22EEHC	SEMESTER										
PREREC	PEC			C							
Power El	L	Т	Р	TH							
10wei Ei	3	0	0	3							
Course (bjectives:										
	b design and drive the mathematical model of a BLDC mot	or and its character	istics								
2. T	b learn the different control schemes for BLDC motor										
	3. To study the basics of fuzzy logic										
	o study the FPGA & VHDL basics										
5. T	o implement fuzzy logic control of BLDC motor in real tim	ne									
UNIT I	MATHEMATICAL MODEL AND CHA ANALYSIS OF THE BLDC MOTOR	RACTERISTICS	9	0	0	9					
Structure	and Drive Modes - Basic Structure, General Design Me	thad Drive Modes	 Mathe	1 matic	al M	Iodel					
	al Equations, Transfer Functions, State-Space Equati										
	istics, Steady-State Operation, Dynamic Characteristics,										
UNIT II	SPEED CONTROL FOR ELECTRIC DRIVES	2000 110001119 0	9	0	0	9					
	on -PID Control Principle, Anti windup Controller, Intell	igent Controller.	Vector C	Contro	ol. Co	-					
	BLDC motor	0									
UNIT II	FUZZY LOGIC		9	0	0	9					
Members	ip functions: features, fuzzification, methods of memb	ership value assig	nments I	Defuz	zifica	ation:					
	uts - methods - fuzzy arithmetic and fuzzy measures										
fuzzy me	sures - measures of fuzziness -fuzzy integrals - fuzzy rule	e base and approxin	nate rea	isonin	ig :	truth					
values a	d tables, fuzzy propositions, formation of rules decon	position of rules,	aggreg	ation	of	fuzzy					
rules, fuz	zy reasoning-fuzzy inference systems, overview of fuzzy	expert system-fuzz	y decisi	on ma	aking	5					
UNIT IV			9	0	0	9					
	on - FPGA Architecture-Advantages-Review of FPGA										
	tan 7. VHDL Basics- Fundamentals-Instruction set-da	ata type-condition	al statem	ents-	prog	grams					
	netic, sorting, PWM generation, Speed detection										
UNIT V			9	0	0	9					
	esign, identifying rotor position via hall effect sensors, o	pen loop and fuzz	y logic c	contro	ol of	48 V					
BLDC m	otor using FPGA.										
		Total	(45L+0]	$\Gamma = 4$	5 Do	minda					

Reference Books:								
1.	Electric Powertrain Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell							
1.	Vehicles, John G. Hayes, G. Abas Goodarzi, Wiley 1 st Edition 2018.							
2.	VHDL Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1 st Edition 2015.							
3.	Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Third Edition" CRC Press,							
5.	Taylor & Francis Group, 2021, 1 st Edition.							
4.	Chang-liang, Permanent Magnet Brushless DC Motor Drives and Controls, Xia Wiley 2012, 1st Edition.							
5.	M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, Neural and Fuzzy Logic Control of Drives and							
5.	Power Systems, Newnes publications, 1 st Edition, 2002.							
6.	Wei Liu, Hybrid Electric Vehicle System Modeling and Control, Wiley 2017, 2 nd Edition							
7.	Electric and Plug-in Hybrid Vehicle Networks Optimization and Control, Emanuele Crisostomi •							
7.	Robert Shorten, Sonja Stüdli • Fabian Wirth, CRC Press, 1st Edition. 2018.							

Г

Course	Bloom's Taxonomy		
Upon con	Mapped		
CO1	:	To design the mathematical model of a BLDC motor and to discuss about its characteristics	L2: Understanding
CO2	:	To demonstrate the PID control, anti-windup controller, Intelligent Controller and Vector Control. Control applied to BLDC motor.	L5: Evaluating
CO3	:	To illustrate the basics of fuzzy logic system	L1: Remembering
CO4	:	To describe the basics of VHDL & FPGA applied to control of EVs.	L2: Understanding
CO5	:	To design and implement of fuzzy logic control scheme for BLDC motor using FPGA in real time	L6: Creating

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3								1	2		2	3		3
CO2	3								1	2		2	3		3
CO3	3						3		1	2		2	3		3
CO4	3						3		1	2		2	3		3
CO5	3						3		1	2		2	3	2	3
Avg	3	0	0	0	0	0	3	0	1	2	0	2	3	2	3
	1	1	3/2/1-i	ndicate	s stren	gth of c	correlat	ion (3-	High, 2	2-Medi	um, 1-	Low)	1	1	