4005544	ADVANCED MICROCONTROLLED DAGED OVCTEM DECICN		- -	
18PEE11	ADVANCED MICROCONTROLLER BASED SYSTEM DESIGN	L	1 P	C
		3	0 0	3
Course Objectives:				
Course Objectives:	vital control for navor alastronia applications			
	gital control for power electronic applications			
Z. TO learn various	DSP peripherals for proper implementations to power applications			
Unit I INTRODUCTI	ON TO DSPIC 30F DIGITAL SIGNAL CONTROLLER		9 +	0
	- Programmers Model – CPU Registers – DSP Engine – Memory Orgar	nizatio	on – Da	ata –
	EPROM Programming.			
Unit II SYSTEM CO	ONFIGURATION		9 +	0
Oscillator Configuration	n – Power saving Modes - Various Resets – Device Configuration – Lov	v Vol	tage D	etect
- I/O Ports	· ·		Ü	
Unit III CONTROL	PERIPHERALS		9 +	0
Study, Configuration a	nd control - Interrupt Structure - Timers - Capture and Compare -	AD	Conve	rter-
Introduction to IDE for a	dsPIC and Project development with simple C programming.			
Unit IV MOTOR CO	ONTROL PERIPHERALS		9 +	0
Motor Control PWM - I	Different PWM modes – Dead Time – Output and Polarity Control – PV	VM F	ault Pi	ns –
Quadrature Encoder Int	terface			
Unit V APPLICATION	DNS		9 +	0
Closed loop Control of	f Single and three Phase VSI, Sensored and Sensorless BLDC Moto	or Co	ntrol -	- AC
Induction Motor Contro	ol – Vector Control of AC Induction Motor - Servo Control of a DC-Bru	sh M	lotor -	Four
Channel Digital Voltmet	ter with Display			
	Total (L-	⊦T)=	45 Per	iods
Course Outcomes:				
Upon completion of this	s course, the students will be able to:			
CO1 : Understand	various DSP peripherals			
	the configurations of peripherals for appropriate power applications			
	ng for implementing controls using peripherals			
	terfacing techniques with DSC for control applications			
	and implement data acquisition and processing for control application a	nd in	nleme	nt
	iques for power electronic applications	, i i i i	ιριστισ	,,,
- Lonnonecin	inquies is, poire, electronic appineditions			
	· · · · · · · · · · · · · · · · · · ·			
Reference Books:	Reference Manual, Datasheets.			
Reference Books: 1. dsPIC30FFamily F	Reference Manual, Datasheets. a. "Intelligent Sensor Design using Microchip dsPIC". Newnes. 2007.			
Reference Books: 1. dsPIC30FFamily F	n, "Intelligent Sensor Design using Microchip dsPIC", Newnes, 2007.	ollers	s) in	C",

PO	CO Statement	PO1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1
CO1	Understand various DSP peripherals	1	1	1	1	1		1	1	1	1	1
CO2	Understand the configurations of peripherals for appropriate power applications	1	1	1	1	1		1	1	1	1	1
CO3	Write C coding for implementing controls using peripherals	1	1	1	1	1		1	1	1	1	1
CO4	Implement interfacing techniques with DSC for control applications	1	1	1	1	1		1	1	1	1	1

CO5	Understand and implement data										
	acquisition and										
	processing for control	1	1	1	1	1	1	1	1	1	1
	application and										
	implement control										
	techniques for power										
	electronic applications										