22EI	EHO2	IO206 PWM CONVERTERS AND APPLICATIONS SEMEST						ГER					
PRE	REQ	UISI	TES	CATEGORY	PEC	Cre	edit	3					
Dour	on Eloc	tuani		DEC	L	Т	P	TH					
Powe	er Elec	cuom	28.	PEC	3	0	0	3					
Cou	Course Objectives:												
1.	To p	rovid drive	e a strong foundation of fundamental concepts in basic s and power quality	basic operation of PWM converters like solid									
	To enable the student to apply these techniques in applications including basic circuit operation												
2.	2. and design												
3	Toe	nable	understand the steady-state and dynamic analysis of F	PWM converters appl	ications								
UNI	TI	IN	TRODUCTION		9	0	0	9					
Powe	er con	versic	n Overview of applications of voltage source converte	ers and current source	e conver	ters. I	$\frac{1}{10}$ C to	AC					
Conv	verters	: Clas	sification of inverters, operation of each type, design	of commutating circu	its. Ana	lvsis d	of vol	tage					
and	current	twav	eforms, voltage and frequency control, current source	inverter and pulse wi	dth mod	ulated	1 inve	erter					
				1									
UNI	ΤIΙ	PV	VM TECHNIQUES		9	0	0	9					
Pulse	e widt	th mo	odulation techniques for bridge converters Bus cla	amping PWM. Spac	e vecto	r bas	ed P	WM.					
Advanced PWM techniques. DC to DC Converters: Classification of choppers, operating principle and control													
circu	its for	each	type. Analysis of voltage and current waveforms.		•	•							
UNI	T III	PF	RFORMANCE ANALYSIS OF LINE CURRENT	RIPPLE	9	0	0	9					
Anal	lysis o	f line	current ripple: Synchronously revolving reference	frame; error between	n referei	nce vo	oltage	e and					
appli	ied vol	ltage;	integral of voltage error; evaluation of line current r	ripple; hybrid PWM t	for redu	ced li	ne cu	ırrent					
rippl	e. Ana	alysis	of dc link current: Relation between line-side current	ents and dc link curre	ent; dc l	ink c	urren	t and					
inver	rter sta	te; rn	ns de current ripple over a carrier cycle; rms current ra	ting of dc capacitors.									
UNI	T IV	PF	RFORMANCE ANALYSIS OF TORQUE RIPPI	LE AND LOSS	9	0	0	9					
Analysis of torque ripple: Evaluation of harmonic torques and rms torque ripple, hybrid PWM for reduced torque													
ripple													
Analysis for inverter's loss: Simplifying assumptions in evaluation of inverter loss, dependence of inverter loss													
on line power factor, influence of PWM techniques on switching loss, design of PWM for low inverter loss.													
UNI	ΤV	PV	VM FOR MULTILEVEL INVERTER AND APPL	ICATIONS	9	0 0 9							
PWN	M for	mult	ilevel inverter -Extensions of sine-triangle PWM to	multilevel inverters,	, voltage	e spac	e ve	ctors,					
space	space vector based PWM, analysis of line current ripple and torque ripple . Applications Active power filtering,												
Reac	tive po	ower	compensation, Constant Volt Per hertz drives, PWM F	Rectifier etc.									
	-												

Total (45L+0T)= 45 Periods

Test Books:									
1.	D. G. Holmes, T. A. Lipo, 'Pulse Width Modulation For Power Converters: Principles and Practice', John Wiley and Sons., 2003.								
2.	Bin Wu, "High Power Converters and AC Drives", John Willey & sons, Inc., 2006.								
3.	Ned Mohan, Undeland and Robbins, "Power Electronics: Converters, Applications and Design", John's Wiley and Sons.								
Reference Books									
1.	Euzeli Cipriano dos Santos Jr. and Edison Roberto Cabral Da Silva "Advanced Power Electronic Converters - PWM Converters Processing AC Voltages", Willey – IEEE Press, 2014.								
2.	M.H.Rashid, "Power Electronics", Prentice Hall of India								
E -References									
1.	NPTEL Lecture series by Prof. G. Narayanan, Department of Electrical Engineering, IISC Bangalore on the web-course . http://www.digimat.in/nptel/courses/video/108108035/								

Course O Upon com	Bloom's Taxonomy Mapped		
CO1	:	Explain the need of PWM	L1: Remembering
CO2	:	Compare the PWM techniques on different aspects	L2: Understanding
CO3	:	Analyze parameter current ripple for different PWM approaches.	L5: Analyzing
CO4	:	Analyze parameters like losses, torque ripple for different PWM approaches.	L4: Analyzing
CO5	:	Develop suitable Pulse Width Modulation method for power converter used for different applications	L3: Applying

COURSE ARTICULATION MATRIX														
COs/ Pos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS O1	PS O2	PSO3
CO1	2	2	2	1	1			1	1	2	1	2	1	2
CO2	3	1	1	2	2			1	2	2	1	1	1	1
CO3	1	1	1	2	1			2	2	2	2	2	1	2
CO4	1	2	2	3	3			2	1	1	1	1	1	1
CO5	1	1	1	1	1			1	2	1	1	2	1	2
Avg	1.6	1.4	1.4	1.8	1.6	0	0	1.4	1.6	1.6	1.2	1.6	1	1.6