

Total $(45 \mathrm{~L}+0 \mathrm{~T})=45$ Periods

| Test Books: |  |
| :---: | :--- |
| 1. | D. G. Holmes, T. A. Lipo, 'Pulse Width Modulation For Power Converters: Principles and Practice', John <br> Wiley and Sons., 2003. |
| 2. | Bin Wu, "High Power Converters and AC Drives", John Willey \& sons, Inc., 2006. |
| 3. | Ned Mohan, Undeland and Robbins, "Power Electronics: Converters, Applications and Design", John's <br> Wiley and Sons. |
| Reference Books |  |
| 1. | Euzeli Cipriano dos Santos Jr. and Edison Roberto Cabral Da Silva "Advanced Power Electronic <br> Converters - PWM Converters Processing AC Voltages", Willey - IEEE Press, 2014. |
| 2. | M.H.Rashid, "Power Electronics", Prentice Hall of India |
| E -References |  |
| 1. | NPTEL Lecture series by Prof. G. Narayanan, Department of Electrical Engineering, IISC Bangalore on <br> the web-course . http://www.digimat.in/nptel/courses/video/108108035/ |


| Course Outcomes: <br> Upon completion of this course, the students will be able to: |  | Bloom's <br> Taxonomy <br> Mapped |  |
| :---: | :--- | :--- | :--- |
| CO1 | $:$ | Explain the need of PWM | L1: Remembering |
| CO2 | $:$ | Compare the PWM techniques on different aspects | L2: Understanding |
| CO3 | $:$ | Analyze parameter current ripple for different PWM approaches. | L5: Analyzing |
| CO4 | $:$Analyze parameters like losses, torque ripple for different PWM <br> approaches. | L4: Analyzing |  |
| CO5 | $:$Develop suitable Pulse Width Modulation method for power <br> converter used for different applications | L3: Applying |  |


| COURSE ARTICULATION MATRIX |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c} \hline \text { COs/ } \\ \text { Pos } \end{array}$ | $\begin{gathered} \text { PO } \\ 1 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 2 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 3 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 4 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 5 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 6 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 7 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 8 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 9 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 10 \end{gathered}$ | $\begin{gathered} \text { PO } \\ 11 \end{gathered}$ | $\begin{aligned} & \hline \text { PS } \\ & \text { O1 } \end{aligned}$ | $\begin{array}{\|l} \hline \text { PS } \\ \text { O2 } \end{array}$ | PSO3 |
| CO1 | 2 | 2 | 2 | 1 | 1 |  |  | 1 | 1 | 2 | 1 | 2 | 1 | 2 |
| CO 2 | 3 | 1 | 1 | 2 | 2 |  |  | 1 | 2 | 2 | 1 | 1 | 1 | 1 |
| CO3 | 1 | 1 | 1 | 2 | 1 |  |  | 2 | 2 | 2 | 2 | 2 | 1 | 2 |
| CO4 | 1 | 2 | 2 | 3 | 3 |  |  | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
| CO5 | 1 | 1 | 1 | 1 | 1 |  |  | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| Avg | 1.6 | 1.4 | 1.4 | 1.8 | 1.6 | 0 | 0 | 1.4 | 1.6 | 1.6 | 1.2 | 1.6 | 1 | 1.6 |

