine	g for Engineering Problem Solving, Understanding Systems, ering Methodology, Identify building blocks/Components - Re	Examples and und Engineering a com	lerstandi plex sys	ngs, Coi tem	nplex S	ystems,				
UNI	TIII	USER INTERFACE & USER EXPERIE	NCE	0	0	6	6				
Introdu workfl	uction to ow, Infor	UI/UX, Human-Computer interface, user-centered Design mation Architecture, UI Components, need for UI prototyping	Principles, User re , Wireframes	esearch t	echniqu	es, UX	Design				
UNI	TIV	MECHANICAL PROTOTYPING		0	0	6	6				
Need f method classifi	for protot ds - Too ication - I	yping - Domains in prototyping - Difference between actual is used in different domains - Introduction - Working wit Laser Cutting and engraving - RD Works - Additive manufactu	manufacturing and h Fusion 360 - 31 rring	prototyp D Model	ing - Ra ling - 3	pid proto D Printi	otyping ng and				
UN	IT V	ELECTRONIC & SOFTWARE PROTOTY	YPING	0	0	6	6				
Introdu manag Build I	action to ement an Packs	Lumped Circuits - Electronic Prototyping - Tinker CAD - E d version control - GitHub - GitHub Actions - GitBash - Con	Designing in KI CA tinuous Integration	D - PC - Platfor	B design m as ser	- Sourc vice - H	ce code eroku -				
					Total	= 30 P	eriods				

Text	t Books:
1.	Thinking in systems - Donella Meadows, 2015
2.	Rapid Prototyping And Engineering Applications: A Toolbox For Prototype Development - Frank W.Liou, 2007
3.	Rapid Prototyping Technology: Selection and application - COOPER K. G, 2001
Refe	erence Books:
1.	https://thesystemsthinker.com/wp-content/uploads/2016/03/Introduction-to Systems-Thinking-IMS013Epk.pdf
2.	https://formlabs.com/blog/ultimate-guide-to-prototyping-tools-for-hardware-and product-design/
3.	https://docs.kicad-pcb.org/
4.	https://www.tinkercad.com/learn/circuits
5.	https://docs.github.com/en/free-pro- team@latest/actions/guides

COURS Upon co	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Understand the elements and principles of product and service design	Apply					
CO2	Apply system thinking concepts in reverse engineering	Apply					
СОЗ	Apply user research techniques to meet the UX needs of a customer and design a visual prototype	Apply					
<i>CO4</i>	Develop prototyping models using the tools from mechanical prototyping models	Apply					
<i>C05</i>	Develop prototyping models using the tools from electrical and software prototyping methods	Apply					

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	0	1	0	0	0	0	0	2	0	0	0	0	0	2
CO2	2	3	0	0	0	0	0	0	2	0	0	0	0	0	2
CO3	3	0	1	0	0	0	0	1	2	0	0	0	0	0	2
CO4	0	0	3	2	3	0	0	0	2	0	0	0	0	0	2
CO5	2	0	2	0	1	0	0	0	2	0	0	0	0	0	2
Avg	2	0.6	1.4	0.4	0.8	0	0	0	2	0	0	0	0	0	2
			3/2/	1 – indi	icates st	trength	of corr	elation	(3 – Hi	gh, 2 – N	ledium,	1 – Low)		

22CY	MC01	ENVIRONMENTAL SCIENCE		5	SEMES	TER I	V					
PRE-	REQUIS	SITE:	Category	MC Credit (
			T (T)	L	Т	Р	С					
			Hours/Week	2	0	1	3					
Course	e Objecti	ves:										
1.	To lear	n the concept of non-conventional energy systems.										
2.	To expl	lore the environmental impact assessment and to learn about th	e consequence of d	ifferent t	ypes of p	ollutant	s.					
3.	To have	e an ancient wisdom drawn from Vedas.										
4.	То асци	uire activity-based knowledge to preserve environment.										
5.	To lear	n about conservation of water and its optimization.										
		ENVIRONMENTAL AWARENESS		30	0	0	30					
Solar H and sat impact measur Greenh	Energy B fety. Wi s of offsl rement. V nouse gas	asics- Solar Thermal Energy- Solar Photovoltaic Energy- Be and turbine power and energy- India's wind energy potential- hore wind energy.Air pollution- Sources, effects, control, ai Water Pollution-Sources and its remedy, Soil Pollution-So es – effect, acid rain. Noise pollution reduction. Aspects of pol	nefits and Drawbac Wind turbine type r quality standards burces and its ren lution from various	eks -Effe es. Envi , air poli nedy, di power p	ects on the fronment lution acception sposal of lants.	ne enviro al benef t, air po f solid	onment fits and ollution waste.					
		ENVIRONMENTAL ACTIVITIES		0	0	15	15					
Group event – Identifi the col of the c	Expert lication ar lege campus for	on water management – Group discussion on recycle of was ecture on environmental awareness – Imparting knowledge on nd segregation of biodegradable and non-biodegradable waste pus and local waste lands – Identification of varieties of plants or an hour.	te (4R's)- Slogan r reduction of electri – Campus cleaning s and their usage – S	aking c city usag activity Shutting	ontest – ge. – Planta down th	tion of e fans a	trees in nd ACs					
			10	lai (301	(+15P)	= 45 P	erioas					
Tort D	oolaa											
	Elemer	nts of Environmental science and Encineering, D.Maanakshi, D.	rantica Hall of Indi	Now	alt; 200	00						
1.	A Toxt	has to Environmental Science and Engineering, F.Meenaksin, F	th Energy Ecology	Ethios	and Socie	J9.	visad					
2.	Edition	a, Dr. S.S. Dara, D.D. Mishra Published by S. Chand & Compa	ny Ltd, 20 14.	, Eulies a		ely), Ke	vised					
Refere	nce Bool	ks:										
1.	Introdu India, 3	action to Environmental Engineering and Science, Gilbert M. Brd Edition, 2008.	Masters; Wendell	P. Ela F	ublisher	: Prentic	e-Hall					
2.	Enviro	nmental Science, Fldren D. Enger, Bredley F.Smith, WCD Mc	Graw Hill 14"Edition	on 2015.								
E-Refe	erence											
1	www.o	onlinecourses.nptel.ac.in/										
2	www.e	Pathshala.nic.in										

COURS Upon co	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
C01	Identify about the major renewable energy systems and will investigate the environmental impact of various energy sources as well as the consequences of various pollutants.	Understand & Analyze					
CO2	Predict the methods to conserve energy and ways to make optimal use of the energy for the future.	Apply					

COU	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	1	3	0	0	3	1	1	0	0	0	1	2	0	1
CO2	0	1	3	0	0	3	1	1	0	0	0	1	2	0	1
Avg	0	1	3	0	0	3	1	1	0	0	0	1	2	0	1
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22M	E405	THERMAL ENGINEERING LABORATO	ORY	S	SEMES	ESTER IV								
PRE	-REQUI	SITE:	Category	PC	Cr	edit	1.5							
				L	Т	Р	TH							
			Hours/Week	0	0	3	3							
Cour	se Object	iives:				1	1							
1.	The com	ponents of IC engine and boiler, mountings and accessories and	procedure of stear	n generat	tion.									
2.	Construe	cting port and valve timing diagram and determine the flash and	fire point of fuel o	il.										
3.	Analyzi	ng the petrol and diesel engine performance by conducting load	test.											
4.	Analyzi	ng the diesel engine performance by retardation test.												
5.	Characte	eristics of heat release in diesel engine and to study the p- θ diagr	am.											
		LIST OF EXPERIMENT	<u>'S</u>											
1	. Disma	antling and assembling of a single cylinder petrol and diesel engi	ne.											
2	2. Demo	nstration of generating steam using boiler.												
1	S. Deterr	nination of Viscosity, Flash and Fire point.												
4	E. Consti E. Porfor	ruction of valve 1 iming and Port 1 iming Diagrams.												
- F	5 Perfor	mance analysis of a four-stroke Petrol Engine.												
	7. Construction of a Heat Balance Test on four-stroke Diesel Engine.													
8	3. Morse	Test on Multi cylinder Diesel Engine.												
9	. Retard	lation Test to find Frictional Power of a Diesel Engine.												
10. Determination of p- θ diagram and heat release characteristics of an IC engine.														

Total = 45 Periods

COUR Upon c	RSE OUTCOMES: ompletion of the course, the students will be able:	Bloom's Taxonomy Mapped				
C01	To identify the components of IC engine and boiler, mountings and accessories and procedure of steam generation.	f Understand				
<i>CO2</i>	2 To construct port and valve timing diagram and determine the flash and fire point of fuel oil.					
CO3	To analyze the petrol and diesel engine performance by conducting load test.	Analyze				
<i>CO4</i>	To analyze the diesel engine performance by retardation test.	Analyze				
<i>C05</i>	To study the characteristics of heat release in diesel engine and to study the p- θ diagram.	Remember				

COU	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	3	1	1	0	0	0	0	0	1	1	2
CO2	1	2	1	1	1	2	1	0	0	0	0	0	2	1	1
CO3	2	1	3	1	1	2	1	0	0	0	0	0	3	1	3
CO4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Avg	1.2	1	1	0.6	1	1	0.6	0	0	0	0	0	1.2	0.6	1.2
			3/2	/ 1 – in	dicates	strengtl	h of cor	relation	n (3 – H	[igh, 2 −]	Medium,	1 – Low	r)		

22M	E406	MANUFACTURING TECHNOLOGY LABOR	ATORY	S	SEMESTER IV							
PRF	E-REQ	UISITE:	Category	PC	Cr	edit	1.5					
1. Co	onstructi	onal and operational features of conventional machine tools		L	Т	Р	ТН					
2. The mate	neory of rials.	metal cutting and machinability of various engineering	Hours/Week	0	0	3	3					
Course Objectives:												
1. To study different types of machine tools like lathe, drilling machine, shaper and grinding machine.												
2.	To acq	uire the necessary skills to operate different machinery.										
3.	To calc	culate metal removal rate and machining time of metal cutting proc	cesses									
4.	To ana	lyze and select an appropriate machining process for different com	ponents.									
5.	To stud	ly safety measures while machining.										
		LIST OF EXPERIMENT	<u>S</u>									
	1. Ecce 2. Mul 3. Dril 4. Cou 5. Cou 6. Shaj 7. Gro 8. Dov 9. T -s 10. Sput 11. Heli 12. Con 13. Surf	entric turning Iti starts thread cutting Iting and grooving Inter boring Inter sinking ping the sides of a cubical blank ove cutting and V-cutting vetail cutting slot cutting r gear cutting in milling machine ical Gear Cutting in milling machine Itour milling using vertical milling machine face Grinding of cubical block indricel Grinding of circular shaft										

Total = 45 Periods

COUR Upon c	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped					
C01	Operate machines tools for various assembly and fabrication tasks.	Understand					
<i>CO2</i>	Set up machines like lathe shaper, grinding and milling machine for various applications						
CO3	Perform machining time calculation in machining jobs.	Analyze					
<i>CO4</i>	Evaluate the accuracy & tolerance of components produced	Analyze					
<i>CO5</i>	Prepare gears using forming and generating methods of gear manufacturing	Remember					

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	0	0	0	1	0	1	0	0	1	0	1	0	1	0
CO2	0	2	0	0	2	2	1	1	0	0	0	2	0	2	0
CO3	3	1	0	1	0	0	2	0	1	1	0	1	2	1	3
CO4	3	3	0	0	2	0	0	2	0	0	0	0	0	2	0
CO5	0	1	0	0	0	0	0	0	1	2	0	0	3	0	1
Avg	1.6	1.4	0	0.2	1	0.4	0.8	0.6	0.4	0.8	0	0.8	1	1.2	0.8
			3/2/	' 1 – ind	licates s	trength	of cor	relation	(3 – Hi	igh, <mark>2 – N</mark>	Aedium,	1 – Low)		

SEMESTER-V

22ME50	DESIGN OF MACHINE ELEMENTS		SEM	ESTEF	RV							
PREREC	DUISITES	Category	PC	Cr	edit	4						
1. Student	should study engineering mechanics.	TT / XX 7 1	L	Т	Р	ТН						
2. Student	should study kinematic of machinery.	Hours/Week	3	1	0	4						
COURSE	COBJECTIVES				1							
1. Un	derstanding of background in mechanics of materials and design of materials	achine componen	ts.									
2. An	understanding of the origins, nature and applicability of empirical des	ign principles, ba	used on s	afety co	onsiderat	ions						
3. An	understanding the design of shafts, couplings and joints.											
4. Fai	niliarize the design of energy storing elements and engine components	5.										
5. An appreciation of the relationships between component level design and overall machine system design and performance												
UNIT-I STEADY STRESSES AND VARIABLE STRESSES IN MACHINE 9 3 0 12												
relations . UNIT-I	I DESIGN OF SHAFTS, COUPLINGS AND PIN J	OINTS	9	3	0	12						
Design of and flexibl	solid and hollow shafts based on strength, rigidity and critical speed - e couplings – Design of pin joints like cotter and knuckle joints.	- Design of keys	and key	ways -	Design	of rigid						
UNIT-I	I DESIGN OF THREADED FASTENERS, RIVET WELDED JOINTS	ED AND	9	3	0	12						
Threaded vessels and	fasteners - Design of bolted joints including eccentric loading – De I structures- theory of bonded joints.	esign of riveted	and wel	ded joir	nts for p	ressure						
UNIT-I	V DESIGN OF ENERGY STORING ELEMENTS AN COMPONENTS	D ENGINE	9	3	0	12						
Various ty engines an internal co	pes of springs, optimization of helical springs - rubber springs - Flyw d punching machines- Connecting Rods and crank shafts. Heat engir mbustion engines, Design of I.C engine cylinder, piston, connecting re	wheels considerin les- Brief details od, crankshaft and	g stresse about ez l flywhe	es in rin xternal o el.	ns and a combust	rms for ion and						
UNIT-V	DESIGN OF BEARINGS, LEVERS, PRESSURE VER PIPES	SSELS AND	9	3	0	12						
Sliding co Contact be	ntact and rolling contact bearings - Hydrodynamic journal bearing arings. Design of Levers - Design of pressure vessels and pipes	s, Sommerfeld N	Number	- Selec	tion of	Rolling						
		Тс	otal(451	L+15T)) = 60 P	eriods						

Text	Books:								
1	Bhandari V.B, "Design of Machine Elements", Tata McGraw Hill Book Co, 2020								
2	2 Md.Jalaludeen.S, "A text book of Machine Design", Anuradha Publications, 2006								
Refe	rence Books:								
1	Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.								
2	2 Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.								

3	Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.							
4	PSG Tech, "Design Data Handbook", M/s.DPV Printers, Coimbatore, 2009							
E-R	E –References:							
1	https://nptel.ac.in/courses/112105124							
2	Design of Machine Elements - V. B. Bhandari - Google Books							
3	A Textbook of Machine Design by R.S.Khurmi And J.K.Gupta [tortuka]_1490186411865.pdf DocDroid							

COU On co	RSE OUTCOMES: ompletion of the course the student will be able to	Bloom's Taxonomy Mapped
<i>C01</i>	Explain the influence of steady and variable stresses in machine component design.	Understand
<i>CO2</i>	Apply the concepts of design to shafts, keys and couplings.	Apply
CO3	Familiarize the design of temporary and permanent joints	Understand
<i>CO4</i>	Design the various energy storing elements and engine components.	Analyze
<i>C05</i>	Familiarize the design of various types of bearings and pressure vessels.	Understand

COURS	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO2	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO3	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO4	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO5	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
Avg	2.0	2.0	1.0	2.0	0.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	3.0	2.0	1.0
			3/2	2/1 – in	dicate	s stren	gth of	correlat	tion (3	– high. 2	- mediu	n. 1- low)		

22ME502 HEAT AND MASS TRANSFER SEMEST														
PRER	REQUI	SITES:	Category	PC	Cre	edit	3							
1.The l	aws and	basic concepts of thermodynamics	Houng/Wools	L	Т	Р	ТН							
2. The	concept	of energy transfers and their conversion principles	Hours/ week	3	0	0	3							
Cours	e Obje	ctives				I								
1.	Under	standing the science behind conduction heat transfer and its appl	lications											
2.	2. Differentiating the concepts of forced and natural convection heat transfer													
3.	Describing the laws and concepts of radiation heat transfer													
4.	Understanding phase change processes and analyzing heat exchangers													
5.	5. Studying the concept of mass transfer process and its modes													
UNI	[T-I	CONDUCTION HEAT TRANSFER		9	0	0	9							
Conduc Extend charts.	Differential Equation) and Spherical Coordinates– One Dimensional Steady State Heat-Concepts of electrical analogy, Conduction — plane and Composite Systems – Conduction with Internal Heat Generation., Critical thickness of insulation. Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler's charts.													
UNI	T-II	CONVECTION HEAT TRANSFER		9	0	0	9							
Conser bank o cylinde	vation e of tubes. ers and s	equations, boundary layer concept – Forced convection: externa Internal flow – entrance effects. Free convection –flow ove pheres.	l flow – flow ove r vertical plate, h	r plates, orizonta	cylinde l plate,	rs, sphe inclined	res and 1 plate,							
UNI	Г-III	BOILING, CONDENSATION AND HEAT EXCH	IANGERS	9	0	0	9							
Regime Exchan	es of Po nger Typ	ool boiling and Flow boiling, Nusselt's theory of condensation bes - Overall Heat Transfer Coefficient – Fouling Factors. LMTE	- correlations in to and NTU methoo	ooiling a ls.	ind cond	lensatio	n. Heat							
UNI	Γ-IV	RADIATION HEAT TRANSFER		9	0	0	9							
Radiati	ion laws	, Black Body and Gray body Radiation. Shape Factor. Electrical	Analogy. Radiatio	on Shiel	ds.									
UNI	T-V	9	0	0	9									
Basic C diffusio	Concepts on. Basi	s – Diffusion Mass Transfer – Fick's Law of Diffusion – Stead c Convective Mass Transfer Problems.	ly state Molecular	Diffusio	on - Equ	imolal	counter							
					Total	= 45 P	eriods							

Text B	Books:				
1	R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2017				
2	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, 2014.				
Reference Books:					
1	Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5 th Edition - 2013				
2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2017				
3	Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012				
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.				

COURSE OUTCOMES: On completion of the course the student will be able to					
C01	Analyze the mechanism of heat conduction under steady and transient conditions.	Apply			
<i>CO2</i>	Develop solutions to problems involving convective heat transfer	Create			
СОЗ	Design a heat exchanger for any specific application	Understand			
<i>CO4</i>	Adopt the concept of radiation heat transfer in real time systems	Understand			
<i>CO5</i>	Develop solutions to problems involving combined heat and mass transfer	Apply			

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	0	1	0	0	0	0	0	3	3	1
CO2	3	3	3	3	2	0	1	0	0	0	0	0	3	3	1
CO3	3	3	3	3	2	0	1	0	0	0	0	0	3	3	1
CO4	3	3	3	3	2	0	1	0	0	0	0	0	3	2	1
CO5	2	2	2	2	1	0	1	0	0	0	0	0	3	1	0
Avg	2.8	2.8	2.8	2.8	1.8	0	1	0	0	0	0	0	3	2.4	0.8
	•	•	3	/2/1 – i	ndicat	es strei	ngth of	correla	tion (3	– high, 2	2- mediur	n, 1- low)	•	

22M	1E503	METROLOGY AND QUALITY CONTRO	DL		SEMES	STER V	V
PRE	EREQU	ISITES	Category	PC	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cou	rse Obj	ectives:					
1.	Explai measur	ning the importance of measurements in engineering and the farement uncertainty	actors affecting r	neasurer	ments ai	nd to co	ompute
2.	Applyi	ing the applications of linear and angular measuring instruments					
3.	Interpr	retation of various tolerance symbols.					
4.	Applyi	ing the SQC methods in manufacturing					
5.	Applyi	ing the advances in measurements for quality control					
UN	I TIN	BASICS OF MEASUREMENT SYSTEM AND D	EVICES	9	0	0	9
Defir mech analy	nition of nanicallo /sis and o	metrology, accuracy, precision and sensitivity, Abbe's principle. ading-staticcharacteristicsofinstruments-factorsconsideredinselectic classification - sources of error. Measurement uncertainty	Three stages of ge on of instruments	eneralize	edmeasu nonly us	rements ed term	system- s, error
UN	II TI	CALIBRATION OF INSTRUMENTS AND QU STANDARDS	ALITY	9	0	0	9
Calib gaug quali	oration of es, dial ty standa	f measuring instruments - principles of calibration, Calibration of l indicator, surface plates, slip gauges, care of gauge blocks. Gen ards. Comparators - mechanical, electrical, optical and pneumatic.	Instruments - Verr eral cares and rul	nier calij les in m	per, Mic easurem	rometer ent, ISO	, feeler O 9000
UN	IT III	GEOMETRICAL MEASUREMENT AND MACHINE	E ELEMENTS	9	0	0	9
princ meas base Inspe	pitch n ection of	ree basic types of limit gauges, Tomlinson surface meter, co of major, minor and effective diameters. Gear terminology; spur g neasurement. Principle of interferometry, laser interferometer, straightness, flatness, roundness deviations.	pmputer controlle gear measurement Machine vision,	d CMM , checkin Fundai	I. ISO ng of co mental	metric mposite of GD	thread, errors, and T.
UN	IT IV	STATISTICAL QUALITY CONTROL		9	0	0	9
Surfa Cont	acefinish rol-Cont	-terminologyandmeasurements-Opticalmeasuringinstruments-Accorrol charts-Sampling plans	eptancetestformac	hinesSta	atistical	Quality	
UN	NIT V	SIX SIGMA		9	0	0	9
Sixs t,Sc Tes	sigma:de atterchar ting, AN	finemeasure,analyse,improveandcontrolphases.Analyzephasetools rt,Causeandeffectdiagram,Paretoanalysis,interrelationsdiagram. Sp OVA, Multi variate analysis.	:CommonTools:H pecial Tools: Reg	listograr gression	n,BoxPl Analys	ot,Contr is, Hyp	rolchar othesis
					Total	= 45 P	eriods
Text	t Books	:					
1.	Gupta	.I.C, —A text book of Engineering Metrology, Dhanpat Rai public	cations, New Delh	i, 2018	• • • • •		
2.	Beckv	vith.T.G,Roy D. Marangoni, John H. Lienhard, - Mechanical Meas	surements ^{II} , Prenti	ce Hall,	2006		
Refe	erence I	3ooks:					
1.	Jain.R	.K, —Mechanical and Industrial MeasurementsI, Khanna Publishe	rs, Delhi, 1999.				
2.	Holn	nen.J.P, —Experimental Methods for Engineersl, Tata McGraw Hi	Il Publications Co	Limited	d, 2017.		
3.	Gran	t, E.L., Statistical Quality Control, Mc Graw-Hill, 2004. 3. Doeblin	n E.O., Measurem	ent Syst	tems, Mo	c Graw-	Hill,

2004.

4.	Alan S Morris, —Measurement and Instrumentation Principles, Butterworth, 2006.						
5.	De Feo J A and Barnard W W, —Six Sigma: Break trough and BeyondG, Tata McGraw-Hill, New Delhi, 2005.						
E-Re	E-References:						
1.	https://nitsri.ac.in/Department/Mechanical%20Engineering/MEC_405_Book_2,_for_Unit_2B.pdf						
2.	https://www.nist.gov/system/files/documents/srm/NIST-SRM-RM-Articlefinal.pdf						
3.	https://www.researchgate.net/publication/319587859_Computer-Aided_Metrology-CAM						

COURSE OUTCOMES: On completion of the course the student will be able to				
C01	Explain the importance of measurements in engineering and the factors affecting measurements and to compute measurement uncertainty	Understand		
<i>CO2</i>	Apply the working principle and the applications of linear and angular measuring instruments	Apply		
СОЗ	Interpret of various tolerance symbols.	Apply		
<i>CO4</i>	Apply the SQC methods in manufacturing.	Apply		
<i>CO</i> 5	Apply the advances in measurements for quality control in manufacturing industries.	Apply		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	0	0	2	1	2	0	0	0	2	1	0
CO2	0	0	0	0	0	0	3	1	2	0	0	0	1	2	0
CO3	0	0	0	0	0	0	2	1	0	0	0	0	2	1	0
CO4	0	0	0	3	0	0	2	0	1	0	0	0	1	2	0
CO5	0	0	0	2	0	0	0	3	1	0	0	0	2	1	0
Avg	0.0	0.0	0.0	1.0	0.0	0.0	1.8	1.2	1.2	0.0	0.0	0.0	1.6	1.4	0.0
			3/2	/1 – in	dicates	stren	gth of c	correlat	tion (3	– high, 2	- mediuı	n, 1- low)		

22N	1E504	DYNAMICS OF MACHINERY		S	SEMES	STER	V	
PRE	REQUI	SITES	Category	PC	Cre	edit	3	
En eli		(achanica Vinemetica of Machineme Strength of Materials		L	Т	Р	TH	
Engii	neering M	echanics, Kinematics of Machinery, Strength of Materials	nours/ week	3	0	0	3	
COU	JRSE O	BJECTIVES:						
1.	To imp	art students with the knowledge about motion, masses and forces in	machines and th	he Princ	iple of V	Virtual V	Vork	
2.	To facil	itate students to understand the concept of balancing of rotating and	l reciprocating r	nasses				
3.	To teac	h concepts of free vibration analyses of one and two degree-of-free	lom rigid body	systems				
4.	To teac phenom	ch concepts of forced vibrations analyses of rigid body systems nenon of vibration and its effects	s and to give a	awarene	ss to st	udents	on the	
5.	To learn	n about the concept of various types of governors			-	-	_	
UN	I TIN	FORCE ANALYSIS		9	0	0	9	
Princ fluctu requi	Static force analysis, Free body diagrams, Conditions of two, three and four force members. Inertia forces and D'Alembert's Principle – Inertia force analysis in reciprocating engines – Crank shaft torque. Flywheels – Turning moment diagrams and fluctuation of energy of reciprocating engine mechanisms, Coefficient of fluctuation of energy and speed, Weight of flywheel required.							
UN	II TI	BALANCING		9	0	0	9	
Static Engir	c and dyn nes - Parti	amic balancing - Balancing of rotating masses - Balancing a singl al balancing in locomotive Engines - Balancing linkages - balancing	e cylinder Engi g machines	ne - Ba	lancing	Multi-c	ylinder	
UN	IT III	FREE VIBRATION		9	0	0	9	
Basic frequ Type Natur	e features ency by e s of damp ral freque	of vibratory systems – Types – Single degree of freedom system energy method, Dunkerly's method - Critical speed - Damped free ving – Free vibration with viscous damping, Critically damped syste ncy of two and three rotor systems.	n – Transverse e vibration of si m, Under damp	vibration ngle de ed syste	on of be gree free em. Tors	ams – 1 edom sy sional Sy	Vatural vstem - vstems:	
UN	IT IV	FORCED VIBRATION		9	0	0	9	
Respo Magr	onse to p	eriodic Force – Harmonic force – Force caused by unbalance – factor – Vibration isolation and transmissibility.	- Support motio	on - Lo	garithm	ic Decr	ement-	
UN	NIT V	GOVERNORS		9	0	0	9	
Gove Effec	Governors - Types - Centrifugal governors - Gravity controlled and spring controlled centrifugal governors –Characteristics - Effect of friction - Controlling Force - other Governor mechanisms.							
	Total = 45 Periods							
m								
Text	t Books							
1.	Design	of Machinery, Fourth Edition, by R.L. Norton, McGraw Hill, 2007					<u></u>	
2.	Mechar	nical Vibration, V.P.Singh, Dhanpatrai, Delhi						

|--|

1.	Ballaney, P.L., "Theory of Machines and Mechanisms", Khanna Publishers, New Delhi, 2002.
----	--

2. Shigley, J.E. and Uicker, J.J., "Theory of Machines and Mechanisms", TMH ND, 1998.

3. Amithabha Ghosh, and Ashok Kumar Malik., "Theory of Mechanisms and Machines", 2nd Ed., Affiliated East and West Press Limited, 1998.

4. Prof.Nakara, IIT-Delhi Reference Books

E-References:

1.	www.university.youth4work.com/IIT Kharagpur Indian-Institute-of-Technology/study/1653-dynamics-of- ebook	machinery-
2.	http://nptel.ac.in/courses/112104114/	

COUI On cor	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply basic principles of mechanisms in mechanical system	Apply
<i>CO2</i>	Familiarize the static and dynamic analysis of simple mechanisms	Understand
СО3	Analyze the mechanical systems subjected to free vibration	Analyze
<i>CO4</i>	Analyze mechanical systems subjected to forced vibration	Analyze
<i>C05</i>	Analyze the various types of governors and its speed control mechanism	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	2	3	3	1	0	0	0	0	1	0	3	2	1	2
CO2	2	2	3	2	1	0	0	0	0	1	0	3	2	1	2
CO3	2	2	3	2	0	0	0	0	0	1	0	3	2	1	2
CO4	2	2	3	2	1	0	0	0	0	1	0	3	2	1	2
CO5	1	2	3	2	0	0	0	0	0	1	0	3	2	1	1
Avg	1.8	2.0	3.0	2.2	1.2	0.0	0.0	0.0	0.0	1.0	0.0	3.0	2.0	1.0	1.8
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22M	E505	INSTRUMENTATION AND CONTROL SYS	TEM	SEMESTER V				
PRE	REQUI	SITE:	Category	PC	Cre	edit	3	
Basic	s of mea	surements	TT (TT)	L	0	Р	TH	
			Hours/Week	3	0	0	3	
Cour	se Obj	ectives:				1		
1.	To m	ake the students aware of the modern sensors and advanced measu	rement systems					
2.	To se	lect the correct system of instrumentation and sensing as per the in	ndustrial requireme	ents				
3.	To ur	derstand statistical signal processing						
4.	To pr	ovide adequate knowledge in the time response of systems and ste	eady state error ana	ılysis				
5.	To in	roduce stability analysis and design of compensators						
U	NIT I	GENERAL CONCEPTS OF MEASUREM	ENT	9	0	0	9	
Meas displa	urement cement,	systems- Sensors and transducers– Classifications of Transduce position and proximity; velocity, motion, force, fluid pressure,	rs -Static and Dyr liquid flow, liquid	namic Ch level, te	aracteris mperatur	tics –Sen re, light s	sors for sensors–	
Select	ion of s	insors	1 / 1	,	1	, ,		
UN	UNIT II SIGNAL CONDITIONING					0	9	
Ampl conve	Amplifier characteristics, wheat's stone bridge- Instrumentation sensor – integration and differentiation - sampling, A/D and D/A conversion, choppers, voltage to time conversion, voltage to freq. Conversion concept and methods.							
UN	IT III	DATA ACQUISITION		9	0	0	9	
Real-timers	ime inte , DMA, ultichan	rfacing – Introduction - Elements of data acquisition and control Software and hardware installation, Data acquisition interface nel data acquisition – Data Logging – Data conversion – Introduc	- Overview of I/O requirements, -Ge tion to Digital Trat	process, neral con nsmission	Digital d nfiguration system.	/O, coun on-single	ters and channel	
UN	IT IV	TIME RESPONSE ANALYSIS		9	0	0	9	
Respo coeffi	onse of cients- g	systems for different time-based input, Classification of feedbeneralized steady state errors steady state errors due to impulse, st	ack control syste	m accore bolic inp	ding to t uts.	ype; stat	ic error	
UN	NIT V	FREQUENCY DOMAIN ANALYSIS		9	0	0	9	
Frequ freque	ency rea	ponse–Bode plot –Polar plot –Determination of closed loop nain and time domain specifications-Effect of Lag, lead and lag-le	response, open lo ad compensation o	oop responder freque	onse-Cor ncy respo	relation onse-Ana	between lysis	
					Tota	1 = 451	Periods	
Text	Books:							
1.	1. John G. Webster, "Measurement, Instrumentation, and Sensors Handbook", CRC Press. 1998.							
2.	2. Murthy, D.V.S., Transducers and Instrumentation, 2 nd Edition, Prentice Hall of India Pvt. Ltd., New Delhi, 2010							
Refe	Reference Books:							
1.	1. Patranabis, D, "Sensors and Transducers", Wheeler Publishing Co, Ltd., New Delhi, 1997.							
2.	 M.Gopal, 'Control Systems, Principles and Design', 4th Edition, Tata McGraw Hill, New Delhi, 2012 							
3.	 K.Ogata, Modern Control Engineering, 4th Edition, Prentice Hall, 2002 							

COUR On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Apply common measurement characteristics and terms to select sensors to meet control and monitoring requirements	Apply
CO2	Design, build and test sensor interface circuits including amplifiers to process the measured variable into a useful signal in the presence of noise and environmental variations	Create
СОЗ	Select and design appropriate signal processing to its instrumentation and control and their measurement	Create
<i>CO4</i>	Understand and apply basic science, theory control theory and apply them to control engineering problems.	Understand
<i>C05</i>	Analyse the performance of systems and components through the use of analytical techniques	Analyze

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	3	0	0	0	1	0	0	3	1	0	0
CO2	0	0	2	2	0	0	0	0	0	0	0	0	2	1	0
CO3	1	2	2	2	2	2	1	0	2	0	1	1	0	2	1
CO4	0	1	2	3	1	0	2	0	0	0	0	2	0	0	0
CO5	0	2	3	3	1	0	0	1	2	1	0	3	0	0	2
Avg	0.4	1.2	2.2	2.4	1.4	0.4	0.6	0.2	1.0	0.2	0.2	1.8	0.6	0.6	0.6
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22N	ICIN04	IDEATION SPRINTS		SEMESTER V				
PRI	E-REQUI	SITE:	Category	EE	Cre	edit	1	
			Harry/Wash	L	Т	Р	ТН	
			Hours/ week	0	0	2	2	
Cou	rse Obje	ctives:						
1.	. To offer a systematic and structured process to hack a solution using available tools & resources							
2.	To identi technical	fy the challenge/opportunity, derive insights from the custome feasibility of the solution	er/user interviews, & l	ouild a so	olution a	nd valid	ate the	
3.	To build	the PoC for proposed solution & pitch to user/customer for va	lidation.					
U	NIT I	INNOVATION 101		0	0	6	6	
Diffe hype	Difference between a startup and a small business enterprise - Idea worth prototyping -Risk of innovations - Defining &validating hypothesis through Product Innovation Hypothesis (PIH) & Forge Innovation Rubric (FIR)							
Ul	NIT II	PROBLEM VALIDATION & CUSTOMER D	ISCOVERY	0	0	6	6	
Tool Cust ident	s and tec omer-centri tify the right	hniques of the managed innovation process (iTOOLS - ric design thinking and validate the problem scenario, its ht buyer beneficiary/Customer - rigorous Gap analysis of the e	innovation toolkit) significance, severity existing solution - Ado	-Custom , and in option ba	er-Centr cidence urriers of	ic Inno - Disco the solu	vation: over & utions.	
UN	III TII	DESIGNING & CRAFTING VALUE PROP	POSITION	0	0	6	6	
Unde value	erstand Cu e propositi	stomer Jobs, Pains & gains - Design Product/Service - Definon.	e & quantify Value F	ropositio	on -Buil	d a com	pelling	
UN	NIT IV	MUP SOLUTION CONCEPT EXPLORATION GENERATION	N & DESIGN	0	0	6	6	
Solu Tech	tion: Cono mology Blo	cept Generation, Concept Assessment, Solution, Capabili ock Diagrams- Bill of Materials Generation - BoM Optimizati	ity, Usability, and I on	Feasibilit	y- MU	P Desig	gn and	
U	UNIT VPROOF OF CONCEPT DEVELOPMENT & DEMONSTRATION0066							
Proo prop	f-of-Conce osition - In	ept design - hack to build PoC with critical features -Test movation Brief documentation (Proposal) - Demonstrate a Po	PoC for technical fe	easibility	test de	liver of	Value	
					Total	= 30 P	eriods	
L								

Tex	t Books:
1.	Tim Brown, Change by Design: How design thinking transforms organizations and inspires innovation – HarperCollins e- books, 2009
2.	Alexander Osterwalder, Value Proposition Design: How to Create Products and Services Customers Want (Strategyzer) - John Wiley & Sons, 2014
3.	Ulrich Karl and Eppinger Steven D, Product Design and Development - McGraw Hill, 5th edition, 2020
4.	Blank Steve, Four Steps to Epiphany: Successful strategies for products that win, KS Ranch, 5th edition, 2013
Ref	erence Books:
1.	Everything you need about value proposition: https://blog.forgeforward.in/everything-you-need-to-know-about-value-proposition-7247493c940c
2.	Test your Value Proposition:http://businessmodelalchemist.com/2012/09/test-your-value-proposition-supercharge-lean-startup-and-custdev-principles.html
3.	Valuation Risk versus Validation Risk in Product Innovations:https://blog.forgeforward.in/valuation-risk-versus-validation-risk-in-product-innovations-49f253ca8624
4.	User Guide for Product Innovation Rubric:https://blog.forgeforward.in/user-guide-for-product-innovation-rubric-

	857181b253dd							
5.	Innovation Risk Diagnostic - Product Innovation Rubric:https://blog.forgeforward.in/product-innovation-rubric-adf5ebdfd356							
6.	Evaluating Product Innovations - proof, potential, & progress:https://blog.forgeforward.in/evaluating-product-innovations-e8178e58b86e							
COURSE OUTCOMES: Upon completion of the course, the students will be able to:T								
CO	Apply a scientific method to understand the inherent risks of product innovation							
<i>CO</i> 2	Apply innovation tools & techniques to validate the problem scenario and to assess the market potential of product innovation;							
CO3	Design solution concept based on the proposed value by exploring various alternate solutions to achieve value-price fit;	Design						
<i>CO</i> 4	Demonstrate technical skills by applying technology to build and demonstrate proof of concept for the solution proposed;	Develop						
COS	Develop skills to articulate the solution concept into a proposal for grants.	Develop						

22M	C301	INDIAN CONSTITUTION		SEMESTER V				
PRER	REQUI	SITE:	Category	MC	Cre	edit	0	
			Hours/Wook	L	0	Р	ТН	
			HOUIS/ WEEK	3	0	0	3	
COUI	RSE O	BJECTIVES:						
1.	Learn	the salient features of the Indian Constitution.						
2.	To stu	ady the List the Fundamental Rights and Fundamental Duties.						
3.	To stu	ady the Present a systematic analysis of all dimensions of Indian	Political System.					
4.	To stu	ady the Understand the power and functions of the Parliament, the	he Legislature and	the Judi	ciary.			
				r		r		
UNI	TI			9	0	0	9	
Union	and its	Territory – Citizenship–Fundamental Rights–Directive Principle	es of State Policy-	-Fundam	ental Du	ties		
UNI	ΤIΙ			9	0	0	9	
The Ur	nion–Tł	ne States-The Union Territories-The Panchayats-The Municipa	lities					
UNIT	ΓIII			9	0	0	9	
The Co Contra	o-opera cts and	tive Societies–The scheduled and Tribal Areas–Relations betw Suits–Trade and Commerce within the territory of India	ween the Union a	and the S	States–Fi	nance, F	Property,	
UNI	ГIV			9	0	0	9	
Service	es unde	r the Union, the States – Tribunals – Elections– Special Provisio	ons – Relating to ce	ertain Cla	isses			
UNI	TV			9	0	0	9	
Langua	ages–Ei	nergency Provisions – Miscellaneous–Amendment of the Const	itution					
					Tota	al = 45 l	Periods	

Refer	Reference Books:						
1.	Subhash C. Kashyap, Our Constitution, National Book Trust, 2017						
2.	Durga Das Basu, Introduction to the Constitution of India, Lexis Nexis, 2015						
3.	Granville Austin, The Indian Constitution: Cornerstone of a Nation, Oxford University Press, 1999.						
4.	M.V. Pylee, Constitutional History of India, S.Chand publishing, 2010						

COURSE OUTCOMES: On completion of the course the student will be able to					
C01	Understand the emergence and evolution of the Indian Constitution	Understand			
CO2	Explain the key concepts of Indian Political System	Understand			
СОЗ	Describe the role of constitution in a democratic society.	Understand			
<i>CO4</i>	Present the structure and functions of the Central and State Governments, the Legislature and the Judiciary	Apply			

22N	1E506	DYNAMICS AND METROLOGY LABORA	TORY	SEMESTER V					
PRE	REQUIS	SITE:	Category	PC	Cre	edit	1.5		
			II / IX / -	L	Т	Р	TH		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Cour	se Obje	ctives:							
1.	To be fa	miliar with different measuring equipment.							
2.	Use of the	he instruments in industry for quality inspection							
3.	To know	w the need of accuracy in industry To know about balancing of ro	tating system						
4.	To be fa	miliar with different measuring equipment.							
1. Go [*] 2. Car 3. Mo 4. Wh 5. Det 6. Vib 7. Det 8. Det 9. Tra 10. Ca 11. Cl 12. M 13. M 14. M	vernors- I m- Study of biorized G hirling of s termination prating systermination termination termination termination termination hecking D leasureme leasureme hecking th	LIST OF EXPERIMENTS Determination of sensitivity, effort, etc.for Watt, Porter, Proell, H of jump phenomenon and drawing profile of the cam. yroscope-Verification of laws –Determination of gyroscopic cou shaft-Determination of critical speed of shaft with concentrated le on of moment of inertia by oscillation method for connecting rod stem- Spring mass system-Determination of damping co-efficient on of transmissibility ratio-vibrating table. on of torsional frequencies for compound pendulum and fly whee ibration of Beam. Determination of natural frequency and deflect of Vernier /Micrometer/ Dial Gauge Dimensions of part using lip gauges nts of Gear Tooth Dimensions. nt of Taper Angle using sine bar/tool makers microscope. nt of thread parameters ne limits of dimensional tolerances using comparators (Mechanic	2 (artnell governors ple. oads. and flywheel. t of single degree o l system with Lum tion of beam. al/Pneumatic/Elec	of freedo ped Mot	m syster	n. inertia.			
	Total = 45 Periods								

COU On c	COURSE OUTCOMES: On completion of the course the student will be able to					
C01	Handle different measurement tools	Understand				
<i>CO2</i>	Perform measurements with accuracy.	Evaluate				
СО3	Avoid errors in measurement	Analyze				
<i>CO4</i>	Understand balancing of equipment	Understand				

COUR	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	2	2	3	0	0	0	0	0	0	0	3	1	2
CO2	0	2	0	3	1	1	0	0	0	0	0	0	1	2	3
CO3	3	1	0	0	0	2	0	0	0	0	0	0	2	3	1
CO4	2	3	0	1	3	1	0	0	0	0	0	0	3	2	1
Avg	1.5	2	0.5	1.2	1.7	1	0.0	0.0	0.0	0.0	0.0	0.0	2.2	2.0	1.7
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22	EN502	PLACEMENT AND CAREER TRAINING LAP	BORATORY	5	SEMES	STER V	V	
PRE	-REQUIS	SITE:	Category	HS	Cre	edit	1.5	
1. Ba	asic knowle	dge in reading skill and writing skill	Hours/Wook	L	Т	Р	ТН	
2. Ba	sic ability i	n listening skill and speaking skill	Hours/ Week	0	0	4	4	
Cou	rse Object	tives:						
1.	To develo	p the students' confidence and help them to attend interviews s	successfully					
2.	2. To express opinions, illustrate with examples and conclude in group discussions							
3.	To acquire	e knowledge to write error free letters and prepare reports						
4.	4. To enhance the employability and soft skills of students							
U	NIT I	WRITING SKILLS		0	0	10	10	
Letter of invitation, Resume and cover letter, Job application, E-mail writing, Report writing, progress in project work								
U	NIT II	SPEAKING SKILLS		0	0	10	10	
Welc in gro	Welcome address and vote of thanks, Power point presentation, Presenting the visuals effectively, Group discussion, participating in group discussions, understanding group dynamics, Brain-storming the topics							
UNIT IIICAREER SKILLS00101							10	
Empl Inter	loyability a view etique	nd career skills, Self-introduction, introducing oneself to the tte, Dress code, Body language, Attending job interviews	audience, introduci	ng the	topic, In	terview	skills,	
UN	NIT IV	VERBAL ABILITIES		0	0	10	10	
Error	Spotting, I	istening Comprehension, reading comprehension, Rearranging	g Jumbled sentences,	Vocabu	ılary			
U	NIT V	REASONING ABILITIES		0	0	5	5	
Serie reaso	s completio ning	on, Analogy, Classification, Coding-Decoding, Blood relations,	, Seating Arrangeme	nts, Dire	ectional	Sense, I	Logical	
					Total	= 45 P	eriods	
Refe	erence Boo	oks:						
1.	Campus I	Recruitment Complete Reference, Praxis Groups (5th edition),	Hyderabad, 2017.					
2.	2. John Seely, The Oxford Guide to Writing and Speaking, Oxford University Press, New Delhi, 2004.							
3.	3. R.S. Aggarwal. A Modern Approach to Verbal & Non-Verbal Reasoning. 2018 S Chand Publication, 2018							
E-R	eferences:							
1.	https://pro	epinsta.com/						
2.	2. https://www.indiabix.com/							

COUR Upon c	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Participate in group discussion and interview confidently	Evaluate
<i>CO2</i>	Develop adequate soft skills and career skills required for the workplace	Create
CO3	Make effective presentations on given topics	Create
<i>CO4</i>	Apply their verbal ability and reasoning ability in campus interviews	Apply

CO/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	1	0	0	0	0	2	3	0	1	0	0	1
CO2	0	0	0	2	0	0	0	0	2	3	0	1	0	0	2
CO3	0	0	0	2	0	0	0	0	1	3	0	1	0	0	1
CO4	0	0	0	1	0	0	0	0	2	3	0	1	0	0	2
Avg	0	0	0	1.5	0	0	0	0	1.75	3.0	0	1.0	0	0	1.5
	3 / 2 / 1 – indicates strength of correlation (3 – High, 2 – Medium, 1 – Low)														

22ME	507	HEAT TRANSFER AND REFRIGERATION LA	BORATORY	SEMESTER V				
PRER	EQUIS	ITES:	Category	PC	Cre	1.5		
1.Basic	knowled	ge about the modes of heat transfer	Hours/Wook	L	Т	Р	С	
2.Conce	ept of psy	chrometry and refrigeration and air conditioning systems	110ul 5/ Week	0	0	3	1.5	
Course	e Objec	tives:						
1.	Applyi	ng the concepts and laws of conduction heat transfer in real ec	quipment					
2.	Practic	ing to estimate the heat transfer coefficient values of various f	fluids.					
3.	Experi	menting and analyzing the heat transfer phenomena in boiling	and condensation l	heat excl	nangers			
4.	4. Determining the radiation heat transfer parameters for black and grey surfaces and calibration of thermocouples							
5.	5. Studying the performance analysis of the refrigeration and air-conditioning systems and cooling towers.							

LIST OF EXPERIMENTS:

1. Thermal conductivity measurement of pipe insulation using lagged pipe apparatus.

2. Determination of thermal conductivity of a composite wall, insulating powder.

- 3. Determination of heat transfer coefficient of air under natural convection and forced convection.
- 4. Heat transfer from pin-fin under forced convection heat transfer.
- 5. Determination of heat flux under pool boiling and flow boiling in various regimes.
- 6. Determination of heat transfer coefficient in film-wise and drop-wise condensation.
- 7. Determination of friction factor, heat transfer coefficient of cold/hot fluids and effectiveness oftube-in-tube heat exchanger.
- 8. Determination of Stefan Boltzmann constant.
- 9. Determination of emissivity of a grey surface.
- 10. Calibration of thermocouples / RTDs at standard reference temperatures.
- 11. Determination of Coefficient of Performance of a vapor compression refrigeration system
- 12. Determination of Coefficient of Performance of an Air-Conditioning system.
- 13. Determination of effectiveness of a cooling tower.

Total = 45 Periods

COUR On con	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
<i>CO1</i>	Calculate the thermal conductivity of various conducting and non-conducting materials	Evaluate
CO2	Estimate the heat transfer coefficient in free and forced convections for various geometries.	Evaluate
СОЗ	Evaluate the heat flux and the heat transfer coefficient in various types of heat exchangers	Evaluate
<i>CO4</i>	Obtain the radiation parameters such as emissivity, wave length and surface temperatures	Analyze
<i>CO5</i>	Test the performance of the refrigeration and air-conditioning systems and cooling towers.	Analyze

COURS	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	0	2	0	0	0	0	0	0	0	0	3	1	2
CO2	1	2	1	1	0	0	0	0	0	0	0	0	2	1	1
CO3	1	3	1	0	0	0	0	0	0	0	0	0	3	0	2
CO4	1	2	1	1	0	0	0	0	0	0	0	0	2	0	1
CO5	1	2	0	1	0	0	0	0	0	0	0	0	1	1	1
Avg	1	2.4	0.6	1	0	0	0	0	0	0	0	0	2.2	0.6	1.4
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

104

<mark>22M</mark>	1E601 MINI PROJECT	1	SEMESTER VI					
PRF	EREQUISITE:	Category	EE	Credit		3		
		Houng/Wook	L	Т	Р	TH		
		0	0	6	6			
Cou	ırse Objectives:							
1.	1. Opportunity to design and develop small working models.							
2.	Develop experimental or simulation solutions to small in	dustrial problems.						
3.	Facilitate problem identification, formulation and solution	n.						
4.	Work collaboratively in small groups.							
The	The students may be grouped into groups of about 2 to 4 members per group and work under a project supervisor. The							
devie	device / system / component(s) to be designed/ fabricated / investigated / analyzed may be decided in consultation with the							
super	rvisor. A project report to be submitted by the group and	the fabricated model /investig	ation / a	nalysis	to be re	viewed		
supervisor. A project report to be submitted by the group and the fabricated model /investigation / analysis to be reviewed and evaluated continuously by a committee constituted by the head of the department / program coordinator.								

FABRICATION PROJECT GUIDELINES

- a. Mechanical Assembly and Dismantling Models
 - b. Day-life Usage Project
 - c. New Scientific Invention
 - d. Implementation of Mechanical Principle

Total = 90 Periods

COUR On con	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Initiate the students to come out with innovative ideas for various applications.	Create
<i>CO2</i>	Create an environment to convert the ideas into design of prototype for useful industrial, agricultural and social applications.	Create
СО3	Familiarize the feasibility study and manage activities to complete task in specified duration.	Understand
<i>CO4</i>	Assign and undertake tasks in a team as per team discussion.	Evaluate
<i>C05</i>	Do presentation and write technical reports for effective communication within and outside the team.	Create

COURSE AI	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	1	3	0	2	0	3	3	3
CO2	3	3	3	3	2	3	3	0	3	0	1	0	3	3	0
CO3	2	2	2	2	2	1	1	1	3	1	2	3	3	3	0
CO4	3	2	2	1	1	1	2	3	3	3	0	3	3	3	0
CO5	0	0	0	0	2	2	0	1	3	3	0	2	3	0	3
Avg	2.2	2.0	2.0	1.8	1.8	2.0	1.8	1.2	3.0	1.4	2.0	1.6	3.0	2.4	1.2
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

SEMESTER - VII

22ME701 MECHATRONICS SEMESTER VII										
PRE	REQU	ISITE:	Category	PC	Cre	edit	3			
Basic	s of elec	tronics and electrical engineering		L	Т	Р	TH			
Knov	vledge ir	instrumentation and sensors	Hours/Week	3	0	0	3			
Basic	s of Hyc	raulic and pneumatic systems		U	v	v				
COU	JRSE C	DBJECTIVES:								
1.	1. To impart knowledge about the elements and techniques involved in Mechatronics systems which are very much essential to understand the emerging field of automation.									
2.	To acq	uire adequate knowledge to model and simulate the physical system	ms.							
3.	To und	erstand issues of implementation of different actuation systems in	a Mechatronics s	ystem,						
4.	To gain	n practical experience in interfacing input and output devices to PL	.Cs							
5.	To gain	n practical experience in applying knowledge in the real word syste	ems.							
UN	UNIT IINTRODUCTION TO MECHATRONICS9009									
Defin Mech	Definition, Introduction to Mechatronic Systems- Mechatronic Products and their functioning- Advanced applications in Mechatronics -Measurement systems- Control Systems- sequential controllers.									
UNI	IT II	PHYSICAL SYSTEM MODELING		9	0	0	9			
Gene electr	ral Syst	em Models- zero order-first order- second order-mechanical nical systems, hydro-mechanical systems, pneumatic systems-Basi	systems, electri s of analogies in j	cal syst physical	ems, th system	ermal s models.	systems,			
UNI	TIII	ACTUATION SYSTEMS		9	0	0	9			
Elect Piezo desig	ric moto actuato n- Neura	rs - Solenoids - Solid state switches - Stepper motors- Servo m rs– Control systems - PID Controllers - Artificial intelligence ir I networks and fuzzy systems.	otors- Mechanica n mechatronics –	l actuate Adaptiv	ors- Hydre and n	draulic 1 onlinear	notors - control			
UNI	TIV	PROGRAMMING LOGIC CONTROLLER	S	9	0	0	9			
Introe Mner studie	Introduction to Programmable Logic Controllers – Basic Structure – Input / Output processing – Ladder logic programming – Mnemonics –relays and counters – Shift registers – Master and Jump controls – Data handling – Analog Input / Output – Case studies on PLC.									
UN	UNIT VMECHATRONICS SYSTEMS DESIGN9009									
Stage Data Mech	es in des acquisit atronic o	igning of Mechatronics systems – Traditional and Mechatronic ion and control - Pick and place robot – automatic car park control in automated manufacturing.	design - Possible barrier systems –	design - Engine	solution e manag	s. Case rement s	studies: systems-			
					Total	= 45 I	Periods			

Text	Books:
1.	Bolton, W, Mechatronics, Pearson Education, 6th Edition, 2015.
2.	Ganesh S.Hegde, Mechatronics, Jones & Bartlett publishers, 1st Edition, 2010.
Refe	rence Books:
1.	Michael B. Histand and David G. Alciatore, Introduction to Mechatronics and Measurement Systems, McGraw Hill International Editions, 3rd Edition, 2007
2.	Bradley D. A., Dawson D., Buru N.C. and. Loader A.J, Mechatronics, Chapman and Hall, 1st Edition, 1993.

	3.	Dan Necsulesu, Mechatronics, Pearson Education Asia, 1st Edition, 2002						
	4.	Brian Morriss, Automated Manufacturing Systems - Actuators, Controls, Sensors and Robotics, McGraw Hill International Edition, 1995						
ľ	5.	5. Devadas Shetty, Richard A.Kolkm, Mechatronics system design, PWS publishing company, 2009						
ľ	E-Re	eferences:						
Ī	1.	https://onlinecourses.nptel.ac.in/noc21_me12						

COU On co	Bloom's Taxonomy Mapped		
C01	Understand the basic elements underlying mechatronics systems and integrate them in the design of mechatronics systems.	Understand	
<i>CO2</i>	Develop a simulation model for simple physical systems and illustrate mechatronics design process.	Analyze	
СОЗ	Design, interface and understand issues of implementation of different actuation in a mechatronics system for a set of specifications.	Analyze	
<i>CO4</i>	Interface electromechanical systems to PLCs.	Apply	
<i>C05</i>	Attain practical experience in applying knowledge gained in the course through a hands-on project.	Understand	

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	0	2	0	0	0	0	0	0	0	1	1	0	2
CO2	2	2	3	3	1	0	0	0	0	0	0	2	2	2	0
CO3	0	0	2	2	0	0	2	0	2	0	0	2	0	0	0
CO4	0	2	3	3	3	0	0	0	3	0	3	2	0	2	1
CO5	1	2	2	3	3	2	2	1	3	2	1	3	0	0	3
Avg	2.0	1.6	2.0	2.6	1.4	0.4	0.8	0.2	1.6	0.4	0.8	2.0	0.6	0.8	1.2
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

221	ME702	FINITE ELEMENT ANALYSIS	SEMESTER VII							
PRE	REQU	SITE:	Category	PC Credit		edit	3			
Basic	knowl	dge in mathematics with differentiation, integration, matrix		L	Т	Р	ТН			
opera Basic	tions an knowle	numerical methods. ge in solid mechanics.	Hours/Week	3	0	0	3			
COU	COURSE OBJECTIVES:									
1.	1. To make the students to formulate the physical design problems into FEA including domain discretization, polynom interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebra systems.									
2.	To ma beam	the students to apply FEM concept for developing FE equation lements.	ns for solving 1-E) proble	ms with	bar, tru	ss and			
3.	To ma for pla	te the students to apply FEM concept for developing FE equation he stress, plane strain and axisymmetric problems.	ns for solving 2-D	problei	ns with	CST ele	ements			
4.	To equip the students about iso-parametric formulations for quadrilateral element and apply the gauss quadrature for numerical integration.									
5.	To fan	iliarize the students, apply FE equations for solving thermal and flue	uid flow problems	•	r					
UN	ITI	INTRODUCTION		9	0	0	9			
Histor contir Bound	Historical Background – Mathematical Modeling of field problems in Engineering –Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems– Weighted Residual Methods – Variational Formulation of Boundary Value Problems – Ritz Technique – Basic concepts of the Finite Element Method.									
UNI	TI	ONE DIMENSIONAL FEA		9	0	0	9			
One I Shape incluc	One Dimensional Second Order Equations – Discretization – Element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of problems from solid mechanics including thermal stresses.									
UNIT IIITWO DIMENSIONAL FEA900										
Secon Triang Plane – Stre	Second Order 2D Equations involving Scalar Variable Functions – Variational formulation – Finite Element formulation – Triangular elements and Quadrilateral elements- Shape functions and element matrices and vectors- Equations of elasticity – Plane stress, plane strain and axisymmetric problems – Constitutive matrices and Strain displacement matrices – Stiffness matrix – Stress calculations.									
UNIT IVISOPARAMETRIC FORMULATION AND NUMERICAL INTEGRATION90										
Natur – Sere and cu	Natural co-ordinate systems – Iso-parametric elements – Shape functions for iso-parametric elements – One and two dimensions – Serendipity elements – Numerical integration-Lagrange's interpolation- Higher order one dimensional elements - Quadratic and cubic element - Applying numerical integration: 1, 2 and 3gauge point for 1D and 2D cases - example problems.									
UNI	TV	9	0	0	9					
Stead appro Gover Form	y state ach for rning E ulations	neat transfer, 1D heat conduction governing Equations -Function neat conduction - application to one-dimensional heat transfer pro- quations of Fluid Mechanics – Solid structure interaction - I simple problems.	onal approach for roblems- 1D heat Inviscid and Inco	r heat c transfer ompressi	onductio in thin ble Flov	on- Gale fins pro w – Po	erkin's blems tential			
					Total	= 45 Pe	riods			

Text Books:					
1.	Tirupathi R. Chandrupatla and Ashok D. Belegundu, "Introduction to Finite Elements in Engineering", International Edition, Pearson Education Limited, 2014.				
2.	Seshu.P, "Text Book of Finite Element Analysis", PHI Learning Pvt. Ltd., New Delhi, 2012				
Ref	erence Books:				
-----	---				
1.	Rao, S.S., "The Finite Element Method in Engineering", 6th Edition, Butterworth-Heinemann, 2018				
2.	Reddy, J.N. "Introduction to the Finite Element Method", 4thEdition, Tata McGrawHill, 2018				
3.	Dhanaraj. R and Prabhakaran Nair. K, "Finite Element Analysis", Oxford Publications, 2015.				
4.	David Hutton, "Fundamentals of Finite Element Analysis", Tata Mc Graw Hill, 2005				
5.	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2004.				
E-R	eferences:				
1.	https://soaneemrana.com/onewebmedia/TEXT%20BOOKOF%20FINITE%20ELEMENT%20ANALYSIS%20BY%20P. %20SESHU%20.pdf				
2.	https://nptel.ac.in/courses/112104193				
3.	https://www.engr.uvic.ca/~mech410/lectures/FEA_Theory.pdf				

COUF On con	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Formulate the physical design problems into FEA including domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems.	Analyze
<i>CO2</i>	Apply FEM concept for developing FE equations for solving 1-D problems with bar, truss and beam elements.	Apply
СОЗ	Apply FEM concept for developing FE equations for solving 2-D problems with CST elements for plane stress, plane strain and axisymmetric problems.	Apply
<i>CO4</i>	Derive iso-parametric formulations for quadrilateral element and apply the gauss quadrature for numerical integration.	Apply
<i>C05</i>	Apply the concepts of FEA for solving 1-D heat transfer and fluid flow problems under the given boundary conditions.	Apply

COURS	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1	0	0	0	0	0	0	0	3	1	0
CO2	3	3	2	1	1	0	0	0	0	0	0	0	3	1	0
CO3	3	3	2	1	1	0	0	0	0	0	0	0	3	1	0
CO4	3	3	2	1	1	0	0	0	0	0	0	0	3	1	0
CO5	3	3	2	1	1	0	0	0	0	0	0	0	3	1	0
Avg	3.0	3.0	2.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	1.0	0.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

2	22ME703	MECHATRONICS LABORATO	RY	S	II					
PR	EREQUISIT	E:	Category	PC	Cr	edit	1.5			
1. B	asics of electro	nics and electrical engineering		L	Т	Р	ТН			
2. K	Knowledge in in	strumentation and sensors	Hours/Week	0	0	2	2			
3. B	asics of Hydra	ulic and pneumatic systems		U	U	3	5			
Co	urse Objectiv	res:								
1.	1. To provide automation concepts where students could perform experimental study regarding fundamental sequence control by utilising various hydraulic and pneumatic components.									
2.	To provide k multidisciplin	nowledge to assist the students in the development of nary systems.	"handson" skills v	vith an er	nphasis	on actua	tors and			
3.	To provide s Mechatronics	oftware knowledge to the engineering students to ap s concepts.	ply hardware and	program	ming ba	asics and	l absorb			
4.	4. To equip students with mechatronics knowledge and also gather knowledge of virtual instrumentation systems for mechanical engineering applications/									
5.	5. To promote interdisciplinary research and industry driven innovation in the cutting-edge areas of mechatronics.									
		LIST OF EXPERIME	NTS							
	 Design an (i) velocit Design an Design of Design of Design of Simulation software. Design an Study the Experime Stepper management (i)full step Maintain software. Maintain Instrument Maintain software. Maintain Software. Maintain Software. Study the 	d testing of fluid power circuits to control y (ii) direction and (iii) force of single and double acti d testing of cylinder sequences A+B+A-B- and A+B+ Electro pneumatic circuits with logic sequence using Electro hydraulic circuits with logic sequence using E n of basic Hydraulic, Pneumatic and Electro-hydra d simulation of Electro pneumatic circuits with PLC p performance of DC motor. nt on servo controller interfacing for closed loop contr otor interfacing with 8051 Micro controller o resolution (ii) half step resolution constant pressure of a process in a process station constant temperature of a process in a shell and tut tation software. constant flow rate of a process in a process station performance of 6- axis robot.	ng cylinders B-A- of pneumati Electro pneumatic Electro hydraulic tr fulic, Electro-pneu orogramming using ol. a using PID contr be heat exchanger n using PID contr	c circuits trainer k rainer kit umatic c g simulat coller in using P roller in	s. sits. s. ircuits u ion softv Virtual Virtual	using sin ware. Instrum roller in Instrum	nulation entation Virtual entation			
	•	-			Toto	1 – 15 1	Dariada			
					TULA	1 – 43 I	citous			

COUI On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Select various control valves and use them in hydraulic and pneumatic circuit development	Understand
<i>CO2</i>	Get adequate knowledge to simulate the basic electric, hydraulic and pneumatic system using simulation software.	Understand
СО3	Get adequate knowledge about the characteristics of various actuators and methods of tuning of controller in a Mechatronic system.	Understand
<i>CO4</i>	Understand how to interface electromechanical systems to PLCs.	Understand
<i>C05</i>	Gain practical experience in data acquisition system and develop and evaluate alternate solutions to real world problems.	Understand

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Select various control valves and use them in hydraulic and pneumatic circuit development	Understand
<i>CO2</i>	Get adequate knowledge to simulate the basic electric, hydraulic and pneumatic system using simulation software.	Understand
СО3	Get adequate knowledge about the characteristics of various actuators and methods of tuning of controller in a Mechatronic system.	Understand
<i>CO4</i>	Understand how to interface electromechanical systems to PLCs.	Understand
<i>C05</i>	Gain practical experience in data acquisition system and develop and evaluate alternate solutions to real world problems.	Understand

COURS	COURSE ARTICULATION MATRIX														
Cos/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	0	0	0	0	0	0	0	0	0	0	1	1	1
CO2	0	0	1	2	0	0	0	0	0	0	0	0	1	2	2
CO3	0	0	1	0	0	0	1	2	0	0	0	0	2	1	3
CO4	0	0	0	3	0	0	0	0	0	0	2	3	2	1	3
CO5	0	0	3	0	0	0	0	0	2	1	2	0	2	2	3
Avg	0.2	0.6	1	1	0	0	0.2	0.4	0.4	0.2	0.8	0.6	1.6	1.4	2.4
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22	ME704	SEMESTER VII								
PRI	EREQUIS	SITE:	CATEGORY	PC	C	redit	1.5			
1. B	asic knowle	edge in any modeling software.		L	Т	Р	ТН			
2. Fi	undamental	0	0	3	3					
CO	COURSE OBJECTIVES:									
1.	1. To make the students analyze the structural components for deflection, stress and reaction forces.									
2.	To make	e the students analyze the force, stress, deflection in mechanical con	ponents.							
3.	To make	e the students analyze thermal stress and heat transfer in mechanical	components.							
4.	To make	e the students analyze the vibration of mechanical components.								
5.	To make	e the students analyze the modal, harmonic, transient and spectrum of	concepts in mecha	nical co	ompo	nents.				
	LIST OF EXPERIMENTS									
Ana anal	LIST OF EXPERIMENTS Analysis of Mechanical Components – Use of FEA packages, like ANSYS/ NASTRON etc., Excesses shell include FEA analysis of 1. Force and Stress analysis using link elements in Trusses. 2. Force and stress analysis using link elements in axially loaded bars. 3. Stress and deflection analysis in beams with different support conditions. 4. Stress analysis of flat plates. 5. Stress analysis of axis–symmetric components. 6. Thermal stress and heat transfer analysis of plates. 7. Thermal stress analysis of cylindrical shells. 8. Vibration analysis of spring-mass systems. 9. Modal analysis of Beams.									
E D										
Ľ-K										
1.	https://wv	ww.ansys.com/	2010 16							
2.	https://bn	nsce.ac.in/Content/ME/MFELAB_manual_Jan2019_Updated_28_1	_2019.pdf							
3.	https://co	nfluence.cornell.edu/display/SIMULATION/ANSYS+Learning+M	odules							

COU	RSE OUTCOMES:							
On co	On completion of the course the student will be able to							
C01	Analyze the structural components for deflection, stress and reaction forces.	Analyze						
<i>CO2</i>	Analyze the force, stress, deflection in mechanical components.	Analyze						
СОЗ	Analyze thermal stress and heat transfer in mechanical components.	Analyze						
<i>CO4</i>	Analyze the vibration of mechanical components.	Analyze						
<i>C05</i>	Analyze the modal, harmonic, transient and spectrum concepts in mechanical components.	Analyze						

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	0	3	0	0	1	0	0	0	1	1	0	0
CO2	2	2	0	0	3	0	0	1	0	0	0	1	1	0	0
CO3	2	2	0	0	3	0	0	1	0	0	0	1	2	0	0
CO4	2	2	0	0	3	0	0	1	0	0	0	1	2	0	0
CO5	2	2	0	0	3	0	0	1	0	0	0	1	2	0	0
Avg	2.0	2.0	0.0	0.0	3.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.6	0.0	0.0
3/2/1 - 1	indicat	es stren	igth of o	correlat	tion (3 -	– high,	2- med	ium, 1-	low)						

	22ME705		SEMESTER VII					
PR	EREQUISITE:		CATEGORY	PC	Cre	edit	1.5	
			TT ////	L	Т	Р	ТН	
			Hours/ week	0	0	3	3	
CC	COURSE OBJECTIVES:							
1.	To equip the stude	ents for implement CNC programs for milling and turning	g machining operat	ions.				
2.	. To create a computer aided manufacturing (CAM) model and generate the machining codes automatically using the CAM system.							
3.	. Understand different operations that are to be executed to get a final product which include drilling and reaming operations.							
4.	Understand CNC	machining and uses, and applications of CNC program.						
5.	Remember the pu	rpose of other alphabetical commands used in programmi	ng operations of a	CNC 1	machin	e.		
CA	M EXPERIME	NTS						
To ma	ol path generation, l chining features and	Part programming, G & M codes development for machin d tool geometries	ing operations, Ph	ysical	interpr	etation	of	
Ma	nual part programn	ning						
	 CNC Turning Centre Facing, Turning, Chamfering, Taper turning, Thread cutting CNC Turning Centre Facing, Turning, Chamfering, Taper turning, Grooving, Threading using canned cycles CNC Milling Linear and circular Profile, Pocket, Drill, Peck-Drill, Bore, Tap- Using canned cycles. Part Program generation and tool path simulation for turning &milling for Fanuc Control System using CAM software. 							

• Demonstration on CNC Turning & Milling Machines

Total (45P) = 45 Periods

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Understand the features and specifications of CNC machines	Understand
<i>CO2</i>	Develop the process planning sheets and tool layouts.	Apply
СО3	Understand the CAM software and its programming.	Understand
<i>CO4</i>	Use the CAM software and prepare CNC part programs.	Apply
<i>CO5</i>	Execute the part program and machine the component as per the production drawing.	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	2	2	1	0	0	2	0	2	0	2	2	1
CO2	1	1	1	1	0	0	0	0	0	0	3	0	1	1	1
CO3	1	2	1	2	2	3	0	0	0	0	3	0	2	2	1
CO4	1	2	1	1	1	3	0	0	0	0	3	0	2	2	1
CO5	1	2	1	1	1	3	0	0	0	0	3	0	2	2	1
Avg	1.2	1.6	1.2	1.4	1.2	2.0	0.0	0.0	0.4	0.0	2.8	0.0	1.8	1.8	1.0
3/2/1 -	indicat	es strer	igth of	correla	tion (3	– high,	2- mec	lium, 1	- low)						

22ME706	PROJECT – I		SEMESTER VII				
PREREQUISIT	E:	CATEGORY	EE	Cr	edit	4	
		Houng/Wook	L	Т	Р	TH	
		nours/ week	0	0	8	8	

COURSE OBJECTIVES:

1. The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

2. It is intended to start the project work early in the seventh semester and carry out both design and fabrication of a mechanical device whose working can be demonstrated. The design is expected to be completed in the seventh semester and the fabrication and demonstration will be carried out in the eighth semester

GUIDELINE FOR REVIEW AND EVALUATION

The students may be grouped into 2 to 4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible, with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners (Supervisors) constituted by the Head of the Department

Total (75P) =75 Periods

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Initiate and motivate the students to come out with innovative ideas for different applications.	Create
<i>CO2</i>	Create an environment to convert the ideas into design of prototype for useful industrial, agricultural and social applications.	Create
СОЗ	Create an environment to convert the design into manufacturing of prototype for useful industrial, agricultural and social applications.	Create
<i>CO4</i>	Assign and undertake tasks in a team as per team discussion.	Understand
<i>CO5</i>	Do presentation and write technical reports for effective communication within and outside the team.	Understand

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	1	3	0	2	0	3	3	3
CO2	3	3	3	3	2	3	3	0	3	0	1	0	3	3	0
CO3	2	2	2	2	2	1	1	1	3	1	2	3	3	3	0
CO4	3	2	2	1	1	1	2	3	3	3	0	3	3	3	0
CO5	0	0	0	0	2	2	0	1	3	3	0	2	3	0	3
Avg	2.2	2.0	2.0	1.8	1.8	2.0	1.8	1.2	3.0	1.4	1.0	1.6	3.0	2.4	1.2
3/2/1 -	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

SEMESTER-VIII

	22ME801	PROJECT – II		SEI	TER	VII						
PR	EREQUISIT	E:	CATEGORY	EE	Credit		10					
		L	Т	Р	ТН							
		0	0	20	10							
CO	COURSE OBJECTIVES:											
1.	1. The main objective is to give an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.											
2.	It is intended mechanical semester and	d to start the project work early in the seventh semester and d device whose working can be demonstrated. The design is e the fabrication and demonstration will be carried out in the eight	carry out both desi expected to be co th semester	gn and mplete	fabr 1 in	icatior the se	n of a venth					
GU	IDELINE FO	OR REVIEW AND EVALUATION										
1.	1. The students may be grouped into 2 to 4 and work under a project supervisor. The device/system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible, with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated for internal assessment by a committee constituted by the Head of the Department. At the end of the semester examination the project work is evaluated based on oral presentation and the project report jointly by external and internal examiners (Supervisors) constituted by the Head of the Department.											
			Tot	tal (90	P) =	90 Pe	riods					

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
<i>CO1</i>	Initiate and motivate the students to come out with innovative ideas for different applications.	Create
<i>CO2</i>	Create an environment to convert the ideas into design of prototype for useful industrial, agricultural and social applications.	Create
СО3	Create an environment to convert the design into manufacturing of prototype for useful industrial, agricultural and social applications.	Create
<i>CO4</i>	Assign and undertake tasks in a team as per team discussion.	Understand
<i>CO5</i>	Do presentation and write technical reports for effective communication within and outside the team.	Understand

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	1	3	0	2	0	3	3	3
CO2	3	3	3	3	2	3	3	0	3	0	1	0	3	3	0
CO3	2	2	2	2	2	1	1	1	3	1	2	3	3	3	0
CO4	3	2	2	1	1	1	2	3	3	3	0	3	3	3	0
CO5	0	0	0	0	2	2	0	1	3	3	0	2	3	0	3
Avg	2.2	2.0	2.0	1.8	1.8	2.0	1.8	1.2	3.0	1.4	1.0	1.6	3.0	2.4	1.2
3/2/1 -	indicat	es strer	ngth of	correla	tion (3	– high,	2- med	lium, 1-	- low)						

PROFESSIONAL ELECTIVES – I

PRER 1. 2.	EOUI						
1. 1 2.	- 20-	SITES	CATEGORY	PE	Cr	edit	3
2.	Engine	ering Mechanics	TT ////	L	Т	Р	TI
	Thern	nodynamics and Thermal Engineering	Hours/week	3	0	0	3
COUR	SE O	BJECTIVES:		1			
1.	To b	roaden the understanding of students in the structure of vehicle cha	ssis and engines				
2.	To te	each students about the importance of alternate fuels and modifying	g the engine suitably				
3.	Anal	yze the working principles and operations details of transmission a	nd suspension syste	ns			
4.	Eval	uate the operational details and design principles of breaking and st	teering systems				
5.	To ii	ntroduce students to engine auxiliary systems like heating, ventilation	on and air-condition	ing			
UNI	ΤI	AUTOMOBILE VEHICLE STRUCTURE AND PERFO	RMANCE	9	0	0	9
Automo Operati gradien	otive co ion and it resist	omponents, subsystems and their positions- Chassis, frame and b performance, Traction force and traction resistance, Power requance. Introduction to MV Act, Pollution Norms	oody, front, rear an uired for automobil	d four- e - Ro	whee lling,	l driv air a	/es, and
UNI	TII	POWERTRAIN AND FUEL MANAGEMENT SYSTEM	MS	9	0	0	9
Recipro Electroi and Hyd	nic Eng drogen	Engine systems, Hybrid systems. Pollutant emissions and thei gine Management systems for SI and CI engines. Liquid and gaseo	r control; Catalytic ous alternate fuels - A	conve Alcoho	rter : l, LP0	systei G, CN	ns, √G,
UNIT	ГШ	TRANSMISSION AND SUSPENSIONS SYSTEMS		9	0	0	9
Transm clutches transmi differen system,	nission s, fluic ission, ntial, re , torsion	system: Clutches - principle, types - single plate clutch, multi I fly wheel. Gear boxes, types, constant mesh, synchromesh continuous variable transmission, propeller shaft, Hotch-Kiss dr ar axles types, wheels and tyres; Suspension system: Objects of su bar, shock absorber, independent suspension system	iplate clutch, magn gear boxes, epicy ive, Torque tube di spension systems, r	etic an clic ge rive, un igid ax	nd centrated ar bound of the contract of the c	ntrifu ox, a sal jo spens	gal uto int, ion
UNI	ΓΙ	BRAKING AND STEERING SYSTEMS		9	0	0	9
Forces Mechan systems geomet	on veł nical, H s - Aci try-cast	hicles, tyre grip, load transfer, braking distribution between axleadydraulic, Air brakes, Disc & Drum brakes, Engine brakes anti- kermann principle, Davis steering gear, steering gear boxes, steer, camber toe-in, toe out etc., wheel Alignment and balancing.	s, stopping distance lock braking system eering linkages, po	, Type n. Type wer ste	s of es of eering	brake steer g, wh	ing ieel
UNI	ΤV	ELECTRICAL AND ELECTRONICS SYSTEMS		9	0	0	9
General instrum Electron Electron Positior	l elect nentatio nics - nic Bra nic Sy	rical circuits. Battery, Starting motor, DC generator, Alte n, Lighting system. Passenger comfort - Safety and security - HV. Electronic Control Unit (ECU) - Variable Valve Timing (VVT) ake Distribution (EBD) – Electronic Stability Program (ESP) Tr stem (GPS) - Electric - Hybrid vehicle.	ernator, Ignition c AC - Seat belts - Ai) - Active Suspens caction Control Sys	ircuit, r bags on System (T	Dash - Aut stem CS)	n bo comot (ASS - Glo	ard tive (5) -
			Total	(45L)	= 45]	Perio	ods

TEXT I	300KS:
1.	William. H. Crouse, Donald L Anglin, Automotive Mechanics, 10th Edition, McGraw-Hill, 2017
2.	Jack Erjavek, "Automotive Technology – A Systems Approach", Thomson Learning, 3rd Edition, 1999.
REFER	ENCES:
1	Bosch Automotive Hand Book, 8th Edition, Bentley Publishers, 2011.
2	Kirpal Singh, Automobile Engineering, Vol.1 &2, Standard Publishers, 2012.

3	N. K. Giri, Automobile Mechanics, 5 th Edition, Khanna Publishers, 2014.
4	Kumar D.S., "Automobile Engineering", S.K.Kataria and Sons, 2nd Edition, 2017.
5	Robert Bosch GmbH, "Automotive Handbook", Robert Bosch, 2004.
E-REFE	RENCES:
1.	http://www.engineeringstudymaterial.net/tag/automotive-engineering-books
2.	https://www.studynama.com//299-Automobile-engineering-lecture-notes-ebook-pdf
3.	https://onlinecourses.nptel.ac.in/noc21_de02/preview

COURS Upon cor	E OUTCOMES: npletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describe the fundamental concepts of automobile engineering	Understand
<i>CO2</i>	Analyze the various types of power train and fuel supply and management systems.	Analyze
СО3	Analyze the various types of automatic transmission and steering systems for a vehicle.	Analyze
<i>CO4</i>	Discuss various types of braking and suspension system.	Understand
<i>C05</i>	Troubleshoot the electrical and electronics instrumentation system in the automobiles.	Understand

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	0	1	0	0	0	2	2	0	3	0
CO2	3	3	3	3	2	0	1	0	0	0	2	2	0	3	0
CO3	3	3	3	3	2	0	1	0	0	0	2	2	0	3	0
CO4	3	3	3	3	2	0	1	0	0	0	2	2	0	3	0
CO5	3	3	3	3	2	0	1	0	0	0	2	2	0	3	0
Avg	3	3	3	3	2	0	1	0	0	0	2	2	0	3	0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22ME	PE12	COMPOSITE MATERIALS		SE	MES	STEI	R VI				
PRER	EQUI	SITES	CATEGORY	PE	Cr	edit	С				
1. Eng	gineerin	g Physics	H AX I -	L	Т	Р	ТН				
2. Eng	gineerin	g Chemistry	Hours/ week	3	0	0	3				
COUF	RSE O	BJECTIVES:									
1. ′	To prov	ide knowledge on the advantages of use of different types of comp	osites.								
2.	To intr applicat	oduce the advantages of the use of different types of composions	sites, their manufac	cturing	, pro	pertie	es and				
3. ′	To mak	e them aware the manufacturing and testing methods of composites	5								
UNI	ΤI	INTRODUCTION TO COMPOSITES		9	0	0	9				
Fundar and the Reinfo types o	mentals eir role- orcement of comp	of composites - need for composites – Enhancement of properties Metal matrix composites (MMC), Ceramic matrix composites (CM t – Particle reinforced composites-Fibre reinforced composites- Re osites.	s - classification of IC), Polymer matrix ule of mixtures- Ap	compo comp plicati	osites oosite: ons o	– Ma s (PM f var	atrix IC)- ious				
UNIT IIMETAL MATRIX COMPOSITES900											
Metal Matrix MMC	Matrix, Comp – Powd	Reinforcements – particles – fibres, Effect of reinforcement - V osites, Characteristics of MMC, Alloy vs. MMC, Advantages ar er metallurgy process - diffusion bonding – stir casting – squeeze c	olume fraction. Va nd limitations of M asting	rious t IMC -	ypes Proce	of M essing	letal g of				
UNIT	T III	CERAMIC MATRIX COMPOSITES		9	0	0	9				
Engine Cerami oxide - (CIP) -	eering c ic matri – Silico – Hot Is	eramic materials – Properties – Advantages – Limitations – Me ix - Various types of Ceramic Matrix composites- oxide ceramic n nitride – Reinforcements – particles- fibres- whiskers. Sintering ostatic Pressing (HIP).	onolithic ceramics es – Non oxide Cer - Hot pressing – Co	- Need amics old Iso	l for – Al static	CMC umin Pres	Cs – ium sing				
UNIT	T IV	POLYMER MATRIX COMPOSITES		9	0	0	9				
Polyme non-we process Filame	er matri oven ra ses – C ent wind	x resins – Thermosetting resins, thermoplastic resins – Reinforcen ndom mats – Various types of fibres. Methods for producing PM ompression moulding – Reinforced reaction injection moulding - ing – Injection moulding. Fibre Reinforced Plastics (FRP), Glass fi	nent fibres – Roving AC - Hand layup p Resin transfer mou bre Reinforced Plas	gs – W rocesse Ilding tics (G	oven es – – Pul RP).	fabri Spray trusic	cs – v up on –				
UNI	ГV	TESTING OF COMPOSITES AND INTRODUCTION COMPOSITES	OF NANO	9	0	0	9				
Raw m Polyme	naterial t er- nanc	testing, Property evaluation at laminate level, NDT techniques. Nato clay composites and polymer-carbon nanotubes composites.	no particle dispersio	n in po	olyme	er ma	trix,				
			Total	(45L)	= 45	Peri	ods				
Text B	Books:										
1.	R.M.	Jones, Mechanics of Composites, 2nd ed., Taylor & Francis, 1999									
2.	Mathe Engla	ews F.L. and Rawlings R.D., "Composite materials: Engineering an nd, 2006	d Science", Chapma	an and	Hall,	Lond	lon,				
Refere	ences:										

Refere	ences.
1.	Chawla K.K., "Compositematerials", Springer – Verlag, 2012
2.	Clyne T.W. and Withers P.J., "Introduction to Metal Matrix Composites", Cambridge University Press, 2003.
3.	Strong A.B., "Fundamentals of Composite Manufacturing", SME, 2008
4	P.M. Ajayan, L. Schadler, P.V. Braun "Nano Composite Science and Technology", Wiley VCH, 2003.
5	C. Seferis, L. Nicolais, (Eds.) The Role of the Polymeric Matrix in the Processing and Structural Properties of Composite Materials, Plenum Press, New York 1983.

1. NPTEL Courses.

COURSE Upon com	OUTCOMES: pletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Identify the various matrices, reinforcements and their combinations in composite materials and select composite materials for suitable applications.	Remember
CO2	Develop suitable Metal Matrix Composites.	Apply
CO3	Identify perfect Ceramic Matrix Composites for high temperature applications.	Remember
C04	Choose various combinations of fibres and resins and select an appropriate manufacturing technique for composite materials.	Understand
<i>C05</i>	Predict the appropriate characterization testing methods for different classes of composites and manufacturing process, application polymer nano composites.	Apply

COURSE A	COURSE ARTICULATION MATRIX														
	1	1							1	[r		r	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	0	2	0	1	0	0	1	0	2	2	1
CO2	2	1	1	1	0	0	1	0	0	0	1	0	2	1	0
CO3	2	1	1	1	0	0	1	0	0	0	1	0	2	1	0
CO4	2	1	1	1	0	1	1	1	0	0	1	0	2	1	0
CO5	2	2	1	1	0	1	1	1	0	0	1	0	2	2	1
Avg	2.0	1.4	1.2	1.0	0.0	0.8	0.8	0.6	0.0	0.0	5.0	0.0	2.0	1.4	0.4
			3/2/	1 – inc	licates	strengt	th of co	orrelatio	on (3 –	high, 2-	medium,	1- low)			

22MI	22MEPE13 COMPUTER INTEGRATED MANUFACTURING								
PRE	REQUI	SITES	CATEGORY	PE	Cr	edit	3		
1. Co	mputer A	aided Design, Process planning	Hours/Wook	L	Т	Р	TH		
2. Co	mputer A	vided Manufacturing, integration software	Hours/ week	3	0	0	3		
COU	RSE O	BJECTIVES:							
1.	To gair	h knowledge on how computers are integrated at various levels of pl	anning and manufac	turing					
2.	To app	ly knowledge about Computer Aided Quality control and Process Pl	anning Control.						
3.	To und manufa	erstand the flexible manufacturing system and to handle the producturing	uct data and variou	s soft	ware	used	for		
4.	To desi	gn flexible manufacturing cell after carrying out group technology							
5.	To dev	elop and manage databases for CIM					T		
UN	IT I	INTRODUCTION		9	0	0	9		
The r of aut a con mana	neaning tomation npany- n gement.	and origin of CIM- the changing manufacturing and management s and software-dedicated and open systems-manufacturing automatic marketing engineering - production planning - plant operations - phy	cene - External com on protocol - produc sical distribution- bu	munic t relate usiness	ation ed act s and	- isla ivitie finan	nds s of cial		
UN	UNIT II GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING								
and M plann appro	AICLAS ing - rol ach and	S and OPITZ coding systems-facility design using G.Tbenefits of e of process planning in CAD/CAM integration - approaches to co generative approaches - CAPP and CMPP process planning system	f G.T cellular ma omputer aided proce s.	nufact ess pla	uring nning	. Proc g -var	cess iant		
UN	IT III	SHOP FLOOR CONTROL AND INTRODUCTION O	FFMS	9	0	0	9		
Shop auton system	floor contended floor contended floor contended floor	ontrol-phases -factory data collection system -automatic identifi ta collection system. FMS-components of FMS - types -FMS wor b layout -computer control systems-application and benefits.	cation methods- Ba kstation -material h	ar cod andlin	e tech g and	hnolo 1 stor	ogy- age		
UN	IT IV	CIM IMPLEMENTATION AND DATA COMMUNIC	ATION	9	0	0	9		
CIM Archi imple netwo	and con itecture ementation ork mana	mpany strategy - system modeling tools -IDEF models - activit (CIMOSA) - manufacturing enterprise wheel-CIM architectu on software. Communication fundamentals- local area networks agement and installations.	y cycle diagram - re - Product data -topology - LAN	CIM man impl	Open agem emen	System Solution	tem CIM 1s -		
UN	NIT V	OPEN SYSTEM AND DATABASE FOR CIM		9	0	0	9		
Open /TOP assoc	systems). Devel iations -	s-open system inter connection - manufacturing automations proto opment of databases -database terminology- architecture of dat relational data bases - database operators - advantages of data base a	col and technical of abase systems-data and relational databa	fice p mode se.	rotoc ling	ol (M and c	IAP lata		
			Total	(45L)	= 45	Peri	ods		
TEX	T BOO	KS:							
1.	Mikel Educa	I.P.Groover, "Automation, Production Systems and Computer tion, 2008.	Integrated Manu	facturi	ng",	Pear	son		
2.	Roger	Hanman, "Computer Integrated Manufacturing", Addison -Wesley	r, 1997						
REF	ERENC	CES:							

3.	Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice Hall India, 2003
4.	Mikell. P.Groover and Emory ZimmersJr, "CAD/CAM", Prentice Hall of India Pvt. Ltd, 1998
5.	Yoremkoren, "Computer Integrated Manufacturing system", McGraw-Hill, 1983.

COURSE Upon com	COURSE OUTCOMES: Upon completion of this course, the students will be able to:								
C01	Recognize the manufacturing activities interrelated with computers.	Understand							
<i>CO2</i>	Understand the concept of group technology and the various approaches of computer aided process planning	Understand							
CO3	Explain the phases of shop floor control activities.	Understand							
<i>CO4</i>	Apply the system modeling tools in CIM.	Apply							
CO5	Explain the applications of database and system protocol	Understand							

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	0	0	0	0	1	0	1	1	1	2	3
CO2	0	0	0	0	0	0	0	0	1	0	1	0	1	2	2
CO3	0	0	1	0	0	0	0	0	1	0	1	0	1	2	2
CO4	0	1	1	1	3	0	0	0	3	2	1	0	1	1	3
CO5	0	0	1	3	2	0	0	0	2	2	1	1	1	2	2
Avg	0.0	0.2	0.6	0.8	1.0	0.0	0.0	0.0	1.6	0.8	1.0	0.4	1.0	1.8	2.4
			3/2/1 -	- indica	ates str	ength	of corr	elation	(3 - hi)	gh, 2- me	edium, 1-	low)			

22MF	EPE14	DESIGN OF TRANSMISSION SYSTEM	1	SEMESTER VI								
PREF	REQUI	SITES	CATEGORY	PE	Cr	edit	3					
1.Stud	ent shou	Ild study kinematic of machinery	TT (TT)	L	Т	Р	TH					
2. Stuc	lent sho	uld study Design of machine elements.	Horus/Week	3	0	0	3					
COU	RSE C	DBJECTIVES:										
1.	To ga	in knowledge on the principles and procedures for the design of me	chanical power tran	smissi	on co	mpon	ents.					
2.	To ur	derstand the standard procedures available for design of transmission	on elements.									
3.	To so	lve the problems for the real time applications of the systems										
4. Designing multi speed gear box for machine tool and automotive applications.												
5.	Desig	ning clutch and brake systems for engineering applications.										
UNIT IDESIGN OF FLEXIBLE ELEMENTS90												
Motor Select	power ion of w	capacity for various applications - Design of Flat belts and pulle rire ropes and pulleys – Design of Transmission chains and Sprocke	ys - Selection of V ets.	belts	and s	heave	es –					
UNIT	9	0	0	9								
Gear 1 Factor Modu	material of safe le - norr	s - Design of straight tooth spur & helical gears based on speed rate, strength and wear considerations. Force analysis -Tooth stres nal and transverse, Equivalent number of teeth - forces.	atios, number of tee ses - Dynamic effe	eth, Fat ets - H	tigue Ielica	streng l gear	gth, s –					
UNIT	' III	BEVEL AND WORM GEARS		9	0	0	9					
of din stresse	nt bevel nensions es, effici	gear: Gear materials - Tooth terminology, tooth forces and stresses of straight bevel gears. Worm Gear: Gear materials - Tooth term ency, estimation of dimensions of worm gear pair.	minology, Thermal	r of tee capaci	ty, fo	orces	and					
		GEAR BOAES		9	U	U	. 9					
Need Ray d applic	- Desigi iagram, ations, V	h of sliding and constant mesh gear boxes: Speed selection - Geon kinematic layout – Determination of number of teeth. Design of Variable speed gear box, Fluid Couplings, Torque Converters for au	metric progression - multi speed gear b tomotive application	Standa ox for ns.	ard ste macl	ep rat hine t	10 - 2001					
UNIT	ΓV	CLUTCHES, BRAKES AND CAMS		9	0	0	9					
Design Design Design	n of sing n of bra n of Car	gle and multi-plate clutches, cone clutches, internal expanding rim kes: External shoe brakes - Single and Double Shoe, Internal ex- ns: Types- Pressure angle and under cutting, determination of base	a clutches and Elect spanding shoe brake circle - forces and su	romag es and urface	netic Bano stress	clutch 1 bral es.	nes. Kes.					
			Tot	al (45	L) =	45Pe	eriod					
				x								
TEXT	г воо	KS:										
1.	Joseph Editior	Shigley, Charles Mischke, Richard Budynas and Keith Nisbett " , Tata McGraw-Hill, 2014.	Mechanical Engine	ering	Desig	n", 1	0th					
2.	Sunda 2003.	rarajamoorthy T. V and Shanmugam. N, "Machine Design", 9th e	dition, Anuradha Pu	ublicati	ions,	Chen	nai,					
REFE	ERENC	CES:										
1	Bhanda	ri V, "Design of Machine Elements", 15th Reprint, Tata McGraw-F	Hill Book Co, 2014.									
2	Prabhu Volum	. T.J., "Design of Transmission Elements", Mani Offset, Chennai, e II, Design of Transmission Systems, 4th edition, Anuradha Public	2003. Md. Jalalude ations, 2014.	en, Ma	chine	e Desi	gn,					

3 GitinMaitra,L. Prasad "Handbook of Mechanical Design", 2nd Edition, Tata McGraw-Hill,2001.

4 C.S.Sharma, KamleshPurohit, "Design of Machine Elements", Prentice Hall of IndiaPvt. Ltd., 2003.

5 Bernard Hamrock, Steven Schmid, Bo Jacobson, "Fundamentals of Machine Elements",2nd Edition, Tata McGraw Hill, 2006.

E-REF	-REFERENCES:										
1.	https://archive.nptel.ac.in/courses/112/101/112101304/										
2.	http://www.velhightech.com/Documents/ME8651 Design of Transmission Systems.pdf										
3.	https://civildatas.com/download/design-of-transmission-elements-by-t-j-prabhu										

COURS Upon cor	E OUTCOMES: npletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Appreciate the functions of various transmission elements and their assemblies	Understand
<i>CO2</i>	Design different transmission components according to the requirement as per standards using data books.	Analyze
СОЗ	Apply the appropriate calculation procedures for the various systems designing	Apply
<i>CO4</i>	Design multi speed gear box for machine tool and automotive applications.	Analyze
<i>C05</i>	Design clutch and brake systems for engineering applications.	Analyze

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO2	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO3	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO4	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO5	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
Avg	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
3/2/1 - indi	cates s	trength	n of co	rrelatio	on (3 –	high,	2- mec	lium, 1	- low)			•			

22M	22MEPE15 ENERGY CONVERSION IN INDUSTRIES								
PRE	PREREQUISITES CATEGORY								
1.The	1. Thermal Engineering								
2.The	ermal stor	age system	Hours/ week	3	0	0	3		
CO	COURSE OBJECTIVES:								
1.	Analyz	ng the thermodynamic cycles used in power generation							
2.	Evaluat	ing the merits of direct thermal energy conversion systems compar-	ed to conventional te	echniqu	ies				
3.	Analyz	ng the performance of fuel cells							
4.	Selectin	g the best energy storage mechanism for any given application							
5.	Develop	ping a mechanism for total energy recovery from a system adopting	CHCP concept						
UN	I TI	ENERGY CONVERSION CYCLES		9	0	0	9		
Bell Bray	Coleman, ton cycle	Scuderi, Stirling, Ericsson, Lenoir, Atkinson, Stoddard and Kalin	a cycle – Compariso	on with	ı Ranl	kine a	ınd		
UN	IT II	DIRECT CONVERSION OF THERMAL TO ELECTRI	CAL ENERGY	9	0	0	9		
MHI Ferro) - Thern electric	noelectric Converters – Thermoelectric refrigerator – Thermoelectric converter – Nernst Effect Generator – Thermo Magnetic Converter	ric Generator – The	mionic	c conv	verter	s –		
UN	IT III	DIRECT CONVERSION OF CHEMICAL TO ELECTR	ICAL ENERGY	9	0	0	9		
Fuel fuel o	Cell: Bas cell proce	ics – working advantages and drawbacks – types – comparative an ss – performance of fuel cell – applications	alysis – thermodyna	mics a	nd kii	netics	of		
UN	UNIT IVENERGY STORAGE SYSTEMS9009								
Batte for N	Batteries – types – working – performance governing parameters – hydrogen energy – solar cells. Energy storage devices for Mechanical Energy, Electrical Energy, Chemical Energy, Thermal Energy.								
U	UNIT VCOMBINED HEAT, COOLING AND POWER PRODUCTION (CHCP)9009								
Coge turbit	Cogeneration - types - Configuration and thermodynamic performance of steam turbine cogeneration systems – gas turbine cogeneration systems – reciprocating IC engines cogeneration systems – concept of polygeneration								
	Total (45L) = 45Periods								

Total (45L) = 45Periods

TEXT	BOOKS:								
1.	Archie.W.Culp, Principles of Energy Conversion, 2 nd Edition, McGraw-Hill Inc., 1991, New York								
2.	Kordesch Karl, and Günter R. Simader, Fuel Cell and Their Applications, Wiley 2006								
REFER	REFERENCES:								
1	Bent Sorensen, Renewable Energy Conversion, Transmission, and Storage Technology & Engineering, Academic Press, 2007.								
2	Charles R. Russell, Elements of Energy Conversion, Permagon Press, 1967								
3	Hart A.B. and Womack, G.J., Fuel Cells: Theory and Application, Prentice Hall, 1989								
4	Kettari, M.A., Direct Energy Conversion, Addison-Wesley, 1997								
5	Yogi Goswami, D. and Frank Kreith, Energy Conversion, Second Edition, Science, 2017.								
E-REFE	RENCES:								
1.	https://energyeducation.ca/encyclopedia/Energy_conversion_technology								
2.	https://ioe.iitm.ac.in/program/energy-systems/								
3.	https://www.industrytap.com/industrial-energy-conversion-transfer-efficiencies-trending/39616								

COURS Upon cor	Bloom Taxonomy Mapped	
C01	Analyze the thermodynamic cycles used in power generation	Analyze
<i>CO2</i>	Evaluate the merits of direct thermal energy conversion systems compared to conventional techniques	Apply
СОЗ	Analyze the performance of fuel cells	Analyze
<i>CO4</i>	Select the best energy storage mechanism for any given application	Understand
<i>C05</i>	Develop a mechanism for total energy recovery from a system adopting CHCP concept	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	0	1	0	0	0	0	0	2	1	1
CO2	3	2	2	1	1	1	0	0	0	0	0	0	2	1	1
CO3	3	3	3	1	1	1	1	0	0	0	0	0	2	1	1
CO4	2	2	3	1	1	1	1	0	0	0	0	0	2	1	1
CO5	2	2	2	2	1	1	1	0	0	0	0	0	2	1	1
Avg	2.6	2.2	2.4	1.2	1.0	0.8	0.8	0.0	0.0	0.0	0.0	0.0	2	1	1
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEPE16 GAS DYNAMICS AND JET PROPULSION							VI		
PRE	PE	Cre	edit	С					
1.Bas	L	Т	Р	ТН					
2.Fu	ndamenta	l concepts about turbo machines and compressible flow	Hours/ week	3	0	0	3		
COU	COURSE OBJECTIVES:								
1.	Studyin	g the basic concepts of compressible fluid flow and isentropic flow							
2.	Learnin	g about the flow through ducts and various flow parameters							
3.	Discuss	ing various flow parameters of normal and oblique shocks							
4.	Underst	anding the concept of jet propulsion and its performance analysis							
5.	Studyin	g about space propulsion concept and evaluating its performance p	arameters						
UN	I TIN	BASIC CONCEPTS OF FLUID FLOW		9	0	0	9		
Ener of M	gy and m ach numb	omentum equations of compressible fluid flows – Stagnation states per on compressibility. Isentropic flows: Isentropic flow through va	s – Mach waves and riable area ducts	Mach	cone	– Eff	ect		
UI	NIT II	ISENTROPIC FLOW		9	0	0	9		
Nozz with Gene	zles, Diffu heat tran eralized g	users, compressors and turbines – Use of Gas tables. Flow throug sfer (Rayleigh flow) and Friction (Fanno flow) – Variation of flo as dynamics.	h ducts: Flow throu ow properties – Use	igh cor of tab	istant les ai	area 1d ch	duct arts -		
UN	III TII	NORMAL AND OBLIQUE SHOCKS		9	0	0	9		
Gove Expa	erning equation of s	uations – Variation of flow parameters across the normal and oblisupersonic flow, Use of table and charts – Applications	que shocks – Prand	tl Mey	er rel	ation	s –		
UN	NIT IV	JET PROPULSION		9	0	0	9		
Theo analy comb	Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operation principle – cycle analysis and use of stagnation state performance of ram jet, turbojet, turbofan and turbo-prop engines – Aircraft combustors								
UNIT VSPACE PROPULSION90							9		
Type Stagi	Types of rocket engines – Propellants – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity – Applications – Space flights								
	TOTAL (45L) = 45PERIODS								

TEXT	F BOOKS:
1.	John D. Anderson Jr. – 'Modern Compressible Flow with historical perspective' – McGraw Hill Publishing company – International Edition – 1990 – 2nd Edition
2.	Yahya S. M. – 'Compressible Flow' – Tata McGraw Hill India – 2009
REFE	CRENCES:
1	Balachandran P 'Fundamentals of Compressible Fluid Dynamics' - PHI Learning India Private Ltd 2009
2	Cohen H., Rogers G. E. and Saravanamuttoo – 'Gas Turbine Theory' – Longman – 1980
3	Sutton G. P 'Rocket Propulsion Elements' - John Wiley, New York - 1986
4	Shapiro A. H. – 'Dynamics and Thermodynamics of Compressible Fluid Flow – Vol.I' – John Wiley, New York – 1953
5	Radhakrishnan E. – 'Gas Dynamics' – Prentice-Hall of India Pvt. Ltd – 2004
E-REF	'ERENCES:
1.	https://nptel.ac.in/courses

COURS Upon cor	Bloom Taxonomy Mapped	
C01	Describe the compressible fluid flow and isentropic flow through various ducts	Understand
CO2	Calculate the flow properties of isentropic flow using gas tables and charts	Analyze
СО3	Differentiate normal and oblique shocks and determine their performance parameters	Understand
<i>CO4</i>	Explain the theory of jet propulsion and calculate the operating parameters of various jet engines	Understand
CO5	Illustrate the theory of rocket engines and determine their performance indicators	Understand

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	1	1	0	1	1	0	0	1	0	0	0	0	0
CO2	1	1	0	0	1	0	0	1	0	0	0	0	1	1	1
CO3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO4	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
CO5	0	0	1	1	0	1	1	0	0	0	0	1	0	0	0
Avg	0.2	0.2	0.6	0.6	0.2	0.4	0.4	0.2	0.0	0.2	0.0	0.2	0.2	0.2	0.2
3/2/1 – indica	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22M	22MEPE17 RENEWABLE ENERGY SYSTEM								
PRE	PE	Cre	edit	ТН					
Basic	: idea abou	t solar radiation and other renewable energy that exists.	House /Wools	L	Т	Р	С		
Unde	erstanding a	about various chemical reactions occur in the process	Hours/ week	3	0	0	3		
Cou	rse Objec	tives:							
1.	1. To recognize the consciousness of energy conservation in scholars								
2.	To identi	fy the employ of renewable energy sources for electrical power ge	eneration						
3.	To collec	et different energy storage methods							
4.	To detec	t about environmental effects of energy conversion							
U	NIT I	SOLAR ENERGY		9	0	0	9		
Devi Ther heati	ces for the mal Applic ng, Space	ermal collectors and storage: Thermal energy, Chemical Energy cations-Solar thermal power plant-Solar Photo voltaic Conversion heating and cooling, Solar distillation, Solar pumping, Solar furna	and Electromagnet n-Solar cell-PV appl ce, Solar cooking.	ic ene	rgy st n: Sol	torage ar wa	;; - iter		
U	NIT II	WIND ENERGY		9	0	0	9		
Princ Disa	ciples of w dvantages	ind Energy Conversion-Site Selection Considerations-Wind Energy of WECS-Wind Energy Collectors Interconnected System Environ	rgy Conversion Syst mental Aspects.	em-Ao	lvanta	ages a	ınd		
UI	NIT III	BIO ENERGY		9	0	0	9		
Biom plant gene	nass Conve ts-Bio gas ration of ga	ersion Technologies- Direct combustion – Thermo-chemical – E from plant wastes-Site selection Problems related to Bio gas pla as - Alternative liquid fuels -Advantages and Disadvantages of Bio	Biochemical methods ants- factors affectir plogical Conversion	s; Typ ng bio- of Sola	es of gener ar Ene	Bio gration	gas or		
Ul	NIT IV	ENERGY FROM THE OCEANS		9	0	0	9		
Ocea Com Arra	n thermal ponents o ngement; v	Electric Conversion- Open and Closed cycle; Energy from f Tidal power plants- operation methods of utilization of wave-Energy Conversion Devices-Hybrid System.	nTides-Layout of T tidal power-Single	idal 1 and 1	power Doubl	hou le ba	se- sin		
U	NIT V	GEOTHERMAL ENERGY AND FUEL CELLS		9	0	0	9		
Geot thern Disac cells,	Geothermal sources – hydrothermal geothermal resources, geopressurised resources, hot dry rock resources of Petro thermal systems, Magma resources – Comparison of flashed steam and total flow concept - Advantages and Disadvantages-Applications of Geothermal Energy; Design and principle operation of a Fuel cells, classification of fuel cells, types of fuel cells. Advantages, disadvantages and applications of fuel cells								
	Total (45L) = 45Periods								
Text	Books:								
1.	1. G.D. Rai, "Non-Conventional Energy Sources", Khanna publishers, 2017								
2.	2. Suhas P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., 2007.								
3.	3. Sunil S. Rao, B. B. Parulekar, "Energy Technology (Non-Conventional, Renewable And Conventional)", Khanna publishers 2002.								

Refe	References:								
1	Twidell, J.W. & Weir, A., "Renewable Energy Resources", EFN Spon Ltd., UK, 2005.								
2	Tiwari, G.N., "Solar Energy -Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd, 2015.								
3	Khan, B.H., "Non-Conventional Energy Resources", The McGraw Hill Companies, 2009.								
4	Godfrey Boyle, "Renewable Energy", Power for a Sustainable future, Oxford University Press, 1996.								
5	Johnson Gavy L, "Wind Energy Systems", Prentice Hall, 1985.								

E-Ref	E-References:								
1.	https://www.sciencedirect.com/book/9780128200049/renewable-energy-systems								
2.	https://en.wikipedia.org/wiki/Renewable_energy								
3.	Ellabban, Omar; Abu-Rub, Haitham; Blaabjerg, Frede (2014). "Renewable energy resources: Current status, future prospects and their enabling technology". Renewable and Sustainable Energy Reviews. 39: 748–764 [749]								

COURS Upon cor	Bloom Taxonomy Mapped	
<i>C01</i>	Impart knowledge about solar energy harvesting techniques and its storage system	Understand
<i>CO2</i>	Enhance insight into different wind energy methods to generate electricity.	Understand
<i>CO3</i>	Enrich the scholars to inculcate paramount energy conversion technologies and problems related to bio gas plants	Understand
<i>CO4</i>	Reveals the notion of obtaining abundant energy from the oceans	Understand
<i>C05</i>	Impart knowledge about geothermal energy and fuel cells	Understand

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	2	1	0	2	2	3	1	1	2	2	1	3
CO2	1	2	3	2	1	0	2	2	3	1	1	2	2	1	3
CO3	0	2	3	2	1	0	2	2	3	1	1	2	2	1	3
CO4	1	2	3	2	0	0	2	2	3	1	1	2	2	1	3
CO5	1	2	3	2	1	0	2	2	3	1	1	2	2	1	3
Avg	0.8	2.0	3.0	2.0	0.8	0.0	2.0	2.0	3.0	1.0	1.0	2.0	2.0	1.0	3.0
			3/2/	'1 – inc	dicates	stren	gth of	correla	tion (3	– high,	2- mediu	ım, 1- lo	w)		

PROFESSIONAL ELECTIVES - II

22MEPE21 ADVANCED STRENGTH OF MATERIALS	SE	MES	TER	R VI						
PREREQUISITES CATEGORY	PE	Cr	edit	3						
Engineering Mechanics and Strength of Materials	L	Т	Р	TH						
	3	0	0	3						
COURSE OBJECTIVES:										
1. To provide basic knowledge in mechanics of materials to solve real engineering problems and design engineering systems										
2. To determine the mechanical behavior of the body by determining the stresses, strains produce of load.	d by tł	ne app	olicati	ion						
3. To learn about radial and tangential stresses in thick cylinders and rotating disks										
4. To study about torsion of non-circular sections										
5. To determine the stresses in circular and rectangular plates due to various types of loading and	end co	nditio	ons							
UNIT I ELASTICITY	9	0	0	9						
Stress – Strain relation and General equation of elasticity in cartesian- polar and spherical coord equation of equilibrium – compact ability –boundary conditions- representations of three dimensiona –generalized Hooke's law – St.Vennant's principle – Plane strain- plane stress – Airy's stress func Location of shear center for various sections – shear flow.	dinates al stres ction. S	s of a Shear	teren tens Cent	tial ion tre-						
UNIT II UNSYMMETRICAL BENDING	9	0	0	9						
Stresses and deflection in beams subjected to unsymmetrical loading – Kern of a section. Curved circumferential and radial stresses – deflection and radial curved beam with re-strained ends – close concentrated load and uniform load – chain link and crane hooks.	flexur ed ring	al me g subj	embei jected	rs - l to						
UNIT III THICK CYLINDERS AND ROTATING DISKS	9	0	0	9						
Thick-walled cylinder subjected to internal and external pressures – Shrink fit joints – Stresses due and tangential stresses in solid disc and ring of uniform thickness and varying thickness – allowabl shafts and cylinders.	to rota le spee	tion d. –	– Rac Rotat	lial ing						
UNIT IV TORSION OF NON-CIRCULAR SECTIONS	9	0	0	9						
Torsion of rectangular cross section – St.Vennant Theory – elastic membrane analogy – Prandtl Torsional stresses in hollow thin walled tubes.	's stre	ss fu	nctio	1 —						
UNIT V STRESSES IN FLAT PLATES	NIT VSTRESSES IN FLAT PLATES900									
Stresses in circular and rectangular plates due to various types of loading and end conditions – Buckli of contact stresses – methods of computing contact stresses – deflection of bodies in point and line con	ng of j ntact –	plates appli	. The icatio	ory ns.						
Total	l (45L) = 4	5 Pe	riods						

Text I	Books:
1.	Arthur P.Boresi and Richard J.Schmidt, "Advanced Mechanics of Materials", 6th Edition, John Wiley & Sons-Inc., 2009.
2.	Arthur P.Boresi and Omar M.Siseborttom- "Advanced Mechanics of Materials", John Wiley International Education, 1985.
Refer	ences:
1	Robert D.Cook and Wareen.C.Yound, "Advanced Mechanics of Materials", 2nd Edition, Macmilon Publishers Company, 1985
2	Srinath.L.S, "Advanced Mechanics of Solids", Tata McGraw Hill PublishingCompany Limited, 2003

3	KrishnaRaju- N and Gururaja-D.R., "Advanced Mechanics of Solids and Structures", Narosa Publishing House, 1997.
4	U.C.Jindal, "Advanced Topics of Strength of materials", Galgotia Publications, 1st Edition, 1997
E-Refe	rences:
1.	NPTEL Videos/Tutorials

I

COU Upon	URSE OUTCOMES: a completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Familiarize the concepts of stress and strain at a point as well as the stress-strain relationships for homogenous, isotropic materials.	Understand
<i>CO2</i>	Evaluate the stresses and strains in axially-loaded members, circular torsion members, and members subject to flexural loadings.	Analyze
С03	Evaluate the stresses and strains associated with thick-wall spherical and cylindrical pressure vessels.	Analyze
<i>CO4</i>	Evaluate the stresses in non-circular sections	Analyze
<i>C05</i>	Evaluate the stresses in circular and rectangular plates due to various types of loading and end conditions	Analyze

COURSE A	ARTIC	CULA	TION	I MA'	FRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	0	0	0	1	0	0	0	0	3	2	1
CO2	2	3	3	1	0	0	0	0	0	0	0	0	3	2	1
CO3	2	3	3	2	0	0	0	1	0	0	0	0	2	3	1
CO4	2	2	2	2	2	0	1	1	0	0	1	0	3	2	1
CO5	2	2	2	2	2	0	0	1	0	0	0	0	3	2	1
Avg	2.2	2.4	2.2	1.6	0.8	0.0	0.2	0.8	0.0	0.0	0.2	0.0	2.8	2.2	1.0
3/2/1 - indi	cates s	trength	of con	relatio	on (3 –	high, 2	2- medi	ium, 1-	low)						

22M	EPE22	ENERGY EFFICIENT BUILDINGS DESI	GN	SE	MES	STEF	R VI			
PREF	REQUIS	ITES	CATEGORY	PE	Cr	edit	3			
1.Bas	sic knowl	edge about energy efficient technologies	Houng/Wook	L	Т	TH				
2.Cor	ncepts of	psychometry and renewable energy technologies	Hours/ week	3	0	0	3			
COUI	RSE OB	JECTIVES:								
1.	Explair	ing the future building aspects and need for comfort human living.								
2.	Design	ing an energy efficient landscape system for pleasant living environ	ment.							
3.	Develop	ing novel solutions for storage integration in buildings and will evolution	lve passive building	strateg	gies.					
4.	Perform	ning building load estimates and applying them real time procedure.								
5.	Explair	ing the importance of renewable energy integration in buildings.								
UN	I TI	INTRODUCTION TO ENERGY EFFICIENT BUILDIN	G CONCEPTS	9	0	0	9			
Conv Futur build	ventional re buildir ling proce	versus energy efficient buildings – Historical perspective – Water g design aspects – Effective use of resources and needs of modern esses - Energy conservation building codes.	– Energy – IAQ req living – Building as	uirem ssessm	ent ai ient ai	nalysi nd gro	s – een			
UN	NIT II	LANDSCAPE AND BUILDING ENVELOPES		9	0	0 0				
Ener: Build	gy efficie ling mate	ent landscape design – Micro climates – various methods – Shac rials, Envelope heat loss and heat gain and its evaluation, paints, ins	ling, water bodies - sulation, Design met	-Build hods a	ing e ind to	nvelo ols.	pe:			
UN	III TII	HEATING, VENTILATION AND AIR CONDITIONIN	NG	9	0	9				
Natu cooli integ	ral Venti ng, evap ration in	lation, Passive cooling and heating: Thermal mass effects – Ap orative cooling, radiant cooling – Hybrid methods – energy c buildings.	plication of wind, vonservation measure	water es, the	and e ermal	earth stora	for age			
UN	NIT IV	HEAT TRANSMISSION IN BUILDINGS		9	0	0	9			
Surfa trans estim for ca Degr	ace co-ef fer due to nation of arrying o ree day m	ficient: air cavity, internal and external surfaces, overall thermal o infiltration, internal heat transfer; solar temperature; decrement for building loads: steady state method, network method, numerical n ut thermal design of buildings and predicting performance. Therma ethod for seasonal energy consumption.	transmittance, wall actor; phase lag. De- nethod, correlations; Il load estimation: H	and v sign o comp eat ba	windo f day outer j lance	ws; ł lighti packa meth	neat ng; ges od.			
UN	IT V	BUILDING COOLING AND RENEWABLE ENERGY BUILDINGS	Z IN	9	0	0	9			
Passi radia heati econe	tion traps ng system omics.	g concepts, Application of wind, water and earth cooling; shading, s, Earth air tunnel. Solar sorption cooling and solar vapour compres ns in buildings – Small wind turbines, standalone PV, Hybrid	paints and cavity wassion cooling for bui systems for resider	alls fo ldings ntial l	r cool – So ouildi	ling; 1 lar w ngs v	roof ater vith			
			Tota	l (45I	L) = 4	15 Pe	riods			
ГЕХТ	r BOOK	S:								
1.	Kried	ler. J., and Rabi. A., Heating and cooling of buildings: design for ef	ficiency, McGraw H	ill, 20	16.					
2.	Char	les. J. Kibert, Sustainable Construction: Green Building Design and	Deliver, John Wiley	* & Sc	ons, 20	016.				
REFF	ERENCI	ES:								
1	Duff	e, A and Beckmann, W. A., Solar Engineering of Thermal Processe	s, John Wiley, 1991							

2	Sukhatme, S.P., Solar Energy, Tata McGraw Hill, 1984.
3	Michael Bauer, Peter Mosle and Michael Schwarz, Green Building - Guidebook for Sustainable Architecture, 2009.

4 Velraj.R, 'Sensible heat Storage for solar heating and cooling systems' in the book titled "Advances in Solar

	Heating and Cooling" – Pages 399 - 428 Elsevier Publication, 2016.
E-REFE	RENCES:
1.	https://nptel.ac.in/courses
2.	UrsalaEicker, "Solar Technologies for buildings", Wiley Publications, 2003.3 Guide book for national certification examination for energy managers and energy auditors (downloaded from www.energymanagertraining.com).

COUR Upon co	SE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Apply the modern building aspects and the need of indoor air quality for comfort living.	Apply
<i>CO2</i>	Design an energy efficient landscape and evaluate the heat loss or gain through building components.	Analyze
СО3	Develop novel solutions for storage integration in buildings and evolve passive building strategies.	Understand
<i>CO4</i>	Estimate the actual and accurate thermal load for various types of buildings.	Analyze
<i>C05</i>	Explain the importance of integrating various renewable energy resources in buildings.	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	0	2	0	0	0	0	0	0	2	1	1
CO2	0	0	3	2	0	0	1	0	0	0	0	0	1	1	0
CO3	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0
CO4	1	1	1	1	0	0	1	1	0	0	0	0	1	1	1
CO5	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
Avg	0.6	0.4	1.2	1.0	0.0	0.6	0.8	0.2	0.2	0.2	0.0	0.0	0.8	0.6	0.4
			3/	2/1 - i	ndicate	s stren	gth of	correlat	tion (3	– high, 2	- mediur	n, 1- low)		

22ME	EPE23	ENGINEERING SYSTEM ANALYSIS AND D	ESIGN	SE	MES	TEF	k VI	
PRE	REQUI	SITES	CATEGORY	PE	Cr	edit	3	
1.Eng	gineering	Mechanics & Product design development	Harry (Waals	L	Т	Р	TH	
2.De	Design of Machine Element 3 0							
COUI	RSE OB	SJECTIVES:		•				
1.	Analyz	e the asymptotic performance of Manual and automated systems.						
2.	Ability	to understand the principles of systems documentation.						
3.	Demon	strate a familiarity with Systems flowcharts and structured charts.						
4.	Apply i	mportant Planning considerations for advance development.						
5.	Unders	tand the basic concepts and implement the Object-oriented analysis	and design.					
UN	UNIT I SYSTEM DEFINITION AND CONCEPTS							
Char Mark - tim	ecteristic ceting, Pe e and dist	s and types of system, Manual and automated systems Real - In prsonal, Material and Finance. Systems models types of models: System tributed systems, Basic principles of successful systems	te Business sub - s stems environment	systems and bou	: Pro indari	ducti ies, R	on, eal	
UN	NIT II	SYSTEMS ANALYST		9	0	0	9	
UN Logie Com	Cal and provide the second sec	SYSTEMS DESIGN AND PROCESS MODELING obysical design, Design representation, Systems flowcharts and gramming conventions and guidelines using DFD and ERD diagram	structured charts, I ns. Data Modeling a	9 Data flo and syst	0 ow di ems a	0 iagrai analy:	9 ns, sis,	
Desig	gning the	internals: Program and Process design, Designing Distributed Syste	ems	-		-	1	
UN	NIT IV	SYSTEM IMPLEMENTATION AND MAINTENANC	Ε	9	0	0	9	
Plann and j Three	ning cons performa at to com	siderations, Conversion methods, producers and controls, System nce, Testing and validation, Systems quality Control and assurat puter system and control measures, Disaster recovery and continger	acceptance Criteria nce, Maintenance a ncy planning	ı, Syste activitie	m ev s and	aluat I issu	es.	
UI	NIT V	OBJECT ORIENTED ANALYSIS AND DESIGN		9	0	0	9	
Intro state	duction t diagram,	o Object Oriented Analysis and design life cycle, object modeling Dynamic modeling: sequence diagramming.	g: Class Diagrams,	Dynan	nic m	odeli	ng:	
			Tota	al (451	.) = 4	5 Pe	riod	
гехт	r book	(S:						
1.	Ana	lysis and design of information systems – James A.Senn, McGraw-	Hill Education, 200)8				
2.	Sys	tem analysis and design –Perry Edwards, McGraw-Hill Companies,	, 1993					
REFF	ERENCI	ES:						

1	System Analysis and Design Methods, Whitten, Bentaly and Barlow, Galgotia Publication							
2	System Analysis and Design Elias M. Award, Galgotia Publication							
3	Modern System Analysis and Design, Jeffrey A. Hofer Joey F. George Joseph S. Valacich Addison Weseley.							
E-REFI	E-REFERENCES:							
1.	https://archive.nptel.ac.in/courses/106/108/106108103/							
2.	https://www.tutorialspoint.com/system_analysis_and_design/system_analysis_and_design_overview.htm							
3.	https://nios.ac.in/media/documents/vocational/cca/cca1.pdf							

COURS Upon co	Bloom Taxonomy Mapped		
C01	Understand the requirements of a system	Understand	
<i>CO2</i>	Design system components and environments.	Analyze	
СОЗ	Build general and detailed models that assist programmers in implementing a system.	Apply	
C04	Design a database for storing data and a user interface for data input and output, as well as controls to protect the system and its data.	Apply	
<i>C05</i>	Understand the concepts of object modeling and dynamics modeling.	Understand	

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	2	0	0	0	0	0	0	0	2	1	0
CO2	0	1	3	2	1	0	0	0	0	0	0	0	2	3	0
CO3	1	2	2	1	1	0	0	0	0	0	0	0	2	3	0
CO4	1	2	3	2	1	0	0	0	0	0	0	0	1	3	0
CO5	0	2	2	2	0	0	0	0	0	0	0	0	0	2	0
Avg	0.6	1.8	2.4	1.6	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	2.4	0.0
			3/	2/1 – ii	ndicate	s stren	gth of	correlat	tion (3	– high, 2	- mediur	n, 1- low)		

22M	EPE24 INDUSTRIAL ENGINEERING AND MANAGEMENT SEMESTER											
PRER	REQUIS	SITES	CATEGORY	PE	Cr	edit	3					
1. Basi	c knowle	edge of mathematics, science, and engineering.	Hound	L	Т	Р	TH					
2. Basi	c knowle	edge about management principles.	Hours/ week	3	0	0	3					
COUI	RSE OF	SJECTIVES:										
1.	To equ produc	ip them for applying knowledge of mathematics, science and engitivity of industries.	ineering in the direc	tion to	o imp	rove	the					
2.	To prov	vide the knowledge on engineering economic analysis for effective	utilization of availab	le faci	lities.							
3.	To provide the knowledge on supply chain management for efficient use of available resources with aggregate planning.											
4.	To mal	te the students familiarize the concept of JIT and modern manufactu	ring principles.									
5.	To fam	iliarize the modern concepts and marketing in management for appl	ying them in profess	sional	organ	izatio	on					
UN	NIT I	FORECASTING AND INVENTORY		9	0	0	9					
Chara analy Meas disco	acteristic ysis, Mov surement punts - Al	s and Principles, Qualitative methods - Delphi technique, Market ving averages, Exponential smoothing - The Bon Jenkins method of forecast errors. Inventory models - Classification of invento BC and other classification methods - Applications	Research, Intrinsic , Extrinsic methods ry systems – EOQ	metho - Reg model	od - T ressio Is ano	Time- on mo d pur	series odels, chase					
UN	II TI	FACILITIES PLANNING		9	0	0	9					
Facil Type syste	ities plar s of lay m audit -	nning - An overview, Facilities planning and engineering economic outs - Computerized layout planning - Warehouse management, Role of KAIZEN, TQM, QC and POKA YOKE in facilities planni	c analysis - Facilitie Value added mana ng.	es loca agemer	tion J nt, M	proble anage	ems – ement					
UN	IT III	AGGREGATE PLANNING AND SUPPLY CHAIN MA	NAGEMENT	9	0	0	9					
Appr requi Supp	oaches rements ly chain	to aggregate planning - Development of master production sc planning (MRP-I), Manufacturing resources planning (MRP-II), management (SCM) – Supply chain and "Keiretsu".	hedule - Capacity Enterprises resourc	planni ces pla	ing - annin	Mat g (El	erials RP) -					
UN	IT IV	JIT AND MODERN MANUFACTURING PRINCIPLES	5	9	0	0	9					
Intro (SMI manu Agile	duction - ED) - Co Ifacturing e manufa	Elements of Just in Time (JIT), Pull versus Push method, Kanban ontinuous improvement - Optimized production technology - Bus g concepts – Implementation of Six Sigma concepts - Cellular n cturing - Rapid manufacturing.	system - Single Mi iness process reeng nanufacturing - Cor	inute E ineerin currer	Excha ng (B nt eng	nge c SPR), gineer	of Die Lean ring -					
UN	NIT V	MODERN MANAGEMENT CONCEPTS AND MARKI	ETING	9	0	0	9					
Conc Mana Smal	ept, feat agement 1 Enterp	ures, merits and demerits of: SWOT Analysis; Business Process (SCM) – Marketing: Concept; Functions; Importance; Segmen rise; Competitive Analysis and Advantage – E-marketing.	s Re-engineering (E tation; Mix; Proble	BPR); ems o	Supj f Ma	ply (irketii	Chain ng in					
			Tota	l (45I	L) = 4	15 Pe	eriods					
ТЕХТ	BOOF	KS:										
1.	Dil Mc	worth B. James, "Operations Management Design, Planning and c Graw Hill Inc., New York, 1996.	ontrol for Manufact	uring a	ind S	ervice	es",					
2.	Sar	nson Eilon, "Elements of Production Planning and Control", Univer	rsal Book Corpn.198	34.								
REFF	ERENC	ES:										
1	Vo	Ilman T.E, "Manufacturing Planning and Control systems", Galgoti	a Publications, 2002									

2 Tomkins, J.A and White, J.A, "Facilities Planning", John Wiley and Sons, 1984.

3 Elwood S. Buffa, and Rakesh K.Sarin, "Modern Production and Operations Management", 8th Edition. John Wiley and Sons, 2000.

4	Saxena, P.K., Principles of Management: A Modern Approach, Global India Publications, 2009.								
5	M. Govindarajan, Marketing Management, Prentice Hall of India, New Delhi, 2010.								
E-REFI	E-REFERENCES:								
1.	https://nptel.ac.in/courses/112107292								
2.	https://cscmp.org/								
3.	https://cdn.websiteeditor.net/25dd89c80efb48d88c2c233155dfc479/files/uploaded/Kotler_keller_marketing_m anagement_14th_edition.pdf								

COURS Upon co	E OUTCOMES: mpletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Apply the knowledge in mathematics, science, and engineering in the direction to improve the productivity of industries.	Apply
<i>CO2</i>	Explain the concepts in engineering economic analysis for effective utilization and management of available facilities.	Understand
СОЗ	Explain the concepts of supply chain management for efficient use of available resources with aggregate planning.	Understand
<i>CO4</i>	Apply the concept of JIT and modern manufacturing principles in professional organization.	Apply
<i>C05</i>	Identify modern concepts and marketing in management for applying them in professional organization	Remember

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	0	0	0	0	0	0	0	0	2	2	0
CO2	1	2	3	1	0	0	0	0	0	0	0	0	1	2	1
CO3	0	2	2	0	3	1	0	0	0	0	0	0	1	2	3
CO4	0	0	0	0	0	0	0	0	3	0	0	1	0	0	2
CO5	0	0	0	0	0	2	0	2	0	0	1	1	2	0	0
Avg	0.8	1.2	1.2	0.4	0.6	0.6	0	0.4	0.6	0.0	0.2	0.4	1.2	1.2	1.2
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22ME	22MEPE25 INTERNAL COMBUSTION ENGINES												
PRER	REQUIS	ITES	CATEGORY	PE Credit									
1. Er	ngineering	g Thermodynamics	TT /TT / -	L	Т	Р	TH						
2. T	hermal E	Hours/ week	3	0	0	3							
COU	RSE OB	JECTIVES:				•							
1.	1. To acquire knowledge of basic concepts of IC engine.												
2.	To give	a comprehensive insight into the engine fuel supply system.											
3.	To mak	e the students understand the combustion phenomenon of SI and Cl	l engines.										
4.	To stud	y engine management and exhaust emission control techniques.											
5.	To imp	art knowledge on recent trends in IC engines.											
UI	UNIT IINTRODUCTION OF IC ENGINES9009												
Intro engir Octar	duction, ' nes, Actu ne and ce	Types of IC engines, Constructional details in IC engine, working al Indicator diagram for four-stroke and two-stroke engines, Ger tane rating, Materials for engine components.	g principles - Two-s leral fuel properties	stroke a , Ignit	and F ion p	our-s roper	troke ties -						
UN	II TI	FUEL SUPPLY SYSTEMS		9	0	0	9						
Fuel devic	supply sy es, High	stems in SI engine - Introduction - Carburetion - Mixture require altitude fuel supply device - CI engine – Injection systems - Mecha	ements - Simple car nical and electro	bureto nic.	r, con	npens	ation						
UN	IT III	COMBUSTION IN IC ENGINE		9	0	0	9						
Com Facto - Air	bustion p ors affecti motion -	henomenon in SI and CI engines - Ignition - Stages of combusti ng knock - Combustion chambers - Fuel spray behavior - Spray str Factors affecting combustion.	on - Normal and a ucture, Spray penetr	bnorma ation, a	al cor and e	nbust vapor	ion - ation						
UN	IT IV	ENGINE MANAGEMENT SYSTEM		9	0	0	9						
Com intell	bined ign igence w	ition and fuel management systems, Digital control techniques, Co th engine management - Exhaust emission control techniques in SI	omplete engine cont and CI Engines.	trol sys	stems,	Arti	ficial						
UN	NIT V	RECENT TRENDS IN IC ENGINE		9	0	0	9						
HCC comp	I engine pression r	s – construction and working, CRDI injection system, GDI T atio engines, variable valve timing technology, Fuel cell, Hybrid ele	Cechnology, E - Tectric technology.	urboch	arger	Var	iable						

TEXT B	BOOKS:
1.	V. Ganesan, "Internal Combustion Engines", V Edition, Tata McGraw Hill, 2017.
2.	John B. Heywood, "Internal Combustion Engines Fundamentals", McGraw-Hill, 1988.
REFER	ENCES:
1	Thipse.S.S, " internal Combustion Engines & quot; Jaico Publication House., 2010.
2	B.P. Pundir, "IC Engines Combustion & Emission", Narosa Publishing House, 2014.
3	K.K. Ramalingam, "Internal Combustion Engine Fundamentals", SciTech Publications, 2011
4	R.B. Mathur and R.P. Sharma, "Internal Combustion Engines", DhanpatRai & Sons, 2007.
5	Domkundwar.V.M, " A course in internal Combustion Engines & quot; Dhanpat Rai & amp; Sons, 2010.
E-REF	ERENCES:
1.	https://www.energy.gov/eere/vehicles/articles/internal-combustion-engine-basics
2.	https://www.energy.gov/sites/prod/files/2014/03/f8/deer11_taub.pdf
3.	https://dieselnet.com/tech/engine_emission-control.php

COURSE Upon com	COURSE OUTCOMES: Upon completion of this course, the students will be able to:									
<i>CO1</i>	Understand the concept, construction, and principle of operation of the engine and various engine Components.	Understand								
<i>CO2</i>	Explain the fuel supply systems of SI and CI engines and understand the various injection systems of CI engine.	Analyze								
СОЗ	Analyze the combustion phenomenon in SI and CI engines.	Analyze								
<i>CO</i> 4	Understand the Engine management system and exhaust emission control techniques.	Understand								
CO5	Understand recent trends in internal combustion engines.	Understand								

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	0	0	0	0	0	0	0	0	3	2	1
CO2	3	2	2	1	0	0	0	0	0	0	0	0	3	2	1
CO3	3	1	2	2	2	2	3	0	0	0	0	0	2	3	1
CO4	2	1	2	1	2	2	3	0	0	0	0	0	2	3	1
CO5	3	1	1	1	2	2	2	0	0	0	0	0	2	3	1
Avg	2.8	1.4	1.8	1.2	1.2	1.2	1.6	0.0	0.0	0.0	0.0	0.0	2.4	2.6	1.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

PRER		22MEPE26 MACHINE DRAWING SEMESTER											
	EQUIS	ITES	CATEGORY	PE	Cre	edit	3						
1.Eng	ineering	Drawing	TT /TT / -	L	TH								
			Hours/ week	2	3	0	3						
COUR	RSE OB	JECTIVES:											
1.	Studen sheets.	ts learn about the conventional representation of materials, mac	hine elements, and	sizes	of di	awin	g						
2.	2. Explain the concept of how to draw section of views, additional views for machine elements and parts like threaded joints, Keys, Cotters and Pin joints.												
3.	Explair Gears,	the concept of how to draw Section of Views, additional views Shaft couplings and Bearings	for machine eleme	ents an	d par	ts lik	e						
4.	Studen like En	ts learn about the drawings of assembled views for the part drawin gine parts and machine parts	gs of the following	using	conve	ntion	IS						
UN	IT I	FUNDAMENTALS OF MACHINE DRAWING		6	9	0	1 5						
Code Refere Tolera and as	of pract ence to ancing o ssembly	tice for Engineering Drawing, BIS specifications – Welding syn hand book for the selection of standard components like bolts, n f individual dimensions – Specification of Fits – Preparation of p drawings, basic principles of geometric dimensioning & tolerancing	nbols, riveted joint nuts, screws, keys o roduction drawings g.	s, keys etc I and re	s, fast Limits ading	eners , Fits of p	s — 3 — eart						
UNI	IT II	BASIC MACHINE ELEMENTS		6	9	0	15						
The representation The representation of the	equired ed joints presentat	sectional view of the following machine elements are to be drawn, Welded joints, Key, Cotter and Pin joints, Shaft coupling, Bearing	n as per the standar g, Pipe joints, Gears	ds. Thi , Surfa	readed ice fir	l join iish a	ıts, nd						
UNI	TII	ASSEMBLY DRAWING		18	0	27	45						
The detail	assemb ed drawi	ly drawing of the following machine tool parts is ng.	to be drawn	from	the	giv	en						
ings – I	Flange, U	Jniversal, Oldham's, Muff and gear couplings.											
– Knuc	ckle, Gib	& cotter, strap, sleeve & cotter joints.											
e parts	– Piston,	connecting rod, cross-head (vertical and horizontal), stuffing box,	multi-plate clutch.										
llaneou	is machir	ne components – Screw jack, machine vice.											
			Total (30L +	45P)	= 75	Peri	ods						

TEXT I	BOOKS:
1.	P.S Gill, "Machine Drawing", S K Kataria and sons, 18th edition, 2020 reprint.
2.	N.D.Bhatt, "Machine Drawing". Charotar publications, 49th edition, 2014
REFER	ENCES:
1	Ajeet Singh, "Machine Drawing (including Auto CAD)", Tata McGraw Hill, 2 nd edition, 2012
2	G. Pohit, "Machine Drawing with Auto CAD", Pearson Education Asia, 2007
3	Dhawan, R.K., A Text Book of Machine Drawing, S. Chand & Company, 1996.
4	Ostrowsky, O., Engineering Drawing with CAD Applications, ELBS, 1995.
5	Gopalakrishna K.R., "Machine Drawing", 22th Edition, Subhas Stores Books Corner, Bangalore, 2013
E-REFI	ERENCES:
1.	NPTEL Courses

COURS Upon co	Bloom Taxonomy Mapped								
C01	CO1 Follow the drawing standards, fits and tolerances								
<i>CO2</i>	Re-create part drawings, sectional views and assembly drawings as per standards	Analyze							
CO3	Analyze complex design systems related to mechanical engineering.	Analyze							
CO4	Improve skills to adopt modern methods in mechanical engineering as continuous improvement.	Understand							
<i>C05</i>	Understand the impact of engineering solutions in a global, economic, environment and societal context.	Understand							

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	0	1	1	0	0	0	1	0	2	2	1
CO2	2	1	2	1	0	1	1	0	0	0	1	0	2	2	1
CO3	2	2	2	2	0	0	2	0	0	0	1	0	2	2	1
CO4	1	1	2	2	0	1	0	0	0	0	1	0	2	2	1
CO5	1	1	1	2	0	2	2	1	0	0	0	0	1	1	1
Avg	1.6	1.2	1.8	1.6	0.0	1.0	1.2	0.2	0.0	0.0	0.8	0.0	1.8	1.8	1.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22ME	22MEPE27 POWER PLANT ENGINEERING S												
PRE	REQUI	SITES	CATEGORY	PE	Cr	edit	3						
1.Havii	ng suffici	ent knowledge on basics of power plant	Horne AV or b	L	TH								
2. Basi	c unit cal	culation for consumption of power	Hours/ week	3 0 0									
COU	RSE O	BJECTIVES:											
1.	Unders and su knowle	tanding of thermal power plant operation, different types of high percharged boilers, fluidized bed combustion systems, Design dge of cooling tower operation.	-pressure boilers in of chimney in the	cluding ermal p	g supe power	ercriti plan	cal ıts,						
2.	2. Location of hydro power plant and its components to generate power.												
3.	3. Complete knowledge about diesel and gas power plant.												
4.	. Basic knowledge of nuclear reaction and types of nuclear power plant.												
5.	Basic k	nowledge of power plant economics and various tariff methods.					T						
UN	IT I	STEAM POWER PLANT		9	0	0	9						
coal - types Circu	Pulveriz - Chimn lated Flu	er - Dust collector - Ash removal; Stokers - Different types - Pulv ey design - Selection of blowers, Cooling towers - Different types idised Bed boilers	erized fuel burning; - Waste heat recove	Draug ery, Flu	sht - I iidise	Differ d Bed	ent &						
UN	II TI	HYDRO ELECTRIC POWER PLANT		9	0	0	9						
Layou equip	ut of hyo ment for	lel power plant- classification –working – components – layout Pumped Store Schemes.	of pumped storage	power	plan	t - Pla	ant						
UN	IT III	DIESEL AND GAS POWER PLANT		9	0	0	9						
Layou of gas	ut of Die s turbine	sel power plant- Important components – performance analysis – L cycles – components – relative thermal efficiencies of different cyc	ayout of gas power j	plant –	class	ificati	on						
UN	UNIT IV NUCLEAR, MHD POWER GENERATION												
Eleme reacto	entary tro ors - Fast	eatment - Nuclear fission, chain reaction - Pressurized water reac breeder reactors, Magneto Hydro Dynamic power- open cycle and	tors, boiling water closed cycle system	reactor	rs, ga	s cool	led						
UN	UNIT V ECONOMICS AND SAFETY												
Econe and v power	omics an variable 1 r plants -	d safety - Actual load curves - Fixed and operating costs - Tariff n oad operations - Selection of generation type and general equip Environmental impacts - assessment for thermal power plant.	nethods for electrica ment. Introduction	l energ to safe	gy - P ety as	eak lo pects	oad in						
			То	tal(45	L): 4	5 Pe	riods						

TEXT BOOKS:								
1.	S. Domkundwar, A.V. Domkundwar, S.C. Arora A Course in Power Plant Engineering, Dhanpat Rai Publications. 2016.							
2.	P.K. Nag, Power Plant Engineering, Tata McGraw Hill, Laxmi Publications Pvt. Ltd New Delhi, 5th Edition, 2014.							
REFER	ENCES:							
1	R.K. Rajput. A Text of Power Plant Engineering, Laxmi publications, New Delhi 5th Edition, 2016.							
2	G.R. Nagpal, Power Plant Engineering, Khanna Publications 1998.							
3	Bernhardt G. Askrotzki and William A. Vopat, "Power Station Engineering and Economy", Tata McGraw Hill Publishing Co. Ltd., 1972.							
4	Frederick T. Mores, "Power Plant Engineering", Affiliated East-West Press Private Ltd., 1953.							
5	Joel Weisman and Roy Eckart, "Modern Power Plant Engineering", Prentice Hall International Inc., 1985.							

E-REFERENCES:								
1.	https://en.wikipedia.org/wiki/Power_plant_engineering							
2.	https://onlinecourses.nptel.ac.in/noc21_me86/preview							

COU Upon	Bloom Taxonomy Mapped	
C01	Identify elements and their functions of steam power plant.	Understand
CO2	Identify elements and their functions of hydroelectric power plant	Understand
СОЗ	Identify elements and their functions of diesel and gas power plant.	Understand
<i>CO4</i>	Identify elements and their functions of nuclear power plant.	Understand
<i>C05</i>	Study the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the cost of electrical energy production.	Understand

COURSE A	DURSE ARTICULATION MATRIX														
COs/POs	РО 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO2	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO3	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO4	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO5	2	0	1	2	0	0	0	2	2	1	1	1	2	0	0
Avg	1.2	1.6	2.6	2.0	0.8	0.0	0.8	1.2	2.0	0.2	1.8	1.8	2.0	0.8	1.6
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														
PROFESSIONAL ELECTIVES – III

22MEPE31	FUELS AND COMBUSTION	SEMESTER								
PREREQU	SITES	CATEGORY	Y PE Credit							
1. Basic chemi	cal reactions between various components		L T P							
2. Fundamental	about various types of fuels and its nature	Hours/Week 3 0 0								
COURSE O	BJECTIVES:				•	•				
1. To imp	art the acquaintance about characterize of the different types of fue	s.								
2. To enhance the understanding of Classification, Composition & Properties of various fuels										
3. Unders	3. Understanding of thermodynamics and kinetics of combustion.									
4. Unders	tand and analyze the combustion mechanisms of various fuels.									
UNIT I	CHARACTERIZATION		9	0	0	9				
Fuels-solid, lie Ultimate Anal Formula for C	Fuels-solid, liquid and gaseous fuels-characteristics. Determination of Properties of Fuels – Fuels Analysis Proximate and Ultimate Analysis - Moisture Determination - Calorific Value - Gross & Net Calorific Values - Calorimetry - DuLong's Formula for CV Estimation.									
UNIT II	SOLID FUELS & LIQUID FUELS		9	0	0	9				
Fuels - Biom Classification Number, Ceta	ypes - Coal Family - Properties - Calorific Value - ROM, DMM ass - Agro Fuels – Manufactured Solid Fuels. Liquid Fuels-T - Refining - Properties of Liquid Fuels - Calorific Value, Spec ne Number etc., - Alcohols - Tar Sand Oil - Liquefaction of Solid F	F, DAF and Bone I ypes - Sources - F ific Gravity, Flash uels.	Petrole & Fire	enew um H e Poi	Fraction fraction	Solid ons - ctane				
UNITII	GASEOUS FUELS		9	0	0	9				
Classification Index - Natura Gas - Liquefie	 Composition & Properties - Estimation of Calorific Value – Gas al Gas - Dry & Wet Natural Gas- Stripped Natural Gas – Foul & S d natural gas - Compressed natural gas - Methane - Producer Gas - 	Calorimeter. Rich & weet Natural Gas - I Gasifiers - Water Ga	: Lean Liquef 1s - To	Gas ied Po wn G	- Wol etrole as.	obe um				
UNIT IV	COMBUSTION		9	0	0	9				
Principle of c slow combust composition, l	ombustion - stoichiometry, heat of reaction and formation. Combion, pulsating and explosive combustion. Chemical kinetics-NO Excess air calculation.	ustion process- sub- x and soot kinetics.	mergeo Fuel	l con and	ibusti flue	on, gas				
UNIT V	COMBUSTION EQUIPMENT'S		9	0	0	9				
Coal Burning Cyclone Firin Vaporizing B Burners.	Equipment's - Types - Pulverized Coal Firing - Fluidized Bed g - Spreader Stokers - Vibrating Grate Stokers - Sprinkler Stokers urners, Atomizing Burners. Gas Burners - Atmospheric Gas Bu	Firing – Fixed Bed , Traveling Grate St urners - Air Aspirat	& Re okers. tion G	cycle Oil I as B	ed Be Burne urner	d - rs - s –				
	Total (45L) = 45Periods									
Text Books:										

1.	Samir Sarkar, Fuels & Combustion, 2nd Edition, Orient Longman, 2009.
2.	Bhatt, Vora Stoichiometry, 4th Edition, Tata McGraw Hill, 2004.
Referen	ices:
1	Om Prakash Gupta, Elements of Fuels, Furnaces and Refractories, Khanna publishers, 1999.
2	Blokh AG,Heat Transfer in Steam Boiler Furnace, Hemisphere Publishing Corpn, 1988.
3	Sharma SP, Mohan Chander, Fuels & Combustion, Tata McGraw Hill, 1984.
4	Shaha AK (2003), Combustion Engineering & Fuel Technology, Oxford and IBH Publications, New York.
5	Kenneth K Kou (2002), Principles of Combustion, Wiley & Sons Publications, New York.

E-Refer	ences:
1.	https://nptel.ac.in/courses/112106299
2.	http://www.sitams.org/assets/pages/hands/material/R18/Engineering%20Chemistry/Fuels%20and%20combustion .pdf
3.	https://www.researchgate.net/publication/265602602_Fuels_and_Combustion_CHAPTER _4_FUELS_AND_COMBUSTION_41_Introduction_42_Requirements_of_a_Good_Fuel

COU Upon	URSE OUTCOMES: a completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the various kinds of fuels characteristics.	Understand
<i>CO2</i>	Determine flash and fire points of various fuel blends.	Apply
СОЗ	Classification, composition, properties and estimation of calorific value of gaseous fuels	Understand
<i>CO4</i>	Understand the thermodynamics behind combustion, flame propagation and choice of combustion systems.	Understand
<i>CO5</i>	Vast knowledge on effective employment of combustion equipment's	Understand

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	2	2	1	1	0	1	2	1	2	1	1	2	1
CO2	1	2	3	1	1	1	0	1	2	1	2	1	2	2	1
CO3	1	1	2	2	1	1	0	1	2	1	2	1	2	3	1
CO4	1	3	2	3	1	1	0	1	2	1	2	1	3	2	1
CO5	1	3	1	2	1	1	0	1	2	1	2	1	2	1	1
Avg	1.0	2.4	2.0	2.0	1.0	1.0	0.0	1.0	2.0	1.0	2.0	1.0	2.0	2.0	1.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MI	IEPE32 MAINTENANCE ENGINEERING						R VI		
PRER	REQUIS	ITES	CATEGORY	PE	edit	3			
1. Man	ufacturin	g Technology	TT /\X / -	L T P					
2.Envi	ronmenta	l Science and Engineering	Hours/Week	3	3				
COUI	RSE OB	JECTIVES:				•			
1.	To une mainter	derstand the principles, functions and practices adapted in ind nance activities	lustry for the succ	essful	mana	igeme	ent of		
2.	To exp machin	lain the different maintenance categories like preventive maintene elements	nance, condition m	onitorir	ng an	d rep	air of		
3.	To illu	strate the instruments used for condition monitoring in industry							
4.	To app	ly the repair methods in basic machine elements							
5.	To app	ly the repair methods in material handling equipment							
UNI	ΙΤΙ	INTRODUCTION		9	0	0	9		
Lubri UN Main	ication. N IT II tenance of	Maintenance of Mechanical transmission systems and process plants RELIABILITY AND AVAILABILITY categories – Comparative merits of each category – Preventive maintenance	intenance, maintena	nomics. 9 ance scl	0 hedul	0 es, Te	9 otal		
Produ failur	uctive Mare pattern	aintenance (TPM). Reliability: Definition, concept of reliability-ba . Availability and Maintainability concepts- Applications	ased design, failure	rate, N	1TTF	, MT	BF,		
UNI	TII	CONDITION MONITORING		9	0	0	9		
Cond instru indus	lition Mo uments fo stries.	nitoring – Cost comparison with and without CM – On load tes or CM – Temperature sensitive tapes – Pistol thermometers – wear	ting and offload te debris analysis, co	sting – ndition	Metl moni	hods toring	and g in		
UNI	ΤΙ	REPAIR METHODS FOR BASIC MACHINE ELEME	INTS	9	0	0	9		
Repa devel	ir metho lopment -	ds for beds, slide ways, spindles, gears, lead screws and bearings - Logical fault location methods – Sequential fault location, trouble	s – Failure analysis shooting.	– Fail	ures	and tl	neir		
UN	IT V	REPAIR METHODS FOR MATERIAL HANDLING E	QUIPMENT	9	0	0	9		
Repa main	ir metho tenance.	ds for Material handling equipment – Equipment records – Jo Safety Codes and Standards - General Safety considerations in Mat	b order systems -U erial Handling equi	Jse of pment.	com	puters	in		
			Total	(45L)	= 45	Perio	ods		
TEX	T BOO	KS:							

1.	Ricky smith and R.keith mobley, "Rules of Thumb for Maintenance and Reliability Engineers", Butterworth- Heinemann,2011.
2.	Lindley Higgins, Keith Moley, "Maintenance Engineering Handbook", McGraw-Hill Company, 2002.
REFER	RENCES:
1	Ahmed E.Haroun, Salih O.Duffuaa, "Handbook of Maintenance Management and Engineering", Springer, 2009.
2	Mohamed Ben-Daya,Uday Kumar, "Introduction to Maintenance Engineering, Modelling, Optimization and Management", Wiley,2016.
3	B.S.Dhillon, "Engineering Systems Reliability, Safety and Maintenance : An integrated Approach", Taylor & Francis; CRC Press,2017.
4	David J.Smith, "Reliability, Maintenance and Risk", Butterworth- Heinemann, 2011.
5	Paul Dempsey, "Troubleshooting and Repair of Diesel Engines, Fourth Edition", McGraw- Hill ,2007.

1. NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on Maintenance Engineering

COU Upon c	URSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
CO1	Understand the principles, functions and practices adapted in industry for the successful management of maintenance activities	Understand
<i>CO2</i>	Explain the different maintenance categories like preventive maintenance, condition monitoring and repair of machine elements	Understand
СОЗ	Illustrate the instruments used for condition monitoring in industry	Understand
<i>CO4</i>	Apply the repair methods in basic machine elements	Understand
<i>CO</i> 5	Apply the repair methods in material handling equipment	Understand

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	0	2	3	3	2	0	1	1	1	3	2	3	3
CO2	1	2	0	2	2	2	1	0	1	0	1	3	2	3	3
CO3	0	3	1	1	2	1	0	0	1	0	0	2	2	2	2
CO4	3	2	1	2	2	0	0	0	0	0	0	0	.3	2	1
CO5	3	2	0	2	2	0	0	0	0	0	0	0	3	2	1
Avg	1.6	2.4	0.4	1.8	2.2	1.2	0.6	0.0	0.6	0.2	0.4	1.6	2.4	2.4	2.0
3/2/1 – indica	i/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEPE33	MEPE33 NON-TRADITIONAL MACHINING PROCESSES							
PREREQU	ISITES	CATEGORY	PE	3				
1.Manufacturin	g Technology	XX (XX/)-	L	Р	ТН			
2.Engineering	Chemistry	Hours/week	7eek 3 0 0					
COURSE O	BJECTIVES:				-			
1. To unde	rstand the various Non-Traditional machining processes and its app	lications						
2. To decid	le the appropriate process among various electro chemical processes	3						
3. To justif	y the appropriate Thermo - electric process based on the application	and limitations						
4. To unde	rstand the working principle and applications of Laser machining pr	rocesses						
5. To unde	rstand the working principle and applications of Micro-electro Mec	hanical processes						
UNIT I	INTRODUCTION		9	0	0	9		
Abrasive Flow Limitations.	Machining (AFM) - Water Jet Machining (WJM) - Operating prin	ciple - Process para	meters	- Ap		ions -		
	ELECTRO - CHEMICAL FROCESSES		9	U	U	9		
Electro chemic Chemical Grine Process parame	al machining: Types - Electro Chemical Machining (ECM) - E ding (ECG) - Electro Chemical Honing (ECH) - Shaped Tube Elec- ters - Applications – Limitations.	lectro Chemical Dr ctrolytic Machining	- Opei	(ECD rating) - E princ	lectro ciple		
UNIT III	THERMO - ELECTRICAL PROCESSES		9	0	0	9		
Thermo electric Electron Beam Process parame	cal machining: Types - Electrical Discharge Machining (EDM) - El Machining (EBM) - Ion Beam Machining (IBM) - Plasma Arc ters - Applications - Limitations.	ectrical Discharge V Machining (PAM)	Vire Cı - Oper	utting ating	(ED) princ	WC) - viple -		
UNIT IV	LASER MACHINING PROCESSES		9	0	0	9		
Laser materials marking and o Limitations.	processing: Laser types - Processes - Laser Beam Machining (Ll engraving - Laser Micro Machining (LMM)-Laser Engineered	BM) - Laser cutting Net Shaping (LE	- Lase NS) -	er dril App	ling- licati	Laser		
UNIT V	MICRO ELECTRO - MECHANICAL PROCESSES		9	0	0	9		
Introduction to thin film depo- etching, anisotr	silicon processing - Wafer cleaning - Oxidation - Photolithograph sition - sputtering - chemical vapour deposition - electro plating opic etching, dry etching.	y - Electron beam a - Etching Process	and X-1 -wet e	ray lit tching	hogra g, iso	iphy tropic		
		Tota	al(45L	L) = 4	5 Pe	riod		
TEXT BOOI	KS:							
1. Pand	ey P.C. and Shan H.S. "Modern Machining processes" Tata McGra	w-Hill, New Delhi,	2017.					

2.	Nano Tanigudi, "Nanotechnology", Oxfor	d University Press, New York, 2003.

3. Vijay K Jain, "Advanced Machining Processes", Allied Publications Private Limited	2002.
--	-------

REFERENCES:

1	Carl Sommer, "Non-traditional Machining Handbook", Advance Publishing Inc., 2000.
2	Groover, M.P. "Fundamentals of Modern Manufacturing Processes - Materials, Processes and Systems", 3rd Edition, John Wiley and Sons Inc., 2007.
3	Paul De Garmo, J.T.Black, and Ronald.A.Kohser, "Material and Processes in Manufacturing" Prentice Hall of India Pvt.Ltd., New Delhi, 8th Edition, 2001.
4	Steen, W.M. and Watkins, K. "Laser Materials Processing", Springer London Ltd, 2003.
5	Hassan Abdel and Gaward El-Hofy, "Advanced Machining Processes", McGraw Hill Publications, 2005.

E-REFERENCES:

1. NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on Non-Traditional Machining Processes.

COU Upon	Bloom Taxonomy Mapped	
C01	Understand the various Non-Traditional machining processes and its applications	Understand
<i>CO2</i>	Decide the appropriate process among various electro chemical processes	Understand
СОЗ	Justify the appropriate Thermo electric process based on the application and limitations	Apply
<i>CO4</i>	Understand the working principle and applications of Laser machining processes	Understand
<i>CO5</i>	Understand the working principle and applications of Micro-electro Mechanical processes	Understand

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	1	0	0	0	0	0	0	1	0	2	2	1
CO2	3	2	0	0	1	0	0	0	0	0	0	0	2	2	1
CO3	3	2	0	0	1	0	0	0	0	0	0	0	2	2	1
CO4	2	1	0	0	1	0	0	0	0	0	0	0	2	2	1
CO5	2	1	0	0	1	0	0	0	0	0	0	0	2	2	1
Avg	2.6	1.6	0.0.	0.2	0.8	0.0	0.0	0.0	0.0	0.0	0.2	0.0	2.0	2.0	1.0
3/2/1 – indica	/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MI	LUES	SEMESTER VI								
PRF	REQUI	SITES	CATEGORY	PE	Cre	edit	3			
1.Hun	nan Right	5		L	Т	Р	ТН			
2. Pro	duct life (Cycle Management	Hours/week	3	0	0	3			
COU	RSE OB	JECTIVES:		•		•				
1.	Applying	g the core values toward the ethical behavior of an engineer.								
2.	Applying	g the ethical and moral principles in engineering experimentation.								
3.	Applying	g the ethical and moral principles in engineering for safety.								
4.	Applying	g standard codes of moral conduct toward the ethical behavior of an	engineer.							
5.	5. Applying ethical and moral principles for engineers as managers, consultants, expert witness. Resolving global issues of ethics concerning weapon development and multinational companies.									
UN		9	0	0	9					
Sens Koh Idea	es of 'Er lberg's th ls and Vir	gineering Ethics' – Variety of moral issues – Types of inquiry – eory – Gilligan's theory – Consensus and Controversy – Professi tues – Uses of Ethical Theories.	Moral dilemmas – ions and Profession	Moral alism -	Auto – Prof	onom fessic	y – mal			
UN	TI	ENGINEERING AS SOCIAL EXPERIMENTATION		9	0	0	9			
Engi Stan	neering a dards - A	s Experimentation – Engineers as responsible Experimenters – Rese Balanced Outlook on Law – The Challenger Case Study.	earch Ethics Codes	of Ethi	cs – I	ndust	rial			
UN	T III	ENGINEERING FOR SAFETY		9	0	0	9			
Safe Regi	ty and R 1lator's A	isk – Assessment of Safety and Risk – Risk Benefit Analysis pproach to Risk - Chernobyl Case Studies and Bhopal.	- Reducing Risk	– The	Gov	ernm	ent			
UN	TIV	ENGINEER'S RESPONSIBILITIES AND RIGHTS		9	0	0	9			
Colle Occu	egiality a pational	nd Loyalty – Respect for Authority – Collective Bargaining – C Crime – Professional Rights – Employee Rights – Intellectual Prop	Confidentiality – Co erty Rights (IPR) – I	onflicts Discrin	of In ninatio	nteres	st —			
UN	UNIT VGLOBAL ISSUES909									
Mult Deve Witr	inational elopment lesses and	Corporations – Business Ethics - Environmental Ethics – Con – Weapons Development – Engineers as Managers – Consul Advisors – Honesty – Moral Leadership – Sample Code of Conduc	nputer Ethics – Ro ting Engineers – I ct	ole in ' Enginee	Techr ers as	iolog s Exp	ical pert			
			Tot	al(45L	.) = 4	5 Pe	riods			

TEXT B	SOOKS:
1.	Mike Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 2017.
2.	Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004
REFER	ENCES:
1	Charles D Fleddermann, "Engineering Ethics", Prentice Hall, New Mexico, 1999.
2	David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003
3	Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.
4	John R Boatright, "Ethics and the Conduct of Business", Pearson Education, 2003.
5	Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "Business Ethics – An Indian Perspective", Biztantra, New Delhi, 2004.
E-REFE	CRENCES:
1.	Value Education websites, http://uhv.ac.in, http://www.uptu.ac.in
2.	IIT Delhi, Modern Technology – the Untold Story

COU Upon o	Bloom Taxonomy Mapped	
<i>CO1</i>	Understand the core values toward the ethical behavior of an engineer.	Understand
<i>CO2</i>	Apply the ethical and moral principles in engineering experimentation	Understand
CO3	Expose the ethical and moral principles in engineering for safety.	Apply
<i>CO4</i>	Apply standard codes of moral conduct toward the ethical behavior of an engineer	Apply
<i>C05</i>	Apply ethical and moral principles for engineers as managers, consultants, expert witness. Resolve global issues of ethics concerning weapon development and multinational companies.	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	0	0	3	1	3	0	0	2	1	0	0
CO2	0	0	0	0	0	0	2	2	3	0	0	2	1	2	0
CO3	0	0	0	0	0	0	3	2	3	0	0	2	1	2	0
CO4	0	0	0	0	0	0	3	3	2	0	0	2	1	2	0
CO5	0	0	0	0	0	0	2	2	3	0	0	2	1	0	0
Avg	0.0	0.0	0.0	0.0	0.0	0.0	2.6	2	2.8	0.0	0.0	2.0	1.0	1.2	0.0
3/2/1 – indica	$^{2}/1$ – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEPI	SEMESTER VI								
PRERI	EQUIS	ITES	CATEGORY	PE	Cr	edit	3		
1. Design	n of Mac	chine elements and transmission systems, CAD software		L	Т	Р	ТН		
2. Materi	ial scien	ce, Tool Design, Engineering physics	Hours/Week	3	0	0	3		
COURS	E OBJ	ECTIVES:							
1. To	o explain	the Importance of RPT in Manufacturing							
2. To	o familia	rize the students with recent developments in RPT							
3. To	o describ	e different methods for Post-processing of AM parts							
4. To	o list out	the challenges in RPT							
5. To	o explain	future Directions of AM							
UNIT	LI II	NTRODUCTION		9	0	0	9		
Need fo design - systems	or time o – prototy	compression in product development- Product development – con- /pe – tooling -History of RP systems- Survey of applications- Grow	ceptual design – d th of RP industry-	levelor classi	omen ficati	t - d on of	etail f RP		
UNIT	'II S	TEREO LITHOGRAPHY SYSTEMS		9	0	0	9		
Stereo l laser sin Sinterin	lithograp ntering - ng (DML	ohy systems – Principle – process parameters – process details – m – Principle – process parameters – process details – machine det "S) system – Principle – process parameters – process details – mach	achine details- Ap ails- Applications nine details- Appli	plicati -Direc cations	ons. t Me 3.	Selec tal L	tive aser		
UNIT		9	0	0	9				
Fusion Lamina	Deposit ted Obje	ion Modelling – Principle – process parameters – process deta ect Manufacturing – Principle – process parameters – process details	ails – machine de – machine details	etails- - Appl	App	licati ons.	ons.		
UNIT	IV S	OLID GROUND CURING AND CONCEPT MODELER	S	9	0	0	9		
Solid G printers like the (LENS)	round C – Princ rmo jet - Ballist	Curing – Principle – process parameters – process details – machine iple – process parameters – process details – machine details- App printers- Sander's model maker- JP system 5- Object Quadra sy ic Particle Manufacturing (BPM) -Principle.	e details- Applicat blications- and oth stem. Laser Engir	ions. 3 er con neering	B-Din cept	nensi mode Sha	onal elers ping		
UNIT	'V R	APID TOOLING AND SOFTWARES		9	0	0	9		
Introduc filled e polyami Softwar	ction to poxy to ide- Raj re for RF	rapid tooling – direct and indirect method- Indirect Rapid Tooling ooling- Spray metal tooling- etc. Direct Rapid Tooling - Direc pid Tool- DMILS- ProMetal- Sand casting tooling- Laminate t P – STL files- Magics- Mimics. Application of Rapid prototyping in	- Silicone rubber t AIM- Quick ca ooling- soft tooli medical field.	tooling ast pro ng vs	g- Al ocess- hard	umir Co too	ium pper ling.		
			Tota	al(45L	L) = 4	15 P	eriods		
ТЕХТ В	BOOKS								
1.	Ian Gil Digital	oson, David W Rosen, Brent Stucker., "Additive Manufacturing Te Manufacturing", Springer, 2010	echnologies: Rapio	l Proto	otypir	ig to	Direct		
2.	Ali K.	Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Pract	tice", Springer, 20	06. 4. 1	D.T.]	Ph			
REFER	ENCES	5:							
1	Pham I	D.T. & Dimov.S. S, "Rapid manufacturing", Springer Verlag, Londo	on, 2001.						
2	2 Paul F Jacobs, "Rapid Prototyping and manufacturing – Fundamentals of Stereo lithographic", Society o Manufacturing Engineering, Dearborn, USA 1992.								
3	Ali K. Kamrani, Emand Abouel Nasr, "Rapid Prototyping: Theory & Practice", Springer, 2006.								
4	Chua Chee Kai, Leong Kah Fai, "Rapid Prototyping: Principles & Applications", World Scientific, 2003.								

5 Terry wohlers, "Wohlers Report 2007", Wohlers Associates, USA 2007.

COUI Upon d	Bloom Taxonomy Mapped			
<i>CO1</i>	Learn about the hurdles, basic-essentials and key-drivers of innovation in digital manufacturing and its application in Automobile, Aerospace, Bio-medical etc.	I Understand		
<i>CO2</i>	Recognize the operational features of Stereo Lithography Systems.	Understand		
СОЗ	Explain the concept of Fusion Deposition Modelling.	Understand		
<i>CO4</i>	Design for manufacture solid ground curing and concept modelers	Apply		
<i>CO5</i>	Acquire the knowledge of Software for RP and apply RPT in Tooling.	Understand		

COURSE ARTICULATION MATRIX

L

								-			-				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	1	1	1	1	2	0	0	0	0	1	1	3	2	1
CO2	0	2	1	1	1	0	0	0	1	0	1	1	1	2	2
CO3	0	2	1	1	1	0	0	0	1	0	1	1	1	2	2
CO4	0	2	3	1	1	0	0	0	1	0	1	1	1	2	2
CO5	0	1	0	1	3	0	0	0	1	0	1	0	3	2	3
Avg	0.0	1.6	1.2	1.0	1.4	0.4	0	0	0.8	0.0	1.0	0.8	1.8	2.0	2.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEPE36 REFRIGERATION & AIR CONDITIONING								VI
PREI	REQU	ISITES		CATEGORY	PE	Cr	edit	3
1.Engi	ineerin	g Thermodynamics		TT (TT 1 -	L	Т	Р	TH
2.Fluic	d Mech	anics and Machinery		Hours/ week	3	0	0	3
COU	RSE (DBJECTIVES:					•	<u>.</u>
1.	To un	derstand the basic concepts and processes in refrigeration						
2.	To un	derstand the components of vapour compression refrigerating	g system a	and its effects				
3.	To un	derstand the other refrigeration systems and their application	IS					
4.	To sol	ve the problems using psychrometric charts and psychromet	ric proper	ties				
5.	To cal	culate the cooling load for designing air conditioning system	15					
UN	I TI	INTRODUCTION			9	0	0	9
Basic and Refr	c conce process igerant	epts and definitions of refrigeration and air conditioning, conses- Reversed Carnot cycle - Units of Refrigeration, refrig s - desirable properties – Classification – Nomenclature – Ol	nparison. geration e DP & GW	Refrigeration: Ideal affect, tonne of refr /P.	Refrig igeratio	geration on an	on cyc d C.C	les .P.
UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM								9
Refri comj cond	igeratio pressio lenser a	on system components: Type of Compressors, Conden n cycle: P-H and T-S diagrams – deviations from theoretica and evaporator pressure on C.O.P of the system - problems o	isers, Exp il cycle – on vapour	pansion devices, H sub cooling and sup compression refrige	Evapora er heat ration	ators. ting- o syster	Vap effect n.	our s of
UN	IT III	OTHER REFRIGERATION SYSTEMS			9	0	0	9
Worl Ther	king p moeled	rinciple of vapour absorption refrigeration system – Stear etric refrigeration, Pulse tube refrigeration system, low temper	m jet refr erature ref	rigeration, Ejector frigeration – Cascad	refrige e syste	ration ms.	syste	em-
UN	IT IV	PSYCHROMETRY			9	0	0	9
Prop dew Psyc	erties o point hometi	of moist air - Gibbs and Dalton's law. Psychrometric prope temperature, Specific humidity, relative humidity, Degr ic chart; Psychometric processes, mixing of air streams.	erty- dry ree of sa	bulb temperature, waturation, Relative	vet bull humid	b tem ity, I	perat Entha	ure, lpy.
UN	IT V	AIR CONDITIONING SYSTEMS AND LOAD	ESTIMA	ATION	9	0	0	9
Air c appli princ sense	conditio iances, ciples. ors- Ac	oning loads: Outside and inside design conditions; Heat tran Infiltration and ventilation, internal heat load, apparatus so Air distribution system-Filters. Air Conditioning Systems we tuators & Safety controls.	nsfer thro election, vith Contr	ough structure, Solar fresh air load, hum ols-Temperature, Pr	radiat an con ressure	tion, I nfort and I	Electr and I Humio	ical AQ dity
				Tot	al(45I	L) = 4	15 Pe	riods
TEXT	Г ВОС	DKS:						
1.	Ar	ora, C.P., "Refrigeration and Air Conditioning", 3rd edition,	McGraw	Hill, New Delhi, 20)17.			
2.	Ar	ora S. C. and Domkundwar, "Refrigeration and Air-Condition	oning", D	hanpat Rai and Co.	(P) Ltd	., 201	0.	
REFI	EREN	CES:	<u> </u>	-				
1	Ro	y J. Dossat, "Principles of Refrigeration", 4th Edition, Pears	son Educa	tion Asia, 2009.				
2	Ste	becker, W.F. and Jones J. W., "Refrigeration and Air Condition	ioning", N	AcGraw Hill, New I	Delhi, 1	986.		
3	Ba	llaney P. L, Refrigeration and Air-Conditioning, Khanna Pu	blishers, l	New Delhi, 2014.				

- 4 Manohar Prasad, Refrigeration and Air-Conditioning, New Age International, 2011.
- 5 ASHRAE Hand book, Fundamentals, 2010.

E-REFERENCES:

1. NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on Refrigeration and Air Conditioning.

COUI Upon o	Bloom Taxonomy Mapped	
C01	Understand the basic concepts and processes in refrigeration	Understand
<i>CO2</i>	Understand the components of vapour compression refrigerating system and its effects	Understand
СО3	Understand the other refrigeration systems and their applications	Understand
<i>CO4</i>	Solve the problems using psychrometric charts and psychrometric properties	Analyze
<i>CO5</i>	Calculate the cooling load for designing air conditioning systems	Analyze

COURSE ARTICULATION MATRIX COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 **CO1 CO2 CO3 CO4 CO5** 2.2 1.8 0.2 1.0 0.2 0.8 0.8 0.0. 0.0 0.2 0.4 0.0 2.0 2.0 1.0 Avg 3/2/1 - indicates strength of correlation (3 - high, 2- medium, 1- low)

22MEPE37	SOLAR ENERGY TECHNOLOGY		SE	TER	VI			
PREREQU	ISITES CATE	GORY	ORY PE Cred					
		/XX / I -	L	Т	Р	С		
	Hours	Hours/Week						
COURSE	OBJECTIVES:				•			
1. To exp	plain various solar collectors in solar power plants.							
2. To des	cribe the variety of solar systems used in solar water heating systems.							
3. To de	escribe the solar radiation and its measurements.							
4. To an	alyze solar space conditioning systems.							
5. To de	sign PV systems for power plants.							
UNIT I	INTRODUCTION		9	0	0	9		
Power plant plate – evacu	scenario-classification, basic principles and features-comparison and selection uated tube – concentrated – pool and air collectors- function –suitability.	n criteria. S	Solar c	collect	tors- :	flat		
UNIT II	SOLAR WATER HEATING SYSTEMS		9	0	0	9		
Integral coll refrigerant se	ector storage system - thermosyphon system - open loop, drain down, dr. olar water heaters - solar heated pools - solar heated hot tubes and solar positio	ain back, a n algorithm	antifree n.	eze sy	ystem	s -		
UNIT III	SOLAR RADIATION		9	0	0	9		
Source of a pyrheliometer	radiation – solar constant– solar charts – measurement of diffuse, glob er, pyranometer, pyrgeometer, net pyradiometer-sunshine recorder.	al and dir	ect so	olar ra	adiati	on:		
UNIT IV	9	0	0	9				
Liquid type solar heating	solar heating system with / without storage - heat storage configurations - h g systems - solar refrigeration and air conditioning.	eat deliver	y meth	ods -	air-ty	/pe		
UNIT V	SOLAR PV CELL		9	0	0	9		
Photo-voltai batteries-cha	c cell – characteristics-cell arrays-power electric circuits for output of source regulators, construction concepts.	olar panels	-chopp	pers-ii	nverte	rs-		
		Total ((45L)	= 45]	Perio	ds		

TEXT I	TEXT BOOKS:							
1.	Duffie, J.A., and Beckman, W.A. Solar Energy Thermal Process, John Wiley and Sons, NewYork, 2013.							
2.	Kosuke Kurokawa (Ed.), Energy from the Desert – Feasibility of very large-scale photovoltaic power generation systems, JamesandJames2003.							
REFER	ZENCES:							
1	Sukhatme S.P., Solar Energy, TataMcGrawHills P Co., 3 rd Edition, 2008.							
2	C.J.Winter, R.L.Sizmann, L.L.VantHull, SolarPowerPlants, Springer Verlag Berlinand HeidelbergGmbH &Co., 2001.							

COURS	Bloom Taxonomy	
Upon con	pletion of this course, the students will be able to:	Mapped
C01	Explain various solar collectors in solar power plants.	Understand
<i>CO2</i>	Describe the variety of solar systems used in solar water heating systems.	Understand
СО3	Describe the solar radiation and its measurements.	Understand
<i>CO4</i>	Analyze solar space conditioning systems.	Apply
<i>C05</i>	Design PV systems for power plants	Apply

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	0	0	0	2	1	0	0	0	0	0	2	1	2
CO2	3	2	1	2	0	1	0	0	0	0	1	0	2	2	2
CO3	3	2	0	2	3	2	0	0	0	0	1	0	2	2	1
CO4	3	3	1	2	2	2	0	0	0	0	1	0	3	2	2
CO5	3	2	3	2	3	2	0	0	0	0	1	0	2	3	2
Avg	3	2	1	1.6	1.6	1.8	0.2	0	0	0	0.8	0	2.2	2	1.8
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

PROFESSIONAL ELECTIVES – IV

22MI	EPE41	ADVANCED DECISION MODELING TECHN	SE	VI				
PRE	PREREQUISITES CATEGORY PE C							
1.Stud	L	Т	Р	ТН				
2.Students are expected to have a basic understanding in the concepts of Calculus, Hours/Week 3							3	
3.Basi	c knowle	dge in python programming.				•	•	
COU	RSE OB	SJECTIVES:						
1.	To equij algorithr	o student, explain the fundamentals of machine learning, need for ns, linear algebra concepts and application areas of deep learning m	r deep learning an odels.	d ense	mble	learn	ing	
2.	To make impleme	e the student explain the concepts of Convolutional Neural Net ntation of different CNN models using Python.	work (CNN) archi	tecture,	, trair	ing a	and	
3.	To mak impleme	e the student explain the concepts of Recurrent Neural Netw ntation of different CNN models using Python.	ork (RNN) archit	ecture,	train	ing a	and	
4.	To fami ensembl	liarize the need, methods and concepts for ensemble learning and e learning approaches.	l apply with Pytho	n impl	ement	ation	of	
5.	To ident difference	ify alternate deep learning models for the listed use cases, identify ses between standard deep learning models.	v a suitable algorith	nm by a	apprel	hend	the	
UN	ITI	INTRODUCTION		9	0	0	9	
Deej netw	o learning ork funda	g – rationale- concept of Eigenvalues and Eigenvectors- fundamen amentals – real world examples- implementation aspects of deep lea	tals of machine lea rning- training	rning-	histor	y-neı	ıral	
UN	IT II	CONVOLUTIONAL NEURAL NETWORKS		9	0	0	9	
Und Con Resi	erstand th volutiona Net, and C	e process of convolution, convolutional layer, pooling layer, fully l Neural Network (CNN) - architecture and training of different Cl GoogLeNet - Implement the CNN models using Python.	connected convolut NN models, namely	tion lay AlexN	er co Net, V	ncern 'GGN	ing Iet,	
UN	IT III	RECURRENT NEURAL NETWORKS		9	0	0	9	
Basi peep	cs of RN hole com	Ns - Evolution of LSTM from RNN -Working of LSTM concer nections, coupled gates, Gated Recurrent Network -Implement RNN	ning gates - varian using Python.	ts of L	STM.	such	as	
UN	IT IV	ENSEMBLE LEARNING		9	0	0	9	
Need XGE	d for ense Boost algo	emble learning -methods involved in ensemble learning - bagging orithms to a real-world problem - Python implementation of ensemb	and boosting conclusions and boosting conclusions approaced by the second secon	cepts- A	AdaB	oost a	and	
UN	IT V	CASE STUDIES		9	0	0	9	
Alter class betw ense	rnate deep sification/ een stand mble lear	p learning models for the listed use cases like plant species identify prediction, loan eligibility prediction and resume parsing - ide dard deep learning models and advanced deep learning models - ning model for the application under consideration.	cation, predict cust ntify a suitable al - selection of suita	comer la gorithn ble dee	oss, S n -dif ep lea	equer feren rning	nce ces or	
			Tot	al(45L	.) = 4	5 Pe	riods	

TEXT B	TEXT BOOKS:								
1.	S. Sumathi, Suresh Rajappa, L. Ashok Kumar, And Surekha Paneerselvam, "Advanced Decision Sciences Based on Deep Learning and Ensemble Learning algorithms", Nova Science Publishers, Inc, 2021.								
2.	Singhal, Vanika, Shikha Singh, and Angshul Majumdar, "How to train your deep neural network with dictionary learning". arXiv preprint arXiv:1612.07454 (2016).								
REFER	REFERENCES:								
1	Srivastava, Pranjal. Essentials of deep learning: introduction to long short-term memory. last updated on Dec 10								

	(2017).
2	Sumathi, Sai, and Surekha Paneerselvam. Computational intelligence paradigms: theory & applications using MATLAB. CRC Press, 2010.
3	Goodfellow and Bengio, "Deep Learning", MIT press.
4	Christopher Bishop, "Pattern Recognition and Machine Learning", Springer Science+Business Media, LLC, 2006.
5	Francois Cholle, "Deep Learning with Python" Manning publications.
E-REFE	RENCES:
1	Study-Material-BTech-IT-VIII-sem-Subject-Deep-Learning-deep_learning_Btech_IT_VIII-sem.pdf (ccsuniversity.ac.in)
2	ResNet, AlexNet, VGGNet, Inception: Understanding various architectures of Convolutional Networks – CV- Tricks.com.
3	Convolutional Neural Networks and their components for computer vision – MachineCurve.
4	Dive into Deep Learning — Dive into Deep Learning 0.16.4 documentation (d2l.ai).

COU Upon o	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
<i>C01</i>	Learn the fundamentals of machine learning, need for deep learning and ensemble learning algorithms, linear algebra concepts and application areas of deep learning models.	Understand					
<i>CO2</i>	Understand the concepts of Convolutional Neural Network (CNN) architecture, training and implementation of different CNN models using Python.	Understand					
СОЗ	Studythe concepts of Recurrent Neural Network (RNN) architecture, training and implementation of different CNN models using Python.	Remember					
<i>CO4</i>	Capture the need, methods and concepts for ensemble learning and apply with Python implementation of ensemble learning approaches.	Analyze					
<i>C05</i>	Identify alternate deep learning models for the listed use cases, identify a suitable algorithm by apprehend the differences between standard deep learning models.	Apply					

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	0	0	0	0	1	1	0	1	1	0
CO2	3	2	0	3	2	0	0	0	0	1	1	0	1	1	0
CO3	3	2	0	3	2	0	0	0	0	1	1	0	1	1	0
CO4	3	2	0	3	2	0	0	0	0	1	1	0	1	1	0
CO5	3	2	2	3	1	0	0	0	0	1	1	0	1	1	0
Avg	3.0	2.2	0.8	3.0	1.8	0.0	0.0	0.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0
3/2/1 – indica	/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22M	EPE42	SE	R VI				
PREF	REQUIS	ITES	CATEGORY	PE	Cr	edit	3
1 Vno	uladaa in	monufocturing to share lo gu	Houng/Woolr	L	Т	Р	TH
I.Knov	wiedge in	manufacturing technology	Hours/ week	3	0	0	3
COU	JRSE O	BJECTIVES:					
1.	To get th	e knowledge of various elements of manufacturing automation					
2.	To study	various techniques of automatic material handling in a manufacturi	ng organization				
3.	To identi	fy suitable automation hardware for the given application					
4.	To incon manufac	porate application of electronics and computer engineering in turing automation	mechanical engined	ering f	for e	nhanc	cing
5.	To devel	op CNC programs to manufacture industrial components.					
UN	I TI	INTRODUCTION TO AUTOMATION		9	0	0	9
Auto Elem Syste Auto	mation of a ents of a em - Automation M	in Automated System, Advanced Automation Systems, Architecture of comation in Manufacturing Systems - Reasons for Automating- ligration Strategy	Automation Automations. Ma Automation Princi	nufacti ples ai	stem uring nd St	Supp Supp Stateg	asic port ies-
UN	IT II	DETROIT-TYPE AUTOMATION		9	0	0	9
Auto Auto Gene Lines	mated Florentian for a second	ow lines, Methods of Work part Transport, Transfer Mechanism, or Machining Operations, Design and Fabrication Consideration inology and Analysis, Analysis of Transfer Lines Without Storag orage Buffers, Computer Simulation of Automated Flow Lines.	s. Analysis of Auto e, Partial Automatic	ntrol Formated	Uncti Flov	ons, a w Lii ted Fi	and nes: low
UNI	III TII	CONTROL TECHNOLOGIES IN AUTOMATION		9	0	0	9
Indus Cont Cont mach	strial Con rol, Com rol, Build nine inter	ntrol Systems, Process Industries Verses Discrete-Manufacturing puter Process Control and its Forms. Computer Based Industrial Co ling Blocks of Automation System: LAN, Analog & Digital I/O Mo face	Industries, Continue ntrol: Introduction & odules, SCADA Sys	ous Ve & Auto tem an	erses matic d RT	Discr Proc U. m	rete cess an-
UN	IT IV	NUMERICAL CONTROL MACHINES		9	0	0	9
NC c Steps comp Enco	componer s in NC ponents and	its, NC coordinate systems, Point to point, line and contouring system manufacturing, Role of NC/CNC technology in modern mar and tooling of machining centre and CNC turning centre, Auto linear scale, Features of DNC and adaptive control systems.	ems, open and close sufacturing, Feature matic tool changer,	loop co s of (Feedl	ontro CNC back	l syste syste devic	em, em, ces:
UN	IT V	CNC PROGRAMMING		9	0	0	9
Part proce	programr essor com	ning fundamentals, Manual Part Programming, APT Programming mands, Safety measures in CNC programming.	g, Geometric & mot	ion coi	nmai	nds, F	Post
			Total ((45L)	= 45	Perio	ods
TEX	T BOO	KS:					
1.	M.P. 2016	Grover, Automation, Production Systems and Computer Integra	ted Manufacturing,	Pears	on E	ducat	ion.
2.	2. Computer Numerical Control (CNC) Machines Paperback – 1, P. Radhakrishnan, New Central Book Agency; 1st edition, 2013						
REF	ERENC	CES:					
1	Steve	F Krar, "Computer Numerical Control Simplified ", Industrial Pres	ss, 2001.				

2 Tien-Chien Chang, Richard A. Wysk and Hsu-Pin Wang - Computer Aided Manufacturing, Pearson 2009

3	Frank Lamb - Industrial Automation, Mc Graw Hill,2013								
E-REFE	E-REFERENCES:								
1.	Steve F Krar, "Computer Numerical Control Simplified ", Industrial Press, 2001.								
2.	Tien-Chien Chang, Richard A. Wysk and Hsu-Pin Wang - Computer Aided Manufacturing, Pearson 2009								

COL Upon o	Bloom Taxonomy Mapped	
C01	Understand the effect of manufacturing automation strategies	Understand
<i>CO2</i>	Apply knowledge of industrial automation by transfer lines and automated assembly lines.	Apply
<i>CO3</i>	Understand the electronic control systems in metal machining and other manufacturing processes.	Understand
<i>CO4</i>	Identify different CNC components, systems and controls CNC machines	Apply
<i>CO5</i>	Write CNC programming to solve complex machining process	Understand

COURSE A	ARTI(CULA	IOITA	N MA	TRIX	K									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	1	1	2	2	1	0	0	1	1	1	2	2
CO2	1	2	2	1	1	2	1	0	2	0	1	1	1	2	2
CO3	1	2	2	2	2	2	1	0	2	0	1	1	1	2	2
CO4	0	0	1	1	3	2	2	1	0	2	1	1	1	2	2
CO5	0	0	0	1	3	2	2	1	0	2	1	1	1	2	2
Avg	0.6	1.0	1.4	1.2	2.0	2.0	1.6	0.6	0.8	0.8	1.0	1.0	1.0	2.0	2.0
			3/2	$\frac{1}{2}/1 - ir$	dicate	s stren	oth of	correlat	tion (3	– high 🤇	2- mediu	m 1- lov	v)		

22MEPE	E 43	CRYOGENIC ENGINEERING		SE	MES	STEI	R VI
PREREQ	UIS	ITES	CATEGORY	PE	Cr	edit	3
1.Engineeri	ing T	hermodynamics		L	Т	P	ТН
2.Refrigera	tion a	and air conditioning	Hours/Week	3	0	0	3
COURSE	C OB	JECTIVES:					
1. To p	provid	le the knowledge of evolution of low temperature science					
2. To p	provid	le knowledge on the properties of materials at low temperature					
3. To f	famili s	arize with various gas liquefaction systems and to provide design	a aspects of cryogen	ic stor	age a	and tr	ansfe
4. To 1	earn	information concerning low temperature processes and techniques					
5. To t	oe fan	niliar with the applications of low temperature technology					_
UNIT]	I	PROPERTIES OF CRYOGENIC FLUIDS & MATERIA AT LOW TEMPERATURE	L PROPERTIES	9	0	0	9
Introducti – Phase d Properties strength, Specific	ion to liagra s of 1 Fatig heat	Cryogenics and its applications – Properties of Cryogenic Fluids m for He-4, He 3 and its mixture, Superfluidity in He. LOX, LN ₂ , A naterials at Cryogenic Temperature – Mechanical Properties – Yi ue Strength, Ductility and Hardness -Thermal Properties – Therm - Electrical and Magnetic Properties- Superconductivity, BCS	 Hydrogen – Ortho Argon. ald Strength, Ultim al expansion, Therm theory, HT and I 	-para t ate Str nal Cor LT Su	forms rengtl nduct perco	s, Hel n, Imj ivity onduc	ium pact and cting
materials,	, App	lications of superconductivity.		0		0	
		BASICS OF GAS LIQUEFACTION AND REFRIGERA		9	U	U	9
Heat Excl Joule The	hange	res, Compressors and Expanders (only description with figure). n expansion of a real gas, Isentropic expansion, Comparison of J-	T Expansion and Is	sentrop	on s	xpans	ion.
Layout ar	nd W	orking of Liquid Helium and Nitrogen.					
UNIT I	II	AND CRYOCOOLERS	ION SYSTEMS	9	0	0	9
Gas Liqu cycles su system fo Cryocool G-M Cryo	efact ich as or Ne ers -I ocool	ion Parameters – Calculation of Liquid Yield, Work requirement is Ideal thermodynamic system, Linde Hampson Cycle, Precooled and Hydrogen - Precooled Claude System, Liquefaction system Basics of Cryocoolers-Ideal Stirling Cycle- Stirling Cryocooler, P er, Pulse Tube Cryocooler, Vuilleumier Refrigerator, Dilution Refr	and Optimization Linde Hampson s for He – Collins hilips Refrigerator, rigerator and Magne	of Yie ystem and Si Solvey tic Ref	ld fo Liq mon Ref	r vari uefac syste rigera ator.	ious tion ems. ator,
UNIT Γ	V	CRYOGENIC FLUID STORAGE AND TRANSFER SYS	STEMS	9	0	0	9
Cryogenie their perf Materials	c Sto forma , Vac	rage vessels - Dewar Vessel and Vapour Shielded Vessel, Transponce at cryogenic temperatures - Types of Insulation – Expanded uum, Evacuated Powder and Multi-Layer Insulation.	ortation systems. Th Foam, Gas Filled F	ermal Powder	insul s and	ation 1 Fibi	and rous
UNIT V	V	CRYOGENIC MEASUREMENT SYSTEMS		9	0	0	9
Cryogeni	c Inst	rumentation - Pressure, flow-level and temperature measurements.	Cryopumping appli	cations	5.	1	
			Total(45L) :	= 45	Peri	ods
TEXT BO	OOK	S:					
1.	J. H	. Boll Jr, Cryogenic Engineering					
2.	R. B.	Scott, Cryogenic Engineering, Van Nostrand Co., 1959					
REFERE	NCE	CS:					
1	Klau	s D. Timmerhaus and Thomas M.Flynn, "Cryogenic Process Engi	neering", Plenum Pr	ess, No	ew Y	ork, 1	989.
2	Ran	dal F.Barron, "Cryogenic systems", McGraw Hill, 1986.					

1. nptel.ac.in / courses / downloads

COU Upon	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
CO1	Understand the properties of both cryogenic fluids and material properties for better design process in cryogenic applications.	Understand						
CO2	Apply the knowledge of low temperature production methods	Understand						
CO3	Analyze the performance parameters of various gas liquefaction systems	Analyze						
CO4	Understand the various cryogenic fluid storage for transportation systems and transfer lines	Understand						
CO5	Understand different instrumentation in cryogenics	Understand						

COURSE A	RTIC	CULA'	TION	MAT	RIX										
COs/POs	РО 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1	0	0	0	0	0	0	0	0	2	1	0
CO2	2	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO3	2	2	3	1	0	0	0	0	0	0	0	0	3	1	0
CO4	2	2	2	1	0	0	0	0	0	0	0	0	1	1	0
CO5	2	1	1	1	0	0	0	0	0	0	0	0	1	1	0
Avg	2.0	1.8	2.2	1.0	0.0	0.0	0.0	0.0	0.0.	0.0	0.0	0.0	2.0	1.0	0.0
3/2/1 – india	cates st	rength	of cor	relatio	n (3 –	high, 2	- medi	um, 1-	low)						

22ME	CPE44	FRACTURE MECHANICS AND FAILURE AN	ALYSIS	SEM	ESTI	ER V	'I
PRE	REQUI	ISITES	CATEGORY	PE	Cre	edit	3
1. Stud	lent shou	ld study Strength of material.		L	Т	Р	ТН
2. Stud	lent shou	ld study Materials Engineering.	Hours/week	3	0	0	3
COU	JRSE O	BJECTIVES:				-	
1.	Identif	y and explain the types of fractures of engineered materials and the	r characteristic feat	ures.			
2.	Unders be util service	stand the differences in the classification of fracture mechanics and ized to determine conditions under which engineering materials ve.	how their correspon will be liable to fai	ding pa 1 catas	arame trophi	ters c cally	an in
3.	Unders	stand and explain the mechanisms of fracture; and learn how to carry	y out engineering fa	ilure ar	nalysis	s.	
4.	To Lea	arn the microstructural aspects that lead to fracture.					
5.	Apply	advanced mathematical theories to characterize and predict fracture					
UN	I TI	BASIC CONCEPTS IN FRACTURE MECHANICS		9	0	0	9
The theo	geometr ry, Ducti	y of stress and strain, elastic deformation, plastic and elasto-plastic le fracture, Probabilistic aspects of fracture mechanics – Microstruc	deformation, Brittl ture.	le fract	ure: G	iriffit	h's
UN	IT II	MECHANICS OF FRACTURE- STATIC LOADING		9	0	0	9
Elas mod Eval	tic fields lel – J in luation o	Analytical solutions yielding near a crack front – Irwin's appro- ntegral and its relation to crack opening displacement. Strain end f fracture Toughness of different materials: size effect & control	oximation – plastic ergy release and str	zone si ress int	ze –] ensity	Dugd / fact	lale tor.
UN	IT III	FAILURE ANALYSIS OF FATIGUE FRACTURE		9	0	0	9
Fund calc struc	damental ulations ctural ana	sources of failures- Deficiency in design, Empirical Relation des for a given load amplitude – effects of changing the load spec alysis of fatigue failures, some case studies in analysis of fatigue fail	trum – Effects of ures.	th by f Enviro	nment	э – L Мі	ife cro
UN	IT IV	FAILURE ANALYSIS OF CREEP RUPTURE		9	0	0	9
Frac cree inter	eture at effective et al. p, Mech raction. S	levated temperature: Time dependent mechanical behavior, stress r anism of creep deformation and Creep deformation maps, Predi- some case studies in analysis of creep failures.	upture, Micro Struc ction of time to ru	tural cl pture,	nange: Creep	s duri •-fatiş	ing gue
UN	IT V	FAILURE ANALYSIS OF CORROSION AND WEAR		9	0	0	9
Type type stres	es of wea s of corress corrosi	ar, analyzing wear failure, corrosion failures- factors influencing co osion, stress corrosion cracking, sources, characteristic of stress corr on cracking, various types hydrogen damage failures.	prrosion failures, an rosion cracking, pro	overvi cedure	ew of for ar	vario 1alyz	ous ing
			Total	(45L)	= 451	Perio	ods
TEX	т воо	KS:					
1.	He W	ertz berg R W, "Deformation and fracture mechanics of Engine iley's sons inc, New York 1983.	eering Materials" S	second	Editio	on Jo	ohn
2.	Kı	nott. J.F, "Fundamentals of Fracture Mechanics" Butterworth Londo	n, 1973.				
REF	EREN(CES:					
1	Ev	valds H L and RJH Warnhil," Fracture Mechanics", Edward Arnold	Ltd, Baltimore, 1984	4.			
2	Ca M	ampbell J E, Underwood J H, and Gerberich W., "Applications of aterials ", American Society for Metals, Metals Park Ohio, 1982.	Fracture Mechanics	s for th	e sele	ction	of
3	Fr	acture Mechanics Metals Handbook, ninth edition, vol. 8 437-491, nio, 1985.	American Society of	of Meta	ls Me	tal P	ark
4	Ka	are Hellan, "Introduction of Fracture Mechanics", McGraw-Hill Boo	ok Company, 1985.				

5	Prashant Kumar, "Elements of Fracture Mechanics", Wheeler Publishing, 1999.
E-REFE	RENCES:
1	https://www.fracturemechanics.org/
2	https://archive.nptel.ac.in/courses/112/107/112107241/
3	http://vucoe.drbriansullivan.com/wp-content/uploads/Fundamentals-of-Fracture-Mechanics.pdf

COU Upon	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Familiarize the structure design to prevent failure from the internal defect.	Create						
<i>CO2</i>	Illustrate the design structure to prevent fatigue and creep.	Create						
СО3	Solve the problems related to deformation and related theories.	Evaluate						
<i>CO4</i>	Formulate the empirical relations for fatigue fracture.	Apply						
<i>C05</i>	Analyse the failures in corrosion and wear.	Analyse						

COURSE A	ARTI	CULA	TIO	N MA	TRIX	K									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	0	2	1	0	0	0	0	0	3	1	1
CO2	2	2	1	1	0	2	1	0	0	0	0	0	3	1	1
CO3	2	2	1	1	0	2	1	0	0	0	0	0	3	1	1
CO4	2	2	1	1	0	2	1	0	0	0	0	0	3	1	1
CO5	2	2	1	1	0	2	1	0	0	0	0	0	3	1	1
Avg	2	2	1	1	0	2	1	0	0	0	0	0	3	1	1
		•	3/2/1	– indi	cates s	trength	n of co	rrelatio	n (3 – 1	high, 2-1	medium,	1- low)			

22MEPE4	5 FUNDAMENTALS OF TRIBOLOGY		SE	MES	TER	R VI				
PREREC	UISITES	CATEGORY	PE	Cr	edit	3				
1.Engineerii	g Mechanics	II // I / -	L	Т	Р	TH				
		Hours/ week	3	0	0	3				
COURSE	OBJECTIVES:			•	•	•				
1. To p	ogical	signi	ficanc	e.						
2. To learn about consequences of wear, wear mechanisms, wear theories and analysis of wear problems.										
3. To study about properties of lubricants, testing methods and types of lubricants.										
4. To acquire the knowledge about the stress, Co-efficient of friction and viscous flow in journal bearings.										
5. To le	arn about the nature of engineering surfaces, their topography and bear	ings material.								
UNIT I	SURFACES AND FRICTION		9	0	0	9				
Topography of engineering surfaces- contact between surfaces – sources of sliding Friction– Adhesion-Ploughing- Energy dissipation mechanisms. Friction Characteristics of metals – Friction of non-metals. Friction of lamellar solids – friction of Ceramic materials and polymers – Rolling Friction – Source of Rolling Friction – Stick slip motion – Measurement of Friction.										
UNIT II	WEAR		9	0	0	9				
Types of Adhesive Wear of C	vear – Simple theory of Sliding Wear Mechanism of sliding wear of and Abrasive wear situations – Corrosive wear – Surface Fatigue we eramics and Polymers – Wear Measurements.	metals – Abrasive ar situations – Britt	wear – le Frac	Mate	erials – wea	for ar –				
UNIT II	LUBRICANTS AND LUBRICATION TYPES		9	0	0	9				
Types and Boundary	properties of Lubricants – Testing methods – Hydrodynamic Lubrica Lubrication – Solid Lubrication- Hydrostatic Lubrication.	tion – Elasto- hydro	dynam	ic lub	oricati	on-				
UNIT IV	FILM LUBRICATION THEORY		9	0	0	9				
Fluid film for film Lu – Virtual (in simple shear – Viscous flow between very close parallel plates – S brication – High speed unloaded journal bearings – Loaded journal be co-efficient of friction – The Sommer field diagram.	Shear stress variation earings – Reaction to	n Reyn orque o	olds I n the	Equat beari	ion ngs				
UNIT V	SURFACE ENGINEERING AND MATERIALS FOR B	EARINGS	9	0	0	9				
Surface modifications – Transformation Hardening, surface fusion – Thermo chemical processes – Surface coatings – Plating and anodizing – Fusion Processes – Vapour Phase processes – Materials for rolling Element bearings – Materials for fluid film bearings – Materials for marginally lubricated and dry bearings.										
		То	tal(45	L): 4	5 Pe	riods				
ГЕХТ ВО	OKS:									
1.	A. Harnoy. "Bearing Design in Machinery "Marcel Dekker Inc, New Y	ork, 2003.								

2. B.C. Majumdar ; A.H. Wheeler "Introduction to Tribology of Bearings" EFERENCES:

KEFEK	ENCES:
1	M. M. Khonsari & E. R. Booser, "Applied Tribology", John Willey &Sons, New York, 2001
2	E. P. Bowden and Tabor.D., "Friction and Lubrication ", Heinemann Educational Books Ltd., 1974.
3	A. Cameron, "Basic Lubrication theory", Longman, U.K., 1981.
4	M. J. Neale (Editor), "Tribology Handbook", Newnes. Butterworth-Heinemann, U.K., 1995.
E-REI	FERENCES:
1.	NPTEL Videos/Tutorials
L	

COURSE Upon co	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Familiarize the surface phenomena related to relative motion, the nature of friction, and mechanisms of wear.	Remember						
<i>CO2</i>	Analyze the various wear mechanism and fatigue wear of the engineering components	Analyze						
СОЗ	Familiarize the lubricants testing methods and types of lubrication	Remember						
<i>CO4</i>	Analyze the stress, co-efficient of friction and viscous flow in journal bearings	Analyze						
CO5	Analyze the surface engineering and materials for bearings	Analyze						

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	3	1	1	2	0	0	0	0	0	1	2	1
CO2	0	1	2	2	1	1	1	0	0	0	0	0	1	1	1
CO3	1	2	2	2	1	1	0	0	0	0	0	0	2	1	1
CO4	0	1	2	2	1	0	0	0	0	0	0	0	2	1	1
CO5	0	2	2	2	0	0	0	0	0	0	0	0	1	2	1
Avg	0.4	1.6	2.2	2.2	0.8	0.6	0.6	0.0	0.0	0.0	0.0	0.0	1.4	1.4	1.0
			3/	2/1 – ii	ndicate	s stren	gth of	correlat	ion (3	– high, 2	- mediur	n, 1- low)		

22MEPE46	5	METAL FORMING PROCESSES		SEMESTER VI									
PREREQ	UIS	ITES	CATEGORY	PE	Cr	edit	3						
l.Manufactu	ring	processes		L	Т	Р	ТН						
2.Strength of	f ma	iterials	PE	3	0	0	3						
COURSE (OBJ	IECTIVES:											
1. To fai Formi	mili ng	arize the students about principle, procedure and applications	of Bulk Metal For	ming a	and S	heet	Meta						
2. To Illu	2. To Illustrate capabilities and applications of metal forming processes.												
3. To and	To analyze effect of parameters influencing metal forming processes.												
4. Outlin	e to	oling and equipment required for important metal forming process	ses.										
5. Exami	ine e	effects of friction & lubrication and causes of common defects in r	netal forming.	T		T							
UNIT I	UNIT I FUNDAMENTALS OF METAL FORMING												
Classification Deformation and lubrica	on o on er nts.	of forming processes, mechanisms of metal forming: slab met nergy method and finite element method temperature of metal wor	hod, Upper and lo king, hot working, c	wer bo cold wo	ound orking	analy , frict	'sis, tion						
UNIT II]	ROLLING OF METALS		9	0	0	9						
Rolling pro theories of	oces cold	ses, forces and geometrical relationship in rolling, simplified a l and hot rolling, problems and defects in rolling, torque and powe	analysis, rolling loa r calculations, Prob	ad, roll lems.	ing v	ariab	les,						
UNIT III	F	FORGING		9	0	0	9						
Classification defects, and of various p bending, fo	on o d po pres rmin	of forging processes, forging of plate, forging of circular discs, of wder metallurgy forging. problems on flow stress, true strain and s tools and dies like piercing dies, blanking dies, compound dies ng and drawing dies.	open die and closed l forging load. Press and progressive bla	-die fo s tool d nking o	rging lesign lies, o	, forg : Des design	ging sign n of						
UNIT IV]	EXTRUSION		9	0	0	9						
Classifications seamless p drawing pro-	on, ipes oces	Hot Extrusion, Analysis of Extrusion process, defects in extru . Problems on extrusion load. Drawing: Drawing of tubes, roo s, analysis of wire, deep drawing and tube drawing. Problems on c	sion, extrusion of ls, and wires: Wire lraw force	tubes, e draw	produ ing d	iction ies, t	ı of ube						
UNIT V		SHEET METAL FORMING		9	0	0	9						
Forming m criteria, def in-process Cup Diagra	etho fect heat um, l	ods, Bending, stretch forming, spinning and Advanced techniques in formed parts. Advanced Metal forming processes: HERF, Elect treatment, and computer applications in metal forming. problem Maximum considering shear.	of Sheet Metal For ectromagnetic formi ns on Blanking for	rming, ng, res ce, Bla	Form idual nk di	ing li stres agran	mit ses, n in						
			Tot	al(45I	L) = 4	15 Pe	eriod						

1.	Surender Kumar, Technology of Metal Forming Processes, Prentice - Hall, Inc., 2008									
2.	Nagpal G.R. Metal forming processes, Khanna publishers, New Delhi, 2004									
REFERENCES:										
1	Serope Kalpakjian, Steven R Schmid, Manufacturing Process for Engineering Materials, 4th Edition, Pearson Education, 2003.									
2	Rao, P.N. Manufacturing Technology, TMH Ltd., 2003									
3	Edward M.Mielink, Metal working Science Engineering", McGraw Hill, Inc, 2000.									
4	Metal Handbook Vol.14, Forming and Forging, Metal Park, Ohio, USA, 1990									

COURSE Upon co	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Understand fundamentals of metal forming and stress curves.	Understand						
CO2	Know various process parameters and applied loads in sheet metal working.	Evaluate						
СОЗ	Brief various forging techniques and defects in forging.	Understand						
<i>CO4</i>	State the principles of rolling and stresses developed under rolling loads.	Understand						
<i>C05</i>	Analyze Extrusion and drawing processes and associated stresses developed.	Analyze						

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	1	0	0	0	0	0	0	1	1	0	0	1	0	2
CO2	1	2	0	2	0	0	0	0	0	1	0	0	1	1	2
CO3	0	1	2	0	0	2	0	0	0	1	0	0	1	1	2
CO4	1	1	0	1	0	0	0	0	0	1	0	0	1	1	2
CO5	1	3	0	1	1	0	2	0	0	0	0	1	1	1	2
Avg	0.6	1.6	0.4	0.8	0.2	0.4	0.4	0.0	0.2	0.8	0.0	0.2	1.0	0.8	2.0
			3/2	2/1 — iı	ndicate	s stren	gth of	correlat	tion (3	-high, 2	2- mediu	m, 1- low	7)		

22MEPE47	MICRO AND NANO MACHINING		SEN	AES	ГER	VI
PREREQUI	SITES CATEGOR	Y	PE	Cre	edit	3
1 Manufasturi	Horne (Wa		L	Т	Р	ТН
1.Manufacturii	ng process Hours/ wee	:к —	3	0	0	3
COURSE O	BJECTIVES:					
1. To give	awareness of different techniques used in micro and nano machining/manufacturing	5.				
2. To give	in-depth idea of the conventional techniques used in micro machining/manufacturin	ıg.				
3. To intro	oduce Non-conventional micro-nano manufacturing and finishing approaches.					
4. Tointro machin	duce Micro and Nanofabrication Techniques and other processing route ing/manufacturing.	s in	Mic	ro a	nd]	Nano
UNIT I	INTRODUCTION		9	0	0	9
Diamond To UNIT II	CONVENTIONAL PROCESSES: MICRO-TURNING, MICRO- DRILLING AND MICRO-MILLING		9	0	0	9
Introduction,	Micro-turning, Micro-drilling, Micro-milling, Product quality in micromachining N	Aicro-	grind	ing ar	nd Ul	tra-
UNIT III	NON-CONVENTIONAL PROCESSES: LASER MICROMACHININ	G	9	0	0	9
Introduction, Nano and Mi	Fundamentals of lasers, Laser microfabrication, Laser nanofabrication. Evaluation icromachining Destructive evaluation technologies, Non-destructive evaluation tech	of Sut nologi	osurfa ies	ce Da	amage	e in
UNIT IV	MICRO AND NANO FINISHING PROCESSES, MICRO JOINING		9	0	0	9
Need for Nat Float Polishi TIG, Applica	no finishing, Magnetic abrasive Finishing, Magnetorheological Finish, Elastic Emis ng, Ion Beam finishing. Micro Joining - Challenges, Micro Resistance welding, U ttions.	sion F Itraso	Finish nic w	ing, N eldin	/lagne g, Mi	etic cro
UNIT V	APPLICATIONS OF NANO AND MICROMACHINING IN INDUST	ſRY	9	0	0	9
Typical macl	nining methods, Applications in optical manufacturing, Semiconductor and electron	cs rel:	ated a	nnlia	ation	
				ppne	ations	5.

ТЕХТ В	OOKS:
1.	J. Paulo Davim, Mark J. JacksonNano and Micromachining,John Wiley & Sons, 2013 2 Mark.
2.	J. Jackson, Micro and Nano-manufacturing, Springer, 2006.
REFERI	ENCES:
1	Mark. J. Jackson, Micro-fabrication and Nano-manufacturing - Pulsed water drop micromachining CRC Press 2006.
2	NitaigourPremchandMahalik, Micro-manufacturing and Nanotechnology, 2006
3	V.K.Jain, Micro-manufacturing Processes, CRC Press, 2012
4	Yi Qin, Micro-manufacturing Engineering and Technology, William Andrew, 2015
5	Kapil Gupta, Micro and Precision Manufacturing, Springer, 2017

COUI Upon c	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
CO1	Identify different areas of micro and nano machining	Evaluate
CO2	Find the applications of all the areas in industries.	Evaluate

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	0	1	0	0	0	0	0	1	1	0	2	0	1
CO2	0	1	1	1	0	0	0	0	0	1	1	1	1	2	3
Avg	1	1	0.5	1	0		0	0	0	1	1	0.5	1.5	1	1.5
3/2/1 – indica	ates str	ength	of cor	elatior	$\frac{1}{1}(3-1)$	igh. 2	- medi	um. 1-	low)	•			•	1	•

PROFESSIONAL ELECTIVES – V

22MEPE51	2MEPE51 ANALYSIS AND SYNTHESIS OF MECHANISMS									
PREREQUIS	SITES	CATEGORY	PE	Cr	edit	3				
1.Kinematics of	Machinery		L	Т	Р	ТН				
2. Dynamics of	Machinery.	PE	3	0	0	3				
COURSE O	BJECTIVES:									
1. To Study	of kinematics of various mechanisms and kinematic synthesis of li	nkages.								
2. To Study	of various graphical constructions of acceleration analysis.									
3. To Study	Y Static and dynamic force analysis of linkages.									
4. To Study	Kinematic analysis and kinematic synthesis of spatial mechanisms									
5. To Study	about the spatial mechanisms and robotics					-				
UNIT I	UNIT I INTRODUCTION									
Grashoff's lav Slider crank, s jerk analysis.	v - Mechanical Advantage - Transmission Angle - Position Analysis six bar linkages - Analytical and Graphical methods for velocity and Plane complex mechanism	is - Vector Loop Eq acceleration analys	juation	s for	four l r link	on - oar, age				
UNIT II	9	0	0	9						
Type, Numbe Methods: Tw Precision pos Synthesis - Co	r and Dimensional Synthesis - Function Generation - Path Generation o Position, Three Position and Four Position synthesis of four ba- itions Over lay Method. Analytical Methods: Blotch's Synthesis ognate linkages - The Roberts - Chebyshev theorem.	tion and Motion Get r Mechanism, Slide - Freudestien's Metl	neratio r cranl hod - (n C k Mee Coupl	Graph chani ler cu	ical sm, irve				
UNIT III	PATH CURVATURE THEORY		9	0	0	9				
Fixed and mo Equation - Tl curvature - Ba	oving centrodes Hartmann's Construction - Inflection Points, Th ne collination axis and Bobiller's theorem - Conjugate points and Ill's Point.	e Inflection Circle - inverse motion - T	The H he Cu	Euler bic S	- Sav tation	ary ary				
UNIT IV	DYNAMICS OF MECHANISMS		9	0	0	9				
Static force and more	nalysis - Inertia force analysis - Combined static and inertia force A nent balancing of linkages	nalysis - Shaking fo	orce - I	ntrod	uctio	n to				
UNIT V	SPATIAL MECHANISMS AND ROBOTICS		9	0	0	9				
Introduction: Kinematic syn Robotic Mani Hartenberg Pa	Mobility of mechanisms - Description of spatial motions - Kin- nthesis of spatial mechanisms: position, velocity and acceleration ar pulators - Topological arrangements of robotic arms - Kinematic a arameters, Forward and inverse kinematics of robotic manipulators	ematic analysis of a nalysis. Eulerian Ang nalysis of spatial me	spatial gles - I echanis	mecl ntrod sm - I	nanisi uctioi Denav	m - n to vit -				
		Total (45L) =	= 45]	Perio	ods				
TEXT BOO	KS:									
1. Amit	abha Ghosh and Asok Kumar Mallik, "Theory of Mechanism and M	/achines", EWLP, D	Delhi, 1	999.						
2. Kenr	eth J, Waldron, Gary L. Kinzel, "Kinematics. Dynamics and Design	n of Machinerv". Jol	nn Wil	ey-so	ns, 20)16.				
DEFEDEN	YES.	, , , , , , , , , , , , , , , , ,		<u> </u>	.,					

1 Uicker, J.J., Pennock, G. R. and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2017.

2 Sandor G.N., and Erdman A.G., "Advanced Mechanism Design Analysis and Synthesis", Prentice Hall, 1984.

3	Robert L.Norton., "Design of Machinery", Tata McGraw Hill, 2012
4	Sandor G.N., Erdman, A. G, "Advanced mechanism design", Prentice Hall Inc, 1984
5	Suh C.H., Radcliff C.W, "Kinematics and mechanisms design", John Wiley &Sons., 1978.

COU Upon	JRSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Analysis the kinematics of mechanisms	Evaluate
<i>CO2</i>	Synthesis the kinematics of linkages	Evaluate
CO3	Acquire knowledge about the theory of path curvature	Understand
<i>CO4</i>	Learned the dynamics of mechanisms	Evaluate
<i>CO5</i>	Design the robotics arms and manipulators	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/P Os	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	0	0	1	1	0	0	1	0	2	2	1
CO2	2	2	2	2	0	0	1	1	0	0	1	0	2	2	1
CO3	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0
CO4	2	2	2	2	0	0	1	1	0	0	1	0	2	2	1
CO5	2	2	2	2	0	0	1	1	0	0	1	0	2	2	1
Avg	1.8	1.8	1.8	1.8	0	0	0.8	0.8	0	0	0.8	0	1.8	1.8	0.8
3/2/1 – indic	cates str	ength o	of corr	elation	(3 – h	igh, 2-	mediu	ım, 1-1	ow)	•	•	•		•	•

22MF	MEPE52 DESIGN OF JIGS, FIXTURES AND PRESS TOOLS SI								
PRE	REQU	ISITES	CATEGORY	PE	Cr	edit	3		
				L	Т	Р	ТН		
			Hours/Week	3	0	0	3		
COU	JRSE C	DBJECTIVES:							
1.	To unc	lerstand the functions and design principles of Jigs and fixtures							
2.									
3.									
4.	To kno	w about the importance of jigs bushings and drill jig							
5.	To kno	w about the design of fixtures							
UN	I TIN	BASICS OF JIGS AND FIXTURES		9	0	0	9		
of front designment	eedom. gn.	Essential features of Jigs and Fixtures- General Design Principles-	Design steps- Con		defect	ts in J	ligs		
UN		PRINCIPLES OF LOCATING AND CLAMPING DEVI	CES	9	U	U	9		
UN Jigs,	IT III Types (DESIGN OF JIGS of Jigs – Post, turnover, Channel, Latch, Box, Pot, Angular post	ins. jigs –Hydraulic ar	9 nd Pne	0 eumat	0 ic Jig	9 gs -		
Inde	xing Jigs	-Design and Development of Jigs and Fixtures for the given compo	nent.						
UN	IT IV	JIG BUSHINGS AND DRILL JIGS		9	0	0	9		
Jig H bush jig- p jig- p	Bushing: ing- scre plate dril post jig-	Materials for jig bushing - press fit bushing- Fixed renewable w bushing- miscellaneous type of drill bushings- bushing specificat jig- template drill jig- channel drill jig- turn over drill jig- angle pla indexing drill jig. Universal drill jig - design of template and leaf jig	bushing- slip renev ions. Drill Jigs: Ope te drill jig- closed b	vable en drill ox dril	bushi l jig p l jig-	ng- li late c leaf c	iner Irill Irill		
UN	NIT V	PRINCIPLE OF FIXTURE DESIGN		9	0	0	9		
Intro types milli fixtu weld	duction s of fixtung fixtun res- surf ing fixtu	- principles of fixture design- element of fixtures. Design considera rres. Design of turning fixtures- Boring fixtures- Planning Fixtures es with respect to cutter position - Assembly and Inspection Fixtur ace grinding and cylindrical grinding fixtures. Broaching fixtures- res. Modular Fixturing systems - Design and Development of Fixtur	tion of locators and s - milling fixtures, es – Special Purpos nternal and externa es for given compor	clamp Metho e Fixtu l broac nents.	os for od of ures. ching	fixtur locat Grind fixtur	res- ing ing res-		
			Total (45L) :	= 45	Perio	ods		
ТЕХ	T BOC	DKS:							
1.	De	sign of Jigs, Fixtures and Press tools, C.Elanchezhian, T.Sunderselva	n, B.Vijayaramnath	, Eswa	r Pres	s, 20	05.		
2.	Na	gpal, G R, Tool Engineering & Design, 2000, Khanna Publishers.							
REF	EREN	CES:							
1	Jos	hi, P.H. Jigs & Fixtures, 2010, 3rd Edition, McGraw Hill							

- 2 Jig and fixture design- 5th edition by Hoffman
- 3 Venkataraman, K, Design of Jigs, Fixtures & Press Tools, 2015, Wiley & Sons

4	Mehta, N K, Metal Cutting and Design of Cutting Tools, Jigs & Fixtures, 2015, McGraw
5	Design Data, PSG Tech, Coimbatore, 2003.

COU Upon	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Understand the basics of jigs and fixtures and its designing principles	Understand						
<i>CO2</i>	Identify and design the various locating and clamping devices	Evaluate						
СОЗ	Design the jigs for various components.	Create						
<i>CO4</i>	Identify and design the jig bushes and drill jigs.	Evaluate						
<i>CO5</i>	Design the fixtures for various components.	Create						

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	1	0	2	1	1	0	1	0	2	2	1
CO2	1	2	2	1	1	0	1	1	1	0	1	0	2	2	1
CO3	1	2	2	2	2	0	1	1	1	0	1	0	2	2	1
CO4	1	2	1	1	3	0	2	1	1	0	1	0	2	2	1
CO5	1	2	1	1	3	0	2	1	1	0	1	0	2	2	1
Avg	1	2	1.4	1.2	2.0	0	1.6	1	1	0	1	0	2	2	1
3/2/1 – indic	ates st	rength	of cor	relatio	n (3 –	high, 2	2- med	ium, 1-	low)						

22M	EPE53	HEAT TRANSFER PROBLEMS IN ELECTRON INSTRUMENTATION	IICS AND	SEN	SEMESTER VIII							
PREF	REQUIS	ITES	CATEGORY	PE	Cr	edit	3					
1.Fund	amental	knowledge in various modes of heat transfer	Houng/Wools	L	Т	Р	TH					
2.Basi	c concep	ts of electronics and instrumentation	Hours/ week	3	0	0	3					
COU	COURSE OBJECTIVES: The main learning objective of this course is to prepare the students for											
1. Understanding the basic principles of heat transfer in electronic systems												
2.	2. Learning to solve conduction heat transfer problems in electronic equipment											
3.	Studyin	ng about the convection heat transfer phenomena in electronic appli	cations									
4.	Acquir	ing the knowledge in the radiation heat transfer in electronic instrur	nents									
5.	Unders	tanding the principles of thermal design of electronic equipment										
UN	ITI	INTRODUCTION TO ELECTRONICS SYSTEMS AND TRANSFER	HEAT	9	0	0	9					
Basic Syste techn	es of Ele ems, The hology.	ectronic and instrumentations, basics of thermodynamics and he rmal management in electronic devices - Packaging Trends. Ele	eat transfer, Compo ectronic packaging	onents and in	of E	lectro	onic tion					
UN	UNIT II CONDUCTION HEAT TRANSFER IN ELECTRONIC EQUIPMENT											
Cond Optin Ther	luction— nization, mal Sprea	Transient, Lumped Capacitance Method, Conduction in Ext Fin Surface Efficiency, Thermal Contact Resistance in Electronic ading.	ended Surfaces. F Equipment, Discre	Fin Ef	fficier at Sou	icy, irces	Fin and					
UNI	TIII	CONVECTION HEAT TRANSFER IN ELECTRONIC EQUIPMENT	2	9	0	0	9					
Conv Coef	vection H ficient. L ced or Dr	eat Transfer in Electronic Equipment. Natural Convection in Electronic Equid Cooling Systems, Coolant Selection, Pressure Drop and Pu aft Cooling, Selection of Fans and Blowers.	ectronic Devices, O mp Requirements.	verall Air Co	Heat oling	Trans Syst	sfer em,					
UN	T IV	RADIATION HEAT TRANSFER IN ELECTRONIC H	EQUIPMENT	9	0	0	9					
The Emit Phase	Electrom tance Fac e Change	hagnetic Spectrum, Radiation Equations, Stefan-Boltzmann La etor, Emittance from Extended Surface, Absorptance, Reflectance, S . Combined Modes of Heat Transfer for Electronic Equipment, Rad	w, Surface Charac Specular Reflectance liation and Convection	teristic , Heat on in F	cs, E Tran Paralle	mittar sfer v el.	nce, vith					
UN	UNIT V THERMAL ANALYSIS OF ELECTRONIC EQUIPMENT											
Anal Stiffr Heat Tech	ysis of Thess on V Sinks, I niques fo	hermal Failure of Electronic Components. Analysis of Thermal Str Vire Stresses, Vibration Fatigue in Lead Wires and Solder Joints. E Heat Pipes, Heat Pipes in Electronics Cooling, Thermoelectric r High Density Electronics.	esses and Strain, Eff Electronics Cooling I Cooling, Immersio	ect of Methor n Coc	PCB ds in oling,	Bend Indus Cool	ling try. ling					
			Tota	l (45I	L) = 4	l5 Pe	riods					
техт	BOOK	(S:										
1	Heat	transfer Dr. A.S. Padalkar. NiraliPrakashan. Pune 2012										
2	Heat	& mass transfer, D.S. Kumar, S.K. Kataria& Sons 2010										

REFERENCES:

1	Heat transfer B.L. Singhal, Techmax, publication, Pune 2010
2	Heat & mass transfer, Mills and Ganesan, Pearson Publication, New Delhi 2010

E-REFERENCES:

1 https://nptel.ac.in/courses

COUI Upon	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
CO1	Apply the concepts of heat transfer laws and principles in electronic systems	Apply
CO2	Solve conduction heat transfer problems in various electronic instruments	Evaluate
CO3	Analyze the real time convection heat transfer problems of electronic equipment	Analyze
CO4	Solve the problems of combined effect of heat transfer form electronic equipment	Apply
CO5	Determine the thermal stresses and strains in various real time electronic systems	Evaluate

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	0	1	0	0	2	0	0	0	0	1	1	1
CO2	3	2	0	0	0	0	0	1	0	0	0	0	2	1	1
CO3	3	3	0	0	1	0	0	2	0	0	0	0	3	3	2
CO4	3	2	0	0	2	0	0	1	0	0	0	0	3	1	1
CO5	0	0	1	1	0	1	1	0	0	0	0	1	0	0	0
Avg	2.2	1.8	0.4	0.2	0.8	0.2	0.2	1.2	0	0	0	0.2	1.8	1.2	1
3/2/1 - indi	icates s	strengt	h of co	orrelati	on (3 -	- high,	2- me	dium, 1	- low)						

22M	22MEPE54 NANO TECHNOLOGY											
PRER	EQUIS	SITES	CATEGORY	PE	Cr	edit	3					
			Hours/Week	L	Т	Р	TH					
				3	0	0	3					
COU	COURSE OBJECTIVES:											
1.	1. To motivate the students to understand the evolution of nanomaterials in the scientific era.											
2.	2. To make them to understand different processing methods.											
3.	3. To make them to understand properties of nanomaterials for the future engineering applications											
UN	ITI	INTRODUCTION		9	0	0	9					
Nano nanos invol	scale Sc structure ved and	ience and Technology- Implications for Physics, Chemistry, Biol d materials- nano particles- quantum dots, nanowires-ultra-thinfilr effect on properties: Mechanical, Electronic, Optical, Magnetic and	ogy and Engineerin nsmultilayered mate Thermal properties.	ng Clas erials. 1	ssific: Lengt	ations th Sca	s of ales					
UN	IT II	GENERAL METHODS OF PREPARATION		9	0	0	9					
Botto assen MON	om-up Sy nbly, Va 1BE.	nthesis-Top-down Approach: Co-Precipitation, Ultrasonication, Me pour phase deposition, MOCVD, Sputtering, Evaporation, Molecula	echanical Milling, C ar Beam Epitaxy, At	olloida omic I	ıl rou Layer	tes, S Epita	elf- xy,					
UNI	TII	NANOMATERIALS		9	0	0	9					
and I CVD AgTi and a	Nanoforms of Carbon - Buckminster fullerene- graphene and carbon nanotube, Single wall carbon Nanotubes (SWCNT) and Multi wall carbon nanotubes (MWCNT)- methods of synthesis(arc-growth, laser ablation, CVD routes, Plasma CVD), structure-property Relationships applications- Nanometal oxides-ZnO, TiO ₂ ,MgO, ZrO ₂ , NiO, nanoalumina, CaO, AgTiO ₂ , Ferrites, Nanoclays- functionalization and applications-Quantum wires, Quantum dots-preparation, properties and applications											
UNI		CHARACTERIZATION TECHNIQUES		9	0	0	9					
X-ray Micro Nano	 diffractor oscopy indentation 	ction technique, Scanning Electron Microscopy - environmen ncluding high-resolution imaging, Surface Analysis techniques- Al tion.	tal techniques, Tra FM, SPM, STM, SN	ansmiss IOM, 1	sion ESCA	Elect A, SIN	ron AS-					
UN	IT V	APPLICATIONS		9	0	0	9					
Nano nanoj Elect for ba	InfoTeo probes in ro Mech acterial i	ch: Information storage- Nano computer, molecular switch, super n medical diagnostics and biotechnology, Nano medicines, Targe anical Systems (MEMS), Nano Electro Mechanical Systems (NEM nhibition, Nanoparticles for sun barrier products - In Photostat, prin	chip, nanocrystal, ted drug delivery, S)- Nano sensors, na ting, solar cell, batte	Nanob Bioima ano cry ry.	iotec aging /stalli	hnolo - Mi ine sil	egy: Icro Iver					
			Tota	l (45L	<i>L</i>) = 4	l5 Pe	riods					
L												
ТЕХТ	BOOF	ΧS:										
1.	Ca Pul	rl C. Koch (ed.), " Nanostructured Materials", Processing, Prope blications, Norwich, New York, U.S.A.	rties and Potential	Applic	ation	s, No	yes					
2.	2. A.S. Edelstein and R.C. Cammearata, eds., "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Publishing, Bristol and Philadelphia, 1996.											
REFE	RENC	ES:										
1	A	Fextbook of Nanoscience and Nanotechnology – T.Pradeep, Tata M	cGraw Hill edition.									
2	G	Fimp, "Nanotechnology", AIP press/Springer, 1999.										
3	Ak Sin	hlesh Lakhtakia, "The Hand Book of Nano Technology, Nanor nulations". Prentice-Hall of India (P) Ltd, New Delhi, 2007.	neter Structure, Th	eory, l	Mode	ling	and					
4	Ma	rk Ratner and Daniel Ratner, "Nano Technology", Pearson Education	on, New Delhi, 2003	3.								
5	Ch	arles P. Poole Jr., Frank J. Ownes, 'Introduction to Nanotechnology	", Wiley Interscienc	e, 2003	3							

COUI Upon	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Will familiarize about the science of nanomaterials	Remember					
<i>CO2</i>	Will demonstrate the preparation of nanomaterials	Understand					
СОЗ	Use of difficult characterization techniques to study the fundamental properties.	Apply					
<i>CO4</i>	To know the various industrial applications using nanomaterials.	Understand					
<i>C05</i>	Will familiarize about the science of nanomaterials	Remember					

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	0	2	0	1	0	0	1	0	2	2	1
CO2	2	1	1	1	0	0	1	0	0	0	1	0	2	1	0
CO3	2	1	1	1	0	0	1	0	0	0	1	0	2	1	0
CO4	2	1	1	1	0	1	1	1	0	0	1	0	2	1	0
CO5	2	2	1	1	0	1	1	1	0	0	1	0	2	2	1
Avg	2.0	1.4	1.2	1.0	0.0	0.8	0.8	0.6	0.0	0.0	5.0	0.0	2.0	1.4	0.4
3/2/1 - indic	ates st	rength	of cor	relatio	n (3 –	high, 2	2- med	ium, 1-	low)						
22MI	EPE55	NUCLEAR ENGINEERING		SEN	VIII										
-----------------	------------------------	---	-------------------------	----------	---------	--------	-----								
PRER	EQUIS	SITES	CATEGORY	PE	cre	dit	3								
			TT (TT)	L	Т	Р	TH								
			Hours/Week	3	0	0	3								
COU	RSE O	BJECTIVES:				I									
1.	To tead	th the fundamental physics about nuclear processes and a heat transf	er technique from n	uclear	energ	y									
2.	To intr	oduce the nuclear fuels, its properties and extraction techniques of n	uclear fuels.												
3.	To tead	the characteristics of spent fuel and reprocessing techniques.													
4.	To tead	h the design, construction and heat transfer in nuclear reactor.													
5.	To tead	th the safety aspects used in nuclear reactor and disposal of nuclear	waste.												
UNI	ГΙ	NUCLEAR REACTIONS		9	0	0	9								
Mech	anism o	f Nuclear Fission - Nuclides - Radioactivity – Decay Chains - Neutr	on Reactions - The	Fission	Proc	ess									
UNI	TI	REACTOR MATERIALS		9	0	0	9								
Chara Other	cteristic Fuels li	s of Nuclear Fuels - Uranium - Production and Purification of Us ke Zirconium, Thorium - Beryllium.	ranium - Conversio	n to U	F4 an	d UF	6 -								
UNI	T III	REPROCESSING		9	0	0	9								
Nucle Equip	ear Fuel oment.	Cycles - Spent Fuel Characteristics - Role of Solvent Extractio	n in Reprocessing	- Solve	ent E	ktract	ion								
UNI	T IV	NUCLEAR REACTOR		9	0	0	9								
Nucle in nuc	ear react clear rea	ors: types of fast breeding reactors-design and construction of fast b ctors-reactor shielding. Fusion reactors.	reeding reactors-hea	at trans	fer teo	chniq	ues								
UNI	T V	SAFETY AND DISPOSAL		9	0	0	9								
Safety waste	y and dis -types o	sposal: Nuclear plant safety-safety systems-changes and consequence f waste and its disposal-radiation hazards and their prevention-wear	ces of accident-crite	ria for	safety	-nucl	ear								
			Total	(45L)	= 451	Perio	ods								

TEXT	BOOKS:						
1.	Thomas J.Cannoly, "Fundamentals of nuclear Engineering" John Wiley 1978.						
2.	Glasstone, S and Sesonske, A, "Nuclear Reactor Engineering", 3rd Edition, Von Nostrand, 1981.						
3.	Lamarsh, J.R., "Introduction to Nuclear Reactor Theory", Wesley, 1966.						
REFER	REFERENCES:						
1	Winterton, R.H.S., "Thermal Design of Nuclear Reactors", Pergamon Press, 1981.						
2	Jelly N A, "Nuclear Engineering", Cambridge University Press, 2005.						
3	Duderstadt, J.J and Hamiition, L.J, "Nuclear Reactor Analysis", John Wiley, 1976.						
4	Walter, A.E and Reynolds, A.B, "Fast Breeder Reactor", Pergamon Press, 1981.						
E-REFE	RENCES:						
1	http://nptel.ac.in/courses/112101007/						

COU Upon	IRSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped		
C01	Understand the fundamental knowledge about nuclear reactions	Understand		
<i>CO2</i>	Understand the various nuclear fuels and its properties.	Understand		
СОЗ	Explain the nuclear fuel cycles and spent fuel characteristics.	Analyze		
<i>CO4</i>	Understand the design and heat transfer in nuclear reactor	Understand		
<i>CO</i> 5	Explain the safe disposal of nuclear wastes.	Apply		

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	1	1	1	0	0	0	0	0	1	1	1
CO2	1	1	2	1	2	1	2	0	0	0	0	0	2	3	3
CO3	1	1	1	1	1	1	1	0	0	0	0	0	1	2	1
CO4	3	1	1	1	1	2	1	0	0	0	0	0	3	1	1
CO5	1	1	2	1	1	1	1	0	0	0	0	0	1	3	1
Avg	1.6	1.2	1.6	1.0	1.2	1.6	1.6	0.0	0.0	0.0	0.0	0.0	1.6	2.0	1.4
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEPE56	YE56 THERMAL TURBO MACHINES SEMESTE												
PREREQUI	SITES	CATEGORY	PE	Cr	edit	3							
		Hound	L	Т	Р	TH							
		Hours/ week	3	0	0	3							
COURSE O	BJECTIVES:												
1. To und compor	erstand the various systems, principles, operations and application nents.	s of different types	of tur	bo ma	achine	ery							
UNIT I	INTRODUCTION TO TURBO MACHINES		9	0	0	9							
Turbines, Pumps, Compressors, Fans and Blowers – Stages of Turbo machines – Energy transfer between fluid and – Stage velocity triangles Thermal Turbo machines – Classification – General energy equation – Modified to machines – compression and expansion process – Velocity triangles – Work – T-S and H-S diagram, Total – to – and Total – to – Static efficiencies. Dimensional analysis – Non dimensional parameters of compressible flow machines – Similarity laws, applications and limitations.													
UNIT II	CENTRIFUGAL FANS AND COMPRESSOR		9	0	0	9							
Definition, sel impeller blade measures. Cer rise – Stage ef	lection and classifications –Types of blading design-velocity triangles –Design parameter- Volute and Diffusers – Efficiencies and Los ntrifugal Compressors: - Constructional details – Stage velocity trificiency – Degree of reaction – Slip factor – H-S diagram – Efficience	es - Stage Paramete sses – Fan noises – G iangles – Stage wo ncies – Performance	rs – Fle Causes ork – S charao	ow ar and Stage cterist	alysis remed press ics.	s in dial sure							
UNIT III	AXIAL FANS AND COMPRESSOR		9	0	0	9							
Definition and Cascade tunne Compressors: pressure rise Stalling – Perf	Definition and classifications – Stage parameters – Types of fan stages-performance characteristics. Cascade of blades – Cascade tunnel - Blade Geometry-Cascade Variables-Energy transfer and loss in terms of lift and drag - Axial Flow Compressors: definition and classifications – Constructional details – Stage velocity triangles – Stage work – Stage pressure rise – H-S diagram – Stage efficiencies and losses- Degree of reaction – Radial Equilibrium-Surging and Stalling – Performance characteristics												
UNIT IV	AXIAL FLOW TURBINES		9	0	0	9							
Construction of stage – Effect	details –90 ⁰ IFR turbine- Stage work – Stage Velocity triangles – Store of degree of reaction – H-S diagram – Efficiencies and Losses –Per	tage pressure rise – 1 formance characteri	Impuls stics.	e and	react	tion							
UNIT V	RADIAL FLOW TURBINES AND WIND TURBINES		9	0	0	9							
Constructiona characteristics Power develop	l details — Stage velocity triangles – H-S diagram – Stage s. Wind turbines: definition and classifications – Constructional ped – Axial thrust – Efficiency.	efficiencies and le details –Horizontal	osses axis	–Perf wind	orma turbi	nce ne-							
		Total	(45L)	= 45	Perio	ods							
TEXT BOO	KS:												
1. Ya	hya, S.M., "Turbines, Compressors and Fans", Tata McGraw Hill F	Publishing Company	, 1996	•									
2. Di	xon S.L, "Fluid Mechanics, Thermodynamics of Turbo Machines",	2nd Edition, Pergan	10n pre	ess, 19	990.								
3. Kao Eas	dambi V and Manohar Prasad, "An Introduction to Energy Conversitern India Ltd, 1977.	ion - Vol. III Turbo	Machi	nes",	Wiley	y							
REFERENC	CES:												
1 Bru	ineck, Fans, Pergamom Press, 1973.												
2 Ear	l Logan, Jr., Hand book of Turbomachinery, Marcel Dekker Inc., 19	992.											
3 She	epherd, D.H., Principles of Turbomachinery, Macmillan, 1969.												
4 Ste	panpff, A.J., Blowers and Pumps, John Wiley and Sons Inc. 1965.												
5 Gai	nesan, V., Gas Turbines, Tata McGraw Hill Pub. Co., 1999.												
6 R	angwala A S, "Structural Dynamics of Turbo-Machines", New Age	International,2005.											

COU Upon	JRSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the Basic Concept of Compressors, Turbines, Fans and Blowers	Understand
<i>CO2</i>	Analyze the velocity triangles of Centrifugal fans and Compressors.	Analyze
СОЗ	Analyze the construction details and performance of axial fans and compressor.	Analyze
<i>CO4</i>	Analyze the design variations of axial flow turbines	Analyze
<i>CO5</i>	Understand the construction features and performance analysis of radial flow turbine and wind turbine	Understand

COURSE A	ARTI	CULA	TIO	N MA	TRIX	K									
			1	1			1		1						1
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	1	3	1	1	0	0	0	0	0	1	2	2
CO2	1	3	1	1	2	1	1	0	0	0	0	0	1	1	3
CO3	2	1	3	1	1	2	1	0	0	0	0	0	1	1	2
CO4	2	1	1	1	3	1	1	0	0	0	0	0	1	1	2
CO5	2	1	1	3	1	2	1	0	0	0	0	0	2	3	1
Avg	1.6	1.6	1.4	1.4	2.0	1.4	1.0	0.0	0.0	0.0	0.0	0.0	1.2	1.6	2.0
			3/2/1	– indio	cates s	trength	n of co	rrelation	n (3 – 1	nigh, 2- 1	nedium,	1- low)			

22MEPE57 TOTAL QUALITY MANAGEMENT SEMESTE										
PRE	REQU	ISITES	CATEGORY	PE	Cr	edit	3			
			Hound	L	Т	Р	TH			
			Hours/ week	3	0	0	3			
COU	RSE O	3JECTIVES:								
1.	Teach and B	the need for quality, its evolution, basic concepts, contribution of c enefits of TQM.	quality gurus, TQM	framev	vork,	Barr	iers			
2.	Expla	n the TQM Principles for application.								
3.	Define	e the basics of Six Sigma and apply Traditional tools, New tools, Ber	nchmarking and FM	EA.						
4.	Descr and B	be Taguchi's Quality Loss Function, Performance Measures and a PR.	pply Techniques lik	e QFD), TP	M, C	OQ			
5.	Illustr	ate and apply QMS and EMS in any organization.								
UNI	TI	9	0	0	9					
Defin Basio mana imple	nition of c concep agement ementati	Quality - Dimensions of Quality - Quality planning - Quality costs ts of total quality management (TQM) - Historical review - Principl - Quality council, Quality statements - Strategic planning - D on	s, Analysis techniqu es of TQM - Leader Deming philosophy	es for ship - - Bari	qualit Role riers	ty cos of ser to T(sts - nior QM			
UNI	TI	TQM PRINCIPLES		9	0	0	9			
Custo Emp Cont selec	omer sa loyee in inuous p ction, Su	tisfaction - Customer perception of quality, Customer complaints avolvement - Motivation, Empowerment, Teams, Recognition process improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen - S oplier rating, Relationship development - Performance measures, Ba	s, Service quality, (and reward, Perfo Supplier Partnership sic concepts, Strateg	Custom ormance o, Soure gy	ner R e apj cing,	etenti praisa Supp	ion, 11 - olier			
UNI	TIII	STATISTICAL PROCESS CONTROL (SPC)		9	0	0	9			
The samp Mana	seven to ble, Norr agement	ools of quality, Statistical fundamentals – Measures of central te nal curve - Control charts for variables and attributes, Process capa tools.	endency and dispers bility - Concept of s	sion, P six sign	opula na, ne	tion ew se	and ven			
UNI	TIV	TQM TOOLS		9	0	0	9			
Benc quali FME	chmarkir ity, Bene EA – Stag	g – Reasons to benchmark, Benchmarking process, Quality function fits - Taguchi quality loss function - Total productive maintenanc ges of FMEA.	n deployment (QFD e (TPM) concept, I) proce mprove	ess – emen	House t need	e of ds -			
UNI	T V	QUALITY MANAGEMENT SYSTEMS		9	0	0	9			
Need Impl	1 for ISC ementati) 9000 and other quality systems, benefits of ISO registration, ISC on of quality system, Documentation, Quality auditing, AS 9100,TS	9001:2008 quality 16949:2002 and TI	systen 9000	n – E	Eleme	nts,			
			Tota	l (45L	.) =4	5 Pei	riods			
TEXT	r BOO	KS:								
1.	. Da . Ra Re	le H.Besterfiled, Carol B.Michna,Glen H. Bester field, shmiUrdhwareshe, "Total Quality Management", Pearson Educati print, Sixth Impression,2013.	MaryB.Sacre,Heman on Asia, Revised T	tUrdhv Third E	wares	he n, Inc	and lian			
2.	. Fe	igenbaum.A.V. "Total Quality Management", McGraw Hill, 1991.								
REF	FEREN	CES:								
1	Jo	el.E. Ross, "Total Quality Management – Text and Cases",Routledg	e.,2017.							
2	Ki	ran.D.R, "Total Quality Management: Key concepts and case studie	s, Butterworth – Hei	ineman	n Ltc	l, 201	6.			
3	Oa	Oakland, J.S. "TQM – Text with Cases", Butterworth – Heinemann Ltd., Oxford, Third Edition, 2003.								

4	Suganthi, L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006								
5	Narayana V and Sreenivasan, N.S, "Quality Management – Concepts and Tasks", New Age International, 1996.								
E-REFERENCES:									
1	https://www.oreilly.com/library/view/total-quality-management/9780815330486/xhtml/Reference1.xhtml								
2	https://www.sanfoundry.com/best-reference-books-total-quality-management/								
3	https://www.routledge.com/Total-Quality-Management-TQM-Principles-Methods-and-Applications/Luthra-Garg-Agarwal-Mangla/p/book/9780367512835								

COUF Upon	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>C01</i>	Ability to apply TQM concepts in a selected enterprise.	Apply
<i>CO2</i>	Ability to apply TQM principles in a selected enterprise.	Apply
СОЗ	Ability to understand Six Sigma and apply Traditional tools, new tools, Benchmarking and FMEA.	Understand
<i>CO4</i>	Ability to understand Taguchi's Quality Loss Function, Performance Measures and apply QFD, TPM, COQ and BPR.	Understand
<i>CO5</i>	Ability to apply QMS and EMS in any organization.	Apply

COURSE .	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	0	0	2	0	1	0	2	0	0	2	1	2	1
CO2	1	2	0	0	0	0	0	0	2	0	0	2	0	0	0
CO3	1	2	2	0	1	0	0	1	0	0	0	2	1	0	1
CO4	1	2	0	0	2	3	0	2	0	3	0	2	2	2	1
CO5	1	2	2	0	2	2	1	2	2	3	0	2	2	2	1
Avg	1	2.2	0.8	0	1.4	1	0.4	1	1.2	1.2	0	2	1.2	1.2	0.8
		3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)													

PROFESSIONAL ELECTIVES – VI

22M	SEMESTER VII								
PREF	REQUIS	ITES	CATEGORY	PE	Cro	edit	С		
				L	Т	Р	ТН		
			Hours/Week	3	0	0	3		
COU	RSE OB	JECTIVES:		1					
1.	Descrit	be tool design methods and punch and die manufacturing techniques							
2.	Select	naterial for cutting tools and gages; classify various cutting tools an	d gages and identif	y their	nome	nclatı	ıre		
3.	Descrit	be the principles of clamping, drill jigs and computer aided jig design	n						
4.	Design	fixtures for milling, boring, lathe, grinding, welding; identify fixture	es and cutting tools	for NC	mac	hine t	cools		
5.	Explain	the principles of dies and moulds design							
UNIT	Ί	DESIGN OF CUTTING TOOLS		9	0	0	9		
Tool	materials	, design of single point cutting tool, form tool, drill, reamer, broach	& plain milling cut	ter.			•		
UNIT	II	METAL CUTTING		9	0	0	9		
Theo appli	ory of me cations –	tal cutting – design of tool holders for single point tools – Boring economics of machining.	bars – selection of	tools	for m	achin	ing		
UNIT	' III	DESIGN OF FIXTURES		9	0	0	9		
Stand clam fixtu	dard worl ps – desig res and de	c holding devices – principles of location and clamping – clamping gn & sketching of milling fixtures for simple components – Turning esign of gauges.	g methods and elen , Grinding, Weldin	nents – g fixtur	quicl es. In	c- act spect	ing ion		
UNIT	T IV	DESIGN OF DRILL JIGS		9	0	0	9		
Drill comp	bushings ponents.	– types of jigs: Plate, Leaf, Turn over & Box Jigs – design & sket	ching of drill jigs f	for mac	hinin	g sim	ple		
UNIT	V	PRESS TOOLS		9	0	0	9		
Powe – Pro draw Bend	er presses ogressive ing force ling dies	 die cutting operations – centre of pressure – scrap strip lay out fe & Compound dies – die design for simple components. Drawing di – blank holders & blank holding pressure – design & sketching of & Combination tools. 	or blanking – press es – blank develop drawing dies for s	tonnag ment – simple	e calc estin comp	culation nation onent	ons 1 of 1s –		

Total (45L) = 45 Periods

ТЕХТ В	OOKS:					
1.	Cyril Donaldson, Lecain and Goold: Tool Design – Tata McGraw Hill publications					
2.	A Bhattacharyya: Metal Cutting – Theory and Practice – Central Book Agency Kolkata					
REFERI	ENCES:					
1	ASTME: Fundamentals of Tool Design – Prentice Hall					
2	F W Wilson: Hand Book of Fixture Design - McGraw Hill publications.					
3	Edward G Hoffman, "Jigs and Fixture Design", Thomson – Delmar Learning, Singapore 2004.					
4	Joshi P H, "Jigs and Fixtures", Tata McGraw Hill Publishing Company Limited, New Delhi 2004.					
E-REF	E-REFERENCES:					
1.	https://lecturenotes.in/subject/150/production-design-and-production-tooling-PDPT					

COUR Upon	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Identify the various cutting tools for different machining processes.	Evaluate						
<i>CO2</i>	Select suitable tools for metal machining	Apply						
СОЗ	Identify suitable fixtures for various components.	Apply						
<i>CO4</i>	Ability to design jigs for machining components.	Create						
<i>C05</i>	Design jigs, fixtures and press tools	Create						

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	0	0	0	0	0	0	0	0	0	0	1	1	0
CO2	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0
CO3	0	1	2	0	0	0	0	0	0	0	0	0	1	1	0
CO4	1	2	3	0	0	0	0	0	0	0	0	0	1	2	0
CO5	1	1	1	3	0	0	0	0	0	0	0	0	0	0	0
Avg	0.8	1.2	1	0.6	0	0	0	0	0	0	0	0	0.8	1	0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

2ME	ULATION	SEMESTER VIII								
PRE	REQU	ISITES	CATEGORY	PE	Cr	edit	3			
			TT /TT / I -	L	Т	Р	TI			
			Hours/ week	3	0	0	3			
του	J RSE (DBJECTIVES:								
1.	Outlin	e the fundamentals of system simulation								
2.	Identi	fy the different types of techniques to generate Random numbers								
3.	Outlin	e random number and variate generation.								
4.	The al	ove the performanc	e							
5.	Outlin	e the fundamentals of system simulation								
UN	I TI	INTRODUCTION		9	0	0	9			
Statio used Type	c physic in mode s of syst	al models, dynamic physical models, static mathematical models, dynamic physical models, static mathematical models, dynamic System studies, a corporate model: Environment segment, proem study.	ynamic mathematic duction segment, n	al mod	lels, p nent	orinci segm	ples ent.			
UN	IT II	MATHEMATICAL AND STATISTICAL MODELS		9	0	0	9			
Prob	ability c	oncepts, Queuing Models, Methods for generating random variables	and Validation of r	random numbers.						
UNI	IT III	DESIGN OF SIMULATION EXPERIMENTS		9	0	0	9			
Probl cond	lem form ition, run	nulation, data collection and reduction, time flow mechanism, k 1 size, experimental design consideration, output analysis and interpr	ey variables, logic retation validation.	flow	chart,	, star	ting			
UNI	IT IV	SIMULATION LANGUAGES		9	0	0	9			
Input non-s Verif mode	t modeli stationar fication els, calib	ng: data collection, identifying the distribution with data, parameter y Poisson process, selecting input models without data, multi- and validation of simulation models, model building, verification a ration and validation of models.	estimation, goodne variate and time s nd validation, verif	ess of fi series i ication	t test input of si	, fittii moc mula	ng a lels. tion			
UN	IT V	CASE STUDIES		9	0	0	9			
Deve syste	elopment ms, Inve	t of simulation models using simulation language studied for systems, maintenance and replacement systems and Investment	tems like queuing nt analysis.	system	ns, Pr	oduc	tion			
			Total	(45L)	= 45	Peri	ods			
ГЕХ	T BOC	OKS:								
1.	G	eoffrey Gordon, "System Simulation", 2nd Edition, Prentice Hall, In	dia, 2002.							
2.	N	arsingh Deo, "System Simulation with Digital Computer, "Prentice I	Hall, India, 2001.							
REF	EREN	CES:								
1	Je Ed	rry Banks and John S.Carson, Barry L. Nelson, David M.Nicol, "I lition, Prentice Hall, India, 2002.	Discrete Event Syst	tem Sin	nulati	ion",	3rd			
2	Т	Thomas J. Schriber, Simulation using GPSS, John Wiley, 1991.								
3	SI	Shannon, R.E. Systems simulation, The art and science, Prentice Hall, 1975.								

4	Averill M. Law and W. David Kelton, "Simulation modeling and analysis", McGraw-HiII, Inc, 1991.
---	---

E-REFERENCES: 1. https://www.cs.nmt.edu/~jholten/ModelingAndSimulation/lectures.html 2. https://lecturenotes.in/subject/383/simulation-and-modelling-sm 3. https://backbencher.club/system-modelling-and-simulation/

COUR: Upon co	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Modeling any given system with rationality.	Create					
<i>CO2</i>	Predicting the behavior through fine grained analysis.	Create					
СОЗ	Simulate the life cycle analysis, and drives over issues like model verification and validation.	Evaluate					
<i>CO4</i>	Design simulation models for various case studies like inventory, traffic flow networks, etc.,	Design					
<i>C05</i>	Practice on simulation tools and impart knowledge on building simulation systems.	Apply					

COURSE A	ARTIC	CULA	TIO	N MA	TRIX	2									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	0	0	0	0	0	0	0	0	1	1	0
CO2	1	2	1	0	0	0	0	0	0	0	0	0	1	1	0
CO3	2	1	1	1	0	0	0	0	0	0	0	0	1	1	0
CO4	2	2	1	0	0	0	0	0	0	0	0	0	0	1	0
CO5	1	1	1	0	3	0	0	0	0	0	0	0	1	2	0
Avg	1.6	1.4	1	0.4	0.6	0	0	0	0	0	0	0	0.8	1.2	0
			3/2	2/1 - in	dicate	s stren	gth of	correlat	ion (3	– high, 2	2- mediu	m, 1- lov	v)		

22M	EPE63	ENTREPRENEURSHIP DEVELOPMEN	Т	SEN	1EST	ER	VIII			
PRER	REQUI	SITES	CATEGORY	PE	Cre	edit	3			
.Basic	c knowle	edge in business strategies and ideas		L	Т	Р	ТН			
2.Curre	ent and e	existing business growth status in our country	Hours/Week	3	0	0	3			
COUI	RSE O	BJECTIVES:				.				
1.	Under	standing the business management and fundamental concepts of Ent	repreneurship							
2. Learning about business idea generation and converting the idea into a business model.										
3.	Under	standing the role of government and the machinery that renders supp	port in terms of polic	ies, as	sistan	ces et	ic.			
4.	Discu	ssing various information about the process, procedure and rules and	regulations for setti	ng up	new p	rojec	ts.			
5.	Acqui govern	ring knowledge and information about the sources of help, in ment in setting up new projects	ncentives and subs	sidies	availa	able	from			
UN		9	0	0	9					
Econ probl NGO –stree	omic G lems an los and R ss mana	rowth, Factors Affecting Entrepreneurial Growth. Women Entrepr d development. Rural Entrepreneurship –meaning-needs-rural ural Entrepreneurship. Entrepreneurial motivation- motivation theo gement.	reneurship- concept- industrialization-pro ries and factors-ach	• funct blems• ieveme	ions - -devel ent mo	-grow lopme otivat	/th- ent- ion			
UN	IT II	SMALL ENTERPRISES AND OWNERSHIP STRUCT	URES	9	0	0	9			
Defir econe enter	nition-ch omic de prise. O	aracteristics-objectives-opportunities and problems of small-scale evelopment. Project identification and selection-project formulat wnership structures-proprietorship-company-cooperative-selection of	industries-Role of ion- project apprai f form and ownershi	small sal-fin ip patte	enterj ancin ern.	prises g of	in an			
UNI	TII	FINANCING AND ACCOUNTING		9	0	0	9			
Instit entre small accou	utional preneurs l enterp unts fror	finance to entrepreneurs –commercial banks and other financi s - taxation benefits to small scale industry- Government policy for rises- need-meaning-objectives. Accounting process-journal-led n incomplete records.	al institutions. Inst small scale enterpr ger-trial balance-fin	itution ises. A ance	al fin Accour accou	nance nting ints	to for and			
UNI	TIV	ENTREPRENEURSHIP MANAGEMENT		9	0	0	9			
Fund admi mana	amental nistratio igement	of management process - meaning – characteristics scope-function n. Working capital management, Inventory management, productio and human resource management	ns. Difference betwe n and operation mar	en ma nageme	nagen ent, m	nent a arket	and ing			
UN	IT V	ENTREPRENEURSHIP DEVELOPMENT		9	0	0	9			
Grow docu	with strat	egies in small business- sickness in small business-small enterp nd procedure for small enterprises-Electronic commerce and small enterprises-Electronic commerce and small enterprises and small enterprises between the statement of the statement	rises in internationa nterprises- Franchisi	ıl busi ng.	ness -	– exp	oort			
			Tota	l (45I	L) = 4	5 Pe	riods			
ГЕХТ		KS:								
1.	S.	S.Khanka "Entrepreneurial Development", S.Chand and Co. Ltd, 19	99.							
2.	Es M	sentials of Entrepreneurship and Small Business management (5/ed Scarborough. PHI	d.): Thomas W. Zim	imerer	, and	Norn	nan			
REF	EREN	CES:								
1	EI De	DII, "Faulty and External Experts – A Hand Book for New Entrative velopment", Institute of India, Ahmadabad, 1986.	repreneurs Publisher	rs. Ent	treprei	neurs	hip			
2	At	Athore B. S and Saini J. S, "A Handbook of Entrepreneurship", Aapga Publications, 2004.								

3 Rabindra N. Kanungo, "Entrepreneurship and Innovation", Sage Publications, New Delhi, 1998.

4 Gupta CB and Srinivasan P, "Entrepreneurship Development" Sultan Chand & Sons, New Delhi, 2005

E-REFERENCES:

1. https://nptel.ac.in/courses

COURS Upon co	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
CO1	Describe the types of entrepreneurships and their development & growth	Understand					
<i>CO2</i>	Identify and select an appropriate project formation for any type of small enterprise	Apply					
СОЗ	Recognize various financial institutions and adapt the existing government policies for the growth of small-scale enterprises	Remember					
<i>CO4</i>	Illustrate various fields of entrepreneurship management and their functions	Understand					
<i>C05</i>	Elaborate the steps of development processes for the small-scale industries	Understand					

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	1	1	0	1	1	0	0	0	0	0	0	0	0
CO2	0	3	0	0	0	0	0	0	1	0	1	1	0	0	0
CO3	0	0	0	0	0	0	0	0	1	0	3	0	0	0	0
CO4	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
CO5	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0
Avg	0	0.6	0.4	0.2	0	0.4	0.6	0	0.4	0.2	0.8	0.2	0	0	0
			3/2	2/1 – in	dicate	s stren	gth of	correlat	tion (3	– high, 2	2- mediu	m, 1- lov	v)		

22M	22MEPE64 INDUSTRIAL SAFETY SEMESTER VIII									
PRER	EQUIS	ITES	CATEGORY	PE	Cr	edit	3			
1.Indus	strial Eng	gineering	Hound/Wook	L	Т	Р	TH			
2.Pow	er Plant	Engineering	Hours/ week	3	0	0	3			
COUI	RSE OF	BJECTIVES:								
1.	To und	lerstand the safety norms and inspection procedures to create risk fro	ee working environn	nent						
2.	To app	ly adequate machine guarding to eliminate the hazards from flying	chips and sparks and	l movi	ng pa	rts				
3.	To app proces	ply the safety concepts in welding, gas cutting, storage and has ses for safe working	ndling of gas cylind	ders, r	netal	form	iing			
4.	To pre workin	dict, identify and evaluate, hazardous conditions and practices s g of metals	afety rules in in co	old wo	rking	and	hot			
5.	To em of wor	ploy the safety rules in inspection and testing processes and take pr kers' aspects in engineering industry	reventive measures i	n healt	h and	l welt	fare			
UNI	UNIT I INTRODUCTION									
Gene plann handl	ral safe ing mac ling- insp	ty rules-principles-maintenance-Inspections of turning machine chine and grinding machines, CNC machines, Wood working pection, standards and codes.	s, boring machines machinery, electric	s, mill al gua	ing 1 ards.	mach Mate	ine, rial			
UNI	UNIT IIPRINCIPLES OF MACHINE GUARDING9009									
guard UNI Safet prote	l. T III y in Ga ctive equ	SAFETY IN WELDING AND GAS CUTTING s welding and oxygen cutting, resistance welding, arc welding aipment-safety precautions in brazing, soldering and metalizing - 1	and cutting, comm Explosive welding-	9 on haz	0 2ards- in ge	0 -perso	9 onal ion,			
distri and h	bution a andling	nd handling of industrial gases- colour coding - flashback arrestor of gas cylinders.	r - leak detection-pi	peline	safet	y-stor	age			
UNI	T IV	SAFETY IN COLD FORMING AND HOT WORKING	OF METALS	9	0	0	9			
Cold hand safe cupol	working or foot- guards in la, crucit	2: Power presses-point of operation safe guarding-auxiliary mecha operated presses, power press electric controls. Hot working: Safe hot rolling mills - hot bending of pipes, hazards and control me bles, ovens.	nisms- feeding and ty in forging, hot ro easures. Safety in ga	cutting olling r as furna	g me nill o ace o	chani perat perat	sm- ion, ion,			
UNI	ΤV	SAFETY IN FINISHING, INSPECTION AND TESTING	G	9	0	0	9			
Safet dynai radio engin	y in heat mic bala graphy, teering in	t treatment operations: Electro plating, paint shops, sand and shotb ncing, hydrotesting, valves, boiler drums and headers, pressure vess personal monitoring devices, radiation hazards, Indian Boilers Reg ndustry-pollution control in engineering industry.	lasting. Safety in ins sels, air leak test, ste gulation. Health and	spectio am tes welfar	on and ting, re me	l testi safety asure	ing: y in s in			
			Tota	l (45L	L) = 4	l5 Pe	eriods			
ТЕХТ	BOOF	XS:								
1.	An	drew Furness, Martin Muckett, "Introduction to Fire Safety Manage	ement", Butterworth	Heine	manr	1,200	7.			
2.	C.I	Rayasfahl, David W.Rieske, "Industrial Safety and Health Managem	nent",Pearson,2009.							
3.	3. Philip Hagan "Accident Prevention Manual for Business and Industry", National Safety Council, Chicago, 13th edition 2009.									

REFER	RENCES:
1	Peter Warren, "Handbook of Hazardous Chemicals Properties", Butterworth-Heinemann, 1997.

2	Louis Theodore, Ryan Dupont, "Environmental Health and Hazard Risk Assessment: Principles and Calculations", CRC Press, 2012.											
3	John V.Grimaldi and Rollin H.Simonds, "Safety Management", Richard D Irwin, 1994.											
4	Krishnan N.V. "Safety Management in Industry" Jaico Publishing House, Bombay, 1997.											
5	Charles D.Reese, "Industrial Safety and Health for People- Oriented Services". CRC Press, 2009.											
E-REF	E-REFERENCES:											
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on Industrial Safety.											

COUI Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Understand the safety norms and inspection procedures to create risk free working environment	Understand						
<i>CO2</i>	Apply adequate machine guarding to eliminate the hazards from flying chips and sparks and moving parts	Apply						
СО3	Apply the safety concepts in welding, gas cutting, storage and handling of gas cylinders, metal forming processes for safe working	Apply						
<i>C</i> 04	Predict, identify and evaluate, hazardous conditions and practices safety rules in in cold working and hot working of metals	Evaluate						
<i>C05</i>	Employ the safety rules in inspection and testing processes and take preventive measures in health and welfare of workers' aspects in engineering industry	Evaluate						

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	0	0	0	2	3	0	0	1	0	0	0	2	2	1
CO2	3	1	1	0	0	2	2	1	0	0	0	0	2	2	1
CO3	2	0	1	0	2	2	2	0	0	0	0	0	2	2	1
CO4	2	1	1	0	0	2	0	0	0	0	0	0	2	2	1
CO5	2	1	0	0	2	2	2	0	1	0	0	0	2	2	1
Avg	2	0.6	0.6	0	1.2	2.2	1.2	0.2	0.4	0	0	0	2	2	1
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22ME	PE65	INTRODUCTION TO COMPUTATIONAL FLUID	DYNAMICS	SEM	EST	ER V	/III					
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3					
1.Fund	lamental	knowledgein partial Differential Equations	Hound/Wook	L	Т	Р	ТН					
2.Conc	cepts of la	nws of motion and fluid mechanics	Hours/ week	3	0	0	3					
COU	JRSE O	BJECTIVES:										
1.	Unders fluid dy	tanding the major theories, approaches, and methodologies and prynamics.	ogramming techniqu	ues in	comp	utatio	nal					
2.	Studyin	ng various fluid flow governing equations from the conservation law	ws of motion and flu	id mec	hanic	s.						
3.	3. Identifying rigorous and comprehensive treatment of numerical methods in fluid flow and heat transfer problems in engineering applications.											
4. Demonstrating the computational methods, algorithms and applied boundary conditions that will affect the approximate solution.												
5.	Buildir	g up the skills in the actual implementation of CFD methods and co	odes to investigate th	ne resu	lts.							
UNI	ΤI	INTRODUCTION TO COMPUTATIONAL FLUID DY	NAMICS	9	0	0	9					
Histo engin	ory and P neering, N	hilosophy of computational fluid dynamics, CFD as a design and Numerical Methods Programming fundamentals, simple coding tech	l research tool, App niques for numerica	olicatio l probl	ns of ems.	CFD	in					
UNI	TII	GOVERNING EQUATIONS OF FLUID FLOW AND TRANSFER	HEAT	9	0	0	9					
Gove diver for vi	erning Ec gence of iscous flo	quations of Fluid Dynamics: Models of the flow, The substantive velocity, The continuity equation, The momentum equation, The eow, Euler equations for in viscid flow, Physical boundary conditions	al derivative, Physinergy equation, Nav	ical m vier Sto	eaning kes e	g of quatio	the ons					
UNI	T III	PARTIAL DIFFERENTIAL EQUATIONS AND ITS N BEHAVIOUR	UMERICAL	9	0	0	9					
The captu Class Hype	Forms of tring, Tiusification troolic, Participation	The governing equations suited for CFD, Conservation form of ne marching and space marching problems. Mathematical Beh of quasi-linear partial differential equations, Methods of determining arabolic and Elliptic equations	the equations, shown avior of Partial Difuent of the classification,	ck fitti fferenti Gener	ng an al Ec al beł	id sho quatio navioi	ock ons: of					
UNI	T IV	DISCRETIZATION AND NUMERICAL METHODS (OF PDEs	9	0	0	9					
Basic expan Appr Pertu and c Parab	c aspects nsion and opriate T arbation S dispersion polic Grid	of Discretization: Introduction to finite differences, Finite di d polynomials, Explicit and implicit approaches, uniform and un transformation: General transformation of the equations, Metrics an tability analysis, von Neumann Stability analysis, Error analysis, N a; Grid Generation: Algebraic Grid Generation, Elliptic Grid Gene d Generation.	fference equations equally spaced grid d Jacobians. Stabilit Modified equations, ration, Hyperbolic C	using l point y Anal Artific Grid Ge	Taylo s. Gri lysis: ial dis enerat	or ser ids W Discr ssipat	ries Vith ete ion and					
UNI	ΤV	SOLUTION METHODS AND APPLICATIONS OF N SIMPLE PROBLEMS	UMERICS TO	9	0	0	9					
Parab meth Cente	oolic Part ods – Las ered and	ial Differential Equations: Finite difference formulations, Explicit sonen and Crank-Nicolson; Finite Volume Method for Structured a Nodal point Approaches, Numerical Solution of Quasi 1D Flow equ	t methods – FTCS, nd Unstructured Gri ation and 2D heat c	Richar ds: Ad onduct	dson. vantag ion ec	Impl ges, C quatic	icit Cell on.					
			Tota	al (451	L) =4	5 Pe	riods					

TEXT	TEXT BOOKS										
1.	Anderson, J.D. (Jr), "Computational Fluid Dynamics", McGraw-Hill Book Company, 1st Edition, 1995.										
2.	Hoffman, K.A., and Chiang, S.T., "Computational Fluid Dynamics", Vol. I, II and III, Engineering										
	Education System, Kansas, USA, 2000.										
REFER	REFERENCES:										

E-REFERENCES:									
3	Muralidhar K and Sundararajan., "Computational Fluid Flow & Heat Transfer", 2009.								
2	Chung, T.J., "Computational Fluid Dynamics", Cambridge University Press, 2003								
1	Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., "Computational Fluid Mechanics and Heat Transfer", McGraw Hill Book Company, 2002.								

1. https://nptel.ac.in/courses/112105045

COU Upon co	RSE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Summarize the basics of computational fluid dynamics and its applications in various industries as a tool for fluid analysis	Remember
<i>CO2</i>	Select an appropriate finite difference approach for numerical formulations based on fluid mechanics and/or heat transfer concepts to get the approximate solutions.	Apply
СО3	Develop the governing equations for computational fluid dynamics CFD analysis by setting appropriate boundary conditions.	Create
<i>CO4</i>	Identify different CFD techniques available for relevant partial differential equations to get analytical solutions for fluid flow.	Understand
<i>C05</i>	Analyze the numerical solution of fluid flow problems using discretization methods addressing accuracy, stability and convergence aspects to minimize the errors.	Analyze

COURSE ARTICULATION MATRIX															
COs/POs	РО 1	PO 2	РО 3	PO 4	РО 5	PO 6	PO 7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0
CO2	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
CO3	1	1	1	0	0	1	1	1	0	0	0	0	0	0	0
CO4	2	2	0	0	1	0	0	1	0	0	0	0	2	2	1
CO5	2	1	0	0	0	0	0	2	0	0	0	0	2	2	1
Avg	1.2	0.8	0.4	0.2	0.2	0.2	0.6	0.8	0	0	0	0	0.8	0.8	0.4
			3/2/1	– indio	cates st	trength	n of co	rrelation	n (3 – 1	nigh. 2- r	nedium.	1-low)			

22ME	PE66	MARINE ENGINEERING	ERING SEMESTER VI									
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3					
1. Inter	mal Com	bustion Engines	H AX b	L	Т	Р	ТН					
2.Fluid	2.Fluid Mechanics and Machinery 3 0											
COUI	RSE OB	JECTIVES:		•	•		•					
1.	To und	erstand the basic principles of Marine Engineering										
2.	To understand the naval architects and the fields related to the maritime industry											
3.	To analyze the vibrations in various equipment used in marine engineering											
4.	4. To understand various electrical systems and environmental control and safety in marine engineering											
5.	To und	erstand the nuclear applications in marine engineering		11								
UN	IT I	INTRODUCTION		9	0	0	9					
Intro propu	duction alsion sys	of marine Engineering - Ship system formulations-main prop stem trade-off studies, Arrangement of machinery- piping diagrams	ulsion system requ and auxiliary syster	iiremer ns.	nts ar	nd m	ain					
UN	IT II	ENGINES AND PROPULSION		9	0	0	9					
Chara desig	acteristic n of boil	s of internal combustion engines-marine uses for such engines. ers. Main propulsion systems-steam engines, steam turbines, gas tur	Marine steam gene bines. Electric prop	erators- ulsion	select	tion a	and					
UNI	TIII	VIBRATIONS ANALYSIS		9	0	0	9					
Prope excha desig	eller sha angers, d ns- hydro	fting and shafting system vibration analysis-Pumps, blowers, c istilling plants. Hull machinery design considerations and machin ostatic power transmission equipment and systems.	compressors, ejector ery installations- m	rs, con nachine	dense ry foi	ers, h undat	eat ion					
UNI	TIV	POWER DISTRIBUTION		9	0	0	9					
Elect Elect envir	ric gener ronics 1 onmental	ating plants- switchboards and panels-lighting and power distribut navigation and radio communication-automation systems- s control and waste treatment.	ion- power equipme afety consideration	ent- lig ns. M	hting achin	fixtu: ery	res. for					
UN	IT V	NUCLEAR APPLICATION		9	0	0	9					
Fund consi	amentals derations	of pressurized-water nuclear steam supply systems for use - Nuclear fuels, reactor coolants, reactor control, shielding, safety,	in marine propulsi health physics, and	ion. Reconon	eactor	des	ign					
			Tota	al(45L) = 4	5 Pe	riods					

TEXT B	OOKS:
1.	Grover T K, "Marine Engineering", Anmol Publications Pvt Ltd, 2008.
2.	Harrington and Roy, L, "Marine Engineering", The Society of Naval Architects and Marine Engineers, 1991.
3.	D.A.Taylor, "Introduction to Marine Engineering", Butterworth Heinmann, 1996.
REFEF	RENCES:
1	Cameron, I.R., "Nuclear Fission Reactors", Plenum Press, 1998.
2	Henke and Russell, W., "Introduction to Fluid Power Circuits and Systems", Addison-Wesley, 1970.
3	John W.Gaythwaite, "Design of Marine Facilities: Engineering for Port and Harbour Structures", American Soceity of Civil Engineers,2016.
4	Doug Woodyard, "Pounder's Marine Diesel Engines and Gas Turbines", Elsevier Ltd,2009.
5	Kuwahara, Takuya, "New Technologies for Emission Control in Marine Diesel Engines", Elsevier Science & Technology, 2019.
E-REFE	RENCES:
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on Marine Engineering.

COUR Upon co	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
CO1	Understand the basic principles of marine engineering	Understand						
CO2	Understand the naval architects and the fields related to the maritime industry	Understand						
CO3	Analyze the vibrations in various equipment used in marine engineering	Analyze						
CO4	Understand various electrical systems and environmental control and safety in marine engineering	Understand						
CO5	Understand the nuclear applications in marine engineering	Understand						

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1	0	0	0	0	0	0	0	0	2	2	1
CO2	2	1	1	1	1	0	0	0	0	0	0	0	2	2	1
CO3	2	2	3	1	1	0	0	0	0	0	0	0	2	2	1
CO4	2	0	3	0	0	3	2	0	0	2	0	1	2	2	1
CO5	1	1	2	1	0	3	2	0	0	1	0	0	2	2	1
Avg	2.0	1.0	2.0	0.8	0.4	1.2	0.8	0.0	0.0	0.6	0.0	0.2	2.0	2.0	1.0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEPE67 SEMESTER VIII ROBOTICS PREREQUISITES PE Credit 3 CATEGORY L Т Р TH Hours/Week 3 0 0 3 COURSE OBJECTIVES: 1. To explore concepts of Robot technologies that is playing vital role in manufacture 2. Describe various Robot technology applications. 3. Develop an understanding of Robot Kinematics and dynamics. 4. Explain and summarize Robot end effectors and Sensors. 5. Explore conceptual understanding of robot programming. 9 UNIT I 9 FUNDAMENTALS OF ROBOT 0 0 Robot - definition - robot anatomy - co-ordinate systems - work envelope - types and classification - specifications - joint notations - types of joints - speed of motion - pay load - robot parts and their functions - need for robots in Indian scenario. UNIT II 9 0 0 9 **ROBOT DRIVE SYSTEMS AND END EFFECTORS** Drives - hydraulic, pneumatic, mechanical, electrical - servo motors - stepper motors - salient features, application - end effectors - types: tools - grippers - mechanical grippers - pneumatic and hydraulic grippers, magnetic grippers, vacuum grippers, multiple grippers. **UNIT III** SENSORS AND MACHINE VISION 9 0 0 9 Requirements of sensors – principles, types and applications of following types of sensors proximity (inductive, Hall effect, capacitive, ultrasonic and optical) – range (Triangulation, structured light approach, laser range) – speed, position (resolvers, optical encoders, pneumatic) - force - torque - touch sensors (binary, analog sensor) - introduction to machine vision -functions - image processing and analysis. **UNIT IV** 9 9 **ROBOT KINEMATICS AND ROBOT PROGRAMMING** 0 0 Forward kinematics and reverse kinematics of manipulators - two, three degrees of freedom (in 2 dimensional) homogeneous transformation matrix - simple problems - lead through programming, robot programming languages -VAL programming -motion commands - sensor commands - end effecter commands - simple programs for loading, unloading and palletizing operations. UNIT V APPLICATIONS, IMPLEMENTATION AND ROBOT ECONOMICS 9 0 0 9 Robot cell design – types - Application of robots in processing - assembly - inspection - material handling - loading unloading - automobile - implementation of robots in industries - safety considerations for robot operations - economic analysis of robots - pay back method and rate of return method.

Total (45L) = 45 Periods

TEXT BOOKS:							
1.	M.P.Groover, "Industrial Robotics - Technology, Programming and Applications", McGraw-Hill, 2001						
2.	Fu.K.S. Gonzalz.R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", Mc Graw Hill Book Co.,1987						
REFERENCES:							

1	Richard D.Klafter, Thomas A.Chmielewski and Micheal Negin, "Robotic engineering –An Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 2005.
2	Janakiraman.P.A. "Robotics and Image Processing", Tata McGraw-Hill, 1995.
3	Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
4	A.K.Gupta and S.K.Arora, "Industrial Automation and Robotics", Laxmi Publications Pvt ltd, 2007.

E-REFERENCES:

1. NPTEL Videos/Tutorials

COUF Upon c	RSE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describe the basic concepts, parts of robots and types of robots	Understand
<i>CO2</i>	Know the potential applications of robots in industries as part of automation tool	Understand
СО3	Familiar with the various drive systems for robot, sensors and their applications in robots, programming of robots.	Remember
<i>CO4</i>	Discuss about the various applications of robots, justification, implementation and safety of robot	Analyze
<i>CO5</i>	Select an appropriate robot for a particular application with economically.	Apply

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	2	0	1	0	0	0	2	0	2	2	1
CO2	2	1	1	1	0	1	2	1	0	0	1	0	2	2	1
CO3	1	1	1	1	0	1	1	1	0	0	1	0	2	2	1
CO4	1	1	1	2	2	2	1	0	0	0	2	0	1	1	1
CO5	1	1	1	1	2	1	1	0	0	0	1	0	2	2	1
Avg	1.4	1	1.2	1.2	1.2	1	1.2	0.4	0	0	1.4	0	1.8	1.8	1
3/2/1 – indica	ates str	ength	of corr	elation	n (3 − ł	nigh, 2	- medi	um, 1-	low)	•	•	•		•	•

OPEN ELECTIVES COURSES

22MEOE01	DE01 DESIGN OF MACHINE ELEMENTS AND MACHINING								
		CATEGORY OE Credit							
		Hours/Week	L	Т	P	T H			
			3	0	0	3			
COURSE OB	JECTIVES								
1 To familiar	ize the various steps involved in the design process								
2 To understa	and the basic concepts of machining techniques								
3 To know th	e factors influencing the processes and their applications								
4 Applying th	he principles of milling and gear cutting machines.								
5 To gain the	knowledge of cutting tool materials and surface finishing proce	ess.				-			
UNITISTRESSES IN MACHINE ELEMENTS90									
Stress in simp principle stres	le machine members- axial, bending, torsional, bearing stress ses, Theories of failure, factor of safety, stress concentration, pr	, Hertz contact stress eferred numbers.	s; comb	oined	stress	ses,			
UNITII	DESIGN OF SHAFTS AND WELDED JOINTS		9	0	0	9			
Design of shat of welded join	t members subjected to simple and combined stresses - Weldects subjected to various load -Design of Riveted joints	l joints- Types of wel	ding sy	mbol	s, des	ign			
UNITIII	DESIGN OF MACHINE ELEMENTS		9	0	0	9			
Springs: Designation Springs: Springs: Spring Sprin	gn of helical springs- stresses and deflection - design proceed ling contact bearings, hydro- dynamic and hydro static bearings	dure. Bearings: Need s- Life of bearings – S	for be Selectio	aring n of t	, Typ Dearin	bes, igs-			
UNITIV	METAL CUTTING		9	0	0	9			
Theory of met chip formation and high-spee	al cutting: Introduction, mechanics of metal cutting, orthogonal n, heat generation, cutting fluids, cutting tool life, recent devel d machining)	and oblique cutting, opments and applicat	mercha ions (D	nts' e Pry m	equati achin	on, ing			
UNITV	MACHINE TOOLS AND SURFACE FINISHING PR	OCESSES	9	0	0	9			
Tools and mac planning, mill processes: Intr	chine tools: Cutting tool materials, cutting tool nomenclature, ir ing, drilling and boring machines, working principle, operation roduction to Grinding honing, lapping processes and machines.	ntroduction to machin s, work holding devic Introduction to CAD/	e tools, ces. Sur CAM/C	lathe face f CIM.	, shap finish	ber, ing			

Total(45L) = 45Periods

REF	FERENCE BOOKS:				
1	Rao P N, "Manufacturing Technology" Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2006				
2	HMT, "Production Technology" Tata McGraw-Hill Co., New Delhi, 1998				
3	Milton C Shaw, "Metal Cutting Principles", Clarendon Press, Oxford, 1999.				
4	James Brown, "Advanced Machining Technology Handbook", McGraw- Hill Book Company, New York, 1988.				
5	Robert L Mott, "Machine Elements in Mechanical Design", Macmillan Publishing Co., London. UK, 1992.				
6	Shighley and Mische, "Mechanical Engineering Design" McGraw Hill, 1992.				
7	Rao. P.N "Manufacturing Technology," Metal Cutting and Machine Tools, Tata McGraw-Hill, New Delhi, 2003.				
E-REFERENCES:					

1.	https://nptel.ac.in/courses/112105124
2.	Design of Machine Elements - V. B. Bhandari - Google Books
3.	A Textbook of Machine Design by R.S.Khurmi and J.K.Gupta [tortuka]_1490186411865.pdf DocDroid

COU Upon	Bloom Taxonomy Mapped	
C01	Analyze the stresses induced in a machine element.	Analyze
<i>CO2</i>	Familiarize the design concept of joints under various loading.	Remember
СО3	Familiarize the design of various types of bearings and Spring.	Remember
<i>C04</i>	Identify the process parameters associated with various machining processes.	Apply
<i>C05</i>	Familiarize the cutting tools materials and surface finishing processes.	Remember

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	2	0	1	1	0	0	0	1	0	3	2
CO2	2	2	1	2	0	1	1	0	0	0	1	0	3	2
CO3	2	2	1	2	0	1	1	0	0	0	1	0	3	2
CO4	2	2	1	2	0	1	1	0	0	0	1	0	3	2
CO5	2	2	1	2	0	1	1	0	0	0	1	0	3	2
Avg	2	2	1	2	0	1	1	0	0	0	1	0	3	2
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MF	MEOE02 INDUSTRIAL ENGINEERING SEN											
			CATEGORY	ATEGORY OE Credit								
			Hours/Week	Т	Р	Т	Η					
				3	0	0		3				
COU	RSE O	BJECTIVES										
1	Assume	Technical and Managerial roles in the industries.										
2	Apply F	Engineering Principles to the working environment.										
3	Use qua	lity tools to foresee and solve issues in the industrial situ	ations.									
4	Work co	ollaboratively										
5	To know	w the importance of EBQ				1 1						
UNI	FI	FORECASTING			9	0	0	9				
Chara Movin autore Errors	Characteristics and Principles - Qualitative Methods, Delphi Technique, Market Research-TimeSeries Methods- Moving Average, Exponential Smoothing- Box Jenkins Method –autoregressivemoving average (ARMA) or autoregressive integrated moving average (ARIMA) models – FittingRegression Models - Measurement of Forecast Errors, Coefficient of Correlation- Problem solving.											
UNI	TII	FACILITIES PLANNING AND WORK STUDY	Y		9	0	0	9				
Objec Econo Preder	tives of omy - 7 termined	Work Study -Method Study Procedure,Recording Tec Fechniques of Work measurement - Time Study - Motion Time System (PMTS) - Work Sampling Techni LEAN MANUFACTURING	Synthesis Method - ques.	- Analy	rincipl vtical 9	les of Estim	Mot atin	tion g - 9				
Eleme Synch Concu proces Resou waste	ents of 3 aronous 1 arrent Er ss reeng arces Pla s inLean	Just In Time (JIT) - Pull and Push System, Kanban Manufacturing – Implementation of Six Sigma - Single ngineering- Cellular Manufacturing – Enablersof Agile M ineering (BPR) - Basics ofSupply Chain Management nning (ERP) -Role of KAIZEN, Quality Circles and Po Manufacturing.	System- Optimized 1 e MinuteExchange of Manufacturing – Rapic nt, Supply chain and OKA YOKE in Mode	Producti Die (SM 1 Manuf 1 "Keire ern Man	ionTe MED) facturi etsu" ufactu	chnolo 5S co ng - H – Ent uring -	ogy once Busir erpr – Se	and pt - ness ises even				
UNI	TIV	AGGREGATE PRODUCTION PLANNING			9	0	0	9				
Objec Strate Mater MRP	Objectives of Aggregate Planning - Capacity Requirement Planning (CRP) Process - Types of Capacity Planning - Strategies for Aggregate Capacity Planning - Master Production Scheduling -Procedure for Developing MPS – Materials Requirements Planning (MRP-I), Issues in MRP, Designing and Managing the MRP System, Evaluation of MRP - Manufacturing Resources Planning(MRP-II).											
UNI	ſV	SCHEDULING OF OPERATIONS			9	0	0	9				
Operations Planning and Scheduling - Scheduling Techniques - Stages in Scheduling – Loading,Dispatching, Expediting - Finite Loading and Infinite Loading - Load Charts and Machine LoadingCharts - Priority Sequencing - Dynamic Sequencing Rules - Batch Scheduling – Economic BatchQuantity (EBQ) or Economic Run Length (ERL) – Scheduling in Repetitive, Batch and Job ShopManufacturing – Allocation of units for a single resource, allocation of multiple resources – Resource balancing - Flexible manufacturing system.												
]	Fotal(4	5L)=	45Pe	erioo	ds				
REFI	ERENC	E BOOKS:										
1	R.Pann Delhi, 2	eerselvam, "Production & Operations Management", 3 2012	3rd Edition, PHI Lean	rningPri	vate 1	Limite	d, N	Jew				

3	Dilworth B.James, "Operations Management Design, Planning and Control forManufacturing and Services", Mcgraw Hill Inc., New York, 1992						
4	Vollman T.E, "Manufacturing Planning and Control Systems", Galgotia Publications, 2002.						
E-REI	E-REFERENCES:						
1.	https://www.newtondesk.com/industrial-engineering-study-notes-hand-written/						
2.	https://en.wikipedia.org/wiki/Lean_manufacturing						
3.	https://www.planettogether.com/blog/types-of-scheduling-in-production-planning-and-control						

COU Upon	Bloom Taxonomy Mapped	
C01	Apply the knowledge of Engineering and Sciences to improve the productivity of Industries.	Apply
<i>CO2</i>	Design a system to meet the desired needs within realistic constraints.	Create
СОЗ	Function in multidisciplinary teams.	Apply
<i>CO4</i>	Use the techniques, skills, and modern engineering tools in manufacturing practice.	Understand
CO5	Perform as an effective Industrial Engineer integrating high and low levels of management	Create

COURSE .	OURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	0	0	2	2	0	0	0	0	0	0	0	0	3
CO2	0	0	3	0	0	0	0	0	0	0	0	0	0	2
CO3	0	0	0	0	0	3	2	0	3	2	3	2	3	0
CO4	3	3	0	2	3	3	0	0	0	0	0	2	0	3
CO5	0	0	0	0	0	3	2	3	0	0	0	0	3	0
Avg	1.2	0.6	0.6	0.8	1	1.8	0.8	0.6	0.6	0.4	0.6	0.8	1.2	1.6
			3/2/1 -	indicat	es strer	ngth of	correla	tion (3	– high, 2	- mediun	n, 1- low)		

22MI	EOE03	INDUSTRIAL ROBOTICS		SEM	'I/V	I/VII						
			CATEGORY	OE	Cr	edit		3				
			TT (XX) I	L	Т	Р	Т	H				
			Hours/ week	3	0	0		3				
COU	RSE OB	JECTIVES										
1	To expl	ore concepts of Robot technologies that is playing vital role	e in manufacture.									
2	2 Describe various Robot technology applications.											
3	3 Develop an understanding of Robot Kinematics and dynamics.											
4	Explain and summarize Robot End effectors and Sensors.											
5	Explore	conceptual understanding of Robot programming.										
UNI	ГI	INTRODUCTION			9	0	0	9				
Robot joint 1 Indian	t - definiti notations n scenario	on - robot anatomy - co-ordinate systems - work envelope – types of joints - speed of motion - pay load - robot pa	e - types and classif arts and their funct	ions - 1	i - spe need :	for rol	tions	in				
UNIT	ГП	ROBOT DRIVE SYSTEMS AND END EFFECTO	ORS		9	0	0	9				
Drives – end vacuu	s - hydrau effectors m gripper	lic, pneumatic, mechanical and electrical - servo motors - - types: tools - grippers - mechanical grippers - pneumatic s, multiple grippers.	stepper motors - sa c and hydraulic gri	lient fe ppers, 1	atures magne	, appli etic gri	icatio	on rs,				
UNI	ΓIII	SENSORS AND MACHINE VISION			9	0	0	9				
Requi effect, position introd	rements of , capacitity on (resol- uction to	f sensors – principles, types and applications of following ve, ultrasonic and optical) – range (Triangulation, struct vers, optical encoders, pneumatic) – force – torque – machine vision -functions - image processing and analysis.	types of sensors p tured light approac touch sensors (b	roximi h, lase oinary,	ty (ind r rang analo	luctive ge) – og sen	e, Ha spee sor)	all ed, -				
UNI	ΓIV	ROBOT KINEMATICS AND ROBOT PROGRA	MMING		9	0	0	9				
Forwa homo VAL unload	ard kinem geneous t programn ding and p	atics and reverse kinematics of manipulators - two, three ransformation matrix - simple problems - lead through pro- ning –motion commands - sensor commands - end effecte palletizing operations.	e degrees of freedo ogramming, robot p r commands - simp	om (in progran ple prog	2 dir nming grams	nensio langu for lo	onal) ages adin	- 8 - 1g,				
UNI	ΓV	APPLICATIONS, IMPLEMENTATION AND RO	OBOT ECONON	AICS	9	0	0	9				
Robot unload econo	cell desig ding - au mic analy	gn – types - Application of robots in processing - assembly tomobile - implementation of robots in industries - sat sis of robots - pay back method and rate of return method.	y - inspection - mat fety considerations	erial ha	andlin obot (g - loa operat	iding ions	g - _				
			T	otal (4	5L)=	45Pe	erio	ds				
REFE	RENCE	BOOKS:										

1	Mikell. P. Groover, 'Industrial Robotics Technology', Programming and Applications, McGraw Hill Co, 1995.
2	Fu.K.S. Gonzalz.R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill Book Co.,1987.
3	Richard D.Klafter, Thomas A.Chmielewski and MichealNegin, "Robotic engineering –An Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 2005.
4	Janakiraman.P.A. "Robotics and Image Processing", Tata McGraw-Hill, 1995.
5	YoramKoren, "Robotics for Engineers", McGraw-Hill Book Co., 1992.
6	A.K.Gupta and S.K.Arora, "Industrial Automation and Robotics", Laxmi Publications Pvt ltd, 2007.
7	Fu. K. S., Gonzalez. R. C. & Lee C.S.G., 'Robotics control, sensing, vision and intelligence', McGraw Hill Book co, 1987.

8	Craig. J. J. 'Introduction to Robotics mechanics and control', Addison- Wesley, 1999
9	Ray Asfahl. C., 'Robots and Manufacturing Automation', John Wiley & Sons Inc., 1985.

COL Upor	IRSE OUTCOMES: a completion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>CO1</i>	Understand the basic concepts, parts of robots and types of robots.	Understand
<i>CO2</i>	Understand the potential applications of robots in industries as part of automation tool	Understand
СОЗ	Familiar with the various drive systems for robot, sensors and their applications in robots, programming of robots.	Remember
<i>CO4</i>	Discuss about the various applications of robots, justification, implementation and safety of robot	Analyze
<i>CO5</i>	Select an appropriate robot for a particular application.	Apply

COURSE A	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	1	0	0	1	0	0	0	0	0	0	1	1
CO2	0	0	1	0	1	1	0	0	0	0	0	0	1	1
CO3	0	1	0	0	0	0	0	0	0	0	0	0	1	1
CO4	0	0	1	0	0	3	0	0	0	0	0	0	0	1
CO5	0	2	0	0	0	0	0	0	0	0	0	0	1	2
Avg	0.6	1	0.6	0	0.2	1	0	0	0	0	0	0	0.8	1.2
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)													

22ME	OE04	POWER PLANT ENGINEERING	EERING				R
PRE	REQUI	SITES	CATEGORY	OE	Cr	edit	3
	1. Ha	aving sufficient knowledge on basics of power plant		L	Т	Р	ТН
	2. Ba	asic unit calculation for consumption of power	Hours/Week	3	0	0	3
COU	RSE O	BJECTIVES:					-
1.	luding rmal p	supe ower	rcritio plan	cal ts,			
2.	Locatio	on of hydro power plant and its components to generate power					
3.	Comple	ete knowledge about diesel and gas power plant					
4.	Basic k	nowledge of nuclear reaction and types of nuclear power plant					
5.	Basic k	nowledge of power plant economics and various tariff methods.					
UN	IT I	STEAM POWER PLANT		9	0	0	9
types Circu	- Chimn lated Flu	ey design - Selection of blowers, Cooling towers - Different types idised Bed boilers	- Waste heat recove	ry, Flu	idised	l Bed	&
Layou	ut of hycoment for	lel power plant- classification –working – components – layout o Pumped Store Schemes.	of pumped storage	power	plant	- Pla	int
UN	IT III	DIESEL AND GAS POWER PLANT		9	0	0	9
Layou classi	ut of Di fication of	esel power plant- Important components – performance analy of gas turbine cycles – components – relative thermal efficiencies of	rsis – Layout of g f different cycles.	gas po	wer	plant	_
UN	IT IV	NUCLEAR, MHD POWER GENERATION		9	0	0	9
Eleme reacto	entary tro ors - Fast	eatment - nuclear fission, chain reaction - Pressurized water reactive breeder reactors, Magneto Hydro Dynamic power- open cycle and	cors, boiling water r closed cycle system	eactor:	s, gas	cool	ed
UN	NIT V	ECONOMICS AND SAFETY		9	0	0	9
Econo and v powe	omics an variable 1 r plants -	d safety - Actual load curves - Fixed and operating costs - Tariff m oad operations - Selection of generation type and general equipr Environmental impacts - assessment for thermal power plant.	ethods for electrical nent. Introduction	energ to safe	y - Pe ty as	eak lo pects	ad in

TEXT I	TEXT BOOKS:								
1.	S. Domkundwar, A.V. Domkundwar, S.C. Arora.A Course in Power Plant Engineering, Dhanpat Rai Publications. 2013								
2.	P.K. Nag, Power Plant Engineering, Tata McGraw Hill, Laxmi Publications Pvt.Ltd New Delhi, 5th Edition, 2014.								
REFER	REFERENCES:								
1	R.K. Rajput. A Text of Power Plant Engineering, Laxmi publications, New Delhi 5th Edition, 2016.								
2	G.R. Nagpal, Power Plant Engineering, Khanna Publications 1998.								
3	Bernhardt G. Askrotzki and William A. Vopat, "Power Station Engineering and Economy", Tata McGraw Hill Publishing Co. Ltd., 1972.								
4	Frederick T. Mores, "Power Plant Engineering", Affiliated East-West Press Private Ltd., 1953.								

Г

5	Joel Weisman and Roy Eckart, "Modern Power Plant Engineering", Prentice Hall International Inc., 1985.							
E-REFERENCES:								
1.	https://en.wikipedia.org/wiki/Power_plant_engineering							
2.	https://onlinecourses.nptel.ac.in/noc21_me86/preview							

COU Upon	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Ample knowledge on thermal power plant operation and its merits and demerits.	Analyze
<i>CO2</i>	Potential Power of water to convert into useful energy by hydropower.	Remember
CO3	Augment with diesel and gas power plant operation and its components.	Understand
<i>CO4</i>	Able to cope with recent developments on nuclear power plant.	Understand
<i>C05</i>	Understanding of various economics to construct power plant and to measure the consumption of power by different tariff.	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	РО 1	PO 2	РО 3	РО 4	PO 5	PO 6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO2	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO3	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO4	1	2	3	2	1	0	1	1	2	0	2	2	2	1	2
CO5	2	0	1	2	0	0	0	2	2	1	1	1	2	0	0
Avg	1.2	1.6	2.6	2.0	0.8	0.0	0.8	1.2	2.0	0.2	1.8	1.8	2.0	0.8	1.6
		3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)													

22MI		SEMESTER VI/VIII										
			CATEGORY	OE	Cr	edit	3					
			Hours/Week	L	Т	Р	T H					
				3	0	0	3					
COL	JRSE O	BJECTIVES										
1.	To und	erstand the management basic features of management.										
2.	2. Principles usages in all walks of life and industrial growth.											
3.	3. Able to have a clear understanding of the managerial functions like planning, organizing, staffing, leading and controlling.											
4.	To gain	some basic knowledge in international aspect of management.										
UN	EW	9	0	0	9							
Defin Scier	Definitions of management – features of management – Management thoughts – different schools of management – Scientific management – Arts or Science, Management Vs administration – Principles of Management.											
UNI	UNIT II FUNCTIONS OF MANAGEMENT											
Role funct comp	of mana ions and pany, crea	gers. Functions approach to management, Management function role, responsibility of managers – towards subordinates, peer litors, shareholders, competitors etc.	ons, Management le rs, supervisors, custo	vels – omers,	, reco gove	oncili rnme	ng nt,					
UNI	TIII	MANAGERIAL PLANNING AND DECISION MAR	AING	9	0	0	9					
Plann types impo techr resea	ning fund of plann ortance o niques – rch - Dec	lamentals, objectives. Management by objectives – Changes i ing, policies and objectives, procedures – methods, rules, progra f decision making, types of decisions, decision making pro- decision making conditions – Operation Research (OR), De- cision tree.	n objectives – goal o ammes and schedule, cess – decision the finition, successful	distort projec ory – areas	ions - ets, bu quai of oj	– maj idgets ntitati perati	jor s – ve on					
UNI	TIV	ORGANIZATION		9	0	0	9					
Orga – typ opera depar	nization: ology, in ative, pu rtmentali	Basic concepts – organization as a structure – as a process – as nportance of organization – business /industrial organization – blic enterprise line (military), line and staff, functional, m zation – need, bases of departmentation – career planning and m	a group property of m sole trading, partners natrix committee-bas anagement.	nodern ship co sed or	organ ompar ganiz	nizati ny, co cation	on) —					
UNI	ΤV	STAFFING, CONTROLLING AND COMMUNICA	ΓΙΟΝ	9	0	0	9					
Natur sourc impo – def contr	Nature and purpose of staffing – man power planning, aims and objectives of HR recruitment, selection and training sources of recruitment, process of recruitment, training methods – performance appraisal methods – communication – importance process – barriers to communications. How to remove obstacles of effective communication – controlling – definition – Characteristics of control – types of control – requirements of effective control – direct and preventive control repairing, control techniques.											
			Total (45L) :	= 451	Perio	ds					
_				_			_					

REFE	CRENCE BOOKS:
1	HeraldknootzandHeinzweihrich,EssentialsofManagementl,McGraw-HillPublishingCompany, SingaporeInternationalEdition,2007
2	JosephL, Massie, Essentials of Management. Prentice HallofIndiaPvt., Ltd (Pearson) Fourth Edition, 2003.
3	StephenA. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management"

	7thEdition,PearsonEducation,2011.
4	RobertKreitner&MamataMohapatra,"Management",Biztantra,2008.
5	HaroldKoontz &HeinzWeihrich"Essentialsof management"TataMcGrawHill,1998.
6	TripathyPC &ReddyPN, "Principles of Management", Tata McGrawHill, 1999.
7	R.S.N. Pillai&S. Kala "Principles and Practice of Management", S Chand & company, 2014.
E-RE	JFERENCES:
1.	https://nptel.ac.in/courses/110105146

2. https://nptel.ac.in/courses/122106031

COL Upor	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Understand the basic concept so management	Understand						
<i>CO2</i>	Familiarize the contribution sand functions, types of business organization	Understand						
СОЗ	List the various types of leadership and evaluate the motivation the ories and techniques.	Evaluate						
<i>CO4</i>	Select forecasting models for future demands and to make decision in the management processes.	Evaluate						

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	0	0	0	0	0	0	1	3	1	0	2	2	1	1
CO2	0	0	0	0	0	0	1	1	2	0	3	2	1	1
CO3	0	0	0	0	0	0	0	1	2	0	1	1	1	1
CO4	0	0	0	0	0	0	2	1	2	0	2	1	1	1
Avg	0	0	0	0	0	0	1	1.5	1.75	0	2	1.5	1	1
			3/2/1	– indic	ates st	rength	of cor	elation	(3 – hi	gh. 2- me	edium. 1-	low)		

22M	EOE06	PROFESSIONAL ETHICS IN ENGINEE	RING	SE	MES VI/V	STEI III	R					
			CATEGORY	OE	Cr	edit	3					
			Horus/Week	L	Т	Р	T H					
				3	0	0	3					
COU	JRSE O	BJECTIVES										
1	1 To create awareness on Engineering Ethics and providing basic knowledge about engineering Ethics, Variety of moral issues and Professional Ideals.											
2	To pro Standa	ovide basic familiarity about Engineers as responsible Exp rds.	erimenters, Codes of	of Eth	ics,	Indus	strial					
3	To incu	lcate knowledge and exposure on Safety and Risk, Risk Benefi	Analysis.									
UNI	TI	HUMAN VALUES		9	0	0	9					
Mora Peac Conf	als, Value efully – c ïdence –	es and Ethics – Integrity – Work Ethic – Service Learning – Cearing – Sharing – Honesty – Courage – Valuing Time – Co-op Character – Spirituality.	ivic Virtue – Respect eration – Commitmer	t for C nt – E	thers) thers)	– Li hy – S	ving Self-					
UNI	TII	ENGINEERING ETHICS		9	0	0	9					
Sens Kohl actio	es of 'Er berg's th n – Self-i	ngineering Ethics' - variety of moral issued - types of inquir eory - Gilligan's theory - consensus and controversy – Models on nterest- customs and religion - uses of ethical theories.	y - moral dilemmas of Professional Roles	- mor - theor	al au ries a	tonor bout	ny - right					
UNI	TIII	ENGINEERING AS SOCIAL EXPERIMENTATION		9	0	0	9					
Engi the c	neering a hallenger	s experimentation - engineers as responsible experimenters - coo case study.	les of ethics - a balan	ced ou	tlook	on la	ıw –					
UNI	TIV	SAFETY, RESPONSIBILITIES AND RIGHTS		9	0	0	9					
Safet Cher confl discr	ty and ris nobyl ca licts of in imination	sk - assessment of safety and risk - risk benefit analysis and se studies. Collegiality and loyalty - respect for authority - terest – occupational crime - professional rights - employee ri	reducing risk - the t collective bargainin ghts - Intellectual Pro	hree-n g - co operty	nile i onfide Righ	sland ential ts (IP	and ity - 'R) -					
UNI	TV	GLOBAL ISSUES		9	0	0	9					
Mult cons ASM elect	inational ulting en IE,ASCE ronics and	corporations - Environmental ethics - computer ethics - weap gineers-engineers as expert witnesses and advisors -moral , IEEE, Institution of Engineers (India), Indian Institute of d telecommunication engineers (IETE),India.	ons development - er leadership-sample o f Materials Manage	ngineer code o ment,	rs as of Et Insti	mana thics tution	igers like n of					
			Total(4	45L) :	= 451	Perio	ods					
REFI	ERENCI	E BOOKS:										
1	Mike N	Aartin and Roland Schinzinger, "Ethics in Engineering", McGra	w-Hill, New York 20	05.								
2	Govind 2004.	larajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethic	s", Prentice Hall of Ir	ndia, N	lew D	Delhi,						
3	Tripath	i A N, "Human values", New Age international Pvt. Ltd., New	Delhi, 2002.									
4	Charles	s D. Fleddermann, "Engineering Ethics", Pearson Education / Pr	entice Hall, New Jers	sey, 20	04.							

6	John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003.
7	R S Naagarazan, "A Textbook on Professional Ethics and Human Values" New age international (p) limited, publishers, New Delhi – 110002, 2006.

COL Upor	URSE OUTCOMES: a completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the importance of ethics and values in life and society.	Understand
<i>CO2</i>	Understood the core values that shape the ethical behavior of an engineer.	Understand
СО3	Exposed awareness on professional ethics and human values.	Remember

COURSE A	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	0	0	0	0	0	2	1	3	2	0	1	0	0	1
CO2	0	0	0	0	0	1	1	3	1	0	1	0	0	1
CO3	0	0	0	0	0	2	1	3	1	0	1	0	0	1
Avg	0	0	0	0	0	1.66	1	3	1.33	0	1	0	0	1
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)													

22M	EOE07	RENEWABLE SOURCES OF ENERG	Y	SE	MES VI/V	STEI III	R
PRE- 1. Bas	- REQUI sic idea at	SITE: pout solar radiation and other renewable energy that exists.	CATEGORY	OE	Cr	edit	3
2. U	Inderstand	ling about various chemical reactions occur in the process	Horus/Week	Y OE Credit X OE T P k I T P k 3 0 1 y 9 0 0 uction – Solar Radia AND 9 0 0 rmal Power Generatio on –Solar Energy Stora Solar Energy on –Solar Energy Solar Energy Stora ions: Solar water 9 0 0 ersion-Gasification and id Village Industries process; – –		T H	
	URSFO	RIECTIVES		3	0	1	4
1		partice the consciousness of energy conservation in scholars					
2	To ide	tify the employ of renewable energy sources for electrical now	r generation				
3		ect different energy storage methods	a generation				
<u> </u>	To det	ect about environmental effects of energy conversion					
UN		SOLAR RADIATION AND ITS MEASUREMENTS		9	0	0	9
Alte Mea	rnative e surement	nergy sources, Global and Indian energy scenario. Solar and Instruments – Data and estimation.	Energy: Introduction	– S	olar	Radia	ation
UN	ITII	SOLAR ENERGY COLLECTORS, SOLAR ENERGY APPLICATIONS OF SOLAR ENERGY	STORAGE AND	9	0	0	9
Flat Fund Ther Space	Plate an damentals rmal ener ce heating	d Concentrating Collectors –Solar direct Thermal Applicatio of Solar Photo Voltaic Conversion – Solar Cells – Solar PV I gy, Chemical Energy and Electromagnetic energy storage; Sol and cooling, Solar distillation, Solar pumping, Solar furnace, So	ns – Solar thermal l Power Generation – So ar PV Applications: plar cooking.	Power olar E Solar	Gen Gen Genergy Water	eratio Stor heat	on – rage: ting,
UN	ITIII	BIOMASS AND ITS CONVERSION TECHNOLOGI	ES	9	0	0	9
Bio- type Prag	mass con s; Wet Pi gati design	version Techniques: Direct combustion (incineration); Thermo ocess- Classification of biogas plant- types of Anaerobic dige , Gasnesh biogas plant and Ferro-cement digester biogas plant)	-chemical conversion stion (Khadi and Vil - Fermentation proces	-Gasif lage I	fication fication	on an ries t	d its ype,
UN	ITIV	WIND, GEOTHERMAL AND TIDAL ENERGY		9	0	0	9
Basi geot Com oper	c princip hermal re parison c ration met	le of wind energy conversion, types of wind energy convers sources, geopressurised resources, hot dry rock resources of p of flashed steam and total flow concept. Basic principle of tidal hods of utilization of tidal power.	ion; Geothermal sour etrothermal systems, power, components o	rces – Magr f tida	- hydi na res l pow	rother sourc er pla	rmal es – ants,
UN	ITV	CHEMICAL ENERGY, HYDROGEN ENERGY AND HYDRO DYNAMIC	MAGNETO	9	0	0	9
Desi and	ign and pr applicatio	inciple operation of a Fuel cells, classification of fuel cells, type ns of fuel cells. Basic principle of Magneto Hydro Dynamic – C	s of fuel cells, Advan pen cycle and closed	tages, cycle	, disac syste	lvant m.	ages
			Total (4	 5L) :	= 45I	Perio	ds
DEE		F DOOVS.					
KEF]			D.11.2 0014				
	G.D. Rai	, "Non-Conventional Energy Sources", Khanna Publishers, New	Delhi, 2014.				
2	Suhas P.	Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Comp	any Ltd., 2007.				

3 Khan, B.H., "Non-Conventional Energy Resources", The McGraw Hill Companies, 2009.

4 Twidell, J.W. & Weir, A., "Renewable Energy Resources", EFN Spon Ltd., UK, 2005.

5 Solanki: Renewable Energy Technologies: Practical Guide for Beginners, PHI Learning Pvt.Ltd., 2008

6	D. Mukherjee: Fundamentals of Renewable Energy Systems, New Age International publishers, 2007.
7	Gilbert M. Masters: Renewable and Efficient Electric Power Systems, John Wiley & Sons, 2004.
E-RE	FERENCES:
1.	https://en.wikipedia.org/wiki/Renewable_energy
2.	Ellabban, Omar; Abu-Rub, Haitham; Blaabjerg, Frede (2014). "Renewable energy resources: Current status, future prospects and their enabling technology". Renewable and Sustainable Energy Reviews. 39: 748–764 [749]

COU Upor	URSE OUTCOMES: a completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the principles of solar radiation and its measuring devices	Understand
<i>CO2</i>	Comprehend the ideology of solar energy collectors, solar photovoltaic power generationsolar energy storage and applications of solar energy	Analyze
СО3	Acquire awareness about biomass sources of energy technologies	Understand
<i>CO4</i>	Design various renewable energy gadgets such as wind and tidal plant	Create
<i>C05</i>	Learn about extracting energy from chemical methods	Understand

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	3	2	1	0	2	2	3	1	1	2	2	1
CO2	1	2	3	2	1	0	2	2	3	1	1	2	2	1
CO3	0	2	3	2	1	0	2	2	3	1	1	2	2	1
CO4	1	2	3	2	0	0	2	2	3	1	1	2	2	1
CO5	1	2	3	2	1	0	2	2	3	1	1	2	2	1
Avg	0.8	2	3	2	1	0	2	2	3	1	1	2	2	1
			3/2/1	– indio	cates st	rength	of cor	elation	(3 – hi	gh, 2- me	dium, 1-	low)		

2MEC	DE08	ROBOTIC PROCESS AUTOMATIC	SEMESTER VI/VIII									
Pre-req	uisite:		CATEGORY OE Credi									
1. E	Basics i	n kinematics and dynamics	Hours/Week	L	Т	Р	T H					
				3	0	0	3					
COUR	RSEOH	BJECTIVES										
1.	To stud	idy the various parts of robots and fields of robotics.										
2.	To stud	ly the various kinematics and inverse kinematics of robots.										
3.	To stud	udy the Euler, Lagrangian formulation of Robot dynamics.										
4.	To stud	dy the trajectory planning for robot.										
5.	To stud	ly the control of robots for some specific applications										
UNIT	I	BASIC CONCEPTS		9	0	0	9					
Definition and origin of robotics – different types of robotics – various generations of robots – degrees of freedom – Asimov''s laws of robotics – dynamic stabilization of robots.												
UNIT	II	POWER SOURCES AND SENSORS		9	0	0	9					
Hydraulic, pneumatic and electric drives – determination of HP of motor and gearing ratio – variable speed arrangements – path determination – micro machines in robotics – machine vision – ranging – laser – acoustic – magnetic, fiber optic and tactile sensors												
UNIT	UNITIII MANIPULATORS, ACTUATORS AND GRIPPERS											
Constru circuits	uction of s – end	of manipulators – manipulator dynamics and force control – el effectors – U various types of grippers – design considerations	ectronic and pneumatic	mani	pulate	or coi	ntrol					
UNIT	IV	KINEMATICS AND PATH PLANNING		9 0 0			9					
Solutio prograr	on of in mming	verse kinematics problem – multiple solution jacobian work e languages	envelop – hill Climbing	g Tech	inique	es – r	obot					
UNIT	UNITV CASE STUDIES											
Multipl – select	le robot tion of	ts – machine interface – robots in manufacturing and non- ma robot.	nufacturing application	is – ro	bot c	ell de	sign					
Total (45L) = 45Periods												

REFERENCE BOOKS:							
1	Mikell P. Weiss G.M., Nagel R.N., Odraj N.G., "Industrial Robotics", Mc Graw-Hill Singapore, 1996.						
2	Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied Publishers, Chennai, 1998.						
3	Deb. S.R., "Robotics Technology and flexible Automation", John Wiley, USA 1992.						
4	Klafter R.D., Chimielewski T.A., Negin M., "Robotic Engineering – An integrated approach", Prentice Hall of India, New Delhi, 1994.						
5	Barry Leatham – Jones, "Elements of industrial Robotics" PITMAN Publishing, 1987.						
6	Mikell P.Groover, Mitchell Weiss, Roger N.Nagel Nicholas G.Odrey, "Industrial Robotics Technology, Programming and Applications", McGraw Hill Book Company 1986.						
7	Fu K.S. Gonzaleaz R.C. and Lee C.S.G., "Robotics Control Sensing, Vision and Intelligence" McGraw Hill International Editions, 1987.						

COL Upor	Bloom Taxonomy Mapped		
C01	Explain the basic concepts of working of robot.	Understand	
<i>CO2</i>	Analyze the function of sensors in the robot.	Analyze	
CO3	Analyze the working of manipulates, actuators and grippers.	Analyze	
<i>CO4</i>	Write program to use a robot for a typical application.	Create	
<i>C05</i>	Use robots in different applications.	Apply	

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	2	0	2	0	0	0	0	1	0	2	2	2
CO2	1	3	2	1	1	0	0	0	0	0	0	2	1	3
CO3	0	2	2	1	1	0	0	0	0	0	0	2	1	3
CO4	0	1	1	2	3	0	0	1	3	2	1	2	0	0
CO5	0	1	2	2	2	1	2	2	3	2	1	2	0	0
Avg	1	1	2	1.4	2	0.2	0.4	0.6	1.2	1	0.4	2	2	2
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														
22MEC)E09	TOTAL QUALITY MANAGEME	NT	SEI	MES /I/Vl	TER III								
---	--	--	---	--	-------------------------	----------------------------	------------------------	--	--	--	--	--		
			CATEGORY	OE	Cr	edit	3							
			Hours/Week	L	Т	Р	T H							
				3	0	0	3							
COUR	SEOF	BJECTIVES												
1. T	Feach Barrier	the need for quality, its evolution, basic concepts, contr s and Benefits of TQM.	ibution of quality gu	us, TQ	M fra	amew	ork,							
2. 1	2. Explain the TQM Principles for application.													
3. I	Define	the basics of six sigma and apply traditional tools, new tools	s, Benchmarking and F	MEA.										
4. l	Descrit and BP	e Taguchi's Quality Loss Function, Performance measures R.	and apply techniques	like QF	D, Tł	PM, C	COQ							
5. 1	[llustra	e and apply QMS and EMS in any organization.												
UNITI INTRODUCTION														
Basic Roleofs implem	concep eniorm entatio	ts of total quality management (TQM)-Historical r anagement-Qualitycouncil,Qualitystatements- Strategic pla n	eview- Principles of nning- Deming philos	TQM ophy-Ba	- Le arriers	aders to T	hip- QM							
UNITI	II '	TQM PRINCIPLES		9	0	0	9							
Custom Employ Continu selectio	er sati vee inv ious pr n, Sup	sfaction - Customer perception of quality, Customer comp olvement - Motivation, Empowerment, Teams, Recogn ocess improvement – Juran Trilogy, PDSA Cycle, 5S, Kaiz plier rating, Relationship development - Performance measu	plaints, Service quality ition and reward, Pe en - Supplier Partnersl ures, Basic concepts, St	, Custo rforman nip, Sou rategy	mer H ce ap rcing	Retent oprais , Supj	tion, al - plier							
UNITI	II	STATISTICAL PROCESS CONTROL (SPC)		9	0	0	9							
The sev sample, Manage	ven too Norm ement t	Is of quality, Statistical fundamentals – Measures of cent al curve - Control charts for variables and attributes, Process ools.	tral tendency and disp s capability - Concept of	ersion, 1 f six sig	Popul gma, r	ation new se	and even							
UNITI	(V	FQM TOOLS		9	0	0	9							
Benchn of quali - FMEA	narking ity, Ber A – Stag	g – Reasons to benchmark, Benchmarking process, Quality nefits - Taguchi quality loss function - Total productive mai ges of FMEA.	function deployment (ntenance (TPM) conce	QFD) pı pt, Impr	rocess ovem	s – He ent n	ouse eeds							
UNIT	V	QUALITY MANAGEMENT SYSTEMS		9	0	0	9							
Need for Implem	or ISO entatio	9000 and other quality systems, benefits of ISO registration n of quality system, Documentation, Quality auditing, AS 9	n, ISO 9001:2008 qual 100,TS 16949:2002 an	ity syste 1 TL 90	em – 1 00	Elem	ents,							
			Total	(45L)	= 451	Perio	ods							
 RFFFR	FNCI	POOKS.												

DaleH.Besterfiled, CarolB.Michna,GlenH.Besterfield,MaryB.Sacre,HemantUrdhwaresheand1RashmiUrdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian
Reprint, Sixth Impression,2013.Feigenbaum.A.V. "Total Quality Management", McGraw Hill, 1991.

3	Joel.E. Ross, "Total Quality Management – Text and Cases", Routledge., 2017.
4	Kiran.D.R, "Total Quality Management: Key concepts and case studies, Butterworth – Heinemann Ltd, 2016.
5	Oakland, J.S. "TQM – Text with Cases", Butterworth – Heinemann Ltd., Oxford, Third Edition, 2003.
6	Suganthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006
7	Narayana V and Sreenivasan, N.S, "Quality Management – Concepts and Tasks", New Age International, 1996.
E-R	EFERENCES:
1.	https://www.oreilly.com/library/view/total-quality-management/9780815330486/xhtml/Reference1.xhtml
2.	https://www.sanfoundry.com/best-reference-books-total-quality-management/
3.	https://www.routledge.com/Total-Quality-Management-TQM-Principles-Methods-and-Applications/Luthra-Garg-Agarwal-Mangla/p/book/9780367512835

COU Upor	IRSE OUTCOMES: a completion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>C01</i>	Ability to apply TQM concepts in a selected enterprise.	Apply
<i>CO2</i>	Ability to apply TQM principles in a selected enterprise.	Apply
СОЗ	Ability to understand Six Sigma and apply Traditional tools, new tools, Benchmarking and FMEA.	Understand
<i>CO4</i>	Ability to understand Taguchi's Quality Loss Function, Performance Measures and apply QFD, TPM, COQ and BPR.	Understand
<i>C05</i>	Ability to apply QMS and EMS in any organization.	Apply

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	3	0	0	2	0	1	0	2	0	0	2	1	2
CO2	1	2	0	0	0	0	0	0	2	0	0	2	0	0
CO3	1	2	2	0	1	0	0	1	0	0	0	2	1	0
CO4	1	2	0	0	2	3	0	2	0	3	0	2	2	2
CO5	1	2	2	0	2	2	1	2	2	3	0	2	2	2
Avg	1	2.2	0.8	0	1.4	1	0.4	1	1.2	1.2	0	2	1.2	1.2
			3/2/1	– indic	ates st	rength	of corr	relation	(3 – hi	gh, 2- me	edium, 1-	low)		

PROFESSIONAL ELECTIVE COURSES – VERTICALS

VERTICAL 1 – CLEAN AND GREEN ENERGY TECHNOLOGY

22M	EHO101	HYDROGEN AND FUEL CELL TECH	HNOLOGIES				
		<u> </u>	CATEGORY	PE	Cr	edit	С
			TT (TT)	L	Т	Р	ТН
			Hours/Week	3	0	0	3
COU	JRSE OBJI	ECTIVES		-	1		
1	To study i	n detail on the hydrogen production methodologies, pos	sible applications and vario	us stora	ige op	otions	
2	To unders kinetics	tand the working principle of atypical fuel cell, its t	ypes and to elaboration it	s thern	nodyr	namic	s and
3	To study t	he cost effectiveness and eco-friendliness of Fuel Cells					
UN	ITI	9	0	0	9		
Hyc elect wate	trogen–physi trolysis–gasif er.	cal and chemical properties, salient characteristics, Pro ication–biological hydrogen production–photo dissoci	oduction of hydrogen – st iation– direct thermal or	eam ref	ic sp	ng–w litting	ater ; of
UN	ITII	HYDROGENSTORAGE		9	0	0	9
Hyc man	lrogenstorage agement of h	options-compressedgas-liquidhydrogen-Hydride-chen ydrogen.	nicalStorage– comparise	ons,	safet	y	and
UN	ITIII	FUELCELLS		9	0	0	9
Hist com	tory–principl parison on ba	e-working-thermodynamicsandkineticsoffuelcellprocess attery Vs fuel cell.	-performance evaluation of	fuel ce	ell–		
UN	ΙΤΙν	FUELCELL-TYPES		9	0	0	9
Тур	bes of fuel cel	ls–AFC, PAFC,SOFC, MCFC, DMFC, PEMFC– Relati	ive merit sand demerits.		•		-
UN	ITV	MICS	9	0	0	9	
Fue envi	l cell usage ronmental an	for domestic power systems, large scale power ge alysison usage of Hydrogen and Fuel cell, Future trends	eneration, Auto mobile, S in fuel cells.	pace, I	Econo	omic	and
			Total	(45L)	= 45	Peri	ods

REFERENCE BOOKS:1ViswanathanB.andAuliceScibioh.M,FuelCells–Principlesand Applications,UniversitiesPress,20062RebeccaL.andBusby,HydrogenandFuelCells:AComprehensiveGuide,Penn WellCorporation,Oklahoma,20053BentSorensen(Sorensen),HydrogenandFuelCells:EmergingTechnologies andApplications,Elsevier,UK20054KordeschK.AndG.Simader,FuelCellandtheirApplications,Wiley-Vch,Germany19965HartA.B.andG.J.Womack,FuelCells:TheoryandApplication,PrenticeHall,NewYorkLtd., London19896JeremyRifkin,TheHydrogenEconomy,PenguinGroup,USA20027BarclayF.J.,FuelCells,EnginesandHydrogen,Wiley,2009

COUR Upon c	SE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>CO1</i>	Describe and analyze the techniques of Hydrogen generation	Analyze
<i>CO2</i>	Describe and classify various options for Hydrogen storage	Analyze
СО3	Explain the principal operations of fuel cell, its thermodynamics and kinetics	Understand
<i>CO4</i>	Comprehendthedifferenttypesoffuelcellscomparetheirmeritsanddemerits	Understand
CO5	Identify the potential application of a fuel cells for domestic ,automotive, spacecraft power generations and evaluate the techno-economics of a fuel cells	Analyze

r														
COURSE	ARTI	CUL	ATIO	N MA	TRIX	K								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	0	0	1	0	0	0	0	0	0	0	1	1
CO2	3	2	0	0	1	0	0	0	0	0	0	0	1	1
CO3	3	2	1	1	1	0	1	0	0	0	0	0	1	1
CO4	3	3	1	2	1	1	1	0	0	0	0	0	1	1
CO5	3	2	1	1	2	2	1	0	0	0	0	1	1	1
Avg	3	2.2	0.6	0.8	1.2	1.5	0.6	0.0	0.0	0.0	0.0	0.2	1	1
			3/2/1	– indic	ates st	rength	of corr	elation	(3 – hi	gh, 2- me	edium, 1-	low)		

22M	IEHO102	THERMAL MANAGEMENT OF ELECTRI BATTERY SYSTEMS	C VEHICLE									
			CATEGORY	PE	Cr	edit		3				
			Hours/Wook	L	Т	Р	Т	Η				
			110u15/ Week	3	0	0		3				
COUR	SE OBJEC	TIVES										
1	To know T	nermal Management of Electric Vehicle Battery Systems	8									
2	To recognize the applications of PC Min Thermal Management											
3	3 To investigate the Thermal be haviorsin Electric Vehicle Battery Systems through Simulation and Experimental											
4	To calculate the Energy and Exergy Analyses of Battery TMSs											
5	Toobtainsol	$utions for case {\it Studies on Thermal Management Solutions of the state of the st$	Electricbatteries									
UNIT	TI	INTRODUCTION			9	0	0	9				
Introd Batter Manag	uction, Curre ies, Lithiur gement/Fault	nt Battery Technologies: Lead Acid Batteries, Nickel n-Ion Batteries, Battery Environmental Impact, Diagnosis/Thermal Management.	Cadmium Batterie Battery Manage	es, Nic ement	kel N Syst	letal ems,	Hyd Sa	ride fety				
UNIT	TI	PHASECHANGEMATERIALSFORTHERMA SYSTEMS	LMANAGEME	NT	9	0	0	9				
Basic ,Heat	Properties ar Transfer Enh	d Types of PCMs, Organic PCMs, Inorganic PCMs, Mancements, Environmental Impact of Phase Change Mat	leasurement of The erials, Applications	ermal F s of PC	rope Ms.	rties c	of PC	CMs				
UNI	r III	SIMULATION AND EXPERIMENTAL N BATTERY TMS	VESTIGATION	N OI	9	0	0	9				
numer Procee liquid	rical Model dure, Vehicle battery TMS	Development for Cell and Sub modules, Cell and M Level Experimentation Set Up and Procedure, Illustrati using PCMs	Iodule Level Expo ive, Simulation and	eriment I Exper	ation imen	Set tation	Up s on	and the				
UNIT	ſIV	ENERGYANDEXERGYANALYSESOFBATTI	ERYTMS		9	0	0	9				
TMS Batter	Comparison, y Thermal M	Mode ling of Major TMS Components ,Energy and Exanagement Systems	kergy Analyses, Ill	ustrativ	e Ex	ample	: Lic	luid				
UNIT	UNITV CASE STUDIESONTHERMALMANAGEMENT SOLUTIONSOF ELECTRIC BATTERIES											
Case Batter	Study1:Expe y.	rimental and Theoretical Investigation of Temperature	e Distributions in	a Prisn	natic	Lithi	um-	Ion				
CaseS Discha	tudy2: Thern arge Cycles	nal Management Solutions for Electric Vehicle Lithium	I-Ion Batteries base	ed on V	ehic	e Cha	arge	and				
			Το	tal (45	L) =	45Pe	erio	ds				

REFE	RENCE BOOKS:
1	IbrahimDinçer, HalilS. Hamut, Nader Javani, Thermal Management of Electric Vehicle Battery Systems, C, 2017
2	Halil S.Hamut, Nader Javani, Ibrahim Dinçer, Thermal Management of Electric Vehicle Battery Systems, Wiley, 2016
3	WeixiangShen,RuiXiong,AdvancedBatteryManagementTechnologiesforElectric Vehicles,JohnWileyandsons,Firstedition2019
4	ChitraA.,SanjeevikumarPadmanaban,JensBoHolm-Nielsen,ArtificialIntelligentTechniques

	forElectricandHybridElectricVehicles,JohnWileyandsons,Firstedition2020										
5	BrunoScrosati, ElectricVehicles,WoodheadPublishing,2015	Jurgen Garche, Werner Tillmetz, Advances in Battery Technologies for									

COUI Upon	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Describe and analyze the techniques of thermal management of electric vehicle battery systems	Analyze					
<i>CO2</i>	Describe and classify various applications of PC Min thermal management	Understand					
СОЗ	Investigate the thermal behaviour sin electric vehicle battery systems through simulation and experimental.	Analyze					
<i>CO4</i>	Calculate the energy and exergy analyses of battery TMSS	Analyze					
<i>C05</i>	Identifythesolutionsforcasestudiesonthermalmanagementsolutionsofelectricbatteries	Analyze					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	0	2	0	1	0	0	0	0	0	1	0	0
CO2	3	2	1	0	1	0	1	0	0	0	1	0	2	0	0
CO3	3	2	2	3	1	0	1	0	0	0	1	0	2	0	0
CO4	3	2	1	2	1	1	0	0	0	0	1	0	2	0	0
CO5	3	3	0	0	1	2	1	1	1	1	1	0	2	0	0
Avg	2.8	2.2	0.8	1	1.2	0.6	0.8	0.2	0.01	0.01	0.04	0.0	1.8	0.0	0.0
			3/2/	1 - in	dicates	s stren	gth of	correla	tion (3 -	- high, 2-	- medium	, 1- low)			

22MI	EHO103	ELECTRIC AND HYBRID VEHICLE TEC	CHNOLOGY									
			CATEGORY	PE	Crec	lit		3				
			TT / T T	L	Т	Р	T	H				
			Hours/ week	3	0	0		3				
COUR	SE OBJE	CTIVES		•								
1	To intro	duce the concept of hybrid and electric drive trains										
2	Toelabo	rateonthetypesandutilizationofhybridandelectricdrivetrains	S									
3	To expose n different types of AC and DC drives for electric vehicles											
4	4 To understand and utilize different types of energy storage systems											
5	5 To introduce concept of energy management strategies and drive sizing											
UNIT	9	0	0	9								
Basics and ele	of vehicle ectric vehic	performance, vehicle power source characterization, transles, social and environmental importance of hybrid and el	nsmission characteri lectric vehicles	stics, H	listory	y of l	ıybr	id				
UNIT	T II	HYBRID ELECTRIC DRIVE TRAINS			9	0	0	9				
Basic hybrid variou	concept o drive-train s electric d	f hybridtraction, introduction to various hybrid drive topologies, fuel efficien cyanalysis. Electric Drive-trains: Ba rive-traintopologies, power flow control in electric drive-tr	-train to pologies, asicconceptofelectric rain.	power traction	flow , intro	cor duct	ntrol ion	in to				
UNIT	T III	CONTROLOFAC&DCDRIVES			9	0	0	9				
Introdu Induct	uction to el ion Motor	ectric components used in hybrid and electric vehicles, Co drives, Permanent MagnetMotordrive,and SwitchReluctar	onfiguration and con aceMotordrives, driv	trol– D esyster	C Mo n effi	otor c	lrive y	es,				
UNIT	T IV	ENERGYSTORAGE AND DRIVE SIZING			9	0	0	9				
Introdu Hybric interna storage	uction to I dization of alcombustic e technolog	Energy Storage Requirements in Hybrid and Electric V different energy storage devices, Sizing the drive syste onengine(ICE), Sizing the propulsion motor, sizing the powere y	Vehicles, Energy sto m: Matching the electronics, selection	orage a ectric r of app	nd it nachi ropria	sana ne ar ite e	alysi nd tl energ	is, he gy				
UNIT	V	ENERGY MANAGEMENTSTRATEGIES			9	0	0	9				
Energy ndcom	yManageme parisonofe	entStrategies:Introductiontoenergymanagementstrategiesusenergymanagementstrategies,implementationissues	edinhybridandelectric	cvehicle	es,clas	ssific	atior	na				
			To	otal(45	L) =	45 F	Peri	ods				

REFEI	REFERENCE BOOKS:												
1	IqbalHussein,ElectricandHybridVehicles:DesignFundamentals,CRC press,2003												
2	JamesLarminie, johnlowry, Electric Vehicle Technology Explained, Wiley, 2003												
3	MehrdadEhsani, YimiGao, SebastianE. Gay,AliEmadi, ModernElectric,HybridElectric andfuelcellvehicles: Fundamentals,theoryanddesign, CRC press,2004												
4	Randd.A.J,Woods,R&dellrmbatteriesforelectricvehicles,johnwiley&Sons,1998												

COUR Upon d	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>C01</i>	Characterize and configure hybrid drive trains requirement for a vehicle	Understand
<i>CO2</i>	Design and apply appropriate hybrid and electric drive train sina vehicle	Create
СОЗ	Design and install suitable AC and DC drives for electric vehicles	Create
<i>CO4</i>	Arrive at a suitable energy storage system for a hybrid/electric vehicle	Understand
<i>C05</i>	Apply energy management strategiestoen sure better economy and efficiency	Apply

												-			-
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	0	1	1	1	0	0	0	0	0	0	0	1
CO2	3	2	2	0	1	1	0	1	1	0	0	0	0	0	2
CO3	3	1	3	1	2	1	1	2	0	1	0	0	0	0	2
CO4	2	3	1	1	1	1	1	1	0	1	2	0	0	1	1
CO5	3	2	0	0	1	1	1	0	0	2	1	2	0	1	1
Avg	2.8	2	1.6	0.4	1.2	1	1	0.8	0.2	0.8	0.6	0.4	0.0	0.4	1.4
			3/2/	′1 – in	dicate	s stren	gth of	correla	tion (3 -	- high, 2	- medium	, 1- low)			

			CATEGORY	1								
			CATEGORI	PE	Credit			С				
			H /N / b	L	Т	Р	Т	Ή				
			Hours/ week	3	0	0		3				
OURS	E OBJ	ECTIVES										
1	To exp	ose potential alternate fuels and their characteristics										
2	Touseappropriatesyntheticfuelsandfueladditivesforbettercombustioncharacteristics											
3	To utilize alcohol fuels effectively for low emissions											
4	ToelaborateontheutilizationofBio-DieselanditstypesasasuitablefuelinClengines											
5	To util	ize different gaseousfuelsandpredicttheirperformanceandcomb	oustioncharacteristics									
UNIT I INTRODUCTION												
Hydrog UNIT Differer their	en, Liqu II nt synthe effec	efied Petroleum Gas, Natural Gas, Biogas, Fuel standards Fue SPECIAL AND SYNTHETIC FUELS etic fuels, Merits and demerits, Dual, Bi-fuel and Pilot inject et on performance and emission cl	defuel systems, Fue haracteristics of	EN 1 addit	9 ives- engir	0 - type nes,E	0 es a ther	9 und rs–				
asfuelar	ndfuelad	ditives, properties and characteristics ALCOHOL FUELS			9	0	0	9				
Alcohol in engir	ls–Prope nes. Issue	erties, Production methods and usage in engines. Performance es & limitation in alcohols	e, combustion and en	nissior	Cha	racte	eristi	ics				
UNIT	IV	BIO-DIESEL FUELS			9	0	0	9				
Vegetab Blendin diesel e	ole oils g,prehea ngines	and their important properties. Fuel properties characteriz ating, Transesterification and emulsification – Performance, comb	zation. Methods of ustion and emissio	using on Ch	vege aract	table eristi	oil cs	ls– in				
UNIT	V	GASEOUS FUELS			9	0	0	9				
D.	Natural	gas, LPG, Hydrogen–Properties, problems, storage and safety on in Gaseous fuels	v spects. Methods of u	ıtilizat	ion ir	n eng	ines	8.				
Biogas, Issues &	ciiiiitati											

NEL	ERENCE BOOKS.
1	KeithOwenandtrevoreoley,AutomotiveFuelsHandbook,SAE publications,1990
2	PundirB.P,I.C.EnginesCombustionandEmission,2010, Narosapublishinghouse
3	PundirB.P,EngineCombustionandEmission,2011, Narosapublishinghouse, Keith
4	Richardl.Bechtold,AutomotiveFuelsguidebook, SAE publications,1997

CO Upon	URSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Analyze potential alternate fuels and their characteristics	Analyze
<i>CO2</i>	Use appropriate synthetic fuels and fuel additives for better combustion characteristics	Understand
CO3	Describethepropertiesofalcoholfuelandestimatetheperformanceofalcoholfuelsand its emissions	Understand
<i>CO4</i>	Explaintheproperties and combustion and emission characteristics of bio-diesel	Understand
<i>C05</i>	Explain different gaseous fuels and predict their performance and combustion characteristics	Understand

	-		-		-	-	-				-			-
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	3	0	1	1	1	0	0	0	0	0	0	3	2
CO2	3	2	1	1	0	1	0	0	0	0	1	0	2	2
CO3	2	3	2	1	1	0	1	0	0	1	0	0	2	2
CO4	2	1	1	1	1	1	1	0	1	0	2	0	0	2
CO5	1	0	0	0	0	2	0	0	0	2	1	0	0	0
Avg	2.2	1.8	0.8	0.8	0.6	1	0.4	0.0	0.2	0.6	0.8	0.0	1.4	1.6
			3/2/1	– indic	ates st	rength	of corr	elation	(3 – hi	gh, 2- m	edium, 1-	low)		

22MEHO105		ADVANCED ENERGY STORAGE T	ECHNOLOGIES										
			CATEGORY	PE	Cre	dit	3						
				L	Т	Р	TI	H					
			Hours/Week	3	0	0	3						
COU	RSE OBJ	ECTIVES											
1	Tound	erstandthevarioustypesofenergystoragetechnologies	sanditsapplications										
2	Tostud	lythevariousmodelingtechniquesofenergystoragesys	stemsusingTRNSYS										
3	To learn the concepts and types of batteries												
4	Tomak	ethestudentstogetunderstandtheconceptsofHydrogenandBiogasstorage											
5	To pro	vide the insight son Fly wheel and compressed ener	rgy storage systems										
UN	9	0	0	9									
Nece	ssityofene	rgystorage–typesofenergystorage–comparisonofene	ergystoragetechnologies-A	pplicat	ions								
UNI	TII	THERMAL STORAGE SYSTEM			9	0	0	9					
Therr water	mal storag r storage sy	e–Types–Modelling of thermal storage units–Sim ystem–Modelling of phase change storage system–S	ple water and rock bed st Simple units, packed bed st	torage torage	system units	– pre	ssur	ized					
UNI	T III	ELECTRICAL ENERGY STORAGE			9	0	0	9					
Fund batter oxide	amentalco ry,storagec e and Lithi	nceptofbatteries–measuringofbatteryperformance,ch lensity,energydensity,andsafetyissues.Typesofbatte: um Battery	arginganddischargingofa ries–LeadAcid,Nickel–Cao	dmium	,Zinc N	Manga	anes	e di					
UNI	T IV	HYDROGEN AND BIOGAS STORAGE			9	0	0	9					
Hydr comp	ogenstorag parisons.Sa	ge options–compressed gas–liquid hydroge fety and management of hydrogen and Bio gas stor	n–MetalHydrides,chemica age- Applications	lStorag	ge,Biog	as	stor	age-					
UNI	ТV	ALTERNATE ENERGY STORAGE TEC	CHNOLOGIES		9	0	0	9					
Flyw Appli	heel,Super	capacitors,Principles&Methods-Applications,Com	pressedairEnergystorage,C	Concep	tofHyb	ridSto	orage	÷–					
				Total	(45L)	= 45	Per	iod					

REF	ERENCE BOOKS:
1	IbrahimDincerandMark A.Rosen, ThermalEnergyStorageSystemsand Applications, JohnWiley&Sons2002
2	JamesLarminieandAndrewDicks,FuelcellsystemsExplained,Wileypublications,2003
3	LuisaF.Cabeza,AdvancesinThermalEnergyStorageSystems:Methodsand Applications,ElsevierWoodheadPublishing,2015
4	RobertHuggins,EnergyStorage:Fundamentals,MaterialsandApplications,2ndedition, Springer,2015
5	Ru-shiliu,Leizhang,Xueliangsun,electrochemicaltechnologiesforenergystorageand conversion,Wileypublications,2012

COU Upon	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Identify the energy storage technologies for suitable applications	Analyze
<i>CO2</i>	Analyze the energy storage systems	Analyze
СО3	Recognize the concept sand types of batteries	Understand
<i>CO4</i>	Diagnose the principle of operations of Hydrogen and Bio gas storage	Understand
<i>C05</i>	Analyze the concepts of Fly wheel and compressed energy storage systems	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	0	0	1	1	0	1	0	0	0	0	3	1
CO2	2	3	1	1	1	0	1	0	1	0	0	0	0	0
CO3	3	2	0	1	0	0	1	1	0	0	1	0	3	0
CO4	3	1	2	1	1	2	1	0	0	2	0	0	1	1
CO5	2	3	1	1	0	0	0	0	1	0	0	0	0	1
Avg	2.6	2.2	0.8	0.8	0.6	0.6	0.6	0.4	0.4	0.4	0.2	0.0	1.4	0.6
			3/2/1	– indic	ates st	rength	of corr	elation	(3 – hi	gh, 2- me	edium, 1-	low)		

22ME	CHO106	SOLAR POWER I	PLANTS					
			CATEGORY	PE	Cree	dit		3
			Hours/Week	L	Т	Р	Т	Ή
			Hours, week	3	0	0		3
COUR	RSE OBJ	IECTIVES						
1	Toexp	lainconceptofvariouspowercyclesinvolvedinth	nesolarpowerplants					
2	To lea	rn and study the solar adiation and various so	lar power plants					
3	To out	tline the variety of solar systems used to colle	ct solar energy					
4	To lea	rn electrical performance of PV power plants						
5	To sur	mmarize basic economics of solar power plant	ts					_
UNIT	ГІ	INTRODUCTION			9	0	0	9
Power	rPlantSce	nario-Classification,BasicPrinciplesandFeatur	res-Comparisonandselection Cr	iteria				
UNI	ГП	SOLARPOWERCYCLES			9	0	0	9
Vapou	urcycles-	Organiccycles–CombinedCycles–BinaryCycle	es-StirlingCycle-BraytonCycle	– Ericss	on Cy	cle		
UNI	r III	SOLAR THERMAL POWER PLANT	S		9	0	0	9
Collec Sola	ctor, Reco ar Chimne	eiver, Energy Transfer Power cycles-Tower, eys – Hybrid Systems	Trough and Dish Systems- Co	oncentra	ting D	oish S	yste	ms -
UNI	ΓIV	SOLAR PV POWER PLANTS			9	0	0	9
Intern Stan	ationalPV nd-Alone	/PowerProgrammes-PhotovoltaicPowerSyster Systems - Grid-Connected Systems –Electrica	ms-SystemIntegration–EnergyS al Performance.	torage -	Powe	r Elec	ctron	ics -
UNI	ΓV	ECONOMICS OF POWER PLANTS			9	0	0	9
Metho Ecor	ods of fix nomic Ar	ing power tariff –Simple Methods to Calcula alysis for the Selection of Alternative Decisio	te the Plant Economy –Life Cy ons and the future of the Power	cle Cos Plants	t - Pay	/back	Peri	od -
				Total(45L):	45P	erio	ds

REF	REFERENCE BOOKS:												
1	Duffie, J.A., and Beckman, W.A. Solar Energy Thermal Process, John Wiley and Sons, NewYork, 2006												
2	Kosuke Kurokawa (Ed.), Eergyfrom the Desert –Feasibilityofverylarge-scale photovoltaicpowergenerationsystems,JamesandJames2003												
3	SukhatmeS.P.,SolarEnergy,TataMcGrawHillsPvtCo.,3rdEdition,2008												
4	C.J.Winter, R.L.Sizmann, L.L.Vant-Hull, SolarPowerPlants, Springer-Verlag Berlinand Heidelberg GmbH&Co.K,2001												

CO Upon	URSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describe the concept of various power cycles involved in the solar power plants were learn the solar power plants were learned as the solar pl	Understand
<i>CO2</i>	Analyze different cycle for solar power generation	Analyze
CO3	Describetheconstructionandworkingofcomponentsolarthermalpowerplant	Understand
<i>CO4</i>	Explain PV system and its Integration	Understand
<i>C05</i>	Fix power tariff and analyze economical aspects of power plant	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	1	0	1	2	1	0	0	0	0	0	2	2
CO2	3	2	1	1	2	0	1	0	0	0	0	0	2	2
CO3	2	1	0	0	1	0	1	0	0	0	0	0	1	0
CO4	3	2	1	2	0	0	0	1	0	0	0	0	1	0
CO5	1	2	0	0	2	0	0	0	0	0	0	0	1	0
Avg	2.4	1.6	0.6	0.6	1.2	0.4	0.6	0.2	0	0	0	0	1.4	0.8
			3/2/1	– indic	ates st	rength	of corr	elation	(3 – hi	gh, 2- me	edium, 1-	low)		

22ME	HO107	MATERIALS FOR SOLAR DEVICES	5					
			CATEGORY	PE	Crec	lit		3
				L	Т	Р	T	H
		1	lours/Week	3	0	0		3
COUR	SE OBJ	ECTIVES					1	
1	To cor	nprehend the materials that has been implicated in various for	ns of solar energy	source	es and	l its s	tora	ges
2	To edu	cate the structure-property relationship and appreciate enovel	developments in t	he mat	erials			
3	To exp	plain the concept and the diverse materials used for solar device	es					
4	To exp	plicate in depth knowledge of about solar cells, thermal energy	storage and electr	rical en	ergy	storaș	ges	
5	To gat	her idea of system balance and analysis with reference toitscos	st					
UNIT	ľ	MATERIALSFORSOLAR COLLECTORS			9	0	0	9
Collec Absort Degrae	tor Mate ber Coat dation of	rials for Low, Medium and High Temperature Applications ings, Insulations, Use of Plastics–Reliability and Durabili Low- Cost Solar Collectors	s-Glazing Materia ty of Solar Coll	als, Op ectors-	otical - Env	Mate ironr	rials nent	s– al
UNIT	T II		9	0	0	9		
Crysta impuri silicon	lline Stru itieson er solar cel	acture – Fundamental Principles of Energy Bands–Types of Se ergy levels—Structure of Silicon solar cell–Fabrication and ls	emiconductors – D Optimization of s	Doping olar ce	and in ells– A	nflue Amor	nce of the photon	of us
UNIT	III	NOVEL AND THIN FILM SOLAR CELLS			9	0	0	9
Cadmi Multi .	ium Tell Junction	uride, Galium-Arsenic, GaInP/GaAs/Ge-Thin Film, Single and Tandem Junction Solar Cells – Conversion Efficiency of S	Crystalline, Pol Solar Cells–Organ	ycrysta ic sola	alline r cells	Mate	erial	s-
UNIT	IV	ENERGY STORAGE MATERIALS			9	0	0	9
Therm Rechar Capaci	al Storag rgeable itors.	ge Concepts-Materials for Sensible and Latent Heat Energy Batteries–Types, Operating range, Comparison and suit	Storage. Chemic ability for vario	cal stor ous ap	rage (plicat	Conce ions-	epts Sup	– er
UNIT	V	MATERIALS AND COST ANALYSIS			9	0	0	9
Functi Wires, Case s	onalrequ Pipes,Va tudies.	irementsofothermaterialsforcomponentslikeInvertors,ChargeColves,etc.andidentificationofsuitablematerials-SimpleCostAnaly	ontrollers, vsisfor alternative	s electi	ion of	mate	erial	s-
			To	tal (45	5L) =	45 F	Peri	ods
REF	ERENC	E BOOKS:						
1	Ibrahii	n Dincer and Marc A Rosan, Thermal Energy Storage: System	s and Application	s, John	Wiley	,200	3.	
2	Sukha	tme and Nayak, Solar Energy: Principles of Thermal Collectio	n & Storage, Tata	McGra	wHill	,200	8	
3	Nelsor	,J, The Physics of Solar Cells, Imperial College Press, 2003						
4	Jef Po	ortmans and VladimirArkhipov, Thin Film Solar Cells, JohnW	iley and Sons,200)8.				
5	Thoma	asMarkvart, SolarElectricity, JohnWiley and Sons,2007						
	1	-						

COUF Upon o	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describethefundamentalprinciplesofmaterialsbestsuitedformakingsolarcollectors, their reliability, characteristics and possibility of using plastics.	Understand
<i>CO2</i>	Explore the materials for solarcells, principles, doping and fabrication and optimizations of solar cells.	Analyze

CO3	Explore the novel materials for the fabrication of solar cell, their efficiency and organic solar cells.	Analyze
<i>CO4</i>	Explain the concept and the diverse materials used for solar energy devices for diverse applications.	Understand
<i>C05</i>	Describe the requirements of system balance and analysis with reference to its cost.	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	0	0	0	0	1	0	0	0	0	1	1	1
CO2	3	2	1	0	0	0	1	0	0	0	0	0	1	1	2
CO3	2	3	0	0	1	0	0	0	0	0	0	0	2	2	2
CO4	2	1	0	0	2	1	0	0	1	0	0	0	1	1	1
CO5	3	2	0	1	0	0	1	0	0	0	0	1	1	1	2
Avg	2.6	2	1	1	1.5	1	1	1	1	0	0	1	1.2	1.2	1.6
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

CATEGORY PE Credit 3 Hours/Week L T P TH Hours/Week L T P TH 3 0 0 3 COURSE OBJECTIVES 1 To learn and study the radiation principles with respective solar energy estimation. 2 1 To understand the fundamentals of wind energy and its conversion system. 4 1 4 Tounderstand the fundamentals of wind energy and its conversion system. 4 5 To learn and study the radiation principles with respective solar energy estimation. 9 0 9 UNITI SOLAR RADIATION AND COLLECTORS 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis –evacuated tubular collectors-concentrator collectors-elasification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators. 9 0 0 9 Principle of working, types, design and operation of-Solar heating and cooling systems- Thermal Energy storage systems - Solar Desalination - Solar cell array system analysis and performance prediction-solar cell array design concepts-PV systemdesign-designprocessandoptimization-detailedarraydesign-storageautonomy-voltage regulation-centralized arP -pinuction	22ME	HO108	DESIGN OF SOLAR AND WIND SYSTE	DESIGN OF SOLAR AND WIND SYSTEMS								
Hours/Week L T P TH 3 0 0 3 COURSE OBJECTIVES 1 To learn and study the radiation principles with respective solar energy estimation. 2 2 Tounderstand PVtechnologyprinciplesandtechniquesofvarioussolarcells/materialsforenergy conversion 3 3 To understand the fundamentals of wind energy and its conversion system. 4 4 Tounderstandtheaerodynamicsandtypesofloads,generatorsinwindturbines 5 5 To learn and study the radiation principles with respective solar energy estimation. 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics - estimation on horizontal and tilted surfaces - flat plate collector thermal analysis –evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators -Heliostats. UNIT II SOLAR THERMAL TECHNOLOGEIS 9 0 0 9 Solar cells - p-njunction- Solar colker: domestic, community - Solar Pond - Solar drying. 9 0 0 9 Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design concepts-PVsystemdesign-design-designdogrid connected system. </th <th></th> <th></th> <th></th> <th>CATEGORY</th> <th>PE</th> <th>Cred</th> <th>lit</th> <th></th> <th>3</th>				CATEGORY	PE	Cred	lit		3			
IDUITS WEEK 3 0 0 3 COURSE OBJECTIVES 1 To learn and study the radiation principles with respective solar energy estimation. 2 1 To understand PVtechnologyprinciplesandtechniquesofvarioussolarcells/materialsforenergy conversion 3 3 To understand the fundamentals of wind energy and its conversion system. 4 4 Tounderstandtheaerodynamicsandtypesofloads.generatorsinwindturbines 5 5 To learn and study the radiation principles with respective solar energy estimation. 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis –evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators - Heliostats. UNIT II SOLAR THERMAL TECHNOLOGIES 9 0 0 9 Principle of working, types, design and operation of-Solar heating and cooling systems - Solar Desalination - Solar cocker: domestic, community - Solar Pond - Solar drying. 9 0 0 9 Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design concepts-PV systemdesign-designprocessandoptimization-detailedarraydesign-storageautonomy-voltage regulation-centralized and decentralized SPV systems - hybrid and grid				Houng/Wook	L	Т	Р	T	H			
2OURSE OBJECTIVES 1 To learn and study the radiation principles with respective solar energy estimation. 2 TounderstandPVtechnologyprinciplesandtechniquesofvarioussolarcells/materialsforenergy conversion 3 To understand the fundamentals of wind energy and its conversion system. 4 Tounderstandtheaerodynamicsandtypesofloads.generatorsinwindturbines 5 To learn and study the radiation principles with respective solar energy estimation. UNITII SOLAR RADIATION AND COLLECTORS 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis -evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators -Heliostats. UNIT II SOLAR THERMAL TECHNOLOGIES 9 0 0 9 Principle of working, types, design and operation of-Solar heating and cooling systems - Thermal Energy storage systems - Solar Desalination - Solar cooker: domestic, community - Solar Pond - Solar drying. UNIT III SOLAR PV SYSTEM DESIGN 9 0 0 9 Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array				nours/ week	3	0	0		3			
1 To learn and study the radiation principles with respective solar energy estimation. 2 TounderstandPV technologyprinciplesandtechniquesof varioussolarcells/materialsforenergy conversion 3 To understand the fundamentals of wind energy and its conversion system. 4 Tounderstandtheaerodynamicsandtypesofloads,generatorsinwindturbines 5 To learn and study the radiation principles with respective solar energy estimation. UNIT I SoLAR RADIATION AND COLLECTORS 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis -evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators -Heliostats. UNIT II SOLAR THERMAL TECHNOLOGES 9 0 0 9 Principle of working, types, design and operation of-Solar heating and cooling systems - Thermal Energy storage systems - Solar Desalination - Solar cooker: domestic, community - Solar Pond - Solar drying. UNIT II SOLAR PV SYSTEM DESIGN 9 0 0 9 Solar cell array system analysis and performance prediction-solar cell array design concepts-PV systemdesign-dessignprocessandoptimization-detailedarraydesign-storageautonomy-	COUR	SE OBJ	ECTIVES									
2 TounderstandPVtechnologyprinciplesandtechniquesofvarioussolarcells/materialsforenergy conversion 3 To understand the fundamentals of wind energy and its conversion system. 4 Tounderstandtheaerodynamicsandtypesofloads.generatorsinwindturbines 5 To learn and study the radiation principles with respective solar energy estimation. UNITI SOLAR RADIATION AND COLLECTORS 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis -evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators -Heliostats. UNIT II SOLAR THERMAL TECHNOLOGIES 9 0 0 9 Volking, types, design and operation of-Solar heating and cooling systems- Thermal Energy storage systems - Solar Desalination - Solar cooker: domestic, community - Solar Pond - Solar drying. UNIT II SOLAR PV SYSTEM DESIGN 9 0 0 9 Solar cells - p-niunction- Solar cell array system analysis and performance prediction-solar cell array design concepts-PV systemdesign-designprocessandoptimization-detailedarraydesign-storageautonomy-voltage regulation-centralized and decentralized SPV systems - hybrid and grid connected system. UNIT IV WIND ENERGY FUNDAMENTALS AND WIN	1	To learn	and study the radiation principles with respective solar energy	estimation.								
3 To understand the fundamentals of wind energy and its conversion system. 4 Tounderstand the fundamentals of wind energy and its conversion system. 5 To learn and study the radiation principles with respective solar energy estimation. UNITI SOLAR RADIATION AND COLLECTORS 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis –evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators -Heliostats. UNIT II SOLAR THERMAL TECHNOLOGIES 9 0 0 9 Principle of working, types, design and operation of-Solar heating and cooling systems- Thermal Energy storage systems - Solar Desalination - Solar cooker: domestic, community - Solar Pond - Solar drying. UNIT III SOLAR PV SYSTEM DESIGN 9 0 0 9 Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design-	2	Tounders	standPVtechnologyprinciplesandtechniquesofvarioussolarcells/	materialsforenergy	y conv	versio	n					
4 Tounderstandtheaerodynamicsandtypesofloads,generatorsinwindturbines 5 To learn and study the radiation principles with respective solar energy estimation. UNITI SOLAR RADIATION AND COLLECTORS 9 0 0 9 Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis -evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators -Heliostats. UNIT II SOLAR THERMAL TECHNOLOGIES 9 0 0 9 Principle of working, types, design and operation of-Solar heating and cooling systems- Thermal Energy storage systems - Solar Desalination - Solar cooker: domestic, community - Solar Pond - Solar drying. 9 0 0 0 9 UNIT II SOLAR PV SYSTEM DESIGN 9 0 0 9 0 0 9 Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design-centralized and decentralized SPV systems - hybrid and grid connected system. 9 0 0 9 0 0 9 UNIT IV WIND ENERGY FUNDAMENTALS AND WIND MEASUREMENTS 9 0 0 9 0 0 9	3	To under	stand the fundamentals of wind energy and its conversion syste	em.								
5 To learn and study the radiation principles with respective solar energy estimation. UNITI SOLAR RADIATION AND COLLECTORS 9 0	4	Tounders	standtheaerodynamicsandtypesofloads,generatorsinwindturbine	es								
UNITISOLAR RADIATION AND COLLECTORS9000<	5	To learn	and study the radiation principles with respective solar energy	estimation.		-						
Sun angles-Radiation-extra-terrestrial characteristics -estimation on horizontal and tilted surfaces - flat plate collector thermal analysis -evacuated tubular collectors-concentrator collectors-classification-design and performance parameters - compound parabolic concentrators - parabolic trough concentrators -Heliostats. UNIT II SOLAR THERMAL TECHNOLOGIES 9 0 0 9 Principle of working, types, design and operation of-Solar heating and cooling systems- Thermal Energy stores - Solar Desalination - Solar cooker: domestic, community - Solar Pond - Solar drying. 9 0 0 9 Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design concepts-PVsystemdesign-designprocessandoptimization-detailedarraydesign-storageautonomy-voltage regulated and decentralized SPV systems - hybrid and grid connected system. 9 0 0 9 UNIT IV WIND ENERGY FUNDAMENTALS AND WIND MEASUREMENTS 9 0 0 9 Wind Energy Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Instrumentation for wind measurements, wind data analysis, tabultor, Betz's Limit, Turbulence Analysis. 9 0 0 9 Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear	UNITI SOLAR RADIATION AND COLLECTORS											
UNIT IISOLAR THERMAL TECHNOLOGIES90009Principle of working, types, design and operation of-Solar heating and cooling systems– Thermal Energy systems – Solar Desalination – Solar cooker: domestic, community – Solar Pond – Solar drying.UNIT IIISOLAR PV SYSTEM DESIGN90009Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design- concepts-PVsystemdesign-designprocessandoptimization–detailedarraydesign-storageautonomy-voltage regulation- centralized and decentralized SPV systems – hybrid and grid connected system.9009Wind Energy Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Instrumentation for wind measurements, wind data analysis, tabulation, Betz's Limit, Turbulence Analysis.9009Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems.UNIT (45L) = 45 Evicts	Sun colle perfo	angles–F ector the ormance p	Radiation-extra-terrestrial characteristics -estimation on hori rmal analysis –evacuated tubular collectors-concentrator parameters - compound parabolic concentrators - parabolic trou	zontal and tilted r collectors–class igh concentrators -	surfa sificat Helio	ces - ion-de stats.	flat esign	pla ar	te 1d			
Principle of working, types, design and operation of-Solar heating and cooling systems – Thermal Energy states systems – Solar Desalination – Solar cooker: domestic, community – Solar Pond – Solar drying. Image: Solar Desalination – Solar cooker: domestic, community – Solar Pond – Solar drying. UNIT III SOLAR PV SYSTEM DESIGN 9 0 0 9 Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design concepts-PVsystemdesign-designprocessandoptimization – detailedarraydesign-storageautonomy-voltage regulation-centralized and decentralized SPV systems – hybrid and grid connected system. 9 0 0 9 UNIT IV WIND ENERGY FUNDAMENTALS AND WIND MEASUREMENTS 9 0 0 9 Wind Energy Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Instrumentation for wind measurements, wind data analysis, tabulation, Betz's Limit, Turbulence Analysis. 9 0 0 9 UNIT V AERODYNAMIC THEORY AND WIND TURBINES 9 0 0 9 Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems. Image: Direct Staletetata Stale Stale Stale Stale Stale Stale Sta	UNI	IT II	SOLAR THERMAL TECHNOLOGIES			9	0	0	9			
UNIT IIISOLAR PV SYSTEM DESIGN90009Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design concepts-PVsystemdesign-designprocessandoptimization-detailedarraydesign-storageautonomy-voltage regulation- centralized and decentralized SPV systems – hybrid and grid connected system.9009UNIT IVWIND ENERGY FUNDAMENTALS AND WIND MEASUREMENTS9009Wind Energy Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Instrumentation for wind measurements, wind data analysis, tabulation, Betz's Limit, Turbulence Analysis.9009Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems.9009	Prino syste	ciple of v ems – Sol	vorking, types, design and operation of-Solar heating and coo ar Desalination – Solar cooker: domestic, community – Solar F	oling systems– Th Pond – Solar drying	ermal g.	Ener	gy si	oraș	ge			
Solar cells - p-njunction- Solar cell array system analysis and performance prediction-solar cell array design concepts-PVsystemdesign-designprocessandoptimization-detailedarraydesign-storageautonomy-voltage regulaton-centralized and decentralized SPV systems – hybrid and grid connected system. UNIT IV WIND ENERGY FUNDAMENTALS AND WIND MEASUREMENTS 9 0 0 9 Wind Energy Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Instrumentation for wind measurements, wind data analysis, tabulation, Betz's Limit, Turbulence Analysis. 9 0 0 9 Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems. Total (45L) = 45 Periods	UNI	IT III	SOLAR PV SYSTEM DESIGN			9	0	0	9			
UNIT IVWIND ENERGY FUNDAMENTALS AND WIND MEASUREMENTS9009Wind Energy Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Instrumentation for wind measurements, wind data analysis, tabulation, Betz's Limit, Turbulence Analysis.9009UNIT VAERODYNAMIC THEORY AND WIND TURBINES9009Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems.9109	Sola conc centr	r cells - cepts-PVs ralized an	p-njunction- Solar cell array system analysis and performa ystemdesign-designprocessandoptimization-detailedarraydesig d decentralized SPV systems – hybrid and grid connected syste	ance prediction-so gn-storageautonom em.	olar c y-vol	ell ar tage	ray c regul	lesig atio	gn n-			
Wind Energy Basics, Wind Speed sand scales, Terrain, Roughness, Wind Mechanics, Power Content, Class of wind turbines, Atmospheric Boundary Layers, Instrumentation for wind measurements, wind data analysis, tabulation, Betz's Limit, Turbulence Analysis. UNIT V AERODYNAMIC THEORY AND WIND TURBINES 9 0 0 9 Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems. Total (45L) = 45 Periods	UNI	IT IV	WIND ENERGY FUNDAMENTALS AND WIND M	EASUREMENT	ГS	9	0	0	9			
UNIT V AERODYNAMIC THEORY AND WIND TURBINES 9 0 0 9 Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor & Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems. Total (45L) = 45 Periods	Wine turbi Betz	d Energy ines, Atm z's Limit,	Basics, Wind Speed sand scales, Terrain, Roughness, Wind M ospheric Boundary Layers, Instrumentation for wind measur Turbulence Analysis.	echanics, Power C ements, wind data	Conter a anal	nt, Cla ysis,	ss of tabul	wir atio	nd n,			
Air foil terminology, Bladeelementtheory, Blade design, Rotor performance and dynamics, Balancing technique (Rotor& Blade), Types of loads, Sources of loads Vertical Axis, Horizontal Axis, Constant Speed Constant Frequency, Variable speed Variable Frequency, Stall Control, Pitch Control, Gear Coupled Generator type, Direct Generat or Drive systems. Total (45L) = 45 Periods	UNI	IT V	AERODYNAMIC THEORY AND WIND TURBINE	S		9	0	0	9			
Total (45L) = 45 Periods	Air (Rot Freq Gene	foil termi for& Blac luency, Va erat or Dr	nology, Bladeelementtheory, Blade design, Rotor performan le), Types of loads, Sources of loads Vertical Axis, Horiz ariable speed Variable Frequency, Stall Control, Pitch Control, ive systems.	ce and dynamics, zontal Axis, Cons Gear Coupled Ger	Bala stant nerato	ncing Speed or type	tech l Co e, Dir	niqu nsta ect	ue nt			
				Total	(45L) = 4	5 Pe	riod	ls			

REF	ERENCE BOOKS:
1	Sukhatme S.P., Nayak.J.P, 'SolarEnergy – Principle of Thermal Storage and collection'', TataMcGrawHill, 2008.
2	SolarEnergyInternational,"Photovoltaic – Designand InstallationManual" – New SocietyPublishers,2006.
3	DuffieA.andBeckannW.A., "SolarEngineeringofThermalProcesses, JohnWiley, 1991.
4	JohnDSorensenandJensNSorensen, "WindEnergySystems", WoodheadPublishing

COUR Upon c	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Classify and describe solar radiation and collectors.	Understand
<i>CO2</i>	Describe the principle and design the solar heating, cooling and other solar applications.	Understand
СОЗ	Explain the principle, working, design optimization of PV system for different applications.	Understand
<i>CO4</i>	Describe the basics and measurements of wind energy.	Understand
<i>C05</i>	Explain the aerodynamic constructional details of wind turbine.	Understand

								-		-				-	
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	1	0
CO2	3	1	2	1	0	0	0	0	0	0	0	0	3	2	0
CO3	3	2	2	0	1	0	0	0	0	1	0	0	3	2	2
CO4	3	2	0	1	0	1	0	0	0	0	0	0	3	2	0
CO5	3	2	0	0	1	1	0	0	0	0	0	0	3	2	0
Avg	3	1.8	1	0.6	0.5	0.4	0	0	0	0.2	0	0	3	1.8	0.4
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MF	EHO109	FIRE ENGINEERING AND EXPLOSION CO	ONTROL									
			CATEGORY	PE	Cre	edit	3					
		n	Louve/Wools	L	Т	Р	Т	Ή				
		H	IOUTS/ WEEK	3	0	0		3				
COUR	RSE OBJ	ECTIVES										
1	Tounders	standandlearn the fundamental soffire, explosion and theory of comparison of the transmission of transmission of the transmission of the transmission of the transmission of	ubustion.									
2	To know	various classes of fires & types of fire extinguishers										
3	To understand and learn various fire protection systems, components and their working											
4	To understand the various fire-resistant materials and to design fire protection of building											
5	To under	rstand the principles of explosion protection systems										
UNI	UNITI FIREANDEXPLOSIONS											
explo Flix b	sion –vaporough, N	our clouds– flash fire– jetfires– pool fires-auto-ignition–boilir Mexico disaster, Bombay Victoria dock ship explosions.	ng liquid expandi	ng va	apour	explo	sion	ι —				
UNI	ГП	FIRE PREVENTION AND PROTECTION			9	0	0	9				
Source variou and si	ces of igni us classes irens – foa	ition- fire triangle – principles of fire extinguishing – active offires- A,B, C,D,E –types of fire extinguishers- fire stoppe um generators – escape from fire rescue operations-fire drills-	e and passive fin ers– hydrant pipe notice- first aid fo	re pro es – l or bui	otectio noses ms.	on sys	atem aları	s– ns				
UNI	ГШ	FIRE PREVENTION AND PROTECTION			9	0	0	9				
Sprin install CO2s	kler-hydra lations, rel system, foa	nts-standpipes–specialfiresuppressionsystemslikedelugeanden liability, maintenance, evaluation and standards –alarmand de am system– smoke venting-firefighting systems.	nulsifier,selection etection systems,	supp	ria of ressic	the n syst	abo æms	ve s –				
UNI	ΓIV	BUILDING FIRE SAFETY			9	0	0	9				
Objec struct buildi	ctives of fi ural integr ings–snool	ire safe building design, Fire load, fire resistant material and rity-concept of egress design-with calculations-fire certificate kers.	l fire testing–stru es–fire safety req	ictura uirem	l fire	prote for hig	ctio gh ri	n– ise				
UNI	ΓV	EXPLOSION PROTECTING SYSTEMS			9	0	0	9				
Princi Conta gases dioxid	iples of ainment,Fl , suppress de(SO ₂),ch	explosion-detonation and blast waves-explosion pa ameArrestors, isolation, suppression, venting, explosion relieform sion system based on carbon dioxide (CO_2) and halons-haza lorine(Cl_2).	arameters – E argeenclosure- e ards in LPG, Ar	Explos xplos nmor	sion ion v ia(Nl	Prote ventin H ₃), S	ectic g-ine ulph	on, ert iur				
			Tot	al (4	5L) :	= 45]	Peri	ods				

REFEI	RENCE BOOKS:									
1	Gupta,R.S., "HandBookofFire Technology" OrientLongman, Bombay 1977.									
2	"AccidentPreventionmanualforindustrialoperations" N.S.C., Chicago, 1982.									
3	DinkoTuhtar,"Fireandexplosionprotection".									
4	"DavisDanieletal,"HandBookoffiretechnology".									
5	FirefightershazardousmaterialsreferencebookFirePreventioninFactories", anNostrandReinHold, New York, 1991.									

COUR Upon c	EXE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Describe the fundamentals of fire, explosion and theory of combustion.	Understand
<i>CO2</i>	Classify the fire, class of fire and equipment for fire extinguishing.	Understand
СО3	Explainvarious industrial fire protection systems components and their working.	Understand
<i>CO4</i>	Design the building with fire protection and concepts of their design.	Create
<i>C05</i>	Describe the explosion protection system for various application.	Understand

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	0	1	0	1	0	0	0	0	0	0	2	0	0
CO2	3	2	0	0	0	1	2	0	0	0	0	0	2	0	0
CO3	3	2	0	1	2	1	2	0	0	0	0	0	2	0	0
CO4	2	1	3	2	0	1	2	0	0	0	1	0	2	0	0
CO5	3	2	0	1	2	2	1	0	0	0	1	0	2	0	0
Avg	2.8	1.8	3	1.25	2	1.2	1.75	0	0	0	1	1	2	0	0
			3/2	2/1 – in	dicate	es strei	ngth of	f correla	ation (3	– high, 2	2- medium	n, 1- low)			

22ME	HO110	ENERGY MANAGEMENT AND ENVIRON BENEFITS	MENTAL										
			CATEGORY	PE	Crea	lit		3					
			TT // T	L	Т	Р	Т	H					
			Hours/Week	3	0	0		3					
COUR	SE OBJ	ECTIVES											
1	To create	a warenesson the energy scenario of India with respect to w	vorld										
2	To learn	the methodology adopted for an energy audit											
3	To appre	ciate the concepts adopted in project management											
4	4 Tostudythedifferenttechniquesadoptedforfinancialappraisalofaproject												
5	5 To Comprehend the impact of energy on environment												
UNIT	ГI	ENERGYSCENARIO			9	0	0	9					
Comp energy impor	arison of y deman tance, En	energy scenario – India and World (energy sources, general d, percapitaenergy consumption)– energy pricing–energy ergy Conservation Act 2001.	tion mix, consumption gy security-energy	on pa cons	ttern, servat	T&D ion	los and	ses, its					
UNI	ΓII	ENERGY MANAGEMENT			9	0	0	9					
Energ energy monit	y audit-n y substitu oring and	eed-types- methodology- barriers-analysis on energy cos ion-billing parameters in TANGEDCO-demand side manag targeting- CUSUM energy labeling.	ting and sharing be gement-instruments	for en	marki lergy	ng- f audit	uel –ene	and ergy					
UNI	r III	PROJECT MANAGEMENT			9	0	0	9					
Four Definit	Basic Elerition and () and Perf	nents of Project Management- Project Management Life C Scope, Technical Design, Financing, Contracting, Impleme formance Monitoring.	cycle- Stepsin Project entation Techniques	et Ma (Gan	nagen tt cha	nent- rt, Cl	Pro PM	ject and					
UNI	ΓIV	FINANCIAL MANAGEMENT			9	0	0	9					
Invest Returi	ment app noninvest	praisal for energy conservation projects - Financial ana nent,Netpresentvalue,Internalrateofreturn-Cashflows,Riskan	lysis techniques, S dsensitivityanalysis:	imple micro	payl pandm	back hacro	per facto	iod, ors.					
UNIT	ΓV	ENERGY AND ENVIRONMENT			9	0	0	9					
Green Conce Partie Carbo	house eff erns– Uni s (COP), on Fund(P	ect and the carbon cycle - current evidence and future effects ted Nations Frame work Convention on Climate Change Emissions trading (ET), Joint Implementation (JI), Clean E CF), sustainable development.	s of climate change (UNFCC),Kyoto P Development Mechan Total	– Glo rotoc nism (45L	bal En ol, Co (CDM L) = 4	nviro onfer 1),Pro 5 Pe	nme ence oto t	ntal of ype					
REFE	RENCE	BOOKS:											
1	Energy Manager Training Manual (4Volumes) available at http://www.em- ea.org/gbook1.asp, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government ofIndia.2004.												
2	L.C.W ton,198	itte,P.S.Schmidt,D.R.Brown,"IndustrialEnergyManagementan 88.	dUtilisation"Hemisp	hereP	ubl,W	/ashii	ıg						
3	W.C.tu	rner,"EnergyManagementHandbook"Wiley,NewYork,1982.											
4	W.R.M	lurphyandG.McKay"EnergyManagement"Butterworths,Londo	on1987.										
5	Eastop &Tech	T.D&Croft D.R,Energy Efficiency for Engine nical,ISBN-0-582-03184,1990.	eers andTechnolo	gists,	.Logr	nanS	cien	tific					

COUR Upon d	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Recognize the importance of energy conservation and suggest measures for improving percapita energy consumption.	Understand
<i>CO2</i>	Analyses the energy sharing and cost sharing pattern of fuel susedin industries.	Analyze
CO3	Apply Gantt Chart, CP M and PERT in energy conservation projects.	Apply
C04	Evaluate the techno-economics of a project adopting discounting and non-discounting cash flow techniques.	Evaluate
C05	Assess the sources of additional revenue generation for energy conservation projects adopting	Evaluate

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	0	1	0	0	0	1	1	0	0	2	2
CO2	3	2	0	0	0	1	0	0	0	0	0	2	0	2	0
CO3	3	1	1	1	0	1	0	0	0	0	0	0	0	2	3
CO4	3	2	0	0	0	0	1	0	0	0	0	1	0	0	2
CO5	2	1	0	0	1	2	1	0	0	0	0	0	0	0	0
Avg	2.8	1.6	1	1	1	1.25	1	0	1	1	1	1.5	0	2	0
			3/2/	'1 – ine	dicates	s stren	gth of	correla	tion (3 -	- high, 2-	- medium	, 1- low)			

VERTICAL 2 - COMPUTATIONAL ENGINEERING

		NUMERICAL METHODS IN MECHANICAL ENGI					
PREI	REQUISI	TES	CATEGORY	PE	Cre	edit	C
			Hours/Wook	L	Т	Р	TH
			110u15/ WEEK	3	0	0	3
COU	RSE OBJ	IECTIVES:					
1.	Upon co partial di	mpletion of this course, the students will understand and systematize ifferential equations governing the physics of mechanical engineerin	e numerical soluti g problems.	on tech	nique	es for	the
2.	Numeric would ot	cal Methods use computers to solve problems by step-wise, repeated therwise be tedious or unsolvable by hand-calculations.	and iterative solu	ition m	ethod	s, wh	ich
3.	This cou engineer	urse is designed to give an overview of numerical methods of rs.	interest to scient	ists an	id me	chan	ical
UN	9	0	0	9			
meth Meth	od for Sir	ngle root, multiple roots, Iterative method for Non-linear equation to TWO Iterations.	ons - Roots of p	olynor	nial:	Mull	er's
UN	TII	LINEAR ALGEBRAIC EQUATION		9	0	0	9
UNI Line Gaus regre	ar Algebrai as-Jacobi a ession, Para	LINEAR ALGEBRAIC EQUATION ic Equation - Gauss Elimination Method. Pitfalls and improving tec and Gauss-Seidel Iteration method. Curve Fitting & Interpolation abolic regression - Interpolation–Interpolating polynomial, Lagrang mula	chniques - LU de 1- Least Square 2e's interpolating	9 compo Regres polyno	0 sition sion - mial,	0 meth – Lin Divi	9 nod, near ded
UNI Line Gaus regre Diffe	T II ar Algebrai ss-Jacobi a ession, Para erence Forr T III	LINEAR ALGEBRAIC EQUATION ic Equation - Gauss Elimination Method. Pitfalls and improving tec and Gauss-Seidel Iteration method. Curve Fitting & Interpolation abolic regression - Interpolation–Interpolating polynomial, Lagrang mula NUMERICAL DIFFERENTIATION AND INTEGRATI	chniques - LU de - Least Square e's interpolating ON	9 compo Regres polyno 9	0 sition sion - omial, 0	0 meth - Lin Divid	9 nod, near ded 9
UNI Line Gaus regree Diffe UNI Num Integ diffe	TII ar Algebrai ass-Jacobi a ession, Para erence Form TIII arcal Diff gration of 1 rence Form rence Form rence Form rence Form rence Form rence Form	LINEAR ALGEBRAIC EQUATION ic Equation - Gauss Elimination Method. Pitfalls and improving tec ind Gauss-Seidel Iteration method. Curve Fitting & Interpolation abolic regression - Interpolation–Interpolating polynomial, Lagrang mula NUMERICAL DIFFERENTIATION AND INTEGRATI Ferentiation and Integration - Newton-Cote's Integration of equation Equation: Gauss Quadrature methods Numerical differentiation mula, Central difference Formula, Backward difference Formula, -	chniques - LU de n- Least Square re's interpolating ON n: Trapezoidal ru n: For Equally sp For unequally s	9 compo Regres polyno 9 le, Sim paced I paced 1	0 sition sion - omial, 0 apson' Data: Data:	0 meth – Lir Divid 0 s rule Forw Divid	9 nod, near ded 9 es - rard ded
UNI Gaus regro Diffe UNI Num Integ diffe UNI	T II ar Algebrai ss-Jacobi a ession, Para erence Forr T III herical Diff gration of 1 rence Form rence Form T IV	LINEAR ALGEBRAIC EQUATION ic Equation - Gauss Elimination Method. Pitfalls and improving tec and Gauss-Seidel Iteration method. Curve Fitting & Interpolation abolic regression - Interpolation–Interpolating polynomial, Lagrang mula NUMERICAL DIFFERENTIATION AND INTEGRATI Ferentiation and Integration - Newton-Cote's Integration of equation Equation: Gauss Quadrature methods Numerical differentiation nula, Central difference Formula, Backward difference Formula, - ORDINARY DIFFERENTIAL EQUATION	chniques - LU de n- Least Square e's interpolating ON n: Trapezoidal ru n: For Equally sp For unequally s	9 compo Regres polyno 9 le, Sim paced I paced I	0 sition sion - omial, 0 upson' Data: Data: 0	0 meth – Lir Divid 0 s rule Forw Divid	9 nod, near ded 9 es - rard ded 9
UNI Line Gaus regro Diffe UNI Num Integ diffe diffe UNI Ordi meth Pow	T II ar Algebrai ss-Jacobi a ession, Para erence Forr T III herical Diff gration of 1 rence Form rence Form rence Form T IV nary Diffe nod - Boun er method.	LINEAR ALGEBRAIC EQUATION ic Equation - Gauss Elimination Method. Pitfalls and improving technologic regression - Interpolation-Interpolating polynomial, Lagrang mula NUMERICAL DIFFERENTIATION AND INTEGRATI Ferentiation and Integration - Newton-Cote's Integration of equation Equation: Gauss Quadrature methods Numerical differentiation nula, Central difference Formula, Backward difference Formula, - order of the problem - Taylor's series method, Picard's Method, Euled method ary value Problem - Finite Difference Method Eigen value problem	chniques - LU de h- Least Square e's interpolating ON h: Trapezoidal ru : For Equally sp For unequally s er's Method, Ru blem: Eigen valu	9 compo Regres polyno 9 le, Sim paced I paced I paced I paced I	0 sition sion - omial, 0 upson' Data: Data: Data: 0 utta 4 blem b	0 meth – Lir Divio 0 s rulo Forw Divio Divio 0 th On pased	9 nod, near ded 9 es - rard ded 9 rder on
UNI Line Gaus regro Diffe UNI Integ diffe diffe UNI Ordi meth Powe	T II ar Algebrai ss-Jacobi a ession, Para erence Forr T III erical Diff gration of 1 rence Form rence Form (T IV nary Diffe od - Boun er method. T V	LINEAR ALGEBRAIC EQUATION ic Equation - Gauss Elimination Method. Pitfalls and improving technologic regression - Interpolation—Interpolating polynomial, Lagrang mula NUMERICAL DIFFERENTIATION AND INTEGRATI rerentiation and Integration - Newton-Cote's Integration of equation Equation: Gauss Quadrature methods Numerical differentiation mula, Central difference Formula, Backward difference Formula, - order of the problem - Finite Difference Method, Picard's Method, Euled method: Taylor's series method, Picard's Method, Euled method: PARTIAL DIFFERENTIAL EQUATION	chniques - LU de h- Least Square e's interpolating ON n: Trapezoidal ru : For Equally sp For unequally s er's Method, Ru blem: Eigen valu	9 compo Regres polyno 9 le, Sim paced I paced I paced I paced S 9	0 sition sion - omial, 0 apson' Data: Data: Data: 0 utta 4 olem t	0 meth – Lir Divid s ruld Forw Divid 0 th Or pased 0	9 od, iear ded 9 es - ard ded 9 rder on 9
UNI Line Gaus regro Diffe UNI Num Integ diffe diffe UNI Ordi meth Pow UNI Parti Poiss Only	T II ar Algebrai ss-Jacobi a ss-Jacobi a erence Form T III erical Diff gration of 1 rence Form anary Difference od - Boun er method. T V al Difference son's Equation	LINEAR ALGEBRAIC EQUATION ic Equation - Gauss Elimination Method. Pitfalls and improving tec and Gauss-Seidel Iteration method. Curve Fitting & Interpolation abolic regression - Interpolation–Interpolating polynomial, Lagrang mula NUMERICAL DIFFERENTIATION AND INTEGRATI rerentiation and Integration - Newton-Cote's Integration of equation Equation: Gauss Quadrature methods Numerical differentiation mula, Central difference Formula, Backward difference Formula, - orential Equation - Taylor's series method, Picard's Method, Eule material Equation - Taylor's series method Eigen value problem-Finite Difference Method Eigen value problem-Finite Difference-Elliptical equation, Liebmann ntial Equation - Finite Difference-Parabolic Equation - Implicit Method-	chniques - LU de h- Least Square e's interpolating ON n: Trapezoidal ru : For Equally sp For unequally s er's Method, Ru blem: Eigen valu n's method to S Crank-Nicolson	9 compo Regres polyno 9 le, Sim paced I paced I paced I paced I paced I paced I Solve I metho	0 sition sion - omial, 0 upson' Data: Data: Data: Data: 0 utta 4t olem t 0 Laplac od (Do	0 mettr – Lir Divid s ruld Forw Divid 0 th Or based 0 0 ce's	9 ood, iear ded 9 es - ard ded 9 rder on 9 and ion

TEXT B	OOKS:										
1.	B. S. Grewal and J. S. Grewal, "Numerical methods in Engineering and Science," 6 th Edition, Khanna publishers, New Delhi, 2004.										
2.	D. G. Luenberger, "Linear and Nonlinear Programming," Springer, 3rd Edition, 2008.										
REFER	RENCES:										
1.	K. E. Atkinson, "An Introduction to Numerical Analysis," Wiley, 2nd Edition, 1989.										
2.	S. D. Conte and C. de Boor, Elementary Numerical Analysis, Third Edition, Tata McGraw-Hill Education, 2005.										

3.	F.B. Hildebrand, Introduction to Numerical Analysis, Second (Revised) Edition, Courier Dover Publications, 1987.
4.	E. Kreyszig, Advanced Engineering Mathematics, Tenth Ed., John Wiley and Sons, 2010
5.	R. L. Burden and J. D. Faires, Numerical Analysis, 9th Edition (second Indian Reprint 2012), Brooks/Cole, 2011.
6.	L.N. Trefethen, David Bau III, Numerical Linear Algebra, SIAM, 1997.
7.	A.Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, Springer-Verlag, New York, 2000.

COUR Upon c	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Apply various methods to find roots of equations.	Apply
CO2	Implement different methods to solve simultaneous equations and apply the methods of Regression and interpolation.	Apply& Evaluate
CO3	Implement various numerical methods for differentiation and Integration.	Apply
<i>CO4</i>	Apply various methods to solve engineering problems with Ordinary differential equations.	Apply
<i>C05</i>	Solve Partial differential equations involved in Engineering Problems.	Apply

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO2	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO3	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO4	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
CO5	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
Avg	3	3	1	2	1	0	0	0	0	0	0	0	2	1	0
				3/2/1	– indi	icates	streng	gth of c	orrela	tion (3	– high,	2- medi	um, 1- lo [.]	w)	

22MEHO202											
PREREQUISI	res	CATEGORY	PE	Cr	edit	3					
			L	Т	Р	TE					
		Hours/Week	3	0	0	3					
COURSE OBJ	ECTIVES:										
1. Enhanced	understanding of fluid mechanics, including the equations of moti	on in differential for	rm and	l turbu	lence	e.					
UNIT I	UNIT I INTRODUCTION										
Eulerian and La Deformation of Education in In	agrangian Description of Fluid Motion, Lines of Flow Visualiza Fluid Elements, Linear and Volumetric Deformation; Perspective tegral Form Stream Function and Velocity Potential.	tion and Acceleration a	on of l servati	Flow, on, Co	Angu ontinu	ılar iity					
UNIT II	VISCOUS FLUID FLOW		9	0	0	9					
Euler Equation Reynolds Trans control volume tensor, Cauchy/	for Inviscid Flow, Bernoulli's Equation, Examples of Bernoulli's port Theorem Mass and Linear Momentum Conservation, Reyno , Reynolds transport theorem angular momentum conservation, I Navier equation, Navier Stokes equation.	Equation, Reynolds lds transport theorem ntroduction to traction	Trans m arbi	port E trarily ctor a	equati mov nd str	on, ing æss					
UNIT III	FLUID DYNAMICS		9	0	0	9					
Lubrication The	cory, Thin Film Dynamics, Stokes Flow past a Sphere.										
UNIT IV	TURBULENCE		9	0	0	9					
Introduction to Boundary Laye Momentum Inte	Turbulence, Statistical Treatment of Turbulence and Near - r Theory, Similarity Solution of Boundary Layer Equation, Mor gral Method and Boundary Layer Separation, Potential Flow.	Wall Velocity Prof nentum Integral Me	iles, I thod,	ntrodı Applio	ction catior	to to					
UNIT V	COMPRESSIBLE FLOWS		9	0	0	9					
Stagnation prop Nozzle- Compr	berties, Compressible Flows - variable area- Normal Shock- Conessible Flow with Friction.	verging Nozzle- Co	onverg	ing D	iverg	ing					
		Tota	l (45I	L) = 4	5 Pe	riod					

TEXT B	OOKS:
1.	Rouse, H. (1957), "Advanced Fluid Mechanics", John Wiley & Sons, N York
2.	Mohanty A.K. (1994), "Fluid Mechanics", Prentice Hall of India, N Delhi
REFER	RENCES:
1.	Wand D.J., and Harleman D.R. (91964) "Fluid Dynamics", Addison Wesley.
2.	Schlichting, H.: (1976) "Boundary Layer theory", International Text – Butterworth
3.	Lamb, H.R. (1945) "Hydrodynamics", Rover Publications
4.	White, F.M. (1980) "Viscous Fluid Flow", McGraw Hill Pub. Co, N York
5.	Yalin, M.S.(1971), "Theory of Hydraulic Models", McMillan Co., 1971.

COUR	SE OUTCOMES:	Bloom Taxonomy		
Upon o	completion of this course, the students will be able to:	Mapped		
<i>CO1</i>	Explain the fundamental concepts of fluid flow.	Understand		
<i>CO2</i>	Apply the Bernoulli to solve problems related to Viscous fluid flow.	Apply		
CO3	Device the concepts of fluid dynamics in various geometry.	Create		
<i>CO4</i>	Depict the turbulence of fluid flow.	Analyze		
<i>C05</i>	Interpret the knowledge for Compressible Flows in various geometrical configuration.	Evaluate		

COURSE AF	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO2	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO3	3	3	2	3	3	0	0	0	0	0	0	1	2	2	0
CO4	3	3	2	3	0	0	0	0	0	0	0	1	2	2	0
CO5	3	3	2	3	3	0	0	0	0	0	0	1	2	2	0
Avg	3	3	2	3	1.2	0	0	0	0	0	0	1	2	2	0
			3	/2/1 -	indic	ates s	trengt	h of co	orrela	tion (3 -	– high, ź	2- medi	um, 1- lo	w)	

22MI	ЕНО203	FUNDAMENTALS OF BIO-MECHANI					
PREF	REQUISI	TES	CATEGORY	PE	Cr	edit	С
1 B	asic know	wledge of physics and biology which includes kinetics		L	Т	Р	ТН
&k	inematics.	mode of physics and closedy which includes inferences	Hours/Week	3	0	0	3
COUI	RSE OBJ	IECTIVES:					
1.	Explain	the principles of mechanics.					
2.	Discuss	the mechanics of physiological systems.					
3.	Explain	the mechanics of joints.					
4.	Illustrate	e the mathematical models used in the analysis of biomechanical s	ystems				
UNI	TI	INTRODUCTION TO MECHANICS		9	0	0	9
Intro coup princ and equa	duction – le, Result ciples – Li acceleratio tions – Co	Scalars and vectors, Statics – Force types, Resolution and comp ant force determination, parallel forces in space, equilibrium near motion, Newton's laws of motion, Impulse and Momentum on, Kinematics – Link segment models, Force transducers, Fo institutive equations of Non-viscous fluid, Newtonian Viscous fluid	osition of forces, M of coplanar forces , Work and Energy rce plates, Introduc d and Hookean Elas	loment , Dyna Kinet ction to tic soli	s of t amics ics – o Co d	force - B Velo nstitu	and asic city tive
UNI	TII	BIO-FLUID MECHANICS		9	0	0	9
cylin mech Stres Bloo Prost	der and containing and contains in s as, Effect of d vessels, thetic hear	one and plate, Rheological properties of blood, Pressure-flow relat straight tube – Steady Laminar flow, Turbulent flow, Flow devo of pulsatility, Boundary Layer Separation, Structure of blood vess Heart – Cardiac muscle characterization, Native heart valves – Mo t valve fluid dynamics.	ionship for Non-Nevelopment, Viscous els, Material proper echanical properties	wtonia and Tu ties an and va	n Flu urbule d mo alve d	ids, F ent Sl deling lynam	luid neer g of nics,
UNI	TIII	BIO-SOLID MECHANICS		9	0	0	9
Cons circu mate Hill's	stitutive ec lation, ela rial proper s models, 1	quation of viscoelasticity – Maxwell & Voight models, anisot sticity and strength, viscoelastic properties, functional adaptation ties and modeling of Soft Tissues – Cartilage, Tendons and Liga mathematical modeling, Bone fracture mechanics, Implants for bo	rropy, Hard Tissues on, Soft Tissues – uments Skeletal Mus ne fracture	s – St Struct scle – I	ructu ure, f Musc	re, bl functi le act	ood ons, ion,
UNI	TIV	BIO-MECHANICS OF JOINTS		9	0	0	9
Skele of joins	etal joints, ints, Types vial joints,	forces and stresses in human joints, Analysis of rigid bodies in eq s of joints, Biomechanical analysis of elbow, shoulder, spinal colu Gait analysis, Motion analysis using video.	uilibrium, Free bod umn, hip, knee and	y diagr ankle,	ams, Lubri	Struc catio	ture n of
UNI	TV	MODELING AND ERGONOMICS		9	0	0	9
Intro disor vibra	duction to ders, Ergo ttions, Han	• Finite Element Analysis, finite element analysis of lumbar nomic principles contributing to good workplace design, Design of d transmitted vibrations.	spine; Ergonomics of a Computer work	s – M station	luscu n, Wł	loskel iole b	letal ody
			Tota	(45L) = 4	5 Pe	riods
ТЕХТ	F BOOK	S:					
1	YC	Fung "Bio-Mechanics- Mechanical Properties of Tissues" Sprir	oger-Verlag 1998				
2.	Sub	rata Pal. "Textbook of Biomechanics". Viva Books Private Limite	d. 2009.				
REI	FERENC	ES:	,=••••				
1.	Kris	hna B. Chandran, Ajit P. Yoganathan and Stanley E. Rittge ulation", Taylor and Francis, 2007.	ers, "Biofluid Meel	hanics	The	Hu	nan
2.	Sher	raz S. Malik and Shahbaz S. Malik, "Orthopaedic Biomechani s, 2015.	cs Made Easy", C	ambrid	lge U	niver	sity
3.	Jay	D. Humphrey, Sherry De Lange, "An Introduction to Biomech	nanics: Solids and I	Fluids,	Ana	lysis	and

	Design", Springer Science Business Media, 2004.
4.	Shrawan Kumar, "Biomechanics in Ergonomics", Second Edition, CRC Press 2007.
5.	Neil J. Mansfeild, "Human Response to Vibration", CRC Press, 2005.
6.	Carl J. Payton, "Biomechanical Evaluation of movement in sports and Exercise", 2008
7.	NPTEL: Mechanical Engineering - NOC:Biomechanics of Joints and Orthopaedic Implants

COUR Upon co	SE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the fundamentals of mechanics and its application in human system.	Understand
CO2	Understand the principles of bio-fluid dynamics and its application in human system.	Understand
CO3	Understand the fundamentals of bio-solid mechanics.	Understand
<i>CO4</i>	Analyze the biomechanics of different human joints and also the forces at a skeletal joint for various static and dynamic human activities.	Analyze
<i>CO</i> 5	Give Examples of computational mathematical modelling applied in Bio-mechanics.	Analyze

COURSE A	COURSE ARTICULATION MATRIX																					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3							
CO1	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0							
CO2	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0							
CO3	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0							
CO4	2	2	2	2	0	0	0	0	0	0	1	0	2	2	0							
CO5	2	2	2	2	2	0	0	0	0	0	1	0	2	2	0							
Avg	2	2	2	2	0.4	0	0	0	0	0	1	0	2	2	0							
				3/2/1	– indi	cates	streng	th of c	orrela	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)												

22MEHO204 INTRODUCTION TO MACHINE LEARNING												
PREF	REQUISIT	TES	CATEGORY	PE	Cre	dit	С					
Mac	hine learnin	ng is a mathematical discipline, and students will benefit from		L	Т	Р	ТН					
a go and e	od backgrou experience i	and in probability, linear algebra and calculus, programming, s essential.	Hours/Week	3	0	0	3					
COU	RSE OBJI	ECTIVES:										
1.	1. Understand a wide variety of learning algorithms.											
2.	Understar	nd how to evaluate models generated from data.										
3.	3. Apply the algorithms to a real problem.											
4.	Optimize	the models learned and report on the expected accuracy that can	be achieved by a	oplying	the m	odels	•					
UNI	TI	INTRODUCTION		9	0	0	9					
Intro hypo	oduction: Ba othesis space	asic definition-types of learning-designing a learning system-per e and inductive bias- evaluation-cross-validation.	spective and issu	es in m	achine	e leari	ning-					
UNI	TII	CONCEPT LEARNING AND THE GENERAL-TO-SI ORDERING	PECIFIC	9	0	0	9					
Intro and t	oduction-a c he candidat	concept task, concept learning as search-find S: finding a maxime elimination algorithm-remarks on version spaces and candidate	nally specific hyp elimination-indu	othesis ctive bi	- versi as.	ion sp	baces					
UNI	TIII	DECISION TREE LEARNING		9	0	0	9					
Intro algor learn	oduction-de rithm-hypot ing.	cision tree representation-appropriate problems for decision tree hesis space search in decision tree learning-inductive bias in deci	learning-the basi ision tree learning	c decis: g-issues	ion tre	e lean	rning tree					
UNI	TIV	ARTIFICIAL NEURAL NETWORKS		9	0	0	9					
Intro netw recog	duction-neu orks and th gnition, adv	ral network representation-appropriate problems for neural network propagation algorithm-remarks on the back propagation anced topics in artificial neural networks.	etwork learning- algorithm-an ill	percep ustrativ	trons- e exai	multi nple:	layer face					
UNI	TV	LEARNING SYSTEM		9	0	0	9					
Prob K ne comj	ability and larest neight olexity-VC	Bayes learning, bayes optimal classifier, gibbs algorithm, Naïve bour learning - locally weighted regression, Computational learn Dimension -Ensemble learning, analytical learning-learning with	payes classifier, ir ing theory-PAC l perfect domain th	nstance earning neories:	based mode prolo	learn el -Sa g –El	ing - mple 3G.					

Total (45L) = 45 Periods

REFERI	ENCES:
1.	Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997.
2.	Introduction to Machine Learning Edition 2, by Ethem Alpaydin
3.	T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer 2011. (Available for download on the authors' web-page: http://statweb.stanford.edu/~tibs/ElemStat Learn/)
4.	Kevin P. Murphy. Machine Learning: A Probabilistic Perspective, MIT Press 2012. (Electronic copy available through the Bodleian library.)
5.	Christopher M. Bishop. Pattern Recognition and Machine Learning, Springer 2007.
6.	S. Haykin. Neural networks and learning machines. Pearson 2008.

COUR Upon c	SE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
CO1	Have a good understanding of the fundamental issues and challenges of machine learning: data, model selection, model complexity, etc.	Understand
<i>CO2</i>	Have an understanding of the strengths and weaknesses of many popular machine learning approaches.	Understand
СО3	Appreciate the underlying mathematical relationships within and across Machine Learning algorithms and the paradigms of supervised and un-supervised learning.	Understand
<i>CO4</i>	Be able to design and implement Artificial Neural Networks algorithms in a range of real-world applications.	Create
<i>CO5</i>	Be able to design and implement various machine learning algorithms in a range of real-world applications.	Create

								-		-					-
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	1	3	0	0	0	0	0	0	1	2	2	0
CO2	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
CO3	2	2	0	1	3	0	0	0	0	0	0	1	2	2	0
CO4	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
CO5	2	2	0	1	3	0	3	0	0	0	0	1	2	2	0
Avg	2	2	0	1	3	0	1.8	0	0	0	0	1	2	2	0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEHO205	DESIGN OPTIMIZATION & DESIGN THI	EORY										
PREREQUISI	res	CATEGORY	PE	Cr	edit	С						
		II // I / -	L	Т	Р	TH						
		Hours/week	3	0	0	3						
			•									
COURSE OBJ	ECTIVES:											
1. The prin problems	hary objective of this course is for students to gain knowledge s into mathematical optimization problems that can be solved using	to translate practica g numerical method	l engir s for o	eerin ptimiz	g des zatior	ign 1						
UNIT I	UNIT I INTRODUCTION											
General Charace the objective for optimization tect	teristics of mechanical elements, adequate and optimum design, p function, design constraints, and classification of optimization hniques	rinciples of optimiz n problems. Single	ation, f e and	formu mult	latior ivaria	ı of ıble						
UNIT II	DESIGN OPTIMIZATION TECHNIQUE		9	0	0	9						
The technique interpolation me	of unconstrained minimization. The golden section, Random, ethods, and equality and inequality constraints.	Pattern, and Gradi	ent sea	arch 1	netho	ods,						
UNIT III	PROGRAMME		9	0	0	9						
Direct methods programming, C	and indirect methods using penalty function, Lagrange multipli Genetic algorithms	ers, Geometric prog	rammi	ing, st	tocha	stic						
UNIT IV	ENGINEERING APPLICATION		9	0	0	9						
Engineering ap maximum weig	plications, structural-design application axial and transverse ht. Design of shafts and torsion members, design optimization of s	loaded members springs.	for m	inimu	ım c	ost,						
UNIT V	DYNAMICS APPLICATION90											
Dynamics appli	cations for a two-degree freedom system. Vibration absorbers. Ap	plication in mechan	isms.									
		Tota	l (45L	L) = 4	5 Pe	riods						

TEXT B	OOKS:
1.	S. S. Rao, Engineering Optimization: Theory and Practice, 4th edition, John Wiley & Sons, 2009. ISBN: 0470183527.
2.	Kalyanmoy Deb, "Optimization for Engineering Design", Prentice Hall of India, New Delhi, 2005
REFER	ZENCES:
1.	R.C. Johnson, "Optimum Design of Mechanical Elements", Willey, New York, 1980
2.	Kalyanmoy Deb, "Evolutionary multi-objective optimization, Willey, New York.
3.	S. S. Stricker, "Optimising performance of energy systems" Battelle Press, New York, 1985.
4.	J. S. Arora, "Introduction to Optimum Design", McGraw Hill, New York, 1989.
5.	L.C.W. Dixon, "Non-Linear Optimisation - Theory and Algorithms", Birkhauser, Boston, 1980.
6.	R.J. Duffin, E.L. Peterson and C.Zener "Geometric Programming-Theory and Applications", Willey, New York, 1967.
7.	G.B.Dantzig "Linear Programming and Extensions Princeton University Press", Princeton, N. J., 1963
8.	R. Bellman "Dynamic Programming-Princeton" University Press, Princeton, N.J. 1957.

COUR Upon c	SE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
CO1	Demonstrate an understanding of how design optimization fits into the overall engineering design process.	Create
CO2	Formulate practical engineering design problems as well-posed optimization problems.	Create
CO3	Determine the advantages and disadvantages of applying different optimization techniques for a specific problem.	Analyze
CO4	Model and analyze multi-objective and multi-disciplinary optimization problems.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1	0	0	0	0	0	0	2	2	2	0
CO2	2	2	3	3	1	0	0	0	0	0	0	2	2	2	0
CO3	2	2	2	3	1	0	0	0	0	0	0	2	2	2	0
CO4	2	2	2	3	1	0	0	0	0	0	0	2	2	2	0
Avg	2	2	2.5	3	1	0	0	0	0	0	0	2	2	2	0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22ME	EHO206	ADVANCED FINITE ELEMENT METHO	DDS	1			
PRER	REQUISI	TES	CATEGORY	PE	Cr	edit	С
				L	Т	P	TH
			Hours/Week	3	0	0	3
COUI	RSE OBJ	ECTIVES:		1			
1.	To devel	op a thorough understanding of the advanced finite element analysis	sis techniques.				
2.	An abilit	y to effectively use the tools of the analysis for solving practical p	roblems arising in e	nginee	ering	desig	n.
3.	To under	stand and solve the Finite Element 1-D structural and 2-D structur	al problems.				
4.	To devel	op and understand the dynamic problems in structures					
5.	To gain t	he knowledge of FEM for heat transfer analysis and flow analysis					
UNI	ΤΙ	INTRODUCTION		9	0	0	9
Linea Diffe Shap of nu	ar/Non-line erential equ be functions umerical int	aretc., Historical Perspective of FEM and applicability to me ation as the starting point for FEM, steps in finite element method, Linear Elements, Local and Global coordinates, Coordinate trans- egration, Nodal degrees of freedom. Compatibility conditions, As	chanical engineerin d, discretization, typ sformation and Gau sembly and boundar	ng des bes of o ss- Leg ry cons	ign p eleme gendr sidera	oroble ents u e sch tions	ems. sed, eme
UNI	TII	ONE DIMENSIONAL PROBLEMS		9	9		
condi conti space invol	itions and inuity (C0 e frames an lving 1-D e	introduction to contact problems. Beams and Frames: Review and C1 Continuity), interpolation for beam elements and formu d examples problems involving hand calculations. Algorithmic a lements.	w of bending of t lation of FE chara pproach for develop	beams, cterist ping c	higł ics, P ompu	her o Plane ter co	rder and odes
UNI	TII	TWO DIMENSIONAL PROBLEMS		9	0	0	9
Interj form eleme of tw	polation in ulation for ents, sub pa vo-dimension	two dimensions, natural coordinates, Isoparametric representation plane stress plane strain and axi-symmetric problems; Triangular arametric, Isoparametric and super parametric elements. General on problems. Introduction plate bending elements and shell element	on, Concept of Jacc and Quadrilateral el considerations in fin tts.	bian. ement nite ele	Finite s, hig ement	e eler her o t anal	nent rder ysis
UNI	TIV	DYNAMIC ANALYSIS		9	0	0	9
FE f Form damp	formulation nulation of ping and for	in dynamic problems in structures using Lagragian Method, dynamic equations of motion and introduction to the solutior mulation of damping matrices, Model analysis, Mode superpositi	Consistent and lu on procedures. Mo on methods and red	mped delling uction	mass g of s techr	moo struct nique	lels, ural s.
UNI	TV	FEM IN HEAT TRANSFER & FLUID MECHANICS		9	0	0	9
Finite chara boun basec	e element acteristics a daries. Intr d on Potent	solution for one dimensional heat conduction with convectiv nd simple numerical problems. Formulation for 2-D and 3-D heat oduction to thermo-elastic contact problems. Finite element appli- ial function and stream function. Design case studies.	e boundaries. Forr at conduction probl ications in potentia	nulatio ems w l flowa	on of vith co s; For	elen onvec mula	nent ctive tion
			Total	(45L) = 4	5 Pe	riods
REFE	ERENCES): 					
1.	K. J.	Bathe, Finite Element Procedures, Prentice-Hall of India Private L	limited, New Delhi,	1996			
2.	J. C. 1	Simo and T. J. R. Hughes, Computational Inelasticity, Springer-V	erlag New York, In	c., Nev	w Yoi	:k, 19	98
3.	Cook	and Robert Davis etal, "Concepts and Applications of Finite Elen	nent Analysis", 4th	Editio	n, Joh	ın Wi	ley
4.	Seger	lind L.J, "Applied Finite Element Analysis", 2nd Edition, John W	ïley, 1984.				

5. O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mechanics, Fifth Edition, Butterworth-Heinemann, Oxford,

COUR Upon c	SE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
<i>C01</i>	Understand the concept of the finite element method for solving design problems.	Understand
<i>CO2</i>	Formulate and solve manually problems in 1-D structural systems involving bars, trusses, beams and frames.	Apply
СО3	Develop 2-D FE formulations involving triangular, quadrilateral elements, and higher- order elements	Create
<i>CO4</i>	Apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	Evaluate
<i>C05</i>	Apply the knowledge of FEM for heat transfer analysis and flow analysis	Apply

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	3	1	0	0	0	1	1	0	0	0	1	2	0
CO2	3	1	3	3	3	0	0	1	1	0	0	0	0	0	3
CO3	3	1	3	3	2	0	0	1	1	0	0	0	0	0	0
CO4	3	2	3	3	2	0	2	2	1	0	0	0	1	2	0
CO5	3	1	1	1	1	0	0	0	1	0	0	0	1	1	0
Avg	3.0	1.2	2.6	2.2	1.6	0.0	0.4	1.0	1.0	0.0	0.0	0.0	0.6	1.0	0.6
				3/2/1	l – ind	licate	s strei	ngth of	corre	lation (3 – higl	n, 2- med	ium, 1- lo	w)	

22MI	EHO207	ADVANCED COMPUTATIONAL FLUID DYNA	MICS (CFD)							
PREF	REQUISIT	TES	CATEGORY	PE	Cr	edit	3			
Knov	vledge of u	ndergraduate heat transfer and fluid mechanics, basic		L	Т	P	TI			
comp	outational fl	uid dynamics	Hours/Week	3	300solving non-lirse is to teach 0, grid generatio uction to turbule900900e and finite vol d implicit meth900ue, SOR), CGS					
COUI	RSE OBJI	ECTIVES:	I				1			
1.	The prim partial dif technique complex modelling	ary objective of the course is to teach fundamentals of comp fferential equations (PDE) primarily in complex geometry. The s for solving incompressible and compressible N-S equation geometry, transformation of N-S equation in curvilinear coording.	putational method for e emphasis of the con in primitive variable ate system and introd	or solv urse is s, grid ductior	ing n to te gene to tu	on-lin ach C eration urbule	near CFD n in ence			
UNI	ΤI	INTRODUCTION		9	0	9				
Brief meth upwi	introduction od, exampl nd and cent	on of boundary layer flow, incompressible and compressible f e of parabolic and hyperbolic systems and time discretization ral difference schemes, stability, dissipation and dispersion error	lows, finite difference technique, explicit au 's	ce and nd imp	finite olicit	e volu metho	ıme ods,			
UNI	T II	SOLUTION OF SIMULTANEOUS EQUATIONS		9 0 0						
Point CGS	titerative/bl TAB and G	ock iterative methods, Gauss-Seidel iteration (concept of centra MRES (m) matrix solvers, different acceleration techniques.	l coefficient and resid	due, S	OR),	CGS,	Bi-			
UNI	T III	INCOMPRESSIBLE FLOW		9	0	0	9			
High incor Predi boun boun	er order up npressible l ctor - Cor dary condit dary condit	wind schemes: second order convective schemes, QUICK. N-S equation (Explicit time stepping, Semi–explicit time stepp rector step, discretization of N-S and continuity equations, tions (no-slip, moving wall, slip boundary and inflow cond ions for unsteady flows, algorithm for the SMAC method, stabil	Solution of NS eq bing). SMAC method Pressure correction tions), outflow (zer ity considerations for	uations d for s Poisse o grac SMA	s: So stagge on's lient/ C me	lution red g equat Orlan thod.	of grid: ion, ski)			
UNI	T IV	FDE IN COMPLEX GEOMETRIES		9	0	0	9			
Trans parar N-S e	sformation neters and t equations in	of governing equation in $\xi \eta$ – plane, transformation of Lapla he accuracy of the solution, basic facts about transformation, gr transformed plane, matrices and Jacobians	ce equation, introdu	ction t compl	to geo ex ge	ometr ometr	ical ries.			
UNI	ΤV	COMPRESSIBLE FLOW		9	0	0	9			
N-S treatr Stege equat	and energy ment such er and War tions: MacC	equations, properties of Euler equation, linearization. Solution as Lax-Wendroff, MacCormark, Beam and Warming scheme ming, Van Leer's flux splitting, Roe's approximate Riemann Cormack, Jameson algorithm in finite volume formulation and tra-	of Euler equation: 1 s, Upwind schemes solver, TVD schem ansformed coordinate	Explic for E es. So e system	it and uler lution m.	l imp equat n of 1	licit ion: N-S			
			Total	(45L)	= 45	5 Per	iod			
EXT	BOOKS	:								

1.Computational Fluid Flow and Heat Transfer, Second Edition by K. Muralidhar, T. Sundararajan (Narosa), 2011.2.Computational Fluid Dynamics by Chung T. J., Cambridge University Press, 2003.3.Computational Fluid Dynamics by Tapan K. Sengupta, University Press, 2005.4.Numerical Computation of Internal and External Flows by Hirch C., Elesvier 2007. REFERENCES: 1.K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 19962.J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 19983.Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley		
 Computational Fluid Dynamics by Chung T. J., Cambridge University Press, 2003. Computational Fluid Dynamics by Tapan K. Sengupta, University Press, 2005. Numerical Computation of Internal and External Flows by Hirch C., Elesvier 2007. REFERENCES: K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996 J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998 Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001. 	1.	Computational Fluid Flow and Heat Transfer, Second Edition by K. Muralidhar, T. Sundararajan (Narosa), 2011.
 Computational Fluid Dynamics by Tapan K. Sengupta, University Press, 2005. Numerical Computation of Internal and External Flows by Hirch C., Elesvier 2007. REFERENCES: K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996 J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998 Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001. 	2.	Computational Fluid Dynamics by Chung T. J., Cambridge University Press, 2003.
 Numerical Computation of Internal and External Flows by Hirch C., Elesvier 2007. REFENCES: K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996 J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998 Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001. 	3.	Computational Fluid Dynamics by Tapan K. Sengupta, University Press, 2005.
REFERENCES: 1. K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996 2. J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998 3. Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.	4.	Numerical Computation of Internal and External Flows by Hirch C., Elesvier 2007.
1. K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996 2. J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998 3. Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.	REFER	ZENCES:
 J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998 Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001. 	1.	K. J. Bathe, Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi, 1996
3. Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.	2.	J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer-Verlag New York, Inc., New York, 1998
	3.	Cook and Robert Davis et.al, "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley and Sons, 2001.

4.	Segerlind L.J, "Applied Finite Element Analysis", 2nd Edition, John Wiley, 1984.
5.	O. C. Zienkiewicz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mechanics, Fifth Edition, Butterworth-Heinemann, Oxford,

COUR Upon c	SE OUTCOMES: ompletion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand and be able to numerically solve the incompressible and compressible flows.	Understand
<i>CO2</i>	Solve computational problems related to iterative methods.	Evaluate
СОЗ	Solve the problems related to incompressible fluid flow.	Evaluate
<i>CO4</i>	Interpret the knowledge, capability of analyzing and solving FDE in complex geometries problem.	Apply
<i>C05</i>	Solve the problems related to compressible fluid flow.	Evaluate

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO2	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
CO3	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
CO4	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO5	2	2	1	3	2	0	0	0	0	0	0	0	2	2	0
Avg	2	2	1	2.2	2	0	0	0	0	0	0	0	2	2	0
				3/2/1	- ind	icates	stren	gth of	correl	ation (3	– high,	2- med	ium, 1- lo	ow)	
22MEHO2	208 SMART MATERIALS AND STRUCT	URES													
---	---	--	--	---	--	---------------------------------------	--	--							
PREREQU	UISITES	CATEGORY	PE	Cı	edit	3									
	Hours/Week				P	ТН									
					0	3									
COURSE			•												
1. Kno app	owledge of smart materials and structures is essential designing me lications, the course aims at training students in smart materials and	chanical systems for a structures application	dvanc and an	ed en alysis	ginee	ring									
UNIT I	SMART STRUCTURES		9	0	0	9									
Types of S Smart Stru field strain with induc dual Actu Piezoelect	Smart Structures, Potential Feasibility of Smart Structures, Key Ele actures. Piezoelectric materials, Properties, piezoelectric Constituti a relation. Hysteresis, Creep and Strain Rate effects, Inchworm Line eed strain Rate effects, Inchworm Linear Motor Beam Modeling with actors, Pure Extension, Pure Bending harmonic excitation, rical Applications.	ements of Smart Struct ve Relations, Depoling ar Motor. Beam Mode n induced strain Actuat Bernoulli-Euler beam	ures, A g and (ling: B tion-sin n Moc	Applic Coersi eam I ngle A lel, j	cation ive Fi Mode Actuat proble	s of eld, ling cors, ems,									
UNIT II	SHAPE MEMORY ALLOY		9	0	0	9									
Experimer SMA Wir Mechanisr Response.	ntal Phenomenology, Shape Memory Effect, Phase Transformationes, Vibration Control through SMA, Multiplexing. Applications Cons and properties, Fluid Composition and behavior, The Bingha Post-Yield flow applications in Clutches, Dampers and Others.	n, Tanaka's Constituti f SMA and Problems. m Plastic and Related	ve Mo ER a d Mod	del, 1 nd M lels, 1	esting R Flu Pre-Y	g of ids: ield									
UNIT III	VIBRATION ABSORBERS		9	0	0	9									
series and Characteri Strategies	Parallel Damped Vibrations (OverView), Active Vibration Absorbatics, Sensors, Fiber Optics in Crack Detection, applications. and Limitations, Active Structures in Practice. 13Hours	orbers, Fiber Optics, I Control of Structures	Physica : Mod	al Pho eling	enom , Con	ena, itrol									
UNIT IV	MEMS		9	0	0	9									
Mechanica Characteri	al Properties of MEMS Materials, Scaling of Mechanical System stics of MEMS, Miniaturization, Microelectronics Integration.	ns, Fundamentals of T	Theory,	, The	Intri	nsic									
UNIT V	DEVICES		9	0	0	9									
Sensors an Flexural B	nd Actuators, Conductivity of Semiconductors, Crystal Planes and eam Bending Analysis Under Simple Loading Conditions), Polyme	l Orientation, (Stress a rs in MEMS, Optical M	and St ⁄IEMS	rain I Appl	Relation ication	ons, ns.									
		Tota	al (451	L) = 4	45 Pe	eriods									
TEXT BO	OKS:														
1.	Smart Materials and Structures - M. V. Gandhi and B. So Thompso 1992 (ISBN: 0412370107).	on, Chapman and Hall,	, Lond	on; N	ew Y	ork,									
2.	Smart Structures and Materials - B. Culshaw, Artech House, Bo Structures: Analysis and Design - A. V. Srinivasan, Cambridge Un (ISBN: 0521650267).	ston, 1996 (ISBN :08 iversity Press, Cambrid	90066 1ge; No	817). ew Ye	3. Sr ork, 2	nart 001									
REFERE	ENCES:														
1.	Electro ceramics: Materials, Properties and Applications - A. J. &Sons, ISBN: 0471497429	Moulson and J. M.	Herbei	rt. Jol	hn W	iley									
2.	2. Piezoelectric Sensories: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors. Materials and Amplifiers, Springer, Berlin; New York, 2002 (ISBN: 3540422595).														
3.	Piezoelectric Actuators and Transonic Motors - K. Uchino, Kluwer Academic Publishers, Boston, 1997 (ISBN: 0792398114).														

4. Handbook of Giant Magneto strictive Materials - G. Engdahl, Academic Press, San Diego, Calif.; London, 2000 (ISBN: 012238640X).

5	Shape Memory Materials - K. Otsuka and C. M. Wayman, Cambridge University Press, Cambridge; New
5.	York, 199~ (ISBN: 052144487X).

COURSI Upon cor	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Understand the behavior and applicability of various smart materials	Understand					
<i>CO2</i>	Design simple models for smart structures & materials	Create					
СОЗ	Perform simulations of smart structures & materials application	Analyse					
<i>CO</i> 4	Conduct experiments to verify the predictions	Analyze					

				1		1								r	r
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO2	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO3	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
CO4	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
Avg	2	2	1	1	2	0	0	0	0	0	0	0	2	2	0
				3/2/1	- ind	icates	stren	gth of	correl	ation (3	- high,	, 2- med	ium, 1- le	ow)	

PREREQUISITES CATEGORY Hours/Week PE PR Cr-edit Credit 3 COURSE OBJECTIVES: I T T PI PI 1 To study about the various types of stresses act in the pressure vessels I I To study about the various types of stresses act in the pressure vessels. I I To study about design or opingen related to design of pressure vessels. I I To study about design or opingen related to design of pressure vessels. I	22MF	EHO209	DESIGN OF PRESSURE VESSELS						
Ilours/Week L T P TH ILOURSE OBJECTIVES: 1. To study about the various types of stresses act in the pressure vessels. 2. To design components of pressure vessels. 3. To study about design of pipes related to design of pressure vessels. 5. To study about the design of pipes related to design of pressure vessels. STRESSES IN PRESSURE VESSELS 9 0 0 STRESSES IN PRESSURE VESSELS STRESSES IN PRESSURE VESSELS 9 0 0 Of study about the design of pipes related to design of pressure vessels. STRESSES IN PRESSURE VESSELS 9 0 0 9 Of study about the design of pipes related to design of smart Structures, Applications. Structures, Piccelectric Intervorm Linear Motor Beam Modeling with induced strain Actuation-single Actuators, dual Actuators, Pine Extension, Pure Extension, Pure Extension, Pure Extension, Pure Extension, and oriental pressure and its application of stresses in vessel under internal pressure and its application of stresses in vessel under internal pressure and its application of stresses in vessels. UNIT II DESIGN OF VESSELS USING CODES 9 0 0 <td< th=""><th>PRER</th><th>EQUISI</th><th>res</th><th>CATEGORY</th><th>PE</th><th>Cr</th><th>edit</th><th>3</th></td<>	PRER	EQUISI	res	CATEGORY	PE	Cr	edit	3	
Induity Week 3 0 0 3 COURSE OBJECTIVES: 1. To study about the various types of stresses act in the pressure vessels.				L	Т	Р	TH		
COURSE OBJECTIVES: 1. To study about the various types of stresses act in the pressure vessels. I			Hours/Week			0	0	3	
1. To study about the various types of stresses act in the pressure vessels 2. To design components of pressure vessels. 3. To study the design of pipes related to design of pressure vessels. 5. To study about the design of pipes related to design of pressure vessels. 5. To study about the design of pipes related to design of pressure vessels. 9. 0. 0. 9 10. Vessels SES IN PRESSURE VESSELS 9 0. 0 9 7. Structures, Prezodectric matterials, Properties, piezodectric Constitutive Relations, Depoling and Corsive Field, and Actuation-single Actuators, Pare Estension, Pure Bending harmonic excitation, Bernoulli-Euler beam Modeling: Wait induced strain Actuation-single Actuators, Pure Estension, Pure Bending harmonic excitation and pressure and its application to shells (Cylindrical, Conical ads Spherical) and end closures. Bending of circular plate and determination of strusses in simply supported and charmonic strustes and determination. Plastic instandity, similar and econformation of strusses with advective to avail to advect and advect and advect and the using of pressure vessel. 9 0 0 9 10 0 9 10 0 9 10 0 9 10 0 0 10 10 10 10 10 10 10 10 10 10 10	COUI	COURSE OBJECTIVES:							
2. To design components of pressure vessel using codes and standards. 3. To study about design considerations of pressure vessels. 5. To study about the design of pipes related to design of pressure vessels. VENTE I 70 study about the design of pipes related to design of pressure vessels. UNIT I STRESSES IN PRESSURE VESSELS 9 0 0 9 To study about the design of pressure vessels. UNIT I STRESSES IN PRESSURE VESSELS 9 0 0 9 Types of Smart Structures, Potential Feasibility of Smart Structures, Key Elements of Smart Structures, Potential Feasibility of Smart and Acertafics, Creep and Strand Rate effects, Inchworn Linear Motel mean Modeling with induced strain Acentation-single Actuators, Pure Estension, Pure Bending harmonic excitation, Bernouli-Euler beam Modeling with induced strain Acentation-single Actuators, Pure Estension, Pure Bending farmonic excitation to shells (CylIndrical, Concing) and reinforce on perimetion and state and determination of stresses in simply supported and Camped circular plate. Thermal stresses, Stress concentration in plate having circular hole due to bi-axial loading. Excessive clastic deformation, Plate instability, Britit urpture and recep. Theory of reinforced opening and reinforcement limits, design of composite analysis, wind and seismic load consideration in the design of pressure vessel. UNIT II UNIT III UPPORTS FOR VERTICAL	1.	To study	about the various types of stresses act in the pressure vessels						
3. To study the design the supportive members of pressure vessels. 4. To study about design considerations of pressure vessels. 5. To study about the design of pipes related to design of pressure vessels. 7. VERSESE IN PRESSURE VESSELS 9 0 0 9 7. Study about the design of pipes related to design of pressure vessels. 9 0 0 0 9 7. Study about the design of pipes related to design of pressure vessels. 9 0	2.	To desig	n components of pressure vessel using codes and standards.						
4. To study about design considerations of pressure vessels. 5 To study about the design of pipes related to design of pressure vessels. UNIT I STRESSES IN PRESSURE VESSELS 9 0 0 9 Types of Smart Structures, Nepticientic constitutive Relations, Depoling and Coersive Field, field strain rate (ricets, Inchworn Linear Motor Beam Modeling with induced strain Actuation-single Actuators, dual Actuators, Pure Extension, Pure Bending harmonic excitation, Bernoulli-Fuler beam Model, problems, Prezoclectrical Applications. UNIT II DESIGN OF VESSELS USING CODES 9 0 0 9 General theory of membrane stresses in vessel under internal pressure and its application to shells (Cylindrical, Conical and Spherical) and conducres. Bending of circular plates and determination of stresses in simply supported and reinforcement limits, design of composite analysis, wind and seismic load consideration in the design of pressure vessel. 9 0 0 9 UNIT III SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 9 UNIT III Supports for short vertical vessel, stress concentration in the aving circular hole due to bi-axil leading. Fireks set set set set set set set set set se	3.	To study	the design the supportive members of pressure vessels.						
5 To study about the design of pipes related to design of pressure vessels. UNIT I STRESSES IN PRESSURE VESSELS 9 0 0 9 Types of Smart Structures, Potential Feasibility of Smart Structures, Key Elements of Smart Structures, Applications of Smart Structures, Prezolectric materials, Properties, piezoelectric Constitutive Relations, Depoling and Coersive Field, field strain rate effects, Inchworm Linear Motor Beam Modeling: Depoletions, Pure Estension, Pure Bending harmonic excitation, Bernoulli-Ealer beam Model, Problems, Piezoelectrical Applications. UNIT II DESIGN OF VESSELS USING CODES 9 0 0 9 General theory of membrane stresses in vessel under internal pressure and its application to shells (Cylindrical, Conical and Spherical) and end closures. Bending of circular plates and determination of stresses in simply supported and clamped circular plate. Thermal stresses, Stress concentration in plate having circular hole due to bi-axial loading. Excessive elastic deformation. Plastic instability, Britnet rupture and creep. Theory of reinforced opening and reinforcement limits, design of composite analysis, wind and seismic load consideration in the design of pressure vessel. UNIT II SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0	4.	To study	about design considerations of pressure vessels.						
UNIT I STRESSES IN PRESSURE VESSELS 9 0 0 9 Types of Smart Structures, Potential Feasibility of Smart Structures, Key Elements of Smart Structures, Applications of Smart Structures, Prezolectric materials, Properties, piezoelectric Constitutive Relations, Depoling and Coersive Field, field strain relation. Hysteresis, Creep and Strain Rate effects, Inchworm Linear Motor Beam Modeling: Beam Modeling: Beam Modeling: Heam Modeling: Heat Conciliant and Spherical) and end closures. Bending of circular plates and determination of stresses in simply supported and clamped circular plate. Thermal stresses, Stress concentration in plate having circular hold two to bi-sixial loading. Excessive elastic deformation, Plastic instability, Brittle rupture and creep. Theory of reinforced opening and reinforcement limits, design of composite analysis, wind and selsmic load consideration in the design of pressure vessel. 9 0 0 9 UNIT II SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 9 UNIT III SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 9 UNIT III SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 9 UNIT IV OTHER DESIGN CONSIDERATIONS 9 <td< td=""><td>5</td><td>To study</td><td>about the design of pipes related to design of pressure vessels.</td><td></td><td></td><td></td><td></td><td></td></td<>	5	To study	about the design of pipes related to design of pressure vessels.						
Types of Smart Structures, Potential Feasibility of Smart Structures, Key Elements of Smart Structures, Applications of Smart Structures, Piezoelectric materials, Properties, piezoelectric Constitutive Relations, Depoling and Corersive Field, Ifeld strain Rate effects, Inchworm Linear Motor Beam Modeling with induced strain Actuation-single Actuators, dual Actuators, Pure Extension, Pure Bending harmonic excitation, Bernoulli-Euler beam Modeling with induced strain Actuations. UNIT II DESIGN OF VESSELS USING CODES 9 0 0 9 General theory of membrane stresses in vessel under internal pressure and its application to shells (Cylindrical, Conical and Spherical) and end closures. Bending of circular plates and determination of stresses in simply supported and reinforcement limits, design of composite analysis, wind and seismic load consideration in the design of pressure vessel. 9 0 0 9 Introduction to ASME codes for pressure vessel design, Pressure vessel and related components' design using ASME codes; Supports for short vertical vessels, Stress concentration in plate stransition section in a cylindrical vessel; Design of nozzles. 9 0 0 9 UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9 0 0 9 UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9 0 0 9 UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9	UNI	ТІ	STRESSES IN PRESSURE VESSELS		9	0	0	9	
UNIT II DESIGN OF VESSELS USING CODES 9 0 0 9 General theory of membrane stresses in vessel under internal pressure and its application to shells (Cylindrical, Conical and Spherical) and end closures. Bending of circular plates and determination of stresses in simply supported and clamped circular plate. Thermal stresses, Stress concentration in plate having circular hole to bi-axial loading, Excessive elastic deformation, Plastic instability, Brittle rupture and creep. Theory of reinforced opening and reinforcement limits, design of composite analysis, wind and seismic load consideration in the design of pressure vessel. 9 0 0 0 9 UNIT III SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 0 9 Introduction to ASME codes for pressure vessel design, Pressure vessel and related components' design using ASME codes; Stopports for short vertical vessels, Stress concentration at a variable thickness transition section in a cylindrical vessel; Design of nozzles. 9 0 0 9 UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9 0 0 9 Buckling phenomenon, Elastic Buckling of circular ring and cylinders under external pressure and Axial loading. Fatigue, shock, hiph pressure vessels, vessels resistant to external high pressures found in undersea exploration, offshore drilling, and mineral mining. UNIT IV PIPING DESIGN 9 0 0 9 <t< th=""><th>Smar field with dual Piezo</th><th>t Structure strain relat induced str Actuators pelectrical</th><th>s. Piezoelectric materials, Properties, piezoelectric Constitutive I ion. Hysteresis, Creep and Strain Rate effects, Inchworm Linear M rain Rate effects, Inchworm Linear Motor Beam Modeling with in , Pure Extension, Pure Bending harmonic excitation, Ber Applications.</th><th>Relations, Depoling Motor. Beam Model duced strain Actuat noulli-Euler beam</th><th>and C ing: B ion-sin Mod</th><th>Coersi eam I ngle A lel, j</th><th>ive F Mode Actua proble</th><th>ield, eling tors, ems,</th></t<>	Smar field with dual Piezo	t Structure strain relat induced str Actuators pelectrical	s. Piezoelectric materials, Properties, piezoelectric Constitutive I ion. Hysteresis, Creep and Strain Rate effects, Inchworm Linear M rain Rate effects, Inchworm Linear Motor Beam Modeling with in , Pure Extension, Pure Bending harmonic excitation, Ber Applications.	Relations, Depoling Motor. Beam Model duced strain Actuat noulli-Euler beam	and C ing: B ion-sin Mod	Coersi eam I ngle A lel, j	ive F Mode Actua proble	ield, eling tors, ems,	
General theory of membrane stresses in vessel under internal pressure and its application to shells (Cylindrical, Conical and Spherical) and end closures. Bending of circular plates and determination of stresses in simply supported and clamped circular plate. Thermal stresses, Stress concentration in plate having circular hole due to bi-axial loading, Excessive elastic deformation, Plastic instability, Brittle rupture and creep. Theory of reinforced opening and reinforcement limits, design of composite analysis, wind and seismic load consideration in the design of pressure vessel. UNIT III SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 9 Introduction to ASME codes for pressure vessel design, Pressure vessel and related components' design using ASME codes; Supports for short vertical vessels, Stress concentration at a variable thickness transition section in a cylindrical vessel; Design of nozzles. 9 0 0 9 UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9 Buckling phenomenon, Elastic Buckling of circular ring and cylinders under external pressure, collapse of thick-walled cylinders or tubes under external pressure, Effect of supports on Elastic Buckling of Cylinders, Design of circumferential stiffeners, and buckling under combined External pressure and Axial loading. Fatigue, shock, high pressure vessels, Vessels resistant to external high pressures found in undersea exploration, offshore drilling, and mineral mining. UNIT V PIPING DESIGN 9 0 0 9 0 0 9 0 0	UNI	TII	DESIGN OF VESSELS USING CODES		9	0	0	9	
UNIT III SUPPORTS FOR VERTICAL & HORIZONTAL VESSELS 9 0 0 9 Introduction to ASME codes for pressure vessel design, Pressure vessel and related components' design using ASME codes; Supports for short vertical vessels, Stress concentration at a variable thickness transition section in a cylindrical vessel; Design of nozzles. 9 0 0 9 UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9 Buckling phenomenon, Elastic Buckling of circular ring and cylinders under external pressure, Collapse of thick-walled cylinders or tubes under external pressure, Effect of supports on Elastic Buckling of Cylinders, Design of circumferential stiffeners, and buckling under combined External pressure and Axial loading. Fatigue, shock, high pressure, high temperature, irradiation, corrosion, and other hostile environments; High strength, light weight pressure vessels, Vessels resistant to external high pressures found in undersea exploration, offshore drilling, and mineral mining. UNIT V PIPING DESIGN 9 0 0 9 Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves. Types of piping supports and their behavior; Introduction to piping Codes and Standards. Total (45L) = 45 Periods Itemp H Bednar, "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Hand book," CBS publishers and distributo	and S clamp Excess reinfo	Spherical) ped circula ssive elast prcement li	and end closures. Bending of circular plates and determination ar plate. Thermal stresses, Stress concentration in plate having tic deformation, Plastic instability, Brittle rupture and creep mits, design of composite analysis, wind and seismic load conside	n of stresses in si circular hole due b. Theory of reinf cration in the design	mply to bi forced of pre	suppo -axial oper essure	orted load ning vess	and ling, and el.	
Introduction to ASME codes for pressure vessel design, Pressure vessel and related components' design using ASME codes; Supports for short vertical vessels, Stress concentration at a variable thickness transition section in a cylindrical vessel; Design of nozzles. UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9 Buckling phenomenon, Elastic Buckling of circular ring and cylinders under external pressure, Collapse of thick-walled cylinders or tubes under external pressure, Effect of supports on Elastic Buckling of Cylinders, Design of circumferential stiffeners, and buckling under combined External pressure and Axial loading. Fatigue, shock, high pressure, high temperature, irradiation, corrosion, and other hostile environments; High strength, light weight pressure vessels, Vessels resistant to external high pressures found in undersea exploration, offshore drilling, and mineral mining. UNIT V PIPING DESIGN 9 0 0 9 Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves. Types of piping supports and their behavior; Introduction to piping Codes and Standards. Total (45L) = 45 Periods 1. Dennis Moss "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Manual" 1. Harvey J F, "Pressure vessel Design Manual" 2. Brownell L. E & Young, E. D, "Process equipment desi	UNI	TIII	SUPPORTS FOR VERTICAL & HORIZONTAL VES	SELS	9	0	0	9	
UNIT IV OTHER DESIGN CONSIDERATIONS 9 0 0 9 Buckling phenomenon, Elastic Buckling of circular ring and cylinders under external pressure, Collapse of thick-walled cylinders or tubes under external pressure, Effect of supports on Elastic Buckling of Cylinders, Design of circumferential stiffeners, and buckling under combined External pressure and Axial loading. Fatigue, shock, high pressure, high temperature, irradiation, corrosion, and other hostile environments; High strength, light weight pressure vessels, Vessels resistant to external high pressures found in undersea exploration, offshore drilling, and mineral mining. UNIT V PIPING DESIGN 9 0 0 9 Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves. Types of piping supports and their behavior; Introduction to piping Codes and Standards. Total (45L) = 45 Periods 1 Dennis Moss "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Manual" 2. 2. Henry J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young, E. D, "Process equipment design", Wiley Eastern Ltd., India. 3. 3. Stanley M Wales, "Chemical Process Equipment Aselgerion and Design". Butterworths Sutterworths	Introd codes vesse	duction to s; Supports l; Design c	ASME codes for pressure vessel design, Pressure vessel and re for short vertical vessels, Stress concentration at a variable thic of nozzles.	lated components' ekness transition see	design ction i	usin n a c	g AS ylind	SME rical	
Buckling phenomenon, Elastic Buckling of circular ring and cylinders under external pressure, Collapse of thick-walled cylinders or tubes under external pressure, Effect of supports on Elastic Buckling of Cylinders, Design of circumferential stiffeners, and buckling under combined External pressure and Axial loading. Fatigue, shock, high pressure, high temperature, irradiation, corrosion, and other hostile environments; High strength, light weight pressure vessels, Vessels resistant to external high pressures found in undersea exploration, offshore drilling, and mineral mining. UNIT V PIPING DESIGN 9 0 0 9 Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves. Types of piping supports and their behavior; Introduction to piping Codes and Standards. Total (45L) = 45 Periods TEXT BOOKS: 1 Dennis Moss "Pressure Vessel Design Manual" 2 Henry H Bednar, "Pressure vessel Design Manual" 2. Henry H Bednar, "Pressure vessel design", CBS, publication. Image: References: 1 Harvey J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. 3 Stanley M Wales, "Chemical Process Equipment. Selection and Design" Butterworths	UNI	T IV	OTHER DESIGN CONSIDERATIONS		9	0	0	9	
UNIT VPIPING DESIGN9009Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves. Types of piping supports and their behavior; Introduction to piping Codes and Standards.Total (45L) = 45 PeriodsText BOOKS:1.Dennis Moss "Pressure Vessel Design Manual"2.Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors.REFERENCES:1.Harvey J F, "Pressure vessel design", CBS, publication.2.Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India.3.Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths	Buck cylind stiffe tempo resist	ling pheno ders or tub ners, and erature, irra ant to exter	menon, Elastic Buckling of circular ring and cylinders under ext es under external pressure, Effect of supports on Elastic Buckling buckling under combined External pressure and Axial loadin adiation, corrosion, and other hostile environments; High strengt rnal high pressures found in undersea exploration, offshore drillin	ernal pressure, Coll of Cylinders, Desig g. Fatigue, shock, h, light weight press g, and mineral minin	apse o gn of o high sure vo ng.	of thic circum press essels	ck-wa nfere ure, 1 s, Ves	alled ntial high ssels	
Flow diagram, Piping layout and piping stress analysis; Flexibility factor and stress intensification factor; Design of piping system as per B31.1 piping code. Piping components - bends, tees, bellows and valves. Types of piping supports and their behavior; Introduction to piping Codes and Standards. Total (45L) = 45 Periods Total (45L) = 45 Periods Text BOOKS: 1. Dennis Moss "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors. REFERENCES: 1. Harvey J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. 3. Stanley M Wales, "Chemical Process Equipment. Selection and Design" Butterworths	UNI	ΤV	PIPING DESIGN		9	0	0	9	
Total (45L) = 45 Periods TEXT BOOKS: 1. Dennis Moss "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors. REFERENCES: 1. Harvey J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. 3. Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths	Flow pipin and th	diagram, g system a heir behavi	Piping layout and piping stress analysis; Flexibility factor and s per B31.1 piping code. Piping components - bends, tees, bellow or; Introduction to piping Codes and Standards.	stress intensifications was and valves. Type	on fac es of p	tor; I piping	Desig supp	n of oorts	
TEXT BOOKS: 1. Dennis Moss "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors. REFERENCES: 1. Harvey J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. 3. Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths				Tota	l (451	L) = 4	45 P	eriods	
TEXT BOOKS: 1. Dennis Moss "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors. REFERENCES: 1. Harvey J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. 3. Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths									
1. Dennis Moss "Pressure Vessel Design Manual" 2. Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors. REFERENCES: 1. Harvey J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. 3. Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths	ТЕХТ	BOOKS	:						
 Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors. REFERENCES: Harvey J F, "Pressure vessel design", CBS, publication. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths 	1.	Denn	is Moss "Pressure Vessel Design Manual"						
REFERENCES: 1. Harvey J F, "Pressure vessel design", CBS, publication. 2. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. 3. Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths	2.	Henry	y H Bednar, "Pressure vessel Design Hand book", CBS publishers	and distributors.					
 Harvey J F, "Pressure vessel design", CBS, publication. Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. Stanley M Wales, "Chemical Process Equipment, Selection and Design" Butterworths 	REF	ERENCI	ES:						
 Brownell L. E & Young. E. D, "Process equipment design", Wiley Eastern Ltd., India. Stanley M Wales. "Chemical Process Equipment, Selection and Design" Butterworths 	1.	Harve	ey J F, "Pressure vessel design", CBS, publication.						
3. Stanley M Wales. "Chemical Process Equipment, Selection and Design" Butterworths	2.	Brow	nell L. E & Young. E. D, "Process equipment design", Wilev Eas	tern Ltd., India.					
	3	3. Stanley M Wales. "Chemical Process Equipment, Selection and Design". Butterworths.							

4.	Series in Chemical Engineering, 1988. 6. J. Phillip Ellenberger "Pressure Vessels: ASME Code Simplified".
5.	"ASME Pressure Vessel and Boiler Code", Section VIII Div. 1, 2, and 3.
6.	"American standard code for pressure piping", B 31.1.
7.	Smith P, "Fundamentals of Piping Design", Elsevier.

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	Determine stresses in pressure vessels	Evaluate					
<i>CO2</i>	Design pressure vessels using ASME codes	Create					
СОЗ	Design support members of pressure vessels	Create					
<i>CO4</i>	Apply other design considerations for pressure vessels	Apply					
<i>C05</i>	Design of pressurized fluid piping	Create					

														-	-
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	2	0	0	0	0	0	0	0	0	3	3	0
CO2	2	3	3	3	0	0	0	0	0	0	0	0	3	3	0
CO3	2	3	3	3	0	0	0	0	0	0	0	0	3	3	0
CO4	3	1	1	1	0	0	0	0	0	0	0	0	3	3	0
CO5	2	3	3	3	0	0	0	0	0	0	0	0	3	3	0
Avg	2	2.4	2.4	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3	3	0.0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															

22MEH	O210	MECHANICAL VIBRATIONS				
PREREQUISI		TTES CATEGORY	PE	Cr	edit	3
		Hours/Week	L	Т	Р	TH
			3	0	0	3
COURS	E OBJ	JECTIVES:				
1.	To u	inderstand the Fundamentals of Vibration and its practical applications.				
2.	To u	inderstand the characteristics of free and forced vibration.				
3.	To u	inderstand the Single and Multi DOF of vibration system.				
4.	To u	inderstand the working principle and operations of various vibration measuring instrumen	ts			
5	To u	inderstand about the vibration analysis methods.				
UNIT I		FUNDAMENTALS OF VIBRATIONS	9	0	0	9
		\mathbf{n}		าเลรรเ	TICATIO	
 period steps inv UNIT I Free un formulat 	IC, non volved i I damped ion of	in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS id single DOF vibration system – Longitudinal, transverse, torsional vibration system differential equations by newton, energy, lagrangian and Rayleigh's method. Viscous da	9 stem – mped s	0 - Me syster	0 thods m – u	9 for nder
 period steps inv UNIT I Free un formulat damped, damping UNIT I 	IC, non volved i I damped ion of critica g. II	FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS in vibration analysis. FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS ind single DOF vibration system – Longitudinal, transverse, torsional vibration system differential equations by newton, energy, lagrangian and Rayleigh's method. Viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined vibration system vibration of SINGLE DEGREE OF FREEDOM SYSTEMS	9 stem – mped s scous	0 - Me system and c	0 thods m – u coulor	9 for nder nb's 9
 period steps inv UNIT I Free un formulat damped, damping UNIT I Forced S motion e isolators UNIT I 	IC, non rolved i I dampedion of critica g. II Single 1 excitati & mou	FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS Id single DOF vibration system – Longitudinal, transverse, torsional vibration system fifterential equations by newton, energy, lagrangian and Rayleigh's method. Viscous data ally damped, over damped – logarithmic decrement – Coulomb's damping; combined vibration for system – Analysis of linear and torsional systems subjected to harmonic force exclusion (excluding elastic damper) – vibration isolation – force transmissibility – motion traunts – Rotor dynamics, critical speed of single rotor, undamped and damped. VIBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS	9 stem – mped s scous 9 eitation ansmiss	0 - Me system and c 0 a and sibilit	0 thods m – u coulor 0 harmety, typ	9 for nder nb's 9 onic pical
 period steps inv UNIT I Free un formulat damped, damping UNIT I Forced S motion e isolators UNIT I Free und Matrix a method f 	IC, non volved i damped ion of critica g. II Single I excitati & mou V damped ion Stiff for line for tran	 FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS d single DOF vibration system – Longitudinal, transverse, torsional vibration systedifferential equations by newton, energy, lagrangian and Rayleigh's method. Viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined vibration (excluding elastic damper) – vibration isolation – force transmissibility – motion tratunts – Rotor dynamics, critical speed of single rotor, undamped and damped. VIBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS d Multi Degree of Freedom vibration system – Influence Coefficients and stiffness coffness Matrix - Eigen values and Eigen vectors for linear system and torsional two degree ar and torsional unbalanced system; Two rotors, three rotors and geared system; Dunket asverse vibratory system. 	9 stem – mped s scous 9 citation ansmiss 9 efficie re of fr rley's a	0 - Me system and c and c and sibilities 0 nts- 1 eedon and F	0 thods m – u coulor 0 harmety, typ 0 Flexib m; Ho Rayleig	for nder nb's 9 onic bical 9 illity dlzer gh's
 period steps inv UNIT I Free un formulat damped, damping UNIT I Forced S motion e isolators UNIT I Free und Matrix a method f UNIT V 	IC, non rolved i damped ion of critica g. II Single I excitati & mou V damped for line for tran	 FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS d single DOF vibration system – Longitudinal, transverse, torsional vibration system fifterential equations by newton, energy, lagrangian and Rayleigh's method. Viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous da ally damped, over damped – logarithmic decrement – Coulomb's damping; combined viscous dates and torsional systems subjected to harmonic force excision (excluding elastic damper) – vibration isolation – force transmissibility – motion traunts – Rotor dynamics, critical speed of single rotor, undamped and damped. VIBRATION OF MULTI DEGREE OF FREEDOM SYSTEMS d Multi Degree of Freedom vibration system – Influence Coefficients and stiffness coefficients and torsional unbalanced system; Two rotors, three rotors and geared system; Dunker sverse vibratory system. VIBRATION MEASURING INSTRUMENTS AND VIBRATION ANALYSIS 	9 stem – mped s scous 9 citation ansmiss 9 efficie e of fr rley's a 9	0 - Me system and c 0 and sibilit 0 nts- I eedon and F 0	0 thods m – u coulor 0 harme ty, typ 0 Flexib m; Ho Cayleig	for nder nb's 9 onic bical 9 illity ulzer gh's 9

TEXT BOOKS:							
1.	Mechanical Vibration by V.P.Singh						
2.	Singiresu S. Rao, "Mechanical Vibrations", Pearson Education Incorporated, 2017.						

REFERENCES:								
1.	Benson H. Tongue, "Principles of Vibrations", Oxford University, 2007.							
2.	Grover. G.K., edited by Nigam. S. P., "Mechanical Vibrations", Nem Chand and Bros., 2014.							

3.	David A. Bies and Colin H. Hansen, "Engineering Noise Control – Theory and Practice", Spon Press, 2009.
4.	Julian Happian-Smith – "An Introduction to Modern Vehicle Design", Butterworth-Heinemann, 2001.
5.	William T. Thomson, "Theory of Vibration with Applications", Taylor and Francis, 2003.
6.	Balakumar Balachandran and Edward B. Magrab, "Fundamentals of Vibrations", 1st Editon, Cengage Learning, 2009
7.	Grover. G.T., "Mechanical Vibrations", Nem Chand and Bros., 2009
8.	NPTEL :: Mechanical Engineering - NOC:Introduction to Mechanical Vibration

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:					
C01	Determine stresses in pressure vessels	Evaluate				
<i>CO2</i>	Design pressure vessels using ASME codes	Create				
CO3	Design support members of pressure vessels	Create				
<i>CO4</i>	Apply other design considerations for pressure vessels	Apply				
<i>CO5</i>	Design of pressurized fluid piping	Create				

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2	1	0	0	0	0	0	0	0	0	2	2	0
CO2	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO3	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO4	3	3	2	2	0	0	0	0	0	0	0	0	2	2	0
CO5	1	1	2	2	0	0	0	0	0	0	0	0	2	2	0
Avg	2.2	2.4	2	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	2	0.0
				3/2/1 -	– indi	cates s	strengt	th of co	orrelat	ion (3 –	high, 2	- mediu	m, 1- low)	

VERTICALS -3 PRODUCT AND PROCESS DEVELOPMENT

2224	EUO201	DECISION ENCINEEDING					
	EHUSUI	PRECISION ENGINEERING	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~		
PRE	REQUISI	TES	CATEGORY	PE	3		
			Hours/Week	L	TH		
			Hours/ Week	3	0	0	3
COU	RSE OBJ	ECTIVES:					
1.	Explain	he need and progress of precision engineering.					
2.	To know	about the principle and working of different methods of precision	machining.				
3.	To under	stand about micromachining.					
4.	To know	about Laser devices and machine vision.					
5.	To under	stand about SEM and 3D surface topography.					
U	J NIT I	INTRODUCTION		9	0	0	9
Intro – No	oduction to a ormal, Preci	Precision Engineering, Need for precision manufacturing, Four C sion, High-precision, Ultraprecision Processes and Nanotechnolog	lasses of Achievable	e Mach	nining	; Accu	iracy
U	NIT II	PRECISION MACHINING		9	0	0	9
Over micr	rview of M o-grinding,	licro- and Nano-machining, Conventional micro machining teo Ultra-precision diamond turning, SPDT Single point diamond tur	chniques - micro t ning.	urning	, mic	ro-mi	lling,
U	NIT III	MICRO MACHINING		9	0	0	9
Micr micr	ro electrica omachining	l discharge machining, Photochemical machining, Electro g, Electron beam micromachining, Focused Ion Beam micromachi	chemical microma ning, etc	chining	g, La	iser 1	beam
U	NIT IV	LASER AND OPTICS		9	0	0	9
Micr micr	ro electrica omachining	l discharge machining, Photochemical machining, Electro g, Electron beam micromachining, Focused Ion Beam micromachi	chemical microma ning.	chining	g, La	aser	beam
U	NIT V	MEASUREMENT AND CHARACTERISATION		9	0	0	9
Meas confe micr	surement o ocal Micros oscopes, Pa	f Typical Nanofeatures, Surface metrology - 3D surface topogracopy, Interferometry, Non-optical Scanning Microscopy – Scann rameters for characterizing 3D surface topography.	aphy - Need, Measing electron Micros	sureme copes,	ent – Scan	Chronning p	natic probe
			Total (45L) :	= 45	Perio	ods

Total (45L) = 45 Periods

TEXT E	BOOKS:							
1.	Jain, V.K., Introduction to micromachining, Narosa publishers, 2018							
2.	Venktesh V.C., Sudin Izman, Precision Engineering, Tata Mc.Graw Hill Publishing Company, New Delhi 2007.							
REFER	REFERENCES:							
1.	David Dornfeld, Dae-Eun Lee, Precision Manufacturing, Springer, 2008							
2.	Kevin Harding, "Handbook of Optical Dimensional Metrology, Series: Series in Optics and optoelectronics", Taylor & Francis, 2013							
3.	Murty, R.L., Precision Engineering in Manufacturing, New Age publishers, 2005.							

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:					
C01	Impart knowledge progress of precision engineering	Understand				
<i>CO2</i>	Identify principle and working of different methods of precision machining	Understand				
СО3	Apply knowledge on micromachining	Apply				
<i>CO4</i>	Define the uses of Laser devices and machine vision	Remember				
<i>C05</i>	Apply knowledge on Surface metrology	Apply				

PSO3

2.2

COURSE ARTICULATION MATRIX COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 CO1 **CO2 CO3 CO4 CO5** 2.2 1.6 1.0 0.0 1.0 0.0 0.0 0.0 0.0 2.6 1.2 2.6 0.6 0.6 Avg 3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)

22MEH	0302	ADVANCED MATERIALS TECHNOLOGY						
PRERE	QUISI	TES CATEGORY	PE	3				
		Hours/Wook	L	L T P				
		Hours/ week	3	0	0	3		
COURS	E OBJ	ECTIVES:						
1. To	underst	and knowledge of crack and failure of metals						
2. To	know a	lifferent types of coatings						
3. Ap	oply kno	owledge of composites						
4. To	underst	and properties of modern alloys						
5. To	know a	bout advanced aerospace alloys						
UNIT	ΓI	REVIEW OF MECHANICAL BEHAVIOUR OF MATERIALS	9	0	0	9		
UNIT Mechani implanta	II ical surf	SURFACE MODIFICATION OF MATERIALS face treatment and coating –Case hardening and hard facing –thermal spraying –Va iffusion coating –electroplating and electroforming –conversion coating –Ceramic	9 apour de	0 eposit anic c	0 ion – coatin	9 Ion g –		
Diamono	d coatin	g – Advanced surface modification of steels		0	0			
	III	ADVANCED HEAT TREATMENT OF MATERIALS	9	0	0	9		
Compos	ite- Typ	bes- Natural composites- Metal matrix composites- Ceramic matrix composites- App	lication	s				
UNIT	IV	MODERN MATERIALS AND ALLOYS	9	0	0	9		
Super al refractor	loys Ha ies, Sili	astelloy, Inconel, Invar, and Monel and uses.–Refractory materials - Fireclay refra ca brick, Magnesite refractories	ctories.	High	alum	ina		
Ceramic Alumini	and the um-Nic	eir applications - Low melting alloys Mercury, Cadmium, Zinc, Lead– Shape mem kel and Nickel -Titanium	ory allo	oys -(Coppe	er –		
UNIT	' V	APPLICATION OF ADVANCED MATERIALS	9	0	0	9		
Ti and N Newer n AH36, D	Ni based naterials DH36, a	I alloys for gas turbine applications –Maraging (Low carbon and high Nickel) as and their treatment for automobile applications – Materials for aerospace (AL600 nd EH36)and nuclear systems	nd cryc 51,AL 7	genic 075),	steel Mari	.s – ne(
		Total	(45L) :	= 45	Perio	ods		

TEXT B	TEXT BOOKS:								
1.	Dowling, ''Mechanical Behaviour Of Materials, Engineering Method Of Determination, Fracture'', Mcgraw Hill, 1999								
2.	Dieter, 'Engineering Design, A materials And Processing Approach'', Third Edition, Mcgraw Hill,1999								
REFERF	ENCES:								
1.	P.Rama Rao, "Advances In Materials And Their Applications", Willey Eastern Ltd., 1993.								
2.	Serope Kalpakjian, "Manufacturing Engineering And Technology' Third Edition, Addison Wisley Publishing Co.,1995.								
3.	Kennith G .Budinski, "Surface Engineering For Wear Resistance", Prentice Hall, 1998.								
4.	Dieter, ''Mechanical Metallurgy' 'Mcgraw Hill, 1989								
5.	D.R.Gabe, 'Principles Of Metal Surface Treatment And Protection', Pergamon Press1978.								

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:					
C01	Impartknowledge of crack and failure of metals	Understand				
<i>CO2</i>	Identify the different types of coatings	Understand				
СО3	Applyknowledge of composites	Apply				
<i>CO4</i>	Define the properties of modern alloys	Remember				
<i>C05</i>	Provide information of advanced aerospace alloys	Remember				

COURSE ARTICULATION MATRIX COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 CO1 **CO2 CO3 CO4 CO5** 2.2 1.6 1.0 0.0 1.0 0.0 0.0 0.0 0.0 2.6 1.2 2.2 2.6 0.6 0.6 Avg 3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)

PRE	EHU303	ADDITIVE MANOFACTORING					-		
	REQUIS	TES	CATEGORY	PE	Cr	edit	3		
1. M	Ianufacturir	g technology, Drafting software	Hours/Week	L	Т	Р	ТН		
2. Er	ngineering N	Aaterials	Hours/ Week	3 0					
COU	RSE OBJ	ECTIVES:							
1.	To introdu	ice the development of Additive Manufacturing (AM), various bu	siness opportunities	and ap	oplica	tions			
2.	To familia developme	rize various software tools, processes and techniques to create phy ent / prototyping requirements, using AM.	vsical objects that sa	atisfy p	roduc	t			
3.	To be acqu	nainted with vat polymerization and material extrusion processes.							
4.	To be fam	iliar with powder bed fusion and direct energy deposition.							
5.	To gain kr	owledge on applications of binder jetting, material jetting and lan	ninated object manu	facturi	ng pro	ocess	es		
U	NIT I	INTRODUCTION		9	0	0	9		
Prop UI Con DFA Stru	NIT II Cepts and C M for Par cture Gene	DESIGN FOR ADDITIVE MANUFACTURING (DFAN bjectives- AM Unique Capabilities: Part Consolidation-Topology t Quality Improvement. Data Processing - CAD Model Prepa ration -Model Slicing - Tool Path Generation-Customized	I) Optimization Ligh aration -Part Orien Design and Fabric	9 It weig tation cation	0 ht Str and 3 for 1	0 uctur Suppo Medio	9 e - ort cal		
App UN	lications- C	ase Studies. VAT POLYMERIZATION AND MATERIAL EXTRU	SION	9	0	0	9		
Phot Digi Dep	to polymeri tal Light P osition Mod	zation: Stereo lithography Apparatus (SLA)- Materials -Process - rocessing (DLP) - Materials – Process - Advantages - Applica leling (FDM)- Process-Materials - Applications and Limitations.	Advantages Limita tions. Extrusion Ba	tions ased Sy	Appli /stem	cation : Fus	ns. ed		
UN	NIT IV	POWDER BED FUSION AND DIRECT ENERGY DE	POSITION	9	0	0	9		
Pow Typi Proc	der Bed Fu ical Materia ess - Advar m Depositio	ision: Selective Laser Sintering (SLS): Process – Powder Fusions and Application. Selective Laser Melting (SLM) and Electronatages and Applications.	on Mechanism –Pr on Beam Melting ((EBM)	Paran : Mat	neters erials	- -		
Bear Mate	erials -Bene	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications.	aterial Delivery - P	rocess	Parar	neter	s -		
Bear Mate	NIT V	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE	aterial Delivery - P	rocess 9	Parar 0	neter 0	s - 9		
Bean Mate Ul Bind Mod Prind	NIT V ler Jetting: leling- Mato ciple- Mech	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE Three -Dimensional Printing - Materials -Process - Benefits and erials - Process - Benefits. Sheet Lamination Process: Laminated anism: Gluing or Adhesive Bonding – Thermal Bonding- Materia	aterial Delivery - P CS Limitations. Materi 1 Object Manufactu Ils-Application and	9 ial Jetti uring (I Limita	Parar 0 Ing: N LOM) tion.	0 Iulti- - Bas	s - 9 jet sic		
Bear Mate Ul Binc Mod Princ	NIT V ler Jetting: leling- Mato ciple- Mech	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE Three -Dimensional Printing - Materials -Process - Benefits and erials - Process - Benefits. Sheet Lamination Process: Laminated anism: Gluing or Adhesive Bonding – Thermal Bonding- Materia	aterial Delivery - P S Limitations. Material Object Manufactu Is-Application and Total (4)	9 ial Jetti uring (I Limita ISL) =	Parar 0 Ing: M LOM) tion. 45 P	0 Iulti- Bas	s - 9 jet sic ds		
Bear Mate Ul Binc Mod Princ	NIT V ler Jetting: leling- Mato ciple- Mech	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE Three -Dimensional Printing - Materials -Process - Benefits and erials - Process - Benefits. Sheet Lamination Process: Laminated anism: Gluing or Adhesive Bonding – Thermal Bonding- Materia	aterial Delivery - P CS Limitations. Materi 1 Object Manufactu Ils-Application and Total (4	9 ial Jetti Iring (I Limita ISL) =	Parar 0 .ng: N LOM) tion. 45 P	0 Iulti- - Bas ?erio	s - 9 jet sic ds		
Bean Mat Ul Binc Moc Princ	NIT V ler Jetting: leling- Mate ciple- Mech	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE Three -Dimensional Printing - Materials -Process - Benefits and erials - Process - Benefits. Sheet Lamination Process: Laminated anism: Gluing or Adhesive Bonding – Thermal Bonding- Materia	aterial Delivery - P CS Limitations. Materi 1 Object Manufactu Is-Application and Total (4	9 ial Jetti rring (I Limita ISL) =	0 Ing: N LOM) tion. 45 P	0 Iulti- - Bas	s - jet sic ds		
Bean Mat Ul Binc Moc Prin	NIT V ler Jetting: leling- Mate ciple- Mech T BOOKS Andrea Manuf	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE Three -Dimensional Printing - Materials -Process - Benefits and erials - Process - Benefits. Sheet Lamination Process: Laminated anism: Gluing or Adhesive Bonding – Thermal Bonding- Materia S: as Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D acturing", Hanser publications, United States, 2015, ISBN: 978-1-	Aterial Delivery - P CS Limitations. Material Object Manufacture Us-Application and Total (4 Printing for Prototy 56990-582-1.	9 ial Jetti Iring (I Limita ISL) =	Parar 0 Ing: M LOM) tion. 45 P nd	0 Iulti-)- Bas	s - jet sic ds		
Bean Mat Ul Binc Moc Prin (EX) 1.	NIT V ler Jetting: leling- Mate ciple- Mech T BOOKS Andrea Manuf Ian Gil Direct	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE Three -Dimensional Printing - Materials -Process - Benefits and erials - Process - Benefits. Sheet Lamination Process: Laminated anism: Gluing or Adhesive Bonding – Thermal Bonding- Materia s Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D acturing", Hanser publications, United States, 2015, ISBN: 978-1- pson, David W. Rosen and Brent Stucker "Additive Manufacturing Digital Manufacturing", 2nd edition, Springer., United States, 201	Aterial Delivery - P CS Limitations. Material d Object Manufacture dis-Application and Total (4 Printing for Prototy 56990-582-1. g Technologies: Rap 5, ISBN13: 978-14	9 ial Jetti uring (I Limita ISL) = ping ar pid Pro 93921	Parar 0 Ing: M LOM) tion. 45 P 145 P	0 fulti-,- Bas Period	s - jet sic ds		
Bean Mat Ul Binc Mod Prin FEX 1. 2. REFI	T BOOKS Andrea Manuf Caper Andrea Andrea Manuf Can Gil Direct	on Process: Laser Engineered Net Shaping (LENS)- Process -Ma fits -Applications. OTHER ADDITIVE MANUFACTURING PROCESSE Three -Dimensional Printing - Materials -Process - Benefits and erials - Process - Benefits. Sheet Lamination Process: Laminated anism: Gluing or Adhesive Bonding – Thermal Bonding- Materia Second Second 	Aterial Delivery - P CS Limitations. Material Object Manufacture Is-Application and Total (4 Printing for Prototy 56990-582-1. g Technologies: Rap 5, ISBN13: 978-14	9 ial Jetti uring (I Limita 5L) = ping ar pid Pro 93921	Parar 0 Ing: N LOM) tion. 45 P d totypi 126.	0 Julti-)- Bas Perio	s - jet sic ds		

Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser

2.

	Gardner Publication, Cincinnati., Ohio, 2011, ISBN: 9783446425521.
3.	Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States, 2006, ISBN: 978-1-4614-9842-1.
4.	Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.
5.	Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead Publishing., United Kingdom, 2016, ISBN: 9780081004333.

COUR Upon c	COURSE OUTCOMES: Upon completion of this course, the students will be able to:						
C01	<i>CO1</i> Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.						
CO2	Acquire knowledge on process of transforming a concept into the final product in AM technology.	Understand					
СОЗ	Elaborate the vat polymerization and material extrusion processes and its applications.	Apply					
C04	Acquire knowledge on process and applications of powder bed fusion and direct energy deposition.	Apply					
C05	Evaluate the advantages, limitations, applications of binder jetting, material jetting and laminated object manufacturing processes.	Evaluate					

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	0	0	0	0	0	1	2	0	1	0	2	1	1	1
CO2	2	1	1	1	1	0	2	1	0	1	0	2	1	2	1
CO3	2	1	0	0	0	0	1	0	0	1	0	2	1	1	1
CO4	2	1	0	0	0	0	1	0	0	1	0	2	1	1	1
CO5	2	1	0	0	0	0	1	0	0	1	0	2	1	1	1
Avg	2.0	0.8	0.2	0.2	0.2	0.0	1.2	0.6	0.0	1.0	0.0	2.0	1.0	1.2	1.0
				3/2/1	– indi	cates	streng	th of c	orrela	tion (3 -	- high, 2	2- mediu	ım, 1- lov	v)	

22MEHO304	NON DESTRUCTIVE TESTING AND FAILURE					
PREREQUISITES CATEGORY				Cr	edit	3
		Harry/Wash	L	Т	Р	TH
	Hours/Week					3
COURSE OB	JECTIVES:	•				
1. To deve quality in	lop the fundamental knowledge about non-destructive and dest n manufacturing and production engineering components.	ructive analysis, in	order	to cor	trol	the
UNIT I	INTRODUCTION AND SURFACE NDT		9	0	0	9
Non destructi Tools, applica developers. M	ve testing– Comparison with destructive testing, importance, s tions and limitations. Liquid penetrant Inspection - Principles, pro agnetic particle inspection - Principles, advantage and limitations.	cope and difficulties operties required for	s. Visu a good	al Ins	specti trant a	on: and
UNIT II RADIOGRAPHY AND ACOUSTIC EMISSION						
UNIT II	RADIOGRAPHY AND ACOUSTIC EMISSION		9	0	0	9
UNIT II Radiography- applications, l	RADIOGRAPHY AND ACOUSTIC EMISSION basic principle, electromagnetic radiation sources, radiogramitations and safety. Acoustic emission testing- procedures and in	raphic imaging, ins ts importance.	9 spectio	0 n tec	0 hniqu	9 les,
UNIT II Radiography- applications, l UNIT III	RADIOGRAPHY AND ACOUSTIC EMISSION basic principle, electromagnetic radiation sources, radiogramitations and safety. Acoustic emission testing- procedures and in EDDY CURRENT AND ULTRASONIC TESTING	raphic imaging, ins is importance.	9 spectio 9	0 n tec 0	0 hniqu 0	9 1es, 9
UNIT II Radiography- applications, I UNIT III Eddy current inspection me	RADIOGRAPHY AND ACOUSTIC EMISSION basic principle, electromagnetic radiation sources, radiogramitations and safety. Acoustic emission testing- procedures and in EDDY CURRENT AND ULTRASONIC TESTING resting – principle, application, limitation; Ultrasonic testing – base thods, flaw characterization techniques, immersion testing, advant	raphic imaging, instantions to importance. sic properties of sour age and limitations.	9 spectio 9 ad bear	0 n tec 0 n, trar	0 hniqu 0 usduce	9 1es, 9 ers,
UNIT II Radiography- applications, I UNIT III Eddy current inspection me UNIT IV	RADIOGRAPHY AND ACOUSTIC EMISSION basic principle, electromagnetic radiation sources, radiogramitations and safety. Acoustic emission testing- procedures and in EDDY CURRENT AND ULTRASONIC TESTING resting – principle, application, limitation; Ultrasonic testing – base thods, flaw characterization techniques, immersion testing, advant LEAK TESTING AND THERMOGRAPHY	raphic imaging, instant ts importance. sic properties of sour age and limitations.	9 spectio 9 ud bear 9	0 n tec 0 n, trar 0	0 hniqu 0 usduce 0	 9 1es, 9 ers, 9
UNIT II Radiography- applications, I UNIT III Eddy current inspection me UNIT IV Leak testing, I destructive test	RADIOGRAPHY AND ACOUSTIC EMISSION basic principle, electromagnetic radiation sources, radiognimitations and safety. Acoustic emission testing- procedures and in EDDY CURRENT AND ULTRASONIC TESTING esting – principle, application, limitation; Ultrasonic testing – base thods, flaw characterization techniques, immersion testing, advant LEAK TESTING AND THERMOGRAPHY Holography and Thermography – principles, procedures and appliting methods; Defects in casting, forging, rolling and welding.	raphic imaging, instant ts importance. sic properties of sour age and limitations. cations; Comparison	 9 spectio 9 ad bear 9 and se 	0 n tec 0 n, trar 0 lection	0 hniqu 0 usduce 0 n of N	 9 1es, 9 ers, 9 Non
UNIT II Radiography- applications, l UNIT III Eddy current to inspection me UNIT IV Leak testing, l destructive test UNIT V	RADIOGRAPHY AND ACOUSTIC EMISSION basic principle, electromagnetic radiation sources, radiognizations and safety. Acoustic emission testing- procedures and in EDDY CURRENT AND ULTRASONIC TESTING esting – principle, application, limitation; Ultrasonic testing – basic hods, flaw characterization techniques, immersion testing, advant LEAK TESTING AND THERMOGRAPHY Holography and Thermography – principles, procedures and appliting methods; Defects in casting, forging, rolling and welding. FAILURE ANALYSIS METHODOLOGY	raphic imaging, instant ts importance. sic properties of sour age and limitations. cations; Comparison	9spectio9ad bear9and se9	0 n tec 0 n, trar 0 lection	0 hniqu 0 sduce 0 n of N 0	9 1es, 9 ers, 9 Non 9
UNIT II Radiography- applications, l UNIT III Eddy current to inspection me UNIT IV Leak testing, l destructive test UNIT V Failure analysi investigation of	RADIOGRAPHY AND ACOUSTIC EMISSION basic principle, electromagnetic radiation sources, radiognimitations and safety. Acoustic emission testing- procedures and in EDDY CURRENT AND ULTRASONIC TESTING esting – principle, application, limitation; Ultrasonic testing – basic principle, application techniques, immersion testing, advant LEAK TESTING AND THERMOGRAPHY Holography and Thermography – principles, procedures and appliting methods; Defects in casting, forging, rolling and welding. FAILURE ANALYSIS METHODOLOGY sis methodology, tools and techniques of failure analysis, failof a failure analysis; types of failure and techniques for failure analysis	raphic imaging, instantion in the second sec	9 spectio 9 and bear 9 and se 9 proced	0 n tec 0 n, trar 0 lection 0 ural s	0 hniqu 0 stsduce 0 n of N 0 teps	9 1ess, 9 ers, 9 Non 9 for

1.	Baldev Raj, "Practical Non-Destructive Testing", Narosa Publishing House, 1997.
2.	J. Prasad and C. G. K. Nair, Non-Destructive Test and Evaluation of Materials, Tata McGraw-Hill Education, 2nd edition (2011).
3.	Peter J Shull, "Nondestructive Evaluation- Theory, Techniques and Applications" Marcel Dekker, Inc, USA 2002, ISBN: 0-8247-8872-9.
REFER	ENCES:
1	George E Dieter, "Mechanical Metallurgy", McGraw Hill Book Company
2	B.Hull and V.John. "Non-Destructive Testing", McMillan

COUR Upon d	SE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand the concept of destructive and Non-destructive testing methods.	Understand
<i>CO2</i>	Explain the working principle and application of die penetrant test and magnetic particle inspection.	Remember
СОЗ	Understand the working principle of eddy current inspection, Ultrasonic testing and applications.	Understand
<i>CO4</i>	Apply radiographic techniques for testing and acoustic emission testing.	Apply

A.K Das, "Metallurgy of failure analysis", TMH, 1992

3

<i>C05</i>	Define tools and techniques of failure analysis, procedural steps for investigation of	Rem
	failure.	

Kemennoer

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	1	0	0	0	0	0	0	0	0	2	2	0
CO2	2	2	1	3	0	0	0	0	0	0	0	0	2	2	0
CO3	2	2	1	3	1	0	0	0	0	0	0	0	2	2	0
CO4	2	2	1	3	1	0	0	0	0	0	0	0	2	2	0
CO5	2	2	1	3	3	0	0	0	0	0	0	0	2	2	0
Avg	1.8	2	1	2.6	1	0	0	0	0	0	0	0	2	2	0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															

22MEHO3						1
PREREQU	PE	Credit		3		
		L	Т	Р	TH	
	Hours/week					
COURSE O	BJE	CCTIVES:				
1. To stud	ly abo	out the history, concepts and terminology in PLM				
2. To lear	n the	functions and features of PLM/PDM				
3. To dev	elop	different modules offered in commercial PLM/PDM tools				
4. To den	nonsti	rate PLM/PDM approaches for industrial applications				
5. To use	PLM	I/PDM with legacy data bases, Coax& ERP systems				
UNIT I	H	HISTORY, CONCEPTS AND TERMINOLOGY OF PLM	9	0	0	9
Commerce (C	PC),	Product Lifecycle Management (PLM). PLM/PDM Infrastructure - Network and	Comm	unica	ations	, Dat
Commerce (C Management, UNIT II	PC), Heter	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and rogeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES	Comm	unica 0	ations.	, Dat 9
Commerce (C Management, UNIT II User Functio Management, transport, data	PC), Heter P ns – Prodi	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and progeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES Data Vault and Document Management, Workflow and Process Managem fuct Classification and Programme Management. Utility Functions – Communication slation, image services, system administration and application integration	Comm 9 ent, Pr n and N	onunica 0 roduc Notifi	0 t Structure	, Dat 9 uctur 1, dat
Commerce (C Management, UNIT II User Functio Management, transport, data UNIT III	PC), Heter P ns – Prod trans	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and rogeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES Data Vault and Document Management, Workflow and Process Managem luct Classification and Programme Management. Utility Functions – Communicatio slation, image services, system administration and application integration DETAILS OF MODULES IN A PDM/PLM SOFTWARE	Comm 9 ent, Pr n and N 9	ounica 0 roduc Notifi 0	0 t Structure 0	, Dat 9 uctur 1, dat 9
Commerce (C Management, UNIT II User Functio Management, transport, data UNIT III Case studies Arena, Oracle application - 1	PC), Heter Prodi- trans based Agil Brand	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and rogeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES - Data Vault and Document Management, Workflow and Process Managem luct Classification and Programme Management. Utility Functions – Communicatio slation, image services, system administration and application integration DETAILS OF MODULES IN A PDM/PLM SOFTWARE d on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, le PLM and Autodesk VaultArchitecture of PLM software- selection criterion of a name to be removed	Comm 9 ent, Pr n and N 9 Aras P Softwa	o o roduc Notifi o LM, are fo	0 t Structure 0 SAP or part	, Data 9 ucture 1, data 9 PLM icula
Commerce (C Management, UNIT II User Functio Management, transport, data UNIT III Case studies Arena, Oracle application - 1 UNIT IV	PC), Hete Prode trans based Agil Brand	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and rogeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES • Data Vault and Document Management, Workflow and Process Managem uct Classification and Programme Management. Utility Functions – Communication slation, image services, system administration and application integration DETAILS OF MODULES IN A PDM/PLM SOFTWARE d on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, le PLM and Autodesk VaultArchitecture of PLM software- selection criterion of name to be removed ROLE OF PLM IN INDUSTRIES	Comm 9 ent, Pr n and N 9 Aras P 5 softwa 9	0 roduc Notifi 0 LM, are fo	0 t Structure 0 SAP or part 0	, Dat 9 uctur 1, dat 9 PLM icula
Commerce (C Management, UNIT II User Functio Management, transport, data UNIT III Case studies Arena, Oracle application - I UNIT IV Case studies of strategy, PLI implementatio performance-	PC), Heter Productions based Agiil Brand R M fee on, te proce	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and rogeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES - Data Vault and Document Management, Workflow and Process Managem luct Classification and Programme Management. Utility Functions – Communication slation, image services, system administration and application integration DETAILS OF MODULES IN A PDM/PLM SOFTWARE - I on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, le PLM and Autodesk VaultArchitecture of PLM software- selection criterion of I name to be removed ROLE OF PLM IN INDUSTRIES -M selection and implementation (like auto, aero, electronic) - other possible sector reasibility study, change management for PLM, financial justification of PI en step approach to PLM, benefits of PLM for–business, organisation, users, proc ess compliance and process automation	Comm 9 ent, Pr n and N 9 Aras P Aras P S, PLM M, ba huct or	0 roduc Notifi 0 LM, are fo 0 (visio arrier servi	0 t st 0 0 SAP or part 0 oning, s to ice, pr	, Dat 9 uctur 1, dat 9 PLM icula 9 PLM PLN roces
Commerce (C Management, UNIT II User Functio Management, transport, data UNIT III Case studies Arena, Oracle application - I UNIT IV Case studies of strategy, PLI implementatio performance- UNIT V	PC), Heter Prod trans D based Agil Brand R M fe on, te proce B S	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and rogeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES Data Vault and Document Management, Workflow and Process Managem luct Classification and Programme Management. Utility Functions – Communicatio slation, image services, system administration and application integration DETAILS OF MODULES IN A PDM/PLM SOFTWARE I on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, le PLM and Autodesk VaultArchitecture of PLM software- selection criterion of a name to be removed ROLE OF PLM IN INDUSTRIES M selection and implementation (like auto, aero, electronic) - other possible sector asibility study, change management for PLM, financial justification of PI en step approach to PLM, benefits of PLM for–business, organisation, users, proc ess compliance and process automation BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM	Comm 9 ent, Pi n and N 9 Aras P Aras P Softwa s, PLM M, ba huct or 9	0 roduc Notifi 0 LM, nare for 0 C vision arrier serving 0	0 t st 0 SAP or part 0 oning, s to ice, pr 0 0	, Dat 9 uctur 1, dat 9 PLM icula 9 PLM PLN roces 9
Commerce (C Management, UNIT II User Functio Management, transport, data UNIT III Case studies Arena, Oracle application - I UNIT IV Case studies of strategy, PLI implementatio performance- UNIT V PLM Custom	PC), Heter Productions Productions Dased Agil Brand R A fe nn, ter proce B S Zatio	Product Lifecycle Management (PLM). PLM/PDM Infrastructure – Network and rogeneous data sources and applications PLM/PDM FUNCTIONS AND FEATURES Data Vault and Document Management, Workflow and Process Managem luct Classification and Programme Management. Utility Functions – Communicatio slation, image services, system administration and application integration DETAILS OF MODULES IN A PDM/PLM SOFTWARE I on top few commercial PLM/PDM tools – Teamcenter, Windchill, ENOVIA, le PLM and Autodesk VaultArchitecture of PLM software- selection criterion of I name to be removed ROLE OF PLM IN INDUSTRIES M selection and implementation (like auto, aero, electronic) - other possible sector asibility study, change management for PLM, financial justification of PI ess compliance and process automation BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM SOFTWARE m, use of EAI technology (Middleware), Integration with legacy data base, CAD, SI	Comm 9 ent, Pr n and N 9 Aras P Softwa 9 s, PLM baluct or 9 LM and	unica 0 roduc Notifi 0 LM, nare for 0 (visid arrier servi 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	0 t st 0 st 0 SAP or part 0 oning, sto ice, pr 0	, Dat 9 uctur 1, dat 9 PLM PLM PLM PLN PLN roces 9

1.	Product Lifecycle Management for a Global Market, Springer; 2014 edition (29 September 2016), ISBN-10 : 3662516330
2.	Product Life Cycles and Product Management, Praeger Publishers Inc (27 March 1989)ISBN-10: 0899303196
REFERI	ENCES:
1.	AnttiSaaksvuori and AnselmiImmonen, "Product Lifecycle Management", Springer Publisher, 2008 (3rd Edition)
2.	IvicaCrnkovic, Ulf Asklund and AnnitaPerssonDahlqvist, "Implementing and Integrating Product Data Management and Software Configuration Management", Artech House Publishers, 2003.
3.	J ohn Stark, "Global Product: Strategy, Product Lifecycle Management and the Billion Customer Question", Springer Publisher, 2007
4.	John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer Publisher, 2011 (2nd Edition).

COUR Upon c	Bloom Taxonomy Mapped	
C01	Summarize the history, concepts and terminology of PLM	Remember
<i>CO2</i>	Develop the functions and features of PLM/PDM	Create
CO3	Discuss different modules offered in commercial PLM/PDM tools.	Evaluate
<i>CO4</i>	Interpret the implement PLM/PDM approaches for industrial applications.	Analyze
<i>C05</i>	Integrate PLM/PDM with legacy data bases, cax& ERP systems	Analyze

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	0	0	0	0	0	0	0	2	2	1	1	0
CO2	1	1	0	0	0	0	0	0	0	0	2	2	1	1	0
CO3	1	1	0	0	1	0	0	0	0	0	2	2	1	1	0
CO4	1	1	0	0	2	0	0	0	2	0	2	2	1	1	0
CO5	1	1	0	0	3	0	0	0	2	0	2	2	1	1	0
Avg	1	1	0	0	1	0	0	0	0.8	0	2	2	1	1	0
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22M	EHO306	ERGONOMICS IN DESIGN					
PRE	REQUIS	ITES	CATEGORY	PE	Cr	edit	3
						Р	ТН
		3	0	0	3		
COU	RSE OBJ	ECTIVES:			•		•
1.	1. Accurately recognize and evaluate hazards (ergonomic in nature) Accurately recognize and evaluate (ergonomic in nature) which are likely to cause occupational illnesses or injuries.						
2.	To introdu	ce students about the essentials of Static and dynamic anthropome	etry and Posture and	job re	latior	1	
3.	Apply the	knowledge, skills, and abilities obtained in through subject into an	industrial based pro	oblem	•		
U	NIT I	INTRODUCING ERGONOMICS AND DISCIPLINE A ERGONOMICS/ HUMAN FACTORS	APPROACH:	9	0	0	9
Desi Obje Phys	gn today- ective, Mut siology (wo	Human aid to lifestyle, Journey, Fitting task to man their contrac ual task comfort: two way dialogue, communication model, Erg rk physiology) and stress	tual structure, Dom onomics/ human Fa	ain, P actors	hiloso funda	ophy ament	and als,
U	NIT II	HUMAN PHYSICAL DIMENSION CONCERN AND P MOVEMENT	OSTURE AND	9	0	0	9
Hun dyna cros Hun Vert	nan body- amic anthro s-legged po nan body- s ical work s	structure and function, anthropometrics, Anthropometry: body pometry, Stand Posture- erect, Anthropometry landmark: Sitting ostures, Anthropometric measuring techniques, Statistical treatm tructure and function, Posture and job relation, Posture and body s urface, Horizontal work surface, Movement, Work Counter.	y growth and some postures, Anthropo ent of data and pe upportive devices, (atotyp metry: rcenti Chair o	es, S squa le cal charao	tatic tting culati	and and ons ics,
UN	NIT III	BEHAVIOUR AND PERCEPTION AND VISUAL ISS ENVIRONMENTS FACTORS	UES,	9	0	0	9
Com and disp	nmunication perception, lays, Enviro	and cognitive issues, Psycho-social behaviour aspects, behaviour Cognitive aspects and mental workload, Human error and risk ponmental factors influencing human performance.	and stereotype, Inf perception; Visual	format perfor	ion p manc	rocess e, Vis	sing sual
UN	NIT IV	ERGONOMIC DESIGN PROCESS, PERFORMANCE AND DESIGN INTERVENTION	SUPPORT	9	0	0	9
Ergo chec fatig appl	onomics de k, Some cl ue, errors, ication pos	sign methodology, Ergonomics criteria/check while designing, necklists for task easiness. Occupational safety and stress at wo discomforts and unsafe acts, Workstation design, Furniture su sibility, Humanising design: Design and human compatibility, com	Design process in rkplace in view to opport, Vertical arr fort and adaptabilit	volvin reduce n reac y aspe	ng erg e the ch an cts.	gonon poten d des	nics itial ign
U	NIT V	OFFICE FURNITURE GUIDELINES FOR FIT AND I DESIGN ERGONOMICS IN INDIA AND UNIVERSAI CONSIDERATIONS	FUNCTION, L DESIGN	9	0	0	9
Offi Acce Desi Stair	ce Furnitur essories Re gn Conside rs, Resource	e Guidelines for Fit and Function Anticipate Actions, Chairs, Des sources for Designing Ergonomic Products. Design Ergonomics in erations Wheelchairs Crutches, Canes, and Walkers Knobs, Har es on Universal Design.	k and Work surface a India: scope for ex adles, and Controls	s, Stor plorat Acce	rage a tion. V ss Ra	und Fi Unive Imps	les, rsal and
			Total	(45L)	= 45	Perio	ods
TEX	T BOOKS	S:					
1.	Bridge	r, RS: Introduction to Ergonomics, 2nd Edition, Taylor & Francis,	2003.				
2.	Dul, J.	and Weerdmeester, B. Ergonomics for beginners, a quick reference	e guide, Taylor & H	Francis	s, 199	3.	
REF	ERENCE	S:					
1.	Green,	W.S. and Jordan, P.W, Human Factors in Product Design, Taylor	& rancis, 1999.				
2. D. Chakrabarti, Indian Anthropometric Dimensions for ergonomic design practice, National Institute of Design,							jn,

	Ahmedabad, 1997
3.	G. Salvendy (edit), Handbook of Human Factors and ergonomics, John Wiley & Sons, Inc., 1998.

COUR Upon c	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Understand	
<i>CO2</i>	Learn about the anthropometry: body growth and somatotypes, further about Vertical work surface, Horizontal work surface can also be obtained.	Remember
<i>CO3</i>	Study about the communication and cognitive issues, it promotes about environmental factors influencing human performance.	Understand
<i>CO4</i>	Learn about the Ergonomics design methodology and gives fathom notion on Occupational safety and stress at workplace	Apply
C05	Study about Office furniture guidelines for fit and function and universal design considerations	Apply

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO2	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO3	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO4	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
CO5	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
Avg	1	0	0	0	0	3	2	2	0	0	0	2	1	2	1
				3/2/1	– indi	cates	streng	th of c	orrela	tion (3	– high, ź	2- medi	um, 1- lov	w)	

22M	EHO307	SURFACE ENGINEERING								
PRE	REQUIS	ITES CATEO	GORY	PE	Cre	edit	3			
		II	XX7 I-	L	Т	Р	ТН			
		Hours/	week	3	0	0	3			
COU	RSE OBJ	ECTIVES:								
1.	1. To teach students fundamental about surface properties in engineering applications and Wear modes									
2.	To intro	duce students about the essentials of electroplating and Other plating process	es							
3.	To teach	about the thin film for wear application, Coating specifications.								
4.	To teach	about the special surfacing processes								
5.	To teach	about the hard facing processes and applications								
U	NIT I	BASICS OF SURFACE ENGINEERING		9	0	0	9			
Impo Wea erosi	ortance of r modes; C ion, Fretting	surfaces and wear surface properties in engineering applications, Current ategories of wear, Low stress, High stress and Gouging abrasion, Cavitation g wear, Adhesive wear, Seizure, Galling, Oxidative wear, Spalling, Impact w	status of , Slurry er ear brine	surface rosion, lling.	e engi Impi	ineeri ngem	ng. ent			
UN	NIT II	PLATING PROCESSES		9	0	0	9			
Fund Hard	lamentals o l anodizing	of electroplating, Electro deposition from plating baths, Electroless plating, M , Other plating processes, Applicability of plating for wear resistance.	Ientallidir	ng, Sel	ective	e plati	ng,			
UN	III TII	THIN FILM COATINGS		9	0	0	9			
Ther	mal evapor	ration, PVD and CVD, Sputter coating, Ion plating, Thin film for wear applic	ation, Co	ating s	pecifi	catio	ns.			
UN	NIT IV	SPECIAL SURFACING PROCESSES		9	0	0	9			
Rebi Wea	Rebuilding and surface cements, Wear tiles, Electrospark deposition coatings, Fused carbide cloth ceramic coatings, Wear sleeves, Wear plates.									
U	NIT V	HARD FACING PROCESSES AND APPLICATIONS		9	0	0	9			
Shie weld Hard Hard	lded metal ling, Plasm lfacing trai lfacing with	arc welding, Gas tungsten arc welding, Gas metal arc welding, Flux coaxed a arc welding oxyacetylene welding, Furnace fusing, Thermal spray pro- nsformation, Fusion alloys, Non fusion materials. Hardfacing in new des h fusion processes, Nonfusion deposits, Weldability considerations, Finishing	l are weld cesses an igns, Hau g consider	ling, S d their dfacin ations	ubme appl g for	rged icatio repa	arc ons, irs,			

Total (45L) = 45Periods

TEXT	BOOKS:
1.	Budinski, K.G., Surface Engineering for Wear Resistance, Prentice Hall (1988).
2.	Mathews, A., Advanced Surface Coatings: A Hand book of Surface Engineering, Spinger (1991)
REFEI	RENCES:
1.	Hocking, M.G., Metallic and Ceramic Coatings, John Wiley (1989)
2.	Strafford, K.N., Datta, P.K., and Gray, J.S., Surface Engineering Practice, Processes, Fundamentals and Applications in Corrosion and Wear, Ellis Harwood (1990).

COUR Upon d	COURSE OUTCOMES: Upon completion of this course, the students will be able to:							
C01	Learn about the basics and Current status of surface engineering. Wear modes	Understand						
<i>CO2</i>	Learn about the Fundamentals of electroplating and Other plating processes	Understand						
CO3	Study about the Thermal evaporation and wear application, Coating specifications.	Remember						
<i>CO4</i>	Learn about the rebuilding and surface cements, Wear sleeves, Wear plates	Understand						

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO2	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO3	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO4	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
CO5	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
Avg	1	1	2	0	1	0	0	0	0	0	0	0	2	1	0
				3/2/1	– indi	cates	streng	th of c	orrela	tion (3 -	– high, 2	2- mediu	ım, 1- lov	N)	

22MI	EHO308	INDUSTRIAL LAYOUT DESIGN AND SA	FETY						
PREF	REQUIS	ITES	CATEGORY	PE	Cr	edit	3		
	1. Know	ledge in basic manufacturing systems.		L	Т	Р	ТН		
	2. Know	ledge in operations research	Hours/Week	3	0	0	3		
	3. Know	ledge in safety regulations.							
COU	RSE OBJ	ECTIVES:							
1.	To get th	ne basics of process layout & product layout							
2.	To explo	re the layout planning by computer applications following different	nt algorithms.						
3.	3. To imbibe knowledge on safety management functions and its techniques.								
4.	To introd	luce knowledge on accident reporting & investigation procedure.							
5.	To assim	ilate knowledge on workplace hazards & its control		_					
UN	I TI	INTRODUCTION		9	0	0	9		
Objec differ speci	ctives of a rent layout fication, Ir	good plant layout, principles of a good layout, Classification of s, Layout design procedures, Overview of the plant layout. Proc nplementation and follow up, comparison of product and process	Layout, Advantage cess layout & Produ layout.	es and act laye	Limita out: S	ations electi	s of on,		
UN	UNIT II COMPUTERIZED LAYOUT PLANNING								
Heuri mode	istics for F I. Branch	Plant layout – ALDEP, CORELAP, CRAFT, Group Layout, Fixe and bound method, Evaluation of layout.	d position layout- (Quadra	tic ass	signm	ent		
UN	IT III	SAFETY REGULATIONS		9	0	0	9		
Need Occur of m Offic	for safet rrence, Re anagement er, Safety	y. Safety and productivity. Definitions: Accident, Injury, Unsportable accidents. Theories of accident causation. Safety organiz t, supervisors, workmen, unions, government and voluntary ag committee, Overview of factories act 1948 – ISO-45001.	safe act, Unsafe Co zation- objectives, ty gencies in safety. S	onditic ypes, f afety	on, Da unctic policy	anger ons, R v. Saf	ous tole řety		
UN	IT IV	SAFETY HARAZDS IN MACHINES		9	0	0	9		
Mach – Saf	ine Guard ety in Mar	ing, Guarding of hazards, Machine Guarding types and its applica nual and Mechanical material handling- Safety in use of electricity	ntion – Safety in wel	ding a	nd Ga	s cuti	ing		
UN	IT V	CHEMICAL AND FIRE HAZARDS		9	0	0	9		
Toxic hazar Hazar	city- TLV- ds- contro rd identific	- Types of Chemical Hazards-Occupational diseases caused by l measures Fire triangle- Types of fire - first aid fire fighting equip cation and Risk Analysis, case studies	dust, fumes, gases, oment – flammabilit	, smok y limit	te and - LPC	l solv 3 safe	vent ty -		
			Total	(45L)	= 45]	Perio	ods		
ТЕХТ	BOOKS								
1.	Jame	s M Moore-Plant Layout Design, Mac Millan Co.1962 LCCCN61	-5204.						
2.	Krisł	nnan N.V. "Safety Management in Industry" Jaico Publishing Hou	ise, Bombay, 1997						
REFE	RENCE	S:							
1.	James	Apple, "Plant Layout & Material Handling", The Ronalt Press Co	., New Delhi, 1998.						
2.	Panner	rselvam. R, "Production and Operations Management", PHI, 2017							

3. Sunderesh Heragu-Facilities Design, PWS Publishing Company, ISBN-0-534-95183.

4. Heinrich H.W. "Industrial Accident Prevention" McGraw-Hill Company, New York, 1980.

5. Blake R.B., "Industrial Safety" Prentice Hall, Inc., New Jersey, 1973

6. John Ridley, "Safety at Work", Butterworth & Co., London, 1983.

COUR Upon c	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Able to get the basics of layout design procedure and selection of appropriate layout for industries.	Create
<i>CO2</i>	The students will be able to plan and design plant and production layouts through basic strategies and with computer application	Create
СО3	Apply principles of safety management, its functions and technique in any organization.	Apply
<i>CO4</i>	Apply machine guarding principles in industrial applications.	Apply
<i>C05</i>	Realize chemical hazards, toxicity, fire and explosion in the work place and involve to take various control measures to prevent hazards	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	2	3	2	1	1	2	2	2	2	3	2	2
CO2	0	1	2	3	0	1	0	1	2	0	2	0	1	2	1
CO3	0	2	2	1	3	1	1	1	1	0	1	2	2	3	2
CO4	0	2	1	1	2	0	0	1	1	1	2	0	2	1	1
CO5	1	2	2	1	2	0	0	1	1	1	2	1	3	2	1
Avg	0.4	1.8	1.6	1.6	2.0	0.8	0.4	1.0	1.4	0.8	1.8	1.0	2.2	1.0	1.4
				3/2/1	– indi	cates	streng	th of c	orrela	tion (3 -	– high, i	2- mediu	um, 1- lov	w)	

	EHO309	<u> </u>					
PRE	REQUIS	ITES	CATEGORY	PE	Cr	edit	3
			Houng/Wook	L	Т	Р	TH
			Hours/ week	3	0	0	3
COUI	RSE OBJ	ECTIVES:					
1.	To study	the various aspects of digital manufacturing.					
2.	To inculo	cate the importance of DM in Product Lifecycle Management and	Supply chain Mana	gement	;		
3.	To form	alate of smart manufacturing systems in the digital work environn	nent				
4.	To interp	oret IOT to support the digital manufacturing					
5.	To elabo	rate the significance of digital twin					
UI	NIT I	INTRODUCTION		9	0	0	9
Man	ufacturing.		a manaraeta mg	The Pu	lure c		gital
UN Colla and I Proto	Alternative Product reu Alternative Product reu ptype devel Effective I	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG Product Development, Mapping Requirements to specifications – use – Engineering Change Management, Bill of Material and Pro lopment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM	EMENT Part Numbering, E cess Consistency – oly Chain - Scope&	9 Enginee Digital Challer	0 ring V Moc nges i	0 Vault k up n Dig	9 ing, and gital
UN Colla and I Proto SC -	Alternative Product reuppe devel Effective I	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG Product Development, Mapping Requirements to specifications – use – Engineering Change Management, Bill of Material and Pro lopment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM SMART FACTORY	EMENT Part Numbering, E cess Consistency – oly Chain - Scope&	9 Enginee Digital Challer 9	0 ring V Moc nges i	0 Vault k up n Dig	gital 9 ing, and gital 9
UN Colla and I Proto SC - UN Sman Prino	Altriation of the second state of the second s	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG Product Development, Mapping Requirements to specifications – use – Engineering Change Management, Bill of Material and Pro lopment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM SMART FACTORY - Levels of Smart Factories – Benefits – Technologies used in Sn Smart Factory – Creating a Smart Factory – Smart Factories and Comparison of Comparison	EMENT Part Numbering, E cess Consistency – oly Chain - Scope& nart Factory – Smar Cybersecurity	9 Enginee Digital Challer 9 t Factor	0 ring V Moc nges i 0 ry in l	0 Vault k up n Dig 0 IoT- I	gital 9 ing, and gital 9 Key
UN Colla and I Proto SC - UN Smar Prino	Alternative Product reuport development de	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG Product Development, Mapping Requirements to specifications – use – Engineering Change Management, Bill of Material and Pro lopment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM SMART FACTORY - Levels of Smart Factories – Benefits – Technologies used in Sn Smart Factory – Creating a Smart Factory – Smart Factories and C INDUSTRY 4.0	EMENT Part Numbering, E cess Consistency – oly Chain - Scope& nart Factory – Smar Cybersecurity	9 Enginee Digital Challer 9 t Factor 9	0 ring V Moc nges i 0 ry in 1	0 Vaulti k up n Dig 0 IoT- 1	gital 9 ing, and gital 9 Key 9
UN Colla and I Proto SC - UN Sman Prino UN Intro servi to M	AIT II aborative P Product reu otype devel Effective I IT III rt Factory - ciples of a S IT IV duction – achine con	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG Product Development, Mapping Requirements to specifications – use – Engineering Change Management, Bill of Material and Pro lopment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM SMART FACTORY - Levels of Smart Factories – Benefits – Technologies used in Sn Smart Factory – Creating a Smart Factory – Smart Factories and C INDUSTRY 4.0 Industry 4.0 –Internet of Things – Industrial Internet of Things light networks of manufacturing – Cloud computing – Data anal numunication – Case Studies.	EMENT Part Numbering, E cess Consistency – oly Chain - Scope& nart Factory – Smar Cybersecurity – Framework: Con- ytics –Cyber physic	9 Enginee Digital Challer 9 t Factor 9 nectivit cal system	0 ring V Moc nges i 0 y in l 0 y devens –	0 Vault k up n Dig 0 IoT - 1 Vices Mach	gital 9 ing, and gital 9 Key 9 and nine
Manu UN Colla and I Proto SC - UN Sman Prino UN Intro servi to M	A solution of the second state of the second s	DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG Product Development, Mapping Requirements to specifications – use – Engineering Change Management, Bill of Material and Pro lopment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM SMART FACTORY - Levels of Smart Factories – Benefits – Technologies used in Sn Smart Factory – Creating a Smart Factory – Smart Factories and C INDUSTRY 4.0 Industry 4.0 –Internet of Things – Industrial Internet of Things ligent networks of manufacturing – Cloud computing – Data anal munication – Case Studies. STUDY OF DIGITAL TWIN	EMENT Part Numbering, E cess Consistency – bly Chain - Scope& hart Factory – Smar Cybersecurity – Framework: Con- ytics –Cyber physic	9 Enginee Digital Challer 9 t Factor 9 nectivit al syste 9	0 ring V Moc nges i 0 y in l 0 y dev ems – 0	0 Vault k up n Dig 0 IoT- 1 0 //ices Mach	gital 9 ing, and gital 9 Key 9 and nine 9
VIN Colla and I Proto SC - UN Sman Prino UN Intro servi to M UN Basic Type	NIT II aborative P Product reu otype devel Effective I IT III rt Factory - ciples of a S IT IV duction – I achine con NIT V c Concepts es – Charac	 DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAG Product Development, Mapping Requirements to specifications – use – Engineering Change Management, Bill of Material and Protopment – Virtual testing and collateral. Overview of Digital Supp Digital Transformation - Future Practices in SCM SMART FACTORY Levels of Smart Factories – Benefits – Technologies used in Sn Smart Factory – Creating a Smart Factory – Smart Factories and C INDUSTRY 4.0 Industry 4.0 –Internet of Things – Industrial Internet of Things ligent networks of manufacturing – Cloud computing – Data analamunication – Case Studies. STUDY OF DIGITAL TWIN Features and Implementation – Digital Twin: Digital Thread teristics of a Good Digital Twin Platform – Benefits, Impact & C 	EMENT Part Numbering, E cess Consistency – oly Chain - Scope& hart Factory – Smar Cybersecurity – Framework: Con- ytics –Cyber physic and Digital Shadow hallenges – Future of	9 Enginee Digital Challer 9 t Factor 9 nectivit cal syste 9 v- Builof Digit	0 ring V Moc oges i 0 y in l 0 y dev ems – 0 ding 1 al Tw	0 Vault k up n Dig o IoT- 1 o Vices Mach O Block	gital 9 ing, and gital 9 Key 9 and nine 9 cs –

TEXT B	OOKS:
1.	Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer- Verlag London Limited, 2012.
2.	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press, 2016.
REFER	ENCES:
1.	Lihui Wang and Andrew YehChing Nee, Collaborative Design and Planning for Digital Manufacturing, Springer-Verlag London Limited, 2009.
2.	Andrew Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digital Twin Driven Smart Manufacturing", Elsevier Science., United States, 2019.
3.	Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation", Springer Series in Advanced Manufacturing., Switzerland, 2017
4.	Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018.

5. Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018

COUR Upon d	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom Taxonomy Mapped
C01	Impart knowledge to use various elements in the digital manufacturing.	Understand
<i>CO2</i>	Differentiate the concepts involved in digital product development life cycle process and supply chain management in digital environment.	Analyze
СО3	Select the proper procedure of validating practical work through digital validation in Factories.	Apply
<i>CO4</i>	Implementation the concepts of iot and its role in digital manufacturing.	Apply
<i>CO5</i>	Analyse and optimize various practical manufacturing process through digital twin.	Analyze

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO2	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO3	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO4	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
CO5	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
Avg	1	1	0	0	0	0	2	0	0	0	2	2	2	2	2
	•	•	•	3/2/1	– indi	cates	streng	th of c	orrela	tion (3 -	– high, í	2- mediu	ım, 1- lov	w)	

22M	IEHO310	SMART MOBILITY AND INTELLIGENT VE	HICLES				
PRE	REQUIS	ITES	CATEGORY	PE	Cr	edit	3
			Hours/Wook	Т	Р	TH	
			Hours/ week	3	0	0	3
COU	IRSE OBJ	ECTIVES:					
1.	To introduvehicles	uce students to the various technologies and systems used to imple	ement smart mobility	and i	ntelli	gent	
2.	To learn E Systems a	Basics of Radar Technology and Systems, Ultrasonic Sonar System nd other sensors for automobile vision system	ns, LIDAR Sensor T	echno	logy a	and	
3.	To learn E	Basic Control System Theory applied to Autonomous Automobiles					
4.	To produc informatic	e overall impact of automating like various driving functions, con on that assist with a task	necting the automob	ile to	sourc	es of	
5.	To allow t potentially	he automobile to make autonomous intelligent decisions concerni / impact the safety of the occupants through connected car & autom	ng future actions of nomous vehicle tech	the vel nology	hicle 1	that	
U	INIT I	INTRODUCTION TO AUTOMATED, CONNECTED	AND	9	0	0	9
Con Pow Con	cept of Au vertrain Ele	atomotive Electronics, Electronics Overview, History & Evolu ectronics, Introduction to Automated, Connected, and Intellige Intelligent Vehicles	tion, Infotainment, nt Vehicles. Case	Body, studies	Cha s: Au	ssis, itoma	and ted,
U	NIT II	SENSOR TECHNOLOGY FOR SMART MOBILITY		9	0	0	9
Basi Tecl Boa	ics of Rada hnology, N rd Control S	r Technology and Systems, Ultrasonic Sonar Systems, Lidar Se ight Vision Technology, Other Sensors, Use of Sensor Data Fu Systems	ensor Technology at sion, Integration of	nd Sys Senso	stems r Dat	, Can a to	ıera On-
UN	NIT III	CONNECTED AUTONOMOUS VEHICLE		9	0	0	9
Basi The Netv	ic Control S ory and Au works and A	System Theory applied to Automobiles, Overview of the Operation utonomous Vehicles, Role of Surroundings Sensing Systems a Autonomy.	n of ECUs, Basic Cy and Autonomy, Rol	ber-Pl e of '	nysica Wirel	al Sys ess E	tem)ata
UN	NIT IV	VEHICLE WIRELESS TECHNOLOGY AND NETWO	ORKING	9	0	0	9
Wire Syst Con and	eless Syster tem Concer nputer Netw On-Board V	n Block Diagram and Overview of Components, Transmission Sypts– Demodulation/Decoding, Wireless Networking and Applicatorking – the Internet of Things, Wireless Networking Fundamen Vehicle Networks	stems – Modulation ations to Vehicle A tals, Integration of V	/Enco utono Wirele	ding, my, I ss Ne	Rece Basics twork	iver of
U	NIT V	CONNECTED CAR AND AUTONOMOUS VEHICLE TECHNOLOGY	2	9	0	0	9
Con Veh Mor	nectivity F icle-to-Roa ral, Legal, R	Fundamentals, Navigation and Other Applications, Vehicle-to- dside and Vehicle-to-Infrastructure Applications, Autonomous Roadblock Issues, Technical Issues, Security Issues	Vehicle Technolog Vehicles - Driverle	y and ess Ca	App r Tec	lication chnolo	ons, ogy,
			Total	(45L)	= 45	Peri	ods
		~					
ТЕХ	T BOOKS	S:					
1.	"Intel Board	ligent Transportation Systems and Connected and Automated Veh	icles", 2016, Transp	ortatic	on Re	searcl	1

2. Radovan Miucic, "Connected Vehicles: Intelligent Transportation Systems", 2019, Springer

REFERENCES:

1	Tom Denton, "Automobile Electrical and Electronic systems, Roultedge", Taylor & Francis Group, 5th Edition,
1.	2018.

COUR Upon d	COURSE OUTCOMES: Upon completion of this course, the students will be able to:					
C01	Recognize the concept of cyber-physical control systems and their application to collision avoidance and autonomous vehicles	Understand				
<i>CO2</i>	Select the concept of remote sensing and the types of sensor technology needed to implement remote sensing	Understand				
CO3	Familiar with the concept of fully autonomous vehicles	Understand				
<i>CO4</i>	Apply the basic concepts of wireless communications and wireless data networks	Apply				
<i>CO5</i>	Analyse the concept of the connected vehicle and its role in automated vehicles	Analyse				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO2	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO3	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO4	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
CO5	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
Avg	2	2	2	0	2	1	0	0	0	0	1	2	2	2	0
				3/2/1	– indi	cates	streng	th of c	orrela	tion (3 -	– high, í	2- mediu	ım, 1- lov	w)	

MINOR DEGREE COURSES

		ENGINEERING THERMODYNAMIC	 2S					
22ME	MI01	(Use of standard thermodynamic tables, Mollier diagram	are permitted)					
PRE-H	REQUIS	SITE:	CATEGORY	PE	Cre	edit	С	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Objec	tives:					1	
1.	1. To impart the knowledge on concepts of zeroth and first law of thermodynamics.							
2.	To mal interact	the the learners to understand the third law of thermodynamic ions in closed and open systems.	s and analyze the	e variou	is wo	ork ar	nd heat	
3.	To teac	h properties of pure substance.						
4.	To imp	art knowledge on the concepts of steam power cycle.						
5.	To deri	ve thermodynamic relations for ideal and real gases.						
UNIT	Ι	BASIC CONCEPT AND FIRST LAW			9	0	09	
Thermo and hea various	odynamic at. First la thermal	equilibrium, Displacement work, P-V diagram. Zeroth law of aw of thermodynamics – application to closed and open syster equipment.	thermodynamics - ns, steady flow pro	- conce	pt of with	temp refere	erature ence to	
Heat en of thes inequal	ngine – R se statem lity, Conc	efrigerator – Heat Pump, Second law of thermodynamics – Kel ents their corollaries. Reversibility and irreversibility. Carno ept of entropy, principle of increase of entropy, T-s diagram, T	vin's and Clausius ot cycle, reversed -ds equations, Entro	statemo Carnot	ents-	Equiv le. C	valence lausius	
UNIT	III	PROPERTIES OF PURE SUBSTANCES			9	0	09	
Steam dryness Mollier	- formati s fraction c Chart.	on and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s. Calculation of work done and heat transfer in non-flow an	diagrams. PVT sund flow processes	urface. using	Deter Stean	rmina 1 Tat	tion of ble and	
UNIT	IV	STEAM POWER CYCLE			9	0	09	
Basic I combin	Basic Rankine cycle, T-s & h-s diagrams - Performance Improvement - Reheat cycle, regenerative cycle and their combination cycles.							
UNIT	JNIT V IDEAL AND REAL GASES AND THERMO DYNAMIC RELATIONS				9	0	09	
Propert states, relation	Properties of ideal and real gases, equation of state of ideal and real gases, Avogadro's law, Vander Waal's equation of states, Principle of corresponding states, reduced properties and compressibility chart. Exact differentials, Maxwell relations, Specific heat equations, Tds, relations, ClausiusClapeyron equations and Joule Thomson Coefficient.							
	Total (45L)= 45 Periods							
Text B	Books:							
1.	Nag. P	K, "Engineering Thermodynamics", Tata McGraw-Hill, New I	Delhi, 2017.					

2.	Sonntag, R.E., Borgnakke, C., and Van Wylen, G.J., Fundamentals of Thermodynamics, 6th ed., John Wiley, 2003.
3.	Arora C.P, "Thermodynamics", Tata McGraw Hill, New Delhi, 2003.
4.	Venwylen and Sontag, "Classical Thermodynamics", Wiley Eastern, 1987.
Refere	ence Books:
1.	Cengel, "Thermodynamics- An Engineering Approach", 3rd Edition, Tata McGraw Hill,2015.

2	Merala C, Pother, Craig W and Somerton, "Thermodynamics for Engineers", Schaum	Outline Series, Tata
2.	McGrawHill, New Delhi, 2004.	

COUR Upon d	COURSE OUTCOMES: Upon completion of this course, the students will be able to:				
C01	Understand the concepts of zeroth, first and second law of thermodynamics.	Remember			
<i>CO2</i>	Analyze the various work and heat interactions for different types of processes for closed and open systems	Evaluate			
СО3	Evaluate the different properties of pure substances using steam tables and Mollier chart	Evaluate			
<i>CO4</i>	Analyze the performance of steam power cycle.	Analyze			
<i>C05</i>	Derive thermodynamic relations for ideal and real gases.	Analyze			

PSO3

COURSE ARTICULATION MATRIX COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 **CO1** CO2 CO3 **CO4** CO5 2.8 2.2 0.6 0.8 Avg 3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)

22ME	MI02	FLUID MECHANICS AND MACHINI	ERY					
PRE-R	REQUIS	ITE:	CATEGORY	PE	Cre	edit		С
1.Engin	eering P	L	Т	Р		ГН		
2.Engin	2.Engineering Chemistry Hours/ week 3							
3.Engin	eering M	athematics			•			
Course	e Objec	tives:						
1.	To und	erstand the basic concepts and properties of fluids						
2.	To ana	yze the kinematic and dynamic concepts of fluid flow						
3.	To und	erstand the various incompressible fluid flow through pipes ar	nd between parallel	plates				
4.	To app	y the principles of fluid mechanics to design and operation of	hydraulic turbines					
5.	To app	y the principles of fluid mechanics to design and operation of	hydraulic pumps		T			
UNIT	I	INTRODUCTION AND FLUID STATICS			9	0	0	9
Basic correlative and Arc	oncepts density, chimedes	and units of measurement of physical quantities- Classificati vapour pressure, surface tension, Capillarity and viscosity. I principle.	on of fluids - Prope Fluid statics- hydros	erties of tatic pr	f fluic ressur	ls – e, bı	den 10ya	sity, ancy
UNIT	II	FLUID KINEMATICS AND DYNAMICS			9	0	0	9
Classifi patterns equation Bucking	Classification of fluid flow - system and control volume - Lagrangian and Eulerian description for fluid flow - flow patterns- streamline, pathline, streakline and timeline. Velocity potential function and Stream function - continuity equation and its applications. Fluid dynamics - Bernoulli's equation and its applications. Dimensional analysis – Buckingham's theorem, dimensional homogeneity, similarity-laws and models.							
UNIT	III	FLOW THROUGH PIPES AND PLATES			9	0	0	9
Incomp through total en transmis separati	ressible pipes an ergy line ssion-Bo on.	fluid flow-Laminar flow- Hagen-Poiseuille equation, shear ad flow between parallel plates. Turbulent flow – flow throu , hydraulic gradient line, flow through pipes in series and pa undary layer flows - Boundary layer thickness, momentum	stress, pressure grad igh pipes, friction fa arallel- Moody's frid thickness, energy t	lient re ctors in ction fa hicknes	elation turb ctor c ss-bou	nship ulen chart inda) - 1 t flo . Po ry 1	flow ow - ower ayer
UNIT	IV	HYDRAULIC TURBINES			9	0	0	9
Hydrau curves specific	Hydraulic turbines classification-impulse and reaction turbines-Working Principle, work done-efficiency and performance curves for Pelton, Francis and Kaplan turbines (Only descriptive) - Comparison between impulse and reaction turbine-specific speed degree of reaction -draft tubes.							
UNIT	V	HYDRAULIC PUMPS			9	0	0	9
Classifi priming perform	Classification of hydraulic pumps-Centrifugal pumps - working principle, specific speed, performance curves and priming(Only descriptive) -Reciprocating pumps - classification, working principle, indicator diagram, air vessels and performance curves. Cavitation in pumps(Only descriptive) - Working principles of gear and vane pumps.							
	Total (45L)= 45 Periods							
Text B	ooks:							
1.	1. Bansal, R.K., "A Textbook of Fluid Mechanics and Hydraulic Machines, 9th Ed", Laxmi Publication Pvt Ltd, 2010.							
2.	Rajput	R.K., "A Textbook of Fluid Mechanics and Hydraulic Mecha	anics", S.Chand and	Compa	ny Lt	d, 20)11.	
3.	Subran	nanya. K., "Fluid Mechanics and Hydraulic Machines", Tata M	AcGraw Hill Publish	ing Co	mpan	y Lto	d, 20	011.
Refere	ence Boo	oks:						

1.	White, "Fluid Mechanics, 8 Ed", McGraw Hill India, 2017.
2.	Munson, Young and Okiishi, "Fundamentals of Fluid Mechanics 8 th Edition", Wiley, 2016.

3.	Yunuscengel, John. M.cimbala, "Fluid Mechanics Fundamentals and Applications", McGraw Hill, 2017.
4.	Som, S.K, Biswas.G and SumanChakraborty, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill India, 2011.
5.	Dr.P.N.Modi, Dr.S.M.Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard book house, 2018.
E-Refe	erences:
1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on fluid mechanics.

1.	NPTEL courses: http://nptel.iitm.ac.in/courses.php - web and video sources on fluid mechanics.

COURS Upon co	Bloom's Taxonomy Mapped	
C01	Understand the basic concepts and properties of fluids	Remember
<i>CO2</i>	Analyze the kinematic and dynamic concepts of fluid flow	Analyze
СОЗ	Understand the various incompressible fluid flow through pipes and between parallel plates	Understand
<i>CO4</i>	Apply the principles of fluid mechanics to design and operation of hydraulic turbines	Apply
<i>C05</i>	Apply the principles of fluid mechanics to design and operation of hydraulic pumps	Apply

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	0	0	0	2	0	0	0	1	0	2	2	1
CO2	3	3	1	0	2	0	0	0	0	0	0	0	2	2	1
CO3	2	3	2	2	1	0	0	0	0	0	0	0	2	2	1
CO4	3	3	3	2	1	2	1	0	0	0	0	0	2	2	1
CO5	3	3	3	2	1	2	1	0	0	0	0	0	2	2	1
Avg	2.8	2.6	2	1.2	1	0.8	0.8	0	0	0	0.2	0	2	2	1
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MI	22MEMI03 MANUFACTURING PROCESSES								
PRE-	PRE-REQUISITE: CATEGORY PE C								
1. Bas	1. Basic science, Engineering mathematics, Engineering Physics								
2.Eng	ineering N	laterials	Hours, week	3	0	0	3		
Cour	se Objec	tives:							
1.	To make design of	the students familiarize with various manufacturing processes casting.	s and fabrication t	echniqu	ies of	f met	als and		
2.	To devel	op design concepts of various manufacturing processes.							
3.	Gain kno	wledge to select appropriate manufacturing processes for vario	us parts.						
4.	To devel	op an entrepreneur skill among the students.							
5.	To evalu	ate and select plastic deformation processes for various parts.							
UNIT	I CAS	STING			9	0	09		
Conce design shell r	epts of Ma n, solidific noulding,	nufacturing Process -Sand casting -Patterns – Design of Patt ation time calculation - Moulding machines - Core making. Sp investment moulding, pressure die casting, centrifugal casting, c	tern, mould and co ecial moulding pro casting defects.	ores- ga cesses	ting - CO	and 1 2 mo	risering ulding;		
UNIT	T II	WELDING			9	0	09		
Classi subme beam	fication of erged arc w welding, la	f welding processes. Principles of Oxy-acetylene gas weldin welding, tungsten inert gas welding, metal inert gas welding, pla aser beam welding, defects in welding, Soldering and Brazing, A	g. Metal arc weld asma arc welding, t Adhesive Bonding.	ling, re hermit	sistan weldi	ce w ng, e	elding, lectron		
UNIT	T III	METAL FORMING			10	0	0 10		
Metal deforr forgin Defec	Metallurgical aspects of metal forming, slip, twinning mechanics of plastic deformation, load estimation of bulk deformation processes, Hot working and cold working of metals, Forging processes – open, closed and impression die forging – forging operations. Rolling of metals– Types of Rolling mill – Flat strip rolling – shape rolling operations – Defects in rolled parts. Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types.								
UNIT	ΓΙν	SHAPING OF PLASTICS			8	0	08		
Types princi mould Worki	of plastic ples and ty ling – Filr ing princip	cs - Characteristics of the forming and shaping processes – pical applications of - Injection moulding – Plunger and screen blowing – Extrusion - Typical industrial applications – The les and typical applications - Compression moulding – Transfer	- Moulding of The w machines – Blow rmoforming – Pro r moulding.	ermopla w moul cessing	astics ding of T	– W – Ro herm	Vorking tational osets –		
UNIT VSHEET METAL FORMING AND POWDER METALLURGY9									
Forma of pre compa	Formability of Sheet Metal, load estimation of sheet metal processes - Shearing, Deep drawing, Bending operations- types of presses used, Super Plastic forming; Introduction to Powder Metallurgy– Principal steps involved – sintering and compacting techniques, Advantages, limitations and applications of powder metallurgy.								
	Total (45L) = 45 Periods								

Text B	Text Books:						
1.	HajraChoudhury, "Elements of Workshop Technology", Vol. I and II, Media Promoters and Publishers Pvt., Ltd., Mumbai, 2005.						
2.	NagendraParashar B.S. and Mittal R.K., "Elements of Manufacturing Processes", Prentice-Hall of India Private Limited, 2007.						
Reference Books:							
1.	SeropeKalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials",4/e, Pearson Education, Inc. 2007.						
2.	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001.						
3.	"H.M.T. "Production Technology – Handbook", Tata McGraw-Hill, 2000.						

4.	Roy. A. Linberg, "Process and Materials of Manufacture", PHI, 2000.						
5.	Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems.						
E-Refe	E-References:						

COUR Upon co	Bloom's Taxonomy Mapped	
C01	Describe the operational features of various casting processes, design gate and riser and discover various defects in casting.	Understand
<i>CO2</i>	Explain various metal joining processes and compare them.	Understand
СОЗ	Summarize several types of metal forming processes and select suitable method for different applications.	Analyze
<i>CO4</i>	Analyze various manufacturing methods for plastics and their needs in industry.	Analyze
<i>C05</i>	Describe various sheet metal forming processes, load estimation calculation and principles of powder metallurgy	Understand

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	2	1	0	0	0	0	0	1	0	0	1	2	1
CO2	2	1	2	1	0	1	0	0	1	1	0	0	1	2	1
CO3	1	1	1	1	0	0	0	0	0	1	0	0	1	1	1
CO4	1	1	1	0	1	0	0	0	0	1	0	0	1	1	1
CO5	0	1	0	0	0	0	0	0	1	1	0	0	1	0	1
Avg	1.2	1	1.2	0.6	0.2	0.2	0	0	0.4	1	0	0	1	1.2	1
	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22MEN	22MEMI04 MATERIALS ENGINEERING									
PRE-R	PRE-REQUISITE:CATEGORYPECredit3									
1. Engin	eering F	hysics	TT /TT / 1 -	L	Т	Р	TH			
2.Engine	eering C	hemistry	Hours/ week	3	0	0	3			
Course	Objec	tives:								
1.	To im differe	part concept on reactions, treatment, microstructure and mech nt temperature.	anical behavior of	f engir	eering	materi	als at			
2.	To lea	rn basic principles in metallurgy and materials engineering.								
3.	To ide	ntity and select suitable engineering materials based on their appli-	cations	T						
UNIT I	P	HASE DIAGRAMS		9	0	0	9			
Crystal s systems diagram	structure – Euteo - effects	s, Phases, solid solution types, compounds, Hume- Rothery rules; ctic, Eutectoid, Peritectic systems. Lever rule, Equilibrium and s of alloying elements – Ferrite and Austenite Stabilizers, TTT and	Gibb's phase rule; non-equilibrium of CCT diagrams.	Binar cooling	y isomo g, Fe-C	orphous Equili	alloy brium			
UNIT I	I	HEAT TREATMENT		9	0	0	9			
Definition Isotherm test – An hardenin gauges.	on – Ful nal trans ustempe ng. Heat	l annealing, stress relief, recrystallisation and spheroidizing –non formation diagrams – cooling curves superimposed on I.T. diagra ring, martempering – case hardening, carburising, nitriding, cyan treatment of non-ferrous alloys - precipitation hardening .Hea	malizing, hardenir am CCR - Hardena iding, carbo-nitrid t treatment of HSS	ng and ability, ing – H S tools	Tempe Joming Flame a , gears	ering of y end q and Indu , spring	steel. uench uction s and			
UNIT I	II	FERROUS AND NON FERROUS METALS		9	0	0	9			
Plain can and prec .Copper	rbon ste cipitation alloys –	els – Tool steels - maraging steels – HSLA steels .Stainless steel n hardened stainless steels. Types of Cast Irons- Gray cast iron, Brass, Bronze and Cupronickel, Aluminium alloys, Bearing allo	s- ferritic and Aus white cast iron, ma ys.	tenitic, alleable	marter e cast i	nsitic, d ron, S.C	uplex 3.Iron			
UNIT I	V	MECHANICAL PROPERTIES AND TESTING		9	0	0	9			
UNIT V	V	NON DESTRUCTIVE TESTING AND SURFACE EN	GINEERING	9	0	0	9			
Non De Inspection methods	Non Destructive Testing: Basic principles - Testing method - radiographic Testing, Ultrasonic testing, Magnetic Particle Inspection and Liquid Penetrant Inspections Introduction to surface engineering - Definition, diffusion techniques, deposition methods, high and low energy beam methods, surface engineering charts, elastic contact mechanics									

Total	(45L)	= 45	Perio	ods
-------	-------	------	-------	-----

Text Boo	Text Books:							
1.	Kenneth G. Budinski and Michael K. Buinski, "Engineering Materials", Prentice Hall of India Ltd, 2002.							
2.	Raghavan, V, "Materials Science and Engineering", Prentice Hall of India (P) Ltd., 1999.							
3.	Aswani.K.G, "A Text Book of Material Science", S.Chand and Co. Ltd., New Delhi, 2001.							
4.	Khanna O.P., "A Text Book of Materials Science and Metallurgy", DhanpatRai Sons, 2004.							
Reference	ee Books:							
1.	William. D.Callsber, "Material Science and Engineering", John Wiley and Sons, 1997.							
2.	Sydney.H.Avner, "Introduction to Physical Metallurgy" Mc Graw Hill Book Company, 1994.							

COUR Upon co	Bloom's Taxonomy Mapped	
C01	Understand the formation of materials and their classification based on atomic structure.	Understand
<i>CO2</i>	Understand the principles of various heat treatment processes in fabrication industry.	Understand
СОЗ	Describe properties, applications and types of various ferrous and non-ferrous metals used in fabrication industry	Understand
<i>CO4</i>	Describe various types of failure and select methods for destructive testing	Understand
<i>C05</i>	Select methods for Non destructive testing	Evaluate

		-	-				-								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	2	1	1	1	0	0	0	0	0	2	3	1
CO2	1	0	2	1	1	2	1	0	0	0	0	0	2	3	1
CO3	0	1	1	1	1	0	1	0	0	0	0	0	3	2	1
CO4	0	2	2	1	1	1	1	0	0	0	0	0	2	3	1
CO5	0	2	2	2	1	0	1	0	0	0	0	0	2	2	1
Avg	0.4	1.2	1.8	1.4	1.0	0.8	1	0	0	0	0	0	2.2	2.6	1.0
3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)															

22ME	IEMI05 KINEMATICS OF MACHINERY										
PRE-REQUISITE: CATEGORY PE											
1. Engineering graphics. 2.Engineering Mechanics											
								3			
Course	e Objec	tives:				•					
1.	chine.										
2.	elocity,	and	accel	erat	ion						
3. To understand basics of cam profile and its displacement.											
4.	To und	erstand the basic concepts of toothed gearing and kinematics of g	ear trains.								
5.	Illustra	te the effects of friction drives in transmission system.									
UNIT	I	BASICS OF MECHANISMS			9	0	0	9			
Classifi Kinema angle- I	Classification of mechanisms- Basic kinematic concepts and definitions- Degree of freedom, mobility- Grashof's law, Kinematic inversions of four bar chain and slider-crank chains Limit positions- Mechanical advantage - Transmission angle- Description of some common mechanisms- Quick return mechanism, straight-line generators.										
UNIT	II	KINEMATIC ANALYSIS			9	0	0	9			
Displace centres compon generati	ement, v - kinen ient of a ion.	elocity and acceleration analysis of simple mechanisms, graph natic analysis of simple mechanisms- slider-crank mechanism acceleration introduction to linkage synthesis three Position	ical velocity analy n dynamics Coin graphical synthesis	sis usi cident s for 1	ng ir poin notic	istant ts- C on an	ane Cori d p	ous olis ath			
UNIT	III	KINEMATICS OF CAM			9	0	0	9			
Classifie simple l pressure	cation of harmonic e angle a	f cams and followers- Terminology and definitions- Displaceme and cycloidal motions- derivatives of follower motions- specifiend and undercutting, sizing of cams, graphical method for cam profile	ent diagrams Unifo ed contour cams cir e design.	orm ve cular a	locity nd ta	/, pai ngen	rabo t cai	lic, ms-			
UNIT	IV	GEARS AND GEAR TRAINS			9	0	0	9			
Involute ratio and	e and cyo d interfe	cloidal gear profiles, gear parameters, fundamental law of gearir rence/undercutting- helical, bevel, worm, rack & pinion gears, ep	ng and conjugate a icyclic and regular	ction, s gear tr	spur g ain ki	gear (inema	cont atics	act			
UNIT	V	FRICTION IN MACHINE ELEMENTS			9	0	0	9			
Surface contacts- sliding and rolling friction- friction drives- friction in screw threads – bearings and lubrication- friction Clutches- belt and rope drives.											
			Tota	al (451	L) =	45 P	erio	ods			
Text B	ooks:										
1.	Rattan	S.S, "Theory of Machines", Tata McGraw Hill Publishing Compa	any Ltd., New Dell	ni, 199	8.						
2.	Ghosh,	A and Mallick, A.K, "Theory of Mechanisms and Machines", Ea	st-West Pvt. Ltd.,	New D	elhi,	1988	5.				
Refere	nce Boo	oks:									
1.	Thoma	s Bevan, "Theory of Machines", CBS Publishers and Distributors	, 1984.								
2.	Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", Wiley-Eastern Ltd., New Delhi, 1992.										

3. Erdman AG and Sandor G N, "Mechanism Design, Analysis and Synthesis", Vol.I, PHI Inc., 1997.

4. Ambekar A.G, "Mechanism and Machine Theory" Prentice Hall of India, New Delhi, 2007.

5. John Hannah and Stephens R C, "Mechanisms of Machines", Viva Low Price Student Edition, New Delhi, 1999.

E-References:

1.	https://archive.nptel.ac.in/courses/112/104/112104121/
2.	https://nptel.ac.in/courses/112106270
3.	http://velhightech.com/Documents/ME8492 Kinematics of Machinery.pdf

COURS Upon co	Bloom's Taxonomy Mapped	
C01	Demonstrate and understand the concepts of various mechanisms and pairs.	Apply
<i>CO2</i>	Analyze the velocity and acceleration of simple mechanisms.	Analyze
СОЗ	Construct the cam profile for various motion.	Create
<i>CO4</i>	Solve problems on gears and gear trains.	Evaluate
C05	Evaluate the friction in transmission system	Evaluate

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO2	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO3	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO4	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
CO5	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
Avg	3	2	2	1	0	0	0	0	0	0	0	0	3	1	0
			,	3/2/1	– indi	cates s	streng	th of co	orrelat	ion (3 –	high, 2	- mediu	m, 1- low	<i>י</i>)	
22MI	EMI06	HYDRAULICS AND PNEUMATICS													
---	---	--	---	---	--	---------------------------------	--								
PRE-	PRE-REQUISITE: CATEGORY PE														
			TT (TT)	L	Т	Р	ТН								
			Hours/Week	3	0	0	3								
Cour	se Objec	tives:													
1.	To enabl	e the students understand the basics of hydraulics and pneumatic	es												
2.	Applying	g the working principles of hydraulic actuators and control comp	onents.												
3.	Designin	g and develop hydraulic circuits and systems.													
4.	Applying	g the working principles of pneumatic power system and its com	ponents.												
5.	Solving	problems and troubles in fluid power systems.													
UNIT	TI FLU	JID POWER PRINICIPLES AND HYDRAULIC PUM	IPS		9	0	09								
and se Proble Advan Proble	election – ems, Sour- ntages, D ems.	Basics of Hydraulics – Pascal's Law – Principles of flow - I ces of Hydraulic power; Pumping Theory – Pump Classifi isadvantages, Performance, Selection criteria of pumps – Fix	Friction loss – Wo cation – Construc ted and Variable	rk, Pov tion, V displac	ver a Vorki emen	nd Tong, l	orque - Design, 1mps –								
UNII	T II	HYDRAULIC ACTUATORS AND CONTROL COM	IPONENTS		9	0	09								
Hydra Hydra Consti Fluid	ulic Actu ulic moto ruction and Power AN	ators: Cylinders – Types and construction, Application, Hydrs - Control Components : Direction Control, Flow control d Operation – Accessories; Reservoirs, Pressure Switches – Fil SI Symbols – Problems.	Iraulic cushioning and pressure c ters – types and se	– R ontrol election	otary valve - Ap	actu s – plica	ators - Types, tions –								
UNIT	T III	HYDRAULIC CIRCUITS AND SYSTEMS			9	0	09								
Accum Intens Sizing Applic	nulators, 1 ifier, Air- of hydra cations - N	ntensifiers, Industrial hydraulic circuits – Regenerative, Purnover oil, Sequence, Reciprocation, Synchronization, Fail - Sulic systems, Hydrostatic transmission, Electro hydraulic cirlechanical, hydraulic servo systems.	p Unloading, Do afe, Speed Contro rcuits – Servo and	ouble - ol, Deco d Propo	Pum elerat	np, P ion c al va	ressure fircuits, alves –								
UNIT	T IV	PNEUMATIC AND ELECTRO PNEUMATIC SYST	EMS		9	0	09								
Proper Exhau circuit circuit	rties of air st Valves s - Cascac s problem	 Air preparation and distribution – Filters, Regulator, Lubric Pneumatic actuators, Design of Pneumatic circuit – classific le method – Integration of fringe circuits, Electro Pneumatic Sy s, Introduction to fluidics and pneumatic logic circuits. 	cator, Muffler, Ai ation - single cyli stem – Elements –	r contr nder a Ladde	ol Va nd mu r diag	lves, ilti c gram	Quick ylinder – timer								
UNIT	T V	DESIGN OF FLUID POWER CIRCUITS AND TRO	UBLESHOOTI	NG	9	0	09								
Servo electro failure – Low using	systems, 1 b hydraulic e and troub 7 cost Aut hydraulic	Hydro mechanical servo systems, electro hydraulic servo system c pneumatic logic circuits, ladder diagrams, PLC applications in leshooting. Design of Pneumatic circuits for metal working, har omation – Hydraulic and Pneumatic power packs. Case studies and pneumatics components.	ns and proportional a fluid power contr adling, clamping co s: A simple sequer	l Valve ol. Flui ounter a nce, syr	s, Inti id pov ind tin ichron	roduc wer c ner c nize	ction to ircuits, ircuits. circuits								
			Tot	al (45)	L) =	45 P	eriods								
Text	Books:														
1.	Manjur	ndar S.R, "Oil Hydraulics", Tata McGraw-Hill, December 2002													
2.	Anthon	y Esposito, "Fluid Power with Applications", Pearson Education	n 2013.												
Refer	ence Boo	oks:													
1.	Andrev	Parr, "Hydraulic and Pneumatics", Jaico Publications House, 2	005.												

2.	Bolton W. "Pneumatic and hydraulic system", Butterworth-Heinemann 1997
3.	Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 2010
4.	Shanmugasundaram.K, "Hydraulic and Pneumatic controls", Chand & Co, 2006
5.	Srinivasan.R. "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008.
E-Refe	erences:
1.	http://www.fluidpowerjournal.com
2.	http://14.139.160.15/courses/112102011/2
3.	https://www.nfpa.com/home.htm

COUR Upon co	Bloom's Taxonomy Mapped	
C01	Select the components as per the application	Evaluate
<i>CO2</i>	Apply the working principles of hydraulic actuators and control components.	Apply
СОЗ	Design and develop hydraulic circuits and systems.	Create
<i>CO4</i>	Apply the working principles of pneumatic power system and its components.	Apply
<i>C05</i>	Solve problems and troubles in fluid power systems.	Evaluate

COURSE A	OURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	0	0	0	0	0	0	0	0	1	1	1
CO2	0	2	2	1	0	0	0	0	0	0	0	0	1	1	1
CO3	1	2	3	0	0	1	0	0	0	0	0	0	1	2	1
CO4	1	1	3	2	2	0	0	0	0	0	0	0	2	1	1
CO5	1	1	2	0	0	0	0	0	0	0	0	0	1	1	1
Avg	1	1.4	2.2	0.6	0.4	0.2	0	0	0	0	0	0	1.2	1.2	1
				3/2/1	– indi	cates s	streng	th of co	orrelat	ion (3 –	high, 2	- mediu	m, 1- low	<i>v</i>)	

22M	EMI07	DESIGN OF MACHINE ELEMEN	TS					
PRE	-REQUIS	SITE:	CATEGORY	PE	Cre	edit		3
1. Stu	dent shoul	d study engineering mechanics.	Horne/Wool-	L	Р	T	Ή	
2. Stu	dent shoul	d study kinematic of machinery.	Hours/ week	3	0	0		3
Cour	rse Objec	tives:						
1.	Understa	nding of background in mechanics of materials and design of	of machine componen	nts.				
2.	An unde consider	rstanding of the origins, nature and applicability of empirica ations	l design principles, b	ased on s	afety			
3.	An unde	rstanding the design of shafts and couplings.						
4.	Familiar	ize the design of energy storing elements and engine compo	nents.					
5.	An approperties An appropriate An appropriate An approximate An ap	eciation of the relationships between component level design ince	and overall machine	e system c	lesigr	n and		
UNI	ΓI	STEADY STRESSES AND VARIABLE STR MEMBERS	ESSES IN MA	CHINE	9	0	0	9
based Calcu stress	on mecha lation of p concentrat	nical properties - Preferred numbers– Direct, Bending and rinciple stresses for various load combinations, eccentric lo ion – design for variable loading – Soderberg, Goodman and	Torsional stress – Ir bading – Factor of s d Gerber relations.	npact and afety -the	shoo ories	ck los of fa	adin adin	<u>g</u> – <u>e</u> –
UNI	ΓII	DESIGN OF SHAFTS AND COUPLINGS			9	0	0	9
Desig rigid a	n of solid and flexibl	and hollow shafts based on strength, rigidity and critical spe e couplings.	eed – Design of keys	and key	ways	- De	sigr	ı of
UNI	r III	DESIGN OF THREADED FASTENERS, RIV JOINTS	ETED AND W	ELDED	9	0	0	9
Threa vessel	ded fasten Is and struc	ers - Design of bolted joints including eccentric loading $-D$ stures- theory of bonded joints.	Design of riveted and	welded j	oints	for p	ress	ure
UNI	ΓIV	DESIGN OF ENERGY STORING ELEM COMPONENTS	ENTS AND E	NGINE	9	0	0	9
Vario for en	us types of gines and	springs, optimization of helical springs - rubber springs - F punching machines- Connecting Rods and crank shafts.	lywheels considering	g stresses	in riı	ns ar	nd ai	rms
UNI	ΓV	DESIGN OF BEARINGS			9	0	0	9
Slidin Conta	g contact a ct bearing	and rolling contact bearings - Hydrodynamic journal bearing	gs, Sommerfeld Nun	nber - Sel	ectio	n of	Roll	ing
			Т	otal (451	L) =	45 P	erio	ods

Text B	Text Books:							
1.	Bhandari V.B, "Design of Machine Elements", Tata McGraw Hill Book Co, 2020							
2.	Md.Jalaludeen.S, "A text book of Machine Design", Anuradha Publications, 2006							
Refere	Reference Books:							
1.	Shigley, J.E. and Mischke, C.R., Mechanical Engineering Design, Fifth Edition, McGraw-Hill International; 1989.							
2.	Deutschman, D., Michels, W.J. and Wilson, C.E., Machine Design Theory and Practice, Macmillan, 1992.							
3.	Juvinal, R.C., Fundamentals of Machine Component Design, John Wiley, 1994.							
4.	PSG Tech, "Design Data Handbook", M/s.DPV Printers, Coimbatore, 2009							
E-Refe	E-References:							

1.	https://nptel.ac.in/courses/112105124
2.	Design of Machine Elements - V. B. Bhandari - Google Books
3.	A Textbook of Machine Design by R.S.Khurmi And J.K.Gupta [tortuka] 1490186411865.pdf DocDroid

COU On co	RSE OUTCOMES: ompletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Explain the influence of steady and variable stresses in machine component design.	Understand
<i>CO2</i>	Apply the concepts of design to shafts, keys and couplings.	Apply
СО3	Familiarize the design of temporary and permanent joints	Understand
<i>CO4</i>	Design the various energy storing elements and engine components.	Analyse
<i>C05</i>	Familiarize the design of various types of bearings.	Understand

COURSE ARTICULATION MATRIX

	-	-	-							-	-	-	-		-
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO2	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO3	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO4	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
CO5	2	2	1	2	0	1	1	0	0	0	1	0	3	2	1
Avg	2.0	2.0	1.0	2.0	0.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	3.0	2.0	1.0
3/2/1 - in	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22ME	MI08	HEAT AND MASS TRANSFER					
PRER	PE	Cr	edit	С			
1. The laws and basic concepts of thermodynamics							ТН
2. The	concept	of energy transfers and their conversion principles	Hours/week	3	0	0	3
COU	RSE OF	SJECTIVES		•			
1.	Unders	tanding the science behind conduction heat transfer and its application	ations				
2.	Differe	ntiating the concepts of forced and natural convection heat transfe	r				
3.	Descril	bing the laws and concepts of radiation heat transfer					
4.	Unders	tanding phase change processes and analyzing heat exchangers					
5.	Studyi	ng the concept of mass transfer process and its modes					
UN	IT-I	CONDUCTION HEAT TRANSFER		9) () 0	9
Extend charts.	ded Surfa	aces – Unsteady Heat Conduction – Lumped Analysis – Semi In	finiteand Infinite S	olids –		of He	isler's
UNI	1-11	CONVECTION HEAT TRANSFER		9	, (0	9
Conser and bar	vation e nk of tub	quations, boundary layer concept – Forced convection: external f es. Internal flow – entrance effects.	low – flow over pl	ates, cy	lind	ers, sp	oheres
Free co	onvectior	-flow over vertical plate, horizontal plate, inclined plate, cylinder	rs and spheres.				
UNI	T-III	BOILING, CONDENSATION AND HEAT EXCHANC	GERS	9) () 0	9
Regime Exchar	es of Poo nger Typ	ol boiling and Flow boiling, Nusselt's theory of condensation- cor es - Overall Heat Transfer Coefficient – Fouling Factors.LMTD ar	relations in boiling nd NTU methods.	and co	ndens	sation	. Heat
UNIT-IV RADIATION HEAT TRANSFER							
Radiati	ion laws,	Black Body and Gray body Radiation. Shape Factor. Electrical A	nalogy. RadiationS	hields.			
UNIT-V MASS TRANSFER							9
Basic C diffusio	Basic Concepts – Diffusion Mass Transfer – Fick's Law of Diffusion – Steady state MolecularDiffusion-Equimolal counter diffusion. Basic Convective Mass Transfer Problems.						ounter
			Tot	al(45L) = 4	15 Pe	riods

ТЕХТ	BOOKS:
1	R.C. Sachdeva, "Fundamentals of Engineering Heat & Mass transfer", New Age International Publishers, 2017
2	Frank P. Incropera and David P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley & Sons, 7th Edition, 2014.
REFE	RENCE BOOKS:
1	Yunus A. Cengel, "Heat Transfer A Practical Approach" – Tata McGraw Hill, 5 th Edition - 2013
2	Holman, J.P., "Heat and Mass Transfer", Tata McGraw Hill, 2017
3	Kothandaraman, C.P., "Fundamentals of Heat and Mass Transfer", New Age International, New Delhi, 2012
4	Ozisik, M.N., "Heat Transfer", McGraw Hill Book Co., 1994.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Analyze the mechanism of heat conduction under steady and transient conditions.	Apply
<i>CO2</i>	Develop solutions to problems involving convective heat transfer	Create
СО3	Design a heat exchanger for any specific application	Understand
<i>CO4</i>	Adopt the concept of radiation heat transfer in real time systems	Understand
<i>C05</i>	Develop solutions to problems involving combined heat and mass transfer	Apply

COURSE ARTICULATION MATRIX															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	0	1	0	0	0	0	0	3	3	1
CO2	3	3	3	3	2	0	1	0	0	0	0	0	3	3	1
CO3	3	3	3	3	2	0	1	0	0	0	0	0	3	3	1
CO4	3	3	3	3	2	0	1	0	0	0	0	0	3	2	1
CO5	2	2	2	2	1	0	1	0	0	0	0	0	3	1	0
Avg	2.8	2.8	2.8	2.8	1.8	0	1	0	0	0	0	0	3	2.4	0.8
3/2/1 - ir	ndicate	s stren	gth of	correl	ation (3 – hig	gh, 2- r	nedium	, 1- lo	w)					

22MEMI09	METROLOGY AND QUALITY												
PREREQUISIT	ES	CATEGORY	Y PE	Cr	edit	3							
			L	Т	Р	TH							
		Horus/Week	3	0	0	3							
COURSE OBJE	CTIVES												
1.	Explaining the importance of measurements in e to compute measurement uncertainty	ngineering and the	factors affe	ecting m	easure	ments and							
2.	Applying the applications of linear and angular measuring instruments												
3.	Interpretation of various tolerance symbols.	Interpretation of various tolerance symbols.											
4.	Applying the SQC methods in manufacturing												
5.	5. Applying the advances in measurements for quality control												
UNIT-I	BASICSOFMEASUREMENTSYSTEMA	NDDEVICES	9 0	0		9							
Definition of metrology, accuracy, precision and sensitivity, Abbe's principle. Three stages of generalized measurementsystem-mechanical loading-static characteristics of instruments - factors considered inselection of instruments - commonly used terms, error analysis and classification - sources of error. Measurement uncertainty													
UNIT-II	CALIBRATION OF INSTRUMENTS AN STANDARDS	ND QUALITY	9	0	0	9							
Calibration of mea feeler gauges, dial 9000qualitystandar	suring instruments - principles of calibration, Cal indicator, surface plates, slip gauges, care of gaug ds.Comparators-mechanical, electrical, optical and	libration of Instrum e blocks. General c l pneumatic.	ents - Ver ares and ru	nier cali iles in m	per, M easure	licrometer, ement, ISO							
UNIT-III	GEOMETRICAL MEASUREMENT MACHINE ELEMENTS	Γ AND	9 0	0		9							
Angular measurement - optical protractors, sine bar, roundness measurement, limit gauge, design of plug gauge, Taylor's principle, three basic types of limit gauges, Tomlinson surface meter, computer controlled CMM. ISO metric thread, measurement of major, minor and effective diameters. Gear terminology; spur gear measurement, checking of composite errors, base pitch measurement. Principle of interferometry, laser interferometer, Machine vision, Fundamental of GD and T. Inspection of straightness, flatness, roundness deviations													
UNIT-IV	STATISTICAL QUALITY CONTROL		9 0	0		9							
Surfacefinish-termi Control-Control ch	Surfacefinish-terminologyandmeasurements-Opticalmeasuringinstruments-AcceptancetestformachinesStatisticalQuality Control-Control charts-Sampling plans												
UNIT-V	SIX SIGMA		9 0	0		9							
Sixsigma:defineme hart,Scatterchart,Ca Hypothesis Testing	Sixsigma:definemeasure,analyse,improveandcontrolphases.Analyzephasetools:CommonTools:Histogram,BoxPlot,Controlc hart,Scatterchart,Causeandeffectdiagram,Paretoanalysis,interrelationsdiagram. Special Tools: Regression Analysis, Hypothesis Testing, ANOVA Multi variate analysis.												
			Te	otal(45I	L) = 4	5 Periods							

TEXT BO	OKS:										
1	Gupta.I.C, —A text book of Engineering Metrology, Dhanpat Rai publications, New Delhi, 2018										
2	Beckwith.T.G,Roy D. Marangoni, John H. Lienhard, - Mechanical Measurements, Prentice Hall, 2006										
REFEREN	CE BOOKS:										
1	Jain.R.K, —Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1999.										
2	Holmen.J.P, —Experimental Methods for Engineersl, Tata McGraw Hill Publications Co Limited, 2017.										
3	Grant, E.L., Statistical Quality Control, Mc Graw-Hill, 2004. 3. Doeblin E.O., Measurement Systems, Mc										

	Graw-Hill, 2004.					
4	Alan S Morris,Measurement and Instrumentation Principles , Butterworth, 2006.					
5	De Feo J A and Barnard W W, —Six Sigma: Break trough and BeyondG, Tata McGraw-Hill, New Delhi, 2005.					
E-REFER	ENCES:					
1	https://nitsri.ac.in/Department/Mechanical%20Engineering/MEC_405_Book_2,_for_Unit_2B.pdf					
2	https://www.nist.gov/system/files/documents/srm/NIST-SRM-RM-Articlefinal.pdf					
3	https://www.researchgate.net/publication/319587859_Computer-Aided_Metrology-CAM					

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to:	Bloom's Taxonomy Mapped
C01	Explain the importance of measurements in engineering and the factors affecting measurements and to compute measurement uncertainty	Understand
<i>CO2</i>	Apply the working principle and the applications of linear and angular measuring instruments[Apply
CO3	Interpret of various tolerance symbols.	Apply
<i>CO4</i>	Apply the SQC methods in manufacturing.	Apply
<i>CO5</i>	Apply the advances in measurements for quality control in manufacturing industries.	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	0	0	0	0	0	0	2	1	2	0	0	0	2	1	0
CO2	0	0	0	0	0	0	3	1	2	0	0	0	1	2	0
CO3	0	0	0	0	0	0	2	1	0	0	0	0	2	1	0
CO4	0	0	0	3	0	0	2	0	1	0	0	0	1	2	0
CO5	0	0	0	2	0	0	0	3	1	0	0	0	2	1	0
Avg	0.0	0.0	0.0	1.0	0.0	0.0	1.8	1.2	1.2	0.0	0.0	0.0	1.6	1.4	0.0
3/2/1 - ir	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														

22	MEMI1	0 DYNAMICS OF MACHINER	Y									
PR	EREQU	ISITES	CATEGORY	PE	Cre	edit	3					
-				L	Т	Р	ТН					
Eng	gineering	Mechanics, Kinematics of Machinery, Strength of Materials	Hours\Week	3	0	0	3					
CO	URSE (DBJECTIVES:										
1.	To impa Work	art students with the knowledge about motion, masses and f	orces in machines and	the Pi	rincipl	e of	Virtual					
2.	To facil	itate students to understand the concept of balancing of rotating	g and reciprocating mas	sses								
3.	To teach	n concepts of free vibration analyses of one and two degree-of-	freedom rigid body sys	stems								
4.	To teac phenom	h concepts of forced vibrations analyses of rigid body syste enon of vibration and its effects	ems and to give awar	eness t	o stuc	lents	on the					
5.	To learn	about the concept of various types of governors										
UI	NIT I	FORCE ANALYSIS		9	0	0	9					
Stat D'A Mor and	tic Force Alembert's ment Diag Speed, W	Analysis, Free Body Diagrams, Conditions of Two, Three s Principle – Inertia Force Analysis in Reciprocating Engine grams and Fluctuation of Energy of Reciprocating Engine Me /eight of Flywheel Required.	and Four Force Mem s – Crank Shaft Torq schanisms, Coefficient	ibers. I ue. Fly of Fluc	nertia wheel ctuatio	Forc s – T n of 1	es and 'urning Energy					
UN	II TI	BALANCING		9	0	0	9					
Stat cyli	tic and dy nder Engi	ynamic balancing - Balancing of rotating masses - Balancin nes - Partial balancing in locomotive Engines - Balancing link	g a single cylinder Er ages - balancing machi	ngine - nes	Balaı	ncing	Multi-					
UN	III III	FREE VIBRATION		9	0	0	9					
Bas Nat Free Sys	ic Feature ural Freq edom Sys tem. Tors	es of Vibratory Systems – Types – Single Degree of Freedouency by Energy Method, Dunkerly's Method - Critical Spettem -Types of Damping – Free Vibration with Viscous Dampional Systems: Natural Frequency of Two and Three Rotor Systems:	m System – Transver ed - Damped Free Vi ing, Critically Dampec stems.	se Vibi bration l Systei	ration of Si m, Un	of Bo ngle der D	eams – Degree eamped					
UN	IT IV	FORCED VIBRATION		9	0	0	9					
Res Mag	ponse to gnification	Periodic Force – Harmonic Force – Force caused by Unbalan n Factor – Vibration Isolation and Transmissibility.	ce – Support Motion -	Logari	thmic	Decr	ement-					
UN	NIT V	GOVERNORS		9	0	0	9					
Gov - Ef	vernors - 7 fect of fri	Types - Centrifugal governors - Gravity controlled and spring of ction - Controlling Force - other Governor mechanisms.	controlled centrifugal g	overno	rs –Cł	naract	eristics					
			То	tal (45	SL) =	45 P	eriods					
TE	XT BO	OKS:										
1.	Design	of Machinery, Fourth Edition, by R.L. Norton, McGraw Hill, 2	2007									
2.	Mechar	nical Vibration, V.P.Singh, Dhanpatrai, Delhi										
RE	FEREN	CE BOOKS:										
1.	Ballane	y, P.L., "Theory of Machines and Mechanisms", Khanna Publ	ishers, New Delhi, 200	2.								
2.	Shigley	r, J.E. and Uicker, J.J., "Theory of Machines and Mechanisms"	, TMH ND, 1998.									
3.	Amitha West Pr	bha Ghosh, and Ashok Kumar Malik., "Theory of Mechanisr ress Limited, 1998.	ns and Machines", 2nd	1 Ed., A	Affilia	ted Ea	ast and					
4.	Prof.Na	akara, IIT-Delhi Reference Books	4. Prof.Nakara, IIT-Delhi Reference Books									

E-R	E-REFERENCES:										
1.	www.university.youth4work.com/IIT_Kharagpur_Indian-Institute-of-Technology/study/1653-dynamics-of-Machinery-ebook										
2.	http://nptel.ac.in/courses/112104114/										

COU! On cor	RSE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
C01	Apply basic principles of mechanisms in mechanical system	Apply
<i>CO2</i>	Familiarize the static and dynamic analysis of simple mechanisms	Understand
СОЗ	Analyze the mechanical systems subjected to free vibration	Analyze
<i>CO</i> 4	Analyze mechanical systems subjected to forced vibration	Analyze
<i>CO5</i>	Analyze the various types of governors and its speed control mechanism	Analyze

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	3	1	0	0	0	0	1	0	3	2	1	2
CO2	2	2	3	2	1	0	0	0	0	1	0	3	2	1	2
CO3	2	2	3	2	0	0	0	0	0	1	0	3	2	1	2
CO4	2	2	3	2	1	0	0	0	0	1	0	3	2	1	2
CO5	1	2	3	2	0	0	0	0	0	1	0	3	2	1	1
Avg	1.8	2.0	3.0	2.2	1.2	0.0	0.0	0.0	0.0	1.0	0.0	3.0	2.0	1.0	1.8
3/2/1 – in	3/2/1 – indicates strength of correlation (3 – high, 2- medium, 1- low)														