PROGRAMME ELECTIVE COURSE VERTICALS FOR HONOURS / MINOR DEGREE

VERTICAL III: ELECTRIC VEHICLE TECHNOLOGY

22EEHC	301 ELECTRIC VEHICLE ARCHITEC	TURE	SEME	STE	R							
PREREQUISTIES CATEGORY PI						3						
	L	Т	P	TH								
Electric D	3	0	0	3								
Course O	bjectives:											
1. Top	To provide knowledge about electric vehicle architecture and power train components.											
2. To l	To know the concepts of dynamics of electrical vehicles											
3. To i	To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)											
	inderstand the concept of energy storage systems			-								
5. To p	provide knowledge about different energy sources and energy											
UNIT I	HYBRID ELECTRIC VEHICLE ARCHITECTU	ER 9	0	0	9							
	TRAIN COMPONENTS											
	evolution of Electric Vehicles - Comparison of Electric Ve											
	re of Electric Vehicles (EV) and Hybrid Electric Vehicles		Iybrid E	lectrie	e Veł	nicle						
(PHEV)- I	Power train components and sizing, Gears, Clutches, Transmi MECHANICS OF HYBRID ELECTRIC VEHICLES	ssion and Brakes.										
UNIT II	9	0	0	9								
	tals of vehicle mechanics - tractive force, power and energy	y requirements for	standard	drive	cycl	es o						
	otor torque and power rating and battery capacity. CONTROL OF DC AND AC MOTOR DRIVES											
UNIT III	9	0	0	9								
	trol for constant torque, constant HP operation of all elec											
	peration of DC motor drives, inverter based V/f Operation											
	ctor control operation of Induction motor and PMSM, Brush	less DC motor driv	ves, Swit	ched	reluc	tanc						
motor (SR												
UNIT IV			9	0	0	9						
	rinciple of operation, types, models, estimation of param											
	Batteries and their capacity for standard drive cycles, Veh	nicle to Grid opera	tion of	EV's.	Alte	rnat						
	uel cells, Ultra capacitors, Fly wheels.											
UNIT V	HEV CONTROL STRATEGY AND ENERGY MANA		9	0	0	9						
	rvisory control - Selection of modes - power spilt mode - para	allel mode - engine	brake m	ode -	reger	erat						
mode - ser	ies parallel mode - energy management of HEV's.		l (45L+0									

Text E	Books:						
1.	Iqbal Husain, 'Electric and Hybrid Electric Vehicles', CRC Press, 2011.						
2.	Wei Liu, 'Hybrid Electric Vehicle System Modeling and Control', Second Edition, WILEY, 2017.						
Refere	ence Books:						
1.	James Larminie and John Lowry, 'Electric Vehicle Technology Explained', Second Edition, 2012.						
2.	Goodarzi, Gordon A., Hayes, John G, Electric power train: energy systems, power electronics & drives for hybrid, electric & fuel cell vehicles, Wiley 2018						
3.	De Doncker, Rik, Pulle, Duco W.J., Veltman, Andre, Advanced Electrical Drives, First Edition, CRC Press, Taylor and Francis Group, 2011.						
4.	Mehradad Eshani, Yimin Gao, Ali Emadi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, Fundamentals, Theory and Design, Second Edition, CRC Press, Taylor and Francis Group, 2010. RiK De Doncker, Advanced Electric Drives – Analysis, Modeling, Control, Springer publications						
E-Ref	erence						
1	https://nptel.ac.in/courses/108/106/108106170/						
2	https://nptel.ac.in/courses/108/102/108102121/						

Course C	Bloom's Taxonomy		
Upon con	Mapped		
CO1	:	Learn the electric vehicle architecture and power train components.	L1: Remembering
CO2	:	Acquired the concepts of dynamics of electrical vehicles	L2: Understanding
CO3	:	Apply the vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs).	L3: Applying
CO4	:	Ability to design and select energy storage systems.	L6: Creating
CO5	:	Evaluate different energy sources and energy management in HEVs.	L5: Evaluating

COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO2	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO3	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO4	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
CO5	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1
Avg	2	2	2	2	2	2	2	2	1	1	1	1	2	1	1