22EEHO104 POWER SYSTEM AUTOMATION SEMI								
PREREQUISIT	PEC	C Credit		C				
Power Generation, Transmission and Distribution System: Power L						TH		
System Analysis and Stability Hours/Week 3								
Course Objectiv	es:							
1. To acquire	fundamental knowledge on power system instrumentation	1.						
2. To familian	rise on automations in electric power distribution systems.							
3. To get cone	ceptual aspects in modern tools for power system automat	ion.						
UNIT I	MEASUREMENTS AND SIGNAL TRANSMISSION	N TECHNIQUE	S	9	0	0 9		
Object and philos	sophy of power system instrumentation to measure large c	urrents, high volt	ages, To	orque	and	Speed		
	fications - Data acquisition systems for Power System							
	equipment, RTU, IED - computer control of power system							
UNIT II	COMMUNICATION TECHNOLOGIES			9	0	0 9		
Communication	requirements; Two way capability – outages and faults; P	ublic switched te	lephone	netw	ork,	Power		
	nmunication – ripple control, cyclocontrol, carrier							
	UHF point to point, UHF multi address system radio,	1 .	-		/ -			
	ication. Standards: IEE802, IEC61850	, ,		,,		1 /		
UNIT III	DISTRIBUTION SYSTEM INSTRUMENTATION			9	0	0 9		
Definitions – aut	comation switching control – management information s	ystems (MIS) –	remote	termi	nal ı	ınits –		
	method for data transfer – consumer information service							
	meter reading (AMR) – Remote control load management				•	,		
UNIT IV	DISTRIBUTION AUTOMATION			9	0	0 9		
Introduction to	distribution automation: Customer automation- Feeder	r automation –	Substat	on a	uton	nation,		
Subsystems in o	distribution control centre - Distribution management	systems-Outage	manag	emer	nt sy	stems,		
	agement system framework-Advanced real time DMS							
	MS coordination with other systems.	11		,				
UNIT V	CONCEPTS FOR SMART SYSTEMS			9	0	0 9		
	lutions – Asset optimization, Demand optimization, dis	stribution optimiz	zation, s	mart				
	transmission optimization; Demand side management							
	s; Advanced metering infrastructure integration with							
	em, and outage management system; Smart homes with h							
illullugellielle byst					1110.			

Text Books:

- 1. Pabla. A.S, "Electric Power Distribution", Tata McGraw Hill, New Delhi, 2004.
- 2. Mini S Thomas, and John D McDonald, "Power System SCADA and Smart Grids", Taylor and Francis, 2015.
- 3. Mahalanabis, Kothari and Ahson, "Computer Aided Power System Analysis and Control", Tata McGraw Hill Publishers, 1991.

Reference Books:

- 1. Momoh A. Momoh, and James A. Momoh., "Electric Power Distribution, Automation, Protection, and Control", CRC Press, 2007.
- 2. Gonen., "Electric Power Distribution System Engineering", BSP Books, Pvt. Ltd, 2007.

Course Out	Bloom's Taxonomy		
Upon comp	Mapped		
CO1	:	Understand the conceptual aspects in power system measurements and signal transmission techniques.	L2: Understanding
CO2	:	Demonstrate various communication technologies for data transmission.	L3: Applying
CO3	:	Acquire proficiency to distribution system instrumentation.	L3: Applying
CO4	:	Demonstrate the automation in power distribution system.	L3: Applying
CO5	:	Conceptualize the smart tools for automation.	L3: Applying

COURSE ARTICULATION MATRIX															
COV POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1	PSO 1	PS O 2	PS O 3
CO 1	1	3	3	1	1		1				1	2	1	3	1
CO 2	1	2	3	2	2		2				1	2	1	3	1
CO 3	1	2	3	2	2		2				1	2	1	2	1
CO 4	1	2	2	1	1		1				1	2	1	2	1
CO 5	1	2	3	2	2		2				1	2	1	1	1
Avg	1	2.2	2.8	1.6	1.6	0	1.6	0	0	0	1	2	1	2.2	1
			3/2/	1 – ind	icates s	trength	of cor	relation	n (3- H	igh, 2-N	ſedium,	1-Low)			