Government College of Engineering, Salem – 636 011, (An Autonomous Institution, Affiliated to Anna University, Chennai)

Regulations -2022 Autonomous Courses (For Students Admitted from 2022-2023)

				Hour	s/Weel	2		Maximum Marks				
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total		
		SEMEST	FER I									
		ТНЕО	RY									
1.	22CDC11	Concepts of Engineering Design	PC	3	0	0	3	40	60	100		
2.	22CDC12	Computer Aided Modeling and Design	PC	3	0	0	3	40	60	100		
3.	22CDC13	Advanced Mechanics of Materials	PC	3	0	0	3	40	60	100		
4.	22CDE1X	Professional Elective-I	PE	3	0	0	3	40	60	100		
5.	22CDE2X	Professional Elective-II	PE	3	0	0	3	40	60	100		
6.	22MLC01	Research Methodology and IPR	MC	3	0	0	3	40	60	100		
		PRACTI	[CAL									
7.	22CDC14	CAD Modeling and Drafting Laboratory	PC	0	0	4	2	60	40	100		
8.	22CDC15	Technical Seminar-I	EEC	0	0	2	1	100	0	100		
9.	22AC XX	Audit Course – 1	AC	2	0	0	0	100	0	100		
		TOTAL		20	0	6	21	500	400	900		
		SEMEST	ER II									
		THEO	RY						1			
1.	22CDC21	Finite Element Methods in Design	PC	3	0	0	3	40	60	100		
2.	22CDC22	Mechanical Vibrations and Acoustics	PC	3	0	0	3	40	60	100		
3.	22CDC23	Solid Freeform Manufacturing	PC	3	0	0	3	40	60	100		
4.	22CDE3X	Professional Elective-III	PE	3	0	0	3	40	60	100		
5.	22CDE4X	Professional Elective-IV	PE	3	0	0	3	40	60	100		
PRACT			ICAL		1		1	1	1			
6.	22CDC24	Finite Element Analysis Laboratory	PC	0	0	4	2	60	40	100		
7.	22CDC25	CAM and Robotics Laboratory	PC	0	0	4	2	60	40	100		
8.	22CDC26	Technical Seminar-II	EEC	0	0	2	1	100	0	100		
9.	22AC XX	Audit Course-2	AC	2	0	0	0	100	0	100		
		TOTAL		17	0	10	20	520	380	900		

M.E Computer Aided Design – Full Time

				Hour	s/Week	κ.		Maximum Marks			
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total	
		SEMESTER	R III								
		THEOR	Y								
1.	22CDE5X	Professional Elective-V	PE	3	0	0	3	40	60	100	
2.	22CDE6X	Professional Elective-VI	PE	3	0	0	3	40	60	100	
3.	22CDE7X	Professional Elective-VII	PE	3	0	0	3	40	60	100	
		PRACTIC	AL								
4.	22CDC31	Dissertation Phase – I	EEC	0	0	20	6	120	80	200	
		TOTAL		9	0	20	15	240	260	500	
		SEMESTER	R IV								
		PRACTIC	AL								
1.	22CDC41	Dissertation Phase – II	EEC	0	0	32	14	240	160	400	
					32	14	240	160	400		

Total Credits for the Programme = 21 + 20 + 15 + 14 = 70

LIST OF ELECTIVES FOR M.E COMPUTER AIDED DESIGN

Professional Electives (PE)

				Ног	ırs/We	ek		Maximum Marks			
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total	
	I	Elective - 1	[1				1			
1.	22CDE11	PE	3	0	0	3	40	60	100		
2.	22CDE12	Advanced Composite Materials	PE	3	0	0	3	40	60	100	
3.	22CDE13	Product Lifecycle Management	PE	3	0	0	3	40	60	100	
4.	22CDE14	Advanced Engineering Materials	PE	3	0	0	3	40	60	100	
5.	22CDE15	Experimental Stress Analysis	PE	3	0	0	3	40	60	100	
		Elective - I	I								
6.	22CDE21	Advanced Kinematics of Mechanisms	PE	3	0	0	3	40	60	100	
7.	22CDE22	Advanced Tool Design	PE	3	0	0	3	40	60	100	
8.	22CDE23	Industry 4.0	PE	3	0	0	3	40	60	100	
9.	22CDE24	Mechanics of Fracture	PE	3	0	0	3	40	60	100	
10.	22CDE25	Design for Manufacturing, Assembly	PE	3	0	0	3	40	60	100	
		Elective - I	I	-			_		-		
11.	22CDE31	Productivity Management and Re- engineering	PE	3	0	0	3	40	60	100	
12.	22CDE32	Theory of Plates and Shells	PE	3	0	0	3	40	60	100	
13.	22CDE33	Optimization Techniques in Design	PE	3	0	0	3	40	60	100	
14.	22CDE34	Computational Fluid Dynamics	PE	3	0	0	3	40	60	100	
15.	22CDE35	Supply Chain Management	PE	3	0	0	3	40	60	100	
		Elective - I	V								
16.	22CDE41	Experimental Techniques and Data analysis	PE	3	0	0	3	40	60	100	
17.	22CDE42	CAD/CAM tools	PE	3	0	0	3	40	60	100	
18. 22CDE43 Contact Mechanics				3	0	0	3	40	60	100	
19.	22CDE44	Advanced Automotive Systems	PE	3	0	0	3	40	60	100	
20.	22CDE45	Design of Material Handling Equipment	PE	3	0	0	3	40	60	100	

		Elective - V	7							
21.	22CDE51	MEMS & NEMS Technology	PE	3	0	0	3	40	60	100
22.	22CDE52	Enterprise Resource Planning	PE	3	0	0	3	40	60	100
23.	22CDE53	Mechatronics System Design	PE	3	0	0	3	40	60	100
24.	22CDE54	Failure Analysis	PE	3	0	0	3	40	60	100
25.	22CDE55	DE55Maintenance EngineeringPE30034060								
		Elective - V	Τ							
26.	22CDE61	Integrated Product and Processes Development	PE	3	0	0	3	40	60	100
27.	22CDE62	Industrial Safety Management	PE	3	0	0	3	40	60	100
28.	22CDE63	Reliability in Engineering Systems	PE	3	0	0	3	40	60	100
29.	22CDE64	Mechanical Measurement and Analysis	PE	3	0	0	3	40	60	100
30.	22CDE65	Ergonomics in Manufacturing	PE	3	0	0	3	40	60	100
		Elective - V	II							
31.	22CDE71	Quality concepts in design	PE	3	0	0	3	40	60	100
32.	22CDE72	Design of Pressure Vessels	PE	3	0	0	3	40	60	100
33.	22CDE73	Plasticity and Metal Forming	PE	3	0	0	3	40	60	100
34.	22CDE74	Nano Materials Technology	PE	3	0	0	3	40	60	100
35.	22CDE75	Tribology in design	PE	3	0	0	3	40	60	100

				Hou	rs/Wee	k		Maxi	mum	Marks
SI.No	Course code	Name of the Course	Category	Lecture	Tutorial/ Demo*	Practical	Credits	CA	FE	Total
1.	22AC01	English for Research Paper Writing	PE	2	0	0	0	100	0	100
2.	22AC02	Disaster Management	PE	2	0	0	0	100	0	100
3.	22AC03	Sanskrit for Technical Knowledge	PE	2	0	0	0	100	0	100
4.	22AC04	Value Education	PE	2	0	0	0	100	0	100
5.	22AC05	Constitution of India	PE	2	0	0	0	100	0	100
6.	22AC06	Pedagogy Studies	PE	2	0	0	0	100	0	100
7.	22AC07	Stress Management by Yoga	PE	2	0	0	0	100	0	100
8.	22AC08	Personality Development through Life Enlightenment Skills	PE	2	0	0	0	100	0	100

REGULATIONS – 2022

		<u>SEMESTER - I</u>							
220	CDC11	CONCEPTS OF ENGINEERING DESI	IGN	SEM	IEST	ER I	-		
PR	EREQUI	SITES	CATEGORY	PC	Cro	edit	3		
			Houng/Wool	L	Т	Р	ТН		
			Hours/ week	3	0	0	3		
CO	URSE O	BJECTIVES							
1.	To learn	the engineering codes and standards to design the product							
2.	To design	n the customer-oriented product with the concern of ergonomics a	aspect as well as enviro	nmenta	al frie	ndly.			
3.	To learn	the various design methods to create the complicated engineering	product.						
4.	Select the	e materials based on various design methodology.							
5.	To optim	ize the design based on quality and reliability.			1				
UN	IT-I	DESIGN FUNDAMENTALS		9	0	0	9		
Des to c Cor	Design process – Consideration of good design - Morphology of design – Drawings – Computer Aided Engineering – Designing to codes and Standards – Concurrent Engineering – Product life cycle – Technological Forecasting – Market Identification – Competition Bench marking – Systems Engineering – Life Cycle Engineering – Human Factors in industrial Design.								
UN	UNIT-IICUSTOMER - ORIENTED DESIGN & SOCIETAL CONSIDERATIONS9009								
Iden Fac proj inte	ntification tors in Des perty – Legeraction of	of customer needs- customer requirements- Quality Function Depl sign –Ergonomics and Aesthetics, Societal consideration - Contr gal and ethical domains – Codes of ethics - Ethical conflicts – I engineering with society.	loyment- Product Desig racts – Product liabilit Environment responsib	gn Spec y – Pro ble desi	vificat stectin gn-fu	ions - H Ig intel ture tre	Human lectual ends in		
UN	IIT-III	DESIGN METHODS		9	0	0	9		
Cre Mal mod	ativity and king - Eval dels in Eng	problem solving–Creativity methods – TRIZ: Theory of Inventive uation methods - Embodiment Design - Product Architecture - Co ineering design - Mathematical Modeling – Simulation.	Problem Solving – Ax onfiguration Design - F	aramet	e Desi ric De	ign– De esign. F	ecision Role of		
UN	IT-IV	MATERIALS SELECTION		9	0	0	9		
Mat desi in n Mat	terial Selec ign - Econo naterial selo chining, M	tion process - Performance characteristics of materials _ Material omics - Material Performance indices - Decision Matrices - Pugh ection - Design with materials - Design for Manufacturing - Designed tal forming	l selection in conceptu method and weighted gn for Assembly - Desi	al, emb propert gn for (odim y Inde Castir	ent and ex - rec 1gs, Foi	detail cycling cgings,		
UN	IT-V	RELIABILITY AND QUALITY ENGINEERING		9	0	0	9		
Rel Safe – Ta	Reliability Theory – Design for Reliability – Failure Mode and Effect Analysis (FMEA) Defects and Failure Modes - Design for Safety - Reliability centered Maintenance - Total Quality Concept – Quality Control and Assurance – Statistical Process Control – Taguchi Method – Robust Design – Optimization methods.								
	Total(45L) = 45 Periods								
RE	REFERENCE BOOKS:								
	D'		• • • • • • • •	a		r .			

1	Dieter George E, "Engineering Design - A Materials and Processing Approach", McGraw Hill International Editions, Singapore, 2000.
2	Karl T. Ulrich and Steven D. Eppinger, "Product Design and Development", 4th Edition, McGraw Hill, 2008.
3	Pahl, G, and Beitz, W.," Engineering Design", Springer – Verlag, NY. 2007
4	Suh, N.P., "The principles of Design", Oxford University Press, NY.1990
5	Ray M.S., "Elements of Engineering Design", Prentice Hall Inc. 1985.
6	A.K. Govil, "Reliability Engineering", Tata McGraw-Hill Publishing Co. Ltd., 1983.

CO1	Apply the design principles for quality products to create economically viable products.	Apply
CO2	Create a customer-oriented quality product that adheres to the environmental and ethical standards	Create
CO3	Identify the various design methods suitable to improve the quality of the product.	Understand
CO4	Synthesize the principles of design for machinability, accessibility, and assembly.	Understand
CO5	Apply the reliability engineering parameters and optimization techniques to develop quality of the product.	Apply

COURSE	ARTIO	CULAT	FION N	MATR	IX									
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO2	2	-	-	-	-	2	2	2	2	2	3	2	2	2
CO3	-	-	3	-	3	-	-	-	-	-	-	2	2	2
CO4	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO5	-	-	-	-	-	-	-	-	2	2	3	2	2	2
Avg	1.2	0.8	1.4	0.8	1.4	0.4	0.4	0.4	0.8	0.8	1.2	2.0	2.0	2.0
			3 / 2 /	1 -indic	cates stre	ength of	correcti	on (3-H	igh, 2-N	ledium, 1	-Low)			

22CDC12	COMPUTER AIDED MODELING AND I	DESIGN	SEM	[
PREREQUIS	ITES	CATEGORY	PC	Credit	3

		Horne (Weels	L	Т	Р	ТН	
		Hours/ week	3	0	0	3	
COURSE	OBJECTIVES:					1	
1. To learn fundamental concepts of computer graphics and its tools in a generic framework.							
2. To und	erstand the designing of synthetic surfaces and solid modelling.						
3. To stud	y about advanced aspects of enabling computer aided technologies u	sed in design.					
4. To crea	te strong skills of assembly modelling and prepare the student to be a	an effective user of a sta	andards	s in C	AD s	ystem.	
5. To prov	vide clear understanding of CAD systems for 3D modelling and view	ving.					
UNIT I	INTRODUCTION TO COMPUTER GRAPHICS		9	0	0	9	
Definition of primitives - I Circle Algor	f CAD Tools - Types of system - functional areas of CAD - Graph Line Drawing Algorithm - DDA, Bresenham's and Parallel Line Alg ithm - 2-D & 3-D transformation (translation, scaling, rotating) - wir	ics standards - Modeli orithm. Circle generatir adowing - view ports - c	ng and ng algo clipping	view rithm g tran	ing, (– Mi sform	Output dpoint nation.	
UNIT II	CURVES AND SURFACES		9	0	0	9	
rational curv Introduction – Hermite, B	es to surfaces- Analytical surfaces – plane, ruled surface, surface of revo i-cubic, Bezier and B-Spline surface, COONs surface, Surface mani-	plution and tabulated cy pulation,	linder,	Synth	, B-S	urface	
UNIT III	NURBS AND SOLID MODELING		9	0	0	9	
NURBS- bas rep), Constru	sics, curves, lines, circle, arcs and bi linear surfaces. Fundamentals of active Solid Geometry (CSG) and other methods – Sweep representa	solid modeling - Boun tion - Coordinate syster	dary R n.	epres	entati	on (B-	
UNIT IV	DRAFTING AND ASSEMBLY		9	0	0	9	
Drafting feat aids and too creating an a	Drafting features - Customization, 3D sketches, Feature manipulation, Datum features - Modeling operation Strategy, Modeling aids and tools - Generalized views, Presentation of dimensioning / tolerances/symbols & annotation. Different approaches of creating an assembly - Associatively, Parent child relationship - Parametric design, Concept of computer animation.						
UNIT V	VISUAL REALISM		9	0	0	9	
Feature Base Hidden line Feature reco and synthesi	Feature Based, Assembly and Behavioral modeling - Conceptual Design - Top-down Design. Techniques for visual realism - Hidden line removal – Hidden Surface removal - Algorithms for shading and Rendering. Parametric and Variational modeling - Feature recognition, Design by features, Assembly and Tolerance Modeling, Tolerance representation - specification, analysis and synthesis, AI in Design.						
		Tot	al(451	L) = 4	45 Pe	eriods	

RE	FERENCE BOOKS:
1	Ibrahim Zeid, R.Sivasubramanian, "CAD/CAM Theory and Practice", McGraw Hill international. 2007.
2	AnupamSaxena, Birendrasahay, "Computer Aided Engineering and Design", Springer, 2005.
3	P.N. Rao, "CAD / CAM Principles and Applications", TMH, 2nd Edition, 2008.
4	Martenson, E. Micheal, Geometric Modelling, John Wiley & Sons, 1995.
5	Foley, Van Dam, Feiner and Hughes, Computer Graphics Principles and Practice, second edition, Addison-Wesley, 2000.
6	Hill Jr, F.S., Computer Graphics using Open GL, Pearson Education, 2003.
7	M.P. Groover and E.W. Zimmers, "CAD/CAM", PHI, 1st Edition, 1995.

COU Upon	RSE OUTCOMES: completion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Solve 2D and 3D transformations for the basic entities like line and circle.	Apply
CO2	Formulate the basic mathematics fundamental to CAD system.	Create
CO3	Apply basic concepts to develop construction techniques and solid modelling concepts.	Apply
CO4	Use computer and CAD software for design and modelling.	Apply
CO5	Create geometric models through animation and transform them into real world systems	Create

COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
s	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	1	2	3	-	3	-	1	-	1	-	-	2	2	3
CO2	3	2	-	2	3	-	-	-	1	-	-	2	3	2
CO3	3	3	2	2	2	2	1	-	1	-	-	2	2	2
CO4	1	2	2	2	2	-	1	1	1	-	-	2	2	2
CO5	1	2	2	2	2	-	1	1	1	-	-	3	2	3
Avg	1.8	2.2	1.8	1.6	2.4	0.4	0.8	0.4	1.0	0.0	0.0	2.2	2.2	2.4
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDC13	ADVANCED MECHANICS OF MATERIA	SEM	SEMESTER I				
PREREQUISIT	TES	CATEGORY	PC	Credit	3		

			TT / TT / l-	L	Т	Р	TH						
			Hours/ week	3	0	0	3						
COU	JRSE (OBJECTIVES:											
1.	1. To learn the concepts of the theory of elasticity in three-dimensional stress system.												
2. To study the shear-Centre of various cross-sections and deflections in beams subjected to unsymmetrical bending.													
3.	3. To learn the stresses on flat plates and curved members.												
4.	To stu	idy the torsional stress of non-circular sections.											
5.	To lea	arn about the contact stresses and finite element method.				0	0						
UNI	I -1	ELASTICITY			90	0	9						
Stress-Strain relations and general equations of elasticity in Cartesian, Polar and curvilinear coordinates, Differential equations of equilibrium - compatibility - boundary conditions - Representation of three-dimensional stress of a tension generalized Hooke's law - St. Venant's principle - plane stress - Airy's stress function - Energy methods.													
UNI	UNIT-IISHEAR CENTRE AND UNSYMMETRICAL BENDING9009												
Locat to uns	tion of s symmet	hear-Centre for various thin sections, curved beams - shear flows. Bending rical loading-kern of a section.	g stresses and Deflect	ions in	beam	s subj	jected						
UNI	T-III	STRESSES IN FLAT PLATES AND CURVED MEMBERS			90	0	9						
Stress condi ring s	Stresses in Flat plate of various shapes - problems – Stress strain temperature Relation – Strain Energy of Plate – various end conditions – Stresses in curved beams - circumference and radial stresses – deflections of curved beam with restrained ends - closed ring subjected to concentrated load and uniform load - chain links and crane hooks.												
UNI	T-IV	TORSION OF NON-CIRCULAR SECTIONS			90	0	9						
Torsi stress	Torsion of rectangular cross section - St.Venants theory, semi inverse method – prandtl's elastic membrane analogy - Prandtl's stress function - torsional stress in hollow thin walled tubes.												
UNI	UNIT-VCONTACT STRESSES AND FINITE ELEMENT METHOD9009												
Meth Elasti	ods of a icity – H	computing contact stress-deflection of bodies in point and line Contact a Bilinear rectangle – Linear Isoparametric quadrilateral – plane frame elen	pplications. Finite E ient.	lement	Meth	.od –	Plane						

Total(45L) = 45 Periods

RE	REFERENCE BOOKS:								
1	Arthur P Boresi, Richard J.Schmidt, "Advanced Mechanics of Materials", Wiley India Pvt.Ltd., 2009.								
2	Srinath. L.S., "Advanced Mechanics of Solids", Tata McGraw Hill, 2009.								
3	Hibbeler. R.C., "Mechanics of Materials", Prentice-Hall, 2018.								
4	Robert D.Cook, Warren C.Young, "Advanced Mechanics of Materials", Prentice Hall, 1999.								
5	Timoshenko and Goodier, "Theory of Elasticity", Tata McGraw Hill, 2010.								

COUR On com	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonom y Mapped
CO1	Apply the concepts of the theory of elasticity to a three-dimensional stress system.	Apply
CO2	Determine the shear center of various cross-sections and deflections in beams subjected to unsymmetrical bending	Evaluate
CO3	Evaluate the stresses in flat plates and curved members.	Evaluate
CO4	Compute the torsional stress of non-circular sections.	Understan d
CO5	Apply the concept of contact stresses in point and line contact applications and apply the concept of FEA in linear elasticity.	Apply

COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO1	PSO2	PSO3
S	1	2	3	4	5	6	7	8	9	0	1			
CO1	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO2	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO3	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO4	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO5	3	3	3	3	3	-	-	-	-	-	-	3	1	1
Avg	3.0	3.0	3.0	3.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	3.0	1.0	1.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22MLC01	RESEARCH METHODOLOGY AND IPR	SEMESTER I
---------	-------------------------------------	------------

PREREQUI	SITES	CATEGORY	MC	Credit		3							
		Hours/Wook	L	Т	Р	ТН							
		Hours/ Week	3	0	0	3							
COURSE O	COURSE OBJECTIVES:												
To develop the subject of the research, encourage the formation of higher level of trained intellectual ability, critical analysis, rigor and independence of thought, foster individual judgement and skill in the application of research theory and methods and develop skills required in writing research proposals, reports and dissertations.													
UNIT I	INTRODUCTION TO RESEARCH		9	0	0	9							
Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of the research problem, Approaches to investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations.													
UNIT II	EFFECTIVE LITERATURE STUDIES APPROACHES	S, ANALYSIS	9	0	0	9							
Developing the theoretical framework of research - Developing operational statements of the problem - Criteria for evaluating research approach - Hypotheses: Parametric and non-parametric testing- Establishing the reliability and validity of findings with literature review and experiments – documentation, Plagiarism, Research ethics.													
UNIT III	EFFECTIVE TECHNICAL WRITING, HOW TO WR PAPER	ITE REPORT,	9	0	0	9							
Developing a	Research Proposal, Format of research proposal, a presentation and	assessment by a rev	view co	ommi	ttee								
UNIT IV	NATURE OF INTELLECTUAL PROPERTY		9	0	0	9							
Patents, Desig development. under PCT.	ns, Trade and Copyright, process of Patenting and Development: International Scenario: International cooperation on Intellectual Pro	technological rese perty. Procedure for	arch, inn grants o	ovati f pate	on, pat ents, Pat	enting, tenting							
UNIT V	PATENT RIGHTS AND IPR		9	0	0	9							
Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical indications. Administration of Patents System. New developments in IPR; IPR of Biological Systems, Computer Software etc., Traditional knowledge Case Studies, IPR and IITs.													
			Total(4	5L) :	= 45 P	eriods							

REF	ERENCE BOOKS:
1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & Engineering students"
2	Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
3	Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
4	Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd, 2007.
5	Mayall, "Industrial Design", McGraw Hill, 1992.
6	Niebel, "Product Design", McGraw Hill, 1974.
7	Asimov, "Introduction to Design", Prentice Hall, 1962.
8	Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in the New Technological Age", 2016.
9	T. Ramappa, "Intellectual Property Rights Under WTO", S. Chand, 2008

COUD	SE OUTCOMES.	Bloom's
	SE OUTCOMES:	Taxonomy
On com	pletion of the course the student will be able to	Mapped
CO1	understand research problem formulation	Understand
CO2	analysis research related information	Analysis
CO3	follow research ethics	Remembering
CO4	understand that today's world is controlled by computer, Information technology, but	Understand
04	tomorrow's world is ruled by ideas, concepts and creativity.	
	understand that IPR production provides an incentive to inventors for further research work	Understand
CO5	and investment in R& D, which leads to creation of new and better products, and in turn	
	brings about economic growth and social benefits.	

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	1	3	1	-	-	-	-	-	1	2	1	-
CO2	-	3	2	2	1	1	-	3	-	1	-	2	1	-
CO3	-	-	2	-	-	1	1	1	-	3	1	-	-	-
CO4	-	-	-	2	1	-	-	-	-	2	1	-	-	2
CO5	-	-	-	-	2	1	-	1	-	-	1	-	-	3
Avg	0.4	1.0	1.0	1.4	1.0	0.6	0.2	1.0	0.0	1.2	0.8	0.8	0.4	1.0
		3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)												

22CDC14	CAD MODELING AND DRAFTING LABORATORY	SEMESTER I

PREREQUISITES	CATEGORY	PC	Cre	edit	2
	Hound	L	Т	Р	ТН
	Hours/ week	0	0	4	4
COURSE OBJECTIVES:					
1. To impart knowledge on the commercially available computer-aided dra	fting software's and the	ir featur	es.		
2. To learn the modeling of 2D part drawings.					
3. To model the 3D mechanical components.					
4. To assemble the 3D parts and drafting it using software assistance.					
5. To generate part drawings from the assembly.					
MODULE I LIST OF SOLID EDGE EXPERIMENTS		0	0	20	20
i. 2D Drawing of machine elements					
ii. 3D drawing of machine elements					
iii. 3D assembly drawing of machine elements					
iv. Detail Drawing of machine elements					
MODULE II LIST OF CATIA EXPERIMENTS		0	0	25	25
i. Sketcher exercises					
ii. Part design					
iii. Assembly drawing of machine element					
iv. Sheet metal design					
	Г	otal(4	$(\mathbf{5P}) = 6$	45 Pe	riods

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Use the modern engineering tools for engineering practice.	Apply
CO2	Draw 2D part drawings, sectional views, and assembly drawings as per standards.	Analysis
CO3	Model the 3D mechanical components with dimensioning	Create
CO4	Generate Assembly drawing of a given mechanical component using software assistance.	Create
CO5	Convert 3D solid models into 2D drawings and prepare different views, sections, and dimensioning of part	Analysis
005	models.	

COURS	SE ART	FICUL	ATION	MAT	RIX									
COs/ POs	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PSO 1	PSO 2	PSO3
CO1	-	1	2	3	-	1	3	-	1	1	-	1	2	3
CO2	-	2	3	3	-	2	3	-	2	1	-	2	1	3
CO3	-	2	3	3	-	2	3	-	2	2	-	3	2	-
CO4	-	2	3	3	-	2	3	-	3	2	-	1	3	-
CO5	-	2	3	3	-	2	3	-	3	2	-	2	1	-
Avg	0.0	1.8	2.8	3.0	0.0	1.8	3.0	0.0	2.2	1.6	0.0	1.8	1.8	1.2
			3/2	2 / 1 -inc	licates s	trength of	of correc	ction (3-	High, 2	-Medium,	1-Low)			

PRE	PREREQUISITES CATEGORY EEC Credit							
			Houng/Wools	L	Т	Р	ТН	
			Hours/ week	0	0	2	2	
COU	URSE OB	JECTIVES:						
1.	To work	on a specific technical topic in Engineering design related topics t	o acquire the skills of	f oral pre	sentat	tion.		
2.	To acqui	re technical writing abilities for seminars and conferences.						
3.	To Identi	fy and compare technical and practical issues related to the area of	f course specialization	n.				
4.	To Outlin	ne annotated bibliography of research demonstrating scholarly skil	lls.					
5.	Demonst	rate the ability to describe, interpret and analyze technical issues a	nd develop competen	ice in pre	sentii	ng.		
MO	DULE			0	0	30	30	
The s choic	students will be related to	Il work for two hours per week guided by a group of staff members DEngineering design, and search relevant journal paper/white pap	s. They will be asked er on the selected top	to talk on bics for p	any resen	topic of tation a	f their and to	

engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic along with the journal reference copy. They will also answer the queries on the topic. The students as the audience also should interact. Evaluation will be based on the technical presentation and their port and also on the interaction during the seminar using the specific

Evaluation will be based on the technical presentation and their port and also on the interaction during the seminar using the specific rubrics.

Total(30P) = 30 Periods

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Generate motivation for any topic of interest and develop a thought process for technical presentation.	Create
CO2	Express communicative skills (e.g. speaking, listening, reading, and/ or writing).	Remembering
CO3	Make use of new and recent technology for creating technical reports	Apply
CO4	Organize a detailed literature survey and build a document with respect to technical publications.	Understand
CO5	Analyse and comprehend the proof-of-concept and related data.	Analysis

COURSE	ARTIC	ULAT	ION M	ATRIX	K									
COs/POs	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	1	3	3	1	1	-	3	-	-
CO2	-	-	-	-	-	-	3	2	2	3	-	-	-	3
CO3	-	-	-	-	1	-	3	1	2	2	-	-	2	-
CO4	-	-	-	-	-	-	3	3	3	2	-	2	-	-
CO5	-	1	-	3	-	-	3	-	3	2	-	-	-	2
Avg	0.0	0.2	0.0	0.6	0.2	0.2	3.0	1.8	2.2	2.0	0.0	1.0	0.4	1.0
			3 / 2 /	1 -indica	ates stre	ngth of	correctio	on (3-Hi	gh, 2-M	ledium, 1	Low)			

SEMESTER-II

22CDC21 FINITE ELEMENT METHODS IN DESIGN SEMESTER II									
PREREQUISITES	5	CATEGORY	PC	Cr	edit	3			
		Houng/Wools	L	Т	Р	TH			
		Hours/ week	3	0	0	3			
COURSE OBJEC	TIVES:								
1. To develop a the	brough understanding of the advanced finite element analysis tech	niques.							
2. An ability to effe	ectively use the tools of the analysis for solving practical problem	s arising in engin	eering of	lesigi	1.				
4. To develop and	understand the dynamic problems in structures	Jenns.							
5. To Gain the kno	wledge of FEM for heat transfer analysis and flow analysis								
UNIT I INTR	ODUCTION			90	0	9			
classification of prob linear,etc., Historical starting point for FEI Local and Global coo freedom. Compatibili	Perspective of FEM and applicability to mechanical engineering of steps in finite element method, discretization, types of eleme ordinates, Coordinate transformation and Gauss- Legendre schem ty conditions, Assembly and boundary considerations.	design problems. D nts used, Shape fu e of numerical inte	ie prob ifferent nctions gration	ial eq ial eq Line Nod	Linea juation ar Ele al degr	t/Non- as the ments, rees of			
UNIT II ONE I	DIMENSIONAL PROBLEMS			90	0	9			
Structural problems Boundary conditions their advantages and introduction to conta Continuity), interpola involving hand calcul	with one dimensional geometry. Formulation of stiffness matu and their incorporation: Elimination method, Penalty Method, I disadvantages. Formulation for Truss elements, Case studies we act problems. Beams and Frames: Review of bending of bear tion for beam elements and formulation of FE characteristics, Plan- ations. Algorithmic approach for developing computer codes invo	rix, consistent and introduction to high ith emphasis on bo ns, higher order c e and space frames olving 1-D element	lumpe ner orde oundary ontinui and exa s.	d loa er ele cond ty (C mples	d vect ments litions 0 and s proble	ors. and and C1 ems			
UNIT III TWO	DIMENSIONAL PROBLEMS			90	0	9			
Interpolation in two d for plane stress pla subparametric, Isopar problems. Introductio	imensions, natural coordinates, Isoparametric representation, Cor ne strain and axi-symmetric problems; Triangular and Quad rametric and superparametric elements. General considerations n plate bending elements and shell elements.	ncept of Jacobian. F Irilateral elements, in finite element a	Finite el highe nalysis	emen r ord of tw	t form er ele vo dim	ulation ments, ension			
UNIT IV DYNA	MIC ANALYSIS			90	0	9			
FE formulation in dy dynamic equations o damping matrices, M	namic problems in structures using Lagragian Method, Consiste f motion and introduction to the solution procedures. Modellin odel analysis, Mode superposition methods and reduction techniq	nt and lumped mas g of structural dan ues.	s mode nping a	ls, Fo nd fo	ormulat ormulat	tion of ion of			
UNIT V FEM I	IN HEAT TRANSFER & FLUID MECHANICS			90	0	9			
Finite element solutio simple numerical pro thermo-elastic contac function. Design case	n for one dimensional heat conduction with convective boundarie blems. Formulation for 2-D and 3-D heat conduction problems t problems. Finite element applications in potential flows; Formul studies	s. Formulation of e with convective be lation based on Pote	lement oundari ential fu	chara es. In inctio	cteristi troduc on and	cs and tion to stream			
		1	otal(4	3L) =	=45 ľ(eriods			
REFERENCE BO	OKS:	N H H H H H H H H H H							
I K. J. Bathe, Fini	te Element Procedures, Prentice-Hall of India Private Limited, No. J. R. Hughes, Computational Inelasticity, Springer-Verlag New	w Delhi, 1996 York Inc. New V	ork 10	98					
³ Cook and Rober	t Davis etal, "Concepts and Applications of Finite Element Analys	sis", 4 th Edition. Jo	hn Wile	ey and	d Sons.	, 2001.			
4 Segerlind L.J, "A	Applied Finite Element Analysis", 2 nd Edition, John Wiley, 1984	•							
3. O. C. Zienkiewie Oxford	cz and R. L. Taylor, Finite Element Method: Volume 2 Solid Mech	anics, Fifth Edition,	Butter	worth	-Heine	mann,			
4. D. R. J. Owen an	nd E. Hinton, Finite Elements in Plasticity: Theory and Practice, H	Pineridge Press Ltd							
5. T. Belytschko an England	nd W. K. Liu and B. Moran, Nonlinear Finite Elements for Contin	ua and Structures,	John W	iley &	& Sons	Ltd.,			

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understand the concept of finite element method for soling design problems.	Understand
CO2	Formulate and solve manually problems in 1-D structural systems involving bars, trusses, beams and frames.	Create
CO3	Develop 2-D FE formulations involving triangular, quadrilateral elements and higher order elements	Create
CO4	Apply the knowledge of FEM for stress analysis, model analysis, heat transfer analysis and flow analysis	Apply
CO5	Apply the knowledge of FEM for heat transfer analysis and flow analysis	Apply

COURSE A	RTICU	ULATI	ON M.	ATRIX	X									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	3	1	-	-	-	1	1	-	-	1	2	-
CO2	3	1	3	3	3	-	-	1	1	-	-	-	-	3
CO3	3	1	3	3	2	-	-	1	1	-	-	-	-	-
CO4	3	2	3	3	2	-	2	2	1	-	-	1	2	-
CO5	3	1	1	1	1	-	-	-	1	-	-	1	1	-
Avg	3.0	1.2	2.6	2.2	1.6	0.0	0.4	1.0	1.0	0.0	0.0	0.6	1.0	0.6
			3 / 2	2 / 1 -in	dicates st	rength of	correctio	on (3-Hig	gh, 2-Me	dium, 1-L	Low)			

22CDC22	MECHANICAL VIBRATIONS AND ACOUS	STICS	SE	MESTER	RII
PREREQUIS	ITES	CATEGORY	PC	Credit	3

		Hours/Wook L T P		Р	TH	
		Hours/Week	3	0	0	3
COU	RSE OBJECTIVES:	I				
1. T	o understand the Fundamentals of Vibration and its practical applications					
2. T	o understand the working principle and operations of various vibration mea	suring instruments.				
3. T	o be creative problem solvers whilst dealing with machinery involving peri	odic phenomena.				
4. T	o understand the working principle and operations of various vibration mea	suring instruments.				
5. G	ain knowledge about the basic of sound waves and noise and its propagation	n			T	
UNIT	I VIBRATION FUNDAMENTALS		9	0	0	9
Introdu elastica -Free v	action – Single degree freedom free vibration systems – Damped vibration ally coupled viscous dampers- System Identification from frequency respon- vibration of spring-coupled system – mass coupled system – Forced Vibration	s – Single degree freedo se-Support motion – Two on of two-degree freedom	om forc o-degre n systen	ed vil e free n.	bratio dom s	n with system
UNIT	II MULTI DEGREE FREEDOM SYSTEM		9	0	0	9
Coeffic Vector Methoo Impuls	cient- Generalized coordinates- and Coordinate couplings. Langranges Equipion problems. Modal Analysis- Forced Vibrations of undamped system and m ds-Raleigh's Method- Rayleigh-Ritz Method- Holzer's Method- Methods are response and frequency response-functions.	ations- Matrix Method- odal analysis. Multi Degr of Matrix iterations- Tra	Eigen ee Syst nsfer N	Value tem N fatrix	s - Ei lumer Meth	gen ical od-
UNIT	TIII CONTINUOUS SYSTEM AND TRANSIENT- RANDOM	VIBRATIONS	9	0	0	9
Contin vibrati	uous System - vibrations of String- Bars- Shafts and beams- free and for ons- Response of a single degree of freedom system to step and any arbitr	rced vibration of contin	uous sy	stem	s. Tra	insient
impuls linear s	e response functions. Random Vibrations- Expected values auto and cross systems- wide band and narrow band processes.	orrelation function- Spec	ctral de	name nsity-	respc	tegral- onse of
impuls linear s UNIT	e response functions. Random Vibrations- Expected values auto and cross e systems- wide band and narrow band processes.	orrelation function- Spec	ctral de	name nsity-	respo	tegral- onse of 9
impuls linear s UNIT Balanc Introdu signal diagno	e response functions. Random Vibrations- Expected values auto and cross of systems- wide band and narrow band processes. IV VIBRATION CONTROL AND VIBRATION MEASURE ring of rotating machine- Whirling of rotating shafts-Balancing of recip action of damping- vibration isolation and vibration absorbers. Vibration analysis- Dynamic Testing of Machines and structures- Experimental mo- sis.	MENT Tocating engines control Measurement- FFT anal dal analysis-Machine Co	ol of n yzer- v ondition	atural bratin	0 frequon exnitorin	9 Juncy- citers- ng and
impuls linear s UNIT Balanc Introdu signal diagno UNIT	e response functions. Random Vibrations- Expected values auto and cross of systems- wide band and narrow band processes. IV VIBRATION CONTROL AND VIBRATION MEASURE ring of rotating machine- Whirling of rotating shafts-Balancing of recipination of damping- vibration isolation and vibration absorbers. Vibration analysis- Dynamic Testing of Machines and structures- Experimental massis. V NOISE AND ACOUSTICS	MENT Tocating engines contro Measurement- FFT anal dal analysis-Machine Co	ol of n yzer- v ondition	atural ibrati 0 0	frequencies on examination	9 uency- citers- ng and 9
impuls linear s UNIT Balanc Introdu signal diagno UNIT Sound elastic transm Fundar	e response functions. Random Vibrations- Expected values auto and cross of systems- wide band and narrow band processes. IV VIBRATION CONTROL AND VIBRATION MEASURE sing of rotating machine- Whirling of rotating shafts-Balancing of recipitation of damping- vibration isolation and vibration absorbers. Vibration analysis- Dynamic Testing of Machines and structures- Experimental mostsis. V NOISE AND ACOUSTICS waves- governing equation and its propagation- Plane acoustic waves, S media-Fundamentals of Noise - Decibel- Sound Pressure level- Sound In ission. Noise measurement - Sound meter - Allowed exposure levels and timentals of Noise control- path control - enclosures-noise ab	MENT ocating engines control Measurement- FFT anal dal analysis-Machine Co ound speed, characteristi tensity- Sound fields- re tensity- Sound fields- re sorbers- noise control at r	c acous creceiver	atural ibrati ibrati n Mon 0 0 stic in n- abs inalys	respondent r	9 1 ency- citers- ng and 9 nce of on and sound-
impuls linear s UNIT Balanc Introdu signal diagno UNIT Sound elastic transm Fundar	e response functions. Random Vibrations- Expected values auto and cross of systems- wide band and narrow band processes. IV VIBRATION CONTROL AND VIBRATION MEASURE sing of rotating machine- Whirling of rotating shafts-Balancing of recipration of damping- vibration isolation and vibration absorbers. Vibration analysis- Dynamic Testing of Machines and structures- Experimental mostsis. V NOISE AND ACOUSTICS waves- governing equation and its propagation- Plane acoustic waves, S media-Fundamentals of Noise - Decibel- Sound Pressure level- Sound In ission. Noise measurement - Sound meter - Allowed exposure levels and timentals of Noise control- path control - enclosures-noise ab	MENT rocating engines contro Measurement- FFT anal dal analysis-Machine Co ound speed, characteristi tensity- Sound fields- re tensity- Sound fields- re tensity- noise control at r	on (Dui ctral de: 9 ol of n yzer- v ondition 9 c acous effection 9 Band a receiver	atural ibrati bratic in bratic in br	respondent r	9 1 ency- citers- ng and 9 nce of on and sound- eriods
impuls linear s UNIT Balanc Introdu signal diagno UNIT Sound elastic transm Fundar	e response functions. Random Vibrations- Expected values auto and cross of systems- wide band and narrow band processes. IV VIBRATION CONTROL AND VIBRATION MEASURE ring of rotating machine- Whirling of rotating shafts-Balancing of recip action of damping- vibration isolation and vibration absorbers. Vibration analysis- Dynamic Testing of Machines and structures- Experimental mosts. V NOISE AND ACOUSTICS waves- governing equation and its propagation- Plane acoustic waves, S media-Fundamentals of Noise - Decibel- Sound Pressure level- Sound It ission. Noise measurement - Sound meter - Allowed exposure levels and tir mentals of Noise control- source control- path control - enclosures-noise ab	MENT orcating engines control Measurement- FFT anal dal analysis-Machine Co ound speed, characteristi tensity- Sound fields- re tensity- Sound fields- re tensity- noise control at r Tensity	bil (Dull ctral de gol of n yzer- v ondition g c acous fflection Band a receiver otal(45	$\mathbf{D} = \mathbf{O}$ \mathbf{O}	0 frequor nitorir 0 npeda sorption sis of s 45 Pe	 4 segral-onse of 9 segretation 9 segretat
impuls linear s UNIT Balanc Introdu signal diagno UNIT Sound elastic transm Fundar	e response functions. Random Vibrations- Expected values auto and cross of systems- wide band and narrow band processes. IV VIBRATION CONTROL AND VIBRATION MEASURE ring of rotating machine- Whirling of rotating shafts-Balancing of recipnation of damping- vibration isolation and vibration absorbers. Vibration analysis- Dynamic Testing of Machines and structures- Experimental mostsis. V NOISE AND ACOUSTICS waves- governing equation and its propagation- Plane acoustic waves, S media-Fundamentals of Noise - Decibel- Sound Pressure level- Sound In ission. Noise measurement - Sound meter - Allowed exposure levels and timentals of Noise control- source control- path control - enclosures-noise ab	MENT rocating engines contro Measurement- FFT anal dal analysis-Machine Co ound speed, characteristi tensity- Sound fields- re the limit by B.I.S Octave sorbers- noise control at r	bil (Dui ctral de: 9 bil of n yzer- v ondition 9 c acous effection Band a receiver	atural ibrati a Mon b 0 b 0 b 0 b 0 b 0 b 0 b 1 b 1 b 2 b 2 b 1 b 2 b 2 b 2 b 2 b 2 b 2 b 2 b 2 b 2 b 2	 a) in response of the response of the	9 lency- citers- ng and 9 nce of on and sound- eriods
impuls linear s UNIT Balanc Introdu signal diagno UNIT Sound elastic transm Fundar	e response functions. Random Vibrations- Expected values auto and cross of systems- wide band and narrow band processes. IV VIBRATION CONTROL AND VIBRATION MEASURE ring of rotating machine- Whirling of rotating shafts-Balancing of recip action of damping- vibration isolation and vibration absorbers. Vibration analysis- Dynamic Testing of Machines and structures- Experimental mosts. V NOISE AND ACOUSTICS waves- governing equation and its propagation- Plane acoustic waves, S media-Fundamentals of Noise - Decibel- Sound Pressure level- Sound It ission. Noise measurement - Sound meter - Allowed exposure levels and tir mentals of Noise control- source control- path control - enclosures-noise ab CRENCE BOOKS: Rao, S.S. "Mechanical Vibrations." Addison Wesley Longman, 2005	MENT rocating engines control Measurement- FFT anal dal analysis-Machine Co ound speed, characteristi tensity- Sound fields- re tensity- Sound fields- re sorbers- noise control at r	bil (Dull ctral de: g bil of n yzer- v ondition g c acous fflection Band a receiver btal(45	atural ibrati a Mon b 0 stic in n- abs analys L) =	respondent r	9 1 ency- citers- ng and 9 nce of on and sound- eriods

3 Ramamurti. V, "Mechanical Vibration Practice with Basic Theory", Narosa, New Delhi, 2010.

- 4 A H Church, "Mechanical Vibrations", 2ndEdition, John Wiley & Sons Inc, 1973.
- 5 Srinivasan, "Mechanical Vibration Analysis", 2ndEdition,-McGraw Hill, 1982.
- 6 KewalPujara, "Vibration and Noise for Engineers", DhanpatRai& Co

COU On con	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Understand the effects of vibration in mechanical systems and their classification.	Understand

CO2	Develop schematic models for physical systems and formulate governing equations of motion.	Create
CO3	Determine a complete solution to mechanical vibration problems using mathematical or numerical techniques.	Apply
CO4	Identify the various vibration measuring instruments, vibration control and analysis techniques	Understand
CO5	Analysis noise and acoustics to control and reduce vibration effects in machinery.	Apply

COURSE	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	1	1	1	-	-	-	-	-	1	-	-	1
CO2	1	3	1	1	2	2	-	-	-	-	1	-	-	-
CO3	2	1	2	1	-	1	1	-	-	-	1	1	2	-
CO4	1	3	2	1	1	-	-	-	-	-	1	-	-	-
CO5	1	1	2	1	1	-	-	-	-	-	-	1	1	-
Avg	1.6	1.8	1.6	1.0	1.0	0.6	0.2	0.0	0.0	0.0	0.8	0.4	0.6	0.2
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDC23	SOLID FREEFORM MANUFACTUR	SOLID FREEFORM MANUFACTURING					
PREREQUISITES	3	CATEGORY	PC	Credit	3		

		L	Т	Р	ТН
	Hours/Week	3	0	0	3
COURSE OBJECTIVES:					<u> </u>
1. To acquaint the students with the evolution of Solid Freeform Manufacturing (S	FM) / Additive Man	ufactur	ing (Al	M).	
2. To gain knowledge on Design for Additive Manufacturing (DFAM) and its im parts.	portance in quality i	mprove	ement o	of fab	ricated
3. To acquaint with polymerization and sheet lamination processes and their applic	cations.				
4. To acquaint with material extrusion and powder bed fusion processes.					
1 INTRODUCTION	ppiications.	0	0	0	0
Need Development of SEM systems Hierarchical structure of SEM SEM proce	as chain Classifier	y tion	Applic	otion	
studies: Bio printing- Food Printing- Electronics printing – Rapid Tooling - Building Strategic aspect- Operative aspect.	printing. AM Supply	chain.	Econo	mics	aspect:
UNIT II DESIGN FOR ADDITIVE MANUFACTURING		9	0	0	9
Concepts and Objectives - AM Unique Capabilities - Part Consolidation - Topolog DFAM for Part Quality Improvement - CAD Modeling - Model Reconstruction - Da Interfacing - Part Orientation - Support Structure Design and Support Structure Genera Design Requirements of Additive Manufacturing: For Part Production, For Mass Proc	gy Optimization - L ta Processing for AM ation - Model Slicing duction, For Series P	ightwei 1 - Data - Tool I roductie	ight Sta a Form Path Ge on. Cas	ructur ats - I enerat se Stu	es - Data ion. dies
UNIT III VAT POLYMERIZATION AND SHEET LAMINATION P	ROCESSES	9	0	0	9
Build Processes - Part Quality and Process Planning, Recoating Issues - Materials Digital Light Processing (DLP) - Materials - Process - Advantages and Applicatio Working Principles - Process - Materials, Advantages, Limitations and Applications Process - Parameters - Applications. Case Studies.	- Advantages - Lim ons. Laminated Obje a. Ultrasonic Additive	itations ct Man e Manu	and A ufactur facturi	Applic ring (l ng (U	ations. LOM): AM) -
UNIT IV MATERIAL EXTRUSION AND POWDER BED FUSION I	PROCESSES	9	0	0	9
Fused deposition Modeling (FDM): Working Principles - Process - Materials and A Laser Sintering (SLS): Principles - Process - Indirect and Direct SLS - Powder S Accuracy - Applications. MultiJet Fusion. Selective Laser Melting (SLM) and Electro – Materials – Advantages - Limitations and Applications. Case Studies.	applications. Design Structure – Materials n Beam Melting (EB	Rules f s - Surf M): Pri	for FDI face De nciples	M. Se eviatio – Pro	lective on and ocesses
UNIT V JETTING AND DIRECT ENERGY DEPOSITION PROCE	SSES	9	0	0	9
Binder Jetting: Three dimensional Printing (3DP): Principles – Process - Physics of Drop on Demand mode - Process – Materials - Advantages - Limitations - Application - Principles - Process - Materials - Advantages and Limitations. Laser Engineered Advantages - Limitations and Applications. Case Studies.	3DP - Types of pri as. Material Jetting: N l Net Shaping (LEN	nting: (Aulti Jet IS): Pro	Continu t Mode ocesses	ious n lling (- Ma 45 P	node – (MJM) terials-
		10141(4	5L) =	-1310	.11005
REFERENCE BOOKS:					
1 Andreas Gebhardt and Jan-Steffen Hotter, "Additive Manufacturing:3D Printin publications Munchen, Germany, 2015. ISBN:978-1-56990-582-1.	g for Prototyping an	d Manu	ıfacturi	ng", l	Hanser
2 Ben Redwood, Brian Garret, Filemon Schöffer, and Tony Fadel, "The 3D Prin	nting Handbook: Te	chnolog	gies, D	esign	and

2	ben Redwood, Brian Garret, Themon Schorter, and Tony Tader, The 5D Trinking Handbook. Teenhologies, Design and
	Applications", 3D Hubs B.V., Netherland, 2017. ISBN-13: 978- 9082748505.
3	Ian Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital
	Manufacturing" Springer - New York, USA, 2nd Edition, 2015. ISBN13: 978-1493921126.
4	Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC
	Press, 1st Edition, 2007 FL, USA. ISBN- 9780849334092.
5	Milan Brandt., "Laser Additive Manufacturing 1st Edition Materials, Design, Technologies, and Applications", Woodhead
	Publishing, UK, 2016. ISBN- 9780081004333.

COURSE OUTCOMES:	Bloom's
On completion of the student will be able to	Taxonomy
On completion of the course the student will be able to	Mapped

CO1	Recognize the importance in the evolution of SFM/AM, proliferation into the various fields and its	Understand
	effects on supply chain.	
CO2	Evaluate the design for AM and its importance in the quality of fabricated parts.	Evaluate
CO3	Acquire knowledge on principles and applications of polymerization and sheet lamination processes with	Understand
	case studies.	
CO4	Acquire knowledge on principles of material extrusion and powder bed fusion processes and design	Understand
	guidelines.	
CO5	Perceive jetting and direct energy deposition processes and their applications.	Apply

						-	-	-						
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
POs														
CO1	2	3	1	3	3	2	-	-	-	2	-	2	-	-
CO2	3	2	3	3	3	2	1	2	-	-	-	3	3	-
CO3	3	3	2	3	1	3	1	-	-	-	-	-	-	-
CO4	3	3	2	3	2	1	-	-	-	-	-	-	-	-
CO5	3	3	2	3	1	1	-	-	-	2	-	3	-	1
Avg	2.8	2.8	2.0	3.0	2.0	1.8	0.4	0.4	0.0	0.8	0.0	1.6	0.6	0.2
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDC24	FINITE ELEMENT ANALYSIS LABORAT	SEMESTER II			
PREREQUISIT	TES	CATEGORY	PC	Credit	2

		L	Т	Р	ТН
	Hours/Week	0	0	4	4
COURSE OBJECTIVES:					
1. To impart knowledge of Finite Element method using Analysis Software					
2. To solve simple static structural analysis and calculating stresses					
3. To know the Steady-state Thermal Analysis of different shapes					
4. To understand the Transient state of Thermal Analysis					
5. To recognize the CFD/ Coupled field analysis.			,		
LIST OF EXPERIMENTS		0	0	45	45
 following analysis using Firebrie factories interent structures that can be Discretified following analysis: 1. Force and Stress analysis using link elements in Trusses, cables etc. 2. Stress and deflection analysis in beams with different support conditions. 3. Stress analysis of flat plates and simple shells. 4. Stress analysis of axisymmetric components. 5. Analysis of bracket using ANSYS. 6. Buckling analysis of linear materials using ANSYS. 7. Vibration analysis of spring-mass systems. 8. Modal analysis of Beams. 9. Thermal stress and heat transfer analysis of plates. 10. Thermal stress analysis of cylindrical shells. 11. Thermal analysis of temperature distribution in a 2-D fin cooled electronic comp 12. Temperature distribution in a 3-D fin cooled electronic component. 13. Heat flux analysis of a composite slab. 14. Heat flux analysis of a cylindrical rod. 15. CFD Analysis of a circular tube 16. Coupled structural/Thermal analysis. 	onents.			perior	
	Т	otal(4	5P) =	45 Pe	riods

COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Apply the concept of FEM for solving static structural problems.	Apply			
CO2	Apply the concept of FEM for modal analysis.	Apply			
CO3	Apply the FEM technology for Thermal stress analysis.	Apply			
CO4	Apply the FEM technology for Fluid Flow Analysis.	Apply			
CO5	Solve the coupled field analysis problems using FEA software.	Apply			

COURSE A	COURSE ARTICULATION MATRIX													
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO6	PO7	PO8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	1	2	1	3	-	2	-	-	1	-	-	1	2	1
CO2	3	1	2	1	-	2	-	-	2	1	-	1	2	3
CO3	3	2	1	2	3	2	-	-	2	1	-	2	2	3
CO4	3	1	1	1	3	2	-	-	2	2	-	3	2	1
CO5	3	1	1	1	3	2	-	-	2	2	-	3	2	1
Avg	2.6	1.4	1.2	1.6	1.8	2.0	0.0	0.0	1.8	1.2	0.0	2.0	2.0	1.8
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDC25	CAM AND ROBOTICS LABORATORY	SEM				
PREREQUISI	ГЕS	CATEGORY	PC	Cr	edit	2
		Hours/Week	L	Т	Р	TH

		0	0	4	4
COURSE OBJECTIVES:					
1. To understand Features and Selection of CNC machines.					
2. To learn CNC programming for a variety of products using APT language.					
3. To impart CNC part programming skills for turning and milling applications.					
4. To give a good exposure of CAM software in order to perform Simulation and to g	generate CL data.				
5. To learn robot programming and simulation of machining processes.				-	
MODULE I LIST OF CNC EXPERIMENTS		0	0	30	30
 Features and selection of CNC turning and milling centers. Practice in part programming and operation of CNC turning machines, subroutine techr CNC Turning Facing Cycle Turning Cycle Drilling Cycle Taper Turning Cycle Step Turning Cycle Step Turning Cycle CNC Milling Linear & circular interpolation Mirroring Circular pocketing Rotation Rectangular pocketing Machine the given stock as per the component specification drawing using CNC lath 	niques and use of cyc e. ling machine.	cles m	entior	ned belo	ow:
MODULE II LIST OF ROBOTICS EXPERIMENTS		0	0	15	15
 Practice in Robot programming and its languages 1. Robotics: Introduction to online programming. 2. Robotics: Motion control 3. Robotics: Pick & Place 4. Robotics: Interface with external equipment 	T_	sta](44	(D) _	45 Da	riode

COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Identify the features and selection of CNC machines.	Understand				
CO2	Apply the basic concepts in NC technology for turning and milling applications.	Apply				
CO3	Make familiar with the use of CAE and CAM Software.	Create				
CO4	Practice in part programming and operating a machining center.	Remembering				
CO5	Program and control robot path for industrial applications.	Apply				

COURSE ARTICULATION MATRIX

COs/PO	PO	PO	PO	PO	PO	DOC	DO7	DOP	PO	PO1	PO1	PSO	PSO	PSO3
S	1	2	3	4	5	PUo	PO/	PUð	9	0	1	1	2	
CO1	-	2	1	3	-	2	-	-	1	-	-	1	2	1
CO2	1	1	2	1	-	2	-	-	2	-	-	1	2	3
CO3	-	2	1	2	1	2	-	-	2	-	-	2	1	3
CO4	-	1	1	1	1	2	-	-	2	-	-	3	2	1
CO5	-	1	1	1	1	2	-	-	2	-	-	3	1	1
Avg	0.2	1.4	1.2	1.6	0.6	2.0	0.0	0.0	1.8	0.0	0.0	2.0	1.6	1.8
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

 22CDC26
 TECHNICAL SEMINAR - II
 SEMESTER II

 PREREQUISITES
 CATEGORY
 EEC
 Credit
 1

			Houng/Wook	L	Т	Р	ТН	
			Hours/ week	0	0	2	2	
COURSE OBJECTIVES:								
1.	. To work on a specific technical topic in Engineering design related topics to acquire the skills of oral presentation.							
2.	To acquire technical writing abilities for seminars and conferences.							
3.	To Identify	and compare technical and practical issues related to the area	of course specialization	n.				
4.	To Outline	annotated bibliography of research demonstrating scholarly sk	cills.					
5.	Demonstra	te the ability to describe, interpret and analyze technical issues	and develop competen	ice in pre	sentir	ıg.		
Μ	ODULE			0	0	30	30	
The cho	e students wil vice related to	l work for two hours per week guided by a group of staff members bengineering design topics and to engage in dialogue with the	bers. They will be asked audience. A brief cop	d to talk of their	on any talk a	y topic also sho	of their ould be	

submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as the audience also should interact. Evaluation will be based on the technical presentation and their port and also on the interaction during the seminar using the specific rubrics.

Total(30P) = 30 Periods

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Generate motivation for any topic of interest and develop a thought process for technical presentation.	Create
CO2	Express communicative skills (e.g. speaking, listening, reading, and/ or writing).	Understand
CO3	Make use of new and recent technology for creating technical reports	Create
CO4	Organize a detailed literature survey and build a document with respect to technical publications.	Understand
CO5	Analyse and comprehend the proof-of-concept and related data.	Analysis

COURSE	COURSE ARTICULATION MATRIX													
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO3
S	I	2	3	4	5	6	7	8	9	0	1	L	2	
CO1	-	-	-	-	-	1	3	3	1	1	-	3	-	-
CO2	-	-	-	-	-	-	3	2	2	3	-	-	-	3
CO3	-	-	-	-	1	-	3	1	2	2	-	-	2	-
CO4	-	-	-	-	-	-	3	3	3	2	-	2	-	-
CO5	-	1	-	3	-	-	3	-	3	2	-	-	-	2
Avg	0.0	0.2	0.0	0.6	0.2	0.2	3.0	1.8	2.2	2.0	0.0	1.0	0.4	1.0
			3 / 2	/ 1 -indi	cates str	ength of	f correct	ion (3-H	ligh, 2-N	Medium,	1-Low)			

SEMESTER-III

PR	EREQUISITES	CATEGORY	EEC	Cr	edit	6	
		HoundWool	L	Т	Р	ТН	
		nours/ week	0	0	20	20	
CO	URSE OBJECTIVES:						
1	To develop the ability to solve a specific problem right from its identification	ation and literature	review u	ıntil t	he suc	cessful	
1.	solution of the same.						
2.	2. To train the students in preparing project reports and to face reviews and viva voce examination						
2.	2. To train the students in preparing project reports and to face reviews and viva voce examination						

CONTENTS:

The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.

The seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M. E.

The examination shall consist of the preparation of a report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented in front of the examiner's panel set by Headland PG coordinator.

The candidit has to be in regular contact with his guide and the topic of the dissertation must be mutually decided by the guide and student.

COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	Understand				
CO2	Students will be able to use different experimental techniques.	Remembering				
CO3	Students will be able to use different software/ computational/analytical tools.	Remembering				
CO4	Students will be able to design and develop an experimental set up/ equipment/test rig.	Create				
CO5	Students will be able to conduct tests on existing setups/equipment and draw logical conclusions from the results after analyzing them.	Analysis				

22CDC41	22CDC41 DISSERTATION PHASE - II									
PREREQU	PREREQUISITES CATEGORY									
			L	Т	Р	ТН				
		Hours/Week	0	0	32	32				
COURSE OF	JECTIVES:		<u> </u>	I		L				
1. To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.										
2. To train	2. To train the students in preparing project reports and to face reviews and viva voce examination									
CONTENTS										
 The invo brin The instr 	 The Project Work will start in semester III and should preferably be a problem with research potential and should involve scientific research, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. The seminar should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M.E. 									
• The revie	 The examination shall consist of the preparation of a report consisting of a detailed problem statement and a literature review. The preliminary results (if available) of the problem may also be discussed in the report. The work has to be presented. 									
in fr	• The premininary results (in available) of the problem may also be discussed in the report. The work has to be presented in front of the examiner's panel set by Head and PG coordinator.									
• The the g	candidate has to be in regular contact with his guide and the topic uide and student.	of the dissertation m	nust be m	ituall	y decid	led by				

COURSE OUTCOMES:

On completion of the course the student will be able to					
CO1	Students will learn to survey the relevant literature such as books, national/international refereed journals and contact resource persons for the selected topic of research.	Understand			
CO2	Students will be able to use different experimental techniques.	Remembering			
CO3	Students will be able to use different software/ computational/analytical tools.	Remembering			
CO4	Students will be able to design and develop an experimental set up/ equipment/test rig.	Create			
CO5	Students will be able to conduct tests on existing set ups/equipment and draw logical conclusions from the results after analyzing them.	Analysis			

Bloom's

22CDE11	ADVANCED MATHEMATICAL METHODS IN F	ENGINEERING	SF	CMES	STEI	RI								
PREREQUISIT	PREREQUISITES CATEGORY PE Cro													
		Hours/Wook	L	Т	Р	TH								
		Hours/ week	3	0	0	3								
COURSE OBJ	ECTIVES:													
1. To implement	t the knowledge about the vector spaces, inverse of a linear transf	ormation and composit	ion of	linear	maps	š.								
2. To analyze the 2. To analyze the 2.	ne solution of wave equation by method of Eigen function.	of Lonloop and Fourier	tranaf											
4 To examine 1	he significance of central limit theorem and testing of hypothesis	of Laplace and Fourier	uansi	orms.										
5. To analyze th	ie variance of factors by one way and two-way classification and s	some standard design o	f expe	imen	ts.									
UNIT I L	NEAR ALGEBRA	6	9	0	0	9								
Vector space - lir transformation- ra associated with lir	ear dependence of vectors, basis and dimension- Linear transform nk and nullity- Inverse of linear transformation- rank-nullity the ear map.	rmations (maps) - range corem – Composition	ge and of line	kerne ar ma	el of ps- N	linear Iatrix								
UNIT II P.	ARTIAL DIFFERENTIAL EQUATIONS		9	0	0	9								
Classification of s equation in cylind the method of Eig	econd order PDE- Solution of PDE by separation of variables- Solution and spherical co-ordinates- Initial and Boundary value proble en function- D Alembert's solution for the wave equation.	lution of Parabolic, Ell ems for two-dimension	al wav	id Hy e equ	perbo ation	lic by								
UNIT III I	OURIER AND LAPLACE TRANSFORMS		9	0	0	9								
Maximum-Minim technique – Soluti	um principle for Elliptic equations- Solution of diffusion equation of Diffusion equation, wave equation and Laplace equation by	on and wave equation Fourier transform tech	by La nique.	place	trans	sform								
UNIT IV S	TANDARD DISTRIBUTIONS AND TESTING OF HYPOTH	IESIS	9	0	0	9								
Random variables limit theorem and	- Standard discrete and continuous distributions (Binomial, Poissor its significance- Testing a statistical hypothesis Sampling distribut	n, Normal, uniform and tion (t-test, F-test and C	Expor Chi-squ	ential are te	l) – C est).	entral								
UNIT V A	NALYSIS OF VARIANCE AND DESIGN OF EXPERIM	MENTS	9	0	0	9								
Analysis of varia (Completely Rand	nce –One way and Two-way classifications- Principles of Des omized Design, Randomized Block design and Latin square desig	ign of Experiments- S n).	Some s	standa	rd de	signs								
		Tot	al(451	L) =4	5 Pe	riods								
REFERENCE	BOOKS:													
1 Gilbert Stran	g, "Linear Algebra and its applications", Cengage Learning, New	Delhi, 4th edition, 200	6.											
2 K.Sankara R	ao, "Introduction to Partial Differential Equations", Prentice Hall of	of India Pvt. Ltd., New	Delhi,	2003		1 ·								

3 Veerarajan.T, "Probability, Statistics and Random process", Tata McGraw- Hill publications, second edition, New Delhi, 2002.

V. Krishnamurthy, V. P. Mainra and J. L. Arora, "An introduction to Linear Algebra", East-West press Reprint 2005
Grewal, B.S., "Higher Engineering Mathematics", 43rd edition, Khanna Publishers, New Delhi 2014.

6 J.B.Joshi, "Differential equations for Scientists and Engineers", Narosa Publications, 2010.

7 Gupta, S.C. and Kapur, V.K., "Fundamentals of Mathematical Statistics", S.Chand and Sons, New Delhi, 11th Edition 2014
8 Devore, Jay L., "Probability and Statistics for Engineering and the Sciences", 5th Edition, Brooks- Cole, 1999.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Demonstrate the vector spaces and linear transformations	Understand
CO2	Analyze the solution of wave equation by method of Eigen function	Analysis
CO3	Implement the Laplace and Fourier transform techniques for the solutions of diffusion and wave equation involved in engineering problems.	Apply
CO4	Experiment various tests of statistics for the samples.	Analysis
CO5	Analyze the variance of factors by one way and two-way classification and some standard design of experiments.	Analysis

COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO2	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO3	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO4	3	2	0	2	0	0	0	0	0	0	0	0	2	0
CO5	3	2	0	2	0	0	0	0	0	0	0	0	2	0
Avg	3.0	2.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

PRE	REQUISITES	CATEGORY	PE	Cre	dit	3
		Hours/Week	L	Т	Р	ТН
			3	0	0	3
COU	JRSE OBJECTIVES:					
1.	To understand composite material, reinforcements, and their selection.					
2.	To develop and processing of metal- matrix, ceramic -matrix and carbon- carbo	n Composites.				
3.	To understand engineering mechanics, analysis and design, micro mechanics an	d fabrication techni	ques of a	compos	sites	
4.	To understand and analyze the properties and performance of composite					
J.	T I INTRODUCTION		0	0	0	0
			· ·			,
carbo therm	on, ceramic glass, aramids etc. Particulate fillers-importance of particle shap nosetting matrix resins. Coupling agents-surface treatment of fillers and fibres ontinuous fibre reinforced composites, critical fibre length, and anisotropic beha	e and size. Matrix significance of int aviour.	resins-t erface in	hermo compo	etc), plastic osites.	boron, cs and Short
UNI	T II PROPERTIES AND PERFORMANCE		9	0	0	9
Prope metal strain	erties and microstructure of high-strength fiber materials (glass, carbon, polymer, l, ceramic, and carbon matrices). Specific strength and stiffness of high-perfo n transformations.	, ceramic fibers) and rmance composites	l matrix r . Rule o	nateria f mixt	ls (po ures.)	lymer, Stress,
UNI	T III MECHANICS AND MANUFACTURING		9	0	0	9
Engii stiffn pultru reacti	neering mechanics- analysis and design- concepts of Isotropy vs. Aniso ess/strength predictions, load-transfer mechanisms), Classical Lamination P usion, filament winding, prepreg technology, injection and compression mou- tion injection moulding.	tropy, composite late Theory (CLP7 lding, bag mouldin	microme []). Fabrid g, resin	chanic cation transfe	s (eff techn r mou	iques- ilding,
UNI	T IV FAILURE CRITERIA AND APPLICATIONS		9	0	0	9
Hydr inter- etc.	othermal stresses, bending of composite plates, analysis of sandwich plates, bu laminar stresses, First Order Shear Deformation Theory (FSDT). Applications	ckling analysis of l Industrial, aerospa	aminated ce, autor	l comp nobile,	osite hous	plates, e hold
UNI	T V NANO COMPOSITIES		9	0	0	9
Intro Super	duction-Types of Nanocomposites (i.e., metal oxide, ceramic, glass and polymer r hard nanocomposite-Synthesis and applications.	based) - Core-Shell	structure	d nano	comp	osites-
		,	Fotal(45	5L) = 4	45 Pe	eriods
REF	FRENCE BOOKS.					
1	Mallick P.K., "Fiber-Reinforced Composites: Materials- Manufacturing and De	esign". Maneel Dek	ker Inc.	1993.		
2	Krishan K. Chawla, Composite Materials, Science and Engineering, Springer, 2	2001.	,			
3	Steven L. Donaldson, ASM Handbook Composites Volume 21, 2001.					
4	Nanocomposite science and technology - P.M. Ajayan, L.S. Schadler, P.V. Bra	aun, Wiley, New Yo	ork, 2003	•		
5	Suresh G. Advani, E. Murat Sozer, Process Modelling in Composites Manufact CRC Press, 2009.	turing, 2nd Ed.				
COU On co	RSE OUTCOMES: mpletion of the course the student will be able to				Bloo Taxo Man	m's nomy ped
CO1	Choose and select the suitable composite material and their reinforcements				Evalu	ate
a a a						

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO6	PO7	PO8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	3	2	2	2	2	-	2	-	1	2	1	2	2	1
CO2	3	2	2	2	2	-	2	-	1	-	1	2	2	2
CO3	1	1	1	1	1	1	1	-	1	-	1	2	2	3
CO4	1	2	2	2	2	-	-	-	2	-	-	2	2	2
CO5	3	1	1	1	1	-	-	-	1	2	3	3	2	3
Avg	2.2	1.6	1.6	1.6	1.6	0.2	1.0	0.0	1.2	0.8	1.2	2.2	2.0	2.2
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE13	PRODUCT LIFECYCLE MANAGEMEN	T	SEM	EST	ER I	[
PREREQUISI	TES	CATEGORY	PE	Cre	edit	3
			L	Т	Р	TH
	3	0	0	3		
COURSE OBJ	ECTIVES:					
1. To understan	nd history, concepts, and terminology of PLM					
3. To study dif	ferent modules offered in commercial PLM/PDM tools					
4. To learn PL	M/PDM implementation approaches					
5. To study int	egration of PLM/PDM with other applications		0	0	0	0
UNITI HI	STORY, CONCEPTS AND TERMINOLOGY OF PLM		9	0	0	9
Introduction to F Involvement, Thr (PDM), Collabora – Network and Co	PLM, Need for PLM, Components / Elements of PLM, Emergen reads of PLM- Computer aided design (CAD), Engineering Data M ative Product Definition Management (CPDM), Collaborative Produ communications, Data Management, Heterogeneous data sources and	ace of PLM, Signific Ianagement (EDM), ct Commerce (CPC). applications.	cance of Produc PLM/1	of PL t data PDM	M, C 1 man Infra	Customer agement structure
UNIT II PR	ODUCT LIFECYCLE ENVIRONMENT		9	0	0	9
Product Data and Data and Produc (2tier/3tier/4tier e	Product Workflow, The Link between Product Data and Product Wor ct Workflow, Developing a PLM strategy, Strategy identification tc). Concept of cloud PLM.	kflow, Key Manager on and selection, P	nent Iss LM Sy	sues a ystem	rounc Arc	l Product hitecture
UNIT III RC	DLE OF PLM IN INDUSTRIES		9	0	0	9
Case studies on Pl PLM feasibility approach to PLM	LM selection and implementation (like auto, aero, electronic) - other p study, change management for PLM, financial justification of P , benefits of PLM for-business, organization, users, product or service	oossible sectors, PLM PLM, barriers to PLM ce, process performat	vision I imple nce	ing, l ment	PLM ation,	strategy, ten step
UNIT IV PR	ODUCT DATA MANAGEMENT (PDM)		9	0	0	9
Product Data Mar of PDM, barriers	nagement (PDM) Concepts, Benefits and Terminology, reason for imp to PDM implementation.	lementing a PDM sys	stem, fi	nanci	al just	tification
UNIT V CU	STOMISATION/INTEGRATION OF PDM/PLM SOFTV	VARE	9	0	0	9
PLM Customizat examples based o	ion, use of EAI technology (Middleware), Integration with legacy n top few commercial PLM/PDM tools.	data base, CAD, S	LM and	d ER	P, Ca	se study
		Т	'otal(4	5L) :	= 45	Periods
REFERENCE	BOOKS:					
1 Antti Saaks	vuori and Ansel miImmonen, "Product Lifecycle Management", Spr	inger Publisher (3rd 1	Edition), 200	8.	
2 Ivica Crnko	vic, Ulf Asklund and Annita Persson Dahlqvist, "Implementing an	nd Integrating Produ	et Data	ı Maı	nagen	nent and
3 John Stark,	"Global Product: Strategy, Product Lifecycle Management and the E	Billion Customer Que	stion",	Sprin	ger P	ublisher,
4 John Stark,	"Product Lifecycle Management: 21st Century Paradigm for Product	Realisation", Spring	er Publ	isher	(2nd	Edition),
2011.	aves (2006) "Product Life Cycle Management" Tate McCrew IIII	2006				
6 Internationa	l Journal of Product Lifecycle Management. Inderscience Publishers					
7 Fabio Giudi	ce, Guido La Rosa, "Product Design for the environment-A life cycl	e approach", Taylor	& Fran	cis, 2	006.	

COU On co	COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Realize the history, concepts, and terminology of PLM.	Remembering					
CO2	Analyse the product life cycle environment.	Analysis					
CO3	Apply PLM/PDM implementation approaches in industry.	Apply					
CO4	Integrate PLM/PDM with other lifetime applications.	Apply					
CO5	Analyze the case studies.	Analysis					

COURSE	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	1	-	1	-	-	-	1	-	1	1	-	1	2	1	
CO2	2	-	3	1	-	1	2	-	2	-	1	1	2	-	
CO3	2	3	1	2	1	-	3	-	1	-	1	2	2	2	
CO4	-	1	2	-	1	-	2	-	3	1	-	1	1	1	
CO5	2	2	2	2	1	-	-	-	-	-	-	2	2	1	
Avg	Avg 1.4 1.2 1.8 1.0 0.6 0.2 1.6 0.0 1.4 0.4 0.4 1.4 1.8 1.0														
			3 / 2	/ 1 -ind	icates st	rength o	f correc	tion (3-H	ligh, 2-N	Medium,	l-Low)				

22CDE14	ADVANCED ENGINEERING MATERI	ALS	SEM	IESTI	ER I	
PREREQU	SITES	CATEGORY	PE	Cre	dit	3
			L T P 3 0 0 , in particular those nuctures and products 9 0 ials - interaction betw design for use. 9 0 0 0 iefects- reciprocal sp SEM- TEM- XRD- 2			ТН
		Hours/Week	3	0	0	3
COURSE	OBJECTIVES:			1		
1. To ident	ify fundamental issues and establish directions for investigation of materials					
2. To fami	liarize various types of characterization tools used in material study					
3. To unde	rstand structure-properties properties relationships					
4. To impa to the de	rt knowledge about the fundamentals of micro/Nano, smart materials, devic velopment of smart structures and products	es and electronics,	in part	icular t	hose	relate
5. To incre	ase the skills, knowledge and motivation in the design, analysis and manufac	cturing of smart stru	ictures	and pro	oducts	3.
UNIT I	INTRODUCTION		9	0	0	9
materials ch	aracteristics – applications - effects of processing on their subsequent struct	are and properties-	design	for use		
	CHARACTERIZATION OF MATERIALS		9	U	U	9
Particle / m & diffraction and XPS. S	aterial interactions & wave / material interactions-the experimental process- n. Instrumentation- vacuum systems- electron sources and detectors etc with urface analysis techniques and ion beam techniques - Aspects of sample prep	- crystallography- c the techniques of S paration.	lefects- SEM- T	recipro EM- X	ocal s RD- 1	pace XRF
UNIT III	HIGH STRENGTH, LOW AND TEMPERATURE MATERIAL	S	9	0	0	9
Methods of materials - of materials	strengthening of alloys - Materials available for high strength application Applications of high strength materials. Properties required for low and high and materials availability for low and high Temperature applications.	ns - Properties requinites temperature applie	uired fo cations	or high - Requ	stren	gth ents
UNIT IV	SMART MATERIALS		9	0	0	9
Overview Materials - Arrays -Sm	of Smart Materials -Physical Properties-Piezoelectric Materials-Electrore Magneto electric Materials -Magnetorheological Fluids - Electrorheological art Actuators	estrictive Materials Fluids- Shape Mer	- Ma nory M	gneto Iaterial	restrio s - Se	ctive nsor
UNIT V	NANOMATERIALS		9	0	0	9
Definition - Application	Types of nanomaterials, nanocomposites – synthesis methods of nano materials of nanomaterials.	ials - Physical and	mechai	nical pr	opert	ies -
		Т	otal(4	5L) =	45 P	eriod
DEFEDE	NCE DOOKS.					

K	EFERENCE BOOKS:
1	D. R. Askeland and P. P. Phule, "The Science and Engineering of Materials", Thomson Publication, 2015.
2	Gregory Tirp, "Nano Technology", , Springer Publication 2012.
3	Van Vlack, "Elements Of Material Science And Engineering", Pearson Education India 1989
4	A.V. Srinivasan, "Smart Structures Analysis and Design", Cambridge University Press, Cambridge, 2001.
5	V.D. Kodgire, "Material science and Metallurgy", Everest Publishing House 2002.

COUR On com	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Identify fundamental issues and establish directions for selection of materials	Understand
CO2	Describe the characterization techniques for materials	Understand
CO3	Prepare high strength materials and Suggest materials for low and high temperature applications.	Apply
CO4	Integrate knowledge of different types of advanced engineering materials	Understand
CO5	Analyse problem and find appropriate solution for use of materials.	Analysis

COURSE A	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	-	1	-	2	1	-	-	-	1	-	-	-
CO2	2	1	-	1	2	1	-	1	2	1	-	-	-	1
CO3	1	2	3	1	1	1	2	-	1	-	1	-	1	1
CO4	-	-	2	1	-	2	1	-	2	-	1	1	2	1
CO5	1	1	1	1	-	-	2	-	-	1	1	1	2	-
Avg	1.0	1.0	1.2	1.0	0.6	1.2	1.2	0.2	1.0	0.4	0.8	0.4	1.0	0.6
	3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE15	EXPERIMENTAL STRESS ANALYSIS	SEMESTER I									
(Use of approved Data Book and Charts may be permitted)											
PREREQU	ISITES	CATEGORY	PE	Credit		3					
		Hours/Week	L	Т	Р	ТН					
			3	0	0	3					
COURSE OBJECTIVES:											
1. To use indicial notation to represent the compatibility, equilibrium, and constitutive equations of mechanics											
 2. To use alternate definitions of strain to solve problems involving large deformations 3. To use alternate definitions of strain to solve problems involving large deformations 											
4. To compute bending stresses in circular plate											
5. To perf	orm stress calculations in thick walled cylinders and rotating disk		T								
UNIT I	THEORY OF ELASTICITY		9	0	0	9					
Analysis of stress – Analys is of stain - Elasticity problems in two dimension and three dimensions - Mohr's circle for three dimensional stresses - Stress tensor - Airy's stress function in rectangular and polar coordinates - Energy method for analysis of stress - Strain and deflection - The three theorem's - Theorem of virtual work - Theorem of least work - Castigliano's theorem - Rayleigh Ritz method - Galekin's method - Elastic behaviour of anisotropic materials like fiber reinforced composites.											
UNIT II	UNIT IITHEORY OF TORSION9										
Torsion of prismatic bars of solid section and thin walled section - Analogies for torsion - Membrane analogy - Fluid flow analogy and electrical analogy - Torsion of conical shaft, bar of variable diameter - Thin walled members of open cross section in which some sections are prevented from warping - Torsion of noncircular shaft.											
UNIT III	UNSYMMETRICAL BENDING		9	0	0	9					
Concept of shear centre in symmetrical and unsymmetrical bending - Stress and deflections in beams subjected to unsymmetrical bending - Shear centre for thin wall beam cross section - Open section with one axis of symmetry- General open section and closed section.											
UNIT IV	PLATE BENDING		9	0	0	9					
Bending of plate to cylindrical surface - Bending of a long uniformly loaded rectangular plate - Pure bending in two perpendicular directions - Bending of circular plates loaded symmetrically w. r. t. center - Bending of circular plates of variable thickness - Circular plate with circular hole at centre symmetrically loaded and load distributed along inner and outer edges.											
UNIT V	PRESSURIZED CYLINDERS AND ROTATING DISKS		9	0	0	9					
Governing equations - Stress in thick walled cylinder under internal and external pressure - Shrink fit compound cylinders- S in rotating flat solid disk - Flat disk with central hole -Disk with variable thickness - Disk of uniform strength - Plastic action i walled cylinders and rotating disc.											
Total(45L) :											
	CE DOOKS										
1 Timosh	enko and Goodier. "Theory of Elasticity" McGraw Hill 1970										
1 1											
2 Den Harteg, "Advanced Strength of Materials", Dover Publications Inc. 1987											
4 Dally & Riley, "Experimental Stress Analysis", McGraw-Hill College, 1991.											
5 Timosh	enko, "Theory of Plates and Shells", McGraw Hill, 1964.										
COURSE OUTCOMES: On completion of the course the student will be able to											
CO1 To explain the concept of elasticity and the difference between stress and strain											
CO2 E	CO2 Explain the term as plane stress and plane strain										
method of Eigenvalues and eigenvectors, the method of quadratic form of ellipsoids, and the method of Stress or strain trajectories											
CO4 Apply basic concepts of elastic stability and buckling of elastic											

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	-	1	-	-	1	-	-	-	-	2	1	2
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1
CO3	3	3	1	1	3	-	1	-	-	-	-	3	-	1
CO4	3	2	1	2	2	-	1	-	-	-	-	3	2	1
CO5	2	3	-	3	1	-	1	-	-	-	-	3	-	1
Avg	2.2	2.6	0.6	1.6	1.2	0.0	1.0	0.0	0.0	0.0	0.0	2.6	0.6	1.2
3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)														
220	CDE21	ADVANCED KINEMATICS OF MACHANISMS		SEM	ER]	I								
----------------------------	---	--	--	------------------------------	----------------------------	-------------------------	-------------------------------							
PR	EREQUI	SITES	CATEGORY	PE	Cr	edit	3							
			Hours/Wook	L	Т	Р	ТН							
		3	0	0	3									
CO	URSE O	BJECTIVES												
1.	Analyze	the motion of mechanisms, the design of mechanisms to produce motion an	nd the forces in mac	chines										
2.	To becom	me familiar with a variety of complex mechanisms involving motion in com	plex curvature.											
3.	To synth	esize four-bar and slider crank mechanisms.												
4.	To analy	ze the spatial mechanism related to motion of robots.												
5.	To study	the coupler curve theory.												
UN	I-TIN	INTRODUCTION		9	0	0	9							
mec	hanisms - ysis of kin	Kinematic Analysis of Planar Mechanisms. Review of graphical and anal ematically simple mechanism - analysis of complex mechanisms by the norm	ytical methods of value acceleration and	velocity auxilia	y and ary-po	accel	eration ethods.							
UN	IIT-II	CURVATURE THEORY		9	0	0	9							
Fixe poin	ed and mov at - Applica	ving centrodes - inflection circle - Euler-Savary equation - Bobillier constru ations in dwell mechanisms.	ctions, cubic of sta	tionary	curva	ature	- Ball's							
UN	IT-III	SYNTHESIS OF MECHANISMS		9	0	0	9							
Nun four accu mec	ber synth bar and s rate point hanism for	esis-degrees of freedom of planar kinematic chains, dimensional synthesis s lider crank mechanism - design of slider crank and four bar mechanism, s - function generation by mechanism - Freudenstein equation for four bar r position guidance - body guidance - Bloch's method - cognate linkages.	graphical methods analytical method slider crank chain f	-pole a Cheby for thre	nd rel /shev' e acci	ative s spa uracy	pole of cing of points,							
UN	IT-IV	SPATIAL MECHANISMS AND KINEMATICS OF ROBOT		9	0	0	9							
Intro para of N	oduction – meters – k lechanism	 Mobility - Position analysis - Velocity analysis - Acceleration analys Kinematic analysis of spatial RSSR mechanism- Forward and inverse kinematic using simulation software packages. 	is - Eulerian angl atics of robotic mar	es - D ipulato	enavi ors - S	t-Har tudy	tenberg and use							
UN	UNIT-VCOUPLER CURVES9009													
Four appr	Four bar linkage - Equation of coupler curve - double points and symmetry - Robert-Chebyshev theorem - straight line mechanism - approximate and exact.													
	Total(45L) = 45 Periods					riods								

RE	FERENCE BOOKS:
1	R.L. Norton, "Design of Machinery", Tata McGraw Hill, 2004
2	J. J.Uicker, G. R. Pennock & J.E.Shigley, "Theory of Machines and Mechanisms", Oxford University Press, New York, 2003
3	R.S. Hartenberg and J. Denavit, "Kinematic Synthesis of Linkages", McGraw-Hill, New York, 1980.
4	J. Kenneth, Waldron, L.Gary&Kinzel, "Kinematics, Dynamics and Design of machinery", John Wiley& Sons,2003.
5	J.S. Rao, "The Theory of Machines Through Solved Problems", New Age International Publishers, 2006
6	N.G. Sandor& G.A. Erdman, "Advanced Mechanism Design", Volume-I, Prentice Hall India Pvt. Ltd, 2001
7	Michael J.Rider,"Design and analysis of Mechanism",John Wiley & Sons,2015

COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Create a graphical and analytical method for analyzing the velocity and acceleration of complex Mechanisms.	Create			
CO2	Interpret the curvature theory of complex kinematic mechanism	Understand			
CO3	Develop the various approaches for generating the kinematic mechanism.	Create			
CO4	Analyze simple spatial mechanisms such as RSSR for robotic manipulators.	Analysis			
CO5	Create a coupler curve equation for four bar linkages.	Create			

COURSE A	OURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	1	-	1	-	2	1	-	-	-	1	-	-	-
CO2	2	1	-	1	2	1	-	1	2	1	-	-	-	1
CO3	1	2	3	1	1	1	2	-	1	-	1	-	1	1
CO4	-	-	2	1	-	2	1	-	2	-	1	1	2	1
CO5	1	1	1	1	-	-	2	-	-	1	1	1	2	-
Avg	1.0	1.0	1.2	1.0	0.6	1.2	1.2	0.2	1.0	0.4	0.8	0.4	1.0	0.6
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE22	ADVANCED TOOL DESIGN	SEMESTER I									
PREREQUI	SITES	CATEGORY	PE	Cro	edit	3					
			L T P							L T P	TH
		Hours/Week	:/Week 3 0 0 3								
COURSE O	BJECTIVES										
1. To enabl	e the student to make the complete design of tooling, based on the desi	gn of a product									
2. To under	stand the design of tools based on various machining processes.										
3. To know	about the various standards available in data book and usage of tool de	sign data book.									
4. To impro	ove the design of tools relevant to vibrations induced in the machining p	rocess.									
5. To impro	by the design of tools for manual machining as well as NC and automa	tic screw cutting mad	chines.	0		0					
UNIT-I	TOOL-DESIGN METHODS		9	0	0	9					
Introduction – Drafting and I	Design Procedure – Statement of the problem –Needs Analysis — Ter Design – drafting practice - Tool making Practice - Tools of the Toolm	tative Design Soluti aker - Screws and D	ions –F lowels -	inishe - Hole	ed De e loca	sign – tion –					
Jig-boring pra	ctice– Punch and Die Manufacture – Electro-discharge machining for c	avity.									
UNIT-II	TOOL MATERIALS AND DESIGN OF CUTTING TOOL	S	9	0	0	9					
Metal-cutting the selection of steels, plasma	Tools – Single-point cutting tools – Milling cutters – Drill, Tap, Reame of carbide cutting tools and its inserts – advanced heat treatment method equipment.	r, Jigs and Fixtures : ls for composite mat	Desigr terials, o	n Con cryo t	sidera reatm	ation - ent of					
UNIT-III	DESIGN OF SPINDLES AND SPINDLE BEARINGS		9	0	0	9					
Design of Spi bearings. Pre- relative perfor	ndles, Bearing and Power Screws: Design of spindles subjected to co loading. Anti-friction slideways. Rolling contact, hydrodynamic, hydros mance. Hydrodynamic design of journal bearings. Power Screws, Reci	mbined bending and tatic, aerostatics and culating ball screws.	l torsio magnet	n. Th ic bea	e layo arings	out of , their					
UNIT-IV	MACHINE TOOL VIBRATIONS		9	0	0	9					
Effect of vibra and two-degre	tion on the machine tool; Forced vibrations. Machine tool chatter. Self-exe freedom analysis. Completely coefficient. Elimination of vibration. V	excited vibration and ibration analysis of	dynam machin	ic stal e tool	oility struc	single tures.					
UNIT-V	TOOL DESIGN FOR NC MACHINES		9	0	0	9					
Introduction to	o numerical control machine tools - Fixture design for numerically contr	olled machine tools	– Cuttir	ng too	ls and	l Tool					
holding methods for numerical control – Automatic tool changers and tool positioners – Tool presetting – Introduction to Automatic											
Screw machine and its tooling – General explanation of the Brown and sharp machine. Concepts of aesthetic and ergonomics											
applied to mad	chine tools - latest trends in Machine Tool Design										
Total(45L) = 45 Periods											
L											
REFERENC	CE BOOKS:										

1	Cyril Donaldson, George H.LeCain and V.C. Goold, "Tool Design", Tata McGraw Hill, 2000
2	Prakash Hiralal Joshi, "Tooling data", Wheeler Publishing, 2000
3	Mehta- N.K, "Machine Tool Design", Tata McGraw Hill, 1989.
4	Koenisbergaer F, "Design Principles of Metal Cutting Machine Tools", Pergamon Press, 1964.
5	Acherkan N, "Machine Tool Design- Vol. 3 & 4", MIR Publishers, Moscow, 1968.
6	Sen. G and Bhattacharya A, "Principles of Machine Tools Vol.2", NCB, Calcutta, 1973.

COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Apply design principles to tool design and to create economically viable products.	Apply			
CO2	Recognize tool material properties, tool nomenclature and cutting tool Properties.	Understand			
CO3	Analyze the design of various bearings as it relates to spindles and power screws.	Analysis			
CO4	Integrate the tooling design analysis with machine tool vibration.	Analysis			
CO5	Create tool designs for variety machining processes using NC machines and automatic screw cutting	Create			
	machine.				

COURSE	COURSE ARTICULATION MATRIX													
COs/PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO1	PO1	PSO1	PSO2	PSO3
S	1	2	3	4	5	6	7	8	9	0	1			
CO1	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO2	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO3	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO4	3	3	3	3	2	-	-	-	-	-	-	3	1	1
CO5	3	3	3	3	3	-	-	-	-	-	-	3	1	1
Avg	3.0	3.0	3.0	3.0	2.2	0.0	0.0	0.0	0.0	0.0	0.0	3.0	1.0	1.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE23	INDUSTRY 4.0	SI	SEMESTER I					
PREREQUIS	ITES CATEGORY	PE	Credit	3				

	L	Т	Р	ТН			
Hours/ Weel	3	0	0	3			
COURSE OBJECTIVES:		1	1				
1. To understand the Smart Factory paradigm							
2. To learn the strategic framework to exploit new technologies to enable Industry 4.0.							
3. To gain deep insights into how smartness is being harnessed from data.							
4. To familiarize in Industry 4.0 in robotic technology.							
5. To implement Virtual/Augmented Reality applications.							
UNIT I INTRODUCTION TO INDUSTRY 4.0	9	0	0	9			
Introduction- Digitalization and the Networked Economy - concept of industry 4.0 - Drivers, Enablers, Compelling Forces and Challenges for Industry 4.0 - Industry 4.0 production system, current state of industry 4.0 Technologies - Comparison of Industry 4.0 Factory and today's Factory - How is India preparing for Industry 4.0							
UNIT II TECHNOLOGY ROADMAP FOR INDUSTRY 4.0	9	0	0	9			
Introduction- Components of Industry 4.0 - Supportive Technologies - Proposed Framework for Techn Phase-Strategy Phase - New Product and Process Development Phase	ology Ro	oadma	p - St	rategy			
UNIT III INTERNET OF THINGS	9	0	0	9			
Internet of Things (IoT) - Industrial Internet of Things (IIoT) - Internet of Services - Smart Manufacturing -Smart Devices and Products - Smart Logistics - Cloud Computing - Trends of Industrial Big Data and Predictive Analytics for Smart Business- Architecture of Industry 4.0							
UNIT IV ROBOTICS IN THE ERA OF INDUSTRY 4.0	9	0	0	9			
Introduction- Recent Technological Components of Robots- Advanced Sensor Technologies - Internet of Robotic Things - Cloud Robotics and Cognitive Architecture for Cyber-Physical Robotics - Industrial Robotic Applications- Manufacturing, Maintenance and Assembly							
UNIT V ROLE OF AUGMENTED REALITY	9	0	0	9			
Introduction- AR systems and functionality -AR Hardware and Software Technology- Augmented reality methods- visualization techniques for augmented reality- enhancing interactivity in AR environments- Industrial Applications of AR							
	Fotal(45	L) =	45 Pe	eriods			

REFERENCE BOOKS:

1.	Kiran Kumar Pabbathi, "Quick Start Guide to Industry 4.0: One-Stop Reference Guide for Industry 4.0", Createspace
	Independent Publishing Platform, 2018.
2.	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things, APress, 2016.
3.	Diego Galar Pascual, Pasquale Daponte and Uday Kumar, Handbook of Industry 4.0 and SMART Systems, 1st Edition, 2020
4.	Duato J, Yalamanchili S, and Lionel Ni, "Interconnection Networks: An Engineering Approach", Morgan Kaufmann Publishers,
	2004.
5.	Grigore C. Burdea, Philippe Coiffet, Virtual Reality Technology, Wiley 2016

COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Realize the need of industry 4.0 and its inter-connectivity.	Understand			
CO2	Implement a strategic framework to exploit new technologies to enable Industry 4.0.	Apply			
CO3	Interpret the architecture of IOT and Recognize the uses of cloud computing.	Understand			
CO4	Apply the robotic systems used in a manufacturing plant and their role in an Industry 4.0 world.	Apply			
CO5	Implement Virtual/Augmented Reality applications.	Apply			

COURSE ARTICULATION MATRIX

COs/PO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PSO1	PSO 2	PSO3
CO1	3	-	-	-	2	2	-	-	3	2	3	3	-	-
CO2	2	2	2	-	2	2	2	3	-	-	-	-	-	-
CO3	2	3	-	2	-	-	-	-	2	2	2	-	3	-
CO4	2	3	2	2		-	3	2	2	-	-	-	-	3
CO5	-	2	2	2	3	3	-	-	-	2	-	-	-	-
Avg	1.8	2.0	1.2	1.2	1.4	1.4	1.0	1.0	1.4	1.2	1.0	0.6	0.6	0.6
		3/2/1 -indicates strength of correction (3-High, 2-Medium, 1-Low)												

PREREQUIS	SITES	CATEGORY	PE	Cre	edit	3
		Houng/Wools	L	Т	Р	TH
		Hours/ week	3	0	0	3
COURSE OB	SJECTIVES:					
1. To underst	and about the fundamental of fracture mechanics and fatigue.					
2. To underst	tand about the fundamental of LEFM.					
3. To conside	er fatigue and fracture aspects in design					
4. To conside	er failure regimes for fatigue and creep crack					
5. To know t	he test methods to measure material fracture toughness		0			
UNIT I	INTRODUCTION		9	0	0	9
fracture process and plane strain	s - Griffith Crack Theory – Irwin's modification - Strain-Energy Release I cases - Crack stability and instability conditions - Grain-Size Refinement	Bles affecting fractu Rate – Crack resist	ance c	omeno urves,	Plan	e of the e stress
UNIT II	LINEAR ELASTIC FRACTURE MECHANICS		9	0	0	9
crack growth – fatigue cracks a	Crack growth life Integration – Mean stress effect – Cyclic Plastic zone – nd LEFM limitations	- Crack Closure –I	ure 10 rwin's	correc	etion	- Small
UNIT III	ELASTIC-PLASTIC FRACTURE MECHANICS		9	0	0	9
Plastic zone mo Crack Tip Plas between CTOD	odels – J integral – crack tip opening displacement - Path independence, ticity – Crack tip opening displacement Relationship between CTOD, K and J.	Stress-Strain relat I, GI for small sca	ion, Er Ile yiel	nginee ding,	er Apj Equiv	proach. valence
UNIT IV	FATIGUE CRACK AND CREEP CRACK		9	0	0	9
Fatigue regimes amplitude fatig instabilities. Cro	s – S-N, P-S-N curves – Fatigue crack growth models – crack initiation, cra ue load - paris law –Fracture Toughness. Dynamics of moving crack tip, j eep crack growth, failure at high temperatures.	ck propagation - ef process zone size,	fect of crack s	overle peed	oad, v – cra	variable ck path
UNIT V	EXPERIMENTAL METHODS AND NUMERICAL APPROA	ACHES	9	0	0	9
Test methods to toughness - Fin	b measure material fracture toughness and critical J integral value –Corre ite element modelling of crack and evaluation of J integral and stress inten	lations between im sity parameter-Dir	pact end	nergy indir	and f ect m	racture ethods.
		To	otal(45	(L) =	45 P	eriods

RE	FERENCE BOOKS:
1	T.L. Anderson, "Fracture mechanics: Fundamentals and Applications", 4th Edition. CRC Press, Taylors& Francis, 2017.
2	KareHellan, "Introduction of Fracture Mechanics", McGraw Hill Book Company, 1985.
3	Richard W.Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials" John wiley& sons, Inc., 1996
4	Nestor Perez, "Fracture Mechanics", Kluwer Academic Publishers, 2004
5	David Broek, "Elementary Engineering Fracture Mechanics", Fifthoff and Noerdhoff International Publisher, 1978.
6	M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford Press, 1985.
7	S. Murakami, Continuum Damage Mechanics, Springer Netherlands, Dordrecht, 2012.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Explain the concepts about the fundamental of fracture mechanics and fatigue	Understand
CO2	Use any one of the four parameters for finding out damage tolerance: stress intensity factor, energy release rate, J integral, Crack tip opening displacement.	Apply
CO3	Manage singularity at crack tip using complex variable.	Remembering
CO4	Calculate the fatigue life of a component with or without crack in it.	Evaluate
CO5	Apply modern sophisticated experimental techniques to determine fracture toughness and stress intensity factor.	Apply

COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO3
CO1	1	2	2	2	2	-	-	-	-	-	-	1	-	-
CO2	2	1	2	2	2	-	-	-	-	-	-	2	-	2
CO3	2	2	2	3	3	-	-	-	-	-	-	-	1	-
CO4	2	1	2	3	3	-	-	-	-	-	-	-	-	-
CO5	2	2	2	2	2	-	-	-	-	-	-	-	2	1
Avg	1.8	1.6	2.0	2.4	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.6	0.6
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

Hours/Week L T P TH 3 0 0 3
COURSE OBJECTIVES:
1. To apply fundamental principles in the design and production of engineered products including the factors that control the rate of production and influence the quality, cost and flexibility of processes
2. To study about the various assembly methods and processes and design for assembly guidelines
3. To Understand the complex interrelationships between design and manufacturing
4. To study the various factors influencing the manufacturability of components and the use of tolerances in manufacturing
5. Critique product designs for ease of assembly
UNIT I INTRODUCTION 9 0 0 9
Introduction: Design philosophy – steps in design process – general design rules for manufacturability – basic principles of designing for economical production – creativity in design, application of linear and non-linear optimization techniques. Materials: Selection of materials for design – developments in material technology – criteria for material selection – material selection interrelationship with process selection – process selection charts.
UNIT IIMACHINING PROCESS9009
Machining process: Overview of various machining processes – general design rules for machining - dimensional tolerance and surface roughness – design for machinability, ecocnomy and accessibility – redesigning of components for machining ease with suitable examples, general design recommendations for machined parts.
UNIT IIIMETAL JOINING9009
Metal joining: Appraisal of various welding processes, factors in design of weldments – general design guidelines – pre and post treatment of welds – effects of thermal stresses in weld joints – design of brazed joints.
UNIT IV METAL CASTING AND FORGING 9 0 0 9
Metal casting: Appraisal of various casting processes, selection of casting process, - general design considerations for casting - casting tolerances – use of solidification simulation in casting design – product design rules for sand casting.Forging: Design factor for forging – closed die forging design – parting lines of dies – drop forging die design – general design recommendations.
UNIT VASSEMBLY AND ENVIRONMENT9009
Assembly: Compliance analysis and interference analysis for the design of assembly – DFA Guidelines, DFA Tools - concurrent engineering- Redesign, DFA-index, poke-yoke, design for manual and automatic assembly. Environment: Introduction to environment; motivations for environment principles of environment- eco-efficiency, product life cycle perspective, environment tools and processes, environment design guidelines.
I otal(45L) = 45 Period
REFERENCE BOOKS:
1 A K Chitale and R C Gupta, "Product Design and Manufacturing", PHI, New Delhi, 2013.
2 George E Deiter, "Engineering Design", McGrawHill, International, 2012.
3 Boothroyd G, "Product design for Manufacture and Assembly", First Edition, Marcel Dekker Inc., New York, 2010.
COURSE OUTCOMES: On completion of the course the student will be able toBloom's Taxonomy Mapped
CO1 Describe the design rules and principles for economical production and select the materials. Understan
CO2 Use Design for Manufacture and Assembly tools for minimizing effort and cost in manufacturing Apply a product by machining processes
CO3 Apply design considerations to minimize difficulty in fabrication of components by welding. Apply
CO4 Apply the design considerations to minimize difficulty in fabrication of components by casting, Apply

 CO4
 Apply the design considerations to infinitize difficulty in faorication of components by casting, forming processes.
 Apply

 CO5
 Design components taking into consideration the environmental impact it have while manufacturing and during its lifecycle
 Create

COURSE A	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	2	-	1	1	1	1	1	-	-	2	1	1
CO2	1	1	2	1	1	2	1	1	-	-	1	2	-	3
CO3	2	1	1	2	1	1	1	1	-	-	-	3	1	1
CO4	2	1	1	2	1	1	1	1	-	-	-	3	1	1
CO5	1	1	2	1	1	2	3	1	-	-	-	2	-	1
Avg	1.2	1.0	1.6	1.2	1.0	1.4	1.4	1.0	0.2	0.0	0.2	2.4	0.6	1.4
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

PROFESSIONAL ELECTIVE - III

22CDE31	PRODUCTIVITY MANAGEMENT AND RE-ENGIN	NEERING	SEMESTER II								
PREREQUIS	SITES	CATEGORY	PE	Cre	edit	3					
		Hound/Woolr	L	Т	Р	ТН					
		Hours/ week	3	0	0	3					
COURSE OI	BJECTIVES:										
1. To under manufact	standing and appreciation of the principles and applications relevant uring/service firms.	to the planning, de	sign, a	ind o	perati	ons of					
2. To develo	2. To develop skills necessary to effectively analyze and synthesize the many inter-relationships inherent in complex socio- economic productive systems										
3. To ability assist in d	to recognize situations in a production system environment that sugge ecision making on operations management and strategy	sts the use of certain	quanti	tative	meth	nods to					
4. To unders from corp	In the managerial responsibility for Operations, even when production is outsourced, or performed in regions far from corporate headquarters										
5. To recogn	ize the need for, and problems associated with, change in organizations.										
UNIT I I	PRODUCTIVITY		9	0	0	9					
Productivity C Measurement a	oncepts - Macro and Micro factors of productivity - Dynamics of Pr t International - National and Organization level - Productivity measure	oductivity - Product nent models.	ivity C	ycle	Produ	ictivity					
UNIT II S	SYSTEMS APPROACH TO PRODUCTIVITY MANAGEME	INT	9	0	0	9					
Conceptual fra application to r	mework, Management by Objectives (MBO) - Performance objectivn nanufacturing and service sector.	res- Productivity (PC	OP) - 1	Metho	odolo	gy and					
UNIT III (DRGANISATIONAL TRANSFORMATION		9	0	0	9					
Elements of C fundamentals o CIP Model – D	Organizational Transformation and Reengineering-Principles of organ f process reengineering, preparing the workforce for transformation and SMC Q and PMP model.	izational transformative-engineering, metho	tion an odology	d re- 7, guio	engin leline	eering, s, LMI					
UNIT IV I	RE-ENGINEERING PROCESS AND IMPROVEMENT MOI	DELS	9	0	0	9					
PMI models - I	PASIM Model - Moen and Nolan Strategy for process improvement - LN	/ICIP Model - NPRI	DC Moo	lel.							
UNIT V	TOOLS FOR RE-ENGINEERING		9	0	0	9					
Analytical and – Success Factor	process tools and techniques - Information and Communication Technolo ors and common implementation Problem - Cases.	gy-Implementation of	of Reen	ginee	ring P	Projects					
		Te	otal(45	5L) =	45 P	eriods					

RE	FERENCE BOOKS:
1	Handbook on Industrial Engineering equations, formulas and calculations, Adedeji B. Badiru and Olufemi A. Omitaomu, 2011,
	CRC Press.
2	"Industrial Engineering and Management", O.P.Khanna, 17th edition, DhanpatRai publications.
3	"Productivity Engineering and Management', Sumanth, D.J. TMH, New Delhi, 1994.
4	"Organisational Transformation and Process Re-engineering", Edosomwan, J.A., Library Cataloging in Pub.Data, 1995.
5	"Productivity Management – A, Systems Approach", Premvrat, Sardana, G.D. and Sahay, B.S., Narosa Publishing House. New
	Delhi, 1998.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Realize the Macro, Micro, Dynamics, Productivity cycle and Measurement	Understand
CO2	Demonstrate the need for change in organizations to apply appropriate strategies.	Apply
CO3	Apply guidelines and principles of organizational transformation and re-engineering in industry	Apply
CO4	Apply re-engineering process and improvement models for improving the productivity	Apply
CO5	Apply techniques, skills and modern engineering tools for necessary engineering practical application.	Apply

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	2	2	2	1	-	-	-	1	-	-	2	2	2
CO2	1	1	1	1	2	2	1	-	-	-	-	2	1	2
CO3	1	1	1	1	1	2	3	-	-	3	-	1	1	1
CO4	2	2	2	2	2	-	2	-	2	2	-	1	3	2
CO5	3	3	2	3	3	-	-	-	-	-	2	3	2	2
Avg	1.8	1.8	1.6	1.8	1.8	0.8	1.2	0.0	0.6	1.0	0.4	1.8	1.8	1.8

22CDE3	32 THEORY OF PLATES AND SH	HELLS	CT		SUDEL	
	(Use of approved Data Book and Charts	s may be permitted)	Sr	LIVI E.	SIE	¢ II
PRERE	QUISITES	CATEGORY	PE	Cr	edit	3
			L	Т	Р	TH
		Hours/Week	3	0	0	3
COUH	RSE OBJECTIVES:					
1. To	o understand the concepts of rectangular plates, shells and frames and the	neir analyzation techniques.				
2. To	o apply the FEM in analyzing the Plates and shells.					
3. To	o understand the creation of Frames with basic principle.					
4. G	ain knowledge about the shells and membrane theory					
5. To	o understand the creation of Frames with basic principle.					
UNIT	I INTRODUCTION		9	0	0	9
Thin Pla	ates with small deflection. Laterally loaded thin plates- governing differ	ential equation- various boundary	condit	ions		
UNIT II	I PLATES		9	0	0	9
Rectang	gular plates. Simply supported rectangular plates- Navier solution an	d Levy's method- Rectangular p	lates w	vith v	arious	edge
conditio	ons- plates on elastic foundation. Symmetrical bending of circular plates					
UNIT II	II ANALYSIS METHODS		9	0	0	9
Energy	methods- Finite difference and Finite element methods - Plates and She	ells.				
UNIT IV	V SHELLS		9	0	0	9
Classific	cation of shells- types of shells- structural action- membrane theory-	shells of revolution and shells o	f trans	lation	- exai	mples-
limitatio	ons of membrane theory. Folded Plate structures- structural behavior- ty	pes- design by ACI - ASCE Task	Comm	ittee	metho	od.
UNIT V	/ FRAMES		9	0	0	9
Space fr	rames - configuration - types of nodes - general principles of design Phi	losophy - Behavior.				
		Tota	al(45L)= 45	Peri	ods

REFERENCE BOOKS:

1	Szilard R.	"Theory and	Analysis	of Plates".	Prentice Hal	1 Inc., 1995
-	Shina ita	1 moor y ama	1 11101 9 010	or r incos ,	, 1 10110100 1100	

2 Timoshenko S and Krieger S.W, "Theory of Plates and Shells", McGraw Hill Book Company- New York 1990.

3 Timoshenko S, "Theory of Plates and Shells", McGraw Hill, 1990.

4 Wilhelm Flügge, "Stresses in shells", Springer, Verlag.

5 Ramasamy G.S, "Design and Construction of Concrete Shells Roofs", CBS Publishers, 1986.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Develop the ability to obtain the various deflections in plates and shells.	Create
CO2	Identify the different types of plates under different boundary connections by various classical methods and approximate methods.	Understand
CO3	Illustrate and analyze the behavior and design principles of plate and shell structures	Analysis
CO4	Analyze and design the cylindrical shells through membrane & bending theory.	Analysis
CO5	Ability to Understand the behavior and general principles of frames.	Understand

COURSE A	COURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	3	3	3	1	1	-	1	-	1	-	-	-
CO2	1	3	1	2	1	2	-	-	-	-	1	-	-	2
CO3	1	3	1	2	1	2	-	-	-	-	1	1	1	-
CO4	1	2	2	1	1	1						2	1	-
CO5	1	1	1	1	-	-	-	-	-			1	1	-
Avg	1.2	2.0	1.6	1.8	1.2	1.2	0.2	0.0	0.2	0.0	0.6	0.8	0.6	0.4
			3 / 2 /	1 -indica	ates stren	gth of co	rrection ((3-High,	2-Mediu	m, 1-Low	<i>i</i>)			

22CDE33	SEM	SEMESTER II					
	(Use of approved Data Book and Charts may b	e permitted)					
PREREQUISI	ΓΕS	CATEGORY	PE	PE Credit			
		Hours/Week	L	Т	Р	ТН	
		Hours, week	3	0	0	3	
COURSE OBJ	ECTIVES:						
1. To create aw	vareness about optimization techniques.						
2. To understan	nd and apply optimization techniques to real life problems.						
3. Learn to geo	metric programming problems with constrained optimization pro	blems					
4 To understan	nd the fundamentals constrained and un constrained optimization	and their static and dy	namic a	ppli	cation.		
5 To develop t	the optimal solution or design for engineering problems.					_	
UNIT I INT		9	0 0	9			
General Character function- design c	ristics of mechanical elements- adequate and optimum design- pri- constraints – Classification of optimization problem	nciples of optimization	n- form	ulatio	on of o	ojective	
UNIT II UN	CONSTRAINED OPTIMIZATION			9	0 0	9	
Single variable ar search methods –	nd multivariable optimization- Techniques of unconstrained mini interpolation methods.	mization – Golden se	ction- p	atter	n and g	gradient	
UNIT III CO	ONSTRAINED OPTIMIZATION			9	0 0	9	
Optimization with programming- Co	n equality and inequality constraints – Indirect methods using pen onstrained- mixed inequality and unconstrained minimization- Gen	alty functions- Lagran	nge mul	tiplie	ers- Ge	ometric	
UNIT IV ST	TATIC APPLICATIONS			9	0 0	9	
Structural applica for minimum cost	tions – Design of simple truss members. Design applications – De t- maximum weight – Design of shafts and torsionally loaded mer	esign of simple axial- t nbers – Design of spri	ransver ngs.	se lo	aded m	embers	
UNIT V DY		9	0 0	9			
Dynamic Applica – Optimum design	tions – Optimum design of single- two degree of freedom systems- n of simple linkage mechanisms.	vibration absorbers. A	Applicat	ion i	n Mecł	anisms	
		Γ	otal(4	5L)	= 45 F	eriods	

RE	FERENCE BOOKS:
1	SingiresuS.Rao, "Engineering Optimization Theory and Practice", New Age International (P) Limited, 1996.
2	Johnson Ray C, "Optimum design of mechanical elements", Wiley John & Sons, 1990.
3	Kalyanamoy Deb, "Optimization for Engineering design algorithms and Examples", Prentice Hall of India Pvt, 1995.
4	Goldberg D.E, "Genetic algorithms in search- optimization and machine", Barnen Addison-Wesley New York, 1989.
5	Saravanan.R, "Manufacturing optimization through intelligent techniques", Taylor and Francis Publications, CRC Press, 2006.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Realistic the principles of optimization and solve optimization problem.	Understand
CO2	Familiar in solving unconstrained nonlinear optimization problems.	Apply
CO3	Familiar in solving constrained liner optimization problems	Apply
CO4	Apply these techniques to solve static and dynamic problems of day to day applications.	Apply
CO5	Develop the ability to obtain the optimal solution for engineering problems.	Create

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	2	2	2	-	-	-	1	-	-	2	2	2
CO2	1	1	1	1	1	-	-	-	1	-	-	1	1	1
CO3	1	1	1	1	1	-	-	-	1	-	-	1	1	1
CO4	1	1	1	1	1	-	-	-	2	1	1	1	1	1
CO5	1	1	1	1	1	-	-	-	2	1	1	3	3	3
Avg	1.0	1.2	1.2	1.2	1.2	0.0	0.0	0.0	1.4	0.4	0.4	1.6	1.6	1.6
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE34	COMPUTATIONAL FLUID DYNAMICS		SE	STEI	R II	
PREREQUI	SITES	CATEGORY	PE	Cr	edit	3
		Hours/Week	L	Т	Р	TH
		Hours/ Week	3	0	0	3
COURSE OB	BJECTIVES:					<u> </u>
1. To under	rstand the basics of computational fluid dynamics and governing equation					
2. To develo	op finite difference and finite volume discredited forms of the CFD equat	ions.				
4 To form	ulate explicit & implicit algorithms for solving the Euler Eqns & Navier St ulate and solve conduction type problems using appropriate CED techniqu	okes Eqns.				
5 Gain kno	whedge on different turbulence model and its practical applications.					
	INTRODUCTION AND GOVERNING FOUATIONS		9	0	0	9
Basics of com	inputational fluid dynamics–Governing equations of fluid dynamics–Conti	nuity, Momentum an	nd Ener	gy ec	juatio	ons–
Chemical spe	ecies transport–Physical boundary conditions–Time-averaged equations	s for Turbulent Flow	w–Turl	bulen	t–Kin	etic
Energy Equati	ions-Mathematical behaviour of PDEs on CFD-Elliptic, Parabolic and Hy	perbolic equations.				
	FINITE DIFFERENCE AND FINITE VOLUME METHODS	FOR DIFFUSION	9	0	0	9
Derivation of	finite difference equations–Simple Methods–General Methods for first a	nd second order accu	iracy-	Finit	e voli	ime
formulation for	or steady state One, Two and Three – dimensional diffusion problems–	Parabolic equations-	Explici	it and	l Imp	licit
			L'Apric.			
schemes-Exa	mple problems on elliptic and parabolic equations-Use of Finite Difference	ce and Finite Volume	metho	ods.		
schemes–Exar	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER	ce and Finite Volume	methor	ods.	0	9
schemes–Exan JNIT III One-Dimensio	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem	ce and Finite Volume	metho 9 nensior	ods. 0 nal co	0 onvec	9 tion
schemes–Exar J NIT III One-Dimensio – Diffusion, U	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Justeady two-dimensional convection – Diffusion – Introduction to finite	ce and Finite Volume ns, Unsteady one- din element method – So	mension	ods. 0 nal co of ste	0 onvec eady l	9 tion heat
schemes–Exar JNIT III One-Dimensio – Diffusion, U conduction by	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Unsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM	ce and Finite Volume ns, Unsteady one- din element method – So	metho 9 nension	ods. 0 nal co of ste	0 onvec eady 1	9 tion heat
schemes–Exar NIT III O One-Dimensio – Diffusion, U conduction by NIT IV 1	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Unsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW	ce and Finite Volume ns, Unsteady one- din element method – So	metho 9 nension plution 9	ods. 0 nal co of ste 0	0 onvectedy 1 0	9 tion heat 9
Schemes–Exar NIT III One-Dimensio – Diffusion, U conduction by NIT IV Governing Eq Particular	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Unsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure	ce and Finite Volume ns, Unsteady one- din element method – So e for viscous flow, Sl	method 9 nension olution 9 IMPLE	ods. 0 nal co of ste 0 E Proc	0 onvec eady l 0 cedure	9 tion heat 9 e of
schemes–Exar NIT III One-Dimensio – Diffusion, U conduction by INIT IV Governing Eq Patankar and s of the pressure	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Unsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid – Momentum con-	ce and Finite Volume ns, Unsteady one- din element method – So e for viscous flow, Sl h , Finite volume met ations_Pressure and V	methods-J mension plution 9 IMPLE thods-J	ods. 0 nal cc of ste 0 E Proc Repre	0 onvec eady l 0 cedure senta	9 tion heat 9 e of tion
schemes–Exar NIT III One-Dimensio – Diffusion, U conduction by NIT IV Governing Eq Patankar and so of the pressure Pressure Corre	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Unsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms.	ce and Finite Volume ns, Unsteady one- dir element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V	methods-I mension plution 9 IMPLE thods-I Velocit	ods. 0 of sto 0 2 Proc Repre y cor	0 onvec eady l 0 cedure senta rectio	9 tion heat 9 e of tion ons-
schemes–Exar NIT III O One-Dimensio – Diffusion, U conduction by NIT IV I Governing Eq Patankar and s of the pressure Pressure Correct NIT V	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Unsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS	ce and Finite Volume ns, Unsteady one- din element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V	methods-I polution 9 IMPLE thods-I Velocit	ods. 0 of ste 0 2 Proc Repre y cor 0	0 onvec eady l 0 cedure senta rectio	9 tion heat 9 e of tion ons-
schemes–Exar INIT III One-Dimensio – Diffusion, U conduction by INIT IV Governing Eq Patankar and so of the pressure Pressure Correct INIT V Algebraic Mod	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Jnsteady two-dimensional convection – Diffusion – Introduction to finite <i>t</i> FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number methods	ce and Finite Volume ns, Unsteady one- dir element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V	methods -1 mension plution 9 IMPLE thods -1 Velocit 9 uid flo	ods. 0 nal cc of ste 0 2 Proc Repre y cor 0 w.	0 onvec eady l 0 cedura senta rectio	9 tion heat 9 e of tion ons– 9
schemes–Exar NIT III One-Dimensio – Diffusion, U conduction by NIT IV Governing Eq Patankar and so of the pressure Pressure Correct NIT V Algebraic Mod	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Jnsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number model	ce and Finite Volume ns, Unsteady one- din element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot	methods-lipe metho	ods. 0 nal co of sta 0 2 Proc Repre y cor 0 w. L) = a	0 onvectedy l onvectedy l o cedura senta rectio 0	9 tion heat 9 e of tion ons- 9
schemes–Exar INIT III One-Dimensio – Diffusion, U conduction by INIT IV Governing Eq Patankar and s of the pressure Pressure Correct INIT V Algebraic Mod	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Jnsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number models	ce and Finite Volume ns, Unsteady one- din element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot	<pre>methode methode mension polution 9 IMPLE thods-I Velocit 9 uid flo tal(45)</pre>	ods. 0 nal cc of sta 0 2 Proc Repre y cor 0 w. L) = 4	0onvectoready l0ceduresentarrection045Pe	9 tion heat 9 e of tion ons- 9 rioc
schemes–Exar JNIT III One-Dimensio – Diffusion, U conduction by JNIT IV Governing Eq Patankar and so of the pressure Pressure Correct JNIT V Algebraic Mod	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Insteady two-dimensional convection – Diffusion – Introduction to finite v FEM FLUID FLOW quations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number model	ce and Finite Volume ns, Unsteady one- din element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot	methods -1 methods -1 velocit yelocit yelocit g uid flo cal(45)	ods. 0 of ste 0 2 Proc Repre y cor 0 w. L) = 4	0 onvectedy l 0 cedure senta rectio 0 45Pe	9 tion heat 9 e of tion ms- 9 riod
schemes–Exar JNIT III (One-Dimensio – Diffusion, U conduction by JNIT IV I Governing Eq Patankar and s of the pressure Pressure Correct JNIT V 7 Algebraic Mod FERENCE I Muralidhar 1005	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Jnsteady two-dimensional convection – Diffusion – Introduction to finite γ FEM FLUID FLOW quations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number models K., and Sundararajan, T., "Computational Fluid Flow and Heat Transference of the standard fluid flow and Heat Transference for the standard fluid flow and Heat Transference fluid flow flow fluid flow and Heat Transference fluid flow fluid fluid flow fluid fluid flow fluid flow fluid flow fluid	ce and Finite Volume ns, Unsteady one- dim element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot	metho metho generation mension plution generation	bods. 0 nal cc of sta 0 2 Proc Repre y cor 0 w. L) = a se, Ne	0 onvector eady l 0 cedure sentar rection 0 45Pe ew De	9 tion heat 9 e of tion ons– 9 rioc
schemes–Exar JNIT III (One-Dimensio – Diffusion, U conduction by JNIT IV 1 Governing Eq Patankar and s of the pressure Pressure Correct JNIT V 7 Algebraic Moo FERENCE 1 Muralidhar 1995. Ghoshdasd	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Jnsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number models BOOKS: r, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer idar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw	ce and Finite Volume ns, Unsteady one- dim element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot r", Narosa Publishing Com	method method mension mension model mension model mod	bods. 0 nal cc of sta 0 Proc Repre y cor 0 w. L) = a se, Ne	0 onvected y l onvected y l ocedure senta rection 0 45Pe ew De	9 tion heat 9 e of tion ns– 9 riod
schemes–Exar JNIT III (One-Dimensio – Diffusion, U conduction by JNIT IV 1 Governing Eq Patankar and s of the pressure Pressure Corre JNIT V 7 Algebraic Mod FERENCE 1 Muralidhar 1995. Ghoshdasd Subas, V.Pa	mple problems on elliptic and parabolic equations—Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Insteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW quations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation—Staggered grid—Momentum equ ection equation, SIMPLE algorithm and its variants—PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number models i, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer idar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw atankar "Numerical heat transfer fluid flow", Hemisphere Publishing Cor	ce and Finite Volume ns, Unsteady one- dir element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot pr", Narosa Publishing r-Hill Publishing Com poration, 1980.	methods-I mension polution 9 IMPLE thods-I Velocit 9 uid flo tal(45) g Hous	bods. 0 1 0 1 0 2 Proc Repre y cor 0 w. L) = 0 se, Ne Ltd.,	0 onvected ady 1 0 cedure senta rectio 0 45Pe	9 tion heat 9 e of tion ons– 9 rioc
schemes–Exar JNIT III (One-Dimensio – Diffusion, U conduction by JNIT IV [] Governing Eq Patankar and so of the pressure Pressure Correct JNIT V [] Algebraic Model FERENCE] Muralidhar 1995. Ghoshdasd Subas, V.Pa Taylor, C a	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Jnsteady two-dimensional convection – Diffusion – Introduction to finite 7 FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number models idar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw atankar "Numerical heat transfer fluid flow", Hemisphere Publishing Cor- and Hughes, J.B. "Finite Element Programming of the Navier Stock Equat	ce and Finite Volume ns, Unsteady one- dim element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot r", Narosa Publishing r-Hill Publishing Com poration, 1980. ion", Pineridge Press	metho metho genension polution genension polution genension genen	bods. 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 onveceady 1 0 cedure senta rectio 0 45Pe ew De 1998.	9 tion heat 9 e of tion nns- 9 rioc
schemes–Exar JNIT III (One-Dimensio – Diffusion, U conduction by JNIT IV I Governing Eq Patankar and s of the pressure Pressure Correct JNIT V 7 Algebraic More FERENCE I Muralidhar 1995. Ghoshdasd Subas, V.Pa Taylor, C a	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Jnsteady two-dimensional convection – Diffusion – Introduction to finite <i>γ</i> FEM FLUID FLOW puations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number me BOOKS: ¹ , K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer idar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw atankar "Numerical heat transfer fluid flow", Hemisphere Publishing Cor- ind Hughes, J.B. "Finite Element Programming of the Navier Stock Equat D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid Mechanics a	ce and Finite Volume ns, Unsteady one- dir element method – So e for viscous flow, Sl h , Finite volume meta ations–Pressure and V odels, Prediction of fl Tot er", Narosa Publishing r-Hill Publishing Comporation, 1980. ion", Pineridge Press and Heat Transfer "Ho	methods 9 nension 9 IMPLE thods Velocit 9 uid flo cal(45) g Hous npany Limite	bods. 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 onvected y l eady l cedure sentar rection 0 45Pe w De 1998. K., 19 ublish	9 tion heat 9 e of tion ons– 9 riod
schemes–Exar JNIT III (One-Dimensio – Diffusion, U conduction by JNIT IV 1 Governing Eq Patankar and s of the pressure Pressure Correct JNIT V 7 Algebraic Mode FERENCE 1 Muralidhar 1995. Ghoshdasd Subas, V.Pa Taylor, C a Anderson, I Corporation,	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Justeady two-dimensional convection – Diffusion – Introduction to finite / FEM FLUID FLOW quations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS dels – One equation model, K - ε Models, Standard, Reynolds number methods, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw atankar "Numerical heat transfer fluid flow", Hemisphere Publishing Cor and Hughes, J.B. "Finite Element Programming of the Navier Stock Equat D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid Mechanics a, Newyork, USA, 1984.	ce and Finite Volume ns, Unsteady one- din element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot r", Narosa Publishing v-Hill Publishing Com poration, 1980. ion", Pineridge Press and Heat Transfer "He	metho metho genension polution genension polution genension polution genensi	bods. 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 onvece eady 1 0 cedure senta rection 0 45Pe ew De 1998. K., 19 ublish	9 tion heat 9 e of tion ns– 9 riod
schemes–Exar JNIT III (One-Dimensio – Diffusion, U conduction by JNIT IV 1 Governing Eq Patankar and so of the pressure Pressure Correct JNIT V 7 Algebraic Morect FERENCE 1 Muralidhar 1995. Ghoshdasd Subas, V.Pa Taylor, C a Anderson, I Corporation, Donald R. 1	mple problems on elliptic and parabolic equations–Use of Finite Difference CONDUCTION AND CONVECTIVE HEAT TRANSFER onal and Two-Dimensional Conduction - Convection – Diffusion problem Justeady two-dimensional convection – Diffusion – Introduction to finite <i>γ</i> FEM FLUID FLOW uations, Stream Function – Vorticity method, Determination of pressure spalding, Computation of Boundary layer flow, Finite difference approac e gradient term and continuity equation–Staggered grid– Momentum equ ection equation, SIMPLE algorithm and its variants–PISO Algorithms. TURBULENCE MODELS idels – One equation model, K - ε Models, Standard, Reynolds number me idar, P.S., "Computer Simulation of flow and heat transfer" Tata McGraw atankar "Numerical heat transfer fluid flow", Hemisphere Publishing Cor and Hughes, J.B. "Finite Element Programming of the Navier Stock Equat D.A., Tannehill, J.I., and Pletcher, R.H., "Computational fluid Mechanics a Newyork, USA, 1984. Honra, "Co-ordinate measurement and reverse Engineering", American G	ce and Finite Volume ns, Unsteady one- dim element method – So e for viscous flow, Sl h , Finite volume met ations–Pressure and V odels, Prediction of fl Tot er", Narosa Publishing r-Hill Publishing Com poration, 1980. ion", Pineridge Press and Heat Transfer "He car Manufacturers A	methods-I methods-I model in the second mean is a second	bods. 0 nal cc of ste 0 C Proc Repre y cor 0 w. L) = d se, Ne Ltd., id, U. iere P ion.19	0 onvectedy 1 0 cedure sentarectio 0 45Pe w De 1998. K., 19 ublish 997.	9 tion heat 9 e of tion ons- 9 rioc 281. ning

COURS On comp	SE OUTCOMES: Deletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Illustrate the differential equations for flow phenomena and numerical methods for their solution.	Understand
CO2	Critically analyze the mathematical representation of governing equation for fluid flow and heat transfer simulations	Analysis
CO3	Solve one dimensional and two dimensional heat transfer problems	Apply
CO4	Ability to identify, formulate, and solve conduction type problems using appropriate CFD technique.	Understand
CO5	Ability to understand different turbulence model and able to apply appropriate models to various practical applications.	Understand

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	1	1	2	1	-	-	-	-	-	1	-	-	3
CO2	1	2	2	2	1	-	-	-	1	-	1	1	-	-
CO3	1	3	1	3	1	-	-	1	2	-	1	3	2	-
CO4	1	1	1	1	1	-	-	-	-	-	1	-	1	1
CO5	1	1	1	1	1	-	-	-	-	-	1	-	1	1
Avg	1.4	1.6	1.2	1.8	1.0	0.0	0.0	0.2	0.6	0.0	1.0	0.8	0.8	1.0

22CDE35 SUPPLY CHAIN MANAGEMENT		SEN	SEMESTER II				
PREREQUISITES	CATEGORY	PE	Cre	edit	3		
		L	Т	Р	ТН		
	Hours/Week	3	0	0	3		
COURSE OBJECTIVES:							
1. To provide an insight on the fundamentals of supply chain networks, tools and technic	ques						
2. To apply the tools and techniques in logistics in supply chain							
3. To know about the role of supply chain development							
4. To apply the supply chain concepts in supplier selection.							
5. To attain the knowledge of E-Business in supply chain							
UNIT I INTRODUCTION		9	0	0	9		
Role of Logistics and Supply chain Management: Scope and Importance- Evolution of Su Chain - Competitive and Supply chain Strategies – Drivers of Supply Chain Performance	pply Chain - Decise and Obstacles.	ion Pha	ases ii	n Sup	ply		
UNIT II SUPPLY CHAIN NETWORK DESIGN		9	0	0	9		
Role of Distribution in Supply Chain - Factors influencing Distribution network design -	Design options for I	Distrib	ution	Netw	ork		
Distribution Network in Practice-Role of network Design in Supply Chain – Framework f	or network Decision	s.					
UNIT III LOGISTICS IN SUPPLY CHAIN		9	0	0	9		
Role of Distribution in Supply Chain – Factors influencing Distribution network design –	Design options for l	Distrib	ution	Netw	ork		
Distribution Network in Practice-Role of network Design in Supply Chain – Framework f	or network Decision	s.					
UNIT IV SOURCING AND COORDINATION IN SUPPLY CHAIN		9	0	0	9		
Role of sourcing supply chain supplier selection assessment and contracts- Design collabor	pration - sourcing pla	anning	and a	nalys	is -		
supply chain co-ordination - Bull whip effect - Effect of lack of co-ordination in supply	chain and obstacles	– Bui	lding	strate	gic		
partnerships and trust within a supply chain.							
UNIT V SUPPLY CHAIN AND INFORMATION TECHNOLOGY		9	0	0	9		
The role IT in supply chain- The supply chain IT frame work Customer Relationshi	p Management – I	nternal	supp	ly ch	ain		
management - supplier relationship management - future of IT in supply chain - E-Busin	ess in supply chain.						
	Tot	al(45I	L) = 4	5 Pe	riods		

F	REFERENCE BOOKS:
1	Sunil Chopra, Peter Meindl and Kalra, "Supply Chain Management, Strategy, Planning, and Operation", Pearson Education, 2010.
2	Jeremy F.Shapiro, "Modeling the Supply Chain", Thomson Duxbury, 2002.
3	Srinivasan G.S, "Quantitative models in Operations and Supply Chain Management, PHI, 2010
4	David J.Bloomberg, Stephen Lemay and Joe B.Hanna, "Logistics", PHI 2002.
5	James B.Ayers, "Handbook of Supply Chain Management", St.Lucle press, 2000.

COURS On comp	SE OUTCOMES: Section of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	The student would understand the framework and scope of supply chain networks and functions.	Understand
CO2	To apply the concept. Logistics In Supply Chain	Apply
CO3	To evaluate the supply chain and information technology	Evaluate
CO4	To make the student to know the obstacles in supply chain	Analysis
CO5	To evaluate the role of IT in supply chain	Evaluate

COURSE	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	2	2	-	1	-	-	1	-	-	-	-	1	1	2	
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1	
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1	
CO4	2	2	1	2	2	-	1	-	-	-	-	3	2	1	
CO5	2	3	-	3	1	-	1	-	-	-	-	2	-	1	
Avg	2.0	1.2	0.6	1.6	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.2	0.6	1.2	
			3 / 2	/ 1 -indi	icates str	ength of	f correct	ion (3-H	ligh, 2-N	Aedium, 1	-Low)				

PROFESSIONAL ELECTIVE - IV

22CDE41	EXPERIMENTAL TECHNIQUES AND DATA ANALYSI	IS	SE	MES	TER	II							
PREREQUI	SITES (CATEGORY	PE	Cre	edit	3							
		Hours/Wook	L	Т	Р	ТН							
		liours/ week	3	0	0	3							
COURSE	OBJECTIVES:												
1 To under	stand the working principle of instruments used for cutting forces, temperature mea	asurement and n	netallı	ırgica	l stud	ies.							
2 Familiar	to collection and analysis of data with scientific approach.												
3 Understand the concept of design of experiment and Taguchi method. 4 To know about uncertainty analysis													
5 To under	To know about uncertainty analysis To understand about RSM												
UNIT I	MEASUREMENT OF CUTTING FORCES		9	0	0	9							
Strain gauge	and piezoelectric transducers – characteristics - Dynamometer construction, B	ridge circuits -	Instr	umen	tation	and							
calibration - D	visplacement and strain measurements by photo elasticity - Holography, interfero	meter, Moir tec	hniqu	es, st	rain g	auge							
rosettes - Calil	bration of instruments.												
UNIT II	TEMPERATURE AND FLOW MEASUREMENT		9	0	0	9							
circuits and in pyrometers. Fl shredding flow	strumentation for different transducers - bimetallic, expanding fluid, electrical resist ow Measurement - Transducers for Non-compressible and compressible fluids - O v meters - Ultrasonic, Laser Dopler and Hotwire anemometer - Flow visualization to interferometer	stance, thermiste bstruction and c echniques - Shae	or, the lrag m dow g	rmoco nethod raphs	s - Vo s - Vo Schl	s and ortex ieren							
UNIT III	CHARACTERIZATION TECHNIQUES		9	0	0	9							
Optical and ele - Electron spec - 3-D co-ordin	ectron microscopy - X-Ray diffraction, Bragg's Law and its application for studying etroscopy, electron microprobe. Surface Measurements - Micro hardness, roughness ate measuring machines – Scanning Electron Microscope.	crystal structur ss, accuracy of o	e and dimen	residu sions	al stro and f	esses orms							
UNIT IV	EXPERIMENT DESIGN AND DATA ANALYSIS		9	0	0	9							
Statistical metl Analysis - Det modeling - dire Technique.	hods - Randomized block design, Latin and orthogonal squares, factorial design - erministic and random data, uncertainty analysis - Tests for significance - Chi-sect and interaction effects - ANOVA, F-test - Time Series analysis - Autocorrelation	Replication and square, student's and autoregres	rando s 't' to sive n	omizat est - I nodeli	tion - Regres ing – I	Data ssion RSM							
UNIT V	DESIGN OF EXPERIMENTS		9	0	0	9							
Types of Expe and planning v of Design and application. In	Types of Experiments – Experiment Design Factor – Experiment design protocol and examples. Taguchi Methods - Experiment design and planning with Orthogonal arrays and linear graphs - Additive cause effect model - Optimization of response level - Identification of Design and noise factors - Performance evaluation and Optimization by signal to noise ratios - Concept of loss function and its application. Introduction to Response surface methodology (RSM).												
		Tot	al(45	L) =	45 Po	eriods							

REFERENCE BOOKS:

1 Holman, J.P., "Experimental Methods for Engineers", McGraw Hill Int., New York.

2 Venkatesh, V.C., and Chandrasekharan, "Experimental Methods in Metal Cutting", Prentice Hall of India, Delhi.

3 Davis, O.V., "The Design and Analysis of Industrial Experiments", Longman, London.

4 Box and Jenkins; "Time Series analysis, Forecasting and control", Holden Day, Sanfrancisco

5 Dove and Adams, "Experimental stress analysis and motion measurement", Prentice Hall of India, Delhi.

COUR: On comp	COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Develop an appropriate experimental research design for an engineering case study taking into account practical limitations.	Create					
CO2	Apply knowledge of statistical analysis to assess a hypothesis by selecting appropriate statistical tests and by correctly interpreting the results of these tests.	Apply					
CO3	Propose an appropriate statistical model for a given dataset and interpret the goodness of fit.	Rememberi ng					
CO4	Optimize the experimental result and correlated with analytical data by using taguchi method.	Evaluate					
CO5	To develop ANOVA tables for research experiments	Create					

COURSE	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	2	2	-	1	-	-	1	-	-	-	-	1	1	2	
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1	
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1	
CO4	3	2	1	2	2	-	1	-	-	-	-	1	2	1	
CO5	2	3	-	1	1	-	1	-	-	-	-	3	-	1	
Avg	2.2	2.2	0.6	1.2	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.0	0.6	1.2	
			3 / 2	2/1-ind	icates st	rength o	f correct	tion (3-H	High, 2-N	Medium, 1	-Low)				

22CDE42	CAD/CAM TOOLS		SEM	ESTI	ER I	I				
PREREQUISI	TES	CATEGORY	PE	Cre	edit	3				
		TT (TT) I	L	Т	Р	TH				
		Hours/Week	3	0	0	3				
COURSE OB	JECTIVES:		I		I					
1. To understan	d the basics of industrial automation.									
2. To understan	d nature & significance of Machine tools									
3. To develop s	kills for programming skills required for manufacturing.									
4. To gain know	vledge about CMM and its features									
5. To develop n	ew techniques of RE									
UNIT I	COMPUTER AIDED MANUFACTURING		9	0	0	9				
Manufacturing Processes – Removing, Forming, Deforming and joining – Integration Requirements. Integrating CAD, NC and CAM – Machine tools – Point to point and continuous path machining, NC, CNC and DNC – NC Programming – Basics, Languages, G Code M Code, APT – Tool path generation and verification – CAD/CAM NC Programming – Production Control – Cellular Manufacturing.										
UNIT II	CAD/CAM HARDWARE		9	0	0	9				
Introduction – Ty Networking – Pro	pes of systems – CAD/CAM system evaluation criteria – Input devices – O grammable logic controllers – Hardware trends.	utput devices – Ha	ırdware	integr	atio	1 and				
UNIT III	INSPECTION METHODS		9	0	0	9				
Engineering Tole quality – Geome synthesis – Comp	rances – Need for Tolerances – Conventional Tolerances – FITS and LIMITS tric Tolerances – Tolerances Practices in design, Drafting and manufactur uter Aided Quality control – Contact Inspection Methods – Non Contact Insp	 Tolerance Accurring – Tolerance Accurring – Tolerance	mulatio Analysis Non opt	n and - To ical.	Surf olera	ace nce				
UNIT IV	REVERSE ENGINEERING		9	0	0	9				
Scope and tasks Digitizing technic CMM and its feat	of Reverse Engineering – Domain Analysis – Process Duplicating – Tools jues – Construction of surface model – Solid part model – Characteristic eval ure capturing – surface and solid modeling.	for RE – Develop uation – Software's	ing Tec s and its	hnica appli	l dat catio	a – n –				
UNIT V	DATA MANAGEMENT		9	0	0	9				
Strategies for Rev software – Design	verse Engineering Data management – Software application – software comp n experiments to evaluate a RE tools – Rule based detection for RE user inter	oonents – Recycling face – RE of assem	g real tin bly prog	ne en grams	nbede	led				
		Tot	al(45L) = 45	5 Pe	riods				
REFERENCE	BOOKS:									
1 Ibrahim Zeid	and R. Sivasubramanian, "CAD/CAM Theory and Practice", Revised 1stEdi	tion, Tata McGraw	⁷ Hill Pu	ıblicat	ion,	2007.				

2 Catherine A. Ingle, "Reverse Engineering", Tata McGraw Hill Publication, 1994.

3 Ibrahim Zeid, "Mastering CAD/CAM", special Indian Edition, Tata McGraw Hill Publication, 2007.

4 David D. Bedworth, Mark R. Henderson and Philp M. Wolfe, "Computer Integrated Design and Manufacturing", McGraw Hill International series, 1991.

- 5 Linda Wills, "Reverse Engineering", Kluwer Academic Press, 1996.
- 6 Donald R. Honra, "Co-ordinate measurement and reverse Engineering", American Gear Manufacturers Association.1997.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Explain computer aided tools for various industrial applications which includes manufacturing, process	Understand
	planning, inspection, data management and reverse engineering.	
CO2	Apply the concept of geometric modelling and create new objects.	Apply
CO3	Evaluate the principle of synthesis of curves and create new 3D Objects.	Evaluate
CO4	Elaborate surface modelling	Understand
CO5	Apply the RE concepts	Apply

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	1	2	-	1	-	-	1	-	-	-	-	3	1	2	
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1	
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1	
CO4	3	2	1	2	2	-	1	-	-	-	-	3	2	1	
CO5	2	3	-	3	1	-	1	-	-	-	-	3	-	1	
Avg	2.0	2.2	0.6	1.6	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.8	0.6	1.2	
			3 / 2 /	1 -indic	ates stre	ngth of	correctio	on (3-Hi	gh, 2-M	edium, 1-l	Low)				

PREREQUISITES	CATEGORY	PE	Cr	edit	3
	Harry Wash	L	Т	Р	TH
	Hours/ week	3	0	0	3
COURSE OBJECTIVES:					
1. To understand the concepts of mechanical properties of materials, elastic and br	ittle fracture of mater	ials.			
2. To understand elastic-plastic indentation and testing methods					
3. To analyze the indentation stress distribution and formulate equation					
4. To understand elastic-plastic indentation and testing methods					
5. Gain knowledge on various indentation test methods		0	Δ	•	0
Machanical Droportion of Materiala, Electicity, Hooko's law, Strain aparay, Surface	anarau Strage Strain	9 Linaa	U r alast	tioity	2 D
Plane stress- plane strain -Principal stresses- Equations of equilibrium and compatil	bility- Saint- Venant'	s princ	iple-F	Icity Ivdro	- 2-D static
stress and stress deviation -Visualizing stresses- Plasticity -Equations of plastic flo	ow - Stress Failure C	riteria	- Tre	sca fa	ailure
criterion - Von Mises failure criterion.					
UNIT II LINEAR ELASTIC FRACTURE AND BRITTLE FRACTUR	E	9	0	0	9
Introduction- Stress Concentrations- Energy Balance Criterion - Linear Elastic Fra	acture Mechanics - S	tress in	ntensi	ty fac	ctor -
Determining Stress Intensity Factors- Calculating stress intensity factors from prior s	tresses - Determining	stress	intens	sity fa	ctors
using the finite-element method -Delayed Fracture in Brittle Solids-Static Fatigue - '	The Stress Corrosion	Theory	of C	harle	s and
Hillig - Sharp Tip Crack Growth Model - Strength and failure probability - Effect of b	biaxial stresses - Dete	rmining	g the J	proba	bility
of delayed failure.					
UNIT III ELASTIC INDENTATION		9	0	0	9
Introduction- Hertz Contact Pressure Distribution - Analysis of Indentation Stress Fie	lds -Line contact -Po	int cont	act- A	Analy	sis of
stress and deformation - Indentation Stress Fields- Uniform pressure- Spherical in	ndenter - Cylindrical	roller	(2-D)) cont	tact -
Cylindrical flat punch indenter - Rigid cone-Elastic Contact- Hertz Contact Equat	ions - Impact –Fricti	on -He	rtzian	1 Frac	cture-
Hertzian Contact Equations - Auerbach's Law- Auerbach's Law and the Griffith Ener	gy Balance Criterion	- Energ	у ван	ance.	
UNIT IV ELASTIC –PLASTIC INDENTATION		9	0	0	9
Elastic-Plastic Indentation Stress Fields – Introduction- Pointed Indenters - Indentatio	n stress field - Indent	ation fr	acture	e- Fra	cture
toughness- Berkovich indenter- Spherical Indenter-Elastic and Elastic-Plastic Con-	tact Introduction- C	Geomet	rical 3	Simila	arity-
Indenter Types - Spherical- conical- and pyramidal indenters - Sharp and blunt indenter	ers -Elastic-Plastic Co	ntact -	Elasti	c reco	overy
-Compliance- The elastic-plastic contact surface.					
UNIT V DEPTH-SENSING INDENTATION TESTING METHODS		9	0	0	9
Indenter-Load-Displacement Curve-Unloading Curve Analysis-Experimental and	Analytical Procedure	s - Co	rrecti	ons to	o the
experimental Data-Application to Thin-Film Testing-Indentation Test Methods- Bond	led-Interface Techniq	ue - Inc	lentat	ion St	tress-
Strain Response – Compliance Curves- Hardness Testing - Vickers hardness -Berkovic	h indenter -Depth-sen	ising (n	ano) I	ndent	tation
- instruments - techniques -data analysis- test standards.					
	Το	tal(45)	L)=4	5 Per	riods
KEFEKENCE BOOKS:					

1	Fischer Cripps and Anthony C, "Introduction to Contact Mechanics", 2nd Edition, Springer Mechanical Engineering series, 2007.
2	Johnson.K.L, "Contact Mechanics", Cambridge University Press, Cambridge, 1985
3	Valentin L. Popov,"Contact Mechanics and Friction", 2nd Edition, Springer Mechanical Engineering series, 2007.
4	I.G.Goryacheva,"Contact Mechanics in Tribology", Springer-Science+Business Media, B.V.1998
5	K.L. Johnson, K. Kendall, A.D. Roberts, "Surface Energy and the Contact of Elastic Solid", <i>Proc. R. Soc.London, Ser. A</i> 1971, 324, 301-313.
6	M.K. Chaudhury, T. Weaver, C.Y. Hui and E.J. Kramer "Adhesive contact of Cylindrical lens and a Flat
	Sheet", J. Appl.Phys. 1996, 80(1), 30-37

COUR On comp	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Illustrate the various stress strain behaviour of elastic and plastic material	Understand
CO2	Identify and determine the mechanism of elastic fracture and brittle fracture	Understand
CO3	Analyze the stress indentation and pressure distribution in elastic contact.	Analysis
CO4	Illustrate the indenter type and elastic –plastic indentation fracture.	Understand
CO5	Ability to identify the indentation test methods.	Understand

COURSE	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	3	2	1	1	-	-	-	-	-	1	1	-	-	-	
CO2	1	1	1	1	-	-	1	-	-	1	1	-	-	1	
CO3	1	1	1	1	-	-	-	-	-	-	1	1	2	-	
CO4	1	2	1	1	-	-	-	-	-	-	1	1	-	1	
CO5	1	1	1	-	-	-	-	-	-	-	-	1	1	-	
Avg	1.4	1.4	1.0	0.8	0.0	0.0	0.2	0.0	0.0	0.4	0.8	0.6	0.6	0.4	
			3 / 2	/ 1 -indi	icates str	ength of	f correct	ion (3-H	ligh, 2-N	Aedium, 1	-Low)				

PREREQUISITES CATEGORY PE Credit 3 Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components and sub-systems in the working of an Automobile. Image: Construction of various components in clutch and brakes in automobile. Image: Construction of various components. Image: Construction of various components. Image: Construction of various construction of the automobile. Image: Construction of various construction of endering of clutch - calculation of clutch - calculations - leading of various construction of clutch - calculations - leading of various construction - design of clutch - calculation of critical parameters of clutches - design and clesign of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along stoe length - destruction standard elements of sustands represented is disk brakes. VINT II CLUTCH AND BRAKES Imadese fore reguidators - anti-locking system.	22CDE44	ADVANCED AUTOMOTIVE SYSTEMS		SEM	EST	ER]	I
L T P TH Hours/Week L T P TH I. To impart knowledge about the need and role of chassis construction in the function of an Automobile. 2. To study the function of various components and sub-systems in the working of an Automobile. - - 3. To Explain the fundamental design concepts in clutch and brakes in automobile. - - - 4. To Analyze the fundamental design concepts Transmission, suspension, steering systems. - <t< td=""><td>PREREQUIS</td><th>TES</th><td>CATEGORY</td><td>PE</td><td>Cre</td><td>edit</td><td>3</td></t<>	PREREQUIS	TES	CATEGORY	PE	Cre	edit	3
Industry veex 3 0 0 3 COURSE OBJECTIVES: 1. To impart knowledge about the need and role of chassis construction in the function of an Automobile. 2. To study the function of various components and sub-systems in the working of an Automobile 3. To Explain the fundamental design concepts in clutch and brakes in automobile. 4. To Analyze the fundamental design concepts Transmission, suspension, steering systems. 5. To identify the electronic systems on vehicle performance. UNIT I INTRODUCTION 9 0 0 9 Pundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading conditions. UNIT II ENGINE COMPONENTS 9 0 0 9 UNIT III CLUTCH AND BRAKES 9 0 0 9 Introduction - design diagrams of clutch - calculation of critical parameters of clutches - design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives, Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system. UNIT III			Hours/Wook	L	Т	Р	ТН
COURSE OBJECTIVES: 1. To impart knowledge about the need and role of chassis construction in the function of an Automobile. 2. To study the function of various components and sub-systems in the working of an Automobile 3. To Explain the fundamental design concepts in clutch and brakes in automobile. 4. To Analyze the fundamental design concepts Transmission, suspension, steering systems. 5. To identify the electronic systems on vehicle performance. UNIT I INTRODUCTION Pundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading co-olitions. UNIT II ENGINE COMPONENTS UNIT III ENGINE COMPONENTS 9 0 0 9 0 of rames, construction adjusting, balancing weight calculations - design of piston assembly, design of connecting rod, design of crankshaft under bending and twisting, balancing weight calculations - design faultomodo of standard elements of friction - design diagrams of clutch - calculation of critical parameters of clutches- design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locki			110u15/ WEEK	3	0	0	3
1. To impart knowledge about the need and role of chassis construction in the function of an Automobile. 2. To study the function of various components and sub-systems in the working of an Automobile 3. To Explain the fundamental design concepts in clutch and brakes in automobile. 4. To Analyze the fundamental design concepts Transmission, suspension, steering systems. 5. To identify the electronic systems on vehicle performance. UNIT I INTRODUCTION 9 0 0 9 Fundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading condi	COURSE OB.	ECTIVES:					
2. To study the function of various components and sub-systems in the working of an Automobile 3. To Explain the fundamental design concepts in clutch and brakes in automobile. 4. To Analyze the fundamental design concepts Transmission, suspension, steering systems. 5. To identify the electronic systems on vehicle performance. VNIT I NTRODUCTION 9 0 0 9 Fundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading conditions - loading conditions - or loading conditions of crankshaft under bending and twisting, balancing weight calculations - design of piston assembly, design of connecting rod, design of crankshaft under bending and twisting, balancing weight calculations - design of valves, valve springs and design of flywheet. UNIT II CLUTCH AND BRAKES 9 0 0 9 Introduction - design diagrams of clutch - calculation of critical parameters of clutches- design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining brarkes i fundamentals of designing brake force regulators - anti-locking system. UNIT IV TRANSMISSION, SUSPENSION, STEERING SYSTEMS 9 0	1. To impart k	nowledge about the need and role of chassis construction in the function	n of an Automobile.				
3. To Explain the fundamental design concepts in clutch and brakes in automobile. 4. To Analyze the fundamental design concepts Transmission, suspension, steering systems. 5. To identify the electronic systems on vehicle performance. UNIT I INTRODUCTION 9 0 0 9 Fundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading conditions. UNIT II ENGINE COMPONENTS 9 0 0 9 Choice of material for various engine components - design of cylinder, design of piston assembly, design of connecting rod, design of crankshaft under bending and twisting, balancing weight calculations - design of valves, valve springs and design of flywheel. UNIT II CLUTCH AND BRAKES 9 0 0 9 Introduction - design diagrams of clutch - calculation of critical parameters of clutches- design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking store - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system. UNIT IV TRANSMISSION, SUSPENSION, STEERING SYSTEMS 9 0 0 9 Determining main parameters of tr	2. To study th	2. To study the function of various components and sub-systems in the working of an Automobile					
4. To Analyze the fundamental design concepts Transmission, suspension, steering systems. 5. To identify the electronic systems on vehicle performance. UNIT I INTRODUCTION 9 0 0 9 Fundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading conditions. UNIT II ENGINE COMPONENTS 9 0 0 9 Choice of material for various engine components - design of cylinder, design of piston assembly, design of connecting rod, design of cranshaft under bending and twisting, balancing weight calculations - design of valves, valve springs and design of flywheel. UNIT III CLUTCH AND BRAKES 9 0 0 9 Introduction - design diagrams of clutch - calculation of critical parameters of clutches - design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system. UNIT IV TRANSMISSION, SUSPENSION, STEERING SYSTEMS 9 0 0 9 Determining main parameters of transmission and its design - gear shift mechanisms - differential - differential housings - axle shafts - gear box - universal joi	3. To Explain	the fundamental design concepts in clutch and brakes in automobile.					
5. To identify the electronic systems on vehicle performance. UNIT I INTRODUCTION 9 0 0 9 Fundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading conditions. UNIT II ENGINE COMPONENTS 9 0 0 9 Choice of material for various engine components - design of cylinder, design of piston assembly, design of connecting rod, design of crankshaft under bending and twisting, balancing weight calculations - design of valves, valve springs and design of flywheel. UNIT III CLUTCH AND BRAKES 9 0 0 9 Introduction - design diagrams of clutch - calculation of critical parameters of clutches- design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system. UNIT IV TRANSMISSION, SUSPENSION, STEERING SYSTEMS 9 0 0 9 Determining main parameters of transmission and its design - gear shift mechanisms – differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control link	4. To Analyze	the fundamental design concepts Transmission, suspension, steering sy	stems.				
UNIT I INTRODUCTION 9 0 0 9 Fundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading conditions. UNIT II ENGINE COMPONENTS 9 0 0 9 Choice of material for various engine components - design of cylinder, design of piston assembly, design of connecting rod, design of crankshaft under bending and twisting, balancing weight calculations - design of valves, valve springs and design of flywheel. UNIT III CLUTCH AND BRAKES 9 0 0 9 Introduction - design diagrams of clutch - calculation of critical parameters of clutches- design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system. UNIT IV TRANSMISSION, SUSPENSION, STEERING SYSTEMS 9 0 9 Determining main parameters of transmission and its design - gear shift mechanisms - differential - differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control linkage - steering gears - hydraulic booster. 9 0	5. To identify	the electronic systems on vehicle performance.					
Fundamentals of designing automobiles - performance of automobiles - general layout of the automobile - Types of chassis layout - various types of frames, constructional details, materials, unitized frame body construction - Design conditions - loading conditions.UNIT IIENGINE COMPONENTS9009Choice of material for various engine components - design of cylinder, design of piston assembly, design of connecting rod, design of crankshaft under bending and twisting, balancing weight calculations - design of valves, valve springs and design of flywheel.UNIT IIICLUTCH AND BRAKES9009Introduction - design diagrams of clutch - calculation of critical parameters of clutches - design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system.9009Determining main parameters of transmission and its design - gear shift mechanisms – differential - differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control linkage - steering gears - hydraulic booster.UNIT IVAUTOMOTIVE ELECTRONIC SYSTEMS9009Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems - Electro	UNIT I IN	TRODUCTION		9	0	0	9
Various types of names, constructional defans, materials,	Fundamentals of	designing automobiles - performance of automobiles - general layout o	f the automobile - T	Types o	f cha	ssis la	yout -
Child if it is in the interval is interval in the interval is interval is interval in the interval is interval is interval in the interval is interval interval interval is interval interval interval interval is interval interval interval interval is interval		JCINE COMPONENTS	on - Design conditio	0 - 10			0
UNIT IIICLUTCH AND BRAKES90009Introduction - design diagrams of clutch - calculation of critical parameters of clutches - design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system.009UNIT IVTRANSMISSION, SUSPENSION, STEERING SYSTEMS9009Determining main parameters of transmission and its design - gear shift mechanisms – differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control linkage - steering gears - hydraulic booster.9009UNIT VAUTOMOTIVE ELECTRONIC SYSTEMS9009Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems – Electronic transmission control vehicle safety system – braking and traction.Total(45L) = 45 Periods	Choice of materi of crankshaft und	al for various engine components - design of cylinder, design of piston ler bending and twisting, balancing weight calculations - design of valve	assembly, design o es, valve springs an	f conne d desig	cting n of f	rod, lywh	design eel.
Introduction - design diagrams of clutch - calculation of critical parameters of clutches- design calculation of standard elements of friction clutches - torsional vibration dampers - clutch control drives. Pressure distribution along shoe length - determining braking torque - design of drum and disk brakes - fundamentals of designing brake force regulators - anti-locking system. UNIT IV TRANSMISSION, SUSPENSION, STEERING SYSTEMS 9 0 0 9 Determining main parameters of transmission and its design - gear shift mechanisms – differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control linkage - steering gears - hydraulic booster. UNIT V AUTOMOTIVE ELECTRONIC SYSTEMS 9 0 0 9 Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems – Electronic transmission control vehicle safety system – braking and traction.	UNIT III CI	LUTCH AND BRAKES		9	0	0	9
UNIT IVTRANSMISSION, SUSPENSION, STEERING SYSTEMS9009Determining main parameters of transmission and its design - gear shift mechanisms – differential - differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control linkage - steering gears - hydraulic booster.suspensionUNIT VAUTOMOTIVE ELECTRONIC SYSTEMS9009Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, colant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems – Electronic transmission control vehicle safety system – braking and traction.Total(45L) = 45 EVENDE	Introduction - de friction clutches torque - design o	esign diagrams of clutch - calculation of critical parameters of clutches- - torsional vibration dampers - clutch control drives. Pressure distributi f drum and disk brakes - fundamentals of designing brake force regulate	- design calculation on along shoe lengt ors - anti-locking sy	of stan th - dete stem.	dard ermin	elem ing b	ents of raking
Determining main parameters of transmission and its design - gear shift mechanisms – differential - differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control linkage - steering gears - hydraulic booster.UNIT VAUTOMOTIVE ELECTRONIC SYSTEMS9009Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems – Electronic transmission control vehicle safety system – braking and traction.Total(45L) = 45 Periods	UNIT IV TI	RANSMISSION, SUSPENSION, STEERING SYSTEMS		9	0	0	9
UNIT V AUTOMOTIVE ELECTRONIC SYSTEMS 9 0 0 9 Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems - Electronic transmission control vehicle safety system - braking and traction. Total(45L) = 45 Periods	Determining mai - gear box - univ - shock absorber	Determining main parameters of transmission and its design - gear shift mechanisms – differential - differential housings - axle shafts - gear box - universal joint - propeller shaft. Suspension system - Oscillation and smoothness of ride - elastic elements of suspension - shock absorbers. Fundamentals of designing and calculating steering control linkage - steering gears - hydraulic booster.					
Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems – Electronic transmission control vehicle safety system – braking and traction. Total(45L) = 45 Periods		JTOMOTIVE ELECTRONIC SYSTEMS		9	0	0	9
Total(45L) = 45 Periods	Sensors in automobiles - Classification - sensors for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant and exhaust temperature, air mass flow for engine application. Solenoids, stepper motors and relay - engine management system - Gasoline / diesel systems – Electronic transmission control vehicle safety system – braking and traction.						
			Tot	tal(451	L) = 4	45 Pe	eriods

RE	FERENCE BOOKS:
1	David A.Crolla, "Automotive Engineering, Powertrain, Chassis System and Vehicle Body", 2009
2	William B. Ribbens, "Understanding Automotive Electronics", 1998
3	Lukin P Gasparyants G and Rodionov V, "Automobile Chassis Design and Calculations", Mir Publishers, 1989
4	Heinz Heisier, "Vehicle and Engine technology", SAE New York, 1999.
5	Gillespie T D, "Fundamentals of Vehicle Dynamics", SAE Inc. New York, 1992.
6	Schwaller A E, "Motor Automotive Technology", 3rd Edition, Delman Publishers, New York.

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Classify the chassis layout based on type of vehicles	Understand
CO2	Explain the various engine components in a vehicles	Understand
CO3	Compare the function and features of different braking and clutch systems for an automobile.	Analysis
CO4	Analyze the fundamental design concepts of transmission, suspension, steering systems	Analysis
CO5	Apply the automotive electronics to control the engine in order to reduce the emission level	Apply

COURSE A	OURSE ARTICULATION MATRIX													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	1	2	1	2	-	-	-	1	1	-	2	2	2
CO2	2	1	2	1	2	-	-	-	1	1	-	2	2	2
CO3	2	-	2	-	2	-	-	-	-	-	-	2	2	1
CO4	1	3	-	3	2	-	-	-	2	-	1	2	2	2
CO5	3	-	-	-	2	-	-	-	-	-	-	2	1	2
Avg	2.0	1.0	1.2	1.0	2.0	0.0	0.0	0.0	0.8	0.4	0.2	2.0	1.8	1.8
			3 / 2 /	1 -indic	ates stre	ngth of o	correctio	on (3-Hi	gh, 2-Me	edium, 1-l	Low)			

22CI	DE45	DESIGN OF MATERIAL HANDLING EQUIPM	ENT	CEM	тет	TD	T			
		(Use of approved Data Book and Charts may be perm	itted)	SEM	E91	EKI				
PRE	REQUIS	SITES	CATEGORY	PE	Cre	edit	3			
			Hours/Week	L	Т	Р	TH			
				3	0	0	3			
COU	RSE OF	BJECTIVES:								
1. 7	Γo study α	different types of material handling systems used for engineering and proce	ess industries							
2. 7	Fo design	of various hoisting gears and brakes for different material handling applic	ations							
3.	l'o design	various type of surface and overhead transportation equipment's.								
4. J 5 J	l o design	of elevators for various manufacturing and service applications	tion systems							
UNI		FLEXIBLE HOISTING APPLIANCES	tion systems.	9	0	0	9			
Type-	selection	and applications of material handling equipment- choice of material h	andling equipment -	– hoisti	ng eq	winn	ent –			
compo	onents and	d theory of hoisting equipment – chain and ropes – selection of ropes- pull	eys- pulley systems-	sprocke	ets an	d dru	ms.			
UNI	Г II –]	LOAD HANDLING EOUIPMENTS AND BRAKES		9	0	0	9			
Forge	d standar	d hooks – forged Ramshorn hooks – solid triangular eve hooks –crane	e grabs- electric lifti	ng mag	netic	– gra	bbing			
attach shoe b	ments for orakes.	loose materials. Arresting gear – brakes: shoe- band and cone types – ele	ments of shoe brakes	-therm	al cal	lculat	ion in			
UNI	T III	SURFACE AND OVERHEAD TRANSPORTATION EQUIPM	MENTS	9	0	0	9			
Hand	operated	trucks – powered trucks – tractors – electronically controlled tractors	- hand truck on rai	ils – in	dustri	ial ra	ilroad			
equip	nents: loo	comotives - winches – capstans – turntables – monorail conveyors –pipe ra	il systems – flat bar n	nonorai	ls. Ra	il trav	veling			
mecha	anism- ca	ntilever and monorail cranes- cogwheel drive- monocable tramways-revers	sible tramways.				-			
UNI	ΓIV	ELEVATING EQUIPMENTS		9	0	0	9			
Conti	nuous-mo	tion vertical conveyors – reciprocating-motion vertical conveyors – stack	ers – work levelers a	nd tail g	ates -	– indı	ustrial			
lifts –	passenge	r lifts – freight elevators – mast type elevators – vertical skip hoist elevators	-bucket elevators: des	sign- loa	ading	and b	ucket			
arrang	gements.					1				
UNI		CONVEYING EQUIPMENTS		9	0	0	9			
Belt c of belt	onveyors t conveyo	- chain conveyors – apron conveyors – escalators – flight conveyors – roll ors- screw conveyors and pneumatic conveyors.	er conveyors - oscilla	ting co	nveyo	ors - c	lesign			
			То	tal(45	L)=4	5 Pe	riods			
REF	ERENC	E BOOKS:								
1]	Rudenko.	N, "Materials Handling Equipment", MIR Publishers, 1969.								
2 \$	Spivakov	sky. A.O and Dyachkov. V.K, "Conveying Machines- Volume I and II", M	IIR Publishers, 1985.							
3 4	Alexandro	ov M, "Materials Handling Equipments", MIR Publishers, 1981.								
4]	Boltzharo	I A, "Materials Handling Handbook", The Ronald Press Company, 1958.								
5]	P.S.G Tec	ch, "Design Data Book", KalaikathirAchchagam, 2008.		0.0						
6	6 Lingaiah. K and Narayanalyengar, "Machine Design Data Hand Book- Vol. 1 & 2", Suma Publishers, 1983.									
COL		UTCOMES,			B	loom	's			
On co	ompletion	of the course the student will be able to			Ta	axon	omy			
					M	app	ed			
C01	CO1 Realize the selection of material handling equipment Understand									
CO2	202 Design various hoisting elements like, forged hooks, eye hooks, crane grabs and brakes shoe. Create									
CO3	Design	the various types of overhead transportation equipment's			+	Crea	ate			
CO4	Design directio	the bucket, industrial and freight lift elevators for to and fro transporta	tion of materials in	vertical		Crea	ate			

Create

CO5 Design the different conveyor systems for material handling applications

COURSE	ARTIC	CULAT	TION M	IATRI	X									
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01	2	1	2	2	2	-	-	-	-	-	-	1	1	1
CO2	1	2	2	2	-	-	2	-	2	-	-	3	2	3
CO3	1	1	2	2	2	-	-	-	-	-	1	3	2	3
CO4	1	1	2	2	2	-	-	-	-	-	1	3	2	3
CO5	1	2	2	2	2	-	-	-	-	-	2	3	2	3
Avg	1.2	1.4	2.0	2.0	1.8	0.0	0.4	0.0	0.4	0.0	0.8	2.6	1.8	2.6
			3 / 2	/ 1 -indi	cates str	rength of	f correct	ion (3-H	ligh, 2-N	Aedium, 1	-Low)			

PROFESSIONAL ELECTIVE – V

22CDE51	MEMS AND NEMS TECHNOLOGY		SEM	IEST	'ER I	III		
PREREQUISIT	TES	CATEGORY	PE	Cro	edit	3		
			L	Т	Р	TH		
		Hours/Week	3	0	0	3		
COURSE OBJ	ECTIVES							
1. To introduce	the concepts of micro and nano electromechanical devices							
2. To know the	fabrication process of Microsystems							
3. To know the	design concepts of micro sensors and micro actuators							
4. To introduce	the concepts of quantum mechanics and nano systems		•		0			
	TRODUCTION TO MEMS AND NEMS		9	0	0	9		
Characteristics of silicon compound	Scaling laws - Scaling effect on physical properties, scaling effects on Electrical properties, scaling effect on physical forces - Intrinsic Characteristics of MEMS – Energy Domains -Nano and Microelectromechanical Systems, Materials for MEMS and NEMS: Silicon, silicon compounds, polymers, metals. Stress and strain analysis – Flexural beam bending- Torsional deflection.							
UNIT II ME	MS FABRICATION TECHNOLOGIES		9	0	0	9		
Photolithography, Surface Micromac	Ion Implantation, Diffusion, Oxidation, CVD, Sputtering Etching techniqu hining, LIGA.	es, Micromachining	g: Bulk	Micr	omac	hining,		
UNIT III MI	CRO SENSORS		9	0	0	9		
MEMS Sensors: D Tactile and Flow s	besign of Acoustic wave sensors, Vibratory gyroscope, Parallel plate capacit sensors, Thermal Sensing Case study: Piezoelectric energy harvester.	ors, Pressure sensor	rs, Piezo	oresis	tive s	ensors,		
UNIT IV MI	CRO ACTUATORS		9	0	0	9		
Design of Actuato Alloys, Actuation Study:RF Switch.	rs: Micro Grippers – Micro Motors, Actuation using thermal forces, Therm using piezoelectric crystals, Actuation using Shape Memory Alloys -	al Bimorph , Actua Actuation using E	tion usi lectros	ing sh tatic	ape m forces	nemory s, Case		
UNIT V NE	UNIT V NEMS SYSTEMS 9 0 0 9							
Atomic Structures and Quantum Mechanics, Quantum confinement in 3D, 2D, 1D and zero dimensional structures -Size effect and properties of nanostructures- nanotubes and nanowires for nano device fabrication – Single electron transistors, coulomb blockade effects in ultra-small metallic tunnel junctions - nanoparticles based solar cells.								
	Total(45L)= 45 Periods							

RE	REFERENCE BOOKS:						
1	Marc Madou, Fundamentals of Microfabrication ^{II} , CRC press 1997.						
2	Stephen D.Senturia, Micro system Designl, Kluwer Academic Publishers, 2001.						
3	Tai Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata Mcraw Hill, 2002.						
4	Chang Liu, Foundations of MEMS ^I , Pearson education India limited, 2006,						
5	Sergey Edward Lyshevski, MEMS and NEMS: Systems, Devices, and Structures CRC Press, 2002						

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Interpret the basics of micro/nano electromechanical systems including their scope and recent development of science and technology.	Remembering
CO2	Recognize the use of materials in micro fabrication and describe the fabrication processes.	Understand
CO3	Analyze the key performance aspects of electromechanical sensors including sensors and actuators	Analysis
CO4	Gain a knowledge of basic approaches for various actuators design.	Understand
CO5	Comprehend the theoretical foundations of quantum mechanics and Nano systems.	Remembering

COURSE ARTICULATION MATRIX

COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	2	-	-	3	2	3	3	-	-
CO2	2	2	2	-	2	2	2	3	-	-	-	-	-	-
CO3	2	3	-	2	-	-	-	-	2	2	2	-	-	-
CO4	2	3	2	2	-	-	3	2	2	-	-	-	-	-
CO5	-	2	2	2	3	3	-	-	-	2	-	3	2	-
Avg	1.8	2.0	1.2	1.2	1.4	1.4	1.0	1.0	1.4	1.2	1.0	1.2	0.4	0.0
			3/2	/ 1 -indi	cates str	ength of	f correct	ion (3-H	ligh. 2-N	ledium. 1	-Low)			

22CI	2CDE52 ENTERPRISE RESOURCE PLANNING SEMESTER III								
PRER	REQUIS	SITES	CATEGORY	PE	Cr	edit	3		
			TT /TT -	L	Т	Р	TH		
			Hours/ week	3	0	0	3		
COU	RSE O	BJECTIVE :							
1 L ar	Learn ab	out the rationale for acquiring and implementing ERP systems, selection of E actions in the ERP system.	RP software, and i	ntegrat	tion o	of pro	cesses		
2 U le	Jndersta adership	nd the challenges associated with the successful implementation of Supply C and managerial implications/actions and generating business value for the firm	Thain ERP softwar	e with	an e	mpha	asis on		
3 L	Learn pr	inciples of leading very large change initiatives by focusing on the rational ation.	and emotional as	pects of	of or	ganiz	ational		
4 E	Develop	the student's organizational and analytical skills through the use of business case	s studies, articles a	nd wor	king	in tea	ams.		
5 T	Го gain k	nowledge of the hidden cost of a company.							
UNIT	Ι	ENTERPRISE RESOURCE PLANNING		9	0	0	9		
Princip Value o	ole – ER chain – S	P framework – Business Blueprint – Business Engineering vs. Business proce Supply and Demand chain – Extended supply chain management – Dynamic Mo	ss Re-Engineering dels –Process Mod	– Tool els	s – I	Langu	ages –		
UNIT	'II '	TECHNOLOGY AND ARCHITECTURE		9	0	0	9		
Client/¦ Evalua	Server a ation fram	rchitecture – Technology choices – Internet direction – Evaluation framework.	s – CRM – CRM	pricing	g− ch	ain s	afety –		
UNIT	III	ERP SYSTEM PACKAGES		9	0	0	9		
SAP - Integra	People ation of H	soft- Baan and Oracle – Comparison – Integration of different ERP applicati ERP and Internet – ERP Implementation strategies – Organizational and social is	ons – ERP as sale sues.	s force	auto	omati	on –		
UNIT	'IV	ORACLE		9	0	0	9		
Overvi critical	iew – Ar issues –	chitecture – AIM – applications – Oracle SCM. SAP: Overview – Architecture Training on various modules of IBCS ERP Package-Oracle ERP and MAXIMO	e – applications -Be D- including ERP o	efore and the N	nd af IET	ter Y	2k –		
UNIT	V	ERP PROCUREMENT ISSUES		9	0	0	9		
Market	t Trends	- Outsourcing ERP - Economics - Hidden Cost Issues - ROI - Analysis of case	s from five Indian	Compa	nies.				
			Tota	(45L)	=45	Peri	iods		

R	EFERENCE BOOKS:
1	Sadagopan. S, "ERP-A Managerial Perspective", Tata McGraw Hill, 1999.
2	Jose Antonio Fernandez, "The SAP R/3 Handbook", Tata McGraw Hill, 1998.
3	Vinod Kumar Crag and Venkitakrishnan, N.K., "Enterprise Resource Planning Concepts and Practice", Prentice Hall of India, 1998.
4	Garg and Venkitakrishnan, "ERPWARE- ERP Implementation Framework", Prentice Hall, 1999.

COUR On com	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Differentiate between a business process and a business function and explain how a structured supply chain management planning process enhances efficiency and decision making	Analysis
CO2	Define integrated information systems and Describe the benefits of customer relationship management (CRM) software.	Rememberi ng
CO3	Analyze the role of PLM, SCM and CRM in ERP.	Analysis
CO4	Analyze the role of Consultants, Vendors and Employees.	Analysis
CO5	Outline the accounting and management-reporting benefits that accrue from having an ERP system.	Understand

COURSE A	RTICU	LATIO	N MAT	RIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01	1	1	2	-	2	1	-	1	-	1	1	1	1	1
CO2	1	1	2	1	2	2	1	-	-	1	1	-	1	-
CO3	1	1	2	2	2	1	1	-	1	1	1	1	2	1
CO4	-	1	1	2	1	2	1	2	2	-	1	1	1	1
CO5	-	1	1	-	1	1	1	1	1	2	1	1	2	2
Avg	0.6	1.0	1.6	1.0	1.6	1.4	0.8	0.8	0.8	1.0	1.0	0.8	1.4	1.0
3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)														

22CDE53	MECHATRONICS SYSTEM DESIGN		SEMESTER II						
PREREQUI	SITES	CATEGORY	PE	3					
		Hours/Week	L	Т	Р	ТН			
			3	0	0	3			
COURSE	OBJECTIVE :								
1. To prov Mechani	ide the interdisciplinary concepts of Electronics, Electrical, Mechanical and Corcal and Electronic Systems.	nputer Systems for	the Co	ntrol	of				
2 To know	v the basic working principle of sensors and transducers of use for manufacturin	g system							
3 To know	w the features, modules and interfaces of microprocessors								
4 To unde	erstand the concept of PLC system in industrial applications								
5. To gain	the knowledge of integration of mechatronic systems in automation of modern	manufacturing system	ems	-					
UNIT I	INTRODUCTION		9	0	0	9			
and Mechat	ronics Design- Advanced applications in Mechatronics - Measurement systemsC	ontrol Systems- PI	D Conti	oller	s.	sign			
UNIT II	SENSORS AND TRANSDUCERS		9	0	0	9			
Introduction sensors - Li	- Performance Terminology - Displacement- Position and Proximity - Velocity a ght sensors - Selection of sensors - Signal processing - Servo systems.	nd Motion - Fluid p	ressure	- Ter	npera	ıture			
UNIT III	MICROPROCESSORS IN MECHATRONICS		9	0	0	9			
Introduction Interfacing motor contr	a - Architecture - Pin configuration - Instruction set - Programming of Mid input and output devices - Interfacing D/A converters and A/D converters – App ol - Traffic light controller	croprocessors using lications - Tempera	g 8085 iture co	instr ntrol	uctio - Ste	ns - pper			
UNIT IV	PROGRAMMABLE LOGIC CONTROLLERS		9	0	0	9			
Introduction handling - A	- Basic structure - Input and Output processing - Programming –Mnemonics Tranalog input and output - Selection of PLC.	mers- Internal relag	ys and c	ount	ers -]	Data			
UNIT V	MECHATRONICS SYSTEMS AND APPLICATIONS		9	0	0	9			
Intelligent M Handling ar	Manufacturing – Condition Monitoring and Control - Robot for Automatic Ass d Inspection- Automotive Mechatronics: Electronic Ignition System – ABS – E	embly Process- Ro BD – Automatic Cr	bot Vis ruise Co	ion – ontrol	Mat	erial			
		Total	(45L)	=45	Peri	ods			

REFERENCE BOOKS: 1 Michael B.Histand and David G. Alciatore, "Introduction to Mechatronics and Measurement Systems", McGraw Hill International Editions, 1999. 2 Bradley- D.A, Dawson D, Buru N.C and Loader A J, "Macaronis", Chapman and Hall, 1993. 3 Ramesh.SGaonkar, "Microprocessor Architecture- Programming and Applications", Wiley Eastern, 1998. 2. Lawrence J.Kamm, "Understanding Electro-Mechanical Engineering- An Introduction to Mechatronics", Prentice Hall, 2000. 4 Ghosh- P.K. and Sridhar- P.R. "0000 to 8085- Introduction to Microprocessors for Engineers and Scientists", 2nd Edition, Prentice Hall, 1995.

COUR On com	SE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Generate conceptual design for Mechatronics products based on potential customer requirements	Create
CO2	Select appropriate sensors and transducers and devise an instrumentation system for collecting information about processes	Apply
CO3	Explain the features, modules and interfaces of microprocessors	Understand
CO4	Write PLC program for industrial applications	Apply
CO5	Apply the knowledge of integration of mechatronic systems in automation of modern manufacturing systems	Apply

COURSE A	RTICU	LATIO	N MAT	RIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	3	2	2	2	-	-	1	2	-	1	3	-	-
CO2	1	-	2	2	-	1	-	2	2	-	1	2	-	-
CO3	2	3	3	-	2	-	-	2	1	-	2	-	-	-
CO4	-	2	3	2	1	-	-	1	1	2	-	2	2	-
CO5	1	2	1	-	-	1	1	-	-	-	-	2	3	3
Avg	1.2	2.0	2.2	1.2	1.0	0.4	0.2	1.2	1.2	0.4	0.8	1.8	1.0	0.6
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

REREQUISITES CATEGORY PE Credit 3 Hours/Week I T P Tf Hours/Week I T P Tf 3 0 0 3 0 0 3 COURSE OBJECTIVE :	22CD	E54	FAILURE ANALYSIS		SEMESTER III							
Hours/Week L T P TH 1. To Introduce the Basic Concept of Fracture Mechanics And Failure Analysis	PRERI	EQUI	SITES CAT	EGORY	PE Credit 3							
Hours/week 3 0 0 3 COURSE OBJECTIVE : 1. To Introduce the Basic Concept of Fracture Mechanics And Failure Analysis .			Цен	wa/Waalr	L	Т	Р	ТН				
COURSE OBJECTIVE : 1. To Introduce the Basic Concept of Fracture Mechanics And Failure Analysis 2. Import Knowledge on Mechanics of Fracture During Static And Dynamic Loading 3. Understanding The Failure Mechanism of Creep Rupture. 4. Understand The Mechanism of Wear And Corrosion And Knowledge on Prevention 5. Gain knowledge on Reliability and condition monitoring UNIT I INTRODUCTION 9 0 0 9 Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture. 9 0 0 9 General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of roacking, sources, characteristics of stress corrosion cracking, racture indexing, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures 9 0 0 9 CONT II CAUSES OF FAILURE 9 0 0 9 0 <td< td=""><td></td><td></td><td>nou</td><td>rs/ week</td><td>3</td><td>0</td><td>0</td><td>3</td></td<>			nou	rs/ week	3	0	0	3				
1. To Introduce the Basic Concept of Fracture Mechanics And Failure Analysis 2. Import Knowledge on Mechanics of Fracture During Static And Dynamic Loading 3. Understanding The Failure Mechanism of Creep Rupture. 4. Understand The Mechanism of Wear And Corrosion And Knowledge on Prevention 5. Gain knowledge on Reliability and condition monitoring UNIT I INTRODUCTION 9 0 0 9 Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture. UNIT II CONCEPTS OF FAILURE 9 0 0 9 General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, impro	COU	JRSE	OBJECTIVE :					L				
 Import Knowledge on Mechanics of Fracture During Static And Dynamic Loading Understanding The Failure Mechanism of Creep Rupture. Understand The Mechanism of Wear And Corrosion And Knowledge on Prevention Gain knowledge on Reliability and condition monitoring UNIT I INTRODUCTION 9 0 0 9 Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture. UNIT II CONCEPTS OF FAILURE 9 0 0 9 General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. UNIT III TYPES OF FAILURE 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking, various types of hydrogen damage failures UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition mailure of weldments - reasons for failure procedure for weld failure analysis. UNIT V RELIABILITY 9 0 9 0 9	1. 7	To Inti	oduce the Basic Concept of Fracture Mechanics And Failure Analysis									
 Understanding The Failure Mechanism of Creep Rupture. Understand The Mechanism of Wear And Corrosion And Knowledge on Prevention Gain knowledge on Reliability and condition monitoring UNIT I INTRODUCTION 9 0 0 9 Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture. UNIT II CONCEPTS OF FAILURE 9 0 0 9 General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. UNIT III TYPES OF FAILURE 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. UNIT V RELIABILITY 9 0 0 0 9 Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing 	2. 1	Import	Knowledge on Mechanics of Fracture During Static And Dynamic Loading									
 Understand The Mechanism of Wear And Corrosion And Knowledge on Prevention Gain knowledge on Reliability and condition monitoring UNIT I INTRODUCTION 9 0 0 9 Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture. UNIT II CONCEPTS OF FAILURE 9 0 0 9 General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. UNIT III TYPES OF FAILURE 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. UNIT V RELIABILITY 9 0 0 9 0 9 0 9 0 9 0 9 	3. 1	Under	standing The Failure Mechanism of Creep Rupture.									
5. Gain knowledge on Reliability and condition monitoring 9 0 0 9 UNIT I INTRODUCTION 9 0 0 9 Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture. UNIT II CONCEPTS OF FAILURE 9 0 0 9 General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. UNIT II TYPES OF FAILURE 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. UNIT IV RELIABILITY 9 0 0 9 9 0 0 9	4. 1	Under	stand The Mechanism of Wear And Corrosion And Knowledge on Prevention									
UNIT IINTRODUCTION9009Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture.9009UNIT IICONCEPTS OF FAILURE9009General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures.9009Types of FAILURE9009Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures9009Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis.9009Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing9009Total(45L) =45 Periods	5. 0	Gain kı	nowledge on Reliability and condition monitoring		1		I					
Stages of failure analysis, classification and identification of various types of fracture. Overview of fracture mechanics, characteristic of ductile and brittle fracture. 9 0 0 9 UNIT II CONCEPTS OF FAILURE 9 0 0 9 General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. 9 0 0 9 Types of FAILURE 9 0 0 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures 9 0 0 9 UNIT IV CAUSES OF FAILURE 9 0 0 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. 9 0 0 9 UNIT V RELIABILITY 9 0 0 9 0 9 <t< td=""><td>UNI</td><td>ТΙ</td><td>INTRODUCTION</td><td></td><td>9</td><td>0</td><td>0</td><td>9</td></t<>	UNI	ТΙ	INTRODUCTION		9	0	0	9				
UNIT IICONCEPTS OF FAILURE9009General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures.9009UNIT IIITYPES OF FAILURE9009Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures9009UNIT IVCAUSES OF FAILURE9009Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis.9009UNIT VRELIABILITY9009Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testingTotal(45L) =45 Periods	Stage of due	s of fai	lure analysis, classification and identification of various types of fracture. Overview on brittle fracture.	f fracture m	nechar	nics, c	haracte	ristics				
General concepts, fracture characteristics revealed by microscopy, factors affecting fatigue life Creep, stress rupture, elevated temperature fatigue, metallurgical instabilities, environmental induced failure. Some case studies failures. UNIT III TYPES OF FAILURE 9 0 0 9 Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures 9 0 0 9 UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. 9 0 0 9 UNIT V RELIABILITY 9 0 0 9 Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing Total(45L) =45 Periods	UNI	TII	CONCEPTS OF FAILURE		9	0	0	9				
UNIT IIITYPES OF FAILURE9009Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures9009UNIT IVCAUSES OF FAILURE9009Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis.9009UNIT VRELIABILITY9009Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul 	Gener tempe	ral cor erature	ncepts, fracture characteristics revealed by microscopy, factors affecting fatigue lif fatigue, metallurgical instabilities, environmental induced failure. Some case studies	e Creep, st failures.	ress r	uptur	e, elev	ated				
Types of wear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures, an overview of various types of corrosion stress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedure for analyzing stress corrosion cracking, various types of hydrogen damage failures UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. 9 0 0 9 UNIT V RELIABILITY 9 0 0 9 Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing Total(45L) =45 Periods	UNI	T III	TYPES OF FAILURE		9	0	0	9				
UNIT IV CAUSES OF FAILURE 9 0 0 9 Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. 9 0 0 9 UNIT V RELIABILITY 9 0 0 9 Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing Total(45L) =45 Periods	Types corros crack	s of we sion st ing, va	ear, analyzing wear failure. Corrosion failures- factors influencing corrosion failures ress corrosion cracking, sources, characteristics of stress corrosion cracking. Procedu rious types of hydrogen damage failures	, an overvie are for anal	ew of yzing	vario stress	us type s corro	s of sion				
Causes of failure in forging, failure of iron and steel castings, improper heat treatment, stress concentration and service condition Failure of weldments - reasons for failure procedure for weld failure analysis. UNIT V RELIABILITY 9 0 0 9 Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing Total(45L) =45 Periods	UNI	T IV	CAUSES OF FAILURE		9	0	0	9				
UNIT V RELIABILITY 9 0 0 9 Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weibul distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing Image: Concept and Poisson and Poiss	Cause Failur	es of fa re of w	ailure in forging, failure of iron and steel castings, improper heat treatment, stress coreldments - reasons for failure procedure for weld failure analysis.	oncentratior	n and	servic	e cond	litions				
Reliability concept and hazard function, life prediction, condition monitoring, application of Poisson, exponential and Weiburd distribution for reliability, bathtub curve, parallel and series system, mean time between failures and life testing Total(45L) =45 Periods	UNI	ТΥ	RELIABILITY		9	0	0	9				
Total(45L) =45 Periods	Relial distrit	bility bution	concept and hazard function, life prediction, condition monitoring, application of for reliability, bathtub curve, parallel and series system, mean time between failures a	Poisson, ex and life test	xpone	ntial	and W	eibull				
				Tota	al(45I	L) =4	5 Peri	ods				

REFERENCE BOOKS:	
-------------------------	--

Bradley- D.A, Daws ASM Metals Handbook "Failure Analysis and Prevention", ASM Metals Park. Ohio,Vol.10, 10th Edition, 1995.
 Colangelo.V.J. and Heiser.F.A. "Analysis of Metallurgical Failures", John Wiley and Sons Inc. New York, USA, 1974. On D, Buru N.C and Loader A J, "Macaronis", Chapman and Hall, 1993.

COURSE OUTCOMES: On completion of the course the student will be able to															
CO1	Evaluating the mechanical behaviour includes tensile, fatigue and creep behaviour of materials.	Evaluate													
CO2	Ability to Understand the micro mechanisms of brittle and ductile fracture	Understand													
CO3	Analyze the fatigue and fracture behaviour of materials	Analysis													
CO4	Apply the knowledge for failure analysis and case studies	Apply													
CO5	Ability to Understand the concepts of Reliability and build system reliability models for different	Understand													
	configurations.														
COURSE A	COURSE ARTICULATION MATRIX														
----------	----------------------------	-----	-----	-------------	-----------	------------	------------	-----------	-----------	------------	-------	------	------	------	--
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	3	2	2	2	1	-	-	-	-	1	1	-	-	1	
CO2	3	2	2	2	1	-	-	-	-	1	-	-	-	1	
CO3	2	3	2	1	1	1	-	-	-	1	-	3	2	-	
CO4	2	3	2	1	1	1	1	-	-	1	1	3	2	-	
CO5	2	1	1	1	2	1	-	-	-	-	-	1	1	-	
Avg	2.4	2.2	1.8	1.4	1.2	0.6	0.2	0.0	0.0	0.8	0.4	1.4	1.0	0.4	
			3 /	/ 2 / 1 -in	dicates s	strength o	of correc	tion (3-H	High, 2-N	/ledium, 1	-Low)				

22CDE55	MAINTENANCE ENGINEERING	SEM	IEST	ER I	II
PREREQUISI	TES CATEGORY	PE	Cre	dit	3
		L	Т	Р	ТН
	Hours/Week	3	0	0	3
COURSE O	BJECTIVES:			1	
1. To underst	tand the concepts productivity and availability based on reliability and effectiveness.				
2. To preven	t or reduce the likelihood or frequency of failures of engineering components and syst	ems.			
3. To increas	e the quality, quantity of the product with minimal cost.				
4. To identify	y and correct the causes of failures that does occur in engineering system.				
5. To analyse	e about different failure modes				
UNIT I IN	VTRODUCTION	9	0	0	9
Maintenance – I	Key to reliability & productivity. Basic elements of maintenance system - inspection,	Planning	g & scl	nedul	ing,
job execution, re	ecord keeping, data analysis, learning & improvement. Preventive, operating and	shutdow	n mair	itenai	ice;
Condition based	maintenance and Application of Preventive maintenance for a system of equipment.				
UNIT II V	IBRATION AND SIGNATURE ANALYSIS	9	0	0	9
Vibration and s	ignature analysis; causes; remedy in rotating machinery. Fluid analysis for conditi	on Mon	itoring	, vari	ous
methods of fluid	analysis. Vibration monitoring - Data acquisition, Transducers, Time domain and free	quency d	omain	analy	sis,
Phase signal anal	sis, Fault diagnosis of rotating Equipment, antifriction bearings and gears.				
UNIT III N	ON-DESTRUCTIVE TESTING	9	0	0	9
Non-destructive	testing - Visual examination - optical aids, liquid penetrate testing, magnetic partic	le Testin	g, edd	y cur	rent
testing, radiograp	phy, ultrasonic testing, acoustic emission testing, thermo-graphy, leak testing, corrosid	on monito	oring, s	standa	ards
for NDT.			r	1	
UNIT IV L	UBRICATION	9	0	0	9
Lubrication: Int	roduction to lubrication engineering, types, classification of lubricants with their pro	perties a	nd cha	racter	istics
Bearing lubricati	on technique for minimization of friction and wear				•
UNIT V R	ELIABILITY	9	0	0	9
The science of	friction and wear; Different types of wear - abrasive, corrosive, seizure, scoring,	Scuffing,	pittin	g, sp	alling,
adhesive, etc. and	t techniques for minimization of wear. Data collection and Analysis, Introduction to co	mputer-a	uded n	nainte	nance
management sys				.	
	10	tal(45L) =45	Peri	ods
REFERENC	TE BOOKS:				
1 Industrial M	Maintenance – H.P.Garg				
2 Industrial N	Maintenance Management – S.K.Srivastava				

Mishra, R. C. and Pathak, K., Maintenance Engineering and Management, Second Edition, Prentice Hall of India, New Delhi, 2004.

- 4 Dhillon B.S., Engineering Maintenance: A Modern Approach, Taylor & Francis Group, 2002.
- 5 Mobley R. K., An Introduction to Predictive Maintenance, Second Edition, Butterworth-Heinemann,

COUR On com	COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Apply maintenance management skill and Explain the need of safety devices.	Apply					
CO2	Apply the concept of tribology and conditioning monitoring in Vibration and Fluid analysis.	Apply					
CO3	Select and apply appropriate Non-destructive testing for various measures of maintenance.	Apply					
CO4	Identify the lubrication technique for minimization of friction and wear.	Understand					
CO5	Analyze the failure modes of plant machineries to increase the productivity of the plant.	Analysis					

COURS	COURSE ARTICULATION MATRIX														
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	3	2	2	2	1	-	-	-	-	1	1	1	-	3	
CO2	3	2	2	2	1	-	-	-	-	1	-	1	-	-	
CO3	2	3	2	1	1	1	-	-	-	1	-	-	1	-	
CO4	2	3	2	1	1	1	1	-	-	1	1	-	-	1	
CO5	2	3	2	1	1	1	-	-	-	1	-	-	-	1	
Avg	2.4	2.6	2.0	1.4	1.0	0.6	0.20	0.0	0.0	1.0	0.4	0.4	0.20	1.0	
			3 /	2 / 1 -inc	dicates st	trength o	f correct	ion (3-H	igh, 2-M	ledium, 1	-Low)				

PROFESSIONAL ELECTIVE - VI

22CDE61	INTEGRATED PRODUCT AND PROCESSES DEVI	ELOPMENT	SE	MES	STER	III
PREREQUI	SITES	CATEGORY	PE	Cr	edit	3
		HoundWook	L	Т	Р	TH
		Hours/ week	3	0	0	3
COURSE	DBJECTIVES:		· .			
1. Process	planning and cost estimation, Concept of Engineering design, Industrial Ma	anagement and engin	eering	•		
2. To gen 3. To kno	v about the need of product specifications					
4. To kno	w the concept selection and measure customer response.					
5. To gair	knowledge in product architecture and level design issues.					
UNIT I	INTRODUCTION		Ģ) () 9
Challenges Developmen Developmen	of Product Development –Development Processes and Organizations- at: The Front-End Process Adapting the Generic Product Development Proce at Organizations-The AMF Organization	A Generic Develops ss- The AMF Develo	ment pment	Proce Proc	ess-Co ess-Pr	ncept oduct
UNIT II	PRODUCT PLANNING		9) 9
Project Plan Data in Ter Reflecting o	ning Process- Identifying Opportunities- Evaluating and Profitizing Proje ning-Reflect on the Results and the Process-Identifying Customer Needs- R ms of Customer Needs-Organizing the Needs into a Hierarchy- Establish n the Results and the Process	aw Data from Custor ing the Relative Imp	mers- portance	Interr	preting the N	Raw eeds-
UNIT III	PRODUCT SPECIFICATIONS			9 () () 9
Specificatio Generation- Reflect on t	ns - Specifications Established - Establishing Target Specifications-S The Activity of Concept Generation-Clarify the Problem- Search Externally he Results and the Process.	etting the Final Sp -Search Internally- E	becific Explore	ation e Sys	s- Co tematio	ncept cally-
UNIT IV	CONCEPT SELECTION			9 ()	09
Concept Sel a Survey Po Reflect on t	ection- Overview of Methodology-Concept Screening-Concept Testing- Def pulation- Choose a Survey Format- Communicate the Concept- Measure he Results and the Process.	ine the Purpose of the Customer Response	e Conc e-Inter	ept T pret 1	est- Cl the Re	100se sults-
UNIT V	PRODUCT ARCHITECTURE			9 ()	0 9
Product Are Related Sys	hitecture-Implications of the Architecture-Establishing the Architecture- em-Level Design Issues	Delayed Differentia	tion-	Platfo	orm P	anning
		Tot	al(45]	L) =4	45 Pe	riods
DEEDD	ICE DOOKS.					

	ET ERENCE BOORD.
1	Product Design and Development, Karl T. Ulrich and Steven .D Epinger, McGraw-Hill International Edns. 4th edition 2013.
	ISBN-13: 978-0070058110.
2	Kevien Otto and Kristin Wood, "Product Design" Pearson Publication, 3rd Edition, 2012, ISBN-13: 9780130212719.
3	Tuart Pugh, "Tool Design – Integrated Methods for successful Product Engineering", Addison Wesley Publishing, Neyork, 1991, ISBN: 020141639.
4	Tephen Rosenthal, Business One Orwin "Effective Product Design and Development", Homewood, 1992,ISBN:1-55623-603- 4
5	KemnnethCrow,"ConcurrentEngg. /Integrated Product Development", DRM Associates, 26/3, ViaOlivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book.

COURS On compl	E OUTCOMES: etion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Impart knowledge on product development processes and organizations.	Understand
CO2	Identify customer needs, product planning processes and allocating resources and timing.	Understand
CO3	Apply knowledge on product specifications.	Apply
CO4	Define the concept selection and measure customer response.	Remembering
CO5	Provide product architecture and level design issues.	Apply

COURSE	COURSE ARTICULATION MATRIX														
COs/PO s	PO1	PO2	PO 3	PO 4	PO 5	PO6	PO7	PO8	PO 9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	2	2	-	1	-	-	1	-	-	-	-	2	1	2	
CO2	1	3	1	1	-	-	1	-	-	-	-	2	-	1	
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1	
CO4	3	2	1	2	2	-	1	-	-	-	-	1	2	1	
CO5	2	3	-	3	1	-	1	-	-	-	-	3	-	1	
Avg	2.2	2.2	0.6	1.6	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.2	0.6	1.2	
			3 / 2	/ 1 -ind	icates st	rength of	f correcti	on (3-H	igh, 2-N	ledium, 1-	-Low)				

22CDE62	INDUSTRIAL SAFETY MANAGEMI	ENT	SEI	MEST	TER I	II
PREREQUI	SITES	CATEGORY	PE	Cr	edit	3
		Hours/Week	L	Т	Р	TH
			3	0	0	3
COURSE	OBJECTIVES:					
1. To achiev	ve an understanding of principles of safety management.					
2. To enable	e the students to learn about various functions and activities of safety of a students to conduct activity oudit and write oudit monorte affectively in	lepartment.				
4 To have l	showledge about sources of information for safety promotion and train	ing				
5. To famili	arize students with evaluation of safety performance.					
UNIT I	SAFETY MANAGEMENT		9	0	0	9
Evaluation c committee, s productivity.	of modern safety concepts - Safety management functions - safety o safety audit - performance measurements and motivation - employe	rganization, safety of ee participation in	departn safety	nent - - safet	safety y and	
UNIT II	OPERATIONAL SAFETY		9	0	0	9
Safety in we Machine sho other machin	lding and cutting. Cold-metal Operation - Safety in pp - Cold bending and chamfering of pipes - metal cutting - shot blast hes.	ing, grinding, painti	ng - po	wer pi	ess an	d
UNIT III	SAFETY MEASURES		9	0	0	9
Layout design prevention - pollution - N industrial ha	gn and material handling - Use of electricity - Management of toxic Road safety - highway and urban safety - Safety of sewage disposa Janaging emergencies in Industries - planning, security and risk assessi zards.	gases and chemica and cleaning - Co nents, on- site and o	ls - Inc ontrol c ff site.	lustria of envi Contro	l fires ronme ol of m	and ntal ajor
UNIT IV	ACCIDENT PREVENTION		9	0	0	9
Human side Specific haz Accident rep	of safety - personal protective equipment - Causes and cost of accid ard control strategies - HAZOP - Training and development of empl porting, investigation.	ents. Accident preve oyees - First Aid- F	ention Firefigh	progra ting de	mmes evices	-
UNIT V	SAFETY, HEALTH, WELFARE & LAWS		9	0	0	9
Safety and h related to Sa	ealth standards - Industrial hygiene - occupational diseases prevention fety-pressure vessel act-Indian boiler act - The environmental protection	- Welfare facilities on act - Electricity a	- Histo ct - Ex	ry of le plosive	egislat e act.	ions
		Total	(45L)	=45 P	eriod	s
REFEREN	ICE BOOKS:					
1 Industria	safety and the law by P.M.C. Nair Publisher's, Trivandrum.	11 1 1 11 23		11 . 10	00	
2 John V. C	NV "Safety in Industry" Jaico Publisher House 1996	ellers bookseller, N	lew De	lni- 19	89.	
4 Managing	g emergencies in industries, Loss Prevention of India Ltd., Proceeding	s, 1999.				
5 Occupati	onal Safety Manual BHEL.					
6 Safety se	curity and risk management by U.K. Singh & J.M. Dewan, A.P.H. Pu	blishing company, N	New De	lhi, 19	96.	
				RI	00m'	
COURSE O	UTCOMES:			Ta	xono	my
On completio	n of the course the student will be able to			Μ	apped	Ĺ
CO1 Desc	ribe the functions and activities of safety engineering department	nt		I Ir	deret	and

Describe the functions and activities of safety engineering department.	Understand
Carry out a safety audit for hot and metal operations and prepare a report for the audit.	Apply
Prepare an accident investigation report and estimate the accident cost using supervisors report	Evaluate
and data.	
Evaluate the safety performance of an organization from accident records.	Evaluate
	Carry out a safety audit for hot and metal operations and prepare a report for the audit. Prepare an accident investigation report and estimate the accident cost using supervisors report and data. Evaluate the safety performance of an organization from accident records.

CO5	Identify various agencies, support institutions and government organizations involved in	Understand
	safety training and promotion.	

COURSE ARTICULATION MATRIX

											-			
Cos/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	1	-	-	-	3	2	-	-	-	-	-	2	1
CO2	-	1	1	1	1	2	2	1	1	2	1	1	1	2
CO3	1	1	1	1	3	2	2	-	-	2	1	1	1	1
CO4	1	1	1	-	3	2	1	1	1	1	1	-	1	2
CO5	1	1	1	1	2	2	2	-	1	-	-	-	-	1
Avg	0.6	1.0	0.8	0.6	1.8	2.2	1.8	0.4	0.6	1.0	0.6	0.4	1.0	1.4
			3 / 2	2 / 1 -in	dicates	strength	of correc	tion (3-H	ligh, 2-M	ledium, 1-	Low)			

2CDE63 RELIABILITY IN ENGINEERING SYSTEMS SEMESTER										
PREREQUISITES CATEGORY	PE	Cre	edit	3						
Hours/Wook	L	Т	Р	TH						
	3	0	0	3						
COURSE OBJECTIVE										
The objectives of this course are:										
1. To explain the basic concepts of Reliability Engineering and its Understand measures.										
2. To Predict and estimate the reliability from failure data.										
3. To assess system reliability using various measuring method.										
4. To Predict the Reliability at system level using various models.										
JINIT I PELIABILITY CONCEPT	0	0	Δ	0						
	,	0	0	,						
Reliability definition – Quality and Reliability – Reliability mathematics – Reliability functions – Haz	zard rat	e - N	leasu	res of						
Reliability – Design life – A priori and posteriori probabilities – Mortality of a component – Bath tub of	curve –	User	ui iiie							
UNIT II FAILURE DATA ANALYSIS	9	0	0	9						
Data collection –Empirical methods: Ungrouped/Grouped, Complete/Censored data – Time to Exponential, Weibull – Hazard plotting – Goodness of fit tests.	o failu	e dis	stribu	tions:						
UNIT III RELIABILITY ASSESSMENT	9	0	0	9						
Different configurations – Redundancy – m/n system – Complex systems: RBD – Baye's method –	Cut and	l tie s	sets –	Fault						
Tree Analysis – Standby system.										
UNIT IV RELIABILITY MONITORING	9	0	0	9						
Life testing methods: Failure terminated – Time terminated – Sequential Testing –Reliability growth	monito	ring -	Relia	bility						
allocation – Software reliability.		-		-						
UNIT V RELIABILITY IMPROVEMENT	UNIT VRELIABILITY IMPROVEMENT9009									
Analysis of downtime – Repair time distribution – System MTTR – Maintainability prediction – Measures of maintainability – System Availability – Replacement theory.										
Tot	tal (45)	L)=4	5 Pe	riods						

REFERENCE BOOKS:

Charles E. Ebeling, "An introduction to Reliability and Maintainability engineering", TMH, 2000.
 Roy Billington and Ronald N. Allan, "Reliability Evaluation of Engineering Systems", Springer, 2007.

COU On co	COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Explain the basic concepts of reliability engineering and its measures.	Understand					
CO2	Estimate the reliability from failure data.	Evaluate					
CO3	Assessment of system reliability using various measuring method.	Remembering					
CO4	Apply various monitoring techniques to predict the reliability at system level.	Apply					
CO5	Develop and implement a successful Reliability programme.	Create					

COURSE	ARTIC	CULAT	FION N	MATR	IX									
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	2	-	-	-	2	-	-	-	-	2	-	2	1	2
CO2	1	2	1	1	1	-	-	-	-	-	1	1	1	1
CO3	1	2	-	2	-	-	1	-	-	-	2	2	1	-
CO4	1	2	-	-	-	-	2	-	-	-	1	1	2	1
CO5	2	1	1	1	-	-	-	-	-	-	2	2	2	1
Avg	1.4	1.4	0.4	0.8	0.6	0.0	0.6	0.0	0.0	0.4	1.2	1.6	1.4	1.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE64	MECHANICAL MEASUREMENTS AND ANALY	SIS	SEMESTER III				
PREREQU	ISITES	CATEGORY	Y PE Cre		edit		3
		Hours/Wook	L	Т	P	T	H
		nours/week	3	0	0	3	
Course O	bjectives:						
1. To prov	ide knowledge on various Metrological equipment's available to measure	the dimension of	f the c	ompor	ents		
2. To prov	ide knowledge on the correct procedure to be adopted to measure the dime	ension of the con	nponei	nts.			
3 To unde	rstand the measurements done in gear tooth profile						
4 TO KHOW	ide the knowledge about six sigme						
	BASICS OF MEASUREMENT SYSTEM AND DEVICES		0		0	0	0
Definition of	matrology accuracy provision and sensitivity. Abba's principle. Three st	ages of generaliz	yed me	ocurat	U	U	y
- mechanical l	oading - static characteristics of instruments - factors considered in selectic	on of instruments	- com	monly	used	term	ns,
error analysis	and classification - sources of error. Principle of interferometry, laser inte	rferometer.					
UNIT II	CALIBRATION OF INSTRUMENTS AND OUALITY STAN		0		0	0	0
Calibration of	massuring instruments principles of eslibration Calibration of Instrume	nta Vernier celi	Jon N	lionon	U	U faale	y
gauges, dial i quality standa	ndicator, surface plates, slip gauges, care of gauge blocks. General care rds. Comparators - mechanical, electrical, optical and pneumatic.	s and rules in m	neasur	ement,	ISO	900	0
UNIT III	GEOMETRICAL MEASUREMENT AND MACHINE ELEM	IENTS	9		0	0	9
Angular meas principle, thre of major, min measurement.	surement - optical protractors, sine bar, roundness measurement, limit e basic types of limit gauges, Tomlinson surface meter, computer controlled or and effective diameters. Gear terminology; spur gear measurement, c	gauge, design of d CMM. ISO met thecking of comp	of plug tric thr posite	g gaug ead, m errors	ge, Ta leasul , base	ayloı reme e pite	r's nt ch
UNIT IV	STATISTICAL QUALITY CONTROL		9		0	0	9
Surface finish Control - Con	- terminology and measurements - Optical measuring instruments- Accept trol charts - Sampling plans.	ance test for mac	chines	Statist	ical (Quali	ty
UNIT V	SIX SIGMA		9		0	0	9
Six sigma: de Control chart, Hypothesis Te	fine measure, analyse, improve and control phases. Analyse phase tool Scatter chart, Cause and effect diagram, Pareto analysis, interrelations diag esting, ANOVA, Multivariate analysis.	s: Common Too gram. Special Too	ls: His ols: Re	stograi gressi	n, Bo on Ai	ox Pl nalys	ot, sis,
		Г	otal(45L)	= 45	Per	iods
				- /		-	
REFERE	NCE BOOKS:						
1 Gupta.I.	C, —A text book of Engineering Metrologyl, Dhanpat Rai publications, N	New Delhi, 2007					
2 Beckwi	th.T.G,Roy D. Marangoni, John H. Lienhard, —Mechanical Measuremen	tsl, Prentice Hall	, 2006				
3 Jain.R.k	K, —Mechanical and Industrial Measurements, Khanna Publishers, Delhi,	1999.					

COUR On com	SE OUTCOMES: pletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	The students can demonstrate different measurement technologies and use of them in	Apply
	industrial components	
CO2	Evaluate the quality of job, machine and instruments.	Evaluate
CO3	Perform calibration of measuring instruments	Analysis
CO4	Differentiate the accuracy of instruments.	Create
CO5	To know about the control charts and various quality tools	Remembering

COURSE	ARTIC	CULAT	FION N	MATR	IX									
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	1	2	-	1	-	-	1	-	-	-	-	2	1	2
CO2	1	2	1	1	-	-	1	-	-	-	-	2	-	1
CO3	3	1	1	1	2	-	1	-	-	-	-	3	-	1
CO4	3	2	1	2	2	-	1	-	-	-	-	1	2	1
CO5	2	3	-	3	1	-	1	-	-	-	-	3	-	1
Avg	2.0	2.0	0.6	1.6	1.0	0.0	1.0	0.0	0.0	0.0	0.0	2.2	0.6	1.2
			3 / 2 /	1 -indic	cates stre	ength of	correcti	on (3-H	igh, 2-N	/ledium, 1	-Low)			

22CDE65	ERGONOMICS IN MANUFACTURIN	IG	SEM	EST	ER I	II			
PREREQU	ISITES	CATEGORY	PE	Cre	edit	3			
		Hours/Wook	L	Т	Р	TH			
		Hours/ week	3	0	0	3			
COURSE									
1. To process of manufacturing Technology or equivalent									
2. To Ana	yze the various factors affecting human performance in ergonomics								
3. To deve	lop the work space design and environments								
4. To unde	erstand the types and manufacturing methods								
5. To disc	uss climate, noise and motion affect the ergonomics design								
UNIT I	NTRODUCTION:		9	0	0	9			
Interdisciplin	ary nature of ergonomics, modern ergonomics.								
UNIT II	HUMAN PERFORMANCE		9	0	0	9			
Information manual liftin	nput and processing, factors affecting human performance, physical g.	work load and energy e	xpend	iture,	heat	stress,			
UNIT III	WORK SPACE DESIGN		9	0	0	9			
Anthropome interpersonal	ry, Work-space design for standing and seated workers, arranger aspect of workplace design.	nent of components wa	ithin a	phys	sical	space,			
UNIT IV	DESIGN OF EQUIPMENT		9	0	0	9			
Ergonomic f	actors to be considered, design of displays and controls, design for m	aintainability.							
UNIT V	DESIGN OF ENVIRONMENT		9	0	0	9			
Illumination	Illumination – Climate – Noise – Motion.								
	Total(45L) =45 Periods								
			`	/					

REFERENCE BOOKS:

Bridger, R.S., "Introduction to Ergonomics, CRC Press, 3 edition, August 2008.
 McCormick, J., "Human Factors in Engineering and Design", McGraw-Hill, 7 edition, January 1993.

COUR On com	COURSE OUTCOMES: On completion of the course the student will be able to						
CO1	Recognize the need, requirements and applications of ergonomics in design	Understand					
CO2	Analyze the various factors affecting human performance in ergonomics	Analysis					
CO3	Analyze various work space design	Analysis					
CO4	Evaluate the influence of human performance over ergonomics	Evaluate					
CO5	Evaluate climate, noise and motion affect the ergonomics design.	Evaluate					

COURSE	COURSE ARTICULATION MATRIX													
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	2	1	2	1	-	-	-	-	-	-	2	3	1	1
CO2	2	1	1	-	1	-	-	-	2	-	1	3	2	1
CO3	1	1	-	-	1	-	-	-	2	-	1	2	1	1
CO4	1	2	1	-	1	-	-	-	1	-	2	2	2	1
CO5	1	1	-	-	-	1	-	-	2	3	1	1	1	2
Avg	1.4	1.2	0.8	0.2	0.6	0.2	0.0	0.0	1.4	0.6	1.4	2.2	1.4	1.2
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

PROFESSIONAL ELECTIVE – VII

22CDE71	QUALITY CONCEPTS IN DESIGN		SEN	SEMESTER I		
PREREQU	JISITES	CATEGORY	PE	Cr	edit	3
		Hours/Wook	L	Т	P	TI
		Hours/ week	3	0	0	3
COURSE	OBJECTIVE:					
1. To imp	art knowledge on engineering design principles, material selection an	d manufacturing pr	ocesses	s.		
2. To lear	n the principles of implementing quality in a product or services using	g different tools.	-			
3. To enh	ance the quality of the product by the use of failure mode effect anal	lysis and implemen	ting me	ethod	s to u	phol
the stat	us of six sigma.	vnorimonto				
4. To dev	ntain the product quality through the use of statistical tools and e	nforcing methods t	o imni	ova t	ha nr	odu
5. reliabil	ity.	morenig methods t	o mipi		ne pr	ouu
	DESIGN FUNDAMENTALS, METHODS AND MATERIA	L SELECTION	5	0	0	5
- Design for	casting, Forging, Metal Forming, Machining and Welding.	6	., _ •51	3 15		
			10	~		
Quality Fundation Design of Ext the experime Selecting an	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ speriments –design process-Identification of control factors, noise fac ental plan- experimental design – testing noise factors- Running th d conforming factor-Set points-reflecting and repeating.	ets-Stakeholders- M tors, and performan he experiments –Co	10 Measure ce met onducti	0 es and rics - ing th	0 I Mat devel e ana	10 trices lopin alysis
Quality Fun Design of Ex the experim Selecting an UNIT III	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ aperiments –design process-Identification of control factors, noise fac ental plan- experimental design – testing noise factors- Running th d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN des Defining accurates and leaguest accurate process of product or bactors.	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM	10AA1	0 es and rics - ing th 0	0 1 Mat devel e ana 0 0	10 trices opin alysis 10
Quality Fun Design of Ez the experim Selecting an UNIT III Basic metho	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ aperiments -design process-Identification of control factors, noise fac ental plan- experimental design – testing noise factors- Running the d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embod stems modeling, mechanical embodiment principles-EMEA method-	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states	10Measurece metonductionA1ent checto system	0 es and rics - ing th 0 cklist- tems	0 d Mat devel e ana 0 0 0 0 0 0 0	10 trice: lopin alysi: 10 ance
Quality Fun Design of Ex the experime Selecting an UNIT III Basic metho methods: sy Basis of SIX	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ speriments -design process-Identification of control factors, noise fac ental plan- experimental design – testing noise factors- Running th d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embod stems modeling, mechanical embodiment principles-FMEA method- SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states solving- SIX SIGM	10 Aeasure ce met onducti A 1 ent chee to sys IA in s	0 es and rics - ing th 0 cklist- tems ervice	0 I Mat devel e ana 0 0 0 - Adv mode e and	10 tricestopin alysis 10 ance sma
Quality Fun. Design of Ex the experime Selecting an UNIT III Basic metho methods: sy: Basis of SIX organization	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ aperiments –design process-Identification of control factors, noise fac ental plan- experimental design – testing noise factors- Running th d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embodic SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem s - SIX SIGMA and lean production –Lean SIX SIGMA and services	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states solving- SIX SIGM	10MeasureA1A1ent checkto system1A in state	0 es and rics - ing th 0 cklist- tems ervice	0 I Mat devel e ana 0 0 0 0 Adv mode e and	10 trices lopin alysis 10 ance eling sma
Quality Fun Design of Ex the experime Selecting an UNIT III Basic metho methods: sy: Basis of SIX organization UNIT IV	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ aperiments -design process-Identification of control factors, noise facter ental plan- experimental design – testing noise factors- Running the d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embodies stems modeling, mechanical embodiment principles-FMEA method- SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem s - SIX SIGMA and lean production –Lean SIX SIGMA and services STATISTICAL CONSIDERATION AND RELIABILITY	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states solving- SIX SIGM s.	10 Aeasure ce met onducti A 1 ent chee to sys IA in s 10	0 es and rics - ing th 0 cklist- tems ervice	0 d Mat devel e ana 0 0 - Adv mode e and 0	10 trice lopin alysis 10 ance sma 10
Quality Fun. Design of Ex the experim Selecting an UNIT III Basic metho methods: sys Basis of SIX organization UNIT IV Importance Experimenta Statistical A Confounding Orthogonal	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ speriments -design process-Identification of control factors, noise fac ental plan- experimental design – testing noise factors- Running fl d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embod stems modeling, mechanical embodiment principles-FMEA method- SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem s - SIX SIGMA and lean production –Lean SIX SIGMA and services STATISTICAL CONSIDERATION AND RELIABILITY of Experiments, Experimental Strategies, Basic principles of D tion, Sample size, Single Factor experiments – Completely Rando nalysis, Multifactor experiments - Two and three factor full Factori g and Blocking designs, Fractional factorial design, Taguchi's approac Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states solving- SIX SIGM s. Z resign, Terminolog mized design, Ran al experiments, 2K ch - Steps in experir V ratios	10 Aeasure ce met onducti A 1 ont check to system IA in state IA in state 10 y, AN domized factor nentati	0 es and rics - ng th 0 cklist- tems ervice 0 0 A cd Blc ial E on, D	0 1 Mat devel e ana 0 0 0 0 Adv. mode e and 0 0 , Step ock dia construction	10 trice: lopin lopin lopin lopin lopin ance eling sma 10 ps i esign nent usin
Quality Fun Design of Ex the experim Selecting an UNIT III Basic metho methods: sy: Basis of SIX organization UNIT IV Importance Experimenta Statistical A Confounding Orthogonal A	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ aperiments -design process-Identification of control factors, noise factertal plan- experimental design – testing noise factors- Running the d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embodistems modeling, mechanical embodiment principles-FMEA method- SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem s - SIX SIGMA and lean production -Lean SIX SIGMA and services STATISTICAL CONSIDERATION AND RELIABILITY of Experiments, Experimental Strategies, Basic principles of D tion, Sample size, Single Factor experiments – Completely Rando nalysis, Multifactor experiments - Two and three factor full Factori g and Blocking designs, Fractional factorial design, Taguchi's approact Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N DESIGN OF ENVIRONMENT	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states solving- SIX SIGM s. Z essign, Terminolog mized design, Ran al experiments, 2K ch - Steps in experir V ratios	10 Aeasure ce met onducti A 1 nt chea to sys 1A in s 10 y, AN domize factor nentati 10 10	0 es and rics - ing th 0 cklist- tems ervice 0 OVA ed Blo ial Exon, D	0 1 Mat devel e ana 0 0 0 0 Adv. mode e and 0 0 , Step ock do operin esign 0	10 trices topin tlopin tlopin 10 ance eling sma 10 ps i esign nent: usin 10
Quality Fun. Design of Ex- the experim Selecting an UNIT III Basic metho methods: sy: Basis of SIX organization UNIT IV Importance Experimenta Statistical A Confounding Orthogonal A UNIT V Frequency d plots- Probal Reliability-S	DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ aperiments -design process-Identification of control factors, noise fac ental plan- experimental design – testing noise factors- Running th d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embod stems modeling, mechanical embodiment principles-FMEA method- SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem s - SIX SIGMA and lean production –Lean SIX SIGMA and services STATISTICAL CONSIDERATION AND RELIABILITY of Experiments, Experimental Strategies, Basic principles of D tion, Sample size, Single Factor experiments – Completely Rando nalysis, Multifactor experiments - Two and three factor full Factori gand Blocking designs, Fractional factorial design, Taguchi's approad Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N DESIGN OF ENVIRONMENT istributions and Histograms- Run charts –stem and leaf plots- Pareto pilty distribution-Statistical Process control–Scatter diagrams –Multiv urvival and Failure- Series and parallel systems-Mean time between	ets-Stakeholders- N tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states solving- SIX SIGN s. Z resign, Terminolog mized design, Ran al experiments, 2K ch - Steps in experir V ratios diagrams- Cause ar variable charts –Mat failure-Weibull dist	10 Aeasure ce met onducti A 1 nt chec to sys IA in s IA in s <	0 es and rics - ing th 0 cklist- tems ervice 0 OVA od OVA cd Blo ial Exon, D 0 0 ct dia ts and n	0 1 Mat devel e and 0 0 - Adv. mode e and 0 . Adv. mode e and 0 . Step perint esign 0 grams 3-D p	10 trice topir 10 10 ance eling sma 10 ps esign nent: usin 10 s-Bo plots
Quality Fun. Design of E2 the experim Selecting an UNIT III Basic metho methods: sy: Basis of SIX organization UNIT IV Importance Experimenta Statistical A Confounding Orthogonal 2 UNIT V Frequency d plots- Probal Reliability-S	 DESIGN FOR QUALITY ction Deployment -House of Quality-Objectives and functions-Targ speriments –design process-Identification of control factors, noise factental plan- experimental design – testing noise factors- Running the d conforming factor-Set points-reflecting and repeating. FAILURE MODE EFFECTS ANALYSIS AND DESIGN ds: Refining geometry and layout, general process of product embodistems modeling, mechanical embodiment principles-FMEA method- 5 SIGMA – Project selection for SIX SIGMA- SIX SIGMA problem is - SIX SIGMA and lean production –Lean SIX SIGMA and services STATISTICAL CONSIDERATION AND RELIABILITY of Experiments, Experimental Strategies, Basic principles of D tion, Sample size, Single Factor experiments – Completely Rando nalysis, Multifactor experiments - Two and three factor full Factori g and Blocking designs, Fractional factorial design, Taguchi's approact Arrays, Data Analysis, Robust Design- Control and Noise factors, S/N DESIGN OF ENVIRONMENT istributions and Histograms- Run charts –stem and leaf plots- Pareto bility distribution-Statistical Process control–Scatter diagrams –Multiv urvival and Failure- Series and parallel systems-Mean time between 	ets-Stakeholders- M tors, and performan ne experiments –Co FOR SIX SIGM liment - Embodime linking fault states solving- SIX SIGM s. Z essign, Terminolog mized design, Ran al experiments, 2K ch - Steps in experir N ratios diagrams- Cause ar variable charts –Mat failure-Weibull dist Tot	10 Aeasure ce met onducti A 1 nt chea to sys IA in s 10 y, AN domize factor nentati 10 nd Effe ributio cal(45)	0 ess and rics - ing th 0 cklist- tems ervice 0 OVA d Bla ial Exon, D 0 ct dia ts and n L) =4	0 1 Mat devel e ana 0 0 Adv. mode e and 0 , Steperin esign 0 grams 3-D p 5 Pe	10 trice: lopin dysi: 10 ance eling sma 10 ps i esign nent: usin 10 s-Bo plots

KE	FERENCE BOOKS:
1	George E. Dieter, Linda C. Schmidt, "Engineering Design", McGraw Hill Education Pvt. Ltd., '2013
2	Karl T. Ulrich, Steven D. Eppinger, "Product Design And Development, ,Tata Mcgraw-Hill Education, 2015
3	Amitava Mitra, "Fundamentals of Quality control and improvement", John Wiley & Sons, 2016
4	Kevin N. Otto and Kristin L. Wood, "Product Design: Techniques in Reverse Engineering and New Product Development", Prentice Hall, 2001
5	Montgomery, D.C., "Design and Analysis of experiments", John Wiley and Sons, 2017.
6	Phillip J. Ross, "Taguchi techniques for quality engineering", Tata McGraw Hill, 2005

COU On co	RSE OUTCOMES: mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply the fundamentals of design and material selection to develop a high-quality product	Apply
CO2	Apply the quality concepts to develop a durable product.	Apply
CO3	Conduct Failure Mode Effect Analysis on a product in order to improve its quality using six-sigma	Apply
	techniques.	
CO4	Apply different experimental design methods in product- development.	Apply
CO5	Implement various statistical tools to improve the product quality and reliability.	Understand

COURSE ARTICULATION MATRIX

COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	PSO1	PSO2	PSO3
S														
CO1	2	3	3	3	3	2	-	-	-	-	-	2	2	2
CO2	1	1	1	1	3	2	-	-	-	-	-	2	2	2
CO3	2	2	2	2	2	2	-	-	-	-	-	2	2	2
CO4	2	2	2	2	2	2	-	-	-	-	-	2	2	2
CO5	2	2	2	2	2	2	-	-	-	-	-	2	2	2
Avg	1.8	2.0	2.0	2.0	2.4	2.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	2.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE72	DESIGN OF PRESSURE VESSE	LS	SEMESTER III							
PREREQU	JISITES	CATEGORY	PE	Cre	edit	3				
		Hours/Week	L	Т	Р	TH				
		Hours/ Week	3	0	0	3				
COURSE										
1. To give	exposure to engineering problems involved in the design of pressure	re vessel								
2. To unde	erstand and apply the design considerations for pressure vessels.									
3. To lear	n about the tests and analysis for various components of pressure ve	ssels.								
4. To unde	erstand the need for support structures and their design.									
5. To fam	iliarize the buckling and fracture analysis of pressure vessel under v	arious load condition	s		0	0				
UNITI	PRESSURE VESSELS		9	0	0	9				
Definition-uses-methods of fabrication –materials of constructions –different specifications with special reference to BIS. Methods for determining stresses – Terminology and Ligament Efficiency – Applications.										
UNIT II	DESIGN		9	0	0	9				
Criteria for pressure vess	internal and external pressures-accessories to pressure vessels-co- sel access-inspection, tests and nondestructive examinations-suppor	onnections to shell d ts.	etails-d	esign	crite	eria for				
UNIT III	STRESSES IN PRESSURE VESSELS		9	0	0	9				
Introduction spherical He	 Stresses in a circular ring, cylinder – Membrane stress Analysis of ads, conical heads – Thermal Stresses – Discontinuity stresses in pre- 	Vessel Shell comporessure vessels.	ents –	Cylin	drical	shells,				
UNIT IV	DESIGN OF TALL CYLINDRICAL SELF SUPPORTION COLUMNS	NG PROCESS	ç	0	0	9				
Supports for about a circu	short vertical vessels – stress concentration – at a variable Thick lar hole, elliptical openings. Theory of Reinforcement – pressure v	ness transition section essel Design	n in a c	ylind	lrical	vessel,				
UNIT VBUCKLING AND FRACTURE ANALYSIS IN VESSELS9009										
Buckling pho cylinders or External pres	Buckling phenomenon – Elastic Buckling of circular ring and cylinders under external pressure – the collapse of thick-walled cylinders or tubes under external pressure – Effect of supports on Elastic Buckling of Cylinders – Buckling under combined External pressure and axial loading.									

Total(45L) =45 Periods

REFERENCE BOOKS:

1	John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987.
2	Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS Publishers and Distributors, 1987.
3	Stanley, M. Wales, "Chemical process equipment, selection and Design", Butterworths series in Chemical Engineering,
	1988.
4	William. J., Bees, "Approximate Methods in the Design and Analysis of Pressure Vessels and Piping", Pre ASME Pressure
	Vessels and Piping Conference, 1997.
5	Hesse.H.C and Rushto J.H, "Process equipment design", D.vanNostran Co. Inc, N.Y, 1945.
6	Brownell, L.E and Yound.E.H, "Process Equipment Design", McGraw Hill Co. Inc, N.Y, 1959.

COUR On con	RSE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Apply the fundamental principles of loads and stresses as applied to pressure vessels.	Apply
CO2	Select and apply appropriate failure theories in the design of pressure vessels.	Apply
CO3	Identify various stresses in different components of pressure vessels.	Understand
CO4	Design a variety of different pressure vessels using standard codes.	Create
CO5	Design support members of pressure vessels.	Create

COURSE	COURSE ARTICULATION MATRIX													
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	1	2	2	2	2	2	-	-	1	-	1	2	2	2
CO2	1	2	2	2	2	-	-	-	1	-	-	2	2	2
CO3	1	2	2	2	2	-	-	-	-	-	-	2	2	2
CO4	1	2	2	2	2	-	-	-	-	-	-	3	3	3
CO5	1	2	2	2	2	-	-	-	-	-	-	3	3	3
Avg	1.0	2.0	2.0	2.0	2.0	0.4	0.0	0.0	0.4	0.0	0.2	2.4	2.4	2.4
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CI	DE73	PLASTICITY AND METAL FORMING		SEMESTER III							
PRE	REQUI	SITES	CATEGORY	PE	Cre	edit	3				
				L	Т	Р	TH				
			Hours/Week	3	0	0	3				
COU	RSE O	BJECTIVES									
1. 7	Fo under	stand plastic deformation during forming processes.									
2.	Γo learn	about the various tests that can be used to determine the plasticity of a	a material.								
3.	<u>Fo learn</u>	about the analytical method of metal forming design.									
4.	To learn	about the analysis of metal forming processes.									
J.		THEODY OF DIASTICITY		0	0	•	0				
UNI	I - I	THEORY OF PLASTICITY	acon Stacin tongon	y Viald	U		9 Nactio				
stross	y of plas	suc deformation - Engineering stress and strain relationship – Stress ter	isor - Strain tensor	- Yield (ortion	$\frac{1}{1} - \frac{1}{2}$	raina				
rolling	g, extru	sion, wire drawing , tube drawing and forming.	asue su ani. Fiasu		ation	111 10	rging,				
UNI	Г-II	CONSTITUTIVE RELATIONSHIPS AND INSTABILITY	Y	9	0	0	9				
Uniax	ial tensi	on test - Mechanical properties - Work hardening, Compression test,	bulge test, plane	strain co	mpres	sion a	stress,				
plastic	e instabi	lity in uniaxial tension stress, plastic instability in biaxial tension stres	S.								
UNIT	-III	ANALYSIS OF METAL FORMING		9	0	0	9				
Slab a	nalysis -	Slip line method, upper bound solutions, statistically admissible stress	field, numerical m	ethods, c	contac	t prob	lems,				
effect	of fricti	on, thermo elastic Elasto plasticity, elasto visco plasticity - Thermo	mechanical coupli	ng – An	alysis	of fo	rging,				
rolling	g, extrus	ion and wire drawing processes - Experimental techniques for the eva	luation of metal fo	rming.							
UNI	Γ-IV	ANALYSIS OF SHEET METAL FORMING PROCESS		9	0	0	9				
Bendi	ng theor	y - Cold rolling theory - Hill's anisotropic theory, Hill's general yield the	heory - Sheet meta	l forming	g - Ele	ment	s used				
- Mes	sh genera	ation and formulation Equilibrium equations - Consistent full set alg	gorithm – Numeric	cal soluti	ons p	roced	ures -				
exam	ples of s	imulation of simple parts - Bench mark tests – Forming limit diagrams	S.								
UNI	Г-V	ADVANCES IN METAL FORMING		9	0	0	9				
Orbita	al forgin	g, Isothermal forging, worm forging, Hot and cold Isotropic pressing	, high speed extru	sion, rub	ber pa	d for	ming,				
micro	blankin	g, super plastic forming – Overview of powder metal techniques- pow	der rolling- toolin	g and pro	ocess p	param	eters.				
			Т	otal(451	L) = 4	5 Pe	riods				
REF	EREN	CE BOOKS:									
1	Hansfo	rd. W. F and Cad dell. RM., Metal Forming Mechanics and Metallurg	y, Prentice Hall E	aglewood	d Cliff	s, 19	93.				
2	Surend	er Kumar, "Technology of Metal Forming Processes", Prentice Hall of	of India, New Dell	ni, 2008							
3	Naraya	naswamy. R, Theory of Metal Forming Plasticity, Narosa Publishers,	1999.								
4	4 Shiro Kobayashi, Altan. T, Metal Forming and Finite Element Method, Oxford University Press, 1989.										
5	Slater.	R A. C., Engineering Plasticity - Theory & Applications to Metal For	ming, John Wiely	and Sons	s, 1987	7.					
6	Wagon	er. R H. and Chenot. J.J., Metal Forming analysis, Cambridge University	sity Press, 2002.								
COL		UTCOMES.			Bl	oom	's				
	KSE U	UIUIMES:			Ta	axon	omy				
Un co	mpietior	i of the course the student will be able to			Μ	appe	d				
CO1 Apply the concepts of stress, strain tensor to evaluate the plasticity of materials.											

		11 0
CO2	Recognize the various experimental process, in order to access the formability nature of materials	Understand
CO3	Analyze the various metal forming processes with experimental techniques.	Analysis
CO4	Formulate the sheet metal forming process in the analytical method as well as numerical simulation	Create
CO5	Study of advanced methods in metal forming processes.	Remembering

														-
COs/PO	DO1	DOJ	DO3		DO5	DOG	DO7	DOS	DOO	DO10	DO11	PSO1	PSO2	PSO3
s	FUI	F02	105	r04	105	100	10/	100	109	F010	rom			
CO1	3	3	3	3	3	-	-	-	-	-	-	2	2	2
CO2	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO3	2	2	2	2	2	-	-	-	-	-	-	2	2	2
CO4	2	2	2	2	3	-	-	-	-	-	-	2	2	2
CO5	2	2	2	2	2	-	-	-	-	-	-	2	2	2
Avg	2.2	2.2	2.2	2.2	2.4	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0	2.0
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE74	NANOMATERIALS TECHNOLOGY		SEMESTER III					
PREREQUI	SITES	CATEGORY	PE	Cr	edit	3		
		Hound/Wools	L	Т	Р	TH		
		Hours/ week	3	0	0	3		
COURSE O	BJECTIVES:							
1. To unders	stand the concepts of Nanotechnology and behavior of nanomaterial and	their properties.						
2. To learn a	about the different routes for the synthesis and consolidation of nanopart	ticles and Nano crys	talline n	nateria	ls.			
3. To learn a	about the various properties and characteristics of nano-materials							
4. To study	about the various field of applications of Nano-materials.							
J. TO learn a	about the use of various nano-rights in the rights of engineering.							
UNIT I	INTRODUCTION		9	0	0	9		
Importance of	Nano-Technology - Emergence of Nano-Technology - Bottom-Un an	d Ton-down approx	ches- c	hallen	ves in	Nano-		
Technology. P	Properties of materials and Nano-materials- role of size in Nano-materia	lls- Electronic Prope	rties- M	agneti	c Prop	erties-		
	SVNTHESIS		0	0	0	0		
			<u> </u>	U	U	<u>,</u>		
pyrolysis - Bal Metal Nano-cr Thermolysis ro size-selective J	Il Milling - Molecular beam epitaxy - Chemical vapour deposition methorystals by reduction – Solvothermal, Photochemical, Electrochemical soutes - Sonochemical routes - Liquid-liquid interface - Hybrid methods - processing. Sol- gel- Micelles and micro emulsions - Cluster compounds	od and Electro depo synthesis - Nano cr Solvated metal atom s.	sition. C ystals o dispers	hemic f semi ion - P	al Met conduc ost-syr	hods - ctors - nthetic		
UNIT III	CHARACTERIZATIONS		9	0	0	9		
Microscope - operation and a based nanolith lithography- X	Operational principle and application for analysis of Nano-materials- application for band gap measurement. M based nanolithography and Na lography and Nano-manipulation- Ion beam lithography- oxidation and f-ray based lithography.	UV-VIS-IR Spectro no-manipulation- E d metallization- Ma	ophotom beam lit sk and i	eters- hograp ts app	Princi ohy and licatio	ple of I SEM n. UV		
UNIT IV	APPLICATIONS		9	0	0	9		
Micro and Nan sensors - Meth Sensor- Night	no-sensors - Fundamentals of sensors – biosensor- micro fluids- MEMS nod of packaging at zero level - dye level and first level. Sensors for ae Vision System - Nano tweezers - Nano-cutting tools - Integration of sen	and NEMS - Packag rospace and defense sor with actuators ar	ging and Accele and electr	charae comet onic c	cterizat er - Pr ircuitry	ion of essure 7.		
UNIT V	NANO FLUIDS		9	0	0	9		
Preparation of Models for the	Nano-fluids – Properties – Characterization of Nano-fluids - Role of Berneasurements of thermal conductivities of Nano-fluids –Current applic	rownian Motion – C cations – Issues with	onstrain the Env	ts for ironm	nano-f ent.	luids -		
]	Fotal(4	5L) =	45 Pe	riods		
			```	,				
REFERENC	$\begin{array}{c} \textbf{\textbf{E} BOOKS:} \\ \textbf{\textbf{1}}  \textbf{\textbf{n}} \textbf{\textbf{1}}  \textbf{\textbf{n}} \textbf{\textbf{1}}  \textbf{\textbf{n}} \textbf{\textbf{1}}  \textbf{\textbf{n}} \textbf{\textbf{1}}  \textbf{\textbf{m}} \textbf{\textbf{1}}  \textbf{\textbf{m}} \textbf{\textbf{1}}  \textbf{\textbf{m}} \textbf{\textbf{1}}  \textbf{\textbf{m}} \textbf{\textbf{1}} \\ \textbf{\textbf{n}} \textbf{n} \textbf{\textbf{n}} \textbf{n} n$	T ' 1NT	4 1	1 ,	TT '	.,.		
1 B.S.Murt	ny, P.Snankar, Baldevraj, B.B.Kath and James Murday, "Text Book of N	vanoscience and Nar	otechno	logy	Unive	rsities		
2 Mark Rat	tneer, Daniel Ratner, "Nanotechnology" Pearson Education, Inc. 2003							
- 1010011111000								
3 Asim.K.I	Das , Mohua Das An Introduction of Nanomaterals and Nano Science , 20	020						
3Asim.K.I4M.A.Shal	Das ,Mohua Das An Introduction of Nanomaterals and Nano Science ,20 h ,Tokar Ahmed ,Principle of Nanoscience and Nano technology.2020	020						
3 Asim.K.I 4 M.A.Shal	Das ,Mohua Das An Introduction of Nanomaterals and Nano Science ,20 h ,Tokar Ahmed ,Principle of Nanoscience and Nano technology.2020	020						

On co	mpletion of the course the student will be able to	Mapped
CO1	Knowledge about the processing techniques for nanomaterials.	Remembering
CO2	Interpret the creation and manipulation of nanoscale materials and to optimize the methods for specific	Create
	material application.	
CO3	Knowledge about various properties and characteristics of nano-materials.	Understand
CO4	Use of Nano particles for the health, ecological and environmental hazards	Apply
CO5	Use of various nano-fluids in the fields of engineering.	Apply

COs/PO s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PSO1	PSO2	PSO3
CO1	1	2	3	-	1	-	1	-	1	1	-	2	2	1
CO2	1	2	2	2	2	1	1	-	1	-	1	2	2	2
CO3	1	1	2	-	2	-	-	-	2	-	-	2	2	2
CO4	1	-	-	-	-	-	1	-	3	3	2	2	2	1
CO5	1	-	1	-	-	-	1	-	2	2	-	2	2	1
Avg	1.0	1.0	1.6	0.4	1.0	0.2	0.8	0.0	1.8	1.2	0.6	2.0	2.0	1.4
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

22CDE75	TRIBOLOGY IN DESIGN		SEMESTER III				
PREREQUISIT	ſES	CATEGORY	PE	Cre	edit	3	
		Hours/Wook	L	Т	P	TH	
		Hours/ week	3	0	0	3	
COURSE OBJ	ECTIVE:						
1. To impart kn	owledge in the friction, wear and lubrication aspects of machine	components.					
2. To analyze the	the various types of lubricants and lubrication system in the tribole ad the applytical behavior of different type's bearings and des	ogy.	n onolu	tical	/than	ration	
approach	in the analytical behavior of different type's bearings and desi	igh of bearings based of	n anary	tical	/ meo	letical	
4. To study the	different types of high-pressure contacts and rolling bearings						
5. To study and	measure the different types of surface features associated with the	ne friction.					
UNIT I SUF	RFACES- FRICTION AND WEAR		9	0	0	9	
Topography of Su properties of meta resistance materia	Infaces – Surface features – Surface interaction – Theory of F llic and non-metallic materials – friction in extreme conditions – ls – surface treatment – Surface modifications – surface coatings	riction – Sliding and Ro wear- types of wear – me	olling F echanisi	Friction n of v	on- Fi wear -	riction – wear	
UNIT II LU	BRICATION THEORY		9	0	0	9	
Lubricants and the Thermal- inertia a Hydrostatic lubric	ir physical properties lubricants standards – Lubrication Regimes and turbulent effects – Elasto hydrodynamic and plasto hydrody ation – Gas lubrication.	Hydrodynamic lubrication mamic and magnetohydrophydrophydrophydrophydrophydrophydrophydrophydrophydrophydrophydrophydrophydrophydrophydr	on – Reg rodynar	ynold nic lu	ls Equ Ibrica	ation- tion –	
UNIT III DE	SIGN OF FLUID FILM BEARINGS		9	0	0	9	
Design and perfor flow and delivery Hydrostatic Bearin	mance analysis of thrust and journal bearings – Full- partial- fixe – power loss- Heat and temperature rotating loads and dynami ng design.	d and pivoted journal bea c loads in journal bearir	arings d 1gs – sj	esign pecial	– lut bear	oricant ings –	
UNIT IV RO	LLING ELEMENT BEARINGS		9	0	0	9	
Geometry and kin Stresses and deflect their effects – Rol	ematics – Materials and manufacturing processes – contact stress ction – Axial loads and rotational effects- Bearing life capacity ar ling Bearings Failures.	ses – Hertzian stress equ nd variable loads – ISO s	ation – tandard	Load s – O	divis vil film	ions – ns and	
UNIT V TR	IBO MEASUREMENTS		9	0	0	9	
Surface Topograp International stand	hy measurements – Electron microscope and friction and wear m lards – bearings performance measurements – bearing vibration	easurements – Laser me neasurement.	thod – i	nstru	ment	ation -	
		То	tal(45)	L) =4	15 Pe	riods	

RE	FERENCE BOOKS:
1	Cameron A, "Basic Lubrication Theory", Ellis Herward Ltd. UK, 1981.
2	Hulling J, "Principles of Tribology", MacMillan, 1984.
3	Williams J.A, "Engineering Tribology", Oxford University Press, 2005.
4	Neale M.J, "Tribology Handbook", 2 nd Edition, Butterworth Heinemann, 1995.
5	Bharat Bhushan, "Modern Tribology Handbook Vol. I & II", CRC Press, 2001.

COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Develop the knowledge on the surface features and its role on the friction behavior of metals and nonmetals	Create			
CO2	Analyze properties of lubrication on hydrodynamic, hydrostatic, Elasto- hydrodynamic condition	Analysis			
CO3	Friction phenomena and select a suitable lubricant for a specific application.	Remembering			
CO4	Develop processes of lubrication in all regimes and suggest an explanation to the cause of a tribological failure in rolling element.	Create			
CO5	Determine wear processes in contacts between metallic and non-metallic surfaces	Understand			

COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	<b>PO1</b>	<b>PO1</b>	PSO	PSO	PSO
S	1	2	3	4	5	6	7	8	9	0	1	1	2	3
CO1	1	2	2	2	1	-	-	-	-	-	-	2	2	2
CO2	1	1	1	1	1	-	-	-	-	-	-	1	1	1
CO3	1	1	1	1	1	-	-	-	1	-	1	2	2	1
CO4	1	1	1	1	1	-	-	-	1	-	1	1	2	1
CO5	1	1	1	1	1	-	-	-	1	-	-	2	2	1
Avg	1.0	1.2	1.2	1.2	1.0	0.0	0.0	0.0	0.6	0.0	0.4	1.6	1.6	1.2
	3 / 2 / 1 -indicates strength of correction (3-High, 2-Medium, 1-Low)													

## AUDIT COURSE

22AC01	ENGLISH FOR RESEARCH PAPER WRITIN	G	SEM	EST	ER I	/II
PREREQUI	SITES	CATEGORY	PE	Cre	edit	0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<b>TT /TT 1</b> -	L	Т	Р	TH
		Hours/ week	2	0	0	2
COURSE O	BJECTIVES:					
1. To help t	he learners to realize the necessity of English in writing a Research paper					
2. To enabl	e the learners to write different sections of a research paper					
3. To train	he learners to become better writers of research papers					
UNIT I			6	0	0	6
Research pape	r and its importance, Structure of a research paper, Planning and preparati	on.				
UNIT II			6	0	0	6
English in rese	earch papers, Basic word order, Collocation, Being concise, Redundancy,	Common errors.				
UNIT III			6	0	0	6
Key factors th	at determine the style of a paper, Journal's background, Passive form, Rig	ht tense forms, Coh	esion ar	nd col	heren	ce.
UNIT IV			6	0	0	6
Hedging and c	riticizing, Paraphrasing, Plagiarism, Ensuring quality of the paper and Use	eful phrases.				
UNIT V			6	0	0	6
Key skills in writing Title, Abstract, Introduction, Review of Literature, Discussion and Conclusion, Highlighting findings.						
		Tot	al(30L	) = 3	0 Pe	riods

RE	REFERENCE BOOKS:								
1	Adrian Wallwork, "English for Writing Research Papers," Springer New York Dorecht Heidelberg London, 2016								
2	Howe, Stephen. "Phrase Book for Writing papers and Research in English," Cambridge University Press, 2012.								
3	Goldbort R. "Writing for Science," Yale University press, 2006.								
4	Gabor L Lovei. "Writing and Publishing Scientific Paper," Open Book Publishers, 2021								

COUR On com	RSE OUTCOMES: appletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	understand and appreciate the role of English in writing a good research paper	Understand
CO2	apply their knowledge in writing a research paper	Apply
CO3	analyze and assess the quality of their research paper	Analysis

22	AC02	C02 DISASTER MANAGEMENT SEM						
PREI	REQUISIT	TES	CATEGORY	PE	Cre	dit	0	
			Hours/Week	L	Т	Р	ТН	
			Hours, week	2	0	0	2	
COU	RSE OBJ	ECTIVES						
To have a critical understanding of key concepts in disaster risk reduction and humanitarian response and critically evaluar reduction and humanitarian response policy and practice from multiple perspectives. Develop an understanding of humanitarian response and practical relevance in specific types of disasters and conflict situations and evaluate the weaknesses of disaster management approaches. Planning and programming in different countries, particularly their how the countries they work in							er risk rds of is and try or	
UNIT	I INTI	RODUCTION		4	0	0	4	
Disast Nature Disast cyclor	er: Definitic e, Types An er Prone Ar nic and coas	on, Factors And Significance; Difference Between Hazard And Disaster; d Magnitude. eas in India: Study of Seismic Zones; Area Prone to floods and drought tal hazards with special reference to Tsunami; Post- Disaster diseases an	Natural And Manmad s, Landslides and ava d epidemics.	e Disas lanches	sters:	Differ as pro	rence, one to	
UNII	TII R	EPERCUSSIONS OF DISASTERS AND HAZARDS		4	0	0	4	
Econo Tsuna Accide	mic Damag mis, Floods ents, Oil Sli	e, Loss of Human And Animal Life, Destruction of Ecosystem. Natural D , Droughts And Famines, Landslides And Avalanches, Man-made disa cks And Spills, Outbreaks of Disease And Epidemics, War And Conflict	isasters: Earthquakes aster: Nuclear Reacto s.	, Volca or Melt	nisms down	, Cyc , Indi	lones, ustrial	
UNIT	T III D	ISASTER PREPAREDNESS AND MANAGEMENT		4	0	0	4	
Prepar From	edness: Mo Meteorologi	nitoring of Phenomena Triggering A Disaster or Hazard; Evaluation of ical And Other Agencies, Media Reports: Governmental And Communit	Risk: Application Of y Preparedness.	f Remo	te Sei	nsing	, Data	
UNIT	TIV R	ISK ASSESSMENT		4	0	0	4	
Disast Assess	er Risk: Co sment, Glob	ncept And Elements, Disaster Risk Reduction, Global And National l al Co-Operation In Risk Assessment And Warning, People's Participation	Disaster Risk Situation In Risk Assessment	on. Tec Strateg	hniqu gies fo	ies of or Sur	f Risk vival.	
UNIT	r V D	ISASTER MITIGATION		4	0	0	4	
Meani Mitiga	ng, Concep ation, Progra	t And Strategies of Disaster Mitigation, Emerging Trends In Mitigation and of Disaster Mitigation In India.	on. Structural Mitigat	ion and	1 Nor	1-Stru	ctural	
			То	tal(201	L)= 2	0 Pe	riods	
REFE	RENCE B	OOKS:						
1	R. Nishith, S	hingh AK 2012 Disaster Management in India:Perspectives, issues and str	ategies New Royal Bo	ok Cor	npany	, Luc	know	
2	Sahni, Parde	eepEt.Al. (Eds.) 2002 Disaster Mitigation Experiences And Reflections.	Prentice Hall Of India	a, New	Delh			
COU	RSE OUT	COMES			Bl	oom	's	
On completion of the course the student will be able to							omy ed	
CO1 Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response.							and	
CO2	Critically perspective	evaluate disaster risk reduction and humanitarian response policy a	and practice from n	nultiple	Ev	aluate	e	
CO3	CO3 develop an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations							

Understand

Critically understand the strengths and weaknesses of disaster management approaches.

CO4

22AC03	22AC03 SANSKRIT FOR TECHNICAL KNOWLEDGE								
PREREQUISI	PREREQUISITES CATEGORY								
		Hours/ week				2			
<b>COURSE OBJ</b>	ECTIVES								
To get a working Learning Sanskri equipped with Sa	To get a working knowledge in illustrious Sanskrit, the scientific language in the world. Learning Sanskrit to improve brain functioning. Learning Sanskrit to develop logic in mathematics, science & other subjects enhances the memory power. The engineering scholars equipped with Sanskrit will be able to explore the huge knowledge from ancient literature.								
UNIT I ALP	HABETS		8	8 0	0	8			
Alphabets in Sans	skrit –Past/Present/Future Tense –Simple Sentences.								
UNIT II LI	TERATURE		8	8 0	0	8			
Order –Introducti	Order –Introduction of roots –Technical information about Sanskrit Literature								
UNIT III CO	DNCEPTS		1	8 0	0	8			
Technical concep	Technical concepts of Engineering-Electrical, Mechanical, Architecture, Mathematics								
	Total(24L)= 24 Periods								

RE	REFERENCE BOOKS:							
1	"Abhyasa Pustakam"- Dr. Vishwas, Samskrita- Bharati Publication, New Delhi							
2	"Tech Yourself Sanskrit" PrathamaDeeksha-Vempatikutumbshastri, Rashtriya Sanskrit Sansthan, New Delhi Publication							
3	India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.							

COURSE OUTCOMES: On completion of the course the student will be able to					
CO1	Understanding basic Sanskrit language	Understand			
CO2	Ancient Sanskrit literature about science & technology can be understood	Remembering			
CO3	Being a logical language will help to develop logic in students	Apply			

22AC04	VALUE EDUCATION		SEMESTER I/II			
PREREQUISIT	ES	CATEGORY	PE Credit 0		0	
		<b>TT /XX</b> / <b>1</b> -	L	Т	Р	ТН
		Hours/ Week	2	0	0	2
COURSE OBJ	ECTIVES					
To understand the importance of char	Importance of value education and self-development. To imbibe good	l values in students a	nd also	knov	w abc	ut the
UNIT I BAS	SIC VALUES		4	0	0	4
Values and self-development- Social values and individual attitudes-Work ethics, Indian vision of Humanism Moral and Non Moral valuation-Standards and principles-Value judgements.						
UNIT II CO	DNFIDENCE		6	0	0	6
Importance of cultivation of values- Sense of Duty-Devotion-Self-reliance-Confidence-Concentration-Truthfulness-Cleanlines- Honesty-Humanity-Power of faith-National Unity-Patriotism-Love for nature-Discipline.						
UNIT III PH	ERSONALITY DEVELOPMENT		6	0	0	6
Personality and Be and Kindness - A friendship –Happi saving nature.	chavior Development-Soul and Scientific attitude - Positive – Thinking - void fault Thinking - Free from anger - Dignity of labor - Universal ness Vs suffering –love for truth – Aware of self destructive habits- A	- Integrity and discipl brotherhood and rel association and Coop	ine -Pu igious eration	toler –Doi	ality – ance ing be	- Love –True est for
UNIT IV LO	OVE AND COMPASSION		6	0	0	6
Character and Competence –Holy books vs Blind faith –Self –management and Good health – Science of reincarnation –Equality –Non Violence –Humility -Role of Women –All religions and same message –Mind your Mind –Self -control –Honesty –Studying effectively.						
Total (22L)= 22 Periods						
<b>REFERENCE I</b>	BOOKS:					
1 Chakraborty	, S.K. "Values and Ethics for Organization Theory and Practice", Oxfor	d University Press, N	ew Del	hi, 19	998.	

1 Chakraborty, S.K. "Values and Ethics for Organization Theory and Practice", Oxford University Press, New Delhi, 1998.

COUR On com	RSE OUTCOMES: apletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Knowledge of self-development	Understand
CO2	Learn the importance of Human values	Remembering
CO3	Developing the overall personality	Create

22AC05	CONSTITUTION OF INDIA		SEMESTER I/II			
PREREQUI	SITES	CATEGORY	PE Credi		edit	0
		L		Т	Р	ТН
		Hours/Week	2	0	0	2
COURSE O	BJECTIVES					
Understand th Indian opinion emergence of the Bolshevik	e premises informing the twin themes of liberty and freedom from a civil regarding modern Indian intellectuals' constitutional role and entitlemen hationhood in the early years of Indian nationalism. To address the role of s Revolution in 1917 and its impact on the initial drafting of the Indian Const	rights perspective. T t to civil and econon socialism in India afte itution.	o addres nic right er the co	s the s as mme	e grov well encem	wth of as the nent of
UNITI H	ISTORY OF MAKING OF INDIAN CONSTITUTION		4	0	0	4
History, Drait	ng Commutee (Composition & working)		1	0	Δ	4
UNII II Dreamhla Cal	PHILOSOPHY OF THE INDIAN CONSTITUTION		4	U	U	4
Preamble, Sal				0	0	
UNIT III	CONTOURS OF CONSTITUTIONAL RIGHTS & DUTIES		4	0	0	4
Fundamental rights, right to	ights, right to equality, right to freedom, right against exploitation, right to constitutional remedies, directive principles of state policy, fundamental du	o freedom of religion ities.	, cultura	l and	d edu	cation
UNIT IV	ORGANS OF GOVERNANCE		4	0	0	4
Parliament, co judiciary, app	nposition, qualifications and disqualifications, powers and functions, execu- intment and transfer of judges, qualifications, powers and functions.	tive, president, govern	nor, cour	icil o	of min	isters,
UNIT V	LOCAL ADMINISTRATION		4	0	0	4
Districts admi municipal cor and role. Bloc of grass root d	nistration head: role and importance, municipalities: introduction, mayor oration. Panchayati raj: introduction, PRI: zila panchayat. Elected officials level: organizational hierarchy (different departments), village level: role of emocracy.	and role of elected and their roles, CEO of elected and appoin	represer zila pan ted offic	ntativ chay ials,	ve, C at: po impo	EO of osition ortance
UNIT VI	ELECTION COMMISSION		4	0	0	4
Election Com and functionir	nission: role and functioning. Chief election commissioner and election co g. Institute and bodies for the welfare of SC/ST/OBC and women.	mmissioners. State el	ection co	omm	issio	n: role
		Tot	al (24 L	<i>.</i> )= 2	24 Pe	eriods
REFERENC	E BOOKS:					
1 The Cor	stitution of India, 1950 (Bare Act), Government Publication.					
2 Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015.						
$\frac{5}{4}$ DD Ba	3     M. P. Jain, Indian Constitution Law, /th Edn., LexisNexis, 2014.       4     D.D. Basu, Introduction to the Constitution of India, LexisNexis, 2015.					
COURSE O On completion	J <b>TCOMES:</b> of the course the student will be able to			Bl Ta M	oom axon appe	's omy ed
CO1 Discus Indian	the growth of the demand for civil rights in India for the bulk of Indians be	efore the arrival of Ga	andhi in	τ	Jnder	stand
CO2 Discus reform	the intellectual origins of the framework of argument that informed the leading to revolution in India.	e conceptualization o	f social	U	Jnder	stand
CO3 Discus	the circumstances surrounding the foundation of the Congress Socialist Part	ty [CSP] under the lea	dership	U	Jnder	stand

	of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the
	Indian Constitution
CO4	Discuss the passage of the Hindu Code Bill of 1956.

Understand

	PEDAGOGY STUDIES SEMESTER I/II					I/II
PREREQUISITI	ES	CATEGORY	PE Credit		0	
		П (XV L	L	Т	Р	ТН
		Hours/ week	2	0	0	2
COURSE OBJE	CTIVES					
To Review existing agencies and research	g evidence on the review topic to inform programme design and polychers. Identify critical evidence gaps to guide the development.	licy making undertak	en by	the D	OFID,	other
UNIT I			4	0	0	4
Aims and rationale, Conceptual framew	Policy background, Conceptual framework and terminology, Theories ork, Research questions, Overview of methodology and Searching	of learning, Curricul	um, Te	achei	r educ	cation,
UNIT II			2	0	0	2
Thematic overview Curriculum, Teache	: Pedagogical practices are being used by teachers in formal and in ar education.	formal classrooms in	n devel	oping	g cou	ntries,
UNIT III			4	0	0	4
Evidence on the effe can teacher education Theory of change. S approaches, Teache	ectiveness of pedagogical practices, Methodology for the in depth stage on (curriculum and practicum) and the school curriculum and guidanc Strength and nature of the body of evidence for effective pedagogical rs' attitudes and beliefs and Pedagogic strategies.	: quality assessment o e materials best supp practices, Pedagogic	f inclue ort effe theory	ded st ctive and p	udies peda pedag	s, How gogy? ogical
UNIT IV			4	0	0	4
Professional development: alignment with classroom practices and follow-up support, Peer support, Support from the head teacher and the community, Curriculum and assessment, Barriers to learning: limited resources and large class sizes.						
UNIT V			2	0	0	2
Research gaps and f and research impact	uture directions, Research design, Contexts, pedagogy, teacher education	on, curriculum and as	sessme	nt, dis	ssemi	nation
		То	tal(16	L)= 1	l6 Pe	eriods

RE	FERENCE BOOKS:
1	Ackers J, Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261.
2	Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3) 361-379.
3	Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research project (MUSTER)
3	country report 1. London: DFID
4	Akyeampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching and learning of basic math and reading in Africa:
4	Does teacher preparation count? International Journal Educational Development, 33 (3): 272-282.
5	Alexander RJ (2001) Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell.

COU On co	<b>RSE OUTCOMES:</b> mpletion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?	Create
CO2	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?	Understand
CO3	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?	Remembering

22AC07	22AC07 STRESS MANAGEMENT BY YOGA SEMESTER I/II			[/ <b>II</b>		
PREREQU	ISITES	CATEGORY	PE	Cr	edit	0
		<b>TT /TT  </b> -	L	Т	Р	ТН
		Hours/ week	2	0	0	2
COURSE C	DBJECTIVES					
To create a he	ealthy, strong willed and intelligent young society through yoga practices.					
UNIT I	PHYSICAL AND MENTAL HEALTH		4	0	0	4
Pain and dise	ase - free life, Simplified Physical Exercise- Pranayama. Concentration on Pi	tuitary gland- Practic	al, Goa	ıl fixi	ng.	
UNIT II	<b>REJUVENATION OF LIFE FORCE AND WILL POWER</b>		4	0	0	4
Principle of k –Will power	Principle of kayakalpa yoga, mind, life force and Biomagnetism, Practical, Concentration on Muladhara- Practical, Analysis of thought –Will power					
UNIT III	DEVELOPMENT OF VIRTUES		4	0	0	4
Activation of	Dormant Brain cells- Practical, Moralization of dezire and its classification,	Neutralization of An	ger, Re	sults	of ang	ger.
UNIT IV	STREAM LINING OF MIND		4	0	0	4
Definition of	Definition of Mind-Worries, Eradication of Worries. The science behind blessings. Blessing techniques. Benefits, five basic duties					
UNIT V	CAUSE AND EFFECT SYSTEM		4	0	0	4
Law of nature, Hereditary Imprints, Fivefold and Two-fold culture, good values and Resolution for world peace						
		Tot	al (24	L)=2	24 Pe	riods

RE	REFERENCE BOOKS:		
1	"Thirukkural", Pearls of Inspiration, Translation by Rajaram, Publisher :RUPA		
2	"Bharathiyar Poems", Amazon Asia – Pacific Holdings Private Limited.		
3	"Yoga for Humane Excellence", Vethathiri Maharishi, Vision for Wisdom, Vethathiri Publications		

COURS On comp	SE OUTCOMES: letion of the course the student will be able to	Bloom's Taxonomy Mapped
CO1	Maintain good Physical health	Apply
CO2	Develop will power	Create
CO3	Take quick and right decisions	Evaluate
CO4	Maintain good relationship with everyone around them his creating a Health Society	Apply

22AC08	PERSONALITY DEVELOPMENT THROUGH ENLIGHTENMENT SKILLS	LIFE	SEMESTER I/II			
PREREQUISI	res	CATEGORY	PE	Cre	edit	0
		Hours/Week	L	Т	Р	TH
		Hours, week	2	0	0	2
COURSE OBJ	ECTIVES					
To learn to achiev	e the highest goal happily, To become a person with stable mind, pleasir	g personality and det	termina	tion,	To av	waken
wisdom in studen	ts.					
UNIT I			8	0	0	8
Neetisatakam – H	olistics development of personality					
Verses- 19,20,21,	22 (wisdom)					
Verses- 29,31,32	(pride & heroism)					
Verses- $20, 20, 00, 00, 00, 00, 00, 00, 00, 00, $	lont"s)					
Verses71.73.75.78	R(do''s)					
			8	0	0	8
Approach to day t	o day work and duties		Ŭ	v	v	0
Shrimad Bhagwad	1 Geeta:					
Chapter 2-Verses	41, 47, 48,					
Chapter 3-Verses	13, 21, 27, 35,					
Chapter 6-Verses	Chapter 6-Verses 5,13,17,23,35,					
Chapter 18-Verse	s 45, 46, 48					
UNIT III			8	0	0	8
Statement of basic	c knowledge.					
Shrimad Bhagwa	d Geeta:					
Chapter 2-Verses	56, 62, 68,					
Chapter 12-Verse	s 13, 14, 15, 16, 17, 18					
Personality of Rol	le model.					
Shrimad Bhagwad Geeta:						
Chapter 2. Verses 17,						
Chapter J. Verses 18, 38, 42, Chapter J. Verses 18, 38, 42						
Chapter 18-Verse	s 37. 38. 63					
		Τ.	tal(24)	<u> </u>	)1 D-	miada
		10	tal(24)	レ)= 2	<i>i</i> 4 re	rioas

RE	FERENCE BOOKS:
1	"Srimad Bhagavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Department), Kolkata.
2	Bhartrihari's Three Sataskam (Niti- Sringar – Vairagya) by P.Gopinath, Rashtriya Sanskrit Sansthanam, New Delhi.

<b>COURSE OUTCOMES:</b> On completion of the course the student will be able to		Bloom's Taxonomy Mapped
CO1	Study of Shrimad-Bhagwad-Geeta will help the student in developing his personality and achieve The highest	Understand
CO2	The person who has studied Geeta will lead the nation and mankind to peace and prosperity	Remembering
CO3	Study of Neetishatakam will help in developing the versatile personality of students.	Understand