22EEHO204 MODELING AND CONTROL OF POWER	SEMESTER									
PREREQUISITES	CATEGORY	PEC	Cre	dit	3					
Power Flootronics and Control Systems	Hours/Wool	L	Τ	P	TH					
Fower Electronics and Control Systems	Hours/ week	3	0	0	3					
Course Objectives:										
1. To learn the basics of control system simulation.										
2. To do symbolic calculation and study the principles of sliding	mode control and the	e way of	apply	' smc	for					
buck converter.										
3. To learn the concept of power factor correction.										
4. To design simulate smc for buck converter and power factor correction circuit with controller.										
UNIT I SIMULATION BASICS IN CONTROL SYSTEM	8	9	0	0	9					
Transfer Function-How to build transfer function, identify Poles,	zeros, draw time rea	sponse p	lots,	bode	plot					
(Bode Plots for Multiplication Factors, Constant, Single and	Double Integration	Functio	ons, S	ingle	and					
Double Differentiation Functions, Single Pole and Single Z	ero Functions, RHP	Pole a	and F	RHP	Zero					
Functions), state space modelling-transfer function from state	space model.									
UNIT II SYMBOLIC CALCULATIONS	9	0	0	9						
Symbolic Variables - Symbolic Vector Variables, Commands for Handling Polynomial Expressions -										
Extracting Parts of a Polynomial Factorization and Roots of	f Polynomials, Syn	nbolic N	Aatrix	Alge	ebra -					
Operations with Symbolic Matrices - Other Symbolic Matrix Oper	ations.									
UNIT III SLIDING MODE CONTROL BASICS	9	0	0	9						
Introduction- Introduction to Sliding-Mode Control- Basics of Sliding-Mode Theory- Application of Sliding-										
Mode Control to DC-DC Converters-Principle-Sliding mode control of buck converter.										
UNIT IV POWER FACTOR CORRECTION CIRCUITS		9	0	0	9					
Introduction, Operating Principle of Single-Phase PFCs, Control of boost converter based PFCs, Designing the										
Inner Average-Current-Control Loop, Designing the Outer Voltage-Control Loop, Example of Single-										
Phase PFC Systems.										
UNIT V CONTROLLER DESIGN FOR PFC CIRCUITS	9	0	0	9						
Power factor correction circuit using other SMPS topologies: Cuk and SEPIC converter - PFC circuits										
employing bridgeless topologies.										
Total (45L+0T) = 45 Periods										

Text	Books:
1	Feedback Control problems using MATLAB and the Control system tool box By Dean Frederick and Joe
1.	Chow, 2000, 1 st Edition, Cengage Learning.
2.	Ned Mohan,"Power Electronics: A First Course", Johnwiley, 2013, 1st Edition.
2	Marian K. Kazimierczuk and AgasthyaAyachit,"Laboratory Manual for Pulse-Width Modulated DC-DC
5.	Power Converters", Wiley 2016, 1 st Edition.
4.	Power Electronics handbook, Industrial Electronics series, S.K. Varenina, CRC press, 2002, 1 st Edition.
Refe	rence Books:
1	Sliding mode control for Switching Power Converters:, Techniques and Implementation, Slew-
1.	Chong Tan, Yuk Ming Lai Chi-Kong Tse, 1st Edition, CRC Press.
2.	Andre Kislovski, "Dynamic Analysis of Switching-Mode DC/DC Converters", Springer 1991.

3. MATLAB Symbolic Algebra and Calculus Tools, Lopez Cesar, Apress, 2014.

Course O	Bloom's Taxonomy		
Upon con	nple	etion of this course, the students will be able to:	Mapped
CO1	:	To calculate transfer function for constant, differential, integral, First	L2: Understanding
		order and Second order factors.	
CO2	:	To illustrate the effect of poles and zero's in the 's' plane.	L1: Remembering
CO3	:	To select Symbolic equations for solving problems related with	I 5. Evoluting
		Matrices, Polynomial and vectors.	LJ. Evaluating
CO4	:	To compute the control expression for DC – DC buck converter using	I 2. Applying
		sliding mode control theory	L3. Apprying

:

To determine the controller expression for power factor correction	
circuits and to simulate sliding mode control of buck converter and	L5: Evaluating
power factor correction circuit.	

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	3	3	3	3			1		2		3	3	3	3
CO2	3	3	3	3	3			1		2		3	3	3	3
CO3	3	3	3	3	3			1		2		3	3	3	3
CO4	3	3	3	3	3			1		2		3	3	3	3
CO5	3	3	3	3	3			1		2		3	3	3	3
Avg	3	3	3	3	3	0	0	1	0	2	0	3	3	3	3
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															