22EF	EHO110	SEMESTER										
PRE	REQUISI	PEC	Cre	dit	3							
Powe	r Electroni	ics Electrical Machines	Hours/Week	L	Т	P	TH					
		3	0	0	3							
Course Objectives:												
1.	1. To learn the fundamentals of electric traction, power substation, distribution system and overhead contact system design, construction and operation											
2.	To learn the traction mechanics, power supply systems and role of battery banks and maintenance											
3.	To learn the traction motor drives and control											
4.	To learn a	about traction power supply and protection										
5.	To learn a	about railway signalling										
UNI	ΓΙ ΙΝ΄	TRODUCTION TO ELECTRIC TRACTION		9	0	0	9					
Requ	irements c	f Ideal Traction Systems, the Indian Scenario of E	lectric traction, I	resent of	lay St	tate o	of art					
Elect	ric traction	as a Viable Transport Strategy, Advantages of Electri	c Traction over o	ther syst	ems c	of tra	ction,					
Ideal	choice of	traction system, Power supply systems for Electric	Traction, DC sy	stems, S	Single	pha	se ac					
syste	m and thre	e phase ac systems, Kando systems, Latest Developn	nents in 3phase v	vith spec	cial re	feren	ice to					
locor	notives, EN	AUs and Metro stock, Role of Battery banks in Tractio	n, types and main	tenance.								
UNI	Γ II 🛛 TR	ACTION MECHANICS		9	0	0	9					
Requ	irements c	f Ideal Traction Systems, the Indian Scenario of E	lectric traction, I	resent of	lay St	tate o	of art					
Elect	ric traction	as a Viable Transport Strategy, Advantages of Electri	c Traction over o	ther syst	ems c	of tra	ction,					
Ideal	choice of	traction system, Power supply systems for Electric	Traction, DC sy	stems, S	Single	pha	se ac					
syste	m and thre	e phase ac systems, Kando systems, Latest Developn	nents in 3phase v	vith spec	cial re	feren	ice to					
locor	notives, EN	AUs and Metro stock, Role of Battery banks in Tractio	n, types and main	tenance.								
UNI	Г III TR	ACTION MOTOR AND DRIVES		9	0	0	9					
Type	of traction	n motor best suited for traction duties, Available motor	or characteristics	and the	ir suit	abilit	ty for					
tracti	on duties,	speed control methods, Braking methods, special E	mphasis and tec	hniques	of re	gene	rative					
braki	ng, Optimi	ization of design and construction features for improv	ved power to we	ight ratio	o, Pov	ver F	actor					
and I	Harmonics,	, Tractive Effort and Drive Ratings, Important Feature	res of Traction D	rives, c	onven	tiona	l DC					
and A	AC Tractio	n drives, Semiconductor/IGBT based Converter Contra	olled Drives, DC	Traction	ı using	g Ch	opper					
Cont	rolled Driv	ves, AC Traction employing Poly-phase motors, Tr	raction control o	f DC le	ocomo	otives	s and					
EMU	's, Tractio	n control system of AC locomotives, Control gear, PW	/M control of ind	uction n	notors	, Pov	ver &					
amp;	Auxiliary	circuit equipment (Other than traction motors), L	inear Induction	motors,	intro	luction	on to					
Magl	ev Techno	logy.										
UNI	ΓIV PO	WER SUPPLY AND PROTECTION		9	0	0	9					
Tract	ion substa	tion, spacing and location of Traction substations,	Major equipmen	t at trac	tion s	subst	ation,					
selection and sizing of major equipment like transformer and Switchgear, Types of protection provided for												
Transformer and overhead lines, surge protection, maximum demand and load sharing between substations,												
sectionalizing paralleling post and feeder posts, Booster transformers, Return Conductor, 2X25KV AC system,												
controlling/monitoring, Railway SCADA systems, Train lighting and Air-conditioning.												
Design requirement of catenary wire, contact wire, Dropper, Height, span length, Automatic weight tensioning,												
section insulator, overlap, Different techniques of current collection (overhead and underground systems),												
neutr	al section,	overhead crossing of power lines, Protection		T -	-	-	-					
	$\mathbf{I} \mathbf{V} \mathbf{R} \mathbf{A}$	ALWAY SIGNALING		9	0		9					
BIOCK Section Concept, AC/DC Track Circuits, Interlocking Principle, Train speed and signaling, Solid state												
interlocking, Automatic warning Systems, CAB signaling, Signaling level crossing. Permissible limit of EMI												
and ENIC, remnissible capacitively-coupled current, Coupling between circuits, conductive coupling,												
Elect	rostatic inc		T ()	(AET	T) 4	15 D						
	101a1 (45L+01) = 45 Periods											

Reference Books:										
1.	E. A. Binney, "Electric Traction Engineering: An Introduction", Cleaver-Hume Press, 1955, 1 Oct 2007									
2.	Douglas W. Hinde, M. Hinde, "Electric Traction Systems and Equipment", Elsevier Science & Technology, 1968									

3.	Samuel Sheldon, Erich Hausmann, "Electric Traction and Transmission Engineering", Van Nostrand, 1911
4.	Frederick William Carter, "Railway Electric Traction", E. Arnold & Company, 1922
5.	Edward Parris Burch, "Electric traction for railway trains; a book for students, electrical and mechanical
	engineers, superintendents of motive power and others", New York, McGraw-Hill Book Company
6.	Edward Trevert, "Electric Railway Engineering", Lynn, Mass. : Bubier Pub. Co.
	Burch Edward Parris, "Electric Traction for Railway Trains; a Book for Students, Electrical and
7.	Mechanical Engineers, Superintendents of Motive Power and Others", Arkose Press, ISBN:
	9781345582376, 9781345582376

Course O	Bloom's Taxonomy		
Upon con	Mapped		
CO1	:	To understand the basics of traction and supply systems.	L2: Understanding
CO2	:	To understand the traction mechanics and ideal choice of supply	L4: Analyzing
		systems.	
CO3	:	To describe the concepts of traction motors and applying the solid state	L3. Applying
		drive control.	Lot ripping
CO4	:	To design the protection system for the traction power supply system	L5: Evaluating
CO5	:	To understand the concepts of railway signaling	L2: Understanding

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	РО 10	РО 11	PO 12	PS O1	PS O2	PS O3
CO1	3	2	3	2	2	3	2	1				1	3	2	3
CO2	3	2	3	2	2	3	2	1				1	3	2	3
CO3	3	2	3	2	2	3	2	1				1	3	2	3
CO4	3	2	3	2	2	3	2	2	1	1	2	1	3	2	3
CO5	3	2	3	2	2	3	2	3	1	1	2	1	3	3	3
Avg	3	2	3	2	2	3	2	1.6	1	1	2	1	3	2.2	3
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															