PROGRAMME ELECTIVE COURSEVERTICALS FOR HONOURS / MINOR DEGREE

VERTICAL I : POWER ENGINEERING

22EEHO1	SEME	MESTER										
PREREQU	PEC	EC Credit		3								
Power system protection Electrical Massurements Power system Hours/Weak						TH						
Tower syst	3	0	0	3								
Course Objectives:												
1. To u	1. To understand the importance of the substation design											
2. To o	2. To outline the different factor for effecting substation design											
3. To c	assify the bus configurations											
4. To k	now the design criteria for substation grounding											
5. To u	nderstand the importance of substation automation											
UNIT I	INTRODUCTION		9	0	0	9						
Backgroun	d, Need Determination, Budgeting, Financing, Tradition	nal and innovative St	ubstatio	n De	sign,	Site						
Selection a	nd Acquisition, Design, Construction and Commissioning	Process										
UNIT II	9	0	0	9								
Ambient c	onditions, Disconnect switches, Load Break switches, hi	igh speed grounding s	switches	s, pov	ver f	uses,						
circuit swit	ches, circuit breakers.			_								
UNIT III	TYPES OF SUBSTATIONS & BUS/SWITCHING C	ONFIGURATIONS	9	0	0	9						
Transmissi	on substation, distribution substation, collector substa	tion, switching subs	tations,	gas	insu	lated						
substations	, air insulated substations, bus configurations: single bus,	double bus, double br	eak, ma	in an	d tra	nsfer						
bus, double	bus, single breaker, ring bus, break-and-a-half, Compariso	on of configurations.										
UNIT IV	9	0	0	9								
Reasons fo	r substation grounding system, accidental ground circuit, D	Design criteria-Actual 7	Fouch ar	nd ste	p vol	tage,						
soil resistivity, grid resistance, grid current, use of the design equations, selection of conductors, grounding fence,												
other design considerations. Lightning stroke protection-lightning parameters, empirical design methods.												
Substation fire protection-Fire hazards, fire protection measures, fire protection selection criterion.												
UNIT V	9	0	0	9								
Introduction, components of substation automation system, automation applications, protocol fundamentals,												
supervisory control and data acquisition (SCADA) historical perspective, SCADA functional requirements,												
SCADA communication requirements, components of SCADA system, SCADA communication protocols, the												
structure o	f a SCADA communication protocol, security for sub	ostation communication	ons, sec	urity	met	10ds,						
security ass	sessment.											
Total (45L+0T)= 45 Periods												

Total (45L+0T)= 45 Periods

Text Books:							
1.	John D. McDonald, Electrical Power Substation Engineering, CRC Press, 3 rd Edition, 2017						
Reference Books:							
1.	R. S. Dahiya, VinayAttri," Sub-Station Engineering Design & Computer Applications "S K Kataria and sons Publications, 1 st Edition, 2013.						
2.	P. S. Satnam, P. V. Gupta, "Substation Design and Equipment" Dhanapat Rai Publications, 1 st Edition, 2013.						
3.	Turan Gonen, "Electric Power Distribution Engineering "CRC press, third edition, 2014.						
E-Reference							
1	https://www.transgrid.com.au/what-we-do/our-network/connections						
2	https://new.abb.com/substations						
3	https://ieeexplore.ieee.org/document/178016						
4	https://www.sciencedirect.com/topics/engineering/substations						

Course C	Juto	Bloom's Taxonomy			
Upon con	nple	Mapped			
CO1	:	Understand the commissioning of substation	L2: Understanding		
CO2	:	Know working principles of substation switching equipment	L2: Understanding		
CO3	:	Identify the different types of bus configurations	L1: Remembering		
CO4	:	Design substation grounding and protection	L6: Creating		
CO5	:	Analyse the substation communication (SCADA)	L4: Analysing		

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	3	1	1		1	1			1		2	2	1
CO2	1	2	1	1	1								1	1	2
CO3	1	3	2	2	2		1	1				1	1	2	1
CO4	2	2	3	2	3	2						1	2	2	1
CO5	1	2	1	1	3	1	1	1			1	1	2	2	1
Avg	1.4	2.2	2	1.4	2	1.5	1	1	0	0	1	1	1.6	1.8	1.2
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															