GOVERNMENT COLLEGE OF ENGINEERING, SALEM – 636 011. B.E – METALLURGICAL ENGINEERING (FULL TIME)

	SEMESTER I											
S.	Course	Course Title	Cat	H	our	s / V	Veek	M	ax. M	larks		
No.	Code	Course Hue	Cat.	L	Т	Р	С	CA	FE	Total		
1	22MC101	Induction Program	MC	-	-	-	0	-	-	-		
		THEORY				•		•				
2	22EN101	Communicative English (Theory cum Practical)	HS	2	0	2	3	40	60	100		
3	22MA101	Matrices, Calculus and Ordinary Differential Equations	BS	3	1	0	4	40	60	100		
4	22PH101	Engineering Physics	BS	3	1	0	4	40	60	100		
5	22CS101	Problem Solving and C Programming	ES	3	0	0	3	40	60	100		
6	22CE201	Engineering Mechanics	ES	3	0	0	3	40	60	100		
7	22MC102	Heritage of Tamil / தமிழர்மரபு	HS MC	1	0	0	1	100	-	100		
		PRACTICAL	-	-			-	-				
8	22CS102	Computer Practice and C Programming Laboratory	ES	0	0	3	1.5	60	40	100		
9	22ME102	Workshop Manufacturing Practices	ES	0	0	4	2.0	60	40	100		
		TOTAL					21.5			900		
		SEMESTER II										
S.	Course	Course Title	Cat.	H	our	s / V	Veek	M	ax. M	arks		
No.	Code		0	L	Т	Р	С	CA	FE	Total		
		THEORY		I		I	1	Γ				
1	22MA201	Partial Differential Equation, Vector Calculus and Complex Variables	BS	3	1	0	4	50	50	100		
2	22CY101	Engineering Chemistry	BS	3	1	0	4	40	60	100		
3	22EE203	Basic Electrical Engineering for Metallurgy	ES	3	1	0	4	40	60	100		
4	22ME101	Engineering Graphics & Design	ES	1	0	4	3	40	60	100		
5	22HS201	Universal Human Values	HS	2	1	0	3	40	60	100		
6	22MCIN01	Engineering Sprints	EE	0	0	2	1	100	-	100		
7	22MC201	Tamils and Technology / தமிழரும் தொழில்நட்பமும்	HS MC	1	0	0	1	100	-	100		
8	22NC201	NCC COURSE – I (only for NCC Students)*	NC	3	0	0	3	40	60	100		
		PRACTICAL										
9	22EN102	Professional Skills Laboratory	HS	0	0	3	1	60	40	100		
10	22PH103	Physics Laboratory	BS	0	0	3	1.5	60	40	100		
11	22CY102	Chemistry Laboratory	BS	0	0	3	1.5	60	40	100		
12	22EE204	Basic Electrical Engineering Laboratory for Metallurgy	ES	0	0	3	1	60	40	100		
		TOTAL					24.5			900		

*Only for NCC students, it is not considered for CGPA calculation.

		SEMESTER III											
S.	Course	Correct Tide	C-4	H	our	s / W	Veek	M	ax. M	arks			
No.	Code	Course The	Cat.	L	Т	Р	С	CA	FE	Total			
		THEORY	•										
1	22MA306	Linear Algebra & Transforms	BS	3	1	0	4	40	60	100			
2	22MT301	Elements of Physical Metallurgy	PC	3	0	0	3	40	60	100			
3	22MT302	Mineral Dressing, Fuels & Furnaces	PC	3	0	0	3	40	60	100			
4	22MT303	Metallurgical Thermodynamics and Kinetics	PC	3	1	0	4	40	60	100			
5	22PH102	Materials Science for Engineering	BS	3	0	0	3	40	60	100			
6	22MCIN02	Innovation Sprints	EE	0	0	2	1	100	-	100			
7	22CE310	Mechanics of Deformable bodies	ES	3	1	0	4	40	60	100			
8	22NC301	NCC Course – II (Only for NCC Students)*	-	3	0	0	3	-	-	-			
		PRACTICAL											
9	22MT304	Metallography Laboratory	PC	0	0	3	1	60	40	100			
10	22MT305	Chemical Metallurgy Laboratory	PC	0	0	3	1	60	60 40 10				
		TOTAL					24			900			
	1	SEMESTER IV						•					
S.	Course	Course Title	Cat	H	lour	s / W	Veek	M	ax. M	arks			
No.	Code		Cuti	L	Т	Р	С	CA	FE	Total			
	1	THEORY	1	I				T	r	r			
1	22MA403	Probability and Statistical Methods	BS	3	1	0	4	40	60	100			
2	22CY401	Non Metallic Materials	BS	3	0	0	3	40	60	100			
3	22MT401	Mechanical Behaviour and Testing of Materials	PC	3	0	0	3	40	60	100			
4	22MT402	Advanced Physical Metallurgy	PC	3	0	0	3	40	60	100			
5	22MT403	Heat Treatment Technology	PC	3	0	0	3	40	60	100			
6	22MT404	Iron Making	PC	3	0	0	3	40	60	100			
7	22MCIN03	Design Sprints	EE	0	0	2	1	100	-	100			
8	22CYMC01	Environmental Science	MC	0	0	3	0	100	-	100			
		PRACTICAL	-	-					-				
9	22MT405	Material Testing Laboratory	PC	0	0	3	1	60	40	100			
10	22EN401	Placement and Soft Skills Laboratory	PC	0	0	4	2	60	40	100			
						23			1000				

	SEMESTER V												
S.	Course	G		H	our	s / W	Veek	Μ	ax. M	arks			
No.	Code	Course fille	Cat.	L	Т	Р	С	CA	FE	Total			
		THEORY							•				
1	22MT501	Forming Processes	PC	3	0	0	3	40	60	100			
2	22MT502	Steel Making	PC	3	0	0	3	40	60	100			
3	22MT503	Corrosion Engineering	PC	3	0	0	3	40	60	100			
4	22MT504	Casting Engineering	PC	3	0	0	3	40	60	100			
5	22MT505	Welding Engineering	PC	3	0	0	3	40	60	100			
6	22MT506	Introduction to instrumentation	ES	3	0	0	3	40	60	100			
7	22MC301	Indian Constitution	MC	3	0	0	0	40	60	100			
8	22MCIN04	Ideation Sprints	EE	0	0	2	1	100	-	100			
		PRACTICAL											
9	22MT507	Heat Treatment Laboratory	PC	0	0	3	1	40	60	100			
10	22MT508	Corrosion Science Laboratory	PC	0	0	3	1	40	60	100			
11	22MT509	Machine Shop Practice	PC	0	0	3	1	40	60	100			
		TOTAL					22			1100			
		SEMESTER VI (Regular S	tream)	-									
S.	Course	Course Title	Cat	H	lour	s / W	/eek	M	ax. M	arks			
No.	Code	course file	Cut.	L	Т	Р	С	CA	FE	Total			
		THEORY	1	1		1		r	T				
1	22MTPExx	Professional Elective - I	PE	3	0	0	3	40	60	100			
2	22MTPExx	Professional Elective - II	PE	3	0	0	3	40	60	100			
3	22MTPExx	Professional Elective - III	PE	3	0	0	3	40	60	100			
4	22_OExx	Open Elective - I	OE	3	0	0	3	40	60	100			
5	22_OExx	Open Elective - II	OE	3	0	0	3	40	60	100			
6	22_OExx	Open Elective - III	OE	3	0	0	3	40	60	100			
PRACTICAL							1	r	T				
7	22ME601	Mini Project	EE	0	0	6	3	60	40	100			
		TOTAL					21			700			

	SEMESTER VI (Protosem Stream)												
S.	Course	Course Title	Cat		Ho	ours	/ We	ek	Μ	ax. M	arks		
•	Code	Course The	Ca	יי I		Т	Р	С	CA	FE	Total		
		THEORY											
1	22MEPS11	Applied Design Thinking	Prot sem	0 2	2	0	2	3	100		100		
2	22MEPS12	Start- up Fundamentals	Prot sem	o 2	2	0	2	3	100		100		
3	22MEPS13	Computational Hardware	Prot sem	0 2	2	0	2	3	100		100		
4	22MEPS14	Coding for Innovators	Prot sem	0 2	2	0	2	3	100		100		
5	22MEPS15	Industrial Design & Rapid Prototyping Techniques	Prot sem	0 2	2	0	2	3	100		100		
6	22MEPS16	Industrial Automation	Prot sem	0 2	2	0	2	3	100		100		
7	22MEPS17	Robotics	Prot sem	o 2	2	0	2	3	100		100		
		PRACTICA	L	•	•						•		
7	22GE601	Robotics/ML/MLOPs	EE	1	0	0	6	3	100	-	100		
		TOTAL						21			700		
	1	SEMESTER	VII		I								
S.	Course	Course Title		Cat.	H	lour	s / W	eek	Μ	arks			
No	Code				L	Т	Р	С	CA	FE	Total		
	I	THEORY											
1	22MT701	Characterization of Materials		PC	3	0	0	3	40	60	100		
2	22MT702	Introduction of Industrial Management		HS	3	0	0	3	40	60	100		
3	22MT703	Non Ferrous Extractive Metallurgy		PC	3	0	0	3	40	60	100		
4	22MTPExx	Professional Elective - V		PE	3	0	0	3	40	60	100		
5	22_OExx	Open Elective - IV		OE	3	0	0	3	40	60	100		
		PRACTICA	L										
6	22MT703	Materials Characterization Laboratory		PC	0	0	3	1	40	60	100		
7	22MT704	Computer Application in Metallurgy Laboratory		PC	0	0	3	1	40	60	100		
8	22MT705	Manufacturing Processes Laboratory		PC	0	0	3	1	40	60	100		
9	22MT706	Casting & Forming Processes Laboratory		PC	0	0	3	1	40	60	100		
		TOTAL						19			900		
		SEMESTER	VIII										

S.	Course	Course Title	Cat	Н	lour	s / W	eek	Max. Marks			
No	Code	Course The	Cal.	L	Т	Р	С	CA	FE	Total	
		THEORY									
1	22MT801	Total Quality Management	HS	3	0	0	3	40	60	100	
2	22MTPExx	Professional Elective - VI	PE	3	0	0	3	40	60	100	
		PRACTICAL									
3	22MT802	Project Work	EE	0	0	16	10			200	
		TOTAL					16			400	

CREDIT DISTRIBUTION SEMESTER WISE

SEMESTER	Ι	II	III	IV	V	VI	VII	VIII	TOT AL
CREDITS	21	24	24	23	22	21	19	16	170

BS	Basic Sciences
HS	Humanities and Social Sciences
ES	Engineering Sciences
MC	Mandatory Course
EEC	Employability Enhancement Course
PC	Professional Core
PEC	Professional Elective
OE	Open Elective

SUMMARY OF CREDIT DISTRIBUTION TABLE

	B.E., METALLURGICAL ENGINEERING												
S NO	Course Work subject		-	Cre	dits Pe	r Semes	ster	-	-	Total	Credits		
5.10	Area	Ι	п	ш	IV	V	VI	VII	VIII	Credit	dedby AICTE		
1	Basic Sciences	8	11	4	7	-	-	-	-	30	25		
2	Humanities andSocial Sciences	3	1	-	-	-	-	3	3	11	12		
3	EngineeringSciences	8	8	4	-	3	-	-	-	23	24		
4	Professional Core	-	-	16	12	12	14	5	-	57	48		
5	Professional Elective	-	-	-	-	6	3	6	3	18	18		
6	Open Elective	-	-	-	3	-	3	3	-	09	18		
7	Employment Enhancement Course	-	-	-	-	-	-	-	10	10	15		

8	Mandatory Course	0#	-	0#	-	-	0#	-	-	00	-
9	Proto Sem		1	1	1	1	21			25	
	TOTAL	19	20	24	22	21	20	20	16	168	160*

0^{# -} Non credit Course

*Minor variation is allowed as per need of the respective disciplines

PROFESSIONAL ELECTIVE COURSES (PEC)

S. NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	22MTE01	Transport phenomena	PE	3	3	0	0	3
2.	22MTE02	Fractography and failure Analysis	PE	3	3	0	0	3
3.	22MTE03	Metallurgical kinetics	PE	3	3	0	0	3
4.	22MTE04	Solidification Processing	PE	3	3	0	0	3
5	22MTE05	Fracture Mechanics	PE	3	3	0	0	3
6.	22MTE06	Composite Materials	PE	3	3	0	0	3
7.	22MTE07	Ceramic materials	PE	3	3	0	0	3
8.	22MTE08	Metallurgy of tool Steels	PE	3	3	0	0	3
9.	22MTE09	Bio and smart materials	PE	3	3	0	0	3
10.	22MTE10	Continuous casting of steel	PE	3	3	0	0	3
11.	22MTE11	Ferrous and Non Ferrous alloys	PE	3	3	0	0	3
12.	22MTE12	Special casting Technology	PE	3	3	0	0	3
13.	22MTE13	Alternate routes of Ironmaking	PE	3	3	0	0	3
14.	22MTE14	Secondary steel making	PE	3	3	0	0	3
15	22MTE15	Powder Metallurgy	PE	3	3	0	0	3
16.	22MTE16	Non Destructive Evaluation	PE	3	3	0	0	3
17.	22MTE17	Severe plastic deformation	PE	3	3	0	0	3
18.	22MTE18	Metallurgical waste utilization and management	PE	3	3	0	0	3
19.	22MTE19	Computational Materials Engineering	PE	3	3	0	0	3
20.	22MTE20	Special welding processes	PE	3	3	0	0	3

21.	22MTE21	X- ray diffraction and Electron microscopy	PE	3	3	0	0	3
22.	22MTE22	Electrical ,Electronics and magnetic materials	PE	3	3	0	0	3
23.	22MTE23	Surface Engineering	PE	3	3	0	0	3
24.	22MTE24	Additive manufacturing	PE	3	3	0	0	3
25	22MTE25	Nano Materials	PE	3	3	0	0	3
26.	22MTE26	Thin films, coatings and applications	PE	3	3	0	0	3
27.	22MTE27	Aerospace materials	PE	3	3	0	0	3
28.	22MTE28	Modeling and simulation in material processes	PE	3	3	0	0	3
29.	22MTE29	Welding Metallurgy	PE	3	3	0	0	3
30.	22MTE30	Foundry Metallurgy	PE	3	3	0	0	3
31.	22MTE31	Nuclear materials	PE	3	3	0	0	3

OPEN ELECTIVE COURSES (OEC) – Courses offered to other departments

S.NO	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
1.	22MTOE01	Foundry and Welding Technology	OE	3	3	0	0	3
2	22MTOE02	Surface Engineering	OE	3	3	0	0	3
3.	22MTOE03	Design and Selection of Materials	OE	3	3	0	0	3
4.	22MTOE04	Nano science and Technology	OE	3	3	0	0	3
5.	22MTOE05	Materials for automobile components	OE	3	3	0	0	3

VISION

To become a globally competent department in Metallurgical and Materials Engineering.

MISSION

- To achieve the vision, our diligent faculty will use effective, continually updated methodologies.
- To mould metallurgical and materials engineering graduates with professional excellence and social responsibility.
- To carry out quality research of national global relevance.
- To provide highest quality technical support and knowledge to industries.

PEO1. Apply Metallurgical Engineering knowledge to compete in the Engineering world. **PEO2.** Have hands-on experimental skills and intellectual agility necessary for a productive professional life in highly technical and rapidly changing society.

PEO3. Develop physical intuition and mathematical expression of materials related phenomena.

PEO4. Acquire and generate innovative information for technical growth.

PEO5. Apply engineering knowledge in a global and societal context.

PEO6. Communicate technical information and knowledge in both written and oral form

PO1. Apply knowledge of mathematics, science and engineering for the solution of engineering problems

PO2. Investigate, design and analyze system component or process to meet the desire needs in metallurgical engineering

PO3. Design and conduct experiments to find solutions in the field of metallurgical engineering

PO4. Conduct investigation of complex engineering problems in the field of metallurgical engineering to provide valid conclusions

PO5. Use modern engineering tools necessary for engineering activities with an understanding of the limitations

PO6. Demonstrate understanding of the societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice.

PO7. Understand the impact of engineering solutions in societal and environmental context and explain the need for sustainable development

PO8. Understand and respect professional and ethical responsibility

PO9. Function on multi-disciplinary team as a leader or a team member

PO10. Communicate effectively both orally and in writing.

PO11. Demonstrate knowledge and understanding of engineering and management principles and apply these to one's own work

PO12. Recognize the need for, and have the preparation and ability to engage in life-long learning

PSO1: understand, analyze the theoretical foundations of Metallurgical Engineering and apply the various techniques and tools to solve the real-world problems.

PSO2: understand the concepts of metals and materials development and acquire the various skills under different platforms in the field of Metallurgical Engineering.

PSO3: use the knowledge in multiple domains to identify the research gap in the real-world environment providing link to innovate new ideas and helps to become a successful engineer and entrepreneur.

PSO4: work effectively as an individual or in a team having acquired leadership skills and manage in multi-disciplinary environments.

22MA306		LINEAR ALGEBRA AND TRANSFORMS	L	Т	Р	С
			3	1	0	4
Course Obj	ectives:					
•	To understand the To apply the cond To obtain the l techniques and in To familiarize wi To gain the skills method.	e concepts of vector space and linear transformation cept of inner product spaces in orthogonalization. knowledge of solving second order ODE using verse Laplace transform using convolution theorem th Fourier transform of a function and its sine and c to form difference equations and find its solution b	s. g Lapl osine t y using	lace rans g Z-t	trans forms ransfe	form orm
UNIT I	VECTOR SPA	CES		9	+	3
Vector space Linear tran linear trans	ces – Subspaces - sformation - Nul formations.	 Linear independence and linear dependence – B l spaces and ranges - Dimension theorem - Matri 	ases ai x repro	nd di esent	imens tation	of a
UNIT II	INNER PROD	UCT SPACES		9	+	3
Definition of - Adjoint of	of Inner product, l Flinear operations	Inner product space- Examples- Gram Schmidt orth - Least square approximation.	ogonal	izati	on pro	ocess
UNIT III	LAPLACE TR	ANSFORM		9	+	3
Laplace Tra – Transforr Functions - coefficient' theorem.	nsform- Condition n of derivatives a - Inverse Laplac s using Laplace	ons for existence – Transform of elementary function and integrals – Initial and Final value theorems- T e Transform- solutions of linear ODE of second transformation techniques- statement and applic	ns – B 'ransfo order ation	asic orm of with of co	Prop of per h cor onvol	erties iodic istant ution
UNIT IV	FOURIER TR	ANSFORM		9	+	3
Statement - Properties -	of Fourier integr - Transforms of si	al theorem – Fourier transform pair – Sine and mple functions – Convolution theorem - Parseval's	Cosine Identit	e tra ty.	nsfor	ms –
UNIT V	Z -TRANSFOR	RM AND DIFFERENCE EQUATIONS		9	+	3
Z-transforn theorems- (using Z – tr	n of simple func Convolution theor ansform techniqu	tions and properties – Inverse Z – transform –in em -Formation of difference equations – Solution o e.	iitial a f diffei	ind f	ïnal equa	value tions
		ŋ	otal (L	+T) =	= 60 H	lours
Course Out	comes:					

Upon completion of this course, the students will be able to:

CO1	:	Use the concepts of vector space and linear transformations.
CO2	:	Illustrate the concept of inner product spaces in orthogonalization
CO3	:	Apply the knowledge of Laplace transforms method to solve second order differential
		equations.
CO4	:	Apply the knowledge of Fourier transform in engineering problems
CO5		Use the effective mathematical tools for the solutions of partial differential equations
		by using Z transform techniques for discrete time systems
Text I	Book	s:
1.	Frie	edberg, A.H., Insel, A.J. and Spence, L., "Linear Algebra", Prentice Hall of India, New
	Del	hi, 2004.
2.	Gre	wal. B.S, "Higher Engineering Mathematics", 43rd Edition, Khanna Publications, Delhi,
	201	5.
3.	Jair	R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications,
	Nev	v Delhi, 3 rd Edition, 2007.
Refer	ence	Books:
1.	Kuı	naresan, S., "Linear Algebra – A Geometric Approach", Prentice – Hall of India, New
	Del	hi, Reprint, 2010.
2.	Stra	ng, G., "Linear Algebra and its applications", Thomson (Brooks/Cole), New Delhi, 2005.
3.	Erw	vin Kreyszig, "Advanced Engineering Mathematics", 9 th edition, John Wiley & Sons, 2006.

CO-PO ATTAINMENT:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO 1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0

Faintly
 Moderately
 Strongly

	22MT301	ELEMENTS OF PHYSICAL METALLURGY	L	Т	Р	С								
			3	0	0	3								
Course	Objectives:													
1. To eng	develop an understar	ding of the basic principles of physical metallurgy and applications thos.	sepr	rincip	oles to									
UNIT	I CRYSTAL ST	RUCTURES		9	+	0								
Review HCP and and line polycrys	of atomic bonds, Lat d its characteristics; N ar atomic density;Pol stalline and amorphor	ice, unit cell, crystal systems and Bravais lattices; Principal crystal struc filler indices for crystallographic planes and directions, interplanarspac ymorphism and allotropy;CsCl, NaCl, Diamond structures; single cryst is materials;isotropy and anisotropy; Simple problems in the above topi	ctur cing al a cs.	es –E ;Volu nd	3CC, I ume, p	FCC, alanar								
UNIT	II CRYSTALLI	NE IMPERFECTIONS		9	+	0								
Types of sites;Lin defects determin	Types of point defects, effect of temperature on vacancy concentration, interstitial sites-octahedral and tetrahedral sites;Line defects – dislocations – Edge, screw and mixed dislocations, Burger's vector, slip and twinning; Planar defects – grain boundaries, tilt boundaries, small angle grain boundaries; ASTM grain size number, grain size determinations; Volume defects;Simple problems in the above topics.9+0													
UNIT	III ATOMIC DIF	FUSION IN SOLIDS AND SOLIDIFICATION OF METAL		9	+	0								
effect and Darken's equation; Factors affecting diffusion; Industrial applications of diffusion processes; Simple problems in the above topics; Basic principles of solidification of metals and alloys; Growth of crystals– Planar growth, dendritic growth, Solidification time, dendrite size; Cooling curves; Cast or Ingot structure, Solidification defects – Control of casting structure; Directional solidification – single crystal growth; Simple problems in the above topics.														
UNIT	IV PHASE DIAG	RAMS		9	+	0								
Phases, Binary i and non- of phas intermed	solid solution types somorphous alloy sy -equilibrium cooling- es, development of liate phases and com	, compounds, Hume- Rothery rules; Gibb's phase rule; Phase diag stems – composition and amount of phases, development of microstru Coring and its effects, homogenization; Binary eutectic system - comp microstructure; Eutectoid, Peritectic and monotectic reaction, Pha pounds; Ternary phase diagrams. Simple problems in the above topics.	ram ctur oosit ase	tion a diag	ermina equilib and an grams	ition; prium 10unt with								
UNIT	V IRON-CARB	ON PHASE DIAGRAM, COLD WORKING AND HOT WORKING	G	9	+	0								
Iron-car and amo Plain Ca above to	Iron-carbon diagram, Phases in Fe-C system, Invariant reactions, Microstructure of slowly cooled steels, composition and amount of phases, Effect of Alloying elements on Fe-C system, Type, structure, properties and applications of Plain Carbon Steels and different types of Cast iron; IS Specification for Steels and Cast Irons, Simple problems in above topics.													
		Total	(L+	-T) =	45 H	ours								
Course	Outcomes:													
Upon co	ompletion of this cour	se, the students will be able to:												
CO1	: Understand the l	basic crystal structure, orientation and their influence on macroscopic pr	ope	erties										
CO2	: Explain and rela	te the role of imperfections in strengthening the materials.												
CO3	: Apply the diffus	ion mechanism in solidification of materials under different conditions.												
CO4	: Understand and	apply the concept of phase diagrams in equilibrium transformation of	ma	terial	sphas	es.								

CO5	Explain and apply the common strengthening processes viz. Cold working and Hot working andpost treatment process.
Text I	Books:
1.	Donald R. Askeland,"The Science and Engineering of Materials", Thomson Learning, India Edition,2007.
2.	William D.Callister, "Materials Science and Engineering – An Introduction", 4 th edition, John Wiley &Sons, New York, USA, 1997.
Refer	ence Books:
1.	Avner S H."An Introduction to Physical Metallurgy", McGraw Hill Book Co, New York, USA, 1997.
2.	Donald R Askeland," Essentials of Material Science and Engineering ", Thomson Learning, IndiaEdition, 2007.
3.	Raghavan V., "Physical Metallurgy – Principles and Practice", Prentice Hall of India Ltd., New Delhi, 1996.
4.	William F.Smith, "Foundations of Materials Science and Engineering", Second Edition, McGraw-HillInc, New York, 1993.
E-Ref	erence
1.	www.matter.org
2.	www.doitpoms.ac.uk

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
C01	1	1	1	0	0	0	0	0	0	0	0	1	2	2	0	0
CO2	1	1	1	0	1	0	0	0	0	0	0	2	0	0	1	0
CO3	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO4	1	1	2	1	2	0	0	0	0	0	0	2	0	2	0	1
CO5	1	1	2	2	3	0	0	0	0	0	0	2	0	0	2	0

1- Faintly 2- Moderately 3- Strongly

	22N	T302	MINERAL DRESSING, FUELS AND FURNACES	L	Т	Р	С						
				3	0	0	3						
Cou	ırse O	bjectives:											
1.	To g equip	ain knowled ments used in	ge on the theoretical aspects of common mineral processing technique n extraction processes.	es and	the	associ	ated						
2.	To ui	derstand the	fundamentals and applications of fuels, furnaces and refractories.										
U	NIT I	MINERA	AL DRESSING – I		9	+	0						
Intr indu roll requ	oduction astriall crushe aireme	on to minera y important 1 ers – ball, rod nt calculation	al dressing – Minerals, Ores, Physical characteristics of ores relevant ninerals; Sampling of ores ; Comminution – Crushing and Grinding - Jav , vibratory and hammer mills - Closed and open circuit grinding – dry and s for crushing and grinding, Rittingers law; Sizing, Industrial screening.	to m w, gyı 1 wet	inera atory grind	l dres , cone ing. P	sing, and ower						
U	NIT I	MINER	AL DRESSING – II		9	+	0						
Che law con – p mac	Chemical processing of ores – leaching, ion - exchange and liquid - solvent extraction. Classification – Principles and laws of classification – theory of settling; Types of classifiers – mechanical, hydraulic and hydrocyclone. Gravity concentration – Principles, Jigs, types of jigs, spirals, tables; Heavy media separation – principles, different media used, static and dynamic separating vessels; Froth flotation – principle, operation and machines; Magnetic and electrostatic separation, Thickeners and filters.												
UNIT III FUELS AND THEIR PROPERTIES 9													
Clas proj Prod liqu	ssificat perties ducer id and	ion – solid, ; Petroleum gas, Water ga gaseous fuels	liquid and gaseous fuels; Coal – Classification, Manufacturing of meta – classification, composition of crude petroleum; Gaseous Fuels - Na is, Blast furnace gas – manufacture, properties and applications of above f s; Combustion calculations - Air requirements for combustion	llurgio atural Tuels; '	cal co gas, Testii	oke an Coal ng of s	d its gas, solid,						
UI	NIT IV	FURNA	CES:		9	+	0						
Intr calc furr furr reco	oduction culation naces, nace (d overy -	on, classifica ns – simple pr Reverberator irect and ind - recuperator	tion of furnaces; Measurement of Temperature and Pressure, Thermal ef roblems; Melting and Heat treatment furnaces – Constructional details and y furnaces, Cupola, Rotary furnace, Induction furnaces (Core type and irect arc furnaces), Resistance furnaces, Batch and continuous type furna and regenerators; Burners.	ficien opera d core aces; l	cy, h tion o eless Metho	eat bal of Cru type), ods of	ance cible Arc heat						
U	NIT V	REFRAC	CTORIES		9	+	0						
Intr mar chro and	oduction oufactu omite, castab	on, Classifica re, properties chrome-magnes.	ation – Acid, Basic, Neutral refractories; Properties and tests for refract s and applications of the following refractories – Silica, fire clay, alumina, nesite, magnesite-chrome, carbon and graphite refractories, refractory cer	ories; , magi ment,	Raw nesite ramn	mate , dolo ning n	rials, mite, nixes						
			Tot	al (L-	-T) =	45 H	ours						
Cou	ırse O	utcomes:											
Upo	on com	pletion of thi	s course, the students will be able to:			_							
CO	1 :	Explain th	e basic mineral dressing principles, processes and equipment used in mine	eraldre	essing	5.							
CO	2 :	Understan other mine	d the chemical processing of ores and gain knowledge on classification, ral beneficiation processes.	frothf	loata	tion ar	ıd						
CO	CO3 : Explain the different types of fuels, testing of the fuels and quality valuation of the fuels.												
CO	4 :	Understand of heat rec	d and explain the basic operation of furnace, different types of furnaces overy.	and	vario	usmetl	hods						

CO5	: Gain knowledge on the testing of refractories, explain the various refractories, their properties and applications
Text B	Books:
1.	Gilchrist.J.D., "Extraction Metallurgy", 2 nd Edition, Pergamon Press, London, 1981.
2.	Gupta.O.P., "Elements of Fuels, Furnaces and Refractories", 4th Edition, Khanna Publishers, NewDelhi, 2000.
3.	Gaudin A.M., "Principles of Mineral Dressing", TMH, New Delhi, 1986.
Refere	ence Books:
1.	Wills.B.A., Napier-Munn, T.J., "Mineral Processing Technology", 7th Edition, Pergamon Press, 2006.
2.	Feurstenau, M.C. and Han, K.N., "Principles of Mineral Processing", SME, USA, 2003.
3.	Jain.S.K. "Ore Processing", Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi, 1986.
E –Re	ferences
1.	https://nptel.ac.in/courses/113104008/
2.	https://nptel.ac.in/courses/113104060/10
3.	https://nptel.ac.in/courses/113104058/

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	1	1	1	0	0	0	0	0	0	0	0	1	2	2	0	0
CO2	1	1	1	0	1	0	0	0	0	0	0	2	0	0	1	0
CO3	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO4	1	1	2	1	2	0	0	0	0	0	0	2	0	2	0	1
CO5	1	1	2	2	3	0	0	0	0	0	0	2	0	0	2	0

Faintly
 Moderately
 Strongly

	22N	IT303	METALLURGICAL THERMODYNAMICS AND KINETICS	L	Т	Р	С							
				3	1	0	4							
Cours	se Ol	jectives:												
1. T	'o lea earn	rn the basic pr about equations	inciples and concepts of thermodynamics, in the field of metallurgy and and their applications.	d mat	erials	;and to)							
UN	IT I	CONCEPT	'S AND FIRST LAW OF THERMODYNAMICS:		9	+	3							
Introd Thern Intern Kirch	uctio nodyr al en off's	n: System and namic equilibri ergy, Heat capa aw, Maximum	surrounding, Classification of systems, Path and state properties, Therr um, Reversible and Irreversible processes. First law of thermodynar acity of materials, C_p - C_v relations, Nernst Equation, Enthalpy, Thermoc flame temperature.	nodyr nics: hemis	amic Heat stry ,	proce and v Hess's	sses, vork, law,							
UNI	TI	SECOND A	AND THIRD LAW OF THERMODYNAMICS:		9	+	3							
Secon statem Helml	d lav nent noltz	v of thermodyn of first and se equation. Third	namics: Carnot cycle, Entropy - Statistical interpretation of entropy, F econd laws, Thermodynamic functions - Maxwell's relations, Gibbs- l and Zeroth laws of thermodynamics : Definition, concept and application	Free en	nergy	,Comł	vined							
UNI	UNIT III THERMODYNAMIC POTENTIALS AND PHASE EQUILIBRIA: 9 +													
Thern Le C Thern diagra	Thermodynamic potentials: Fugacity, Activity and Equilibrium constant. Clausius - Clayperon equation, Troutons rule. Le Chatelier's principle, Vant Hoff's equation. Equilibria in phase diagrams: Phase rule, Phase stability, Thermodynamics of surfaces, interfaces and defects, P-G-T diagrams, Application of free energy - composition diagrams to the study of alloy systems.													
UNI	UNIT IVTHERMODYNAMICS OF SOLUTIONS:9+3													
Gibbs solutio functi	- Du ons, ons,	hem equation, Activity coeffic Regular solutio	Partial and integral molar quantities, chemical potential, Ideal solution cient, Henry's law, Alternative standard states, Sievert's law, Mixing ns, Applications of Gibbs - Duhem equation.	s - Ra funct	aoult'a ions	s law, and ex	Real ccess							
UNI	ΤV	ELECTRO	CHEMICAL PROCESS AND KINETICS:		9	+	3							
Electr quanti equati	o cho ties on -	emical process: using reversible activation energ	Cells, Inter conversion of free energy and electrical work, Determination e cells, Solid electrolytic cells. Kinetics: First, Second and third order gy, Determination of order of the reaction.	ion of r reac	therr tions,	nodyn Arrhe	amic enius							
			То	tal (L	+T) =	= 60 H	ours							
Cours	se Oi	itcomes:												
Upon	com	oletion of this c	ourse, the students will be able to:											
CO1	:	Explain the b	asic concepts of thermodynamics and the first law of thermodynamics											
CO2	:	Understand t	he second and third laws of thermodynamics.											
CO3	:	Know the the	ermodynamic potential and phase diagram.											
CO4	:	Describe the	thermodynamics of the solution and various important equations.											
CO5	:	Discuss the c	oncept of electrochemical processes and kinetics.											
Text Books:														
1.	A	hindra Ghosh,	Text book of Materials & Metallurgical Thermodynamics, Prentice Hal	l India	a, 200)2								
2.	2. Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.													

3.	David R Gaskell, "Introduction to the Thermodynamics of Materials", Fifth Edition, Taylor & Francis,2008
Refere	nce Books:
1.	David V Ragone, "Thermodynamics of Materials - Volume-1", John Wiley & Sons, Inc. 1995.
2.	Dr S.K Dutta ,Prof A.B. Lele – Metallurgical thermodynamics kinetics and numericals, S.Chand & coLtd., New Delhi 2011
3.	Darken LS and Gurry R W, "Physical Chemistry of Metals", CBS publications and distributors, 2002.
4.	Parker R H, "An introduction to chemical metallurgy", Pergamon press, New York, second edition,1978.
5.	Kapoor M.L., "Chemical and Metallurgical Thermodynamics Vol. I and II", Nem Chand, 1st Ed., 1981.
E-Refe	erences:
1.	www.nptelvideos.in/2012/12/basicthermodynamics.html

CO/P	РО	РО	PO	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	1	1	1	0	0	0	0	0	0	0	0	1	2	2	0	0
CO2	1	1	1	0	1	0	0	0	0	0	0	2	0	0	1	1
CO3	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO4	1	1	2	1	2	0	0	0	0	0	0	2	0	2	0	0
CO5	1	1	2	2	3	0	0	0	0	0	0	2	0	0	2	0

Faintly
 Moderately
 Strongly

22PH102		MATERIALS SCIENCE FOR ENGINEERING	L	Т	Р	C
			3	0	0	3
Course Obj	jectives:					
•	To introduce the the	ory of conducting materials and Fermi distribution function.				
•	To give the basic ide	as of semiconductors and its Fermi level.				
•	To give an overview	of Dielectric polarization, dielectric losses and application of di	electr	ics.		
•	To insight into the m	agnetic nature of materials, superconductors and their applicatio	ons.			
	To introduce the synth	uesis and applications of metallic glasses, smart materials and na	no ph	ase m	ateria	ls
UNIT I	CONDUCTING MAT	ERIALS		9	+	0
Conduction i	n metals - mobility a	nd conductivity - Classical free electron theory of metals -	Elect	rical	and th	ierma
conductivity	– Wiedemann Franz I	aw - Lorentz number - drawbacks of classical free electron the	eory –	- Qua	ntum	theory
 Fermi dist 	ribution function - E	Effect of temperature on Fermi function – Density of states – C	Carrier	cond	centrat	ion ir
metals – Ban	d theory of solids - di	stinction between conductors, semiconductors and insulators.				
UNIT II	SEMICONDUCTING	MATERIALS		9	+	0
Properties of	semiconductor - Bone	ds in semiconductors - Intrinsic semiconductors - Extrinsic se	emico	nduct	ors - 1	N-type
band gap de variation of band gap sem	termination in intrin Fermi level with temp niconductors - Hall ef	sic semiconductors - Carrier concentration in N-type semicorperature and doping concentration – Compound semiconductor fect - Determination of Hall coefficient – Applications.	nduct rs –D	tor(de	erivation and in	on) — Idirec
	DIELECTRIC MATE	RIALS	<u> </u>	9	+	0
change molori	sceptibility – Dielecti	d temperature dependence of polarization – Electronic, Ionic, O	rienta	nona Ma	i and	Space
(darivation)	dialactria loss dial	a temperature dependence of polarization – Internal field – Clas	sius –		N Dol	
dielectric mat	terials.	ectre breakdown – Oses of dielectric materials (capacitor and t	1 211510	Jinei)-F01	ment
UNIT IV	MAGNETIC AND SI	PERCONDUCTING MATERIALS		9	+	0
Magnetic ma	terials: Origin of mag	netic moment – Bohr magneton – Dia, Para and Ferro magnetis	sm –]	Doma	in the	ory of
ferromagnetis	sm – Hysteresis – Har	d and soft magnetic materials – Antiferro magnetism.				2
Superconduc	tivity: Properties – Ty	ppe I & Type II superconductors - BCS theory - Applications -	– mag	netic	levita	tion -
SQUID.			C			
UNIT V	MODERN ENGINEE	RING MATERIALS		9	+	0
Metallic glass	ses - Preparation, pro	operties, applications – Shape memory alloys(SMA) – Processin	ıg, cha	aracte	erizatio	on and
Nanomaterial	ls: Introduction – top	down and bottom up approach – synthesis – Ball milling, Plasm	ia arci	ing ar	nd Sol	– Ge
technique – p	oroperties – application	ns – Carbon nanotubes – Properties.				
		Tot	al (L-	⊦ T) =	45 H	ours
Course Out	tcomes:					

Upon o	Upon completion of this course, the students will be able to:										
CO1	:	The theory involved in conducting materials, carrier concentration in metals.									
CO2	:	The basics of semiconductor and variation of Fermi level with respect to different parameters									
CO3	:	The mechanism involved in dielectric polarization and the applications of dielectric materials.									
CO4	:	The concept of the magnetic, superconducting nature of materials and their applications.									
CO5		The preparation techniques, their distinct properties and applications of Metallic glasses, SMAs, nano phase									
		materials.									
Text B	books:										
1.	P.K.Palanisamy, 'Materials Science', Scitech Publications (India) pvt. ltd. Chennai, Second edition, 2009.										
2.	M. A	Arumugam, 'Materials Science', Anuradha Publications, Kumbakonam, 2018.									
3.	Raje	ndran V and Marikani A, 'Materials Science', Tata McGraw Publications, New Delhi, 2012									
4.	Jaya	kumar S, 'Materials Science', RK Publishers, Coimbatore, 2011.									
Refere	ence	Books:									
1.	Charles Kittel, 'Introduction to Solid state Physics', John Wiley and Sons, 7th Edition, Singapore, 2019.										
2.	Charles P. Poole and Frank J. Ownen, 'Introduction to Nanotechnology', Wiley India, 2007.										
3.	M.S	. Vijaya and G. Rangarajan, 'Materials Science', Tata McGraw Hill, New Delhi, 2012.									

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	1	0	0	0	1	0	0	0	0	1	2	2	0	0
CO2	3	2	1	0	1	1	1	1	0	0	0	2	0	0	1	0
CO3	3	3	1	0	0	1	1	1	0	0	0	1	1	0	0	0
CO4	3	3	2	1	2	1	0	0	0	0	0	2	0	2	0	0
CO5	2	2	2	2	3	1	0	1	0	0	0	2	0	0	2	0

- Faintly
 Moderately
 Strongly

22	2MT3	304	METALLOGRAPHY LABORATORY	L	Т	Р	С				
				0	0	3	1.5				
EXPE	RIM	IENTS		•							
1.	San	nple prepa	ration and Mounting and Study of Metallurgical Microscope								
2.	2. Microstructure of different types of cast iron in unetched condition										
3.	3. Microstructure of different types of cast iron in etched condition										
4.	Microstructure of pure iron, plain carbon steels										
5.	ASTM grain size determination										
6.	Microstructure of tool steels and stainless steels										
7.	Mic	crostructur	e of cast and wrought aluminium alloys								
8.	Mic	crostructur	e of copper alloys								
9.	Sul	phur and F	Phosphor printing								
10	Inc	lusion ratii	ng								
				Tot	al (P)	= 45 I	Hours				
Cours	se Ou	tcomes									
After	the su	iccessful c	completion of the practical session, the students will be able to								
CO1	:	Observe	and Explain the metallurgical microscope								
CO2	:	Operate	the process of sample preparation and mounting								
CO3	:	View and	d analyze the microstructure of various samples								
CO4	:	Conduct	the process of sulphur printing and phosphor printing								
CO5	:	Observe	the unconventional structure in steel and determine the ASTM grain size.								

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	1	1	0	0	0	0	0	0	0	0	1	2	2	0	0
CO2	1	1	1	0	0	0	0	0	0	0	0	2	0	0	1	1
CO3	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO4	1	1	1	0	0	0	0	0	0	0	0	2	0	2	0	0
CO5	1	1	1	0	0	0	0	0	0	0	0	2	0	0	2	0

1- Faintly, 2- Moderately, 3- Strongly

	22M	22MT305 CHEMICAL METALLURGY LABORATORY L T P C															
														0	0	3	1.5
Cour	se Ob	jectives:															
1.	To mir	gain knowledge neral processing,	e abou , by m	t the va	arious pr experime	roperties ents or c	es of demo	miner onstrat	als an	d to b the lat	ecome porator	familia y scale	ur with equipn	the equinents.	uipmer	nts used	1 in
EXPI	ERIN	IENTS															
1.	. Flash and Fire point of oils																
2.	Red wood viscometer																
3.	Size distribution using sieve analysis																
4.	Scr	eening efficiency	y														
5.	Sampling of ores																
6.	Jaw	crusher															
7.	Bal	l mill															
8.	Pro	ximate analysis o	of Co	al.													
9.	Set	tling velocity of (CaCC	3 powd	ler.												
10.	Fro	th Flotation															
														Tot	al (P) :	= 45]	Hours
Cour	se Ou	itcomes															
After	the su	accessful comple	etion o	of the pr	ractical se	ession, t	, the st	tudent	s will	be able	e to						
CO1	:	Perform the min	ineral	benefic	ciation op	perations	ns.										
CO2	:	Perform the con	ommin	ution re	elated exp	perimen	ents an	nd nec	essary	calcul	ations.						
CO3	:	Obtain the skill	lls for	physica	al observa	ation of	of mine	erals /	ores.								
E- Re	ferer	ices															
1.		https://www.yo	outube	e.com/w	vatch?v=y	yLtuDv	v3Gz	Wo									
2.		https://www.yo	outube	e.com/w	vatch?v=	VzJ60u	uMdF	Fe8									
3.		https://www.youtube.com/watch?v=6kFONdchY0U															

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	1	1	1	0	0	0	0	0	0	0	0	0	2	2	0	0
CO2	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1
CO3	2	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0
	1- Faintly, 2- Moderately,				,	3- S	trongly	y								

BE METALLURGY SEMESTER -IV

22N	L	Т	Р	С		
			3	1	0	4
Cou	rse (bjectives:				
UI Axio varia their	NIT oms bles pro	 To familiar with basic concepts of probability and random variables. To obtain the knowledge about discrete and continuous distributions. To acquire knowledge of bivariate distributions and the problems relate correlation. To understand the statistical averages and fitting of curve. To gain the knowledge of significance test for large and small samples. PROBABILITY AND RANDOM VARIABLES of Probability, Conditional Probability, Total Probability, Bayes' theorem-Discrete and Continuous random variables - Moments – Moment generate erties. 	d to Rat ting f	coef 9 ndor	ficier + n tions	and
UN		STANDARD DISTRIBUTION		9	+	3
Bino inequ	mia ualit	, Poisson, Exponential, Gamma and Normal Distributions and their proper	rties	- Ch	ebys	hev's
UN	ITI	I TWO DIMENSIONAL RANDOM VARIABLES		9	+	3
Joint corre	dis disti	ributions – Marginal and Conditional distributions – Correlation, Regressi n.	on a	nd ra	ank	
UN	IT I	BASIC STATISTICS		9	+	3
Meas Leas	sure t Sq	of Central tendency: Moments, Skewness and Kurtosis, Curve fitting pares –Fitting of straight lines, second degree parabolas and curves reducib	by to	the 1 b line	metho ear fo	od of orms.
UN	VIT V	TEST OF HYPOTHESIS		9	+	3
Tes mea corr inde	t of an a relat epen	significance: Large Sample tests for Single proportion, difference of j ad difference of means- Small Sample test for single mean, difference on coefficients, test for ratio of variances - Chi-square test for goo dence of attributes	prop ce o odnes	ortio f m ss o	on, si eans f fit	ngle and and
		Tota	al (L+	-T) =	60 H	ours
Cou	rse (utcomes:				
Upo	n coi	pletion of this course, the students will be able to:				
C01		Learn the fundamental knowledge of the Probability concepts				
CO2	2	Apply the standard distributions				
CO3	;	Analyze the two-dimensional random variables.				
CO4		Learn about statistical averages and fitting the curves by Least Square N	Meth	od.		

CO5	Use the Large and small sample tests							
Text I	Text Books:							
1.	Veerarajan. T, "Probability and Random Process (With Queuing theory)", 4 th Edition, Tata							
	McGraw Hill Education Pvt. Ltd., New Delhi, 2016.							
	Inv. I. Dovoro, "Probability and Statistics for Engineering and Sciences" Congage Learning							
2.	New Delhi 8 th edition 2012							
Refer	ence Books:							
1.	Fruend John, E. and Miller, Irwin, "Probability and Statistics for Engineering", 5th Edition,							
	Prentice Hall, 1994.							
2.	Grewal, B.S., "Higher Engineering Mathematics", 43 rd Edition, Khanna Publishers, Delhi,							
	2014.							
3.	Gupta, S.C. and Kapoor, V.K. "Fundamentals of Mathematical Statistics", Sultan Chand and Sons, New Delhi, 2015							

CO-PO ATTAINMENT:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO 1	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 2	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 3	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 4	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0
CO 5	3	2	0	2	0	0	0	0	0	0	0	0	2	0	0	0

1- Faintly 2- Moderately 3- Strongly

22C	22CY401 NON METALLIC MATERIALS L T											
			3	0	0	3						
Course Obje	ectives											
To mak	e the studen	t acquainted with the										
•	Basic know	ledge of polymer and their applications										
•	Understand	the different methods processing of polymers										
•	Describe the Describe the in Commerc Explain the composites.	e various ceramics, glasses and explain their processing and e concept of composites and their types. Explain the uses of cial field. production, properties and uses of various Particulate and	l prop fiber Lami	oertie r cor nar	es. nposi	tes						
UNIT I	INTRODUC	CTION TO POLYMERS		9	+	0						
Definition -	- Nomencla	ture of Polymers - Classification of Polymers (Source, str	ructu	re, n	netho	ds of						
synthesis, g	rowth of po	lymer chain, molecular force) – Polymerization types – me	echar	nism	-degr	ee of						
polymerizat	tion – Mole	cular mass of a polymer – polydispersity index (PDI) – C	Glass	tran	sitior	1 and						
melting tem	peratures –	Additives for polymers - process aids, anti degradants, fi	illers,	cur	ing a	gents						
and couplin	g agents – s	pecial additives										
UNIT II	POLYMER	PROPERTIES AND PROCESSING		9	+	0						
Properties:	physical, n	nechanical, chemical, thermal, electrical, optical, magne	tic, a	and	biolo	gical						
properties P	Processing ty	pes: melt, rubbery stage, solution, emulsion, and suspension	on pro	cess	ing							
Behavior of	polymers:	Viscoelasticity- Creep and stress relaxation in polymers- Y	ieldir	ng ar	nd fra	cture						
of polymers	s - Crazing	of polymers Application of polymers in various fields-	agrie	cultu	re, s	pace,						
automobile,	electronics	, medicine, construction and transport										
UNIT III	CERAMICS	5		9	+	0						
Introductior	n - importa	nt properties - Typical example of conventional and a	ıdvan	ced	cera	mics.						
Comparisor	n with metal	ls and polymers. Preparation and properties: Boron Nitrid	le, Si	licor	n Car	bide,						
Boron carb	oide, SIALC	ON -Technical applications. Types of glasses - structu	ıre, p	prop	erties	and						
applications	s of various	types of glasses manufacturing of glass - Blowing, pressin	ng, dı	awi	ng, ro	olling						
and casting,	and Pilking	gton process.										
UNIT IV	FIBER CON	MPOSITES		9	+	0						
Composites	: Introduction	on Classification Examples. Fiber composites: Constituen	ts an	d fu	nctio	ns of						
fiber compo	osites Rule o	of Mixtures - Types of fibers and matrices. Production tech	nique	es (in	brie	f) for						
fiber compo	osites: Use o	f fiber composites in automobile, aerospace, sports and leis	sure a	ppli	catio	18.						
UNIT V	PARTICUL	ATE AND LAMINAR COMPOSITES		9	+	0						

True particulate and Dispersion strengthened composites Production techniques Applications Functions and examples of dispersoids - particle size and inter particle spacing - examples of particulate composites. Laminar composites – types layered and honeycomb structures- examples, manufacture and applications.

Total (L+T) = 45 Hours

Cours	Course Outcomes:									
Upon	comp	pletion of this course, the students will be able to:								
CO1	:	Explain the different types of polymers, polymerization mechanisms and polymer additives								
CO2	:	Explain the properties, processing and behaviour of polymers.								
CO3	:	Describe the various ceramics, glasses and explain their processing and properties.								
CO4	:	Describe the concept of composites and their types. Explain the uses of fiber composites in commercial field.								
CO5	:	Explain the production, properties and uses of various Particulate and Laminar composites.								
Text E	Books	s:								
1.	Intro	oduction to Polymers B - Robert J. Young, Peter A. Lovell Third edition, CRC press, 2011								
2.	POLYMER CHEMISTRY - Pragati Prakashan, Global net publications.									
3.	Intro	oduction to composite materials design - Ever J. Barbero, second edition								
4.	Con	nposites Engineering handbook – P.K.Mallick, CRC press								
Refere	ence	Books:								
1.	Poly	ymer Science – V.R.Gowarikar – New age international Pvt Ltd., 2015								
2.	Fun	damentals of Polymers – Niranjan karak – PHI learning Private Ltd., 2009								
3.	Ceramic Materials-Science and Engineering - C. Barry Carter, M. Grant Norton, C. Barry									
	Carter, M. Grant Norton – Springer Newyork- 2013									
4.	Composite Materials: Engineering and Sciencebooks - F. L. Matthews, Rees D. Rawlings · 1999									

CO/P	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	3	3	2	0	1	1	0	0	0	0	0	1	0	0	0	0
CO2	3	3	2	0	1	1	0	0	0	0	0	1	0	0	0	0
CO3	3	3	2	0	1	1	0	0	0	0	0	1	0	0	0	0
CO4	3	3	2	0	1	1	0	0	0	0	0	1	0	0	0	0
CO5	3	3	2	0	1	1	0	0	0	0	0	1	0	0	0	0

22MT	401		MECHANICAL BEHAVIOUR AND TESTING OF MATERIALS	L	Т	Р	С
				3	0	0	3
Course	e Obi	ecti	ves:				
1. t	Fo kn	ow to d	the fundamental concepts of mechanical behavior of materials and to a esign the materials for various load-bearing structural engineering app	ipp lica	ly atior	ıs	
Unit I	TE	NSI	LE BEHAVIOUR AND TESTS	9		+	0
Introd ASTN betwee tests, 7 Anisot	uction I testi en the Festir tropy	n: T ing s e ten ig m of	ypes of testing, Introduction to material properties (structure sensitive and standards. Engineering stress and strain, True stress - strain curves, Re- sile properties, Hollomon, Ludwig equation, Plastic Instability (Necking) achines – types, Testing procedures, specimen dimensions, Notch tens tensile properties. Bend test, torsion test & shearing test.	l in lati , H ile	sens ons lot to test	sitiv hip ensil	e), e
Unit II Defini Precau tests - Instrui	I tion, itions Vick mente	HA Typ - R ers a ed (RDNESS TESTS AND IMPACT TESTS es of hardness tests- Vickers, Brinnell, Rockwell and Rockwell superficia elative merits and demerits, Hardness conversion, Rebound hardness tests and Knoop hardness tests, Concept of nano indentation. Izod and Charpy Charpy test, Drop-weight Test and other large scale tests	9 il h , M Imj	ardı icro pact	+ ness oharc test	0 tests, lness s,
Unit II Types Metall embrit modifi release detern	II of fra lurgic ttleme icatio e rate ninati	FR. actu al fa ent, n. F , fra on c	ACTURE AND FRACTURE MECHANICS re – ductile and brittle fracture, Ductile to Brittle Transition Temperature actors affecting DBTT, determination of DBTT, Hydrogen embrittlement Theoretical cohesive strength of metals, Griffith's theory of brittle fractur racture mechanics-introduction, modes of fracture, stress intensity factor cture toughness and of KIC, introduction to COD, J integral, R Curve.	9 (D and e, (, st	BTT d ot Drov rain	+ Γ), her wan ene	0 rs rgy
Unit I	V	FA'	TIGUE BEHAVIOUR AND TESTS	9		+	0
Fatigu chango to fatig	e: Str es acc gue ci	ess com rack	cycles, S-N curves, effect of mean stress, factors affecting fatigue, structu panying fatigue, cumulative damage, low cycle fatigue, application of fra propagation, fatigue testing machines.	ıral ctu	re n	nech	anics
Unit V	1	CR	EEP BEHAVIOUR AND TESTS	9		+	0
Creep metall machi tempe	curve urgica nes, F rature ction.	e, sta al fa Para e str	ages in creep curve and explanation, structural changes during creep, cree actors affecting creep, high temperature alloys, stress rupture testing, creep meter methods of extrapolation. Introduction to remaining life assessment uctures and components, Creep-Fatigue	p n p te t of	necł estin hig	nanis Ig jh	sms,
			Tot	al :	= 45	5 Ho	urs
Course	e Out	com	nes:				-
Upon	comp	letio	on of this course, the students will be able to:				
CO1	:	Uno Tes	derstand and explain the material properties, Testing machines – types, ting procedures				
CO2	:	Des nan	scribe the Types of hardness tests viz Vickers, Brinnell etcAnd concept o indentation, Izod and Charpy Impact tests.	of			

CO3	:	: Explain the various fracture and mechanisms for different fractures, the
		fracture toughness and the various theories describing it.
CO4	:	Define and elaborate the Stress cycles, S-N curves, application of fracture
		mechanics and fatigue testing machines.
CO5	:	State the Creep curve, creep mechanisms, metallurgical factors affecting creep
		and explain about creep testing machines.
Tey	ct Bo	oks:
1.	Geo	orge. E. Dieter, "Mechanical Metallurgy", McGraw-Hill, New York, SI Edition, 2001
2.	Ree 199	ed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 2
Ref	eren	ce Books:
1.	Dav	vis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-
	Hil	l, 1982
2.	The	omas .H. Courtney, "Mechanical Behaviour of Materials", McGraw Hill Co.,
	NY	,1990.
3.	Wu	lff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York,
	US	A, 1983
4.	1.	Honeycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold
		Publishers, 1984.

CO/P	PO	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO						
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	2	1	1	0	0	0	0	0	0	0	0	1	2	2	0	0
CO2	1	1	1	0	1	0	0	0	0	0	0	2	0	0	1	0
CO3	2	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0
CO4	1	1	2	1	2	0	0	0	0	0	0	2	0	2	0	1
CO5	1	1	2	2	3	0	0	0	0	0	0	2	0	0	2	0

1- Faintly,	2- Moderately,	3- Strongly
-------------	----------------	-------------

22MT402 ADVANCED PHYSICAL METALLURGY L T								
		3	0	0	3			
Course Obje	ctives:							
1. To develo	op an understanding of the basis of physical metallurgy and correlate transfore of materials with their properties for engineering applications.	ormat	ions	of				
UNITIS	SOLIDIFICATIONS		9	+	0			
Driving force dendritic solic from melt, Co	for solidification, Alloy solidification – Single phase binary alloy solidific dification, constitutional super cooling, eutectic solidification, Solidification ncept of Activation energy and Arrhenius equation, Simple problems in above	cation n dur ve top	, Ce ing c bics.	llular juenc	and hing			
UNIT II T	RANSFORMATION KINETICS		9	+	0			
Nucleation - Types of nucleation; Homogeneous nucleation - critical nucleus size, critical change and nucleation rate; Heterogeneous nucleation - critical nucleus size, critical free e and nucleation rate; Rate of Heterogeneous nucleation, Growth Kinetics, Interface-Control Diffusion-Controlled growth, Overall Transformation Kinetics – Empirical equations.								
UNIT III 🛛 🖸	DIFFUSIONAL TRANSFORMATIONS		9	+	0			
Diffusional tra kinetics for ir simple numer of growth, Et transformation transformation	ansformation in solid; Homogeneous and heterogeneous nucleation in sol nterface controlled growth and diffusion controlled growth, Johnson-Mel rical problems, Pearlitic Transformation, Experimental characteristics, Mecl utectoid transformation – nucleation and growth of pearlite, Interlamell n; Spinodal decomposition - uphill diffusion, examples from metallic syste ns; Precipitation.	ids; 1 hl-Avi hanisi ar sp ms; (rans ami m an acing Drder	equa d kino g, Ba -Diso	ation tion, etics inite rder			
	PARTICLE COARSENING AND RECOVERY RECRYSTALLIZATION AND GRAIN GROWTH)	9	+	0			
PARTICLE C	OARSENING – Driving force for coarsening, Kinetics of coarsening (Gr	eenw	'ood'	s mo	del),			
mechanisms.	RECRESTALLIZATION AND GRAIN GROWTH - Recovery, Recrystalliz	ation,	Gra	in gro	JWth			
COLD WORK microstructure HOT WORKIN	KING – Structure and Properties of cold worked metals, Effect of mechar es, Factors controlling recrystallization, Annealing textures. NG – Concept of hot working, Comparisons with cold working, warm workin	nical µ ng, Sir	orope nple	erties probl	and ems			
in above topic	S.		-		-			
	DIFFUSIONLESS TRANSFORMATIONS		9	+	0			
Massive tran transformation transformation systems;Ther alloys.	sformations; Martensite transformation – Definition, Characteristic feat n in steels; Morphology of martensite - lath and plate martensite; Crystallog n; Kinetic characteristics of martensitic transformation; Martensite mo elastic Martensite; Shape Memory effect - Examples and applications	ures raphy e in s of s	of n of n No shape	narter narter n-Fer e mer	nsitic Isitic Irous Inory			
	Tota	l (L+	T) = 4	45 Ho	ours			
Course Outc	omes:							
Upon complet	tion of this course, the students will be able to:							
CO1 : Ui	nderstand mechanism of solidification and transformation							
CO2 : Ui dit	nderstand and explain the concept of growth and nucleation of crystal struct fferent materials.	tures	and	phase	es in			
CO3 : De	escribe the phase transformation that is controlled by diffusion.							

CO4	:	Describe the particle coarsening, recovery recrystallization and grain growth, cold and hot working
CO5	:	Describe the various phase transformations that occur due to diffusionless transformation.
Text B	ool	IS:
1.	Ra	ghavan, V."Solid State Phase Transformations", Prentice - Hall of India, New Delhi, 2004.
2.	Po and	rter, D.A. and Easterling, K.E., "Phase Transformations in Metals and Alloys", 2nd ed., Chapman d Hall, London 1992.
Refere	ence	Books:
1.	Ro 20 ⁻	mesh C. Sharma, "Phase transformation in Materials", CBS Publishers &Distributors, New Delhi, 11.
2.	Re	ed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.
3.	R. Ed	E. Smallman A.H.W. Ngan, "Modern Physical Metallurgy", Butterworth-Heinemann publication, 8th tion, 2013.

CO/P	PO	PO1	PO1	PO1	PSO	PSO	PSO	PSO								
0	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	1	0	0	0	0	0	0	0	0	0	0	2	0	1	0	2
CO2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	1
CO4	2	1	0	0	0	0	0	0	0	0	0	1	0	1	0	2
CO5	0	1	0	0	0	0	0	0	0	0	0	2	0	3	0	0

1- Faintly, 2- Moderately,

3- Strongly

22MT403

1.

HEAT TREATMENT TECHNOLOGY

L T P C 3 0 0 3

Course Objectives:

To study transformations in steels, various heat treatment processes and their equipments

Unit I TRANSFORMATIONS IN STEELS

+ 0

+ 0

+ 0

9

9

Iron - carbon equilibrium diagram: Transformations on heating and cooling, influence of alloying elements, general principles of heat treatment of steels, Isothermal and Continuous cooling transformations in steels. Continuous cooling curves TTT and CCT diagrams.

Unit II HEAT TREATMENT PROCESSES

Annealing - types, Normalizing, Hardening - Retained austenite -measurement and methods of its elimination, Hardenability studies- Jominy end quench test, Grossman's experiments Tempering-Hollomon & Jaffe tempering correlations, Temper embrittlement, Austempering and Martempering, Precipitation hardening, Thermo mechanical treatment, , other heat treatment processes

Unit III CASE HARDENING

Introduction, Carburising: Principle, carbon potential, application of Fick's law, depth of carburization and its control, methods of carburising, heat treatment after carburising, structure, properties and common problems in carburising. Nitriding: introduction, steels used, effect of microstructure, white layer, nitriding methods, ion nitriding and nitro-

carburising. Induction and Flame hardening: principle, methods, operating variables. Measurement of case depth.

Unit IV HEAT TREATMENT EQUIPMENTS

+ 0

+ 0

9

9

Total (45+0)= 45 Hours

Various heating media used for heat treatment. Temperature and atmosphere control, carburising atmosphere and carbon potential measurement-simple problems, nitriding gas atmospheres. Quenching media and their characteristics. Various heat treatment furnaces, fluidized bed furnaces, cryo chamber, cryo treatment of steels, sealed-quenched furnace

Unit V HEAT TREATMENT OF SPECIFIC ALLOYS

Heat treatment of carbon steels, stainless steels, tool steels. Heat treatment of gray cast irons, white cast irons, malleabilising and S.G.irons, austempering of S.G.Iron. Heat treatment of aluminium alloys and copper alloys. Defects in heat treated parts: causes and remedies.

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1	••••	Classify the different transformation processes that are taking place in steels with respect to parameter changes
CO2	•••	: Describe the different process of heat treatment that influences the materials properties and also the combination of heat and mechanical properties.
CO3	:	Define the hardening property and hardenability of steels by applying various diffusion dependent laws and explain the process of carburizing, nitriding, nitro-carburizing etc.
CO4	:	Explain and analyze the various heat treatment equipment, heat treating medium, temperature for various heat treatment processes and also describe the heat treating furnaces

CO	5 : Describe and discuss the heat treatment processes for specific alloys like tool stee high speed steel and different varieties of cast iron.
Tex	xt Books:
1.	Rajan and Sharma "Heat Treatment Principles and Techniques" – Prentice Hall of India (P) Ltd, New Delhi, 2009
2.	Vijendra Singh,"Heat Treatment of Metals", Standard Publishers Distributors, Delhi, First edition 1998
3.	Romesh.C.Sharma, "Principles of Heat Treatment of Steels", New Age International Pvt. Ltd. Publishers, New Delhi, 2008.
Ref	erence Books:
1.	Prabhudev, K H., "Handbook of Heat Treatment of Steels", Tata - McGraw Hill Publishing Co., New Delhi, 2000
2.	American Society for Metals, "Metals Handbook Vol.4", ASM Metals Parks, Ohio, USA, 2001

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	1	2		1						1		2	2	3	
CO2	2	2	3		2						2		1	1	2	
CO3			2		2						2		2			
CO4	2	3	2											2	2	
CO5	1				2						1		1		1	

1- Faintly,

2- Moderately,

3- Strongly

			22MT404	IRON MAKING	L	т	Ρ	С	
					3	0	0	3	
Cou	irse	e Ob	ojectives:						
1.	To fea	kno Isibi	ow the importance of the ilities in industries to com	e iron making and to apply them for the advancemer pete with the modern day manufacturing routes.	nt of	the p	orodu	ction	
U	NIT	I	RAW MATERIALS AN	D BURDEN PREPARATION:		9	+	0	
Iron ore classification, Indian iron ores, characteristics of coal for coke making, selection of coals, coke quality, problems associated with Indian raw materials, Burden preparation: Iron Ore beneficiation Agglomeration - Theory and practice of Sintering and Pelletizing, testing of burden materials, burden distribution on blast furnace performance.									
UN		9	+	0					
Red ther blas	lucti moo t fu	ion dyn rna	of iron ores and oxides amics and kinetics study ce reactions., Rist diagra	of iron by solid and gaseous reductions, C-O and of direct and indirect reduction, Gruner's theorem, pr ms, material and heat balance.	Fe-0 nysica	C-O al che	equilil emistr	oria, y of	
UN	IITI		BLAST FURNACE DE CONTROL:	SIGN, PRACTICE AND INSTRUMENTATION		9	+	0	
Blas gas	st fu clea	ırna anir	ce parts, construction and ng equipments, pig castin	d design aspects ancillary equipments for charging, p g, blast furnace instrumentation and control of furnace	rehea e.	ating	the b	last,	
UN	IIT I	IV	BLAST FURNACE OP	ERATION:		9	+	0	
Blas furn RAF	st fu ace T c	urna e, D calc	ace operation, irregularit esulphurisation of Hot m ulations, modern trends i	ies and remedies, Compositional control of metal etal , Reichard's diagram, internal zones and gas floor heat furnace practice.	and ow in	slag blas	in It furn	olast ace,	
UN	IIT (V	ALTERNATIVE ROUT	ES OF IRON MAKING:		9	+	0	
Alte spor proc	rnat nge duct	tive iro tion	routes of iron producti n production-coal based of Fe-Si, Fe-Mn and Fe -	on – low shaft and charcoal furnace, electro-t and gas based, sponge iron production in India. F -Cr, Introduction to mathematical modeling in Iron ma	herm erro a king	al p alloy proce	furna sses	ises, Ices,	
				Total (4	l5+0)	= 4	45 H	ours	
Cou	irse	e Oi	utcomes:						
Upo	n co	om	pletion of this course, the	students will be able to:					
CO1	1	:	Understand and define t the blast furnace	he feeding of raw materials that must be processed b	efore	load	ing in	to	
CO2	2	:	Describe the various phy establish the heat and m	ysical and chemical principles and study the different on the study the different of the study the different of the study the	equili	bria a	and		
CO3	3	:	Design the blast furnace place in it	by describing the various parts of blast furnace and t	he re	actio	ns tal	king	
CO4	1	:	Describe the operationa	I features of the blast furnace, the irregularities in ope	ratior	١			
COS	5	:	Alternate iron making pr production of ferro alloys	ocess using different methods like low shaft and char s	coal f	fired	furna	ce,	
Tex	t Bo	ook	S:						
1.		Ahi Hal	ndra Ghosh and Amit Ch I of India Private Ltd., Ne	atterjee, "Iron Making and Steel Making – Theory and w Delhi 2008.	Prac	tice"	, Prer	itice	

2.	Tupkary R J, "Introduction to Modern Iron Making", Khanna Publishers, Third edition, New Delhi, 2004.										
Reference Books:											
1.	Biswas .A.K , " Principles of blast furnace iron making- theory and practice" , SBA Pub, Kolkata 1994										
2.	David H Wekelin, "The Making, Shaping and Treating of Steel", AISE Steel Foundation, edition 11, 1999.										
E-References:											
1.	https://nptel.iitm.ac.in										

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2		-		2	_	2	_		-	1		1	2	2	2
CO2	2												2		2	1
CO3					2		1				2			1		2
CO4	1				1		3				2		2	3	1	
CO5	2				1		2				1				2	1
	1- Faintly,			2- Moderately,			3- S	trongly	y							

		22MT405	MATERIAL TESTING LABORATORY	L	т	Р	С						
				0	0	3	1.5						
Cours	Course Objectives:												
1.	1. To learn about several of material testing principles, procedures and generating reports for quality control.												
EXPE	EXPERIMENTS												
1.	1. Tensile testing of Metals and Alloys												
2	Compression test												
3	Impact testing of Metals (Charpy & Izod)												
4	Bend Test of Metals												
5	Hardness – Brinell / Rockwell												
6	На	rdness – Vickers											
7	Mic	crohardness test											
8	Fat	igue test											
9	We	ar test – Pin on disc											
10	Cre	eep test(using lead wire)											
				Tota	l (P) =	= 45 H	ours						
Cours	se O	utcomes											
After t	he s	uccessful completion of th	ne practical session, the students will be able to										
CO1	: Gain knowledge in practical aspects of sample preparation for testing.												
CO2	:	Hands on experience in	operation of Material testing equipment.										
CO3	:	Gain knowledge in vario	us mechanical tests of metals										

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2		2	2		2						1	2	2	
CO2	2					2							2		2	1
CO3		2	1	2	2		1							1		

1- Faintly, 2- Moderately, 3- Strongly

22EN401	PLACEMENT AND SOFT SKILLS LABORATORY	L	т	Р	С
		1	0	3	2.5

Course Objectives:

- 1. To develop the students' confidence and help them to attend interviews successfully
- 2. To express opinions, illustrate with examples and conclude in group discussions
- 3. To acquire knowledge to write error free letters and prepare reports
- 4. To enhance the employability and soft skills of students

EXPERIMENTS

UNIT I- WRITING SKILLS

Letter seeking permission to go on industrial visit, Letter of invitation, Resume and cover letter, Job application, E-mail writing, Report writing, progress in project work

UNIT II- SPEAKING SKILLS

Welcome address and vote of thanks, Analysing and presenting business articles, Power point presentation, Presenting the visuals effectively, Group discussion, Participating in group discussions, Understanding group dynamics, Brain-storming the topics

UNIT III - SOFT SKILLS

Employability and career skills, Self-introduction, Introducing oneself to the audience, introducing the topic, Interview skills, Interview etiquette, Dress code, Body language, Attending job interviews

UNIT IV- VERBAL ABILITIES

Error Spotting, Listening Comprehension, Reading comprehension, Rearranging Jumbled sentences, Vocabulary

UNIT V – REASONING ABILITIES

Series completion, Analogy, Classification, Coding-Decoding, Blood relations, Seating Arrangements, Directional Sense, Venn Diagram, Logical reasoning, Statements and Conclusions

Total (P) = 60 Hours

Course Outcomes

After the successful completion of the practical session, the students will be able to

CO1	:	To participate in group discussion and interview confidently
CO2	•••	To develop adequate soft skills and career skills required for the workplace
CO3	:	To make effective presentations on given topics
CO4		To apply their verbal ability and reasoning ability in campus interviews

REFERENCE BOOKS:

- 1. Campus Recruitment Complete Reference, Praxis Groups (5th edition), Hyderabad, 2017.
- 2. John Seely, The Oxford Guide to Writing and Speaking, Oxford University Press, New Delhi, 2004.
- 3. R.S. Aggarwal. A Modern Approach to Verbal & Non-Verbal Reasoning. 2018 S Chand Publication, 2018

E-RESOURCES:

- 1. https://prepinsta.com/
- 2. https://www.indiabix.com/

List of Exercises:

- 1) Cover Letter and Resume
- 2) Letter Writing
- 3) Email Writing
- 4) Report Writing
- 5) Powerpoint Presentation
- 6) Self-Introduction
- 7) Job Interview
- 8) Group Discussion
- 9) Welcome Address
- 10) Vote of Thanks
- 11) Presentation of BusinessArticle
- 12) Jumbled Sentences
- 13) Error Spotting
- 14) Reading Comprehension
- 15) Series completion
- 16) Analogy
- 17) Coding-decoding
- 18) Blood relations
- 19) Seating arrangements
- 20) Logical reasoning

18EN401 - CO PO Mapping:

	PO 1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	0	0	0	1	0	0	0	0	2	3	0	1	0	0	1	0
CO2	0	0	0	2	0	0	0	0	2	3	0	1	0	0	2	0
соз	0	0	0	2	0	0	0	0	1	3	0	1	0	0	1	0
CO4	0	0	0	1	0	0	0	0	2	3	0	1	0	0	2	0

1- Faintly,

2- Moderately,

3- Strongly
22CYMC01	ENVIRONMENTAL SCIENCE	L	Т	Р	С				
		3	0	0	0				
Course Objec	ctives:								
To learn the co	Γο learn the concept of non conventional energy systems.								
To explore the	environmental impact assessment and also to learn about the conse	que	ence	of					
different types	lifferent types of pollutants								
They are part of the environment									
To have an an	Γo have an ancient wisdom drawn from Vedas								

Activities based knowledge to preserve environment

Conservation of water and its optimization

Environmental Awareness

Various types of traditional power Plant --Advantage and Disadvantage of conventional Power Definition of non-conventional energy sources Plants – Conventional vs. Nonconventional power generation.– types of non-conventional energy sources - India's current energy resources and their long-term viability – India's Energy requirement and management

Solar Energy Basics- Solar Thermal Energy- Solar Photovoltaic Energy- Benefits and Drawbacks -Effects on the environment and safety. Wind turbine power and energy-India's wind energy potential- Wind turbine types. Environmental benefits and impacts of offshore wind energy

Air pollution- Sources, effects, control, air quality standards, air pollution act, air pollution measurement. Water Pollution-Sources and its remedy, Soil Pollution-Sources and its remedy, disposal of solid waste. Greenhouse gases – effect, acid rain. Noise pollution reduction. Aspects of pollution from various power plants

Environmental Activities

Group activity on water management – Group discussion on recycle of waste (4R's)-Slogan making contest – Poster making event – Expert lecture on environmental awareness – Imparting knowledge on reduction of electricity usage

Identification and segregation of biodegradable and non-biodegradable waste – Campus cleaning activity – Plantation of trees in the college campus and local waste lands – Identification of varieties of plants and their usage – Shutting down the fans and ACs of the campus for an hour.

SEMESTER – V

2	2MT	501	FORMING PROCESSES	L	Т	Р	С		
				3	0	0	3		
Cou	ırse (Objectiv	res:						
1.	Knov	v the con	cepts of Metal forming and associates technologies						
2.	Appl	y formin	g concepts in conventional and advanced manufacturing.						
3.	Knov	v the app	lications of forming processes in various manufacturing sectors.						
U	NIT	I FUN	NDAMENTALS OF METAL FORMING		9	+	0		
Octa meta worl	loading conditions. Tensor Analysis, Yield criteria: Von Mises, Tresca yield criteria. Comparison of yield criteria, Octahedral shear stress and shear strain- Forming load calculations. Fundamentals of forming processes - variables in metal forming and their optimization, Flow stress determination, Temperature in metal forming, Hot, Cold and Warm working, Strain rate effects, Deformation zone geometry, Workability, Metallurgical structures, friction and lubrication, Residual stresses.								
UNIT II FORGING AND ROLLING									
desi appl Forc UN	design, Calculation of forging loads, Effect of forging on microstructure Forging defects, causes and remedies, Forging applications. Classification of Rolling Processes, Rolling of Blooms, billets, slabs and sheet, types of rolling mills. Forces and geometrical relationship in rolling. Analysis of rolling load. Defects causes and remedies.9+0UNIT IIIEXTRUSION AND DRAWING9+0								
extr Hyd tube	usion, rostat s. Intr	defects ic extrus oduction	and maneet extrusion, equipments, container less extrusion port noie extru and remedies. Analysis of extrusion, tube extrusion and production of sea ion. Equal Channel Angular Extrusion. Defects causes and remedies, Drawin to Super plasticity	mless	pipe rods,	and wires	tube. and		
UN	IT I	V SHE	EET METAL WORKING AND HIGH VELOCITY FORMING		9	+	0		
Sheet Metal Forming: Bending, spinning, stretch forming, deep drawing. Cutting methods - Shearing, blanking and Punching. Defects and applications. High velocity forming methods: Explosive forming, Electro hydraulic, Magnetic pulse forming and pneumatic method, Dynapak method. Formability tests: Effect of strain hardening coefficient (n value), strain rate sensitivity (m value), plastic strain ratio (r value) on formability. Introduction to formability limit diagram.						; and netic nt (n limit			
UI	NIT V	V POV	WDER METALLURGY		9	+	0		
Step Con and	Steps in P/M, advantages and disadvantages. Powder production methods-physical, chemical and mechanical methods. Compaction-Pressure and pressure-less compaction techniques. Hot and Cold isostatic pressing, Sintering- solid state and liquid phase sintering. Microwave sintering, Typical applications								
			Tota	l (L+	T) =	45 H	ours		
Cou	Course Outcomes:								
Upo	Upon completion of this course, the students will be able to:								
CO	1 :	Under	rstand and describe the fundamentals of metal forming – Yielding, workability						

CO2	:	Exhibit the knowledge in Rolling and forging processes								
CO3	:	: Explain the Extrusion and Drawing processes, their defects and remedies								
CO4	:	Understand the fundamentals of various sheet metal forming								
CO5	:	Understand and describe the fundamentals of Powder metallurgy processes								
Text B	look	S:								
1.	1. Dieter G.E ,Mechanical metallurgy , third edition ,McGraw hill company, SI edition 1995									
2.	Sinl	na A.K ,Powder metallurgy, Dhanpat Rai & sons ,New Delhi,2001								
		Reference Books:								
1.	ASI	M Metal handbook Volume 14 Forming and forging ,Metal park Ohio USA,2001								
2	ASI	M Metal handbook Volume 14A: Metalworking: Bulk Forming Metal park Ohio USA,2005								
3.	ASM Metal handbook Volume 14B: Metalworking: Sheet Forming Metal park Ohio USA,2005									
4.	Metal forming Handbook – Springer									
5.	P.C Angelo, R. Subramanian Powder Metallurgy Science, Technology and Applications, PHI Learning Private Ltd, New Delhi 2009									

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	3	3	1	3	0	0	0	0	2	3	2	2	1
CO2	3	3	2	2	3	1	2	0	0	0	0	2	3	2	2	
CO3	3	2	2	2	3	1	2	0	0	0	0	2	3	2	2	
CO4	3	2	2	1	3	1	3	0	0	2	0	2	3	2	2	
CO5	3	2	2	2	3	2	0	0	0	2	0	2	3	2	2	1
Total	3	2.4	2	2	3	1.2	2	0	0	0.8	0	2	3	2	2	0.4
1- Faintl	y,	2-	Mode	erately	,	3- \$	Strong	ly	•		•					

22MT50	02	STEEL MAKING	L	Т	Р	С	
			3	0	0	3	
Course Ob	Course Objectives						
1. To know in steel	w the i	mportance of the steel making and to apply them for the advancement of the pre- ries to compete with the modern day manufacturing routes.	oducti	on fe	asibili	ties	
UNIT I	РНУ	SICAL CHEMISTRY OF STEEL MAKING		9	+	0	
History & D Principles an reaction & S Thermodyna	History & Development of Steel making processes. Raw materials for Steel making & plant layout. Physico Chemical Principles and Kinetic aspects of Steel making - Carbon reaction, Phosphorus reaction, Silicon reaction, Manganese reaction & Sulphur reaction, Reaction at slag-metal interface, Oxygen transport mechanism, Deoxidation of steel – Thermodynamics, Kinetics and Mechanism, Slag – Functions, Composition, Properties and Theories						
UNIT II	OLI	DER STEEL MAKING & ELECTRIC STEEL MAKING PROCES	S	9	+	0	
Review of older Steel making process: Bessemer processes – Acid & Basic Bessemer Process, Open Hearth Process – Reasons for the decline, Electric Steel making process: Electric Arc Furnace and Induction furnace – Constructional features, Production practice for Plain Carbon Steels, Low Alloy Steels & Stainless Steels, Developments in Electric Arc Furnace technology – Furnace design, Operational features. Modern approaches to Steel making – External treatments to remove Sulphur, Phosphorus & Silicon.							
UNIT III	UNIT III OXYGEN STEEL MAKING PROCESS						
Hearth Proce Construction Developmen Modern appr	ess – R nal fea nts in E roaches	easons for the decline, Electric Steel making process: Electric Arc Furnace and tures, Production practice for Plain Carbon Steels, Low Alloy Steels lectric Arc Furnace technology – Furnace design, Operational features. s to Steel making – External treatments to remove Sulphur, Phosphorus & Silico	d Indu & S on.	iction tainle	furna ss Ste	ce – eels,	
UNIT IV	SEC	ONDARY STEEL MAKING PROCESS		9	+	0	
Introduction Stainless Ste Stainless Ste process. Tu processes - I	eel mak eel mak eel ma ndish l Ladle d	ng techniques, Cleanliness improvement, Perrin Process, Decarburization techn ing technology - AOD process, VOD process, CLU process, Nitrogen problem king. Injection Metallurgy, Plunging techniques, Post solidification treatme Metallurgy. Ladle furnace. Vacuum treatment – Principle & Function of E egassing, Stream degassing, Recirculation degassing.	iques: in ents – Degass	VA	R & 1 Degas	ESR sing	
UNIT V	ING	OT AND CONTINOUS CASTING OF STEEL		9	+	0	
Casting Pit practice – Teeming Ladle, Ingot mould, Teeming methods. Solidification of Steel in Ingot moulds- Killed. Rimmed and Capped Steels. Ingot defects and their remedies. Gases in Steel. Continuous Casting of Steel – Introduction, Principles, Constructions features and Operation of a typical Continuous Casting Machine. Defects in Continues Casting products. Current status of Continuous Casting Technology. Quality Control in Continues casting. Metallurgical Defects and their remedies. Indian Steel Industry and global trends in steel making technology, Introduction to mathematical modelling in steel making processes							
Total (45+0) = 45 Hours							
Course Outcomes:							
Upon comp	oletion	of this course, the students will be able to:					
CO1 :	CO1 : Specify the particular reactions taking place in the steel making process along with the thermodynamics, kinetics and the mechanism of reaction						

CO2	:	Review the older steel making process and modern electric steel making processes								
CO3	:	Discuss and describe the conventional steel making processes viz. oxygen steel making processes								
CO4	:	Bescribe the secondary steel making processes, the process following the primary refining of raw pig iron								
CO5	:	Specify the casting process for steel and discuss the ingot defects and their respective remedies								
Refere	ence	Books:								
1.	Ah Ha	indra Ghosh and Amit Chatterjee, Iron Making and Steel Making – Theory and Practice, Prentice Il of India Private Ltd., New Delhi, 2008.								
2.	R.H	I.Tupkary and V.R. Tupkary, An Introduction to modern steel making, Khanna Publishers, 2000.								
E-Refe	eren	ces:								
1.	<u>htt</u>	os://nptel.ac.in/courses/113104013								

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	3	3	1	3	0	0	0	0	2	3	2	2	
CO2	3	3	2	2	3	1	2	0	0	0	0	2	3	2	2	1
CO3	3	2	2	2	3	1	2	0	0	0	0	2	3	2	2	
CO4	3	2	2	1	3	1	3	0	0	2	0	2	3	2	2	
CO5	3	2	2	2	3	2	0	0	0	2	0	2	3	2	2	1
Total	3	2.4	2	2	3	1.2	2	0	0	0.8	0	2	3	2	2	0.4
1- Faint	ly,	2	- Mod	erately	Ι,	3-	Strong	gly	•		•		•			

22	M	503	CORROSION ENGINEERING	L	Т	Р	С						
				3	0	0	3						
Course	e Ol	ojectives:											
1. To	kno	w the conce	pt of different types of corrosion and to understand the basic principles of o	corros	sion e	ngine	ering.						
UNIT	ľ	CORRC	OSION PRINCIPLES		9	+	0						
Electrod demerit Exchan electroc Mixed J	demerits, Pourbaix diagram and its importance to iron, aluminium and magnesium metals, corrosion rate expressions. Exchange current density, polarization - concentration, activation and resistance, Tafel equation, passivity, electrochemical behaviour of active-passive metals, flade potential, factors governing metals exhibiting passivity, Mixed potential theory and its application.												
UNIT	II	FORMS	OF CORROSION		9	+	0						
Atmosp damage	Atmospheric, galvanic, crevice, pitting, stress corrosion cracking, intergranular corrosion, corrosion fatigue, hydrogen damage, cavitation, fretting corrosion and high temperature oxidation-description, causes and remedial measures.												
UNIT	III	CORRC	DSION TESTING		9	+	0						
Purpose pitting, Polariza	of AST tior	testing - la TM standard methods to	boratory, semi-plant and field tests, susceptibility tests of IGC, stress c is for corrosion testing; Corrosion testing for Passivating metals. measure corrosion rate, Tafel extrapolation method, Linear Polarisation m	orros ethod	ion ci	rackin	g and						
UNIT	IV	CORRO	SION PREVENTION		9	+	0						
Corrosi coating	on p s, m	revention by echanical an	y design improvements, anodic and cathodic protection, metallic, non-meta ad chemical methods and various corrosion inhibitors	llic a	nd inc	organi	0						
UNIT	V	CORRC	SION IN INDUSTRIES		9	+	0						
Corrosi formation chemica	on i on i al pr	n Boiler Pla n boilers an ocessing inc	ant: Corrosion on water-side of the boiler, fire-side of the boiler and the ad its prevention. Practical remedial treatments in boilers. Corrosion in lustries, corrosion in petroleum production operations and refining.	eir p autoi	reven notive	tion. S e indu	Scale Istry,						
			Total	(L+'	() = 4	45 H	ours						
Course	e O	itcomes:											
Upon c	om	pletion of t	his course, the students will be able to:										
CO1	:	Explain the electro chemical and thermodynamic principles and to discuss the pourbaix diagram.											
CO2	:	Understand	d the different forms of corrosion and their causes and remedies.										
CO3	:	Describe th	ne processes of ASTM testing methods and polarization methods.										
CO4	:	Understand	d the corrosion preventive methods such as mechanical and chemical method	ods.									
CO5	:	Explain the	xplain the corrosion in petroleum industries and pipe lines.										

Text]	Books:
1.	Mars G. Fontana, Corrosion Engineering, Tata McGraw Hill Education, 2005.
2.	Denny A. Jones, Principles and prevention of corrosion, 2 nd Edition, Prentice Hall Inc.,1996.
Refer	ence Books:
1.	ASM hand book, Vol 13: Corrosion, ASM International, USA, 2001.
2.	Rajnarayan, Metallic corrosion and prevention, Oxford Publications, 2001.
3.	Trethewey, K.R., and Chamberlain, J., Corrosion – For science and engineering, 2 nd Edition, Longman Inc., 1996.
4.	Uhlig, H.H., and R. Winston Revie, Corrosion and corrosion control – An introduction to corrosion science and engineering, Third edition, John Wiley & Sons, 1985.
E-Ref	erences:
1.	www.nptel.ac.in/courses/113108051/

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	2	2	2	3	1	0	0	0	0	1	1	3	2	3	1
CO2	2	3	3	2	1	0	0	0	0	0	1	1	2	3	3	1
CO3	2	2	3	1	1	0	0	0	0	0	1	2	2	2	2	1
CO4	1	3	3	3	3	1	2	0	0	0	0	1	1	2	2	1
CO5	1	3	2	2	2	0	0	0	0	0	1	2	3	2	2	1
Total	1.6	2.6	2.8	2	2	0.4	0.4	0	0	0	0.8	1.4	2.2	2.2	2.4	1
1- Faint	ly,	2	- Mod	erately	Ϊ,	3-	Strong	ly							•	

22MT	r 5 04	CASTING ENGINEERING	L	Т	Р	C			
			3	0	0	3			
Course	Course Objectives:								
1. To	1. To know the basic concept of metal casting technology								
2. To	apply	the concept to produce new materials							
UNIT	Ί	MOULDING MATERIALS AND PATTERNS		9	+	0			
Introduc core box preparat	Introduction to foundry operations, patterns - functions, types, allowances selection of pattern materials, colour codes, core boxes, moulding practice, ingredients of moulding sand and core sand, Testing of Moulding sands. Sand preparation.								
UNIT	II	MOULDING AND CASTING TECHNIQUES		9	+	0			
Sand me process, casting,	ouldin , perm full n	g: green sand moulding, dry sand moulding, skin dry sand moulding, shell mouldi anent mould casting, die casting, centrifugal casting, plaster mould casting, investr nould process, Rheocasting, Thixo casting.	ing, c nent c	arbon astin	n-di-oz g, squ	xide eeze			
UNIT	III	DESIGN OF CASTINGS		9	+	0			
Element Chvorin compou in Al-Si	Elements of gating system, types, design of gating system with examples, functions of risers, types of risers, Chvorinov's rule, design and positioning of riser with examples, directional solidification, use of chills, exothermic compounds etc., riser efficiency, yield calculations. Solidification and shrinkage, inoculation in cast irons, modification in Al-Si system.								
UNIT IV MELTING PRACTICE									
Types of aluminit	f furn um all	aces used in foundry, Melting practice and special precautions for steels, alloy steels oys, copper alloys and magnesium alloys, safety considerations, fluxing, degassing a	s, cast and in	irons ocula	, tion.				
UNIT	v	QUALITY CONTROL, FETTLING, INSPECTION AND AUTOMATION		9	+	0			
Quality repair o mechani	contro of cast isation	ol: composition control in steels and cast irons. Simple problems on charge calcutings. Casting defects and remedies. Heat treatment of castings. Inspection of an, automation and foundry layout. Sand reclamation and Pollution control in foundries.	lation castin es.	s. Cle g. Pr	eaning inciple	g and es of			
		Total	(L+I	r) = 4	45 H	ours			
Course	e Out	comes:							
Upon c	ompl	etion of this course, the students will be able to:							
CO1	CO1 : Explain the solidification of casting, effect of solidification range, fluidity and factors affecting fluidity								
CO2	02 : Discuss the cast iron categories, their types and different heat treatment methods like graphitization, spherodization etc and denote the ASTM standards for all the varieties								
CO3	: I r	Discuss the alloying element effect on the steels and mention the precaution to be taken in moulding and melting of steels							
CO4	: I	Describe the casting methods employed for fabrication of non-ferrous alloys							
C05	: 1	Mention the melting procedure that is adopted for the various alloys like steels, stair lag-metal reactions	nless s	teels,	discu	ss the			
Text B	ooks								

1.	Heine R W., C.R., Loper, and P.C. Rosenthal, Principles of Metal Casting, Tata-McGraw Hill Publishing Co Ltd, New Delhi, 2018.
2.	Jain, P.L., Principles of Foundry Technology, Tata McGraw Hill Publishing Co Ltd, New Delhi, 2013.
3.	Srinivasan, N.K., Foundry Engineering, Khanna Tech Publications, New Delhi, 2017.
Refere	ence Books:
1.	Ramana Rao, T.V., Metal Casting: Principles and Practice, New Age International Publishing Co., New Delhi, 2019.
2.	ASM Metals hand Book, Vol 15, Casting ASM International, 10th edition, 2010.
3.	Beeley, P.R., Foundry Technology, Butterworths, London, 2013.

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	2	3	2	1	0	0	0	0	0	0	3	2	3	
CO2	3	3	3	3	3	1	0	0	0	0	0	0	3	2	3	
CO3	3	3	3	3	3	1	0	0	0	0	0	0	3	2	3	1
CO4	3	3	2	2	3	1	2	0	0	0	0	2	3	2	2	
CO5	3	3	2	2	3	1	2	0	0	0	0	2	3	2	2	1
Total	3	2.8	2.4	2.6	2.8	1	0.8	0	0	0	0	0.8	3	2	2.6	0.4
1- Faint	ly,	2	- Mod	erately	γ,	3-	Strong	gly			•	•			•	

221	МТ	L	Т	Р	C							
			·	3	0	0	3					
Cou	rse	Obj	ectives:									
1.	To	know	the concepts of different materials joining and allied processes.									
2.	То	unde	stand the metallurgical aspects of welding.									
UN	IIT	I	GAS, ARC AND OTHER WELDING PROCESSES:		9	+	0					
Intro duty Shiel arc w of El	Introduction to weighing and allied processes. Overview of arc weighing power sources, Open Circuit Voitage (OCV),duty cycle. Fusion welding processes – Principle, merits, demerits and applications of Oxy-acetylene welding (OAW),Shielded metal arc welding (SMAW), Submerged arc welding (SAW), Gas tungsten arc welding (GTAW), Gas metalarc welding (GMAW and FCAW). Introduction to welding consumables for these processes. Principle and applicationsof Electro slag welding (ESW), Thermit welding. Arc welding defects, their causes and remedies.UNIT IISOLID STATE AND SPECIAL WELDING PROCESSES:99											
UN	IT	II	SOLID STATE AND SPECIAL WELDING PROCESSES:		9	+	0					
Resis weld explo Lase	stan ling, osiv r be	ce w , hot e we am (l	elding processes (Spot and Seam welding). Principle, merits, demerits and applicat pressure welding, induction pressure welding, friction welding, friction stir welding, diffusion welding processes. Principle, merits, demerits and applications of E LBW), Plasma arc welding (PAW) processes.	ions c g, ultr lectro	of Col asoni n bea	ld pre c wel m (EI	ssure ding, 3W),					
UN	IT I	III	INTRODUCTION TO WELDING METALLURGY:		9	+	0					
cast assoc alum alloy	iror ciate niniu vs. D	ns, w ed wi im ar Dissin	elding of stainless steels (Austenitic, Ferritic and Martensitic). Introduction to th welding - Hot cracking, Hydrogen induced cracking, Lamellar tearing, Rehear d its alloys, welding of copper and its alloys, welding of titanium and its alloys, we hilar welding. Concept of Weldability and its assessment for hot cracking and cold cr	crack crack t crac elding acking	ting p king. of ni g.	pheno Weld ckel a	menor ling of and its					
UN	IT I	IV	OTHER JOINING PROCESSES:		9	+	0					
Intro joint Resis mate gas s	oduc de: stan erials solde	tion t sign, ce br s, me ering	o Brazing and Soldering. Fundamentals - Capillary action and Wetting characteristic materials, merits, demerits and applications of Torch brazing, Furnace brazing azing, Dip brazing processes. Filler alloys and fluxes for brazing. Soldering: Pr rits, demerits and applications of Iron soldering, Torch soldering, Infrared soldering, Wave soldering processes. Filler alloys and fluxes for soldering.	cs. Bra g, Inc rincipl , Lase	azing: luctio e, joi r sold	: Princ n bra int de lering,	ziple, zing, sign, , Hot					
UN	IT	V	SURFACING AND CUTTING PROCESSES:		9	+	0					
Surfa weld proce Plasr	Surfacing: Dilution characteristics. Types of Surfacing – Cladding, Hardfacing, Build-up and Buttering. Surfacing by welding: OAW, SMAW, GTAW, GMAW, FCAW, SAW and PAW. Surfacing materials and their applications. Cutting processes: Principle of operation and applications of Oxy-fuel gas cutting, Metal powder cutting, Chemical flux cutting, Plasma arc cutting, Laser beam cutting and Air carbon arc cutting processes.											
C		<u> </u>		<u></u> . _	,							
Cou	rse	Out	comes:									
opo		Jub										
	L	:]	explain the working principle, merits and demerits of different arc welding processes	•								
CO2	2	: 1	Describe the working principle, merits and demerits of different solid state & special v	weldir	ig pro	cesse	s.					

CO3	:	Solve welding heat flow related problems.
CO4	:	Demonstrate the working principle and importance of brazing and soldering in Joining processes.
CO5	:	Describe the working principle, merits and demerits of surfacing by welding and cutting processes.
Text I	Bool	xs:
1.	Sri	nivasan N K, "Welding Technology", Khanna Publications, Delhi, 2001.
2.	Par	mar, R.S., "Welding Processes and Technology", 3 rd edition. Khanna Publishers, New Delhi, 2003.
3.	Par	mar, R.S., "Welding Engineering and Technology", Khanna Publishers, New Delhi, 2003.
		Reference Books:
1.	Dav	vies AC, "Welding",10th edition, Cambridge University Press, UK, 1996.
2.	AW	'S Welding Handbooks, AWS, New York, 1995.
3.	Hov	ward B. Cary, "Modern Welding Technology", Prentice Hall, New Jersey, USA, 2004.
4.	Sine	do Kou, Welding Metallurgy, John Wiley & Sons, 1987.
5.	Nor	man Bailey, "Weldability of ferritic steels", Jaico Publishing House, 1997.
6.	Nac	lkarni S.V., "Modern Arc Welding Technology", Oxford & IBH Publishing Co., 1988.
7.	Sch	wartz M.M.,"Metals Joining Manual", McGraw- Hill Inc.,1979.
8.	ASI 200	M Metals Handbook, Vol. 6,"Welding Brazing & Soldering", ASM International, Metals park, Ohio, USA, 1.

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2	2	3	2	0	0	0	0	0	2	3	2	3	3	
CO2	1	2	3	1	2	0	0	0	1	0	2	2	2	2	2	
CO3	1	2	2	1	1	0	0	0	0	0	2	2	3	2	3	1
CO4	1	2	2	1	2	1	0	0	1	0	1	2	2	2	3	
CO5	3	1	1	1	2	0	0	0	0	0	1	1	2	2	2	1
Total	1.4	1.8	2	1.4	1.8	0.2	0	0	0.4	0	1.6	2	2.2	2.2	2.6	0.4
1- Faint	ly,	2	- Mod	erately	΄,	3-	Strong	gly								

	22N	1T506	HEAT TREATMENT AND CORROSION LABORATORY	N L	Т	Р	С						
				0	0	3	1.5						
Objec	tive				•								
1.	Τοι	nderstand the v	various heat treatment process.										
2.	То з	ain knowledge	about corrosion testing.										
			EXPERIMENTS: HEAT TREATMENT LABORATORY										
1.	An	nealing of carbo	on steels-Heat treatment practice and Analysis										
2.	No	malising of car	bon steels – Heat treatment practice and Analysis										
3.	Eff	Effect of quenching media on hardening of steel – Heat treatment practice and Analysis											
4.	Eff	Effect of tempering temperature on hardened steel – Heat treatment practice and Analysis											
5.	Effect of tempering time on hardened steel- Heat treatment practice and Analysis												
			EXPERIMENTS: CORROSION LABORATORY										
1.	Cor	rosion rate dete	ermination by weight loss method.										
2.	Ele	ctroplating of C	Copper and Nickel.										
3.	Eff	ect of inhibitors	s on the rate of corrosion.										
4.	Oxa	lic acid etch te	st for IGC ASTM A262 – Practice A.										
5.	Car	ryout Polarizat	ion studies by using electrochemical workstation.										
			Т	otal (F	P) = 4	5 H	ours						
Cours	e O	utcomes											
After t	he si	ccessful comp	letion of the practical session, the students will be able to										
CO1	:	Conduct and	explain the process of annealing and normalizing process on Carbon ste	els.									
CO2	:	Determine the	e effect of Quenching and Tempering process of Hardened steel.										
CO3	:	Determine the	e corrosion rate by weight loss method.										
CO4	:	Analyze the e	ffect of inhibitor on corrosion rate.										
CO5	:	: Perform electroplating of copper and nickel.											

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	2	2	2	3	1	0	0	0	0	1	1	3	2	3	
CO2	2	1	3	2	1	0	0	0	0	0	1	1	2	3	3	
CO3	2	2	1	1	1	0	0	0	0	0	1	2	2	2	2	
CO4	1	3	3	3	3	1	1	0	0	0	0	1	1	2	2	
CO5	1	3	2	2	2	0	0	0	0	0	1	2	3	2	2	
Total	1.6	2.2	2.2	2	2	0.4	0.2	0	0	0	0.8	1.4	2.2	2.2	2.4	0

1- Faintly,

2- Moderately, 3- Strongly

	22M	Т507	MACHINE SHOP PRACTICE	L	Т	Р	С						
				0	0	3	1.5						
Cour	se O	bjectives:				L							
1.	To	practice and know about var	ous machining machine.										
EXPI	ERI	MENTS											
1.	Lat	ne											
2.	Dri	ling											
3.	Sh	Shaping											
4.	Gear hobbing												
5.	Key	way milling											
6.	Stu	ly on cylindrical grinding, b	oring, and CNC machines.										
				Total	(P) =	45 H	lours						
Cours	se O	utcomes											
After t	he sı	ccessful completion of the p	practical session, the students will be able to										
CO1	:	Understand the machining components.	concepts and also do the machining operations like facing a	and tur	ming f	or the	given						
CO2	Practice the different methods of taper turning and do the taper turning operation using methods like tailstock set over and taper turning attachment.												
CO3	:	Recognize performance an tapping, reaming and count	d principle of basic drilling operation and also various success ter Sink by using radial drilling machine.	ful ma	chinin	g of dr	illing,						
CO4	:	Practice the concept of mil	ling and do the keyway milling.										
CO5	:	Practice the various machin	ning process like cylindrical grinding, boring and shaping.										

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	1	0	0	3	2	1	0	3	1	2	2	3	2	2	
CO2	2	0	1	0	3	0	2	1	2	1	0	0	2	2	2	
CO3	3	1	2	2	1	0	2	3	0	0	1	1	0	0	0	
CO4	2	1	3	1	2	0	0	1	2	3	1	0	1	2	1	
CO5	1	2	1	0	2	3	1	2	1	0	0	0	1	1	1	1
Total	2.2	1	1.4	0.6	2.2	1	1.2	1.4	1.6	1	0.8	0.6	1.4	1.4	1.2	0.2

1- Faintly,	2- Moderately,	3- Strongly
-------------	----------------	-------------

SEMESTER – VII

22MT7	01	CHARACTERIZATION OF MATERIALS	L	Т	Р	С
			3	0	0	3
Course (Objec	etives:				
1. To pr	ovide	an understanding of the basic principles of various characterizations techniques				
2. To le	arn th	e uses of analytical instruments to carryout metallurgical characterization.				
UNIT I	N	IETALLOGRAPHIC TECHNIQUES:		9	+	0
Metallurg properties lens aberr polarized Image ana	ical r - mag ations light lysis.	nicroscope - principle, construction and working, metallographic specimen gnification, numerical aperture, resolving power, depth of focus, depth of field, d s and their remedial measures, various illumination techniques-bright field, dark illuminations, interference microscopy, high temperature microscopy; quantita	prep liffere field tive r	aratio nt lig , phas netall	n, oj ht sou se-con ograpi	otical irces, trast, hy –
UNIT I	[X	-RAY DIFFRACTION TECHNIQUES :		9	+	0
Character method, I diffraction Introducti	istic X Princij n in m on of	K-ray spectrum, Bragg's Law, Diffraction methods - Laue method, rotating cryple, equipment and applications, X-ray diffractometer, filters and counters, A aterials characterization – Determination of crystal structure, lattice parameter, m GIXRD, SAX/WAX.	ystal Applic neasur	metho ations emen	od, po s of X t of st	wder K-ray ress,
UNIT II	IE	LECTRON OPTICAL TECHNIQUES:		9	+	0
Electron o construction Scanning microanal	optica on an electr yser (l instruments, electron-specimen interactions, Transmission electron microscop d working , specimen preparation, various imaging modes, selected area diffion microscopy(SEM) – principle, equipment, various operating modes and applic EPMA)- principle, instrumentation, qualitative and quantitative analysis, HRTEM	py(TE fractions ations	M) – on, aj , Elec	- prino oplicat etron p	ciple, ions, probe
UNIT IV	V S	URFACE ANALYSIS TECHNIQUES:		9	+	0
Principle, spectrosco fluorescer	instru py, S ice sp	mentation, working and applications of Auger Electron spectroscopy, X-ray phot becondary ion mass spectroscopy / ion microprobe, Optical emission spectroscop ectroscopy.	oelec opy a	tron nd X-	ray	
UNIT V	, T T	HERMAL ANALYSIS AND ADVANCED CHARACTERIZATION ECHNIQUES:		9	+	0
Advanced applicatio principle, scanning o	char ns, So instru calorii	acterization techniques: Field ion microscopy including atom probe - principle canning probe microscopy - principle, instrumentation and applications, Atomi mentation and applications. Thermal techniques: Principles of Differential thermal metry and Thermograviometric analysis – Instrumentation.	, inst c fore l analy	rumer ce mi ysis, I	ntation crosco Differe	and opy - ential
		Total	(L+T	r) = 4	45 H	ours
Course (Dutco	omes:				
Upon com	pletic	on of this course, the students will be able to:				
CO1 :	De	escribe the principle of various optical metallographic techniques.				

CO2	:	Demonstrate the Bragg"s law of diffraction and the principle of XRD.
CO3	:	Describe the principle of various electron optical techniques.
CO4	:	Describe the various surface analyzing techniques.
CO5	:	State the thermal analysis technique and apply them to determine various thermal events in materials.
Text B	look	s:
1.	Ang	gelo .P.C, "Materials Characterization", Reed Elsevier India Pvt Ltd, Haryana, 2016.
2.	Heb Nev	bbar K R, "Basics of X-Ray Diffraction and its Applications", I.K. International Publishing House Pvt Ltd, v Delhi, 2011
3.	Kha Pvt.	ngaonkar. P.R., "An Introduction to Materials Characterization", Penram International Publishing (India) Ltd, Mumbai, 2010.
Refere	ence	Books:
1.	Phil	lips V A, "Modern Metallographic Techniques and their Applications", Wiley Eastern, 1971.
2.	Che	prepin and Malik, "Experimental Techniques in Physical Metallurgy", Asia Publishing Co., Mumbai, 1968.
3.	Cul	lity B D., Stock S R "Elements of X-ray Diffraction", Prentice Hall, Inc 2001.
4.	ASI	M Handbook, Volume 10, "Materials Characterization", 9th edition, ASM international, USA, 1986.
5.	Var	der Voort, "Metallography: Principle and practice", Mc Graw Hill Inc., 1984.
6.	Keh	I G L., "The Principles of Metallographic Laboratory Practice", McGraw Hill Book Company, 1949.
7.	Sma	all man R.E., "Modern Physical Metallurgy", 4 th Edition, Butterworths, 1985.

CO/PO	PO	PO	PSO	PSO	PSO	PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2	0	2	3	1	2	1	3	1	1	0	1	3	3	1
CO2	2	1	3	0	2	3	3	0	2	0	1	2	2	2	0	1
CO3	0	3	2	1	0	0	0	3	2	2	2	0	0	3	1	1
CO4	3	0	1	3	1	2	1	2	1	3	3	3	2	0	3	1
CO5	1	2	3	0	2	1	0	1	1	0	2	0	1	1	2	1
Total	1.4	1.6	1.8	1.2	1.6	1.4	1.2	1.4	1.8	1.2	1.8	1	1.2	1.8	1.8	1

	1702	NON-F	ERROUS EXTRACTIVE METALLURGY	Т	Р	C
			3	0	0	3
Cours	se O	jectives:				
1.	To s	udy the various ores of	non ferrous metals and their extraction through Pyro, Hydro and Ele	ctro 1	metal	lurgy
	route	5				
2.	Tou	iderstand principles an	d gain knowledge on the processes used in the extraction of nonferro	ous m	etals	
3.	Tos	udy the different refini	ng techniques to purify the crude metal	0		
UNI		PYROMETALL	URGY	9	+	0
Pyrom Techn Carbo	iques therm	rgy, advantages, Pyron - Predominance Area c, Hydrothermic and N	metallurgical Processes – Drying, Calcination, Sintering, Roasting – Diagrams. Principles of Smelting and Converting. Ellingham diagram Metallothermic reductions.	Roas ns –	sting	
UNI	T II	HYDROMETAL	LURGY	9	+	0
Princip Leach of met	ples c ing m als in	Hydrometallurgy, advected s, Recovery of me aqueous solutions, Cer	vantages, Leaching – Properties of good solvent. Preparation of ore for etals from liquor – Solvent extraction, Ion exchange, Bio leaching, G mentaion, Recycling of leach liquor.	or Lea aseou	aching 1s red	g – uction
UNIT	' III	ELECTROMETA	ALLURGY AND PURIFICATION METHODS	9	+	0
Princip	ples c	Electrometallurgy, ad	vantages, Aqueous and Fused salt electrolysis, Electro refining and H	Electr	o win	ning
of met	als. F	irification of Crude me	etals produced in bulk – Distillation, Liquation, Liquid-Liquid extrac	tion.	Fire	
rennin	ig, Ei	EVTDACTION	ND DEEINING OF METALS EDOM SULDHIDE AND	0		0
UNIT	r IV	OXIDE ORES	AND REFINING OF METALS FROM SULFHIDE AND	9	+	U
Extrac	tion a	nd Refining of metals	from sulphide ores - Copper, Nickel, Lead and Zinc. Extraction and	Refin	ing o	f
metals	from	oxide ores – Aluminiu	m, Magnesium and Tin.			
UNIT	ΓV	EXTRACTION (BYPRODUT ME	OF PRECIOUS AND RARE EARTH METALS AND TALS RECOVERY	9	+	0
Extrac	tion a	nd Refining of preciou	s metals - Gold, Silver and Platinum. Extraction of metals rare earth	meta	ls fro	m
halide	s - Ti	anium, Zirconium and	Uranium. Recovery of by-product metals and treatment of Metallurg	gical	waste	s,
Mater	ial an	Energy balance.				
~			Total (45	5+0)	= 45	Hours
Cour	se O	tcomes:				
Upon	comp	etion of this course, th	e students will be able to:		11	
CO1	:	extraction.	sources non ferrous metals and understand the process principles of p	yron	ietain	irgical
CO2	:	Understand the proces	s principles of hydrometallurgical extraction.			
CO3	:	Explain the process pr	inciples of electrometallurgical extraction and refining of metals.			
CO4	:	Explain the extraction	of metals from sulphide and oxide ores.			
C05	:	Explain the production wastes.	n of precious metals and rare earth metals. Recovery of metals from	meta	llurgi	cal

Text I	Books:
1.	Ray H.S, Sridhar R and Abraham K.P, Extraction of Non Ferrous Metals, Affiliated East-West Press Pvt Ltd, New Delhi, 2008.
2.	Ray H.S and Gosh A, Principles of Extractive Metallurgy, Prentice Hall of India, New Delhi, 1994
Refer	ence Books:
1.	Terkel Rosenqvist, Principles of Extractive Metallurgy, 2 nd Edition, McGraw-Hill International book Company, 1983

2.	Venkatachalam S, Hydrometllurgy, Narosa Publishing House, New Delhi, 1998
3.	R.Raghavan Extractive Metallurgy of Non - Ferrous Metals ,Vijay Nicole Imprints Private Limited, Chennai 2016
4.	Pehlke R.D, Unit Processes in Extractive Metallurgy, American Elsevier Publishing Company, New York, USA, 1977.
E-Ref	erences:
1.	https://nptel.ac.in/syllabus/113105021/

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	3
CO1	2	3	2	3	3	1	2	0	0	0	0	2	3	2	1	1
CO2	3	3	2	2	3	1	2	0	0	0	0	2	3	2	1	1
CO3	3	2	2	2	3	1	2	0	0	0	0	2	3	2	1	1
CO4	3	2	2	1	3	1	2	0	0	2	0	2	3	2	1	
CO5	3	2	2	2	3	2	2	0	0	2	0	2	3	2	1	
Total	2.8	2.4	2	2	3	1.2	2	0	0	0.8	0	2	3	2	1	0.6
1- Fain	tly,		2- Mod	leratel	у,	3-	Strong	gly								

	22M	T703	INTRODUCTION TO INDUSTRIAL MANAGEMENT	L	Т	Р	С
				3	0	0	3
Co							
1.	On stud manage	ying this cours ment.	e the students can contribute to the success of companies by understand	ing tl	he bas	sics of	
2.	To prov	ide an opportu	nity to learn basic management concepts essential for business.				
3.	Gain kn	owledge on va	rious factors of production in increasing the efficiency of the company.				
4.	They ca	n able to know	better organizational behaviour and modern concepts of industrial man	agen	nent.		-
U	NIT I	BASICS O	F MANAGEMENT		9	+	0
Ma Ma Par – S	nagemen nagemen tnership - hare Holo	t – Definition – t Thought. Ap – Joint Stock C lers – Board of	- Functions – Evolution of Modern Management – Scientific Manager proaches to the study of Management, Forms of Organization – Ind Companies – Co-operative Enterprises – Public Sector Undertakings, Co 5 Directors – Committees – Chief Executive – Trade Union.	nent ividu orpora	Deve al Ov ate Fr	vnersl ame V	nt of nip – Vork
UN	IIT II	FUNCTIO	NS OF MANAGEMENT		9	+	0
Org Org Org Pro Ind	ganizing ganizatior ganizatior cess of C ustrial Sa	 Nature and nal culture, Stand al Developme ontrolling – Co fety. 	d Process – Premises – Departmentalization – Line and staff – affing – selection and training – Placement – Performance appraisal ent. Leading – Managing human factor – Leadership – Communic ontrolling techniques, productivity and operations management – Preve	Dec – Ca ation ntive	centra areer , Cor contr	lizatio Strate ntrollin rol,	on – egy – ng –
UN		ORGANIZ	ATIONAL BEHAVIOUR		9	+	U
Def – E Con Sat	finition – nvironmentributing isfaction,	Organization – ental Effect – I factors – Dim Learning and	 Managerial Role and functions – Organizational approaches, Individua Behaviour and Performance, Perception – Organizational Implications. ension – Need Theories – Process Theories – Job Behaviour – Learning Curves, Work Design and approaches 	al beł Perso	naviou onalit	ır – ca y –	uses
UN	IT IV	GROUP D	YNAMICS		9	+	0
Gro con Lea Con info Cha	oup Beha nmunicat idership s nflict Res ormal – Cu ange – Cu	iviour – Grou ion – Effectiv tyles – Group olution – Inter Organizational ilture and Ethic	aps – Contributing factors – Group Norms, Communication – Pre e communication, leadership – formal and informal characteristics – Decision Making – Leadership Role in Group Decision, Group Conflict group relations and conflict, Organization centralization and decentral Structures – Organizational Change and Development – Change Pro cs.	ocess - Ma s – T izatio cess	s – 1 inager Ypes on – 1 – Res	Barrie rial G – Cau Forma sistanc	rs to rid – ses – 1 and ce to
UN	NIT V	MODERN	CONCEPTS		9	+	0
Ma dire Re- Ma	nagemen ection – S engineer nagemen	t by Objective SWOT Analysi ing (BPR) – E t (ABM).	s (MBO), Management by Exception (MBE), Strategic Management - s – Information technology in management – Decisions support system nterprises Resource Planning (ERP) – Supply Chain Management (SC	- Plai n – E M) –	nning Busine Acti	for F ess Provity B	uture ocess ased
			Total (I	L+T) =	45 H	ours
Co	urse Ou	tcomes:					

Upon	com	pletion of this course, the students will be able to:
CO1	:	Gain knowledge in Basics of the industrial management and the outline of industrial factors.
CO2	:	Gain knowledge on management functions and to apply it for different situations.
CO3	:	Develop their learning behaviour in an industrial set up.
CO4	:	Improve Personality skills, Major determination in profession in group behaviour.
CO5	:	Gain knowledge on modern concepts for better industrial management.
Text I	Book	is:
1.	Her Ltd	ald Knottz and Heinz Weihrich, "Essentials of Management", Tata McGraw Hill Education Pvt. ., 2010
2.	Step	phen P. Robbins, "Organization Behaviour", Pearson Education Inc., 13 edition, 2010.
Refer	ence	Books:
1.	Ties 199	s, AF, Stoner and R.Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd. New Delhi 110 011, 2.
2.	Jose	eph J, Massie, "Essentials of Management" Prentice Hall of India Pvt. Ltd. 1985.
3.	P.C	. Tripathi & P.N. Reddy, "Principles of Management", Tata McGraw Hill, 2006.
4.	Ra	vi M. Kishore, "Project Management", Tata McGraw Hill, New Delhi, 2007.
E-Ref	eren	ces:
1.	<u>http</u>	os://nptel.ac.in/courses/112107142/
2.	<u>http</u>	s://nptel.ac.in/courses/112107143/

CO/PO	PO	PO	РО	PO	PO	PSO	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	3
CO1	2	3	2	3	0	3	2	3	2	2	1	2	1	2	3	1
CO2	3	2	1	2	1	2	3	2	1	1	2	3	2	3	2	
CO3	1	3	1	1	3	1	1	1	0	0	3	1	3	1	1	1
CO4	0	1	3	1	2	0	0	0	2	2	0	2	0	0	0	
CO5	1	2	0	0	0	2	1	2	0	3	2	0	1	1	1	1
Total	1.4	2.2	1.4	1.4	1.2	1.6	1.4	1.6	1	1.6	1.6	1.6	1.4	1.4	1.4	0.4

	22M	T704	TOTAL QUALITY MANAGEMENT	L	Т	Р	С
				3	0	0	3
Сог	ırse	Objectives	::				
1.	To g Dem	vive the stud	ent an overview of quality and TQM and explaining the salient contributions and Crosby. General barriers in implementing TQM.	s of Q	uality	Guru	ıs like
2.	To r cont	nake studen inous proces	ts to understand the TQM concepts like customer Focus, Employee Focus as improvement and Supplier Management.	and th	neir ir	ivolve	ment,
3.	To Failu	provide exp ire mode eff	osure to students on the basic and new seven management tools, Quality co	oncept	ts like	e Six s	igma,
4.	To e	xplore indu	strial applications of Quality function deployment, Taguchi quality concepts a	and T	PM.		
UI	NIT I	I PRIN	CIPLES AND CONCEPTS OF QUALITY		9	+	0
Basi and	ics of Obje	Quality Ma ctives - Fun	anagement - Development of Quality Management Systems - Quality Plannictional planning deployment from Strategic plans - Measurements and Bench	ing - mark	Quali ing.	ty Pol	icies
UN	I TI	I QUAI	LITY AUDITS		9	+	0
Proc Qua Role	duct, d lity C e of C	Process and Costs Preven Quality Cont	System, Supplier Evaluation and Performance evaluation - Planning Quality ntion, Appraisal and Failure Costs - Quality Improvements - Corrective an rol – Calibration.	Audi d Pre	ts - Q eventiv	A plan ve act	ıs - ions -
UN	IT I	II CONO	CEPTS OF TQM		9	+	0
Bus 7 to Awa	iness ools, 1 ards a	Excellence Business Pr nd Case Stu	models (EFQM, Deming, Malcolm Balridge), TQM tools, Simple SQC tools occess Reengineering, Cost/Time diagram, Quality Function Deployment - idies - Six Sigma concepts	to FI Busi	MECA iness	A, Nev Excel	v lence
UN	IT I	V STAT	ISTICAL QUALITY CONTROL		9	+	0
Met Cun Cap	hods nulati abilit	and Philoso ve sum and y Analysis.	phy of statistical process control –Control Charts for Variables and Attributes Exponential - weighted moving average control charts- other SPC techniques	s – –Pro	cess		
UN	VIT V	V EMPI	LOYEE PARTICIPATION		9	+	0
Hist Beh prog	orica avior grams	l foundation al managem	of employee involvement programs classical and industrial engineering appr ent innovations, Quality circles Self managed teams- Implementing Employe	oache e Invo	es, SQ olvem	C, ent	
			Total	(L+'	Г) =	45 H	ours
Cou	ırse	Outcomes	:				
Upo	on co	mpletion o	f this course, the students will be able to:	_	_	_	
со	1	Students	s will be able to gain basic knowledge in total quality management relevant to ice industry including IT sector.	both	manu	ıfactuı	ing
CO	2	Students organiza	s will be able to implement the basic principles of TQM in manufacturing and ation.	servi	ce ba	sed	
со	3	The stud	lent would be able to apply the tools and techniques of quality management to	o man	ufactu	uring a	and

Upon c	om	pletion of this course, the students will be able to:
CO1	:	Students will be able to gain basic knowledge in total quality management relevant to both manufacturing and service industry including IT sector.
CO2		Students will be able to implement the basic principles of TQM in manufacturing and service based organization.
CO3	:	The student would be able to apply the tools and techniques of quality management to manufacturing and services processes

CO4	:	The students will be able to gain the knowledge on various ISO standards and quality systems								
Text I	Bool	s:								
1.	Jura	an, J.M. and Gryna, 'Quality Control Hand Book', 2nd Ed., 1999.								
2.	Evans R. J and Lindsay M. W, 'The Management and control of quality', 2nd Ed, 2011, Jaico Publishing house.									
Refere	ence	Books:								
1.	Jam Wes	es R. Evans and William M. Lindsay, "The Management and Control of Quality", 6th Edition, South- stern (Pg.Thomson Learning), 2005.								
2.	Jana Ltd	akiraman, B and Gopal, R.K, "Total Quality Management – Text and Cases", Prentice Hall (Pg.India) Pvt. 2006.								
3.	Path	ak, "Total Quality Management- Macmillan publishers India Ltd.								
4.	Sug	anthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (Pg.India) Pvt. Ltd., 2006.								
		E-References:								
1.	<u>http</u>	s://onlinecourses.nptel.ac.in/noc17_mg18/preview								
2.	<u>http</u>	s://onlinecourses.nptel.ac.in/noc18 mg04/preview_								

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	0	2	1	2	3	2	1	3	2	1	0	1	2	
CO2	2	1	1	1	0	3	0	3	3	2	1	2	1	2	3	
CO3	1	3	1	1	2	0	1	1	2	1	3	0	1	3	1	1
CO4	1	0	2	3	3	1	2	2	0	0	0	3	2	1	0	1
Total	1.75	1.5	1	1.75	1.5	1.5	1.5	2	1.5	1.5	1.5	1.5	1	1.75	1.5	0.5

22N	/IT705	MATERIALS CHARACTERIZATION AND COMPUTER APPLICATIONS LABORATORY	L	Т	Р	С
			0	0	3	1.5
Cour	se Object	ives:				
1.	To descri	be the various characterization methods and use of the tools.				
2.	To becon	ne familiar with computational technique on thermodynamic and kinetics related mathe	ematic	al bac	kgroun	d.
3.	Understa	nding the non-destructive testing principles and procedures for quality control.				
		EXPERIMENTS: Materials Characterization Laboratory				
1.	(a) Detern count in c	mination of average grain size and volume fraction of phases using image analysis,, (east iron using image analysis.	b) nod	ularity	and no	dule
2.	(a) Determ	nination of Structure Factor for BCC and FCC structure, (b) Indexing of XRD pattern	18.			
3.	(a) Estim mechanic	ation of precise lattice parameter of cubic crystals, (b) Determination of crystallite size ally alloyed power.	ze and	r.m.s.	strain f	or
4.	(a) Analy	sis of SEM & TEM images, (b) Interpretation of DSC curves.				
	I	EXPERIMENTS: Non-destructive Testing Laboratory				
1.	(a) Visua	l inspection, (b) Liquid penetrant inspection.				
2.	(a) Magn	etic particle inspection, (b) Eddy current inspection,				
3.	Identifica	tion of welding & casting defects in radiographs.				
4.	Ultrasoni	c testing, use of IIW blocks and Reference Blocks.				
		EXPERIMENTS: Computer Applications Laboratory				
1.	(a) Factor paramete	rial computation of a given number, (b) Determine Parametric approaches in creep da r.	ata, La	rson m	iller	
2.	(a) Solve of a slab.	and give Numerical solution for non-linear equations, (b) Determination of unsteady	state	heat fo	r low-c	ooling
3.	(a) Calcu through f	lation of adiabatic flame temperatures, at the tuyers of a coke fueled shaft furnace, (b urnace wall in transfer ladle,) Calc	ulation	of hea	t loss
4.	(a) Calcu of a react	lation of Enthalpy change using thermo-chemical data, (b) Determination of Enthalpy ion.	y and t	free en	ergy ch	ange
			Tota	l (P) =	= 45 H	Iours
E Ref	ference					
1.	https://ma	aterialsproject.org/				

Course	e O	Putcomes
After th	he s	successful completion of the practical session, the students will be able to
CO1	:	Determine the volume fraction of phases, nodule count and nodularity.
CO2	:	Illustrate indexing, and calculate the residual stress and lattice parameter using XRD pattern.22
CO3	:	Analyze various fractographic SEM and TEM images/ DSC thermal images.
CO4	:	Calculate the adiabatic flame temperatures of shaft furnace through programming and exhibit the results ingraphical representation.
CO5	:	Demonstrate the usage of various numerical solutions for non-linear equations.
CO6	:	Create the concept of enthalpy and free energy change of reaction and heat loss through furnace walls.
CO7	:	Understanding the principles, procedures and perform surface, subsurface and Internal structure NDT inspection.
CO8		Surface preparation and hands on experience on operating the testing equipment.

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
							-								-	
CO1	1	2	2	3	2	0	0	0	0	0	2	3	2	3	3	1
CO2	1	2	3	1	2	0	0	0	1	0	2	2	2	2	2	1
CO3	1	2	2	1	1	0	0	0	0	0	2	2	3	2	3	
CO4	1	2	2	1	2	1	0	0	1	0	1	2	2	2	3	
CO5	3	1	1	1	2	0	0	0	0	0	1	1	2	2	2	
CO6	1	1	1	1	1	0	0	0	0	0	0	1	1			1
CO7	1	1	1	1	1	0	0	0	0	0	0	1	1	1		1
CO8	1	1	1	1	1	0	0	0	0	0	0	1	1		1	1
1- Faint	ly,	2	- Mod	erately	/,	3-	Strong	gly								

22M	T7(6 MANUFACTURING PROCESSES LABORATORY	L	Т	Р	С
			0	0	3	1.5
Course	e Ol	jectives:				
1.	Τc	know and apply the concept of casting technology for green sand testing.				
2.	То	know and apply the concept of forming technology for various structural engineering app	olicati	ons.		
3.	To	know about the concepts of welding technology and apply them for the fabrication of cor	npone	ents.		
		EXPERIMENTS: Casting Laboratory				
1.	De	termine Average grain fineness number.				
2.	Co	nduct clay content, moisture content and mouldability of green sand.				
3.	De	termination of green hardness, compression and shear strength.				
4.	De	termine permeability and shatter index test of green sand.				
		EXPERIMENTS: Forming Laboratory				
1.	De	termine Tension Test - n and k value of rod/sheet.				
2.	De	termine Erichsen index and Cold rolling reduction percent of aluminium/brass sheets.				
3.	Ef	fect of Recrystallisation annealing temperature & time on cold worked alloys.				
4.	De	termination of Flow rate, Apparent and Tap densities of Powders.				
		EXPERIMENTS: Welding Laboratory				
1.	Pr	eparation of square butt joint and T-joint using Shielded Metal Arc Welding process.				
2.	Ef we	fect of welding parameters on weld bead characteristics (using Profile projector) and Micr Idments.	ostru	ctural o	bservat	ion of
3.	St	dy and demonstration of GTA welding, GMA welding and Solid state welding processes				
4.	Pr	actice for preparation of WPS and PQR.				
			Tota	al (P) =	= 4 5 H	lours
Course	e Oı	itcomes				
After th	he si	accessful completion of the practical session, the students will be able to				
CO1	:	Estimate the properties of the green sand.				
CO2		Evaluate the formability behaviour of different sheet/rod/wire/powder materials.				
CO3	:	Understand and prepare square butt joints for SMAW process and the effect of welding p bead by GTAW and GMAW processes.	oaram	eters of	n the wo	eld
CO4	:	Understand the microstructure and macrostructure analysis of weldment and prep	parat	ion of `	WPS/F	QR

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	0	0	2	2	0	0	0	0	0	1	2	3	2	2	1
CO2	1	1	1	2	1	0	0	0	0	0	2	1	3	3	3	
CO3	1	2	2	2	3	0	0	0	0	0	1	2	2	2	3	1
CO4	1	2	3	2	3	0	0	1	1	0	2	1	3	2	3	1
1- Faint	ly,	2	- Mod	erately	γ,	3-	Strong	gly	•		•	•	•			

		PROFESSIONAL ELECTIVES COURSES (PEC)				
22M7	ГЕ01	TRANSPORT PHENOMENA	L	Т	Р	С
		(Use of HMT data book is permitted in University Examinations)	3	0	0	3
Course	e Ob	ectives:		1		
1. pro	und ocesse enom	erstand basic concepts related to heat flow, fluid flow, mass transfer, in the con s; to become familiar with the mathematical treatment and equations related ena; to comprehend the science behind process modelling.	text to	of me above	etallur; e trans	gical sport
UNIT	ΓI	MOMENTUM TRANSFER – I		9	+	0
Properti Reynolo through	ies of d's ex circu	fluid – Dimensions and Units, Newton's law of viscosity, Types of fluids, Typ periment, Concept of pressure and its measurement, Steady state - Hagen-Poisulle ec lar pipe and flow over flat plate, Equation of Continuity, Concept of velocity boundary	es of luatio ry lay	flow n, La er.	, Clas minar	sical flow
UNIT	Π	MOMENTUM TRANSFER – II		9	+	0
Creeping measure flow thr	g flov ement ough	v past a sphere – Stoke's law, Navier-Stokes equation, Bernoulli's equation and its by Venturimeter, Orifice meter and Pitot tube. Major and Minor head losses in fluid packed bed of solids and fluidized beds, compressible flow and supersonic nozzles.	appl 1 flov	icatic v, Int	ons of roduct	flow ion -
UNIT	III	HEAT TRANSFER – I		9	+	0
heat con lumped flow ov	nduct capa er pla	ion in flat plates, cylinders, Composite walls – simple problems, Transient heat citance approach. Convection: Correlation for heat transfer with forced convection - tes (no derivations, simple problems only).	cond – flov	uction w thro	n syste ough p	em – ipes,
UNII	1	HEAT TRANSFER – II		9	+	U
convect	tion f	or heat transfer with natural convection – Heat transfer by natural convection from v	ertica	l plat	es, Na	A
emissiv surfaces	ermal ity, a s, radi	boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems.	at tran ack exc	nsfer body hange	coeffie radia e bety	tural cient tion, ween
emissiv surfaces	ermal ity, a s, radi	boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER	at tranack ack exc	nsfer body hange	coeffie radia betv	tural cient tion, ween
emissiv surfaces UNIT Concept applicat Unstead concent	ermal ity, a s, radi V t of r tions, ly sta ratio	ver horizontal plates (no derivation, simple problems only), Concept of overall her boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER mass diffusion, Factors affecting diffusivity in solids, liquids and gases. Fick's laws Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant te diffusion. Mass transfer by forced and free convection in laminar flow, Mass trans boundary layer. Dimensional Analysis- Rayleigh and Buckingham π method.	at tran ack exc s of c fluid.	nsfer body hange 9 liffus Intro coeff	coeffic radia betw + ion an oductio	0 d its and
emissiv surfaces UNIT Concep applicat Unstead concent	ermal ity, a s, radi V t of r tions, ly sta ratio	ver horizontal plates (no derivation, simple problems only), Concept of overall her boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER mass diffusion, Factors affecting diffusivity in solids, liquids and gases. Fick's law Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant te diffusion. Mass transfer by forced and free convection in laminar flow, Mass transfer boundary layer. Dimensional Analysis- Rayleigh and Buckingham π method. Total (at tranack ack ack ack ack ack ack ack ack ack	\mathbf{g} \mathbf{g}	coeffic radia betw + ion an oductic icients 45 Ho	0 d its on to and
emissiv surfaces UNIT Concep applicat Unstead concent	ermal ity, a s, radi V t of r tions, ly sta ration	wer horizontal plates (no derivation, simple problems only), Concept of overall her boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER mass diffusion, Factors affecting diffusivity in solids, liquids and gases. Fick's laws Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant te diffusion. Mass transfer by forced and free convection in laminar flow, Mass transfer boundary layer. Dimensional Analysis- Rayleigh and Buckingham π method. Total of the terms of terms of the terms of terms of the terms of ter	at tran ack a exc s of c fluid. nsfer	\mathbf{g} hange \mathbf{g} liffus intro coeff	coeffic radia betw + ion an oductic icients 45 He	0 d its on to and
emissiv surfaces UNIT Concep applicat Unstead concent Course Upon c	ermal ity, a s, radi V t of r tions, ly sta ration e Ou	ver horizontal plates (no derivation, simple problems only), Concept of overall her boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER hass diffusion, Factors affecting diffusivity in solids, liquids and gases. Fick's law Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant te diffusion. Mass transfer by forced and free convection in laminar flow, Mass trans boundary layer. Dimensional Analysis- Rayleigh and Buckingham π method. Total (total)	at trai ack exc s of c fluid. nsfer	\mathbf{g} hange \mathbf{g} liffus intro coeff	coeffic radia betw + ion an oductic icients 45 He	0 d its on to and
emissiv surfaces UNIT Concep applicat Unstead concent Course Upon c	ermal ity, a s, radi V t of r tions, ly sta ration e Ou comp	wer horizontal plates (no derivation, simple problems only), Concept of overall her boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER mass diffusion, Factors affecting diffusivity in solids, liquids and gases. Fick's laws Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant te diffusion. Mass transfer by forced and free convection in laminar flow, Mass tran- boundary layer. Dimensional Analysis- Rayleigh and Buckingham π method. Total of termes: Letion of this course, the students will be able to: Explain the mechanics of fluid and its basic properties and equation describing its mo	at trainack and the second sec	$\frac{1}{9}$	<pre>coeffic radia betw + ion an oductic icients 45 He opertic</pre>	0 d its on to and
emissiv surfaces UNIT Concep applicat Unstead concent Course Upon c CO1 CO2	ermal ity, a s, radi V t of r tions, dy sta ration e Ou comp	wer horizontal plates (no derivation, simple problems only), Concept of overall her boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER mass diffusion, Factors affecting diffusivity in solids, liquids and gases. Fick's law: Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant te diffusion. Mass transfer by forced and free convection in laminar flow, Mass tran- te diffusion. Mass transfer by forced and free convection in laminar flow, Mass tran- boundary layer. Dimensional Analysis- Rayleigh and Buckingham π method. Total (termes: letion of this course, the students will be able to: Explain the mechanics of fluid and its basic properties and equation describing its mo Describe the flow of fluids through plates and pipes.	at trait ack 1 exc s of c fluid. asfer (L+T	$rac{1}{2}$	<pre>coeffic radia betw + ion an oductic icients 45 He opertic</pre>	0 d its on to and
emissiv surfaces UNIT Concep applicat Unstead concent Course Upon c CO1 CO2 CO3	ermal ity, a s, radi V t of r tions, ly sta ration e Ou comp : :	wer horizontal plates (no derivation, simple problems only), Concept of overall her boundary layer, Solidification heat transfer. Radiation: Fundamental laws, bl bsorptivity, reflectivity, transmissivity, Kirchhoff's law, view factors, radiation ation exchange between black bodies – simple problems. MASS TRANSFER mass diffusion, Factors affecting diffusivity in solids, liquids and gases. Fick's law: Darken's law. Steady state unidirectional diffusion: diffusion through a stagnant te diffusion. Mass transfer by forced and free convection in laminar flow, Mass tran- boundary layer. Dimensional Analysis- Rayleigh and Buckingham π method. Total (total) total (total) Explain the mechanics of fluid and its basic properties and equation describing its mo- Describe the flow of fluids through plates and pipes. Juderstand and explain the modes and mechanism of heat conduction of a material	at trai ack 1 exc s of c fluid. asfer (L+T	r = 1	<pre>coeffic radia e betv + ion an oductic icients 45 He opertic</pre>	0 d its on to and

CO5	:	Explain the method of radiative heat transfer and also the means of transfer of materials mass by different methods
Text I	Book	s:
1.	Gas Nev	skell, D.R., An Introduction to Transport Phenomena in Materials Engineering, 2 nd Edition, Momentum Press, w Jersey, 2012.
2.	Gei Phi	ger, G.H., and D.R. Poirier, Transport Phenomena in Metallurgy, Addison-Wesley Publishing Company, Inc., lippines, 1973
Refer	ence	Books:
1.	Bar pub	Isal R K, A text book of fluid mechanics and hydraulic machines, Eleventh Edition, Laxmi lication (p) Ltd., New Delhi, 2019.
2.	Sac Pub	hdeva, R.C., Fundamentals of Engineering Heat and Mass Transfer, New Age International lishers, 2017.
3.	Bir Joh	d, R.B., W.E. Stewart, E.N. Lightfoot, and D.J. Klingenberg, Introductory Transport Phenomena, n Wiley & Comp. Sons, Inc., 2015
4.	The	emelis, N.J., Transport and Chemical Rate Phenomena, Gordon & amp; Breach Publishing Group, 1995.

E References:

1. https://archive.nptel.ac.in/courses/103/105/103105128/

CO/P	Р	Р	Р	P	Р	Р	P	Р	Р	Р	Р	Р	PSO	PSO2	PSO3	PSO
0	0	0	0	0	0	0	0	0	0	0	0	Ο	1			4
	1	2	3	4	5	6	7	8	9	10	11	12				
CO 1	2	0	0	3	1	0	1	0	0	0	1	1	2	0	1	
CO 2	3	1	1	3	1	0	2	0	0	0	1	1	1	0	1	
CO 3	2	1	1	2	2	0	2	0	0	0	0	1	1	2	1	1
CO 4	2	1	1	3	2	0	3	0	0	0	0	1	1	2	1	1
CO 5	3	2	2	3	1	0	3	0	0	0	0	1	3	2	1	
Total	2 .4	1	1	2.8	1.4	0	2. 2	0	0	0	0. 4	1	1.6	1.2	1	0.4
1- I	Faintly,	•	2- N	Modera	ately,	•	3- Str	ongly	•	•	•			-		•

22N	AT	L	Т	Р	C	
			3	0	0	3
Cours	se C	Dbjectives:				
1	Тс	b learn about various types of failures and their mechanisms				
UNI	ΤI	SOURCES OF FAILURES		9	+	0
Deficie identif Fractur	enci icati re C	es in Design, Material, Processing, Service and Maintenance. Stages of Failure A ion of Various Types of Fracture-Overview of fracture mechanics concept. Du Drigin, Initiators, characteristics of Ductile and Brittle Fracture.	nalysis, tile and	classif l Brittl	ication e Fra	i and cture,
UNIT	r II	FATIGUE AND CREEP FAILURE		9	+	0
Genera Life S Instabi Petrole	al Co ome litie cum	oncepts, fracture Characteristics Revealed by Microscopy, Factors Affecting Fatigu e Case Studies of Fatigue Failures. Creep, Stress Rupture, Elevated Temperatu es, Environmental Induced Failure, Elevated Temperature Effects on Certain Gas Refinery Components.	y re Fatig Turbine	gue, M Comp	etallur onents	gical and
UNIT	' II	I WEAR AND CORROSION FAILURES		9	+	0
Types Failure Corros Stress	of s-F ion Cor	Wear, Role of Friction in Wear, Lubricated and Non-Lubricated Wear, Analyzing actors Influencing Corrosion Failures, Analysis of Corrosion Failures, overvi- Stress Corrosion Cracking, Sources. Characteristics of Stress Corrosion Cracking rosion Cracking, various types of Hydrogen Damage Failures.	Wear l ew of Proced	Failure Variou ure for	S type Analy	osion es of zing
UNIT	' IV	FAILURE OF FORGING, CASTING AND WELDMENTS		9	+	0
Causes Deterio Interna Service	of or ation of D or ation of D or ation of D or D	Failure in Forging like material characteristics, Deficiencies in design, Improper i ion resulting from service conditions, Failure of Iron and Steel Castings, effect of biscontinuities, Microstructure, Improper Composition, Improper Heat Treatment, onditions. Failure of Weldments-Reasons for Failure procedure for Weld Failure Ar RELIABILITY	Processi f Surfac Stress (alysis.	ng, Fal e Disc Concen 9	orication ontinu tratior +	on or ities, and 0
Reliab and W Life Te	ility eibu estir	Concept and Hazard Function, Life Prediction, Condition Monitoring, Application Ill Distribution for Reliability, Bath Rub Curve, Parallel and Series system, Mean Tang.	of Poiss me Betv	son. Ex ween F	ponen ailures	tial and
			Total(I	L+T)=	45 H	ours
Cours	se C	Outcomes:				
Upon	con	npletion of this course, the students will be able to:				
CO1	:	Mention the different sources of failures and specify the deficiencies in design, ma and maintenance	terial, p	rocessi	ng, sei	vice
CO2	:	Discuss the fatigue and creep failures that take place under cyclic loading and high	temper	ature c	onditi	ons
CO3	:	Investigate the failures occurring due to wear and corrosion damages				
CO4	:	Discuss the failures occurring due to the process of forging, casting and at the well	d joints			
CO5	:	Describe the process of reliability and hazard function and the different systems				
Text I	300	ks:				

1.	Colangelo, V.J., and F.A. Heiser, Analysis of Metallurgical Failures, John Wiley and Sons Inc., New York, USA, 1974.
2.	Charlie R Brooks, Ashok Choudhury Metallurgical Failure Analysis, McGraW -Ilill Publishing Co. USA, 1993
Ref	erence Books:
1.	ASM Handbook, Vol. 10: Failure Analysis and Prevention, ASM Metals Park, Ohio, 1995
2.	Das, A.K., Metallurgy of 'Failure Analysis, Tata McGraw-Hill Publishing Co., New Delhi, 1996.

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	2	1	2	3	0	3	0	0	0	2	2	3	2	1	1
CO2	1	0	1	1	2	0	2	0	0	0	1	1	2	1	1	
CO3	2	0	1	1	0	0	2	0	0	0	1	1	2	3	1	
CO4	1	0	1	1	0	0	1	0	0	0	1	1	1	2	1	
CO5	2	0	2	1	1	0	1	0	0	0	1	1	1	1	1	1
Total	1.6	0.4	1.2	1.2	1.2	0	1.6	0	0	0	1.2	1.2	1.8	1.8	1	0.4
1- Fa	intly,		2- Mod	lerately	,	3- St	rongly									

		22MTE03	L	Т	Р	С	
				3	0	0	3
Course	e Ol	bjectives:		1	1	1	1
1. equals	lean atio	rn the basic principles and c ons and their applications; a ations	oncepts of kinetics, in the domain of metallurgy and mater and to appreciate that metallurgical kinetics is a knowled	rials; a lge ba	and to se wi) learn ith ab	about undant
UNIT	Ι	INTRODUCTION			9	+	0
Introduc metallur tempera activatio	tion gica ture	n: Role of kinetics, heteroge al kinetics, rate expression, 1 (Arrhenius Equation), Effe nergy.	neous and homogeneous kinetics, Role of heat and mass tr Effect of Temperature and concentration on reaction kineti ct of concentration (order of a reaction), significance and d	ansfer cs: eff leterm	in fect o inatio	f on of	
UNIT	II	KINETICS OF SOLI	D-FLUID REACTION		9	+	0
core mo through layer, de Correlat	del ext efini ions	, chemical reaction as rate ernal fluid film as rate cor ition and significance of hea s for heat and mass transfer	controlling step, Product layer diffusion as rate controll introlling step, heat transfer as the rate controlling step, C at and mass transfer coefficient, Theoretical model for mas coefficients.	ing st Concei ss tran	ep, M ntratio	Iass tr on bo coeffic	ansfer undary vients,
UNIT	III	KINETICS OF LIQU	ID-SOLID TRANSFORMATION		9	+	0
heteroge classific Diffusio UNIT	enec atio n - IV	nucleation kinetics, kin n, nucleation and growth pr driving force, classification, KINETICS OF SOLI	netics of growth, kinetics of alloy solidification. Solid occesses. Ficks laws and diffusion coefficients. D-STATE PHASE TRANSFORMATION	state	phas 9	e cha	nges -
Kinetics nucleati coarseni	of on, ng,	solid-state phase transforr interface growth velocity recrystallization, age harder	nation - scope and classification, kinetics of homogener, kinetics of special transformations (Widmanstatten, ning), kinetics of invariant and moving boundary transform	ous a massi nation,	nd he ve, p	eteroge oolyme	eneous orphic
UNIT	V	OVERALL TRANSF	ORMATION KINETICS		9	+	0
Kinetics model, l analysis	of cine	phase transition in polymers tics of non-random nucleati	s, glass, ceramics. Overall transformation kinetics - Johnso on, kinetics of diffusion controlled, isothermal and non-iso	on-Mel otherm	hl anc al kir	l Avra netic	mi s
			Total (L+	T)=4	5+0=	45 H	ours
Course	• O 1	utcomes:					
Upon co	omp	pletion of this course, the	students will be able to:				
CO1	:	Study about roles of kinem	atics, heat and mass transfer in metallurgy				
CO2	:	Formulate kinematics of so	lid-fluid-gas reaction				
CO3	:	Details about kinematics of	f solid-fluid transformation				
CO4		Knowledge about solid pha	ase transformation				
Text Bo	ook	s:					
1.	Ahi Ltd.	ndraGhosh and SudiptoGho , New Delhi, 2014	sh, A Text book of Metallurgical Kinetics, PHI learning Pv	/t.			

Refer	ence Books:
1.	F. Habashi, Kinetics of Metallurgical Processes, Métallurgie Extractive Québec, 1999
2.	Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO 1	2	1	1	2	2	0	1	0	1	1	2	1	3	2	1	1
CO 2	2	1	1	1	1	1	2	0	1	1	1	1	2	1	1	
CO 3	1	1	1	1	2	0	1	0	1	1	1	1	2	2	1	
CO 4	3	1	1	1	1	0	1	0	1	1	1	1	3	1	1	
Total	2	1	1	1.25	1.5	0.5	1.25	0	1	1	1.25	1	2.5	1.5	1	.2
1 Eai	ntly	/	$\frac{1}{2}$ Mod	arataly		3 St	rongly									

221	MTI	E 04	SOLIDIFICATION PROCESSING	L	Т	Р	С					
Course Objectives:												
1. T	o acc	quire ba	sics knowledge on solidification, heat transfer, dendritic growth, runner, riser ar	nd flui	d flov	N						
UNI	ΤI	PRI	NCIPLES OF SOLIDIFICATION		9	+	0					
Therm Scheil equilit	Thermodynamics of solidification: pure metal solidification i.e. G vs T curves for liquid and solid, alloy solidification. Scheil equation: Mathematical analysis of redistribution of solute during directional solidification Hierarchy of equilibrium, Local Interface equilibrium, Interface non-equilibrium.											
UNI	ΓII	TH	EORIES OF GRAIN GROWTH		9	+	0					
Micros Ivants Transp	Microsegregation, Constitutional undercooling, Theories of nucleation and growth: Mullins-Sekerka instability, Ivantsov's theory of dendritic growth. Macro scale Phenomena- Mathematics of diffusive transport, Macro mass Transport-solute diffusion controlled segregation, analysis of solute redistribution- Macro modelling of solidification.											
UNIT	r III	SOI	LIDIFICATION AND TYPES OF CASTING		9	+	0					
Multi growtl	phase 1, Str	e solidif ucture o	ication: regular and irregular eutectic solidification, Hunt-Jackson theory of eut of casting and ingots, Types of casting, Heat transfer design of riser and gating.	ectic g	growt	h, peri	tectic					
UNI	ΓIV	ME	LTING FURNACES AND KINETICS		9	+	0					
Solidit hetero Solid s	ficati gene state	on, hea ous and diffusiv	t transfer, fluid flow during fusion welding. Casting Defects. Melting furna homogeneous kinetics- Kinetics of solid-fluid reaction- e transformation- Mechanism of transformation.	ices.]	Role	of kir	etics,					
UNI	гν	ME	LTING AND SOLIDIFICATION OF ALLOYS		9	+	0					
Meltin	ig and	d solidif	ication of cast irons and aluminium. Solidification, heat transfer and fluid flow	durin	g fusi	on we	lding.					
~			Tota	l (L+	T) =	45 H	ours					
Cour	se O	utcom	es:									
Upon	com	pletion	of this course, the students will be able to:									
CO1	:	Expla	in the principles of solidification in metals and alloys									
CO2	:	Correl	late the morpho-genesis of solidification microstructures with the heat and mass	s trans	fer co	onditio	ns					
CO3	:	Descr	ibe the casting technique									
CO4	:	Design the gating and risering of castings										
CO5	:	Identif	Ty the melting furnaces for metals and alloys									
Text l	Book	KS:										
1.	Kui	z and F	isher: Solidification Processing, Trans Tech publications 1998.									
2.	2. R. W. Heine, C. R. Loper, P. C. Rosenthal: Principles of metal casting, McGraw Higher Ed 1976.											

Reference Books:								
1.	K. Easterling: Introduction to Physical metallurgy of welding, Butterworth-Hienemann 1992.							
2.	P. K. Jain: Principles of foundry technology, McGraw-Hill 1987							

CO/DO	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	PS	PS	PS	PSO
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	2	1	1	2	2	0	1	0	1	1	2	1	3	2	1	
CO 2	2	1	1	1	1	1	2	0	1	1	1	1	2	1	1	
CO 3	1	1	1	1	2	0	1	0	1	1	1	1	2	2	1	
CO 4	3	1	1	1	1	0	1	0	1	1	1	1	3	1	1	1
CO 5	2	1	1	2	2	0	1	0	1	1	2	1	3	2	1	1
Total	2	1	1	1.4	1.6	0.2	1.2	0	1	1	1.4	1	2.6	1.6	1	0.4
1- Faintly,		2- N	Iodera	tely,		3- Stro	ngly	•	•	•	•		•	•	•	•
22	MTI	05 FRACTURE MI	ECHANICS	L	Т	P	С									
-------------------------------------	---	---	--	-------------------------	---------------------------	----------------------------	-----------------------	--	--	--	--	--	--			
				3	0	0	3									
Cour	se Ol	jectives:														
1. 7	Fo gai ractui	n the knowledge of fracture mechanics and knowi e mechanics	ng the experimental measurements an	ıd app	olicati	ons o	f									
Un	it I	TYPES OF FRACTURE			9	+	0									
Ductil tempe multi- diagra	e and rature axial m.	brittle fracture, features of fracture surface for a approach: Notched bar impact tests. Ductile to loading, limitations of charpy testing. Drop-we	ductile, brittle and mixed modes, fra brittle transition, influence of temper eight test and other large scale tests	ctogr ature s – f	aphy , strai ractui	Trans in rate re ana	ition and lysis									
Uni	Unit II FRACTURE MECHANICS APPROACH															
Stress	distr tions	butions around discontinuities, stress analysis stress intensity factor and fracture toughness	in simple cracked bodies, plane str	ain a	nd p	lane s	tress									
Uni	t III	YIELDING FRACTURE MECHANICS	6		9	+	0									
Conce displa	pt of	crack opening displacement, calculation of CO t diagram. The relationship between J and COD	DD. The J contour integral- derivat	ion c	of J f	rom 1	oad –									
Uni	t IV	EXPERIMENTAL MEASUREMENT C	OF FRACTURE TOUGHNESS		9	+	0									
K _{IC} te from t	sting he tes	- test piece requirements and types, fatigue pre-c data. Measurement of J integral and R curve.	racking, determination of COD, estin	natio	n of c	ritical	COD									
Uni	it V	APPLICATIONS OF FRACTURE MED	CHANICS		9	+	0									
Conce	epts of	tolerable defects, use of fracture mechanics in de	sign and material selection.	•			•									
				To	tal =	45 H	ours									
Cour	se O	tcomes:														
Upon	com	oletion of this course, the students will be able	e to:													
CO1	:	Understand the concept of DBTT and vario	us mechanical tests of materials													
CO2	:	Analyze the crack, discontinuities and stress	s intensity factor													
CO3	:	Know the concept of COD, J and displacem	ent diagram													
CO4	:	Use of fracture mechanics in design and sele	ection of various materials													
Refe	ence	Books:														
1.	Dav	id Broek, Elementary Engineering Fracture Mech	anics, SujthoffNoordhoof, 1978													
2.	Her	zberg R.W. Deformation and Fracture Mechanics	s of Engineering Materials, 3 rd edition	, Johi	n Wil	ey										
3.	3. Rolfe T., Bassom J., Fracture and Fatigue Control of Structures – Applications of Fracture Mechanics, Prentice Hall, 1977															

4.	Tetelmen A.S. and McEvily. A.J. Fracture of Structural Materials. John Wiley & Sons, 1967
5.	Gurney T.R., Fatigue of Welded Structures, Cambridge University Press, 1979

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	1	3	2	1	0	1	1	0	3	2	1	3	2	2	
CO2	1	1	3	3	2	0	2	0	0	2	1	2	3	2	2	
CO3	3	2	2	1	2	0	0	0	0	3	2	1	2	2	1	
CO4	2	3	3	2	3	0	2	2	1	1	3	2	3	3	2	1
Avg.	2	1.75	2.75	2	0	0	1.25	0.75	0.25	2.25	2	1.5	2.75	2.25	1.75	0.2

22	2MT	'E06	COMPOSITE MATERIALS	L	Т	Р	C					
-				3	0	0	3					
Course	e Ob	jectives:										
1. To	kno	w manufact	ure of different type of Composite materials and develop for specific engin	neerin	g app	licatio	ns					
UNIT	ľ	INTROI	DUCTION TO COMPOSITES		9	+	0					
Fundam Polyme Reinfor compos	nenta r ma ceme ites.	ls of compo atrix comp ent – partic Fiber produ	sites - need for composites – enhancement of properties - classification of osites (PMC), Metal matrix composites (MMC), Ceramic matrix celle reinforced composites, Fibre reinforced composites. Applications ction techniques for glass, carbon and ceramic fibers	comp compo of v	oosites osites arious	s – Ma (CM s type	utrix- C) – s of					
UNIT IIPOLYMER MATRIX COMPOSITES9+												
woven random mats – various types of fibres. PMC processes - hand layup processes – spray up processes – compression moulding – reinforced reaction injection moulding - resin transfer moulding – Pultrusion – Filament winding – Injection moulding. Fibre reinforced plastics (FRP), Glass Fibre Reinforced Plastics (GFRP). Laminates-different typesapplications of PMC in aerospace, automotive industries.												
UNIT	III	METAL	MATRIX COMPOSITES		9	+	0					
MMC, I MMC - infiltrati automot UNIT Enginee matrix - nitride - and HII carbon perform	Characteristics of MMC, various types of metal matrix composites alloy vs. MMC, advantages of MMC, limitations of MMC, Reinforcements – particles – fibres. Effect of reinforcement – volume Fraction – rule of mixtures. Processing of MMC – powder metallurgy process - diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface measurement of interface properties- applications of MMC in aerospace, automotive industries. UNIT IV CERAMIC MATRIX COMPOSITES AND SPECIAL COMPOSITES 9 + 0 Engineering ceramic materials – properties – advantages – limitations – monolithic ceramics -need for CMC – ceramic matrix - various types of ceramic matrix composites- oxide ceramics – non oxide ceramics – aluminium oxide – silicon nitride – reinforcements – particles- fibres whiskers. Sintering - Hot pressing – Cold and Hot Iso-static pressing (CIP and HIP). Applications of CMC in aerospace, automotive industries- Carbon /carbon composites – advantages of carbon matrix – limitations of carbon matrix carbon fibre – chemical vanour densition of carbon on carbon fibre											
	v	MECHA	NICS OF COMPOSITES		Q	+	0					
UNIT VMECHANICS OF COMPOSITES9+0Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. GeneralizedHooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations.Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.												
				/+1):	- 43	1100	13					
Course	e Ou	tcomes:										
Upon co	ompl	etion of this	course, the students will be able to:									
CO1	:	Classify the	composites and know their properties.									
CO2	:	Understand	the details about the processing of polymer matrix composites and their a	pplica	tions.							

CO3	:	Characterize the metal matrix composite, its processing and applications.												
CO4	:	Understand the concept of ceramic matrix composite and some special composites.												
CO5	:	Formulate the mechanics of composite and determine the lamina stresses within laminates.												
Text H	Book	ooks:												
1.	Mathews F. L. and Rawlings R. D., Composite Materials: Engineering and Science, Chapman and Hall, London, England, 1st edition, 1994.													
2.	Cha	wla K. K., Composite materials, Springer – Verlag, Second Edition, 2006.												
Refere	ence	Books:												
1.	Cly	ne, T. W. and Withers, P. J., Introduction to Metal Matrix Composites, Cambridge University Press, 1993.												
2.	Stro	trong, A.B., Fundamentals of Composite Manufacturing, SME, 1989.												
3.	Ma	llick P.K, Fibre-Reinforced Composites; materials, Manufacturing & Design, Third edition, CRC Press, 2007.												

CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO 1	1	1	1	0	1	0	1	1	1	0	1	2	1	3	1	
CO 2	2	1	2	3	2	0	1	0	0	0	1	3	2	3	3	
CO 3	3	2	2	3	3	1	2	0	0	0	0	1	2	2	3	
CO 4	2	3	2	2	1	3	2	1	1	0	1	2	3	2	3	1
CO 5	3	2	3	2	3	1	2	1	0	0	3	3	3	3	2	1
Total	2.1	1.8	2	2	2	1	1.6	0.6	0.4	0	1.2	2.1	2.1	2.6	2.5	0.4
1- Fa	aintly,	1	2- Mc	derate	у,	3-	Strong	ly				1	1		1	1

22MTI	E 07	CERAMIC MATERIALS	L T P										
			3	0	0	3							
Course	e 0	jectives:	1										
1. To	stu	y about preparation, properties and applications of ceramic materials											
UNI	ΤI	INTRODUCTION		9	+	0							
Review Ceramic example	of t cs, C es. C	onding types in ceramics – calculation of percentage ionic character. Types of eramic crystal structures: Sodium chloride, cesium chloride, alumina, spinel and fluc o-ordination number and ionic radius ratio - Pauling's R	orite s	tructu	ires -								
UNIT	ΓH	PROPERTIES AND APPLICATIONS OF ENGINEERING CERAMICS		9	+	0							
properti insulatir structure function	es a ng I e - ns: F	and applications. Ceramics for electrical and insulating functions - Barium Titanate and orcelains - properties and applications. Ceramics for magnetic functions - Norma Zinc, Nickel, Manganese and Iron ferrites - structure properties and applications Ceramics - Desirable characteristics - applications - Ceramics for nuclear application	1d its 1l and Ceram 1s.	modia inve ics fc	ficatio rse sp or ther	ns - inel mal							
		PREPARATION AND FORMING OF CERAMICS		9	+								
slurry ca and Col	tion astii d Is	of Alumina, Zirconia, Silicon carbide, Silicon Nitrides, Boron Nitride, Brief desci g - applications. Powder processing equipment and rocess details of hot pressing, Hot static Pressing. Liquid Phase sintering. shock wave compaction, reaction sintering, co	t Isost t Sost	n of s atic P	lip an ressin	d g							
UNIT IV GLASSES													
heat flo enamels Pilkingt	wa wa onj	ad precipitation from glasses – growth controlled by diffusion of solutes – crystallin photosensitive and photo chromic glasses; Blowing, pressing, drawing, rolling and process for float glass.	d cast	sses - ting -									
UNI	ΓV	PROPERTY EVALUATION		9	+	0							
Rupture expansio Ceramic	str on, cs.	ngth; fracture Toughness, Elastic Constants, Hardness, Creep, Thermal Property C Electronic Property, Measurement of electro-optic properties Weibull Statistics of S	Coeffic trengt	cient th Da	of the ta for	rmal Fine							
		Total	l (L+'	T) =	45 H	ours							
Course	e O 1	ation of this source, the students will be able to:											
Opon ee	, I	enon of uns course, the students will be able to.											
CO1	:	Know the structure and properties of different ceramic materials.											
CO2	:	Understand the phase diagrams and comprehend the phase transformations in ceramic	: mate	erials.									
CO3	:	Understand the testing methods for evaluating the mechanical properties of ceramic n	nateria	als									
CO4	:	Select ceramic materials and to develop new ceramics for different engineering applied	cation	s.									
CO5 : Understand and design the electrical, magnetic and optical properties of ceramic													
Text B	ook	:											

1.	Michael Barsoum, Fundamentals of Ceramics, McGraw Hill Publishing Co. Inc, 1997.
2.	Kingery, W D, Introduction to Ceramics, John Wiley, USA, 1960
Refere	ence Books:
1.	William F.Smith, Foundations of Materials Science and Engineering, Second Edition, McGraw-Hill Inc, New York, 1993.
2.	VanVlack K H, Physical Ceramics for Engineers, Addison Wesley, 1964.

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO 1	2	2	1	1	0	0	2	1	0	0	3	2	1	0	1	
CO 2	3	3	3	2	0	0	1	1	1	0	2	3	3	2	1	
CO 3	3	3	3	2	3	2	2	1	1	0	2	3	3	2	1	
CO 4	3	3	3	2	3	2	3	1	1	0	2	2	3	3	1	
CO 5	3	3	3	2	3	3	3	1	1	0	3	2	3	3	1	1
Total	2.8	2.8	2.6	2	1.8	1.2	2.2	1	0.8	0	2.4	2.4	2.6	2	1	0.2
1- Faintly, 2- Moderately, 3- Strongly										1						

22M7	reos	8	METALLURGY OF TOOL STEELS	L	Т	Р	С					
				3	0	0	3					
Cours	se O	bjectiv	/es:									
1. T	o ga iffer	in under ent tool	standing of heat treatment of tool components based on geometry and understar steel and in the materials	nd the	meta	llurgy	of					
UNI	ΤI	FUI	NDAMENTALS OF HEAT TREATMENT AND TOOL STEELS		9	+	0					
Classi	ficati	ion of T	Cool steels-AISI system-composition of tool steels-Effect of alloying elements	on Fe	-C sy	stem,	TTT					
diagra	ms, l	Formati	on of complex carbides, austenite formation, Hardenability and Tempering Effe	ct of s	specif	ic allo	ying					
elemei	nts.	Heat T	reatment of Tool steels: their characteristics and selection Distortion in too	ol stee	els du	iring	heat					
HEAT TREATMENT AND METALLURGY OF W S O A & D TVPE												
UNI	UNIT II HEAT TREATMENT AND METALLURGY OF W, S, O, A & D TYPE											
		TO	OL STEELS		-	•						
Water	harc	lening t	ool steels, shock resistance tool steels, cold work tool steels-oil hardening, m	edium	i allog	y and	high					
carbon	n-hig	h $Cr(O)$	A&D types): Constitution, classification of principal types, heat treatment p	rocess	, har	denab	ility,					
distort	10n c	characte	ristics, properties and application.			1	1					
UNIT	r III	HE.	AT TREATMENT AND METALLURGY OF H, T, M, SPECIAL RPOSE TOOL STEELS		9	+	0					
Hot we	ork t	ool stee	ls, high speed tool steels, maraging tool steels, special purpose tool steels: con	stituti	on, c	lassifi	cation					
of prin	cipal	types,	heat treatment process, specific requirements and applications.		,							
UNI	r IV	AD	VANCED TOOL MATERIALS		9	+	0					
Sintere	ed tu	ngsten o	carbide tools-ISO classification-Uses of P, M and K grades-cermet-ceramics, mi	xed a	nd rei	nforce	ed .					
grades	-cub	ic boroi	n nitride-poly crystalline diamond-Manufacturing techniques-properties.			-						
UNI	ГV	SUI	RFACE TREATMENTS AND COATINGS		9	+	0					
Sulphi	disir	ng of too	ol steels - Ti N coating by PVD - coating of carbide tools - mono and multi lay	er co	atings	s of Ti	C, Ti					
N, Alu	imin	a and D	LC by PVD and CVD processes - selection of tool materials									
			Total	(L+']	Γ) = 4	45 H	ours					
Cours	se O	utcom	es:									
Upon	com	pletion	n of this course, the students will be able to:									
CO1	:	Class ESR	ify the tool materials according to AISI systems and discuss the refining method	ls like	VAR	2,						
CO2	:	Discu	ss the heat treatment methods adopted for tool steels									
CO3	:	Descr	ibe properties and the testing methods that are adopted for tool steels									
Text I	Bool	ks:										
1.	Ro	bert Wil	son, -Metallurgy and Heat Treatment of Tool Steels∥, McGraw-Hill, New York,	, 1975	•							
2.	Pay	/son, —	Metallurgy of Tool Steels", John Wiley and sons, New York, 1962.									
	1											

Refer	Reference Books:											
1.	Davis.J.R. —ASM Speciality Handbook-Tool Materials", American Society of Metals, Metals Park, Ohio, USA, 1995.											
2.	George Roberts, George Krauss and Richard Kennedy, -Tool Steels", ASM International, 1998, Metals Park, Ohio, USA, 1998											
3.	Roberts, Haymaker and Johnson, -Tool Steels ^I , 3 rd edition, ASM, 1962.											

п

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	0	1	2	2	3	1	3	1	2	1	2	2	2	1	1	
CO 2	0	1	2	1	2	2	1	0	0	0	1	1	1	2	1	
CO 3	2	1	1	1	2	0	1	0	1	0	1	1	1	2	1	1
Total	0.66	1	1.6	1.3	2.3	1	1.6	0.33	1	0.33	1.3	1.3	1.3	1.6	1	0.33
1-	Faintly	,	2- M	oderate	ly,	3- 5	Strongl	у								

22MTF	E09	BIO AND SMART MATERIALS	L	Т	Р	C						
			3	0	0	3						
Course	e Obj	jectives:										
1. To	stud	y about Bio and shape memory material, dental materials										
UNIT	Ι	INTRODUCTION		9	+	0						
Smart 1 compatil swelling inflamm	mater ble m and atory	rials–Functional materials–Poly functional materials–Structural materials, Ele naterials–Intelligent biological materials–Biomimetics–Wolff's Law– Biocompatib l leaching, corrosion and dissolution, deformation and failure, friction and w process–coagulation and hemolysis–in vitro and in vivo evaluation of biomaterial	ectrical ility–N vear–ho s.	mate Aateria ost res	erials, al resp sponse	bio- onse: : the						
UNIT	UNIT II ELECTRO-RHEOLOGICAL AND PIEZOELECTRIC MATERIALS											
The principal ingredients of smart materials-microsensors-hybrid smart materials-an algorithm for synthesizing smart materials-active, passive reactive actuator based smart structures suspensions and electro-rheological fluids-fluid actuators- design parameter-application of Electo-rheological fluids-Basics, Principles and instrumentation and application of Magnetorheological fluids-Piezoelectric materials: polymers and ceramics, mechanism, properties and application. Introduction to electro-restrictive and magneto-restrictive materials												
UNIT	III	SHAPE MEMORY MATERIALS		9	+	0						
SMA–ap chemica to applic mouldin	pplica l plai catioi <u>g–tyj</u>	ations of SMA–continuum applications of SMA fasteners–SMA fibers–reaction nt, etc.–SMA memorization process (Satellite Antenna Applications) SMA bloo ns of SMA–Shape memory polymers–mechanism of shape memory-Primary mo pes and applications.	vessels d clot : ulding-	s, nucl filter— –secor	lear re Imped Idary	actors, iments						
UNIT	IV	ORTHOPAEDIC AND DENTAL MATERIALS		9	+	0						
Bone an devices- material tissue en	d teer -joint s–Ma nginee	th composition, formation and properties-bioresorbable, bioinert, bioactive materia t replacement-biomaterials used in bone and joint replacement metals and alloys-F aterials for oral and maxillofacial surgery-dental cements and dental amalgams-den ering.	ils-tem illings ntal adl	porary and re nesive	v fixati storati s-bone	on ion						
UNIT	v	BIO MATERIALS FOR CARDIOVASCULAR OPTHALMOLOGY SKIN REGENERATION	AND	9	+	0						
Blood cl and val devices. grafts-co	lottin ves–§ The onnec	g-blood theology-approaches to thrombo resistance materials development-blood geometry of blood circulation-cardiac pacemakers-blood substitutes-extracor lungs-vascular implants: vascular graft, cardiac valve prostheses, card-Biomateria ctive tissue grafts- tissue adhesives- drug delivery methods and materials.	l vesse poreal ls in oj	ls—The blood phthali	e hear 1 circ molog	t–aorta ulation y-skin						
		Tot	al (L+	- T) =	45 H	ours						
Course	Out	tcomes:										
Upon co	mple	etion of this course, the students will be able to:										
CO1	: 1	Use of Bio materials for cardiovascular Opthalmology and Skin Regeneration										
CO2	: 1	Use of Bio materials for Dental & Bone application										
CO3	: [Use of shape memory alloys in engineering application										
CO4	: I	Explain the characteristics of Bio and smart materials										

CO5	: Use of smart materials as sensors, actuators.													
Text Books:														
1.	Sujata V., Bhat., Biomaterials, Narosa Publication House, New Delhi, 2002													
2.	 M. V. Gandhi and B. S. Thompson, Smart Materials and Structures, Chapman and Hall, London, First Edition, 1992 													
Refere	ence Books:													
1.	Duerig, T. W., Melton, K. N, Stockel, D. and Wayman, C.M., Engineering aspects of Shape memory Alloys, Butterworth – Heine													
2.	Rogers, C. A., Smart Materials, Structures and Mathematical issues, Technomic Publishing Co., U.S.A, 1989.													
3.	Mohsen Shahinpoor and Hans-Jo [¬] rg Schneider Intelligent Materials, RSC Publishing,2008													
4.	Mel Schwartz (Ed), Encyclopaedia of Smart Materials Volume –I and II, John Wiley & Sons, Inc.2002													

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	0	1	2	2	3	1	3	1	2	1	2	2	2	1	1	
CO2	0	1	2	1	2	2	1	0	0	0	1	1	1	2	1	
CO3	2	1	1	1	2	0	1	0	1	0	1	1	1	1	1	
CO4	0	0	0	1	1	0	2	0	0	1	1	2	3	1	1	1
CO5	1	1	1	1	2	0	1	0	0	0	1	1	1	1	2	1
Total	0.75	1	1.25	1.5	2.5	0.75	2	0.25	0.75	0.5	1.5	1.75	2	1.5	1.5	0.4
1- Faintly	1- Faintly, 2- Moderately, 3- Strongly															

22MT	E1	O CONTINUOUS CASTING OF STEEL	L	Т	Р	C							
			3	0	0	3							
Course	e O I	ojectives:											
1. To the	dev m f	relop an understanding of the basic principles of continuous casting, impart model or industrial problems to enable them to solve the problems encountered in the steel in	ling sl dustri	cills a es.	nd to	apply							
UNIT	'I	INTRODUCTION		09	+	0							
Advanta	iges	- design of casters, metallurgical comparison of continuous casting with ingot casting				1							
UNIT		09	+	0									
Heat tra	nsfe zon	er and solidification in continuous casting – heat transfer in mould- mould flux and he	at tran	sfer i	n seco	ndary							
UNIT	III	TUNDISH DESIGN AND PRACTICE		09	+	0							
Modern electron Vortex free teer	Modern Tundish practice for clean steel production. Tundish design and operation-mould and its operation electromagnetic stirring use of sub merged entry nozzle (SEN) and water model study for funnel formation. Vortex vs the drum funnels through rotational flow. Their characteristics and use of vortex buster to allow beller sla free teeming												
UNIT IVDEFECTS IN CONTINUOUS CASTING09													
Metallur marks.	rgic	al defects and their remedies. Centre line micro segregation and porosity -cracks oth	er def	ects –	Oscil	lation							
UNIT	V	ROLE OF INCLUSIONS AND RECENT DEVELOPMENTS		09	+	0							
Inclusio inclusio combina producti	n d n fo ation	istribution in cast products – inclusion modification. Application of Thermodynar prmation. Deoxidation reaction. Modelling for inclusion prediction. Thin slab ca in casts. High speed casting –breakouts and mould powder entrapments –Near net sl of carbon steels and stainless steels and their characteristics. Recent studies on thin str	nics to sting, nape ca ip cast	deor Rour asting ing.	xidatio d cas s. Thi	on and ts and n strip							
		Tota	l (L+'	Γ) =	45 H	ours							
Course	e Oi	itcomes:											
Upon co	omp	letion of this course, the students will be able to:											
CO1	:	Design a continuous casting machine which has a wide advantage over ingot casting											
CO2	:	Gain knowledge about transfer of heat in continuous casting machine											
CO3	:	Design a proper metallurgical tundish for proper transferring of heat from ladle to the continuous caster and the use of Electromagnetic stirrer											
CO4	:	Provide remedies for the common defects that are formed during the continuous casting of steel											
CO5	:	Describe the role of inclusion in the steel, the modification of inclusion to derive at the properties	ne requ	ired i	necha	nical							

Text H	Books:
1.	Ahindra Ghosh Principles of Secondary Processing and Casting of liquid steel, , Oxford & IBA Publishers, 1990
2.	David H Wekelin,, The Making, Shaping and Treating of Steel, AISE Steel Foundation, 1999
Refer	ence Books:
1.	Chatterjee A and Govindarajan S, Monograph on Continuous Casting at TATA Steel, Jamshedpur, 1991.
2.	Brimacombe J K and Samarasekara (Eds)., Continuous Casting Vol.2, The Iron and Steel Institute, USA,1984.
3.	Ahindra Ghosh and Amit Chatterjee, Iron Making and Steel Making – Theory and Practice, Prentice Hall of India Private Ltd., New Delhi 2008.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO
																4
CO1	1	2	3	1	2	0	1	0	0	0	0	2	1	1	1	
CO 2	3	1	3	3	1	0	0	0	1	0	1	1	2	2	3	
CO 3	3	3	3	2	1	1	1	1	1	0	1	2	3	2	3	
CO 4	2	3	2	3	2	2	3	2	1	0	1	2	2	3	2	1
CO 5	1	2	2	2	2	1	2	1	0	0	2	2	2	3	2	1
Total	2	2.2	2.6	2.2	1.6	0.8	1.4	0.8	0.6	0	1	1.8	2	2.2	2.2	.4
1- F	Faintly,		2- M	Ioderat	ely,	3	- Stron	gly								

22MTI	E11	FERROUS AND NON-FERROUS ALLOYS	L	Т	Р	С						
			3	0	0	3						
Course Ob	jectives:					•						
1. To stud	y the fund	amentals, properties and applications of Ferrous and Non Ferrous systems.										
UNIT I	ALLO	Y STEELS		9	+	0						
Introduction: Modern melting processes for making special steels; the effect of alloying elements on Steel. Maraging steels, HSLA, micro alloyed steels, silicon steels, CRGO (Cold Rolled Grain Oriented Sheet) steels and high manganese steels: structure, property, heat treatment and applications. Steels for special applications: Armour steel, steels for high temperature applications–High carbon steels, Ultra high strength steels, creep resistant steels.												
UNIT II STAINLESS STEELS 9												
Types of stainless steels; ferritic, martensitic, austenitic, precipitation hardening, duplex, heat resisting, their properties, structure and applications; nickel free stainless steels high nitrogen stainless steels – their manufacture, structure, properties and applications. Sensitisation and the remedial measures for austenitic stainless steel.												
UNIT III	COPPI	ER ALLOYS		9	+	0						
phosphor br applications: of Copper A UNIT IV Aluminium treatable and Magnesium classification Alpha stabil mechanical	Properties and applications of copper, influence of alloying elements, Brasses: Cu-Zn alloys. Bronzes: Tin bronze, phosphor bronze, Al bronze, Be bronze- compositions, properties and uses; copper-nickel alloys, properties and applications; strengthening of copper alloys by mechanical alloying, OFHC copper and its applications. Heat Treatment of Copper Alloys. UNIT IV LIGHT METALS AND ALLOYS 9 + 0 Aluminium - Properties and uses of aluminium. Alloys of aluminium, Classification, Wrought and Cast alloys, Heat treatable and Non, heat treatable, Age hardening. Overaging –Al-Li alloys, super plastic forming of Al alloys. Magnesium - properties and uses of Magnesium alloys, influence of alloying elements – Al, Mn, Zn, Si, Ag, Th, Zr; classification – cast alloys and wrought alloys Titanium -Unique characteristics of the metal, Alloying elements – Alpha stabilisers; beta stabilisers. α , α - β and β Titanium alloys - major types, structure property correlations; thermo -											
properties ar	nd uses.											
UNIT V	NICKI	EL AND OTHER ALLOYS		9	+	0						
Properties of nickel and uses of nickel, Nickel base super alloys composition; solid solution alloys, precipitation hardenable alloys, ODS alloys - heat treatment, properties and applications; Nickel-iron base alloys - heat treatment, properties and applications; Ni base soft magnetic alloys, Ni base heating element alloys; Ni base controlled expansion alloys; nickel base DS alloys and single crystals. Nickel in special alloys and magnetic materials, Nickel aluminides. Zinc alloys, properties and uses, Die casting qualities. Use of zinc in corrosion protection of ferrous materials. Lead, Tin alloys. Major characteristics and applications, low melting nature solder alloys. Total (L+T) = (45+0) 45 Hours Course Outcomes:												
Upon compl	etion of th	is course, the students will be able to:										

C01	:	Describe the different types of alloy steels.										
CO2	:	Discuss the types of stainless steels, properties and their applications.										
CO3	:	Discuss and describe the properties and applications of copper alloys.										
CO4	:	Understand the light weight division of aluminium alloys, Magnesium and Titanium alloys.										
CO5	:	Explain the importance and applications of Nickel, Lead, zinc and tin alloys										
Text B	Text Books:											
1.	. William F Smith, Structure and Properties of Engineering Alloys, McGraw Hill India, 1993.											
2.	P.C Lea	Angelo, B.Ravisankar, —Non-Ferrous Alloys: Structure, Properties and Engineering applications, Cengage rning India Pvt. Ltd., New Delhi, 2017.										
3.	Bric 199	ck, Gordon and Pense, Structure and Properties of Engineering Materials, McGraw Hill Book Co., New York, 2.										
Refere	nce	Books:										
1.	K.C Del	Budinski and M.K.Budinski, Engineering Materials- Properties and Selection, PHI Learning Pvt Ltd, New hi, 2010.										
2.	Cla	k and Varney, Physical Metallurgy for Engineers, Affiliated east West press, New York, 1987.										
3.	Bal	ram Gupta, Aerospace Materials, Vol.1,2 and 3, S.Chand & Co., New Delhi, 1996.										
E-Refe	ren	ces:										
1.	ww	w.nptel.ac.in/courses/113105021/										

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSo2	PSO	PSO
0															3	4
CO1	1	1	0	1	0	0	0	1	0	0	1	1	2	2	2	
CO2	2	1	2	0	1	0	2	2	0	0	2	1	1	2	1	
CO3	1	2	1	2	2	0	1	1	1	1	3	1	2	3	1	1
CO4	0	1	2	0	3	2	0	0	2	1	1	2	2	2	3	1
C05	2	2	1	3	0	3	2	1	3	1	0	3	3	1	1	
Total	1.2	1.4	1.2	1	1.2	1	1	1	1.2	0.6	1.4	1.6	2	2	1.6	0.4

	22M'	ГЕ12	SPECIAL CASTING TECHNOLOGY	L	Т	Р	С							
				3	0	0	3							
Cou	rse C	bjectives												
1.	kr sh	nowledge on ape and des	using economical design to give better quality castings to develop comp ign by properly selecting the moulding and casting techniques	onent	s of i	ntrica	te							
UN	IT I	SHEL	L MOULDING		9	+	0							
Vario used Mou	ous Sp for S lding.	becial Castin Shell Mould	ng Techniques-Shell Moulding Machines, Pattern Equipment, Sands, Resir ling, application of Shell Moulding, advantages of Shell Moulding ov	ns and er oth	othen ner N	Mate Iethod	rials s of							
UN		9	+	0										
Types of Centrifugal Casting Processes-calculation of Mould Rotary Speeds, Techniques, equipments a Processes, advantages and limitations of Centrifugal Casting Methods.														
UN	T III	INVES	STMENT CASTING		9	+	0							
Intro Mou	Introduction, Pattern and Mould Materials used, Techniques and Production of Investment Moulds, Shaw Process, Full Mould Process, applications of Investment Casting Process.													
UN	UNIT IVDIE CASTING9+0													
Die O Meta Proc	Castin als Cas esses,	g Machines st by Die C Advantages	Gravity and Pressure Die Casting, Cold and Hot Chamber Operation and I asting Method, Casting of Aluminium, Magnesium and Zinc Alloys. Cor of Die Casting	Details npo, H	, Die Rheo	Mater and T	ials. hixo							
UN	IT V	ORGA	NIC AND OTHER PROCESSES		9	+	0							
Cold Mou	Box, lding,	Hot Box an Impulse Mo	nd No Bake Processes, Fluid Sand Process, V Process, Graphite Mouldin pulding, High Pressure Moulding, Metal Injection Moulding.	ng Pro	ocess,	Magı	netic							
			Tota	l (L+	T) =	45 H	ours							
Cou	rse C	outcomes:												
Upor	n com	pletion of th	is course, the students will be able to:											
CO	1 :	Describe	the shell moulding process over the conventional processes of casting.											
CO2	2 :	Provide the procedure for centrifugal casting of pipes and other hollow shafts.												
CO3	3:	Discuss the investment casting method with different processes like Shaw, full mould process and mention their applications.												
CO4	4 :	Mention the modern die casting method and its type like and different operations performed in the chamber												
CO	5 :	Describe moulding.	Describe the organic processes that can be used to cast metals like metal injection moulding, magnetic moulding, impulse moulding.											

Text B	ooks:
1.	Beeley, P.R., Foundry Technology, Butterworths, London, 1982.
2.	Clegg A.J., Precision Casting Processes, Pergamon Press, London, 1991.
Refere	nce Books:
1.	Heine, Loper and Rosenthal, Principles of Metal Casting, Tata McGraw Hill Publishing Co., Ltd., New Delhi, 1995.
2.	Dumond, T.C., Shell Moulding and Shell Moulded Castings, Reinhold Publishing Corporation Inc., 1984.
3.	Doehler, E.H., Die Casting, McGraw Hill Book Co, New York, 1991.

CO/P O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	0	0	1	0	2	0	0	0	0	0	1	0	2	3	1	
CO2	1	1	3	3	2	0	2	0	0	1	2	0	2	2	2	
CO3	2	2	2	1	2	1	1	1	1	1	3	1	1	0	0	
CO4	1	0	0	0	3	2	0	1	2	2	1	1	1	0	0	1
CO5	0	2	1	2	2	1	3	1	1	1	0	1	0	1	3	
Total	0.8	1	1.4	1.2	2.2	0.8	1.2	0.6	0.8	1	1.4	0.6	1.6	1.2	1.2	0.2
1- Faintly, 2- Moderately,						3	- Stron	gly				•		r.		r.

22N	1TI	E 13	ALTERNATE ROUTES OF IRON MAKING	L	Т	Р	С					
				3	0	0	3					
Course	e O	bjective	s:									
1. To	kno	w the in	portance of the Iron making and to apply them for the advancement of alterna	tive ro	oute f	or the						
pro	duc	tion feas	ibilities in steel Industries to compete with the modern day manufacturing rou	tes.	0		0					
UNIT I		BLAS	ST FURNACE AND ITS MODIFICATION		9	+	U					
Blast fu Special	rnao Fea	tures, Mo	naking. Low Shaft Furnace – Construction, Process and Advantages, Mini B. odern Blast Furnace, Charcoal blast Furnace.	last Fi	urnac	es (M	BF) –					
UNIT I	Ι	ELE	CTRO THERMAL PROCESSES		9	+	0					
Electro	-Tł	nermal]	Processes - Submerged Arc Furnace - Construction, Operation an	d Sm	eltin	g pra	ctice.					
Moder	1 tre	ends & S	Special features. Irregularities in operation.			-						
UNIT		9	+	0								
Sponge Iron production – Introduction, Properties, Uses & Process of making Sponge Iron. Coal Based												
Sponge	Ire	on proce	ess: Rotary Kiln (SL/RN, Krupp-Renn), Rotary Hearth (FASTMET)	proc	ess.	Gas I	Based					
Sponge	e Irc	on proce	ss: Finmet process, HYL-I, MIDREX, HYL-IV M process	<u> </u>	_		-					
UNIT I	V	SME	LTING REDUCTION AND OTHER PROCESSES		9	+	0					
Smeltin Based COREX	Smelting Reduction – Introduction, Raw materials & Fundamentals. Classification of Smelting Reduction process - Based on stages (Single stage , two stage operation), Based on Types of furnace –Vertical shaft furnace COREX,FINEX), Electrical Furnace (INRED, ELRED),Converter type(HI-smelt), Rotary Hearth furnace(IT mk3).											
UNIT	V	IRON	N MAKING IN INDIA		9	+	0					
Blast fu	rna	ce design	n in India. Main problems in iron making in India. Sponge Iron making in	India.	Indi	a's ro	le in					
Global	steel	trade. F	uture scope of Iron making processes in India.	T 1	<u> </u>	<u>15 Ц</u>	ourc					
G	0		10tai) - •	+5 11	Juis					
Course	\mathbf{O}	utcomes										
Upon co	omp	letion of	this course, the students will be able to:									
CO1	:	Know a	bout special features of blast furnace.									
CO2	:	Details	of modern trends in electro thermal process									
CO3	:	Knowle	edge about sponge iron making									
CO4	:	Describ	e about smelting reduction and other process									
CO5	:	Analyse	e iron making in India									
Text B	Text Books:											
1.	Sara Dell	ungi, A., ni, 2016.	and B. Sarangi, Alternative roots to Iron Making, 2nd Edition, Prentice Hall o	f India	a Pvt	Ltd., N	New					
Refere	nce	Books:										

1.	R.H. Tupkary and V.R. Tupkary., An Introduction to Modern Iron Making, Khanna Publishers, Fourth Edition.New Delhi, 2010
2.	Biswas .A.K , Principles of blast furnace iron making- theory and practice , SBA Pub, Kolkata 1994
3.	David H Wekelin,, The Making, Shaping and Treating of Steel, AISE Steel Foundation, 1999.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	PSO	PSO	PSO3	PSO
0												2	1	2		4
CO1	2	1	1	2	0	2	0	0	1	1	2	1	1	0	2	
CO2	3	1	1	1	1	2	1	0	1	2	2	3	1	0	3	
CO3	1	2	1	1	2	2	0	0	0	2	2	3	1	1	1	
CO4	3	2	2	1	2	2	1	0	1	1	3	2	1	0	3	1
C05	1	2	2	1	2	1	0	0	0	2	2	2	1	2	1	
Total	2	1.6	1.4	1.2	1.4	1.8	0.4	0	0.6	1.6	2.2	2.2	1	0.6	2	0.2
1 1	Dointler	•	2 1/	r 1	- 1		. <u>.</u> .	1	•	-	•	•	•	•		

22	МТ	'E14	SECONDARY STEEL MAKING	L	Т	Р	C					
				3	0	0	3					
Cours	se C	bjective	s:			1						
1. To in	o be 1 it	come fan	niliar with a wide array of making special steels by various process an learn a	bout i	mpur	ities p	resent					
UNI	ΤI	THE	RMODYNAMICS AND KINETICS OF DEOXIDATION		9	+	0					
Oxyge Deoxid	n in datio	molten s	steel, Types of Deoxidation, Complex Deoxidisers, Kinetics of removal of astrial Scale.	Deox	idatio	on pro	ducts,					
UNIT II METALLURGICAL PRINCIPLES IN SECONDARY STEEL MAKING 9												
Thermodynamics of reactions during degassing, Fluid flow and mixing in ladle, Kinetics and mass tran- injection metallurgy.												
UNIT		[LAD	LE FURNACES AND SECONDARY STEEL MAKING		9	+	0					
Introdu furnace	uctio es.	on, Proce	ss variables, Stirring, Synthetic slag, Purging, Vacuum treatments, Inject	ion n	netallu	urgy,	Ladle					
UNIT	ſ IV	/ INCI	LUSIONS IN STEEL		9	+	0					
Influer Inclusi	nce of ion of	of inclusi	ons on mechanical properties, Identification of inclusions, Origin of nor	n-meta	allic i	inclusi	ons,					
UNI	ΓV	CON	TINUOUS CASTING AND SEGREGATION		9	+	0					
Dendri continu	itic uous	solidifica solidifica	tion, Morphology of killed steel ingots, Defects in continuous cast produ	$\frac{100 \text{ He}}{(\text{L}+\text{T})}$	$Develor\overline{Develor}$	opmer	its in					
Cours	se C	Outcome	5:									
Upon o	com	pletion of	this course, the students will be able to:									
C01	. :	Discuss	s and explain the thermodynamics and kinetics of de-oxidation									
CO2	2 :	Explair	the basic metallurgical principles that govern the process of secondary steel n	nakin	g							
CO3	; ;	Describ metallu	be the metallurgical process taking place in the steel making ladle and also exp argy	lain tl	ne lad	lle inje	ction					
CO4	:	Mentio	n modification of steel properties using steel inclusions									
CO5	:	Specify are proc	and explain the process of continuous casting in steel and the common defects luced in casting and give a remedy	s like	segre	gation	that					
Text E	300	ks:										
1.	Ah	indra Gho	osh, Principles of Secondary Processing and Casting of liquid steel, Oxford &	IBH I	Publis	hers, 1	1991.					
2.	2. Ahindra Ghosh, Secondary steel making- Principles and applications, CRC Press, USA, 2001.											

Refere	ence Books:
1.	Chatterjee A and Govindarajan S, Monograph on Continuous casting at TATA Steel, Jamshedpur, 1991
2.	David H Wekelin, The Making, Shaping and Treating of Steel, AISE Steel Foundation, 1999
3.	Chow, C., et al., High speed continuous casting of steel billets Part 1 and Part 2, Iron making & Steelmaking, Vol.29, pp. 53-69, 2002

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0										0	1	2				4
CO1	3	2	3	1	2	0	1	0	0	0	2	2	2	3	2	
CO2	1	2	2	2	3	0	2	0	0	0	2	2	1	1	1	
CO3	3	2	2	1	2	0	2	0	0	0	1	2	2	1	1	1
CO4	2	1	2	1	2	0	0	0	0	0	2	2	1	2	2	
CO5	2	1	2	1	3	0	0	0	0	0	2	3	1	1	1	
Total	2.2	1.6	2.2	1.2	2.4	0	1	0	0	0	1.8	2.2	1.4	1.6	1.4	0.2
1- F	Faintly,	•	2- M	oderat	ely,	3	- Stron	gly	•	•	•	•	•	•	•	•

22	2MT	'E15	POWDER METALLURGY	L	Т	P	C
				3	0	0	3
Cours	se O	bjectives:					
1. T	o int dvano	roduce the	e importance non-conventional processing routes for different materials a als manufacturing.	and it	s imp	ortan	ce foi
UNI	ΤI	CHAR	ACTERISTICS AND TESTING OF METAL POWDERS		9	+	0
Sampl proced resistiv density	ing, lure vity r y, gre	chemical c of sieve an nethods: pa en strength	composition purity, surface contamination etc. Particle size and its meas nalysis, microscopic analysis: sedimentation, elutriation, permeability. A article shape, classifications, microstructure. Specific surface area. Apparent n, sintered compact density, porosity and shrinkage.	ureme dsorpt and t	ent, P ion r ap de	rincip nethoo nsity.	le and ds and Greer
UNI	ГII	POWDE	CR MANUFACTURE AND CONDITIONING		9	+	0
solutic equipr Powde	position and nent, er Co	d fused sal factors aff nditioning,	ts, hydrometallurgical method. Physical methods: Electrolysis and atomisate ecting these processes, examples of powders produced by these methods, ap Heat treatment, blending and mixing, types of equipment, types of mixing a	plicat plicat and blo	rocessions, ending	ses, ty	pes o
UNI	' III	POWE	DER COMPACTION		9	+	0
Pressu ended compa	re les comp ction	ss Compact paction, Co , continuo	tion: slip casting and slurry casting. Pressure compaction- lubrication, single old isostatic compaction, powder rolling, extrusion, explosive compaction, l us compaction	e ende hot te	d and	l doub ature	le
UNI	r IV	SINTE	RING		9	+	0
Stage Hot properate	of sir ressii ions -	ntering, pro ng and Ho – sizing, co	perty changes, mechanisms of sintering, liquid phase sintering and infiltrati to Isostatic Pressing, vacuum sintering, sintering furnaces and sintering pining, repressing and heat treatment.	on, ac atmo	ctivate spher	ed sin re, fin	tering, ishing
UNI	ГV	POWE	DER METALLURGY APPLICATIONS		9	+	0
Advan Materi Materi materi	tages als-t als-c als	s and disac ypes, self lutches, bra	dvantages of P/M, Major applications in aerospace. Nuclear and automol lubrication and other types, methods of production, properties, applicat ake linings, Tool Materials- cemented carbides, oxide ceramics, Cermets- D Total	oile ir ions. Disper	$\frac{\text{dustr}}{\text{Sinte}}$	ies. B red F strengt 45 H	earing riction thened
Cours	se O	utcomes:					
Upon	com	pletion of	this course, the students will be able to:				
CO1	:	Describe research a	the basic mechanism of powder production for variety of materials to meet t and industrial needs	he de	mand	l of th	e
CO2	:	Character	ize the various powders (materials) based on the engineering applications				
CO3	:	Differenti	ate the processing routes for various powders (materials) and associated tech	hnolo	gy		
CO4	:	Define m	odern day processing routes and apply them successfully to materials proces	sing			
Text l	Book	:s:					

1.	SinhaA.K., Powder Metallurgy, DhanpatRai& Sons. New Delhi, 2001.
2.	Sands. R L. and Shakespeare. C.R. Powder Metallurgy, George Newes Ltd. London, 1966.
Refer	ence Books:
1.	ASM Handbook. Vol. 7, Powder Metallurgy, Metals Park, Ohio, USA, 1990.
2.	Animesh Bose., Advances in Particulate Materials, Butterworth - Heinemann. New Delhi, 1995.
3.	Kempton. H Roll., Powder Metallurgy, Metallurgical Society of AMIE, 1988.
4.	Ramakrishnan.P., Powder Metallurgy Opportunities for Engineering Industries, Oxford and IBH Publishing Co., Pvt. Ltd, New Delhi, 1987.
5.	Erhard Klar, Powder Metallurgy Applications, Advantages and Limitations, American Society for Metals, 1983.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO
																4
CO1	1	1	1	3	1	0	0	0	0	0	1	1	2	3	2	
CO2	2	3	3	3	3	0	0	0	0	0	1	2	3	3	2	
CO3	1	2	3	3	3	0	1	0	0	0	1	1	3	2	2	
CO4	0	0	2	2	2	1	1	0	0	0	2	2	2	2	3	1
Total	1	1.5	2.2	2.7	2.7	0.2	0.5	0	0	0	1.2	1.5	2.5	2.5	2.2	0.25
1-	1- Faintly, 2- Moderately,					3	- Stron	igly	•			•		•	•	

22MTE16

NON DESTRUCTIVE EVALUATION

			3	0	0	3
Course	e Ol	ojectives:				
1. To	und	lerstand the basic principles of various NDT techniques, its applications, limitations, co	odes a	nd sta	ındard	s.
UNIT I	[BASIC CONCEPTS AND SURFACE NDT METHODS		9	+	0
Concept physical penetran penetran techniqu	ts o l ch nt ir nt te ue ar	f Non-Destructive testing - Relative merits and limitations - NDT Versus Mechan aracteristics of materials and their applications in NDT. Visual inspection: Unaid aspection: Principle, applications, advantages and limitations, Dyes, developers and est. Magnetic particle inspection: Principles, applications, magnetisation methods, m and Wet technique, demagnetization, Advantages and limitations.	nical led ar l clea nagne	testin id Ai ners, tic pa	g - V ded. I Fluor urticles	arious Liquid escent s, Dry
UNIT I	Ι	RADIOGRAPHY TESTING		9	+	0
X-rays a and scru characte Safety v	and eens erist vith	Gamma rays, Properties of X-rays relevant to NDE, Absorption of rays, scattering, t s, geometric factors, Inverse square, law, characteristics of films - graininess, densic curves, Penetrameters, Exposure charts, Radiographic equivalence. Fluoroscopy-X-rays and Gamma rays, Industrial computed tomography (ICT).	ypes sity, s Kero-I	and u peed, Radio	se of t , contr graphy	filters rast, y.
UNIT I	Π	ULTRASONIC TESTING		9	+	0
Types o Inspecti Test blo	f U on 1 ck,	Itrasonic waves, principles of wave propagation, characteristics of ultrasonic waves, A nethods - pulse echo, Transmission and resonance techniques, Thickness measuremen IIW - reference blocks. Time of flight diffraction (TOFD), Phased array Ultrasonic Test	Attenu nt. Ty sting.	ation pes o	i, coup f scan	olants. ning,
UNIT I		9	+	0		
Eddy c Principl emission certifica	urre e, a n. P tion	nt testing: Principle, application and Instrumentation of Eddy current testing. O pplication and Instrumentation of Infrared and Thermal inspection methods, Hol ressure and Leak testing. Codes: Introduction to ANST standards and ASME codes related of NDT Personnel level I, II & III	other lograp lated 1	NDT hy a to NE	techn nd Ac)T,	iques: oustic
UNIT	V	FAILUE ANALYSIS		9	+	0
Fundam Analysi Temper	enta s. C atur	al sources of failures- Deficiencies in design, material processing, service and mainten- lassification and identification of various types of fracture. Introduction to Fatigue fa e failure, Wear failure, and Corrosion failure.	ance. ailure	Stage Eleva	s of fa ated	uilure
		Total	(L+T	') = 4	45 H	ours
Course	e Oi	itcomes:				
Upon co	omp	letion of this course, the students will be able to:				
CO1	:	To understand basic concepts of non-destructive testing and understanding the import testing, the procedures involved in the magnetic methods.	ance	of Pei	netrant	t
CO2	:	To explain the techniques involved in the Radiographic testing and the various advance Radiography.	cemen	ts in		
CO3	:	To evaluate and interpret the principles and calibrations in the Ultrasonic inspection.				
CO4	:	To understand the basic principles and working of Thermographic technique, the Eddy Acoustic emission.	y curr	ent te	sting,	and
CO5	:	To evaluate and explain the different types of fracture occurs in materials and process	es.			
Text B	ook	s:				

1.	Barry Hull and Vernon John, Non Destructive Testing, ELBS / Macmillan, 2001.
2.	Baldev Raj, Jayakumar T. Thavasimuthu M, Practical Non-Destructive testing, Narosa Publishing House, NewDelhi, 1997.
Refer	ence Books:
1.	ASM Handbook, Vol.17: Non destructive Evaluation and Quality Control, ASM International, Metals Park, Ohio, USA, 1992.
2.	Louis Cartz, Non-Destructive Testing, ASM International, Metals Park Ohio, US, 1995.
3.	McGonnagle. W.J. Non-Destructive Testing, Gordon and Breach, 2 nd Ed., 1971.
4.	ASM Handbook, Vol.11: Failure analysis and Prevention, ASM International, Metals Park, Ohio, USA, 1992.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO
0																4
CO1	2	1	1	2	0	2	0	0	1	1	2	1	1	0	2	
CO2	3	1	1	1	1	2	1	0	1	2	2	3	1	0	3	
CO3	1	2	1	1	2	2	0	0	0	2	2	3	1	1	1	
CO4	3	2	2	1	2	2	1	0	1	1	3	2	1	0	3	1
CO5	1	2	2	1	2	1	0	0	0	2	2	2	1	2	1	
Total	2	1.6	1.4	1.2	1.4	1.8	0.4	0	0.6	1.6	2.2	2.2	1	0.6	2	0.2
1-	Faintly	,	2- N	Ioderat	ely,	3	- Stron	gly		•	•	•	•	•		

	22N	ITE17	SEVERE PLASTIC DEFORMATION	L	Т	Р	С			
				3	0	0	3			
Cours	se O	bjectives:								
1. $\begin{bmatrix} T \\ f \\ f \end{bmatrix}$	o kno or var	w the fundamer	tal concepts of mechanical behaviour of materials and to apply them to g structural engineering applications.	o desi	gn the	e mate	rials			
UNI	ΓI	INTRODU'	FION AND ECAE		9	+	0			
Severe	Severe plastic deformation processes (SPD), advantages over conventional metal forming processes. Concept of equa channel angular extrusion (ECAE) Plastic zone during ECAE. Material flow and stress distribution in ECAE									
UNI	UNIT II ECAE – II									
Multi-	pass	ous E	CAE.	Conc	ept of					
Increm	ienta tool	equal channel	angular pressing (I-ECAP). Tooling of ECAP – Configuration of char	nnel, c	lie de	sign,	punch			
UNIT	UNIT III HIGH PRESSHURE TORSION									
Introdu	ictio	n to high pre	ssure torsion (HPT) – advantages over other SPD techniques	. Ch	aracte	eristic	HPT			
micros	truct	ures. Principles	of HPT-idealised, fully constrained, quasi-constrained HPT. Design cri XTRUSION-COMPRESSION AND ARB	teria.	9	+	0			
Concer	UNIT IV CYCLIC EXTRUSION-COMPRESSION AND ARB 9 +									
Introdu	ictio	n to accumulativ	e roll bonding, principle of ARB, nanostructure formation during ARB	. m a	uIIIII	iiuiii c	inoys.			
UNI	UNIT VTWIST EXTRUSION AND OTHER PROCESSES9+0									
Introdu develo	iction pmen	n to twist extrus nts of TE. Frictio	ion, processing technique for TE, formation of nanostructure in TE. A on stirs processing: principle and operating parameters. Applications of	pplic FSP.	ations	s and 1	recent			
			Total	(L+T) = 4	45 H	ours			
Cours	e Oı	itcomes:								
Upon	com	pletion of this	course, the students will be able to:							
CO1	:	Knowledge a	bout material flow and stress distribution in ECAE							
CO2	:	Details about	different processing parameters of ECAE and its tooling							
CO3	:	Formulate the	e design criteria for high pressure torsion							
CO4	: Know about the concepts of cyclic extrusion-compression and evolution of microstructure during CEC									
CO5	:	Describes var	ious applications of friction stir processing and its principle							
Text H	Book	s:								
1.	Ros	sochowski, A.,	Severe Plastic Deformation Technology, Whittles Publishing, U	K, 20)17.					
Refer	ence	Books:								
1.	Pro Dec	ceedings of the cember 9-13, 2	Conference — Nanomaterials by Severe Plastic Deformation – 1 002, Vienna, Austria, Edited by Zehetbauer, M and Z. Valiev.	NAN	OSPI	D2I,				

CO/P	PO	PO2	PO3	PO4	PO	PO6	PO7	PO	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1				5			8		0	1	2				4
CO1	1	2	2	1	2	1	0	1	1	2	2	2	2	1	1	
CO2	2	0	1	0	1	2	1	1	2	0	1	2	2	2	1	
CO3	1	2	2	2	1	2	1	1	0	1	1	2	2	1	2	
CO4	0	1	2	2	1	0	0	1	0	2	2	2	1	1	1	1
CO5	1	2	2	2	2	1	2	1	1	1	2	2	2	1	1	
Total	1	1.2	1.8	1.4	1.4	1.2	0.8	1	0.8	1.2	1.6	2	1.8	1.2	1.2	0.2

22N	Т	Р	С							
			3	0	0	3				
Course	e O	bjectives:								
1. Stuvar	iden riou	It should be capable of understand various wastes in environment conditions and s conditions and to learn about utilization of metallurgical waste.	choose suit	able r	nateria	uls for				
UNIT	ľ	MINING AND METALLURGICAL WASTE		9	+	0				
Environ waste p Hydrom product	rodu netal ion.	ntal and health impacts of Mining and Metallurgical waste. Various kind of was action. Ferrous metal waste production. Ferroalloys waste production. Ilurgical waste production. Metal manufacturing and finishing waste produc	tes: Mining ction. Post-	and I consu	Benefi Imer	ciation waste				
Utilization of mine overburden and waste rock. Potential utilization of mineral beneficiation tailings. P										
mitigati		9	+	0						
Recycli	UNIT III UTILIZATION OF FERROUS METAL WASTE 9 + 0									
– Plasn	na t	pased processing, hydrometallurgical processing, solidification and stabilization	ion. Recycl	ing a	nd re	ise of				
steelma	king	g slags	r		1					
UNIT	IV	UTILIZATION OF HYDROMETALLURGICAL AND METAL FINISHING WASTES		9	+	0				
Utilizati	ion	of Jarosite, goethite produced during extraction of zinc, Utilization of red muc	l produced	in Ba	yer pr	ocess:				
Recycli	ng a	and utilization of surface oxide scale produced during metal forming operation. N	Ietal recove	ry fro	m pic	kling				
and plat	ing	sludges			r					
UNIT	V	WASTE MANAGEMENT		9	+	0				
Waste n end use	nana rs. F	agement and utilization options: zero waste process approach, synergy between r Process integration to mineral waste utilization. Process intensification.	esidue prod	uces a	and res	sidue				
			Total (L+'	T) =	45 H	ours				
Course	e Oı	atcomes:								
Upon c	om	pletion of this course, the students will be able to:								
CO1	:	Analyse various mining and metallurgical waste and their health impacts								
CO2	:	Utilization of wastes of mining and prevention of acid rain drainage								
CO3	:	Know about the ways of recycling and reuse of steel making slags								
CO4	:	Analyse various routes of utilization of hydrometallurgical and metal finishing	wastes							
CO5	:	Implementing the approach of zero waste								

Text Books:

```
      1.
      Ndlovu, S., G.S. Simate and E. Matinde, Waste production and utilization in the Metal Extraction Industry, CRC Press, 2017
```

CO PO MAPPING

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO
0																4
CO1	1	2	2	1	2	0	1	1	2	2	2	2	1	1	1	
CO2	2	0	1	0	1	1	1	2	0	1	2	2	2	1	2	
CO3	1	2	2	2	1	1	1	0	1	1	2	2	1	2	1	
CO4	0	1	2	2	1	0	1	0	2	2	2	1	1	1	0	1
CO5	1	2	2	2	2	2	1	1	1	2	2	2	1	1	1	
Total	1	1.2	1.8	1.4	1.4	0.8	1	0.8	1.2	1.6	2	1.8	1.2	1.2	1	0.2
1_ F	Faintly		2 - M	Inderat	elv	3	- Stron	$\sigma l v$								

22MT	ITE19 COMPUTATIONAL MATERIALS ENGINEERING L									
			3	0	0	3				
Cours	Course Objectives:									
1. To	o bec	ome familiar with computational techniques including related mathematical backgrou	nd							
UNIT	Ι	Introduction To Computational Methods		9	+	0				
Solving of non- integra	Solving sets of equations – Gauss elimination method, Choleski method, Iterative methods, Relaxation method, Syst of non-linear equations- Newton Raphson method, Computer programs. Numerical Integration - Newton-Cotes integration formulae. Trapezoidal rule. Simpson's rule. Gaussian guadrature									
UNIT II Numerical solution of partial differential equations										
Laplac Poisson ADI m	e's ec n equ iethoo	uations - Representations as a difference equation, Iterative methods for Laplace's equation - Derivative boundary conditions, Irregular and non-rectangular grids, Matr d, Applications to heat, mass and momentum transfer problems, Computer programs	ation ix pat	s, terns,	Spars	eness,				
UNIT	III	Finite Element Method		9	+	0				
Weight element	ted rontes, th	esidue technique, variational approach, element types, plane triangular, quadrilatera ree dimensional elements	al curv	ved is	opara	metric				
UNIT	IV	Analysis of production processes		9	+	0				
Finite proced formul	elemo ures ation	ent analysis of metal casting - Special considerations, latent heat incorporation, gap of - crank – Nicholson algorithm, Prediction of grain structure. Basic concepts of pla - small incremental deformation formulation	elemen asticity	nt, tin 7– sol	ne step id and	ping 1 flow				
UNI	ΓV	Curve fitting and approximation of functions		9	+	0				
Least Introdu for ma	squan action terial	e approximation, fitting of non-linear curves by least squares, Regression analys n to Artificial neural networks, various algorithms and CA studies Introduction to G s design and process optimization, case studies.	Com enetic	puter algor	progi ithms	ams. , GA				
		Tota	l (L+'	Γ) = ·	45 H	ours				
Cours	e Ou	Itcomes:								
opone										
CO1	CO1 : Understand the basics of the computational methods that can be used for numerical integration									
CO2	:	Realize the utilization of finite element method								
CO3	:	Recognize the appositeness of curve fitting and approximation of functions								
CO4	:	Employing the usage of Artificial neural networks and Genetic algorithms.								
Text E	Book	S:	6 3 4		Ŧ	1				
1.	Zoe 200	5. 5.	or Ma	terial	s, Lo	ndon,				

2.	Rao S S, -The Finite element Method in Engineering , Pergaman Press, New York, 1989.									
Reference Books:										
1.	Lewis R W, Morgan K, Thomas H R and Seetharamu K N, –The Finite Element method in Heat Transfer Analysis, John Wiley, 1994									
2.	Malanie Mitchell, —An introduction to genetic algorithms, MIT Press, 1998.									
3.	Koenraad Janssens, Computational Materials Engineering, An introduction to microstructural evolution , Elsevier, 2007.									

CO/P	PO	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1				5					0	1	2				4
CO1	1	2	3	2	2	0	0	0	0	0	1	1	2	3	3	
CO2	1	2	2	1	2	0	0	0	0	0	2	1	2	2	2	
CO3	2	2	3	1	1	0	0	0	0	0	1	1	3	3	2	1
CO4	2	3	2	3	1	1	1	1	1	1	1	2	2	3	1	
CO5	1	2	3	1	2	1	1	1	1	2	1	2	2	2	2	
Total	1.4	2.2	2.6	1.6	1.6	0.4	0.4	0.4	0.4	0.6	1.2	1.4	2.2	2.6	2	0.2
1- Fa	aintly,	•	2- Mo	oderate	ely,	3-	- Stron	gly	•		•	•	•	•		•

22M	ТЕ	20 SPECIAL WELDING PROCESSES	L	Т	Р	С				
			3	0	0	3				
			•							
Course	Oł	ojectives:								
1. To	unc	erstand the concepts of different welding process and various parameters for its appli-	cations							
UNIT	Ί	RADIANT ENERGY WELDING		9	+	0				
Electron Vacuum and Lim	Electron Beam Welding- Background of the Process, Guns, Weld Environment, Welding in Different Degrees of Vacuum, Equipment and Safety, Joint Design, Applications, Laser Beam Welding, Process Parameters, Applications and Limitations.									
UNIT II PLASMA ARC WELDING										
Plasma Equipm Micro F Weld Pe	Plasma Arc Welding- theory and Principles, Transferred arc and Non-Transferred arc Techniques, Equipment and Tooling, Joint Design Advantages, Disadvantages, Economics, Materials and Applications. Needle Arc Micro Plasma Welding - Characteristics of Process, Operating Characteristics, Fixturing and Joint Design, Shielding, Weld Penetration and Shape, Applications.									
UNIT	III	EXPLOSIVE WELDING		9	+	0				
Explosiv Advanta Physica	Explosive Welding- theory and Key Variables, Parameters, Weld Quality, Equipment and Tooling, Advantages and Limitations, Joint Design, Materials and Applications. Adhesive Bonding- theory and Key Parameters, Physical Characteristics, Metal Adhesive, Equipment, Design, Economics of Process, Materials and Applications.									
UNIT	UNIT IVFRICTION AND FRICTION STIR WELDING9									
Friction	We 1 In	Iding- Basic Principles, Process Variants, Different Stages of Friction Welding, Mech	anism Iar	of						
Materia	ls, A	Advantages, Limitations and Applications. Friction stir welding – process variables an	d appli	catio	ns					
UNIT	V	DIFFUSION WELDING AND VACUUM BRAZING		9	+	0				
Diffusio Welding Vacuum Advanta	on W g, E n Bi ages	Velding- theory and Principle of Process, Key Variables, Intermediate Materials, Defo quipment and Tooling, Joint Design, Economics, Advantages and Limitations, Mater razing- theory, mechanisms and Key Variables, Equipment and Tooling, Stop-of , Limitations, Economics Materials and Applications.	rmatio rials ar f and	n 1d Ap Partii	plicat 1g Ag	ons. ents,				
		Tota	al (L+	T) =	45 H	ours				
Course	0ι	itcomes:								
Upon co	omp	letion of this course, the students will be able to:								
C01	:	Apply radiant energy concepts using different process parameters								
CO2	D2 : Characterization of plasma arc welding process and its associate technology									
CO3	:	Know about the key variables and theory of explosive welding and their physical cha	racteri	stics						
CO4	:	Differentiate friction and friction stir welding process and its various applications								
CO5	:	Describes the concepts of diffusion welding and vacuum brazing								
Text Bo	ook	s:								

1.	Schwartz M.M., Metals Joining Manual, McGraw-Hill Inc., 1979.
2.	Parmar R.S., Welding Processes and Technology, Khanna Publishers, New Delhi, 1998
Refer	ence Books:
1.	ASM Metals Hand Book Welding, Brazing and Soldering, Vol. 6, ASM, Ohio, 1988.

CO/P	PO	PO2	PO3	PO4	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1				5					0	1	2				4
CO1	1	0	0	2	2	0	0	0	0	0	1	2	3	2	2	
CO2	1	1	1	2	1	0	0	0	0	0	2	1	3	3	3	1
CO3	1	2	2	2	3	0	0	0	0	0	1	2	2	2	3	1
CO4	1	2	3	2	3	0	0	1	1	0	2	1	3	2	3	
CO5	1	1	2	1	0	0	0	0	0	2	1	3	3	3	1	
Total	1	1.2	1.6	1.8	1.8	0	0	0.2	0.2	0.4	1.4	1.8	2.8	2.4	2.4	.4
1- Fa	aintly,	•	2- M	oderate	ely,	3	- Stron	gly	•	•	•	•	•	•		

22MTE21

X-RAY DIFFRACTION AND ELECTRON MICROSCOPY

			3	0	0	3
					•	
Course	e 0	bjectives:				
1. To	stu	dy about X-ray diffraction methods and its uses, TEM, SEM				
UNIT	Ί	Fundamentals of X-ray Diffraction		9	+	0
Propert	ies	of X-rays: Continuous spectrum, characteristic spectrum, absorption, filters. Pr	oduc	tion	of x-r	ays,
Detecti	on	of x-rays. X-ray diffraction- Bragg's Law, diffraction direction		0		0
	<u> </u>			9	+	
Diffrac	tioi leci	n methods – Laue, Rotating Crystal and Powder methods. Intensity of diffracted ron, an atom and unit cell. Structure factor calculations, X-ray diffractometer –	l bear	ms-S eral f	catter	ing
UNIT	III	Applications of X-ray Diffraction	gen	<u>9</u>	+	0
X-ray d	liffi	raction application in determination of crystallite size, crystal structure, precise	lattic	e par	amet	er
and res	idu	al stress. Chemical analysis by x-ray diffraction and x-ray spectroscopy		- F		
UNIT	IV	Transmission Electron Microscopy		9	+	0
resolvii diffract milling	ng p ion . A	bower, image formation, contrast mechanism, bright field and dark field images , techniques of specimen preparation-mechanical thinning, electrochemical thin pplications of TEM.	, sele	ected g and	area ion	s,
UNIT	V	Scanning Electron Microscopy		9	+	0
Compo seconda prepara Beam r	oner ary ation nic	tts of scanning electron microscope (SEM), electron beam – specimen interacted electrons, detection of back scattered electrons, image formation, mether, Operational variables, Introduction to electron backscatter diffraction (EBSE roscopy	ction nods)) and	, Det of s d Foc	specin specin cused	n of men -Ion
		Total	(L+)	Γ) =	45 H	ours
Course	e O 1	utcomes:				
Upon c	om	pletion of this course, the students will be able to:				
CO1	:	Demonstrate the Bragg's law of diffraction and the principle of XRD.				
CO2	:	Describe the principle of various electron optical techniques.				
CO3	:	Ability to perform analysis of X ray diffraction and electron microscope images a thermal analysis.	nd th	e che	emical	and
Text Bo	ook	s:				

1.	Cullity, B.D., Elements of X Ray Diffraction, Addison-Wesley Publishing Company Inc, Philippines,
	1978
2	Brandon, D. and W.D. Kaplan, Microstructural Characterization of Materials, John Wiley & Sons Ltd,
۷.	England, 2013
Refere	ence Books:
1.	Goldstein, J., et al., Scanning Electron Microscopy and X-ray Microanalysis, Kluwer
	Academic/Plenum Publishers, New York, 2003.
C	Goodhew, P.J., J. Humphreys, and R. Beanland, Electron Microscopy and Analysis, Taylor & Francis,
۷.	London, 2000
3	Hebbar, K.R., Basics of X-Ray Diffraction and Its Applications, I.K. International Publishing House
5.	Pvt. Limited, India, 2007.
4.	Williams, D.B. and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials
	Science, Springer Science+ Business Media, New York, 2009

CO/P	PO1	PO	PO	PO4	PO	PO6	PO7	PO	PO9	PO1	PO1	PO1	PSO	PSo	PSO	PSO
0		2	3		5			8		0	1	2	1	2	3	4
CO1	3	1	1	1	2	0	0	0	0	0	1	1	2	2	2	
CO2	2	1	1	1	0	0	0	0	0	0	1	2	3	2	2	1
CO3	3	1	1	2	2	0	0	0	0	0	1	1	3	3	2	1
Total	2.6	1	1	1.3	1.3	0	0	0	0	0	1	1.3	2.6	2.3	2	0.66
1- Faintly,			2- Mo	oderate	ly,	3-	Strong	gly								

22MTE22

ELECTRICAL, ELECTRONICS AND MAGNETIC MATERIALS

L T P C 3 0 0 3

					1							
	3	0	0	3								
Course Objectives												
1. To	o stu	dy super conductors, magnetic materials, semiconductors, optoelectronic mater	ials.									
UNI	ΓI		9	+	0							
Free electron theory - Band theory - discussion on specific materials used as conductors - Dielectric phenomena - concept of polarization- frequency and temperature dependence - dielectric loss - dielectric breakdown - ferro electricity - piezo electricity and pyro electricity – BaTiO3 – structure and properties												
UNI	ΓII	SUPERCONDUCTORS		9	+	0						
Concept of superconductivity – BCS theory of super conductivity – Types of super conductors –YBCO- structure a properties – specific super conducting materials – Fabrication and engineering applications.												
properties – specific super conducting materials – Fabrication and engineering applications.9UNIT IIIMAGNETIC MATERIALS9												
Origin hard aı	of N nd so	l Iagnetism - Introduction to dia, para, ferri and ferro magnetism – Curie temperature – ft magnetic materials- iron based alloys - ferrites and garnets – rare earth alloys - fine p	- Mag particl	netic e mag	anisot gnets.	ropy -						
UNIT	UNIT IV OPTOELECTRONIC MATERIALS											
Principles of photoconductivity, luminescence photo detectors – Optical disc and optoelectronic materials –LCD, LED and diode laser materials - electro optic modulators - Kerr and Pockel's effect – LiNbO3.												
UNI	UNIT V SEMICONDUCTORS											
Semiconducting materials and types; simple, compound and oxide semiconductors – semiconducting materials in devices – Production of silicon starting materials – methods for crystal growth for bulk single crystals- zone melting – Czochralski method – Epitaxial films by VPE, MBE and MOCVD techniques – Lithography.												
		10ta	I (L+	1)=	45 H	ours						
Cours	se O	utcomes:										
Upon	com	pletion of this course, the students will be able to:										
CO1	: Understand the theory for Dielectric and Piezo electric materials											
CO2	:	Understand concepts, theory and approach.										
CO3	:	: Study various kinds of magnetism principles, various types of magnetic materials exhibiting.										
CO4	:	Learn about photoconduction phenomenon, optical materials and various optical devie performances.	ces an	d the	ir							
CO5	:	Study the theory of superconductivity recent advancements, methods of producing se their processing methods used in the semiconducting materials industry.	micor	ducto	ors and	1						
Text B	ooks	;:										
1.	Kitte	el C., _Introduction to Solid State Physics', 7th Edition, Wiley Eastern, New Internation	al Pul	olishe	rs, 200	04						
2.	Dekl	xer A. J., _Electrical Engineering materials, Prentic Hall, 1995										
Refere	nce	Books:										
1.	Dekker. A.J, Solid state Physics, Mac Millan India, 1995											

- 2. Van Vlack L.H, Elements of Materials Science and Engineering, 6th edition, Addison Wiley, 1989
- 3. Kasap and Capper, Handbook of electronic and photonic materials, 2006, NY

CO/P	PO	PO2	PO3	PO	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1			4	5					0	1	2				4
CO1	1	2	3	2	2	0	0	0	0	0	1	1	2	3	3	
CO2	1	2	2	1	2	0	0	0	0	0	2	1	2	2	2	
CO3	2	2	3	1	1	0	0	0	0	0	1	1	3	3	2	
CO4	2	3	2	3	1	1	1	1	1	1	1	2	2	3	1	1
CO5	1	2	3	1	2	1	1	1	1	2	1	2	2	2	2	
Total	1.4	2.2	2.6	1.6	1.6	0.4	0.4	0.4	0.4	0.6	1.2	1.4	2.2	2.6	2	.2
1- Faintly, 2- Moderately,					3-	Strong	gly									

1- Faintly,

3- Strongly
SURFACE ENGINEERING

9 +

9

9

9

9

+ 0

0

+ 0

+ 0

+ 0

Course Objectives:

1.

Analyze the various concepts of surface engineering and comprehend the design difficulties

UNIT I TRIBOLOGY AND PLATING PROCESSES

Introduction to tribology, Wear: Types of wear-adhesive, abrasive, oxidative, corrosive, erosive and trotting wear, roles of friction and lubrication and wear testing. Plating Processes: fundamentals of electro deposition, plating of nickel, chromium, tin and copper, pulsed plating, hydrogen embrittlement, plating adhesion, electroless plating, electro chemical conversion coating, selective plating for repair, plating properties, hard anodizing.

UNIT II HARD FACING PROCESSES

SMAW,GTAW, GMAW, FCAW, SAW, PAW, Oxy-Acetylene Welding, Furnace fusing, Thermalspray, name spray processes-HVOF, Detonation gun and jet kote processes, hardfacing consumables.

UNIT III SPECIAL DIFFUSION PROCESSES

Principle of diffusion processes-Boriding, Aluminising, Siliconising, Chromising Selection of diffusion processes-Characteristics of diffused layer-micro structure and micro hardness evaluation-properties and applications.

UNIT IV THIN FILM COATINGS

Physical vapour deposition processes-Thermal evaporation-sputter coating-Ion plating Chemical vapour deposition-reactive sputtering-TiC, TiN, Alumina, CBN, Diamond and DLC coatings. Structure, properties and applications.

UNIT V HIGH ENERGY MODIFICATION AND SPECIAL PROCESSES

Electron beam hardening, glazing, Laser beam hardening glazing ion implantation,

Composite surface created by laser and Electron beam. Surface cements, Wear tiles, Electro spark deposition, fused carbide cloth, thermal/chemical. Ceramic coatings, centrifugal cast wear coatings, Wear sleeves and Wear plates.

Total(L+T)= **45**+0 = **45 Hours**

Cou	rse Ou	itcomes:
Upo	n comp	pletion of this course, the students will be able to:
со	1 :	Understand the influence of the tribological characteristics and improvise the material property by the plating process
CO	2 :	Explain the various hard facing processes
CO	3:	Enhance surface properties with diffusion of foreign atoms into the outer surface of the material such as boriding, aluminizing, etc
CO	4 :	Describe the various vapour deposition processes of different materials on the surface of native materials using the Chemical, Physical and Thermal vapour deposition processes.
CO	5:	Describe the Modern processes and high energy processes like electron beam hardening, laser beam hardening.
Text	Books	:
1.	Chatto 2001	padhyay R., Surface Wear: Analysis, Treatment, Prevention, ASM International, USA,
2.	Kenne	th G. Budinski, Surface Engineering for Wear Resistance, Prentice Hall, Englewood Cliff, 1990.
Refe	rence	Books:

1.	ASM Metals Handbook, Vol 5: Surface Engineering, ASM International, Ohio, 1994.
2.	Ernest Rabinowicz, Friction and Wear of Materials, 2nd ed., John Wiley & Sons, NY, 1995.
3.	Davis J.R., Surface Engineering for Corrosion and Wear resistance, ASM International, 2001.

CO/P O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO 4
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1	
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1	
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2	
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	1
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1	
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1	0.2
1-]	Faintly	,	2- M	Ioderat	ely,	3	- Stron	gly	•		•		•			

	22MT	E24	ADDITIVE MANUFACTURING	L	Т	Р	С
				3	0	0	3
Со	urse Ol	ojectives					
1.	To Und applicati	erstand the on to vario	e fundamentals of various Additive Manufacturing Technologies and S' us industrial needs.	TL fi	le for	matio	ns for
2.	Able to Manufac	understand turing tech	d various method of manufacturing of liquid based, powder based and niques.	l solid	l bas	ed Ac	lditive
UI	NIT I	INTRO	DUCTION		9	+	0
Prot mode Class	totyping elling, D sificatior	fundamen ata Conve of AMT p	tals, Historical development, Advantages of AMT, Commonly used ter rsion, and transmission, Checking and preparing, Building, Post proces rocess, Applications to various fields.	ms, p sing,	roces RP d	s chai ata fo	n, 3D rmats,
UN	II TI	LIQUID	BASED SYSTEMS		9	+	0
Ster poly Soli disa	reo litho ymerizat id groun idvantag	graphy ap ion, layerir id curing es, case stu	paratus (SLA): Models and specifications, process, working principle, ng technology, laser and laser scanning, applications, advantages and disac (SGC): Models and specifications, process, working, principle, applica dies.	photo lvanta ations,	ges, c adva	mers, case st antage	photo audies. s and
UN	IT III	SOLID B	BASED SYSTEMS		9	+	0
Lan Adva Work	ninated intages a king prin	object ma and disadva ciple, Appl	nufacturing (LOM): Models and specifications, Process, Working p antages, Case studies. Fused Deposition Modeling (FDM): Models and lications, Advantages and disadvantages, Case studies, practical demonstration	rincip specif tion.	le, A icatio	applica ns, Pr	ations, ocess,
UN	IT IV	POWDE	R BASED SYSTEMS		9	+	U
Sele disa appl	ective la dvantag lications	ser sinterin es, case stu , advantage	ng (SLS): Models and specifications, process, working principle, applicate addes. Three dimensional printing (3DP):Models and specification, proce es and disadvantages, case studies	tions, ss, wo	adva orking	ntage: g prin	s and ciple,
UN	NIT V	APPLIC	CATION OF ADDITIVE MANUFACTURING		9	+	0
Arti (Dia auto	ificial alyser n omobile,	Heart, nembrane), Agricultur	Prosthetic Cardiac Valves, Artificial lung (oxygenateor), Dental Implants, Orthopaedic Implants and Biomaterials in Ophtha al, Oil and gas industries.	Ar lmolo	tificia gy -	l k Aero	Cidney space,
		-	Tota	l (L+	T) =	45 H	ours
Cou	urse Oı	itcomes:					
Upo	on com	pletion of	this course, the students will be able to:				
CO	91 :	Understan	d the fundamentals of AdditiveManufacturing Technologies for engineerin	gappl	icatio	ns.	
СО	2:	Understan their appli	d the methodology to manufacture theproducts using SLA and SGC techno cations, advantages and case studies.	ologies	and	study	
CO	3:	Understan their appli	d the methodology to manufacture theproducts using LOM and FDM techr cations, advantages and case studies.	ologi	es and	l study	/
CO	94 :	Understan study their	d the methodology to manufacture theproducts using SLS and 3D Printing r applications , advantages and case studies.	techno	ologie	es and	
CO	95 :	Understan	d the fundamentals of AdditiveManufacturing Technologies for engineerin	gappli	catio	ns.	
Text	Books	:					

1.	Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2nd Ed, 2014.
2.	Chua C.K., Leong K.F. and LIM C.S Rapid prototyping: Principles an Applications, World Scientific publications, 3rdEd., 2010
Refere	nce Books:
1.	D.T. Pham and S.S. Dimov, "Rapid Manufacturing", Springer, 2001
2.	Paul F. Jacobs, "Rapid Prototyping and Manufacturing"–, ASME Press, 1996
3.	Terry Wohlers, "Wholers Report 2000", Wohlers Associates, 2000.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO
0																4
CO1	2	1	2	3	2	1	1	0	0	0	2	2	3	3	2	
CO2	2	3	2	2	1	0	1	2	0	0	2	3	3	2	1	
CO3	2	2	2	2	2	1	3	2	0	0	3	3	2	2	3	
CO4	2	2	3	3	2	1	0	0	0	1	3	2	1	1	0	
CO5	2	3	1	1	2	0	1	0	2	1	1	0	0	0	1	1
Total	2	2.2	2	2.3	1.6	0.6	1.6	1.3	0	0	1.6	2.6	2.6	2.3	2	0.2
1-	Faintly	΄,	2- N	/loderat	ely,	3	- Stron	gly								

	22N	ITE25	NANO MATERIALS	L	Т	Р	С
				3	0	0	3
Cou	rse C	bjectives:				•	
1.	Descr	be the various	synthesis methods				
2.	Identi	dy the various	types and forms of nano materials				
3.	Know	the applicatio	n of nano materials in various fields				
UN	IT I	INTROD	UCTION AND SYNTHESIS BY MECHANICAL METHODS:		9	+	0
Intro vario nano meth Milli	duction ous pr mater ods f ng (M	n: Definition, operties – Stru- als with conv or producing M)- Severe Pl	classification of nanomaterials- Structure of nanomaterials - Effect of nan actural, thermal, chemical, mechanical, magnetic, optical and electronic prentional materials. Synthesis: Basic approaches- top down and bottom up nanomaterials. Solid State (Mechanical methods): Mechanical Alloying (J astic deformation – ECAP,HPT,ARB	ioscale roperti o appi MA)	e dim ies. C roache and N	ension Compa es- va Mecha	is on rison rious inical
UN	IT II	SYNTHE	SIS BY PHYSICAL& CHEMICAL		9	+	0
Top vario Lase	down ous typ r ablai	approach, Na es of CVD, So ion .Consolida	anolithography,Bottom up approach:Chemicalmethods:CVD – Steps and r ol-gel method and co-precipitation techniques. Physical methods: PVD - Evap tion of nanomaterials: Problems, Shockwave consolidations, Spark plasma sir	eactio poration tering	ons in on, Sp g.	volve outteri	d for ng &
UN	T II	CHARAC	CTERIZATION OF NANOMATERIALS		9	+	0
Elect mode Prob	tron N es of o e Tom	I of X-ray discovered (THeorem 2017) Interestion and a cography.	EM), Atomic Force Microscope, Field Ion Microscope – Construction, work application in nanomaterial characterization. Nano indentation technique. In	troduc	vi), i princip prion t	ole, di to 3D	fferent Atom
UNI	T IV	APPLICAT	TONS OF NANOMATERIALS - I	9	+	0	
Nano dots:	o-elect Fabri	ronics, Micro cation and app	and Nano Electromechanical systems, nanosensors, Electrical and optical lications. Nanofluids and their applications.	appli	cation	is. Qu	antum
UN	IT V	APPLICA	ATIONS OF NANOMATERIALS - II		9	+	0
Ener nano	gy apj tubes:	Dications: ene Types, structu	rgy storage devices, fuel cells, solar cells, Biomedical applications. Structur res, synthesis and applications. Health and environmental issues related to nar	al app 10mat	olicati erials	ons. C	larbon
			Tota	l (L+	T) =	45 H	ours
Cou	rse C	utcomes:					
Upo	n con	pletion of the	s course, the students will be able to:				
CO	l :	Distinguish milling	synthesis of nanomaterial's using different methods such as mechanical alloying	ng and	l mec	hanica	ıl
CO2	2 :	Describe the	various deposition processes of nanomaterial's like physical ,chemical and the	ermal	meth	ods	
CO3	3 :	Demonstrate	the various nano material characterization techniques such as AFM, XRD, SI	EM an	d TE	M.	
CO4	:	Demonstrate industries	the electronic and optical applications of nonmaterial's in semiconductor				
CO5	:	Demonstrate	the applications of nano materials in energy storage devices and biomedical in	ndustr	ies		

Text l	Books:
1.	B.S Murthy ,P.Shankar, Baldevraj, B.BRath, JamesMurday – Text book nano science and nanotechnology, University press(India)Pvt Ltd, Hyderabad 2012
2.	Dieter vollath , Nanomaterials : An introduction to Synthesis, Properties and applications, Second edition, Wiley – VCH verlag Gmbh& co ,Germany 2013
Refer	ence Books:
1.	Pradeep T, — Nano : The essentialsl, Tata McGraw Hill Publishing Company Limited, New Delhi, 2007
2.	B. S. Murty et al., Textbook of Nanoscience and Nanotechnology, Universities Press (India) Private Limited 2013
3.	Bharath Bhushan, Springer Handbook of Nanotechnology, Springer – Verlag, New York, 2004.
4.	Charles P. Poole and Frank J Owens, Introduction to Nanotechnology, John Wiley and Sons Inc, New York, 2003.

CO PO MAPPING

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO
																4
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	1
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	.4
1	Faintly	17	2 1	Indera	talv	3	Stron	alv								

1- Faintly, 2- Moderately, 3- Strongly

22N	MTF	226	THIN FILMS, COATINGS AND APPLICATIONS	L	Т	Р	С
				3	0	0	3
Course	Obj	jective	s:		I	1	
1. To	o stuc	ly abou	t thin films, coatings and application techniques.				
UNI	ΤI	INT	RODUCTION		9	+	0
Need for growth substrat	or mi : nuo te su	niaturiz	zation, Basics of thin film, Brief review of kinetic theory of adsorption, desorp and growth kinetics. Vacuum science and technology, Vacuum pumps, ubstrate cleaning. Epitaxy, thin film growth control,	tion, t surfac	film ce: ro	ole of	
UNI	ТII	TEC	CHNIQUES OF COATING		9	+	0
Physica sputteri	al vaj ing p	por dep rocesse	osition (PVD) processes, evaporation: thermal and e-beam. Principles of glow s. Fundamentals of Chemical Vapor Deposition (CVD) processes.	v discl	harge	and v	various
UNI	ГШ	OTH	IER TECHNIQUES		9	+	0
Pulsed techniq	lase ues,	r depos SILAR	ition (PLD), other techniques: electro-deposition, spin Coating, sol-gel, La technique, Doctor blade technique, printing.	ngmu	ir Bl	odgett	t (LB)
UNI	ΓΙ	HAH	RD COATINGS		9	+	0
Hard c microst	oatir tructu	ig: phy iral cha	sical, mechanical and protective properties, basic thin film thickness meas racterization of films/coating.	surem	ent,	1	I
UNI	ΓV	APP	LICATIONS		9	+	0
			Tot	al (L·	+T)=	-45 H	ours
Cours	e Oı	itcome	28:				
Upon o	comj	pletion	of this course, the students will be able to:				
C01	:	Explai	n the basics of adsorption, desorption and need of vacuum				
CO2	:	Descri	be the principles, process and advantages of different techniques				
CO3	:	Know	about various hard coating techniques				
CO4	:	Identi	fy thin film devices and applications of it.				
Text B	Book	s:					
1.	Mil	ton Ohr	ing, Materials Science of Thin Films, 2nd Edition, Academic Press, 2001				
2.	Har	tmut Fr	ey and Hamid R Khan, Handbook of Thin Film Technology, Springer,2016				
Refere	ence	Books	:				
1.	K. I	Chop	ra & L. K. Malhotra, Thin film Technology and Application, Tata McGraw-Hil	11, 198	35		
2.	Pete	er M. M	artin, Handbook of Deposition Technologies for Films and Coatings, Elsevier,	1994			
3.	San	n Zhan	g, Nanostructured Thin Films and Coating, CRC Press, 2010				

CO/P	PO	PO	PO	PO	PO	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1	2	3	4	5					0	1	2				4
CO1	1	3	3	3	2	0	0	0	0	0	1	2	3	2	2	
CO2	2	1	3	2	0	1	2	3	0	0	2	2	2	3	2	
CO3	2	3	3	3	3	0	1	0	0	0	3	3	3	3	3	
CO4	2	3	3	3	3	0	0	0	0	3	3	3	3	3	3	1
Total	1.4	2	3	2.2	1.6	0.2	0.6	0.6	0	0.6	1.8	2	2.2	2.2	2	0.25
1- Fa	aintly,		2- M	oderate	ely,	3	- Stror	ngly					•			

22N	ITE	27	AEROSPACE MATERIALS	L	Т	Р	С				
				3	0	0	3				
Course	Ob	jective	s:								
1. To	ana	lyze the	e materials for aerospace.								
UNI	ГΙ	MEC	HANICAL BEHAVIOUR OF ENGINEERING MATERIALS	ç)	+	0				
Knowle elastic j effect- e	edge prope effect	of vario erties – : t of note	us type of hardness testing machines and various types of hardness number lestress and strain curves – yielding and strain hardening toughness- modulus of thes – testing and flaw detection of materials and components.	inear f resili	and i	non – - bauc	linear hinger				
UNI	ТII	MA	FERIALS IN AIRCRAFT CONSTRUCTION-01	ç)	+	0				
Alumin Magne special	nium sium trea	and its and it tments.	alloys: types and identification. Properties-casting-heat treatment processes-s s alloys: cast and wrought alloys-aircraft applications, future specification, Titanium and its alloys: application, forming, machining, welding and heat treatment processes.	urface fabri tment	trea catio	tments n pro	olems,				
UNIT	UNIT III MATERIALS IN AIRCRAFT CONSTRUCTION-02										
Steels: resistan Supera treatme	plain nt ste lloys ent.	n and lo eels, str s: use –N	w carbon steels, various low alloy steels. Aircraft steel specification, corrosion uctural applications. Maraging steels: Properties and applications Copper al Ji base-Co base-Fe base- forging and casting of superalloys -welding, heat	and h loys:	eat Mon	el, K-1	nonel				
UNIT	IV	ADH	ESIVE AND SEALANTS FOR AIRCRAFTS	9)	+	0				
Advanta adhesiv sandwio	ages e ma ch str	of bond aterials- uctures-	ed structure in airframes, crack arresting-weight saving- technology of adhesive test for bonding structure Typical bonded joints &non destructive tests for materials – methods of construction of honeycombs	bond bond	ling s led jo	tructu bint bo	ral onded				
UNI	ΤV	NON	N METALS IN AIRCRAFT CONSTRUCTION		9	+	0				
Wood introdu	and f	fabric in n to glas	aircraft construction and specifications- Glues use of glass, plastics and rubber s and carbon composites	in air	craft	s,					
			Tota	l (L+	T) =	45 H	ours				
Course	e Ou	itcome	S:								
Upon co	ompl	etion of	this course, the students will be able to:								
CO1	:	Explain	the properties of aerospace materials.								
CO2	:	Describ	e the light alloys and special materials for aircraft construction.								
CO3	:	Explain	the on metallic materials used in aircraft joining								
CO4	:	Explain	n the Non metallic materials used in the aircraft industries.								
Text B	ooks	5:									
1.	H. I	Buhl, A	dvanced Aerospace Materials, Springer Verlag, Berlin 1992.								
Refer	ence	Books									
1.	Bal	ram Gu	pta et.al Aerospace Materials Vol 1, 2, 3 ARDB, S. Chand & Co. 1996.								

CO/P	PO	PO	PO	PO4	PO	PO6	PO7	PO	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1	2	3		5			8		0	1	2				4
CO1	1	3	3	3	2	0	0	0	0	0	1	2	3	2	2	
CO2	2	1	3	2	0	1	2	3	0	0	2	2	2	3	2	
CO3	2	3	3	3	3	0	1	0	0	0	3	3	3	3	3	
CO4	2	3	3	3	3	0	0	0	0	3	3	3	3	3	3	1
Total	1.4	2	3	2.2	1.6	0.2	0.6	0.6	0	0.6	1.8	2	2.2	2.2	2	.25
1- Fa	intly,		2- Mo	oderate	ly,	3-	- Stron	gly	•	•	•	•	•	•		

22M	ITE	E28 MODELING AND SIMULATION IN MATERIAL PROCESSES	Ľ	Т	Р	С	
				3	0	0	3
Course	e Ol	bjectives:					
1. To	stu	ady about available softwares for modelling of different processes.					
UNIT	ľ	INTRODUCTION			9	+	0
Introduc modellin	ction ng, o	n to modelling, simulation models and Casting process: modelling of heat one-dimensional and multidimensional inverse modelling, fluid flow and heat	transfer, dir transfer mo	ect de	heat l.	cond	uction
UNIT	II	CASTING MODELING			9	+	0
Thermo	dyn	namics of solidification, metal/mold interfacial heat transfer, deformation and	d stresses	in (castin	igs, th	ermo-
mechan castings	ical , co	modelling in casting, determination of heat transfer coefficient and air gontinuous casting and DC casting process.	gap width i	n p	perma	anent	mould
UNITI	Π	WELDING AND HEAT TREATMENT SIMULATION			9	+	0
Welding	g pr	ocess: weld heat -source models, thermal analysis with-microstructure, transf	ient fluid fl	ow,	resid	dual s	tresses
in welds	s, H	eat treatment: metal quenchant, interfacial heat transfer, diffusion model, micr	ostructure 1	noc	lel, c	arburi	zation
model, o	quei	nch crack simulation, creep simulation.		-	0		
UNIT	IV	MODELLING			9	+	0
Modelli modelli	ng o ng a	of rolling, forming and extrusion processes, Artificial Neural Net works in m and Monte-Carlo simulations.	aterials pro	ces	sing,	Phase	e-field
UNIT	V	SOFTWARES			9	+	0
Introduc	ction	n to commercially available softwares - Solid Cast, Flow Cast, OptiCast, Def	orm HT, Pr	oC	ast, N	/agma	a Soft,
Design	of e	experiments and factorial designs.					
			Total (1	Ĺ+'	Γ) =	45 H	ours
Course	e Oi	utcomes:					
Upon c	om	pletion of this course, the students will be able to:					
C01	:	Explain the basics of modelling.					
CO2	:	Describe the principles in casting modelling.					
CO3	:	Know about welding and heat treatment simulation					
CO4	:	Identify commercially available softwares for modelling					
Text B	ook	s:					
1.	Moo	delling in Welding, Hot Powder Forming and Casting (Eds. L. Koarlsson), AS	M, Materia	sPa	ark, C	OH, 19	997.
2.	Szel proc	kely, J., Evans, J.E .and Brimacombe, J.K., The Mathematical and Physical Mo cessing Operations, Wiley, 1988.	odelling of l	Prir	nary	Metal	

Refere	ence Books:
1.	Numerical Recipes: The Art of Scientific Computing, Cambridge Univ. Press, N.Y., 1988.
2.	D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, warrendale 1994.
3.	R.I. L. Guthrie: Engineering in Process Metallurgy, Oxford Science Publications (1989)

00/00	DO1	DOA	DOA	DO 4	DOF	DOC		DOO	DOA	DO10	DO11	DO14	DCO1	DC A	DCOO	DCO
CO/PO	POI	PO2	PO3	PO4	P05	PO6	PO7	PO8	PO9	POIO	POII	POI2	PSOI	PS02	PSO3	PS0
																4
CO1	0	3	2	1	3	3	2	3	2	2	2	3	3	3	3	
CO2	0	2	2	3	2	2	1	2	2	2	3	2	3	3	3	
CO3	0	2	2	2	2	2	3	2	3	3	3	3	3	2	2	
CO4	0	2	2	2	2	2	1	0	1	1	1	2	3	2	1	1
Total	0	2.2	2	2	2.2	2.2	1.7	1.7	2	2	2.5	2.5	3	2.5	2.2	.25
1.	- Faintl	V	2_	Moder	atelv		3_ Stro	ngly								

1- Faintly, 2- Moderately, 3- Strongly

22	WELDING METALLURGY	L	Т	Р	С						
				3	0	0	3				
Cou	ırse (Objec	tives:								
1.	To k	now th	e concepts of different materials joining and allied processes.								
2.	To u	ndersta	and the metallurgical aspects of welding.								
UN	I TI	W	VELDING METALLURGY PRINCIPLES		9	+	0				
Then of co these	Thermal cycles in welding: basic heat transfer equations, temperature distributions and cooling curves, dependence of cooling rate on heat input, joint geometry, preheat and other factors. Comparison of welding processes based on these considerations.										
UN		9	+	0							
Weld diffe trans acics	Welding of ferrous materials: Iron-carbon diagram, TTT and CCT diagrams, effects of steel composition, formation of different microstructural zones in welded plain-carbon steels. Welding of C-Mn and low-alloy steels, phase transformations in weld and heat-affected zones, cold cracking, role of hydrogen and carbon equivalent, formation of acicular ferrite and effect on weld metal toughness.										
UN	IT II	IW	ELDING OF ALLOY STEELS		9	+	0				
Weld auste diffi	Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic types, welding of austenitic stainless steels, hot cracking, sigma phase and chromium carbide formation, ways of overcoming these difficulties, welding of cast iron.										
UN	ТΓ	VW	VELDING OF NON-FERROUS METALS		9	+	0				
Weld and tech	ding (soluti nique	of non ons. D s of dis	n-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, point problems – Calculation of dilution – methods of ssimilar welding.	proble contro	ms er olling	ncoun diluti	tered on –				
UN	IT V	V W	VELDABILITY AND TESTS		9	+	0				
Conc of hy crack crack	cepts droge ting to king,	of wellen. Phe ests. D cause	dability, carbon equivalent, and concept of preheat and post weld heat treatment, enomenon of hot cracking, reheat cracking and lamellar tearing. Weldability tests refects in welded joints: Defects such as arc strike, porosity, undercut, slag es and remedies in each case.	cold o – cold g entr	cracki l crac apme	ng, ar king a ent ar	nd role and hot and hot				
			Total	(L+T	") = 4	45 H	ours				
Cou	ırse (Outco	mes:								
Upo	n con	pletio	n of this course, the students will be able to:								
CC)1 :	Un	derstand the working principle, merits and demerits of different conventional weld	ling pi	rocess	es.					
CC)2 :	Un	derstand the working principle, merits and demerits of different solid state welding	g proc	esses.						
CC)3 :	Un	derstand the working principle, merits and demerits of different special welding pr	ocess	es.						
CC)4 :	Un	derstand the working principle and importance of allied processes in metals joining	g.							
C	C05 : Solve welding heat flow related problems. Learn weldability and welding related problems of different materials.										

Text	Books:
1.	Parmar, R.S., -Welding Engineering and Technology [∥] , Khanna Publishers, New Delhi, 2003.
2.	Lancaster J.FMetallurgy of Welding [∥] , George Allen & Unwin. Boston. 1980.
Refere	nce Books:
1.	Linnert. G.E. –Welding Metallurgy ^{II} . Vol. 1 and 2. 4 th edition. A W S. USA, 1994.
2.	Sindo Kou, Welding Metallurgy, John Wiley & Sons, 1987.
3.	Granjon. H, -Fundamentals of Welding Metallurgy∥, Jaico Publishing House, New Delhi, 1994.
4.	Nadkarni S.V., "Modern Arc Welding Technology", Oxford & IBH Publishing Co., 1988.
5.	Schwartz M.M., "Metals Joining Manual", McGraw- Hill Inc., 1979.
6.	ASM Metals Handbook, Vol. 6,"Welding Brazing & Soldering", ASM International, Metals park, Ohio, USA, 2001.

CO/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO
0																4
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	0.2
1-]	Faintly	,	2- M	Ioderat	ely,	3	- Stron	gly		•	•	•	•	•	•	

22MTE	230	FOUNDRY METALLURGY	L	Т	Р	С					
			3	0	0	3					
Course Ob	jecti	ves:									
1. To	know	the basic concept of metal casting technology									
2. To	apply	the concept to produce new materials									
UNIT I		SOLIDIFICATION OF METALS AND ALLOYS:		9	+	0					
Solidification of Castings, Effect of Solidification Range on Freezing Pattern, effect of Moulding Materials and Cooling Rate on Freezing Pattern, Shrinkage of Casting and Directional Solidification of Castings, Fluidity, Definition, Factors Affecting and Measurement Fluidity.											
UNIT II CAST IRONS											
Graphitizatio	n, ty	pes and Sizes of Graphite for Grey Cast Iron and S.G.Iron, effect of normal el	emen	ts and	i Allo	ying					
Elements in Cast Irons, Compositional Aspects and Properties of Austenitic Cast Irons, High Silicon Cast Irons, High											
Chrome Cast Iron and Ni-Hard Cast Irons, Production of S.G Iron, Austempered SG Iron, CG Iron, Malleable Cast Iron and Alloy Cast Irons, briaf introduction on Indian and ASTM Standards for Creat Cast Iron and SC Iron											
UNIT II	I	METALLURGY OF STEELS:	non.	9	+	0					
Effect of A Specification Operations, I Grain Refine	Effect of Alloying Elements on Castability of Steels, Compositional Aspects and Properties of Alloy Steels, Specifications of Cast Steels, Low Alloy Steels and Stainless Steels. Stresses - Origin, Effects and Stress Relieving Operations, Precautions to be taken in Moulding and Melting of Steels, Gating and Riser Design for Steel Casting, Grain Refinement of Steels. Defects in Castings- appearance, their Causes and Remedies.										
UNIT I	V	METALLURGY OF NON-FERROUS CAST ALLOYS:		9	+	0					
Specification Nickel base Remedies.	s, Co Allo	omposition, Properties and Phase Diagrams of Copper, Aluminium, Magnesiu bys, Modification and Grain Refinement -Defects in Castings- appearance,	ım, Z thei	inc A ir Ca	Alloys auses	and and					
UNIT V	7	MELTING PROCEDURE ANDCOMPOSITION CONTROL		9	+	0					
Cast Irons F Slag-Metal F and Degassir	Plain React 1g Te	Carbon Steels, Stainless Steels, Al Alloys. Mg alloys, Nickel alloys. Zinc alloys ions, Desulphurization, Dephosphorisation, inoculation and inoculating technic chnique.	and ues-C	Copp Gases	er alle in M	oys, etals					
		Total (L+T) = 4	15 H	ours					
Course Ou	tcon	es:									
Upon comple	etion	of this course, the students will be able to:									
CO1	:	Explain the solidification of casting, effect of solidification range, fluidity fluidity	and	factor	rs affe	ecting					
CO2 : Discuss the cast iron categories, their types and different heat treatment methods like graphitization, spherodization etc and denote the ASTM standards for all the varieties											
CO3	:	Discuss the alloying element effect on the steels and mention the precaution to and melting of steels	be ta	lken i	n mou	ılding					
CO4	:	Describe the casting methods employed for fabrication of non-ferrous alloys									
C05	C05 : Mention the melting procedure that is adopted for the various alloys like steels, stainless steels, discuss the slag-metal reactions										

Text	Text Books:										
1.	Heine R W., Loper, C.R.Rosenthal, P.C., "Principles of Metal Casting" ,Tata-McGraw Hill Publishing Co Ltd, New Delhi, 2018.										
2.	Beeley, P.R., Foundry Technology, Butterworths, London, 2016.										
3.	Srinivasan N K., "Foundry Engineering", Khanna Tech Publications, New Delhi, 2018.										
Refe	rence Books:										
1.	ASM Metals hand Book, Vol 15, "Casting" ASM International, 10th edition, 2001.										
2.	Flinn,R.A., Fundamentals of Metal Casting, Addison Wesley Inc., 1983.										
3.	Murphy, A.J., Ed., Non Ferrous Foundry Metallurgy, 1984										
4.	The Foseco Foundryman's Hand book, Pergamon Press, 10 th edition, 1995.										

1

CO PO MAPPING

Г

00/10	DO1	DOA	DOA	DO 4		DOC		DOO	DOG	DO10	D011	D010	DCO1	DCOA	DCOA	DGO
CO/P	POI	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	POI0	POII	PO12	PSOI	PSO2	PSO3	PSO
0																4
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	.2
1-	Faintly	΄,	2- N	/loderat	tely,	3	- Stron	gly								

22M	ГЕЗ	NUCLEAR MATERIALS	L	Т	Р	С
			3	0	0	3
Course	e Oł	ojectives:				
1. To	stu	dy about materials required for nuclear applications.				
UNIT	Ί	INTRODUCTION		9	+	0
Structur their all	e of oys	a nuclear power plant, requirements of reactor materials, fuel materials, plutonium us & compounds.	aniun	n and	thoriu	m and
UNIT	Π	CORE MATERIALS		9	+	0
Core m zirconiu ferritic, embrittl	ater im a chi eme	ials: beryllium, graphite, control and shielding materials, magnesium & its alloys, a & its alloys, austenitic stainless steel; materials for reactor vessel and other comp romium stainless steels, copper alloys, titanium and its alloys, coolants used ent, corrosion of reactor materials, mechanical properties of materials.	onent in r	ium s, pea eactor	& its a rlitic s: rac	alloys, steels, liation
UNIT	III	REACTOR INSTRUMENTATION		9	+	0
Reactor pressuri powered	Ins zed d de	trumentation — general considerations — Reactor Nuclear Instrumentation system water nuclear instrumentation, boiling water reactor nuclear instrumentation, E tectors, detectors based on beta decay, detectors based on secondary electrons from ga	ns — ncore mma	an o dete decay	vervie ctors,	w — self-
UNIT		9	+	0		
estimate principl activatio	e, R e of on a	utherford back scattering (RBS) and elastic recoil detection analysis(ERDA). Nucleate the technique and required instrumentation, nuclear reactions suitable for nuclear reanalysis. PIXE and XRF techniques.	ar read	ction analys	analys sis, ne	is — utron
UNIT	V	NUCLEAR WASTE MANAGEMENT		9	+	0
Nuclear reproces nuclear environ geologic	W was was men c wa	aste Management: Introduces scientific and engineering aspects of the manag high-level waste, low-level wastes, and decommissioning wastes. Characteristics stes and waste forms. Fundamental processes and governing equations of radiona t. Discussion of performance assessment for repositories. Design principles and e aste disposal systems. Tota	ement and aclide valuat	of s classi trans ion m T) =	pent fication port in the thod 45 H	fuel, on of n the s for ours
Course	e O	itcomes:				
Upon co	mp	etion of this course, the students will be able to:				
CO1	:	Know about the structure of a nuclear power plant				
CO2	:	Identify the reactor core materials				
CO3	:	Classify various reactor vessel materials				
CO4	:	Identify corrosion of reactor materials and mechanical properties of materials.				
CO5	:	Understand the waste management of nuclear materials.				
Text B	ook	s:				

- 1. V.Gerasimov& A. Monakhov, Nuclear Engineering Materials, Mir Publishers, Moskow, 1983.
- 2. D.S.Clark& W.R Varney, Physical Metallurgy for engineers, East West Press, New Delhi, 1987

Reference Books:

1. C.M. Srivatsava & C.Srinivasan, Science of engineering Materials, 1997, New Age International.

CO PO MAPPING

Δ		-	105	P04	P05	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
U										0	1	2				4
CO1	2	3	3	3	3	2	2	2	2	0	1	1	1	2	1	
CO2	2	3	3	3	2	3	3	2	2	0	2	1	3	2	1	
CO3	1	0	1	2	2	2	1	1	1	0	1	2	2	2	2	
CO4	2	2	2	3	3	2	2	0	0	0	2	2	2	2	2	1
CO5	2	2	2	1	3	3	2	0	1	0	2	2	2	2	2	1
Total	1.7	2	2.2	2.7	2.5	2.2	2	1.2	1.2	0	1.5	1.5	2	2	1.5	0.4

1- Faintly,

2- Moderately, 3- Strongly

2	22MTE32 INTRODUCTION TO INSTRUMENTATION L													
				3	0	0	3							
Cou	rse	Objectiv	es:											
1.	To a to co	equire bas ntrol the	sic knowledge on measurements using different tools and skills to implement m	easur	emen	t techr	iques							
UN	ITI	GEN	NERAL CHARACTERISTICS OF A MEASUREMENT SYSTEM		9	+	0							
Thre displ capae - stat	e stag acen citan istica	ges generation ant and the transdual treatme	alized measurement system(sensing and modifying and terminative stages) Servelocity transducers - potentiometer strain gauge LVDT - variable increase - Static and dynamic characteristics - Errors in measurement - Error analysis of data.	sors a ductar ysis ar	and trance the transfer to the	ansduo ransdu ussifica	cers - icers, ation							
UN	IT I	I GEO	DMETRICAL MEASUREMENT		9	+	0							
Linea meas Meas	ear measurements- limit gauges (types and design) - mechanical Comparators, slip gauge, Instru asurement - vernier and optical protractors, Sine bar. Flatness, parallelism and roundne asurement of surface finish: direct and indirect methods.													
UN	T I	I FOF	RCE, TORQUE AND STRAIN MEASUREMENT		9	+	0							
Elast circu	ic ele it, teı	ments for nperature	force measurement, torque measurements, electrical resistance. Strain gauges compensation, strain gauge rosettes. Instrument calibration - calibration standa	and 1 ards -	neasu test pi	ıring rocedı	ires.							
UN	IT I	V TEN	IPERATURE AND PRESSURE MEASUREMENT		9	+	0							
Temp mech meas	peratu anica urem	are scales al pressur ent syster	s, thermometers, thermocouples, resistance thermometers, thermisters, pyro e sensors - electrical pressure measuring devices, pressure transmitters- low ns.	and v	rs. M vacuu	lanom m pre	eters, ssure							
UN	IT V	MIC MIC	CRO PROCESSOR AND CONTROLS		9	+	0							
Basio appli	cs of catio	open loo ns. Introd	op and closed loop system, classification of variables, ON/OFF, P, PI, PID uction to Micro Processor and its architecture. Instruction sets.	contr	ollers	s and	their							
			Tota	l (L+	T) =	45 H	ours							
Cou	rse (Outcome	28:											
Upo	n co	mpletion	of this course, the students will be able to:											
CO	L	Unde	rstanding the general characterization of a measurement system											
CO2	CO2 : Select Tools suitable for linear, angular and surface measurements													
CO3	;	Under	standing force, torque and strain measurements											
CO4	:	Choos	e instruments for different temperature and pressure measurements.											
CO5	; ;	Under	standing the basics of microprocessors and micro controllers											

Text I	Books:
1.	Radhakrishnan V.R., Instrumentation and control for the Chemical, Mineral and Metallurgical processes, Allied publishers pvt. limited, New Delhi 1997
2.	Beckwith T.G. and Buck N.L., Mechanical Measurements, Addition Wesley Publishing Company Limited, 1995.
Refer	ence Books:
1.	Rangan Mani. and Sharma, Instrumentation, Tata McGraw Hill Publications Co. Ltd., New Delhi, 1985.
2.	Jain R.K., Mechanical and Industrial Measurements, Khanna Publishers, Delhi, 1984.
3.	Microprocessor Architecture, Programming, and Applications with the 8085, Ramesh S Gaonkar Penram International Publications (Pvt) Ltd, 2013.
4.	Nakra B.C., Theory and Applications of Automatic Controls, New Age International (Pvt) limited Publishers, 1998.
E- ref	erences
1.	https://nptel.ac.in/courses/112106138/

CO/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	1	1	1	2	0	0	0	0	0	1	1	3	2	1	
CO2	2	1	1	1	3	0	0	0	0	0	1	2	2	2	2	0
CO3	1	1	1	2	2	0	0	0	0	0	1	1	3	3	3	0
CO4	1	1	1	1	2	0	0	0	0	0	1	1	2	2	1	
CO5	2	1	1	1	0	0	0	0	0	0	1	2	3	2	1	1
Total	1.4	1	1	1.4	1.3	0	0	0	0	0	1	1.3	2.6	2.2	1.6	0.2
1- Faint	ly,	2.	- Mod	erately	',	3-	Strong	jly	•				•			

OPEN ELECTIVE COURSES OFFERED TO OTHER DEPARTMENTS

	22N	1T(DE01	FOUNDRY AND WELDING TECHNOLOGY	L	Т	Р	C					
					3	0	0	3					
Сог	ırse	O	ojectives:										
1.	То	kno	w the basic concept	s of metal casting technology and to apply them to produce	e of ne	ew ma	aterial	s.					
2.	To eng	kno gine	w the concepts of ering principle of ev	different materials joining technology and emphasis on terry processes.	under	ying	scien	ce and					
U	NIT	ΓΙ	MOULDING N	IATERIALS AND PATTERNS		9	+	0					
Intro code Sano	oduc es, c d pre	tior ore epar	to foundry operation boxes, moulding pra ation, Sand reclama	ons, patterns - functions, types, allowances, selection of p actice, ingredients of moulding sand and core sand, Testin tion in foundries	attern g of N	mate Moulo	rials, ling sa	colour ands.					
U	NIT	' II	MOULDING A	ND CASTING TECHNIQUES		9	+	0					
Sano oxid full	d mo le pr mou	ould oce ild p	ling: green sand mo ss, permanent moule process, Rheocasting	ulding, dry sand moulding, skin dry sand moulding, shell l casting, die casting, centrifugal casting, , investment cas , Thixo casting.	l mou ting, s	lding squee	, carbo ze cas	on- di- sting,					
U	UNIT III MELTING PRACTICE 9 + 0 Telting practice and special precautions for steels, alloy steels, cast irons, aluminium alloys copper alloy												
Mel and	Iting practice and special precautions for steels, alloy steels, cast irons, aluminium alloys, copper alloys magnesium alloys, Cleaning and repair of castings. Casting defects and remedies												
UN	TIN	IV	WELDING AN	D OTHER JOINING PROCESSES		9	+	0					
Clas tung proc	Classification of welding processes- oxy-acetylene welding, arc welding-manual, submerged arc welding, gas tungsten arc and gas metal arc welding, electro slag and electro gas welding. Brazing, soldering and cutting processes												
Ul	NIT	' V	SPECIAL WE	LDING PROCESSES		9	+	0					
Prin lase	ciple r bea	e, e am v	quipment, process v welding processes. F	ariables, merits, limitations and applications of Electron retrieves the and diffu	bean ision	i, pla weldi	sma a ng.	rc and					
				Total	(45+	-0) =	45 H	ours					
Coι	ırse	O	itcomes:										
Upo	n co	mp	letion of this course,	the students will be able to:									
CO	D1	:	Discuss the alloyin and melting of stee	g element effect on the steels and mention the precaution t ls.	to be t	aken	in mo	ulding					
CO	02	:	Mention the meltin discuss the slag-me	ng procedure that is adopted for the various alloys like tal reactions	steels	s, stai	nless	steels,					
CO)3	:	Understand and de welding-manual pr	scribe the gas and arc Welding processes such as Fusion w ocess and Gas metal arc welding etc. and their heat source	elding s.	g proc	cess, A	Arc					
CO	D4	:	Describe the Braz applications.	ing, Soldering and cutting processes and their advantag	ges, li	mitat	ions a	ınd					
CO	05	:	Explain the pressu welding processes, welding.	re welding processes such as cold, hot pressure welding and special welding process such as Electron beam, plasm	g, fric 1a arc	ction, and la	friction aser bo	on stir eam					
Tex	t B	ook	s:										
1.		Hei Co	ne R W., Loper, C. Ltd, New Delhi, 200	R.Rosenthal, P.C.,"Principles of Metal Casting", Tata-Metal 8.	cGraw	/ Hill	Publ	ishing					
2.		Srir	ivasan N K.,"Found	ry Engineering", Khanna Tech Publications, New Delhi, 2	005.								
3.	, ,	Pari	nar, R.S., -Welding	Processes and Technology [∥] , 2nd edn. Khanna Publishers, I	New I	Delhi,	2001						

4.	Srinivasan N K ,"Welding Technology", Khanna Publications, Delhi, 2000
Refer	rence Books:
1.	Beeley P R., "Foundry Technology", Butterworths, London, 1982.
2.	Howard B. Cary, "Modern Welding Technology", Prentice Hall, New Jersey, USA, 1998.

CO/P	PO	PO	PO	PO	PO	PO6	PO	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1	2	3	4	5		7			0	1	2				4
CO1	1	0	0	2	2	0	0	0	0	0	1	2	3	2	2	
CO2	1	1	1	2	1	0	0	0	0	0	2	1	3	3	3	
CO3	1	2	2	2	3	0	0	0	0	0	1	2	2	2	3	
CO4	1	2	3	2	3	0	0	1	1	0	2	1	3	2	3	
CO5	1	1	2	1	0	0	0	0	0	2	1	3	3	3	1	1
Total	1	1.2	1.6	1.8	1.8	0	0	0.2	0.2	0.4	1.4	1.8	2.8	2.4	2.4	0.2
1 E	aintly.		\mathcal{O}	adamat	al.,	-	2 Ctro	n al								

1- Faintly, 2- Moderately, 3- Strongly

22	мтое	02	SURFACE ENGINEERING	L	Т	Р	С							
				3	0	0	3							
Course	e Objec	ctives:												
1. An	alyze th	e various concepts	s of surface engineering and comprehend the design difficul	lties										
UNI	ΤΙΤ	RIBOLOGY A	ND PLATING PROCESSES		9	+	0							
Introduce wear, re- plating electrol- anodizi	ction to oles of f of nicl ess plati ng.	tribology, Wear: riction and lubric kel, chromium, t ng, electrochemic	Types of wear - adhesive, abrasive, oxidative, corrosive, ation and wear testing. Plating Processes: Fundamentals of in and copper, pulsed plating, hydrogen embrittlemen cal conversion coating, selective plating for repair, plat	eros of ele t, pl ting	tive a ectrod ating prope	nd tro e posi adhe rties,	otting ition, sion, hard							
UNI	ГПН	IARD FACING	PROCESSES		9	+	0							
SMAW spray pr	, GTAV	 , GMAW, FCAW - HVOF, Detonat 	V, SAW, PAW, Oxy-Acetylene Welding, Furnace fusing, T ion gun and jet kote processes, hard facing consumables.	Therr	nal-sp	oray, r	name							
UNIT	UNIT III SPECIAL DIFFUSION PROCESSES 9 + 0 Principle of diffusion processes - Boriding, Aluminising, Siliconising, Chromising - Selection of diffusion													
Principl process applicat	le of dif es - Ch tions.	fusion processes - aracteristics of di	- Boriding, Aluminising, Siliconising, Chromising - Selec ffused layer - micro structure and micro hardness evalu	tion ation	of dif - pr	fusior operti	n es and							
UNIT	T IV T	HIN FILM CO	ATINGS		9	+	0							
depositi and app UNIT Electron by lase	ion - real plication $\Gamma V H$ n beam l er and	tive sputtering - s. S. CIGH ENERGY nardening, glazing Electron beam.	TiC, TiN, Alumina, CBN, Diamond and DLC coatings. St MODIFICATION AND SPECIAL PROCESSES g, Laser beam hardening glazing ion implantation, Composi Surface cements, Wear tiles, Electro spark deposition,	tructu ite su	9 rface	ropert + create	ies 0 ed cloth							
thermal	/ chemi	cal. Ceramic coati	ings, centrifugal cast wear coatings, Wear sleeves and Wear	r plat	es. T) –	<u> 45 н</u>	ours							
Cours	e Outco	omes:			<u> </u>	10 11	ours							
Upon c	ompletic	on of this course, t	he students will be able to:											
CO1	: Un the	derstand the influe plating process	ence of the tribological characteristics and improvise the	mate	rial p	ropert	y by							
CO2	: Ex	plain the various h	nard facing processes											
CO3	: En	hancement of sur terial such as bori	face properties with diffusion of foreign atoms into the ding, aluminizing, etc	outer	r surf	ace of	f the							
CO4	. De	scribe the various	vapour deposition processes of different materials on the su	urfac	e of n	ative								
CU4	• ma	terials using the C	nemical, Physical and Thermal vapour deposition processe	S.										
C04	• ma De hau	scribe the Moderr dening.	nemical, Physical and Thermal vapour deposition processes n processes and high energy processes like electron beam h	s. arder	ning, i	laser t	oeam							
CO4 CO5 Text B	• ma De • har Books:	scribe the Moderr dening.	nemical, Physical and Thermal Vapour deposition processes n processes and high energy processes like electron beam h	arder	ning, 1	laser t	beam							
CO5 Text B	ma De har books: Chattop	adhyay R., Surfac	nemical, Physical and Thermal Vapour deposition processes n processes and high energy processes like electron beam h	arder arder	ning, T	laser t	peam							
CO5 Text B 1. 2.	i ma De hai Books: Chattop Kennet	adhyay R., Surfac	Thermical, Physical and Thermal Vapour deposition processes in processes and high energy processes like electron beam h we Wear: Analysis, Treatment, Prevention, ASM Internation face Engineering for Wear Resistance, Prentice Hall, Engle	arder al, U	ning, 1 SA, 2 d Clif	laser t 001 f, 199	0.							
CO5 Text B 1. 2. Refere	ma ma De han chattop Kennetl ence Bo	adhyay R., Surfac	Thermical, Physical and Thermal Vapour deposition processes in processes and high energy processes like electron beam h we Wear: Analysis, Treatment, Prevention, ASM Internation face Engineering for Wear Resistance, Prentice Hall, Engle	s. arder al, U ewoo	ning, ² SA, 2 d Clif	laser t 001 f, 199	0.							

1.

2.	Ernest Rabinowicz, Friction and Wear of Materials, 2nd ed., John Wiley & Sons, NY, 1995.
3.	Davis J.R., Surface Engineering for Corrosion and Wear resistance, ASM International, 2001.

CO/	Р	Р	Р	P	P	P	Р	Р	Р	PO	PO	PO	PS	PS	PS	PSO
PO	0	0	0	0	0	0	0	0	0	10	11	12	0	0	0	4
	1	2	3	4	5	6	7	8	9				1	2	3	
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1	
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1	
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2	
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1	1
Total	1.2	1.8	1. 4	1.2	2.2	0.6	0.6	1	0.8	0. 4	1. 4	1. 6	1. 2	1.4	1	.2
1- F	Faintly,	,	2- N	loderat	tely,		3- Stro	ngly								

2	22M'	ТОЕ03	DESIGN AND SELECTION OF MATERIALS	L	Т	Р	С					
				3	0	0	3					
Cours	e Ol	bjectives:										
1. To	o kno iffere	w different types of ent applications.	materials and properties and to select better materials for									
UNI	ΤI	DESIGN PRO	CESS		9	+	0					
Materia tools at	als ir 1d m	Design, Evolution	of Engineering Materials, Design process, Types of desi ion between Function Material Shape and Process	gn, D	esign	flow	chart-					
UNI	T II	MATERIAL P	ROPERTIES		9	+	0					
Revision	n of	engineering materia	als and properties, Material properties interrelationship of	harts	such	as Y	oung"s					
cost, str	engtl	n relative cost and of	hers.	5 110	uuius	- 10	auve					
UNI	ΓШ	MATERIAL S	ELECTION		9	+	0					
Materia aided s	Materials selection, selection strategy: material attributes, attribute limits, selection procedure, c aided selection, structural index; Case studies: table legs, flywheel, springs, pressure vessels, bearings, beat exchangers, airframes, ship structures, sutomobile structures											
heat ex	chan	gers, airframes, ship	structures, automobile structures		0	<i>.</i>						
UNI'		PROCESSES A	AND PROCESS SELECTION		9 utor b	+	0					
selection	on, C	ase studies: fan, pre	ssure vessel, optical table, economical casting.	ompt	ner ba	ased p	rocess					
UNI	гν	MULTIPLE C	ONSTRAINS AND OBJECTIVES		9	+	0					
Selection	on ui	nder multiple constr	aints, conflicting objectives, penalty-functions, exchange of	consta	ants, C	Case s	tudies					
connee	ung	ious for high perior	Tota	l (L+	T) =	45 H	ours					
Cours	e Oi	utcomes:			,							
Upon c	omp	letion of this course,	the students will be able to:									
CO1	:	Explain the physic	al, chemical and electrical properties of metals and their se	lection	n crite	erion						
CO2	:	Suggest the materia	als for corrosion and wear resistance process.									
CO3	:	Suggest the materia	als for auto and aero industry.									
CO4	:	Suggest the materia	als for high and low temperature process.									
CO5	:	Suggest the materia	als for nuclear and mining industries.									
Text I	Book	S:										
1.	Mic 200	hael F. Ashby, Mate	erials Selection in Mechanical Design, third edition, Butter	rwortl	n-Hei	nemar	ın,					
2.	J. C But	harles, F.A.A. Cran terworth-Heineman	e, J. A.G. Furness, Selection and Use of Engineering Mate	rials,	third	editio	ı,					
Refer	ence	Books:										
1.	ASI	M Metals Handbook	, Vol.20: Materials Selection and Design, ASM Internation	nal,19	97							
2.	My	er Kutz, Handbook (of Materials Selection, John Wiley & Sons, Inc., New York	k, 200	2							

CO/P	PO	PO	PO	PO4	PO5	PO6	PO	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1	2	3				7			0	1	2				4
CO1	0	0	1	0	2	0	0	0	0	0	1	0	2	3	1	
CO2	1	1	3	3	2	0	2	0	0	1	2	0	2	2	2	
CO3	2	2	2	1	2	1	1	1	1	1	3	1	1	0	0	
CO4	1	0	0	0	3	2	0	1	2	2	1	1	1	0	0	
CO5	0	2	1	2	2	1	3	1	1	1	0	1	0	1	3	1
Total	0.8	1	1.4	1.2	2.2	0.8	1.2	0.6	0.8	1	1.4	0.6	1.6	1.2	1.2	0.2

1- Faintly, 2- Moderately, 3- Strongly

22	МТ	OE04	NANOSCIENCE AND TECHNOLOGY	L	Т	Р	C				
				3	0	0	3				
Course	e O	bjectives:									
1. To	stu	dy about nanomateria	ls and its application								
UNI	ГΙ	INTRODUCTION	1		9	+	0				
Definiti Technol nanoma (QDs), e nanoma	on, logy teria effe teria	Length scales, surface a 7, Top down and bot als including carbon na ct of size on thermal, me als.	area/volume ratio of micron to nanoscale materials, Importance tom up approaches, Classification of nanomaterials, Pro- notubes (CNT), graphene, metal nanoparticles, clays, nanow echanical and electrical properties of	e of N perties vires,	Nanos s of quant	cale a select cum de	nd ted ots				
UNIT	II I	SYNTHESIS OF N	NANOMATERIALS		9	+	0				
Fabricat Deform depositi graphen	Fabrication of Nanomaterials: Top-down approaches-lithography, Mechanical alloying milling, Severe Plastic Deformation, Bottom-up approaches-chemical vapour deposition, physical vapour deposition, atomic layer deposition (ALD), and Sol-gel method, Synthesis and purification of CNT, synthesis of expanded graphite (EG) or graphene.										
UNIT	' II	I NANOCOMPOSI	TES		9	+	0				
Fabricat magneti Consoli	Fabrication of nanocomposites: Fabrication of Clay-rubber, Clay-polymer, CNT-polymer, EG-polymer, magnetic particle-polymer, CNT-metal, trade off between the composites and nanocomposites etc. Consolidation of nanomaterials.										
UNIT	' IV	CHARACTERIZA	ATION OF NANOMATERIALS		9	+	0				
Charact microsc microsc	eriz ope opy	ation of Nanomaterials:, (SEM), Transmission - Atomic force microsco	X-ray diffraction (XRD), Dynamic Light Scattering, Scanning Electron Microscope (TEM), UV-Visible spectroscopy ope (AFM) and scanning tunneling microscope (STM). Nanoin	g elect , Sca identa	tron anning tion.	g pro	be				
UNIT	V	APPLICATIONS	OF NANOMATERIALS		9	+	0				
Applica fields, s and hea	tion olar lth i	s of nanomaterials: Ele cells, LED, LCD, elect ssues related to nanoma	ectronics, structural, biomedical, sensors nanofluids, optical trically conducting polymers, batteries, fuel cells, SMART Materials.	, mag aterial	gnetic, ls. En	, bion vironr	nedical nental				
			Tota	l (L+	- T) =	45 H	ours				
Course	e O 1	utcomes:									
Upon c	om	pletion of this course,	the students will be able to:								
CO1	:	Define and differentia applications.	ate engineering materials on the basis of structure and pro	pertie	s for	engin	eering				
CO2	:	Various applications o	f nanomaterials								
CO3	:	Select a material for a	particular application based on the requirements.								
CO4	:	Predict and apply the r	necessary protection mechanism to prevent corrosion								
CO5	:	Understanding details	about SEM,TEM								
Text B	ool	\$ 5:									
1.	B.S Uni	. Murty, P. Shankar, Baiversity Press (I) Pvt. Lto	aldev Raj, B BRath, James Murday, Textbook of Nanoscienc d., 2013.	e and	Nano	otechn	ology				
2.	Bha	arat Bhushan (Ed), Sprin	ger Handbook of Nanotechnology, Springer-Verlag Berlin He	Idelbe	erg, 20	004					
Refere	nce	e Books:									

1.	Charles P Poole and Frank J Owens, -Introduction to Nanotechnology , John Wiley and Sons, New York, 2003.
2.	Michael Wilson, KamaliKannagara and Geoff Smith, —Nanotechnology: Basic Science and Emerging Technologyl, Chapman and Hall, New York, 2002.
3.	Pradeep T, -Nano: The Essentials ^{II} , Tata McGraw Hill, New Delhi, 2007.

CO/P	PO1	PO2	PO3	РО	PO5	PO6	PO	PO8	PO9	PO1	PO1	PO12	PSO	PSo	PSO	PSO
0				4			7			0	1		1	2	3	4
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1	
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1	
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2	
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1	1
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1	0.2
1-	Faintly	ν,	2- N	Aodera	ately,		3- Stro	ongly								

22M7	ſOŀ	05	MATE	RIALS F	FOR AU	UTON	ΛΟΤΙΝ	VE AP	PLICA	TIONS	L	Т	Р	С
											3	0	0	3
Cours	se C	bjectives:												
1.	То	give an overvie	ew of ma	aterial proj	operties,	use	of mat	terials	selectio	n chart a	nd			
2	$\frac{\text{cons}}{\text{To } i}$	mort knowledge	aterial selec	basis of mar	atoriala co	alaatio								
2.		ive insight shout	the feeters	that influe	ateriais se			n for a	nainas a	d transmis	cion a	vetom		
3.		a still the larger about					selectio.				sion s	ystem		
4.	stru	tures	uge require	d for the sel	election o	of mat	erials IC	or autor	notive					
5.	To r	ender the basis of	f material s	election for	r electron	onics de	evices in	n the au	utomobil	e.				
UN	IT I	ENGINEER	RING MA	TERIALS	S AND '	THE	IR PR	OPEF	RTIES			9	+	0
Classe	es o	f engineering	materials	- the ev	volution	n of	engine	ering	materia	lls, Defin	ition	of n	nateri	als
prope	rties	, Displaying ma	aterial pro	perties usi	sing mat	terials	s select	tion ch	arts, Fo	orces for c	hange	in n	nateria	als
select	ion e ar	and design, Ma d defence applic	aterials an	nd the env	vironmer	ent. Se	election	n of n	naterials	for auto	motiv	e, ae	rospa	ce,
LINI	тт	BASIS OF N	MATERI/	AT SELE	CTION	N						0		0
Salaati		tratagy Attribute	limits and	AL SELE		atmioti	rolinda	av Sala	ation pr	andura: D	vian r	9	+	U
of des	ion s	design requirem	e minits and	ction Mate	indices, si terial attr	structu	s Shar	ex Sele	Manuf	octuring p	esign p	roces	is - tyj Materi	ale
proces	sing	and design proc	cesses and	their influ	uence on	n desig	gn. Pro	cess at	tributes.	Svstemati	c proc	cess s	election	on.
Proces	s se	lection diagrams,	, Process c	cost, Energy	gy consum	imption	n for pi	roducti	on, Mate	erial costs,	Avail	abilit	у,	,
Recyc	labil	ity, Environmenta	al consider	ation. Com	puter aid	ded sel	lection.							
UNI	UNIT III MATERIALS FOR ENGINES AND TRANSMISSION SYSTEMS 9 + 0													
Materi	als	selection for IC	engines: l	Piston, pist	ston ring	gs, cyl	linder,	Engin	e block,	Connecti	ng roo	l, Cra	ank sh	naft,
Fly wł	neel	, Gear box, Gea	ars, Spline	es, Clutche	es.									
UNI	ТΓ	MATERIAL	LS FOR A	UTOMO	DTIVE S	STRU	JCTUI	RES				9	+	0
Materi	als	election for bear	rings, leaf s	springs, cha	asis& fra	ames,	Bumper	r, shoc	k absorb	ers, Damp	ing flu	id, w	ind sc	reens,
panels	, bra	ke shoes, Disc, w	vheels, diffe	erentials, da	lamping a	and A	ntifricti	ion flui	ds, Tyre	s and tubes	•			
UNI	тν	ELECTRO	NIC MAT	FERIALS	S FOR A	AUTO	омот	TVE A	APPLIC			9	+	0
Materi	als t	or electronic dev	vices meant	for engine	e control.	l. ABS	. Steeri	ing. Sus	spension	. Sensors.	Tempe	rature	e sens	ors fo
climat	e co	ntrol, anti-collisio	on, Anti-fog	g, Head lam	nps.	-, ~	,~		· F · · · · · ·	, ~ ,	r -			
	Total (L+T) = 45 Hours													
Cours	se C	utcomes:									- (,	-	
Unon	com	pletion of this cou	urse the stu	idents will l	he able to	to:								
			tomic on 1 f			ahora	as in -	otori-1	colocit.	n				
		Investigate the	e influence	onces that ca	ause the c	ndev	es in m			II.	and			
CO2	2 :	Functional requ	uirements c	on selection	n strategie	ies.	manula	acturin	g proce	ss, design	anu			
CO3	; :	Recognize the te for engines and	temperature transmissio	e regime, na on system.	ature of lo	load ai	nd prop	erty rec	quiremer	nts of mater	rials			
CO4	• :	Analyse the va	arious stre	sses acting	g on the	e struc	ctural r	membe	rs of au	tomobile	under			
CO5	; :	Adjudicate the	apt materia	al for electro	ronic devi	 vices u	ised in a	automo	biles					
		-	-											

Text	Books:
1.	Charles J A and Crane. F A. A., -Selection and Use of Engineering Materials ^{II} , 3rd Edition, Butterworths, London UK, 1996.
2.	Jason Rowe, —Advanced Materials in Automotive Engineeringl, Wood Head Publishing, 2012.
Refer	ence Books:
1.	Ahmed E, —Advanced composite materials for Automotive applications, Wiley, 2013
2.	Don H Wright, Testing Automotive Materials and Components, SAE 1993.
3.	Geoff Davis, — Materials for Automobile bodies, Butter Worth Heinemann, 2012
4.	Hiroshi Yamagata, –The Science and Technology of Materials in Automotive Engines ^{II} , Elsvier, 2005
5.	Mstislav A M, Valentin N A, Gleb V M, —Automotive materials: a handbook for the mechanical engineer ^I , NTIS, 1972.

CO/P	PO	PO	PO3	PO	PO5	PO6	PO	PO8	PO9	PO1	PO1	PO1	PSO1	PSO2	PSO3	PSO
0	1	2		4			7			0	1	2				4
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1	
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1	
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2	
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1	1
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1	0.2
1	Fointh		2	Modar	otoly		2 54	on alu								

1- Faintly, 2- Moderately, 3- Strongly

HONOURS DEGREE for Metallurgical Engineering Students VERTICAL 2 : MATERIALS AND PROCESSING

22HMTMP201	ELECTRICAL, MAGNETIC AND OPTICAL MATERIALS	L	Т	Р	C
	MATERIALS	3	0	0	3
Course Objectiv	۵.				
> To study t	 he basic electrical, magnetic and optical properties of differen	t			
, materials.					
ELECTRICAL	AND DIELECTRIC MATERIALS:				(9)
Review of elect polarization - ef discussion on spe amorphous meta polymers) - dielec	trical conduction - resistivity and dielectric phenomena fects of composition, frequency and temperature on these ecific materials used as conductors (OFHC Copper, Al alloys ls) - discussion on specific materials used as dielectrics etric loss, dielectric breakdown – ferroelectricity, piezo and pyr	- c e p , Fe (cer	conc rope e-Si cami ectri	ept ertie all ics	t of es - oys, and
MAGNETIC M	ATERIALS:				,. (9)
silicon alloys – ir alloy - fine particl resistance- Nanor	on, nickel alloys - ferrites and garnets - (Ag - Mn - Al) alloys - le magnets - applications of hard and soft magnetic materials - naterials	· (C Gia	u -] nt n	- 1 Ni- nagi	Co) neto
SEMICONDUC	TING AND SUPERCONDUCTING MATERIALS:				(9)
Review of sem semiconductors - FER, MOSFET a	iconducting materials - concept of doping - simple an amorphous silicon, oxide semiconductors; amorphous sen nd CMOS - Concept of superconductivity.	nd nico	cor ndu	npo icto	ound ors -
PRODUCTION	OF ELECTRONIC MATERIALS:				(9)
Review of electro melting-refining, techniques - litho	onic materials - methods of crystal growth for bulk single c leveling - synthesis of epitaxial films by VPE, PVD, MBE graphy; production of silicon - starting applications.	anc	tals 1 M	- z [OC	zone CVD
OPTICAL PRO	PERTIES OF MATERIALS:				(9)
Introduction to electromagnetic r and translucency luminescence, physical	electromagnetic radiation, atomic and electronic inter- adiation, optical properties of metals, optical properties of non- in insulators, color of materials, applications of optical otoconductivity, lasers, optical fibers in communications	ract neta l pl	ions als, hen	opa ome	with acity ena-
	Total	45 ł	10111	rs	
REFERENCES		1			
1. Raghavan1998.2. Pradeep f	V, Materials Science and Engineering, 4th Edition, Prentice uley, Electrical, magnetic, and Optical Materials, 1st edition	Ha n, C	ll o	f In C pi	ndia, ress,

2010

- 3. Kittel C, Introduction to Solid State Physics, 6th Edition, Wiley Eastern, New International Publishers, 1997.
- 4. Dekker A.J, Solid State Physics, MacMillan India, 1995

COURSE OUTCOME:

After the completion of this course, the student will be able to:

CO1. Understand the conducting, semiconducting, superconducting, dielectric, ferro-electric and piezoelectric behavior of materials

- CO2. Differentiate between diamagnetic, paramagnetic, ferromagnetic, ferromagnetic, and antiferromagnetic behavior of materials
- CO3. Study the effect of composition, structure and temperature on the properties of the materials.
- CO4. Understand the working principles of solid state devices, etc.
- CO5. Describe the interactions of light with materials and its effects at the interface.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSo2	PSO3	PSO
																	-
CO1	1	0	0	2	2	0	0	0	0	0	0	1	2	3	2	2	1
CO2	1	1	1	2	1	0	0	0	0	0	0	2	1	3	3	3	1
CO3	1	2	2	2	3	0	0	0	0	0	0	1	2	2	2	3	1
CO4	1	2	3	2	3	1	0	0	1	1	0	2	1	3	2	3	1
CO5	1	1	2	1	0	0	0	0	0	0	2	1	3	3	3	1	1
Total	1	1.2	1.6	1.8	1.8	0.2	0	0	0.2	0.2	0.4	1.4	1.8	2.8	2.4	2.4	1

1- Faintly, 2- Moderately,

у, З

3- Strongly

22HMTMP202	MATERIALS TECHNOLOGY	L	Т	Р	С
		3	0	0	3
Course Objectiv To develo those prir	e: p an understanding of the basic principles of physical metallur, nciples to engineering materials.	gy a	ind	арр	ly
CONSTITUTIO	N OF ALLOYS AND PHASE DIAGRAMS				(9)
Phases, solid solu microconstituents Fe-C alloys – Fe- structure and prop	tions, compounds - Concept of phase diagram – phases and s in steels and cast irons – equilibrium and non-equilibrium coo C Equilibrium diagram - effects of alloying elements and coolin perties of steels and cast irons.	ling ng r	g of ate	vari on	ious
HEAT TREAT	MENT				(9)
Introduction to h annealing – norm media – case hard	eat treatment; TTT diagram and CCT diagram – hardenability alizing – hardening and tempering – heat treatment atmosphere lening techniques.	me es –	asu que	rem encl	ent, ning
STEELS					(9)
Introduction to sp steels – Ultra hig electrical applica	pecifications – plain carbon steels – low alloy and Q and T stee th strength steels – maraging steels – HSLA steels – steels for tions, processing, properties & applications	els ma	dua agne	l pl etic	nase and
STAINLESS ST	EELS AND CAST IRONS				(9)
Stainless steels – martensitic, duple iron, white iron composition of ca	phase diagrams – effects of chromium and nickel – Ferritic a ex and precipitation hardened stainless steels. Types of Cast Iro, malleable iron, S.G. Iron and alloy cast irons – physic ast irons, properties and applications. Heat treatment of cast iron	and ons- al 1 ns.	Aus Gr met	sten ay (allu	itic, Cast rgy,
NON-FERROU	S ALLOYS				(9)
Brasses, bronzes, Physical metallur	Cu-Ni alloys – High Strength Al Alloys, Ti alloys, Ni alloys a gy, composition, properties and applications.	nd N	Mg	allo	ys -
	Total :	45 F	1011	rs	
TEXT BOOKS:	1 0 mi 1	10 1	104	15	
1. Raghavan 1993. 2. Brick Gar 3. Flinn. R. Edition, J	V. "Physical Metallurgy – Principles and Practice", Prentice den Phillips. "Structure and Properties of Alloys", McGraw Hil A. and Trojan. P.K. "Engineering Materials and their App aico, 1999	Ha 1, 19 lica	11 o 976 tion	f In .s",	dia, 4th

- Leslie. W.C., "The Physical Metallurgy of Steels". McGraw Hill. 1983.
 Metals Hand book. 10th edition. Volume 2. ASM. 1995.

- 3. Askeland. D.R. "The Science and Engineering of Materials". PWT Kent Publishing Company, Boston, 1989
- 4. Pickering F.B. "Physical Metallurgy and Design of Steels". Applied Science Publishers Limited. London.

COURSE OUTCOME:

After the completion of this course, the student will be able to:

- Understand and explain the concept of growth and nucleation of crystal structures and phases in different materials.
- > Understand the various heat treatment process and its techniques.
- > Describe the different types of steel and alloy steels properties and their applications.
- > Discuss the types of stainless steels and cast iron properties and their applications.
- > Understand various non-ferrous materials properties and its applications.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSo2	PSO3	PSO4
CO1	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1	
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1	
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2	1
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	1
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1	1
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1	0.6

1- Faintly, 2- Moderately, 3- Strongly

22HMTMP203

POLYMERS AND COMPOSITES

L	Т	Р	С
3	0	0	3

COURSE OBJECTIVES

- To make the student to acquire knowledge in fundamentals of polymers, bio and inorganic polymers.
- To enable students know about various additives and to make the student to acquire knowledge about polymers meant for various engineering applications and special applications.
- To understand the fundamentals of composite material strength and its mechanical behavior

UNIT I: BIO AND INORGANIC POLYMERS

Naturally occurring polymers – starch, proteins, cellulose – Derivatives of cellulose polymers – rayon, cellophane, cellulose acetate, butyrate and nitrate – ethyl cellulose – carboxymethyl cellulose- preparation, properties- application organo metallic polymers - co-ordination polymers - polyamides- Inorganic polymers - phosphorous and nitrogen containing polymers, – silicones - hybrid polymers.

UNIT II: INTRODUCTION TO ADDITIVES

Introduction-Technological Requirements-Classification-Chemistry and Mechanism- Selection Criteria-General effect on Properties-Evaluation and functions of additives – Antioxidants -Stabilizers (Heat & UV)-carbon black-its types, manufacture and characteristics- mechanism of reinforcement of a rubber, non black fillers in rubbers

UNIT III: POLYMERS IN ENGINEERING & SPECIALITY POLYMERS

Polymers for electrical and electronics applications - polymers for high temperature applications - polymer blends, alloys and liquid crystals - polymers in lithography and water treatment - polymers for biomedical applications. Liquid crystalline polymers (LCP) - conducting polymers - heat resistant polymers - photosensitive polymers and polymers as coating additives - polymers in miscellaneous specialty applications.

UNIT IV: COMPOSITES – INTRODUCTION & LAMINA CONSTITUTIVE EQUATIONS

Definition –Need – General Characteristics, Applications. Fibers – Glass, Carbon, Ceramic and Aramid fibers. Matrices – Polymer, Graphite, Ceramic and Metal Matrices

(9)

(9)

(9)

(9)

 Characteristics of fibers and matrices. Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Typical Commercial material properties, Rule of Mixtures. Generally Orthotropic Lamina – Transformation Matrix, Transformed Stiffness..

UNIT V: LAMINATES & TESTING OF COMPOSITES

Mechanics of composites - Fracture and damage mechanics - laminates –delamination - Measurement of physical and mechanical properties: density- fibre volume fraction-void content, test for tensile-compression- flexural in fiber direction –Non- Destructive Evaluation Methods for Composites – Visual Inspection, Ultrasonic Methods, X-Ray Imaging.

(9)

45 hours

Total :

TEXT BOOKS:

1. H.F. Mark (Ed), Encyclopedia of Polymer Science and Engineering, Wiley – Interscience, New York, 1991

2. Manas Chanda, Salil K. Roy, Industrial Polymers, Specialty Polymers, and their Applications, CRC Press, 2008.

3. Robert William Dyson, Specialty Polymers, 2nd ed., Springer Verlag, 2011.

4. S.T.Peters, "Handbook of Composites", Chapmun & hall, 2nd Edition 1998.

5. F.L. Matthews and R.D. Rawlings, 'Composite materials: engineering and science', Chapman and Hall, 1994.

COURSE OUTCOMES:

Upon completing this course, the students

- Will understand the utility of bio and inorganic polymers
- Will understand about various additives for rubbers and plastics their needs, their functions and the mechanisms by which they act
- Will understand the uses of polymers in various fields of engineering and methodically discuss the applications of specialty polymers.
- Will familiarize about the fibers, matrices and lamina constitutive equations in composites

• Will develop the knowledge about laminates and testing of composites
CO/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO1	PSo2	PSO3	PSO
0	1	2	3	4	5	6	7	8	9	0	1	2				4
CO1	0	0	1	0	2	0	0	0	0	0	1	0	2	3	1	
CO2	1	1	3	3	2	0	2	0	0	1	2	0	2	2	2	
CO3	2	2	2	1	2	1	1	1	1	1	3	1	1	0	0	1
CO4	1	0	0	0	3	2	0	1	2	2	1	1	1	0	0	
CO5	0	2	1	2	2	1	3	1	1	1	0	1	0	1	3	
Total	0.8	1	1.4	1.2	2.2	0.8	1.2	0.6	0.8	1	1.4	0.6	1.6	1.2	1.2	0.2
		1-	Faintly,		2- Mod	derately.	,	3- Stro	ongly							

1- Faintly,

22HMTMP204	DESIGN AND SELECTION OF MATERIALS	L	Τ	P	С
		3	0	0	3

Course Objective:

To know different types of materials and properties to select better materials for different applications.

UNIT 1

Technologically important properties of materials - Physical, chemical, mechanical, thermal, optical, environmental and electrical properties of materials. Material property charts - Modulus – density, strength-density, fracture toughness-strength.

UNIT 2

(9)

(9)

Types of design, Design tools and materials data – Materials and shape – microscopic and micro structural shape factors – limit to shape efficiency Comparison of structural sections and material indices – case studies.

UNIT 3

Service, Fabrication and economic requirements for the components – Methodology for selection of materials – Collection of data on availability, requirements and non-functional things- its importance to the situations – case studies.

UNIT 4

Classifying process - systematic selection of process - Selection charts - Ranking of processes - case studies - Influence of manufacturing aspects and processing route on properties of materials and its influence on selection of materials.

UNIT 5

Selection of materials for automobile, nuclear, power generation, aerospace, petrochemical, electronic and mining industries.

Total : 45 hours

TEXT BOOKS :

- 1. M.F. Ashby, "Materials Selection in Mechanical Design' Third edition, Elsevier publishers, Oxford, 2005.
- 2. Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc, New Jersey, USA, 1995.
- 3. Charles.J.A. andCrane,F.A.A., "Selection and Use of Engineering Materials", Butterworths, London, UK, 1989.
- Angelo P C and Ravisankar B, "Introduction to Steel- Processing, Properties and Applications", CRC Press, Taylor & Francis Group, Florida, U.S.A., 2019.
- 5. ASM Handbook. "Materials Selection and Design", Vol.20- ASM Metals

(9) ogv

(9)

(9)

Park Ohio. USA, 1997.

COURSE OUTCOMES: Upon completion of the course, the student will be able to:

- CO1. Understand the types of materials and properties
- CO2. Know the different methods for materials selection
- CO3. Know the different methods for process selection
- CO4. Selection of materials for Specific engineering applications and processes.
- CO5. Suggest the materials for nuclear and mining industries.

CO/	PO	PO	P	Р	P	Р	Р	Р	Р	PO	PO	PO	PSO	PSo2	PSO	PSO
PO	1	2	03	04	05	06	07	08	09	10	11	12	1		3	4
001				1		0	0	0	0	0		•			-	
COI		2	0	I	2	0	0	0	0	0	I	2	2	2	I	
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1	
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2	
-																
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	1
CO5	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	1
1- Faintly, 2- Moderately,					3- Sti	ongly										

22HMTMP205	HIGH TEMPERATURE MATERIALS
Course Objective	s:
m · 1 1	

To impart knowledge on requirements for materials for high temperature use and the Behavior of materials at high temperatures.

INTRODUCTION Unit I

Need for high temperature materials, historical development of high temperature materials, and equipment for material testing at high temperatures, requirements of high temperature materials (mechanical properties and preferred microstructure, environmental resistance, erosion and wear).

Unit II PRINCIPLES FOR HIGH TEMPERATURE STRENGTHENING

Metallic materials (solid solution strengthening, precipitation strengthening, dispersion strengthening) grain size and grain boundary effects) Ceramic materials (phase control, defect tolerance, thermal shock resistance) composite materials.

Unit III **CREEP AND STRESS RUPTURE**

Creep test, stress rupture test, structural changes during creep, mechanism of creep deformation, fracture at elevated temperatures - fatigue interaction: Modes of high temperature fracture and fatigue fracture, creep-fatigue interaction (creep accelerated by fatigue), fatigue-creep interaction (fatigue accelerated by creep), micro-mechanism of damage, fracture criterion for creep fatigue, creep-fatigue failure mapping, creep-fatigue testing, influence of environment.

Unit IV MATERIALS FOR HIGH TEMPERATURE

Metals / alloys, super alloys, steels, titanium and its alloys, ceramics (Alumina, Zirconia, Silicon carbide, Silicon nitride, Glass ceramics) composites (Metal matrix composites, ceramic matrix composites) carbon – carbon composites.

Unit V COATINGS FOR PROTECTION AGAINST HIGH TEMPERATURE Q **CORROSION AND EROSION AND APPLICATIONS**

Corrosion / oxidation resistant coatings (metallic, ceramic, rare and reactive metal reinforced coatings), high temperature erosion and wear, thermal barrier coats - Applications in industry, aerospace, defense and nuclear industry.

Total = 45 hours

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1		Understand the materials behavior at high temperature.								
CO2	2	Discuss the oxidation mechanisms of metallic and ceramic materials.								
CO3	3	Explain mechanisms of creep, thermal fatigue.								
CO4	ŀ	Classify materials for high temperature applications.								
CO5	5	Select the materials and/or coatings for high temperature applications.								
Refe	eren	nce Books:								
1.	Me	etham, G. W., Van de Voorde, M. H., "Materials for High Temperature Engineering								

Applications (Engineering Materials)", 1st 2000 Ed., Springer., 2013.

22HN

С 0 3

9

9

9

9

2. Chan R. W., "High temperature structural materials", Chapman & Hall, 1996.

3.	Reed R. C., "The Super-alloys: Fundamentals and Applications", Cambridge University Press,
	2008.
4.	Birks, N., Meier, G. H., and Pettit, F. S., "Introduction to the High Temperature Oxidation of

- Metals", Cambridge University Press, 2009. Bose, S., "High Temperature Coatings", Butterworth-Heinemann, 2007. 5.

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	1
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	0.4

1- Faintly,

2- Moderately,

22HMTMP206 PROCESSING OF NON METALLIC MATERIALS

L P T C 3003

9

9

9

9

COURSE OBJECTIVES:

- To introduce the student to the range of non-metallic materials available for engineering.
- To get an exposure to the techniques associated with the synthesis and processing of these materials.

UNIT - I INTRODUCTION TO NON METALLIC MATERIALS

Definition and classification of nonmetallic materials, comparison of properties of metals and nonmetallic materials. Introduction to Polymers: Concept of polymers, types of polymers reactions, Mechanism of polymerization, Ceramics: Introduction, classification, structure, and applications of ceramics. Glasses: Introduction, classification, structural features and applications of glasses. Composites: Introduction, classification, and applications of composite materials.

UNIT – II PROCESSING OF POLYMERS

Extrusion - single screw and twin screw extrusion, Film blowing, Pipe extrusion, extrusion of sheet, Calendaring, Thermoforming. Molding - Injection molding, Blow molding, Compression molding, Injection stretch blow molding, Resin transfer molding, Gas and water assisted injection molding, Reaction Injection Molding, Pultrusion, Pull winding.

UNIT – III PROCESSING OF CERAMICS

Powder Preparation Techniques: Sol-gel technology – Precipitation, Coprecipitation and Hydrothermal precipitation techniques. Preparation of Al₂O₃, ZrO₂, SiC, Si₃N₄ BN & B₄C. Ceramic Processing Techniques: Hot Pressing, Hot Isostatic Pressing, (HIP). Spark Plasma Sintering. Sintering, Sinter / HIP, Injection moulding, Slip casting, Tape casting, Gel casting, Extrusion.

UNIT – IV PROCESSING OF GLASSES

Glass Melting Process: Process leading to glass formation – Volatilization – Effect of presintering-refining - Physico - chemical reactions taking in glass batch- Homogenization and devitrification - Tempering – Annealing. Glass Forming Process: Hand operation – Laboratory ware and Bulb making, Tube making – Danner process – Up draw process, down draw process, pressing – Hand press, Flat glass - Pitts berg process, Foucault process, Float process.

UNIT – V PROCESSING OF COMPOSITES

Processing of PMC: Processing of Thermoset Matrix Composites - Hand Lay-Up and Spray Techniques, Filament winding, Pultrusion, Resin Transfer Molding (RTM), Bag molding processes. Processing of Thermoplastic Matrix Composites - Film Stacking Technique, Diaphragm Forming, Commingled fibers, Injection molding, Sheet Molding Compound (SMC). **Processing of CMC** Cold Pressing & Sintering, Hot Pressing, Reaction Bonding Processes, Infiltration, Directed Oxidation, In Situ Chemical Reaction Technique, Sol-Gel, Polymer Infiltration & Pyrolysis.

Total = 45 hours

COURSE OUTCOMES:

After completing this course, the students will be able to:

- list the prominent non-metallic materials available for engineering applications.
- understand the various processing techniques of polymers.
- understand the various manufacturing techniques of ceramic materials.
- Indicate the various glass melting and forming techniques.
- Understand the various manufacturing techniques of PMCs and CMCs.

TEXT BOOKS:

- 1. Textbook of Polymer Science; Fred W. Billmeyer, Wiley 2007
- 2. Introduction to Ceramics; Kingery, Bowen, Uhlman. Wiley India Pvt Limited, 2012
- 3. Composite Materials: Science and Engineering; Krishan K. Chawla, Springer, 2012

REFERENCE BOOKS:

1. W.S. Smith: Principles of Materials Science and Engineering, McGraw-Hill.

2. Manufacturing Processes for Engineering Materials : S. Kalpakjian, 3rd edition Addison -Wesley, 1997

3. Plastic Materials and Processing : A. Brent Strong, Prentice Hall, ISBN 0-13-021626-7

9

4. Handbook of Glass Manufacture - F.V. Tooley

5. Composite Materials: Engineering and Science: F.L. Mathews and R.D. Rawlings, CRC press, 084930251X

CO/	РО	РО	РО	РО	РО	PO	РО	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	0.2

1- Faintly, 2- Moderately, 3- Strongly

22H	[M]	ſMł	P207	BIOMATERIALS	L	Т	Р	С
					3	0	0	3
Co	urse	e Ob	jectives:	· · · · · · · · · · · · · · · · · · ·				
1.	Le	arn	characte	ristics and classification of Biomaterials				
2.	To	o unc	lerstand	the importance of Biomaterials in medical applications				
U	J NI '	ΤI	INT	RODUCTION TO BIOMATERIALS		9	+	0
De ma bri	fini teri ttle	tions als - frac	s, Types Tensile ture, Str	of materials – Ceramics, metals, polymers and composites. testing, Compressive testing, Shear testing, Bend or flexure ess concentration, Fracture toughness and Fatigue.	Basi al tes	ic pr sts, I	opert Ductil	ies of e and
U	NI'	ГII	MET	FALLIC AND CERAMIC MATERIALS		9	+	0
nar bio	nost odeg	ruct grada	ured me ible or b	etallic implants, degradation and corrosion, ceramic implants, bioactive ceramics, nanostructured bio ceramic	plant s.	_	bio i	nert,
U	JNI	ΤIJ	I POLY	MERIC IMPLANT MATERIALS		9	+	0
oxy U Bio	NIT	natio F IV npat	on, electr TES	TING OF BIOMATERIALS	tests,	9 sen	+ sitiza	0 tion,
car im	cino plan	ogen its a	icity, m	nutagenicity and special tests, Invitro and Invivo testing es: ETO, gamma radiation, autoclaving. Effects of sterilizati	g; Ston.	terili	satio	n of
	UN	IT V	APP	LICATION OF BIOMATERIALS		9	+	0
Arti (I Oph	ficia Dialy tha	al H yser Imol	Ieart, P memb ogy.	rosthetic Cardiac Valves, Artificial lung (oxygenator), rane) , Dental Implants, Orthopaedic Implants and	Arti Bio	ficia omat	l Ki erials	dney s in
				Total	(L+]	[) =	45 H	ours
Cou	rse	Ou	tcomes:					
Up	on	com	pletion o	of this course, the students will be able to:				
CC)1	:	Underst	and the testing standards applied for biomaterials.				
CC)2	:	Identify metallic	significant gap required to overcome challenges and furt	her c	level	opm	ent in
CC)3	:	Identify polymer	significant gap required to overcome challenges and furthic materials	her d	level	opm	ent in
CC)4	:	To dem	onstrate purpose of Biomaterials in various applications			_	

Text	Books:
1.	C. Mauli Agrawal, Joo L. Ong, Mark R. Appleford and Gopinath Mani, Introduction to Biomaterials Basic Theory with Engineering Applications, Cambridge University Press 2014
2.	Sujata V. Bhatt, "Biomaterials", Second Edition, Narosa Publishing House, 2005
Refe	rence Books:
1.	Donglu Shi, Introduction to Biomaterials, Tsinghua University Press 2006
2.	Sreeram Ramakrishna, MuruganRamalingam, T. S. Sampath Kumar, and Winston O. Soboyejo, "Biomaterials: A Nano Approach", CRC Press, 2010.
3.	Myer Kutz, "Standard Handbook of Biomedical Engineering & Design", McGraw Hill, 2003.

CO/ PO	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	1

1- Faintly,	2- Moderately,	3- Strongly
3 ,	J ,	

22HMTMP208	ADVANCES IN NUCLEAR MATERIALS	L	Т	Р	C						
		3	0	0	3						
Course Objectiv	'e:										
> To unders	stand nuclear energy sources, its reactions and materials for ene	ergy									
applicatio	ns.										
To unders	stand its safety and current scenario in world level.										
UNIT-1					(9)						
Introduction to nu- ecological and	uclear energy / reactors – comparison of different modes of ene environmental aspects	ergy	gen	iera	tion						
UNIT-2					(9)						
Nuclear reactions	s – concept of half-life, nuclear minerals – related exploration a	nd r	roc	essi	ing						
UNIT-3					(9)						
Material requirer and fuel rods – fa	nents – structural materials, rare earth materials coolants, shie brication requirements	ldin	g m	ate	rials						
UNIT-4					(9)						
Nuclear irradiation	on effects on structural materials – safe guards, safety and healt	h pr	otec	tio	n						
UNIT-5					(9)						
Strategic issues nuclear scenario	– current status and major needs, overview of nuclear sce at international level.	nario	o in	ı In	ıdia,						
	Τ	otal	: 45	Ho	ours						
TEXT BOOKS 1. Benjamin Reinhold 2. Henley E	M. M., Van Nostrand "Nuclear Reactor Materials and Company Inc, 1983 J., & Herbert Kouts, "Advances in Nuclear Science and Techn	Apj olog	plica gy".	atio	ns",						
COURSE OUTCOMES:											
At the end of this	course, the students would be able to:										

- 1. Learn different modes to generate nuclear energy.
- 2. Learn the concept of half-life of nuclear materials.
- 3. Understand properties of nuclear materials.
- 4. Learn and understand the safety precautions of nuclear radiation and protection.
- 5. Current scenario of nuclear materials.

CO/	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO	PSO
РО	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3	4
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	1
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	0.4
	1- Fa	intly,	•	2- Mo	deratel	y,	3-	Strong	ly	•	•	•	•	•	•	•

3- Strongly

22HMTMP209AUTOMOTIVE AND AEROSPACE MATERIALSLTPC3003

Course Objectives:

To know the details of electrodes for various materials used for different welding processes

Unit I MATERIALS FOR ENGINES AND TRANSMISSION SYSTEMS

Materials selection for IC engines: Piston, piston rings, cylinder, Engine block, Connecting rod, Crank shaft, Fly wheels, Gear box, Gears, Splines, Clutches.

Unit II MATERIALS FOR AUTOMOTIVE STRUCTURES

Materials selection for bearings, leaf springs, chasis & frames, Bumper, shock absorbers, wind screens, panels, brake shoes, Disc, wheels, differentials, damping and antifriction Fluids, Tyres and tubes.Materials for electronic devices meant for engine control, ABS, Steering, Suspension, Sensors, anti-collision, Anti-fog, Head lamps.

Unit III NON-FERROUS MATERIALS IN AIRCRAFT CONSTRUCTION

Aluminum and its alloys: Types and identification. Properties - Castings - Heat treatment processes - Surface treatments.

Magnesium and its alloys: Cast and Wrought alloys - Aircraft application, features specification, fabrication problems, Special treatments.

Titanium and its alloys: Applications, machining, forming, welding and heat treatment, Copper Alloys.

Wood and fabric in aircraft construction and specifications - Glues Use of glass, plastics & rubber in Aircraft, Introduction to glass & carbon composite.

Unit IV FERROUS MATERIALS IN AIRCRAFT CONSTRUCTION

Steels: Plain and low carbon steels, various low alloy steels, aircraft steel specifications, corrosion and heat resistant steels, structural applications.

Maraging Steels: Properties and Applications.

Super Alloys: Use - Nickel base - Cobalt base - Iron base - Forging and Casting of Super alloys - Welding, Heat treatment

Unit V CERAMICS AND COMPOSITES

Introduction, modern ceramic materials, cermets, glass ceramic, production of semi-fabricated forms, Carbon/Carbon composites, Fabrication processes and its aerospace applications involved in metal matrix composites, polymer composites

Total = 45 hours

9

9

9

9

9

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 Understand the use of Materials selection criteria for engine and transmission systems.
- CO2 Understand the Different materials used for automotive structures and Different electronic materials for automotive applications
- CO3 Explain mechanical behavior and heat treatment of aerospace nonferrous materials.
- CO4 Understand the properties and heat treatment of ferrous materials for aircraft materials.

CO5 Understand the properties of ceramics and composites for aircraft materials.

Reference Books:

- 1. ASM Handbook, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. USA, 1991.
- Materials Science and Engineering, Willium D. Callister, Jr. John Wiley & Sons publications Or Callister's Materials Science and Engineering Adapted By R. Balasubramaniam, Wiley India, Edition -2010.
- 3. Material Science and Engineering, V. Raghavan, Prentice Hall of India, 4th Edition.
- **4.** H Buhl, Advanced Aerospace Materials, Springer, Berlin 1992, ISBN-13: 978-3540558880
- Balram Gupta, Aerospace material Vol. 1,2,3,4ARDB, S Chand & Co ,2009, ISBN-13: 978-8121922005.
- 6. Parker E R, Materials for Missiles and Space, McGraw-Hill Inc., US, 1963, ISBN-13: 978 0070485013
- 7. ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park Ohio.USA, 1997.
- **8.** Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials", Taylor & Francis Group, London, 2006

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSo2	PSO3	PSO4
C01	1	2	0	1	2	0	0	0	0	0	1	2	2	2	1	
CO2	2	3	2	1	3	1	0	2	1	0	1	2	2	3	1	
CO3	0	1	1	0	2	1	2	3	1	0	1	2	1	1	2	1
CO4	1	2	3	3	2	1	0	0	0	1	3	2	1	1	0	1
CO5	2	1	1	1	2	0	1	0	2	1	1	0	0	0	1	1
Total	1.2	1.8	1.4	1.2	2.2	0.6	0.6	1	0.8	0.4	1.4	1.6	1.2	1.4	1	0.6

1- Faintly, 2- Moderately, 3- Strongly

2	2HMTMP210	PROCESSING OF NON FERROUS METAL ORES	L	Т	Р	С								
			3	0	0	3								
Co	urse Objectives:													
1.	To study the pro	cessing of non ferrous metals ores.												
2.	To understand th	ne fundamental principles and operations of non ferrous ores.												
U	INIT I FUND A	AMENTALS OF EXTRACTION METALLURGY		9	+	0								
Priz Sm Priz ext Priz of	ONTELFONDAMENTALS OF EXTRACTION METALLORGY9+0Principles of Pyrometallurgy - Drying, Calcination, Sintering, Roasting – Predominance Area Diagrams. Smelting and Converting.Principles of Hydrometallurgy, Leaching – Properties of good solvent - Leaching methods – Solvent extraction, Ion exchange, Bio leaching, Gaseous reduction of metals in aqueous solutions.Principles of Electrometallurgy - Aqueous and Fused salt electrolysis, Electro refining and Electro winning of metals. Purification of Crude metals produced in bulk – Distillation, Liquation, Fire refining,													
Ele	ctrolytic refining,	Zone refining.		,										
U	NIT II EXTRA ORES	ACTION AND REFINING OF METALS FROM SULPHIDE		9	+	0								
refi sol Bla reto U MA win pro	Ining; Hydro-Meutions; Electrowust furnace smeltiort processes: ProNIT IIIEXTRAGNESIUM: Prouning practice arocess: Hall – Heocesses of alumi	tallurgical copper extraction; Leaching processes, Recovery of inning - NICKEL: Simplified flow sheets for the extraction ng, Refining of lead bullion and ZINC: General Principles: Hor oduction in a Blast furnace: Leaching purification: Electrolysis, I ACTION AND REFINING OF METALS FROM OXIDE OR duction of a hydrous Magnesium chloride from seawater and n d problem, refining, Pidgeon and Handspring processes - AL eroult process: Anode effect: Efficiency of the process: Ref num production and TIN: Smelting of Tin concentrates, Re	copj of n izont Refir ES magr UMI finin	per f ickel tal an ning. 9 nesita INIU g, A ng of	rom 1 I,- LH nd ver + e. Elee M: E M: E Altern f Tin	leach EAD: rtical 0 ctro- ayer ative -Fire								
ref	ining of Tin and	Electrolytic refining. TUNGSTEN: Flow sheets for the extraction	on of	Tun	gsten									
U	NIT IV EXTRA ORES	ACTION AND REFINING OF METALS FROM HALIDE		9	+	0								
Ext chl sep pro	Extraction of metals rare earth metals from halides – TITANIUM: Upgrading of ilmenite, chlorination of titania, Kroll's process. Refining. ZIRCONIUM - Treatment of Zircon, Method for separating HF from Zirconium, Reduction of Zr compound to metal and URANIUM, Acid and alkali processes for digestion of uranium ores, Purification of crude salt, Production of reactor grade UO2 and uranium.													
τ	JNIT V EXTRA	ACTION OF PRECIOUS METALS AND BYPRODUCT FRO LS RECOVERY	М	9	+	0								
Ext Cya ma Red	Extraction and Refining of precious metals – GOLD: Amalgamation process, Chlorination process and Cyandiation process, SILVER: Chloridizing roasting, Cyandiation, Parke's process and recovery from base material ores, and PLATINUM: INCO process. Recovery of by-product metals and treatment of Metallurgical wastes - Secondary refining of Copper, Lead,													
Zin	c, Aluminium, No	n scrap sources of Aluminium, Tin, Vanadium – Utilization of metallu Total	irgica	1 was T) –	stes.	ours								

Course	Ou	tcomes:											
Upon	com	pletion of this course, the students will be able to:											
C01	:	Understand the principles of extraction processes.											
CO2	:	Explain the extraction of metals from sulphides ores.											
CO3	:	Explain the extraction of metals from Oxides ores.											
CO4	:	Explain the extraction of metals from halide ores.											
CO5	:	Explain the extraction of precious metals and secondary refining processes.											
Text H	Booł	KS:											
1.	Ray Pre	y H.S, Sridhar R and Abraham K.P, Extraction of Non Ferrous Metals, Affiliated East-West ess Pvt Ltd, New Delhi, 2008.											
2.	Ra	y H.S and Gosh A, Principles of Extractive Metallurgy, Prentice Hall of India, New Delhi, 1994											
3.	Pri	nciples of Extractive Metallurgy-Gosh											
Refere	ence	Books:											
1.	Te	xt book of Metallurgy-A.R. Bailey.											
2.	Ter boo	kel Rosenqvist, Principles of Extractive Metallurgy, 2nd Edition, McGraw-Hill International bk Company, 1983											
3.	Ve	nkatachalam S, Hydrometllurgy, Narosa Publishing House, New Delhi, 1998											
4.	4. R.Raghavan Extractive Metallurgy of Non - Ferrous Metals ,Vijay Nicole Imprints Private Limited, Chennai 2016.												
5.	Peł Ne	Ilke R.D, Unit Processes in Extractive Metallurgy, American Elsevier Publishing Company, w York, USA, 1977.											

CO/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
РО																
CO1	2	1	2	2	3	2	0	3	3	2	3	2	3	3	3	
CO2	2	3	2	3	3	2	2	0	2	1	3	2	3	3	3	
CO3	2	2	3	3	2	1	0	0	0	3	3	2	2	2	3	
CO4	2	2	0	0	3	3	3	2	0	2	3	3	3	1	3	
CO5	2	3	3	3	3	0	1	0	1	2	3	2	3	3	3	1
Total	2	2.2	2.2	2.2	2.8	1.6	1.2	1	1.2	2	3	2.2	2.8	2.4	3	0.2
	1- F	aintly,		2- Mo	deratel	y,	3- 5	Strongl	у							

HONOURS DEGREE for Metallurgical Engineering Students

VERTICAL 1 : WELDING

22HMTW101

Advanced Metal Joining Processes L T PC

3003

Course Objectives:

- To understand the various special/ advanced welding processes.
- To gain knowledge on the principle of operation, advantages, limitations and applications of various special/ advanced welding processes.

ELECTRON BEAM AND LASER BEAM WELDING

Heat generation and regulation, equipment details in typical set-up, electron beam welding in different degrees of vacuum, advantages, disadvantages and applications.

Laser Beam Welding: Laser sources for welding, Principles of operation, advantages, limitations, and applications.

Introduction to Hybrid Welding Process.

ELECTRO SLAG WELDING AND RESISTANCE WELDING

Electro slag welding - Heat generation, principles of operations, wire and consumable guide techniques, selection of current, voltage and other process variables, nature of fluxes and their choice, applications, variants of electro slag welding, Electrogas welding.

Resistance welding - Principles of contact resistance, surface preparation, calculation of current, time and voltage for spot welding - Temperature distribution, spot welding cycle, inter-relationship between process variables, choice of electrode material, seam welding, projection welding. Flash welding, Upset welding, Percussion welding, High frequency welding.

SOLID STATE WELDING PROCESSES

Advantages of solid state welding processes over conventional welding processes. High temperature solid state welding, Low temperature solid state welding, Fundamental principles, Overview of various solid state welding processes. and principles of operation, applications.

Cold pressure welding, Induction pressure welding, Explosive welding, Diffusion welding, Ultrasonic welding, Forge welding, Roll welding- Principles of operation, equipment, process characteristics advantages, limitations and applications.

FRICTION AND FRICTION STIR WELDING

Friction Welding- Theoretical considerations, Process characteristics, Friction Welding machines and equipments, welding variables, weld properties, Joint design, Applications.

Friction Stir Welding - Principles of operation, Important welding parameters - tool rotation and traverse speeds, tool tilt and plunge depth, tool design. Generation and flow of heat. Advantages, limitations and applications. Flaws and defects in FSW. Friction surfacing and friction processing.

OTHER JOINING PROCESSES, CUTTING AND SURFACING

Adhesive bonding - Concept, Procedure, Testing of Adhesive bonded joints, types of adhesive bonded joints, Sandwich Construction, selection and types of adhesives. Welding of plastics, Underwater Welding. Thermit Welding, Brazing and Soldering -Fundamentals, Types, brazing and soldering alloys and their classification. Thermal cutting – Oxy-fuel cutting, arc cutting, plasma arc cutting, laser cutting. Surfacing.

(9)

(9)

(9)

(9)

(9)

Course Outcomes: Upon completion of this course, the students will be able to:

- CO1. Explain the principle of operation, advantages, limitations and applications of various solid state welding processes.
- CO2. Explain the principle of operation, advantages, limitations and applications of FRW and FSW processes.
- CO3. Explain the principle of operation, advantages, limitations and applications of EBW and LBW processes.
- CO4. Explain the principle of operation, advantages, limitations and applications of ESW and Resistance welding processes.

CO5. Explain the principle and features of various special joining techniques and thermal cutting methods.

RECOMMENDEDBOOKS:

- 1. AWS Welding Handbook. 9thedition. Volume 2, Welding Processes, 2013.
- 2. Schwartz M.M., "Metals Joining Manual", McGraw Hill Books. 1979.
- 3. Metals Handbook (Welding, Brazing and Soldering) Vol. 6, 10thEdition. ASM1995.
- 4. Howard B.Cary, "Modern Welding Technology", Prentice Hall, 6thEd., 2017.
- 5. Tylecote R.F., "The Solid Phase Welding of Metals", Edward Arnold Publishers Ltd. London. 1968.
- 6. Christopher Davis, "Laser Welding Practical Guide", Jaico Publishing House, 1994.
- 7. Parmar R.S. "Welding Processes and Technology" Khanna Publishers, 2ndEd.,2005.
- 8. ASM Handbook, "Welding Fundamentals and Processes" Vol. 6A, ASM2017

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	1	2	2	2	1	1	0	0	0	1	3	3	3	3	
CO2	3	3	2	1	2	1	0	0	1	2	0	0	3	3	3	
CO3	3	2	2	2	2	1	2	3	1	1	0	0	3	3	3	
CO4	3	3	3	2	3	1	0	0	0	0	1	3	3	3	3	1
CO5	3	2	2	2	1	1	2	0	0	0	0	2	3	3	3	1
Avg.	2.8	2.2	2.2	1.8	2.2	1	1	0.6	0.4	0.6	0.4	1.6	3	3	3	.4

CO-PO MAPPING

1- Faintly,

2- Moderately,

22HMTW102

METALLURGY OF WELDING

(9)

(9)

(9)

Course Objectives:

- To gain understanding of heat flow and temperature distribution on weld components based on weld geometry
- To understand the solidification structure and growth morphology on weld joins in relation to the welding parameters
- Study phase transformations in weld joints with aid of CCT, Schaffler and Delong diagrams and welding of alloy steels, carbon steels and stainless steels.

HEAT FLOW IN ARC WELDING

Heat flow-Basic heat transfer equations, temperature distributions and cooling curves- Influence of heat input, Joint Geometry, plate thickness, preheating and other factors. Comparison of welding processes based on these considerations. Solidification – Epitaxial growth – weld metal solidification – cellular and columnar structures – effect of welding parameters – absorption of gases – gas/metal and slag/metal reactions.

WELDABILITY AND WELDABILITY TESTING

Concept of Weldability, Factors affecting Weldability, Welding Defects, Causes and remedies, Cracking phenomenain welding, Characterization of weldability tests

- cold cracking tests, hot cracking tests, Internal restraint tests, External restraint tests, Mechanical tests for weldments-Tension tests and Bendtests.

WELDABILITY OF CARBON STEELS AND LOW ALLOYSTEELS

Formation of different microstructural zones in welded plain-carbon steels, C-Mn and low alloysteels.Phasetransformationinweldmetalandheataffectedzones.Hydrogeninduced cracking, Carbon equivalent, preheating, Post heating and post weld heat treatment, Hot cracking – compositional features – Effect of S and P, Reheat cracking and Lamellar cracking.

WELDABILITY OF STAINLESS STEEL

Introduction to stainless steel classification, effect of alloying elements, Austenitising elements, Ferritising elements, Weldability of austenitic stainless steels – Hot cracking – constitution diagrams – Schaffler, Delong, WRC diagrams, Mode of solidification, Sensitisation, Sigma embrittlement. Metallurgical difficulties in welding of ferritic, martensitic and duplex stainless steels, selection of filler metals.

WELDABILITY OF OTHER ALLOYS AND DISSIMILAR WELDING

Welding of cast irons, High Cr steels, Maraging Steels – Process, procedure and filler metal selection, weldability problems encountered and solutions.

Weldability of Al alloys, Cu Alloys, T iAlloys and Ni Alloys – Selection of welding process and procedure appropriate for each material.

Dissimilar welding: Metallurgical problems in dissimilar welding- calculation of dilution- methods of controlling dilution - techniques of dissimilar welding.

Total: 45 hours

(9)

(9)

COURSE OUTCOMES: Upon completion of this course, the students will be able to:

- CO1. To understand heat flow in welding, structures formed and effect of various parameters.
- CO2. To gain knowledge in various types of weld ability tests.
- CO3. To know about weldability of carbon steels and low alloy steels and weldability issues.
- CO4. To understand welding of stainless steels.
- CO5. To get familiar in the area of welding of castiroN and dissimilar welding..

RECOMMENDED BOOKS:

- 1. Parmar R.S., "Welding Engineering and Technology", Khanna Publishers. 1997.
- 2. Lancaster J.F., "Metallurgy of Welding", George Allen & Unwin. Boston. 1980.
- 3. Kou. S., "Welding Metallurgy", John Wiley & Sons. 1987.
- 4. Granjon. H., "Fundamentals of Welding Metallurgy", Jaico Publishing House. New Delhi1994.
- 5. Norman Bailey, "Weldability of Ferritic Steels", Jaico Publishing House.1997

AWS Welding Hand book. 8th edition. Vol-1. Welding

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	3	2	2	1	1	0	0	0	0	1	3	1	0	
CO2	3	2	1	2	2	1	1	0	0	0	0	1	2	1	3	
CO3	2	2	2	2	2	1	1	0	0	0	1	1	2	2	3	
CO4	3	2	2	2	3	1	0	0	0	0	0	1	3	2	3	
CO5	3	2	2	1	2	2	0	0	0	0	1	1	3	3	3	1
Avg.	2.8	2	2	1.8	2.2	1.2	0.6	0	0	0	0.4	1	2.6	1.8	2.4	0.2

CO-PO MAPPING

1- Faintly, 2- Moderately, 3- Strongly

22	22HMTW103 WELDING EQUIPMENTS AND CONSUMABLES L T P O 3 0 0 3 0 0 3									
					3	0	0	3		
Cou	ırse	Obj	ectives:		•	•				
1.	То	knov	w the basic	knowledge of equipment's and accessories of various welding process						
2.	То	gain	knowledg	e on selection of consumables for different welding processes.						
U	NII	ΓI	EQUIP PROCI	MENTS AND ACCESSORIES FOR VARIOUS WELDING		9	+	0		
Gas Toro Arc weld pow mate	wel ch tij wel ding ver so erial	lding ps, T ding (GT ourc s use	g process ip cleaner process – TAW): Pov e, wire fee ed.Submer	 Compressed gas cylinders, Cylinder valves, Pressure valves, Gas h and spark lighter. Shielded metal arc welding (SMAW): Equipment and operating access wer source, GTAW torch, wire feed mechanism, materials.Gas metal d units, GMAW gun and wire feed conduit assembly, shielding gas and ged Arc Welding (SAW): Equipment and materials. 	noses, ssorie arc v l cool	Weld s.Gas veldir ing w	ding t tungs ng (GN ater sy	orches, ten arc (AAW) (stems,		
U	NIT	'II	EQUIP	MENTS AND ACCESSORIES FOR OTHER WELDING		9	+	0		
Elec Vac lase Wel Pres	etron cum r op lding ss Ty	Bea cha erati g Pro pe N	am Weldin mber, Wo on, ruby l ccesses – F Machines, T	ng – Cathode, Electron accelerating system, Beam focusing system, rk traversing system, Seam tracking methods. Laser welding – Princi aser equipment and setup. Thermit Welding – Equipment setup and riction welding machines and equipment. Resistance Welding – Rocke Portable Welder.	Weld ple an opera r-Arm	view nd me ation. n Typ	ing sy echani Solid e Mac	stem, sm of -State hines,		
U	NIT	' III	ARC WI	ELDING POWER SOURCES		9	+	0		
A.C Tran (Spa Amj Wel Sou	. W nsfor arate pere lding rce,	eldin rmer ly E Ch g Pov Puls	ng Power , Basic Ty (xcited), O aracteristic wer Source ed Arc We	Sources – Operating Principles of a Welding Transformer, Requir pes of Welding Transformers. D.C. Welding Power Sources – Oppos pposition Series Generator (Self Excited), Split-Pole D.C. Welding G s of Welding Generators, Multi-Operator D.C. Welding Power So s – General Theory of Rectifier Design, Solid-State Welding Rectifiers Iding Power Sources, Transistor Welding Power Sources.	emen sition enera ources s, SCF	ts of Serie tor, C . Rec R Wel	a We s Gen Output ctified ding I	lding erator Volt- D.C. Power		
UI	NIT	IV	AUTO	MATION IN WELDING		9	+	0		
Intro Auto Auto	oduc omat omat	tion tic ted v	to automa welding, A velding, re	tion in welding, Welding sequence and classification of processes, M Automatic welding, Automated welding, Adaptive controls, Automate welding, Robotic welding and Selecting a welding system.	/lanua matic	l wel welc	ding, ling v	Semi- 'ersus		
U	J NI I	ΓV	WELD	ING CONSUMABLES.		9	+	0		
Coat of ele Wires classi inlet	ed E ectro s an ificat and a	tion	rodes- Elec for SMAW ods and ' of SAW F rated shield	etrode Coating, classification and coding of covered (heavy coated), Cla V/MMAW of low and medium alloy steels. Welding Rods and Wires – S Fubular Electrodes or Flux-Cored Wires. Welding Fluxes – Comp luxes, Roles of flux ingredients, Physical classification of SWA fluxes ling gases.	assific Specif positio and S	cation ficatio on an Shield	and c ons for d che ling ga	oding solid mical ases –		
				Tota	al <u>(</u> L-	⊦T) =	= 45 H	lours		
Cou	rse (Out	comes:							
Upo	on c	omp	oletion of	this course, the students will be able to:						
C	01	:	Understar	d the basic knowledge on handling welding equipments and accessories	s.					
C	02	:	Describe a	and understand the appropriate power sources for welding operations.						
C	03	:	Gain know	vledge on advancements of automations in welding processes.						

Demonstrate and select suitable consumables for different welding processes.

CO4 :

Text]	Books:
1.	Welding Engineering and Technology by Dr. R.S. Parmar, Khanna Publishers, 2013.
2.	Welding Technology by Dr. N.K.Srinivasan, Khanna Publishers, 2001.
Refer	ence Books:
1.	Text Book Of Welding Technology by Bruce Stirling, DhanpatRai Publications, 2011.
2.	AWS Welding Handbook. 9th editionVolume1, "Welding Science and Technology", 2013
3.	AWS Welding handbook, 3 rd edition, WeldingConsumablesGases and GasMixtures for FusionWelding and AlliedProcesses, 2021

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	1	2	2	2	1	1	0	0	0	1	3	3	3	3	
CO2	3	3	2	1	2	1	0	0	1	2	0	0	3	3	3	
CO3	3	2	2	2	2	1	2	3	1	1	0	0	3	3	3	1
CO4	3	3	3	2	3	1	0	0	0	0	1	3	3	3	3	

1- Faintly,

2- Moderately,

22HMTW104 WELDING CODES AND STANDARDS L T PC

3 0 03

(9)

(9)

(9)

(9)

(9)

Overview and Introductory treatment of codes and standards in the reference–No numerical problems, written document procedures and qualification

Course Objective: To acquire knowledge on various welding codes and standards related to various engineering applications.

STRUCTURAL WELDING CODES

Design requirements, allowable stress values, workmanship and inspection, introduction to welding codes and standards

PETROLEUM PIPING FABRICATION

Process and product standards for manufacturing of pipe – welding procedure and welder qualifications, field welding and inspection, API 1104 and API 5L

PRESSURE VESSEL FABRICATION

Design requirements fabrication methods, joint categories, welding and inspection, post weld heat treatment and hydro testing.

WELDING PROCEDURE AND WELDER QUALIFICATION

Welding procedure specification, procedure qualification records, performance qualification, variables

MATERIALS AND CONSUMABLES

Introduction to materials standards and testing of materials, consumables testing and qualification as per ASME/AWS requirements

Total: 45 hours

Course outcomes: Upon completion of this course, the students will be able to:

- CO1. Identify various design requirements and applicability of AWS D1.1.
- CO2. Apply API 1104 and AP15L for pipe welding applications.
- CO3. Apply ASME II, V, VIII and IX for boiler fabrication.
- CO4. Understand and apply WPS, PQR and performance qualification variables for a specific welding application.
- CO5. Understand different materials standard, testing methods and consumable testing.

RECOMMENDED BOOKS:

1. AWS D1.1 Structural Welding Code 2.

API 1104

- 3. ASME Section VIII Division 1
- 4. ASME SectionIX
- 5. ASME Section II Part A andC
- 6. API6A

CO-PO MAPPING

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	2	2	1	1	1	0	1	1	1	2	3	3	3	
CO2	3	2	2	2	2	1	2	2	2	2	2	1	3	3	3	
CO3	3	2	3	3	1	1	1	0	0	0	0	1	3	3	3	
CO4	1	1	2	2	1	2	1	0	0	0	2	2	3	3	3	1
CO5	1	2	2	2	2	1	0	0	1	1	0	2	3	3	3	
Avg.	2.2	1.8	2.2	2.2	1.4	1.2	1	.4	.8	.8	1	1.6	3	3	3	0.2

1- Faintly,

2- Moderately,

, 3- St

L T PC

(9)

(9)

(9)

(9)

Course Objectives:

- To compile and work with the automated equipments and its processing are Automation of arc welding processes and other related welding processes.
- To emulate the Automated welding equipment, Arc and work motion and standardized arc welding machines, controls and sensors and gain knowledge on operations using the robots.

AUTOMATION OF ARC WELDING PROCESSES

Need for automation in welding, introduction to semi-automatic mechanized, automatic, robotic and adaptive control welding. Automatic welding system – factors affecting welding productivity– advantages and disadvantages of welding automation - Arc welding processes suitable for automation and degree of automation possible in different welding processes like GMAW, FCAW, SAW, GTAW, PAW and Stud welding.

AUTOMATION OF OTHER RELATED PROCESSES

Automation of Resistance welding, EBW, and Laser beam Welding, Solid State welding. Automation of oxygen cutting- Arc and Plasma cutting - Laser beam cutting, thermal spraying.

AUTOMATED WELDING EQUIPMENT, ARC AND WORK MOTION DEVICES (9)

Welding power sources, type of electrode wire feeders and electrode wire dispersing system – spools, coils, rods, drums, pay off packs, typical adaptors and spiders. Types of welding torches used in automated welding and functions of torches. Types of standardized arc motion devices – Tractor, carriages, side beam carriages, manipulators and Gantry carriages. Work motion devices – Universal positioners, turning rolls, head and tail stock positioners. Combination of arc and work motion devices.

STANDARDIZED ARC WELDING MACHINES, CONTROLS AND SENSORS

Standardized arc welding equipment, types of standardized welding machines – seamers, welding lathes, weld – around machines, nozzle welders and bore welders. I beam welders and strip welders. Standardized welding machines for maintenance work. Automatic welding of pipes and tubes Introduction to some dedicated arc welding machines. Temporary portable automated tooling for welding control functions involved in a mechanized total welding system sensor systems – introduction and classification.

ROBOTIC ARC WELDING

Introduction to flexible automatic welding. Robotic arc welding system, types of welding Robots – Revolute, Cartesian, Spherical, Cylindrical and Scara – Hybrid robots far welding, features of welding robot, robotic part – holding positioners, Teaching the robot, some case studies of robotic application in welding.

Total: 45 hours

COURSE OUTCOME: Upon completion of this course, the students will be able to:

- CO1. Gain knowledge on automation of the arc welding processes.
- CO2. Gain knowledge on the different kinds of welding processes.

CO3. Gain knowledge on the welding equipments and work motions of the automated devices.

- CO4. Gain detailed knowledge on standardized arc welding machines, controls and sensors.
- CO5. Get familiarized in the area of Robotic Arc welding.

RECOMMENDED BOOKS:

- 1. Howard B. Cary "Arc welding Automation"- Marcel Dekker, New York1995
- 2. AWS Welding Handbook, Vol. 3, 9th edition, A W S., 2015.
- 3. AWS Welding Handbook, vol.5, "Engineering Costs, Quality and Safety", 9th edition, AWS,2015.
- 4. The Procedure Handbook of Arc Welding, 13th Edition, Lincoln Electric, USA,1994
- 5. Proceedings of the International Conference on Assembly Automation, British Welding Institute, 1985. Kozyrev, Industrial Robots Handbook, Mir Publishers, Moscow.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	3	3	2	3	1	1	0	1	0	1	2	3	2	2	
CO2	3	2	2	3	3	1	1	0	1	0	0	3	3	2	3	
CO3	2	2	2	3	3	1	1	0	1	0	0	2	1	2	1	
CO4	2	3	3	2	3	1	1	0	1	0	0	2	1	2	1	
CO5	2	2	2	2	3	1	1	0	1	0	0	2	3	2	2	1
Avg.	2.4	2.4	2.4	2.4	3	1	1	0	1	0	0.2	2.2	2.2	2	1.8	0.2

CO-PO MAPPINC

1- Faintly, 2- Moderately, 3- Strongly

22HMTW106

WELDING APPLICATION TECHNOLOGY

Course Objective:

- To understand the materials, process, fabrication techniques used in welding of pressure vessels, piping and pipelines, shipyards, railways, chemical plants and structural.
- To gain knowledge of the materials, processes, fabrication, inspection and stringent quality control procedures used in oil and gas industries and chemical plants.
- To learn about welding economics such as weldment deposition rates for different welding processes, welding cost estimation, standard data for cost estimation and comparative cost study for various welding procedure.

WELDING OF STRUCTURALS AND PRESSURE VESSELS

(9)

(9)

(9)

(9)

STRUCTURALS: Types of structural elements and their welding, materials used in bridges and welding of bridges.

PRESSURE VESSELS: Material selection and factors affecting it, fabrication of conventional pressure vessels – welding processes used, nozzle welding, tube to tube plate welds, flanges, vessel ends, fabrication of clad pressure vessels. Weldability aspects of pressure vessel steels.

WELDING OF STORAGE TANKS AND PIPINGS

Welding of vertical storage tanks and Horton sphere.

WELDING OF PIPING AND PIPELINES: pipe steels and electrodes, types of joints and welding, backing welds rings, fittings, alloys used for piping, pipe welding procedures, preheating and PWHT, offshore pipework, pipelines and pipeline welding, under water pipeline welding.

WELDINGIN CHEMICAL PLANTS, CRYOGENICS & MICRO JOINING TECHNIQUES (9)

CHEMICAL PLANTS: Welding of oil-refinery components and fertilizer plant components. CRYOGENICS: Materials used for cryogenic applications, problems of welding. Welding processes and procedures used for welding cryogenic materials.

MICRO JOINING TECHNIQUES: Various techniques used for joining of electronic circuits and other micro joining applications.

WELDING OF SHIP STRUCTURE AND RAILWAYS

SHIP STRUCTURE: Main parts of ship structure, materials for ship building, unit and block method of ship construction, welding of submarine steels, welding of offshore structures.

RAILWAYS: Materials used for locomotive subassemblies, rail coaches, wagons and its subassemblies, rails and welding processused

WELDING OF AEROSPACE AND AUTOMOBILE

AEROSPACE: Main parts of aerospace structure, materials for aircrafts building, method of aircraft construction, welding of aircraft structures.

AUTOMOBILE: Main parts in Automobiles, Materials used for automobile subassemblies, welding of automobile components.

COURSE OUTCOMES: Upon completion of this course, the students will be able to:

- CO1. Select the suitable welding procedures for the fabrication of structural elements and conventional pressure vessels and solve the difficulties in welding of pressure vessel steels.
- CO2. Choose the correct materials, electrodes, type of joint, welding processes and fittings for the fabrication of storage tanks, piping as well as pipe lines.
- CO3. Solve the problems involved in welding of oil refinery components, fertilizer components and cryogenic materials.
- CO4. Explain the shipbuilding activities and solve the problems involved in welding of submarine steels and railway materials.
- CO5. Gain knowledge on materials used in Aerospace and Automobile components and their weldments.

RECOMMENDED BOOKS:

- 1. S.V.Nadkarni, "Modern Arc Welding Technology", Oxford-IBH Publishers, New Delhi, 7thedition1996.
- 2. R.S.Parmar, "Welding Engineering and Technology", Khanna Publishers, New Delhi, 1stedition1997.
- 3. AWS Welding Handbook, Sec.5 Applications of Welding, 5thEdition, 1967.
- 4. AWS Welding Handbook, Vol.4, 7thEdition,1991.
- 5. ASM Metals Handbook, Vol.6, Welding, Brazing and Soldering, ASM, New York, 1998.
- 6. Howard B. Cary, "Modern Welding Technology", Prentice Hall, New Jersey, USA, 1989.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	2	2	3	2	1	0	1	0	0	2	2	2	3	
CO2	3	2	2	3	2	1	1	0	1	0	1	1	2	3	3	
CO3	2	2	2	2	3	1	1	0	1	1	1	2	1	2	3	
CO4	2	3	2	3	2	1	2	0	1	0	1	2	1	2	3	1
CO5	2	2	2	2	3	1	2	0	1	0	1	2	2	2	3	1
Avg.	2.4	2.2	2	2.4	2.6	1.2	1.4	0	1	0.2	0.8	1.8	1.6	2.2	3	0.4

1- Faintly,

2- Moderately,

22HMTW107 BRAZING, SOLDERING, SURFACING AND CUTTING L T PC

3003

(9)

(9)

(9)

(9)

Course Objective: To understand the fundamental concepts, applications, advantage sand limitations of brazing, soldering, surfacing and cutting

FUNDAMENTALS OF BRAZING AND SOLDERING

Wetting and spreading characteristics, surface tension and contact angle concepts. Filling of horizontal and vertical capillary joints. Capillary dams.

FLUXES AND ATMOSPHERES FOR BRAZING AND SOLDERING (9)

Role of flux and characteristics constituents of flux, grouping and applications Fluxes used for specific braze metal flux removal and related corrosion problem. Atmosphere for brazing and atmosphere for brazing specific base metal metallurgy of filler metal for brazing and soldering - joint design and fixturing for brazing.

SOLDERING AND BRAZING PROCESSES

Hand soldering, flame soldering furnace soldering, hot gas blanket soldering, wave soldering, etc., torch brazing furnace brazing, induction brazing, dip brazing resistance brazing, vaccum brazing, etc., applications of brazing soldering-brazing and soldering defects.

SURFACING

Thermal spraying, plasma spraying, laser surface alloying and modification. Surfacing spraying to improve wear resistance and corrosion resistance. CVD, PVD and ion implantation. Cladding and its applications.

THERMAL CUTTING PROCESSES

Oxygen cutting-oxy fuel gas, metal powder, chemical flux and oxygen arc cutting. Arc cutting processes- carbon arc, air carbon arc cutting. Metal and plasma arc cutting, High energy beam cutting, laser beam cutting, water jet cutting and under water cutting.

Total: 45 hours

COURSE OUTCOME: Upon completion of this course, the students will be able to:

- CO1. Explain the concepts of brazing and soldering.
- CO2. Understand the fluxes and atmosphere for brazing and soldering.
- CO3. To gain knowledge on brazing and soldering processes.
- CO4. To understand surfacing techniques.
- CO5. To get familiar in the areas of thermal cutting processes.

RECOMMENDED BOOKS

- 1. Schwartz. M., "Brazing for the Engineering Technologies", Champan and Hall, 1995.
- 2. Manko. H.H., "Solders and Soldering".2ndEdition, McGraw Hill1979..
- 3. Udin, Funk, and Wulf ., "Welding for ENGINEERS".
- 4. ASM Metals Hand Book Vol. 6 "Welding and Brazing",1988.
- Lancaster .J .F . "Metallurgy of Welding, Brazing and Soldering" 3rdedition. George Allen & Unwin.1980.

6. Brooke, "Indusrial Brazing", Bcton.1975.

CO-PO MAPPING

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	2	2	2	1	1	0	0	1	0	3	3	2	2	
CO2	3	3	2	2	2	1	1	0	1	1	0	2	1	2	2	
CO3	3	3	3	3	3	1	1	2	1	0	0	3	1	3	1	1
CO4	2	2	2	2	2	1	0	0	1	1	0	2	1	1	1	1
CO5	3	2	2	3	3	1	1	0	1	0	0	2	0	2	2	1
Avg.	2.8	2.4	2.2	2.4	2.4	1	.8	0.4	0.8	0.6	0	2.4	1.2	2	1.6	0.6
	1- Fa	intly,	•	2- Mo	oderate	ly,	3	- Stron	igly	•	•	•	•	•	•	•

Course Objective:

To design a system, a component, or a process to meet desired needs within realistic constraints such as design basics, weld design for static loading, weld design for dynamic loading, distortion and residual stresses and failure analysis of the manufacturing.

DESIGN BASICS

Types of joints, Types of welds, variants of joints, selection of weld type, weld joints for structural tubular connections, welding symbols, weld dimensions, NDT symbols. Principles of weld joint design – General and specific design principles.

WELD DESIGN FOR STATIC LOADING

Material or section properties, Weld design stress calculation for welds, design under different types of loading like tension, compression, bending, shear, torsion and shock

WELD DESIGN FOR DYNAMIC LOADING

Basic details of fatigue and fatigue failure, S-N curve, Goodman diagram, factors affecting fatigue life of welded joint, methods of improving fatigue life of welded structures, design for fatigue loading, weld design using fracture toughness value (KIC).

DISTORTION AND RESIDUAL STRESSES

Welding residual stresses-causes, occurrence, effects-thermal and mechanical stress relieving. Types of distortion – factors affecting distortion –distortion control methods – prediction- correction, jigs, fixtures and positioners.

FRACTURE MECHANICS

Concept of stress intensity factor - LEFM and EPFM concepts - brittle fracture- transition temperature approach - fracture toughness testing, application of fracture mechanics to fatigue, weldments design for high temperature applications.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- CO1. Gain knowledge on design basics of the welding operations.
- CO2. Gain knowledge on the weld design for static loading processes.
- CO3. Gain knowledge on the weld design for dynamic loading processes.
- CO4. Gain detailed knowledge on factors influencing the distortion and residual stresses.
- CO5. Get familiarized in the failure analysis sector.

RECOMMENDED BOOKS:

- 1. Blodgett. O. W., Design of Weldments, James F. Lincoln Arc Welding Foundation, 1991.
- 2. R.S.Parmar, Welding Engineering and Technology 2ndedition, 2010.
- 3. Gurney T.R. Fatigue of Welded Structures. Cambridge University Press, 1980.
- 4. Rolfe. T., Barsom. J., Fracture and Fatigue Control of Structures Applications of Fracture Mechanics, Prentice Hall, 1987.
- 5. ASM Metals Hand Book. Failure Analysis and Prevention. Vol. 11. ASM2002.
- 6. Das, A.K., Metallurgy of Failure Analysis, Tata McGraw Hill, New Delhi, 1997.
- 7. Donald J. Wulpi, Understanding how components fail, ASM International, 3rdEdition, 2013.
- 8. Colangelo.V.J. and Heiser.F.A., "Analysis of Metallurgical Failures", John Wileyand Sons Inc. New York, USA, 1987.

22HMTW108

DESIGN OF WELDMENTS

L T PC 3003

(9)

(9)

Total: 45 hours

(9)

(9)

(9)

CO-PO MAPPING

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	2	2	2	1	0	0	0	0	0	1	3	1	2	
CO2	3	3	2	2	3	1	1	0	0	0	0	2	3	1	1	
CO3	3	2	2	1	3	1	0	0	0	0	0	1	3	2	1	1
CO4	3	2	2	2	1	1	1	0	0	0	0	1	1	2	2	
CO5	3	2	2	1	3	2	0	0	0	0	0	1	0	2	3	
Avg.	3	2.2	2	1.6	2.4	1.2	.4	0	0	0	0	1.2	2	1.6	1.8	0.2

1- Faintly, 2- Moderately, 3- Strongly

22HMTW109 FAILURE ANALYSIS IN WELDMENTS L T PC

3003

(9)

(9)

(9)

(9)

(9)

Course Objective:

To understand the concepts on failure and fracture analysis of weldments and to design new materials that can withstand catastrophic failures of weldments at different environment.

INTRODUCTION TO FAILURE ANALYSIS

Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristics of ductile and brittle fracture.

WELDMENT SURFACE FAILURES

Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures.

WELDMENT CREEP AND FATIGUE FAILURES

General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life, Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies on weldment failures.

FAILURE OF WELDED PRODUCTS

Causes of failure in forge weldments, failure of welded iron and steel castings, improper heat treatment of weldments, stress concentration by weldments, in-service weldment failures. Procedure for weld failure analysis and data extraction.

RELIABILITY

Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibull distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing.

Total: 45 hours

COURSE OUTCOMES: Upon completion of this course, the students will be able to:

- CO1. Understand the concepts of types of failures and analysis
- CO2. Learn the various factors affecting/causing failures of weldments
- CO3. Design new materials that can withstand failures, especially considering weldments in different environment.
- CO4. To understand failure in welded products.
- CO5. To learn various concepts in reliability.

RECOMMENDED BOOKS

- 1. Colangelo.V.J. and Heiser.F.A., "Analysis of Metallurgical Failures", John Wiley and Sons Inc. New York, USA,1987.
- 2. Das, A.K., "Metallurgy of Failure Analysis", Tata McGraw Hill, New Delhi, 1992.
- 3. DonaldJ.Wulpi,"Understandinghowcomponentsfail",ASMInternational,3rdEdition, 2013.
- 4. ASM Metals Handbook "Failure Analysis and Prevention", ASM Metals Park. Ohio, Vol.10, 10thEdition,1995.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2	1	1	1	1	0	0	0	0	1	2	2	2	3	
CO2	3	2	2	1	1	1	0	0	0	0	0	1	1	1	2	
CO3	2	2	1	1	1	0	0	0	0	0	1	1	1	0	1	
CO4	3	2	2	1	1	1	0	0	0	0	1	1	0	1	2	1
CO5	2	1	2	1	2	1	0	0	0	0	0	1	0	0	1	
Avg.	2.6	1.8	1.6	1	1.2	0.8	0	0	0	0	0.6	1.2	0.8	0.8	1.8	0.2

CO-PO MAPPING

1- Faintly, 2- Moderately, 3- Strongly

22HMTW110 FINITE ELEMENT ANALYSIS IN WELDING L T PC

3003

Course Objective:

To provide the basic FEM modeling and to analyze and solve metallurgical problems using those methods.

TWO DIMENSIONAL PROBLEMS

Poisson equation – Laplace equation – Weak form – Element matrices for triangular and rectangular elements – Evaluation of integrals – Assembly – Axi-symmetric problems – Applications – Conduction and convection heat transfer – Torsional cylindrical member – Transient analysis - Theory of elasticity – Plane strain – Plane stress – Axi-symmetric problems– Principle of virtual displacement

ISOPARAMETRIC ELEMENTS AND ITS APPLICATIONS

Introduction – Bilinear quadrilateral elements – Quadratic quadrilaterals – Hexahedral elements - Numerical integration – Gauss quadrature – Static condensation – Load considerations – Stress calculations – Examples of 2D and 3D applications

NON-LINEAR PROBLEMS AND ERROR ESTIMATES

Introduction-Iterative Techniques-Material non-Linearity-Elasto Plasticity-Plasticity-Visco plasticity-Geometric Non linearity-large displacement Formulation-Application in Metal Forming Process and contact problems- Error norms and Convergence rates- high refinement with adaptivity-Adaptive refinement

DYNAMIC PROBLEM

Direct Formulation-Free-Transient and Forced Response-Solution Procedures-Subspace Iterative Technique -Houbolt- Wilson- Newmark - Methods –Examples

FLUID MECHANICS

Governing Equations of Fluid Mechanics-Inviscid and Incompressible Flow-Potential Formulations-Slow Non- Newtonian Flow-Navier Stokes Equation-Steady and Transient Solutions.

Total: 45 hours

Course outcomes: Upon completion of this course, the students will be able to:

- CO1. Demonstrate understanding of FE formulation for axi- symmetric problems in heat transfer and elasticity
- CO2. To identify the primary and secondary variables of the problem and choose correct nodal degrees of freedom and develop suitable shape functions for an iso parametric element.

(9)

(9)

(9)

(9)

(9)

- CO3. Able to solve contact problems by using the techniques of non-linear equations of equilibrium
- CO4. Understand to solve the dynamic flow problems by iterative methods
- CO5. Solve non Newtonian Flow-Navier Stokes Equation by FE equations.

RECOMMENDED BOOKS:

- 1. Cook, Robert Davis et al "Concepts and Applications of Finite Element Analysis", Wiley, John & Sons,1981.
- 2. Desai C.S. and Abel J.F., "Introduction to Finite Element Method", Affiliated East- West Press,1972.
- 3. Chandrupatla, Belagundu, "Finite Elements in Engineering", Prentice Hall of India Private Ltd.,2002.
- 4. O.C. Zienkiewicz and R.L. Taylor, Finite element methods Vol I & Vol II, McGraw Hill,1989,1992.
- 5. K.J. Bathe, Finite element procedures, PHI Ltd., 1996.

CO-PO MAPPING

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	3	2	3	1	0	0	0	1	0	1	3	2	3	0	
CO2	3	3	3	3	2	0	0	0	0	0	0	2	2	3	0	
CO3	3	2	3	3	1	0	0	0	0	0	0	1	2	3	0	
CO4	3	2	3	3	1	1	0	0	1	0	0	2	2	3	0	1
CO5	3	3	3	3	2	1	0	0	0	0	0	2	0	3	0	
Avg.	2.6	2.6	2.8	3	1.4	.4	0	0	0.4	0	0.2	2	2	3	0	.2

1- Faintly, 2- Moderately,
MINOR DEGREE : METALLURGICAL ENGINEEING for other Branch Students VERTICAL :1

22MDMT101	ADVANCED PHYSICAL METALLURGY	L	Т	Р	С
		3	0	0	3

Course Objectives:

To impart knowledge on the crystal structure, diffusion, phase diagrams for various engineering materials.

UNIT-1 CRYSTAL STRUCTURES

Review of atomic bonds, Lattice, unit cell, crystal systems and Bravais lattices; Principal crystal structures – BCC, FCC, HCP and its characteristics; Miller indices for crystallographic planes and directions, interplanar spacing; Volume, planar and linear atomic density; Polymorphism and allotropy; CsCl, NaCl, Diamond structures; single crystal and polycrystalline and amorphous materials; isotropy and anisotropy; Simple problems in the above topics

UNIT-2 CRYSTALLINE IMPERFECTIONS

Types of point defects, effect of temperature on vacancy concentration, interstitial sites-octahedral and tetrahedral sites; Line defects – dislocations – Edge, screw and mixed dislocations, Burger's vector, slip and twinning; Planar defects – grain boundaries, tilt boundaries, small angle grain boundaries; ASTM grain size number, grain size determinations; Volume defects; Simple problems in the above topics.

UNIT-3 ATOMIC DIFFUSION IN SOLIDS AND SOLIDIFICATION OF METAL (9)

Diffusion mechanisms, steady state diffusion and non-steady state diffusion-Fick's first law and second law; Kirkendall effect and Darken's equation; Factors affecting diffusion; Industrial applications of diffusion processes; Simple problems in the above topics; Basic principles of solidification of metals and alloys; Growth of crystals– Planar growth, dendritic growth, Solidification time, dendrite size; Cooling curves; Cast or Ingot structure, Solidification defects – Control of casting structure; Directional solidification – single crystal growth; Simple problems in the above topics.

UNIT-4 PHASE DIAGRAMS

Phases, solid solution types, compounds, Hume- Rothery rules; Gibb's phase rule; Phase diagram determination; Binary isomorphous alloy systems – composition and amount of phases, development of microstructure – equilibrium and non-equilibrium cooling- Coring and its effects, homogenization; Binary eutectic system - composition and amount of phases, development of microstructure; Eutectoid, Peritectic and monotectic reaction, Phase diagrams with intermediate phases and compounds; Ternary phase diagrams. Simple problems in the above topics.

UNIT-5 IRON-CARBON PHASE DIAGRAM

Iron-carbon diagram, Phases in Fe-C system, Invariant reactions, Microstructure of slowly cooled steels, composition and amount of phases, Effect of Alloying elements on Fe-C system, Type, structure, properties and applications of Plain Carbon Steels and different types of Cast iron; IS Specification for Steels and Cast Irons, Simple problems in above topics.

Total (L) 45 Hours

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1 : Understand the basic crystal structure, orientation and their influence on macroscopic properties.

CO2 : Explain and relate the role of imperfections in strengthening the materials.

CO3 : Apply the diffusion mechanism in solidification of materials under different conditions.

CO4 : Understand and apply the concept of phase diagrams in equilibrium transformation of materials phases.

CO5 Explain the Fe-Fe₃C system and properties of steel and cast iron.

Text Books:

1. Donald R. Askeland,"The Science and Engineering of Materials", Thomson Learning, India Edition, 2007.

2. William D.Callister, "Materials Science and Engineering – An Introduction", 4th edition, JohnWiley & Sons, New York, USA, 1997.

Reference Books:

Avner S H."An Introduction to Physical Metallurgy", McGraw Hill Book Co, New York, USA, 1997.
Donald R Askeland," Essentials of Material Science and Engineering ", Thomson Learning, India Edition,

2007.

3. Raghavan V., "Physical Metallurgy – Principles and Practice", Prentice Hall of India Ltd., New Delhi, 1996.

4. William F.Smith, "Foundations of Materials Science and Engineering", Second Edition, McGraw-Hill Inc,

(9)

(9)

(9)

(9)

New York, 1993.

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3	PSO 4
CO1	3	2	0	1	0	2	0	0	0	0	0	0	3	0	1	
CO2	2	3	1	1	0	1	0	1	0	0	0	1	2	3	0	
CO3	2	2	1	1	0	1	0	3	0	0	2	1	2	3	1	
CO4	3	2	2	1	3	2	1	2	0	0	1	3	3	2	3	
CO5	3	2	2	3	2	1	0	2	2	0	1	2	2	3	3	1
AVG	2.6	2.2	1.2	1.4	1	1.4	0.2	1.6	0.4	0	0.8	1.4	2.4	2.2	1.6	0.2

1- Faintly,

2- Moderately,

3- Strongly

22MDMT102 METALLURGICAL THERMODYNAMICS AND KINETICS L T P C

Course objectives:

To introduce the basic knowledge of thermodynamics required for understanding various alloy systems, phase transformations and interpreting properties

UNIT-1 FUNDAMENTAL CONCEPT AND INTERNAL ENERGY

Introduction: System and surrounding, Classification of systems, Path and state properties, Thermodynamic processes, Thermodynamic equilibrium, Reversible and Irreversible processes. First law of thermodynamics: Heat and work, Internal energy, Heat capacity of materials, Cp-Cv relations, Nernst Equation, Enthalpy, Thermochemistry Hess's law, Kirchoff's law, Maximum flame temperature.

UNIT-2 ENTROPY AND AUXILARY FUNCTIONS

Second law of thermodynamics: Carnot cycle, Entropy - Statistical interpretation of entropy, Free energy, Combined statement of first and second laws, Thermodynamic functions - Maxwell's relations, Gibbs Helmholtz equation. Third and Zeroth laws of thermodynamics : Definition, concept and applications

UNIT-3 THERMODYNAMIC POTENTIALS AND PHASE EQUILIBRIA:

Thermodynamic potentials: Fugacity, Activity and Equilibrium constant. Clausius - Clayperon equation, Troutons rule. Le Chatelier's principle, Vant Hoff's equation. Equilibria in phase diagrams: Phase rule, Phase stability, Thermodynamics of surfaces, interfaces and defects, P-G-T diagrams, Application of free energy - composition diagrams to the study of alloy systems.

UNIT-4 THERMODYNAMICS OF SOLUTIONS:

Gibbs - Duhem equation, Partial and integral molar quantities, chemical potential, Ideal solutions - Raoult's law, Real solutions, Activity coefficient, Henry's law, Alternative standard states, Sievert's law, Mixing functions and excess functions, Regular solutions, Applications of Gibbs - Duhem equation.

UNIT-5 THERMODYNAMICS OF REACTIONS AND KINETICS:

Electro chemical process: Cells, Interconversion of free energy and electrical work, Determination of thermodynamic quantities using reversible cells, Solid electrolytic cells. Kinetics: First, Second and third order reactions, Arrhenius equation - activation energy, Determination of order of the reaction.

Total (L) = 45 Hours

3

(9)

(9)

(9)

(9)

(9)

3 0 0

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 : To remember the fundamental concepts of thermodynamics and internal energy
- CO2 : Understand the thermodynamics entropy and auxilary functions.
- CO3 : Apply the basic laws and derive chemical potential and phase equilibria.
- CO4 : Describe the thermodynamics of the solution and various important equations.
- CO5 : understand and apply to solve problems related to electrochemical processes and kinetics.

Text Books:

- 1. Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", Pergamon, 1977.
- 2. Ahindra Ghosh, Text book of Materials & MetallurgicalThermodynamics, Prentice Hall India, 2002
- 3. David R Gaskell, "Introduction to the Thermodynamics of Materials", Fifth Edition, Taylor & Francis, 2008

Reference Books:

1. David V Ragone, "Thermodynamics of Materials - Volume-1", John Wiley & Sons, Inc. 1995. 2. .Dr S.K Dutta,Prof A.B.Lele – Metallurgical thermodynamics kinetics and numericals,S.Chand& co Ltd.,New Delhi 2011

3. Darken LS and Gurry R W,"Physical Chemistry of Metals", CBS publications and distributors, 2002.

4. Parker R H, "An introduction to chemical metallurgy", Pergamon press, New York, second edition, 1978.

5. Kapoor M.L., "Chemical and Metallurgical Thermodynamics Vol. I and II", Nem Chand, 1st Ed., 1981.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3	PSO 4
CO1	2	0	0	0	0	2	1	1	1	0	0	1	3	3	3	
CO2	2	3	0	2	0	1	0	0	0	0	0	2	2	1	0	
CO3	2	2	1	2	1	2	0	0	1	2	1	1	3	3	1	1
CO4	2	3	1	1	1	2	0	1	1	0	1	2	2	3	2	
CO5	1	3	0	3	0	1	1	0	2	1	0	0	3	2	1	
AVG	1.8	2.2	0.4	1.6	0.4	1.6	0.4	0.4	1	0.6	0.4	1.2	0.8	0.8	0.6	0.2

1- Faintly, 2- Moderately, 3- Strongly

22MDMT103

MECHANICAL BEHAVIOUR L **OF MATERIALS**

Course Objectives:

To know the fundamental concepts of deformation behaviour for structural engineering applications.

UNIT-1 DISLOCATIONS AND PLASTIC DEFORMATION

Strength of perfect crystal and need for dislocations; Characteristics of dislocations - Edge dislocation, Screw dislocation, Burger's vector, mixed dislocation, dislocation loops; Movement of dislocation - Pierls stress, Cross slip, Climb; Dislocations in FCC, HCP and BCC lattice; Stress fields and energies of dislocations, forces on and between dislocations; Dislocation density; Intersections of dislocations - Jogs and kinks; Dislocation multiplication; Dislocation pile-ups; Deformation by slip and twinning; Critical resolved shear stress; Deformation bands and kink bands.

UNIT-2 STRENGTHENING MECHANISMS

Strain hardening; Grain boundary strengthening; Solid solution strengthening - yield-point phenomenon, strain ageing; Precipitation hardening - Conditions for precipitation hardening, Ageing, Formation of precipitates, coarsening of precipitates, Mechanism of strengthening; Dispersion strengthening; Fiber strengthening; Martensite strengthening - examples for above strengthening mechanisms from ferrous and non-ferrous systems, Bauschinger effect; Preferred orientation; Sever plastic deformation.

UNIT-3 FRACTURE AND FRACTURE MECHANICS:

Types of fracture – ductile and brittle fracture, Ductile to Brittle Transition Temperature (DBTT), Metallurgical factors affecting DBTT, determination of DBTT, Hydrogen embrittlement and other embrittlement, Theoretical cohesive strength of metals, Griffith's theory of brittle fracture, Orowan's modification. Fracture mechanics introduction, modes of fracture, stress intensity factor, strain energy release rate, fracture toughness and determination of KIC, introduction to COD, J integral.

UNIT-4 FATIGUE BEHAVIOUR AND TESTS:

Fatigue: Stress cycles, S-N curves, effect of mean stress, factors affecting fatigue, structural changes accompanying fatigue, cumulative damage, HCF / LCF, thermo-mechanical fatigue, application of fracture mechanics to fatigue crack propagation, fatigue testing machines.

UNIT-5 CREEP BEHAVIOUR AND TESTS:

Creep curve, stages in creep curve and explanation, structural changes during creep, creep mechanisms, metallurgical factors affecting creep, high temperature alloys, stress rupture testing, creep testing machines, parametetric methods of extrapolation. Deformation Mechanism Maps.

Total (L) = 45 Hours

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1 : Understand and explain the mechanical behaviour of materials.

CO2: Understand the various types of fractures and their mechanisms, fracture mechanics and various theories describing fracture mechanics.

CO3: Understand and explain the fatigue behaviour and the mechanism of fatigue, SN curve and fatigue testing machines.

CO4 : Explain the creep behaviour and mechanism, factors affecting creep and creep testing machines.

Text Books:

1. George. E. Dieter, "Mechanical Metallurgy", 3rd Edition, McGraw-Hill Publications, New York, SI Edition, 2004

2. Marc Andr'e Meyers, Krishan Kumar Chawla, "Mechanical Behavior of Materials", Cambridge University Press, UK, 2009.

Reference Books:

1. Reed Hill, R.E., "Physical Metallurgy Principles", Affiliated East West Press, New Delhi, 1992.

2. Davis.H.E. Troxell G.E., Hauck.G.E.W. "The Testing of Engineering Materials", McGraw-Hill, 1982.

3. Wulff et al Vol. III "Mechanical Behavior of Materials", John Wiley and Sons, New York, USA, 1983.

4. Honeycombe R.W.K., "Plastic Deformation of Materials", Edward Arnold Publishers, 1984

(9)

С

3

Т

0

3

Р

0

(9)

(9)

(9)

(9)

CO/ PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 10	PO 11	PO 12	PS 0 1	PS O2	PS O3	PS 0 4
CO1	2	0	2	0	3	1	0	0	2	1	1	3	2	1	0	
CO2	2	1	3	2	2	1	0	0	2	1	2	2	1	2	1	
CO3	1	2	1	0	3	1	1	0	0	0	1	2	1	0	1	1
CO4	3	0	3	2	3	1	0	1	0	0	2	3	2	1	0	1
AVG	2	0.1 5	2.2 5	1	2.7 5	1	0.2 5	0.2 5	1	0.5	1.5	2.5	1.4	1.2	0.4	0.5

1- Faintly,	2- Moderately,	3- Strongly
-------------	----------------	-------------

L|T|P|C 22MDMT104 **RATE PROCESSES IN METALLURGY** 3 0 0 3 **Course Objectives:** To impart knowledge on requirements for materials for high temperature use and the behavior of materials at high temperatures. Unit I INTRODUCTION 9 Introduction: Role of kinetics, heterogeneous and homogeneous kinetics, Role of heat and mass transfer in metallurgical kinetics, rate expression, Effect of Temperature and concentration on reaction kinetics: effect of temperature (Arrhenius Equation), Effect of concentration (order of a reaction), significance and determination of activation energy. Unit II **KINETICS OF SOLID-FLUID REACTION** 9 Kinetics of solid-fluid reaction: kinetic steps, rate controlling step, definition of various resistances in series, shrinking core model, chemical reaction as rate controlling step, Product layer diffusion as rate controlling step, Mass transfer through external fluid film as rate controlling step, heat transfer as the rate controlling step, Concentration boundary layer, definition and significance of heat and mass transfer coefficient, Theoretical models for mass transfer coefficients, Correlations for heat and mass transfer coefficients Unit III LIQUID-SOLID PHASE TRANSFORMATION 9 Principles of Solidification in metals and alloys: thermodynamics involved, eutectic and peritectic Solidification, Homogeneous and heterogeneous nucleation, Mechanisms of growth. Rapid Solidification Processing. Unit IV SOLID STATE PHASE TRANSFORMATIONS 9 Nucleation and growth Kinetics, homogeneous and heterogeneous transformation, Precipitation: Coherency, age hardening, particle Coarsening. Ostwald ripening, Order-disorder transformation, spinodal decomposition, massive transformations SOLID STATE PHASE TRANSFORMATIONS IN STEEL Unit V 9 Reconstructive and displacive transformations; Pearlitic transformation: mechanism and kinetics: Johnson-Mehl equation, morphology of pearlite; Bainitic transformation: mechanism and kinetics; morphology of upper bainite and lower bainite; Martensitic transformation: Mechanism- diffusionless displacive nature; morphology of high carbon and low carbon martensite. Total = 45 hours **Course Outcomes:** Upon completion of this course, the students will be able to: CO1 Learn the thermodynamic aspects of phase changes. CO2 Discuss the fundamentals of solid –fluid reactions. CO3 Derive mathematical expressions of diffusion in order to interpret industrial processes such as carburizing, homogenizing annealing etc. CO4 Understand the fundamentals of solidification in order to apply it in Foundry industry. CO5 | Learn solid state phase transformations in steel **Text Books:** Ahindra Ghosh and Sudipto Ghosh, A Text book of Metallurgical Kinetics, PHI learning Pvt. 1. Ltd., New Delhi, 2014 2. H.S. Ray, Kinetics of Metallurgical Reactions, International Science publisher, 1993. 3. F. Habashi, Kinetics of Metallurgical Processes, Metallurgy Extractive Québec, 1999. Upadhyaya G S and Dube R K., "Problems in Metallurgical Thermodynamics & Kinetics", 4. Pergamon, 1977. **Reference Books:** Phase transformations in metals and alloys- D.A. Potter and K.E. Easterling, CRC Press, 1. 1992. 2. Transformations in Metals, P.G. Shewmon, Mc-Graw Hill, 1969. Introduction to Physical Metallurgy - S. N. Avner, Tata McGraw Hill, 1997. 2. Physical Metallurgy Principles, R. E. Reed-Hill and R. Abbaschian, 3rd ed, PWS-Kent 3. Publishing, 1992. Modern Physical Metallurgy, R. E. Smallman, Butterworths, 1963 4.

CO/PO	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3	PSO 4
CO1	1	0	0	2	3	1	0	0	2	1	3	0	1	1	1	
CO2	1	3	2	3	2	1	1	0	0	0	1	1	2	1	0	
CO3	2	3	0	2	1	0	0	1	0	1	2	0	2	2	1	1
CO4	3	1	2	1	3	1	1	1	2	2	0	2	0	1	0	1
CO5	2	3	3	2	1	2	1	1	0	0	0	1	1	2	0	
AVG	1.8	2	1.4	2	2	1	0.6	0.6	0.8	0.8	1.2	0.8	1.2	1.4	0.4	0.4
		1- Faiı	ntly,	•	2- M	oderat	ely,	•	3- St	rongly	ý	•	•	•	•	•

22MDMT105 CORROSION AND SURFACE ENGINEERING LT P C

Course Objective:

To provide a practical knowledge about corrosion and surface engineering, with its application in engineering field.

MECHANISMS AND TYPES OF CORROSION

Principles of direct and Electro chemical Corrosion, Hydrogen evolution and Oxygen absorption mechanisms – Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform, Pitting, Intergranular, Cavitations, Crevice Fretting, Erosion and Stress Corrosion, corrosion fatigue, hydrogen damage –Factors influencing corrosion

TESTING AND PREVENTION OF CORROSION

Corrosion testing techniques and procedures- Corrosion Testing ASTM Standards, Pitting Corrosion Test, Hydrogen Induced Cracking Test, Sulphide Stress Corrosion Cracking Test- Prevention of Corrosion-Design against corrosion –Modifications of corrosive environment –Inhibitors – Cathodic Protection –Special surfacing processes.

CORROSION OF INDUSTRIAL COMPONENTS

Corrosion in fossil fuel power plants, Automotive industry, Chemical processing industries, corrosion in petroleum production operations and refining, Corrosion of pipelines.- wear of industrial components.

SURFACE ENGINEERING FOR WEAR AND CORROSION RESISTANCE

Diffusion coatings –Electro and Electroless Plating –Hot dip coating –Hard facing-Metal spraying, Flame and Arc processes- Conversion coating –Selection of coating for wear and Corrosion resistance.

THIN LAYER ENGINEERING PROCESSES

Laser and Electron Beam hardening –Effect of process variables such as power and scan speed - Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating - Chemical vapor deposition – Coating of tools, TiC, TiN, Al₂O₃ and Diamond coating-Properties and applications of thin coatings.

Total(L+T) = 45 hours

Course outcomes:

Upon completion of this course, the students will be able to:

CO1: Know the different types of corrosion and their mechanism.

- CO2: Estimate corrosion resistance by different tests.
- CO3: Understand corrosion behavior of different metals at different industries.
- CO4: Define different forms of processing techniques of surface engineering materials.

CO5: Select the type of deposition and spraying technique with respect to application.

RECOMMENDED BOOKS:

- 1. Fontana. G., Corrosion Engineering, McGraw Hill, 1985.
- 2. Kenneth G. Budinski, Surface Engineering for Wear Resistance, Prenticehall, 1992.
- 3. ASM Metals Hand Book Vol. 5, Surface Engineering, 1996.
- 4. Denny A Jones, "Principles and prevention of corrosion", 2ndedition, Prentice Hall, New Jersey, 1995.
- 5. ASM International, Surface Engineering for Corrosion and Wear Resistance, 2005.
- 6. Schweitzer. P.A., Corrosion Engineering Hand Book, 3rd Edition, Marcel Decker, 1996.

3003

9

9

9

9

9

CO-PO MAPPING

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3	PSO 4
CO1	3	2	1	2	2	1	2	0	0	0	0	1	1	1	2	
CO2	3	2	3	1	0	1	1	0	0	0	0	3	2	0	2	
CO3	3	3	2	3	2	1	1	0	0	0	0	2	2	1	2	1
CO4	3	2	2	3	2	1	1	0	1	0	0	3	1	1	2	
CO5	3	2	2	2	2	1	0	0	3	0	0	3	1	2	2	
AVG	3	2.2	2	2.2	1.6	1	1	0	0.8	0	0	2.4	1.4	1	2	0.2
		1- Fair	ntly,	•	2- M	oderat	tely,	•	3- St	rongly	ý	•	•		•	

22MDMT106 CHARACTERIZATION OF MATERIALS L T P 3 0 0

Course Objectives:

To acquire knowledge on various characterization, chemical and thermal analysis of metallurgical components using those analysis tools.

OPTICAL MICROSCOPY

Metallographic specimen preparation. Macro-examination -applications. Metallurgical microscope - principle, construction and working, , Optic properties - magnification, numerical aperture, resolving power, depth of focus, depth of field, different light sources, lens aberrations and their remedial measures, Various illumination techniques-bright field , dark field, phase-contrast, polarized light illuminations, interference microscopy, high temperature microscopy; Quantitative metallography – Image analysis.

X-RAY DIFFRACTION

Characteristic X-ray spectrum, Bragg's Law, Diffraction methods - Laue method, rotating crystal method and powder method. Diffraction intensity – structure factor calculation. X-ray diffractometer -general features, filters and counters. Applications of X-ray diffraction in materials characterisation – Determination of crystallite size, crystal structure, precise lattice parameter, measurement of stress.

ELECTRON MICROSCOPY

Electron beam - specimen interactions. Construction and operation of Transmission Electron Microscopy – Diffraction effects and image formation, various imaging modes, selected area diffraction, applications, specimen preparation techniques. Scanning electron microscopy – principle, equipment, various operating modes and applications, Electron probe microanalyser (EPMA)- principle, instrumentation, qualitative and quantitative analysis. Introduction to HRTEM, FESEM, EBSD.

SPECTROSCOPIC TECHNIQUES

X-ray spectroscopy – EDS and WDS. Principle, instrumentation, working and applications of Auger Electron spectroscopy, X-ray photoelectron spectroscopy and Secondary ion mass spectroscopy / ion microprobe. Optical emission spectroscopy, Atomic Absorption spectroscopy and X-ray fluorescence spectroscopy - principle, construction, working and applications. UV-Vis, FTIR and Raman spectroscopy.

THERMAL ANALYSIS AND ADVANCED CHARACTERIZATION TECHNIQUES (9)

Thermal Analysis: Principles of differential thermal analysis, differential scanning calorimetry and thermograviometric analysis – Instrumentation and applications. Advanced characterization techniques: Scanning probe microscopy - STM and AFM - principle, instrumentation and applications. Field ion microscopy including atom probe - principles, instrumentation and applications.

Total: 45 hours

Upon completion of this course, the students will be able to:

- CO1 Know the principles of metallurgical microscope, X-ray Diffractrometer (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermal analysis and dilatometer.
- CO2 Describe the various sample/specimen preparation techniques for XRD, SEM, TEM and thermal analysis and quantitative metallography
- CO3 Determine crystal structure, lattice parameter, phase identification, solvus line estimation and residual stress analysis using XRD
- CO4 Analyze the material in lattice level by using different modes of TEM like bright and dark field imaging, selected area diffraction and microchemical analyses.
- CO5 Evaluation of the specimen chemical and thermal analysis using advanced methods.

(9)

С

3

(9)

(9)

(9)

TEXT BOOKS :

- Cullity, B.D., Elements of X Ray Diffraction, Addison-Wesley Publishing Company Inc, Philippines, 1978
- 2. Brandon, D. and W.D. Kaplan, Microstructural Characterization of Materials, John Wiley & Sons Ltd, England, 2013.
- 3. Leng, Y., Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2008

REFERENCES :

- 1. ASM Handbook, Volume 10, Materials Characterization, ASM international, USA, 1986.
- 2. Vander Voort, G.F., Metallography: Principle and practice, ASM International, 1999.
- 3. Phillips V A, Modern Metallographic Techniques and their Applications, Wiley Eastern, 1971.
- 4. Angelo, P.C., Materials Characterization, Reed Elsevier India Pvt Ltd, Haryana, 2013.

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3	PSO 4
CO1	2	0	0	2	3	2	0	0	0	0	1	0	2	2	0	
CO2	3	2	2	3	3	1	1	1	1	2	0	0	2	2	1	1
CO3	2	3	1	1	3	0	0	0	2	1	2	0	2	2	1	1
CO4	2	1	2	0	3	0	0	0	1	1	1	2	1	2	1	
CO5	3	0	2	0	3	0	1	1	0	1	2	2	1	0	2	
AVG	2.4	1.2	1.4	1.2	3	0.6	0.4	0.4	0.8	1	1.2	0.8	1.6	1.6	1	0.4

1- Faintly, 2-

2- Moderately, 3- Strongly

22NADNAT 107	Automotive Assesses and Defense Materials	LTI
	Automotive, Aerospace and Defence Materials	2 0 (

Course Objectives:

To know the details of electrodes for various materials used for different welding processes

Unit I MATERIALS FOR ENGINES AND TRANSMISSION SYSTEMS

Materials selection for IC engines: Piston, piston rings, cylinder, Engine block, Connecting rod, Crank shaft, Fly wheels, Gear box, Gears, Splines, Clutches.

Unit II MATERIALS FOR AUTOMOTIVE STRUCTURES

Materials selection for bearings, leaf springs, chasis & frames, Bumper, shock absorbers, wind screens, panels, brake shoes, Disc, wheels, differentials, damping and antifriction fluids, Tyres and tubes. Materials for electronic devices meant for engine control, ABS, Steering, Suspension, Sensors, anti-collision, Anti-fog, Head lamps.

Unit III AEROSPACE METALS AND ALLOYS

Types of corrosion – Effect of corrosion on mechanical properties – Stress corrosion cracking – Corrosion resistance materials used for space vehicles. Heat treatment of carbon steels – aluminium alloys, magnesium alloys and titanium alloys – Effect of alloying treatment, heat resistance alloys – tool and die steels, magnetic alloys, powder metallurgy-application of materials in Thermal protection systems of Aerospace vehicles – super alloys

Unit IV CERAMICS AND COMPOSITES

Introduction – physical metallurgy – modern ceramic materials – cermet - cutting tools – glass ceramic –production of semi-fabricated forms - Plastics and rubber – Carbon/Carbon composites, Fabrication processes involved in metal matrix composites - shape memory alloys – applications in aerospace vehicle design.

Unit V NUCLEAR WASTE AND RADIATION PROTECTION, IRRADIATION EFEFCTS

Introduction-unit of nuclear radiation-Types of waste –disposal –ICRP recommendations-radiation hazards and prevention –radiation dose units - Irradiation Examination of Fuels, Irradiation behaviour of metallic uranium – irradiation growth, thermal cycling, swelling, adjusted uranium, blistering in uranium rods. Irradiation effects in ceramic oxide and mixed oxide fuels, definition and units of burn up, main causes of fuel element failure in power reactors and remedies to avoid failures.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1 Understand the use of Materials selection criteria for engine and transmission systems.
- CO2 Understand the Different materials used for automotive structures and Different electronic materials for automotive applications
- CO3 Explain various topics such as elements of aerospace materials, mechanical behaviour of materials,
- CO4 Deploy the skills effectively in understanding the ceramics and composites aerospace materials
- CO5 Ability to examine the fuels for nuclear materials.

Reference Books:

1. ASM Handbook, "Selection of Materials Vol. 1 and 2", ASM Metals Park, Ohio. USA, 1991.

- 2. Materials Science and Engineering, Willium D. Callister, Jr. John Wiley & Sons publications Or Callister's Materials Science and Engineering Adapted By R. Balasubramaniam, Wiley India, Edition -2010.
- 3. Material Science and Engineering, V. Raghavan, Prentice Hall of India, 4th Edition.
- 4. Engineering Metallurgy Applied Physical Metallurgy, R. A. Higgins, 6th Edition.
- **5.** Gladius Lewis, "Selection of Engineering Materials", Prentice Hall Inc. New Jersey USA, 1995.
- **6.** Charles J A and Crane. F A. A., "Selection and Use of Engineering Materials", 3rd Edition, Butterworths, London UK, 1996

9

С

3

9

9

9

Total = 45 hours

.

- 7. ASM Handbook. "Materials Selection and Design", Vol. 20- ASM Metals Park
- Ohio.USA, 1997.8. Cantor," Automotive Engineering: Lightweight, Functional, and Novel Materials", Taylor & Francis Group, London, 2006

CO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2	PSO3	PSO 4
C01	2	0	0	1	1	1	2	0	1	1	0	0	1	2	0	1
CO2	2	1	1	0	3	1	2	0	3	2	1	3	1	0	1	1
CO3	1	0	3	0	3	2	2	0	1	0	3	3	1	1	2	1
CO4	3	0	2	0	3	0	2	1	2	3	2	3	2	1	2	1
CO5	3	0	0	0	0	3	3	0	2	1	2	0	0	2	3	1
AVG	2.2	0.2	1.2	0.2	2	1.4	2.2	0.2	1.8	1.4	1.6	1.8	1	1	1.6	1
	1-	Faintl	у,	2	- Mod	leratel	y,	3	- Stro	ngly	•	•	•	•	•	•