GOVERNMENT COLLEGE OF ENGINEERING, SALEM – 636 011 (An Autonomous Institution affiliated to Anna University, Chennai) CURRICULUM FOR 2022 REGULATIONS M.E. DEGREE IN STRUCTURAL ENGINEERING – FULL TIME

FIRST SEMESTER

SI.	Subject			CA	End	Total		Cree	dits	
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	Р	С
		THEORY								
1	22STC11	Advanced Structural Analysis	PC	40	60	100	3	0	0	3
2	22STC12	Theory of Elasticity and Plasticity	PC	40	60	100	3	0	0	3
		ELECTIVE								
3	22STE1X	Elective –I	PE	40	60	100	3	0	0	3
4	22STE2X	Elective – II	PE	40	60	100	3	0	0	3
		PRACTICAL								
5	22STC13	Structural Design Lab	EEC	40	60	100	0	0	2	2
6	22STC14	Concrete and Experimental Stress Analysis Lab	PC	40	60	100	0	0	2	2
		MANDATORY COURSE								
7	22MLC01	Research Methodology and IPR	MLC	40	60	100	3	0	0	3
		AUDIT COURSE								
8	22ACX	Audit Course 1	AC				2	0	0	0
		TOTAL		280	420	700	17	0	4	19

SECOND SEMESTER

SI.	Subject	Course Title	~	CA	End Sem.	Total		Cre	dits	
No.	Code		CAT	Marks	Marks	Marks	L	Т	Р	С
		THEORY								
1	22STC21	Finite Element Method in Structural Engineering	PC	40	60	100	3	0	0	3
2	22STC22	Structural Dynamics	PC	40	60	100	3	0	0	3
		ELECTIVE								
3	22STE3X	Elective – III	PE	40	60	100	3	0	0	3
4	22STE4X	Elective – IV	PE	40	60	100	3	0	0	3
		PRACTICAL								
5	22STC23	Model Testing Lab	PC	40	60	100	0	0	2	2
6	22STC24	Numerical Analysis Lab	EEC	40	60	100	0	0	2	2
7	22STC25	Mini Project	EEC	40	60	100	0	0	4	2
		AUDIT COURSE								
8	22ACX	Audit Course 2	AC				2	0	0	0
		TOTAL		280	420	700	14	0	8	18

THIRD SEMESTER

SI.	Subject		GAT	СА	End	Total		Cre	dits	
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	Р	С
		ELECTIVE								
1	22STE5X	Elective – V	PE	40	60	100	3	0	0	3
2	22STE6X	Elective – VI	PE	40	60	100	3	0	0	3
		DISSERTATION								
3	22STC31	Dissertation Phase – I	EEC	80	120	200	0	0	20	10
		TOTAL		160	240	400	6	0	20	16

FOURTH SEMESTER

SI.	Subject	Course Title	САТ	CA	End Sem.	Total		Cre	dits	
No.	Code	Course Thie	Marks Marks		Marks	L	Т	Р	С	
		DISSERTATION								
1	22STC41	Dissertation Phase – II	EEC	160	240	400	0	0	32	16
		TOTAL		160	240	400	0	0	32	16

Total number of credits to be earned for the award of degree = 69 (19+18+16+16)

List of Programme Electives (PE):

SI.	Subject	Course Title	САТ	СА	End Sem.	Total		Cree	dits	
No.	Code	course rule		Marks	Marks	Marks	L	Т	Р	С
		Elective 1								
1	22STE11	Theory of Thin Plates and Shells	PE	40	60	100	3	0	0	3
2	22STE12	Theory and Applications of Cement Composites	PE	40	60	100	3	0	0	3
3	22STE13	Theory of Structural Stability	PE	40	60	100	3	0	0	3
4	22STE14	Corrosion and its Prevention	PE	40	60	100	3	0	0	3
		Elective II								
5	22STE21	Analytical and Numerical Methods for Structural Engineering	PE	40	60	100	3	0	0	3
6	22STE22	Structural Health Monitoring	PE	40	60	100	3	0	0	3
7	22STE23	Structural Optimization	PE	40	60	100	3	0	0	3
8	22STE24	Experimental Techniques and Instrumentation	PE	40	60	100	3	0	0	3
	1	Elective III								
9	22STE31	Advanced Steel Design	PE	40	60	100	3	0	0	3
10	22STE32	Design of Formwork	PE	40	60	100	3	0	0	3
11	22STE33	Design of High Rise Structures	PE	40	60	100	3	0	0	3
12	22STE34	Design of Masonry Structures	PE	40	60	100	3	0	0	3
13	22STE35	Design of Prefabricated Structures	PE	40	60	100	3	0	0	3
14	22STE36	Design of Steel - Concrete Composite Structures	PE	40	60	100	3	0	0	3
		Elective – IV								
15	22STE41	Design of Advanced Concrete Structures	PE	40	60	100	3	0	0	3
16	22STE42	Advanced Design of Foundations	PE	40	60	100	3	0	0	3
17	22STE43	Design of Industrial Structures	PE	40	60	100	3	0	0	3
18	22STE44	SubStructure Design	PE	40	60	100	3	0	0	3
19	22STE45	Design and Construction of Ferrocement Structures	PE	40	60	100	3	0	0	3

		Elective –V								
20	22STE51	Design of Prestressed Concrete Structures	PE	40	60	100	3	0	0	3
21	22STE52	Analysis of Laminated Composite Plates	PE	40	60	100	3	0	0	3
22	22STE53	Fracture Mechanics of Concrete Structures	PE	40	60	100	3	0	0	3
23	22STE54	Design of Plates and Shells	PE	40	60	100	3	0	0	3
24	22STE55	Design of Bridges	PE	40	60	100	3	0	0	3
25	22STE56	Modern Construction Materials	PE	40	60	100	3	0	0	3
		Elective –VI								
26	22STE61	Advanced Concrete Technology	PE	40	60	100	3	0	0	3
27	22STE62	Disaster Resistant Structures	PE	40	60	100	3	0	0	3
28	22STE63	Soil Structure Interaction	PE	40	60	100	3	0	0	3
29	22STE64	Environmental Engineering and Offshore Structures	PE	40	60	100	3	0	0	3
30	22STE65	Wind and Cyclone Effects on Structures	PE	40	60	100	3	0	0	3

Audit Courses (AC):

SI.	Subject			СА	End	Total	Credits				
No.	Code	Course Title	CAT	Marks	Sem. Marks	Marks	L	Т	Р	С	
1	22AC01	English for Research Paper Writing	AC	40	60	100	2	0	0	0	
2	22AC02	Disaster Management	AC	40	60	100	2	0	0	0	
3	22AC03	Sanskrit for Technical Knowledge	AC	40	60	100	2	0	0	0	
4	22AC04	Value Addition	AC	40	60	100	2	0	0	0	
5	22AC05	Constitution of India	AC	40	60	100	2	0	0	0	
6	22AC06	Pedagogy Studies	AC	40	60	100	2	0	0	0	
7	22AC07	Stress Management by Yoga	AC	40	60	100	2	0	0	0	
8	22AC08	Personality Development through Life Enlightenment Skills	AC	40	60	100	2	0	0	0	

2251	ГС11	ADVANCED STRUCTURAL ANALYS	IS	S	emeste	er	Ι
PRER	EQUIS	ITES	Category	PC	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To impa	art knowledge to the students with fundamental concepts					
2	Energy	concepts in structures					
3	Statical	ly determinate and indeterminate structures					
4	Modern	methods like flexibility method and stiffness method					
Un	nit I	STRUCTURES- FUNDAMENTAL CONCEP	PTS	9	0	0	9
Charao Introdu Examp flexibil	cteristics action- States-symmetry of systems	Principle of superposition-Methods of Structural analysis. of structures – stiffness and flexibility ructure with single coordinate- Two coordinates- Flexibil etric nature of matrices- Stiffness and Flexibility matrices tems and elements-Computing displacements and forces from cibility coefficients.	s in constrained 1	neasure			
Uni	it II	ENERGY CONCEPTS IN STRUCTURES	5	9	0	0	9
co-effic Transf Determ	cient – Be cormation ninate – in lity – syste	terms of stiffness and flexibility matrices – properties of stiff tti's law (forces not at the coordinates) – other energy theorem a of information in structures ndeterminate structures – transformation of system forces to	ns using matrix not	ations element	nt flexit	-	
displace	ement in gradience	em displacement to element displacement – element stiffness t general – stiffness and flexibility in general – normal coordina				on of for	ces and
displace contrag		em displacement to element displacement – element stiffness t				on of for	ces and
displace contrag Uni Statical Transfe	t III t III ty determ	em displacement to element displacement – element stiffness t general – stiffness and flexibility in general – normal coordina	ates and orthogona leading to ill and nal expansion and	ul transf 9 well cor	ormatio 0 nditione	on of for n – prin 0 d matric	rces and ciple of 9 es-
displace contrag Uni Statical Transfe of flexi	t III t III ty determ	em displacement to element displacement – element stiffness t general – stiffness and flexibility in general – normal coordina THE FLEXIBILITY METHOD inate structures-Indeterminate structures-Choice of redundant to one set of redundant to another- Internal forces due to Therm	ates and orthogona leading to ill and nal expansion and	ul transf 9 well cor	ormatio 0 nditione	on of for n – prin 0 d matric	rces and ciple of 9 es-
displace contrag Uni Statical Transfe of flexi Uni Introdu betweet plane tr	radience t III Ily determ ormation to bility matrix it IV action-Dev n flexibility russes-Co	em displacement to element displacement – element stiffness t general – stiffness and flexibility in general – normal coordina THE FLEXIBILITY METHOD inate structures-Indeterminate structures-Choice of redundant to one set of redundant to another- Internal forces due to Thern trix- Application to pin-jointed plane truss-Continuous beams-	ates and orthogona leading to ill and nal expansion and Frames-Grids with zero force at s -Application of St	 9 well cor lack of 9 ome coo iffness 	ormatio 0 nditione fit-Redu 0 ordinate approac	on of for n – prin 0 d matric acing th 0 s- Analo h to pin	es- e size 9 0gy jointed
displace contrag Uni Statical Transfe of flexi Uni Introdu between plane tr choice	radience t III Ily determ ormation to bility matrix it IV action-Dev n flexibility russes-Co	em displacement to element displacement – element stiffness t general – stiffness and flexibility in general – normal coordina THE FLEXIBILITY METHOD inate structures-Indeterminate structures-Choice of redundant to one set of redundant to another- Internal forces due to Therm trix- Application to pin-jointed plane truss-Continuous beams- THE STIFFNESS METHOD velopment of stiffness method-Stiffness matrix for structures w ty and stiffness- lack of fit-Stiffness matrix with rigid motions ntinuous beams-Frames-Grids-Space trusses and frames-introd	ates and orthogona leading to ill and nal expansion and Frames-Grids with zero force at s -Application of St	 9 well cor lack of 9 ome coo iffness 	ormatio 0 nditione fit-Redu 0 ordinate approac	on of for n – prin 0 d matric acing th 0 s- Analo h to pin	es- e size 9 0 gy jointed
displace contrag Uni Statical Transfe of flexi Uni Introdu betweet plane tr choice of Uni Analysi Iteratio	t III lly determ ormation to ibility mati- ibility mati- it IV action-Dev n flexibility russes-Co of method is by subs- on method	em displacement to element displacement – element stiffness t general – stiffness and flexibility in general – normal coordina THE FLEXIBILITY METHOD inate structures-Indeterminate structures-Choice of redundant to one set of redundant to another- Internal forces due to Therm trix- Application to pin-jointed plane truss-Continuous beams- THE STIFFNESS METHOD velopment of stiffness method-Stiffness matrix for structures w ty and stiffness- lack of fit-Stiffness matrix with rigid motions ntinuous beams-Frames-Grids-Space trusses and frames-introd d-Stiffness or Flexibility.	ates and orthogona leading to ill and y nal expansion and Frames-Grids vith zero force at s -Application of St duction only-Static diagonalization Al pplied to rigidly co	9 well cor lack of 9 ome coo iffness : c conder 9 NALYS	0 nditione fit-Redu 0 ordinate approac isation t 0 IS BY 1	on of for n – prin 0 d matric ucing th 0 s- Analo h to pin echniqu 0 TERAT	rces and ciple of 9 es- e size 9 ogy jointed e- 9 TION
displace contrag Uni Statical Transfe of flexi Uni Introdu betweet plane tr choice of Uni Analysi Iteratio	t III lly determ ormation to ibility mati- ibility mati- it IV action-Dev n flexibility russes-Co of method is by subs- on method	em displacement to element displacement – element stiffness t general – stiffness and flexibility in general – normal coordina THE FLEXIBILITY METHOD inate structures-Indeterminate structures-Choice of redundant to one set of redundant to another- Internal forces due to Thern trix- Application to pin-jointed plane truss-Continuous beams- THE STIFFNESS METHOD velopment of stiffness method-Stiffness matrix for structures w ty and stiffness- lack of fit-Stiffness matrix with rigid motions ntinuous beams-Frames-Grids-Space trusses and frames-introc d-Stiffness or Flexibility. ANALYSIS BY SUBSTRUCTURES structures using the stiffness and the flexibility method with trie for frames with non-prismatic members – iteration methods approximates and the staffness of the staffness of the staffness of the staffness of the staffness and the flexibility method with trie for frames with non-prismatic members – iteration methods approximates and the staffness of the staffness of the staffness of the staffness of the staffness and the flexibility method with trie for frames with non-prismatic members – iteration methods approximates and the staffness of the staffness and the flexibility method with tries for the staffness of the	ates and orthogona leading to ill and y nal expansion and Frames-Grids vith zero force at s -Application of St duction only-Static diagonalization Al pplied to rigidly co	9 well cor lack of 9 ome coo iffness : c conder 9 NALYS	0 aditione fit-Redu 0 ordinate approac approac 0 US BY 1 d memb	on of for n – prin 0 d matric ucing th 0 s- Analo h to pin echniqu 0 TERAT ers – co	rces and ciple of 9 es- e size 9 ogy jointed e- 9 TION

1	Rubinstein F.M., Matrix computer methods of Structural Analysis, Prentice Hall, 2016
2	William Weaver J.R. and James M.Gere, Matrix Analysis of Framed Structures, CBS Publishers & Distributors, 2012
Refe	rence Books:
1	Devadas Menon, Advanced Structural Analysis, Narosa Publishing House, New Delhi, 2009
2	Pandit G.S. and Gupta S.P., Structural Analysis-A Matrix Approach, TataMcGraw-Hill Publishing company Limited, New Delhi 2008 second edition
3	Reddy C.S., Basic Structural Analysis, Tata McGraw-Hill Publishing Company Limited, New Delhi third edition July 2017
4	Rajasekaran S and Sankarasubramanian G., Computational Structural Mechanics, Prentice-Hall of India Private limited, New Delhi, 2015.

22STC12	THEORY OF ELASTICITY AND PLAST	THEORY OF ELASTICITY AND PLASTICITY		Semester	Ι
PREREQUIS	ITES	Category	PC	Credit	3

			TT (TX /) -	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives	I				
1	and to	art knowledge to the students about the behaviour and stress obtain general solution, torsion of non-circular section and plastic and plastic stages of loadings will be discussed					
Un	it I	ANALYSIS OF STRESS AND STRAIN	[9	0	0	9
stresses	and stra	ach – definition and notation of stress - components of stress a ins for three dimensional element - equations of equilibrium a inates – Transformation of stresses and strains – Boundary co	and compatibility co				
Uni	it II	TWO DIMENSIONAL PROBLEMS IN CARTES ORDINATES	SIAN CO-	9	0	0	9
		d plane strain problems with practical examples – Equation inates – Airy's stress function.	s of equilibrium a	nd com	patibilit	y condi	tions in
Unit	t III	TWO DIMENSIONAL PROBLEMS IN POLAR CO-	ORDINATES	9	0	0	9
uniform in plate	n pressur = – effect	uilibrium and compatibility conditions in polar co-ordinates – e, shrink and force fits, circular arc beams subjected to pure b of concentrated and uniformly distributed load on straight bout o diametrically opposite concentrated loads.	ending – stress con	centrati	on due t	o circul	ar hole
Uni	t IV	TORSION		9	0	0	9
		us shaped bars, pure torsion of prismatic bars, Prandtl's mem lastic torsion – elastic-plastic torsion analysis – circular sectio			nin walle	ed tubes	and
Uni	it V	THEORY OF PLASTICITY		9	0	0	9
theory - surface	– St. Vei – Flow	icity – Stress-strain diagram – Ideal plastic body – illustrationant's theory – Tresca Criterion – Beltrami's theory – Von mrule (stress-strain relationship for perfectly plastic flow) – Pron Tresca – Plastic potential – uniqueness of a stress distribution	nises criterion – Mo andtlReuss equality	ohr's th y – Plas	eory of stic worl	yielding k – stres	; – yield ss-strain
					Т	otal 45	Periods
Text	t Books	:					
1	Timosl	nenko S.P and Goodier J.N, Theory of Elasticity, McGraw Hil	l Book Co., New Y	ork, 20	10 3rd e	dition	
2	Sadhu	Singh, Theory of Plasticity, Khanna Publishers, New Delhi. 20	005				
Refer	rence B	ooks:					
1	Prasan	tkumar, Elements of Fracture Mechanics, A.H.Wheeler&Co, N	ew Delhi 1989				
2	Popov	E, Mechanics of Materials, Prentice Hall reprinted Pearson ec	lucation, 2003				
3	Hill R,	Mathematical theory of plasticity, Oxford Publishers 1967					
4	Chakra	barthy, Theory of Plasticity, McGraw Hill Co., 1988					
5	Mende	lson, Plasticity: Theory and Application, A McMillan and Co	., New York 1968				

	se Outcomes: completion of this course, the students will be able to:	Bloom's Taxonomy Level			
CO1	CO1 Have Knowledge about stress distribution in engineering structures				
CO2	to understand of the essential facts, concepts, theories and principles underlying elasticity and plasticity theory				
CO3	Complex methods to understand stress distribution which is not possible using elementary methods.				
CO4	learn applications of both elasticity and plasticity to Engineering design and analysis.				

22STC13	22STC13 STRUCTURAL DESIGN LAB		Semester		er	Ι
PREREQUIS	ITES	Category	EE C	Cre	edit	2
		Hours/Week	L	Т	Р	ТН

		0	0	2	2
EXPE	RIMENTS				
1	Analysis of continuous beam				
2	Analysis of Single Storey frame				
3	Analysis of multi-storey frame				
4	Design of multi-storey frame				
5	Analysis and Design of Multistorey Building				
6	Analysis and Design of Steel Truss				
7	Analysis and Design of Foundation				
8	Analysis of Prefabricated/Preengineered Structures				
		Total ((45+15)	= 60 P	eriods

	Outcomes: mpletion of this course, the students will be able to:
C01	All the Structural Components of Frame Buildings.
CO2	Multi-Storey Frame Buildings.
CO3	Foundation
CO4	Steel Structures.

22STC14	CONCRETE AND EXPERIMENTAL STRESS AN	NALYSIS LAB	Semester			Ι
PREREQUIS	ITES	Category	PC	Cre	edit	2
			L	Т	Р	ТН
		Hours/Week	0	0	2	2

Cour	se Learning Objectives
1	To impart practical knowledge to the students about the tests on properties of concrete, design of concrete mix and also about the measuring devices.
EXPE	RIMENTS
1.	Determination of Modulus of Elasticity of concrete using Compress meter
2.	Mix Design
3.	Experimental stress analysis using photoelastic apparatus
4.	Study of Begg'sDeformator
5.	Study of mechanical strain gauges
6.	Study of optical and electrical strain gauges
7.	Load vs deflection characteristics of simply supported beam using load cell, LVDT and Data acquisition system
8.	Permeability test for concrete
9.	Experimental study on fresh properties of self compacting concrete
10.	Accelerated curing of concrete
	Total (45+15) = 60 Periods

	Outcomes: mpletion of this course, the students will be able to:
CO1	Able to design concrete mixes
CO2	Measure the permeability of concrete, crack width etc
CO3	Study the applications of various strain gauges
CO4	Perform non-destructive tests

22MLC01	22MLC01 RESEARCH METHODOLOGY AND IPR		Semester		r	
PREREQUIS	ITES	Category	ML C	Cre	edit	3
		Hours/Week	L	Т	Р	ТН

				3	0	0	3
Cours	e Learn	ing Objectives					
1	analysis	elop the subject of the research, encourage the formation of higher levels, rigor and independence of thought, foster individual judgment and sthods and develop skills required in writing research proposals, report	skill in the ap	plicati			
Un	nit I	INTRODUCTION TO RESEARCH		9	0	0	9
selectin	ng the res	earch problem, sources of research problem, criteria characteristic earch problem, scope and objectives of research problem, approache ollection, analysis, interpretation, necessary instrumentation.	-		-		
Un	it II	EFFECTIVE LITERATURE STUDIES APPROACHES, AN	ALYSIS	9	0	0	9
researc	h approa	theoretical frame work of research- developing operational statement ch-hypothesis: parametric and non-parametric testing- establishing th and experiments- documentation, plagiarism, research ethics					
Uni	it III	EFFECTIVE TECHNICAL WRITING, HOW TO WRITE R PAPER	EPORT,	9	0	0	9
Develo	ping a re	search proposal, format of research proposal, a presentation and asses	sment by a re	eview	commit	tee	
Uni	it IV	NATURE OF INTELLECTUAL PROPERTY		9	0	0	9
	pment. In	, trade and copyright, process of patenting and development: technolo ternational scenario: international cooperation on intellectual property					
Un	it V	PATENT RIGHTS AND IPR		9	3	0	12
Admin	istration	rights. Licensing and transfer of technology. Patent information and c of patents system. New developments in IPR; IPR of biological system studies, IPR and IITs.	latabases. Ge n, computer	ograpl softwa	nical ind re etc.,	dications tradition	al
					Т	otal 45 l	Periods
Tov	t Books						
						_	
1	Stuart studer	melvile and waynegoddard "Rearch methodology an introducti ts"	on for scien	ce & e	enginee	ering	
2	Wayne	e Goddard and stuart Melville, "research methododlogy: An intr	oduction"				
3	Ranjit	xumar, second edition, "Rearch methodology : A step by step g	uide for beg	inners	S"		

4 Halbert, "Resisting intellectual property", Taylor and Francis Ltd, 2007

Refe	rence Books:
1	Mayall, "Industrial design" McGraw Hill, 1992
2	Niebel, " Product design" McGraw Hill, 1974
3	Asimov, "Introduction to Design", Prentice Hall, 1962.
4	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age," 2016.
5	T. Ramappa, "Intellectual Property Rights Under WTO". S. Chand 2008.

	Outcomes: mpletion of this course, the students will be able to:
CO1	Understand research problem formulation
CO2	Analysis research related information
CO3	Follow research ethics.
CO4	Understand that today's world controlled by Computer, Information technology, but tomorrow world ruled by ideas, concept and creativity.
CO5	Understand that IPR production provides an incentive to inventors for further research work and investment in R&D, which leads to creation of new and better products, and in turnbrings about, economic growth and social benefits.

22STC21	FINITE ELEMENT METHOD IN STRUCTURAL ENGINEERING		Semester			Π
PREREQUIS	PREREQUISITES		PC	Cre	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
Course Learn	ing Objectives					

1	To have a detailed knowledge and understanding of the fundamental concept of finite element methods							
2	To introduce basic aspects of finite element technology, including domain discretization, polynomial interpolation, application of boundary conditions, assembly of global arrays, and solution of the resulting algebraic systems							
3		elop proficiency in the application of the finite element methods (modeling, analy to realistic engineering problems	ysis, and	l interpr	etation	of		
Uı	nit I	INTRODUCTION	9	0	0	9		
contin bounda	uous mod ary value	ground – mathematical modeling of field problems in engineering – gover els – boundary, initial and eigen value problems – weighted residual method problems – Ritz technique – basic concepts of finite element method – adv and its applications.	ls – vai	iational	formul	ation o		
Un	it II	ONE DIMENSIONAL PROBLEMS	9	0	0	9		
		Il second order equation – discretization – element types – linear and higher and stiffness matrices and force vectors – assembly of matrices.	order el	ements	– deriv	ation o		
Un	it III	TWO-DIMENSIONAL SCALAR VARIABLE PROBLEMS	9	0	0	9		
		D equations involving scalar variable functions – variational formulation – nts – shape function and element matrices and vectors. Application to field prob		element	formu	lation -		
Un	it IV	TWO-DIMENSIONAL VECTOR VARIABLE PROBLEMS	9	0	0	9		
-		sticity – plane stress, plane strain, and axisymmetric problems – body forces a ate and shell elements	nd tem	perature	effects	- stres		
Un	it V	ISOPARAMETRIC FORMULATION	9	0	0	9		
serend	ipity elen	ate system – iso parametric elements – shape function for iso parametric element nents – numerical integration and application to plane stress problem – matrix namic problems – introduction of analysis software						
				Т	otal 45	Period		
Tex	at Books	:						
1	Rao S.	S., The Finite Elements Method in Engineering, EL Service, New Delhi, 2005						
2	Rajase	karan S., Finite Element Analysis in Engineering Design, Wheeler Publishing 20	20					
Refe	rence B	ooks:						
	Dagai	C S Elementary Einite Element Method Prentice Hall INC 2011						

1	Desai C.S., Elementary Finite Element Method, Prentice Hall, INC, 2011				
2	Chandrapatla Tirupati R and Belegundu Ashok D, Introduction to Finite Elements in Engineering 4 th edition, Prentice Hall of India, 2015				
3	Krishnamoorthy C.S., Finite Element Analysis – Theory and programming, Second edition, Tata McGraw Hill Publishing Co.,2017				
4	Segerlind Larry J., Applied Finite element Analysis, John Wiley and Sons Inc., 2010				
5	Seshu T.N, Finite Element Analysis – Theory and Programming, Second Edition, Tata McGraw Hill Publishing Co., 2003				

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1	discretize the structure and also to formulate boundary value problems of finite element method
CO2	develop shape function and element stiffness matrices for 1D elements and solve structures made up of 1D elements using FEM
CO3	solve 2D scalar variable problems
CO4	formulate 2D FEM elements for plane stress and plane strain problems
CO5	built iso parametric elements, serendipity, Lagrangian elements and axisymmetry elements for 2D stress analysis

22ST	22STC22 STRUCTURAL DYNAMICS		Semester			II
PRER	EQUISITES	Category	РС	Credit		3
			L	Т	Р	TH
Ноч		Hours/Week	3	0	0	3
Course Learning Objectives						
1 To impart the knowledge to the students about vibrations theory on stable structural systems, the response of a structure to a dynamic load.						

Unit I	Unit I PRINCIPLES OF DYNAMICS		0	0	9
generalized mas motion for SD0	s importance to structural engineering problems - Elements of vibratory systems is - D'Alembert's principle - Mathematical modeling of dynamics systems - De DF - damped and undamped free vibrations - Undamped forced vibration - C tion - damped or undamped - evaluation of damping - resonance - force transm	gree of Critical	Freedor damping	m - equa g - resp	ation of onse to
Unit II MULTIPLE DEGREE OF FREEDOM SYSTEM		9	0	0	9
Undamped forc	nodeling of MDOF systems - Two degree of freedom systems - Damped ar ed vibration - Normal modes of vibration - Free and forced vibrations of MDO Approximate methods - Holzer, Rayleigh and Mode superposition techniques.				
Unit III	DIRECT INTEGRATION METHODS FOR DYNAMIC RESPONSE	9	0	0	9
Undamped force	odeling of MDOF systems - Two degree of freedom systems - Damped and Und ed vibration - Normal modes of vibration - Free and forced vibrations of MDOF s Approximate methods - Holzer, Rayleigh and Mode superposition techniques.	-			of
Unit IV	CONTINUOUS SYSTEMS	9	0	0	9
	nodeling of continuous systems - Free and forced vibration of continuous systems n of a beam - Rayleigh- Ritz method - Formulation using Conservation of Energy				
Unit V	SPECIAL TOPICS IN STRUCTURAL DYNAMICS(CONCEPTS ONLY)	9	0	0	9
•	s of Wind Loading, Moving Loads, Vibrations caused by Traffic, Blasting and inery - Base Isolation.	Pile D	riving, F	Foundati	ons for
			Т	otal 45 I	Periods
Text Books	:				
1 Dynar	nics of Structures, Clough R. W. and Penzien J., McGraw Hill.				
2 Struct	ural Dynamics and Introduction to Earthquake Engineering, Chopra A. K.,	Pearso	n, 2014	1.	

Reference Books:

1	Structural Dynamics - Vibrations and Systems, Madhujit Mukhopadhyay, Ane Books India.2008.
2	Dynamics of Structures, Humar J. L., Prentice Hall.
3	Structural Dynamics - Theory and Computation, Paz Mario, CBS Publication.
4	Dynamics of Structures with MATLAB Applications, Ashok K.Jain, Pearson, 2016.

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	CO1 Evaluate the dynamics response of SDOF and MDOF systems using fundamental theory and equation of motion.				
CO2	Analyze the continuous system subjected to dynamic loading.				

	CO3	Solve the dynamic response by using various numerical methods.
Ī	CO4	Study the effect of Wind, Moving loads, Vibration etc on structures.

22S	TC23	MODEL TESTING LAB		Semester			II	
PREF	PREREQUISITES			PC	Credit		2	
				L	Т	Р	ТН	
			Hours/Week	0	0	2	2	
Cours	se Learning (Dbjectives						
1	1 To impart practical knowledge to the students to understand the behavior of concrete structures and about the Non destructive tests, their field applications by applying engineering principles.							
EXPE	EXPERIMENTS							
1.	1. Determination of stress-strain curve of high strength concrete							

2.	Determination of Correlation between cube strength, cylinder strength, split tensile strength an	d modulus of rupture
	of concrete.	
3.	Cyclic loading test	
	Non-Destructive testing on existing concrete members through	
4.	i) Rebound hammer and	
4.	ii) Ultrasonic pulse velocity test	
	iii) Measurement of cracks	
5.	Experimental study on the behavior of beam under flexure	
6.	Experimental study on the behavior of beam under shear	
7.	Corrosion study on reinforced concrete	
8.	Rapid chloride penetration test (RCPT) on concrete	
9.	Determination of density of hardened concrete using automated buoyancy balance	
10.	Perform the dynamic test on beam to determine the damping co-efficients for free vibration.	
		Total (45)Periods

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	After completing all the experiments prescribed, students will be able to design high grade concrete and study the parameters affecting its performance				
CO2	Students will be able to conduct Non Destructive tests, corrosion test and RCPT on concrete				
CO3	On completion of this laboratory course students will be able to cast and test RC beams for flexure and shear behavior				
CO4	They will be able to test cyclic load testing on beams				

2251	22STC24 NUMERICAL ANALYSIS LAB		Semester			II
PRER	EQUISITES	Category			edit	2
			С		1	
		Hours/Week	L	Т	P	ТН
			0	0	2	2
Course	e Learning Objectives					
1 To obtain the numerical solution of non- linear system of equations by using Bisection and Newton's methods and To acquire the knowledge with Curve fitting by Least Square approximations. To find the solution of system of linear equations using Gauss Elimination, Gauss Seidal, Gauss Jordan methods. To familiarize with numerical integration using Trapezoidal and Simpson's rules. To familiarize with numerical solution of ordinary differential equations using Euler's and Runge-Kutta methods.						

SYLLABUS CONTENTS

SILLAL	US CONTENTS	
1	Find the roots of Non- Linear equation using Bisection Method	
2	Find the roots of Non- Linear equation using Newton's Method	
3	Curve Fitting by Least Square Approximations	
4	Solve the System of Linear equation using Gauss Elimination Method	
5	Solve the System of Linear equation using Gauss Seidal Iteration Method	
6	Solve the System of Linear equation using Gauss Jordan Method	
7	Integrate numerically using Trapezoidal rule	
8	Integrate numerically using Simpson's rule	
9	Numerical Solution of Ordinary Differential equations by Euler's Method	
10	Numerical Solution of Ordinary Differential equations by Runge-Kutta Method	
		Total (45+15) = 60 Periods
		101a1(43+15) = 00 P

Tex	t Books:
1	Fausett. L.V., "Applied Numerical Analysis Using MATLAB", Pearson Education Pvt. Ltd., 2nd edition, 2007
Refe	rence Books:
1	Chapra. S.C. and Canale. R.P, Numerical Methods for Engineers, Tata Mcgraw Hill Publications, 5th edition, 2006
2	Structural Dynamics by using MATLab
3	Introduction to MATLab
REL	ATED VIDEO COURSES
1	Computational Techniques: <u>http://nptel.ac.in/courses/103106074/</u>
2	Numerical Methods and Programming: http://nptel.ac.in/courses/122106033

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Obtain the numerical solutions of non-linear equations using Bisection and Newton's method					
CO2	Do curve fitting by least square approximations					
CO3	Solve the system of linear equations using Gauss -Elimination / Gauss -Seidal iteration / Gauss Jordan Method					
CO4	Integrate numerically using Trapezoidal and Simpson's rules					
CO5	Obtain the numerical solution of ordinary differential equations by Euler's and Runge-Kutta methods					

22ST(22STC25 MINI PROJECT		Semester			II	
PRERE	QUISITES Categor		Category	EE Cree C		edit	2
			TT / TT / -	L	T P		ТН
			Hours/Week	x 0 0 4			4
Course	Learning Objectives						
1	Identify structural engineering	oblems reviewing available literatu	ire				
2	Study different techniques used to analyze complex structural systems						
3	3 work on the solutions given and present solution by using his/her technique applying engineering principles						
Syllabus	Contents						

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions

highlighting individuals' contribution.Continuous assessment of Mini Project at Mid Sem and End Sem will be monitored by the departmental committee.

228	STC31	DISSERTATION	[
			Category	EEC	Cred	lit	10
			Hours/Week	L	Т	Р	TH
	Hours/ week		0	0	20	20	
Cou	irse Outco	mes:					
1.	Identify	structural engineering problems reviewing	available literature.				
2. Identify appropriate techniques to analyze complex structural systems.							
3.	3. Apply engineering and management principles through efficient handling of project						
Syllabus Contents							
Dissertation-I will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to the latest literature available.							

End semester presentation should be done along with the report on identification of topics for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions and must bring out individuals' contribution.

Continuous assessment of Dissertation – I and Dissertation – II at Mid Semester and End Semester will be monitored by the departmental committee.

228	TC41	DISSERTATION	N II				
			Category	EEC	Cre	edit	16
			Hours/Week	L	Т	Р	ТН
			Hours/ Week	0	0	32	32
Cou	ırse Outco	mes:					
1.	Solve co	mplex structural problems by applying a	appropriate techniques and	l tools			
2.	Exhibit g	good communication skill to the enginee	ering community and socie	ety			
3.	3. Demonstrate professional ethics and work culture						
Syll	Syllabus Contents						
Dissertation – II will be an extension of the to work on the topic identified in Dissertation –I. Continuous assessment should be done of the work done by adopting the methodology decided involving numerical analysis/ conduct experiments, collection and analysis of data, etc. There will be a pre submission seminar at the end of the academic term. After the approval the student has to submit the detailed report and an external examiner is called for the viva-voce to assess along with the guide.							

22ST	ГЕ11	THEORY OF THIN PLATES AND SH	ELL	S	Semeste	er	Ι
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	To imp	art knowledge to the students about theory of plates, special a	nd approximate me	thods of	f analysi	is of pla	tes.
Un	Unit I INTRODUCTION		9	3	0	12	
-		Surfaces, Shell Co-ordinates, Strain Displacement Relations, A., Stress Resultants, Equation of Equilibrium using Principle o	-				nt Field
Uni	it II	STATIC ANALYSIS OF PLATES		9	3	0	12
		ation for a Rectangular Plate, Navier Solution for Simpl solution for Rectangular Plate with other Boundary Condition	• • • •	tangula	r Plate	under	Various
Uni	t III	CIRCULAR PLATES		9	3	0	12
-		Axi- Symmetric Loading, Governing Differential Equation in igh-Ritz approach for Simple Cases in RectangularPlates.	Polar Co-ordinates	. Appro	ximate l	Methods	s of
Uni	t IV	STATIC ANALYSIS OF SHELLS		9	3	0	12
Membr	ane Theo	bry of Shells - Cylindrical, Conical and Spherical Shells.			L		L
Uni	it V	SHELLS OF REVOLUTION		9	3	0	12
		ution: with Bending Resistance - Cylindrical and Conical S is in Plate and Shell.	hells, Application t	o Pipes	and Pr	essure '	Vessels.
					Tot	al -45H	Periods
Tex	t Books	:					

-	
1	Theory of Plates and Shells, Timoshenko S. and KriegerW., McGraw Hill.2nd edition 1987.
2	Stresses in Plates and Shells, UguralAnsel C., McGraw Hill. illustrated edition 1981
Refe	rence Books:
1	Thin Elastic Shells, Kraus H., John Wiley and Sons.1st edition1967.
2	Theory of Plates, ChandrashekharaK., Universities Press. 2001, Illustrated edition
3	Design and Construction of Concrete Shells, Ramaswamy G.S., R.E.Krieger 1984, 2nd edition

Course Outcomes:

Upon completion of this course, the students will be able to:

CO1	At the end of the course, students will be able to Use analytical methods for the solution of thin plates and shells.
CO2	Use analytical methods for the solution of shells.
CO3	Apply the numerical techniques and tools for the complex problems in thin plates.
CO4	Apply the numerical techniques and tools for the complex problems in shells.

22STE12	THEORY AND APPLICATIONS OF CEMENT C	OMPOSITES	S	Semester	
PREREQUIS	ITES	Category	PE	PE Credit	

			L	Т	T P	ТН
		Hours/Week	3	0	0	3
Course Learn	ning Objectives					<u>I</u>
1 To imp structu	part knowledge on the material properties of ferrocement, a res.	analysis, design an	d const	truction	of ferro	cement
Unit I	INTRODUCTION		9	0	0	9
-	d Multi-phase materials – Components of Composite materials and Theories.	rials – Classificatio	ons – S	Structure	e of Co	mposite
Unit II	MECHANICAL BEHAVIOUR		9	0	0	9
Reinforcement	Composites – Kinds – Ordinary Concrete – Fiber Reinforc – Components and Applications – Interfaces in Cement Comp - Fiber Cement paste interface – Interface between old and new	posites – Kinds of l				
Unit III	CEMENT COMPOSITES		9	0	0	9
Composites – Construction T	ent Composites, Terminology, Constituent Materials and the Glass fiber – Steel fiber – Synthetic Polymeric fiber – C Pechniques for Fibre Reinforced Concrete - Ferrocement, Casting and Curing.	Carbon fiber – Ve	getable	fiber -	- Textil	e fiber,
Unit IV	MECHANICAL PROPERTIES OF CEMENT CON	MPOSITES	9	0	0	9
Behavior of Durability and	Ferrocement, Fiber Reinforced Concrete in Tension, Com	pression, Flexure,	Shear,	Fatigue	e and I	mpact,
	Cement Composites: FRC and Ferrocement- Housing, Water erials- Orthotropic and Anisotropic behaviour, Constitutive rel	0			s Structu	ires.
Unit V	ANALYSIS AND DESIGN OF CEMENT COM STRUCTURAL ELEMENTS	POSITE	9	0	0	9
Ferrocement, S	FCON and Fibre Reinforced Concrete.					
Total -45Periods						

Refei	rence Books:
1	Cement – Based Composites Materials, Mechanical Properties and Performance, Andrzej M Brandt, 2 nd Ed., Taylor and Francis, CRC Press, 2017.
2	Mechanics of Composite Materials, Jones R. M., 2nd Ed., Taylor and Francis, BSP Books, 2015.
3	Ferrocement – Theory and Applications, Pama R. P., IFIC, 1987.
4	New Concrete Materials, Swamy R.N., 1stEd., Blackie, Academic and Professional, Chapman & Hall, 1983.

Course Outcomes:
Upon completion of this course, the students will be able to:

CO1	Formulate constitutive behaviour of composite materials – Ferrocement, SIFCON and Fibre Reinforced Concrete - by understanding their strain- stress behaviour
CO2	Classify the materials as per orthotropic and anisotropic behavior.
CO3	Estimate strain constants using theories applicable to composite materials.
CO4	Analyse and design structural elements made of cement composites.

22STE13	THEORY OF STRUCTURAL STABILITY Semester		Ι			
PREREQUIS	PREREQUISITES Category PE Credit		edit	3		
		Hours/Week	L	Т	Р	TH

		3	0	0	3
Course Learn	ning Objectives				
	part knowledge to the students on the behaviour of structural elements under as and plates, lateral buckling of beam and column design formula.	compr	ression,	the stab	ility of
Unit I	STABILITY OF COLUMNS	9	0	0	9
Buckling of co	lastic Structural stability- Analytical approaches to stability - characteristics olumns- Equilibrium; Energy and Imperfection approaches – Non-prismatic s- Effect of shear on buckling load - Large deflection theory.		•	•	
Unit II	METHODS OF ANALYSIS AND IN ELASTIC BUCKLING	9	0	0	9
of columns – I	Experimental study of column behaviour - South well plot - Column curves -			Column	desigi
of columns – I formula - Effec Unit III Beam column Buckling of fr	tive length of Columns - Inelastic behaviour- Tangent modulus and Double modu BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns – Columns or ames – Single storey portal frames with and without side sway – Classical and sti	ulus theo 9 n elastic	ory. 0	0	9
of columns – I formula - Effec Unit III Beam column Buckling of fr methods – Use	tive length of Columns - Inelastic behaviour- Tangent modulus and Double modu BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns – Columns of ames – Single storey portal frames with and without side sway – Classical and sti of Wood's charts.	9 9 n elastic	ory. 0 e founda	0 tion –	9
formula - Effec Unit III Beam column Buckling of fr methods – Use Unit IV Lateral buckli Cantilever bea	tive length of Columns - Inelastic behaviour- Tangent modulus and Double modu BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns – Columns or ames – Single storey portal frames with and without side sway – Classical and sti	9 n elastic iffness 9 beams - ing	ory. 0 c founda 0 – simply	0 tion – 0	9 9 ted and
of columns – I formula - Effec Unit III Beam column Buckling of fr methods – Use Unit IV Lateral buckli Cantilever bea	tive length of Columns - Inelastic behaviour- Tangent modulus and Double modu BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns – Columns or ames – Single storey portal frames with and without side sway – Classical and sti of Wood's charts. BUCKLING OF BEAMS ng of beams – Energy method- Application to Symmetric and single symmetric I ums - Narrow rectangular cross sections- – Numerical solutions – Torsional buckli	9 n elastic iffness 9 beams - ing	ory. 0 c founda 0 – simply	0 tion – 0	9 9 ted and
of columns – I formula - Effec Unit III Beam column Buckling of fr methods – Use Unit IV Lateral buckli Cantilever bea – Uniform and Unit V	tive length of Columns - Inelastic behaviour- Tangent modulus and Double modu BEAM COLUMNS AND FRAMES behaviour- standard cases- Continuous columns and beam columns – Columns of ames – Single storey portal frames with and without side sway – Classical and sti of Wood's charts. BUCKLING OF BEAMS ng of beams – Energy method- Application to Symmetric and single symmetric I ums - Narrow rectangular cross sections- – Numerical solutions – Torsional buckli non-uniform Torsion on open cross section - Flexural torsional buckling – Equilit BUCKLING OF THIN PLATES agular plates - Governing Differential equations - Simply Supported on all edge	9 n elastic iffness 9 beams - ing brium an 9	ory. 0 c founda 0 – simply nd energ 0	0 tion – support y appro 0	9 9 ted and ach. 9

Tex	t Books:
1	Chajes A, Principles of Structural Stability Theory, Prentice Hall, Inc., New Jersey 1974
2	Ashwinikumar, Stability of Structures, Allied Publishers Ltd, 1998
Refe	rence Books:
1	Iyengar N.G.R, Structural Stability of Columns and Plates, Affiliated East- West Press Pvt. Ltd., 1988
2	Stephen P. Timoshenko and Gere, Theory of Elastic Stability, McGraw-Hill Company 2012
3	Allen H.G and Bulson P.S., Background to Buckling, McGraw-Hill Book Company, 1980
4	Smitses, Elastic Stability of Structures, Prentice Hall, 1998
5	Brush and Almorth, Buckling of Bars, Plates and Shells, McGraw-Hill Book Company, 1975

	Outcomes: mpletion of this course, the students will be able to:
CO1	Will have knowledge about the concepts of structural stability and analytical approaches
CO2	Will have an understanding of the methods of analysis and inelastic behaviour of columns, lateral and torsional buckling of beams and buckling of thin plates.
CO3	Will also be able to perform advanced experiments on beam columns and frames.
CO4	Publish papers in conferences and journals.

22STE14	CORROSION AND ITS PREVENTION	DN	Semester			Ι	
PREREQUIS	PREREQUISITES Category PE Cree		edit	3			
			L	Т	Р	TH	
		Hours/Week	3	0	0	3	
Course Learn	ing Objectives	1					

1	To stud	To understand the mechanism of corrosion.				
2						
3	To reco	ognize the importance of corrosion prevention and control planning.				
4	To know	w about the various methods of protective measures against corrosion.				
5	To get know about the chemicals and materials used as inhibitors for corrosion activities in concrete.					
Unit I		INTRODUCTION	9	0	0	9
initiatio corrosic	on-enviro on propa	eel reinforcement in concrete, definition of corrosion, forms of corrosion, pheno onment-cover thickness-quality of cover concrete-type of steel and critical or gation-electrochemical process-physical process, theory of reinforcement corros ctrolyte-corrosion potential and rate of corrosion.	chloride	e- prese	ence of	crack
Uni	it II	IDENTIFICATION AND APPRAISAL OF CORROSION	9	0	0	9
rebar-ca		ess and mechanism-approach to investigation-visual observation and documentation er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity mapp	d testing	g, insitu	testing	of ste
rebar-ca rate. Unit Metho cell ratio	arbonatic t III ods used io, electri	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity mapp MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measurement ical resistance probe method, polarization resistance technique, impedance technique	d testing bing-me 9 ment, co	g, insitu easureme 0 orrosion	testing ent of co 0	of step prrosic 9
rebar-ca rate. Unit Metho cell ratio	arbonation t III ods used io, electrichemical	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity mapp MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measurement	d testing bing-me 9 ment, co	g, insitu easureme 0 orrosion	testing ent of co 0	of stee prrosic 9
rebar-ca rate. Unit Metho cell ratio electroc Unit Coating	arbonation t III ods used io, electric chemical t IV g to reinforcement, s	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity mapp MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measurement ical resistance probe method, polarization resistance technique, impedance technique, noise analysis.	d testing bing-me 9 ment, cu que, gu 9 estressir	g, insitu asuremo orrosion ard ring 0 ng steel,	testing ent of co techniq 0 galvaniz	of stee prrosic 9 ue, 9 xed
rebar-ca rate. Unit Metho cell ratio electroc Unit Coating reinforc	arbonation t III ods used io, electric chemical t IV g to reinforcement, so at steel.	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity mapp MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measurement ical resistance probe method, polarization resistance technique, impedance technique noise analysis. PROTECTIVE MEASURES forcement- metallic coatings-epoxy coatings-cement based coatings-coating to preserve to pr	d testing bing-me 9 ment, cu que, gu 9 estressir	g, insitu asuremo orrosion ard ring 0 ng steel,	testing ent of co techniq 0 galvaniz	of ste prrosic 9 ue, 9 xed
rebar-ca rate. Unit Metho cell ratio electroc Unit Coating reinforc resistan Uni Definiti	arbonation t III ods used io, electric chemical t IV g to reinfor- cement, so at steel. it V ion of inl	er test, cover meter survey-ultrasonic pulse velocity(UPV) test-core sampling and on test and pH value, chloride content-half cell potential survey- resistivity mapp MONITORING OF CORROSION for monitoring corrosion-open circuit potential measurement, resistivity measurer ical resistance probe method, polarization resistance technique, impedance technique noise analysis. PROTECTIVE MEASURES forcement- metallic coatings-epoxy coatings-cement based coatings-coating to prestainless steel, non-ferrous reinforcement and coating to concrete surface, improvi	d testing bing-me 9 ment, co que, gu 9 estressir ing the 9	g, insitu asuremo orrosion ard ring 0 ng steel, concrete 0	testing ent of co 0 techniq 0 galvaniz e, corros	of steprrosic 9 ue, 9 zed ion 9

1	1.Edward Ghali, V. S. Sastri, M. Elboujdaini, Corrosion Prevention and Protection: Practical Solutions, John Wiley & Sons, 2007.
2	2.U.Kamachi Mudali Baldev Raj,S.Rangarajan Corrosion prevention and control,Narosa Publication,2009 edition.
	3.R.D.Angal, Principles and prevention of corrosion, Narosa Publication, 2010 edition.
Refer	rence Books:
1	Fontanna, G, Mars, "Corrosion Engineering", ThirdEdition, McGraw-Hill Book Company, Third Edition, 2017.
2	Kumar Mehta, P., "Concrete-Structure, Properties and Materials", Prentice-Hall, INC, Englewood Cliffs, New Jersey, 1993

	Outcomes: mpletion of this course, the students will be able to:
CO1	To know about phenomenon of corrosion, its propagation and the methods to monitor corrosion.
CO2	To measure the rate of corrosion using Ultrasonic Pulse Velocity technique.
CO3	To understand different protective measures like coatings to concrete structures.
CO4	To design Protection system against corrosion of infrastructure, plant, equipment and machinery.
	Ability to undertake corrosion problem identification, formulation and solution.

22STE21	ANALYTICAL AND NUMERICAL METHODS FO ENGINEERING	R STRUCTURAL	S	emeste	er	Ι	
PREREQUIS	PREREQUISITES Category PE Cred		edit	3			
			L	Т	Р	ТН	
		Hours/Week	3	0	0	3	
Course Learn	Course Learning Objectives						

1	curve f	iliarize the numerical solution of linear system of equations and acquire the know itting by least squares.to impart the knowledge in solving initial value prob ns. To obtain the finite difference solution of one dimensional wave equation and equations	lems fo	or ordin	ary diff	erential
Un	it I	SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS	9	0	0	9
		se position, Iterative method, Newton Raphson method-Solutions of linear sauss Jordan, Gauss Jacobi and Gauss Seidal methods-Eigen value of a matrix by				7 Gauss
Uni	t II	INTERPOLATION AND APPROXIMATION	9	0	0	9
-		th Newton's divided difference, Lagrangian polynomial, Newton Forward and ial approximations (Curve fitting)	l Backw	vard dif	ferences	s- Least
Unit	t III	NUMERICAL DIFFERENTIATION AND INTEGRATION	9	0	0	9
		rentiation with interpolation polynomials, Numerical integration by Trapezoule –Double integrals using by Trapezoidal rule and Simpson's rule	oidal rul	le-Simp	son's 1	/3 rule,
Uni	t IV	INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS	9	0	0	9
-	-	nods: Taylor series method-Euler and modified Euler method-Fourth order Run ferential equations- Multistep method: Milne and Adam's-Bashforth predictor ar	-			ïrst and
Uni	it V	BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFRENTIAL EQUATIONS	9	0	0	9
	n by ex	e solution of second order ordinary differential equations-Finite difference solu plicit and implicit methods-One dimensional wave equation and two dime		Laplac	e and	Poisson
				Tot	al -45F	Periods
Text	t Books:					

1	Veerarajan. T and Ramachandran, "Numerical methods with Programs in C and C++ ",Tata McGraw Hill, New Delhi,2006
2	Kandasamy.P, Thilagavathy.K, Gunavathi.K, "Numerical Methods" S.Chand& Co., New Delhi, 2005
Refer	rence Books:
1	Gerald, C. F. and Wheatley, P.O.," Applied Numerical Analysis" , Sixth Edition , Pearson Education Asia , New Delhi – 2002
2	M.K.Venkataraman, "Numerical Methods", National Publishing Company,2000
3	Jain M.K.Iyengar, K & Jain R.K., "Numerical Methods for Scientific and Engineering Computation ", New Age International (P) Ltd, Publishers 2003
4	Manish Goyal, "Numerical Methods and Statistical techniques Using 'C' ", 1st Edition, Laxmi Publications (P) Ltd, 2009

Course	Course Outcomes:			
Upon co	Upon completion of this course, the students will be able to:			
CO1 Obtain the numerical solutions of linear and non-linear equations				

CO2	Acquire the techniques of interpolation and approximations
CO3	Familiarize with the numerical differentiation and integration.
CO4	Solve the initial value problems for ordinary differential equations
CO5	Good knowledge about different concreting methods

22ST	TE22 STRUCTURAL HEALTH	STRUCTURAL HEALTH MONITORING Semest			er	Ι
PREREQUISITES		Category	PE Credit		edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
Course	e Learning Objectives					<u> </u>
1	To diagnose the distress in the structure understanding static field methods. To Assess the health of structure measures of the structure					

Unit I	STRUCTURAL HEALTH	9	0	0	9
	lesign to resist earthquake, cyclone and flood – National and international codes area – Traditional and modern structures	of pract	tice – By	ye law o	f urban
Unit II	STRUCTURAL HEALTH MONITORING	9	0	0	9
Concepts, Vario	us Measures, Structural Safety in Alteration				
Unit III	STRUCTURAL AUDIT	9	0	0	9
Assessment of F certificate	lealth of Structure, Collapse and Investigation, Investigation Management, SHM	Proced	ures, Iss	ue of St	ability
Unit IV	FIELD TESTING	9	0	0	9
Static Respons Dynamic Field	esting: Types of Static Tests, Simulation and Loading Methods, sensor systems a e Measurement, Issue of stability certificate. Testing: Types of Dynamic Field Test, Stress History Data, Dynamic Response equisition Systems, Remote Structural Health Monitoring.			-	
Unit V	INTRODUCTION TO REPAIRS AND REHABILITATIONS OF STRUCTURES	9	0	0	9
Case Studies (Si adaptations of E	te Visits), piezo–electric materials and other smart materials, electro–mechanica MI technique.	al impeo	lance (E	EMI) tec	hnique,

Total -45Periods

Tex	t Books:			
1	Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2010.			
2	Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007			
Refe	rence Books:			
1	Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006			
2	2 Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2nd Edition 2014			
3	Handbook on Repair and Rehabilitation of RCC Buildings, Central Public Works Department, Government of India.			

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	CO1 Able to demonstrate the condition of structures				
CO2	Will able to inspect and evaluate the damaged structures				
CO3	Will able to implement the repairing techniques of a structure				
CO4	CO4 Will demonstrate the dismantling and demolishing structures				

22ST	22STE23 STRUCTURAL OPTIMIZATION		Semester			Ι	
PRER	PREREQUISITES		Category	PE Credit		edit	3
			T AX 1	L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					<u> </u>
1	1 To impart knowledge to the students on structural optimization techniques, computer search methods and optimization theorems.						
Uni	Unit I BASIC PRINCIPLES, CLASSICAL OPTIMIZATION TECHNIQUES 9 0 0 9			9			

Definition – Objective function, Constraints – Equality and inequality – Linear and non-linear, Side, Non-negativity, Behaviour and other constraints – Design space – Feasible and infeasible – Convex and Concave – Active constraint – Local and global optima. Differential calculus – Optimality criteria – Single variable optimization – Multivariable optimization with no constraints – Lagrange Multiplier Method with equality constraints – Khun-Tucker Criteria with inequality constraints.

Unit II	LINEAR PROGRAMMING	9	0	0	9
-	problems – Graphical solution – Analytical methods – Standard form – Slack, Su – Basic feasible solution – Simplex Method – Two phase method – Penalty met	-			
Unit III	NON-LINEAR PROGRAMMING	9	0	0	9
Dichotomous se techniques. Multivariables:	al minimization methods: Unidimensional – Unimodal function – Exhaustiv earch – Fibonacci Method – Golden Section Method – Interpolation methods Unconstrained multivariable functions – Univariate method – Cauchy's steepest (Fletcher Reeves) – Variable metric method (Davidon Fletcher Powell).	. Uncor	strained	1 optimi	zation
Unit IV	GEOMETRIC & DYNAMIC PROGRAMMING	9	0	0	9
problems with z	egree of difficulty – reducing GPP to a set of simultaneous equations – Unconstrater degree of difficulty – Concept of solving problems with one degree of difficulty resentation of a multistage decision problem – Concept of sub-optimization problem.	ılty. Bel	lman's j	principle	
Unit V	STRUCTURAL APPLICATIONS	9	0	0	9
-	timal design of structural elements, continuous beams and single storeyed at design for truss members – Fully stressed design.	frames	using p	lastic th	ieory –
			Tot	al -45P	eriods

Tex	t Books:			
1	Singiresu S Rao, Optimization Theory and Applications, New Age International (P) Ltd., Publishers, New Delhi, 2018			
2	Uri Krish, Optimum Structural Design, McGraw-Hill Book Co.			
Refe	rence Books:			
1	Gupta P.K. &Hira D.S, Operations Research and Quantitative Analysis, S.Chand& Company Ltd., New Delhi 2015			
2	2 Spunt, Optimization in Structural Design, Prentice-Hall, New Jersey 1971			
3	Spunt, Optimization in Structural Design, Prentice-Hall, New Jersey 2005.			

Course Outcomes:			
Upon co	ompletion of this course, the students will be able to:		
CO1 Apply the knowledge of engineering fundamentals to formulate and solve the Engineering problems by classical optimization techniques.			

CO2	Identify, formulate and solve engineering problems by linear and non-linear Programming.
CO3	Analyse the problem and reducing G.P.P to a set of simultaneous equations.
CO4	Design various structural elements with minimum weight.

22ST	ГЕ24	EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION Semester			er	Ι	
PRER	PREREQUISITES Category				Cre	edit	3
				L	Т	Р	TH
	Hours/Week		3	0	0	3	
Cours	e Learn	ing Objectives				1	
1	1 To impart knowledge about the measurement of force, strain, vibration, wind flow, distress and nondestructive testing techniques						
Unit IFORCE AND STRIN MEASUREMENTS900					9		

Strain gauges, Principle, Types, Performance and Uses-Photo elasticity, Principle and applications – Hydraulic jack and pressure gauges – Electronic load cell – Proving rings – Calibration of testing machines

Unit II	VIBRATION MEASUREMENTS	9	0	0	9		
Characteristics of structural vibrations – Linear Variable Differential Transducer (LVDT) – Transducers for velocity and acceleration measurements – Vibration meter – Seismographs – Vibration analyzer – Electro dynamic exciters – Display and recording of signals – Cathode Ray Oscilloscope – XY plotters – Chart plotters – Digital and Acquisition systems - Principles and Applications.							
Unit III	ACOUSTICS AND WIND FLOW MEASUREMENTS	9	0	0	9		
	essure and flow measurements – Pressure transducer – Sound level meter – Ventu I its use in structural analysis – structural modeling - Direct and indirect model ar		and Flo	w mete	rs –		
Unit IV	DISTRESS MEASUREMENTS	9	0	0	9		
	istress in structures- Crack observation and measurement – Corrosion of reinforc struction and use – damage assessment – Controlled blasting for demolition	ement i	n concre	te			
Unit V	NON DESTRUCTIVE TESTING METHODS	9	0	0	9		
Load testing of structures, buildings, bridges and towers – Rebound hammer – Ultra sonic testing, principle and applications – Moiré fringes – brittle coatings – Holography – Use of lasers for structural testing							
			Tot	al -45P	Periods		

Tex	Text Books:					
1	Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2009.					
Refe	rence Books:					
1	Karthick and Balaji S, "Applications and Techniques for Experimental Stress Analysis", 2019.					
2	Dalley.J.W.andRiley.W.F., "Experimental Stress Analysis", Tata McGraw Hill Book Co.					
3	Srinath L.S., et al, Experimental Stress Analysis, Tata McGraw Hill Co., New Delhi, 1984.					
4	Sironi R.S and Radha Krishna H.C., Mechanical Measurements, New Age International (P) Ltd.					

	Outcomes: mpletion of this course, the students will be able to:
CO1	Familiarize with various types of measuring devices and their working principles
CO2	Able to select a measuring device for a specific experimental work
CO3	Able to conduct experiments, observe and interpret data.
CO4	Obtained the expected results from the interpretation.

22S	TE31	ADVANCED STEEL DESIGN			Semester		
PREREQUISITES Category				PE	Cre	edit	3
					Т	Р	TH
	Hours/Week		3	0	0	3	
Cours	se Learn	ing Objectives				I	
1	1 To understand the property of structural steel and gain knowledge of design of steel structures. To understand about connections and the knowledge about design of beam columns and study about the light gauge steel structures						
Unit IINTRODUCTION9		9	0	0	9		

Properties of Structural Steel: Mechanical Properties, Hysteresis, Ductility.Hot Rolled Sections: Compactness and non compactness, slenderness, residual stresses.

Design of Steel Structures: Inelastic bending curvature, plastic moments, design criteria stability, strength, drift. Methods of Designs: Allowable stress design, Philosophies of limit state design, Plastic Design, Load and Resistance factor design

Unit II	ECCENTRIC AND MOMENT CONNECTIONS	9	0	0	9
	Beam-Column Connections- Connections Subjected to Eccentric Shear – Mor d - Framed Connections- Seated Connections –Bracket Connections.	ment R	esistant	Connec	tions
Unit III	DESIGN OF BEAM COLUMNS	9	0	0	9
Introduction – C Design of beam	General behavior of beam-columns – codal provision for local capacity check and -columns.	overall	bucklin	g check	-
Unit IV	PRE-ENGINEERED BUILDINGS	9	0	0	9
Introduction – c	onnection details – design of typical portal frame from Industrial shed using IS: 8	800-200	7.		
Unit V	LIGHT GAUGE STEEL STRUCTURES	9	0	0	9
	sections - local buckling and lateral buckling - concepts of elastic width – desigs, deflection of beams and design of beam webs.	gn of co	ompressi	on and	tensio

Te	xt Books:
1	Duggal S.K., Limit State Design of Steel Structures, TataMcGraw Hill Education Private Ltd., New Delhi , 2017
2	Subramanian N, Design of Steel Structures, Oxford University Press,2013
3	Ramchandra S and VirendraGehlot, Limit State Design of Steel Structures, Standard Publication, New Delhi, 2013
4	M.R. Sheyekar "Limit state design in Structural Steel", 1st Edition, PHI Publications, 2010.
5	Wie-Wen Yu.,"Cold-Formed Steel Structures"-Wheeler Publishing.2012
6	William T.Segui"LFRD Steel Design" PWS Publishing, 2013
Ref	erence Books:
1	Gaylord E.H, Gaylord N.C. and Stallmeyer, J.E, Design of Steel Structures, 3rd edition, McGraw-Hill Publications, 1992.
2	IS:875(part-III)-1987, Code of for design loads(other than earthquake for building and structures)
3	
5	Teaching Resources for Structural Steel Design – Vol.I& II, INSDAG, Kolkatta.
4	Teaching Resources for Structural Steel Design – Vol.I& II, INSDAG, Kolkatta. IS: 811-1987, Cold Formed Light Gauge Structural Steel Sections
-	
4	IS: 811-1987, Cold Formed Light Gauge Structural Steel Sections

	Outcomes: ompletion of this course, the students will be able to:
CO1	Understand the behaviour of steel and design philosophies
CO2	They acquire knowledge to analysis and design of eccentric connections.
CO3	To acquire the knowledge of stability behavior of beam and column sections
CO4	Understand the behaviour of moment resistant frames used in pre-engineering buildings
	To learn the behavior and design of of light gauge steel axial and flexural members.

22S'	TE32	DESIGN OF FORMWORK			Semester		
PRER	PREREQUISITES Cat			PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	se Learn	ing Objectives			I		I
1	1 To gain knowledge of formwork and its materials and the various methods of design of formwork. To study the design of special formwork structures and gain knowledge of flying formwork and understand about the failure of formwork.						
Ur	Unit IINTRODUCTION90					0	9

Requirements and Selection of Formwork.

Formwork Materials- Timber, Plywood, Steel, Aluminum, Plastic, and Accessories. Horizontal and Vertical Formwork Supports

Unit II	FORMWORK DESIGN	9	0	0	9
Concepts, Form	work Systems and Design for Foundations, Walls, Columns, Slab and Beams				
Unit III	FORMWORK DESIGN FOR SPECIAL STRUCTURES	9	0	0	9
Shells, Domes,	Folded Plates, OverheadWater Tanks, Natural Draft Cooling Tower, Bridges.				
Unit IV	FLYING FORMWORK	9	0	0	9
Table Form, Tu	nnel Form, Slip Form, Formwork for Precast Concrete, Formwork Management	[ssues –	Pre- and	l Post-A	ward.
Unit V	FORMWORK FAILURES	9	0	0	9
Causes and Cas	e studies in Formwork Failure, Formwork Issues in Multi-Story Building Constru	iction.	1	1	L
			Tot	al -45H	'eriod

Refe	Reference Books:						
1	Formwork for Concrete Structures, Peurify, McGraw Hill India, 2015.						
2	Formwork for Concrete Structures, Kumar NeerajJha, Tata McGraw Hill Education, 2012.						
3	IS 14687: 2014, False work for Concrete Structures - Guidelines, BIS						

	Outcomes: mpletion of this course, the students will be able to:
CO1	Select proper formwork, accessories and material.
CO2	Design the form work for Beams, Slabs, columns, Walls and Foundations.
CO3	Design the form work for Special Structures.
CO4	Understand the working of flying formwork.
CO5	Judge the formwork failures through case studies.

22S	TE33	DESIGN OF HIGH RISE STRUCTURE	2S	Semester			II		
PREF	REQUIS	ITES	Category	PE	Credit		PE Credit		3
				L	Т	Р	TH		
			Hours/Week	3	0	0	3		
Cours	se Learn	ing Objectives							
1		dent is expected to understand the design of high rise structures eve both safety and economy.	s and incorporate	this in t	the desig	gn of st	ructure		
Uı	Unit I INTRODUCTION					0	9		
				9	0	÷			
water s	supply - d	by - History - advantages and disadvantages - Vertical city of rainage and garbage disposal - service systems - structural and n - Human comfort criteria.		ial ame	nities -				
water s growth	supply - d	lrainage and garbage disposal - service systems - structural and	foundation system	ial ame	nities -				
water s growth Un	supply - d n and form nit II	rainage and garbage disposal - service systems - structural and n - Human comfort criteria.	foundation system	ial ame ns. Fact 9	nities - tors affe	cting he	eight,		
water s growth Un Mast a	supply - d n and form nit II	rainage and garbage disposal - service systems - structural and n - Human comfort criteria. DESIGN OF TRANSMISSION / TV TOWE	foundation system R al transverse and l	ial ame ns. Fact 9	nities - tors affe	cting he	eight,		
water s growth Un Mast a Uni	supply - d n and form nit II nnd trestles it III	A configuration, bracing system, analysis and design for vertical	foundation system R al transverse and l	ial ame ns. Fact 9 longitud	nities - cors affe 0 linal loa	cting he 0 ds.	9		
water s growth Un Mast a Uni RC Ch	supply - d n and form nit II nnd trestles it III	ANALYSIS AND DESIGN OF RC CHIMNE	foundation system R al transverse and l XY	ial ame ns. Fact 9 longitud	nities - cors affe 0 linal loa	cting he 0 ds.	9		
water s growth Un Mast a Uni RC Ch Un Factors	supply - d a and form hit II and trestles it III himney-an it IV s affecting	 and garbage disposal - service systems - structural and h - Human comfort criteria. DESIGN OF TRANSMISSION / TV TOWE s: Configuration, bracing system, analysis and design for vertica ANALYSIS AND DESIGN OF RC CHIMNE alysis and design, Foundation design for varied soil strata. 	foundation system R al transverse and l XY S	ial ame ns. Fact 9 longitud 9	nities - cors affe 0 linal loa 0	cting he	9 9 9		

Modeling for approximate analysis, Accurate analysis and reduction techniques, Analysis of structures as an integral unit, Analysis for member forces, drift and twist, Computerized 3D analysis, Firefighting design provisions.

Refe	rence Books:
1	Structural Design of Multi-storeyed Buildings, Varyani U. H., 2nd Ed., SouthAsian Publishers, New Delhi, 2002.
2	Structural Analysis and Design of Tall Buildings, Taranath B. S., McGraw Hill, 1988.
3	Illustrated Design of Reinforced Concrete Buildings(GF+3storeyed), Shah V. L. &Karve S. R., Structures Publications, Pune, 2013.
4	Design of Multi Storeyed Buildings, Vol. 1 & 2, CPWD Publications, 1976.
5	Tall Building Structures, Smith Byran S. and Coull Alex, Wiley India. 1991.
6	High Rise Building Structures, Wolfgang Schueller, Wiley., 1971.

Course	e Outcomes:					
Upon co	ompletion of this course, the students will be able to:					
CO1	To understand the behavior of tall structures.					
CO2	Analyze, design and detail Transmission/TV tower.					
CO3	Analyze. design and detail of chimneys.					
CO4	To understand the behavior of various structural forums.					
CO5	To carry out the stability analysis.					
22STE	E34 DESIGN OF MASONRY STRU	CTURES	S	Semest	er	II
PRERE	EQUISITES	Category	PE	Cr	edit	3
			L	Т	Р	ТН
		Hours/Week	3	0	0	3
			3	Ŭ		
Course 2	Learning Objectives		3	Ů		
1 7	Learning Objectives To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be		n deteri	mining		ural and
1 7	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be		n deteri	mining		ural and
1 7 s Unit Introduct	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be	havior and to study its mod Design Approaches, Ov	n detern deling to 9 verview	mining echniqu 0	es. 0	9
1 7 s Unit Introduct	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be t I INTRODUCTION tion Historical Perspective, Masonry Materials, Masonry ssion Behaviour of Masonry, Masonry Wall Configurations, D	havior and to study its mod Design Approaches, Ov istribution of Lateral Force	n detern deling to 9 verview	mining echniqu 0	es. 0	9
1 7 s Unit Introduct: Compress Unit	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be t I INTRODUCTION tion Historical Perspective, Masonry Materials, Masonry ssion Behaviour of Masonry, Masonry Wall Configurations, D	havior and to study its mod Design Approaches, Ov istribution of Lateral Force	n detern deling to 9 verview es.	mining echniqu 0 of Lo	es. 0 ad Con	9 Iditions,
1 7 s Unit Introduct: Compress Unit	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be t I INTRODUCTION tion Historical Perspective, Masonry Materials, Masonry ssion Behaviour of Masonry, Masonry Wall Configurations, D E II FLEXURAL STRENGTH strength of Reinforced Masonry Members: In plane and Out-o	havior and to study its mod Design Approaches, Ov istribution of Lateral Force	n detern deling to 9 verview es.	mining echniqu 0 of Lo	es. 0 ad Con	9 Iditions,
1 7 S Unit Introduct: Compress Unit Flexural s Unit 1	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be t I INTRODUCTION tion Historical Perspective, Masonry Materials, Masonry ssion Behaviour of Masonry, Masonry Wall Configurations, D E II FLEXURAL STRENGTH strength of Reinforced Masonry Members: In plane and Out-o	havior and to study its mod Design Approaches, Ov istribution of Lateral Force	n detern deling to 9 verview es. 9	mining echniqu 0 of Lo	es. 0 ad Con 0	9 Iditions, 9
1 7 Unit Introduct: Compress Unit Flexural s Unit	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be t I INTRODUCTION tion Historical Perspective, Masonry Materials, Masonry ssion Behaviour of Masonry, Masonry Wall Configurations, D E II FLEXURAL STRENGTH strength of Reinforced Masonry Members: In plane and Out-o III INTERACTIONS al Wall, Columns and Pilasters, Retaining Wall, Pier and Foun	havior and to study its mod Design Approaches, Ov istribution of Lateral Force	n detern deling to 9 verview es. 9	mining echniqu 0 of Lo	es. 0 ad Con 0	9 aditions, 9
1 7 Unit Introduct: Compress Unit Flexural s Unit I Structural Unit I Structural Shear St	To impart knowledge to the students about masonry material shear strength of the structure. This also guides to know its be t I INTRODUCTION tion Historical Perspective, Masonry Materials, Masonry ssion Behaviour of Masonry, Masonry Wall Configurations, D E II FLEXURAL STRENGTH strength of Reinforced Masonry Members: In plane and Out-o III INTERACTIONS al Wall, Columns and Pilasters, Retaining Wall, Pier and Foun	havior and to study its mod Design Approaches, Ov istribution of Lateral Force of-plane Loading. dation	n deterri deling to 9 verview es. 9 9 9	mining techniqu 0 of Lo 0 0	es. 0 ad Con 0 0 0	9 ditions, 9 9

Refe	rence Books:
1	Design of Reinforced Masonry Structures, NarendraTaly, ICC, 2nd Edn,
2	Masonry Structures: Behavior and Design, Hamid Ahmad A. and Drysdale Robert G., Pearson College Div; 2nd edition (May 1, 1993).
3	Mechanics of Masonry Structures, Editor: Maurizio Angelillo, Springer; 2014 edition (March 21, 2014).India, 1986.
4	Earthquake-resistant Design of Masonry Buildings, TomaeviMiha, Imperial College Press, 1999.

Cours	e Outc	comes:					
Upon c	completi	on of this course, the students will be able to:					
CO1	Un	derstand the masonry design approaches.					
CO2	Ana	alyze Reinforced Masonry Members.					
CO3	Det	termine interactions between members.					
CO4	Ch	eck the stability of walls					
CO5	Per	form elastic and Inelastic analysis of masonry walls.					
22ST	E35	DESIGN OF PREFABRICATED STRUCT	URES	S	Semeste	er	Π
PRERI	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Course	Learn	ing Objectives				I	l
		art knowledge to the students about structural design of prefa uctures.	bricated structures	, indust	rial buil	dings a	nd shel
Uni	t I	INTRODUCTION AND DESIGN PRINCIPI	LES	9	0	0	9
specifica	ations -	ngineering requirements, specific requirements for planning Modular co- ordinations, standardizations, Disuniting of Pref. g and codal provisions, safety factor, material properties, defle	abricates, producti	ons, tra	nsportat	ions, er	
Unit	t II	REINFORCED CONCRETE PREFARICATED STR ELEMENTS	RUCTURAL	9	0	0	9
		ructures – long wall, cross- wall, large panel buildings, one wa partials and curtain walls, single storey industrial buildings with					d

Types of floor slabs, analysis and design example of cored and panel types and two- way systems, staircase slabs design, types of roof slabs and insulation requirements, description of joints, their behavior and reinforcement requirements, deflection control for short term and long term loads, ultimate strength calculations in shear and flexure. Types of wall panels, blocks and large panels, shear walls, curtain, partition and bearing walls, load transfer from floor to wall panels, vertical loads, eccentricity and stability of wall panels.

Unit IV	DESIGN OF INDUSTRIAL BUILDINGS	9	0	0	9

Components of single- storey industrial sheds with crane gantry systems, design of R.C Roof trusses, roof panels, design of R.C. crane gantry girders, corbels and columns, wind bracing design.

Unit V	DESIGN OF SHELL ROOFS FOR INDUSTRIAL SHEDS	9	0	0	9	
--------	--	---	---	---	---	--

Cylindrical, folded plate and hyper- prefabricated shells, erection and jointing, joint design, hand book based design.

Tex	t Books:
1	Lewicki B, Building with large Prefabricates, Elsevier Publishing Company, Amsterdam/ London/ New York, 1998.
2	Koncz T, Manual of Precast Concrete Constructions, Vol. I, II and III, Bauverlag, GMBH, 1976.
Refe	rence Books:
1	Structural Design Manual, Precast Concrete Connections & Details, Society for the Studies in the use of Precast Concrete, NeatherlandBetorVerlag, 1978.
2	LassloMokk, Prefabricated Concrete for Industrial and Public Sectors, AkademiaiKiado, Budapest, 1964.
3	Murashev V, Sigalov E and Bailov V, Design of Reinforced Concrete Structures, Mir Publishers, 1976.
4	CBRI, Building Materials and Components, 1990, India
5	Gerostiza C.Z, Hendrikson C, Rehat D.R, Knowledge Based Process Planning for Construction and Manufacturing, Academic Press, Inc., 1989.
6	Warzawski A, Industrializations and Robotics in Building – AManagerial Approach, Harper & Row, 1990.

	e Outcomes: ompletion of this course, the students will be able to:
CO1	Able to gain knowledge about the requirements for planning and layout of prefabricating plant
CO2	Will be familiar with the IS codal provisions, for prefabrication of structural elements
CO3	Will be able to design large panel walls, one way and two way prefabricated slabs, curtain walls, single storey industrial buildings with trusses, and gantry systems

22STE	E36	DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES			Semester		
PRERE(QUISIT	TES	Category	PE	PE Credit		3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course I	Learnin	ng Objectives					
_							
		rt knowledge to the students about design of composite n . The case studies were investigated to know the seismic beha			girders	and its	design
	concepts.				girders 0	and its	design 9
Co Unit 1	tion to ste	The case studies were investigated to know the seismic behavior in the seismic	avior of the structu	res. 9	0	0	9
Unit I	t I tion to stee	The case studies were investigated to know the seismic behavior in the seismic	avior of the structu e structures – Introd	res. 9	0	0	9
Unit I Introductio sandwich o Unit I	tion to steen construct IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	The case studies were investigated to know the seismic behavior of composite construction – Theory of composite ction DESIGN OF COMPOSITE MEMBERS mposite beams, columns – Design of composite beams,	avior of the structu e structures – Introd	res. 9 duction 9	0 to steel 0	0 - concre 0	9 ete-steel 9

Introduction – Types of connections – Design of connections in composite structures – Shear connection, Design of onnections in composite trusses.

Unit IV	DESIGN OF COMPOSITE BRIDGES	9	0	0	9			
Introduction to 0	Composite Box Girder Bridges – Behaviour of box girder bridges – design conce	pts						
Unit V	CASE STUDIES	9	0	0	9			
General case stu	General case studies on steel-concrete composite construction in buildings – Seismic behaviour of composite structures.							
			Tot	al -45P	eriods			

Tex	t Books:
1	Johnson R.P., Composite structures of steel and concrete, Blackwell Scientific Publications, 2nd edition, U.K., 2004.
2	Owens G.W and Knowels P., Steel Designers manual,5th edition, Steel Concrete Institute (UK), Oxford Blackwell Scientific Publications, 1992.
Refe	rence Books:
1	Arya, A.S., Design of Steel Structures, New Chand & Brothers, New Delhi 2014.
2	Workshop on Steel concrete composite structures conducted at Anna University 2000.
3	Necessary Indian & Eurocodes
4	INSDAG teaching resources for structural steel design, Vol.2, INSDAG, IspanNiketan, Calcutta.

Cours	e Outc	omes:									
Upon c	completi	on of this course, the students will be able to:									
CO1	 – slabs, beams, columns and trusses. 										
CO2	Des	Design the meeting out the desired specifications and requirements.									
CO3	Hav	Have the ability to solve Structural engineering problems.									
CO4		ve the knowledge to conduct advanced experiments on st nponents.	eel concrete con	nposite	structu	ıral					
22ST	E41	DESIGN OF ADVANCED CONCRETE STRU	CTURES	S	emeste	er	II				
PRERI	EQUIS	ITES	Category	PE	Cre	edit	3				
			TT / TT /	L	Т	Р	ТН				
			Hours/Week	3	0	0	3				
Course	Learn	ing Objectives									
1		part knowledge to the students with regard to the design of s pur of structural members and expose them to the concepts of									
Uni	t I	DESIGN OF BEAMS CURVED IN PLAN AND DEF	EP BEAMS	9	0	0	9				
of beam	ns for co	state of collapse – Design for limit state of serviceability – Ca ombined effect of shear, bending moment and torsion – Ana Design of deep beams.					0				
Unit	t II	DESIGN OF SPECIAL R.C. ELEMENTS	5	9	0	0	9				

Design of slender columns – Design of RC walls and shear walls –Classification and design principles – Design of rectangular and flanged shear walls – Design of corbels.

Unit III	DESIGN OF FLAT SLAB AND GRID FLOORS	9	0	0	9
	y of slabs – Hillerberg's method of design of slab – Design of flat slab - Equivale alysis and design of grid floors.	ent fram	e metho	d of des	ign –
Unit IV	INELASTIC BEHAVIOUR OF R.C. BEAMS	9	0	0	9
	our of concrete beams – moment rotation curves – Moment redistribution – Bake of cast in situ joints in frame.	r's metl	hod of a	nalysis a	and
Unit V	DETAILING REQUIREMENTS	9	0	0	9

Tex	t Books:						
1	S Unnikrishna Pillai, Devdas Menon. "Reinforced Concrete Design" McGraw Hill, 2021						
2	Varghese P.C., Advanced Reinforced Concrete Design, Prentice Hall of India, 2005						
Refe	Reference Books:						
1	KirshnaRaju N., Advanced Reinforced Concrete Design, CBS Publishers and Distribuors , 2016						
2	Purushothaman P., Reinforced Concrete Structural Elements. Behaviour Analysis and Design, Tata Mcgraw Hill.						
3	Park R. and Paulay T., Reinforced Concrete Structures, John Wiley & Sons.2017.						

Course	Course Outcomes:							
Upon completion of this course, the students will be able to:								
CO1 Analyse the special structures by understanding their behaviour								
CO2	.Design and prepare detail structural drawings for execution.							
CO3	Design the special elements like corbels, deep beams, spandrel beams and grid floors							
CO4	Predict the moment curvature behavior, design and detailing of concrete elements based on ductility parameter							

22STE42		ADVANCED DESIGN OF FOUNDATIONS		S	Semeste	er	п
PRER	REQUIS	SITES	Category	PE Credit		edit	3
				L	Т	Р	ТН
		Ησ	Hours/Week	3	0	0	3
Cours	se Learn	ning Objectives					
1		lerstand the basic philosophy of planning of Soil Exploration for D			0		
		ttlement of Footings and Rafts. To estimate Load Transfer of Piles s. To understand the provision of IS and IRC Design Code and ls.					and Pile
Ur	Groups	s. To understand the provision of IS and IRC Design Code and					and Pile
Plannii	Groups System nit I ng of So	s. To understand the provision of IS and IRC Design Code and as.	gain knowle	dge of 9	Sheetir 0	ng and 0	and Pile Bracing 9
Plannii Variou	Groups System nit I ng of So	s. To understand the provision of IS and IRC Design Code and as. SOIL EXPLORATION Hil Exploration for Different Projects, Methods of Subsurface Exp	gain knowle	dge of 9	Sheetir 0	ng and 0	and Pile Bracing 9
Plannin Variou Un Requir	Groups System nit I ng of So as Penetra nit II rements for	s. To understand the provision of IS and IRC Design Code and as. SOIL EXPLORATION I Exploration for Different Projects, Methods of Subsurface Explanation Tests.	gain knowle ploration, Me g Bearing Cap	dge of 9 ethods 9 pacity, S	Sheetir 0 of Bori: 0 Settleme	ng and 0 ngs alo 0 ents of I	and Pile Bracing 9 ng with 9 Footings

Methods of Estimating Load Transfer of Piles, Settlements of Pile Foundations, Pile Group Capacity and Settlement, Design of pile group & pile cap, Laterally Loaded Piles, Pile Load Tests, Analytical Estimation of Load- Settlement Behavior of Piles, Proportioning of Pile Foundations, Lateral and Uplift Capacity of Piles.

Unit IV	WELL FOUNDATION	9	0	0	9			
IS and IRC Desi	IS and IRC Design Code Provisions, Elastic Theory and Ultimate Resistance Methods. Tunnels and Arching in Soils, Pressure							
Computations an	Computations around Tunnels.							

Unit VOPEN CUTS9009Sheeting and Bracing Systems in Shallow and Deep Open Cuts in Different Soil Types. Coffer Dams, Various Types,
Analysis and Design, Foundations under uplifting loads, Soil-structure interaction9009

Tex	Text Books:					
1	Design of foundation system, N.P. Kurian, Narosa Publishing House, 2014 (3rd edition)					
2	Foundation Analysis and Design, J. E. Bowles, Tata McGraw Hill New York, 2001 (5th edition)					
Refe	rence Books:					
1	Design of foundation system, N.P. Kurian, Narosa Publishing House, 2014 (3rd edition)					
2	Foundation Analysis and Design, J. E. Bowles, Tata McGraw Hill New York, 2001 (5th edition)					

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Decide the suitability of soil strata for different projects.					
CO2	Design shallow foundations deciding the bearing capacity of soil.					
CO3	Analyze and design the pile foundation					
CO4	Understand analysis methods for well foundation.					

228	STE43	DESIGN OF INDUSTRIAL STRUCTUR	DESIGN OF INDUSTRIAL STRUCTURES			er	II
PRE	REQUIS	ITES	Category	PE Credit		edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cour	se Learn	ing Objectives					
1	-	art knowledge to the students about industrial design of built- imneys and water tanks.	up girders, portal f	rames,	steel bui	nkers ar	d silos,
U	nit I	PLANNING AND FUNCTIONAL REQUIREM	ENTS	9	0	0	9
		f Industries and Industrial Structures-planning for layout req n against noise and vibration-guidelines from factories act-mat	-		-		and fire
Uı	nit II	BUILT-UP GIRDERS		9	0	0	9
mom	nents and	oads acting on gantry girder, permissible stress, types of gant shears, construction details, design procedure Plate girder - of web – stiffeners – Connection – design procedure.					
Un	nit III	PORTAL FRAMES		9	0	0	9
Desig	n of portal	frame with hinged base, design of portal frame with fixed bas	e – Gable structure	es – ligh	t weight	t structu	res.
Un	nit IV	STEEL BUNKERS AND SILOS		9	0	0	9

Design of square bunker – Jansen's and Airy's theories – IS code provisions – Design of side plates – stiffeners – Hooper –
Longitudinal beams – Design of cylindrical silo – side plates – ring girder - stiffeners.

Unit V STEEL CHIMNEYS		9	0	0	9		
	Introduction – Types - dimensions of steel stacks, chimney lining, breech openings and access girder, loading and load combinations, design considerations, stability considerations, design of base plate, design of foundations bolts, design of						
foundation.							

Tex	t Books:
1	Procs. of advanced course on Industrial Structures, Structural Engineering Research Center, 1982.
2	Design of steel structures, Bunmia P.c., Jain Ashok Kr., Jain Arun Kr., 2nd edition, Lakshmi publishers, 2012.
3	Shiyekar M R,"Limit State Design in Structural Steel",PHI Learning private limited,New Delhi,2017.
4	Subramanian N,"Design of Steel Structures",Oxford university press,New Delhi,2016.
Refe	rence Books:
1	Manohar S.N, Tall Chimneys – Design and Construction, Tata McGrawHill,1985.
2	Rajagopalan Dr. K, Storage Structures, Oxford IBH Publishing Company Ltd 1989.
3	IS: 875(part-III)-1987, Code of for design loads (other than earthquake for building and structures).
4	IS: 4995(part-I)-1974, Criteria for design of Reinforced concrete bins for the storage of granular and powdery materials.
5	Hand book on functional requirements of Industrial buildings, SP-32-1986, Bureau of Indian Standards, New Delhi, 1990.
6	IS: 800-1984, Code of practice for general construction in steel.
7	SP(6) Steel tables ; IS: 804-1967, Specifications for rectangular pressed steel tanks.

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Acquire knowledge about functional requirements of Industrial buildings.				
CO2	Understand the behavior and design of plate and gantry girders.				
CO3	Acquire knowledge about the design of portal frames.				
CO4	Understand the design concept of steel bunkers and silos.				
CO5	Design of steel chimneys and understand the design behavior.				

22STE44	22STE44 SUBSTRUCTURE DESIGN Semester			er	II		
PREREQUISITES Ca			PE	Cre	edit	3	
			L	Т	Р	ТН	
		Hours/Week	3	0	0	3	
Course Learn	ing Objectives						
	1 To impart knowledge about the design of shallow foundation, deep foundation, foundation for bridges, machine foundation and tower foundation.						
Unit I INTRODUCTION				0	0	9	
•	Design of soil investigation report for design of foundation structure-Types-Selection of foundation-Basic requirement of Foundation-Computation of loads-General principle of design of reinforced concrete shallow and deep foundation.						
Unit IIDESIGN OF SHALLOW FOUNDATION9009						9	
Deep foundation-Load carrying capacity of different types of piles and detailing of reinforcement according to IS 2911-Design of pile caps-Uplift capacity of piles-Lateral pile load test.							
Unit IIIDESIGN OF DEEP FOUNDATION9				0	0	9	
-	Deep foundation-Load carrying capacity of different types of piles and detailing of reinforcement according to IS 2911-Design of pile caps-Uplift capacity of piles-Lateral pile load test.						
Unit IV FOUNDATION FOR BRIDGES AND MACHINES		9	0	0	9		

Foundation for bridges – Well and caisson foundation – Design of pier cap –Design of pier-General principles, planning and design of machine foundation.

Unit V	TOWER FOUNDATIONS	9	0	0	9
Introduction Decign of foundation for towars forces on towar foundation. Constal decign criteria. Structu		stural de	sign of		

Introduction- Design of foundation for towers – forces on tower foundation – General design criteria – Structural design of supports for foundation excavation – Design of ground anchors.

Text Books:					
1	Tomlinson M.J and Boorman R, Foundation design and construction, ELBS longman VI Edition, 1995.				
2	Swamisaran, Analysis and design of substructures, Limit state design, Oxford and IBH Publishing Co. Pvt. Lt, NewDelhi, 1996.				
Reference Books:					
1	Nayak N.V, Foundation design manual for practicing engineers, DhanpatRai & sons,1982.				

Upon co	e Outc	omes:					
Cron C	ompleti	on of this course, the students will be able to:					
CO1	Able to adopt a suitable foundation based on the soil condition and the type of structure.						
CO2	Familiarize with principles, planning and design of various types of foundation as per IS codal specifications and requirements.						
CO3	Able to design and detailing of reinforcement for foundations.						
22STH	E 45	DESIGN AND CONSTRUCTION OF FERROC STRUCTURES	EMENT	S	Semeste	er	II
PRERE	QUIS	ITES	Category	PE	Cre	edit	3
			Hours/Week	L	Т	Р	ТН
			Hours/ week	3	0	0	3
Course	Learn	ing Objectives					
	To imp structur	art knowledge on the material properties of ferrocement, ana es.	alysis, design and	d const	ruction	of ferro	cemen
	+ T						
Unit	ιI	FERROCEMENT AS A STRUCTURAL MATER	RIAL	9	0	0	9
Ferrocem concrete,	nent – , simila	FERROCEMENT AS A STRUCTURAL MATER definition, constituent materials of ferrocement, Distinct cha rities between ferrocement and reinforced concrete, Mechanic terial, ferrocement for structural applications, Construction meth	aracteristics of f cal properties, ad	errocen lvantage	nent ve	rsus rei	nforced
Ferrocem concrete,	nent – , simila tion ma	definition, constituent materials of ferrocement, Distinct cha rities between ferrocement and reinforced concrete, Mechanic	aracteristics of f cal properties, ad	errocen lvantage	nent ve	rsus rei	nforce
Ferrocem concrete, construct Unit Effective Flexure f bending	nent – , simila tion ma II e area o formula resistar	definition, constituent materials of ferrocement, Distinct cha rities between ferrocement and reinforced concrete, Mechanic terial, ferrocement for structural applications, Construction meth	aracteristics of f cal properties, ad nods, design parar is methods for b cacked section, A nsile reinforcement	errocen lvantag neters. 9 ending analysis nt yield	nent ve es of fe 0 under s s metho ling, sim	rsus rei rroceme 0 service ds for 1	nforcee ent as a 9 loads nomina

Design based on crack width- Relationship between crack width -its spacing and stress in steelwire.. Equation establishing relationships between crack width, spacing of cracks, modular ratio, modulus of elasticity and tensile stress of mortar. Crack control method of design- applied to pipes, silos, water tanks and waterproofing systems. Design of ductility -Strain energy absorbed per unit volume of ferrocement. Its use in design of structures

subjected to dynamic loading-earthquake, wind, machine foundations.

Unit IV	DESIGN THROUGH SHAPE AND COMPOSITE CONSTRUCTION	9	0	0	9
Sharing formerson to goin strength strengt notions abanged due to sharing. Different shares and strengt Detterns like flavore					

Shaping ferrocement to gain strength, stress pattern changed due to shaping, Different shapes and stress Patterns like flexure to compression, different ways of giving forms, boxing, corrugating, folding, ribbing, stiffening, arching, waffling. Giving shapes in three dimensions. Analysis of various forms for stress pattern under loading- cavity walls, hollow floors, hollow columns and beams, stiffened plates in compression and flexure, built in sections like H, U, T, +, L. Shells of translation and rotation, domes, pyramids, folded plates. Design of composite structures of ferrocement with RCC, steel and masonry. Precast ferrocement elements with in-built RCC framework. Joints of precast members as structural members their design and construction, Confining and strengthening damaged structures, retrofitting.

|--|

Applications in building construction: Parabolic foundations, under-reamed piles, Panelled cavity walls and box- sectioned hollow floors, hollow beams. Stiffened plates as slabs. Design and construction of multi-storied buildings and mass scale housing using in-situ mortaring method and method of joining precast walling and floor panels. Water and soil retaining structures: Applications in water treatment and effluent treatment plants and in Irrigation, Highways and Bridges.

Tex	t Books:
1	Ferrocement, Authors: B R Paul and R P Pama, Published by International Ferrocement Information Centre. A.I.T.Bangkok, Thailand.
2	Ferrocement and laminated cementitious composites, Author: A E Naaman, Publisher: Techno-press, Ann Arbor, Michigan, U S A.
Refe	rence Books:
1	State-of-the-art report and guide for Design, Construction and Repairs of Ferrocement; ACI committee Report. No ACI-549R- 88 and ACI 549.1R.88, Published by American Concrete Institute, Detroit, USA.
2	Ferrocement, Authors: B R Paul and R P Pama, Published by International Ferrocement Information Centre. A.I.T.Bangkok, Thailand.
3	Chapter 1 titled 'Ferrocement' by S P Shah and P N Balaguru, in book 'Concrete Technology and Design Vol II Editor; R N Swamy.
4	Proceedings of International Symposiums on 'Ferrocement and thin reinforced composites Ferro 1 to Ferro 10.
5	Ferrocrete Technology- A Construction Manual, Author: Dr. B. N. Divekar, Published by the Author.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	On completion of the course the student will be able to understand the concepts of ferrocement technology.					
CO2	CO2 The student will be in a position to analyse and design ferrocement structures.					
CO3	The student will gain the knowledge of the method of construction of the structures.					

22STE51 DESIGN OF PRESTRESSED CONCRETE STRUCTURES		Semester					
PREREQUIS		ITES	Category	PE	Cro	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	Course Learning Objectives						
1	1 This course covers the principles analysis and design of prestressed concrete elements and other structur In addition to the BIS codal provisions, ACI and British code, FIB specifications shall also be compared.						
Un	it I	PRINCIPLES, ANALYSIS FOR FLEXUR DEFLECTION	E AND	9	0	0	9
Princip	oles of 2	Prestressing – Types of prestressing systems – Mater	ials – Systems a	nd dev	vices –	Analy	sis and
U		ure- Behavior of prestressed concrete elements - Genera	· ·				•
-		nd post tensioned systems - losses in prestress – analy ns - at service load and Magnel's approach - short term a	•	U	th - C	omparis	son of
Uni		DESIGN FOR FLEXURE		9	0	0	9
			1 0 /				
-		Prestressing – Types of prestressing systems – Mater ure- Behavior of prestressed concrete elements – Genera	•			•	
U		nd post tensioned systems - losses in prestress – analy					•
-		ns - at service load and Magnel's approach - short term a	•	v		1	
Uni	t III	DESIGN FOR SHEAR, TORSION AND ANCHO	RAGE ZONE	9	0	0	9
Analys	sis of ind	leterminate structures – Continuous beams – Concept of	concordance and	linear	transfo	rmatio	ns –
Single	storied	rigid frames – Choice of cable profiles.					
Unit IV STATICALLY INDETERMINATE STRUCTURES		9	0	0	9		
		ndeterminate structures – Continuous beams – Concept o I rigid frames – Choice of cable profiles.	of concordance an	d linea	r transf	formatio	ons –
		PRESTRESSED CONCRETE SPECIAL STR	UCTURES	9	0	0	9
-		cular prestressing - Design of prestressed concrete pi	•				-
		types, behaviour, flexural stresses, longitudinal shear				Comp	ression
membe	ers – De	sign of poles and piles - Partial prestressing – Principles	, analysis and des	ign coi	-		
					Tot	tal -451	Periods
Text	t Books	:					
1	1Rajagopalan N, Prestressed Concrete, Narosa Publishing House, 2002.						
2	2 Krishnaraju N, Prestressed Concrete, Tata McGraw-Hill Publishing Company, 6th Ed 2018.						
Reference Books:							
1	Lin.T.	Y Ned Burns, Design of Prestressed Concrete Structures	s, 3rd edition,Johr	n Wiley	y & Soi	ns, 1982	2.
2	Sinha N.C & Roy S.K, Fundamentals of Prestressed Concrete, S.Chand& Co, New Delhi 1985.						

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Students will able to find out the basics and losses in prestressed concrete structures					
CO2	Understand the basic concept of pre and post-tensioning processes, analyze prestressed concrete members					
CO3	Design prestressed concrete deck slab and end blocks					

22S	ГЕ52	ANALYSIS OF LAMINATED COMPOSIT	TE PLATES	S	Semeste	er		
PRER	REQUIS	ITES	Category	PE Credit			3	
				L	Т	Р	ТН	
			Hours/Week	3	0	0	3	
Cours	e Learn	ing Objectives			1			
1	1 To impart knowledge to the students about theory of plates, laminated, composite plates and approximate methods of analysis of plates.							
Un	nit I	INTRODUCTION		9	0	0	9	
-		Field Approximations for Classical Laminated Plat Theory (FSDT), Analytical Solutions for Bending of Rec	•					
Un	it II	GOVERNING EQUATIONS		9	0	0	9	
Navier	r Solutio	ns of Cross-Ply and Angle-Ply Laminated Simply-Supp	orted Plates, Dete	rminati	ion of S	Stresses		
Uni	it III	ANALYTICAL SOLUTIONS		9	0	0	9	
-		s for Plates with Other Boundary Conditions. Analytical tes Using FSDT.	Solutions for Ber	nding o	f Recta	ngular		
Uni	it IV	FINITE ELEMENT SOLUTIONS USING	CLPT	9	0	0	9	
Metho	od, Recta	Solutions for Bending of Rectangular Laminated Plates ngular Elements, Formation of Stiffness Matrix, Format ion of Stresses.	-					
Un	it V	FINITE ELEMENT SOLUTIONS USING	FSDT	9	0	0	9	
Finite Element Solutions for Bending of Rectangular Laminated Plates using FSDT. Finite Element Model, C0 Element Formulation, Post Computation of Stresses. Analysis of Rectangular Composite Plates using Analytical Methods.								
Total -45Periods								
Text Books:								
1	Mecha	anics of Laminated Composites Plates and Shells, Reddy	J. N.,2 nd edition	CRC P	ress.			

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1	Analyze the rectangular composite plates using the analytical methods.				
CO2	Analyze the composite plates using advanced finite element methods.				
CO3	Develop the computer programs for the analysis of composite plates.				

22ST	ГЕ53	FRACTURE MECHANICS OF CONCRETE STRUCTURES		Semester			
PRER	EQUIS	ITES	Category	PE	Credit		3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					•
1		part knowledge on various fracture mechanisms, the or e and study the failure modes with models of concrete st				propert	ies. To
Un	it I	INTRODUCTION		9	0	0	9
Basic	Fracture	Mechanics, Crack in a Structure, Mechanisms of Fractur	e and Crack Gro	wth.			
Unit II		TYPES OF FRACTURE		9	0	0	9
Cleava	age Frac	ture, Ductile Fracture, Fatigue Cracking, Environment as	sisted Cracking,	Service	e Failur	e Anal	ysis.
Uni	t III	STRESS AT CRACK TIP		9	0	0	9
		c Tip, Linear Elastic Fracture Mechanics, Griffith's Criter Erwin's Plastic Zone Correction, R curves, Compliance, J		•		-	
Uni	t IV	MATERIAL MODELS		9	0	0	9
Genera	al Conce	epts, Crack Models, Band Models, Models based on Cont	inuum Damage N	Mechar	nics.		1
		APPLICATION ON SPECIAL CONCRETE AND MODELING	NUMERICAL	9	0	0	9
Applic	cations to	o High Strength Concrete, Fiber Reinforced Concrete, Cr	ack Concepts and	d Num	erical N	Iodelin	g.
					Tot	al -45I	Periods

Tex	t Books:				
1	Fracture Mechanics, Sun C. T. and Jin Z.H., 1st Edition, Elsevier Academic Press, 2012.				
2	Elementary Engineering Fracture Mechanics, BroekDavid, 3rd Rev. Ed. Springer, 1982.				
Refe	Reference Books:				
1	Fracture Mechanics of Concrete Structures – Theory and Applications, Elfgreen., RILEM Report, Chapman and Hall, 1989.				
2	Fracture Mechanics – Applications to Concrete, Victor, Li C., Bazant Z. P., ACI SP 118, ACI Detroit, 1989.				

	Outcomes: ompletion of this course, the students will be able to:
CO1	Identify and classify cracking of concrete structures based on fracture mechanics.
CO2	Implement stress intensity factor for notched members
CO3	Apply fracture mechanics models to high strength concrete and FRC structures.
CO4	Compute J-integral for various sections understanding the concepts of LEFM.

22STE	254	DESIGN OF PLATES AND SHEL	LS	S	Semeste	er	
PRERE	QUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course I	Learn	ing Objectives			1		
	Fo imp tructu	part knowledge to the students about design of plates, s res.	shells, folded plat	es and	the and	alysis o	f these
Unit	Ι	LATERALLY LOADED PLATES		9	0	0	9
Thin pla condition		with small deflection. Laterally loaded thin plates,	governing differ	ential	equation	ons, bo	undary
Unit l	II	DESIGN OF FOLDED PLATES		9	0	0	9
Folded p	late st	ructures - Structural behaviour - Types - Design by ACI	-ASCE Task Con	nmittee	metho	d.	
Unit I	II	MEMBRANE AND BENDING THEORY OF	SHELLS	9	0	0	9
		of shells - Types of shells - Structural action - Membran amples- Limitations of membrane theory.	e theory - Shells o	of revol	lution a	ind shel	ls of
Unit I	V	DESIGN OF CYLINDRICAL SHELI	S	9	0	0	9
Analysis	and d	esign of cylindrical shells and their structural behaviour					
Unit V DESIGN OF DOUBLY CURVED SHELLS		9	0	0	9		
theory of	f shall	ory for general shells of double curvature - Synclastic ow shells - Design of cooling tower shells - Hyperbolic e members - Design of conoidal shells - New shell forms	Paraboloid roofs	- Detei	minatio	on of fo	orces in
					Tot	tal -45P	eriods

Tex	t Books:				
1	Theory of Plates and Shells, Timoshenko and Woinowsky-Krieger S., Tata McGraw Hill Edition, 2010.				
2	Design and Construction of Concrete Shell Roofs, Ramaswamy G. S., 1st Edition, 2005.				
Refe	Reference Books:				
1	Design of Reinforced Concrete Shells & Folded Plate, Varghese P. C., 1st Edition, PHI.				
2	Design of Plate and Shell Structures, JawadMaan H., Springer Science.				

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Analyze and design prismatic folded plate systems					
CO2	Analyze and design shells using approximate solutions					
CO3	Analyze and Design Cylindrical Shells					
CO4	Design Doubly Curved Shells using Approximate Solutions.					

2287	ГЕ55	DESIGN OF BRIDGES		S	Semeste	er	III
PRER	EQUIS	ITES	Category	PE Credit			3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives			I		
1		end of the course the students shall have knowledge a ssed concrete bridges and also about bearing, substructu				span b	ridges,
Un	it I	INTRODUCTION		9	0	0	9
<u>^</u>		f bridge - Classification - Need for investigation Data co pan scour depth - traffic projection - choice of bridge typ	Ũ	discha	rge - lir	near wa	terway
Uni	it II	LOADS ON BRIDGES		9	0	0	9
	- longit	congress (IRC) bridge codes - dimensions - dead and l udinal and centrifugal forces - hydraulic forces - earth	-				
Uni	t III	SLAB AND T-BEAM BRIDGES		9	0	0	9
-		bridges - skew slab culverts - box culverts. T - Pigeaud of T - beam bridges	curves - Courbon	's theor	ry - Her	ndry Ja	egar
Uni	t IV	LONG SPAN GIRDER BRIDGES		9	0	0	9
Design	n princip	les of continuous bridges, box girder bridges, and baland	ced cantilever brid	dges.			
Uni	it V	BEARINGS AND SUBSTRUCTURES FOR B	BRIDGES	9	0	0	9
Design	n of bear	ings for slab, girder, skew bridges - Design of piers abut	tments - trestles, J	oints -	expans	ion joi	nts
Total -45Periods							
Text	t Books:	:					
1Raina V.K. "Concrete Bridge Practice", Tata McGraw-Hill Publishing Company, New Delhi, 1991.							
2	2 Krishnaraju N, "Design of Bridges", Oxford and IBH Publishing Co., Bombay, Calcutta, New Delhi 1988						
3	3 Ponnuswamy S, "Bridge Engineering", Tata McGraw-Hill, 1989						

Reference Books:

1	Bakht, B. and Jaegar, L.G., "Bridge Analysis Simplified", McGraw-Hill,1985.
2	Derrick Beckett, "An Introduction to Structural Design of Concrete Bridges", Surrey University Press, Henley Thomes, Oxford Shire, 1973
3	Taylor F.W, Thomson S.E. and Smulski E, "Reinforced Concrete Bridges", John Wiley and Sons, New York, 1955
4	Edwin H.Gaylord Jr., Charles N.Gaylord, James E. Stallmeyer "Design of Steel Structures", McGraw-Hill International Editions, 1992.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Have a complete knowledge about the components, classification, Design Requirements of bridge structures					
CO2	gain Knowledge on various loads on Bridges					
CO3	To design of components of Slab and T- Beam bridges					
CO4	To design Long Span Bridges					
CO5	To design bearing, Abutments and various joints in bridges					

22ST	ГЕ56	MODERN CONSTRUCTION MATER	RIALS	Semester			
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1		end of this course the student shall have a good knowled struction and their significance.	lge about the rece	ent mat	erials a	nd type	s used
Un	it I	SPECIAL CONCRETES		9	0	0	9
		havior of concrete - High Strength and High Performanc oncrete, Alternate Materials to concrete - Aerocon blocks			forced (Concret	e, Self
Uni	Unit II METALS		9	0	0	9	
		Alloy Steels - Aluminum and its Products - Coatings t - M2 panels for wall panels.	o reinforcement -	– Appl	ications	s - Galv	valume
Uni	t III	COMPOSITES		9	0	0	9
		forced Polymers - Fiber Reinforced Concrete - Steel Fib stic composites - carbon fibers and composite reinforcem			mposite	es - Fibe	er
Uni	t IV	OTHER MATERIALS		9	0	0	9
Water	Proofing	g Compounds - Non-weathering Materials - Flooring and	l Façade Material	S			
Un	Unit V SMART AND INTELLIGENT MATERIALS		9	0	0	9	
Smart	and Inte	lligent Materials for intelligent buildings - Special featur	res	. <u></u>	. <u></u>	I	
					Tot	al -45P	eriods

Text Books:					
1	Santhakumar A.R., Concrete Technology, Oxford University press, New Delhi. 2007				
2	Shetty M.S, Concrete Technology: Theory and Practice, S.Chand& Company Ltd., 2005				
Refe	rence Books:				
1	Mamlouk M.S. and Zaniewski J.P., Materials for Civil and Construction Engineers, Prentice Hall Inc., 1999				
2	Ashby M.F. and Jones D.R.H.H. Engineering Materials 1: An introduction to Properties, applications and designs, Elsevier Publications, 2005				
3	Shan Somayaji, Civil Engineering Materials, Prentice Hall Inc., 2001				
4	Aitkens, High Performance Concrete, McGraw Hill, 1999				
5	Deucher K.N, Korfiatis G.P and Ezeldin A.S, Materials for civil and Highway Engineers, Prentice Hall Inc., 1998.				
6	ACI Report 440.2R-02, Guide for the design and construction of externally bonded RP systems for strengthening concrete structures, American Concrete Institute, 2002				

	Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Acquire good knowledge about the recent construction materials, their construction and their significance.						
CO2	Able to use modern materials based on their requirements.						
CO3	Able to find new construction materials.						

22S	ГЕ61	ADVANCED CONCRETE TECHNOI	LOGY	Semester			
PRER	REQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	TH
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1	The st concre	end of this course, udent shall have a good knowledge about constituents te. To understand the concept and procedure for concret ness about the strength properties of concrete and type ds.	e mix design as p	er IS c	ode sta	ndards.	To get
Un	nit I	CONCRETE		9	0	0	9
-		fresh concrete- Hardened concrete- Thermal expansion properties - Creep and shrinkage-Variability of Concret	•	-Water	tightn	ess and	l crack
Un	it II	MIX DESIGN		9	0	0	9
	ples of C g of Cor	Concrete mix design- Methods of Concrete mix design – ncrete.	- I.S. Method, AC	I Meth	od and	DOE N	Aethod
Uni	it III	STRENGTH OF CONCRETE AND ADMIX	KTURES	9	0	0	9
affecti admix	ng stren	er Uniaxial and Multiaxial Stresses – Failure Modes – Str gth – Accelerating and Retarding admixtures-Super plas lineral admixtures. SPECIAL CONCRETES	•		•		
Light Concre	Weight (ete- Epo	Concrete-Fly Ash Concrete- Fiber Reinforced Concrete- oxy Resins and Screeds for Rehabilitation – Properties and dy mixed concrete	•	e, Supe	er Plast	icized	
Un	it V	CONCRETING METHODS		9	0	0	9
		anufacturing of Concrete - Methods of Transportatio pecial Concreting methods - Vacuum concrete – Shotcre	-	-			
					Tot	tal -45P	Periods
Tex	t Books	:					
1	Shetty	M.S., Concrete Technology, S.Chand and Company Ltd	d., Delhi. 2005				
2	Santh	akumar A.R, Concrete Technology, Oxford University P	Press, 2007				
Refe	rence B	ooks:					
Refe	1	ooks: ani G, LightWeight Concrete,Hungarian Academy of sci	ence 1963				
	Rudha)04			

4	Krishnasamy K.T, Kama sundar Rao A and Khandekar A.A, Concrete technology, DhanpatRai and sons , Delhi 2001
5	Orchard D.F., Concrete Technology, Vol - 1 and Vol – 2, Asia Publishing House, Delhi 2001.

Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	Know about the properties of concrete				
CO2	Design the concrete mix using ACI + IS code methods				
CO3	Know about the role of various types of admixtures in concrete				
CO4	Design special concretes for specific applications				
CO5	Apply various types of concreting methods in the field				

22STE	E 62	DISASTER RESISTANT STRUCTU	RES	Semester				
PRERE	QUIS	ITES	Category	PE Credit			3	
				L	Т	Р	TH	
			Hours/Week	3	0	0	3	
Course 1	Course Learning Objectives							
r t	1 To understand the basic philosophy of design of disaster resistant structures and gain knowledge about repair and rehabilitation of disturbed structures, design structures with modern materials and advanced techniques and understand the provision of relevant standard specification, requirements and usage. Also gain knowledge about the ability to conduct damage assessments and write reports.						vanced	
Unit	t I	BEHAVIOR OF LIFE-LINE STRUCTU	RES	9	0	0	9	
_		design to resist earthquake, cyclone and flood – Nationd semi-urban area – Traditional and modern structures	nal and internatio	onal co	des of p	oractice	– Bye	
Unit	Π	COMMUNITY STRUCTURE		9	0	0	9	
Response assessme		dams, bridges, buildings – Strengthening measures	– Safety analysi	is and	rating	– Reli	iability	
Unit l	III	REHABILITATION AND RETROFITT	ING	9	0	0	9	
-		aluation – Classification of structures for safety point of ters – Qualification test	view – Methods	of strei	ngtheni	ng for		
Unit l	IV	DETAILING OF STRUCTURES AND COM	POSITES	9	0	0	9	
Use of modern materials and their impact on disaster reduction – Use of modern analysis, Design and construction techniques - Optimization for performance								
Unit V DAMAGE ASSESSMENT OF STRUCTURES		URES	9	0	0	9		
Damage surveys – Maintenance and modifications to improve hazard resistance- Different types of foundation and its impact on safety – Ground improvement techniques.								
Total -45Periods								
Text Books:								

1	Proceedings of IABSE 14 th Congress "Civilization through Civil Engineering" New Delhi, May 1992.			
2	Raiker R.N., Learning from failures - Deficiencies in design, construction and service, R&D center (SDCPL) Raikar Bhavan, Bombay, 1987.			
Reference Books:				
1	Moskwin V. et al, "Concrete and Reinforced Concrete – Deterioration and Protection, Mir publishers, Moscow, 1980.			
2	Allen R.T and Edwards S.C, Repair of Concrete Structures, Blakie and Sons, U.K., 1987.			

Course Outcomes: Upon completion of this course, the students will be able to:						
CO1	Will understand the basic philosophy of design of disaster resistant structures					
CO2	Will demonstrate the ability of identifying, formulating and understanding repair and rehabilitation of disturbed structures.					
CO3	Will demonstrates the ability in designing structures with modern materials and techniques for disaster effect reduction.					
CO4	Will understand the provision of relevant standard specification, requirements and usage.					
CO5	Will demonstrate the ability to conduct damage assessments and write reports.					

22ST	ГЕ63	SOIL STRUCTURE INTERACTIO	DN	S	Semester		
PRER	EQUIS	ITES	Category	PE Credit			3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Cours	e Learn	ing Objectives					
1		udent is expected to understand the importance and s prate this in the design of structures to achieve both safe	0	oil stru	cture in	nteracti	on and
Un	it I	SOIL-FOUNDATION INTERACTIO	N	9	0	0	9
Scope	of soil	o Soil-foundation interaction problems – Soil behavio foundation interaction analysis, Soil response models, Elastic plastic behavior and Time dependent behavior.					
Un	it II	BEAM ON ELASTIC FOUNDATION- SOIL	MODELS	9	0	0	9
		two parameters, Isotropic elastic half-space, Analysis relation to their stiffness.	of beams of fin	ite len	gth, Cla	assifica	tion of
Uni	t III	PLATE ON ELASTIC MEDIUM		9	0	0	9
	•	Winkler, Two parameters, Isotropic elastic medium, Thin ad Circular plates, Numerical analysis of finite plates, Sin	•	, Analy	vsis of f	ïnite pl	ates,
Uni	t IV	ELASTIC ANALYSIS OF PILE		9	0	0	9
	-	s of single pile, Theoretical solutions for settlement and lysis, Load distribution in groups with rigid cap.	load distributions	, Analy	ysis of J	pile gro	up,
Un	it V	LATERALLY LOADED PILE		9	0	0	9
		n prediction for laterally loaded piles, Subgrade reactin, Solutions through influence charts.	on and elastic ar	alysis,	Intera	ction a	nalysis,
					Tot	tal -45F	Periods
Tov	t Books	•					
103			·: E1 : 10	70			
1	Selvadurai, A.P.S., Elastic Analysis of Soil Foundation Interaction, Elsevier, 1979.						
2	Poulo	s, H.G., and Davis, E.H., Pile Foundation Analysis and I	Design, John Wile	ey, 198	0.		
Refe	rence Bo	ooks:					
1	Scott	R.F., Foundation Analysis, Prentice Hall, 1981.					
2	Struct	ure-Soil Interaction - State of Art Report", Institution of	Structural Engine	eers, 19	978.		
3	ACI 3	36, Suggested Analysis and Design Procedures for comb	oined footings and	l Mats,			

American Concrete Institute, Delhi, 1988.

	Course Outcomes: Upon completion of this course, the students will be able to:					
CO1	The students will be able to understand various applications to soil structure interaction.					
CO2	The students will able to calculate contact pressure and settlement under foundation					
CO3	The student will able to calculate earth pressure on different retaining structures					

22ST	ГЕ64	OFFSHORE STRUCTURES		Semester			
PRER	EQUIS	ITES	Category	PE Credit			3
				L T P		TH	
	Hours/Week		3	0	0	3	
Cours	e Learn	ing Objectives					
1		part knowledge to the students about structural design of heories and forces related to offshore structures, analysis					ictures,
Un	nit I	DESIGN OF PIPES		9	0	0	9
Structu	ural desi	gn of Concrete, Prestressed Concrete, Steel and Cast Iro			I		
Un	it II	DESIGN OF SPECIAL PURPOSE STRUC	TURES	9	0	0	9
	•	reservoirs and swimming pools, Intake towers, Struc tures such as settling tanks, clari flocculators, aeration ta	e e	•	founda	tion of	water
Uni	t III	t III SEWERAGE WORKS 9 0 0 9					9
Ŭ	n of steel tructures	l, lattice structures used in water and sewerage treatment	works – protectio	on met	hods of	both R	C and
Uni	it IV	WAVE THEORIES, FORCES OF OFFSHORE S	FRUCTURES	9	0	0	9
Wave	e Genera	ation process, small, finite amplitude and non-linear way	e theories.		1		
Wind	forces, w	vave forces on small bodies and large bodies – current for	orces and use of m	norison	equation	on	
	it V	ANALYSIS AND DESIGN OF OFFSHORE STI		9	0	0	9
		l of analysis, foundation analysis and dynamics of offsho					
Design	n of plat	forms, helipads, jacket tower and mooring cables and pi	pelines.				
					Tot	al -45F	eriods
Tex	t Books	:					
1	•	atnam P., Design of Reinforced concrete structures, OX 2003.	FORD and IBH P	ublishi	ng Co.,	New	
2	Krish	shna Raju, Prestressed Concrete, Tata McGraw Hill Publishing Co. 2 nd Edition 1988.					

3	Chakrabarti S.K, Hydrodynamics of offshore structures, Computational Mechanics Publications, 1	1987
---	--	------

4 Thomas H.Dawson, Offshore Structural Engineering, Prentice Hall Inc., Englewood Cliffs, N.J 1983.

Reference Books:

1	Sinha N.C. and Roy S. K., Reinforced concreteby S.Chand and Co. 1985.
2	Hulse R.K and Mosley, W.H., Reinforced Concrete Design by Computer, Macmillan Education Ltd., 1986.
3	Ramaswamy, G. S, Design and construction of Concrete shell roofs, CBSPublishers, India, 1986.

4	Green, J.K and Perkins, P.H., Concrete liquid retaining structures, AppliedScience Publishers, 1981
5	API, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms, American Petroleum Institute Publication, RP2A, Dallas, Texas.
6	Wiegel R.L, Oceanographical Engineering, Prentice Hall Inc, Englewood Cliffs, N.J.1964.
7	Brebbia C.A, & Walker S, Dynamic Analysis of Offshore Structures, New-nesButterworths, U.K.1979.
8	Reddy D.V. and Arockiasamy M, Offshore structures, Vol1, Krieger Publishing Company Malabar, Florida, 1991.
9	Metcalf And Eddy, "Wastewater Engineering Treatment & Reuse", IV Edition, Tata McGraw Hill Publishing Co.2003

	Outcomes: ompletion of this course, the students will be able to:
CO1	Recognizing the needs sorting out its importance and implementing practically the construction of essential environmental structures and special structures through analysis and design.
CO2	understand about the waves, force exerted by wave on coastal and offshore structures
CO3	Will be able to design small offshore structures like platforms, submerged pipelines etc

2251	FE65	WIND AND CYCLONE EFFECTS ON STR	RUCTURES	S	Semeste	er	
PRER	EQUIS	ITES	Category	PE	Cre	edit	3
				L	Т	Р	ТН
			Hours/Week	3	0	0	3
Course	e Learn	ing Objectives					
1		part knowledge to the students about wind and cyclongs and structural components as per I.S. codes.	one effects on st	ructure	es and	the dea	sign of
Un	it I	INTRODUCTION		9	0	0	9
		Spectral studies, Gust factor, Wind velocity, Methods factor, aspect ratio and drag effects.	s of measuremen	ts, var	iation o	of spee	d with
Uni	it II	WIND TUNNEL STUDIES		9	0	0	9
Wind 7	Funnel S	Studies, Types of tunnels, Modeling requirements, Interp	pretation of results	s, Aero	-elastic	model	8.
Unit	t III	WIND EFFECT		9	0	0	9
Wind o	on struct	tures, Rigid structures, Flexible structures, Static and Dy	namic effects, Ta	ll build	lings, c	himney	s.
Uni	t IV	DESIGN PRINCIPLES		9	0	0	9
Applic	ation to	design, IS 875 code method, Buildings, Chimneys, Roo	f Shelters				
Uni	it V	CYCLONE EFFECT AND DESIGN OF CLA	ADDING	9	0	0	9
Cyclon	ne effect	on structures, cladding design, window glass design		•	•		
					Tot	tal -45H	Periods

Tex	t Books:
1	Cook.N.J., The Designer's Guide to Wind Loading of Building Structures, Butterworth's, 1989
2	Kolousek., et.al., Wind Effects on Civil Engineering Structures, Elsevier Publications, 1984.
Refe	rence Books:
1	Peter Sachs, Wind Forces in Engineering, Pergamon Press, New York, 1978
2	Lawson T.V., Wind Effects on Building Vol. I and II, Applied Science Publishers, London, 2011

	Outcomes: ompletion of this course, the students will be able to:
CO1	Have a clear understanding about wind effects and performance of wind tunnel studies.
CO2	To understand about the wind loads, their effects with codal specifications
CO3	To analyze and design structures to resist extreme wind forces and cyclones.

AUDIT COURSE

	AUDIT COURSE					
22AC01	ENGLISH FOR RESEARCH PAPER WRITIN	IG	SEM	EST	ER I	/II
PREREQUI	SITES	CATEGORY	PE	Cr	edit	0
		TT / TT /	L	Т	Р	TH
		Hours/Week	2	0	0	2
COURSE O	BJECTIVES:					
1. To help	the learners to realize the necessity of English in writing a Researc	h paper				
2. To enab	e the learners to write different sections of a research paper					
3. To train	the learners to become better writers of research papers					
UNIT I			6	0	0	6
Research pap	er and its importance, Structure of a research paper, Planning and	preparation.	•			
UNIT II			6	0	0	6
English in re	search papers, Basic word order, Collocation, Being concise, Redu	ndancy, Common	errors.			
UNIT III			6	0	0	6
Key factors t	hat determine the style of a paper, Journal's background, Passive for	orm, Right tense fo	orms, C	Cohes	ion a	nd
coherence.						
UNIT IV			6	0	0	6
Hedging and	criticizing, Paraphrasing, Plagiarism, Ensuring quality of the pape	r and Useful phras	es.			
UNIT V			6	0	0	6
Key skills in findings.	writing Title, Abstract, Introduction, Review of Literature, Discuss	sion and Conclusion	on, Hig	hligh	ting	
mungs.		Το	tal(30L	-3	IO Po	rinds
		10	ui(301	<i>i</i>) – .		11043

RE	FERENCE BOOKS:
1	Adrian Wallwork, "English for Writing Research Papers," Springer New York Dorecht Heidelberg London, 2016
2	Howe, Stephen. "Phrase Book for Writing papers and Research in English," Cambridge University Press, 2012.
3	Goldbort R. "Writing for Science," Yale University press, 2006.
4	Gabor L Lovei. "Writing and Publishing Scientific Paper," Open Book Publishers, 2021

	ASE OUTCOMES: npletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	understand and appreciate the role of English in writing a good research paper	Understan d
CO2	apply their knowledge in writing a research paper	Apply
CO3	analyze and assess the quality of their research paper	Analysis

22AC02	DISASTER MANAGEMENT		SEN	SEMESTER I			
PREREQUISI	TES	CATEGORY	PE	Cre	edit	0	
		Hours/Week	L	Т	Р	TH	
		Hours/ Week	2	0	0	2	
COURSE OBJ	ECTIVES						
evaluate disaste understanding o situations and e	cal understanding of key concepts in disaster risk reduction and er risk reduction and humanitarian response policy and practice of standards of humanitarian response and practical relevance in evaluate the strengths and weaknesses of disaster management ap- ies, particularly their home country or the countries they work in.	from multiple per specific types of	spectiv disast	ves. E ers ai	Devel nd co	op a onflie	
	RODUCTION		4	0	0	4	
	ition, Factors And Significance; Difference Between Hazard rence, Nature, Types And Magnitude.	And Disaster, IN	atural	Allu	Ivial	mau	
Disaster Prone	Areas in India: Study of Seismic Zones; Area Prone to floods an						
Disaster Prone A Areas prone to c UNIT II F Economic Dam	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Por REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos	st- Disaster diseas ystem. Natural D	es and 4 isaster	epide 0 s: Ea	emics 0 urthqu	4 1ake	
Disaster Prone A Areas prone to c UNIT II F Economic Dam Volcanisms, Cy Nuclear Reactor Conflicts.	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Po REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos yclones, Tsunamis, Floods, Droughts And Famines, Landslides r Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbrea	st- Disaster diseas ystem. Natural D And Avalanches	es and 4 isaster , Man Epide	epide 0 s: Ea -mad emics	emics 0 urthqu e dis , War	4 iake aste r An	
Disaster ProneAreas prone to c UNIT IIF Economic DamVolcanisms, CyNuclear ReactorConflicts. UNIT IIIE	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Po REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos yclones, Tsunamis, Floods, Droughts And Famines, Landslides r Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbrea DISASTER PREPAREDNESS AND MANAGEMENT	ost- Disaster diseas ystem. Natural D And Avalanches ks of Disease And	es and 4 isaster , Man Epide 4	epide 0 s: Ea -mad emics 0	emics 0 urthqu e dis , Was	1akes aste r An 4	
Disaster ProneAreas prone to c UNIT IIF Economic DamVolcanisms, CyNuclear ReactorConflicts. UNIT IIII Preparedness: N	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Po REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos yclones, Tsunamis, Floods, Droughts And Famines, Landslides r Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbrea DISASTER PREPAREDNESS AND MANAGEMENT Monitoring of Phenomena Triggering A Disaster or Hazard; Eval	st- Disaster diseas ystem. Natural D And Avalanches ks of Disease And luation of Risk: A	es and 4 isaster , Man Epide 4 pplica	epide 0 s: Ea -mad emics 0 tion (emics 0 urthqu e dis , Was 0 Of Re	1ake aste r An 4	
Disaster ProneAreas prone to cUNIT IIFEconomic DamVolcanisms, CyNuclear ReactorConflicts.UNIT IIIFPreparedness: MSensing, Data F	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Po REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos yclones, Tsunamis, Floods, Droughts And Famines, Landslides r Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbrea DISASTER PREPAREDNESS AND MANAGEMENT Monitoring of Phenomena Triggering A Disaster or Hazard; Eval from Meteorological And Other Agencies, Media Reports: Govern	st- Disaster diseas ystem. Natural D And Avalanches ks of Disease And luation of Risk: A	es and 4 isaster , Man Epide 4 pplica	epide 0 s: Ea -mad emics 0 tion (Prepa	emics 0 urthqu e dis , Was 0 Of Re	1ake aste r An 4	
Disaster ProneAreas prone to cUNIT IIEconomic DamVolcanisms, CyNuclear ReactorConflicts.UNIT IIIPreparedness:WSensing, Data FrUNIT IVPisaster Risk:Con Risk Assessm	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Po REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos yclones, Tsunamis, Floods, Droughts And Famines, Landslides r Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbrea DISASTER PREPAREDNESS AND MANAGEMENT Monitoring of Phenomena Triggering A Disaster or Hazard; Eval rom Meteorological And Other Agencies, Media Reports: Governa RISK ASSESSMENT Concept And Elements, Disaster Risk Reduction, Global And Nati- nent, Global Co-Operation In Risk Assessment And Warning, Pe	st- Disaster diseas ystem. Natural D And Avalanches ks of Disease And luation of Risk: A mental And Comm onal Disaster Risk	es and 4 isaster 5, Man Epide 4 pplication nunity 4 Situat	epide 0 s: Ea -mad emics 0 tion (Prepa 0 ion. 7	emics 0 urthque e dis , War 0 0 0 Cf Re redno 0 Cechr	4 aster An 4 emot ess. 4 iique	
Disaster ProneAreas prone to cUNIT IIFEconomic DamVolcanisms, CyNuclear ReactorConflicts.UNIT IIIFPreparedness: MSensing, Data FrUNIT IVFDisaster Risk: Cof Risk AssessmStrategies for Su	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Po REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos yclones, Tsunamis, Floods, Droughts And Famines, Landslides r Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbrea DISASTER PREPAREDNESS AND MANAGEMENT Monitoring of Phenomena Triggering A Disaster or Hazard; Eval rom Meteorological And Other Agencies, Media Reports: Governa RISK ASSESSMENT Concept And Elements, Disaster Risk Reduction, Global And Nati- nent, Global Co-Operation In Risk Assessment And Warning, Pe	st- Disaster diseas ystem. Natural D And Avalanches ks of Disease And luation of Risk: A mental And Comm onal Disaster Risk	es and 4 isaster 5, Man Epide 4 pplication nunity 4 Situat	epide 0 s: Ea -mad emics 0 tion (Prepa 0 ion. 7	emics 0 urthque e dis , War 0 0 0 Cf Re redno 0 Cechr	4 aste aste An 4 emot ess. 4 iique	
Disaster Prone JAreas prone to cUNIT IIFEconomic DamVolcanisms, CyNuclear ReactorConflicts.UNIT IIIFPreparedness: MSensing, Data FrUNIT IVFDisaster Risk: Cof Risk AssessingStrategies for SuUNIT VFMeaning, Concer	Areas in India: Study of Seismic Zones; Area Prone to floods an cyclonic and coastal hazards with special reference to Tsunami; Po REPERCUSSIONS OF DISASTERS AND HAZARDS hage, Loss of Human And Animal Life, Destruction of Ecos yclones, Tsunamis, Floods, Droughts And Famines, Landslides r Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbrea DISASTER PREPAREDNESS AND MANAGEMENT Monitoring of Phenomena Triggering A Disaster or Hazard; Eval from Meteorological And Other Agencies, Media Reports: Governa RISK ASSESSMENT Concept And Elements, Disaster Risk Reduction, Global And Nati nent, Global Co-Operation In Risk Assessment And Warning, Pe urvival.	ost- Disaster diseas ystem. Natural D s And Avalanches ks of Disease And luation of Risk: A mental And Comm onal Disaster Risk ople's Participatio	es and 4 isaster 5, Man Epide 4 pplica nunity 4 Situat n In R	epide 0 s: Ea -mad emics 0 tion (Prepa 0 ion. T isk A 0	emics 0 urthque e dis , War 0 0 Cof Re uredno 0 Cechrissess 0	4 aaste aaste An 4 emoo ess. 4 iiqua men	

1	K. Nishith, Singh AK 2012 Disaster Management in India:Perspectives, issues and strategies New Royal Book Company, Lucknow
2	Sahni, PardeepEt.Al. (Eds.) 2002 Disaster Mitigation Experiences And Reflections. Prentice Hall Of India, New Delhi.

	OURSE OUTCOMES: completion of the course the student will be able to	
CO1	Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.	Understand
CO2	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.	Evaluate
CO3	develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations	Create
CO4	Critically understand the strengths and weaknesses of disaster management approaches.	Understand

22AC03	SANSKRIT FOR TECHNICAL KNOWLEI	OGE	SEMESTER I/I			/II			
PREREQUISIT	ES	CATEGOR Y	PE	PE Credit			PE (0
		Houng/Wook	L		Т	Р	ТН		
		Hours/Week	2		0	0	2		
COURSE OBJE	CTIVES								
improve brain fu	knowledge in illustrious Sanskrit, the scientific language inctioning. Learning Sanskrit to develop logic in mat nory power. The engineering scholars equipped with San ancient literature	thematics, scien	ice &	0	the	sul	ojects		
UNIT I ALPHA				8	0	0	8		
Alphabets in Sans	skrit –Past/Present/Future Tense –Simple Sentences.								
UNIT II LITE	ERATURE			8	0	0	8		
Order –Introducti	on of roots – Technical information about Sanskrit Literat	ure							
UNIT III CON			T	8	0	0			
	CEPTS			0	U	U	8		
Technical concept	CEPTS ts of Engineering-Electrical, Mechanical, Architecture, M	athematics		0	0	U	8		

RE	REFERENCE BOOKS:					
1	"Abhyasa Pustakam"- Dr. Vishwas, Samskrita- Bharati Publication, New Delhi					
2	"Tech Yourself Sanskrit" PrathamaDeeksha-Vempatikutumbshastri,Rashtriya Sanskrit Sansthan,New					
2	Delhi Publication					
3	India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.					

	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understanding basic Sanskrit language	Understand
CO2	Ancient Sanskrit literature about science & technology can be understood	Remembering
CO3	Being a logical language will help to develop logic in students	Apply

22AC04 VALUE EDUCATION		SEMESTER I/I				
PREREQUISITES C	CATEGORY	PE	Cro t	edi	0	
Т	Hours/Week	L	Τ	Р	ТН	
Г	10UIS/ W EEK	2	0	0	2	
COURSE OBJECTIVES						
To understand the Importance of value education and self-development. To ir also know about the importance of character.	mbibe good va	lues ir	1 stu	dent	s and	
UNIT I BASIC VALUES		4	0	0	4	
Values and self-development- Social values and individual attitudes-Work en Moral and Non Moral valuation-Standards and principles-Value judgements.	thics, Indian v	ision	1	1		
UNIT II CONFIDENCE		6	0	0	6	
Importance of cultivation of values- Sense of Duty-Devotion-Self-re						
Truthfulness-Cleanlines-Honesty-Humanity-Power of faith-National Uni Discipline.	ity-Patriotism-I	Love	IOr	na	ature-	
UNIT III PERSONALITY DEVELOPMENT		6	0	0	6	
Personality and Behavior Development-Soul and Scientific attitude - Pos	sitive – Thinki	-	-			
discipline -Punctuality - Love and Kindness - Avoid fault Thinking - Free						
Universal brotherhood and religious tolerance -True friendship -Happines		-	ve fo	or tru	uth –	
Aware of self destructive habits- Association and Cooperation -Doing best for	r saving nature.		1			
	UNIT IVLOVE AND COMPASSION6006					
Character and Competence –Holy books vs Blind faith –Self –managemen reincarnation –Equality –Non Violence –Humility -Role of Women –All re						
your Mind –Self -control –Honesty –Studying effectively.						
	Total	(22L))=22	2 Pe	riods	
REFERENCE BOOKS:		1 11		: <u></u> т	D	
Chakraborty, S.K. "Values and Ethics for Organization Theory and Pr New Delhi, 1998.	ractice", Oxfor	a Uni	vers		Press,	
			D	loon	20	
COURSE OUTCOMES:						
On completion of the course the student will be able to Mapped				•		
CO1 Knowledge of self-development						
		Understand				
CO2 Learn the importance of Human values			Re	emei	mberi	
			ng	5		
CO3 Developing the overall personality			Cı	reate	;	

22AC05	CONSTITUTION OF INDIA		SEMESTER I/II			
PREREQUIS	ITES	CATEGORY	PE	Cro t	edi	0
				Т	Р	TH
		Hours/Week	2	0	0	2
COURSE OB.	JECTIVES					
address the gro to civil and eco address the rol impact on the in UNIT I HIS	e premises informing the twin themes of liberty and freedom owth of Indian opinion regarding modern Indian intellectual phomic rights as well as the emergence of nationhood in the e of socialism in India after the commencement of the Benitial drafting of the Indian Constitution. TORY OF MAKING OF INDIAN CONSTITUTION ng Committee (Composition & working)	s' constitutional i early years of Inc	role an lian na	nd er ation 191	ntitle alisr	ement n. To
	HILOSOPHY OF THE INDIAN CONSTITUTION		4	0	0	4
Preamble, Salie				U	U	-
	ONTOURS OF CONSTITUTIONAL RIGHTS & DUTIE	ES	4	0	0	4
	ghts, right to equality, right to freedom, right against explo ucation rights, right to constitutional remedies, directive pr					
	RGANS OF GOVERNANCE		4	0	0	4
	mposition, qualifications and disqualifications, powers a neil of ministers, judiciary, appointment and transfer of					
UNIT V LO	OCAL ADMINISTRATION		4	0	0	4
representative, officials and th departments), v	nistration head: role and importance, municipalities: intro CEO of municipal corporation. Panchayati raj: introduce eir roles, CEO zila panchayat: position and role. Block leve village level: role of elected and appointed officials, important LECTION COMMISSION	ction, PRI: zila el: organizational	panch hierar	ayat chy	. El (diff	ected
Election Comm	nission: role and functioning. Chief election commissione assion: role and functioning. Institute and bodies for the welf			sion	ers.	
		Total	(24 L)= 24	4 Pe	riods
REFERENCE						
	itution of India, 1950 (Bare Act), Government Publication.	Edition 2015				
	Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1s	Edition, 2015.				
3 M. P. Jain	, Indian Constitution Law, 7th Edn., LexisNexis, 2014.					

4 D.D. Basu, Introduction to the Constitution of India, LexisNexis, 2015.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Discuss the growth of the demand for civil rights in India for the bulk of Indians before the arrival of Gandhi in Indian politics	Understand
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	Understand

CO3	Discuss the circumstances surrounding the foundation of the Congress Socialist Party	Understand
	[CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of	
	direct elections through adult suffrage in the Indian Constitution	
CO4	Discuss the passage of the Hindu Code Bill of 1956.	Understand

22AC06	PEDAGOGY STUDIES		SEMESTER			I/II
PREREQUIS	ITES	CATEGORY	PE	Cr t	edi	0
			L	Т	Р	ТН
		Hours/Week	2	0	0	2
COURSE OB	JECTIVES					
	sting evidence on the review topic to inform programme des or agencies and researchers. Identify critical evidence gaps to				ertak	en by
UNIT I		-	4	0	0	4
	ionale, Policy background, Conceptual framework and eacher education, Conceptual framework, Research questi					
UNIT II			2	0	0	2
	view: Pedagogical practices are being used by teachers in intries, Curriculum, Teacher education.	formal and info	ormal	class	srooi	ns ir
UNIT III			4	0	0	4
of included str guidance mate evidence for eff	the effectiveness of pedagogical practices, Methodology for t addes, How can teacher education (curriculum and practic rials best support effective pedagogy? Theory of change. Effective pedagogical practices, Pedagogic theory and pedago Pedagogic strategies.	um) and the sch Strength and na	iool c ture o	urric of the	ulun e boo	n and dy of
UNIT IV			4	0	0	4
	evelopment: alignment with classroom practices and follow teacher and the community, Curriculum and assessment, B sizes.					
UNIT V			2	0	0	2
01	and future directions, Research design, Contexts, pedagog					
		Tota	al(16L	<i>L</i>)= 1	6 Pe	riods

RE	FERENCE BOOKS:
1	Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
2	Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum
	Studies, 36 (3) 361-379.
3	Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research
5	project (MUSTER) country report 1. London: DFID
	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic math
4	and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33
	(3): 272-282.
5	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and
3	Boston: Blackwell.
	Boston: Blackwell.

	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?	Create

CO2	What is the evidence on the effectiveness of these pedagogical practices, in what	Understand
	conditions, and with what population of learners?	
CO3	How can teacher education (curriculum and practicum) and the school curriculum and	Rememberi
	guidance materials best support effective pedagogy?	ng

22AC07	STRESS MANAGEMENT BY YOGA	N	SEN	/IES	TER	I/II
PREREQU	JISITES	CATEGORY	PE	Cr t	edi	0
			L	Т	Р	TH
		Hours/Week	2	0	0	2
COURSE	OBJECTIVES	•	•	•	•	
To create a	healthy, strong willed and intelligent young society through yo	oga practices.				
UNIT I	PHYSICAL AND MENTAL HEALTH		4	0	0	4
Pain and di Practical, C	sease - free life, Simplified Physical Exercise- Pranayama. Con doal fixing.	ncentration on Pitu	itary g	glanc	1-	
UNIT II	REJUVENATION OF LIFE FORCE AND WILL POWE	ER	4	0	0	4
1	f kayakalpa yoga, mind, life force and Biomagnetism, Pranalysis of thought –Will power	actical, Concentra	tion c	on N	Iulac	lhara-
UNIT III	DEVELOPMENT OF VIRTUES		4	0	0	4
	of Dormant Brain cells- Practical, Moralization of dezire and in ults of anger.	ts classification, N	eutrali	zatio	on of	
UNIT IV	STREAM LINING OF MIND		4	0	0	4
	of Mind-Worries, Eradication of Worries. The science behind by basic duties	olessings. Blessing	techn	ique	s.	
UNIT V	CAUSE AND EFFECT SYSTEM		4	0	0	4
Law of nat	ure, Hereditary Imprints, Fivefold and Two-fold culture, good	values and Resolut	ion fo	or wo	orld p	eace
		Tota	l (24I	L)= 2	4 Pe	riods

RE	FERENCE BOOKS:
1	"Thirukkural", Pearls of Inspiration, Translation by Rajaram, Publisher :RUPA
2	"Bharathiyar Poems", Amazon Asia – Pacific Holdings Private Limited.
3	"Yoga for Humane Excellence", Vethathiri Maharishi, Vision for Wisdom, Vethathiri Publications

COURSE OUTCOMES:			
On com	pletion of the course the student will be able to	Taxonomy Mapped	
CO1	Maintain good Physical health	Apply	
CO2	Develop will power	Create	
CO3	Take quick and right decisions	Evaluate	

CO4	Maintain good relationship with everyone around them his creating a Health Society	Apply
-----	--	-------

PREREQUI	ENLIGHTENMENT SKILLS					R I/II
	SITES	CATEGORY	PE	Cr t	edi	0
		TT (TT)	L	Т	P	TH
		Hours/Week	2	0	0	2
COURSE O	BJECTIVES			1		4
	chieve the highest goal happily, To become a person with stab n, To awaken wisdom in students.	le mind, pleasing	perso	nalit	y an	d
UNIT I PE	RSONALITY DEVELOPMENT		8	0	0	8
Neetisatakam	n – Holistics development of personality					
	0,21,22 (wisdom)					
	1,32 (pride & heroism)					
,	8,63,65 (virtue)					
Verses-52,53						
Verses71,73,			1		1	
UNIT II I	DUTIES AND SERVICES		8	0	0	8
Five Duty, Se	ervice Mortality, Introspection Cause and Effect System.					
UNIT III I	DEVELOPMENT OF VIRTUES		8	0	0	8
Five - Foldee	d culture, Two- Folded culture, Self control & Self - Realizat	ion. Understandi	ng the	Nati	ure	
Respect other	rs' feelings.		-			
		Tot	al(24I) = 2	24 Pe	riod
		100		-)		100

1 Thirukkural, Bharathiyar Poems 2 Yoga for Modern age - Vethathiri Maharishi	Sug	gested Reading:
2 Yoga for Modern age - Vethathiri Maharishi	1	Thirukkural, Bharathiyar Poems
2	2	Yoga for Modern age - Vethathiri Maharishi

	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve	Understand
	The highest goal in life	
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity	Rememberi ng
CO3	Study of Neetishatakam will help in developing the versatile personality of students.	Understand

		Semester			
PREREQUISITES	Category	PE	Credit		3
		L	Т	Р	TH
	Hours/Week	3	0	0	3
Course Learning Objectives					
1					

Unit I	9	0	0	9
Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45F	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Outcomes: completion of this course, the students will be able to:
CO1	
CO2	
CO3	

				er	
PREREQUISITES Category			Cre	edit	3
		L	T P		TH
	Hours/Week	3	0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Outcomes: ompletion of this course, the students will be able to:
CO1	
CO2	
CO3	

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T P		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives	Course Learning Objectives				
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1					
CO2					
CO3					

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T P		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives	Course Learning Objectives				
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Outcomes: ompletion of this course, the students will be able to:
CO1	
CO2	
CO3	

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T P		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives	Course Learning Objectives				
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Outcomes: ompletion of this course, the students will be able to:
CO1	
CO2	
CO3	

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1					
CO2					
CO3					

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T P		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Outcomes: ompletion of this course, the students will be able to:
CO1	
CO2	
CO3	

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T P		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Outcomes: ompletion of this course, the students will be able to:
CO1	
CO2	
CO3	

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Course Outcomes: Upon completion of this course, the students will be able to:				
CO1					
CO2					
CO3					

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T P		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

	Outcomes: ompletion of this course, the students will be able to:
CO1	
CO2	
CO3	

		Semester			
PREREQUISITES Category		PE	Credit		3
		L T P		Р	TH
	Hours/Week		0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0 9					9

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tot	al -45P	Periods

Text	t Books:
1	
2	
Refer	rence Books:
1	
2	
3	

Course Outcomes: Upon completion of this course, the students will be able to:			
CO1			
CO2			
CO3			

		S	emeste	r	
PREREQUISITES Category		PE	Cre	edit	3
		L	Т	Р	TH
	Hours/Week	3	0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0		9			

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tc	otal -45I	Periods

Text Books:			
1			
2			
Refer	rence Books:		
1			
2			
3			

Course Outcomes: Upon completion of this course, the students will be able to:			
CO1			
CO2			
CO3			

		S	emeste	r	
PREREQUISITES Category		PE	Cre	edit	3
		L	Т	Р	TH
	Hours/Week	3	0	0	3
Course Learning Objectives					
1					
Unit I 9 0 0		0	9		

Unit II	9	0	0	9
Unit III	9	0	0	9
Unit IV	9	0	0	9
Unit V	9	0	0	9
		Tc	otal -45I	Periods

Text Books:			
1			
2			
Refer	rence Books:		
1			
2			
3			

Course Outcomes: Upon completion of this course, the students will be able to:			
CO1			
CO2			
CO3			