PRERE			GAME THEORY AND ITS APPLICATIONS									
THEILE	PE	Credit		3								
NIL L							T	Ή				
			Hours/Week	3	0	0	3					
Course	Objectives:						•					
1. Т	o understand the principles and strategies of games theory											
2. Т	o solve the real time games and present its optimized solution											
3. Т	To apply the concep	t of games theory to identify the certainty of game	es.									
UNIT I	GAMES				9	0	0	9				
	-	Behavior in Game – Best responses and Do lity – Dominated strategies and dynamic strateg	_	Nash	Equilib	orium	– M	lixe				
UNIT 1	II NON-COO	OPERATIVE GAMES			9	0	0	9				
	static games – C int problems.	ontinuous static games - Relation to other M	athematical Probler	ns: Nor	nlinear	optim	izati	on -				
UNIT I	UNIT III EQULIBRIA AND DYNAMIC GAMES											
	e of Equilibria – G games – Games v	Computation of Equilibria – Special matrix gaunder uncertainty.	imes – Uniqueness	of Equi	libria -	- Repe	ated	an				
UNIT I	V COOPERA	TIVE GAMES			9	0	0	9				
Solutions	s based on characte	eristic function - Conflict Resolution - Multi ob	pjective optimization	– Socia	al choi	ce.						
UNIT	V CASE STU	UDIES AND APPLICATIONS			9	0	0	9				
	nan,,s Dilemma – stribution problem	Oligopoly in water management – A forestry .	management prob	lem – I	nternat	tional	fishi	ng				
-				Total	(45 L))=45 I	Perio	ods				

Text Books:									
1.	David Easley and Jon Kleinberg, "Networks, Crowds and Markets: Reasoning about a highly Connected World", Cambridge University, 2010 (Unit I).								
2.	Matsumoto A., Szidarovszky F, "Game Theory and Applications", Springer, 2016 (Units II –V).								
Refer	Reference Books:								
1.	E.M.Barron, "Game Theory: An Introduction", Wiley, 2009.								
2.	Leon Petrosjan, Valdimir V.Mazalov, "Game Theory & Applications", Nova Science Publishers, Inc, 2015.								

	outcomes: upletion of this course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the principles and strategies of games theory	L1 & L2
CO2	Solve the real time games and present its optimized solution	L5 & L6
CO3	Apply the concept of games theory to identify the certainty of games.	L3

COURSE ARTICULATION MATRIX														
COs/PO	PO1	PO2	PO4	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1										2	1
CO2	3	2	1										2	1
CO3	3	2	1										2	1
Avg	3	2	1										2	1
3 / 2 /1 – indicates strength of correlation (3-High,2-Medium,1-Low)														