Government College of Engineering, Salem - 11 Department of Mechanical Engineering M.E. - Thermal Engineering COs - POs and PSO Mapping Course Articulation Matrix - 22 Regulation

			S	eme	ester	- I										
	22TH	C11-	Adv	vanc	ed T	herr	nody	ynar	nics	Ì						
						Prog	ram (Outco	omes	5	_			Pr S Ou	rogra pecif itcon	m ic nes
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
CO1	Explain availability, second law efficiency and derive thermodynamic relations	3	2	-	1	-	2	-	-	_	-	-	-	3	1	3
CO2	Describe fugacity, real gas behaviour and Gibbs phase rule for non-reactive components.	3	3	-	1	2	2	-	-	_	_	_	-	3	1	3
CO3	Explain thermochemistry and characteristics of reacting system.	3	3	-	1	-	2	-	-	-	-	-	-	3	1	3
CO4	Demonstrate micro and macroscopic analysis of thermodynamics	3	3	-	1	-	2	-	-	-	-	-	-	3	1	3
CO5	Describe the concepts of irreversible thermodynamics	3	3	_	1	_	2	-	-	-	-	_	_	3	1	3
	Average	3.0	2.8	-	1.0	2.0	2.0	-	-	-	-	-	-	3.0	1.0	3.0

			S	eme	ster	- I										
	22T	HC1	2- A	dvar	iced	Flu	id D	ynaı	mics	•						
						Prog	ram (Outc	omes	5				Pı Sj Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
CO1	Demonstrate different types of fluid flow and derive mathematical formulations for their characteristic	-	2	_	2	_	2	-	_	-	-	_	_	3	1	3
CO2	Derive the continuity and momentum equations using differential and integral approach	3	2	-	2	-	2	-	-	-	-	-	-	3	1	3
CO3	Derive the equations for transport theorem, stream function and velocity potential function.	3	2	-	2	-	2	-	-	-	-	-	-	3	1	3
CO4	Analyze the boundary layer concepts in fluid flow.	3	2	-	2	-	2	-	-	-	-	-	-	3	1	3
CO5	Derive the governing equation for turbulent flow	3	2	-	2	_	2	-	-	-	-	-	_	3	1	3
	Average	3.0	2.0	-	2.0	_	2.0	-	-	_	-	-	-	3.0	1.0	3.0

			S	Seme	estei	r - I										
	227	HC1	3- A	dvar	nced	Неа	at Tr	ans	fer							
						Prog	ram (Dutco	omes					P S Oi	rogra pecif itcon	m fic nes
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
CO1	Demonstrate three-dimensional conduction heat transfer mechanism and radiation concepts for various conditions.	3	3	2	2	-	1	-	-	-	-	-	-	3	3	-
CO2	Explain the turbulent forced convective heat transfer concepts and analyse the heat and momentum transfer.	3	3	2	2	-	1	-	-	-	-	-	-	3	3	-
CO3	Explain condensation concepts and analysis of heat exchangers	3	3	2	2	-	1	-	-	-	-	-	-	3	3	-
CO 4	Utilize the concepts numerical methods for the heat transfer applications	3	3	2	2	-	1	-	-	-	-	-	-	3	3	-
CO5	Knowledge in combined heat and mass transfer mechanisms in engine applications.	3	3	2	2	3	1	-	-	-	-	-	_	2	2	2
	Average	3.0	3.0	2.0	2.0	3.0	1.0	-	-	-	-	-	-	2.8	2.8	2.0

			S	eme	ester	- I										
	22MLC-	1- R	esea	rch	Met	hodo	ology	y An	d IP	R						
						Prog	ram (Dutco	omes	\$				Pı Sj Ou	rogra pecif tcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
CO1	Understand research problem formulation	3	3	2	2	-	1	_	_	_	-	-	-	3	3	_
CO2	Analysis research related information	3	3	2	2	-	1	-	-	-	-	-	-	3	3	-
CO3	Follow research ethics	3	3	2	2	-	1	-	-	-	-	-	-	3	3	-
CO4	Understand that today's world is controlled by computer, Information technology, but tomorrow's world is ruled by ideas, concepts and creativity.	3	3	2	2	-	1	_	_	-	-	-	-	3	3	-
CO5	Understand that IPR production provides an incentive to inventors for further research work and investment in R& D, which leads to creation of new and better products, and in turn brings about economic growth and social benefits	3	3	2	2	3	1	_	_	_	-	-	-	2	2	2
	Average	3.0	3.0	2.0	2.0	3.0	1.0	-	-	-	-	-	_	2.8	2.8	2.0

			S	Seme	ester	- I										
	22THC14	4- TI	nern	nal E	Ingi	neer	ing]	Labo	rato	ry						
						Prog	ram	Outc	omes	5			_	Pr Sj Ou	ogra: pecifi tcom	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
CO1	Demonstrate the potential use of various alternate fuels available for IC engines and emission measurement of variable compression ratio SI engine	2	-	-	3	3	-	-	2	-	-	-	-	3	1	1
CO2	Test the performance characteristics of a cooling tower, water heater and refrigeration system.	2	-	-	3	3	-	-	2	-	-	-	-	3	1	1
CO3	Demonstrate the properties and measurement of various renewable energy sources	2	-	-	3	3	-	-	2	-	-	-	-	3	1	1
CO4	Conduct performance study of boiler and heat exchanger	2	-	-	3	3	-	-	2	-	-	-	-	3	1	1
CO5	Demonstrate performance and characteristics of fan, and fuel cell	2	-	-	3	3	-	-	2	-	-	-	-	3	1	1
	Average	2.0	-	-	3.0	3.0	-	-	2.0	-	-	-	-	3.0	1.0	1.0

			S	eme	ster	- I										
	221	CHC	15- ′	ſech	nica	al Se	min	ar –	Ι							
						Prog	ram(Outc	omes	5				Pr S Ou	rogra pecif tcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Identify and choose appropriate topic of relevance.	-	-	-	3	3	-	-	2	3	-	-	-	-	-	-
2	Assimilate literature on technical articles of specified topic and develop comprehension.	-	-	-	3	3	-	-	2	3	-	-	-	-	-	-
3	Prepare technical report.	-	-	-	3	3	-	-	2	3	-	-	-	-	-	-
4	Design, develop and deliver presentation on specified technical topic	-	-	3	3	3	-	-	2	3	-	-	-	-	-	-
5	Communicate in a structured way	-	-	_	3	3	-	_	2	3	-	-	-	-	-	-
	Average	-	_	3.0	3.0	3.0	_	_	2.0	3.0	_	_	_	_	-	_

			S	eme	ster	- II										
	22THC21 -1	Hydı	roge	n An	ıd Fi	1el C	Cell '	Tecl	nnol	ogie	s					
						Prog	ram (Outco	omes	5	_			Pı Sj Ou	rogra: pecifi tcom	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Describe and analyze the techniques of Hydrogen generation.	3	-	-	-	3	2	-	-	-	-	1	-	1	1	
2	Describe and classify various options for Hydrogen storage.	3	2	2	2	2	-	-	-	_	-	-	-	1	1	_
3	Explain the principal operations of fuel cell, its thermodynamics and kinetics.	3	-	-	3	2	2	_	_	-	-	2	-	1	1	_
4	Comprehend the different types of fuel cells compare their merits and demerits.	3	-	-	2	1	1	-	-	-	-	-	-	1	1	_
5	Identify the potential application of a fuel cells for domestic, automotive, space craft power generations and evaluate the techno-economics of a fuel cells.	2	2	-	2	-	2	-	-	-	-	-	-	1	1	-
	Average	2.8	2.0	2.0	2.2	2.0	1.7	-	-	-		1.5	-	1.0	1.0	-

			S	eme	ster	- II										
	22THC22- Comput	atio	nal I	Fluid	l Dy:	nam	ics f	for I	`her	mal	Syst	ems	;			
						Prog	ram (Outc	omes	5				Pr Sj Ou	rogra pecif tcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Explain and apply governing equations, boundary conditions various discretization techniques.	2	3	3	3	-	2	-	-	-	-	1	-	2	3	-
2	Solve solving diffusion heat transfer problems using finite volume based numerical method.	2	2	3	3	-	2	-	-	-	_	-	-	2	3	_
3	Solve convection-diffusion heat transfer problems using finite volume based numerical method.	2	3	3	3	-	3	-	-	-	-	-	_	2	2	3
4	Write computer code for incompressible flow problems.	2	3	3	3	-	3	-	-	-	-	-	-	2	2	3
5	Explain and formulate various turbulence modeling.	3	2	2	3	-	-	-	-	-	-	-	-	2	3	_
	Average	2.2	2.6	2.8	3.0	-	2.0	-	-	-	_	1.0	_	2.0	2.6	3.0

			S	eme	ster	- II										
	22THC23- I1	nstru	ume	ntat	ion]	For '	Ther	mal	Sys	tem	s					
				_	_	Prog	ram (Outco	omes	5		_		P: S Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Describe characteristics of measurement system and do errors encountered during measurements.	1	2	-	3	-	2	-	-	-	-	-	_	-	_	-
2	Handle modern data acquisition system and interfacing of sensors with them.	1	2	2	3	3	-	-	-	-	-	-	-	-	-	3
3	Describe the measurement technique for the measurement of physical properties.	1	2	2	2	3	-	-	_	-	-	-	_	-	1	3
4	Explain the advanced measurement technique for the measurement of physical properties.	1	2	-	1	3	-	-	-	-	_	-	-	-	1	3
5	Describe the measurement analysis for the measurement of smoke, physical and magnetic properties.	1	2	-	1	3	-	-	-	-	-	-	-	-	2	3
	Average	1.0	2.0	2.0	3.0	2.4	2.0	-	-	-	-	-	-	-	1.3	3.0

			S	eme	ster	- II										
	22THC24-	Ana	lysi	s An	d Si	mula	ation	n Lal	oora	tory	,					
						Prog	ram (Outco	omes	5				Pr S Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Understand the concepts of electrostatics, electrical potential, and their applications.	2	3	1	1	-	1	-	-	-	-	-	1	1	_	-
2	Interpret the concepts of dielectrics, capacitance and apply Poisson's or Laplace's equations to various electrostatic problems	3	2	2	3	-	1	-	-	-	-	-	2	2	1	1
3	Apply the concepts of magneto statics, magnetic fields in matter and their application.	2	2	1	1	-	-	-	-	-	-	-	1	1	_	_
4	Apply the concepts of Faraday's laws, Ampere's Law, Maxwell's Equation.	3	3	2	2	-	1	-	-	-	-	-	2	2	1	1
5	The concepts of electromagnetic waves and Poynting vector.	3	2	2	2	_	-	_	_	-	-	-	2	1	_	2
	Average	2.6	2.4	1.6	1.8	-	1.0	-	-	-	-	-	1.6	1.4	1.0	1.3

			S	eme	ster	- II										
	22THC25- Ap	oplie	d Tl	nern	nal E	ngin	ieer	ing I	Labo	rato	ory					
						Prog	ram (Outc	omes	5				Pi Sj Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Calibrate temperature and pressure transducers.	3	3	1	3	3	-	-	-	-	2	-	-	2	3	2
2	Find thermal flow properties of liquid fuel.	3	3	1	3	3	-	-	-	-	2	-	-	2	3	2
3	Practically understand the pool boiling concept.	3	3	1	3	3	-	-	-	-	2	-	-	2	3	2
4	Conduct performance test on vapour absorption system and engine using biodiesel.	3	3	1	3	3	-	-	-	-	2	-	-	2	3	2
5	Conduct performance test on engine using biodiesel	3	3	1	3	3	-	-	-	-	2	-	-	2	3	2
	Average	3.0	3.0	1.0	3.0	3.0	-	-	-	-	2.0	-	-	2.0	3.0	2.0

			S	eme	ster	- II										
	221	`HC2	26- 1	ſech	nica	l Se	mina	ar –l	I							
						Prog	ram (Dutco	omes	\$				Pr S Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction	-	1	2	2	2	1	-	-	3	-	-	-	1	1	1
2	Develop skills regarding professional communication and technical report writing.	-	1	2	2	2	1	-	-	3	-	-	-	1	1	1
3	Learn the methodology of publishing technical papers.	-	1	2	2	2	1	-	-	3	-	-	-	1	1	1
4	Identification of good journal through various analyses for publication.	-	1	2	2	2	1	-	-	3	-	-	-	1	1	1
5	Creation of scholar ID through various international forums for research identity	-	1	2	2	2	1	-	-	3	-	-	-	1	1	1
	Average	-	1.0	2.0	2.0	2.0	1.0	-	-	3.0	-	-	-	1.0	1.0	1.0

			Se	emes	ster	- III										
	22THE51	- De	sign	Of S	Solaı	and	1 Wi 1	nd S	yste	ems						
						Prog	ram (Outco	omes	5				Pr Sj Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Describe solar fundamentals, collectors and classify them.	3	2	2	-	2	1	-	-	-	-	-	-	3	1	-
2	Describe the principle and design the solar heating, cooling and other solar applications.	3	1	3	-	2	-	-	-	-	-	-	-	3	2	-
3	Explain the principle, working, design optimization of PV system for different applications.	3	_	2	2	2	-	_	_	-	-	-	-	3	2	2
4	Describe the basics and measurements of wind energy.	3	-	3	-	2	-	-	-	-	-	-	-	3	2	-
5	Explain the aerodynamic constructional details of wind turbine.	3	_	3	2	2	2	-	-	-	-	2	-	3	2	-
	Average	3.0	2.0	2.6	0.8	2.0	1.5	-	-	-	-	2.0	-	3.0	1.8	2.0

			Se	emes	ster	- III										
	22THE52- D	esig	n Ar	nd A	naly	sis c	of Tu	ırbo	Mac	hin	es					
				_		Prog	ram (Outc	omes	5	_			Pı Sj Ou	rogra: pecifi itcom	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Analyze the energy transfer process in thermodynamic systems.	3	2	2	-	-	2	-	-	-	-	-	-	2	2	-
2	Calculate the performance of centrifugal flow and axial flow combustion systems.	3	-	3	2	-	2	-	-	-	-	-	-	2	2	-
3	Design and analyze the combustion chamber for turbomachines.	3	2	3	2	-	2	-	-	-	-	-	-	2	2	-
4	Compute and analyze the performance of axial and radial flow turbines.	3	2	3	2	-	2	-	-	-	-	-	-	2	2	_
5	Predict the performance of gas turbines and thermodynamic energy systems.	3	2	3	2	-	2	_	-	-	-	-	-	2	2	_
	Average	3.0	2.0	2.8	2.0	-	2.0	-	-	-	-	-	-	2.0	2.0	-

			Se	eme	ster	- III										
	18MTE14- F	ire I	Engi	neer	ing	and	Exp	losic	on C	ontr	ol					
						Prog	ram(Outc	omes	5				Pr Sj Ou	ogra pecif tcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Describe the fundamentals of fire, explosion and theory of combustion.	2	-	-	2	_	-	-	_	_	2	2	-	2	_	_
2	Classify the fire, class of fire and equipment for fire extinguishing.	2	-	-	2	-	-	-	-	-	2	2	-	2	-	_
3	Explain various industrial fire protection systems components and their working.	2	-	-	2	-	1	-	-	1	1	1	-	2	-	_
4	Design the building with fire protection and concepts of their design.	2	-	-	2	-	1	-	-	1	1	1	-	2	-	_
5	Describe the explosion protection system for various application.	2	-	-	2	-	1	-	-	1	1	1	-	2	-	_
	Average	2.0	-	-	2.0	_	1.0	-	-	1.0	1.4	1.4	-	2.0	-	-

			Se	emes	ster	- III										
	2	22TH	IE54	1- Wa	aste	To]	Ener	gy								
						Prog	ram (Outc	omes	5				Pr Sj Ou	rogra pecif tcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Understand the various types of wastes from which energy can be generated.	3	-	_	2	-	2	-	-	-	_	-	_	2	2	_
2	Gain knowledge on biomass pyrolysis process and its applications.	3	-	-	3	3	2	-	-	-	2	-	-	2	2	-
3	Develop knowledge on various types of biomass gasifiers and their operations.	3	3	3	2	-	2	-	-	-	-	-	_	2	2	_
4	Gain knowledge on biomass combustors and its applications on generating energy.	3	3	3	2	-	2	-	-	-	_	-	-	2	2	_
5	Understand the principles of bio- energy systems and their features.	3	-	3	_	-	2	-	-	-	_	-	_	2	2	2
	Average	3.0	3.0	1.8	2.2	3.0	2.0	-	-	-	2.0	-	-	2.0	2.0	2.0

			Se	emes	ster	- III										
	22THE55- Sc	olar	Refr	iger	atio	n an	d Ai	r-Co	ndit	ioni	ng					
						Prog	ram (Outco	omes	;				P1 Sj Ou	rogra pecif tcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Explain the concept of Carnot cycle, thermodynamic process and environmental effects.	3	-	1	-	-	-	2	-	-	-	-	_	2	2	_
2	Classify and explain solar cooling and hybrid air conditioning system.	3	2	-	-	-	1	1	_	-	-	-	_	-	-	2
3	Articulate the technical fundamentals of solar thermal energy storage and heating systems.	3	2	-	1	_	1	-	_	_	-	_	-	3	3	_
4	Describe the spectrum of possible solar thermal applications for day-to- day life.	3	2	-	1	-	-	-	-	-	-	-	-	2	3	_
5	Communicate technological and socio-economic issues involved in solar energy.	3	2	2	-	_	-	-	-	-	2	_	_	-	-	_
	Average	3.0	2.0	2.0	1.0	_	1.0	1.5	-	_	2.0	_	_	2.3	2.6	2.0

			Se	emes	ster	- III										
	22THE61-	Envi	roni	men	tal A	nd]	Pollu	itior	n Co	ntro	1					
						Prog	ram (Outc	omes	j.				Pı Sj Ou	rogra pecif tcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	To describe the background of present condition of the environment and remedial action required.	1	1	2	1	1	2	-	3	-	2	-	-	1	1	1
2	Elaborate the sources of air pollution and the equipment for control them.	1	1	2	1	1	2	-	3	-	2	-	-	1	1	1
3	Elaborate the sources of water pollution and the equipment for control them.	1	1	2	1	1	2	-	3	-	2	-	_	1	1	1
4	Elaborate the sources of solid waste, their characteristics and managements.	1	1	2	1	1	2	-	3	-	2	-	-	1	1	1
5	Describe the other sources of pollution from the industries and their controlling techniques.	1	1	2	1	1	2	_	3	_	2	_	_	1	1	1
	Average	1.0	1.0	2.0	1.0	1.0	2.0	-	3.0	-	2.0	-	-	1.0	1.0	1.0

			Se	emes	ster	- III										
		22T]	HE6	2- Na	anot	echi	nolo	gy								
						Prog	ram(Outco	omes	;				Pı Sj Ou	rogra pecifi tcom	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Design the different types of solar collectors for a given cooling load.	3	3	3	3	1	2	2	-	-	-	1	-	3	2	-
2	Delineate systems for solar water heating.	3	3	3	3	1	2	2	-	-	-	1	-	3	2	-
3	Describe the principles and working of absorption cooling system.	3	3	3	3	1	2	2	-	-	-	1	-	3	2	-
4	Design the solar powered vapour compression refrigeration system.	3	3	2	2	1	3	2	-	-	1	1	-	3	2	-
5	Describe the various techniques for the implementation of solar energy in refrigeration and air conditioning system.	3	3	-	-	1	1	-	-	_	1	-	-	3	2	-
	Average	3.0	3.0	2.7	2.7	1.0	2.0	2.0	-	-	1.0	1.0	-	3.0	2.0	-

			S	eme	ster	-III										
	22THE63- Sol	ar E	nerg	y fo	r Inc	lust	rial :	Proc	ess	Hea	ting					
						Prog	ram(Outco	omes	5				Pr S Ou	rogra pecif itcon	m ic 1es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Design the different types of solar collectors for a given cooling load.	3	3	3	3	1	2	2	-	-	-	1	-	3	2	_
2	Delineate systems for solar water heating.	3	3	3	3	1	2	2	-	-	-	1	-	3	2	-
3	Describe the principles and working of absorption cooling system.	3	3	3	3	1	2	2	-	-	-	1	-	3	2	-
4	Design the solar powered vapor compression refrigeration system.	3	3	2	2	1	3	2	-	-	1	1	-	3	2	_
5	Describe the various techniques for the implementation of solar energy in refrigeration and air conditioning system.	3	3	-	-	1	1	-	-	-	1	-	-	3	2	-
	Average	3.0	3.0	2.7	2.7	1.0	2.0	2.0	-	-	1.0	1.0	-	3.0	2.0	-

				Sem	este	er-III	[
	22THE6	54- E	nerg	gy E	ffici	ent]	Buile	ding	s De	sign						
						Prog	ram (Outco	omes					Pro Spe Outo	gran cifi com	n c es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Will be familiar with climate responsive building design and basic concepts.	3	3	1	1	2	2	1	2	1	-	-	-	3	-	-
2	Will Know the basic terminologies related to buildings.	3	3	3	1	1	-	-	-	-	1	1	-	3	-	-
3	Will Know the passive (air) conditioning techniques.	3	1	3	-	1	2	-	1	-	2	2	-	3	-	3
4	Will be able to evaluate the performance of buildings.	3	3	3	2	2	2	-	-	-	2	2	-	2	-	2
5	Gets acquainted with Renewable energy systems in buildings.	3	2	3	-	3	1	-	2	-	2	2	-	2	-	2
	Average	3.0	2.4	2.6	1.3	1.8	1.7	1.0	1.6	0.2	1.7	1.7	-	2.6	-	2.3

					Ser	neste	r-III									
		22 T	HE65	5-Ana	lysis	Of T	herm	al Po	wer (Cycle	s					
						Pro	gram (Outco	mes					P S Ot	rograr pecifi itcom	n c es
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Understand the number system and the functioning of logic gates with various logic families.	3	2	2	2	3	2	3	2	-	-	-	-	2	1	-
2	Design and analyse combinational logic circuits and Logic gates.	3	3	2	2	3	3	2	1	1	-	-	-	3	2	-
3	Design the sequential logic circuits using Flip flops	2	2	3	3	2	1	2	1	1	-	-	-	2	2	-
4	Design and analyse asynchronous sequential logic circuits	2	1	2	1	2	2	3	1	-	-	-	-	2	1	-
5	Understandtheconceptsofmemori esandPLDsandimplementationof circuitsusingmemoryandPLDs.	2	1	2	1	3	2	1	2	-	-	-	-	3	2	-
	Average	2.4	1.8	2.2	1.8	2.6	2.0	2.2	1.4	1.0	-	-	-	2.4	1.6	-

			S	Seme	ester	-III										
	22THE71- Energy Fo	orec	asti	ng, I	Mode	ellin	g an	d Pr	oject	Ma	nage	emei	nt			
						Prog	ram	Outc	omes					Pr S Ou	rogra pecif itcom	m ic 1es
Course Outcomes1234567891-1112Have knowledge in the National													12	1	2	3
1	Have knowledge in the National energy scenario.	-	1	2	1	1	1	1	1	-	3	3	-	-	1	-
2	Do Energy prediction using various forecasting techniques.	-	2	3	3	3	2	-	-	-	2	2	-	1	3	2
3	Develop optimization model for energy planning.	-	3	3	3	3	-	2	-	-	1	1	Ι	-	-	2
4	Capable of writing project proposals.	-	1	1	2	-	2	2	2	-	2	2	-	-	-	2
5	Understand the National and state energy policies.	-	1	-	-	-	2	2	2	-	2	2	-	-	1	1
	Average	-	1.6	1.8	2.2	2.3	1.7	1.7	16	-	2.0	2.0	-	1.0	1.6	1.7

			SE	MES	STEF	R-III										
	22THE72- Ener	gy Ma	nage	eme	nt ai	nd E	nvir	onm	enta	1 Be	nefit	ts				
]	Progr	am C	utcor	mes					P S O	Progra Speci utcoi	am fic nes
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Recognize the importance of energy conservation and suggest measures for improving per capita energy consumption.	3	-	-	-	-	-	-	-	-	1	1	-	-	2	2
2	Analyses the energy sharing and cost sharing pattern of fuels used in industries.	3	2	2	2	1	1	-	_	2	2	2	-	-	2	-
3	Apply Gantt Chart, CPM and PERT in energy conservation projects.	2	1	1	1	2	-	1	2	3	-	-	-	_	2	3
4	Evaluate the techno-economics of a project adopting discounting and non- discounting cash flow techniques.	2	1	-	1	1	-	1	1	3	2	2	-	-	_	2
5	Assess the sources of additional revenue generation for energy conservation projects adopting UNFCC.	2	-	-	-	-	2	1	-	2	1	1	-	-	-	-
	Average	2.4	1.3	1.5	1.3	1.3	1.5	1.0	1.5	2.5	1.5	15	-	-	2.0	2.3

Semester-III																
22THE73- Solar Energy Appliances																
		Program Outcomes									Program Specific Outcomes					
	Course Outcomes	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Diagnose the fundamental concepts about solar energy systems and devices.	2	_	1	-	2	1	-	-	-	_	_	_	2	2	2
2	Will be familiar with concepts of solar home lighting and solar street lighting systems.	2	2	3	3	-	-	-	-	-	-	2	-	2	2	-
3	Identify the solar cooker technologies for suitable applications.	2	2	3	2	-	-	-	-	-	-	2	-	2	2	-
4	Recognize the applications and types of solar dryers.	2	2	3	2	-	_	-	-	-	-	2	-	2	2	-
5	Aware about various desalination techniques and material problems in solar still.	2	_	2	2	_	-	_	-	-	-	_	_	2	2	_
Average			2.0	2.4	1.8	2.0	1.0	-	-	-	-	2.0	-	2.0	2.0	2.0

Semester-III																
22THE74- Cost Management of Engineering Projects																
		Program Outcomes										Program Specific Outcomes				
Course Outcomes		1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3
1	Understand the costing concepts and their role in decision making.	_	2	-	_	3	2	_	-	1	_	-	-	-	-	2
2	Understand the project management concepts and their various aspects in selection.	-	-	-	-	-	-	-	-	3	-	3	-	-	_	2
3	Interpret costing concepts with project execution.	-	2	-	-	2	-	-	-	3	-	3	-	-	-	2
4	Gain knowledge of costing techniques in service sector and various budgetary control techniques.	-	2	-	_	_	_	_	_	2	-	2	-	-	_	2
5.	Become familiar with quantitative techniques in cost management.	-	2	-	-	3	-	-	-	2	-	2	-	-	-	2
Average		_	2.0	-	-	2.6	2.0	-	-	2.2	-	2.5	-	-	-	2.0

Semester-III																
	22THE75- Advanced Composite Materials															
	Program Outcomes									Program Specific Outcomes						
	1	2	3	4	5	6	7	8	9	1-	11	12	1	2	3	
1	Choose and select the suitable composite material and their reinforcements.	1	2	1	3	1	-	-	-	2	-	1	-	-	-	-
2	Select constituent materials glass, carbon, aramid, ceramic fibres and resins.	1	1	1	2	2	1	-	_	-	-	1	-	-	-	1
3	Understand & Apply engineering mechanics, analysis and design, macro and micro mechanics of composites.	2	2	1	1	2	2	3	-	-	2	1	-	1	-	_
4	Highlight the appropriate use of composite structures in the industry.	1	1	1	1	2	-	-	-	1	-	1	-	-	1	-
5	Describe the concepts of nano composite and their chrematistics.	-	_	-	-	-	-	-	-	-	-	-	-	_	-	-
Average			1.5	1.0	1.4	1.4	1.5	3.0	-	1.5	2.0	1.0	-	1.0	1.0	1.0