22EEHO30	SEMESTER										
PREREQU	ISTIES	CATEGORY	PEC	Cre	dit	3					
Solid state drives Hours/Week					Р	TH					
	3	0	0	3							
Course Objectives:											
1. To introduce the electrical machines with control module for electric vehicle propulsion.											
UNIT I	9	0	0	9							
PM Brushle	ess Machines : Structure and Principle of PM Brushless I	Machines, Inverte	ers for	PM]	Brush	less,					
Switching S	chemes for Brushless AC Operation, PM Brushless Motor	Control, Applica	tion of	PM	Brus	hless					
Motor Drives in Electric vehicle											
UNIT II	SWITCHED RELUCTANCE MOTOR DRIVES		9	0	0	9					
System Con	figurations, Switched Reluctance Machine: Structure and Prir	nciple of operation	n, Swite	hed R	leluct	ance					
Motor Con	verter Topologies, Soft-Switching Switched Reluctance M	otor Converter 7	opologi	ies,	Swit	ched					
Reluctance	Motor Control, Torque-Ripple Minimization Control, Switcher	ed Reluctance Mo	otor Driv	ves fo	or Ele	ectric					
Vehicle, Ap	plication Examples of Switched Reluctance Motor Drives in E	Electric Vehicles									
UNIT III	MAGNETLESS MOTOR DRIVES		9	0	0	9					
Synchronou	Synchronous Reluctance Motor Drives, Doubly-Salient DC Motor Drives, Flux-Switching DC Motor Drive,										
Axial-Flux	Magnetless Motor Drives, Design Criteria of Advanced Ma	gnetless Motor D	rives fo	or EV	s, De	esign					
Examples of	Advanced Magnetless Motor Drives for EVs, Potential Appl	lications of Advar	nced Ma	gnetl	ess M	lotor					
Drives in EV	Vs										
UNIT IV	9	0	0	9							
System Con	figurations and Vernier Permanent Magnet Machines, Struct	ture and Principle	of Ver	nier I	Perma	nent					
Magnet Machines, Inverters for Vernier Permanent Magnet Motors, Vernier Permanent Magnet Motor Control,											
Design Examples of Vernier PM Motor Drives for EVs, Outer-Rotor Vernier PM Motor Drive, Outer-Rotor Flux-											
Controllable Vernier PM Motor Drive, Potential Applications of Vernier PM Motor Drives in EVs											
UNIT V	DOUBLE-ROTOR ELECTRIC VARIABLE SYSTEMS	N 9	0	0	9						
Double-Rotor Machines, Double-Rotor Electric Variable Transmission System (DR EVT) Structure and operation											
Advanced Double-Rotor EVT Systems. PM DR EVT System. SR DR EVT System. Axial-Flux DR EVT System											
Potential Applications of DR EVT Systems in HEVs											
1	<u>.</u>	Total	(45L+0)	Γ)= 4	5 Per	iods					
L				, -							

Text Books:								
1.	K. T. Chau, 'Electric Vehicle Machines and Drives: Design, Analysis and Application, Wiley-IEEE Press, 2015							
Reference Books:								
1.	Mary Murphy " Electric and Hybrid Vehicles: Principles, Design and Technology ", Larsen and Keller Education, 2019							
E-Reference								

1 https://archive.nptel.ac.in/courses/108/103/108103009/

Course O	Bloom's Taxonomy						
Upon com	Mapped						
CO1	:	Explain the use for Permanent magnet Brushless motor drive for electric	I.1. D				
		vehicle	L1: Remembering				
CO2	:	Select converter topology for Switched Reluctance Motor used for	L3: Applying				
		electric vehicle					
CO3	:	Describe the operation of Magnetless Motor Drives in Electric Vehicles	L2: Understanding				
CO4	:	Understand the principle of Vernier Permanent Magnet Machines	L1: Remembering				
CO5	:	Select a suitable electric drive for electric vehicle	L4: Analyzing				

COURSE ARTICULATION MATRIX

COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	2	2	3		3		1		2		2	2	1	2
CO2		3			1					2		1	1	2	
CO3	2	1		2	1		1		1				1	1	1
CO4	1	1		1		2	1	2	1		2	2	1	1	1
CO5	1	2	3	1		3				1	3	1	2	2	1
Avg	1.75	1.8	2.5	1.75	1	2.67	1	1.5	1	1.67	2.5	1.5	1.4	1.4	1.25
3/2/1-indicates strength of correlation (3- High, 2-Medium, 1- Low)															